WorldWideScience

Sample records for watershed management study

  1. Watershed management

    OpenAIRE

    Mander, Ü.; Tournebize, J.

    2014-01-01

    This article presents a scientific overview of the basic implementation of the principles of ecological engineering in watershed management. The first two sections discuss the landscape factors of nutrient fluxes and the critical source areas in rural watersheds. The subsequent sections give an overview of the principles, role and efficiency of the main ecotechnological measures used in watershed management: (1) riparian buffer zones and buffer strips, and (2) constructed wetlands for wast...

  2. Towards integrated watershed management in highland Ethiopia: the Chemoga watershed case study

    OpenAIRE

    Bewket, W.

    2003-01-01

    Resource degradation is a critical problem in highland Ethiopia. Past soil and water conservation efforts did not bring about significant results. Hence, there is an urgent need to tackle the problem through new conservation approaches and technologies. This thesis discusses the need for and possibilities of implementing integrated watershed management (IWM) approach. A typical highland watershed (the Chemoga watershed) was selected for the research, and multifaceted investigations were condu...

  3. An Adaptive Watershed Management Assessment Based on Watershed Investigation Data

    Science.gov (United States)

    Kang, Min Goo; Park, Seung Woo

    2015-05-01

    The aim of this study was to assess the states of watersheds in South Korea and to formulate new measures to improve identified inadequacies. The study focused on the watersheds of the Han River basin and adopted an adaptive watershed management framework. Using data collected during watershed investigation projects, we analyzed the management context of the study basin and identified weaknesses in water use management, flood management, and environmental and ecosystems management in the watersheds. In addition, we conducted an interview survey to obtain experts' opinions on the possible management of watersheds in the future. The results of the assessment show that effective management of the Han River basin requires adaptive watershed management, which includes stakeholders' participation and social learning. Urbanization was the key variable in watershed management of the study basin. The results provide strong guidance for future watershed management and suggest that nonstructural measures are preferred to improve the states of the watersheds and that consistent implementation of the measures can lead to successful watershed management. The results also reveal that governance is essential for adaptive watershed management in the study basin. A special ordinance is necessary to establish governance and aid social learning. Based on the findings, a management process is proposed to support new watershed management practices. The results will be of use to policy makers and practitioners who can implement the measures recommended here in the early stages of adaptive watershed management in the Han River basin. The measures can also be applied to other river basins.

  4. Farmers' use of nutrient management: lessons from watershed case studies.

    Science.gov (United States)

    Osmond, Deanna L; Hoag, Dana L K; Luloff, Al E; Meals, Donald W; Neas, Kathy

    2015-03-01

    Nutrient enrichment of water resources has degraded coastal waters throughout the world, including in the United States (e.g., Chesapeake Bay, Gulf of Mexico, and Neuse Estuary). Agricultural nonpoint sources have significant impacts on water resources. As a result, nutrient management planning is the primary tool recommended to reduce nutrient losses from agricultural fields. Its effectiveness requires nutrient management plans be used by farmers. There is little literature describing nutrient management decision-making. Here, two case studies are described that address this gap: (i) a synthesis of the National Institute of Food and Agriculture, the Conservation Effects Assessment Project, and (ii) field surveys from three nutrient-impaired river basins/watersheds in North Carolina (Neuse, Tar-Pamlico, and Jordan Lake drainage areas). Results indicate farmers generally did not fully apply nutrient management plans or follow basic soil test recommendations even when they had them. Farmers were found to be hesitant to apply N at university-recommended rates because they did not trust the recommendations, viewed abundant N as insurance, or used recommendations made by fertilizer dealers. Exceptions were noted when watershed education, technical support, and funding resources focused on nutrient management that included easing management demands, actively and consistently working directly with a small group of farmers, and providing significant resource allocations to fund agency personnel and cost-share funds to farmers. Without better dialogue with farmers and meaningful investment in strategies that reward farmers for taking what they perceive as risks relative to nutrient reduction, little progress in true adoption of nutrient management will be made. PMID:26023957

  5. Watershed Management-A case study of Satara Tanda Village

    Directory of Open Access Journals (Sweden)

    P. R. Thakare

    2013-08-01

    Full Text Available Water is the most critical component of life support system. India shares about 16% of the global population but it has only 4% of the water resources. The national water policy gives priority to drinking water followed by agriculture, industry and power. The single most important task before the country in the field of India’s water resource management is to pay special attention to rainwater conservation, especially which falls on our vast rain-fed lands but most of which flows away from it. The Marathwada region is declared the drought for this year by state government, to overcome the water scarcity watershed management is decided to do near the Sataratanda it is the outskirt region of Aurangabad city. The proposed site of watershed management structure bandhara is located on stream flowing near the Sataratanda village. The proposed bandhara is design for the conservation of water and recharging into the ground to raise the water table of this particular area for the benefits to villagers, fields & farmers. Since last few decades the demand for water had rapidly grown and with the increasing population would continue to rise in future. In Maharashtra, the assessment of ground water potential and scope for artificial recharge in the overdeveloped watershed is very crucial. The total cost of cement bandhara works about 9 lakhs thus the scheme is found economically feasible. The quantity of water store in the bandhara basin is 0.74 TCM.

  6. Integrated Approach for Prioritizing Watersheds for Management: A Study of Lidder Catchment of Kashmir Himalayas

    Science.gov (United States)

    Malik, Mohammad Imran; Bhat, M. Sultan

    2014-12-01

    The Himalayan watersheds are susceptible to various forms of degradation due to their sensitive and fragile ecological disposition coupled with increasing anthropogenic disturbances. Owing to the paucity of appropriate technology and financial resources, the prioritization of watersheds has become an inevitable process for effective planning and management of natural resources. Lidder catchment constitutes a segment of the western Himalayas with an area of 1,159.38 km2. The study is based on integrated analysis of remote sensing, geographic information system, field study, and socioeconomic data. Multicriteria evaluation of geophysical, land-use and land-cover (LULC) change, and socioeconomic indicators is carried out to prioritize watersheds for natural resource conservation and management. Knowledge-based weights and ranks are normalized, and weighted linear combination technique is adopted to determine final priority value. The watersheds are classified into four priority zones (very high priority, high priority, medium priority, and low priority) on the basis of quartiles of the priority value, thus indicating their ecological status in terms of degradation caused by anthropogenic disturbances. The correlation between priority ranks of individual indicators and integrated indicators is drawn. The results reveal that socioeconomic indicators are the most important drivers of LULC change and environmental degradation in the catchment. Moreover, the magnitude and intensity of anthropogenic impact is not uniform in different watersheds of Lidder catchment. Therefore, any conservation and management strategy must be formulated on the basis of watershed prioritization.

  7. Watershed Management Optimization Support Tool (WMOST) v2: User Manual and Case Studies

    Science.gov (United States)

    The Watershed Management Optimization Support Tool (WMOST) is a decision support tool that evaluates the relative cost-effectiveness of management practices at the local or watershed scale. WMOST models the environmental effects and costs of management decisions in a watershed c...

  8. Watershed Management Optimization Support Tool (WMOST) v1: User Manual and Case Study Examples

    Science.gov (United States)

    The Watershed Management Optimization Support Tool (WMOST) is intended to be used as a screening tool as part of an integrated watershed management process such as that described in EPA’s watershed planning handbook (EPA 2008).1 The objective of WMOST is to serve as a public-doma...

  9. Web-Based Spatial Decision Support System andWatershed Management with a Case Study

    OpenAIRE

    Yanli Zhang; Ramanathan Sugumaran; Matthew McBroom; John DeGroote; Rebecca L Kauten; Paul K Barten

    2011-01-01

    In order to maintain a proper balance between development pressure and water resources protection, and also to improve public participation, efficient tools and techniques for soil and water conservation projects are needed. This paper describes the development and application of a web-based watershed management spatial decision support system, WebWMPI. The WebWMPI uses the Watershed Management Priority Indices (WMPI) approach which is a prioritizing method for watershed management planning a...

  10. WATERSHED MANAGEMENT RESEARCH TEAM (URBAN WATERSHED MANAGEMENT BRANCH - WSWRD)

    Science.gov (United States)

    The Urban Watershed Management Branch researches, develops, and evaluates technologies, practices, and systems to manage risks to human health and ecosystems from Wet Weather Flow (WWF) sources in urban watersheds. The focus is on the risk management aspects of WWF research.One...

  11. Adaptive Management Fitness of Watersheds

    OpenAIRE

    Brown, Mark T.; Lynn V. . Saunders; Ignacio Porzecanski

    2012-01-01

    Adaptive management (AM) promises to improve our ability to cope with the inherent uncertainties of managing complex dynamic systems such as watersheds. However, despite the increasing adherence and attempts at implementation, the AM approach is rarely successful in practice. A one-size-fits-all AM strategy fails because some watersheds are better positioned at the outset to succeed at AM than others. We introduce a diagnostic tool called the Index of Management Condition (IMC) and apply it t...

  12. Preliminary study on streamflow in forested and forest plantation experimental watersheds for water resources management

    International Nuclear Information System (INIS)

    The future management of forests for water resources will be more important as population growth and demand for water resources increases. In Malaysia many lowland forests has been earmarked for agricultural crops, and timber concessionaires has moved towards the hillier region of the country where specific and costly logging techniques are required. Hence, planting timber trees, as an industrial timber plantation is an alternative to meet timber demands. Very few research on evaluation of the impact of forest clearance on hydrology attributes from newly established industrial timber plantations have been conducted. In 1989, experimental catchment at Bukit Tarek Tambahan Experimental Watershed (BTEW) was initiated to study the effects of land conversion from forest to industrial timber plantation on hydrological parameters changes. The BTEW is located in Compartment 41, Bukit Tarek Tambahan F. R. at Kerling, Selangor Malaysia. The study site was a regenerated secondary forest logged in 1963. The study area is divided into catchment C1 (32.8 ha) and C3 (12.5 ha). Catchment C1, act as a control whereas C3 is the experimental catchments. Catchment C3 was logged in 1999 and early 2000 and subsequently a forest plantation was established. The forest area in Catchment C3 was clear felled, and the residuals trees were burnt. Buffer zone was not established near the riverbanks. The plantation was established in catchment C3 with Hopea odorata in early 2004. Streamflow was measured continuously using the 120 degree V-notch weir at the outlet of each watershed (Weir 1 and Weir 3). The short time interval rainfall was also monitored. In this working paper, the main objective to analyze the data is to examine rainfall-runoff response of forested catchments before establishment of forest plantation. The preliminary study on discharge after the C3 was clear-felled using single storm hydrograph analysis shows that during the storm event, the quick flow runoff dominate the discharge in C3 runoff while the delayed flow runoff dominate the discharge in the C1. (Author)

  13. 18 CFR 801.9 - Watershed management.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Watershed management... GENERAL POLICIES § 801.9 Watershed management. (a) The character, extent, and quality of water resources... management including soil and water conservation measures, land restoration and rehabilitation,...

  14. Engaging Watershed Stakeholders for Cost-Effective Environmental Management Planning with "Watershed Manager"

    Science.gov (United States)

    Williams, Jeffery R.; Smith, Craig M.; Roe, Josh D.; Leatherman, John C.; Wilson, Robert M.

    2012-01-01

    "Watershed Manager" is a spreadsheet-based model that is used in extension education programs for learning about and selecting cost-effective watershed management practices to reduce soil, nitrogen, and phosphorus losses from cropland. It can facilitate Watershed Restoration and Protection Strategy (WRAPS) stakeholder groups' development of…

  15. Engaging Watershed Stakeholders for Cost-Effective Environmental Management Planning with "Watershed Manager"

    Science.gov (United States)

    Williams, Jeffery R.; Smith, Craig M.; Roe, Josh D.; Leatherman, John C.; Wilson, Robert M.

    2012-01-01

    "Watershed Manager" is a spreadsheet-based model that is used in extension education programs for learning about and selecting cost-effective watershed management practices to reduce soil, nitrogen, and phosphorus losses from cropland. It can facilitate Watershed Restoration and Protection Strategy (WRAPS) stakeholder groups' development of…

  16. Community Participation in Watershed Management Programs

    OpenAIRE

    Reza Bagherian; A. S. Bahaman; A. S. Asnarulkhadi; Shamsuddin Ahmad

    2009-01-01

    Problem statement: Several studies in other countries had shown the influence of socio demographic, knowledge, satisfaction and attitudinal factors in level of community participation in development programs. The question here is, whether these factors would also be effective on community participation in other countries? Determine the factors which are influence community participation in order to enhance their participation in Watershed Management Programs (WMP) in Iran. Approach: A cross s...

  17. Incorporating uncertainty in watershed management decision-making: A mercury TMDL case study

    Science.gov (United States)

    Labiosa, W.; Leckie, J.; Shachter, R.; Freyberg, D.; Rytuba, J.

    2005-01-01

    Water quality impairment due to high mercury fish tissue concentrations and high mercury aqueous concentrations is a widespread problem in several sub-watersheds that are major sources of mercury to the San Francisco Bay. Several mercury Total Maximum Daily Load regulations are currently being developed to address this problem. Decisions about control strategies are being made despite very large uncertainties about current mercury loading behavior, relationships between total mercury loading and methyl mercury formation, and relationships between potential controls and mercury fish tissue levels. To deal with the issues of very large uncertainties, data limitations, knowledge gaps, and very limited State agency resources, this work proposes a decision analytical alternative for mercury TMDL decision support. The proposed probabilistic decision model is Bayesian in nature and is fully compatible with a "learning while doing" adaptive management approach. Strategy evaluation, sensitivity analysis, and information collection prioritization are examples of analyses that can be performed using this approach.

  18. Comparative Assessment of Stormwater and Nonpoint Source Pollution Best Management Practices in Suburban Watershed Management

    OpenAIRE

    Zeyuan Qiu

    2013-01-01

    Nonpoint source pollution control and stormwater management are two objectives in managing mixed land use watersheds like those in New Jersey. Various best management practices (BMPs) have been developed and implemented to achieve both objectives. This study assesses the cost-effectiveness of selected BMPs for agricultural nonpoint source pollution control and stormwater management in the Neshanic River watershed, a typical mixed land use watershed in central New Jersey, USA. The selected BMP...

  19. Watershed Management: Lessons from Common Property Theory

    Directory of Open Access Journals (Sweden)

    John Kerr

    2007-10-01

    Full Text Available Watershed development is an important component of rural development and natural resource management strategies in many countries. A watershed is a special kind of common pool resource: an area defined by hydrological linkages where optimal management requires coordinated use of natural resources by all users. Management is difficult because natural resources comprising the watershed system have multiple, conflicting uses, so any given management approach will spread benefits and costs unevenly among users. To address these challenges, watershed approaches have evolved from more technocratic to a greater focus on social organization and participation. However, the latter cannot necessarily be widely replicated. In addition, participatory approaches have worked better at a small scale, but hydrological relationships cover a larger scale and some projects have faced tradeoffs in choosing between the two. Optimal approaches for future efforts are not clear, and theories from common property research do not support the idea that complex watershed management can succeed everywhere. Solutions may include simplifying watershed projects, pursuing watershed projects where conditions are favorable, and making other investments elsewhere, including building the organizational capacity that can facilitate watershed management.

  20. Diagnostic Systems Approach to Watershed Management

    Energy Technology Data Exchange (ETDEWEB)

    Davisson, M L

    2001-02-23

    The water quality of discharge from the surface water system is ultimately dictated by land use and climate within the watershed. Water quality has vastly improved from point source reduction measures, yet, non-point source pollutants continue to rise. 30 to 40% of rivers still do not meet water quality standards for reasons that include impact from urban storm water runoff, agricultural and livestock runoff, and loss of wetlands. Regulating non-point source pollutants proves to be difficult since specific dischargers are difficult to identify. However, parameters such as dissolved organic carbon (DOC) limit the amounts of chlorination due to simultaneous disinfection by-product formation. The concept of watershed management has gained much ground over the years as a means to resolve non-point source problems. Under this management scheme stakeholders in a watershed collectively agree to the nature and extent of non-point sources, determine water quality causes using sound scientific approaches, and together develop and implement a corrective plan. However, the ''science'' of watershed management currently has several shortcomings according to a recent National Research Council report. The scientific component of watershed management depends on acquiring knowledge that links water quality sources with geographic regions. However, there is an observational gap in this knowledge. In particular, almost all the water quality data that exists at a utility are of high frequency collected at a single point over a long period of time. Water quality data for utility purposes are rarely collected over an entire watershed. The potential is high, however, for various utilities in a single watershed to share and integrate water quality data, but no regulatory incentives exist at this point. The only other available water quality data originate from special scientific studies. Unfortunately these data rarely have long-term records and are usually tailored to address unrelated research questions. The goal of this research was to investigate whether scientific research tools were available that could provide evidence that links water quality and land type. In particular, could such tools be used on raw water at the treatment point rather than monitoring over a large geographic spanning a watershed. This report summarizes the utility of using isotopic tracers to better understand sources of non-point source pollution and their relation to industry standard water quality measurements. In this study we have found that much of the water quality data generated by utilities is under-interpreted in the context of understanding watershed processes. For example, the City of St. Louis depends solely on the Missouri River for drinking water, but due to large variability in discharge and runoff sources, they are faced with DOC concentrations that vary nearly a factor of three within a single season. The relationship between discharge and concentration has not been constrained. However, we found a linear correlation between the DOC concentration and the fractional amount of downstream discharge (derived from within the State of Missouri). This correlation relates directly to differences in land use and climate between the upstream and downstream portions of the river basin.

  1. Advancing the Guánica Bay (Puerto Rico) Watershed Management Plan

    Science.gov (United States)

    Consideration of stakeholder values in watershed planning and management is a necessity, but sufficiently eliciting, understanding, and organizing those values can be daunting. Many studies have demonstrated the usefulness of formal decision analysis to integrate expert knowledge...

  2. Watershed management program. Final environmental impact statement

    International Nuclear Information System (INIS)

    Under the Northwest Power Act, BPA is responsible for mitigating the loss of fish and wildlife habitat caused by the development of the Federal Columbia River Power System. BPA accomplishes this mitigation by funding projects consistent with those recommended by the Northwest Power Planning Council (Council). The projects are submitted to the Council from Indian tribes, state agencies property owners, private conservation groups, and Federal agencies. Future watershed management actions with potential environmental impacts are expected to include in-channel modifications and fish habitat enhancement structures; riparian restoration and other vegetation management techniques; agricultural management techniques for crop irrigation, animal facilities, and grazing; road, forest, urban area, and recreation management techniques; mining reclamation; and similar watershed conservation actions. BPA needs to ensure that individual watershed management projects are planned and carried out with appropriate consistency across projects, jurisdictions, and ecosystems, as well as over time

  3. A Component-Based Distributed Watershed Model for the USDA CEAP Watershed Assessment Study

    Science.gov (United States)

    Challenges in agro-ecosystem conservation management have created demand for state-of-the-art, integrated, and flexible modeling tools. For example, Objective 5 of the USDA CEAP Watershed Assessment Study (WAS) is to “develop and verify regional watershed models that quantify environmental outcomes ...

  4. SUSTAINABLE URBAN TECHNOLOGIES TEAM (URBAN WATERSHED MANAGEMENT BRANCH - WSWRD)

    Science.gov (United States)

    The National Risk Management Research Laboratory's Urban Watershed Management Branch researches, develops and evaluates technologies, practices, and systems to manage risks to human health and ecosystems from Wet Weather Flow (WWF) sources in urban watersheds. The focus is on the...

  5. Exploring an innovative watershed management approach: From feasibility to sustainability

    International Nuclear Information System (INIS)

    Watershed management is dedicated to solving watershed problems on a sustainable basis. Managing watershed development on a sustainable basis usually entails a balance between the needs of humans and nature, both in the present and in the future. From a watershed or water resources development basis, these problems can be classified into five general categories: lack of water quantity, deterioration in water quality, ecological impacts, weak public participation, and weak economic value. The first three categories can be combined to make up physical sustainability while the last two categories can be defined as social and economic sustainability. Therefore, integrated watershed management should be designed to achieve physical sustainability utilizing, to the greatest extent possible, public participation in an economically viable manner. This study demonstrates an innovative approach using scientific, social, and motivational feasibilities that can be used to improve watershed management. Scientific feasibility is tied to the nature of environmental problems and the scientific means to solve them. Social feasibility is associated with public participation. Motivational feasibility is related to economic stimulation for the stakeholders to take actions. The ecological impacts, lack of water quantity and deterioration in water quality are problems that need scientific means in order to improve watershed health. However, the implementation of these means is typically not achievable without the right public participation. In addition, public participation is typically accelerated by economic motivation for the stakeholders to use the resources in a manner that improves watershed health. The Big Lost River in south-central Idaho has been used as an illustration for implementing scientific, social and motivational feasibilities and in a manner that can achieve sustainability relative to water resources management. However, the same approach can be used elsewhere after appropriate modifications. (author)

  6. Integrated Resource Management at a Watershed Scale

    Science.gov (United States)

    Byrne, J. M.; MacDonald, R. J.; Cairns, D.; Barnes, C. C.; Mirmasoudi, S. S.; Lewis, D.

    2014-12-01

    Watershed hydrologists, managers and planners have a long list of resources to "manage." Our group has worked for over a decade to develop and apply the GENESYS (Generate Earth Systems Science) high-resolution spatial hydrometeorological model. GENESYS was intended for modelling of alpine snowpack, and that work has been the subject of a series of hydrometeorology papers that applied the model to evaluate how climate change may impact water resources for a series of climate warming scenarios through 2100. GENESYS has research modules that have been used to assess alpine glacier mass balance, soil water and drought, forest fire risk under climate change, and a series of papers linking GENESYS to a water temperature model for small headwater streams. Through a major commercialization grant, we are refining, building, adopting, and adapting routines for flood hydrology and hydraulics, surface and groundwater storage and runoff, crop and ecosystem soil water budgets, and biomass yields. The model will be available for research collaborations in the near future. The central goal of this development program is to provide a series of research and development tools for non-profit integrated resource management in the developed and developing world. A broader question that arises is what are the bounds of watershed management, if any? How long should our list of "managed" resources be? Parallel work is evaluating the relative values of watershed specialists managing many more resources with the watershed. Hydroelectric power is often a key resource complimentary to wind, solar and biomass renewable energy developments; and biomass energy is linked to water supply and agriculture. The August 2014 massive tailings dam failure in British Columbia threatens extensive portions of the Fraser River sockeye salmon run, millions of fish, and there are concerns about long-term contamination of water supplies for many British Columbians. This disaster, and many others that may occur quickly, or challenges like climate and land use change, require water managers to become much more vigilant in protecting our watershed resources.

  7. Headwater management alters sources, flowpaths, and fluxes of water, carbon, and nitrogen in urban watersheds

    Science.gov (United States)

    Pennino, M. J.; Kaushal, S.; Mayer, P. M.; Welty, C.; Miller, A. J.

    2012-12-01

    Increased urbanization has altered watershed hydrology and increased nutrient pollution, leading to eutrophication and hypoxia in downstream coastal ecosystems. Due to urban stream degradation, there have been efforts to restore streams and reduce peak-flow discharges and contaminant export through stormwater management and stream restoration. However, there have been relatively few studies comparing watershed scale impacts of contrasting headwater management practices on sources and fluxes of water, carbon, and nutrients across space and time. In this study we compared sources and fluxes of water, carbon (C), and nitrogen (N) along 4 watersheds of contrasting headwater management: 2 urban degraded watersheds with minimal or no stormwater management and 2 managed urban watersheds with stormwater controls and stream restoration. Surface water samples were collected biweekly at USGS gauging stations located within each watershed over 2 years. Spatially, watersheds were sampled longitudinally during 4 seasons. Sources of water, nitrate, and carbon were investigated using isotopic and spectroscopic tracer techniques. Indicator anions (F-, Cl-, I-, SO42-) were also used to trace anthropogenic vs. natural water sources. Hydrologic flowpaths (groundwater vs. overland flow) were assessed with longitudinal synoptic surveys using stable water isotopes of H and O. Annual fluxes of water, C, and N, were estimated using the USGS program LOADEST. H and O isotope data showed that the source of stream water is primarily groundwater during summer months, with greater contributions from stormflow during winter months for all 4 watersheds. Elevated levels of indicator anions (F-, Cl-, I-, SO42-) as well as greater "pulses" of C and N over time in the degraded vs. managed watersheds indicate potential sewage sources due to leaky sanitary sewers and greater stormdrain inputs. Unlike the managed watersheds where hydrologic flowpaths were from groundwater in headwaters, the longitudinal H and O isotope data indicated that degraded watersheds had greater overland flow sources due to stormdrain infrastructure and engineered headwaters. The degraded urban watersheds consistently showed highly variable "pulsed" fluxes for C, N, P and indicator anions than the managed watersheds. While the managed watersheds showed lower total annual export for C, the annual N and P exports were not consistently lower than the degraded watersheds. Most of the C, N, and P was exported during higher flows in the degraded watersheds, while most of the nutrient export for the managed watersheds was during baseflow. Our results suggest that watershed restoration strategies have the potential to alter sources fluxes, and flowpaths of water, carbon and nitrogen. Along the urban watershed continuum, there may be differences in the potential for stormwater management vs. stream restoration to alter sources and fluxes of nutrients, which has implications for management of important biogeochemical processes in urban streams and rivers.

  8. Developing participatory models of watershed management in the Sugar Creek watershed (Ohio, USA)

    OpenAIRE

    Mark Weaver; Jason Shaw Parker; Richard Moore

    2009-01-01

    The US Environmental Protection Agency (USEPA) has historically used an expert-driven approach to water and watershed management. In an effort to create regulatory limits for pollution-loading to streams in the USA, the USEPA is establishing limits to the daily loading of nutrients specific to each watershed, which will affect many communities in America. As a part of this process, the Ohio Environmental Protection Agency ranked the Sugar Creek Watershed as the second "most-impaired" watershe...

  9. A bacia hidrográfica do Tietê/Jacaré: estudo de caso em pesquisa e gerenciamento / The Tietê/Jacaré watershed: a case study in research and management

    Scientific Electronic Library Online (English)

    José Galizia, Tundisi; Takako, Matsumura-Tundisi; Daniela Cambeses, Pareschi; Anna Paula, Luzia; Paulo H., Von Haeling; Eduardo H., Frollini.

    Full Text Available A bacia do Tietê/Jacaré é uma das 22 Unidades de Gestão de Recursos Hídricos (Ugrhis) do Estado de São Paulo. Um estudo desenvolvido de 2005 a 2007 detalhou as principais características dessa bacia hidrográfica, os usos do solo, a cobertura vegetal, as fontes pontuais e não-pontuais de eutrofização [...] e contaminação e as vulnerabilidades da bacia, que conta com 34 municípios e uma população de 1.200.000 habitantes. A montagem de um banco de dados com as informações ecológicas, hidrológicas, climatológicas e econômicas possibilitou estabelecer um programa de planejamento e gestão baseado em vulnerabilidades da bacia hidrográfica, impactos das mudanças globais e futuras perspectivas para a gestão dos recursos hídricos. Um índice de qualidade da bacia hidrográfica foi desenvolvido com a finalidade de apoiar o planejamento de longo prazo e a gestão de águas superficiais e subterrâneas. Abstract in english The Tietê/Jacaré watershed is one of the units of management of water resources of São Paulo State. São Paulo State has 22 units of management of water resources. A study on the characteristics of the watershed and an evaluation of its environmental situation was carried out from 2005 to 2008. With [...] a population of 1.200.000 inhabitants distributed in 34 towns and an economic activity predominantly agribusiness and industrial activities, this watershed has an extensive hydrographic network, sufficient water resources and intense economic activity. The study considered soil uses; vegetation cover; water quality of rivers, reservoirs, underground waters, erosion processes, vulnerability of the aquatic biota to eutrophication and contamination. With the ecological, hydrological, ecological and economic data, a data bank was established and a management plan with scenarios, perspectives and integration of planning with future activities was developed. An index of watershed quality was developed as a basis for this planning and management activity.

  10. Quality of Water and Antibiotic Resistance of Escherichia coli from Water Sources of Hilly Tribal Villages with and without Integrated Watershed Management—A One Year Prospective Study

    Directory of Open Access Journals (Sweden)

    Sandeep S. Nerkar

    2014-06-01

    Full Text Available In many hilly tribal areas of the world, water scarcity is a major problem and diarrhoea is common. Poor quality of water also affects the environment. An integrated watershed management programme (IWMP aims to increase availability of water and to improve life conditions. Globally, there is a lack of information on water contamination, occurrence of diarrhoea and antibiotic resistance, a serious global concern, in relation to IWMP in hilly tribal areas. Therefore, a prospective observational study was conducted during 2011–2012 in six villages in a hilly tribal belt of India, three with and three without implementation of an IWMP, to explore quality of water, diarrhoeal cases in the community and antibiotic resistance of Escherichia coli from water sources. The results showed that physico-chemical quality of water was within limits of safe consumption in all samples. The odds of coliform contamination in water samples was 2.3 times higher in non-watershed management villages (NWMV compared to integrated watershed management villages (IWMV (95% CI 0.8–6.45, p = 0.081. The number of diarrhoeal cases (18/663 vs. 42/639, p < 0.05 was lower in IWMV as compared to NWMV. Overall E. coli isolates showed high susceptibility to antibiotics. Resistance to a wider range of antibiotics was observed in NWMV.

  11. MORPHOMETRIC ANALYSIS AND PRIORITIZATION OF WATERSHED FOR SOIL RESOURCE MANAGEMENT IN YERALA RIVER BASIN

    OpenAIRE

    R. S. Shikalgar

    2013-01-01

    The development of morphometric techniques was a major advance in the quantitative description of thegeometry of the drainage basins and its network. Watershed prioritization on the basis of morphometric parametersis necessary in order to develop a sustainable watershed management plan. The present study aims to assess thelinear and shape morphometric parameters and prioritization of twenty three sub-watersheds of Yerala river basinfor soil resource management. Yerala river basin has an area ...

  12. Sustainable Land Use and Water Management in Mountain Ecosystem - Case Study of a Watershed in the Indian Himalayas

    OpenAIRE

    Mandal, Subrata

    2005-01-01

    The paper proposes to analyze the problem of choice of land use and technology for forest regeneration with minimum adverse impacts on the ecosystem. As the nature of the problem of such choice of land use and technology would depend upon the local characteristic of the ecosystem we propose to take up a case study through developing a model of analysis at the watershed level economies in the Himalayan mountains. The issue of choice, which is involved in the analysis of the particular case stu...

  13. Open Source GIS based integrated watershed management

    Science.gov (United States)

    Byrne, J. M.; Lindsay, J.; Berg, A. A.

    2013-12-01

    Optimal land and water management to address future and current resource stresses and allocation challenges requires the development of state-of-the-art geomatics and hydrological modelling tools. Future hydrological modelling tools should be of high resolution, process based with real-time capability to assess changing resource issues critical to short, medium and long-term enviromental management. The objective here is to merge two renowned, well published resource modeling programs to create an source toolbox for integrated land and water management applications. This work will facilitate a much increased efficiency in land and water resource security, management and planning. Following an 'open-source' philosophy, the tools will be computer platform independent with source code freely available, maximizing knowledge transfer and the global value of the proposed research. The envisioned set of water resource management tools will be housed within 'Whitebox Geospatial Analysis Tools'. Whitebox, is an open-source geographical information system (GIS) developed by Dr. John Lindsay at the University of Guelph. The emphasis of the Whitebox project has been to develop a user-friendly interface for advanced spatial analysis in environmental applications. The plugin architecture of the software is ideal for the tight-integration of spatially distributed models and spatial analysis algorithms such as those contained within the GENESYS suite. Open-source development extends knowledge and technology transfer to a broad range of end-users and builds Canadian capability to address complex resource management problems with better tools and expertise for managers in Canada and around the world. GENESYS (Generate Earth Systems Science input) is an innovative, efficient, high-resolution hydro- and agro-meteorological model for complex terrain watersheds developed under the direction of Dr. James Byrne. GENESYS is an outstanding research and applications tool to address challenging resource management issues in industry, government and nongovernmental agencies. Current research and analysis tools were developed to manage meteorological, climatological, and land and water resource data efficiently at high resolution in space and time. The deliverable for this work is a Whitebox-GENESYS open-source resource management capacity with routines for GIS based watershed management including water in agriculture and food production. We are adding urban water management routines through GENESYS in 2013-15 with an engineering PhD candidate. Both Whitebox-GAT and GENESYS are already well-established tools. The proposed research will combine these products to create an open-source geomatics based water resource management tool that is revolutionary in both capacity and availability to a wide array of Canadian and global users

  14. Geomorphometry through remote sensing and GIS for watershed management

    International Nuclear Information System (INIS)

    Application of remote sensing and GIS for effective determination of the quantitative description of drainage basin geometry for watershed management prioritization forms the theme of this paper. In the present study, each of the eight sub watersheds of Racherla watershed of Prakasam (District) Andhra Pradesh, have been studied in terms of the morphometric parameters -stream length, bifurcation ratio, length ratio, drainage density, stream frequency, texture ratio, form factor area, perimeter, circularity ratio, elongation ratio and sediment yield index. The prioritization of the eight sub watersheds is carried out considering morphometry and sediment yield index. Using IRS IC satellite imagery, a computerized database is created availing ARC / INFO software. The initial drainage map prepared from the survey of India toposheets was later unified with satellite imagery. The prioritization of sub sheds based on morphometry compared with sediment yield prioritization and found nearly same for the study area. The information obtained from all the thematic map is integrated and action plan is suggested for land and water resources development on a sustainable basis. (author)

  15. A digraph permanent approach to evaluation and analysis of integrated watershed management system

    Science.gov (United States)

    Ratha, Dwarikanath; Agrawal, V. P.

    2015-06-01

    In the present study a deterministic quantitative model based on graph theory has been developed for the better development and management of watershed. Graph theory is an integrative systems approach to consider and model structural components of watershed management system along with the interrelationships between them concurrently and integratively. The factors responsible for the development of watershed system are identified. The degree of interaction between one subsystem with others are determined. The eigenvalue formulation is used to take care the inconsistencies arises due to inaccurate judgement in the degree of interaction between the subsystems. In this model the visual analysis is done to abstract the information using the directed graph or digraph. Then the matrix model is developed for computer processing. Variable permanent function in the form of multinomial represents the watershed system uniquely and completely by an index value. Different terms of the multinomial represent all possible subsystems of integrated watershed management system and thus different solutions for watershed management, leading to optimum solution. This index value is used to compare the suitability of the watershed with different alternatives available for its development. So the graph theory analysis presents a powerful tool to generate the optimum solutions for the decision maker for benefit of local people living in the watershed as well as the stakeholders. The proposed methodology is also demonstrated by a suitable example and is applied to the ecosystem and environment subsystem of the lake Qionghai watershed in China.

  16. US EPA’s Watershed Management Research Activities

    Science.gov (United States)

    The U.S. Environmental Protection Agency’s Urban Watershed Management Branch (UWMB) is responsible for developing and demonstrating methods to manage the risk to public health, property and the environment from wet-weather flows (WWF) in urban watersheds. The activities are prim...

  17. U.S. EPA RESEARCH ON URBAN WATERSHED MANAGEMENT TECHNOLOGIES

    Science.gov (United States)

    The U.S. EPA's Urban Watershed Management Branch is responsible for developing and demonstrating technologies and methods required to manage risks to public health, property and the environment from wet weather flows (WWF) in urban watersheds. The activities are primarily aimed a...

  18. A Spatially Explicit Decision Support System for Watershed-Scale Management of Salmon

    Directory of Open Access Journals (Sweden)

    Michael Maher

    2008-12-01

    Full Text Available Effective management for wide-ranging species must be conducted over vast spatial extents, such as whole watersheds and regions. Managers and decision makers must often consider results of multiple quantitative and qualitative models in developing these large-scale multispecies management strategies. We present a scenario-based decision support system to evaluate watershed-scale management plans for multiple species of Pacific salmon in the Lewis River watershed in southwestern Washington, USA. We identified six aquatic restoration management strategies either described in the literature or in common use for watershed recovery planning. For each of the six strategies, actions were identified and their effect on the landscape was estimated. In this way, we created six potential future landscapes, each estimating how the watershed might look under one of the management strategies. We controlled for cost across the six modeled strategies by creating simple economic estimates of the cost of each restoration or protection action and fixing the total allowable cost under each strategy. We then applied a suite of evaluation models to estimate watershed function and habitat condition and to predict biological response to those habitat conditions. The concurrent use of many types of models and our spatially explicit approach enables analysis of the trade-offs among various types of habitat improvements and also among improvements in different areas within the watershed. We report predictions of the quantity, quality, and distribution of aquatic habitat as well as predictions for multiple species of species-specific habitat capacity and survival rates that might result from each of the six management strategies. We use our results to develop four on-the-ground watershed management strategies given alternative social constraints and manager profiles. Our approach provides technical guidance in the study watershed by predicting future impacts of potential strategies, guidance on strategy selection in other watersheds where such detailed analyses have not been completed, and a framework for organizing information and modeled predictions to best manage wide-ranging species.

  19. Optimizing Watershed Management by Coordinated Operation of Storing Facilities

    Science.gov (United States)

    Anghileri, Daniela; Castelletti, Andrea; Pianosi, Francesca; Soncini-Sessa, Rodolfo; Weber, Enrico

    2013-04-01

    Water storing facilities in a watershed are very often operated independently one to another to meet specific operating objectives, with no information sharing among the operators. This uncoordinated approach might result in upstream-downstream disputes and conflicts among different water users, or inefficiencies in the watershed management, when looked at from the viewpoint of an ideal central decision-maker. In this study, we propose an approach in two steps to design coordination mechanisms at the watershed scale with the ultimate goal of enlarging the space for negotiated agreements between competing uses and improve the overall system efficiency. First, we compute the multi-objective centralized solution to assess the maximum potential benefits of a shift from a sector-by-sector to an ideal fully coordinated perspective. Then, we analyze the Pareto-optimal operating policies to gain insight into suitable strategies to foster cooperation or impose coordination among the involved agents. The approach is demonstrated on an Alpine watershed in Italy where a long lasting conflict exists between upstream hydropower production and downstream irrigation water users. Results show that a coordination mechanism can be designed that drive the current uncoordinated structure towards the performance of the ideal centralized operation.

  20. Evaluating sustainability of watershed resources management through wetland functional analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zalidis, G.C.; Gerakis, A. (Aristotle Univ. of Thessaloniki (Greece). Lab. of Applied Soil Science)

    1999-08-01

    Unsustainable agricultural policies and water and soil resource schemes have drained two thirds of Mediterranean wetlands since 1920. An outstanding example is Karla in Greece, a former internationally important wetland that was drained in 1962 causing environmental, social, and water and soil problems. The objective of this study was to assess the functions and values of Karla, at three periods of its history, and to relate them to major events in the management of the water and soil resources of its watershed. Information on wetland and watershed features was collected from historical records and field visits. The results showed that the wetland in its pristine state had performed five functions to a high degree, one (groundwater recharge) to a moderate degree, and one (flood storage) to a low degree. Flood-control works, uncontrolled pumping, etc., in 1936--1961 degraded all functions except microclimate modification while, the bird support function was moderately altered. Drainage works in 1962 left a very small artificially flooded wetland with only four functions performed to an insignificant degree. Value degradation followed function degradation. It was concluded that past resource management has been nonintegrated. No consideration was given to the multiple functions and values of Karla. Previous restoration proposals involved the reinstatement of one or two functions only. The appropriate restoration scheme for Karla must be multiobjective and based on the integrated resource management of its own and the neighboring watersheds.

  1. Changing approaches to mountain watersheds management in mainland South and Southeast Asia.

    Science.gov (United States)

    Thapa, G B

    2001-05-01

    Mountain watersheds, comprising a substantial proportion of national territories of countries in mainland South and Southeast Asia, are biophysical and socioeconomic entities, regulating the hydrological cycle, sequestrating carbon dioxide, and providing natural resources for the benefit of people living in and outside the watersheds. A review of the literature reveals that watersheds are undergoing degradation at varying rates caused by a myriad of factors ranging from national policies to farmers' socioeconomic conditions. Many agencies--governmental and private--have tried to address the problem in selected watersheds. Against the backdrop of the many causes of degradation, this study examines the evolving approaches to watershed management and development. Until the early 1990s, watershed management planning and implementation followed a highly centralized approach focused on heavily subsidized structural measures of soil conservation, planned and implemented without any consultation with the mainstream development agencies and local people. Watershed management was either the sole responsibility of specially created line agencies or a project authority established by external donors. As a consequence, the initiatives could not be continued or contribute to effective conservation of watersheds. Cognizant of this, emphasis has been laid on integrated, participatory approaches since the early 1990s. Based on an evaluation of experiences in mainland South and Southeast Asia, this study finds not much change in the way that management plans are being prepared and executed. The emergence of a multitude of independent watershed management agencies, with their own organizational structures and objectives and planning and implementation systems has resulted in watershed management endeavors that have been in complete disarray. Consistent with the principle of sustainable development, a real integrated, participatory approach requires area-specific conservation programs that are well incorporated into integrated socioeconomic development plans prepared and implemented by local line agencies in cooperation with nongovernment organizations (NGOs) and concerned people. PMID:11334155

  2. Comparative Assessment of Stormwater and Nonpoint Source Pollution Best Management Practices in Suburban Watershed Management

    Directory of Open Access Journals (Sweden)

    Zeyuan Qiu

    2013-03-01

    Full Text Available Nonpoint source pollution control and stormwater management are two objectives in managing mixed land use watersheds like those in New Jersey. Various best management practices (BMPs have been developed and implemented to achieve both objectives. This study assesses the cost-effectiveness of selected BMPs for agricultural nonpoint source pollution control and stormwater management in the Neshanic River watershed, a typical mixed land use watershed in central New Jersey, USA. The selected BMPs for nonpoint source pollution control include cover crops, prescribed grazing, livestock access control, contour farming, nutrient management, and conservation buffers. The selected BMPs for stormwater management are rain gardens, roadside ditch retrofitting, and detention basin retrofitting. Cost-effectiveness is measured by the reduction in pollutant loads in total suspended solids and total phosphorus relative to the total costs of implementing the selected BMPs. The pollution load reductions for these BMPs are based on the total pollutant loads in the watershed simulated by the Soil and Water Assessment Tool and achievable pollutant reduction rates. The total implementation cost includes BMP installation and maintenance costs. The assessment results indicate that the BMPs for the nonpoint source pollution control are generally much more cost-effective in improving water quality than the BMPs for stormwater management.

  3. ROLE OF WATERSHED SUBDIVISION ON MODELING THE EFFECTIVENESS OF BEST MANAGEMENT PRACTICES WITH SWAT

    Science.gov (United States)

    Distributed parameter watershed models are often used for evaluating the effectiveness of various best management practices (BMPs). Streamflow, sediment, and nutrient yield predictions of a watershed model can be affected by spatial resolution as dictated by watershed subdivisio...

  4. Community participation and implementation of water management instruments in watersheds

    Directory of Open Access Journals (Sweden)

    Mario Alejandro Perez Rincon

    2013-04-01

    Full Text Available The current model of water resources management in Brazil is decentralized, participative and integrated, and adopted the river basin as a planning unit. It is based on the performance of watershed committees; each committee has its own composition and rules of procedure, governed by its statute. The basic principles of this management have been established by the Brazilian Constitution of 1988 and detailed by the National Water Resources Policy in 1997. At the State level, São Paulo enacted its water resources policy in 1991. This paper examined the participatory process in basin committees of the São Paulo State and its implications in the implementation of the instruments of water management, based in a case study of the Tiete - Jacaré Watershed Committee, using questionnaires filled by the Committee’s members (2009 - 2011. Engagement and integration among the stakeholders was observed. Still, the interviews’ results have shown that the Committee’s statute should be reviewed due to differences between the Federal and the State legislation, mainly regarding the participating sectors and representatives. It also showed a need for more information about water resource issues in this basin and in the State of São Paulo, as a whole. At the same time, it is recommended that representativeness of the institutions within the water council management be improved and that the work produced by the technical chambers be recognised at the committee decision-making level.

  5. Managing Watersheds as Couple Human-Natural Systems: A Review of Research Opportunities

    Science.gov (United States)

    Cai, X.

    2011-12-01

    Many watersheds around the world are impaired with severe social and environmental problems due to heavy anthropogenic stresses. Humans have transformed hydrological and biochemical processes in watersheds from a stationary to non-stationary status through direct (e.g., water withdrawals) and indirect (e.g., altering vegetation and land cover) interferences. It has been found that in many watersheds that socio-economic drivers, which have caused increasingly intensive alteration of natural processes, have even overcome natural variability to become the dominant factor affecting the behavior of watershed systems. Reversing this trend requires an understanding of the drivers of this intensification trajectory, and needs tremendous policy reform and investment. As stressed by several recent National Research Council (NRC) reports, watershed management will pose an enormous challenge in the coming decades. Correspondingly, the focus of research has started an evolution from the management of reservoir, stormwater and aquifer systems to the management of integrated watershed systems, to which policy instruments designed to make more rational economic use of water resources are likely to be applied. To provide a few examples: reservoir operation studies have moved from a local to a watershed scale in order to consider upstream best management practices in soil conservation and erosion control and downstream ecological flow requirements and water rights; watersheds have been modeled as integrated hydrologic-economic systems with multidisciplinary modeling efforts, instead of traditional isolated physical systems. Today's watershed management calls for a re-definition of watersheds from isolated natural systems to coupled human-natural systems (CHNS), which are characterized by the interactions between human activities and natural processes, crossing various spatial and temporal scales within the context of a watershed. The importance of the conceptual innovation has been evidenced by 1) institutional innovation for integrated watershed management; 2) real-world management practices involving multidisciplinary expertise; 3) growing role of economics in systems analysis; 4) enhanced research programs such as the CHNS program and Water, Sustainability and Climate (WSC) program at the US National Science Foundation (NSF). Furthermore, recent scientific and technological developments are expected to accommodate integrated watershed system analysis approaches, such as: 1) increasing availability of distributed digital datasets especially from remote sensing products (e.g. digital watersheds); 2) distributed and semi-distributed watershed hydrologic modeling; 3) enhanced hydroclimatic monitoring and forecast; 4) identified evidences of vulnerability and threshold behavior of watersheds; and 5) continuing improvements in computational and optimization algorithms. Managing watersheds as CHNS will be critical for watershed sustainability, which ensures that human societies will benefit forever from the watershed through development of harmonious relationships between human and natural systems. This presentation will provide a review of the research opportunities that take advantage of the concept of CHNS and associated scientific, technological and institutional innovations/developments.

  6. Cost Benefit Analysis of Participatory Natural Resource Management: A study of watershed development initiative in Indian village

    OpenAIRE

    Sahu, Santosh

    2008-01-01

    Following the Hanumanth Rao committee report Government of India initiated Watershed Development Programmes (WDPs) to improve and sustain productivity of the semiarid regions of the country at higher level. The aim of such initiatives are also to fulfill the needs of rural communities for food, fuel, fodder, and timber as majority of rural people are depending on the natural resource for their livelihood. WDPs are being given importance in the development plans for India and by donor agencie...

  7. A Study of the Relationship between Landslide and Active Tectonic Zones: A Case Study in Karaj Watershed Management

    OpenAIRE

    Rahman Sharifi; Ali Solgi; Mohsen Pourkermani

    2013-01-01

    This research shows a noticeable comparison between slide zones produced with the results using the Nilsen method with active tectonic hazard zonation map. A determination landform of geometry or morphometry factors is one of the best methods for study and evaluation active tectonics. The first image provided is a Dem maps from GIS software showing topography, geology and tectonic maps participant with field activities. The second image provided shows an active tectonic map also generated by...

  8. Developing participatory models of watershed management in the Sugar Creek watershed (Ohio, USA

    Directory of Open Access Journals (Sweden)

    Mark Weaver

    2009-01-01

    Full Text Available The US Environmental Protection Agency (USEPA has historically used an expert-driven approach to water and watershed management. In an effort to create regulatory limits for pollution-loading to streams in the USA, the USEPA is establishing limits to the daily loading of nutrients specific to each watershed, which will affect many communities in America. As a part of this process, the Ohio Environmental Protection Agency ranked the Sugar Creek Watershed as the second "most-impaired" watershed in the State of Ohio. This article addresses an alternative approach to watershed management and that emphasises a partnership of farmers and researchers, using community participation in the Sugar Creek to establish a time-frame with goals for water quality remediation. Of interest are the collaborative efforts of a team of farmers, researchers, and agents from multiple levels of government who established this participatory, rather than expert-driven, programme. This new approach created an innovative and adaptive model of non-point source pollution remediation, incorporating strategies to address farmer needs and household decision making, while accounting for local and regional farm structures. In addition, this model has been adapted for point source pollution remediation that creates collaboration among local farmers and a discharge-permitted business that involves nutrient trading.

  9. Bridging the gap between uncertainty analysis for complex watershed models and decision-making for watershed-scale water management

    Science.gov (United States)

    Zheng, Y.; Han, F.; Wu, B.

    2013-12-01

    Process-based, spatially distributed and dynamic models provide desirable resolutions to watershed-scale water management. However, their reliability in solving real management problems has been seriously questioned, since the model simulation usually involves significant uncertainty with complicated origins. Uncertainty analysis (UA) for complex hydrological models has been a hot topic in the past decade, and a variety of UA approaches have been developed, but mostly in a theoretical setting. Whether and how a UA could benefit real management decisions remains to be critical questions. We have conducted a series of studies to investigate the applicability of classic approaches, such as GLUE and Markov Chain Monte Carlo (MCMC) methods, in real management settings, unravel the difficulties encountered by such methods, and tailor the methods to better serve the management. Frameworks and new algorithms, such as Probabilistic Collocation Method (PCM)-based approaches, were also proposed for specific management issues. This presentation summarize our past and ongoing studies on the role of UA in real water management. Challenges and potential strategies to bridge the gap between UA for complex models and decision-making for management will be discussed. Future directions for the research in this field will also be suggested. Two common water management settings were examined. One is the Total Maximum Daily Loads (TMDLs) management for surface water quality protection. The other is integrated water resources management for watershed sustainability. For the first setting, nutrients and pesticides TMDLs in the Newport Bay Watershed (Orange Country, California, USA) were discussed. It is a highly urbanized region with a semi-arid Mediterranean climate, typical of the western U.S. For the second setting, the water resources management in the Zhangye Basin (the midstream part of Heihe Baisn, China), where the famous 'Silk Road' came through, was investigated. The Zhangye Basin has a Gobi-oasis system typical of the western China, with extensive agriculture in its oasis.

  10. BMP analysis system for watershed-based stormwater management.

    Science.gov (United States)

    Zhen, Jenny; Shoemaker, Leslie; Riverson, John; Alvi, Khalid; Cheng, Mow-Soung

    2006-01-01

    Best Management Practices (BMPs) are measures for mitigating nonpoint source (NPS) pollution caused mainly by stormwater runoff. Established urban and newly developing areas must develop cost effective means for restoring or minimizing impacts, and planning future growth. Prince George's County in Maryland, USA, a fast-growing region in the Washington, DC metropolitan area, has developed a number of tools to support analysis and decision making for stormwater management planning and design at the watershed level. These tools support watershed analysis, innovative BMPs, and optimization. Application of these tools can help achieve environmental goals and lead to significant cost savings. This project includes software development that utilizes GIS information and technology, integrates BMP processes simulation models, and applies system optimization techniques for BMP planning and selection. The system employs the ESRI ArcGIS as the platform, and provides GIS-based visualization and support for developing networks including sequences of land uses, BMPs, and stream reaches. The system also provides interfaces for BMP placement, BMP attribute data input, and decision optimization management. The system includes a stand-alone BMP simulation and evaluation module, which complements both research and regulatory nonpoint source control assessment efforts, and allows flexibility in the examining various BMP design alternatives. Process based simulation of BMPs provides a technique that is sensitive to local climate and rainfall patterns. The system incorporates a meta-heuristic optimization technique to find the most cost-effective BMP placement and implementation plan given a control target, or a fixed cost. A case study is presented to demonstrate the application of the Prince George's County system. The case study involves a highly urbanized area in the Anacostia River (a tributary to Potomac River) watershed southeast of Washington, DC. An innovative system of management practices is proposed to minimize runoff, improve water quality, and provide water reuse opportunities. Proposed management techniques include bioretention, green roof, and rooftop runoff collection (rain barrel) systems. The modeling system was used to identify the most cost-effective combinations of management practices to help minimize frequency and size of runoff events and resulting combined sewer overflows to the Anacostia River. PMID:16854811

  11. Non point source pollution modelling in the watershed managed by Integrated Conctructed Wetlands: A GIS approach.

    OpenAIRE

    Vyavahare, Nilesh

    2008-01-01

    The non-point source pollution has been recognised as main cause of eutrophication in Ireland (EPA Ireland, 2001). Integrated Constructed Wetland (ICW) is a management practice adopted in Annestown stream watershed, located in the south county of Waterford in Ireland, used to cleanse farmyard runoff. Present study forms the annual pollution budget for the Annestown stream watershed. The amount of pollution from non-point sources flowing into the stream was simulated by using GIS techniques; u...

  12. URBAN WATERSHED MANAGEMENT BRANCH (WATER SUPPLY AND WATER RESOURCES DIVISION)

    Science.gov (United States)

    Controlling Wet Weather Flow (WWF)pollution is one of the top cleanup priority areas for the USEPA. The Urban Watershed Management Branch (UWMB)of the National Risk Management Research Laboratory's Water Supply and Water Resources Division is responsible for EPA's WWF research. U...

  13. Can Integrated Watershed Management Contribute to Improvement of Public Health? A Cross-Sectional Study from Hilly Tribal Villages in India

    OpenAIRE

    Nerkar, Sandeep S.; Pathak, Ashish; Lundborg , Cecilia Stålsby; Tamhankar, Ashok J.

    2015-01-01

    Tribal people living in hilly areas suffer from water scarcity in many parts of the world, including India. Water scarcity adversely impacts all aspects of life, including public health. Implementation of an Integrated Watershed Management Programme (IWMP) can help solve the problems arising out of water scarcity in such areas. However, the knowledge about and views of the water scarcity sufferers on the public health implications of IWMP have not been well documented. This cross-sectional st...

  14. Quality of Water and Antibiotic Resistance of Escherichia coli from Water Sources of Hilly Tribal Villages with and without Integrated Watershed Management—A One Year Prospective Study

    OpenAIRE

    Nerkar, Sandeep S.; Tamhankar, Ashok J.; Khedkar, Smita U; Cecilia Stålsby Lundborg

    2014-01-01

    In many hilly tribal areas of the world, water scarcity is a major problem and diarrhoea is common. Poor quality of water also affects the environment. An integrated watershed management programme (IWMP) aims to increase availability of water and to improve life conditions. Globally, there is a lack of information on water contamination, occurrence of diarrhoea and antibiotic resistance, a serious global concern, in relation to IWMP in hilly tribal areas. Therefore, a prospective observationa...

  15. Identifying non-point source priority management areas in watersheds with multiple functional zones.

    Science.gov (United States)

    Shen, Zhenyao; Zhong, Yucen; Huang, Qin; Chen, Lei

    2015-01-01

    The concept of water functional zones promotes the comprehensive supervision and scientificoversight of non-point source (NPS) pollution at the watershed scale. Therefore,understanding the spatial distributions and temporal trends in watershed priority managementareas (PMAs) is important in the study and efficient management of NPS pollution.However, no comprehensive studies of PMAs have been conducted to protect waterquality effectively in watersheds with multiple water functional zones. In this study, a newframework is presented that quantifies the perturbations of multiple spatial assessmentunits to the quality of nearby water bodies in various water functional zones. This innovativeapproach, which combines the Soil and Water Assessment Tool (SWAT) and statisticalanalysis, was applied to characterize multiple-level PMAs with a case study of theDaning River watershed in China. Based on the results, the advantage of this new frameworkis better suited to downstream areas, particularly in dry periods and severely pollutedwatersheds. This paper reinforces the view that the concept of zoning should be takenseriously in the framework of PMAs targeting. From the aspect of watershed management,these new PMAs can offer an optimal strategy for locating comprehensive and costeffectivemanagement practices at the watershed scale, particularly in large watershedsor long river systems. PMID:25462762

  16. New trends in watershed management and protection

    International Nuclear Information System (INIS)

    I would like to present some new environmental technologies by shoving restoration projects that are currently being implemented in the eastern United States that require this co-operation for successful implementation. The environmental technologies that will be discussed include the use of existing or constructed wetlands to treat surface and groundwater impacted in contaminants from various sources. The main goal of these type projects are to provide a low-cost and effective treatment for existing pollution problems. Many of these projects are initiated by civic associations (or NGOs) that wanted to improve the state of environment in their area. Because everyone has the responsibility to a clean environment in which they live, NGOs, state government, business, and local citizens, and local citizens worked closely together to solve problems in their watersheds. These projects are only examples of what is being done in the United States. However, I would like also to discuss what projects exist in eastern Slovakia, and others that could be started in Slovakia that improve relationships between MGOs and the state and local governmental decision-making process, with the ultimate goal to improve water quality in the Danube watershed in the future. There are severe environmental technologies that can be applied to improve the water quality of rivers throughout the Danube watershed, such as treatment of wastewater using wetland vegetation, and treatment of acid-mine drainage. In April 1996, NGO People and Water in co-operation with the village governments of the Upper Torysa River watershed started the project Villages for the 3 rd millennium in the Carpathian Euro-Region. One of the main goals of this project is to introduce new environmental technologies in the rural communities of the Upper Torysa River area. Since people trust their eyes than their ears. It is important to initiate practical, pilot projects to convince citizens and governments that these low-cost, effective technologies are applicable in Slovakia and in Central and Eastern Europe. (author)

  17. Spatial optimization of watershed management practices for nitrogen load reduction using a modeling-optimization framework

    Science.gov (United States)

    Best management practices (BMPs) are perceived as being effective in reducing nutrient loads transported from non-point sources (NPS) to receiving water bodies. The objective of this study was to develop a modeling-optimization framework that can be used by watershed management p...

  18. Can Integrated Watershed Management Contribute to Improvement of Public Health? A Cross-Sectional Study from Hilly Tribal Villages in India

    Directory of Open Access Journals (Sweden)

    Sandeep S. Nerkar

    2015-02-01

    Full Text Available Tribal people living in hilly areas suffer from water scarcity in many parts of the world, including India. Water scarcity adversely impacts all aspects of life, including public health. Implementation of an Integrated Watershed Management Programme (IWMP can help solve the problems arising out of water scarcity in such areas. However, the knowledge about and views of the water scarcity sufferers on the public health implications of IWMP have not been well documented. This cross-sectional study was performed in six purposively selected tribal villages located in Maharashtra, India. In three of the villages IWMP had been implemented (IWMV, but not in the other three (NWMV. The head of each household in all villages was interviewed using a questionnaire covering various public health aspects relevant to the villages. A total of 286/313 (92% households participated in the study. Compared to NWMV, respondents in IWMV experienced significantly lesser prolonged water scarcity (OR = 0.39, had greater number of toilets (OR = 6.95, cultivated more variety of crops (OR = 2.61, had lower migration (OR = 0.59, higher number of girls continuing education (OR = 3.04 and better utilized modern healthcare facilities in the antenatal, natal and postnatal period (OR = 3.75, 2.57, 4.88 respectively. Thus, tribal people in IWMP-implemented villages reported advantages in many aspects of public health.

  19. Can integrated watershed management contribute to improvement of public health? A cross-sectional study from hilly tribal villages in India.

    Science.gov (United States)

    Nerkar, Sandeep S; Pathak, Ashish; Lundborg, Cecilia Stålsby; Tamhankar, Ashok J

    2015-03-01

    Tribal people living in hilly areas suffer from water scarcity in many parts of the world, including India. Water scarcity adversely impacts all aspects of life, including public health. Implementation of an Integrated Watershed Management Programme (IWMP) can help solve the problems arising out of water scarcity in such areas. However, the knowledge about and views of the water scarcity sufferers on the public health implications of IWMP have not been well documented. This cross-sectional study was performed in six purposively selected tribal villages located in Maharashtra, India. In three of the villages IWMP had been implemented (IWMV), but not in the other three (NWMV). The head of each household in all villages was interviewed using a questionnaire covering various public health aspects relevant to the villages. A total of 286/313 (92%) households participated in the study. Compared to NWMV, respondents in IWMV experienced significantly lesser prolonged water scarcity (OR=0.39), had greater number of toilets (OR=6.95), cultivated more variety of crops (OR=2.61), had lower migration (OR=0.59), higher number of girls continuing education (OR=3.04) and better utilized modern healthcare facilities in the antenatal, natal and postnatal period (OR=3.75, 2.57, 4.88 respectively). Thus, tribal people in IWMP-implemented villages reported advantages in many aspects of public health. PMID:25734794

  20. Evaluation of Watershed Management Practices (WMPs Effect on Flood Characteristics

    Directory of Open Access Journals (Sweden)

    Y. Nabipoor

    2014-06-01

    Full Text Available The occurrence trend of floods in recent years shows that the most of Iran regions located in attacks of destructive floods and loss of life and property of flood damages is increasing. Watershed management practices (WMPs are one of the superior and appropriate solutions for flood hazards mitigation. The impact of WMPs can be investigated using different approaches. In this study, the direct impact of WMPs was investigated using quantitative evaluation of flood characteristics for two periods, pre and post periods of measures implementation. Therefore, daily hydrograph of investigated periods and the results of flood analyses including number of floods occurrence, flood frequency percent in the different months and seasons were determined in Hajighoshan and Tamar hydrometery stations. Also, the mean continuing, rise and subsidence time of floods and maximum peak discharge of observed floods were investigated. The research results showed that the occurrence trend of floods had relatively increased. The number of floods has increased in post periods of measures implementation in two hydrometery stations, while WMPs effect on all flood characteristics were positive, as the continuing time of floods has increased with 0.5%, rise and subsidence time of floods and maximum peak discharge of floods have decreased with 7.9%, 21.98% and 70%, respectively. Totally, if WMPs volume pre watershed area isn't low, WMPs effect on flood characteristics will be positive.

  1. URBAN WATERSHED STUDIES IN SOUTHERN BRAZIL

    Directory of Open Access Journals (Sweden)

    Cristiano Poleto

    2007-12-01

    Full Text Available One of the greatest problems observed in Brazilian urban watersheds are concerned to the amount of solid residues, domestic sewerage and sediments that are disposed in the rivers and streams that drain those areas. This project aims to present these problems through a study of case taken in an urban watershed in Porto Alegre city, Southern Brazil. For this study, different procedures were used, such as field surveys, interviews with the inhabitants, satellite images, sediment samples, flow measures and morphology assessment of part of the local fluvial system to check the degree of instability of the channel. In 2005, it was verified that 42.57% of the watershed was impermeable, considering the paved streets, the residential and commercial buildings and stone pavements. As there was no sewer treatment, most of this sewerage was directly disposed into the stream and the TOC has reached 20% (m/m. Moreover, the occupation of riparian areas, a great amount of soil exposed in the watershed, the nonpaved streets and a great volume of solid residues were causing the instability in the channel, silting the stream bed. The metals (Zn, Pb and Cr selected for this study are most frequently found in high concentrations in urban areas. The results suggest the occurrence of a high enrichment of the fluvial sediment by these metals. The concentrations of these elements vary temporally during storms due to the input of impervious area runoff containing high concentration of elements associated to vehicular traffic and other anthropogenic activities. Then, it is possible to conclude that the contamination of the urban watershed is reflected in the results obtained in the fluvial suspended sediments.

  2. Perspectives on grizzly bear management in Banff National Park and the Bow River Watershed, Alberta: A Q methodology study

    OpenAIRE

    Chamberlain, Emily Carter

    2006-01-01

    Conserving populations of large carnivores such as grizzly bears (Ursus arctos) requires not only biophysical research, but also an understanding of the values and beliefs of the people involved with and affected by carnivore management. I used Q methodology to examine views of stakeholders concerning grizzly bear management in the Banff-Bow Valley region of Alberta, Canada. In recent years, decision-making about bears in this region has been characterized by acrimonious disputes over scienti...

  3. Optimization Tool For Allocation Of Watershed Management Practices For Sediment And Nutrient Control

    Science.gov (United States)

    Implementation of conservation programs are perceived as being crucial for restoring and protecting waters and watersheds from nonpoint source pollution. Success of these programs depends to a great extent on planning tools that can assist the watershed management process. Herein...

  4. Manage Hydrologic Fluxes Instead of Land Cover in Watershed Services Projects

    Science.gov (United States)

    Brauman, K. A.; Ponette-González, A. G.; Marin-Spiotta, E.; Farley, K. A.; Weathers, K. C.; Young, K. R.; Curran, L. M.

    2014-12-01

    Payments for Watershed Services (PWS), Water Funds, and other payment schemes intended to increase the delivery of hydrologic ecosystem services have great potential for ensuring water resources for downstream beneficiaries while improving livelihoods for upstream residents. However, it is often ambiguous which land-management options should be promoted to enhance watershed service delivery. In many watershed investment programs, specific land covers are promoted as proxies for water service delivery. This approach is based on assumed relationships between land cover and water service outcomes. When land cover does not sufficiently describe ecosystem characteristics that affect water flow, however, desired water services may not be delivered. The use of land cover proxies is especially problematic for watershed investments in the tropics, where many projects are located, because these proxies rely on generalizations about landscape hydrology established for temperate zones. Based on an extensive review of hydrologic fluxes in the high-elevation tropics, we argue that direct management of hydrologic fluxes is a good design for achieving quantifiable results. We use case studies from sites in the Caribbean and Latin American tropics to illustrate how designers of watershed payment projects can manage hydrologic fluxes. To do so, projects must explicitly articulate the water service of interest based on the specific social setting. Projects must also explicitly account for the particulars of the geographic setting. Finally, outcomes must be assessed relative to water services delivered under an alternative land use or land cover scenario.

  5. Nitrogen management challenges in major watersheds of South America

    Science.gov (United States)

    Bustamante, Mercedes M. C.; Martinelli, Luiz Antonio; Pérez, Tibisay; Rasse, Rafael; Ometto, Jean Pierre H. B.; Siqueira Pacheco, Felipe; Rafaela Machado Lins, Silvia; Marquina, Sorena

    2015-06-01

    Urbanization and land use changes alter the nitrogen (N) cycle, with critical consequences for continental freshwater resources, coastal zones, and human health. Sewage and poor watershed management lead to impoverishment of inland water resources and degradation of coastal zones. Here we review the N contents of rivers of the three most important watersheds in South America: the Amazon, La Plata, and Orinoco basins. To evaluate potential impacts on coastal zones, we also present data on small- and medium-sized Venezuelan watersheds that drain into the Caribbean Sea and are impacted by anthropogenic activities. Median concentrations of total dissolved nitrogen (TDN) were 325 ?g L-1 and 275 ?g L-1 in the Amazon and Orinoco basins, respectively, increasing to nearly 850 ?g L-1 in La Plata Basin rivers and 2000 ?g L-1 in small northern Venezuelan watersheds. The median TDN yield of Amazon Basin rivers (approximately 4 kg ha-1 yr-1) was larger than TDN yields of undisturbed rivers of the La Plata and Orinoco basins; however, TDN yields of polluted rivers were much higher than those of the Amazon and Orinoco rivers. Organic matter loads from natural and anthropogenic sources in rivers of South America strongly influence the N dynamics of this region.

  6. Quantifying Urban Watershed Stressor Gradients and Evaluating How Different Land Cover Datasets Affect Stream Management.

    Science.gov (United States)

    Smucker, Nathan J; Kuhn, Anne; Charpentier, Michael A; Cruz-Quinones, Carlos J; Elonen, Colleen M; Whorley, Sarah B; Jicha, Terri M; Serbst, Jonathan R; Hill, Brian H; Wehr, John D

    2016-03-01

    Watershed management and policies affecting downstream ecosystems benefit from identifying relationships between land cover and water quality. However, different data sources can create dissimilarities in land cover estimates and models that characterize ecosystem responses. We used a spatially balanced stream study (1) to effectively sample development and urban stressor gradients while representing the extent of a large coastal watershed (>4400 km(2)), (2) to document differences between estimates of watershed land cover using 30-m resolution national land cover database (NLCD) and water quality and land cover differed when using these two land cover datasets. Increased concentrations of nutrients, anions, and cations had similarly significant correlations with increased watershed percent impervious cover (IC), regardless of data resolution. The NLCD underestimated percent forest for 71/76 sites by a mean of 11 % and overestimated percent wetlands for 71/76 sites by a mean of 8 %. The NLCD almost always underestimated IC at low development intensities and overestimated IC at high development intensities. As a result of underestimated IC, regression models using NLCD data predicted mean background concentrations of NO3 (-) and Cl(-) that were 475 and 177 %, respectively, of those predicted when using finer resolution land cover data. Our sampling design could help states and other agencies seeking to create monitoring programs and indicators responsive to anthropogenic impacts. Differences between land cover datasets could affect resource protection due to misguided management targets, watershed development and conservation practices, or water quality criteria. PMID:26614349

  7. Fuzzy Multicriteria Decision Analysis for Adaptive Watershed Management

    Science.gov (United States)

    Chang, N.

    2006-12-01

    The dramatic changes of societal complexity due to intensive interactions among agricultural, industrial, and municipal sectors have resulted in acute issues of water resources redistribution and water quality management in many river basins. Given the fact that integrated watershed management is more a political and societal than a technical challenge, there is a need for developing a compelling method leading to justify a water-based land use program in some critical regions. Adaptive watershed management is viewed as an indispensable tool nowadays for providing step-wise constructive decision support that is concerned with all related aspects of the water consumption cycle and those facilities affecting water quality and quantity temporally and spatially. Yet the greatest challenge that decision makers face today is to consider how to leverage ambiguity, paradox, and uncertainty to their competitive advantage of management policy quantitatively. This paper explores a fuzzy multicriteria evaluation method for water resources redistribution and subsequent water quality management with respect to a multipurpose channel-reservoir system--the Tseng- Wen River Basin, South Taiwan. Four fuzzy operators tailored for this fuzzy multicriteria decision analysis depict greater flexibility in representing the complexity of various possible trade-offs among management alternatives constrained by physical, economic, and technical factors essential for adaptive watershed management. The management strategies derived may enable decision makers to integrate a vast number of internal weirs, water intakes, reservoirs, drainage ditches, transfer pipelines, and wastewater treatment facilities within the basin and bring up the permitting issue for transboundary diversion from a neighboring river basin. Experience gained indicates that the use of different types of fuzzy operators is highly instructive, which also provide unique guidance collectively for achieving the overarching goals of sustainable development on a regional scale.

  8. STUDY OF RUNOFF IN UNDA WATERSHED

    Directory of Open Access Journals (Sweden)

    SATRIA WAHYU 0ETOM0

    2015-06-01

    Full Text Available When rain falls on the earth, it just does not sit there, it starts moving according to the laws of gravity. A portion of the precipitation seeps into the ground to replenish Earth's groundwater. Most of it flows downhill as runoff. Runoff is extremely important in that not only does it keep rivers and lakes full of water, but it also changes the landscape by the action of erosion. The purpose and objective in this study are to estimate the conditions of land cover of Unda Watershed based on the results of image processing, to estimate the monthly average runoff and discharge in outlet of Unda Watershed from 1999 to 2003. The research location is in Unda Watershed. This watershed lies in Province of Bali which has wide 233.1 km2 (23.310 Ha (Balai Wilayah Sungai Bali-Penida. Administratively this watershed lies in 3 Regencies that are Karangasem, Klungkung and Bangli Regency. Mostly the region lies in the Karangasem Regency. In this research, the monthly rainfall data employed to generate the runoff process. Analyze of contour map from topography map obtained the watershed area, physical parameter of river and concentration time. In this research used monthly average rainf all data (from 1999 to 2003 from Pempatan, Besakih, Singarata, Sidemen, Klungkung, Telengan, Rain Gauge Station and Polygon Thiesen method employed to analyze the datas. Apart of rainfall, there are a number of site specific factors which have a direct bearing on the occurrence and volume of runoff, they are soil type, land cover and slope. The soil types in this research area are all Regosol, this soil mapping does not need to be overlayed in obtaining the land unit. Analyze of land cover was employed by Supervised Classification method. By image processing obtained land cover of Unda Watershed estimated consists of 38.129 km2 of forest area (16.357°Ai, 19.122 km2 of grassland area (8.203%, 100.991 km2 of farmland area (43.325%, 62-412 km2 of area housing (26.775%, 2.625 km2 of water area (1.126%, 4.046 km2 of cloud area (1.736%, 2.327 km2 cloud shadows (0.998% and 3-448 km2 of stone area (1.749%. The results of runoff by Nakayasu Unit Hydrograph and Melchior Method gives quite similar patterns. The Melchior method gives higher runoff values. This method estimates total runoff while Nakayasu Unit Hydrograph estimates runoff by dividing rainfall into hours. By Nakayasu Unit Hydrograph Method showed the average of monthly average runoff were 10.61 m3/s and 18.67 m3/s by Melchior Method. The different percentage between these methods was 59.71%. By summing runoff and the baseflow obtained river discharge and the average of river discharge in this thesis was 22.63 m3/s. Observed river discharge from Water Level Recorder (WLR Unda Dam was used in validation, the average of monthly average river discharge was 18.24 m3/s. The different percentage between these methods was 66.37%.

  9. A Spatially Explicit Decision Support System for Watershed-Scale Management of Salmon

    OpenAIRE

    Michael Maher; Jennifer Burke; David Jensen; Patricia Olson; Mindi B. Sheer; Aimee Fullerton; Yuko Caras; E. Ashley. Steel; Paul McElhany

    2008-01-01

    Effective management for wide-ranging species must be conducted over vast spatial extents, such as whole watersheds and regions. Managers and decision makers must often consider results of multiple quantitative and qualitative models in developing these large-scale multispecies management strategies. We present a scenario-based decision support system to evaluate watershed-scale management plans for multiple species of Pacific salmon in the Lewis River watershed in southwestern Washington, US...

  10. Development of a Prototype Web-Based Decision Support System for Watershed Management

    Directory of Open Access Journals (Sweden)

    Dejian Zhang

    2015-02-01

    Full Text Available Using distributed hydrological models to evaluate the effectiveness of reducing non-point source pollution by applying best management practices (BMPs is an important support to decision making for watershed management. However, complex interfaces and time-consuming simulations of the models have largely hindered the applications of these models. We designed and developed a prototype web-based decision support system for watershed management (DSS-WMRJ, which is user friendly and supports quasi-real-time decision making. DSS-WMRJ is based on integrating an open-source Web-based Geographical Information Systems (Web GIS tool (Geoserver, a modeling component (SWAT, Soil and Water Assessment Tool, a cloud computing platform (Hadoop and other open source components and libraries. In addition, a private cloud is used in an innovative manner to parallelize model simulations, which are time consuming and computationally costly. Then, the prototype DSS-WMRJ was tested with a case study. Successful implementation and testing of the prototype DSS-WMRJ lay a good foundation to develop DSS-WMRJ into a fully-fledged tool for watershed management. DSS-WMRJ can be easily customized for use in other watersheds and is valuable for constructing other environmental decision support systems, because of its performance, flexibility, scalability and economy.

  11. Science, Politics, and Watershed Management: Another Task for Hydrologists

    Science.gov (United States)

    Wise, W. R.

    2002-05-01

    The lowest common denominator in hydrology should be "common" sense. The basic concepts that need to be addressed during watershed management are tractable by the general public when presented effectively. Of course the details should be left to the professionals. An uninformed public will feel disenfranchised when "experts" pummel it with technical content beyond its comfort level. To be effective, the hydrologic professional needs to be competent to perform the required analyses and prepared to win the trust of all concerned parties. In the adversarial roles played by developers and growth opponents, distrust reigns supreme. Usually this distrust is fed first and foremost by a lack of communication between the parties. In today's litigious environment, the results can be maddening. The author's experience in high profile hydrologic projects have infused him with the knowledge that effective communication is a critical lubricant to the watershed management process. It is the hydrologic community's duty to facilitate the policy makers' genuine education on watershed processes. The former must act now, if previous problems are not to be repeated.

  12. Comparison and Assessment of Success of Models in Watershed Simulation and Management

    OpenAIRE

    Maisa’a W. Shammout

    2014-01-01

    In Jordan, Zarqa River Basin (ZRB) has been taken as a case study for applying water management models because of its limited water resources and due to the fact that the basin is dwelling with about 52% of Jordan’s population. The surface water resources are mainly used for agriculture because they are mixed with treated water and cannot be used for domestic purposes. This paper aims to demonstrate the contributions of Models in watershed management that provide ind...

  13. An index-based robust decision making framework for watershed management in a changing climate.

    Science.gov (United States)

    Kim, Yeonjoo; Chung, Eun-Sung

    2014-03-01

    This study developed an index-based robust decision making framework for watershed management dealing with water quantity and quality issues in a changing climate. It consists of two parts of management alternative development and analysis. The first part for alternative development consists of six steps: 1) to understand the watershed components and process using HSPF model, 2) to identify the spatial vulnerability ranking using two indices: potential streamflow depletion (PSD) and potential water quality deterioration (PWQD), 3) to quantify the residents' preferences on water management demands and calculate the watershed evaluation index which is the weighted combinations of PSD and PWQD, 4) to set the quantitative targets for water quantity and quality, 5) to develop a list of feasible alternatives and 6) to eliminate the unacceptable alternatives. The second part for alternative analysis has three steps: 7) to analyze all selected alternatives with a hydrologic simulation model considering various climate change scenarios, 8) to quantify the alternative evaluation index including social and hydrologic criteria with utilizing multi-criteria decision analysis methods and 9) to prioritize all options based on a minimax regret strategy for robust decision. This framework considers the uncertainty inherent in climate models and climate change scenarios with utilizing the minimax regret strategy, a decision making strategy under deep uncertainty and thus this procedure derives the robust prioritization based on the multiple utilities of alternatives from various scenarios. In this study, the proposed procedure was applied to the Korean urban watershed, which has suffered from streamflow depletion and water quality deterioration. Our application shows that the framework provides a useful watershed management tool for incorporating quantitative and qualitative information into the evaluation of various policies with regard to water resource planning and management. PMID:24365586

  14. Research article: Watershed management councils and scientific models: Using diffusion literature to explain adoption

    Science.gov (United States)

    King, M.D.; Burkardt, N.; Clark, B.T.

    2006-01-01

    Recent literature on the diffusion of innovations concentrates either specifically on public adoption of policy, where social or environmental conditions are the dependent variables for adoption, or on private adoption of an innovation, where emphasis is placed on the characteristics of the innovation itself. This article uses both the policy diffusion literature and the diffusion of innovation literature to assess watershed management councils' decisions to adopt, or not adopt, scientific models. Watershed management councils are a relevant case study because they possess both public and private attributes. We report on a survey of councils in the United States that was conducted to determine the criteria used when selecting scientific models for studying watershed conditions. We found that specific variables from each body of literature play a role in explaining the choice to adopt scientific models by these quasi-public organizations. The diffusion of innovation literature contributes to an understanding of how organizations select models by confirming the importance of a model's ability to provide better data. Variables from the policy diffusion literature showed that watershed management councils that employ consultants are more likely to use scientific models. We found a gap between those who create scientific models and those who use these models. We recommend shrinking this gap through more communication between these actors and advancing the need for developers to provide more technical assistance.

  15. Forest use strategies in watershed management and restoration: application to three small mountain watersheds in Latin America

    OpenAIRE

    Juan Ángel Mintegui Aguirre; José Carlos Robredo Sánchez; Carlos de Gonzalo Aranoa; Pablo Huelin Rueda; Jorge Fallas; Felipe Cisneros; Pedro Cisneros; Adriana Urciuolo; Rodolfo Iturraspe

    2014-01-01

    The effect of forests on flow and flood lamination decreases as the magnitude and intensity of torrential events and the watershed surface increase, thus resulting negligible when extreme events affect large catchments. However the effect of forests is advantageous in case of major events, which occur more often, and is particularly effective in soil erosion control. As a result, forests have been extensively used for watershed management and restoration, since they regulate water and sedimen...

  16. Soil Erodibility for Water Pollution Management of Melaka Watershed in Peninsular Malaysia

    Directory of Open Access Journals (Sweden)

    Md. Ibrahim Adham

    2015-07-01

    Full Text Available The relationships between surface runoffand soil erodibility are significant in water pollution and watershed management practices. Land use pattern, soil series and slope percentage are also major factors to develop the relationships. Daily rainfall data were collected and analyzed for variations in precipitation for calculating the surface runoff of these watersheds and surface runoff map was produced by GIS tools. Tew equation was utilized to predict soil erodibility of watershed soils.Results indicated that the weighted curve number varies from 82 to 85 and monthly runoff 23% to 30% among the five watersheds. Soil erodibility varies from 0.038 to 0.06 ton/ha (MJ.mm/ha/h. Linau-Telok-Local Alluvium, Malacca-Munchong, Munchong-Malacca-Serdang and Malacca-Munchong-Tavy are the dominant soil series of this region having the average soil erodibility of about 0.042 ton/ha (MJ.mm/ha/h. The main focus of this study is to provide the information of soil erodibility to reduce the water pollution of a watershed.

  17. Disaster management for Nandira watershed district Angul (Orissa) India, using temporal Remote Sensing data and GIS.

    Science.gov (United States)

    Gupta, P K; Singh, A P

    2005-05-01

    NALCO--the largest exporter of aluminium in India has a power plant of 720 MW capacity in Nandira watershed in Angul district of Orissa. The power plant utilises local coal to generate thermal power and disposes of large amount of ash which accumulates in slurry form at nearby two ash ponds. These ash ponds were breached on 31 December 2000, causing ash accumulation for entire regime of the Nandira river. An attempt has been made towards preparation of recovery and rehabilitation plan for NALCO using temporal Remote Sensing data and GIS. Indian remote sensing satellite data for pre-breach condition 12 December 2000, during breach event 31 December 2000 and post-breach condition 4 and 6 January 2001 has been digitally analysed for Nandira watershed. The satellite data of coarse spatial resolution provides the absence and presence of fresh sediment deposition along Nandira watershed and Brahmani river pertaining to pre-breach and post-breach conditions respectively on regional scales. The temporal comparison of fine resolution has clearly highlighted the aerial extent of damage caused by the disaster for entire watershed on local scales. The GIS has helped in demarcation of freshly accumulated ash at interval of 500 m along the river length as well as in delineation of maximum ash accumulation across the river width. The study has clearly demonstrated the use of temporal Remote Sensing data in conjunction with GIS for disaster management in terms of recovery and rehabilitation plan preparation of the Nandira watershed. PMID:15932001

  18. A watershed scale assessment of the impacts of suburban turf management on runoff water quality

    Science.gov (United States)

    Bachman, M.; Inamdar, S. P.; Barton, S.; Duke, J.; Tallamy, D.; Bruck, J.

    2014-12-01

    Steadily increasing rates of urbanization have raised concerns about the negative impacts of urban runoff on receiving surface water quality. These concerns have been further amplified by landscaping paradigms that encourage high-input, intensively-managed and mono-culture turf and lawn landscapes. We conducted a watershed-scale assessment of turf management practices on water quality vis-à-vis less-intensive management practices that preserve and enhance more diverse and native vegetation. The study treatments with existing/established vegetation and landscaping practices included turf, urban, forest, meadow, and a mixed site with a professional golf course. Stream water sampling was performed during baseflow and storm events. Highest nutrient (nitrate and total nitrogen) concentrations in runoff were observed for the mixed watershed draining the golf course. In contrast, nutrient concentrations in baseflow from the turf watershed were lower than expected and were comparable to those measured in the surrounding meadow and forest sites. Runoff losses from the turf site may have been minimal due to the optimal quality of management implemented. Total nitrogen concentrations from the turf site increased sharply during the first storms following fertilization, suggesting that despite optimal management there exists a risk for nutrient runoff following fertilization. Dissolved organic carbon (DOC) concentrations from the turf site were elevated and aromatic in content while the mixed watershed site yielded more labile DOM. Overall, this study suggests that turf lawns, when managed properly, pose minimal environmental risk to surrounding surface waters. Based on the results of this study, providing homeowners with increased information regarding best management practices for lawn maintenance may serve as a cost-efficient method for reducing suburban runoff pollution.

  19. TEAMS - OVERVIEW OF EPA'S WET-WEATHER LOW RESEARCH PROGRAM (URBAN WATERSHED MANAGEMENT BRANCH)

    Science.gov (United States)

    The Urban Watershed Management Branch researches, develops and evaluates technologies, practices and systems to manage risks to human health and ecosystems from Wet Weather Flow (WWF)sources in urban watersheds.The focus is on the risk management aspects of WWF research. It ad...

  20. Hydrology and the effects of selected agricultural best-management practices in the Bald Eagle Creek Watershed, York County, Pennsylvania, prior to and during nutrient management : Water-Quality Study for the Chesapeake Bay Program

    Science.gov (United States)

    Langland, Michael J.; Fishel, David K.

    1995-01-01

    The U.S. Geological Survey, in cooperation with the Susquehanna River Basin Commission and the Pennsylvania Department of Environmental Resources, conducted a study as part of the U.S. Environmental Protection Agency's Chesapeake Bay Program to determine the effects of nutrient management of surface-water quality by reducing animal units in a 0.43-square-mile agricultural watershed in York County. The study was conducted primarily from October 1985 through September 1990 prior to and during the implementation of nutrient-management practices designed to reduce nutrient and sediment discharges. Intermittent sampling continued until August 1991. The Bald Eagle Creek Basin is underlain by schist and quartzite. About 87 percent of the watershed is cropland and pasture. Nearly 33 percent of the cropland was planted in corn prior to nutrient management, whereas 22 percent of the cropland was planted in corn during the nutrient-management phase. The animal population was reduced by 49 percent during nutrient management. Average annual applications of nitrogen and phosphorus from manure to cropland were reduced by 3,940 pounds (39 percent) and 910 pounds (46 percent), respectively, during nutrient management. A total of 94,560 pounds of nitrogen (538 pounds per acre) and 26,400 pounds of phosphorus (150 pounds per acre) were applied to the cropland as commercial fertilizer and manure during the 5-year study. Core samples from the top 4 feet of soil were collected prior to and during nutrient management and analyzed from concentrations of nitrogen and phosphorus. The average amount of nitrate nitrogen in the soil ranged from 36 to 135 pounds per acre, and soluble phosphorus ranged from 0.39 to 2.5 pounds per acre, prior to nutrient management. During nutrient management, nitrate nitrogen in the soil ranged from 21 to 291 pounds per acre and soluble phosphorus ranged from 0.73 to 1.7 pounds per acre. Precipitation was about 18 percent below normal and streamflow was about 35 percent below normal prior to nutrient management, whereas precipitation was 4 percent above normal and streamflow was 3 percent below normal during the first 2 years of nutrient management. Eighty-four percent of the 20.44 inches of streamflow was base flow prior to nutrient management and 54 percent of the 31.14 inches of streamflow was base flow during the first 2 years of the nutrient-management phase. About 31 percent of the measured precipitation during the first 4 years of the study was discharged as surface water; the remaining 69 percent was removed as evapotranspiration or remained in ground-water storage. Median concentrations of total nitrogen and dissolved nitrate plus nitrite in base flow increased from 4.9 and 4.1 milligrams per liter as nitrogen, respectively, prior to nutrient management to 5.8 and 5.0 milligrams per liter, respectively, during nutrient management. Median concentrations of ammonia nitrogen and organic nitrogen did not change significantly in base flow. Median concentrations of total and dissolved phosphorus in base flow did not change significantly and were 0.05 and 0.03 milligrams per liter as phosphorus, respectively, prior to the management phase, and 0.05 and 0.04 milligrams per liter, respectively, during the management phase. Concentrations and loads of dissolved nitrite plus nitrate in base flow increased following wet periods after crops were harvested and manure was applied. During the growing season, concentrations and loads decreased as nutrient utilization and evapotranspiration by corn increased. About 4,550 pounds of suspended sediment 5,300 pounds of nitrogen, and 70.4 pounds of phosphorous discharged in base flow in the 2 years prior to nutrient management. During the first 2 years of nutrient management about 2,860 pounds of suspended sediment, 5,700 pounds of nitrogen, and 46.6 pounds of phosphorus discharged in base flow. Prior to nutrient management, about 260,000 pounds of suspende

  1. Urban Stormwater Temperature Surges: A Central US Watershed Study

    Directory of Open Access Journals (Sweden)

    Sean J. Zeiger

    2015-10-01

    Full Text Available Impacts of urban land use can include increased stormwater runoff temperature (Tw leading to receiving water quality impairment. There is therefore a need to target and mitigate sources of thermal pollution in urban areas. However, complex relationships between urban development, stormwater runoff and stream water heating processes are poorly understood. A nested-scale experimental watershed study design was used to investigate stormwater runoff temperature impacts to receiving waters in a representative mixed-use urbanizing watershed of the central US. Daily maximum Tw exceeded 35.0 °C (threshold for potential mortality of warm-water biota at an urban monitoring site for a total of five days during the study period (2011–2013. Sudden increases of more than 1.0 °C within a 15 min time interval of Tw following summer thunderstorms were significantly correlated (CI = 95%; p < 0.01 to cumulative percent urban land use (r2 = 0.98; n = 29. Differences in mean Tw between monitoring sites were significantly correlated (CI = 95%; p = 0.02 to urban land use practices, stream distance and increasing discharge. The effects of the 2012 Midwest USA drought and land use on Tw were also observed with maximum Tw 4.0 °C higher at an urban monitoring site relative to a rural site for 10.5 h. The current work provides quantitative evidence of acute increases in Tw related to urban land use. Results better inform land managers wishing to create management strategies designed to preserve suitable thermal stream habitats in urbanizing watersheds.

  2. Impacts of forest changes on hydrology: a case study of large watersheds in the upper reaches of Minjiang River watershed in China

    Directory of Open Access Journals (Sweden)

    X. Cui

    2012-11-01

    Full Text Available Quantifying the effects of forest changes on hydrology in large watersheds is important for designing forest or land management and adaptation strategies for watershed ecosystem sustainability. Minjiang River watershed, located in the upper reach of the Yangtze River basin, plays a strategic role in the environmental protection and economic and social well-being for both the watershed and the entire Yangtze River basin. The watershed lies in the transition zone from Sichuan Basin to Qinghai-Tibet Plateau with a size of 24 000 km2. Due to its strategic significance, severe historic deforestation and high sensitivity to climate change, the watershed has long been recognized as one of the highest priority watersheds in China for scientific research and resource management. The purpose of this review paper is to provide a state-of-the-art summary on what we have learned from several recently completed research programs (one of them known as "973 of the China National Major Fundamental Science" from 2002 to 2008. This summary paper focused on how land cover or forest change affected hydrology at both forest stand and watershed scales in this large watershed. Inclusion of two different spatial scales is useful, because the results from a small spatial scale (e.g. forest stand level can help interpret the findings on a large spatial scale. Our review suggests that historic forest harvesting or land cover change has caused significant water yield increase due to reduction of forest canopy interception and evapotranspiration caused by removal of forest vegetation on both spatial scales. The impact magnitude caused by forest harvesting indicates that the hydrological effects of forest or land cover changes can be as important as those caused by climate change, while the opposite impact directions suggest their offsetting effects on water yield in the Minjiang River watershed. In addition, different types of forests have different magnitudes of evapotranspiration (ET, with the lowest in old-growth natural coniferous forests (Abies faxoniana Rehd. et Wils. and the highest in coniferous plantations (e.g. Picea asperata Mast. among major forest types in the study watershed. This suggests that selection of different types of forests can have an important role in ET and consequently water yield. Our synthesis indicates that future reforestation and climate change would likely produce the hydrological effects in the same direction and thus place double the pressure on water resource as both key drivers may lead to water yield reduction. The findings can support designing management strategies for protection of watershed ecological functions in the context of future land cover and climate changes.

  3. U.S. EPA'S URBAN WATERSHED RESEARCH PROGRAM IN BMPS AND RESTORATION FOR WATER QUALITY MANAGEMENT

    Science.gov (United States)

    The U.S. EPA's Urban Watershed Management Branch is responsible for developing and demonstrating technologies and methods required managing the risk to public health, property and the environment from wet weather flows (WWF) in urban watersheds. The activities are primarily aimed...

  4. Comparing the monitoring and evaluation systems of watershed management related development projects in Amhara, Ethiopia

    OpenAIRE

    Kainulainen, Aino

    2012-01-01

    Natural resource degradation is both a cause and a result of poverty in Ethiopia. Therefore it is important to include watershed management into efforts to reduce poverty and food insecurity in the country. In order to see if different interventions are effective in restoring the degraded environment, it is important to have a functioning monitoring and evaluation system that includes natural resource degradation and other environmental factors. This study compares the monitoring and eval...

  5. Best Management Practices for sediment control in a Mediterranean agricultural watershed

    Science.gov (United States)

    Abdelwahab, Ossama M. M.; Bingner, Ronald L.; Milillo, Fabio; Gentile, Francesco

    2015-04-01

    Soil erosion can lead to severe destruction of agricultural sustainability that affects not only productivity, but the entire ecosystem in the neighboring areas. Sediments transported together with the associated nutrients and chemicals can significantly impact downstream water bodies. Various conservation and management practices implemented individually or integrated together as a system can be used to reduce the negative impacts on agricultural watersheds from soil erosion. Hydrological models are useful tools for decision makers when selecting the most effective combination of management practices to reduce pollutant loads within a watershed system. The Annualized Agricultural Non-point Source (AnnAGNPS) pollutant loading management model can be used to analyze the effectiveness of diverse management and conservation practices that can control or reduce the impact of soil erosion processes and subsequent sediment loads in agricultural watersheds. A 506 km2 Mediterranean medium-size watershed (Carapelle) located in Apulia, Southern Italy was used as a case study to evaluate the model and best management practices (BMPs) for sediment load control. A monitoring station located at the Ordona bridge has been instrumented to continuously monitor stream flow and suspended sediment loads. The station has been equipped with an ultrasound stage meter and a stage recorder to monitor stream flow. An infrared optic probe was used to measure suspended sediment concentrations (Gentile et al., 2010 ). The model was calibrated and validated in the Carapelle watershed on an event basis (Bisantino et al., 2013), and the validated model was used to evaluate the effectiveness of BMPs on sediment reduction. Various management practices were investigated including evaluating the impact on sediment load of: (1) converting all cropland areas into forest and grass covered conditions; (2) converting the highest eroding cropland areas to forest or grass covered conditions; and (3) utilizing a crop rotation of wheat and forage crops (Abdelwahab et al., 2014). Further evaluations include scenarios with additional improvements in the input data, in particular better reflecting the management operations within model input parameters used to represent the current conditions applied in the watershed, and the study of the efficiency of the model in predicting runoff and sediment loads at a monthly and annual scale using un-calibrated parameters. The effect of riparian buffers as a natural trap that reduce runoff and increase the in-situ sediment deposition are also investigated. Acknowledgements This work is carried out in the framework of the Italian Research Project of Relevant Interest (PRIN2010-2011), prot. 20104ALME4, "National network for monitoring, modeling, and sustainable management of erosion processes in agricultural land and hilly-mountainous area" National Coordinator prof. Mario Lenzi (University of Padova). References Gentile F., Bisantino T., Corbino R., Milillo F., Romano G., Trisorio Liuzzi G. (2010) Monitoring and analysis of suspended sediment transport dynamics in the Carapelle torrent (southern Italy). Catena 80, 1-8, doi:10.1016/j.catena.2009.08.004. Bisantino T., Bingner R., Chouaib W., Gentile F., Trisorio Liuzzi G. (2013) Estimation of runoff, peak discharge and sediment load at the event scale in a medium-size Mediterranean watershed using the AnnAGNPS model. Land Degradation & Development, wileyonlinelibrary.com, doi: 10.1002/ldr.2213. Abdelwahab O.M.M., Bingner R.L., Milillo F., Gentile F. (2014) Effectiveness of alternative management scenarios on the sediment load in a Mediterranean agricultural watershed. Journal of Agricultural Engineering, vol. XLV:430, 125-136, doi: 10.4081/jae.2014.430.

  6. Quantifying Urban Watershed Stressor Gradients and Evaluating How Different Land Cover Datasets Affect Stream Management

    Science.gov (United States)

    Smucker, Nathan J.; Kuhn, Anne; Charpentier, Michael A.; Cruz-Quinones, Carlos J.; Elonen, Colleen M.; Whorley, Sarah B.; Jicha, Terri M.; Serbst, Jonathan R.; Hill, Brian H.; Wehr, John D.

    2016-03-01

    Watershed management and policies affecting downstream ecosystems benefit from identifying relationships between land cover and water quality. However, different data sources can create dissimilarities in land cover estimates and models that characterize ecosystem responses. We used a spatially balanced stream study (1) to effectively sample development and urban stressor gradients while representing the extent of a large coastal watershed (>4400 km2), (2) to document differences between estimates of watershed land cover using 30-m resolution national land cover database (NLCD) and <1-m resolution land cover data, and (3) to determine if predictive models and relationships between water quality and land cover differed when using these two land cover datasets. Increased concentrations of nutrients, anions, and cations had similarly significant correlations with increased watershed percent impervious cover (IC), regardless of data resolution. The NLCD underestimated percent forest for 71/76 sites by a mean of 11 % and overestimated percent wetlands for 71/76 sites by a mean of 8 %. The NLCD almost always underestimated IC at low development intensities and overestimated IC at high development intensities. As a result of underestimated IC, regression models using NLCD data predicted mean background concentrations of NO3 - and Cl- that were 475 and 177 %, respectively, of those predicted when using finer resolution land cover data. Our sampling design could help states and other agencies seeking to create monitoring programs and indicators responsive to anthropogenic impacts. Differences between land cover datasets could affect resource protection due to misguided management targets, watershed development and conservation practices, or water quality criteria.

  7. Quito's Urban Watersheds: Applications of Low Impact Development and Sustainable Watershed Management

    Science.gov (United States)

    Marzion, R.; Serra-Llobet, A.; Ward Simons, C.; Kondolf, G. M.

    2013-12-01

    Quito, Ecuador sits high in an Interandean valley (elevation ~2,830 meters) at the foot of Pichincha volcano. Above the city, mountain streams descend from high-altitude Andean páramo grasslands down steep slopes through quebradas (ravines) to the Machángara River. Quito's rapid urban growth, while indicative of the city's economic vitality, has led to the city's expansion along the valley floor, settlements along precarious hillslopes and ravines, disappearance of wetlands, and loss of páramo. The upper reaches of the watersheds are being rapidly settled by migrants whose land-use practices result in contamination of waters. In the densely-settled downstream reaches, urban encroachment has resulted in filling and narrowing of quebradas with garbage and other poor-quality fill. These practices have dramatically altered natural drainage patterns, reduced the flood conveyance capacity of the channels (increasing the flood risk to surrounding communities), and further deteriorated water quality. The city's stormwater, wastewater, and surface waters suffer from untreated pollutant loads, aging pipes, and sewer overflows. In response to environmental degradation of the quebradas, awareness is increasing, at both local community and municipal levels, of the importance of stream corridors for water quality, wildlife, and recreation for nearby residents. Citizen groups have organized volunteer river cleanups, and municipal agencies have committed to implementing ';green infrastructure' solutions to make Quito a healthier habitat for humans and other species. City leaders are evaluating innovative low impact development (LID) methods to help decontaminate surface waters, mitigate urban flooding, and promote sustainable water systems. Quito's municipal water agency, EPMAPS, invited faculty and students from Quito and Berkeley to collaborate with agency staff and citizen groups to analyze opportunities and to develop plans and designs for sustainable infrastructure. To facilitate the evaluation of LID potential in Quito, we conducted field observations and measurements, completed archival research, analyzed available geographic and hydrologic data, and developed plans and designs for the Quebrada Ortega from its steep headwater reaches down through the densely-populated valley floor. We identified opportunities and constraints for LID, along with strategies from international LID precedent cities that can be applied in the context of Quito's unique physical and climatic characteristics, urban planning practices, and institutional structures. Using remote sensing techniques to determine permeable versus impermeable surface areas, we calculated that basins of at least 1% of the Ortega subwatershed's surface area would be needed to mitigate peak flows from most design storm scenarios. Rainwater harvesting can provide approximately 30% of average daily water needs based on current Quito consumption rates for the subwatershed's residents. By implementing LID strategies while also addressing other water management priorities, Quito provides a unique case study of a city that could bypass prohibitively expensive models used in industrialized countries (e.g., end-of-pipe treatments), and serve as a model for other Latin American cities seeking to resolve similar water management problems.

  8. Soil Erodibility for Water Pollution Management of Melaka Watershed in Peninsular Malaysia

    OpenAIRE

    Md. Ibrahim Adham; Sharif Moniruzzaman Shirazi; Faridah Othman; Noorul Hassan Zardari; Zulkifli Yusop; Zubaidah Ismail

    2015-01-01

    The relationships between surface runoffand soil erodibility are significant in water pollution and watershed management practices. Land use pattern, soil series and slope percentage are also major factors to develop the relationships. Daily rainfall data were collected and analyzed for variations in precipitation for calculating the surface runoff of these watersheds and surface runoff map was produced by GIS tools. Tew equation was utilized to predict soil erodibility of watershed soils.Res...

  9. Forest use strategies in watershed management and restoration: application to three small mountain watersheds in Latin America

    Directory of Open Access Journals (Sweden)

    Juan Ángel Mintegui Aguirre

    2014-06-01

    Full Text Available The effect of forests on flow and flood lamination decreases as the magnitude and intensity of torrential events and the watershed surface increase, thus resulting negligible when extreme events affect large catchments. However the effect of forests is advantageous in case of major events, which occur more often, and is particularly effective in soil erosion control. As a result, forests have been extensively used for watershed management and restoration, since they regulate water and sediments cycles, preventing the degradation of catchments.

  10. Community implementation dynamics: Nutrient management in the New York City and Chesapeake Bay Watersheds

    Directory of Open Access Journals (Sweden)

    Glenn Earl Sterner

    2015-04-01

    Full Text Available The creation of natural resource management and conservation strategies can be affected by engagement with local citizens and competing interests between agencies and stakeholders at the varying levels of governance. This paper examines the role of local engagement and the interaction between governance levels on the outcomes of nutrient management policy, a specific area of natural resource conservation and management. Presented are two case studies of the New York City and Chesapeake Bay Watersheds in the US. These case studies touch upon the themes of local citizen engagement and governance stakeholder interaction in changing nutrient management to improve water quality. An analysis of these cases leads to several key considerations for the creation and implementation of nutrient management and natural resource management more broadly, including the importance of: local citizen engagement, government brokering and cost sharing; and the need of all stakeholders to respect each other in the policy creation and implementation process.

  11. From Eutrophic to Mesotrophic: Modelling Watershed Management Scenarios to Change the Trophic Status of a Reservoir

    Directory of Open Access Journals (Sweden)

    Marcos Mateus

    2014-03-01

    Full Text Available Management decisions related with water quality in lakes and reservoirs require a combined land-water processes study approach. This study reports on an integrated watershed-reservoir modeling methodology: the Soil and Water Assessment Tool (SWAT model to estimate the nutrient input loads from the watershed, used afterwards as boundary conditions to the reservoir model, CE-QUAL-W2. The integrated modeling system was applied to the Torrão reservoir and drainage basin. The objective of the study was to quantify the total maximum input load that allows the reservoir to be classified as mesotrophic. Torrão reservoir is located in the Tâmega River, one of the most important tributaries of the Douro River in Portugal. The watershed is characterized by a variety of land uses and urban areas, accounting for a total Waste Water Treatment Plants (WWTP discharge of ~100,000 p.e. According to the criteria defined by the National Water Institute (based on the WWTP Directive, the Torrão reservoir is classified as eutrophic. Model estimates show that a 10% reduction in nutrient loads will suffice to change the state to mesotrophic, and should target primarily WWTP effluents, but also act on diffuse sources. The method applied in this study should provide a basis for water environmental management decision-making.

  12. Ecologically Significant Monitoring Strategies for Watershed Managers and Applied Ecohydrologists

    Science.gov (United States)

    Buchanan, B. P.; Walter, T.

    2007-12-01

    Upper Klamath Lake in Southern Oregon is home to a unique and increasingly rare strain of redband rainbow trout (Oncorhynchus mykiss newberrii). Populations connected to perennial lake systems such as the Upper Klamath have evolved adfluvial life histories and may possess unique adaptations that underscore their importance as units of conservation. Anthropogenic disturbance including stream channelization, timber harvest, livestock grazing and irrigation diversion have resulted in a 41 percent reduction in the redband's historic habitat and the disappearance of 11 redband trout populations throughout Oregon, Washington, and Idaho. In an effort to actively conserve this sensitive subspecies, a stream creation project was undertaken with the goal of increasing viable spawning and rearing habitat in Crooked Creek, a tributary to Upper Klamath Lake. A combination of analogue, empirical and analytical techniques were employed in the design of the created channel morphology (i.e. channel planform, profile, and cross-section), the sizing of bed substrate and spawning gravels and the design of in-stream habitat and scour structures. The project, completed in the fall of 1996, was qualitatively judged a success (e.g. trout were observed actively spawning and young-of-the-year were collected during unsystematic surveys). Unfortunately, as is often the case in the stream enhancement/restoration field, funding and personnel time were lacking for the implementation of a robust post-construction monitoring plan. Thus, project success was ascertained through cursory analyses and anecdotal reports. An opportunity to implement a similar stream creation project in a nearby watershed has afforded us the chance to return to the project site and conduct a more comprehensive, quantitative analysis of the project's success. A discussion of the original design methods and a review of several state of the art monitoring strategies are provided to assist watershed managers and applied ecohydrologists in their efforts to adaptively manage and restore the structure and function of dynamic stream systems.

  13. Linking nitrogen management, seep chemistry, and stream water quality in two agricultural headwater watersheds.

    Science.gov (United States)

    Williams, Mark R; Buda, Anthony R; Elliott, Herschel A; Collick, Amy S; Dell, Curtis; Kleinman, Peter J A

    2015-05-01

    Riparian seepage zones in headwater agricultural watersheds represent important sources of nitrate-nitrogen (NO-N) to surface waters, often connecting N-rich groundwater systems to streams. In this study, we examined how NO-N concentrations in seep and stream water were affected by NO-N processing along seep surface flow paths and by upslope applications of N from fertilizers and manures. The research was conducted in two headwater agricultural watersheds, FD36 (40 ha) and RS (45 ha), which are fed, in part, by a shallow fractured aquifer system possessing high (3-16 mg L) NO-N concentrations. Data from in-seep monitoring showed that NO-N concentrations generally decreased downseep (top to bottom), indicating that most seeps retained or removed a fraction of delivered NO-N (16% in FD36 and 1% in RS). Annual mean N applications in upslope fields (as determined by yearly farmer surveys) were highly correlated with seep NO-N concentrations in both watersheds (slope: 0.06; = 0.79; < 0.001). Strong positive relationships also existed between seep and stream NO-N concentrations in FD36 (slope: 1.01; = 0.79; < 0.001) and in RS (slope: 0.64; = 0.80; < 0.001), further indicating that N applications control NO-N concentrations at the watershed scale. Our findings clearly point to NO-N leaching from upslope agricultural fields as the primary driver of NO-N losses from seeps to streams in these watersheds and therefore suggest that appropriate management strategies (cover crops, limiting fall/winter nutrient applications, decision support tools) be targeted in these zones. PMID:26024271

  14. Using causal loop diagrams for the initialization of stakeholder engagement in soil salinity management in agricultural watersheds in developing countries: a case study in the Rechna Doab watershed, Pakistan.

    Science.gov (United States)

    Inam, Azhar; Adamowski, Jan; Halbe, Johannes; Prasher, Shiv

    2015-04-01

    Over the course of the last twenty years, participatory modeling has increasingly been advocated as an integral component of integrated, adaptive, and collaborative water resources management. However, issues of high cost, time, and expertise are significant hurdles to the widespread adoption of participatory modeling in many developing countries. In this study, a step-wise method to initialize the involvement of key stakeholders in the development of qualitative system dynamics models (i.e. causal loop diagrams) is presented. The proposed approach is designed to overcome the challenges of low expertise, time and financial resources that have hampered previous participatory modeling efforts in developing countries. The methodological framework was applied in a case study of soil salinity management in the Rechna Doab region of Pakistan, with a focus on the application of qualitative modeling through stakeholder-built causal loop diagrams to address soil salinity problems in the basin. Individual causal loop diagrams were developed by key stakeholder groups, following which an overall group causal loop diagram of the entire system was built based on the individual causal loop diagrams to form a holistic qualitative model of the whole system. The case study demonstrates the usefulness of the proposed approach, based on using causal loop diagrams in initiating stakeholder involvement in the participatory model building process. In addition, the results point to social-economic aspects of soil salinity that have not been considered by other modeling studies to date. PMID:25681287

  15. COST-EFFECTIVE ALLOCATION OF WATERSHED MANAGEMENT PRACTICES USING A GENETIC ALGORITHM

    Science.gov (United States)

    Implementation of conservation programs are perceived as being crucial for restoring and protecting waters and watersheds from non-point source pollution. Success of these programs depends to a great extent on planning tools that can assist the watershed management process. Here-...

  16. Development of a Prototype Web-Based Decision Support System for Watershed Management

    OpenAIRE

    Dejian Zhang; Xingwei Chen; Huaxia Yao

    2015-01-01

    Using distributed hydrological models to evaluate the effectiveness of reducing non-point source pollution by applying best management practices (BMPs) is an important support to decision making for watershed management. However, complex interfaces and time-consuming simulations of the models have largely hindered the applications of these models. We designed and developed a prototype web-based decision support system for watershed management (DSS-WMRJ), which is user friendly and supports q...

  17. A Contingent Valuation Approach to Community-based Watershed Management in Bey?ehir Lake Basin

    OpenAIRE

    Ozdemir, Fadim Yavuz; Baycan-Levent, Tüzin

    2010-01-01

    Community-based watershed management has become more predominant as part of the trend towards more holistic and participatory approaches to water resources management. Locally based planning at the watershed scale is seen as an operative way to enhance long-term water resources management and environmental sustainability. Large-scale (regional) ecological systems can be most effectively regulated by small-scale (local) social organizations. Consequently motivating local people to actively par...

  18. Watershed regulation and local action: analysis of the Senegal River watershed management by a regional organisation and public participation

    Directory of Open Access Journals (Sweden)

    A. M. Sène

    2007-06-01

    Full Text Available Several social scientists have dealt with the usefulness of a participative approach in development plans. The call for sustainable development has increased the focus on this type of approach in a very classical way, which is the case for the creation of new water tanks. Most of these scientists have also pinpointed the major difficulties and failures faced during the execution of this new approach in developing countries. This study is a concrete example which underlines the lack of this type of approach as far as water management in the Senegal River is concerned, mainly in relation to watershed. We base our study on the analysis and criticism of the regional organization OMVS (Organization for the Development of the Senegal River which is in charge of water management in the Senegal River. The results of the study can, therefore, be summed up as follows: (i An on-site direct observation, individual interviews, group discussion and information analysis point out the lack of participation of local people in water management in the Senegal River and, in general, the harmful socio-economic impacts resulting from it. (ii The reasons for this lack of participative approach are mainly due to the model set up by the OMVS in terms of water management in the Senegal River, a model that has excluded or tackled in a very light way the issue of public participation in decision-making through out its juridical and regulation instruments. (iii Elements of consideration on some measures, which could possibly improve the level of participation of local people in river water management.

  19. An integrated system dynamics model developed for managing lake water quality at the watershed scale.

    Science.gov (United States)

    Liu, Hui; Benoit, Gaboury; Liu, Tao; Liu, Yong; Guo, Huaicheng

    2015-05-15

    A reliable system simulation to relate socioeconomic development with water environment and to comprehensively represent a watershed's dynamic features is important. In this study, after identifying lake watershed system processes, we developed a system dynamics modeling framework for managing lake water quality at the watershed scale. Two reinforcing loops (Development and Investment Promotion) and three balancing loops (Pollution, Resource Consumption, and Pollution Control) were constituted. Based on this work, we constructed Stock and Flow Diagrams that embedded a pollutant load model and a lake water quality model into a socioeconomic system dynamics model. The Dianchi Lake in Yunnan Province, China, which is the sixth largest and among the most severely polluted freshwater lakes in China, was employed as a case study to demonstrate the applicability of the model. Water quality parameters considered in the model included chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP). The business-as-usual (BAU) scenario and three alternative management scenarios on spatial adjustment of industries and population (S1), wastewater treatment capacity construction (S2), and structural adjustment of agriculture (S3), were simulated to assess the effectiveness of certain policies in improving water quality. Results showed that S2 is most effective scenario, and the COD, TN, and TP concentrations in Caohai in 2030 are 52.5, 10.9, and 0.8 mg/L, while those in Waihai are 9.6, 1.2, and 0.08 mg/L, with sustained development in the watershed. Thus, the model can help support the decision making required in development and environmental protection strategies. PMID:25770958

  20. Hydromentor: An integrated water resources monitoring and management system at modified semi-arid watersheds

    Science.gov (United States)

    Vasiliades, Lampros; Sidiropoulos, Pantelis; Tzabiras, John; Kokkinos, Konstantinos; Spiliotopoulos, Marios; Papaioannou, George; Fafoutis, Chrysostomos; Michailidou, Kalliopi; Tziatzios, George; Loukas, Athanasios; Mylopoulos, Nikitas

    2015-04-01

    Natural and engineered water systems interact throughout watersheds and while there is clearly a link between watershed activities and the quantity and quality of water entering the engineered environment, these systems are considered distinct operational systems. As a result, the strategic approach to data management and modeling within the two systems is very different, leading to significant difficulties in integrating the two systems in order to make comprehensive watershed decisions. In this paper, we describe the "HYDROMENTOR" research project, a highly-structured data storage and exchange system that integrates multiple tools and models describing both natural and modified environments, to provide an integrated tool for management of water resources. Our underlying objective in presenting our conceptual design for this water information system is to develop an integrated and automated system that will achieve monitoring and management of the water quantity and quality at watershed level for both surface water (rivers and lakes) and ground water resources (aquifers). The uniqueness of the system is the integrated treatment of the water resources management issue in terms of water quantity and quality in current climate conditions and in future conditions of climatic change. On an operational level, the system provides automated warnings when the availability, use and pollution levels exceed allowable limits pre-set by the management authorities. Decision making with respect to the apportionment of water use by surface and ground water resources are aided through this system, while the relationship between the polluting activity of a source to total incoming pollution by sources are determined; this way, the best management practices for dealing with a crisis are proposed. The computational system allows the development and application of actions, interventions and policies (alternative management scenarios) so that the impacts of climate change in quantity, quality and use of water resources could be evaluated and managed. Acknowledgements: This study has been supported by the research project "Hydromentor" funded by the Greek General Secretariat of Research and Technology in the framework of the E.U. co-funded National Action "Cooperation".

  1. Compromise-based Robust Prioritization of Climate Change Adaptation Strategies for Watershed Management

    Science.gov (United States)

    Kim, Y.; Chung, E. S.

    2014-12-01

    This study suggests a robust prioritization framework for climate change adaptation strategies under multiple climate change scenarios with a case study of selecting sites for reusing treated wastewater (TWW) in a Korean urban watershed. The framework utilizes various multi-criteria decision making techniques, including the VIKOR method and the Shannon entropy-based weights. In this case study, the sustainability of TWW use is quantified with indicator-based approaches with the DPSIR framework, which considers both hydro-environmental and socio-economic aspects of the watershed management. Under the various climate change scenarios, the hydro-environmental responses to reusing TWW in potential alternative sub-watersheds are determined using the Hydrologic Simulation Program in Fortran (HSPF). The socio-economic indicators are obtained from the statistical databases. Sustainability scores for multiple scenarios are estimated individually and then integrated with the proposed approach. At last, the suggested framework allows us to prioritize adaptation strategies in a robust manner with varying levels of compromise between utility-based and regret-based strategies.

  2. GIBSI: an integrated modelling system for watershed management – sample applications and current developments

    Directory of Open Access Journals (Sweden)

    A. N. Rousseau

    2007-11-01

    Full Text Available Hydrological and pollutant fate models have long been developed for research purposes. Today, they find an application in integrated watershed management, as decision support systems (DSS. GIBSI is such a DSS designed to assist stakeholders in watershed management. It includes a watershed database coupled to a GIS and accessible through a user-friendly interface, as well as modelling tools that simulate, on a daily time step, hydrological processes such as evapotranspiration, runoff, soil erosion, agricultural pollutant transport and surface water quality. Therefore, GIBSI can be used to assess a priori the effect of management scenarios (reservoirs, land use, waste water effluents, diffuse sources of pollution that is agricultural pollution on surface hydrology and water quality. For illustration purposes, this paper presents several management-oriented applications using GIBSI on the 6680 km2 Chaudière River watershed, located near Quebec City (Canada. They include impact assessments of: (i municipal clean water program; (ii agricultural nutrient management scenarios; (iii past and future land use changes, as well as (iv determination of achievable performance standards of pesticides management practices. Current and future developments of GIBSI are also presented as these will extend current uses of this tool and make it useable and applicable by stakeholders on other watersheds. Finally, the conclusion emphasizes some of the challenges that remain for a better use of DSS in integrated watershed management.

  3. GIBSI: an integrated modelling system for watershed management – sample applications and current developments

    Directory of Open Access Journals (Sweden)

    A. N. Rousseau

    2007-06-01

    Full Text Available Hydrological and pollutant fate models have long been developed for research purposes. Today, they find an application in integrated watershed management, as decision support systems (DSS. GIBSI is such a DSS designed to assist stakeholders in watershed management. It includes a watershed database coupled to a GIS and accessible through a user-friendly interface, as well as modelling tools that simulate, on a daily time step, hydrological processes, soil erosion, agricultural pollutant transport and surface water quality. Therefore, GIBSI can be used to assess a priori the effect of management scenarios (reservoirs, land use, waste water effluents, diffuse sources of pollution that is agricultural pollution on surface hydrology and water quality. For illustration purposes, this paper presents several management-oriented applications using GIBSI on the 6680 km2 Chaudière River watershed, located near Quebec City (Canada. They include impact assessments of: (i timber harvesting; (ii municipal clean water program; (iii agricultural nutrient management scenarios; (iv past land use evolution; (v possible future agricultural land use evolution under climate change, as well as (vi determination of achievable performance standards of pesticides management practices. Current and future developments of GIBSI are also presented as these will extend current uses of this tool and make it useable and applicable by stakeholders on other watersheds. Finally, the conclusion emphasizes some of the challenges that remain for a better use of DSS in integrated watershed management.

  4. Field Scale Optimization for Long-Term Sustainability of Best Management Practices in Watersheds

    Science.gov (United States)

    Samuels, A.; Babbar-Sebens, M.

    2012-12-01

    Agricultural and urban land use changes have led to disruption of natural hydrologic processes and impairment of streams and rivers. Multiple previous studies have evaluated Best Management Practices (BMPs) as means for restoring existing hydrologic conditions and reducing impairment of water resources. However, planning of these practices have relied on watershed scale hydrologic models for identifying locations and types of practices at scales much coarser than the actual field scale, where landowners have to plan, design and implement the practices. Field scale hydrologic modeling provides means for identifying relationships between BMP type, spatial location, and the interaction between BMPs at a finer farm/field scale that is usually more relevant to the decision maker (i.e. the landowner). This study focuses on development of a simulation-optimization approach for field-scale planning of BMPs in the School Branch stream system of Eagle Creek Watershed, Indiana, USA. The Agricultural Policy Environmental Extender (APEX) tool is used as the field scale hydrologic model, and a multi-objective optimization algorithm is used to search for optimal alternatives. Multiple climate scenarios downscaled to the watershed-scale are used to test the long term performance of these alternatives and under extreme weather conditions. The effectiveness of these BMPs under multiple weather conditions are included within the simulation-optimization approach as a criteria/goal to assist landowners in identifying sustainable design of practices. The results from these scenarios will further enable efficient BMP planning for current and future usage.

  5. Combined effects of best management practices on water quality in oxbow lakes from agricultural watersheds

    OpenAIRE

    Cullum, RF; Knight, SS; Cooper, CM; Smith, S.

    2006-01-01

    Water quality conditions in three oxbow lakes were examined before and after best management practices (BMPs) implementation within the Mississippi Delta. Experimental design called for the development of structural and cultural treatments to reduce sediment and associated pollutants entering watershed oxbow lakes. Three watersheds were selected and developed with different levels of BMPs. Changes in lake water quality were used as measures of management success. Analyses of water quality dat...

  6. Realities of a Watershed Management Approach in the Philippines: A Framework for Case Analysis

    OpenAIRE

    Contreras, Antonio P.

    2004-01-01

    The effectiveness and capacity by which society manages its watershed resources is mediated by different factors, namely: economic considerations?financial capital; technical and administrative capacity?intellectual capital; social governance capacity?social and institutional capital; and legal framework?political capital. The levels within which these factors can be analyzed include the macro-level, that is, the national level; and the micro-level that operates at watershed management unit. ...

  7. Effect of climate and land cover changes on watershed runoff: A multivariate assessment for storm water management

    Science.gov (United States)

    Ekness, Paul; Randhir, Timothy O.

    2015-09-01

    Impact of climate change and land use on watershed runoff involves multiattribute ecohydrologic interactions. This information is critical to development of comprehensive storm water management policies. Watersheds in the continental United States have diverse temperatures and precipitation regimes and varying hydrogeomorphic features that influence runoff. This study investigates watershed-scale runoff using statistical modeling for storm water policy optimization. Multivariate statistical modeling show that vegetative activity, annual evaporation, precipitation, temperature, and soil moisture significantly influenced watershed runoff. Soil moisture has a strong influence on runoff with each percent increase causing 5% increase in runoff. Nonlinear modeling with quadratic and interaction effects shows a significant interaction between soil moisture and other climatic variables in influencing annual runoff patterns. Changes in climate affect ecohydrologic characters by altering available soil moisture, evaporation, precipitation patterns, and runoff. Optimization of green infrastructure design can be a successful management tool for runoff with an understanding that changes to multiple attributes in ecohydrologic variables affect runoff. Multi-attribute-based green infrastructure and incentive policies can result in comprehensive storm water policies that incorporate climatic and ecohydrologic conditions of watershed systems.

  8. Influence of watershed system management on herbicide concentrations in Mississippi Delta oxbow lakes.

    Science.gov (United States)

    Zablotowicz, Robert M; Locke, Martin A; Krutz, L Jason; Lerch, Robert N; Lizotte, Richard E; Knight, Scott S; Gordon, R Earl; Steinriede, R Wade

    2006-11-01

    The Mississippi Delta Management Systems Evaluation Area (MD-MSEA) project was established in 1994 in three small watersheds (202 to 1,497 ha) that drain into oxbow lakes (Beasley, Deep Hollow, and Thighman). The primary research objective was to assess the implications of management practices on water quality. Monthly monitoring of herbicide concentrations in lake water was conducted from 2000 to 2003. Water samples were analyzed for atrazine, cyanazine, fluometuron, metolachlor, and atrazine metabolites. Herbicide concentrations observed in the lake water reflected cropping systems of the watershed, e.g., atrazine and metolachlor concentrations were associated with the level of corn and sorghum production, whereas cyanazine and fluometuron was associated with the level of glyphosate-sensitive cotton production. The dynamics of herbicide appearance and dissipation in lake samples were strongly influenced by herbicide use, lake hydrology, rainfall pattern, and land management practices. The highest maximum concentrations of atrazine (7.1 to 23.4 microg L(-1)) and metolachlor (0.7 to 14.9 microg L(-1)) were observed in Thighman Lake where significant quantities of corn were grown. Introduction of s-metolachlor and use of glyphosate-resistant cotton coincided with reduced concentration of metolachlor in lake water. Cyanazine was observed in two lakes with the highest levels (1.6 to 5.5 microg L(-1)) in 2000 and lower concentrations in 2001 and 2002 (Lake were associated with greater use of glyphosate-resistant cotton and correspondingly less need for soil-applied fluometuron herbicide. In contrast, increased levels of fluometuron were observed in lake water after Deep Hollow was converted from conservation tillage to conventional tillage, presumably due to greater runoff associated with conventional tillage. These studies indicate that herbicide concentrations observed in these three watersheds were related to crop and soil management practices. PMID:17005240

  9. Environmental quality integrated indicator applied to the management of the Jiquiriçá river watershed, BA, Brazil

    Directory of Open Access Journals (Sweden)

    Raquel Maria de Oliveira

    2010-04-01

    Full Text Available In this work social, economic and environmental aspects were studied using the concept of programming by commitment, with the objective of structuring an integrated indicator capable of estimating the degree of the environmental quality of the Jiquiriça river basin, BA, composed by the indicator of environmental salubrity, water quality and soil’s protection. For the determination of the environmental salubrity indicator, data of the following variables were collected: existence of treated water supply, disposition and treatment of solid residues, diseases vectors control, the existence of the Agenda 21, socioeconomics data and indices of human development for each municipal district located in the area of the watershed. The indicator of the water quality was structured based on the analysis of water samples collected in eight sampling points along Jiquiriçá river and determined by seven parameters. The indicator of soil’s protection was based on the analysis of maps obtained according to the weight of each steepness and land use class. Results indicate that the watershed is in a poor equilibrium condition and suggest the need for structural investments as well as changes in public polices. The methodology used was efficient for this watershed management and could be used as tool for the environmental planning of the region, once it can be adapted to several situations depending on the data availability.

  10. Study of the quality and quantity of waters of a tributary watershed of Paraíba do Sul river- São Paulo, after environmental preservation actions

    OpenAIRE

    Alexandra Andrade; Vinicius Alves Penteado; Luz Adriana Cuartas; Maria Paulete Pereira Martins; Livia Alves Alvarenga

    2012-01-01

    Monitoring programs of water quality and quantity are necessary to provide subsidies to assess the conditions of the watersheds and for decision making regarding to the management of water resources. This study analyzed the quality and quantity of waters of the Macacos stream watershed, a tributary of the Paraíba do Sul river, in São Paulo State, by monitoring the parameters: temperature, pH, conductivity and dissolved oxygen at five sites in the watershed. The measurements of flow and height...

  11. A COMPARATIVE STUDY ON CALIBRATION METHODS OF NASH’S RAINFALL-RUNOFF MODEL TO AMMAMEH WATERSHED, IRAN

    OpenAIRE

    Vahid Nourani

    2008-01-01

    Increasing importance of watershed management during last decades highlighted the need for sufficient data and accurate estimation of rainfall and runoff within watersheds. Therefore, various conceptual models have been developed with parameters based on observed data. Since further investigations depend on these parameters, it is important to accurately estimate them. This study by utilizing various methods, tries to estimate Nash rainfall-runoff model parameters and then evaluate the reliab...

  12. Development of a Coupled Land Surface and Ground Water Model for use in Watershed Management

    Science.gov (United States)

    Maxwell, R. M.; Miller, N. L.

    2003-12-01

    Management of surface water quality is often complicated by interactions between surface water and groundwater. Traditional Land-Surface Models (LSM) used for numerical weather prediction, climate projection, and as inputs to water management decision support systems, do not treat the lower boundary in a fully process-based fashion. LSMs have evolved from a leaky bucket to more sophisticated land surface water and energy budgets that typically have a so-called basement term to depict the bottom model layer exchange with deeper aquifers. Nevertheless, the LSM lower boundary is often assumed zero flux or the soil moisture content is set to a constant value; an approach that while mass conservative, ignores processes that can alter surface fluxes, runoff, and water quantity and quality. Conversely, models for saturated and unsaturated water flow, while addressing important features such as subsurface heterogeneity and three-dimensional flow, often have overly simplified upper boundary conditions that ignore soil heating, runoff, snow and root-zone uptake. In the present study, a state-of-the-art LSM (CLM2.0) and a variably-saturated groundwater model (ParFlow) have been coupled as a single column model. An initial set of simulations based on data from the Project for Intercomparison of Land-surface Parameterization Schemes (PILPS) and synthetic data demonstrate the temporal dynamics of both of the coupled models. Changes in soil moisture and movement of the water table are used as indicators of conservation of mass between the two models. Sensitivity studies demonstrate the affect of precipitation, evapotransporation, radiation, subsurface geology and heterogeneity on predicted watershed flow. The coupled model will ultimately be used to assist in the development of Total Maximum Daily Loads (TMDLs - a surface water quality standard) for a number of pollutants in an urban watershed in Southern California in the United States. Sensitivity studies demonstrating the effects of watershed flow in uncoupled and coupled modes will be presented.

  13. Integrated watershed management through consortium approach: team building for watershed consortium

    OpenAIRE

    Sreenath Dixit; SP Wani

    2006-01-01

    DFID-funded Andhra Pradesh Rural Livelihoods Programme (APRLP) is currently supported by a consortium of several research and development institutions led by ICRISAT. This is one of the first systematic attempts of convergence of various agencies at watershed level. To develop a common vision of the goals of the project it is important that the partners of the consortium deliberate and discuss with each other and come to know of each other's strengths and limitations. A series of team buildin...

  14. Management-oriented sensitivity analysis for pesticide transport in watershed-scale water quality modeling using SWAT

    Energy Technology Data Exchange (ETDEWEB)

    Luo Yuzhou [University of California, Davis, CA 95616 (United States); Wenzhou Medical College, Wenzhou 325035 (China); Zhang Minghua, E-mail: mhzhang@ucdavis.ed [University of California, Davis, CA 95616 (United States); Wenzhou Medical College, Wenzhou 325035 (China)

    2009-12-15

    The Soil and Water Assessment Tool (SWAT) was calibrated for hydrology conditions in an agricultural watershed of Orestimba Creek, California, and applied to simulate fate and transport of two organophosphate pesticides chlorpyrifos and diazinon. The model showed capability in evaluating pesticide fate and transport processes in agricultural fields and instream network. Management-oriented sensitivity analysis was conducted by applied stochastic SWAT simulations for pesticide distribution. Results of sensitivity analysis identified the governing processes in pesticide outputs as surface runoff, soil erosion, and sedimentation in the study area. By incorporating sensitive parameters in pesticide transport simulation, effects of structural best management practices (BMPs) in improving surface water quality were demonstrated by SWAT modeling. This study also recommends conservation practices designed to reduce field yield and in-stream transport capacity of sediment, such as filter strip, grassed waterway, crop residue management, and tailwater pond to be implemented in the Orestimba Creek watershed. - Selected structural BMPs are recommended for reducing loads of OP pesticides.

  15. Management-oriented sensitivity analysis for pesticide transport in watershed-scale water quality modeling using SWAT

    International Nuclear Information System (INIS)

    The Soil and Water Assessment Tool (SWAT) was calibrated for hydrology conditions in an agricultural watershed of Orestimba Creek, California, and applied to simulate fate and transport of two organophosphate pesticides chlorpyrifos and diazinon. The model showed capability in evaluating pesticide fate and transport processes in agricultural fields and instream network. Management-oriented sensitivity analysis was conducted by applied stochastic SWAT simulations for pesticide distribution. Results of sensitivity analysis identified the governing processes in pesticide outputs as surface runoff, soil erosion, and sedimentation in the study area. By incorporating sensitive parameters in pesticide transport simulation, effects of structural best management practices (BMPs) in improving surface water quality were demonstrated by SWAT modeling. This study also recommends conservation practices designed to reduce field yield and in-stream transport capacity of sediment, such as filter strip, grassed waterway, crop residue management, and tailwater pond to be implemented in the Orestimba Creek watershed. - Selected structural BMPs are recommended for reducing loads of OP pesticides.

  16. A Decision Support Systems Using A Combined Dynamic Model For Integrated Watershed Management

    Science.gov (United States)

    Kudo, E.; Ostrowski, M.

    In this context A Decision Support System (DSS) is presented using a combined dy- namic model for Integrated Watershed Management (IWM) in a small urbanized basin in Japan. In order to improve today's often unsustainable watershed management, the causes of water problems, which interact with each other, must be identified and adequate actions must be chosen to solve the problems. To achieve the ultimate goal of sustain- able development (SD) for water it is essential to develop and apply generic DSSs. A DSS is frequently defined as a combination of a management information system, a model base and an evaluation / assessment module. The EU Water Framework Di- rectives recently established have a narrow time schedule requiring fast action into this direction, which does hardly allow to develop completely new tolls. Thus we are trying to combine different existing dynamic models that incorporate an urban man- agement model, a water quality analysis model, a groundwater analysis model and a water supply model including geographical information system data. With this com- bined model, the most appropriate and sustainable water management plan in an urban area will be developed while considering land use, ground water level, allocation of drainage system, sewerage, water supply works, water quality, and quantity. Because of sharing input data, using this combined model requires less data than using sev- eral separate models. The DSS can also be used to determine the optimum location of gages and monitoring sites. As a case study, the research will deal with the Taguri-river basin in Japan. This basin is located near Tokyo. Although the area in this basin has about 8 km2 only, there are densely build-up areas, paddy fields, and non-developed areas. The river is polluted due to wastewater from point resources: households, and non-point resources: roads and fields, etc. Overpumping of aquifers results in sinking groundwater tables and land subsidence. Moreover, a decrease in groundwater levels leads to a decrease of available spring water. This basin includes many different water problems like many Japanese other basins. Besides this study IWM studies with some computer models are considered in other Japanese basins as well. The aims in this poster are to 1 - describe the relation between SD, IWM, and DSSs - the structure of the combined dynamic model for integrated watershed management - present preliminary case study results 2

  17. The Watershed and River Systems Management Program: Decision Support for Water- and Environmental-Resource Management

    Science.gov (United States)

    Leavesley, G.; Markstrom, S.; Frevert, D.; Fulp, T.; Zagona, E.; Viger, R.

    2004-12-01

    Increasing demands for limited fresh-water supplies, and increasing complexity of water-management issues, present the water-resource manager with the difficult task of achieving an equitable balance of water allocation among a diverse group of water users. The Watershed and River System Management Program (WARSMP) is a cooperative effort between the U.S. Geological Survey (USGS) and the Bureau of Reclamation (BOR) to develop and deploy a database-centered, decision-support system (DSS) to address these multi-objective, resource-management problems. The decision-support system couples the USGS Modular Modeling System (MMS) with the BOR RiverWare tools using a shared relational database. MMS is an integrated system of computer software that provides a research and operational framework to support the development and integration of a wide variety of hydrologic and ecosystem models, and their application to water- and ecosystem-resource management. RiverWare is an object-oriented reservoir and river-system modeling framework developed to provide tools for evaluating and applying water-allocation and management strategies. The modeling capabilities of MMS and Riverware include simulating watershed runoff, reservoir inflows, and the impacts of resource-management decisions on municipal, agricultural, and industrial water users, environmental concerns, power generation, and recreational interests. Forecasts of future climatic conditions are a key component in the application of MMS models to resource-management decisions. Forecast methods applied in MMS include a modified version of the National Weather Service's Extended Streamflow Prediction Program (ESP) and statistical downscaling from atmospheric models. The WARSMP DSS is currently operational in the Gunnison River Basin, Colorado; Yakima River Basin, Washington; Rio Grande Basin in Colorado and New Mexico; and Truckee River Basin in California and Nevada.

  18. Application of the SUSTAIN Model to a Watershed-Scale Case for Water Quality Management

    Directory of Open Access Journals (Sweden)

    Chi-Feng Chen

    2014-11-01

    Full Text Available Low impact development (LID is a relatively new concept in land use management that aims to maintain hydrological conditions at a predevelopment level without deteriorating water quality during land development. The United States Environmental Protection Agency (USEPA developed the System for Urban Stormwater Treatment and Analysis Integration model (SUSTAIN to evaluate the performance of LID practices at different spatial scales; however, the application of this model has been limited relative to LID modeling. In this study, the SUSTAIN model was applied to a Taiwanese watershed. Model calibration and verification were performed, and different types of LID facilities were evaluated. The model simulation process and the verified model parameters could be used in other cases. Four LID scenarios combining bioretention ponds, grass swales, and pervious pavements were designed based on the land characteristics. For the SUSTAIN model simulation, the results showed that pollution reduction was mainly due to water quantity reduction, infiltration was the dominant mechanism and plant interception had a minor effect on the treatment. The simulation results were used to rank the primary areas for nonpoint source pollution and identify effective LID practices. In addition to the case study, a sensitivity analysis of the model parameters was performed, showing that the soil infiltration rate was the most sensitive parameter affecting the LID performance. The objectives of the study are to confirm the applicability of the SUSTAIN model and to assess the effectiveness of LID practices in the studied watershed.

  19. Potential Hydrological Responses, and Carbon and Nitrogen Pools of a Two Distinct Watersheds to Rainfall and Brush Management

    Science.gov (United States)

    Ray, R. L.; Fares, A.; Awal, R.; Johnson, A. B.

    2014-12-01

    Investigating the effects of brush management on hydrologic fluxes, in the parts of the Texas where brush is a dominant component of the landscape is essential for the State of Texas's water management strategy and planning. The main goal of this study is to test the performance of brush management as an effective approach for protecting soil quality (carbon and nitrogen pools), and water resources management and planning. Specifically, this work reports on the potential i) hydrological response and ii) carbon and nitrogen pools of two watersheds, one in Colorado River Basin (arid) and the second one in Neches River Basin (humid), to brush management (uniform thinning vs. clear cutting) simulated using Regional Hydro-ecological Simulation System (RHESSys) model and site specific input data. The selected watersheds have similar potential evapotranspiration level, but their average elevations are 600 m and 250 m for the arid and humid watersheds, respectively. Results are showing that light thinning alone may not be enough to significantly impact water yield and soil quality. They further indicate that the streamflow response to brush reduction is a non-linear positive response.

  20. Iskuulpa Watershed Management Plan : A Five-Year Plan for Protecting and Enhancing Fish and Wildlife Habitats in the Iskuulpa Watershed.

    Energy Technology Data Exchange (ETDEWEB)

    Confederated Tribes of the Umatilla Indian Reservation Wildlife Program

    2003-01-01

    The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) propose to protect, enhance, and mitigate wildlife and wildlife habitat and watershed resources in the Iskuulpa Watershed. The Iskuulpa Watershed Project was approved as a Columbia River Basin Wildlife Fish and Mitigation Project by the Bonneville Power Administration (BPA) and Northwest Power Planning Council (NWPPC) in 1998. Iskuulpa will contribute towards meeting BPA's obligation to compensate for wildlife habitat losses resulting from the construction of the John Day and McNary Hydroelectric facilities on the Columbia River. By funding the enhancement and operation and maintenance of the Iskuulpa Watershed, BPA will receive credit towards their mitigation debt. The purpose of the Iskuulpa Watershed management plan update is to provide programmatic and site-specific standards and guidelines on how the Iskuulpa Watershed will be managed over the next three years. This plan provides overall guidance on both short and long term activities that will move the area towards the goals, objectives, and desired future conditions for the planning area. The plan will incorporate managed and protected wildlife and wildlife habitat, including operations and maintenance, enhancements, and access and travel management.

  1. Navigating the socio-bio-geo-chemistry and engineering of nitrogen management in two illinois tile-drained watersheds.

    Science.gov (United States)

    David, Mark B; Flint, Courtney G; Gentry, Lowell E; Dolan, Mallory K; Czapar, George F; Cooke, Richard A; Lavaire, Tito

    2015-03-01

    Reducing nitrate loads from corn and soybean, tile-drained, agricultural production systems in the Upper Mississippi River basin is a major challenge that has not been met. We evaluated a range of possible management practices from biophysical and social science perspectives that could reduce nitrate losses from tile-drained fields in the Upper Salt Fork and Embarras River watersheds of east-central Illinois. Long-term water quality monitoring on these watersheds showed that nitrate losses averaged 30.6 and 23.0 kg nitrate N ha yr (Embarras and Upper Salt Fork watersheds, respectively), with maximum nitrate concentrations between 14 and 18 mg N L. With a series of on-farm studies, we conducted tile monitoring to evaluate several possible nitrate reduction conservation practices. Fertilizer timing and cover crops reduced nitrate losses (30% reduction in a year with large nitrate losses), whereas drainage water management on one tile system demonstrated the problems with possible retrofit designs (water flowed laterally from the drainage water management tile to the free drainage system nearby). Tile woodchip bioreactors had good nitrate removal in 2012 (80% nitrate reduction), and wetlands had previously been shown to remove nitrate (45% reductions) in the Embarras watershed. Interviews and surveys indicated strong environmental concern and stewardship ethics among landowners and farmers, but the many financial and operational constraints that they operate under limited their willingness to adopt conservation practices that targeted nitrate reduction. Under the policy and production systems currently in place, large-scale reductions in nitrate losses from watersheds such as these in east-central Illinois will be difficult. PMID:26023956

  2. China Watershed Management Project : Development of a Monitoring and Evaluation System, Final Report

    OpenAIRE

    World Bank, (WB)

    2006-01-01

    The objective of this assignment was to develop a Monitoring and Evaluation (M&E) system for watershed management in the Loess Plateau area. The M&E system for the China Watershed Management Project (CWMP) has been developed on the base of the M&E system that has been implemented during the previous two phases of the World Bank Loess Plateau Project. The final report presents the main outcomes of this process. The major findings of the M&E systems review are summarized in the following chapte...

  3. Valuing the effects of hydropower development on watershed ecosystem services: Case studies in the Jiulong River Watershed, Fujian Province, China

    Science.gov (United States)

    Wang, Guihua; Fang, Qinhua; Zhang, Luoping; Chen, Weiqi; Chen, Zhenming; Hong, Huasheng

    2010-02-01

    Hydropower development brings many negative impacts on watershed ecosystems which are not fully integrated into current decision-making largely because in practice few accept the cost and benefit beyond market. In this paper, a framework was proposed to valuate the effects on watershed ecosystem services caused by hydropower development. Watershed ecosystem services were classified into four categories of provisioning, regulating, cultural and supporting services; then effects on watershed ecosystem services caused by hydropower development were identified to 21 indicators. Thereafter various evaluation techniques including the market value method, opportunity cost approach, project restoration method, travel cost method, and contingent valuation method were determined and the models were developed to valuate these indicators reflecting specific watershed ecosystem services. This approach was applied to three representative hydropower projects (Daguan, Xizaikou and Tiangong) of Jiulong River Watershed in southeast China. It was concluded that for hydropower development: (1) the value ratio of negative impacts to positive benefits ranges from 64.09% to 91.18%, indicating that the negative impacts of hydropower development should be critically studied during its environmental administration process; (2) the biodiversity loss and water quality degradation (together accounting for 80-94%) are the major negative impacts on watershed ecosystem services; (3) the average environmental cost per unit of electricity is up to 0.206 Yuan/kW h, which is about three quarters of its on-grid power tariff; and (4) the current water resource fee accounts for only about 4% of its negative impacts value, therefore a new compensatory method by paying for ecosystem services is necessary for sustainable hydropower development. These findings provide a clear picture of both positive and negative effects of hydropower development for decision-makers in the monetary term, and also provide a basis for further design of environmental instrument such as payment for watershed ecosystem services.

  4. Oued Zeroud watershed management and Sidi Saad Dam protection

    International Nuclear Information System (INIS)

    The Government of Tunisia has decided to construct the Qued Zeroud Dam to protect Kairouan from flooding, to irrigate 4,080 ha, and to maintain the groundwater supply. To prevent silting of the dam 100,000 ha of the Qued Zeroud watershed will undergo a conservation programme. Terraces, waterways and drop structures will be constructed and forage and tree plantations will be developed using Atriplex and cactus. Cultural and grazing practices will be controlled. (author)

  5. Impacts of forest changes on hydrology: a case study of large watersheds in the upper reach of Yangtze River Basin

    Directory of Open Access Journals (Sweden)

    X. Cui

    2012-05-01

    Full Text Available Quantifying the effects of forest changes on hydrology in large watersheds is important for designing forest or land management and adaptation strategies for watershed ecosystem sustainability. Minjiang River watershed located in the upper reach of the Yangtze River Basin plays a strategic role in environmental protection and economic and social wellbeing for both the watershed and the entire Yangtze Basin. The watershed lies in the transition zone from Sichuan Basin to Qinghai-Tibet Plateau with a size of 24 000 km2. Due to its strategic significance, severe historic deforestation and high sensitivity to climate change, the watershed has long been one of the highest priority watersheds in China for scientific research and resource management. The purpose of this review paper is to provide a state-of-the-art summary on what we have learned from several recently-completed research programs (one of them known as "973 of the China National Major Fundamental Science" with funding of $3.5 million USD in 2002 to 2008. This summary paper focused on how land cover or forest change affected hydrology at both forest stand and watershed scales in this large watershed. Inclusion of two different spatial scales is useful because the results from a small spatial scale (e.g. forest stand level can help interpret the findings at a large spatial scale. Our review suggests that historic forest harvesting or land cover change has caused significant water increase due to reduction of forest canopy interception and evapotranspiration caused by removal of forest vegetation at both spatial scales. The impact magnitudes caused by forest harvesting indicate that the hydrological effects of forest or land cover changes can be as important as those caused by climate change, while the opposite impact directions suggest their offsetting effects on water yields in the Minjiang River watershed. In addition, different types of forests have different magnitudes of ET with old-growth natural coniferous (Abies forests being the lowest and the coniferous plantations (e.g. Spruce being the highest among major forest types in the study watershed, suggesting that selection of different types of forests can have an important role in ET and consequently water yields. Our synthesis indicates that future reforestation and climate change would likely produce the hydrological effects in the same direction and thus place double pressures on water resource as both key drivers may lead to water yield reduction. Implications of the findings are also discussed in the context of future land cover and climate changes.

  6. Demarcation of Drainage Network for Watershed Management of Sangamner Tahsil Using Topographical and GIS Data: A Case Study of Sangamner Tahsil of Ahemadnagar District

    Directory of Open Access Journals (Sweden)

    Ms Deshmukh Pragati P

    2012-02-01

    Full Text Available Water is significant geographical resource, which need to micro level planning for the conservation. It is the fundamental need of all biotic community which is depending on the precipitation sources directly and River, lake, tank water sources circuitously. There is sensitive issue regarding water managements because of its need and availability. So the, variety of research techniques applied for the sustainable development of water resource. In most of region very less rainfall incidence, where need to conservation of water by the appropriate techniques for sustainable development. From the ancient time humans are using variety of techniques for preservation of water, which is now a day becomes a time consuming, resources wastage and less correctness. This traditional techniques replaced by advance GIS and RS techniques where obtain the precise accuracy, digital quality, fewer recourses.

  7. 76 FR 68499 - Draft WaterSMART Cooperative Watershed Management Program Funding Opportunity Announcement

    Science.gov (United States)

    2011-11-04

    ...reduce conflicts over water by managing local watersheds through collaborative...available at any given place and time. Water shortage and water-use...supplemented. Individuals, universities, for-profit organizations...made publicly available at any time. While you can ask us in...

  8. REMOTE SENSING APPLICATIONS FOR SUSTAINABLE WATERSHED MANAGEMENT AND FOOD SECURITY: JOURNAL ARTICLE

    Science.gov (United States)

    NRMRL-CIN-1496A Rochon*, G., Szlag*, D., Daniel*, F.B., and Chifos**, C. Remote Sensing Applications for Sustainable Watershed Management and Food Security. Proceedings of the 21st European Association of Remote Sensing Laboratories Symposium, Marne-La-Valle, France, 5/14-16/200...

  9. WMOST: A tool for assessing cost-benefits of watershed management decisions affecting coastal resilience

    Science.gov (United States)

    The Watershed Management Optimization Support Tool (WMOST v.1) was released by the US Environmental Protection Agency in December 2013 (http://www2.epa.gov/exposure-assessment-models/wmost-10-download-page). The objective of WMOST is to serve as a public-domain screening tool th...

  10. PESTICIDES AND WATERSHED-SCALE MODELING: SOLUTIONS FOR WATER QUALITY MANAGEMENT

    Science.gov (United States)

    The three papers that follow in this issue of JAFC were presented at a Symposium held at the Fall 2004 American Chemical Society meeting in Philadelphia Entitled “Agrochemicals And Watershed-Scale Modeling: Solutions For Water Quality Management.” These papers show that industry pesticide scientist...

  11. Rainwater Wildlife Area, Watershed Management Plan, A Columbia Basin Wildlife Mitigation Project, 2002.

    Energy Technology Data Exchange (ETDEWEB)

    Childs, Allen B.

    2002-03-01

    This Management Plan has been developed by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) to document how the Rainwater Wildlife Area (formerly known as the Rainwater Ranch) will be managed. The plan has been developed under a standardized planning process developed by the Bonneville Power Administration (BPA) for Columbia River Basin Wildlife Mitigation Projects (See Appendix A and Guiding Policies Section below). The plan outlines the framework for managing the project area, provides an assessment of existing conditions and key resource issues, and presents an array of habitat management and enhancement strategies. The plan culminates into a 5-Year Action Plan that will focus our management actions and prioritize funding during the Fiscal 2001-2005 planning period. This plan is a product of nearly two years of field studies and research, public scoping, and coordination with the Rainwater Advisory Committee. The committee consists of representatives from tribal government, state agencies, local government, public organizations, and members of the public. The plan is organized into several sections with Chapter 1 providing introductory information such as project location, purpose and need, project goals and objectives, common elements and assumptions, coordination efforts and public scoping, and historical information about the project area. Key issues are presented in Chapter 2 and Chapter 3 discusses existing resource conditions within the wildlife area. Chapter 4 provides a detailed presentation on management activities and Chapter 5 outlines a monitoring and evaluation plan for the project that will help assess whether the project is meeting the intended purpose and need and the goals and objectives. Chapter 6 displays the action plan and provides a prioritized list of actions with associated budget for the next five year period. Successive chapters contain appendices, references, definitions, and a glossary. The purpose of the project is to protect, enhance, and mitigate fish and wildlife resources impacted by Columbia River Basin hydroelectric development. The effort is one of several wildlife mitigation projects in the region developed to compensate for terrestrial habitat losses resulting from the construction of McNary and John Day Hydroelectric facilities located on the mainstem Columbia River. While this project is driven primarily by the purpose and need to mitigate for wildlife habitat losses, it is also recognized that management strategies will also benefit many other non-target fish and wildlife species and associated natural resources. The Rainwater project is much more than a wildlife project--it is a watershed project with potential to benefit resources at the watershed scale. Goals and objectives presented in the following sections include both mitigation and non-mitigation related goals and objectives.

  12. Spreadsheet WATERSHED modeling for nonpoint-source pollution management in a Wisconsin basin

    Science.gov (United States)

    Walker, J.F.; Pickard, S.A.; Sonzogni, W.C.

    1989-01-01

    Although several sophisticated nonpoint pollution models exist, few are available that are easy to use, cover a variety of conditions, and integrate a wide range of information to allow managers and planners to assess different control strategies. Here, a straightforward pollutant input accounting approach is presented in the form of an existing model (WATERSHED) that has been adapted to run on modern electronic spreadsheets. As an application, WATERSHED is used to assess options to improve the quality of highly eutrophic Delavan Lake in Wisconsin. WATERSHED is flexible in that several techniques, such as the Universal Soil Loss Equation or unit-area loadings, can be used to estimate nonpoint-source inputs. Once the model parameters are determined (and calibrated, if possible), the spreadsheet features can be used to conduct a sensitivity analysis of management options. In the case of Delavan Lake, it was concluded that, although some nonpoint controls were cost-effective, the overall reduction in phosphorus would be insufficient to measurably improve water quality.A straightforward pollutant input accounting approach is presented in the form of an existing model (WATERSHED) that has been adapted to run on modern electronic spreadsheets. As an application, WATERSHED is used to assess options to improve the quality of highly eutrophic Delavan Lake in Wisconsin. WATERSHED is flexible in that several techniques, such as the Universal Soil Loss Equation or unit-area loadings, can be used to estimate nonpoint-source inputs. Once the model parameters are determined (and calibrated, if possible), the spreadsheet features can be used to conduct a sensitivity analysis of management options. In the case of Delavan Lake, it was concluded that, although some nonpoint controls were cost-effective, the overall reduction in phosphorus would be insufficient to measurably improve water quality.

  13. Hydrological services and biodiversity conservation under forestation scenarios: comparing options to improve watershed management

    Science.gov (United States)

    Carvalho-Santos, Claudia; Nunes, João Pedro; Sousa-Silva, Rita; Gonçalves, João; Pradinho Honrado, João

    2015-04-01

    Humans rely on ecosystems for the provision of hydrological services, namely water supply and water damage mitigation, and promoting forests is a widely used management strategy for the provision of hydrological services. Therefore, it is important to model how forests will contribute for this provision, taking into account the environmental characteristics of each region, as well as the spatio-temporal patterns of societal demand. In addition, ensuring forest protection and the delivery of forest ecosystem services is one of the aims included in the European Union biodiversity strategy to 2020. On the other hand, forest management for hydrological services must consider possible trade-offs with other services provision, as well as with biodiversity conservation. Accurate modeling and mapping of both hydrological services and biodiversity conservation value is thus important to support spatial planning and land management options involving forests. The objectives of this study were: to analyze the provision and spatial dynamics of hydrological services under two forest cover change scenarios (oak and eucalyptus/pine) compared to the current shrubland-dominated landscape; and to evaluate their spatial trade-offs with biodiversity conservation value. The Vez watershed (250km2), in northwest Portugal, was used as case-study area. SWAT (Soil and Water Assessment Tool) was applied to simulate the provision of hydrological services (water supply quantity, timing and quality; soil erosion and flood regulation), and was calibrated against daily discharge, sediments, nitrates and evapotranspiration. Good agreement was obtained between model predictions and field measurements. The maps for each service under the different scenarios were produced at the Hydrologic Response Unit (HRU) level. Biodiversity conservation value was based on nature protection regimes and on expert valuation applied to a land cover map. Statistical correlations between hydrological services provision and biodiversity conservation value were assessed using the Spearman rank correlation. The current delivery of hydrological services in the Vez watershed is higher at the high and low mountain sub-basins, with lower provision in the valley. The overall performance for water quantity and timing is better under the shrubland and the oak scenarios, when compared to the eucalyptus/pine scenario, which performs better for flood regulation and erosion control, especially in the low mountain sub-basin. However, this scenario is the one with more spatial trade-offs with biodiversity conservation value, especially inside protected areas. Several strategies may be suggested for effective land use planning in the Vez watershed. Eucalyptus/pine is the scenario with the best results for flood regulation and soil erosion control, associated to the positive revenues from the pulp production industry. However, cautions should be taken regarding strategies for biodiversity conservation (preferably by favoring native oak species), as well as the potential increase in fire risk. This study highlights SWAT as an effective tool for modelling and mapping hydrological services generated at the watershed scale, therefore contributing to improve the options for land management.

  14. Turning conflict into collaboration in managing commons: A case of Rupa Lake Watershed, Nepal

    Directory of Open Access Journals (Sweden)

    Pashupati Chaudhary

    2015-09-01

    Full Text Available A growing body of literature on the commons has provided fascinating and intricate insights on how some local institutions have successfully managed to avoid a seemingly inevitable “tragedy of the commons” once popularized by Garrett Hardin. Primarily benefitting from the recent studies on the commonpool resources conducted by Elinor Ostrom and colleagues, polycentric selforganization and autonomy, rather than the direct state or market control over the commons, are often recognized as key features of the long enduring commons.However, these commons are quite diverse and the outcomes are often multiple and complex, accentuating the needs to differentiate among multiple commons outcomes. Furthermore, relatively under-reported are the cases where the degradation of common-pool resources are actually halted, and even restored. This study examines both the turbulent history of fishery mismanagement in Rupa Lake, Nepal and its reversal built around the participation, engagement and inclusiveness in the governance of its watershed. We find that Rupa Lake’s experience tells two stories. Reflecting Hardin’s dire forecast, the Rupa Lake watershed verged on collapse as population grew and seemingly selfish behaviorintensified under an open-access regime. But the users also found a way to rebound and reverse their course as they adopted a bottom-up approach to fishery management and established an innovative community institution, the ‘Rupa Lake Rehabilitation and Fishery Cooperative’, dedicated to the sustainable governance of the commons. This case highlights how one community at the threshold of ‘tragedy’ transformed itself by turning conflict into collaboration, which we hope contributes to the effort of better understanding multiple commons.

  15. Hydrologic-Hydraulic Modeling of Fluvial Sediment Transport During a Storm Event in a Highly Managed Watershed

    Science.gov (United States)

    Bressan, F.; Mantilla, R.

    2014-12-01

    Sediment movement along the main stem of a watershed is strongly affected by the sediment supply and the channel morphology. Anthropogenic interventions tend to alter the hydraulic conveyance and consequently modify the sediment regime of the main stem. This connection between channel hydraulics and sediment transport is often overlooked in hydrologic models where simplified methods are used for flow and sediment routing. In this study, we adopt a hydrologic-hydraulic modeling approach to quantify the fluvial sediment transport along the main stem of a watershed during a storm event. The hydrologic model CUENCAS is implemented to estimate the sub-hourly hydrographs of the major tributaries of the watershed. The simulated hydrographs are used as boundary conditions for the depth-averaged two-dimensional hydraulic model FESMWS to simulate the propagation of the flood wave along the main stem. The corresponding sub-hourly, unsteady non-equilibrium sediment transport along the main stem is also simulated with FESWMS. This procedure is applied to a highly managed agricultural watershed of Iowa. The study site has a catchment area of 70 Km2 with soils that are silty clay loams. The land-use is mostly row crop, but in the past decade a large portion of the watershed was converted to native prairie. The main stem is a meandering stream with a length of 15 Km and ten major tributaries contribute to its flow. Several sections of the main stem have been heavily channelized and straightened since the 1930s. Different grain size distributions and sediment boundary conditions are investigated to discern the effects of land-use changes and channelization on the sediment regime along the main stem. The simulations are able to capture the typical hysteresis between flow and sediment transport. The results indicate that the in-stream sediment transport rate is in general higher in the channelized sections and depends, to a certain extent, on the degree of straightening.

  16. Modeling and sediment study in the watershed Medjerda, Tunisia

    Science.gov (United States)

    Kotti, Fatma; Mahé, Gil; Habaieb, Hamadi; Dieulin, Claudine; Hermassi, Taoufik

    2015-04-01

    Water projects have experienced a major expansion in the late 1980s, and we now have sufficient perspective to assess their actual performance and their socio-environmental impacts (Payan, 2007). This study focuses on the great watershed of Tunisia namely Medjerda which has an area of about 23,600 km2. In the main river of Medjerda some dams have been created for water retention: Sidi Salem Dam (the largest in the country), El Aroussia dam, and others on tributaries Mellegue Bouhertma, Siliana, Beni Mtir, Lakhemess and Kasseb. Since the construction of dams, essentially Sidi Salem and Siliana, the Medjerda river has undergone significant changes in morphology. The monitoring of the flow of the major hydrological stations in the pre-estuarine zone downstream from Sidi Salem dam is used to measure the impact of the constructions on hydrological regimes: reduction in average rates, reduction in volumes sold, altered seasonal pattern, and most of all reduction of the sediment transport, which the highest values are related to extreme events. In this context, the balance of sediment monitoring appears indispensable for the quantification of sediment transport at the outlet. Our approach is to calculate a specific flow rate relative to the area of the basin for every structure built in the Medjerda watershed, from the information available on transport and sedimentation rates known, combined with contours of each sub watershed. There are about ten dams spread throughout Medjerda watershed. The methodology is primarily developed for the Mellegue dam because we have at this station a long data set from 1955 until 2005. Other stations will be studied later on. The main objective of this study is to provide a series of annual variation of theoretical contributions. These calculated values will be compared with the actual measured sedimentary series. Two cores in the sediments of the pre-estuarine area are performed to determine past variability in sediment inputs over a time series than should be about one century. The cores' analysis results show a succession of sedimentary layers that likely correspond to different flood deposits that succeeded on this site, and especially the datation of the cores shows that the selected area is a very important deposition area. This sedimentary study will help estimate the sediment dynamics to major estuaries, which is poorly known for most of the rivers of Maghreb. The reduction of the sediment supply to the sea is tipped as a major factor to be taken into account for a better understanding of the dynamics of coastal areas in the context of global climate change and sea level rise. Keywords: sediment core, Medjerda watershed, dam, hydrology, modeling, Tunisia

  17. Data Management Solutions for Tracking Restoration Progress in the Chesapeake Bay Watershed

    Science.gov (United States)

    Ravi, S. R.; Johnston, M.; Sweeney, J.

    2014-12-01

    The decline of the Chesapeake Bay estuarine ecosystem due to agricultural and industrial activities has been a great concern, where excess of dissolved nutrients combined with global climate change has lead to increased storm surges, habitat destruction, and low dissolved oxygen, reduced water clarity, and increased algal growth. In 2010 The US Environmental Protection Agency established the Chesapeake Bay Total Maximum Daily Load (TMDL), which seeks to protect the Bay's living resources by reducing nutrient and sediment runoff to its waters, and sets pollution reduction targets for sediment, nitrogen and phosphorus across 64000 sq. miles watershed that includes parts of six states - Delaware, Maryland, New York, Pennsylvania, Virginia, and West Virginia — and the entire District of Columbia. The Chesapeake Bay Program and the US EPA have developed a number of tools to track the progress of restoration. In this study we describe data management solutions, which were used in the integration of data such as land use, nutrient applications, management practices, policies among the bay jurisdictions, and a summary of a suite of tools that were developed and are being used to collect, process, and report data at various spatial scales for tracking the progress made by the seven Bay jurisdictions in achieving reductions in nutrient and sediment runoff. The described integration strategy and data management solutions can be used in the development and application of similar regulatory local or regional scale environmental management tools.

  18. Impact of water management interventions on hydrology and ecosystem services in Garhkundar-Dabar watershed of Bundelkhand region, Central India

    Science.gov (United States)

    Singh, Ramesh; Garg, Kaushal K.; Wani, Suhas P.; Tewari, R. K.; Dhyani, S. K.

    2014-02-01

    Bundelkhand region of Central India is a hot spot of water scarcity, land degradation, poverty and poor socio-economic status. Impacts of integrated watershed development (IWD) interventions on water balance and different ecosystem services are analyzed in one of the selected watershed of 850 ha in Bundelkhand region. Improved soil, water and crop management interventions in Garhkundar-Dabar (GKD) watershed of Bundelkhand region in India enhanced ET to 64% as compared to 58% in untreated (control) watershed receiving 815 mm annual average rainfall. Reduced storm flow (21% vs. 34%) along with increased base flow (4.5% vs. 1.2%) and groundwater recharge (11% vs. 7%) of total rainfall received were recorded in treated watershed as compared to untreated control watershed. Economic Water productivity and total income increased from 2.5 to 5.0 INR m-3 and 11,500 to 27,500 INR ha-1 yr-1 after implementing integrated watershed development interventions in GKD watershed, respectively. Moreover IWD interventions helped in reducing soil loss more than 50% compared to control watershed. The results demonstrated that integrated watershed management practices addressed issues of poverty in GKD watershed. Benefit to cost ratio of project interventions was found three and pay back period within four years suggest economic feasibility to scale-up IWD interventions in Bundelkhend region. Scaling-up of integrated watershed management in drought prone rainfed areas with enabling policy and institutional support is expected to promote equity and livelihood along with strengthening various ecosystem services, however, region-specific analysis is needed to assess trade-offs for downstream areas along with onsite impact.

  19. Adaptive Management for Urban Watersheds: The Slavic Village Pilot Project

    Science.gov (United States)

    Adaptive management is an environmental management strategy that uses an iterative process of decision-making to reduce the uncertainty in environmental management via system monitoring. A central tenet of adaptive management is that management involves a learning process that ca...

  20. Building Virtual Watersheds: A Global Opportunity to Strengthen Resource Management and Conservation.

    Science.gov (United States)

    Benda, Lee; Miller, Daniel; Barquin, Jose; McCleary, Richard; Cai, TiJiu; Ji, Y

    2016-03-01

    Modern land-use planning and conservation strategies at landscape to country scales worldwide require complete and accurate digital representations of river networks, encompassing all channels including the smallest headwaters. The digital river networks, integrated with widely available digital elevation models, also need to have analytical capabilities to support resource management and conservation, including attributing river segments with key stream and watershed data, characterizing topography to identify landforms, discretizing land uses at scales necessary to identify human-environment interactions, and connecting channels downstream and upstream, and to terrestrial environments. We investigate the completeness and analytical capabilities of national to regional scale digital river networks that are available in five countries: Canada, China, Russia, Spain, and United States using actual resource management and conservation projects involving 12 university, agency, and NGO organizations. In addition, we review one pan-European and one global digital river network. Based on our analysis, we conclude that the majority of the regional, national, and global scale digital river networks in our sample lack in network completeness, analytical capabilities or both. To address this limitation, we outline a general framework to build as complete as possible digital river networks and to integrate them with available digital elevation models to create robust analytical capabilities (e.g., virtual watersheds). We believe this presents a global opportunity for in-country agencies, or international players, to support creation of virtual watersheds to increase environmental problem solving, broaden access to the watershed sciences, and strengthen resource management and conservation in countries worldwide. PMID:26645078

  1. Building Virtual Watersheds: A Global Opportunity to Strengthen Resource Management and Conservation

    Science.gov (United States)

    Benda, Lee; Miller, Daniel; Barquin, Jose; McCleary, Richard; Cai, TiJiu; Ji, Y.

    2016-03-01

    Modern land-use planning and conservation strategies at landscape to country scales worldwide require complete and accurate digital representations of river networks, encompassing all channels including the smallest headwaters. The digital river networks, integrated with widely available digital elevation models, also need to have analytical capabilities to support resource management and conservation, including attributing river segments with key stream and watershed data, characterizing topography to identify landforms, discretizing land uses at scales necessary to identify human-environment interactions, and connecting channels downstream and upstream, and to terrestrial environments. We investigate the completeness and analytical capabilities of national to regional scale digital river networks that are available in five countries: Canada, China, Russia, Spain, and United States using actual resource management and conservation projects involving 12 university, agency, and NGO organizations. In addition, we review one pan-European and one global digital river network. Based on our analysis, we conclude that the majority of the regional, national, and global scale digital river networks in our sample lack in network completeness, analytical capabilities or both. To address this limitation, we outline a general framework to build as complete as possible digital river networks and to integrate them with available digital elevation models to create robust analytical capabilities (e.g., virtual watersheds). We believe this presents a global opportunity for in-country agencies, or international players, to support creation of virtual watersheds to increase environmental problem solving, broaden access to the watershed sciences, and strengthen resource management and conservation in countries worldwide.

  2. Evaluating water management strategies in watersheds by new hybrid Fuzzy Analytical Network Process (FANP) methods

    Science.gov (United States)

    RazaviToosi, S. L.; Samani, J. M. V.

    2016-03-01

    Watersheds are considered as hydrological units. Their other important aspects such as economic, social and environmental functions play crucial roles in sustainable development. The objective of this work is to develop methodologies to prioritize watersheds by considering different development strategies in environmental, social and economic sectors. This ranking could play a significant role in management to assign the most critical watersheds where by employing water management strategies, best condition changes are expected to be accomplished. Due to complex relations among different criteria, two new hybrid fuzzy ANP (Analytical Network Process) algorithms, fuzzy TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) and fuzzy max-min set methods are used to provide more flexible and accurate decision model. Five watersheds in Iran named Oroomeyeh, Atrak, Sefidrood, Namak and Zayandehrood are considered as alternatives. Based on long term development goals, 38 water management strategies are defined as subcriteria in 10 clusters. The main advantage of the proposed methods is its ability to overcome uncertainty. This task is accomplished by using fuzzy numbers in all steps of the algorithms. To validate the proposed method, the final results were compared with those obtained from the ANP algorithm and the Spearman rank correlation coefficient is applied to find the similarity in the different ranking methods. Finally, the sensitivity analysis was conducted to investigate the influence of cluster weights on the final ranking.

  3. Chlorothalonil and 2,4-D losses in surface water discharge from a managed turf watershed.

    Science.gov (United States)

    King, K W; Balogh, J C

    2010-08-01

    Managed turf sites (golf courses) are the most intensively managed landscapes in the urban environment. Yet, long-term watershed scale studies documenting the environmental transport of agrichemicals applied to these systems are rare. The objective of this study was to quantify the surface discharge losses of two commonly applied pesticides (chlorothalonil and 2,4-D) resulting from prevailing practices on a managed golf course. Inflow and outflow discharge waters on a subarea of Northland Country Club located in Duluth, MN were measured for both quantity and quality from April through November from 2003 to 2008. The median chlorothalonil outflow concentration (0.58 microg L(-1)) was significantly greater (p < 0.05) than the inflow concentration, which was below the detection limit (0.07 microg L(-1)). Similarly, the median outflow 2,4-D concentration (0.85 microg L(-1)) was significantly greater (p < 0.05) than the inflow concentration (0.31 microg L(-1)). Chlorothalonil concentrations occasionally exceeded acute toxicity levels (7.6 microg L(-1)) reported for rainbow trout. No 2,4-D concentrations exceeded any human or aquatic species published toxicity level; however, the maximum measured 2,4-D concentration (67.1 microg L(-1)), which rarely occurred, did approach the 70 microg L(-1) maximum contaminant level (MCL) for that compound. Losses of both pesticides were detectable throughout the annual sampling period. Mean annual chlorothalonil loading was 10.5 g ha(-1) or 0.3% of applied, while mean annual 2,4-D loading was 4.9 g ha(-1) or 0.5% of applied. The findings of this study provide quantifiable evidence of agrichemical transport resulting from typical turfgrass management and highlight the need for implementation of best management practices to combat the offsite transport of agrichemicals used in professional turf management. PMID:20526481

  4. A conjoint analysis of landholder preferences for reward-based land-management contracts in Kapingazi watershed, Eastern Mount Kenya.

    Science.gov (United States)

    Balana, Bedru Babulo; Yatich, Thomas; Mäkelä, Miika

    2011-10-01

    Unsustainable land-use decisions and agricultural practices have become the key drivers of deteriorating watershed services in developing countries. However, landholders may have little or no incentives to take these impacts into account in their decision-making process. In recent years, reward-based provision of environmental services has emerged as an important market-based incentive for motivating landholders to adopt environmentally friendly land-use changes and agricultural practices. In this regard, for instance, the Pro-Poor Rewards for Environmental Services in Africa (PRESA) project has emerged as a large network to support and facilitate reward mechanisms in Africa. However, in many African rural settings, little is known about landholder attitudes and preferences related to the alternative land-management schemes. Using locally identified sets of six key land-management attributes, this paper applies conjoint methods to evaluate landholder preferences towards alternative land-management schemes aimed at enhancing the provision of watershed services in the River Kapingazi catchment in central Kenya. Data were collected from primary sources through focus groups and a questionnaire based conjoint survey. Three conjoint models were used; a traditional conjoint ratings model, a binary logit model, and an ordered logit model. Results from the focus groups indicated that shortage of water for both domestic use and irrigation was perceived as the most acute environmental problem in the area. Deforestation, poor river bank management and agricultural practices were identified as the major causes of the problem. Results from conjoint models show that the three principal attributes influencing landholder's ratings and probability of adopting the proposed land management options were 'size of land area to be committed', 'length of contract period', and 'granting or prohibiting rights to harvest environmental products from the committed land'. Thus, these attributes should be the focal points in designing land-management contract for watershed services in the study area. PMID:21700382

  5. Winning the Water Wars: Toward a Watershed-based Approach to Watershed Resources Management: A Policy Agenda for Local Government Units

    OpenAIRE

    Contreras, Antonio P.

    2004-01-01

    The following are offered as guiding principles in the involvement of LGUs in water resources management. ? For LGUs to adopt an integrated, holistic approach in addressing the inherently interrelated issues of water supply planning and operation, demand management, pollution control, and watershed and ground water protection. ? For LGUs to manage water not only as a social good but also more importantly as an economic good. As such, water becomes a commodity that is assessed for its scarcity...

  6. Tribal Watershed Management: Culture, Science, Capacity, and Collaboration

    Science.gov (United States)

    Cronin, Amanda; Ostergren, David M.

    2007-01-01

    This research focuses on two elements of contemporary American Indian natural resource management. First, the authors explore the capacity of tribes to manage natural resources, including the merging of traditional ecological knowledge (TEK) with Western science. Second, they analyze tribal management in the context of local and regional…

  7. Methodology for generation of hydrogeologic maps: rio da Palma watershed case study, DF, Brazil

    Directory of Open Access Journals (Sweden)

    Hélio Nóbile Diniz

    2007-08-01

    Full Text Available This paper had the objective of developing a methodology to support the management of water resources, based on hydro geological cartography, tested for the hydro geologic conditions of a watershed located at Central Brazil. Results show two major products: a hydro geologic, and a potential infiltration and recharge maps of the high course of the Rio da Palma watershed. This paper is presented in six parts. The first one discusses the map’s elements, essential thematic maps and appropriate scales. The second part proposes the graphic criteria for the integrated representation of the major parameters of overlaying aquifers. The third part demonstrates the importance of the data basis for the hydro geologic cartography, i.e., the contribution of each theme such as soil, geology, slope, climate and land use, when appropriately integrated. The fourth part discusses the selection and the integration of the main information layers for the Rio da Palma watershed using a Geographic Information System (GIS. On the fifth part, the result of the integration of the porous domain with the fractured domain aquifer information layers is shown and, finally, the potential infiltration and recharge map of the studied area, elaborated from the integration of overlapping of the data basis information layers is presented and discussed. In general, in the studied area, regions with high infiltration potential prevail where human interference is still moderate. Large portions of low infiltration potential are either associated with high slopes, with shallow soils (Cambissolos or else with urban constructions.

  8. A COMPARATIVE STUDY ON CALIBRATION METHODS OF NASH’S RAINFALL-RUNOFF MODEL TO AMMAMEH WATERSHED, IRAN

    Directory of Open Access Journals (Sweden)

    Vahid Nourani

    2008-06-01

    Full Text Available Increasing importance of watershed management during last decades highlighted the need for sufficient data and accurate estimation of rainfall and runoff within watersheds. Therefore, various conceptual models have been developed with parameters based on observed data. Since further investigations depend on these parameters, it is important to accurately estimate them. This study by utilizing various methods, tries to estimate Nash rainfall-runoff model parameters and then evaluate the reliability of parameter estimation methods; moment, least square error, maximum likelihood, maximum entropy and genetic algorithm. Results based on a case study on the data from Ammameh watershed in Central Iran, indicate that the genetic algorithm method, which has been developed based on artificial intelligence, more accurately estimates Nash’s model parameters.

  9. The Potential Importance of Conservation, Restoration and Altered Management Practices for Water Quality in the Wabash River Watershed

    Science.gov (United States)

    Yang, G.; Best, E. P.; Goodwin, S.

    2013-12-01

    Non-point source (NPS) pollution is one of the leading causes of water quality impairment within the United States. Conservation, restoration and altered management (CRAM) practices may effectively reduce NPS pollutants to receiving water bodies and enhance local and regional ecosystem services. Barriers for the implementation of CRAM include uncertainties related to the extent to which nutrients are removed by CRAM at various spatial and temporal scales, longevity, optimal placement of CRAM within the landscape, and implementation / operation / maintenance costs. We conducted a study aimed at the identification of optimal placement of CRAM in watersheds that reduces N loading to an environmentally sustainable level, at an acceptable, known, cost. For this study, we used a recently developed screening-level modeling approach, WQM-TMDL-N, running in the ArcGIS environment, to estimate nitrogen loading under current land use conditions (NLCD 2006). This model was equipped with a new option to explore the performances of placement of various CRAM types and areas to reduce nitrogen loading to a State-accepted Total Maximum Daily Load (TMDL) standard, with related annual average TN concentration, and a multi-objective algorithm optimizing load and cost. CRAM practices explored for implementation in rural area included buffer strips, nutrient management practices, and wetland restoration. We initially applied this modeling approach to the Tippecanoe River (TR) watershed (8-digit HUC), a headwater of the Wabash River (WR) watershed, where CRAM implementation in rural and urban areas is being planned and implemented at various spatial scales. Consequences of future land use are explored using a 2050 land use/land cover map forecasted by the Land Transformation Model. The WR watershed, IN, drains two-thirds of the state's 92 counties and supports predominantly agricultural land use. Because the WR accounts for over 40% of the nutrient loads of the Ohio River and significantly contributes to the anoxic zone in the Gulf of Mexico (GOM), reduction in TN loading of the WR are expected to directly benefit downstream ecosystem services, including fisheries in the GOM. This modeling approach can be used in support of sustainable integrated watershed management planning.

  10. Legacy Phosphorus in Agricultural Watersheds: Implications for Restoration and Management of Wetlands and Aquatic Systems

    International Nuclear Information System (INIS)

    Phosphorus is added to watersheds in various forms, including fertilizers, nonhazardous wastes (animal manures and biosolids) and nutrient enriched waters. Globally, approximately 14 million metric tons of phosphorus is added as fertilizer to agricultural watersheds. The approximate ratio of nitrogen to phosphorus fertilizer application at the global level is 5.8 (Mullins et al., 2005). Historically, organic wastes such as animal manure were applied to agronomic crops and pastures on the basis of their nitrogen availability, which has resulted in excessive application of phosphorus. The nitrogen to phosphorus ratio of manure is less than 2. As a result, many agricultural watersheds receiving land application of wastes and fertilizers have accumulated phosphorus in excess amounts. However, as soils in agricultural watersheds become saturated or overloaded with phosphorus, a significant portion of stored phosphorus can be released and transported with water during runoff events into adjacent water bodies such as wetlands, streams, shallow lakes and other aquatic systems (Carpenter et al., 1998; Foley et al., 2005). Wetlands, riparian zones and water conservation areas in agricultural watersheds serve as sinks, sources and transformers of nutrients and other chemical contaminants, and as such, they can have a significant impact on water quality, nutrient retention and ecosystem productivity. Here we briefly present a case study of water quality issues in the Lake Okeechobee Basin (LOB), FL, USA and its impact on an adjacent lake.

  11. The Watershed Planning System: A Tool for Integrated Land Use Management

    Science.gov (United States)

    Weller, D. G.

    2002-05-01

    The challenge in Maryland and across the nation is allowing economic growth while protecting our environment. Maryland's Smart Growth policies provide a strong foundation for conserving resource land, minimizing nutrient loadings from new development, and revitalizing our urban/suburban communities. To assist local governments and communities, MDP has developed the Watershed Planning System (WPS). It is an analytical tool to conduct watershed-based assessments of the impacts of current and alternative programs and policies on land and water resources. The WPS consists of two GIS-based models, the Growth Management Simulation, and the Pollution Simulation Management models. The Growth Management Simulation Model estimates changes in land uses by watershed as a function of population and household projections, as well as state and county policies, regulations, and programs. The model allows evaluation of different future land use scenarios by changing assumptions associated with comprehensive plans and zoning, subdivision, and environmental regulations through which plans are implemented. The Pollution Simulation Management model evaluates the effects of pollution management alternatives on current land use and future land use conditions. The output provides a basis for selecting a feasible mix of management alternatives that can be implemented through program changes, such as: comprehensive plans, soil conservation and water quality plans, nutrient management programs, zoning and subdivision programs, and sensitive area protection programs, and through implementation of best management practices. The WPS has been applied in the 13 counties, Anne Arundel, Calvert, Charles, Howard, Montgomery, Prince George's, St. Mary's, Worcester, Cecil, Wicomico, Frederick, Carroll, and Harford, to address a variety of land use management, resource conservation, and pollution control objectives. In addition, the model has been used to produce statewide 2020 land use projections essential for sound land use planning.

  12. A decentralized optimization algorithm for multiagent system-based watershed management

    Science.gov (United States)

    Yang, Yi-Chen E.; Cai, Ximing; Stipanović, DušAn M.

    2009-08-01

    A watershed can be simulated as a multiagent system (MAS) composed of spatially distributed land and water users (agents) within a common defined environment. The watershed system is characterized by distributed decision processes at the agent level with a coordination mechanism organizing the interactions among individual decision processes at the system level. This paper presents a decentralized (distributed) optimization method known as constraint-based reasoning, which allows individual agents in an MAS to optimize their behaviors over various alternatives. The method incorporates the optimization of all agents' objectives through an interaction scheme, in which the ith agent optimizes its objective with a selected priority for collaboration and forwards the solution and consequences to all agents that interact with it. Agents are allowed to determine how important their own objectives are in comparison with the constraints, using a local interest factor (βi). A large βi value indicates a selfish agent who puts high priority on its own benefit and ignores collaboration requirements. This bottom-up problem-solving approach mimics real-world watershed management problems better than conventional "top-down" optimization methods in which it is assumed that individual agents will completely comply with any recommendations that the coordinator makes. The method is applied to a steady state hypothetical watershed with three off-stream human agents, one in-stream human agent (reservoir), and two ecological agents.

  13. Integrated watershed management: a planning methodology for construction of new dams in Ethiopia

    OpenAIRE

    Bezuayehu, Tefera; Stroosnijder, L.

    2007-01-01

    Integrated watershed management (IWM) is emerging as an alternative to the centrally planned and sectoral approaches that currently characterize the planning process for dam construction in Ethiopia. This report clarifies the concept of IWM, and reviews the major social, environmental and economic problems caused by dams in Ethiopia and elsewhere. Dams are planned from a top-down perspective in Ethiopia, some people are relocated against their will, haphazard land-use changes can occur, and s...

  14. Fostering Incentive-Based Policies and Partnerships for Integrated Watershed Management in the Southeast Asian Uplands

    Directory of Open Access Journals (Sweden)

    Andreas Neef

    2012-08-01

    Full Text Available This paper attempts to identify the major factors associated with some of the failures and successes of integrated watershed management policies and projects with a particular emphasis on the uplands of mainland Southeast Asia. It argues that many policy measures have been misguided by failing to acknowledge the multi-dimensional facets of sustainable watershed management and putting too much emphasis on command-and-control approaches to resource management and one-size-fits-all conservation models. Attempts to introduce soil and water conservation measures, for instance, have largely failed because they concentrated merely on the technical feasibility and potential ecological effects, while neglecting economic viability and socio-cultural acceptance. The production of agricultural commodities, on the other hand, has mostly been market-driven and often induced boom and bust cycles that compromised the ecological and social dimensions of sustainability. Purely community-based approaches to watershed management, on their part, have often failed to address issues of elite capture and competing interests within and between heterogeneous uplands communities. Drawing on a review of recent experience and on lessons from initiatives in a long-term collaborative research program in Thailand (The Uplands Program aimed at bridging the various dimensions of sustainability in the Southeast Asian uplands, this paper discusses how a socially, institutionally and ecologically sustainable mix of agricultural production, ecosystem services and rural livelihood opportunities can be achieved through incentive-based policies and multi-stakeholder partnerships that attempt to overcome the (perceived antagonism between conservation and development in upland watersheds of Southeast Asia.

  15. Tomales High School Subshed of Keyes Creek Watershed-- A GIS Study of a Local Watershed

    Science.gov (United States)

    McMillon, B.; Craig, K.; Cushman, T.; Greene, B.; Orsini, A.; Reynoso, E.; Whitlock, S.; Kinyon, J.

    2005-12-01

    Tomales Environmental Learning Center students, in conjunction with the Pacific Coast Science and Learning Center, developed a map of the Tomales High School Subshed of the Keyes Creek Watershed using both GIS (Geographic Information Systems) and GIT Geographic Information Technology). The map was developed for future water quality analysis projects. To complete the task the students developed GIS knowledge using ESRI's ArcView 3.3 raster data analysis and hydrology modeling tools. With these they created flow accumulation and flow direction maps from USGS 10-meter pixel Digital elevation Model (DEM) files, and then created a watershed area map for the local sub-watershed that included the local high school. The students walked and photographed the perimeter of the watershed collecting data on a handheld GPS (Trimble GeoXT with real-time DGPS correction) and ESRI's ArcPad mapping software. The resolution and accuracy of their hand-collected data was of a higher quality and more current than that derived from the DEM files, and provided the base for their fiinal map.

  16. REMOTE SENSING APPLICATIONS FOR SUSTAINABLE WATERSHED MANAGEMENT AND FOOD SECURITY

    Science.gov (United States)

    The integration of IKONOS satellite data, airborne color infrared remote sensing, visualization, and decision support tools is discussed, within the contexts of management techniques for minimizing non-point source pollution in inland waterways, such s riparian buffer restoration...

  17. The Trail Inventory of Morris Watershed Management District [Cycle 1

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all nonmotorized trails on Morris Wetland Management District. Trails in this inventory are eligible...

  18. Evaluating changes in water quality with respect to nonpoint source nutrient management strategies in the Chesapeake Bay Watershed

    Science.gov (United States)

    Keisman, J.; Sekellick, A.; Blomquist, J.; Devereux, O. H.; Hively, W. D.; Johnston, M.; Moyer, D.; Sweeney, J.

    2014-12-01

    Chesapeake Bay is a eutrophic ecosystem with periodic hypoxia and anoxia, algal blooms, diminished submerged aquatic vegetation, and degraded stocks of marine life. Knowledge of the effectiveness of actions taken across the watershed to reduce nitrogen (N) and phosphorus (P) loads to the bay (i.e. "best management practices" or BMPs) is essential to its restoration. While nutrient inputs from point sources (e.g. wastewater treatment plants and other industrial and municipal operations) are tracked, inputs from nonpoint sources, including atmospheric deposition, farms, lawns, septic systems, and stormwater, are difficult to measure. Estimating reductions in nonpoint source inputs attributable to BMPs requires compilation and comparison of data on water quality, climate, land use, point source discharges, and BMP implementation. To explore the relation of changes in nonpoint source inputs and BMP implementation to changes in water quality, a subset of small watersheds (those containing at least 10 years of water quality monitoring data) within the Chesapeake Watershed were selected for study. For these watersheds, data were compiled on geomorphology, demographics, land use, point source discharges, atmospheric deposition, and agricultural practices such as livestock populations, crop acres, and manure and fertilizer application. In addition, data on BMP implementation for 1985-2012 were provided by the Environmental Protection Agency Chesapeake Bay Program Office (CBPO) and the U.S. Department of Agriculture. A spatially referenced nonlinear regression model (SPARROW) provided estimates attributing N and P loads associated with receiving waters to different nutrient sources. A recently developed multiple regression technique ("Weighted Regressions on Time, Discharge and Season" or WRTDS) provided an enhanced understanding of long-term trends in N and P loads and concentrations. A suite of deterministic models developed by the CBPO was used to estimate expected nutrient load reductions attributable to BMPs. Further quantification of the relation of land-based nutrient sources and BMPs to water quality in the bay and its tributaries must account for inconsistency in BMP data over time and uncertainty regarding BMP locations and effectiveness.

  19. Ecological engineering practices for the reduction of excess nitrogen in human-influenced landscapes: a guide for watershed managers.

    Science.gov (United States)

    Passeport, Elodie; Vidon, Philippe; Forshay, Kenneth J; Harris, Lora; Kaushal, Sujay S; Kellogg, Dorothy Q; Lazar, Julia; Mayer, Paul; Stander, Emilie K

    2013-02-01

    Excess nitrogen (N) in freshwater systems, estuaries, and coastal areas has well-documented deleterious effects on ecosystems. Ecological engineering practices (EEPs) may be effective at decreasing nonpoint source N leaching to surface and groundwater. However, few studies have synthesized current knowledge about the functioning principles, performance, and cost of common EEPs used to mitigate N pollution at the watershed scale. Our review describes seven EEPs known to decrease N to help watershed managers select the most effective techniques from among the following approaches: advanced-treatment septic systems, low-impact development (LID) structures, permeable reactive barriers, treatment wetlands, riparian buffers, artificial lakes and reservoirs, and stream restoration. Our results show a broad range of N-removal effectiveness but suggest that all techniques could be optimized for N removal by promoting and sustaining conditions conducive to biological transformations (e.g., denitrification). Generally, N-removal efficiency is particularly affected by hydraulic residence time, organic carbon availability, and establishment of anaerobic conditions. There remains a critical need for systematic empirical studies documenting N-removal efficiency among EEPs and potential environmental and economic tradeoffs associated with the widespread use of these techniques. Under current trajectories of N inputs, land use, and climate change, ecological engineering alone may be insufficient to manage N in many watersheds, suggesting that N-pollution source prevention remains a critical need. Improved understanding of N-removal effectiveness and modeling efforts will be critical in building decision support tools to help guide the selection and application of best EEPs for N management. PMID:23180248

  20. Representation of regional urban development conditions using a watershed-based gradient study design

    Science.gov (United States)

    Terziotti, Silvia; McMahon, Gerard; Bell, Amanda H.

    2012-01-01

    As part of the U.S. Geological Survey National Water-Quality Assessment Program, the effects of urbanization on stream ecosystems (EUSE) have been intensively investigated in nine metropolitan areas in the United States, including Boston, Massachusetts; Atlanta, Georgia; Birmingham, Alabama; Raleigh, North Carolina; Salt Lake City, Utah; Denver, Colorado; Dallas–Fort Worth, Texas; Portland, Oregon; and Milwaukee–Green Bay, Wisconsin. Each of the EUSE study area watersheds was associated with one ecological region of the United States. This report evaluates whether each metropolitan area can be generalized across the ecological regions (ecoregions) within which the EUSE study watersheds are located. Seven characteristics of the EUSE watersheds that affect stream ecosystems were examined to determine the similarities in the same seven characteristics of the watersheds in the entire ecoregion. Land cover (percentage developed, forest and shrubland, and herbaceous and cultivated classes), average annual temperature, average annual precipitation, average surface elevation, and average percentage slope were selected as human-influenced, climate, and topography characteristics. Three findings emerged from this comparison that have implications for the use of EUSE data in models used to predict stream ecosystem condition. One is that the predominant or "background" land-cover type (either forested or agricultural land) in each ecoregion also is the predominant land-cover type within the associated EUSE study watersheds. The second finding is that in all EUSE study areas, the watersheds account for the range of developed land conditions that exist in the corresponding ecoregion watersheds. However, six of the nine EUSE study area watersheds have significantly different distributions of developed land from the ecoregion watersheds. Finally, in seven of the nine EUSE/ecoregion comparisons, the distributions of the values of climate variables in the EUSE watersheds are different from the distributions for watersheds in the corresponding ecoregions.

  1. Spatial and temporal estimation of soil loss for the sustainable management of a wet semi-arid watershed cluster.

    Science.gov (United States)

    Rejani, R; Rao, K V; Osman, M; Srinivasa Rao, Ch; Reddy, K Sammi; Chary, G R; Pushpanjali; Samuel, Josily

    2016-03-01

    The ungauged wet semi-arid watershed cluster, Seethagondi, lies in the Adilabad district of Telangana in India and is prone to severe erosion and water scarcity. The runoff and soil loss data at watershed, catchment, and field level are necessary for planning soil and water conservation interventions. In this study, an attempt was made to develop a spatial soil loss estimation model for Seethagondi cluster using RUSLE coupled with ARCGIS and was used to estimate the soil loss spatially and temporally. The daily rainfall data of Aphrodite for the period from 1951 to 2007 was used, and the annual rainfall varied from 508 to 1351 mm with a mean annual rainfall of 950 mm and a mean erosivity of 6789 MJ mm ha(-1) h(-1) year(-1). Considerable variation in land use land cover especially in crop land and fallow land was observed during normal and drought years, and corresponding variation in the erosivity, C factor, and soil loss was also noted. The mean value of C factor derived from NDVI for crop land was 0.42 and 0.22 in normal year and drought years, respectively. The topography is undulating and major portion of the cluster has slope less than 10°, and 85.3 % of the cluster has soil loss below 20 t ha(-1) year(-1). The soil loss from crop land varied from 2.9 to 3.6 t ha(-1) year(-1) in low rainfall years to 31.8 to 34.7 t ha(-1) year(-1) in high rainfall years with a mean annual soil loss of 12.2 t ha(-1) year(-1). The soil loss from crop land was higher in the month of August with an annual soil loss of 13.1 and 2.9 t ha(-1) year(-1) in normal and drought year, respectively. Based on the soil loss in a normal year, the interventions recommended for 85.3 % of area of the watershed includes agronomic measures such as contour cultivation, graded bunds, strip cropping, mixed cropping, crop rotations, mulching, summer plowing, vegetative bunds, agri-horticultural system, and management practices such as broad bed furrow, raised sunken beds, and harvesting available water using farm ponds and percolation tanks. This methodology can be adopted for estimating the soil loss from similar ungauged watersheds with deficient data and for planning suitable soil and water conservation interventions for the sustainable management of the watersheds. PMID:26846293

  2. The relationship between the Municipal Master Plan and local Watershed Plans in water management

    Directory of Open Access Journals (Sweden)

    Denise Gallo Pizella

    2015-07-01

    Full Text Available The National Water Resources Policy has as one of its tools the drafting of local Water Resource Plans. In view of water resources planning and its relationship to land use planning, the aim of this work is to analyze the institutional and legal difficulties and the potential for an integrated system of water resources management. For this, we used the method of documentary and bibliographic research, beginning with the “Estatuto da Cidade”, a law for urban policy in Brazil, and literature on water management at the municipal and watershed levels. At the municipal level, the “Master Plan” (municipal plan of land use planning became the main instrument of territorial and municipal management, defining the parameters for the compliance of social, environmental and economic functions of real property. In this sense, the municipalities have a responsibility to protect water resources and, without local support, territorial and water management cannot be integrated in the context of the river basin. Despite the difficulties of including environmental variable in urban planning, the Master Plan has the potential to shape local water management systems that are environmentally sustainable and that progressively improve water quality and quantity within the watershed. Similarly, with more significant participation of the municipality in the Basin Committee, it is possible that the forms of municipal land use and occupation can be considered during the development and implementation of the Basin Plan. Thus, the management of water resources can occur integrally.

  3. Effectiveness of alternative management scenarios on the sediment load in a Mediterranean agricultural watershed

    Directory of Open Access Journals (Sweden)

    Ossama M. M. Abdelwahab

    2014-11-01

    Full Text Available The Annualised Agricultural Non-point Source model was used to evaluate the effectiveness of different management practices to control the soil erosion and sediment load in the Carapelle watershed, a Mediterranean medium-size watershed (506 km2 located in Apulia, Southern Italy. The model was previously calibrated and validated using five years of runoff and sediment load data measured at a monitoring station located at Ordona - Ponte dei Sauri Bridge. A total of 36 events were used to estimate the performance of the model during the period 2007-2011. The model performed well in predicting runoff, as the high values of the coefficients of efficiency and determination during the validation process showed. The peak flows predictions were satisfactory especially for the high flow events; the prediction capability of sediment load was good, even if a slight over-estimation was observed. Simulations of alternative management practices show that converting the most eroding cropland cells (13.5% of the catchment area to no tillage would reduce soil erosion by 30%, while converting them to grass or forest would reduce soil erosion by 36.5% in both cases. A crop rotation of wheat and a forage crop can also provide an effective way for soil erosion control as it reduces erosion by 69%. Those results can provide a good comparative analysis for conservation planners to choose the best scenarios to be adopted in the watershed to achieve goals in terms of soil conservation and water quality.

  4. On the development of a coupled land surface and ground water model for use in watershed management

    Science.gov (United States)

    Maxwell, R. M.; Miller, N. L.

    2003-04-01

    Management of surface water quality is often complicated by interactions between surface water and groundwater. Traditional Land-Surface Models (LSM) used for numerical weather prediction, climate projection, and as inputs to water management decision support systems, do not treat the lower boundary in a fully process-based fashion. LSMs have evolved from a leaky bucket to more sophisticated land surface water and energy budgets that typically have a so-called basement term to depict the bottom model layer exchange with deeper aquifers. Nevertheless, the LSM lower boundary is often assumed zero flux or the soil moisture content is set to a constant value; an approach that while mass conservative, ignores processes that can alter surface fluxes, runoff, and water quantity and quality. Conversely, models for saturated and unsaturated water flow, while addressing important features such as subsurface heterogeneity and three-dimensional flow, often have overly simplified upper boundary conditions that ignore soil heating, runoff, snow and root-zone uptake. In the present study, a state-of-the-art LSM (CLM2.0) and a variably-saturated groundwater model (ParFlow) have been coupled as a single column model. An initial set of simulations based on data from the Project for Intercomparison of Land-surface Parameterization Schemes (PILPS) and synthetic data demonstrate the temporal dynamics of both of the coupled models. Changes in soil moisture and movement of the water table are used as indicators of conservation of mass between the two models. Sensitivity studies demonstrate the affect of precipitation, evapotranspiration, radiation, subsurface geology and heterogeneity on predicted watershed flow. Studies demonstrating the effects of watershed flow in uncoupled and coupled modes will be presented. The coupled model will ultimately be used to assist in the development of Total Maximum Daily Loads (TMDLs- a surface water quality standard) for a number of pollutants in an urban watershed in Southern California in the United States.

  5. SWAT meta-modeling as support of the management scenario analysis in large watersheds.

    Science.gov (United States)

    Azzellino, A; Çevirgen, S; Giupponi, C; Parati, P; Ragusa, F; Salvetti, R

    2015-01-01

    In the last two decades, numerous models and modeling techniques have been developed to simulate nonpoint source pollution effects. Most models simulate the hydrological, chemical, and physical processes involved in the entrainment and transport of sediment, nutrients, and pesticides. Very often these models require a distributed modeling approach and are limited in scope by the requirement of homogeneity and by the need to manipulate extensive data sets. Physically based models are extensively used in this field as a decision support for managing the nonpoint source emissions. A common characteristic of this type of model is a demanding input of several state variables that makes the calibration and effort-costing in implementing any simulation scenario more difficult. In this study the USDA Soil and Water Assessment Tool (SWAT) was used to model the Venice Lagoon Watershed (VLW), Northern Italy. A Multi-Layer Perceptron (MLP) network was trained on SWAT simulations and used as a meta-model for scenario analysis. The MLP meta-model was successfully trained and showed an overall accuracy higher than 70% both on the training and on the evaluation set, allowing a significant simplification in conducting scenario analysis. PMID:26675997

  6. Tailored Watershed Assessment and Integrated Management (TWAIM: A Systems Thinking Approach

    Directory of Open Access Journals (Sweden)

    Joe Magner

    2011-06-01

    Full Text Available Control of non-point source (NPS water pollution remains elusive in the United States (US. Many US water-bodies which have been primarily impacted by NPS pollution have not achieved water quality goals set by Clean Water Act. Technological advances have been made since 1972, yet many water resources fail to meet water quality standards. Common Pool Resources Theory is considered to understand the human dimension of NPS pollution by exploring anthropogenic activities superimposed upon dynamic ecosystems. In the final analysis, priority management zones (PMZs for best management practice (BMP implementation must have buy-in from land managers. TWAIM is an iterative systems thinking approach to planning, collecting landscape and land use information and communicating systems understanding to stakeholders. Hydrologic pathways that link the physical, chemical and biological characteristics influence processes occurring in a watershed which drive stream health and ecological function. With better systems understanding and application by technical specialists, there is potential for improved stakeholder interaction and dialogue which could then enable better land use decisions. Issues of pollutant origin, transport, storage and hydraulic residence must be defined and communicated effectively to land managers within a watershed context to observe trends in water quality change. The TWAIM concept provides a logical framework for locally-led assessment and a means to communicate ecohydrologic systems understanding over time to the key land managers such that PMZs can be defined for BMP implementation.

  7. Minnesota Watersheds

    Data.gov (United States)

    Minnesota Department of Natural Resources — Statewide minor watershed delineations with major/minor watershed identifiers and names for provinces, major watersheds, and basins. Also included are watershed...

  8. A GIS based watershed information system for water resources management and planning in semi-arid areas

    Science.gov (United States)

    Tzabiras, John; Spiliotopoulos, Marios; Kokkinos, Kostantinos; Fafoutis, Chrysostomos; Sidiropoulos, Pantelis; Vasiliades, Lampros; Papaioannou, George; Loukas, Athanasios; Mylopoulos, Nikitas

    2015-04-01

    The overall objective of this work is the development of an Information System which could be used by stakeholders for the purposes of water management as well as for planning and strategic decision-making in semi-arid areas. An integrated modeling system has been developed and applied to evaluate the sustainability of water resources management strategies in Lake Karla watershed, Greece. The modeling system, developed in the framework of "HYDROMENTOR" research project, is based on a GIS modelling approach which uses remote sensing data and includes coupled models for the simulation of surface water and groundwater resources, the operation of hydrotechnical projects (reservoir operation and irrigation works) and the estimation of water demands at several spatial scales. Lake Karla basin was the region where the system was tested but the methodology may be the basis for future analysis elsewhere. Τwo (2) base and three (3) management scenarios were investigated. In total, eight (8) water management scenarios were evaluated: i) Base scenario without operation of the reservoir and the designed Lake Karla district irrigation network (actual situation) • Reduction of channel losses • Alteration of irrigation methods • Introduction of greenhouse cultivation ii) Base scenario including the operation of the reservoir and the Lake Karla district irrigation network • Reduction of channel losses • Alteration of irrigation methods • Introduction of greenhouse cultivation The results show that, under the existing water resources management, the water deficit of Lake Karla watershed is very large. However, the operation of the reservoir and the cooperative Lake Karla district irrigation network coupled with water demand management measures, like reduction of water distribution system losses and alteration of irrigation methods, could alleviate the problem and lead to sustainable and ecological use of water resources in the study area. Acknowledgements: This study has been supported by the research project "Hydromentor" funded by the Greek General Secretariat of Research and Technology in the framework of the E.U. co-funded National Action "Cooperation"

  9. Participatory watershed management to decrease land degradation and sediment transport in Kagera and Nyando catchments of Lake Victoria basin

    OpenAIRE

    Kenge, James Gunya

    2009-01-01

    Attention to participatory watershed management is increasing across the developing world as soil erosion continues to degrade agricultural land; reservoirs and irrigation infrastructure are clogged with sediment. The realization of the importance of watersheds is crucial for sustainable utilization especially in developing countries where rural livelihoods and economies are highly dependant on the exploitation of natural resources. The Lake Victoria basin is characterized by high population ...

  10. Q-BIC3 - A Québec-Bavarian international collaboration for adapting regional watershed management to climate change

    Science.gov (United States)

    Ludwig, Ralf

    2010-05-01

    Adapting to the impacts of climate change is certainly one of the major challenges in water resources management over the next decades. Adaptation to climate change risks is most crucial in this domain, since projected increase in mean air temperature in combination with an expected increase in the temporal variability of precipitation patterns will contribute to pressure on current water availability, allocation and management practices. The latter often involve the utilization of valuable infrastructure, such as dams, reservoirs and water intakes, for which adaptation options must by developed over long-term and often dynamic planning horizons. Research to establish novel methodologies for improved adaptation to climate change is thus very important and only beginning to emerge in regional watershed management. The presented project Q-BIC³, funded by the Bavarian Minstry for the Environment and the Québec Ministère du Développement économique, de l'Innovation et de l'Exportation, aims to develop and apply a newly designed spectrum of tools to support the improved assessment of adaptation options to climate change in regional watershed management. It addresses in particular selected study sites in Québec and Bavaria. The following key issues have been prioritized within Q-BIC³: i) The definition of potential adaptation options in the context of climate change for pre-targeted water management key issues using a subsequent and logical chain of modelling tools (climate, hydrological and water management modeling tools) ii) The definition of an approach that accounts for hydrological projection uncertainties in the search for potential adaptation options in the context of climate change iii) The investigation of the required complexity in hydrological models to estimate climate change impacts and to develop specific adaptation options for Québec and Bavaria watersheds. iv) The development and prototyping of a regionally transferable and modular modelling system for integrated watershed management under climate change conditions. The study sites under investigation, namely the Haut-Saint Francois and Gatineau watersheds in Québec and the Isar and Regnitz catchments in Bavaria, are under heavy anthropogenic use. Intense dam and reservoir operations and even water transfer systems are in place to satisfy multi-purpose demands on available water resources. These are imposing extreme modifications to the natural flow regimes. In the first phase of the project, climatic forcing, stemming from an ensemble of selected GCM and RCM runs, is applied to a variety of hydrological models with different complexity. The derived projections of future hydrological conditions serve to investigate, whether current operation rules and/or existing infrastructure needs to be adapted to a changing environment. First findings demonstrate the large uncertainties associated to the model chain outputs, but also indicate that related adaptation is indispensable to meet the challenges of the rapidly changing man-environment systems.

  11. Relating management practices and nutrient export in agricultural watersheds of the United States

    Science.gov (United States)

    Sprague, Lori A.; Gronberg, Jo Ann M.

    2012-01-01

    Relations between riverine export (load) of total nitrogen (N) and total phosphorus (P) from 133 large agricultural watersheds in the United States and factors affecting nutrient transport were evaluated using empirical regression models. After controlling for anthropogenic inputs and other landscape factors affecting nutrient transport-such as runoff, precipitation, slope, number of reservoirs, irrigated area, and area with subsurface tile drains-the relations between export and the area in the Conservation Reserve Program (CRP) (N) and conservation tillage (P) were positive. Additional interaction terms indicated that the relations between export and the area in conservation tillage (N) and the CRP (P) progressed from being clearly positive when soil erodibility was low or moderate, to being close to zero when soil erodibility was higher, to possibly being slightly negative only at the 90th to 95th percentile of soil erodibility values. Possible explanations for the increase in nutrient export with increased area in management practices include greater transport of soluble nutrients from areas in conservation tillage; lagged response of stream quality to implementation of management practices because of nitrogen transport in groundwater, time for vegetative cover to mature, and/or prior accumulation of P in soils; or limitations in the management practice and stream monitoring data sets. If lags are occurring, current nutrient export from agricultural watersheds may still be reflecting the influence of agricultural land-use practices that were in place before the implementation of these management practices.

  12. SWAT ASSESSMENT OF MANAGEMENT PRACTICES ON ATRAZINE LOSS IN THE GOOD WATER CREEK EXPERIMENTAL WATERSHED.

    Science.gov (United States)

    The Goodwater Creek Watershed is a subwatershed of the Mark Twain Lake watershed, an ARS-CEAP benchmark watershed in Northeast Missouri. This 7,250-ha watershed was selected for initial modeling because of its smaller size and the large hydrologic and climatologic dataset available. A SWAT model of ...

  13. Community-based shared values as a 'Heart-ware' driver for integrated watershed management: Japan-Malaysia policy learning perspective

    Science.gov (United States)

    Mohamad, Zeeda Fatimah; Nasaruddin, Affan; Abd Kadir, Siti Norasiah; Musa, Mohd Noor; Ong, Benjamin; Sakai, Nobumitsu

    2015-11-01

    This paper explores the case for using "community-based shared values" as a potential driver for the "Heartware" aspects of governance in Integrated Watershed Management (IWM) - from a Japan-Malaysia policy learning perspective. This policy approach was originally inspired by the Japanese experience, and the paper investigates whether a similar strategy can be adapted in the Malaysian context-based on a qualitative exploratory case study of a local downstream watershed community. The community-based shared values are categorized into six functional values that can be placed on a watershed: industry, ecosystem, lifestyle, landscape, water resource and spirituality. The study confirmed the availability of a range of community-based shared values in each category that are promising to drive the heartware for integrated watershed management in the local Malaysian context. However, most of these shared values are either declining in its appreciation or nostalgic in nature. The paper ends with findings on key differences and similarities between the Malaysian and Japanese contexts, and concludes with lessons for international transfer of IWM heartware policy strategies between the two countries.

  14. Managing watershed services of tropical forests and plantations: Can meta-analyses help?

    OpenAIRE

    Locatelli, Bruno; Vignola, Raffaele

    2009-01-01

    The watershed services provided by tropical natural and planted forests are critical to human well-being. An increasing number of valuation studies and experiences with payment for ecosystem services have dealt with the role of ecosystems in regulating the flow of water. However, several studies and experiences have been based on misconceptions about the role of forests and plantations in the hydrological cycle, despite the publication of many reviews by hydrologists. The objective of this pa...

  15. The impacts of climate change on the hydrological cycle and on the water resource management of the Peribonka watershed

    International Nuclear Information System (INIS)

    This study evaluated the impacts of climate change on the water resource management in the Peribonka watershed by comparing the hydropower production of 3 power houses with the reliability and vulnerability associated with two climate change scenarios. The Peribonka catchment area was described along with scenarios of climate change for the watershed over a time horizon up to 2080. Synthetic time series for each scenario were then produced with a stochastic weather generator and were introduced in the HSAMI hydrological model in order to simulate future hydrological cycles. The reservoir system simulation model ResSim showed that the hydroelectric power plant Passes-Dangereuses, will experience either an increase in the annual hydroelectric production of 8 per cent or a reduction of 20 per cent, depending on the scenario considered. The simulation showed that the reliability of upstream reservoirs, namely Lakes Manouane and Peribonka, could decrease while their vulnerability could increase. This paper described the procedure used to develop the climatic change scenarios, the stages of hydrological modeling and the modeling of the hydrological cycle. The impacts of the climatic change scenarios on the flows were also presented along with a short discussion of recommendations to be considered for the next stages of the project. Subsequent stages of this water management project will relate specifically to the quantification of partial and total uncertainties associated with general circulation models, methods of reduction of scale and the applied hydrological models. 20 refs., 1 tab., 5 figs

  16. Soil and nutrient retention in winter-flooded ricefields with implications for watershed management

    Science.gov (United States)

    Manley, S.W.; Kaminski, R.M.; Rodrigue, P.B.; Dewey, J.C.; Schoenholtz, S.H.; Gerard, P.D.; Reinecke, K.J.

    2009-01-01

    The ability of water resources to support aquatic life and human needs depends, in part, on reducing nonpoint source pollution amid contemporary agricultural practices. Winter retention of shallow water on rice and other agricultural fields is an accepted management practice for wildlife conservation; however, soil and water conservation benefits are not well documented. We evaluated the ability of four post-harvest ricefield treatment combinations (stubble-flooded, stubble-open, disked-flooded and disked-open) to abate nonpoint source exports into watersheds of the Mississippi Alluvial Valley. Total suspended solid exports were 1,121 kg ha-1 (1,000 lb ac-1) from disked-open fields where rice stubble was disked after harvest and fields were allowed to drain, compared with 35 kg ha-1 (31 lb ac-1) from stubble-flooded fields where stubble was left standing after harvest and fields captured rainfall from November 1 to March 1. Estimates of total suspended solid exports from ricefields based on Landsat imagery and USDA crop data are 0.43 and 0.40 Mg km-2 day-1 in the Big Sunflower and L'Anguille watersheds, respectively. Estimated reductions in total suspended solid exports from ricefields into the Big Sunflower and L'Anguille water-sheds range from 26% to 64% under hypothetical scenarios in which 65% to 100% of the rice production area is managed to capture winter rainfall. Winter ricefield management reduced nonpoint source export by decreasing concentrations of solids and nutrients in, and reducing runoff volume from, ricefields in the Mississippi Alluvial Valley.

  17. Handling Water through Irrigation Watershed Management for Coping with Stream Pollution Dilution in Phetchaburi River, Thailand

    OpenAIRE

    Soulivanh Vorovong; Kasem Chunkao; Surat Baulert

    2014-01-01

    The research was aimed to find means how to handle water at Phetchaburi diversion dam for coping with stream pollution in Phetchaburi River through irrigation watershed management. There eight sampling points for collecting water samples since the year of 2002 to 2013 for analyzing water quality in relation to release water flow in consecutive velocity of 22.4, 100, and 377m3/s in order to obtain the better diluted stream water. Accordance with the same trends of water quality indicators, thi...

  18. Quantifying suspended sediment flux in a mixed-land-use urbanizing watershed using a nested-scale study design.

    Science.gov (United States)

    Zeiger, Sean; Hubbart, Jason A

    2016-01-15

    Suspended sediment (SS) remains the most pervasive water quality problem globally and yet, despite progress, SS process understanding remains relatively poor in watersheds with mixed-land-use practices. The main objective of the current work was to investigate relationships between suspended sediment and land use types at multiple spatial scales (n=5) using four years of suspended sediment data collected in a representative urbanized mixed-land-use (forest, agriculture, urban) watershed. Water samples were analyzed for SS using a nested-scale experimental watershed study design (n=836 samples×5 gauging sites). Kruskal-Wallis and Dunn's post-hoc multiple comparison tests were used to test for significant differences (CI=95%, pagricultural headwaters to the rural/urban interface, and increased by 98% as urban land use increased. Multiple linear regression analysis results showed significant relationships between SS, annual total precipitation (positive correlate), forested land use (negative correlate), agricultural land use (negative correlate), and urban land use (negative correlate). Estimated annual SS yields ranged from 16.1 to 313.0tkm(-2)year(-1) mainly due to differences in annual total precipitation. Results highlight the need for additional studies, and point to the need for improved best management practices designed to reduce anthropogenic SS loading in mixed-land-use watersheds. PMID:26519591

  19. Regionalization of SWAT Model Parameters for Use in Ungauged Watersheds

    Directory of Open Access Journals (Sweden)

    Indrajeet Chaubey

    2010-11-01

    Full Text Available There has been a steady shift towards modeling and model-based approaches as primary methods of assessing watershed response to hydrologic inputs and land management, and of quantifying watershed-wide best management practice (BMP effectiveness. Watershed models often require some degree of calibration and validation to achieve adequate watershed and therefore BMP representation. This is, however, only possible for gauged watersheds. There are many watersheds for which there are very little or no monitoring data available, thus the question as to whether it would be possible to extend and/or generalize model parameters obtained through calibration of gauged watersheds to ungauged watersheds within the same region. This study explored the possibility of developing regionalized model parameter sets for use in ungauged watersheds. The study evaluated two regionalization methods: global averaging, and regression-based parameters, on the SWAT model using data from priority watersheds in Arkansas. Resulting parameters were tested and model performance determined on three gauged watersheds. Nash-Sutcliffe efficiencies (NS for stream flow obtained using regression-based parameters (0.53–0.83 compared well with corresponding values obtained through model calibration (0.45–0.90. Model performance obtained using global averaged parameter values was also generally acceptable (0.4 ? NS ? 0.75. Results from this study indicate that regionalized parameter sets for the SWAT model can be obtained and used for making satisfactory hydrologic response predictions in ungauged watersheds.

  20. Rainfall Runoff Modelling Using the Principle of Maximum Entropy(Case Study: Kasilian Watershed

    Directory of Open Access Journals (Sweden)

    R. Mirabbasi Najafabadi

    2012-03-01

    Full Text Available Accurate estimation of runoff for a watershed is a very important issue in water resources management. In this study, the monthly runoff was estimated using the rainfall information and conditional probability distribution model based on the principle of maximum entropy. The information of monthly rainfall and runoff data of Kasilian River basin from 1960 to 2006 were used for the development of model. The model parameters were estimated using the prior information of the watershed such as mean of rainfall, runoff and their covariance. Using the developed model, monthly runoff was estimated for different values of runoff coefficient, , return period, , at different probability levels of rainfall for the basin under study. Results showed that the developed model estimates runoff for all return periods satisfactorily if the runoff coefficient value is taken 0.6. Also, it is observed that at a particular probability level and runoff coefficient, the estimated runoff decreases as return period increases. However, the rate of change of runoff decreases slightly as return period increases.

  1. Comparative study of climate and human impacts on seasonal baseflow in urban and agricultural watersheds

    Science.gov (United States)

    Wang, Dingbao; Cai, Ximing

    2010-03-01

    This study explores the long-term trends of low flow magnitude and the slopes and shapes of the recession curves during winter and summer seasons under climatic and human factors. Four watersheds in the American Midwest are selected for the analysis, including two urban watersheds (Salt Creek and Des Plaines) and two agricultural watersheds (Embarras and Kankakee). The results show that the long-term baseflow recession slope trends in all the watersheds are primarily induced by human interferences. In the urban watersheds, the recession slopes decrease over time in both winter and summer due to effluent discharges. In the Kankakee watershed with irrigation, the recession slopes decrease in winter but increase in summer, and the opposite winter and summer trends are caused by the seasonal water use regime of irrigated agriculture. In the Embarras watershed with rainfed agriculture, the recession slopes decrease over time in winter but display no change in summer. Sources of water withdrawal (groundwater versus surface water) also have different impacts on the recession process. This long-term analysis of recession rates, in conjunction with the changes in low flow magnitude, offers valuable insight on human interferences to hydrologic processes. Beyond the specific case studies, this paper documents how a scientific approach based on existing streamflow observation can be applied to improving our understanding of the impact of human and climatic influences on baseflow and low flow processes.

  2. Physical characterization of a watershed through GIS: a study in the Schmidt stream, Brazil.

    Science.gov (United States)

    Reis, D R; Plangg, R; Tundisi, J G; Quevedo, D M

    2015-12-01

    Remote sensing and geoprocessing are essential tools for obtaining and maintaining records of human actions on space over the course of time; these tools offer the basis for diagnoses of land use, environmental interference and local development. The Schmidt stream watershed, located in the Sinos River basin, in southern Brazil, has an environmental situation similar to that of the majority of small streams draining rural and urban areas in southern Brazil: agricultural and urbanization practices do not recognize the riparian area and there is removal of original vegetation, disregarding the suitability of land use; removal of wetlands; intensive water use for various activities; and lack of control and monitoring in the discharge of wastewater, among other factors, deteriorate the quality of this important environment.This article aims to achieve a physical characterization of the Schmidt stream watershed (Sinos river basin) identifying elements such as land use and occupation, soil science, geology, climatology, extent and location of watershed, among others, so as to serve as the basis for a tool that helps in the integrated environmental management of watersheds. By applying geographic information system - GIS to the process of obtaining maps of land use and occupation, pedologicaland geological, and using climatological data from the Campo Bom meteorological station, field visit, review of literature and journals, and publicly available data, the physical characterization of the Schmidt stream watershed was performed, with a view to the integrated environmental management of this watershed. Out of the total area of the Schmidt stream watershed (23.92 km2), in terms of geology, it was observed that 23.7% consist of colluvial deposits, 22.6% consist of grass facies, and 53.7% consist of Botucatu formation. Major soil types of the watershed: 97.4% Argisols and only 2.6% Planosols. Land use and occupation is characterized by wetland (0.5%), Native Forest (12.83%), Native Forest + Rural Anthropic + Secondary Vegetation + Forestry (43.81%), Urban Anthropic/Urban Area (39.85%), and also Urban Anthropic/Expansion areas (3.01%). Mean annual rainfall is 1337 mm, maximum temperatures range from 10.5°C to 41.6°C and minimum temperatures range from -1.80°C and 26°C, weak winds, occasionally over 5 m/s. Conducting an environmental assessment in this watershed is essential for environmental and land management. However, these assessments are not conducted in all watersheds and, when they are, their frequency is not sufficiency to allow for continuous monitoring, in order to model and predict scenarios, with a view to adopt medium and long-term measures for environmental protection. PMID:26628241

  3. Modeling effectiveness of management practices for flood mitigation using GIS spatial analysis functions in Upper Cilliwung watershed

    Science.gov (United States)

    Darma Tarigan, Suria

    2016-01-01

    Flooding is caused by excessive rainfall flowing downstream as cumulative surface runoff. Flooding event is a result of complex interaction of natural system components such as rainfall events, land use, soil, topography and channel characteristics. Modeling flooding event as a result of interaction of those components is a central theme in watershed management. The model is usually used to test performance of various management practices in flood mitigation. There are various types of management practices for flood mitigation including vegetative and structural management practices. Existing hydrological model such as SWAT and HEC-HMS models have limitation to accommodate discrete management practices such as infiltration well, small farm reservoir, silt pits in its analysis due to the lumped structure of these models. Aim of this research is to use raster spatial analysis functions of Geo-Information System (RGIS-HM) to model flooding event in Ciliwung watershed and to simulate impact of discrete management practices on surface runoff reduction. The model was validated using flooding data event of Ciliwung watershed on 29 January 2004. The hourly hydrograph data and rainfall data were available during period of model validation. The model validation provided good result with Nash-Suthcliff efficiency of 0.8. We also compared the RGIS-HM with Netlogo Hydrological Model (NL-HM). The RGIS-HM has similar capability with NL-HM in simulating discrete management practices in watershed scale.

  4. Decision Support System integrated with Geographic Information System to target restoration actions in watersheds of arid environment: A case study of Hathmati watershed, Sabarkantha district, Gujarat

    Indian Academy of Sciences (India)

    Dhruvesh P Patel; Prashant K Srivastava; Manika Gupta; Naresh Nandhakumar

    2015-02-01

    Watershed morphometric analysis is important for controlling floods and planning restoration actions. The present study is focused on the identification of suitable sites for locating water harvesting structures using morphometric analysis and multi-criteria based decision support system. The Hathmati watershed of river Hathmati at Idar taluka, Sabarkantha district, Gujarat is experiencing excessive runoff and soil erosion due to high intensity rainfall. Earth observation dataset such as Digital Elevation Model and Geographic Information System are used in this study to determine the quantitative description of the basin geometry. Several morphometric parameters such as stream length, elongation ratio, bifurcation ratio, drainage density, stream frequency, texture ratio, form factor, circularity ratio, and compactness coefficient are taken into account for prioritization of Hathmati watershed. The overall analysis reveals that Hathmati comprises of 13 mini-watersheds out of which, the watershed number 2 is of utmost priority because it has the highest degradation possibilities. The final results are used to locate the sites suitable for water harvesting structures using geo-visualization technique. After all the analyses, the best possibilities of check dams in the mini-watersheds that can be used for soil and water conservation in the watershed are presented.

  5. A Web-based environmental decision support system (WEDSS) for environmental planning and watershed management

    Science.gov (United States)

    Sugumaran, Ramanathan; Meyer, James C.; Davis, Jim

    2004-10-01

    Local governments often struggle to balance competing demands for residential, commercial and industrial development with imperatives to minimize environmental degradation. In order to effectively manage this development process on a sustainable basis, local planners and government agencies are increasingly seeking better tools and techniques. In this paper, we describe the development of a Web-Based Environmental Decision Support System (WEDSS), which helps to prioritize local watersheds in terms of environmental sensitivity using multiple criteria identified by planners and local government staff in the city of Columbia, and Boone County, Missouri. The development of the system involved three steps, the first was to establish the relevant environmental criteria and develop data layers for each criterion, then a spatial model was developed for analysis, and lastly a Web-based interface with analysis tools was developed using client-server technology. The WEDSS is an example of a way to run spatial models over the Web and represents a significant increase in capability over other WWW-based GIS applications that focus on database querying and map display. The WEDSS seeks to aid in the development of agreement regarding specific local areas deserving increased protection and the public policies to be pursued in minimizing the environmental impact of future development. The tool is also intended to assist ongoing public information and education efforts concerning watershed management and water quality issues for the City of Columbia, Missouri and adjacent developing areas within Boone County, Missouri.

  6. Streamflow Modeling in a Highly Managed Mountainous Glacier Watershed Using SWAT: The Upper Rhone River Watershed Case in Switzerland

    OpenAIRE

    Rahman, Kazi; Maringanti, Chetan; Beniston, Martin; Widmer, Florian; Abbaspour, Karim; Lehmann, Anthony

    2013-01-01

    Stream flow simulation is often challenging in mountainous watersheds because of irregular topography and complex hydrological processes. Rates of change in precipitation and temperature with respect to elevation often limit the ability to reproduce stream runoff by hydrological models. Anthropogenic influence, such as water transfers in high altitude hydropower reservoirs increases the difficulty in modeling since the natural flow regime is altered by long term storage of water in the reserv...

  7. Adapting regional watershed management to climate change in Bavaria and Québec

    Science.gov (United States)

    Ludwig, Ralf; Muerth, Markus; Schmid, Josef; Jobst, Andreas; Caya, Daniel; Gauvin St-Denis, Blaise; Chaumont, Diane; Velazquez, Juan-Alberto; Turcotte, Richard; Ricard, Simon

    2013-04-01

    The international research project QBic3 (Quebec-Bavarian Collaboration on Climate Change) aims at investigating the potential impacts of climate change on the hydrology of regional scale catchments in Southern Quebec (Canada) and Bavaria (Germany). For this purpose, a hydro-meteorological modeling chain has been established, applying climatic forcing from both dynamical and statistical climate model data to an ensemble of hydrological models of varying complexity. The selection of input data, process descriptions and scenarios allows for the inter-comparison of the uncertainty ranges on selected runoff indicators; a methodology to display the relative importance of each source of uncertainty is developed and results for past runoff (1971-2000) and potential future changes (2041-2070) are obtained. Finally, the impact of hydrological changes on the operational management of dams, reservoirs and transfer systems is investigated and shown for the Bavarian case studies, namely the potential change in i) hydro-power production for the Upper Isar watershed and ii) low flow augmentation and water transfer rates at the Donau-Main transfer system in Central Franconia. Two overall findings will be presented and discussed in detail: a) the climate change response of selected hydrological indicators, especially those related to low flows, is strongly affected by the choice of the hydrological model. It can be shown that an assessment of the changes in the hydrological cycle is best represented by a complex physically based hydrological model, computationally less demanding models (usually simple, lumped and conceptual) can give a significant level of trust for selected indicators. b) the major differences in the projected climate forcing stemming from the ensemble of dynamic climate models (GCM/RCM) versus the statistical-stochastical WETTREG2010 approach. While the dynamic ensemble reveals a moderate modification of the hydrological processes in the investigated catchments, the WETTREG2010 driven runs show a severe detraction for all water operations, mainly related to a strong decline in projected precipitation in all seasons (except winter).

  8. Putting watershed restoration in context: alternative future scenarios influence management outcomes.

    Science.gov (United States)

    Fullerton, A H; Steel, E A; Caras, Y; Sheer, M; Olson, P; Kaje, J

    2009-01-01

    Predicting effects of habitat restoration is an important step for recovery of imperiled anadromous salmonid populations. Habitat above three major hydropower dams in the Lewis River watershed, southwestern Washington, USA, will soon become accessible to anadromous fish. We used multiple models to estimate habitat conditions above dams and fish population responses. Additionally, we used scenario planning to predict how habitat and fish will respond to potential future trends in land use due to human population growth and riparian conservation policies. Finally, we developed a hypothetical management strategy (i.e., a set of prioritized restoration projects in specific locations within the watershed) as an example of how a fixed amount of restoration funds might be spent to enhance the success of reintroducing fish above dams. We then compared predicted outcomes from this new strategy to those of six previously modeled strategies. We estimated how the choice of the best management strategy might differ among alternative future scenarios. Results suggest that dam passage will provide access to large amounts of high-quality habitat that will benefit fish populations. Moreover, conservation of existing riparian areas, if implemented, has the potential to improve conditions to a much greater extent than restoration strategies examined, despite expected urban growth. We found that the relative performance of management strategies shifted when fish were allowed to migrate above dams, but less so among alternative futures examined. We discuss how predicted outcomes from these seven hypothetical management strategies could be used for developing an on-the-ground strategy to address a real management situation. PMID:19323185

  9. Establishing ecological and social continuities: new challenges to optimize urban watershed management

    Science.gov (United States)

    Mitroi, V.; de Coninck, A.; Vinçon-Leite, B.; Deroubaix, J.-F.

    2014-09-01

    The (re)construction of the ecological continuity is stated as one of the main objectives of the European Water Framework Directive for watershed management in Europe. Analysing the social, political, technical and scientific processes characterising the implementation of different projects of ecological continuity in two adjacent peri-urban territories in Ile-de-France, we observed science-driven approaches disregarding the social contexts. We show that, in urbanized areas, ecological continuity requires not only important technical and ecological expertise, but also social and political participation to the definition of a common vision and action plan. Being a challenge for both, technical water management institutions and "classical" ecological policies, we propose some social science contributions to deal with ecological unpredictability and reconsider stakeholder resistance to this kind of project.

  10. Multiobjective Optimization Combining BMP Technology and Land Preservation for Watershed-based Stormwater Management

    Science.gov (United States)

    McGarity, A. E.

    2009-12-01

    Recent progress has been made developing decision-support models for optimal deployment of best management practices (BMP’s) in an urban watershed to achieve water quality goals. One example is the high-level screening model StormWISE, developed by the author (McGarity, 2006) that uses linear and nonlinear programming to narrow the search for optimal solutions to certain land use categories and drainage zones. Another example is the model SUSTAIN developed by USEPA and Tetra Tech (Lai, et al., 2006), which builds on the work of Yu, et al., 2002), that uses a detailed, computationally intensive simulation model driven by a genetic solver to select optimal BMP sites. However, a model that deals only with best management practice (BMP) site selections may fail to consider solutions that avoid future nonpoint pollutant loadings by preserving undeveloped land. This paper presents results of a recently completed research project in which water resource engineers partnered with experienced professionals at a land conservation trust to develop a multiobjective model for watershed management. The result is a revised version of StormWISE that can be used to identify optimal, cost-effective combinations of easements and similar land preservation tools for undeveloped sites along with low impact development (LID) and BMP technologies for developed sites. The goal is to achieve the watershed-wide limits on runoff volume and pollutant loads that are necessary to meet water quality goals as well as ecological benefits associated with habitat preservation and enhancement. A nonlinear programming formulation is presented for the extended StormWISE model that achieves desired levels of environmental benefits at minimum cost. Tradeoffs between different environmental benefits are generated by multiple runs of the model while varying the levels of each environmental benefit obtained. The model is solved using piecewise linearization of environmental benefit functions where each linear segment of represents a different option for reducing stormwater runoff volumes and pollutant loadings. The solutions space is comprised of optimal levels of expenditure for categories of BMP's by land use category and optimal land preservation expenditures by drainage zone. To demonstrate the usefulness of the model, results from its application to the Little Crum Creek watershed in suburban Philadelphia are presented. The model has been used to assist a watershed association and four municipalities to develop an action plan for restoration of water quality on this impaired stream. References Lai, F., J. Zhen, J. Riverson, and L. Shoemaker (2006). "SUSTAIN - An Evaluation and Cost-Optimization Tool for Placement of BMPs," ASCE World Environmental and Water Resource Congress 2006. McGarity, A.E. (2006). A Cost Minimization Model to Priortize Urban Catchments for Stormwater BMP Implementation Projects. American Water Resources Association National Meeting, Baltimore, MD, November, 2006. Yu, S., J. X. Zhen, and S.Y. Zhai, (2002). Development of Stormwater Best Management Practice Placement Strategy for the Virginia Department of Transportation. Final Contract Report, VTRC 04-CR9, Virginia Transportation Research Council.

  11. Evaluating the effectiveness of management practices on hydrology and water quality at watershed scale with a rainfall-runoff model.

    Science.gov (United States)

    Liu, Yaoze; Bralts, Vincent F; Engel, Bernard A

    2015-04-01

    The adverse influence of urban development on hydrology and water quality can be reduced by applying best management practices (BMPs) and low impact development (LID) practices. This study applied green roof, rain barrel/cistern, bioretention system, porous pavement, permeable patio, grass strip, grassed swale, wetland channel, retention pond, detention basin, and wetland basin, on Crooked Creek watershed. The model was calibrated and validated for annual runoff volume. A framework for simulating BMPs and LID practices at watershed scales was created, and the impacts of BMPs and LID practices on water quantity and water quality were evaluated with the Long-Term Hydrologic Impact Assessment-Low Impact Development 2.1 (L-THIA-LID 2.1) model for 16 scenarios. The various levels and combinations of BMPs/LID practices reduced runoff volume by 0 to 26.47%, Total Nitrogen (TN) by 0.30 to 34.20%, Total Phosphorus (TP) by 0.27 to 47.41%, Total Suspended Solids (TSS) by 0.33 to 53.59%, Lead (Pb) by 0.30 to 60.98%, Biochemical Oxygen Demand (BOD) by 0 to 26.70%, and Chemical Oxygen Demand (COD) by 0 to 27.52%. The implementation of grass strips in 25% of the watershed where this practice could be applied was the most cost-efficient scenario, with cost per unit reduction of $1m3/yr for runoff, while cost for reductions of two pollutants of concern was $445 kg/yr for Total Nitrogen (TN) and $4871 kg/yr for Total Phosphorous (TP). The scenario with very high levels of BMP and LID practice adoption (scenario 15) reduced runoff volume and pollutant loads from 26.47% to 60.98%, and provided the greatest reduction in runoff volume and pollutant loads among all scenarios. However, this scenario was not as cost-efficient as most other scenarios. The L-THIA-LID 2.1 model is a valid tool that can be applied to various locations to help identify cost effective BMP/LID practice plans at watershed scales. PMID:25553544

  12. Application of risk-based multiple criteria decision analysis for selection of the best agricultural scenario for effective watershed management.

    Science.gov (United States)

    Javidi Sabbaghian, Reza; Zarghami, Mahdi; Nejadhashemi, A Pouyan; Sharifi, Mohammad Bagher; Herman, Matthew R; Daneshvar, Fariborz

    2016-03-01

    Effective watershed management requires the evaluation of agricultural best management practice (BMP) scenarios which carefully consider the relevant environmental, economic, and social criteria involved. In the Multiple Criteria Decision-Making (MCDM) process, scenarios are first evaluated and then ranked to determine the most desirable outcome for the particular watershed. The main challenge of this process is the accurate identification of the best solution for the watershed in question, despite the various risk attitudes presented by the associated decision-makers (DMs). This paper introduces a novel approach for implementation of the MCDM process based on a comparative neutral risk/risk-based decision analysis, which results in the selection of the most desirable scenario for use in the entire watershed. At the sub-basin level, each scenario includes multiple BMPs with scores that have been calculated using the criteria derived from two cases of neutral risk and risk-based decision-making. The simple additive weighting (SAW) operator is applied for use in neutral risk decision-making, while the ordered weighted averaging (OWA) and induced OWA (IOWA) operators are effective for risk-based decision-making. At the watershed level, the BMP scores of the sub-basins are aggregated to calculate each scenarios' combined goodness measurements; the most desirable scenario for the entire watershed is then selected based on the combined goodness measurements. Our final results illustrate the type of operator and risk attitudes needed to satisfy the relevant criteria within the number of sub-basins, and how they ultimately affect the final ranking of the given scenarios. The methodology proposed here has been successfully applied to the Honeyoey Creek-Pine Creek watershed in Michigan, USA to evaluate various BMP scenarios and determine the best solution for both the stakeholders and the overall stream health. PMID:26734840

  13. Study Regarding Hydrochemical Classification of the main Lakes from Fizes Watershed (Romania)

    OpenAIRE

    MIHAIESCU Tania; R. MIHAIESCU; E. MUNTEAN; Nicoleta MUNTEAN

    2010-01-01

    Regarding to the importance of the ponds is noted an increasing interest in Europe, and also an increase of theawareness on the ponds contribution to biodiversity and proper functioning of the watersheds. Although significantprogress was made in establishing generic methodologies of analysis in the purpose of implementing water directive,small water bodies, as lakes and ponds are still insufficient represented. The study area, Fizes watershed, is located inTransylvania Plain, in the northern ...

  14. Best Management Practices in the CEAP Goodwater Creek Watershed: What, Where, Why, and How Much?

    Science.gov (United States)

    Continuation of conservation funding may depend upon demonstration that past funded projects have contributed to improvement of water quality or reduction of pollutant loadings from agricultural sources. In the Goodwater Creek watershed, a 7,250 ha sub-watershed of the Mark Twain Lake watershed in N...

  15. Impact of conservationpractices on soil quality indicators: case study in the Fort Cobb Reservoir watershed, Oklahoma

    Science.gov (United States)

    While there has been controversy amongst researchers about the concepts and terminology of soil quality, there is agreement that management has critical effects on soils and that soils can either move toward or away from a condition that is favorable for the defined use of that soil. Within watershe...

  16. Sustainable forest management: a challenging task in the siran watershed of district Mansehra in the NWFP of Pakistan

    International Nuclear Information System (INIS)

    Forests play an important socio-economic and environmental role on earth. Exploitation of forest resources within the carrying capacity of the natural ecosystem has always ensured their sustainability but in recent decades man has overexploited these resources to meet various needs. Pakistan with only 4.8% of its total land area under forests was also experiencing unsustainable forest management. In the Siran Watershed of District Mansehra in the North West Frontier Province (NWFP) of Pakistan, forests were exploited to meet not only the domestic and commercial wood-fuel needs but also timber needs of the local and external markets. Moreover, the local communities as a source of income generation have also used forest resources to increase their cash income earnings. Analysis of time series forest cover change in the past three decades was done in three adjacent sub-watersheds having different property right regimes. The GIS based spatial analysis showed that despite government efforts to conserve these forests, 75% of the forests were completely converted either into regeneration area (34%) or barren areas (41 %) during the past three decades. The Protected Forests have lost 41 % of its cover and the Guzara Forests 34%. Results show that the forest degradation stress has greatly increased in the eighties and afterwards. Using stakeholder analysis the key wood demanding stake holders in terms of their wood demand state were the local communities, the external commercial timber consumers, tobacco growers and Afghan refugees. The wood supplies stake holders were the Forest Department that controls the Common Pool Forests (CPF), the Forest Development Corporation (FDC), the Forest Cooperative Societies (FCS) and the farm foresters. Analysis of the cause effect relationship of the system shows that the pressure factors of increased wood demand by various stake holders coupled with the enabling factors of the market failure, government failure and institutional failure has led to unsustainable forest management during the past three decades in the study area. Strategic analysis of the system indicates that lack of national conservation based forest management has further aggravated the problem. Moreover, SWOT (Strength, Weaknesses, Opportunities and Threats) analysis show that the internal weaknesses and external threats outweigh the internal strengths and external opportunities of the Forest Department. Based on these analytical results, priority issues were evaluated in terms of their efficiency, social soundness, institutional acceptability and environmental sustainability. The proposed sustainable forest management options which fulfilled this criteria were the community based forest management, wood demand and supply management interventions, institutional restructuring and income generation opportunities using integrated forest management in the study area. (author)

  17. Effects of integrated watershed management on livestock water productivity in water scarce areas in Ethiopia

    Science.gov (United States)

    Descheemaeker, Katrien; Mapedza, Everisto; Amede, Tilahun; Ayalneh, Wagnew

    In the water scarce Lenche Dima watershed in the northern Ethiopian highlands community based integrated watershed management was implemented to fight land degradation, raise agricultural productivity and improve farmers’ livelihoods. The effects of two interventions, namely exclosures and water harvesting structures, were assessed based on data from farmers’ interviews, measurements of feed biomass production, and estimates of energy production and requirements. Water used for livestock feed production was obtained through simple soil water balance modelling. By protecting 40% of the rangelands, the water productivity of the feed increased by about 20%. This indicated that exclosure establishment could lead to similar improvements in livestock water productivity (LWP, defined as the ratio of livestock benefits over the water used in producing these). Water harvesting structures ensured year-round water availability in the homestead, which resulted in less energy used for walking to drinking points. A considerable amount of energy was thus saved, which could be used for livestock production and improved animal health without additional water use. Besides restoring regulating and supporting ecosystem services, both interventions led to a more efficient use of the scarce water resources for biomass and livestock production.

  18. Watershed Data Management (WDM) Database for Salt Creek Streamflow Simulation, DuPage County, Illinois

    Science.gov (United States)

    Murphy, Elizabeth A.; Ishii, Audrey L.

    2006-01-01

    The U.S. Geological Survey (USGS), in cooperation with DuPage County Department of Engineering, Stormwater Management Division, maintains a database of hourly meteorologic and hydrologic data for use in a near real-time streamflow simulation system, which assists in the management and operation of reservoirs and other flood-control structures in the Salt Creek watershed in DuPage County, Illinois. The majority of the precipitation data are collected from a tipping-bucket rain-gage network located in and near DuPage County. The other meteorologic data (wind speed, solar radiation, air temperature, and dewpoint temperature) are collected at Argonne National Laboratory in Argonne, Illinois. Potential evapotranspiration is computed from the meteorologic data. The hydrologic data (discharge and stage) are collected at USGS streamflow-gaging stations in DuPage County. These data are stored in a Watershed Data Management (WDM) database. This report describes a version of the WDM database that was quality-assured and quality-controlled annually to ensure the datasets were complete and accurate. This version of the WDM database contains data from January 1, 1997, through September 30, 2004, and is named SEP04.WDM. This report provides a record of time periods of poor data for each precipitation dataset and describes methods used to estimate the data for the periods when data were missing, flawed, or snowfall-affected. The precipitation dataset data-filling process was changed in 2001, and both processes are described. The other meteorologic and hydrologic datasets in the database are fully described in the annual U.S. Geological Survey Water Data Report for Illinois and, therefore, are described in less detail than the precipitation datasets in this report.

  19. Modeling Changes in Hydrology and Sedimentation for Forested Watersheds: an Approach for Land Managers

    Science.gov (United States)

    Litschert, S. E.; MacDonald, L. H.

    2007-12-01

    Hydrologic changes and sedimentation have long been recognized as critical concerns for forest management. Federal and state laws commonly require land managers to compare the cumulative effects of different forest management scenarios before management plans or policy changes can be implemented. Existing operational methods tend to be simple checklists, indices, or lumped models. Physically based, spatially explicit models are available but are not widely used because they are too data intensive, costly, and complex. Our goal is to find a middle ground by providing land managers with a suite of models that are easy-to-use, spatially and temporally explicit, and scientifically based. Delta-Q and FOREST (FORest Erosion Simulation Tools) are coupled models designed to meet these criteria. They calculate the hydrologic and sedimentary effects of roads, forest fires, and forest management using GIS. Delta-Q calculates annual changes in flow from a watershed using a simple linear recovery model. Required inputs are a GIS layer of forest management activities over time, the initial changes in flow, and the times to recovery for each activity. FOREST uses conceptual and empirical models to calculate sediment production and delivery from hillslopes and roads, and to route sediment through the stream network. Required inputs include sediment production and recovery coefficients, and GIS layers of fires, roads, streams, forest management, soils, and elevation. Online help files provide detailed instructions and summaries of published data to help users select coefficients. Model results include tables of annual changes in flow and sediment yield as well as GIS layers showing the spatial distribution of sediment production and delivery over the period being simulated. The models are now being finalized and will be validated against data from five different experimental forests across the U.S. Model results should be helpful for comparing different land management scenarios, recognizing key sediment sources, and identifying stream reaches susceptible to sedimentation or in need of restoration.

  20. Regional risk assessment of the Puyallup River Watershed and the evaluation of low impact development in meeting management goals.

    Science.gov (United States)

    Hines, Eleanor E; Landis, Wayne G

    2014-04-01

    The Relative Risk Model (RRM) is a tool used to calculate and assess the likelihood of effects to endpoints when multiple stressors occur in complex ecological systems. In this study, a Bayesian network was used to calculate relative risk and estimate uncertainty (BN-RRM) in the Puyallup River Watershed. First, we calculated the risk of prespawn mortality of coho salmon. Second, we evaluated the effect of low impact development (LID) as a means to reduce risk. Prespawner mortality in coho salmon within the Puyallup watershed was the endpoint selected for this study. A conceptual model showing causal pathways between stressors and endpoints was created to show where linkages exist. A relative risk gradient was found throughout the watershed. The lowest risk was found in risk regions with the least urban development, and the greatest risk of prespawner mortality was found in the highly urbanized risk regions with the largest amounts of impervious surface. LID did reduce risk but only when implemented at high intensities within the urban watersheds. The structure of the BN-RRM also provides a framework for water quality- and quantity-related endpoints within this and other watersheds. The framework is also useful for evaluating different strategies for remediation or restoration activities. The adaptability of using BNs for a relative risk assessment provides opportunities for the model to be adapted for other watersheds in the Puget Sound and Salish Sea region. PMID:24288344

  1. USING HISTORICAL BIOLOGICAL DATA TO EVALUATE STATUS AND TRENDS IN THE BIG DARBY CREEK WATERSHED (OHIO, USA)

    Science.gov (United States)

    Assessment of watershed ecological status and trends is challenging for managers who lack randomly or consistently sampled data, or monitoring programs developed from a watershed perspective. This study investigated analytical approaches for assessment of status and trends using ...

  2. Suburban watershed nitrogen retention: Estimating the effectiveness of stormwater management structures

    Directory of Open Access Journals (Sweden)

    Benjamin J. Koch

    2015-07-01

    Full Text Available Abstract Excess nitrogen (N is a primary driver of freshwater and coastal eutrophication globally, and urban stormwater is a rapidly growing source of N pollution. Stormwater best management practices (BMPs are used widely to remove excess N from runoff in urban and suburban areas, and are expected to perform under a wide variety of environmental conditions. Yet the capacity of BMPs to retain excess N varies; and both the variation and the drivers thereof are largely unknown, hindering the ability of water resource managers to meet water quality targets in a cost-effective way. Here, we use structured expert judgment (SEJ, a performance-weighted method of expert elicitation, to quantify the uncertainty in BMP performance under a range of site-specific environmental conditions and to estimate the extent to which key environmental factors influence variation in BMP performance. We hypothesized that rain event frequency and magnitude, BMP type and size, and physiographic province would significantly influence the experts’ estimates of N retention by BMPs common to suburban Piedmont and Coastal Plain watersheds of the Chesapeake Bay region. Expert knowledge indicated wide uncertainty in BMP performance, with N removal efficiencies ranging from 40%. Experts believed that the amount of rain was the primary identifiable source of variability in BMP efficiency, which is relevant given climate projections of more frequent heavy rain events in the mid-Atlantic. To assess the extent to which those projected changes might alter N export from suburban BMPs and watersheds, we combined downscaled estimates of rainfall with distributions of N loads for different-sized rain events derived from our elicitation. The model predicted higher and more variable N loads under a projected future climate regime, suggesting that current BMP regulations for reducing nutrients may be inadequate in the future.

  3. Evaluation of effective management plan for an agricultural watershed using AVSWAT model, remote sensing and GIS

    Science.gov (United States)

    Pandey, V. K.; Panda, S. N.; Pandey, Ashish; Sudhakar, S.

    2009-01-01

    In the present investigation, an effort has been made to identify the critical sub-watersheds for the development of best management plan for a small watershed of Eastern India using a hydrological model, namely, AVSWAT2000. A total of 180 combinations of various management treatments including crops (rice, maize ground nut and soybean), tillage (zero, conservation, field cultivator, mould board plough and conventional practices) and fertilizer levels (existing half of recommended and recommended) have been evaluated. The investigation reveled that rice cannot be replaced by other crops such as groundnut, maize, mungbean, sorghum and soybean since comparatively these crops resulted in higher sediment yield. The tillage practices with disk plough have been found to have more impact on sediment yield and nutrient losses than conventional tillage practices for the existing level of fertilizer. Sediment yield decreased in the case of zero tillage, conservation tillage, field cultivator, moldboard plough, and conservation tillage as compare to conventional tillage. Lowest NO3-N loss was observed in zero tillage in all the fertilizer treatments, whereas field cultivator, moldboard plough and disk plough resulted in increase of NO3-N loss. As compared to conventional tillage, the losses of soluble phosphorus were increased in moldboard plough. The losses of organic nitrogen were also increased as fertilizer dose increased. After zero tillage the conservation tillage preformed better in all the fertilizer treatments as per loss of organic nitrogen and organic phosphorus is concerned. It can be concluded that the sediment yield was found to be the highest in the case of disk plough followed by moldboard plough, field cultivator, conventional tillage, field cultivator and least in zero tillage practices. The nutrient losses were found to be in different order with tillage practices, resulted highest in disk plough tillage practices. In view of sediment yield and nutrient losses, the conservation tillage practice was found to be the best as the sediment yield is less than the average soil loss whereas nutrient loss is within the permissible limit.

  4. Watershed Management: An Option to Sustain Dam and Reservoir Function in Ethiopia

    Directory of Open Access Journals (Sweden)

    Kebede Wolka Wolancho

    2012-01-01

    Full Text Available Inappropriate use of land for agriculture and poor management of its ecosystem lead to environmental problems such as land degradation through soil erosion. Accelerated soil erosion is a major watershed problem in many developing countries including Ethiopia. Climate change, which apparently causes major climatic events such as flooding or drought, also accelerates soil erosion. Soil erosion in various forms such as sheet, rill, gully bank and bed, river bed and bank and landslides provide sediment to critical water bodies. Nutrients and chemicals from cropland and urban sewage are transported into the water systems. Many reservoirs which have been established for hydroelectric power, urban water supply and irrigation accumulate an alarmingly higher level of sediment than expected. Koka, Angereb, Legedadi, Gilgel Gibe I and other reservoirs are threatened by this accelerated sedimentation. Consequences of reservoir sedimentation include the loss of storage capacity and its subsequent effects. These effects include water supply shortages for human consumption, irrigation and hydropower; increased hydro-equipment maintenance and repair; a decline in water quality; the cost of removing sediment; blockage of navigational waters and loss of recreation opportunities. Aquatic ecosystems are modified by increased deposition of sediments and adsorbed or dissolved nutrients and chemicals, which commonly causes eutrophication which in turn negatively influences habitats of fish and other organisms. Some of the techniques suggested to reduce reservoir sediment concentration are technically less feasible as it requires design considerations during construction (which is difficult to implement for the existing dams. Removal of sediment is also economically demanding. Among the approaches and techniques proposed and implemented, integrated participatory watershed management is strongly recommended to reduce sediment inflow in sustainable pattern.

  5. Watershed Sustainability Index Assessment of a Watershed in Chhattisgarh, India

    Directory of Open Access Journals (Sweden)

    Surendra Kumar Chandniha

    2014-08-01

    Full Text Available In order to achieve continuous sustainable development in a watershed, it is desired that natural resources such as water are assessed and utilized efficiently. Generally, water resources are assessed considering watershed as a unit. Since the water requirements and availability varies in space and time, it is desired to manage the water resources so as to satisfy the demand on sustainable basis. Further, in order to achieve sustainability, it is necessary to consider social, economic and environment aspects of water resources. However it is difficult to bring all these indicators on a single platform. In this study, a watershed sustainability index (WSI which integrates the hydrology, environment, life and policy (HELP has been suggested for Piperiya watershed in Chhattisgarh state of India. This watershed has an area of about 2400km2 and is part of Hasdeo river basin which is located in Koriya district of Chhattisgarh. Further, the majority of population in the area is tribal and illiterate. Providing safe and adequate water to the masses is a challenge in this area. The District has numerous hill ranges with rocky geological formation having steep slope. The district faces an acute water shortage for drinking as well as irrigation. Further, the area has number of coal mines and coal washing plants, which contaminate the surface water as well as groundwater. Thus, the availability of safe and fresh water is quite limited. It has been noticed that the WSI for this watershed is about 0.60, which is moderate level of sustainability. In order to improve the water sustainability in this watershed, a watershed management framework and its utilizationhas been elaborated.

  6. AnnAGNPS – A United States Department of Agriculture Watershed Conservation Management Planning Tool for Non-Point Source Pollution Control

    Science.gov (United States)

    A watershed scale assessment of the effect of conservation practices on the environment is critical when recommending best management practices to agricultural producers. The environmental benefits of these practices have not been widely quantified at the watershed scale, which would require extens...

  7. Poverty and Environmental Services: Case Study in Way Besai Watershed, Lampung Province, Indonesia

    Directory of Open Access Journals (Sweden)

    Beria Leimona

    2007-12-01

    Full Text Available Local communities in developing countries are often forbidden to earn their livelihood from state-owned forests, but nonetheless local people commonly manage these lands and depend on them to survive. In these places, community participation is the key to successful conservation programs intended to rehabilitate environmental functions and produce environmental services for beneficiaries outside the area. This paper reviews the relationship between poverty and environmental services and briefly discusses the main ways in which approaches that rely on payment for environmental services are thought likely to alleviate poverty. It also discusses the poverty profile and inequality of upland dwellers in the Sumberjaya watershed in Indonesia's Lampung Province, using income, education, and land-holding indicators. Data related to these three indicators were collected from intensive household surveys and interviews and used via Gini decomposition to measure inequality. In addition, analysis of data on stem at breast height and horizontal root diameter of coffee and other noncoffee trees planted on coffee farms showed that index of root shallowness could be used as an estimator of environmental services. This study revealed that state forest land in Lampung Province, Indonesia, not only provides important income for poor farmers but also leads to a more equitable distribution of income and land holdings. These farmers have also successfully rehabilitated degraded land by establishing coffee-based agroforestry. As found in other recent studies, these findings show that coffee-based agroforestry can perform watershed service functions similar to those of natural, undisturbed forests. This supports the argument that poor farmers who provide environmental services through their activities in state-owned forests should be rewarded with land rights as a policy to alleviate poverty.

  8. Learning through Participatory Resource Management Programs: Case Studies from Costa Rica

    Science.gov (United States)

    Sims, Laura; Sinclair, A. John

    2008-01-01

    Based on an ongoing qualitative case study in Costa Rica, this article presents the participatory work that the Instituto Costarricense de Electricidad (ICE) is doing with farmers to protect watersheds from erosion and contamination. Specifically, it includes a description of ICE's Watershed Management Agricultural Programme and how farmers…

  9. Consideration for modelling studies of migration of accidentally released radionuclides in a river watershed

    International Nuclear Information System (INIS)

    Concerning radionuclides that might be released in an event of an accident from a nuclear facility, much attention has been paid to the migration pathways including the atmospheric deposition and subsequent inflow to surface water bodies since the Chernobyl nuclear accident in 1986. In European countries, computer-coded systems for predicting the migration including those pathways and providing scientific supports for decision makers to manage the contamination have been developed. This report is a summary of presentations and discussion made at the occasion of the visit of Dr. Monte in order to have directions related to the current subject of research, development of a mathematical model of the behavior of radionuclides in a river watershed. Those presentations and discussions were made at JAERI and also at prominent universities and institutes of Japan involved in this study field. As a result of these discussions, distinct advantages and key issues in use of a mathematical model for prediction of the migration of radionuclides in a river watershed have been identified and analyzed. It was confirmed that the use of mathematical modeling has distinct advantages. Re-arrangement of the existing experimental knowledge on the environment in an ordered way according to a theory (a mathematical model) will lead to a new angle to consider a problem in that environment, despite several gaps in the data array. A model to assess the radionuclide behaviour in contaminated aquatic ecosystems is a basis of decision analysis tools for helping decision-makers to select the most appropriate intervention strategies for the ecosystems. Practical use of a mathematical model and continuous effort in its validation were recognized as crucial. (author)

  10. Field studies of streamflow generation using natural and injected tracers on Bickford and Walker Branch Watersheds

    International Nuclear Information System (INIS)

    Field studies of streamflow generation were undertaken on two forested watersheds, the West Road subcatchment of Bickford Watershed in central Massachusetts and the West Fork of Walker Branch Watershed in eastern Tennessee. A major component of the research was development of a two-stage methodology for the use of naturally-occurring 222Rn as a tracer. The first of the two stages was solving a mass-balance equation for 222Rn around a stream reach of interest in order to calculate Rnq, the 222Rn content of the lateral inflow to the reach; a conservative tracer (chloride) and a volatile tracer (propane) were injected into the study stream to account for lateral inflow to, and volatilization from, the study reach. The second stage involved quantitative comparison of Rnq to the measured 222Rn concentrations of different subsurface waters in order to assess how important these waters were in contributing lateral inflow to the stream reach

  11. Identification and prioritization of critical sub-basins in a highly mountainous watershed using SWAT model

    OpenAIRE

    Asghar Besalatpour; M. Ali Hajabbasi; Shamsolah Ayoubi; Ahmad Jalalian

    2012-01-01

    A few areas in a large watershed might be more critical and responsible for high amount of runoff and soil losses. For an effective and efficient implementation of watershed management practices, identification of these critical areas is vital. In this study, we used the Soil and Water Assessment Tool (SWAT, 2009) to identify and prioritize the critical sub-basins in a highly mountainous watershed with imprecise and uncertain data (Bazoft watershed, southwestern Iran). Three different SWAT mo...

  12. Watershed sediment measurement and sediment transport modeling techniques: Case study to quantify the impact of converting cropland to forested stream buffers on soil loss and water quality at the watershed scale

    Science.gov (United States)

    Watershed models such as the Soil and Water Assessment Tool (SWAT) have been widely used to simulate watershed hydrologic processes and the effect of management, such as agroforestry, on soil and water resources. In order to use model outputs for tasks ranging from aiding policy decision making to r...

  13. Optimal Reoperation of Multi-Reservoirs for Integrated Watershed Management with Multiple Benefits

    Directory of Open Access Journals (Sweden)

    Xinyi Xu

    2014-04-01

    Full Text Available Constructing reservoirs can make more efficient use of water resources for human society. However, the negative impacts of these projects on the environment are often ignored. Optimal reoperation of reservoirs, which considers not only in socio-economic values but also environmental benefits, is increasingly important. A model of optimal reoperation of multi-reservoirs for integrated watershed management with multiple benefits was proposed to alleviate the conflict between water use and environmental deterioration. The social, economic, water quality and ecological benefits were respectively taken into account as the scheduling objectives and quantified according to economic models. River minimum ecological flows and reservoir water levels based on flood control were taken as key constraint conditions. Feasible search discrete differential dynamic programming (FS-DDDP was used to run the model. The proposed model was used in the upstream of the Nanpan River, to quantitatively evaluate the difference between optimal reoperation and routine operation. The results indicated that the reoperation could significantly increase the water quality benefit and have a minor effect on the benefits of power generation and irrigation under different hydrological years. The model can be readily adapted to other multi-reservoir systems for water resources management.

  14. Managing a Watershed Monitoring Project with Innovative Data Telemetry and Communications Software

    Science.gov (United States)

    In collaboration with Clermont County, the U.S. EPA is developing watershed-wide load and transport models to better understand environmental stressors in stream flow and the structure and function of stream ecosystems in the tributaries of the Lower East Fork River. Watershed se...

  15. Sustaining the Earth's Watersheds-Agricultural Research Data System: Data development, user interaction, and operations management

    Science.gov (United States)

    To support the Agricultural Research Service’s Conservation Effects Assessment Project (CEAP) in assessing USDA conservation programs and practices on soil and water quality, a publicly available web-based watershed data system, called Sustaining the Earth’s Watersheds, Agricultural Research Data Sy...

  16. Dam N1 safety review and hydro-technical study of the Trent River watershed

    Energy Technology Data Exchange (ETDEWEB)

    Dumas, Annie; Shallhorn, Mike [AECOM Canada Ltd., (Canada); Roy, Andre [Parks Canada Agency, (Canada); Beland, Jacques [Public Works and Government Services Canada, (Canada)

    2010-07-01

    The Parks Canada Agency (PCA) manages most of the dams located in Canada's National Parks and National Historic Sites. The PCA is responsible for the safe management of all dams it operates. A new PCA dam safety directive applicable to all dams operated or located on PCA property was established in 2009. The 131 dams on the Trent-Severn Waterway in Ontario were covered by this directive. This paper presented the dam safety review carried out by AECOM as a part of the planning and design for major rehabilitation works on Dam N1 in Trenton. The hydrotechnical study of the 12,400 km2 Trent River Watershed is reported. Flood analyses were performed using a statistical approach to estimate peak flood flows for various return periods. A deterministic approach using streamflow synthesis and reservoir routing-USACE (SSARR) evaluated the spring and summer-fall scenarios of probable maximum flood. A comparison between both approaches for determining the PMF was presented.

  17. Determining Watershed Management Efficacy in West Maui: Belt transect surveys of coral demography (adult and juvenile corals) from 2014 to 2015 (NCEI Accession 0137092)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The focus of the Wahikuli-Honokowai Watershed Management Plan is the land use practices and alterations affected in the agricultural and urban districts that have...

  18. Determining Watershed Management Efficacy in West Maui: line-point-intercept and photo quadrat surveys of benthic communities for benthic cover from 2014 to 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The focus of the Wahikuli-Honokowai Watershed Management Plan is the land use practices and alterations affected in the agricultural and urban districts that have...

  19. Determining Watershed Management Efficacy in West Maui: Belt transect surveys of coral demography (adult and juvenile corals) from 2014 to 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The focus of the Wahikuli-Honokowai Watershed Management Plan is the land use practices and alterations affected in the agricultural and urban districts that have...

  20. A Pilot Study of Watershed Flow Using Stable Water Isotopes in Support of the Development of the Lamprey River Watershed (Southeast New Hampshire) as a Hydrologic Observatory

    Science.gov (United States)

    Frades, M.; Davis, J.; Bryce, J.; McDowell, W. H.

    2008-12-01

    The Lamprey River Watershed provides a suite of ecologic, geographic, geologic, and cultural characteristics that together provide an excellent opportunity to establish a convenient, unique, instructive, and informative natural laboratory. Researchers at the University of New Hampshire are establishing the Lamprey River Watershed, located in the seacoast region of New Hampshire, as a long term hydrologic observatory, where the instrumentation, data, and results from multi-disciplinary studies can be integrated to achieve greater understanding of the hydrologic system as a whole.One component of this proposed research is the establishment of a long term record of water isotope data. The results of a 1.5-year pilot study of stable water isotopes in the Headwaters of the Lamprey River Watershed (HLRW) are the focus of this presentation. In order to better understand groundwater flowpaths and residence times within the HLRW, we used stable water isotopes as natural tracers. For the period of June 2006 through October 2007, over 200 total water samples of groundwater, surface water, precipitation, and infiltration were collected and analyzed for stable hydrogen and oxygen isotopes. Based on analysis of isotopic and hydrometric data, the groundwater system is interpreted to be comprised of three distinct but interconnected reservoirs: a shallow groundwater reservoir which does not directly contribute to stream flow at the watershed outlet and has a mean residence time greater than 9 years; a near-surface groundwater reservoir, which is fed by the shallow system, flows through surface water bodies and wetlands with a mean residence time of approximately 1.5 months, and is the primary source of baseflow in the stream network; and a deep groundwater reservoir. The findings have significant implications for the interpretation of biogeochemical mass balance models of the Lamprey River Watershed and ongoing strontium isotope and trace element tracer studies. In a broader sense the results also advance the development of the Lamprey River Watershed as a long term hydrologic observatory.

  1. Streamflow allocation in arid watersheds: a case study in Northwestern China

    Science.gov (United States)

    He, C.; Zhang, L.; Fu, L.; Luo, Y.; Li, L.; DeMarchi, C.

    2012-07-01

    This paper proposes a framework for allocating water resources among the upper, middle, and lower reaches of arid watersheds to meet the multiple demands for water, including rehabilitation of downstream ecosystem. The framework includes: (1) hydrologic simulation of distribution of water resources in the study watershed; (2) development of water allocation criteria; and (3) implementation of the water allocation plan. The advantages of the proposed framework are: (1) spatial integration; (2) multiple objectives; (3) incorporation of local needs through participatory decision making; and (4) dynamic evaluation. The framework was applied to the Heihe watershed, a large inland (terminal lake) watershed with a drainage area of over 128 000 km2 in Northwestern China. Simulation of the daily river flows for the period of 1990-2000 by the Distributed Large Basin Runoff Model shows that Qilian Mountain in the upper reach produced most of the runoff in the watershed, and the increased withdrawals of water for agricultural irrigation, industrial development, and municipal supplies at the middles reach oasis reduced the annual mean discharge by approximately 0.18 × 109 m3 over the simulation period, making the middle reach unable to deliver the mandated amount of 0.95 × 109 m3 water downstream by the State Council, under normal climatic conditions. Changes in land use practices need to be implemented to achieve the mandated water allocation plan. The paper suggests that a participatory watershed planning approach involving multiple stakeholders in the water allocation process be undertaken to address key questions regularly, including how much water should be allocated to what uses and for whom and at what price?

  2. Study Regarding Hydrochemical Classification of the main Lakes from Fizes Watershed (Romania

    Directory of Open Access Journals (Sweden)

    Tania MIHAIESCU

    2010-08-01

    Full Text Available Regarding to the importance of the ponds is noted an increasing interest in Europe, and also an increase of theawareness on the ponds contribution to biodiversity and proper functioning of the watersheds. Although significantprogress was made in establishing generic methodologies of analysis in the purpose of implementing water directive,small water bodies, as lakes and ponds are still insufficient represented. The study area, Fizes watershed, is located inTransylvania Plain, in the northern part of Romania. A distinct characteristic of this watershed is the presence of lakeunits (natural and artificial. Natural lakes and ponds are a polarizing element, which provides identity for the landscapein Fizes watershed, concentrates the majority of settlements in their close vicinity and also represent a support ofeconomical activities development, from agriculture to tourism.The objective of the present work is to discuss the major ion chemistry of the main lakes from Fizes watershed.Chemical classification also throws light on the concentration of various predominant cations, anions and theirinterrelationships. Water lake samples were collected from 11 sampling points covering the area during the years 2007and 2008 and were analyzed for physical-chemical characters. The system of lake units present distinctive physicalchemicalcharacteristics, influenced by local natural conditions, main factors being climate, morphometriccharacteristics of lakes, vegetation by shadowing, factors which together with biological conditions and anthropicinfluences shape the quality conditions of the lake waters. Climatic, hydrological and substrate conditions are reflectedin the resulting water quality. The lakes located in the upper part of the watershed can be included in the bicarbonateclass, while lakes located in the lower part are closer to sulphate waters.

  3. A Validation Study of SWAT in an Urbanizing Multiuse Watershed in the Central U.S

    Science.gov (United States)

    Scollan, D. P.; Hubbart, J. A.

    2009-12-01

    Watershed-scale distributed hydrologic/water quality (H/WQ) models such as the Soil and Water Assessment Tool (SWAT) are increasingly important tools for land managers. They are powerful prediction tools, and are also useful to assess and develop Best Management Practices (BMP) and estimates of Total Maximum Daily Loads (TMDL). A major impediment to successful calibration and validation of H/WQ models is a general lack of distributed monitoring data including discharge, sediment yield and climate data. The current study evaluates SWAT model simulations of water and sediment yield using publically available meteorological and USGS flow data versus simulations developed using comprehensive data sets from a nested network of five hydroclimate stations collecting continuous discharge, sediment and climate data. This work is taking place in the Hinkson Creek Watershed (HCW, 230.8 km2) located in central Missouri. Elevation ranges from 170 m at the outlet to 287 m at the headwaters. Landuse in the upper HCW consists of rural pasture and wooded areas, while the lower HCW contains the city of Columbia. Soils in the upper HCW are characterized as loamy till with a well developed clay pan, and in the lower HCW as thin cherty clay and silty to sandy clay. The transitional climate of Missouri includes influences from winter dominant continental polar air masses, and summer prevalent maritime and continental tropical air masses. Average annual temperature and precipitation are 12.8 °C and 1016 mm, respectively. A USGS streamflow gauge (contributing area 179.5 km2) has been operating from 1966-1981, 1986-1991, and 03/2007 to the present. SWAT model inputs were configured for the HCW using ArcSWAT with six subcatchments corresponding to the contributing areas of each of the five gauge sites and the watershed outlet. Using 2001 National Land Cover Database (NLCD) landuse and State Soil Geographic Database (STATSGO) soils data, the model was parameterized for 26 hydrologic response units. The model was forced with measured climate data from the publically available University of Missouri Sanborn Field meteorological station for the period from January 1, 2000 to December 21, 2008. Simulated discharge was compared to measured discharge at the USGS gauge from March 8, 2007 to December 21, 2008. The simulation yielded R2 values of 0.87 and 0.31 and Nash-Sutcliffe values of 0.81 and 0.29 for monthly and daily flow, respectively. Peak daily flow was 221.2 m3/s and 131.8 m3/s for measured and simulated discharge, respectively. Visual analysis of simulated hydrographs show consistent overestimation of baseflow and leading edge hydrograph discontinuities. Future work will compare current modeling results with model runs developed using data from the distributed hydroclimate station network. Model performance across the continuum of land use, from the forested to urban portion of HCW, will be quantified. This work will supply Central U.S. land managers with improved understanding and tools (i.e. models) for future landuse and development scenarios.

  4. Debris flow run off simulation and verification ? case study of Chen-You-Lan Watershed, Taiwan

    Directory of Open Access Journals (Sweden)

    M.-L. Lin

    2005-01-01

    Full Text Available In 1996 typhoon Herb struck the central Taiwan area, causing severe debris flow in many subwatersheds of the Chen-You-Lan river watershed. More severe cases of debris flow occurred following Chi-Chi earthquake, 1999. In order to identify the potentially affected area and its severity, the ability to simulate the flow route of debris is desirable. In this research numerical simulation of debris flow deposition process had been carried out using FLO-2D adopting Chui-Sue river watershed as the study area. Sensitivity study of parameters used in the numerical model was conducted and adjustments were made empirically. The micro-geomorphic database of Chui-Sue river watershed was generated and analyzed to understand the terrain variations caused by the debris flow. Based on the micro-geomorphic analysis, the debris deposition in the Chui-Sue river watershed in the downstream area, and the position and volume of debris deposition were determined. The simulated results appeared to agree fairly well with the results of micro-geomorphic study of the area when not affected by other inflow rivers, and the trends of debris distribution in the study area appeared to be fairly consistent.

  5. Calibration of SWAT2009 Using Crop Biomass, Evapotranspiration, and Deep Recharge: Calera Watershed in Zacatecas, Mexico Case Study

    OpenAIRE

    Alan J. Verser; Edward T. Kanemasu; Howell, Terry A.; Jean L. Steiner; Jurgen D. Garbrecht; Francisco G. Echavarria-Cháirez; Carlos Bautista-Capetillo; Gowda, Prasanna H.; Daniel N. Moriasi; Francisco Mojarro Dávila; Jose R. Ávila-Carrasco; Kevin Wagner; Jairo Hernandez

    2012-01-01

    Groundwater is the main source of water in the semi-arid Calera watershed, located in the State of Zacatecas, Mexico. Due to increasing population, rapid industrial growth, and increased irrigation to meet growing food demand, groundwater extraction in the Calera watershed are exceeding recharge rates. Therefore, development and evaluation of alter-native water management strategies are needed for sustainable development of the region. The Soil and Water Assessment Tool (SWAT) model was selec...

  6. 2007 Bureau of Land Management (BLM) Lidar: Panther Creek Watershed, Yamhill County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset represents LiDAR elevations acquired during a leaf-off and a leaf-on vegetative condition for the Upper Panther Creek Watershed in the Yamhill County...

  7. High-resolution maps of forest-urban watersheds present an opportunity for ecologists and managers

    Science.gov (United States)

    Dense populations of people and abundant impervious surfaces contribute to poor water quality and increased flooding in forest-urban watersheds. Green infrastructure mitigates these effects, but precisely quantifying benefits is difficult because most land cover maps rely on coar...

  8. 2007 Bureau of Land Management (BLM) Lidar: Panther Creek Watershed, Yamhill County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset represents LiDAR elevations acquired during a leaf-off and a leaf-on vegetative condition for the Upper Panther Creek Watershed in the Yamhill County...

  9. Innovative Approaches for Urban Watershed Management Wet-Weather Flow Management and Control

    Science.gov (United States)

    The overall objective of this project was to identify innovative strategies for managing the effects of wet-weather flow (WWF) control and failing infrastructure in an urban setting. The intent was to establish areas where external information can benefit US Environmental Protec...

  10. Estimation of Urban Growth Impact on River Ecosystems through Remote Sensing and GIS Techniques: A Case Study of the Cahaba Watershed Area

    Science.gov (United States)

    Caliskan, S.; Campbell, K.; Cowart, K.; Foreman, M.; Keyes, D. E.; Olson, J.; Padgett-Vasquez, S.

    2011-12-01

    Landscape transformations are the most widespread and potential threat to watershed ecosystems. Different land transformations such as urbanization, deforestation, and expansion of agricultural areas impact land cover, hydrology, and terrestrial and aquatic linkages in the watershed. The Cahaba River, located in Alabama, is among the most biologically diverse rivers in North America, and supplies water to 20% of Alabama residents. The largest metropolitan area in Alabama, the city of Birmingham, is found within the upper sub-watersheds of the Cahaba River watershed. As the city and its population grow there has also been an increase in environmental concern over the recent declines of aquatic species, a rise in endangered wildlife, and issues of water quality, in particular surface runoff and sedimentation. The main objective of this research is to assess the land use and land cover changes and their impacts on the biodiversity and different aquatic habitat species on the Cahaba Watershed. To investigate the land cover changes, LandSAT 5 TM scenes from 2001, 2006 and 2010 were used to derive vegetation cover changes and apply spatio-temporal analyses. The second objective of the study is to establish a GIS model to integrate the social and physical factors impacting the biodiversity with remotely sensed data. The final objective is to apply statistical analyses to investigate the habitat degradation with results of the GIS model. Findings and end products will be vital to policy makers for the Cahaba River Society, City of Birmingham, and Alabama Department of Environmental Management in development of conservation strategies and new land-use plans pertaining to the Cahaba River watershed.

  11. Using ion-exchange resins to study soil response to experimental watershed acidification.

    Science.gov (United States)

    Szillery, Johanna E; Fernandez, Ivan J; Norton, Stephen A; Rustad, Lindsey E; White, Alan S

    2006-05-01

    Ion-exchange resins (IER) offer alternative approaches to measuring ionic movement in soils that may have advantages over traditional approaches in some settings, but more information is needed to understand how IER compare with traditional methods of measurement in forested ecosystems. At the Bear Brook Watershed in Maine (BBWM), one of two paired, forested watersheds is treated bi-monthly with S and N (28.8 and 25.2kg ha(-1)yr(-1) of S and N, respectively). Both IER and ceramic cup tension lysimeters were used to study soil solution responses after approximately 11 years of treatment. Results from both methods showed treatments resulted in the mobilization of base cations and Al, and higher SO(4)-S and inorganic N in the treated watershed. Both methods indicated similar differences in results associated with forest type (hardwoods versus softwoods), a result of differences in litter quality and atmospheric aerosol interception capacity. The correlation between lysimeter and IER data for individual analytes varied greatly. Significant correlations were evident for Na (r=0.75), Al (r=0.65), Mn (r=0.61), Fe (r=0.57), Ca (r=0.49), K (r=0.41) and NO(3)-N (r=0.59). No correlation was evident between IER and soil solution data for NH(4)-N and Pb. Both IER and soil solution techniques suggested similar interpretations of biogeochemical behavior in the watershed. PMID:16779603

  12. Hydrogeologic and Hydrochemical Studies in a Semi-arid Watershed in Northern Mexico

    Science.gov (United States)

    Kretzschmar, T.; Vazquez, R.; Hinojosa, A.

    2006-12-01

    Within the Baja California panhandle exist quite a significant number of valleys which hydrogeology conditions are of great importance for the communities of the region. The Guadalupe Valley for example, located 30 km Northeast of Ensenada, hosts an important wine industry which presents a mayor factor for agriculture and tourism in Baja California. The irrigation is carried out basically by groundwater extracted from quaternary sediments filling this post-Miocene depression. Besides the intensive usage of the water by the wine industry in the Guadalupe Valley, the local waterworks installed in 1985 a gallery of 10 wells extracting around 320 l/s or 30 % of the total water extraction in the valley to supply the city of Ensenada with drinking water. A total of more than 500 wells with a combined annual consumption of about 28 Mio m3 are at the moment active in the valley. In the arid portions of northern Mexico Mountain front recharge presents an important recharge source for the alluvial aquifers. Other important sources directly related to precipitation are direct infiltration, recharge by surface water runoff in the arroyos as well as by active fault systems. The principal recharge sources for the Guadalupe Valley aquifer are the Sierra Juárez and the Guadalupe River. To be able to address the state of equilibrium of aquifer, recharge estimates for the watershed were calculated determining the runoff/infiltration relationships obtained by curve number determinations combined with the interpretation of satellite images. These results were integrated into an evaluation and hydrologic modeling of the hydrologic data pointing towards differences of up to over 50 percent in the recharge estimation in comparison to earlier studies carried out in the area. Furthermore hydrochemical and isotopic studies were carried out to show the effects of the excessive ground water extraction on the water quality of the aquifer. The hydrochemical data indicate that intense use of the water resource leads to a degradation of the water quality of the aquifer basically being reflected by an increase in sulfates, sodium and chloride. Combining the results with the hydrologic data and modeling it was possible outline high impact zones with steep water level drops of up to 15 m and high water quality deterioration as well as low impact zones with shallow water level fluctuation less tan on meter and stable water quality. These results will finally lead to a proposal how to guide the Guadalupe watershed towards a sustainable management of the aquifer.

  13. Impact of Integrated Watershed Management on Complex Interlinked Factors Influencing Health: Perceptions of Professional Stakeholders in a Hilly Tribal Area of India.

    Science.gov (United States)

    Nerkar, Sandeep S; Tamhankar, Ashok J; Johansson, Eva; Lundborg, Cecilia Stålsby

    2016-01-01

    Lack of access to water has a significant impact on the health of people in tribal areas, where water in households as well as for productive purposes is essential for life. In resource-limited settings such as hilly tribal areas, implementation of an integrated watershed management programme (IWMP) can have a significant impact on public health by providing a solution to water scarcity and related problems. The professional stakeholders in rural healthcare and development administration are important pillars of the system that implements various programmes and policies of government and non-government organizations, and act as facilitators for the improvement of public health in tribal areas. Information about the perceptions of these stakeholders on public health implications of the integrated watershed management programme is important in this context. A qualitative study was conducted using face to face semi-structured interviews and focus group discussions (FGDs) with stakeholders involved in healthcare provision, education and development administration. The transcripts of interviews and FGDs were analyzed using manifest and latent content analysis. The perceptions and experiences shared by healthcare and development administration stakeholders suggest that implementation of IWMP in tribal areas helps efficient water and agriculture management, which results in improved socio-economic conditions that lead to positive health outcomes. PMID:26959039

  14. Impact of over-exploitation on groundwater quality: A case study from WR-2Watershed, India

    Indian Academy of Sciences (India)

    Anil M Pophare; Bhushan R Lamsoge; Yashwant B Katpatal; Vijay P Nawale

    2014-10-01

    The WR-2 watershed is located in the Deccan trap basaltic terrain of Maharashtra State, India. The watershed area incorporates a rich orange orchard belt that requires a huge quantity of water for irrigation. This requirement is mostly met through groundwater, extracted from the shallow aquifers of the WR-2 watershed. However, over the years, excess withdrawal of groundwater from these aquifers has resulted in depletion of groundwater level. The declining trends of groundwater level, both long term and short term, have had a negative impact on the groundwater quality of the study area. This effect can be gauged through the rising electrical conductivity (EC) of groundwater in the shallow aquifers (dug wells) of the WR-2 watershed. It is observed that the long term declining trend of groundwater level, during 1977–2010, varied from 0.03 to 0.04 m per year, whereas the corresponding trend of rising EC varied from 1.90 to 2.94 S/cm per year. During 2007–2010, about 56% dug wells showed a positive correlation between depleting groundwater level and rising EC values. The groundwater level depletion during this period ranged from 0.03 to 0.67 m per year, whereas the corresponding trend of rising EC ranged from 0.52 to 46.91 S/cm per year. Moreover, the water quality studies reveal that groundwater from more than 50% of the dug wells of the WR-2 watershed is not suitable for drinking purpose. The groundwater, though mostly suitable for irrigation purpose, is corrosive and saturated with respect to mineral equilibrium and shows a tendency towards chemical scale formation.

  15. Ecosystem services valuation to support decisionmaking on public lands—A case study of the San Pedro River watershed, Arizona

    Science.gov (United States)

    Bagstad, Kenneth J.; Semmens, Darius; Winthrop, Rob; Jaworksi, Delilah; Larson, Joel

    2012-01-01

    This report details the findings of the Bureau of Land Management–U.S. Geological Survey Ecosystem Services Valuation Pilot Study. This project evaluated alternative methods and tools that quantify and value ecosystem services, and it assessed the tools’ readiness for use in the Bureau of Land Management decisionmaking process. We tested these tools on the San Pedro River watershed in northern Sonora, Mexico, and southeast Arizona. The study area includes the San Pedro Riparian National Conservation Area (managed by the Bureau of Land Management), which has been a focal point for conservation activities and scientific research in recent decades. We applied past site-specific primary valuation studies, value transfer, the Wildlife Habitat Benefits Estimation Toolkit, and the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) and Artificial Intelligence for Ecosystem Services (ARIES) models to value locally important ecosystem services for the San Pedro River watershed—water, carbon, biodiversity, and cultural values. We tested these approaches on a series of scenarios to evaluate ecosystem service changes and the ability of the tools to accommodate scenarios. A suite of additional tools were either at too early a stage of development to run, were proprietary, or were place-specific tools inappropriate for application to the San Pedro River watershed. We described the strengths and weaknesses of these additional ecosystem service tools against a series of evaluative criteria related to their usefulness for Bureau of Land Management decisionmaking. Using these tools, we quantified gains or losses of ecosystem services under three categories of scenarios: urban growth, mesquite management, and water augmentation. These results quantify tradeoffs and could be useful for decisionmaking within Bureau of Land Management district or field offices. Results are accompanied by a relatively high level of uncertainty associated with model outputs, valuation methods, and discount rates applied. Further guidance on representing uncertainty and applying uncertain results in decisionmaking would benefit both tool developers and those offices in using ecosystem services to compare management tradeoffs. Decisionmakers and Bureau of Land Management managers at the State-, district-, and field-office level would also benefit from continuing model improvements, training, and guidance on tool use that can be provided by the U.S. Geological Survey, the Bureau of Land Management, and the Department of the Interior. Tradeoffs were identified in the level of effort needed to parameterize and run tools and the amount and quality of information they provide to the decision process. We found the Wildlife Habitat Benefits Estimation Toolkit, Ecosystem Services Review, and United Nations Environment Programme–World Conservation Monitoring Centre Ecosystem Services Toolkit to be immediately feasible for application by the Bureau of Land Management, given proper guidance on their use. It is also feasible for the Bureau of Land Management to use the InVEST model, but in early 2012 the process of parameterizing the model required resources and expertise that are unlikely to be available in most Bureau of Land Management district or field offices. Application of past primary valuation is feasible, but developing new primary-valuation studies is too time consuming for regular application. Value transfer approaches (aside from the Wildlife Habitat Benefits Estimation Toolkit) are best applied carefully on the basis of guidelines described in this report, to reduce transfer error. The ARIES model can provide useful information in regions modeled in the past (Arizona, California, Colorado, and Washington), but it lacks some features that will improve its usability, such as a generalized model that could be applied anywhere in the United States. Eleven other tools described in this report could become useful as the tools more fully develop, in high-profile cases for which additional resources are available for tool application or in case-st

  16. Planning of water resources management and pollution control for Heshui River watershed, China: A full credibility-constrained programming approach.

    Science.gov (United States)

    Zhang, Y M; Huang, G; Lu, H W; He, Li

    2015-08-15

    A key issue facing integrated water resources management and water pollution control is to address the vague parametric information. A full credibility-based chance-constrained programming (FCCP) method is thus developed by introducing the new concept of credibility into the modeling framework. FCCP can deal with fuzzy parameters appearing concurrently in the objective and both sides of the constraints of the model, but also provide a credibility level indicating how much confidence one can believe the optimal modeling solutions. The method is applied to Heshui River watershed in the south-central China for demonstration. Results from the case study showed that groundwater would make up for the water shortage in terms of the shrinking surface water and rising water demand, and the optimized total pumpage of groundwater from both alluvial and karst aquifers would exceed 90% of its maximum allowable levels when credibility level is higher than or equal to 0.9. It is also indicated that an increase in credibility level would induce a reduction in cost for surface water acquisition, a rise in cost from groundwater withdrawal, and negligible variation in cost for water pollution control. PMID:25897733

  17. Empirical streamflow simulation for water resource management in data-scarce seasonal watersheds

    Science.gov (United States)

    Shortridge, J. E.; Guikema, S. D.; Zaitchik, B. F.

    2015-10-01

    In the past decade, certain methods for empirical rainfall-runoff modeling have seen extensive development and been proposed as a useful complement to physical hydrologic models, particularly in basins where data to support process-based models is limited. However, the majority of research has focused on a small number of methods, such as artificial neural networks, despite the development of multiple other approaches for non-parametric regression in recent years. Furthermore, this work has generally evaluated model performance based on predictive accuracy alone, while not considering broader objectives such as model interpretability and uncertainty that are important if such methods are to be used for planning and management decisions. In this paper, we use multiple regression and machine-learning approaches to simulate monthly streamflow in five highly-seasonal rivers in the highlands of Ethiopia and compare their performance in terms of predictive accuracy, error structure and bias, model interpretability, and uncertainty when faced with extreme climate conditions. While the relative predictive performance of models differed across basins, data-driven approaches were able to achieve reduced errors when compared to physical models developed for the region. Methods such as random forests and generalized additive models may have advantages in terms of visualization and interpretation of model structure, which can be useful in providing insights into physical watershed function. However, the uncertainty associated with model predictions under climate change should be carefully evaluated, since certain models (especially generalized additive models and multivariate adaptive regression splines) became highly variable when faced with high temperatures.

  18. Empirical streamflow simulation for water resource management in data-scarce seasonal watersheds

    Directory of Open Access Journals (Sweden)

    J. E. Shortridge

    2015-10-01

    Full Text Available In the past decade, certain methods for empirical rainfall–runoff modeling have seen extensive development and been proposed as a useful complement to physical hydrologic models, particularly in basins where data to support process-based models is limited. However, the majority of research has focused on a small number of methods, such as artificial neural networks, despite the development of multiple other approaches for non-parametric regression in recent years. Furthermore, this work has generally evaluated model performance based on predictive accuracy alone, while not considering broader objectives such as model interpretability and uncertainty that are important if such methods are to be used for planning and management decisions. In this paper, we use multiple regression and machine-learning approaches to simulate monthly streamflow in five highly-seasonal rivers in the highlands of Ethiopia and compare their performance in terms of predictive accuracy, error structure and bias, model interpretability, and uncertainty when faced with extreme climate conditions. While the relative predictive performance of models differed across basins, data-driven approaches were able to achieve reduced errors when compared to physical models developed for the region. Methods such as random forests and generalized additive models may have advantages in terms of visualization and interpretation of model structure, which can be useful in providing insights into physical watershed function. However, the uncertainty associated with model predictions under climate change should be carefully evaluated, since certain models (especially generalized additive models and multivariate adaptive regression splines became highly variable when faced with high temperatures.

  19. Evaluating Coupled Human-Hydrologic Systems in High Altitude Regions: A Case Study of the Arun Watershed, Eastern Nepal

    Science.gov (United States)

    Voss, K.; Bookhagen, B.; Tague, C.; Lopez-Carr, D.

    2014-12-01

    The Himalaya exhibit dynamic ecological, hydrological, and climatic extremes that magnify the variability and extent of natural hazards, resulting in destruction to both physical and human landscapes. Coupled with poverty, these factors intensify local communities' vulnerability to climate change. This study highlights the Arun watershed in eastern Nepal as a case study to evaluate how local communities in high altitude regions are managing their water for domestic and agricultural needs while coping with extreme events, such as floods and landslides. Remotely-sensed precipitation, snowpack and glacial extent data from the past decade are combined with preliminary results from extensive field-based community surveys in the Arun watershed. The analysis of remotely-sensed data will describe seasonal trends in water availability, glacial lake growth, and the spatial variation of these trends within the basin. These hydrologic changes will be linked to the human survey analysis, which will provide an understanding of locals' perceptions of water challenges and the current water management strategies within the basin. Particular attention will be given to a comparison between the eastern and western tributaries of the Arun River, where the catchments are mainly rain-fed (eastern) versus glacial-fed (western). This contrast will highlight how different hydrologic scenarios evidenced from remote-sensing data motivate diverse human water management responses as defined in field surveys. A particular focus will be given to management decisions related to agriculture expansion and hydropower development. This synthesis of remote-sensing and social research methodologies provides a valuable perspective on coupled human-hydrologic systems.

  20. A framework model for investigating the export of phosphorus to surface waters in forested watersheds: Implications to management.

    Science.gov (United States)

    Santos, R M B; Sanches Fernandes, L F; Pereira, M G; Cortes, R M V; Pacheco, F A L

    2015-12-01

    The present study was developed in four sub-basins of rivers Cávado and Douro, located in the North of mainland Portugal. The goal was to identify main stressors as well as driving and attenuating processes responsible for the presence of phosphorus in masses of surface water in those catchments. To accomplish the goal, the basins were selected where a quality station was present at the outlet, the forest occupation was greater than 75% and the phosphorus concentrations have repeatedly exceeded the threshold for the good ecological status in the period 2000-2006. Further, in two basins the quality station was installed in a lotic (free-flow water) environment whereas in the other two was placed in a lentic (dammed water) environment. The ArcMap GIS-based software package was used for the spatial analysis of stressors and processes. The yields of phosphorus vary widely across the studied basins, from 0.2-30 kg·ha(-1)·yr(-1). The results point to post-fire soil erosion and hardwood clear cuttings as leading factors of phosphorus exports across the watersheds, with precipitation intensity being the key variable of erosion. However, yields can be attenuated by sediment deposition along the pathway from burned or managed areas to water masses. The observed high yields and concentrations of phosphorus in surface water encompass serious implications for water resources management in the basins, amplified in the lentic cases by potential release of phosphorus from lake sediments especially during the summer season. Therefore, a number of measures were proposed as regards wildfire combat, reduction of phosphorus exports after tree cuts, attenuation of soil erosion and improvement of riparian buffers, all with the purpose of preventing phosphorus concentrations to go beyond the regulatory good ecological status. PMID:26225737

  1. Study of the relationship between runoff, rainfall and evaporation watershed in the southern zone of the Mediterranean (case of Algeria)

    International Nuclear Information System (INIS)

    Water resources in Algeria are not distributed evenly inspace and time that engenders enormous difficulties for their mobilization. Water shortage is becoming a major problem. A number of regions already suffers from water deficiency and the others will soon follow. To solve this problem, the construction of new dams becomes indispensable. Through the hydrological studies and the exploitation of future dams, the evaluation of wateryield in sites of these structures is indispensable. At present, the calculation of the interannual runoff in absence of data for the not gauged watercourse is determined from empirical formulae established especially for the climatic and geographical conditions of Algeria. Unfortunately, all these formulas do not provide accurate results.Watersheds which were used in the study represent almost the entire surface of Northern Algeria whose number is 106 basins.The objective of the present study is to establish working tools, allowing the planners and the managers to determine the value of the interannual runoff of watershed for the climatic conditions of Algeria without going through the empirical formulae often used in the absence of measurable dataand leading to absurd errors.The calculation parameters for interannual runoff from the proposed model are standard meteorological data (air temperature, humidity and pluviometry), always available and periodically broadcastedby meteorological services and hydrology of Algeria. Runoff values calculated by the model are close to the values of measured runoff.The difference between them didnot exceed 15 to 20%. (author)

  2. Watershed Restoration Project

    Energy Technology Data Exchange (ETDEWEB)

    Julie Thompson; Betsy Macfarlan

    2007-09-27

    In 2003, the U.S. Department of Energy issued the Eastern Nevada Landscape Coalition (ENLC) funding to implement ecological restoration in Gleason Creek and Smith Valley Watersheds. This project was made possible by congressionally directed funding that was provided through the US Department of Energy, Energy Efficiency and Renewable Energy, Office of the Biomass Program. The Ely District Bureau of Land Management (Ely BLM) manages these watersheds and considers them priority areas within the Ely BLM district. These three entities collaborated to address the issues and concerns of Gleason Creek and Smith Valley and prepared a restoration plan to improve the watersheds’ ecological health and resiliency. The restoration process began with watershed-scale vegetation assessments and state and transition models to focus on restoration sites. Design and implementation of restoration treatments ensued and were completed in January 2007. This report describes the restoration process ENLC undertook from planning to implementation of two watersheds in semi-arid Eastern Nevada.

  3. Land use change for flood protection: A prospective study for the restoration of the river Jelašnica watershed

    Directory of Open Access Journals (Sweden)

    Risti? Ratko

    2011-01-01

    Full Text Available Serbia’s hilly-mountainous regions are extremely vulnerable to flooding as a consequence of their natural characteristics and human impacts. Land mismanagement influences the development of erosion processes, and causes soil degradation that significantly reduces the land’s capacity to infiltrate and retain rainwater. Inappropriate land use as well as development activities replace permeable with impervious surfaces in the watershed. This leads to more rapid runoff generation and the more frequent appearance of torrential floods and bed-load deposits on downstream sections. Environmental degradation creates economicsocial problems within local societies which is often followed by depopulation. Restoring watersheds to their optimal hydrologic state would reduce flood discharge and by increasing groundwater recharge would increase both low-flow and average discharges in springs and streams. Best management practices could be developed through the application of specific combinations of biotechnical, technical and administrative measures, and by using the concept of ?natural reservoirs?. The design of such practices is explored through a case study of the watershed of the river Jelašnica, southeastern Serbia. Realization of these planned restoration works should help decrease the annual yields of erosive material by 44.1% and the specific annual transport of sediment through hydrographic network by 43.6%. Representative value of the coefficient of erosion will be reduced from Z=0.555 to Z=0.379. The value of maximal discharge Qmax-AMCIII (1%=54.17 m3•s-1, before restoration, is decreased to Qmax-AMCIII (1%=41.22 m3•s-1 after restoration, indicating the improvement of hydrological conditions, as a direct consequence of land use changes. Administrative measures are applied through ?Plans for announcement of erosive regions and protection from torrential floods in the territory of Leskovac municipality?.

  4. Isotopic study of the upper watershed of the Rio Abancan (Province of Catamarca, Argentina)

    International Nuclear Information System (INIS)

    The upper watershed of the Rio Abaucan drains the main part of the water resources of a semi arid area in the northern Argentine Andes. An isotopic study of the flow pattern has been undertaken within the lack of relevant hydrological and hydrogeological data. Oxygen 18, deuterium and tritium data suggest that snow is not contributing to the recharge of the aquifers. The storage of the alluvial deposits capacity appears to be low. The working hypotheses drawn out from this study indicate that such a kind of study could be done in a systematic way in order to prospect the resources of the andine watersheds. In a more general way, the interest of the isotopic methodology in areas where few data are available and where the environmental isotope labelling is large, these are often the same, must be underlined

  5. Evaluation of Periodical Changes in Plant Biodiversity Indices- A Case Study of Zanjanroud Watershed, Iran

    Directory of Open Access Journals (Sweden)

    Nooshin Mardani

    2014-12-01

    Full Text Available Investigation of relationships between plant communities and environmental factors is among the most important, complex issues associated with management of natural resources and environment. Land use changes, soil degradation and erosion, loss of soil-water balance and over exploitation of plant resources have led to drastic changes in plant biodiversity. In the present study, one of the important components of biodiversity (alpha diversity index was investigated at local scale. For this purpose, the most important environmental factors affecting the natural growth and distribution of plant communities in Zanjanroud Watershed were initially investigated. Accordingly, satellite images, statistics and GIS maps of the study area were applied to analyze the impact of the environmental factors on biodiversity indices. Accordingly, SPSS software was used to investigate correlations among the studied variables. The obtained results indicated that there is a statistically significant regression between the data on species diversity indices as well as uniformity in the study area during the research periods. As the findings suggest, based on Shannon Index, the species diversity has been declined from 3.12 to 2.73 with a statistically significant difference of 5% during the investigated period of 23 years. Likewise, Pielou's uniformity index has been decreased from 0.92 to 0.82 with a statistically significant difference of 5% and based on Menhinick Index; the species richness has been declined from 0.21 to 0.16. Among the reasons affecting the deterioration can be pointed to land use changes from pristine areas to farmlands, overexploitation of rangeland areas and some environmental characteristics including climate change especially precipitation changes in the research period.

  6. Impact of non-livelihood-based land management on land resources: the case of upland watersheds in Uporoto Mountains, South West Tanzania.

    Science.gov (United States)

    Mwanukuzi, Phillip K

    2011-01-01

    Various land management strategies are used to prevent land degradation and keep land productive. Often land management strategies applied in certain areas focus on the context of the physical environment but are incompatible with the social environment where they are applied. As a result, such strategies are ignored by land users and land degradation becomes difficult to control. This study observes the impacts of land management in the upland watersheds of the Uporoto Mountains in South West Tanzania. In spite of various land management practices used in the area, 38% of the studied area experienced soil fertility loss, 30% gully erosion, 23% soil loss, 6% biodiversity loss and drying up of river sources. Land management methods that were accepted and adopted were those contributing to immediate livelihood needs. These methods did not control land resource degradation, but increased crop output per unit of land and required little labour. Effective methods of controlling land degradation were abandoned or ignored because they did not satisfy immediate livelihood needs. This paper concludes that Integrating poor people's needs would transform non-livelihood-based land management methods to livelihood-based ones. Different ways of transforming these land management methods are presented and discussed. PMID:21560271

  7. Organochlorine pesticides in soils around watersheds of Beijing reservoirs: a case study in Guanting and Miyun Reservoirs.

    Science.gov (United States)

    Hu, Wenyou; Lu, Yonglong; Wang, Guang; Wang, Tieyu; Luo, Wei; Shi, Yajuan; Zhang, Xiang; Jiao, Wentao

    2009-06-01

    A systematic survey of organochlorine pesticides (OCPs) residues in soils around reservoirs that supply water to Beijing, China, has been lacking. 104 representative surface soil samples were collected around Guanting Reservoir (GTR) and Miyun Reservoir (MYR) in Beijing watershed to characterize concentrations and sources of organochlorine pesticides, hexachlorocyclohexane (HCH) and dichlorodiphenyltrichloroethane (DDT). Compared with other studies of OCPs in soils and with the Chinese environmental quality standard for soil, the concentrations of OCP were relatively lower in soils around the watershed. The results indicated that past agricultural application of OCPs was the major source of OCP residues in the watershed. PMID:19280094

  8. GIS-Based Model to Assess Erosion Sensitivity in Northern Morocco. Laou Watershed Case Study

    OpenAIRE

    Roberto Passalacqua; M. Maâtouk; Abdelkrim El Arrim; Lamiae Khali Issa; Ahmed Raissouni

    2012-01-01

    This application on the Laou watershed represents the first part of study results that concerns the development of a model for mapping soil susceptibility at a regional scale in northern Morocco using spatial databases and geographic information systems (GIS). The model uses qualitative decision rules and hierarchical organization of data represented by different thematic maps. Those laters are derived from input erosion parameters which are coded according to their sensitivity to water erosi...

  9. Groundwater quality in the Upper Santa Ana Watershed study unit, California

    Science.gov (United States)

    Kent, Robert; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The Upper Santa Ana Watershed is one of the study units being evaluated.

  10. Soil Erosion Prediction Using GIS and RUSLE: Study at Sampean Watershed

    OpenAIRE

    Arif Faisol; Indarto

    2010-01-01

    Erosionis one factor that cause soil degradation in Indonesia. RUSLE (Revised Universal Soil Loss Equation) is widely usedto predict average annual rate of soil erosion. This research integrate the Revised Universal Soil Loss Equation(RUSLE) and Geographic Information System (GIS) to predict potential soil erosion losses. Study was conducted atSampean Watershed where located in Eastern part of East Java. Firstly, GIS layer was obtained from available databasethat cover East Java Province. All...

  11. Environmental baseline study of the Huron River Watershed, Baraga and Marquette Counties, Michigan

    Science.gov (United States)

    Woodruff, Laurel G.; Weaver, Thomas L.; Cannon, William F.

    2010-01-01

    This report summarizes results of a study to establish water-quality and geochemical baseline conditions within a small watershed in the Lake Superior region. In 2008, the U.S. Geological Survey (USGS) completed a survey of water-quality parameters and soil and streambed sediment geochemistry of the 83 mi2 Huron River Watershed in the Upper Peninsula of Michigan. Streamflow was measured and water-quality samples collected at a range of flow conditions from six sites on the major tributaries of the Huron River. All water samples were analyzed for a suite of common ions, nutrients, and trace metals. In addition, water samples from each site were analyzed for unfiltered total and methylmercury once during summer low-flow conditions. Soil samples were collected from 31 sites, with up to 4 separate samples collected at each site, delineated by soil horizon. Streambed sediments were collected from 11 sites selected to cover most of the area drained by the Huron River system. USGS data were supplemented with ecological assessments completed in 2006 by the Michigan Department of Environmental Quality using a modified version of their Great Lakes Environmental Assessment Section procedure 51, and again during 2008 using volunteers under supervision of the Michigan Department of Natural Resources. Results from this study define a hydrological, geological, and environmental baseline for the Huron River Watershed prior to any significant mineral exploration or development. Results from the project also serve to refine the design of future regional environmental baseline studies in the Lake Superior Basin.

  12. Field studies of streamflow generation using natural and injected tracers on Bickford and Walker Branch Watersheds

    Energy Technology Data Exchange (ETDEWEB)

    Genereux, D.; Hemond, H. (Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Civil Engineering); Mulholland, P. (Oak Ridge National Lab., TN (United States))

    1992-05-01

    Field studies of streamflow generation were undertaken on two forested watersheds, the West Road subcatchment of Bickford Watershed in central Massachusetts and the West Fork of Walker Branch Watershed in eastern Tennessee. A major component of the research was development of a two-stage methodology for the use of naturally-occurring {sup 222}Rn as a tracer. The first of the two stages was solving a mass-balance equation for {sup 222}Rn around a stream reach of interest in order to calculate Rn{sub q}, the {sup 222}Rn content of the lateral inflow to the reach; a conservative tracer (chloride) and a volatile tracer (propane) were injected into the study stream to account for lateral inflow to, and volatilization from, the study reach. The second stage involved quantitative comparison of Rn{sub q} to the measured {sup 222}Rn concentrations of different subsurface waters in order to assess how important these waters were in contributing lateral inflow to the stream reach.

  13. Estudo da bacia hidrográfica da barragem "Monjolinho" A study of the earth dam "monjolinho" watershed

    Directory of Open Access Journals (Sweden)

    G. B. Barreto

    1962-01-01

    Full Text Available Os autores estudam a bacia hidrográfica da barragem "Monjolinho". notadamente a velocidade de assoreamento. São descritas as características físicas da bacia, baseadas no levantamento planialtimétrico da área. Descrevem também, o tipo de solo e a cobertura vegetal encontrados no local, bem como as alterações ocorridas na bacia de inundação e no talude de montante do atêrro, após período de 7 anos de funcionamento do açude.In this paper the authors present the study of the "Monjolinho" earth dam watershed with particular reference of its silting problem. The physical characteristics of the watershed, based on a plane - altimetric survey, are presented. A description of the soil type, vegetative cover, as well as of the changes that took place in the reservoir flood and in the upstream side slope after 7 years of use is given.

  14. Managing manure for sustainable livestock production in the Chesapeake Bay Watershed

    Science.gov (United States)

    Manure presents one of the greatest challenges to livestock operations in the Chesapeake Bay Watershed. The Chesapeake Bay is threatened by excessive nutrient loadings and, according to the U.S. Environmental Protection Agency, manure is the source of 18% of the nitrogen and 27% of the phosphorus en...

  15. Methodology for a stormwater sensitive urban watershed design

    Science.gov (United States)

    Romnée, Ambroise; Evrard, Arnaud; Trachte, Sophie

    2015-11-01

    In urban stormwater management, decentralized systems are nowadays worldwide experimented, including stormwater best management practices. However, a watershed-scale approach, relevant for urban hydrology, is almost always neglected when designing a stormwater management plan with best management practices. As a consequence, urban designers fail to convince public authorities of the actual hydrologic effectiveness of such an approach to urban watershed stormwater management. In this paper, we develop a design oriented methodology for studying the morphology of an urban watershed in terms of sustainable stormwater management. The methodology is a five-step method, firstly based on the cartographic analysis of many stormwater relevant indicators regarding the landscape, the urban fabric and the governance. The second step focuses on the identification of many territorial stakes and their corresponding strategies of a decentralized stormwater management. Based on the indicators, the stakes and the strategies, the third step defines many spatial typologies regarding the roadway system and the urban fabric system. The fourth step determines many stormwater management scenarios to be applied to both spatial typologies systems. The fifth step is the design of decentralized stormwater management projects integrating BMPs into each spatial typology. The methodology aims to advise urban designers and engineering offices in the right location and selection of BMPs without given them a hypothetical unique solution. Since every location and every watershed is different due to local guidelines and stakeholders, this paper provide a methodology for a stormwater sensitive urban watershed design that could be reproduced everywhere. As an example, the methodology is applied as a case study to an urban watershed in Belgium, confirming that the method is applicable to any urban watershed. This paper should be helpful for engineering and design offices in urban hydrology to define a sustainable and decentralized stormwater management plan and redaction of performance standards at the watershed scale. The method applied in this paper toggles the decentralized stormwater approach from a common experimental point of view to an oriented problem-solution point of view.

  16. Preliminary hydrologic budget studies, Indian Creek watershed and vicinity, Western Paradox Basin, Utah

    International Nuclear Information System (INIS)

    Preliminary quantitative estimates of ground-water discharge into the Colorado River System in the western Paradox Basin were prepared on the basis of existing climatological and streamflow records. Ground-water outflow to the river was deduced as a residual from hydrologic budget equations for two different study areas: (1) the region between gaging stations at Cisco, Green River, and Hite, Utah; and (2) the Indian Creek watershed. An empirical correlation between recharge rates and precipitation amounts derived for several basins in eastern Nevada was applied to estimate recharge amounts for the Indian Creek watershed. A simple Darcian flow model was then used to approximate the ground-water flux outward from the watershed for comparison. Salinity measurements in the Colorado River were also used to approximate ground-water outflow to a river reach in Cataract Canyon in order to provide another comparison with the hydrologic budget results. Although these estimates should be considered only gross approximations, all approaches used provide values of ground-water outflow that are much less than estimates of similar parameters provided by the US Geological Survey in recent hydrologic reconnaissance reports. Estimates contained herein will be refined in future numerical modeling and data collection studies

  17. Differences in Net Ecosystem Exchange for an intensely managed watershed using a lumped, regional model and a mechanistic, hillslope-scale model

    Science.gov (United States)

    Wilson, C. G.; Wacha, K.; Papanicolaou, T.; Stanier, C. O.; Jamroensan, A.

    2014-12-01

    In this study, Net Ecosystem Exchange (NEE), and its components Gross Ecosystem Exchange (GEE) and Ecosystem Respiration (RESP), were compared from a lumped, regional model and a mechanistic, hillslope-scale model to determine if the effects of land management on the carbon cycle are captured by larger-scale biosphere models that determine CO2 sources and sinks. WRF-VPRM (Weather Research & Forecasting - Vegetation Photosynthesis & Respiration Model) is a regional-scale model that uses simulated downward shortwave radiation and surface temperatures, along with satellite-derived land cover indices and eddy flux tower-derived parameters to estimate biosphere CO2 fluxes with empirical equations. The DAYCENT biogeochemical model coupled with the Watershed Erosion Prediction Project model (WEPP), which simulates changes in soil carbon stocks due to different land management and the resulting enhanced erosion, can also quantify biosphere CO2 fluxes. Both models (i.e., WRF-VPRM and WEPP-DAYCENT) were used to quantify GEE, RESP, and NEE for the summer of 2008 in the IML-CZO Clear Creek watershed of the U.S. Midwest to examine the role of land management heterogeneity in CO2 exchanges between the biosphere and atmosphere. Comparing average daily GEE rates from WRF-VPRM (-11.0 ± 5.2 g C/m2/d) with WEPP-DAYCENT average values weighted per land use area in the watershed (-10.2 ± 1.5 g C/m2/d) showed no significant differences (t-test; p=0.08). In contrast, daily RESP values were different between the two models. Daily respiration rates were relatively constant for WRF-VPRM (6.0 ± 0.8 g C/m2/d), while WEPP-DAYCENT values for each management practice were significantly greater (7.2 ± 1.8 g C/m2/d; t-test, peffects of land management and net erosion/deposition on total SOC stocks and tillage impacts on respiration by increasing decomposition from the breaking of soil aggregates and enhanced mineralization. In WRF-VPRM, respiration is calculated with a regression equation based on air temperature. As a result, comparison of average daily NEE rates from WRF-VPRM (-5.0 ± 5.3 g C/m2/d) with WEPP-DAYCENT average weighted values (-3.0 ± 1.8 g C/m2/d) also showed significant differences (t-test; p<0.001).

  18. Watersheds in disordered media

    CERN Document Server

    Araújo, N A M; Herrmann, H J; Andrade, J S

    2014-01-01

    What is the best way to divide a rugged landscape? Since ancient times, watersheds separating adjacent water systems that flow, for example, toward different seas, have been used to delimit boundaries. Interestingly, serious and even tense border disputes between countries have relied on the subtle geometrical properties of these tortuous lines. For instance, slight and even anthropogenic modifications of landscapes can produce large changes in a watershed, and the effects can be highly nonlocal. Although the watershed concept arises naturally in geomorphology, where it plays a fundamental role in water management, landslide, and flood prevention, it also has important applications in seemingly unrelated fields such as image processing and medicine. Despite the far-reaching consequences of the scaling properties on watershed-related hydrological and political issues, it was only recently that a more profound and revealing connection has been disclosed between the concept of watershed and statistical physics o...

  19. Project management case studies

    CERN Document Server

    Kerzner, Harold R

    2013-01-01

    A new edition of the most popular book of project management case studies, expanded to include more than 100 cases plus a ""super case"" on the Iridium Project Case studies are an important part of project management education and training. This Fourth Edition of Harold Kerzner''s Project Management Case Studies features a number of new cases covering value measurement in project management. Also included is the well-received ""super case,"" which covers all aspects of project management and may be used as a capstone for a course. This new edition:Contains 100-plus case studies drawn from re

  20. Using Four Capitals to Assess Watershed Sustainability

    Science.gov (United States)

    Pérez-Maqueo, Octavio; Martinez, M. Luisa; Vázquez, Gabriela; Equihua, Miguel

    2013-03-01

    The La Antigua watershed drains into the Gulf of Mexico and can be considered as one of the most important areas in Mexico because of its high productivity, history, and biodiversity, although poverty remains high in the area in spite of these positive attributes. In this study, we performed an integrated assessment of the watershed to recommend a better direction toward a sustainable management in which the four capitals (natural, human, social, and built) are balanced. We contrasted these four capitals in the municipalities of the upper, middle and lower watershed and found that natural capital (natural ecosystems and ecosystem services) was higher in the upper and middle watershed, while human and social capitals (literacy, health, education and income) were generally higher downstream. Overall, Human Development Index was negatively correlated with the percentage of natural ecosystems in the watershed, especially in the upper and lower watershed regions. Our results indicate that natural capital must be fully considered in projections for increasing human development, so that natural resources can be preserved and managed adequately while sustaining intergenerational well-being.

  1. The Imbalance between Nature and Management: Jurisdictional Evaluation of Headwaters in a Mountain Watershed (Invited)

    Science.gov (United States)

    Caruso, B. S.

    2013-12-01

    In mountain ecoregions of the semi-arid western U.S., there is an imbalance between science and policy for jurisdictional determinations of aquatic resource as ';waters of the US' that can be protected under Clean Water Act Section 404 (permitting discharge of dredged and fill materials into wetlands and other waters). This leads to continued degradation of surface waters due to the imbalance of key biophysical and societal/regulatory components; the imbalance of water across these drier landscapes, and the imbalance between the critical ecological services provided by these headwater areas and the increasing impacts from urbanization and energy development in previously undeveloped areas. This study analysed headwater streams in a mountain watershed in southwestern Colorado and developed a classification scheme and hydrological connectivity index to demonstrate jurisdictional evaluation at a watershed scale. The National Hydrography Dataset and USGS program StreamStats were used with field observations to classify flow duration and stream order used for Level 1 and 2 classification. Kruskall Wallis tests and discriminant analysis were used to evaluate differences among Level 1 and 2 classes. Hierarchical cluster analysis was used to develop Level 3 classes based on stream length, distance to the nearest downstream traditional navigable water (TNW), and the ratio of mean annual flow from the source stream to the TNW. Three primary metrics were used for HCI development: Avg Q/AQ, or the average streamflow metric as a proportion of the metric for the TNW, distance from the stream to the TNW, and slope to the TNW. Additional metrics were also analyzed including stream length, elevation, channel slope and type, and riparian zone types. Perennial waters constitute over a third of all streams (the highest order of which is 4th order), 64% of all reaches are intermittent or ephemeral, and almost half are ephemeral 1st order (E1). The perennial and intermittent streams are classified as jurisdictional relatively permanent waters (RPWs). All ephemeral reaches are non-RPWs and would require significant nexus evaluation to determine jurisdiction. The main stream contributes 20% of the average annual flow to the TNW, and 5% of the total to the river can come from E1 streams. There were significant differences in most metrics among Level 2 classes. There was a large range of HCI values, with 48% 1. Mean values differed among stream duration and order classes. Many ephemeral streams may be non-jurisdictional and unprotected under Section 404 of the Clean Water Act. The flow index (QI) component constituted the greatest proportion of the HCI for perennial streams, was sensitive to the Q metrics used, and was greatest for high flows. Ephemeral streams are only connected to the TNW class with HCI values from 0.75-0.94 are farthest from the TNW but contribute the greatest proportion of flow and may have significant nexus with the river.

  2. Tracking the Primary Sources of Fecal Pollution in a Tropical Watershed in a One-Year Study

    OpenAIRE

    Toledo-Hernandez, Carlos; Ryu, Hodon; Gonzalez-Nieves, Joel; Huertas, Evelyn; Toranzos, Gary A; Santo Domingo, Jorge W.

    2013-01-01

    A study was conducted to determine the primary sources of fecal pollution in a subtropical watershed using host-specific assays developed in temperate regions. Water samples (n = 534) from 10 different sites along the Rio Grande de Arecibo (RGA) watershed were collected mostly on a weekly basis (54 sampling events) during 13 months. DNA extracts from water samples were used in PCR assays to determine the occurrence of fecal bacteria (Bacteroidales, Clostridium coccoides, and enterococci) and ...

  3. Grid based rainfall-runoff GIS modelling to study the anthropogenic effect on the hydrology of a small watershed

    OpenAIRE

    SENES, GIULIO; Greppi, Mauro

    2010-01-01

    In the Po basin urban development, land use change and variations in rain intensity have influenced watershed runoff and increased floods. In order to better study the anthropogenic effect on the basin hydrology the Olona river watershed proved to be an interesting small catchment to test. It went through a rapid change from agricultural land to urbanized and partly forest areas over the period 1954 – 1994. The Olona River is known for frequent flooding along its course and in some districts ...

  4. Using an integrated method to estimate watershed sediment yield during heavy rain period: a case study in Hualien County, Taiwan

    OpenAIRE

    Hsu, S. M.; Wen, H. Y.; Chen, N C; Hsu, S. Y.; Chi, S Y

    2012-01-01

    A comprehensive approach estimating sediment yield from a watershed is needed to develop better measures for mitigating sediment disasters and assessing downstream impacts. In the present study, an attempt has been made to develop an integrated method, considering sediment supplies associated with soil erosion, shallow landslide and debris flow to estimate sediment yield from a debris-flow-prone watershed on a storm event basis. The integrated method is based on the HSPF and...

  5. Runoff simulation using distributed hydrological modeling approach, remote sensing and GIS techniques: A case study from an Indian agricultural watershed

    Science.gov (United States)

    Chowdary, V. M.; Desai, V. R.; Gupta, M.; Jeyaram, A.; Murthy, Y. V. N. K.

    2012-07-01

    Distributed hydrological modeling has the capability of simulating distributed watershed basin processes, by dividing a heterogeneous and complex land surface divided into computational elements such as Hydrologic Response Units (HRU), grid cell or sub watersheds. The present study was taken up to simulate spatial hydrological processes from a case study area of Kansavati watershed in Purulia district of West Bengal, India having diverse geographical features using distributed hydrological modelling approach. In the present study, overland flow in terms of direct runoff from storm rainfall was computed using USDA Soil Conservation Services (SCS) curve number technique and subsequently it served as input to channel routing model. For channel flow routing, Muskingum-Cunge flood routing technique was used, specifically to route surface runoff from the different sub watershed outlet points to the outlet point of the watershed. Model parameters were derived for each grid cell either from remote sensing data or conventional maps under GIS environment. For distributed approach, validation show reasonable fit between the simulated and measured data and CMR value in all the cases is negative and ranges from -0.1 to - 0.3. Further, this study investigates the effect of cell size on runoff simulation for different grid cell sizes of 23, 46, 92, 184, 368, 736, 1472 m resolution. The difference between simulated and observed runoff values increases with the increase of grid size beyond 184 m more prominently. Further, this model can be used to evaluate futuristic water availability scenarios for an agricultural watershed in eastern India.

  6. Assessment Erosion 3D Hazard with USLE and Surfer Tool: A Case Study of Sumani Watershed in West Sumatra Indonesia

    Directory of Open Access Journals (Sweden)

    Aflizar

    2013-01-01

    Full Text Available Quantitative evaluation of soil erosion rate is an important basic to investigate and improve land use system, which has not been sufficiently conducted in Indonesia. The Universal Soil Loss Equation (USLE and Erosion Three Dimension (E3D in Surfer were used to identify characteristic of dominant erosion factors in Sumani Watershed in West Sumatra, Indonesia using data soil survey and monitoring sediment yield in outlet watershed. Climatologydata from three stations were used to calculate Rainfall erosivity (R factor. As many as101 sampling sites were used to investigate soil erodibility (K-factor with physico-chemical laboratory analysis. Digital elevation model (DEMof Sumani Watershed was used to calculate slope length and Steepness (LS-factor. Landsat TM imagery and field survey were used to determine crop management (C-factor and conservation practices (P-factor. Calculating soilloss and map of USLE factor were determined by Kriging method in Surfer 9. Sumani Watershed had erosion hazard in criteria as: severe to extreme severe (26.23%, moderate (24.59% and very low to low (49.18%. Annual average soil loss for Sumani watershed was 76.70 Mg ha-1 y-1 in 2011. Upland area was designated as having a severe toextreme severe erosion hazard compared to lowland which was designated as having very less to moderate. On the other land, soil eroded from upland were deposited in lowland. These results were verified by comparing one year’s sediment yield observation on the outlet of the watershed. Land use (C-factor, rainfall erosivity (R- factor, soil erodibility (K-factor, slope length and steepness (LS-factor were dominant factors that affected soil erosion. Traditional soil conservation practices were applied by farmer for a long time such as terrace in Sawah. The USLE model in Surfer was used to identify specific regions susceptible to soil erosion by water and was also applied to identify suitable sites to conduct soil conservation planning in Sumani Watershed.

  7. Land management, erosion problems and soil and water conservation in Fincha'a watershed, western Ethiopia

    OpenAIRE

    Bezuayehu, T.; Sterk, G.

    2010-01-01

    The knowledge of soil erosion processes, attitude towards rational use of resources and institutional support affect the capability of farmers to implement soil and water conservation (SWC) measures. This research was conducted to determine soil erosion problems and the factors that affect the adoption ofSWC measures in Fincha’a watershed, western Ethiopia. A total of 50 farmers were interviewed using a semistructured questionnaire, and two group discussions were held with 20 farm...

  8. Regionalization of SWAT Model Parameters for Use in Ungauged Watersheds

    OpenAIRE

    Indrajeet Chaubey; Gitau, Margaret W.

    2010-01-01

    There has been a steady shift towards modeling and model-based approaches as primary methods of assessing watershed response to hydrologic inputs and land management, and of quantifying watershed-wide best management practice (BMP) effectiveness. Watershed models often require some degree of calibration and validation to achieve adequate watershed and therefore BMP representation. This is, however, only possible for gauged watersheds. There are many watersheds for which there are very little ...

  9. The Estimating of Synthetic Unit Hydrograph Using Regional Flood Analysis and Geomorphologic Parameters (Case Study: Kanisavaran and Marenj Watersheds, Kurdistan

    Directory of Open Access Journals (Sweden)

    A. Shirzadi1*, K. Chapi1 and P. Fathi2

    2012-03-01

    Full Text Available Estimation of flood hydrograph is of necessities in hydrological studies such as flood mitigation projects. This estimation in un-gauged watersheds is usually taken place using geomorphological characteristics of watersheds. The objective of this research is to estimate synthetic unit hydrograph using regional flood frequency analysis and geomorphological parameters of watersheds. 1-hour and 2-hour hydrographs of two watersheds, Kanisavaran and Maranj Watersheds, were generated using maximum discharge data based on regional flood frequency analysis. Estimated hydrographs were compared with observed data and the efficiency of the model was evaluated using Nash-Sutcliffe coefficient, absolute and bias errors. The results showed that multiple regression models give more acceptable results among others for the computation of synthetic unit hydrograph (higher coefficient of determination. The Nash-Sutcliffe coefficient was 0.98 for 1-hour hydrograph while it was 0.93 for the 2-hour hydrograph. The absolute error in 1-hour hydrograph and 2-hour hydrograph was 0.13 and 1.2, respectively. The bias error was close to zero for both hydrographs, indicating that the proposed model is efficient. The model may be used for estimation of synthetic unit hydrograph in similar un-gauged watersheds.

  10. Modelling the hydrologic role of glaciers within a Water Evaluation and Planning System (WEAP: a case study in the Rio Santa watershed (Peru

    Directory of Open Access Journals (Sweden)

    T. Condom

    2011-01-01

    Full Text Available For the past 30 years, a process of glacier retreat has been observed in the Andes, raising alarm among regional water resources managers. The purpose of this paper is to develop a model of the role of Andean glaciers in the hydrology of their associated watersheds, which is appropriate for application at a river basin scale, with an eye towards creating an analytical tool that can be used to assess the water management implications of possible future glacier retreat. While the paper delves deeply into our formulation of a glacier module within a water resources management modelling system, the widely subscribed Water Evaluation and Planning System (WEAP, the originality of our work lies less in the domain of glaciology and more in how we apply an existing reduced form representation of glacier evolution within a model of the climate-glacier-hydrology-water management continuum. Key insights gained pertain to appropriate ways to deploy these reduced form representations in a relatively data poor environment and to effectively integrate them into a modelling framework that places glaciers within a wider water management context. The study area is the Rio Santa watershed in Peru which contains many of the expansive glaciers of the singular Cordillera Blanca. The specific objectives of this study included: (i adequately simulating both monitored glacier retreat and observed river flows from the last forty years using historical climate time series as model input; (ii quantifying the proportion of river flow in the Rio Santa produced from melting glaciers during this period; (iii estimating the historical contribution of groundwater accretions to river flows; and (vi reproducing a reasonable simulation of recent hydropower operations in the Rio Santa system. In pursuit objective (i, a split sample calibration-validation of the model was conducted by comparing the simulated glacier area to Landsat images taken in 1987 and 1998 and observed and simulated river flow at 16 control points in the Rio Santa watershed. At the global scale of the watershed, the glacier retreat is correctly simulated for the period 1970/1999 with a calculated retreat equals to ?23% when the observed retreat is of ?24%. Having established that the model can respond to these scientific objectives, the ultimate goal of the study was to demonstrate how this integrated modelling system can be used as a decision support tool to assist in planning water management adaptation to climate change. This sort of integrated assessment is required to adapt water resources management in the Andes to a~range of future climatic conditions, improving the resilience of developing Andean economies such Peru's in the face of a major drive of global change.

  11. Evaluation of Best Management Practices in Millsboro Pond Watershed Using Soil and Water Assessment Tool (SWAT) Model

    OpenAIRE

    Aditya Sood; William F. Ritter

    2010-01-01

    The Inland Bays in southern Delaware (USA) are facing eutrophication due to the nutrient loading from its watershed. The source of nutrients in the watershed is predominantly agriculture. The Millsboro Pond, a sub-watershed within the Inland Bays basin, was modeled using the Soil and Water Assessment Tool (SWAT) model. It was found that the contribution of ground water from outside the watershed had a signifi-cant impact on the hydrology of the region. Once the model was calibrated and valida...

  12. NITROGEN EXPORT FROM FORESTED AND AGRICULTURAL WATERSHEDS OF SOUTHERN CHILE EXPORTACION DE NITROGENO EN CUENCAS BOSCOSAS Y AGRICOLAS EN EL SUR DE CHILE

    OpenAIRE

    CARLOS E. OYARZÚN; Anton Huber

    2003-01-01

    Measuring nutrients fluxes in watersheds with different landuse is important for evaluating the effects of conversion of native forests to agricultural land, and for establishing guidelines for land management. Nitrogen (N) concentrations and fluxes were studied over a 12-month period in four watersheds in the Lake Rupanco basin in the Andean Cordillera and four watersheds located in the Lake Huillinco basin in the Coastal Cordillera of southern Chile. Two watersheds in either lake basins wer...

  13. Water-right and water-allocation procedures of farmers' managed perennial spate irrigation systems of mithawan watershed, D.G. Khan, Pakistan

    International Nuclear Information System (INIS)

    A study was conducted on water rights, water allocation and local institutions prevailing in the perennial spate irrigation systems of Mithawan watershed o D.G. Khan District of Punjab. The Study Area was selected is the Mthawan watershed on the D.G. Khan-Quetta Road almost 70 kms from D.G. Khan and 10 km away from the road, representing real-life operating systems. Small-scale isolated and large-scale contiguous perennial spate irrigation systems were selected for study. A three-prong methodology was designed covering (a) interactive dialogue of the focus groups to document the community-perceptions regarding systems water-rights, water allocation and local institution prevailing in the area; (b) structured interviews to document systematic data regarding some of the study-aspects; and (c) diagnostic surveys to document some of the measured data regarding scheme performance. Water rights and allocation procedures both in small-scale isolated and large-scale Contiguous perennial spate irrigation-system are very clearly defined and do not change with time and space. Local institutions like Biradri and Muchi take care of just allocation of water. An irrigator is deputed who takes care of allocated time among various tribes. At the same time, the community is bringing more area under irrigation. Obviously it has increased water-requirements and in turn management of irrigation system. Previously they were reconstructing the diversion structure only. Present expansion in irrigated area has increased the necessity of maintaining the water-conveyance network more frequently, particularly at critical sections. However, the realization regarding water-losses still needs to be promoted. The linkages of resource-management with water-productivity are going to be the future area of consideration in theses systems, due to expansion of the system largely because of increased population and urge to increase their livelihood. (author)

  14. Alternative Land-Use Method for Spatially Informed Watershed Management Decision Making Using SWAT

    Science.gov (United States)

    In this study, a modification is proposed to the Soil and Water Assessment Tool (SWAT) to enable identification of areas where the implementation of best management practices would likely result in the most significant improvement in downstream water quality. To geospatially link...

  15. Groupwise Modeling Study of Bacterially Impaired Watersheds in Texas: Clustering Analysis

    Science.gov (United States)

    Paul, Sabu; Srinivasan, Raghavan; Sanabria, Joaquin; Haan Saqib Mukhtar, Patricia K.; Neimann, Kerry

    2006-08-01

    Under the Clean Water Act (CWA) program, the Texas Commission on Environmental Quality (TCEQ) listed 110 stream segments in the year 2000 with pathogenic bacteria impairment. A study was conducted to evaluate the probable sources of pollution and characterize the watersheds associated with these impaired water bodies. The primary aim of the study was to group the water bodies into clusters having similar watershed characteristics and to examine the possibility of studying them as a group by choosing models for total maximum daily load (TMDL) development based on their characteristics. This approach will help to identify possible sources and determine appropriate models and hence reduce the number of required TMDL studies. This in turn will help in reducing the effort required to restore the health of the impaired water bodies in Texas. The main characteristics considered for the classification of water bodies were land use distribution within the watershed, density of stream network, average distance of land of a particular use to the closest stream, household population, density of on-site sewage facilities (OSSFs), bacterial loading from different types of farm animals and wildlife, and average climatic conditions. The climatic data and observed instream fecal coliform bacteria concentrations were analyzed to evaluate seasonal variability of instream water quality. The grouping of water bodies was carried out using the multivariate statistical techniques of factor analysis/principal component analysis, cluster analysis, and discriminant analysis. The multivariate statistical analysis resulted in six clusters of water bodies. The main factors that differentiated the clusters were found to be bacterial contribution from farm animals and wildlife, density of OSSFs, density of households connected to public sewers, and land use distribution.

  16. Watershed Data Management (WDM) database for Salt Creek streamflow simulation, DuPage County, Illinois, water years 2005-11

    Science.gov (United States)

    Bera, Maitreyee

    2014-01-01

    The U.S. Geological Survey (USGS), in cooperation with DuPage County Stormwater Management Division, maintains a USGS database of hourly meteorologic and hydrologic data for use in a near real-time streamflow simulation system, which assists in the management and operation of reservoirs and other flood-control structures in the Salt Creek watershed in DuPage County, Illinois. Most of the precipitation data are collected from a tipping-bucket rain-gage network located in and near DuPage County. The other meteorologic data (wind speed, solar radiation, air temperature, and dewpoint temperature) are collected at Argonne National Laboratory in Argonne, Ill. Potential evapotranspiration is computed from the meteorologic data. The hydrologic data (discharge and stage) are collected at USGS streamflow-gaging stations in DuPage County. These data are stored in a Watershed Data Management (WDM) database. An earlier report describes in detail the WDM database development including the processing of data from January 1, 1997, through September 30, 2004, in SEP04.WDM database. SEP04.WDM is updated with the appended data from October 1, 2004, through September 30, 2011, water years 2005–11 and renamed as SEP11.WDM. This report details the processing of meteorologic and hydrologic data in SEP11.WDM. This report provides a record of snow affected periods and the data used to fill missing-record periods for each precipitation site during water years 2005–11. The meteorologic data filling methods are described in detail in Over and others (2010), and an update is provided in this report.

  17. Water Quality, Contamination, and Wetlands in the Croton Watershed, New York, USA

    OpenAIRE

    Jeffrey M. McKenzie; Donald I. Siegel; Laura K. Lautz; Martin H. Otz; James Hassett; Ines Otz

    2012-01-01

    The Croton Watershed (New York State, USA) is a semi-urban region that provides 10% of the drinking water for the City of New York. Nonpoint source contamination in the watershed is a major concern for managers because the water supply is currently unfiltered water. Results are reported from three synoptic studies of surface water quality from 98 wetland-containing sub-catchments in the Croton Watershed designed to broadly characterize, at a reconnaissance level, the geochemical controls on w...

  18. Multidisciplinary work on barium contamination of the karstic upper Kupa River drainage basin (Croatia and Slovenia); calling for watershed management.

    Science.gov (United States)

    Franciskovi?-Bilinski, S; Bilinski, H; Grbac, R; Zuni?, J; Necemer, M; Hanzel, D

    2007-02-01

    The present work was designed as an extension of a previous study of a barium anomaly observed in stream sediments of the Kupa River. In its upper part the Kupa River drains a region underlain by a trans-boundary aquifer. The river is a significant water resource in a region of tourism, sport, and fishing in both Croatia and Slovenia. The contamination source is situated in Homer (Lokve), Croatia, where barite was mined until 10 years ago. The barium processing waste material (sinkhole, which has an underground link with the Kupica River, a tributary of the Kupa River. Barium waste and stream sediments were analyzed using comparative techniques: X-ray diffraction (XRD), X-ray fluorescence (XRF), Mössbauer spectroscopy, and grain size analysis. XRD of the waste material identified the major minerals quartz, barite, and dolomite and the Fe-containing minor minerals muscovite and goethite. Barite was identified as a minor or trace mineral in the Kupica River sediments. XRF analysis of the waste material has shown Ba and Fe to be the predominant elements, Ca and K to be minor elements, and Mn, Zn, Sr, Pb, Co, Cu, As, Zr, Rb, Y, and Mo to be trace elements. Mössbauer spectroscopy performed at room temperature (RT) was used to study iron minerals, particularly to obtain information on the valence status of Fe ions. Grain size analysis of the waste material (<63-microm fraction) has shown that it contains 23.5% clay-size material in comparison with 7-8% clay-size material in stream sediments. It is our aim to combine geochemical and medical methods to investigate the possible impact of waste disposal on human health in Lokve. At this stage of the work, concentrations of Ba and other toxic elements in the water compartment of the Kupica River (a source of drinking water) have not been monitored by Croatian Waters (name of the Croatian water authorities). The necessity of such measurements in future studies has been highlighted. A preliminary study of diseases diagnosed in Lokve shows that about 18% of the total inhabitants have serious medical problems. Diseases of the circulatory system, endocrine, nutritional, and metabolic diseases, neoplasms, and respiratory diseases predominate. This paper calls for further multidisciplinary research on the health effects of barium and trace elements, as well as for bioremediation of contaminated gardens and for watershed management of vulnerable karstic aquifers. PMID:17203367

  19. SEAMONSTER: A wireless Sensor Web prototype applied to studying glaciated watersheds (Invited)

    Science.gov (United States)

    Heavner, M.; Fatland, D. R.; Hood, E. W.; Connor, C. L.

    2009-12-01

    The SouthEast Alaska MOnitoring Network for Science, Telecommunications, Education and Research (SEAMONSTER) Sensor Web is operating in partially glaciated watersheds on the margin of the Juneau Ice Field. Data from distributed, heterogeneous sensors with irregular sampling rates is integrated in a PostGIS (PostgreSQL with GIS extensions) database. Data discovery, data browsing, the sensor web operation and management, and education and publication are facilitated by the integration of the PostGIS database and Geoserver to deliver dynamically generated geospatial output. This presentation will focus on the technology developed to operate the SEAMONSTER sensor web and lessons learned regarding sensing the data using networking both internal and external to the sensor web. We will present examples of data fusion, modeling and reanalysis of the data using Open Geospatial Consortium (OGC) standards, and present future plans to enhance the testbed nature and capabilities of the SEAMONSTER Sensor Web.

  20. MULTI-YEAR CHANGE IN WATER QUALITY FROM SMALL, SINGLE USE PASTURE WATERSHEDS

    Science.gov (United States)

    Several small (<1 ha) watersheds were used in rotational grazing studies at the North Appalachian Experimental Watershed near Coshocton, OH to study the impacts of management on water quality and the length of time for the impacts to be observed. Surface runoff was sampled on an event basis and sub...

  1. Study of the quality and quantity of waters of a tributary watershed of Paraíba do Sul river- São Paulo, after environmental preservation actions

    Directory of Open Access Journals (Sweden)

    Alexandra Andrade

    2012-12-01

    Full Text Available Monitoring programs of water quality and quantity are necessary to provide subsidies to assess the conditions of the watersheds and for decision making regarding to the management of water resources. This study analyzed the quality and quantity of waters of the Macacos stream watershed, a tributary of the Paraíba do Sul river, in São Paulo State, by monitoring the parameters: temperature, pH, conductivity and dissolved oxygen at five sites in the watershed. The measurements of flow and height of water depth during dry and wet seasons of 2010 and 2011 allowed the construction of the "rating curve" in four points of water quality monitoring and to reconstruct the series of water flow in these seasons. The analysis results showed that there is indication of changes in water quality parameters due to the conservation practices adopted. The water temperature parameter was the most influenced by the seasonal variation in runoff. Several physical factors may have influenced the correlation of the other parameters with runoff, especially the different environmental recovery actions implemented in the study to achieve the sustainability of the water resources.

  2. The assessment of land use change impact on watersheds runoff using SWAT: case study of Urmia Lake in Iran

    Science.gov (United States)

    Jabbari, Anahita; Jarihani, Ben; Rezaie, Hossein

    2015-04-01

    Lake Urmia, long counted among the world's largest saltwater lakes, contains only 5% of the amount of water it did just 20 years ago. The decline is generally blamed on a combination of drought, increased water diversion for irrigated agriculture within the lake's watershed and land use mismanagement. It has been believed that land use changes in Lake Urmia basin is one of the most important factors in shrinkage of Urmia Lake in recent decades. Transforming the traditional agricultural practices (i.e., wheat) to the more water consuming practices (i.e., apple orchards) is one of the most important reasons increased agricultural water consumption in the watershed. In this study we assessed the effect of the land use changes of watershed in hydrological runoff processing in the Nazloo chai watershed, one of the most important river basins of the Urmia Lake basin. Actually the rapid and at the same time unreasonable transformations of land use in farm lands of Urmia lake sub basins, extremely has been raised the amount of blue water (surface or groundwater) consumption in watershed which leads to dramatic decrement of watershed runoff amounts. One of the most unfavorable consequences of land use change was changing the blue and green (rainwater insofar as it does not become runoff) water usage patterns in watershed, in addition to water use increment. The soil and water assessment tool (SWAT), one of the most important and reliable models which was used to model the rainfall runoff, has been used in current study. The land use maps were extracted from Landsat images archives for the most severe turning points in respect of land use change in the recent 30 years. After calibrating the model, several land use patterns of historical data were used in the model to produce the runoff. The results showed the strong relation between land use change and runoff reduction in the Lake Urmia basin.

  3. Influence of Land Management and Hydrology on Urea Fate and Transport Within a Coastal Plain Watershed Dominated by Intensive Poultry Agriculture

    Science.gov (United States)

    Gustafson, S. S.; Buda, A. R.; Boyer, E. W.; Bryant, R.; May, E.

    2011-12-01

    Increasing nutrient loads delivered from the landscape to coastal ecosystems has widely been recognized as a major contributor to coastal eutrophication and as a driver of the escalation of harmful algal blooms (HABs). Urea, a form of organic nitrogen, is a common nutrient found in fertilizers, manures, and septic waste, and is gaining recognition as a preferred nutrient for the development of toxic HABs. While several studies have documented elevated urea concentrations in tributaries draining the Delmarva Peninsula and in the Chesapeake Bay, little is known about the key factors that influence urea delivery from the landscape to surface waters. Here, in attempt to address the need to better understand urea behavior, we investigated land management and hydrologic controls on urea loss, both spatially and temporally, in the Manokin River. The Manokin River is a Coastal Plain watershed (300 km2) on the Delmarva Peninsula that drains directly to the Chesapeake Bay and is characterized by extensive rural development coupled with intensive agriculture, particularly poultry production. Monthly synoptic sampling during baseflow conditions was conducted throughout the watershed in order to represent the variety of potential point and non-point sources of urea. Sampling was also conducted during stormflow conditions using time-weighted automated (SIGMA) samplers at select sites within the watershed. Temporal baseflow trends illustrate higher average urea concentrations through the summer months (0.61 ?M L-1) and generally lower (0.35 ?M L-1) concentrations during the winter months. Spatial trends show higher average baseflow urea concentrations in the agricultural ditches and headwaters (0.93?M L-1) with decreasing concentrations moving downstream (0.37 ?M L-1). Stormflow was found to be the predominant urea delivery mechanism, as urea concentrations typically increased 3-9 times above baseflow concentrations (0.27 ?M L-1) during storms, with peaks in urea concentration generally following peaks in discharge. Results from this study will be used to determine whether there is a link between urea delivery from the Manokin River and harmful algal blooms in the Chesapeake Bay as well as to guide the development of best management practices to control urea loss from agricultural activities.

  4. Interfaces da gestão ambiental urbana e gestão regional: análise da relação entre Planos Diretores Municipais e Planos de Bacia Hidrográfica / Interfaces of urban environmental management and regional management: analysis of the relationship between Municipal Master Plans and Watershed Plans

    Scientific Electronic Library Online (English)

    Renata Bovo, Peres; Ricardo Siloto da, Silva.

    2013-12-01

    Full Text Available Este artigo relata uma pesquisa que discute como a questão ambiental vem sendo tratada nos instrumentos e práticas de gestão localizadas em dois recortes territoriais: municípios e bacias hidrográficas. Foi analisada a relação da dimensão ambiental com a gestão regional e municipal, por meio dos ins [...] trumentos Planos de Bacia Hidrográfica e Planos Diretores Municipais, tendo como locus a Unidade de Gerenciamento de Recursos Hídricos Tietê-Jacaré do Estado de São Paulo. Os objetos de pesquisa selecionados foram o Plano de Bacia Hidrográfica Tietê-Jacaré e os Planos Diretores de Araraquara e São Carlos. A pesquisa abordou as seguintes categorias de análise: unidades de planejamento, instrumentos ambientais contidos no Plano de Bacia e nos Planos Diretores, instâncias de gestão e grau de infiluência entre os planos analisados. O método se pautou em levantamentos, análises bibliográficas e documentais, entrevistas semiestruturadas e questionários. Os resultados obtidos apontaram que o Plano de Bacia Hidrográfica ainda apresenta lacunas e dificuldades para uma atuação mais ampliada. Não reconhece os confilitos de uso da terra e de organização territorial como uma vulnerabilidade que precisa ser enfrentada. Mostraram, ainda, que os Planos Diretores Municipais concentram-se na aplicação dos instrumentos voltados ao parcelamento e ao zoneamento urbano. Nesses planos, as condições e os aspectos ambientais e regionais se apresentam como uma temática periférica e pouco articulada com as demais políticas. As análises procuraram demonstrar a complexa relação entre políticas, instrumentos e instâncias de planejamento e gestão, explicitando os obstáculos que dificultam a aplicação do conceito de gestão territorial integrada. Abstract in english This article details a research work that discusses how environmental issues have been addressed in the instruments and management practices in two territorial areas: municipalities and watersheds. The environmental relationship of the regional and municipal management was analyzed using the Watersh [...] ed Plans and the Municipal Master Plans, located at the Management Unit of Tietê-Jacaré Water Resources - State of São Paulo. The research subjects selected were the Tietê-Jacaré Watershed Plan and the Master Plans of Araraquara and São Carlos. The study focused on the following analysis categories: the environmental instruments used in the Watershed Plans and the Master Plans, management events and the degree of influence of the plans analyzed. The method was based on surveys, bibliographic and documentary analysis, semistructured interviews and questionnaires. The results showed that there are still gaps and difficulties in the watershed plan to perform a more expanded management planning. It does not acknowledge the conflicts related to land use and territorial organization as a vulnerability that must be addressed. It also showed that the municipal master plans focus on the application of these instruments for urban subdivision and zoning. In these plans, the conditions and regional and environmental aspects are presented as a peripheral issue, which are rarely coordinated with the other policies. The analyses performed sought to demonstrate the complex relationship between policies, instruments and planning and management events, describing the obstacles that interfere with the application of the integrated territorial management concept.

  5. Landslide susceptibility analysis using Probabilistic Certainty Factor Approach: A case study on Tevankarai stream watershed, India

    Indian Academy of Sciences (India)

    Evangelin Ramani Sujatha; G Victor Rajamanickam; P Kumaravel

    2012-10-01

    This paper reports the use of a GIS based Probabilistic Certainty Factor method to assess the geo-environmental factors that contribute to landslide susceptibility in Tevankarai Ar sub-watershed, Kodaikkanal. Landslide occurrences are a common phenomenon in the Tevankarai Ar sub-watershed, Kodaikkanal owing to rugged terrain at high altitude, high frequency of intense rainfall and rapidly expanding urban growth. The spatial database of the factors influencing landslides are compiled primarily from topographical maps, aerial photographs and satellite images. They are relief, slope, aspect, curvature, weathering, soil, land use, proximity to road and proximity to drainage. Certainty Factor Approach is used to study the interaction between the factors and the landslide, highlighting the importance of each factor in causing landslide. The results show that slope, aspect, soil and proximity to roads play important role in landslide susceptibility. The landslide susceptibility map is classified into five susceptible classes – low, very low, uncertain, high and very high ? 93.32% of the study area falls under the stable category and 6.34% falls under the highly and very highly unstable category. The relative landslide density index (R index) is used to validate the landslide susceptibility map. R index increases with the increase in the susceptibility class. This shows that the factors selected for the study and susceptibility mapping using certainty factor are appropriate for the study area. Highly unstable zones show intense anthropogenic activities like high density settlement areas, and busy roads connecting the hill town and the plains.

  6. Locating farmer-based knowledge and vested interests in natural resource management: the interface of ethnopedology, land tenure and gender in soil erosion management in the Manupali watershed, Philippines

    Directory of Open Access Journals (Sweden)

    Price Lisa

    2007-09-01

    Full Text Available Abstract This paper examines local soil knowledge and management in the Manupali watershed in the Philippines. The study focuses on soil erosion and its control. Research methods used in the study include ethnosemantic elicitations on soils and focus group discussions. In addition, in-depth work was conducted with 48 farmers holding 154 parcels at different elevations/locations in the watershed. The on-parcel research consisted of farmer classifications of the soil, topography, and erosion status of their parcels. Soil samples were also taken and examined. Farming households were also examined with regard to erosion control activities conducted by age and sex. Erosion management was examined in relation to tenure of the parcel, which emerged as a salient aspect among focus group members and was evidenced by the actual control measures taken on farmed parcels. The results show that the major constraint in soil erosion management is not local knowledge as much as it is the tenure arrangements which allow "temporary owners" (those working rented or mortgaged parcels to manage the parcels as they see fit. Most of these temporary owners are not willing to invest in erosion control measures other than water diversion ditches. Parcel owners, in contrast, do invest in longer term erosion control measures on the parcels they actually work. The findings of this paper illustrate that linking local knowledge and practices is often not sufficient in and of itself for addressing questions of sound environmental management. While local knowledge serves farmers generally well, there are some limitations. Importantly, the pressures in the contemporary world of markets and cash can undermine what they know as the right thing to do for the environment.

  7. Scaling Relations for Watersheds

    CERN Document Server

    Fehr, E; Araújo, N A M; Andrade, J S; Herrmann, H J

    2011-01-01

    We study the morphology of watersheds in two and three dimensional systems subjected to different degrees of spatial correlations. The response of these objects to small, local perturbations is also investigated with extensive numerical simulations. We find the fractal dimension of the watersheds to generally decrease with the Hurst exponent, which quantifies the degree of spatial correlations. Moreover, in two dimensions, our results match the range of fractal dimensions $1.10 \\leq d_f \\leq 1.15$ observed for natural landscapes. We report that the watershed is strongly affected by local perturbations. For perturbed two and three dimensional systems, we observe a power-law scaling behavior for the distribution of areas (volumes) enclosed by the original and the displaced watershed, and for the distribution of distances between outlets. Finite-size effects are analyzed and the resulting scaling exponents are shown to depend significantly on the Hurst exponent. The intrinsic relation between watershed and invas...

  8. Hydrological characterization of benchmark agricultural watersheds in India, Thailand, and Vietnam

    Directory of Open Access Journals (Sweden)

    P Pathak

    2006-08-01

    Full Text Available Executive Summary Water is one of the most critical resource and constraint in the semi-arid tropics (SAT. To minimize land degradation and sustain crop productivity in the SAT, management and efficient utilization of rainwater is important. Watershed-based resource utilization involves the optimum use of the area’sprecipitation for the improvement and stabilization of agriculture on the watershed through better water, soil, and crop management. More effective utilization of water for the production of crops canbe facilitated by one or more of the following means: (i in situ conservation of moisture; (ii proper drainage, collection, storage, and re-utilization of runoff; and (iii groundwater recovery from wells. For the proper development, conservation, and management of land and water resources, accurate information on surface and groundwater hydrology is crucial. Under the Asian Development Bank(ADB-supported project on integrated watershed management we studied the hydrological behavior of benchmark agricultural watersheds in India, Thailand, and Vietnam. From the five benchmarkwatersheds, the information on topography, rainfall, runoff, groundwater, and other relevant data were collected and analyzed.The hydrological data from the five benchmark watersheds in India, Thailand, and Vietnam clearly show the effectiveness of improved watershed technologies in reducing runoff volume and peakrunoff rate. The highest runoff volume of 433 mm (51% of seasonal rainfall was recorded from the Tad Fa watershed in Thailand, while the lowest runoff volume of 55 mm (7% of seasonal rainfall wasrecorded from the Adarsha watershed in Kothapally, India. The highest peak runoff rate of 0.235 m3 s-1ha-1 was recorded from the untreated watershed at Kothapally. Between the treated and untreatedwatersheds the maximum difference in runoff volume was recorded at Lalatora watershed in India(290 mm in untreated compared to 55 mm in treated watershed. Among the three locations in India, the highest runoff was recorded at Lalatora watershed followed by Ringnodia and Kothapally watersheds. The groundwater observations from the three sites in India, clearly show the effectiveness of the improved watershed technologies in increasing the groundwater recharge therebyimproving the availability of water for agricultural and other uses. Throughout the season the groundwater levels in the treated areas were significantly higher compared to the groundwater levelsin the untreated areas. In terms of prospects of further runoff harvesting and groundwater recharge, the Tad Fa watershed inThailand has the highest potential followed by Lalatora watershed in India. The prospects of further runoff harvesting and groundwater recharge at Ringnodia and Adarsha watersheds in India aremoderate. The region-specific hydrological data reported in this publication will be useful in the planning, design, development, and management of land and water resources in the target regions.

  9. RIVER SEDIMENT MONITORING USING REMOTE SENSING AND GIS (CASE STUDY KARAJ WATERSHED

    Directory of Open Access Journals (Sweden)

    M. Shafaie

    2015-12-01

    Full Text Available Whereas the tank volume and dehydrating digits from kinds of tanks are depended on repository sludge, so calculating the sediments is so important in tank planning and hydraulic structures. We are worry a lot about soil erosion in the basin area leading to deposit in rivers and lakes. It holds two reasons: firstly, because the surface soil of drainage would lose its fertility and secondly, the capacity of the tank decreases also it causes the decrease of water quality in downstream. Several studies have shown that we can estimate the rate of suspension sediments through remote sensing techniques. Whereas using remote sensing methods in contrast to the traditional and current techniques is faster and more accurate then they can be used as the effective techniques. The intent of this study has already been to estimate the rate of sediments in Karaj watershed through remote sensing and satellite images then comparing the gained results to the sediments data to use them in gauge-hydraulic station. We mean to recognize the remote sensing methods in calculating sediment and use them to determine the rate of river sediments so that identifying their accuracies. According to the results gained of the shown relations at this article, the amount of annual suspended sedimentary in KARAJ watershed have been 320490 Tones and in hydrologic method is about 350764 Tones .

  10. River Sediment Monitoring Using Remote Sensing and GIS (case Study Karaj Watershed)

    Science.gov (United States)

    Shafaie, M.; Ghodosi, H.; Mostofi, K. H.

    2015-12-01

    Whereas the tank volume and dehydrating digits from kinds of tanks are depended on repository sludge, so calculating the sediments is so important in tank planning and hydraulic structures. We are worry a lot about soil erosion in the basin area leading to deposit in rivers and lakes. It holds two reasons: firstly, because the surface soil of drainage would lose its fertility and secondly, the capacity of the tank decreases also it causes the decrease of water quality in downstream. Several studies have shown that we can estimate the rate of suspension sediments through remote sensing techniques. Whereas using remote sensing methods in contrast to the traditional and current techniques is faster and more accurate then they can be used as the effective techniques. The intent of this study has already been to estimate the rate of sediments in Karaj watershed through remote sensing and satellite images then comparing the gained results to the sediments data to use them in gauge-hydraulic station. We mean to recognize the remote sensing methods in calculating sediment and use them to determine the rate of river sediments so that identifying their accuracies. According to the results gained of the shown relations at this article, the amount of annual suspended sedimentary in KARAJ watershed have been 320490 Tones and in hydrologic method is about 350764 Tones .

  11. The experimental watersheds in Slovenia

    International Nuclear Information System (INIS)

    Experimental watersheds are critical to the advancement of hydrological science. By setting up three experimental watersheds, Slovenia also obtained its grounds for further development of the science and discipline. In the Dragonja experimental watershed the studies are focused on the afforestation of the watershed in a mediterranean climate, on the Reka river the water balance in a partly karstic area is examined, and on the case of the Glinscica stream the implications of the urban environment are studied. We have obtained valuable experience and tested new measuring equipment on all three experimental watersheds. Measurements and analysis on the experimental watersheds improved the current understanding of hydrological processes. They resulted in several PhD Theses, Master Theses and scientific articles. At the same time the experimental watersheds provide support to the teaching and studying process.

  12. Participatory Scenario Planning for the Cienega Watershed: Embracing Uncertainty in Public Lands Management in the U.S. Southwest

    Science.gov (United States)

    Hartmann, H.; Morino, K.; Bodner, G.; Markstein, A.; McFarlin, S.

    2013-12-01

    Land managers and communities struggle to sustain natural landscapes and the benefits they provide--especially in an era of rapid and unpredictable changes being driven by shifts in climate and other drivers that are largely outside the control of local managers and residents. The Cienega Watershed Partnership (CWP) is a long-standing multi-agency partnership involved in managing lands and resources over about 700,000 acres in southeast Arizona, surrounding the Bureau of Land Management's Las Cienegas National Conservation Area. The region forms a vital wildlife corridor connecting the diverse ecosystems of the Sonoran and Chihuahuan deserts and grasslands with the Sierra Madrean and Rocky Mountain forests and woodlands. The CWP has long-standing forums and relationships for considering complex issues and novel approaches for management, including practical implementation of adaptive management, development of monitoring programs and protocols, and the use of nested objectives to adjust management targets. However, current plans have objectives and strategies based on what is known or likely to become known about natural and socio-cultural systems; they do not incorporate uncertainties related to rapid changes in climate or have well developed feedback mechanisms for routinely reconsidering climate information. Since 2011, more than 50 individuals from over 20 federal and local governments, non-governmental organizations, and private landowners have participated in scenario planning for the Cienega Watershed. Scenario planning is an important tool for (1) managing risks in the face of high volatility, uncertainty, complexity, and ambiguity; (2) integrating quantitative climate projections, trend and impact assessments, and local expertise to develop qualitative scenario narratives that can inform decisions even by simply provoking insights; and (3) engaging jurisdictions having different missions, objectives, and planning processes. Participants are helping to extend and refine participatory scenario planning methods from the development of regional qualitative narratives to (1) development of scenario narratives that are relevant at the local management level, (2) creation and evaluation of portfolios of management options that can accommodate changes in management objectives, connect to formal agency planning processes, and that can be adjusted as the future evolves, and (3) explicit identification of the data and information that link qualitative narratives to quantitative scenario and adaptation assessments, which can be used to drive the timing and implementation of activities within the adaptation portfolios, and to prioritize monitoring and research activities to resolve near-term uncertainties. Project tasks are structured around four resource teams that focus on their specific management concerns (Montane, Riparian, Upland and Cultural), but that come together periodically to consider interaction and conflict among their scenarios or prospective adaptation. Participants are finding that embracing uncertainty enables them to approach climate change with a sense of empowerment rather than a sense of reacting to crises, and they appreciate the methods and opportunities for thinking differently and crossing boundaries that the scenario planning exercises provide.

  13. Implementation of BMP Strategies for Adaptation to Climate Change and Land Use Change in a Pasture-Dominated Watershed

    OpenAIRE

    Tao Huang; Yu-Pin Lin; Nien-Ming Hong; Indrajeet Chaubey; Li-Chi Chiang

    2012-01-01

    Implementing a suite of best management practices (BMPs) can reduce non-point source (NPS) pollutants from various land use activities. Watershed models are generally used to evaluate the effectiveness of BMP performance in improving water quality as the basis for watershed management recommendations. This study evaluates 171 management practice combinations that incorporate nutrient management, vegetated filter strips (VFS) and grazing management for their performances in improving water qua...

  14. Predictive Model of Rainfall-Runoff: A Case Study of the Sanaga Basin at Bamendjin Watershed in Cameroon

    OpenAIRE

    Terence Kibula Lukong; Michel Mbessa; Thomas Tamo Tatietse

    2011-01-01

    In order to reduce the energy deficit recorded in Cameroon, management of watersheds where storage dams are situated plays a vital role. The Bamendjin dam situated upstream of the river Sanaga in Cameroon plays a significant role in regulating the flow of the river Sanaga which is used to generate hydroelectric energy for the South Interconnected Network (SIN) of AES SONEL (the main producer and distributor of electricity in Cameroon) at the power plants of Edea and Songloulou downstream of t...

  15. Spatial heterogeneity of stream environmental conditions and macroinvertebrates community in an agriculture dominated watershed and management implications for a large river (the Liao River, China) basin.

    Science.gov (United States)

    Gao, Xin; Niu, Cuijuan; Chen, Yushun; Yin, Xuwang

    2014-04-01

    Understanding the effects of watershed land uses (e.g., agriculture, urban industry) on stream ecological conditions is important for the management of large river basins. A total of 41 and 56 stream sites (from first to fourth order) that were under a gradient of watershed land uses were monitored in 2009 and 2010, respectively, in the Liao River Basin, Northeast China. The monitoring results showed that a total of 192 taxa belonging to four phyla, seven classes, 21 orders and 91 families were identified. The composition of macroinvertebrate community in the Liao River Basin was dominated by aquatic insect taxa (Ephemeroptera and Diptera), Oligochaeta and Molluscs. The functional feeding group GC (Gatherer/Collector) was dominant in the whole basin. Statistical results showed that sites with less watershed impacts (lower order sites) were characterized by higher current velocity and habitat score, more sensitive taxa (e.g., Ephemeroptera), and the substrate was dominated by high percentage of cobble and pebble. The sites with more impacts from agriculture and urban industry (higher order sites) were characterized by higher biochemical (BOD5) and chemical oxygen demand (COD), more tolerant taxa (e.g., Chironominae), and the substrate was dominated by silt and sand. Agriculture and urban-industry activities have reduced habitat condition, increased organic pollutants, reduced macroinvertebrate abundance, diversity, and sensitive taxa in streams of the lower Liao River Basin. Restoration of degraded habitat condition and control of watershed organic pollutants could be potential management priorities for the Basin. PMID:24292872

  16. Derechos de agua y gestión por cuencas en México: El caso del río Sonora / Water rights and watershed management in Mexico: The Sonora river case

    Scientific Electronic Library Online (English)

    Nicolás, Pineda Pablos; José Luis, Moreno Váquez; Alejandro, Salazar Adams; América Nallely, Lutz Ley.

    2014-12-01

    Full Text Available Este artículo analiza el papel de los derechos de agua en la gestión por cuenca. Esta es considerada como un recurso de uso común donde la intervención estatal y el registro de los derechos de agua pueden ser aprovechados para poner límites a las extracciones y evitar la sobreexplotación del recurso [...] . Para el análisis, se hace un repaso de las ideas de la gestión por cuenca y se revisa el marco legal de los derechos del agua en México; después se revisa una base de datos de derechos de agua de la cuenca del río Sonora; y al final del trabajo se presentan los hallazgos. Entre ellos se encuentran las discrepancias entre los principios del marco legal y la operación concreta de los derechos de agua, así como el desaprovechamiento de estos últimos para ejecutar la gestión por cuencas. Abstract in english This article analyzes the role of water rights in watershed management. The watershed is seen as a common pool resource where State intervention and the register of water rights might be used to constrain water tapping and avoid overexploitation. For this purpose, it reviews the ideas of watershed m [...] anagement and revises the Mexican legal framework for water rights. Then, it analyses a database of water rights in the Sonora River. At the end, findings are presented such as the disagreement between the principles devised by the legal framework and the practical implementation of water rights and that those are not used to undertake watershed management.

  17. Field Studies of Streamflow Generation Using Natural and Injected Tracers on Bickford and Walker Branch Watersheds

    Energy Technology Data Exchange (ETDEWEB)

    Genereux, D.

    1992-01-01

    Field studies of streamflow generation were undertaken on two forested watersheds, the West Road subcatchment of Bickford Watershed in central Massachusetts and the West Fork of Walker Branch Watershed in eastern Tennessee. A major component of the research was development of a two-stage methodology for the use of naturally-occurring {sup 222}Rn as a tracer. The first of the two stages was solving a mass-balance equation for {sup 222}Rn around a stream reach of interest in order to calculate [Rn]{sub q}, the {sup 222}Rn content of the lateral inflow to the reach; a conservative tracer (chloride) and a volatile tracer (propane) were injected into the study stream to account for lateral inflow to, and {sup 222}Rn volatilization from, the study reach. The second stage involved quantitative comparison of [Rn]{sub q} to the measured {sup 222}Rn concentrations of different subsurface waters in order to assess how important these waters were in contributing lateral inflow to the stream reach. The method was first applied to a 34 m stream reach at Bickford during baseflow; results suggested that {ge} 70% of the lateral inflow could be considered vadose zone water (water which had been in a saturated zone for less than a few days), and the remainder ''soil groundwater'' or ''saturated zone water'' (which had a longer residence time in a soil saturated zone). The method was then applied to two stream reaches on the West Fork of Walker Branch over a wide range of flow conditions; four springs were also investigated. It was found that springwater and inflow to the stream could be viewed as a mixture of water from three end members: the two defined at Bickford (vadose zone water and soil groundwater) and a third (bedrock groundwater) to account for the movement of water through fractured dolomite bedrock. Calcium was used as a second naturally-occurring tracer to distinguish bedrock groundwater from the other two end members. The behavior indicated by the three-end-member mixing model (e.g., increased importance of the two soil end members with increasing flow, and the differences between the stream reaches and among some of the springs) were consistent with a wide variety of environmental observations, including temperature and flow variations at springs, water table responses, the general lack of saturated zones on hillslopes and even near the stream in some places, and the importance of water movement through bedrock.

  18. An Integrated Approach to Identification, Assessment and Management of Watershed-Scale Risk for Sustainable Water Use Through Reuse and Recycling

    Science.gov (United States)

    Hunter, C. K.; Bolster, D.; Gironas, J. A.

    2014-12-01

    Water resources are essential to development, not only economically but also socially, politically and ecologically. With growing demand and potentially shrinking supply, water scarcity is one of the most pressing socio-ecological problems of the 21st century. Considering implications of global change and the complexity of interrelated systems, uncertain future conditions compound problems associated with water stress, requiring hydrologic models to re-examine traditional water resource planning and management. The Copiapó water basin, located in the Atacama Desert of northern Chile exhibits a complex resource management scenario. With annual average precipitation of only 28 mm, water intensive sectors such as export agriculture, extensive mining, and a growing population have depleted the aquifeŕs reserves to near critical levels. Being that global climate change models predict a decrease in already scarce precipitation, and that growing population and economies demand will likely increase, the real future situation might be even worse than that predicted. A viable option for alleviation of water stress, water reuse and recycling has evolved through technological innovation to feasibly meet hydraulic needs with reclaimed water. For the proper application of these methods for resource management, however, stakeholders must possess tools by which to quantify hydrologic risk, understand its factors of causation, and choose between competing management scenarios and technologies so as to optimize productivity. While previous investigations have addressed similar problems, they often overlook aspects of forecasting uncertainty, proposing solutions that while accurate under specific scenarios, lack robustness to withstand future variations. Using the WEAP (Water Evaluation and Planning) platform for hydrologic modeling, this study proposes a methodology, applicable to other stressed watersheds, to quantify inherent risk in water management positions, while considering uncertainties in supply (climate change), demand (market variations), and measurement (risk definition). Applied to the Copaipó case study, this methodology proposes the solution of a 30% demand decrease within the agricultural sector through urban wastewater recycling and increased irrigation efficiency.

  19. IMPACT OF URBANIZATION ON THE HYDROLOGY OF THE POCONO CREEK WATERSHED: A MODEL STUDY

    Science.gov (United States)

    The Pocono Creek watershed located in Monroe County, PA, is threatened by high population growth and urbanization. Of concern specifically is the potential impact of future developments in the watershed on the reduction of base flow and the consequent risk of degradation of wild ...

  20. Watershed versus in-lake alkalinity generation: A comparison of rates using input-output studies

    Energy Technology Data Exchange (ETDEWEB)

    Shaffer, P.W.; Hooper, R.P.; Eshleman, K.N.; Church, M.R.

    1988-01-01

    As a means of assessing the relative contributions of watershed (terrestrial) and in-lake processes to overall lake/watershed alkalinity budgets, alkalinity production rates for watersheds and low-alkalinity lakes were compiled from the literature and compared. Analysis of data indicates that for low-alkalinity systems, areal alkalinity production rates for watersheds and lakes are approximately equal. The relationship suggests that watershed area to lake area ratio can be used as a convenient estimator of the relative importance of watershed and in-lake sources of alkalinity for drainage lake systems. For precipitation-dominated seepage lakes and other systems where hydrology limits soil-water contact, hydrologic flow paths and residence times can be of overriding importance in determining alkalinity sources. For regions dominated by drainage lakes with high watershed area to lake area ratios (such as the Northeastern U.S.), however, alkalinity budgets are dominated by watershed processes. Omission of in-lake alkalinity consideration for most lakes in such regions would have little impact on computed alkalinity budgets or on predicted response to changes in acidic-deposition loadings.

  1. Characterizing a Century of Climate and Hydrological Variability of a Mediterranean and Mountainous Watersheds: the Durance River Case-Study

    Science.gov (United States)

    Mathevet, T.; Kuentz, A.; Gailhard, J.; Andreassian, V.

    2013-12-01

    Improving the understanding of mountain watersheds hydrological variability is a great scientific issue, for both researchers and water resources managers, such as Electricite de France (Energy and Hydropower Company). The past and current context of climate variability enhances the interest on this topic, since multi-purposes water resources management is highly sensitive to this variability. The Durance River watershed (14000 km2), situated in the French Alps, is a good example of the complexity of this issue. It is characterized by a variety of hydrological processes (from snowy to Mediterranean regimes) and a wide range of anthropogenic influences (hydropower, irrigation, flood control, tourism and water supply), mixing potential causes of changes in its hydrological regimes. As water related stakes are numerous in this watershed, improving knowledge on the hydrological variability of the Durance River appears to be essential. In this presentation, we would like to focus on a methodology we developed to build long-term historical hydrometeorological time-series, based on atmospheric reanalysis (20CR : 20th Century Reanalysis) and historical local observations. This methodology allowed us to generate precipitation, air temperature and streamflow time-series at a daily time-step for a sample of 22 watersheds, for the 1883-2010 period. These long-term streamflow reconstructions have been validated thanks to historical searches that allowed to bring to light ten long historical series of daily streamflows, beginning on the early 20th century. Reconstructions appear to have rather good statistical properties, with good correlation (greater than 0.8) and limited mean and variance bias (less than 5%). Then, these long-term hydrometeorological time-series allowed us to characterize the past variability in terms of available water resources, droughts or hydrological regime. These analyses help water resources managers to better know the range of hydrological variabilities, which are usually greatly underestimated with classical available time-series (less than 50 years).

  2. Defining a data management strategy for USGS Chesapeake Bay studies

    Science.gov (United States)

    Ladino, Cassandra

    2013-01-01

    The mission of U.S. Geological Survey’s (USGS) Chesapeake Bay studies is to provide integrated science for improved understanding and management of the Chesapeake Bay ecosystem. Collective USGS efforts in the Chesapeake Bay watershed began in the 1980s, and by the mid-1990s the USGS adopted the watershed as one of its national place-based study areas. Great focus and effort by the USGS have been directed toward Chesapeake Bay studies for almost three decades. The USGS plays a key role in using “ecosystem-based adaptive management, which will provide science to improve the efficiency and accountability of Chesapeake Bay Program activities” (Phillips, 2011). Each year USGS Chesapeake Bay studies produce published research, monitoring data, and models addressing aspects of bay restoration such as, but not limited to, fish health, water quality, land-cover change, and habitat loss. The USGS is responsible for collaborating and sharing this information with other Federal agencies and partners as described under the President’s Executive Order 13508—Strategy for Protecting and Restoring the Chesapeake Bay Watershed signed by President Obama in 2009. Historically, the USGS Chesapeake Bay studies have relied on national USGS databases to store only major nationally available sources of data such as streamflow and water-quality data collected through local monitoring programs and projects, leaving a multitude of other important project data out of the data management process. This practice has led to inefficient methods of finding Chesapeake Bay studies data and underutilization of data resources. Data management by definition is “the business functions that develop and execute plans, policies, practices and projects that acquire, control, protect, deliver and enhance the value of data and information.” (Mosley, 2008a). In other words, data management is a way to preserve, integrate, and share data to address the needs of the Chesapeake Bay studies to better manage data resources, work more efficiently with partners, and facilitate holistic watershed science. It is now the goal of the USGS Chesapeake Bay studies to implement an enhanced and all-encompassing approach to data management. This report discusses preliminary efforts to implement a physical data management system for program data that is not replicated nationally through other USGS databases.

  3. Endangered ecosystem conservation: a 30-year lesson from the evolution of saline-alkali soil management in Manasi river watershed, China

    International Nuclear Information System (INIS)

    Previous studies on saline-alkali soil management mostly followed an instrumental 'prediction and control' approach dominated by technical end-of-pipe solutions. However, those 'integrated' instrumental solutions frequently perished due to the growing social and economic uncertainties in financial support, legal insurance, expertise service and other factors. This investigation summarizes the 30-year period of saline-alkali soil management - the social and economic and ecological (SEE) management innovation - its adoption, diffusion, adaptation and transformation in Manasi River watershed of northern Xinjiang. This area was experiencing three distinct SEE management stages from pure instrumental desalination techniques to integrated desalination technique system following the SEE supporting system. The results of GIS analysis (Fragatats 3.3) and historical documents provide data evidence for above three transition stages. The total area of saline and alkali land was increased by 32.7%, 47.6% during the first two decades but decreased by 11.9% in the recent decade. The numbers of saline land patches were 116, 129 and 121 in 1989, 2000 and 2007 respectively, a similar trend to the changes of total area. However, both perimeter-area fractal dimension (PAFD) and splitting index (SI) continued to increase, with values of 1.265, 1.272 and 1.279 for PAFD and 259.29, 269.68, 272.92 for SI in 1989, 2000 and 2007, respectively. It suggests that saline and alkaline land distribution had been fragmented, and sequestrated into salt micro-catchments within whole oasis ecosystems. This case is largely associated with effective adoption of integrated engineering and biological desalination programs as a result of local SEE saline-alkali soil management innovation. (author)

  4. The influence of stormwater management practices on denitrification rates of receiving streams in an urban watershed

    Science.gov (United States)

    Cronenberger, M. S.; McMillan, S. K.

    2011-12-01

    Increasing urbanization and the subsequent disruption of floodplains has led to the need for implementing stormwater management strategies to mitigate the effects of urbanization, including soil and streambank erosion, increased export of nutrients and contaminants and decreased biotic richness. Excessive stormwater runoff due to the abundance of impervious surfaces associated with an urban landscape has led to the ubiquitous use of best management practices (BMPs) to attenuate runoff events and prevent the destructive delivery of large volumes of water to stream channels. As a result, effluent from BMPs (i.e. wetlands and wet ponds) has the potential to alter the character of the receiving stream channel and thus, key ecosystem processes such as denitrification. The purpose of this study was to determine the extent to which BMPs, in the form of constructed wetlands and wet ponds, influence in-stream denitrification rates in the urban landscape of Charlotte, NC. Four sites, two of each BMP type, were evaluated. Sediment samples were collected upstream and downstream of the BMP outflow from May-July 2011 to determine the effect of wetland discharge on in-stream nitrogen removal via denitrification. Denitrification rates were determined using the acetylene block method; water column nutrient and carbon concentrations and sediment organic matter content were also measured. Generally, wetland sites exhibited higher denitrification rates, nitrate concentrations and sediment organic matter content. Our work and others has demonstrated a significant positive correlation between nitrate concentration and denitrification rates, which is the likely driver of the higher observed rates at the wetland sites. Geomorphology was also found to be a key factor in elevated denitrification rates at sites with riffles and boulder jams. Sediment organic matter was found to be higher downstream of BMP outflows at all four sites, but demonstrated no significant relationship with denitrification rates. We are continuing to investigate these spatial (e.g. BMPs, streams) and temporal (e.g. storm pulse, delayed wetland release) patterns, particularly in the context of factors that influence the specific drivers of denitrification. Understanding these patterns is critical to managing stormwater in urban landscapes as we aim to improve water quality while enhancing ecosystem functions.

  5. Estimation of runoff and sediment yield in the Redrock Creek watershed using AnnAGNPS and GIS.

    Science.gov (United States)

    Tsou, Ming-Shu; Zhan, Xiao-Yong

    2004-01-01

    Sediment has been identified as a significant threat to water quality and channel clogging that in turn may lead to river flooding. With the increasing awareness of the impairment from sediment to water bodies in a watershed, identifying the locations of the major sediment sources and reducing the sediment through management practices will be important for an effective watershed management. The annualized agricultural non-point source pollution(AnnAGNPS) model and newly developed GIS interface for it were applied in a small agricultural watershed, Redrock Creek watershed, Kansas, in this pilot study for exploring the effectiveness of using this model as a management tool. The calibrated model appropriately simulated monthly runoff and sediment yield through the practices in this study and potentially suggested the ways of sediment reduction through evaluating the changes of land use and field operation in the model for the purpose of watershed management. PMID:15559830

  6. Impact of Integrated Watershed Management on Complex Interlinked Factors Influencing Health: Perceptions of Professional Stakeholders in a Hilly Tribal Area of India

    OpenAIRE

    Nerkar, Sandeep S.; Tamhankar, Ashok J; Eva Johansson; Cecilia Stålsby Lundborg

    2016-01-01

    Lack of access to water has a significant impact on the health of people in tribal areas, where water in households as well as for productive purposes is essential for life. In resource-limited settings such as hilly tribal areas, implementation of an integrated watershed management programme (IWMP) can have a significant impact on public health by providing a solution to water scarcity and related problems. The professional stakeholders in rural healthcare and development administration are ...

  7. Using critical source areas for targeting cost-effective best management practices to mitigate phosphorus and sediment transfer at the watershed scale

    OpenAIRE

    Strauss, Peter; Leone, Antonio; Ripa, Maria; Turpin, Nadine; Lescot, Jean-Marie; Laplana, Ramon

    2007-01-01

    The impact of implementing different best management practices (BMPs) at the small watershed scale were examined for the Petzenkirchen catchment in Austria and Lake Vico in Italy, in terms of data needs, hydrological processes, tools and models involved. Identification of critical source areas for targeting soil and phosphorus losses turned out to be crucial for correct allocation of BMPs. Comparison of environmental effectiveness and costs, both calculated using various modelling approaches,...

  8. Management & Communication: Project Management Case Study

    CERN Multimedia

    Nathalie Dumeaux

    2004-01-01

    We are pleased to announce the recent launch of a new workshop on Project Management. This is designed for People with budgetary, scheduling and/or organizational responsibilities in a project or a sub-project. The objectives through a management case study specially suited to CERN are: to become familiar with modern management techniques in use for structuring, planning, scheduling, costing and progress monitoring of a project or a sub-project. to understand in-depth issues associated with Deliverable-oriented Project Management, Earned Value Management, Advanced Project Cost Engineering and Project Risk Management. The full description of this workshop can be found here. The next session will be held on 8 October 2004. If you are interested in this workshop, please contact Nathalie Dumeaux, email or 78144. Programme of Seminars October to December 2004 Situation : 21.09.2004 Séminaires bilingues Dates Jours Places disponibles Project Management Case study 8 October 1 oui Intr...

  9. Assessing the role of spatial rainfall variability on watersheds response using weather radar A case study in the Gard region, France

    Science.gov (United States)

    Anggraheni, Evi; Payrastre, Olivier; Emmanuel, Isabelle; Andrieu, Herve

    2014-05-01

    The consideration of spatial rainfall variability in hydrological modeling is not only an important scientific issue but also, with the current development of high resolution rainfall data from weather radars, an increasing request from managers of sewerage networks and from flood forecasting services. Although the literature on this topic is already significant, at this time the conclusions remain contrasted. The impact of spatial rainfall variability on the hydrological responses appears to highly depend both on the organization of rainfall fields and on the watershed characteristics. The objective of the study presented here is to confirm and analyze the high impact of spatial rainfall variability in the specific context of flash floods. The case study presented is located in the Gard region in south east of France and focuses on four events which occurred on 13 different watersheds in 2008. The hydrological behaviors of these watersheds have been represented by the distributed rainfall - runoff model CINECAR, which already proved to well represent the hydrological responses in this region (Naulin et al., 2013). The influence of spatial rainfall variability has been studied here by considering two different rainfall inputs: radar data with a resolution of 1 km x 1 km and the spatial average rainfall over the catchment. First, the comparison between simulated and measured hydrographs confirms the good performances of the model for intense rainfall events, independently of the level of spatial rainfall variability of these events. Secondly, the simulated hydrographs obtained from radar data are taken as reference and compared to those obtained from the average rainfall inputs by computing two values: the time difference and the difference of magnitude between the simulated peaks discharge. The results highly depend on the rainfall event considered, and on the level of organization of the spatial rainfall variability. According to the model, the behavior of the studied watersheds may sometimes remain very similar with a homogeneous rainfall input, whereas for some cases the differences in the peak discharges can reach up to 80%. A detailed analysis illustrates the possible role of the watershed in enhancing the effect of rainfall spatial variability. In a further step, the objective is to test the ability of four rainfall variability indicators to identify the situations for which spatial rainfall variability has the greatest influence on the watershed response. The selected indicators include those of Zoccatelli et al. (2010), and all rely on a detailed analysis of spatial rainfall organization in function of hydrological distances (i.e. the distances measured along the stream network from one point of the watershed to the outlet). The analysis of the links between these indicators and the hydrological behaviors identified is currently in progress. Reference: Naulin, J.P., Payrastre, O., Gaume, E., 2013. Spatially distributed flood forecasting in flash flood prone areas: Application to road network supervision in Southern France. Journal of Hydrology, 486, 88-99, doi:10.1016/j.jhydrol.2013.01.044 Zoccatelli, D., Borga, M., Zanon, F., Antonescu, B., Stancalie, G., 2010. Which rainfall spatial information for flash flood response modelling? A numerical investigation based on data from the Carpathian range, Romania. Journal of Hydrology, 394, 148-161

  10. A model to study the grain size components of the sediment deposited in aeolian-fluvial interplay erosion watershed

    Science.gov (United States)

    Zhang, Xiang; Li, Zhanbin; Li, Peng; Cheng, Shengdong; Zhang, Yang; Tang, Shanshan; Wang, Tian

    2015-12-01

    Aeolian-fluvial interplay erosion areas with complex dynamics and physical sources are the main suppliers of coarse sediment in the Yellow River. Understanding the composition, distribution, and sources of deposited sediments in such areas is of great importance for the control of sediment transport in rivers. In this paper, a typical aeolian-fluvial interplay erosion watershed - the Dongliu Gully - was studied and the frequency distribution curves of sediments deposited in the stream channel were fitted using the Weibull function. Sources of deposited sediment in the stream channel were analyzed based on the law of the conservation of matter. Results showed that the hilly zone accounted for 78% of deposited sediments, which were dominated by material with a median grain size (d50) of 0.093 mm, and the desert zone accounted for 22% of deposited sediments, which were dominated by material with a d50 of 0.01 mm. Wind erosion dynamics accounted for 72% of deposited sediments, while water erosion dynamics accounted for only 28%. This research provides a theoretical basis for the control and management of rivers with high sediment content.

  11. Criteria for evaluating sediment quality. Case study: sub-watershed of Espirito Santo Stream, affluent of the Sao Francisco river

    International Nuclear Information System (INIS)

    'Sediment Quality Values Guidelines' (SQVG) have been used for evaluating ecological risk associated with the sediment contamination for benthic organisms. The main objective of this work was to develop methodologies and to collect data that allowed the application of SQVG for the following metals: Cd, Cu, Pb, Ni and Zn. The location chosen for the case study was the sub-watershed of the Espirito Santo Stream, which is part of the Unit Planning and Hydrologic Resources Management- UPGRH SF4, of the Sao Francisco river watershed, located in the area of the city of Tres Marias. The life in the sub-watershed is significantly affected by the installation of a waste dam that controls effluents coming from the zinc-ore beneficiation plant. Our studies addressed the biogeochemical characterization of the sediments of those environments through the determination of the concentrations of acid volatile sulfide (AVS), the study of the partitioning of metals is among the total sediments and interstitial waters, and the determination of the fraction of metals is associated with AVS in the total sediments. The data obtained were analyzed in association with those related to the analysis of the structure of the benthic community and eco-toxicity tests. The studies also included analysis of the physico-chemical variables and concentration of metals is in the samples of the surface water; mineralogical and granulometric analyses, quantity of organic matter and concentration of inorganic contaminants in the samples of sediments. High levels of electrical conductivity and total solids diluted were found in one surface water sample site. The results of a Neutron Activation Analysis (NAA) showed that the chemical elements predominant in the samples were Ti, Al, V, Mn and Fe. The results of the total metal analysis in sediment samples showed that only one point located in the Lavagem stream, situated immediately downstream the dam and before flowing into the Espirito Santo stream, presented concentration values of the evaluated metals (Cd, Cu, Pb, Ni and Zn) above those of the 'background' value. The TEL limits ('Threshold Effect Level') and PEL ('Probable Effect Level') were not exceeded in any of the sampling campaigns. The Guidelines Interstitial Water Toxic Units (IWTU), established by the USEPA, was violated for all samples. The application of SQVG, based on the equilibrium partition theory, showed that metals are controlled by the sulfide-phase present in sediments. This indicates that the metals presented in the sediments may have low bio-availability. The results of the evaluation of the benthic community structure indicated a possible influence of the waste dam in the Lavagem stream and in the Espirito Santo stream, downstream the confluence with the Lavagem stream. The results of eco-toxicity tests showed that contaminated sediment can cause only chronic effects. (author)

  12. Effects of stormwater management and stream restoration on watershed nitrogen retention

    Science.gov (United States)

    Restoring urban infrastructure and managing the nitrogen cycle represent emerging challenges for urban water quality. We investigated whether stormwater control measures (SCMs), a form of green infrastructure, integrated into restored and degraded urban stream networks can influ...

  13. Effects of grassed buffer strip management on potential denitrification in a belgian agricultural watershed

    OpenAIRE

    Cors, Marie; Tychon, Bernard

    2003-01-01

    Riparian buffer strips are managed for the enhancement of water quality through control of non point source pollution. Denitrification in riparian buffer strips is thought to be the major process -with nitrate uptake by plant growth- that reduces nitrate input in surface water. We investigated the Denitrifier Enzyme Activity (DEA) to test how the buffer strip management modifies the denitrification process. The experimental site is composed of a crop field and a 11 m wide grassed buffer st...

  14. Using multiple-criteria decision-making techniques for eco-environmental vulnerability assessment: a case study on the Chi-Jia-Wan Stream watershed, Taiwan.

    Science.gov (United States)

    Huang, Pi-Hui; Tsai, Jing-Shyan; Lin, Wen-Tzu

    2010-09-01

    The Chi-Jia-Wan Stream watershed, located in the area of the upstream Da-Chia River in central Taiwan, is famous for slopeland agriculture and the land-locked salmon. Improper agricultural activities have caused apparent ecosystem vulnerability and sensitivity. In this study, a system that combined three watershed-based environmental indicators with multiple-criteria decision-making techniques, the Analytical Hierarchy Process, and the Preference Ranking Organization METHod for Enrichment Evaluations was developed to assess eco-environmental vulnerability. The composite evaluation index system was set up including sediment, runoff, and nutrient factors. Supported by geographic information system and K-means clustering and taking the subwatershed as the evaluation unit, the vulnerability is classified into four levels: potential, low, moderate, and high. The evaluated results show that 8.82% of subwatersheds (six subwatersheds) are in the moderately and highly vulnerable zones. These subwatersheds represent vertical-belt distribution, mainly concentrated in the right side of the studied area and near the riparian zone along the Chi-Jia-Wan Stream. The exploited farmland in the moderately and highly vulnerable zones is about 142.21 ha, occupying 75.38% of the total farmland in the studied watershed. These seriously vulnerable zones that have caused degradation in the quality of the eco-environment should be treated with more best management practices for eco-environmental rehabilitation. Additionally, the proposed model can effectively evaluate the eco-environmental vulnerability grade for reference in policy planning and ecological restoration in this area. PMID:19629735

  15. Watershed District

    Data.gov (United States)

    Kansas Data Access and Support Center — Boundaries show on this map are derived from legal descriptions contained in petitions to the Kansas Secretary of State for the creation or extension of watershed...

  16. Reply to comment on “Suburban watershed nitrogen retention: Estimating the effectiveness of stormwater management structures” by Koch et al. (Elem Sci Anth 3:000063, July 2015

    Directory of Open Access Journals (Sweden)

    Benjamin J. Koch

    2015-12-01

    Full Text Available Abstract We reply to a comment on our recent structured expert judgment analysis of stormwater nitrogen retention in suburban watersheds. Low relief, permeable soils, a dynamic stream channel, and subsurface flows characterize many lowland Coastal Plain watersheds. These features result in unique catchment hydrology, limit the precision of streamflow measurements, and challenge the assumptions for calculating runoff from rainfall and catchment area. We reiterate that the paucity of high-resolution nitrogen loading data for Chesapeake Bay watersheds warrants greater investment in long-term empirical studies of suburban watershed nutrient budgets for this region.

  17. The Magnitude of Lost Ecosystem Structure and Function in Urban Streams and the Effectiveness of Watershed-Based Management

    Science.gov (United States)

    Watershed development is a leading cause of stream impairment and increasingly threatens the availability, quality, and sustainability of freshwater resources. In a recent global meta-analysis, we found that measures of desirable ecological structure (e.g., algal, macroinvertebra...

  18. EVALUATION OF WATERSHED MANAGEMENT PRACTICES ON OXBOW LAKE ECOLOGY AND WATER QUALITY

    Science.gov (United States)

    Much of the worldwide loss of aquatic habitats has been attributed to draining and clearing for agriculture as well as non-point source pollution associated with agricultural runoff. Mississippi Delta Management Systems Evaluation Area (MSEA) project was designed to development and test land and cul...

  19. REMOTE SENSING, VISUALIZATION AND DECISION SUPPORT FOR WATERSHED MANAGEMENT AND SUSTAINABLE AGRICULTURE

    Science.gov (United States)

    The integration of satellite and airborne remote sensing, scientific visualization and decision support tools is discussed within the context of management techniques for minimizing the non-point source pollution load of inland waterways and the sustainability of food crop produc...

  20. Prioritizing Watersheds for Conservation Actions in the Southeastern Coastal Plain Ecoregion

    Science.gov (United States)

    Jang, Taeil; Vellidis, George; Kurkalova, Lyubov A.; Boll, Jan; Hyman, Jeffrey B.

    2015-03-01

    The aim of this study was to apply and evaluate a recently developed prioritization model which uses the synoptic approach to geographically prioritize watersheds in which Best Management Practices (BMPs) can be implemented to reduce water quality problems resulting from erosion and sedimentation. The model uses a benefit-cost framework to rank candidate watersheds within an ecoregion or river basin so that BMP implementation within the highest ranked watersheds will result in the most water quality improvement per conservation dollar invested. The model was developed to prioritize BMP implementation efforts in ecoregions containing watersheds associated with the USDA-NRCS Conservation Effects Assessment Project (CEAP). We applied the model to HUC-8 watersheds within the southeastern Coastal Plain ecoregion (USA) because not only is it an important agricultural area but also because it contains a well-studied medium-sized CEAP watershed which is thought to be representative of the ecoregion. The results showed that the three HUC-8 watersheds with the highest rankings (most water quality improvement expected per conservation dollar invested) were located in the southern Alabama, northern Florida, and eastern Virginia. Within these watersheds, measures of community attitudes toward conservation practices were highly ranked, and these indicators seemed to push the watersheds to the top of the rankings above other similar watersheds. The results, visualized as maps, can be used to screen and reduce the number of watersheds that need further assessment by managers and decision-makers within the study area. We anticipate that this model will allow agencies like USDA-NRCS to geographically prioritize BMP implementation efforts.

  1. Climate change and watershed mercury export: a multiple projection and model analysis.

    Science.gov (United States)

    Golden, Heather E; Knightes, Christopher D; Conrads, Paul A; Feaster, Toby D; Davis, Gary M; Benedict, Stephen T; Bradley, Paul M

    2013-09-01

    Future shifts in climatic conditions may impact watershed mercury (Hg) dynamics and transport. An ensemble of watershed models was applied in the present study to simulate and evaluate the responses of hydrological and total Hg (THg) fluxes from the landscape to the watershed outlet and in-stream THg concentrations to contrasting climate change projections for a watershed in the southeastern coastal plain of the United States. Simulations were conducted under stationary atmospheric deposition and land cover conditions to explicitly evaluate the effect of projected precipitation and temperature on watershed Hg export (i.e., the flux of Hg at the watershed outlet). Based on downscaled inputs from 2 global circulation models that capture extremes of projected wet (Community Climate System Model, Ver 3 [CCSM3]) and dry (ECHAM4/HOPE-G [ECHO]) conditions for this region, watershed model simulation results suggest a decrease of approximately 19% in ensemble-averaged mean annual watershed THg fluxes using the ECHO climate-change model and an increase of approximately 5% in THg fluxes with the CCSM3 model. Ensemble-averaged mean annual ECHO in-stream THg concentrations increased 20%, while those of CCSM3 decreased by 9% between the baseline and projected simulation periods. Watershed model simulation results using both climate change models suggest that monthly watershed THg fluxes increase during the summer, when projected flow is higher than baseline conditions. The present study's multiple watershed model approach underscores the uncertainty associated with climate change response projections and their use in climate change management decisions. Thus, single-model predictions can be misleading, particularly in developmental stages of watershed Hg modeling. PMID:23703873

  2. Climate change and watershed mercury export: a multiple projection and model analysis

    Science.gov (United States)

    Golden, Heather E.; Knightes, Christopher D.; Conrads, Paul A.; Feaster, Toby D.; Davis, Gary M.; Benedict, Stephen T.; Bradley, Paul M.

    2013-01-01

    Future shifts in climatic conditions may impact watershed mercury (Hg) dynamics and transport. An ensemble of watershed models was applied in the present study to simulate and evaluate the responses of hydrological and total Hg (THg) fluxes from the landscape to the watershed outlet and in-stream THg concentrations to contrasting climate change projections for a watershed in the southeastern coastal plain of the United States. Simulations were conducted under stationary atmospheric deposition and land cover conditions to explicitly evaluate the effect of projected precipitation and temperature on watershed Hg export (i.e., the flux of Hg at the watershed outlet). Based on downscaled inputs from 2 global circulation models that capture extremes of projected wet (Community Climate System Model, Ver 3 [CCSM3]) and dry (ECHAM4/HOPE-G [ECHO]) conditions for this region, watershed model simulation results suggest a decrease of approximately 19% in ensemble-averaged mean annual watershed THg fluxes using the ECHO climate-change model and an increase of approximately 5% in THg fluxes with the CCSM3 model. Ensemble-averaged mean annual ECHO in-stream THg concentrations increased 20%, while those of CCSM3 decreased by 9% between the baseline and projected simulation periods. Watershed model simulation results using both climate change models suggest that monthly watershed THg fluxes increase during the summer, when projected flow is higher than baseline conditions. The present study's multiple watershed model approach underscores the uncertainty associated with climate change response projections and their use in climate change management decisions. Thus, single-model predictions can be misleading, particularly in developmental stages of watershed Hg modeling.

  3. A coupled model approach to reduce nonpoint-source pollution resulting from predicted urban growth: A case study in the Ambos Nogales watershed

    Science.gov (United States)

    Norman, L.M.; Guertin, D.P.; Feller, M.

    2008-01-01

    The development of new approaches for understanding processes of urban development and their environmental effects, as well as strategies for sustainable management, is essential in expanding metropolitan areas. This study illustrates the potential of linking urban growth and watershed models to identify problem areas and support long-term watershed planning. Sediment is a primary source of nonpoint-source pollution in surface waters. In urban areas, sediment is intermingled with other surface debris in transport. In an effort to forecast the effects of development on surface-water quality, changes predicted in urban areas by the SLEUTH urban growth model were applied in the context of erosion-sedimentation models (Universal Soil Loss Equation and Spatially Explicit Delivery Models). The models are used to simulate the effect of excluding hot-spot areas of erosion and sedimentation from future urban growth and to predict the impacts of alternative erosion-control scenarios. Ambos Nogales, meaning 'both Nogaleses,' is a name commonly used for the twin border cities of Nogales, Arizona and Nogales, Sonora, Mexico. The Ambos Nogales watershed has experienced a decrease in water quality as a result of urban development in the twin-city area. Population growth rates in Ambos Nogales are high and the resources set in place to accommodate the rapid population influx will soon become overburdened. Because of its remote location and binational governance, monitoring and planning across the border is compromised. One scenario described in this research portrays an improvement in water quality through the identification of high-risk areas using models that simulate their protection from development and replanting with native grasses, while permitting the predicted and inevitable growth elsewhere. This is meant to add to the body of knowledge about forecasting the impact potential of urbanization on sediment delivery to streams for sustainable development, which can be accomplished in a virtual environment. Copyright ?? 2008 by Bellwether Publishing, Ltd. All rights reserved.

  4. Application of the SUSTAIN Model to a Watershed-Scale Case for Water Quality Management

    OpenAIRE

    Chi-Feng Chen; Ming-Yang Sheng; Chia-Ling Chang; Shyh-Fang Kang; Jen-Yang Lin

    2014-01-01

    Low impact development (LID) is a relatively new concept in land use management that aims to maintain hydrological conditions at a predevelopment level without deteriorating water quality during land development. The United States Environmental Protection Agency (USEPA) developed the System for Urban Stormwater Treatment and Analysis Integration model (SUSTAIN) to evaluate the performance of LID practices at different spatial scales; however, the application of this model has been limited rel...

  5. An evolving simulation and gaming process to facilitate adaptive watershed management in mountain northern Thailand

    OpenAIRE

    Barnaud, Cécile; Promburom, Tanya; Trébuil, Guy; Bousquet, Francois

    2007-01-01

    Decentralization of natural resources management provides an opportunity for communities to increase their participation in related decision-making. Research should propose adapted methodologies enabling the numerous local stakeholders of these complex socio-ecological settings to define themselves their problems and to identify agreed-upon solutions. In the research presented in this paper, a Companion Modelling (ComMod) approach combining Role-Playing Games (RPG) and Multi-Agent Systems (MA...

  6. A Paired watershed Evaluation of Agroforestry effects on Water Quality on a Corn/Soybean Rotation

    Science.gov (United States)

    Udawatta, Ranjith; Jose, Shibu; Garrett, Harold

    2015-04-01

    Rigorous long-term scientific studies confirming environmental benefits from the use of agroforestry practices are limited and thus limit the adoption of agroforestry practices throughout the world. The objective of the study was to examine non point source pollution (NPSP) reduction by agroforestry buffers in row-crop watersheds. The study consists of three watersheds in a paired watershed design in Knox County, Missouri, USA. Watersheds were established in 1991 and treatments of agroforestry (trees+grass) and grass buffers were established on two watersheds in 1997 after a 7-year calibration period. Runoff water samples were analyzed for sediment, total nitrogen (TN) and total phosphorus (TP) for the 2009 to 2010 period. Results indicated that agroforestry and grass buffers on row crop watersheds significantly reduce runoff, sediment, TN, and TP losses to streams. Buffers in association with row crop management reduced runoff by 26% during the study period as compared to the control treatments. Average sediment loss for row crop management and buffer watersheds was 14.8 and 9.7 kg ha-1 yr-1 respectively. On average, grass and agroforestry buffers reduced sediment, TN, and TP losses by 32, 42, and 46% compared to the control treatments. These differences could in part be attributed to the differences in management, soils, and landscape features. Results from this study strongly indicate that agroforestry and grass buffers can be implemented to reduce NPSP to water bodies while improving land value and environmental quality.

  7. Goddard DEVELOP Students: Using NASA Remote Sensing Technology to Study the Chesapeake Bay Watershed

    Science.gov (United States)

    Moore, Rachel

    2011-01-01

    The DEVELOP National Program is an Earth Science research internship, operating under NASA s Applied Sciences Program. Each spring, summer, and fall, DEVELOP interns form teams to investigate Earth Science related issues. Since the Fall of 2003, Goddard Space Flight Center (GSFC) has been home to one of 10 national DEVELOP teams. In past terms, students completed a variety of projects related to the Applied Sciences Applications of National Priority, such as Public Health, Natural Disasters, Water Resources, and Ecological Forecasting. These projects have focused on areas all over the world, including the United States, Africa, and Asia. Recently, Goddard DEVELOP students have turned their attention to a local environment, the Chesapeake Bay Watershed. The Chesapeake Bay Watershed is a complex and diverse ecosystem, spanning approximately 64,000 square miles. The watershed encompasses parts of six states: Delaware, Maryland, New York, Pennsylvania, Virginia, and West Virginia, as well as the District of Columbia. The Bay itself is the biggest estuary in the United States, with over 100,000 tributaries feeding into it. The ratio of fresh water to salt water varies throughout the Bay, allowing for a variety of habitats. The Bay s wetlands, marshes, forests, reefs, and rivers support more than 3,600 plant and animal species, including birds, mammals, reptiles, amphibians, fish, and crabs. The Bay is also commercially significant. It is ranked third in the nation in fishery catch, and supplies approximately 500 million pounds of seafood annually. In addition to its abundant flora and fauna, the Chesapeake Bay watershed is home to approximately 16.6 million people, who live and work throughout the watershed, and who use its diverse resources for recreational purposes. Over the past several decades, the population throughout the watershed has increased rapidly, resulting in land use changes, and ultimately decreasing the health of the Chesapeake Bay Watershed. Over the course of 2009-2010, student teams carried out two independent research projects focused on the Chesapeake Bay Watershed. The first investigated the threat of invasive species to forests in Maryland. The second investigated the detection of winter cover crops throughout the watershed from satellite data.

  8. Landscape processes, effects and the consequences of migration in their management at the Jatún Mayu watershed (Bolivia)

    Science.gov (United States)

    Penna, Ivanna; Jaquet, Stephanie; Sudmeier-Rieux, Karen; Kaenzig, Raoul; Schwilch, Gudrun; Jaboyedoff, Michel; Liniger, Hanspeter; Machaca, Angelica; Cuba, Edgar; Boillat, Sebastien

    2014-05-01

    Bolivia has a large rural population, mostly composed of subsistence farmers that face natural and anthropogenic driven processes affecting their livelihoods. In order to establish sustainable management strategies, it is important to understand the factors governing landscape changes. This work explores the geomorphic imprint and effects of natural and anthropogenic driven processes on three mountain communities undergoing de-population in the Jatún Mayu watershed (Cochabamba, Bolivia). Based on satellite image interpretation, field work and household surveys, we have identified gullies and landslides as main active processes, causing land losses, affecting inter-communal roads, etc. While landslides are mostly occurring in the middle and lower section of the basin, gullies are especially affecting the upper part (especially the southern slope). Our analysis indicated that in the middle and lower part of the basin, landslides are developing in response to the Jatún Mayu incision (slopes reach a critical angle and slope failures increase). However in the upper part, where no river down-cutting is taking place, preliminary analysis indicates that past and present human interventions (over-grazing, agriculture, road construction, etc.) play a key role on driving land degradation toward the formation of gullies. Based on the comparison of high resolution images from 2004 and 2009, we determined an agricultural land loss rate of 8452 m2/year, mostly in the form of landslides. One single event swept away 0.03 km2 of agricultural lands (~13 parcels), approximately 87% of an average household property. People's main concerns are hail, frost and droughts because they cause an "immediate" loss on family incomes, but the impacts caused by landslides and gullies are not disregarded by the communities and the government. Communities are organized to set up and maintain key infrastructure such as irrigation canals and roads. They also intend to develop protective measures against erosion like check dams based on tyres filled with rocks. In addition, organizations supported by government and institutions from abroad have built dams, reforested some slopes, and raised local capacities to improve soil conservation measures e.g. through slow-forming terraces. However, rural-to-urban migration could be affecting the management of processes leading to land degradation. Around 77% of the 22 households surveyed have at least one migrant family member (permanent, seasonal or double residence migrant). Labour force is reduced and because of de-population, two of the three schools in the area have closed. In spite of the support that communities receive, our findings indicate that high population mobility is affecting land management practices and the capacity of communities to cope with land degradation processes.

  9. Lithological and Geological Impacts on Gully Erosion (Case Study: Seif Abad Watershed, Lorestan

    Directory of Open Access Journals (Sweden)

    SH. Yousofvand

    2013-12-01

    Full Text Available Soil erodibility and gully erosion and their expansion occur under geological formation and soil characteristics. This study aims to find the rate of soil and formation effects on gully erosion in Seifabad watershed. To that end, aerial and field work were used together to determine the rate & expansion of 17 gullies in 12 years' period from 1997 to 2009. The soils were sampled for each gully in 50% interval distance with 0-30 cm horizontal surfaces and >30 cm depth. Some factors were estimated from the soil such as EC, PH, Silt, Clay, Sand & limeston percentages. Statistical analysis was done using SPSS 14 through non-parametric tests such as Kruskal-Wallis & Mann-Whitney. Spearman coefficient was used to investigate the relation between volume of gully & litological factors. The results showed a positive correlation at 1% level for the PH with the gully erodibility in surface soil, but for the depth of soil this relation belonged to the silt percentage, and sand showed a negative relation at 5%level with the volume of the gully sediments. Finally, there was no statistical relationship between geological formation and the sediment yield in gullies.

  10. Watershed Charachterization And Prioritization Of Tulasi Subwatershed: A Geospatial Approach

    Directory of Open Access Journals (Sweden)

    V.S.PAWAR-PATIL

    2013-06-01

    Full Text Available It is proficiently important to conserve the limited and precarious natural resources vis land, water and soil which should be categorically studied at watershed level. Due to improper land, soil and water management practices, land and water resources getting degraded and eroded, water getting polluted. In this regard present study is profoundly concerned to characterization and prioritization of Tulasi sub watershed which is small tributary of Bhogavati River in mega Panchganga river basin of Kolhapur district, Maharashtra. The prioritization of this small watershed has been carried out on the basis of morphometric analysis for land reclamation and soil erosion prevention. Database has been prepared in ArcGIS 9.3 desktop application, ARCSWAT extension tool for sub-watershed demarcation and other analysis carried out for certain significant areal, linear morphometric parameters vis stream length, stream frequency, bifurcation ratio, Length of overland flow, perimeter of basin, drainage density etc. have been assessed. Cartosat data used for preparation DEM and delineation of watershed. Above said parameters obtained by using Arc Gis ver.9.3 software and appropriate weightage assigned to them in order to assess the priority of sub watershed. The result reveals that, sub-basin TB-2, TB-3 and TB-4 has comes under the high risk for soil erosion and need to give a high priority for land conservation practices. These studies are significant for soil erosion prevention and surface rainwater harvesting.

  11. Sr isotopic characteristics in two small watersheds draining silicate and carbonate rocks: implication for studies on seawater Sr isotopic evolution

    Science.gov (United States)

    Wu, W. H.; Zheng, H. B.; Cao, J. H.; Yang, J. D.

    2014-02-01

    We systematically investigated the Sr isotopic characteristics of a small silicate watershed, the Xishui River a tributary of the Yangtze River, and a small carbonate watershed, the Guijiang River a tributary of the Pearl River. The results show that the two rivers have uncommon Sr isotopic characteristics compared with most small watersheds. Specifically, the silicate watershed (Xishui River) has relatively high Sr concentrations (0.468 to 1.70 μmol L-1 in summer and 1.30 to 3.17 μmol L-1 in winter, respectively) and low 87Sr/86Sr ratios (0.708686 to 0.709148 in summer and 0.708515 to 0.709305 in winter). The carbonate watershed (Guijiang River) has low Sr concentrations (0.124 to 1.098 μmol L-1) and high 87Sr/86Sr ratios (0.710558 to 0.724605). As the 87Sr/86Sr ratios in the Xishui River are lower than those in seawater, the 87Sr/86Sr ratio of seawater will decrease after the river water is transported to the oceans. Previous studies have also shown that some basaltic watersheds with extremely high chemical weathering rates reduced the seawater Sr isotope ratios. In other words, river catchments with high silicate weathering rates do not certainly transport highly radiogenic Sr into oceans. Therefore, the use of the variations in the seawater 87Sr/86Sr ratio to indicate the continental silicate weathering intensity may be questionable. In the Guijiang River catchment, the 87Sr/86Sr ratios of carbonate rocks and other sources (rainwater, domestic and industrial waste water, and agricultural fertilizer) are lower than 0.71. In comparison, some non-carbonate components, such as sand rocks, mud rocks, and shales, have relatively high Sr isotopic compositions. Moreover, granites accounted for only 5% of the drainage area have extremely high 87Sr/86Sr ratios with an average of greater than 0.8. Therefore, a few silicate components in carbonate rocks obviously increase the Sr isotopic compositions of the river water.

  12. Modeling increased riverine nitrogen export: Source tracking and integrated watershed-coast management.

    Science.gov (United States)

    Yu, Dan; Yan, Weijin; Chen, Nengwang; Peng, Benrong; Hong, Huasheng; Zhuo, Guihua

    2015-12-30

    The global NEWS model was calibrated and then used to quantify the long term trend of dissolved inorganic nitrogen (DIN) export from two tributaries of Jiulong River (SE China). Anthropogenic N inputs contributed 61-92% of river DIN yield which increased from 337 in 1980s to 1662kgNkm(-2)yr(-1) in 2000s for the North River, and from 653 to 3097kgNkm(-2)yr(-1) for the West River. North River and West River contributed 55% and 45% respectively of DIN loading to the estuary. Rapid development and poor management driven by national policies were responsible for increasing riverine N export. Scenario analysis and source tracking suggest that reductions of anthropogenic N inputs of at least 30% in the North River (emphasis on fertilizer and manure) and 50% in the West River (emphasis on fertilizer) could significantly improve water quality and mitigate eutrophication in both river and coastal waters. PMID:26517942

  13. Watershed Sustainability Index Assessment of a Watershed in Chhattisgarh, India

    OpenAIRE

    Surendra Kumar Chandniha; M. L Kansal; G. Anvesh

    2014-01-01

    In order to achieve continuous sustainable development in a watershed, it is desired that natural resources such as water are assessed and utilized efficiently. Generally, water resources are assessed considering watershed as a unit. Since the water requirements and availability varies in space and time, it is desired to manage the water resources so as to satisfy the demand on sustainable basis. Further, in order to achieve sustainability, it is necessary to consider social, economic and en...

  14. Restore McComas Watershed; Meadow Creek Watershed, 2002-2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    McRoberts, Heidi (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

    2004-01-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. Watershed restoration projects within the Meadow Creek watershed are coordinated with the Nez Perce National Forest. The Nez Perce Tribe began watershed restoration projects within the Meadow Creek watershed of the South Fork Clearwater River in 1996. Progress has been made in restoring the watershed by excluding cattle from critical riparian areas through fencing. During years 2000-2003, trees were planted in riparian areas within the meadow and its tributaries. Culverts have been prioritized for replacement to accommodate fish passage throughout the watershed. Designs for replacement are being coordinated with the Nez Perce National Forest. Twenty miles of road were contracted for decommissioning. Tribal crews completed maintenance to the previously built fence.

  15. Vulnerability to uncertain climate change scenarios: implications for water resources management in two Mediterranean watersheds

    Science.gov (United States)

    Nunes, J. P.

    2009-04-01

    Water resource consumption in Mediterranean basins is often dominated by irrigation. Climate change is expected to increase pressure on available resources, due to a decrease in total rainfall coupled with an increase in irrigation water demands due to higher temperatures. This pressure needs to be quantified in order to allow water resource managers to adapt to the impacts of climate change; this is made difficult, however, by the uncertainty in climate change scenarios. This work addressed this uncertainty by using synthetic climate change scenarios covering a good part of climate change scenarios predicted by climate models (temperature increases from 1.6 to 6.4 °C, rainfall decreases from -2.5% to -40%). The SWAT hydrological model was applied to assess changes to water resource availability in the Portuguese part of two large Mediterranean basins, the Guadiana and the Tejo, where water is used mostly (80 to 90%) for irrigation. Changes to water demand in irrigated areas were evaluated, for the same scenarios, using the FAO method, and taking into account adaptation through precision irrigation methods. Supply and demands were compared both for average years and droughts with a 5 year return period, in order to identify changes to the frequency of severe water stress and water shortfall years. The results of this work indicate that climate change would significantly impair the capacity of the Guadiana river basin for sustaining current water uses, with severe water stress coupled with water shortage during drought years predicted for low magnitude climate change; and permanent water shortfalls occurring for high magnitude climate changes. The Tejo basin showed a greater capacity to sustain water uses under climate change, except during 5-year droughts which could lead to severe water stress. However, the water management system in this basin might need to be redesigned in order to cope with these stress periods. In short, the results indicate that there is a greater resilience to climate change on the Tejo basin where severe water stress is not expected for lower magnitudes of climate change. The results also indicate that, in both cases, the adoption of precision irrigation methods only allows for a relatively small margin of adaptation.

  16. Using an integrated method to estimate watershed sediment yield during heavy rain period: a case study in Hualien County, Taiwan

    Directory of Open Access Journals (Sweden)

    S. M. Hsu

    2012-06-01

    Full Text Available A comprehensive approach estimating sediment yield from a watershed is needed to develop better measures for mitigating sediment disasters and assessing downstream impacts. In the present study, an attempt has been made to develop an integrated method, considering sediment supplies associated with soil erosion, shallow landslide and debris flow to estimate sediment yield from a debris-flow-prone watershed on a storm event basis. The integrated method is based on the HSPF and TRIGRS models for predicting soil erosion and shallow landslide sediment yield, and the FLO-2D model for calculating debris flow sediment yield. The proposed method was applied to potential debris-flow watersheds located in the Sioulin Township of Hualien County. The available data such as hourly rainfall data, historical streamflow and sediment records as well as event-based landslide inventory maps have been used for model calibration and validation. Results for simulating sediment yield have been confirmed by comparisons of observed data from several typhoon events. The verified method employed a 24-h design hyetograph with the 100-yr return period to simulate sediment yield within the study area. The results revealed that the influence of shallow landslides on sediment supply as compared with soil erosion was significant. The estimate of landslide transport capacity into a main channel indicated the sediment delivery ratio on a typhoon event basis was approximately 38.4%. In addition, a comparison of sediment yields computed from occurrence and non-occurrence of debris flow scenarios showed that the sediment yield from an occurrence condition was found to be increasing at about 14.2 times more than estimated under a non-occurrence condition. This implied watershed sediment hazard induced by debris flow may cause severe consequences.

  17. Evaluation of an operational streamflow forecasting system driven by ensemble precipitation forecasts : a case study for the Gatineau watershed

    Science.gov (United States)

    Boucher, M.-A.; Perreault, L.; Tremblay, D.; Gaudet, J.; Minville, M.; Anctil, F.

    2009-04-01

    Among the various sources of uncertainty for hydrological forecasts, the uncertainty linked to meteorological inputs prevail. Precipitation is particularly difficult to forecast and observed values are often poor representation of the true precipitation field. In order to account for the uncertainty related to precipitation data, it can be interesting to produce ensemble streamflow forecasts by feeding a hydrological model with ensemble precipitation forecasts issued by atmospheric models. In this study, we use ensemble precipitation forecasts to drive Hydrotel, a distributed hydrological model. We concentrate on the Gatineau watershed, which serves as an experimental watershed for Hydro-Québec, the major hydropower producer in Quebec. The main goal of this study is to demonstrate that ensemble precipitation forecasts can improve streamflow forecasting for the watershed of interest. The ensemble precipitation forecasts were produced by Environnement Canada from march first of 2002 to december 31st of 2003. They were obtained using two atmospheric models, SEF (8 members plus the control deterministic forecast) and GEM (8 members). The corresponding deterministic precipitation forecast issued by SEF model is also used with Hydrotel in order to compare ensemble streamflow forecasts with their deterministic counterparts. The quality of the precipitation forecasts is first assessed, using the continuous ranked probability score (CRPS), the logarithmic score, rank histograms and reliability diagrams. The performance of the corresponding streamflow forecasts obtained at the end of the process is also evaluated using the same quality assessment tools.

  18. Model Watershed Plan; Lemhi, Pahsimeroi, and East Fork of the Salmon River Management Plan, 1995 Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Swift, Ralph

    1995-11-01

    Idaho`s Model Watershed Project was established as part of the Northwest Power Planning Council`s plan for salmon recovery in the Columbia River Basin. The Council`s charge was simply stated and came without strings. The tasks were to identify actions within the watershed that are planned or needed for salmon habitat, and establish a procedure for implementing habitat-improvement measures. The Council gave the responsibility of developing this project to the Idaho Soil Conservation Commission. This Model Watershed Plan is intended to be a dynamic plan that helps address these two tasks. It is not intended to be the final say on either. It is also not meant to establish laws, policies, or regulations for the agencies, groups, or individuals who participated in the plan development.

  19. NASA 1990 Multisensor Airborne Campaigns (MACs) for ecosystem and watershed studies

    Science.gov (United States)

    Wickland, Diane E.; Asrar, Ghassem; Murphy, Robert E.

    The Multisensor Airborne Campaign (MAC) focus within NASA's former Land Processes research program was conceived to achieve the following objectives: to acquire relatively complete, multisensor data sets for well-studied field sites, to add a strong remote sensing science component to ecology-, hydrology-, and geology-oriented field projects, to create a research environment that promotes strong interactions among scientists within the program, and to more efficiently utilize and compete for the NASA fleet of remote sensing aircraft. Four new MAC's were conducted in 1990: the Oregon Transect Ecosystem Research (OTTER) project along an east-west transect through central Oregon, the Forest Ecosystem Dynamics (FED) project at the Northern Experimental Forest in Howland, Maine, the MACHYDRO project in the Mahantango Creek watershed in central Pennsylvania, and the Walnut Gulch project near Tombstone, Arizona. The OTTER project is testing a model that estimates the major fluxes of carbon, nitrogen, and water through temperate coniferous forest ecosystems. The focus in the project is on short time-scale (days-year) variations in ecosystem function. The FED project is concerned with modeling vegetation changes of forest ecosystems using remotely sensed observations to extract biophysical properties of forest canopies. The focus in this project is on long time-scale (decades to millenia) changes in ecosystem structure. The MACHYDRO project is studying the role of soil moisture and its regulating effects on hydrologic processes. The focus of the study is to delineate soil moisture differences within a basin and their changes with respect to evapotranspiration, rainfall, and streamflow. The Walnut Gulch project is focused on the effects of soil moisture in the energy and water balance of arid and semiarid ecosystems and their feedbacks to the atmosphere via thermal forcing.

  20. Supplement Analysis for the Watershed Management Program EIS - Libby Creek (Lower Cleveland) Stabilization Project

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2004-07-29

    This project is follow-up to stream stabilization activities on Libby Creek that were initiated on the Upper Cleveland reach of Libby Creek 2 years ago. BPA now proposes to fund FWP to complete channel stabilization activities on the Lower Cleveland reach of Libby Creek, reduce sediment sources, convert overwidened portions of the stream into self-maintaining channel types, use natural stream stabilization techniques, and improve wildlife migratory corridors. This lower reach is about one river mile below the upper Cleveland Reach and the proposed activities are very similar to those conducted before. The current work would be constructed in two additional phases. The first phase of the Lower Cleveland project would be completed in the fall of 2004 (9/1/04--12/31/04), to include the upper 3,100 feet. The second phase will be constructed in the fall of 2005 (9/1/05--12/31/05), to include stabilizing the remaining 6,200 feet of stream. The Cleveland reaches are a spawning and rearing tributary for resident redband trout, and resident and fluvial bull trout migrating from the Kootenai River. The planned work at the two remaining phases calls for shaping cut banks; installing root wads and tree revetments; installing channel grade control structures; planting native vegetation; and installing cross vanes constructed from rock and trees to control channel gradient. In the past, this reach of Libby Creek has been degraded by past management practices, including road building, hydraulic and dredge mining, and riparian logging. This past activity has resulted in accelerated bank erosion along a number of meander bends, resulting in channel degradation and poor fish habitat. Currently the stream channel is over-widened and shallow having limited pool habitat. The current stream channel is over-widened and shallow, having limited pool habitat.

  1. Participação comunitária e implementação dos instrumentos de gestão da água em bacias hidrográficas / Community participation and implementation of water management instruments in watersheds

    Scientific Electronic Library Online (English)

    Tadeu Fabrício, Malheiros; Mariza Guimarães, Prota; Mario Alejandro, Perez Rincón.

    2013-04-01

    Full Text Available O modelo atual de gestão dos recursos hídricos no Brasil é descentralizado, participativo e integrado, e tem como unidade de planejamento a bacia hidrográfica. Baseia-se na atuação de comitês de bacia, sendo que cada comitê possui composição e regras de funcionamento próprias, regidas por seu estatu [...] to, os quais apresentam semelhanças básicas. Os princípios básicos desta gestão foram ditados pela Constituição Brasileira de 1988 e detalhados pela Política Nacional de Recursos Hídricos em 1997. Em nível estadual, São Paulo promulgou sua Política Estadual de Recursos Hídricos em 1991. Este artigo faz análise do processo de participação nos comitês de bacia do Estado de São Paulo e suas implicações na implementação dos instrumentos de gestão de recursos hídricos, por meio de um estudo de caso no Comitê da Bacia Hidrográfica do Tietê - Jacaré, adotando como metodologia a aplicação de questionários aos seus membros titulares da gestão 2009-2011. Observou-se engajamento e integração entre seus diversos integrantes. Mesmo assim, os resultados encontrados apontam para a necessidade de revisão do estatuto deste comitê, sendo evidenciadas distorções causadas pelas divergências entre a legislação estadual e a federal, principalmente quanto aos segmentos participantes e atores envolvidos. Mostraram também a necessidade de uma maior divulgação das questões de recursos hídricos nesta bacia e no Estado de São Paulo, como um todo. Ao mesmo tempo, recomenda-se colocar esforços para ampliar o exercício da representatividade das instituições no comitê e fortalecer os resultados dos trabalhos desenvolvidos nas câmaras técnicas no espaço de tomada de decisão do comitê de bacia hidrográfica. Abstract in english The current model of water resources management in Brazil is decentralized, participative and integrated, and adopted the river basin as a planning unit. It is based on the performance of watershed committees; each committee has its own composition and rules of procedure, governed by its statute. Th [...] e basic principles of this management have been established by the Brazilian Constitution of 1988 and detailed by the National Water Resources Policy in 1997. At the State level, São Paulo enacted its water resources policy in 1991. This paper examined the participatory process in basin committees of the São Paulo State and its implications in the implementation of the instruments of water management, based in a case study of the Tiete - Jacaré Watershed Committee, using questionnaires filled by the Committee's members (2009 - 2011). Engagement and integration among the stakeholders was observed. Still, the interviews' results have shown that the Committee's statute should be reviewed due to differences between the Federal and the State legislation, mainly regarding the participating sectors and representatives. It also showed a need for more information about water resource issues in this basin and in the State of São Paulo, as a whole. At the same time, it is recommended that representativeness of the institutions within the water council management be improved and that the work produced by the technical chambers be recognised at the committee decision-making level.

  2. Watershed management and farmer conservation investments in the semi-arid tropics of India: analysis of determinants of resource use decisions and land productivity benefits

    Directory of Open Access Journals (Sweden)

    Bekele A Shiferaw

    2006-08-01

    Full Text Available Integrated watershed management has been promoted as a suitable strategy for improving productivity and sustainable intensification of agriculture in rainfed drought-prone regions. The paper examines the socioeconomic and biophysical factors influencing farmers' soil and water conservation investment decisions and the resulting economic incentives (productivity benefits from watershed management interventions in the semi-arid tropics of India. The paper develops a theoretical framework to test hypotheses and to explore (a the interlinkages between land productivity, soil quality, input use and conservation investments, and (b the influence of local market imperfections on production and conservation decisions. These relationships are analyzed using plot-level data in six semi-arid villages. A systems approach (3SLS is used for the joint estimation of structural equations related to land productivity, input use, resource investments and land values. The results show that after controlling for input use and germplasm technologies, soil quality and access to supplemental irrigation significantly affect the productivity of land. Off-farm income is negatively associated with resource investments and land productivity. The watershed program seems to have a greater impact on dryland crops (cereals and pulses than on other crop not supported by the project. A plot-wise analysis found some degree of substitution between private and public investments in land and water management. Differential effects of family labor on the decision to invest in agriculture revealed that male labor plays a key role in this decision while female workers significantly influence the level of labor use in production and resource conservation. This indicates that labor market imperfections, especially for female labor, are most likely to affect production and conservation investment.

  3. A machine-to-machine architecture for the real-time study of urban watersheds

    Science.gov (United States)

    Kerkez, B.; Zhao, Y.

    2013-12-01

    Complex patterns of water quality across urban watersheds are driven by yet to be understood dynamics between natural and human-induced phenomena. More spatiotemporally representative data are required to improve our understanding of the contributions of various land-use patterns on water quality. This is particular true of the Great Lakes watersheds in the mid-western United States, where significant stream nutrient loading is adversely affecting ecosystem health. We discuss the development of a machine-to-machine architecture to enable the long-term, reliable, real-time measurement of water parameters across large, urbanized watersheds. Our sensor network is presently being deployed in a 2300km2 watershed in southeastern Michigan, where temperature fluctuations between -10C to 32C and annual precipitation of up to 750mm impose significant challenges on deployed hardware. Exploiting the cellular coverage of urban environments enables the use of ultra-low-power, low-cost, embedded wireless modules for measurement, computation and communication. Bi-directional links between sensor nodes and cloud-based services permit extreme network configurability and ease of deployment, while permitting seamless access to sensors via an IP-based addressing scheme. We show how hardware and software selection will enable years of battery life without sacrificing temporal data resolutions. Initial results indicate that the system provides a reliable means by which to collect and analyze real-time water quantity and water quality data.

  4. Urbanization and watershed sustainability: Collaborative simulation modeling of future development states

    Science.gov (United States)

    Randhir, Timothy O.; Raposa, Sarah

    2014-11-01

    Urbanization has a significant impact on water resources and requires a watershed-based approach to evaluate impacts of land use and urban development on watershed processes. This study uses a simulation with urban policy scenarios to model and strategize transferable recommendations for municipalities and cities to guide urban decisions using watershed ecohydrologic principles. The watershed simulation model is used to evaluation intensive (policy in existing built regions) and extensive (policy outside existing build regions) urban development scenarios with and without implementation of Best Management practices (BMPs). Water quantity and quality changes are simulated to assess effectiveness of five urban development scenarios. It is observed that optimal combination of intensive and extensive strategies can be used to sustain urban ecosystems. BMPs are found critical to reduce storm water and water quality impacts on urban development. Conservation zoning and incentives for voluntary adoption of BMPs can be used in sustaining urbanizing watersheds.

  5. Integrated assessment of groundwater protection using Agricultural Best Management Practices: a nitrogen case study

    OpenAIRE

    Feichtinger, F.; Strauss, P.; Lescot, J.M.; Kaljonen, M.; Hofmacher, G.

    2008-01-01

    An integrated study was carried out in a small Austrian watershed to assess the environmental, economic and acceptability aspects of implementing certain Best Management Practices (BMPs) for nitrogen management. The environmental impact on groundwater pollution by nitrogen was assessed for various BMPs funded by the Austrian programme for environmentally sustainable agriculture (ÖPUL), by calculating both the amount of leakage and its nitrate concentration using hydrological modelling. Costs ...

  6. Using Backcast Land-Use Change and Groundwater Travel-Time Models to Generate Land-Use Legacy Maps for Watershed Management

    OpenAIRE

    Jonah M. Duckles; Anthony D. Kendall; Deepak K. Ray; Bryan Pijanowski; David W. Hyndman

    2007-01-01

    We couple two spatial-temporal models, a backcast land-use change model and a groundwater flow model, to develop what we call “land-use legacy maps.” We quantify how a land-use legacy map, created from maps of past land use and groundwater travel times, differs from a current land-use map. We show how these map differences can affect land-use planning and watershed management decisions at a variety of spatial and temporal scales. Our approach demonstrates that land-use legacy maps...

  7. Efficiency of distributed flood mitigation measures at watershed scale

    OpenAIRE

    Chennu, S.; Grésillon, J.M.; Faure, J.B.; E. Leblois; Poulard, C.; Dartus, D.

    2008-01-01

    Flood management has to undergo changes in order to meet the present societal needs. At watershed scale, zones of human activities are found dispersed and logically any protection measure needs to be oriented for the entire area. Retention of excess flow volume locally and consequent discharge into the watercourse is a good management plan for a holistic protection. Structural mitigation measures such as dry dams are undertaken for such dispersed retention management in this study. Dry dams a...

  8. Runoff processes and small watersheds

    International Nuclear Information System (INIS)

    Full text: Small watersheds are a fundamental landscape unit for quantifying inputs and outputs of water, sediment and nutrients. Small watersheds have been used historically for defining runoff processes and flood response to storm precipitation. Early conceptualizations of runoff production during the International Hydrological Decade in the 1960s focused on the importance and movement of event water as overland flow to the stream channel. Use of mass balance mixing models using stable isotope tracers in the 1970s and 1980s directly challenged early ideas of where water goes when it rains, residence time of catchment waters and flow paths of subsurface runoff towards the stream. These data showed that the majority of water in the stream during a precipitation event was water that existed in the watershed prior to the event. While credible physical mechanisms of old water mobilization have only been defined in the past decade, stable isotope tracer approaches are now mature enough to offer new potential for informing new model structures of how small watersheds work. Isotope tracer data in small watersheds and mass balance separations also represent new ways of validating and calibrating watershed models. This presentation will chronicle the use of isotope tracers in small watersheds and provide examples of how these data can be used in models of runoff processes and for providing valuable input for water resource management at larger basin scales. (author)

  9. Runoff processes and small watershed

    International Nuclear Information System (INIS)

    Full text: Small watersheds are a fundamental landscape unit for quantifying inputs and outputs of water, sediment and nutrients. Small watersheds have been used historically for defining runoff processes and flood response to storm precipitation. Early conceptualizations of runoff production during the International Hydrological Decade in the 1960s focused on the importance and movement of event water as overland flow to the stream channel. Use of mass balance mixing models using stable isotope tracers in the 1970s and 1980s directly challenged early ideas of where water goes when it rains, residence time of catchment waters and flow paths of subsurface runoff towards the stream. These data showed that the majority of water in the stream during a precipitation event was water that existed in the watershed prior to the event. While credible physical mechanisms of old water mobilization have only been defined in the past decade, stable isotope tracer approaches are now mature enough to offer new potential for informing new model structures of how small watersheds work. Isotope tracer data in small watersheds and mass balance separations also represent new ways of validating and calibrating watershed models. This presentation will chronicle the use of isotope tracers in small watersheds and provide examples of how these data can be used in models of runoff processes and for providing valuable input for water resource management at larger basin scales. (author)

  10. Morphometric evaluation of Swarnrekha watershed, Madhya Pradesh, India: an integrated GIS-based approach

    Science.gov (United States)

    Banerjee, Abhishek; Singh, Prafull; Pratap, Kamleshwar

    2015-10-01

    The quantitative analysis of the watershed is vital to understand the hydrological setup of any terrain. The present study deals with quantitative evaluation of Swarnrekha Watershed, Madhya Pradesh, India based on IRS satellite data and SRTM DEM. Morphometric parameters of the watershed were evaluated by computations of linear and areal aspect using standard methodology in GIS environment. ARC GIS software was utilized for morphometric component analysis and delineation of the watershed using SRTM digital elevation model (DEM). The watershed is drained by a fifth-order river and shown a dendritic drainage pattern, which is a sign of the homogeneity in texture and lack of structural control. The drainage density in the area has been found to be low which indicates that the area possesses highly permeable soils and low relief. The bifurcation ratio varies from 3.00 to 5.60 and elongation ratio is 0.518 which reveals that the basin belongs to the elongated shape basin and has the potential for water management. The main objective of the paper is to extract the morphometric parameters of the watershed and their relevance in water resource evaluation management. The results observed from this work would be useful in categorization of watershed for future water management and selection recharge structure in the area.

  11. Development and application of a comprehensive simulation model to evaluate impacts of watershed structures and irrigation water use on streamflow and groundwater: The case of Wet Walnut Creek Watershed, Kansas, USA

    Science.gov (United States)

    Ramireddygari, S.R.; Sophocleous, M.A.; Koelliker, J.K.; Perkins, S.P.; Govindaraju, R.S.

    2000-01-01

    This paper presents the results of a comprehensive modeling study of surface and groundwater systems, including stream-aquifer interactions, for the Wet Walnut Creek Watershed in west-central Kansas. The main objective of this study was to assess the impacts of watershed structures and irrigation water use on streamflow and groundwater levels, which in turn affect availability of water for the Cheyenne Bottoms Wildlife Refuge Management area. The surface-water flow model, POTYLDR, and the groundwater flow model, MODFLOW, were combined into an integrated, watershed-scale, continuous simulation model. Major revisions and enhancements were made to the POTYLDR and MODFLOW models for simulating the detailed hydrologic budget for the Wet Walnut Creek Watershed. The computer simulation model was calibrated and verified using historical streamflow records (at Albert and Nekoma gaging stations), reported irrigation water use, observed water-level elevations in watershed structure pools, and groundwater levels in the alluvial aquifer system. To assess the impact of watershed structures and irrigation water use on streamflow and groundwater levels, a number of hypothetical management scenarios were simulated under various operational criteria for watershed structures and different annual limits on water use for irrigation. A standard 'base case' was defined to allow comparative analysis of the results of different scenarios. The simulated streamflows showed that watershed structures decrease both streamflows and groundwater levels in the watershed. The amount of water used for irrigation has a substantial effect on the total simulated streamflow and groundwater levels, indicating that irrigation is a major budget item for managing water resources in the watershed. (C) 2000 Elsevier Science B.V.This paper presents the results of a comprehensive modeling study of surface and groundwater systems, including stream-aquifer interactions, for the Wet Walnut Creek Watershed in west-central Kansas. The main objective of this study was to assess the impacts of watershed structures and irrigation water use on streamflow and groundwater levels, which in turn affect availability of water for the Cheyenne Bottoms Wildlife Refuge Management area. The surface-water flow model, POTYLDR, and the groundwater flow model, MODFLOW, were combined into an integrated, watershed-scale, continuous simulation model. Major revisions and enhancements were made to the POTYLDR and MODFLOW models for simulating the detailed hydrologic budget for the Wet Walnut Creek Watershed. The computer simulation model was calibrated and verified using historical streamflow records (at Albert and Nekoma gaging stations), reported irrigation water use, observed water-level elevations in watershed structure pools, and groundwater levels in the alluvial aquifer system. To assess the impact of watershed structures and irrigation water use on streamflow and groundwater levels, a number of hypothetical management scenarios were simulated under various operational criteria for watershed structures and different annual limits on water use for irrigation. A standard `base case' was defined to allow comparative analysis of the results of different scenarios. The simulated streamflows showed that watershed structures decrease both streamflows and groundwater levels in the watershed. The amount of water used for irrigation has a substantial effect on the total simulated streamflow and groundwater levels, indicating that irrigation is a major budget item for managing water resources in the watershed.A comprehensive simulation model that combines the surface water flow model POTYLDR and the groundwater flow model MODFLOW was used to study the impacts of watershed structures (e.g., dams) and irrigation water use (including stream-aquifer interactions) on streamflow and groundwater. The model was revised, enhanced, calibrated, and verified, then applied to evaluate the hydrologic budget for Wet Wal

  12. Identifying Watershed Regions Sensitive to Soil Erosion and Contributing to Lake Eutrophication-A Case Study in the Taihu Lake Basin (China).

    Science.gov (United States)

    Lin, Chen; Ma, Ronghua; He, Bin

    2015-01-01

    Taihu Lake in China is suffering from severe eutrophication partly due to non-point pollution from the watershed. There is an increasing need to identify the regions within the watershed that most contribute to lake water degradation. The selection of appropriate temporal scales and lake indicators is important to identify sensitive watershed regions. This study selected three eutrophic lake areas, including Meiliang Bay (ML), Zhushan Bay (ZS), and the Western Coastal region (WC), as well as multiple buffer zones next to the lake boundary as the study sites. Soil erosion intensity was designated as a watershed indicator, and the lake algae area was designated as a lake quality indicator. The sensitive watershed region was identified based on the relationship between these two indicators among different lake divisions for a temporal sequence from 2000 to 2012. The results show that the relationship between soil erosion modulus and lake quality varied among different lake areas. Soil erosion from the two bay areas was more closely correlated with water quality than soil erosion from the WC region. This was most apparent at distances of 5 km to 10 km from the lake, where the r² was as high as 0.764. Results indicate that soil erosion could be used as an indicator for identifying key watershed protection areas. Different lake areas need to be considered separately due to differences in geographical features, land use, and the corresponding effects on lake water quality. PMID:26712772

  13. Doctoral Women: Managing Emotions, Managing Doctoral Studies

    Science.gov (United States)

    Aitchison, Claire; Mowbray, Susan

    2013-01-01

    This paper explores the experiences of women doctoral students and the role of emotion during doctoral candidature. The paper draws on the concept of emotional labour to examine the two sites of emotional investment students experienced and managed during their studies: writing and family relationships. Emotion is perceived by many dominant…

  14. Relationships among environmental factors influencing soil erosion using GIS (Khiav Chay Watershed, Ardabil Province)

    OpenAIRE

    Maryam Barmaki; Ebrahim Pazira; Abazar Esmali

    2012-01-01

    One of the biggest problems of natural resources is soil erosion. Effective land management to prevent soil loss requires prediction for large areas. Usually, empirical relations are used for investigating soil erosion in watershed areas. The case study is took place in Khiav Chay Watershed, Ardabil Province. In the current study, environmental factors, influence in water erosion of the area, investigated in four categories, including topographic, soil & ground, vegetation and human facto...

  15. Evaluating Hydrologic Response of an Agricultural Watershed for Watershed Analysis

    Directory of Open Access Journals (Sweden)

    Manoj Kumar Jha

    2011-06-01

    Full Text Available This paper describes the hydrological assessment of an agricultural watershed in the Midwestern United States through the use of a watershed scale hydrologic model. The Soil and Water Assessment Tool (SWAT model was applied to the Maquoketa River watershed, located in northeast Iowa, draining an agriculture intensive area of about 5,000 km2. The inputs to the model were obtained from the Environmental Protection Agency’s geographic information/database system called Better Assessment Science Integrating Point and Nonpoint Sources (BASINS. Meteorological input, including precipitation and temperature from six weather stations located in and around the watershed, and measured streamflow data at the watershed outlet, were used in the simulation. A sensitivity analysis was performed using an influence coefficient method to evaluate surface runoff and baseflow variations in response to changes in model input hydrologic parameters. The curve number, evaporation compensation factor, and soil available water capacity were found to be the most sensitive parameters among eight selected parameters. Model calibration, facilitated by the sensitivity analysis, was performed for the period 1988 through 1993, and validation was performed for 1982 through 1987. The model was found to explain at least 86% and 69% of the variability in the measured streamflow data for calibration and validation periods, respectively. This initial hydrologic assessment will facilitate future modeling applications using SWAT to the Maquoketa River watershed for various watershed analyses, including watershed assessment for water quality management, such as total maximum daily loads, impacts of land use and climate change, and impacts of alternate management practices.

  16. Consideration of Experimental Approaches in the Physical and Biological Sciences in Designing Long-Term Watershed Studies in Forested Landscapes

    Science.gov (United States)

    Stallard, R. F.

    2011-12-01

    The importance of biological processes in controlling weathering, erosion, stream-water composition, soil formation, and overall landscape development is generally accepted. The U.S. Geological Survey (USGS) Water, Energy, and Biogeochemical Budgets (WEBB) Project in eastern Puerto Rico and Panama and the Smithsonian Tropical Research Institute (STRI) Panama Canal Watershed Experiment (PCWE) are landscape-scale studies based in the humid tropics where the warm temperatures, moist conditions, and luxuriant vegetation promote especially rapid biological and chemical processes - photosynthesis, respiration, decay, and chemical weathering. In both studies features of small-watershed, large-watershed, and landscape-scale-biology experiments are blended to satisfy the research needs of the physical and biological sciences. The WEBB Project has successfully synthesized its first fifteen years of data, and has addressed the influence of land cover, geologic, topographic, and hydrologic variability, including huge storms on a wide range of hydrologic, physical, and biogeochemical processes. The ongoing PCWE should provide a similar synthesis of a moderate-sized humid tropical watershed. The PCWE and the Agua Salud Project (ASP) within the PCWE are now addressing the role of land cover (mature forests, pasture, invasive-grass dominated, secondary succession, native species plantation, and teak) at scales ranging from small watersheds to the whole Panama Canal watershed. Biologists have participated in the experimental design at both watershed scales, and small (0.1 ha) to large (50 ha) forest-dynamic plots have a central role in interfacing between physical scientists and biologists. In these plots, repeated, high-resolution mapping of all woody plants greater than 1-cm diameter provides a description of population changes through time presumably reflecting individual life histories, interactions with other organisms and the influence of landscape processes and climate, thereby bridging the research needs and conceptual scales of hydrologists and biogeochemists with those of biologists. Both experiments are embedded in larger data-collection networks: the WEBB within the hydrological and meteorological monitoring programs of the USGS and other federal agencies, and the PCWE in the long-term monitoring conducted by the Panama Canal Authority (ACP), its antecedents, and STRI. Examination of landscape-scale processes in a changing world requires the development of detailed landscape-scale data sets, including a formulation of reference states that can act as surrogate experimental controls. For example, the concept of a landscape steady state provides a convenient reference in which present-day observations can be interpreted. Extreme hydrological states must also be described, and both WEBB and PCWE have successfully examined the role of droughts and large storms and their impact on geomorphology, biogeochemistry, and biology. These experiments also have provided platforms for research endeavors never contemplated in the original objectives, a testament to the importance of developing approaches that consider the needs of physical and biological sciences.

  17. Long-term water repellency in organic olive orchards in the Cànyoles River watershed. The impact of land management

    Science.gov (United States)

    Cerdà, Artemi; González Pelayo, Óscar; García Orenes, Fuensanta; Jordán, Antonio; Pereira, Paulo; Novara, Agata; Neris, Jonay

    2015-04-01

    Soil water repellency is being researched in many enviroments of the world due to the fact that after two decades of intense investigations we found that soil water repellency is a soil property that can be found at any ecosystem (Atanassava and Doerr, 2011; Goebel et al., 2011; Mataix-Solera et al., 2013; Roper et al., 2013; Young et al., 2013; Badía-Villas et al., 2014; Jordán et al., 2014; Whelan et al., 2014). Soil water repellency inhibits or delays infiltration, encourage surface runoff but also the preferential flow in cracks and other macropores (Arye et al., 2011; Jordán et al., 2011; Madsen et al., 2011; Spohn and Rilling, 2012; García-Moreno et al., 2013; Hallin et al., 2013). Water repellency has been found in many soil types and it is present after forest fire, on forested land and also in agriculture soils (Granjed et al., 2013; Bodí et al., 2012; García Orenes et al., 2013; Jordán et al., 2012; Bodí et al., 2013; Dlapa et al., 2013; González-Peñaloza et al., 2012; López Garrido et al., 2012; León et al., 2013; Hewelke et al., 2014; Santos et al., 2014; Kröpfl et al., 2013). This paper show the measurements caried out by means of the water drop penetration time (WDPT) method in olive plantation in the Cànyoles watershed in Eastern Spain. Conservation practices applied such as no-tillage, manure addition, application of herbicides may contribute to increase soil organic matter and, hence, soil water repellency, and this is unknow under Mediterranean type ecosystems. The effect of long-term addition of plant residues and organic manure, no-tillage and no chemical fertilization (MNT), annual addition of plant residues and no-tillage (NT), application of conventional herbicides and no-tillage (H), and conventional tillage (CT) on soil water repellency in Mediterranean calcareous citrus-cropped soils (Eastern Spain) has been studied. Water repellency was observed in MNT soils, which may be attributed to the input of hydrophobic organic compounds as a consequence of the addition of plant residues and organic manure such has been demonstrated by the soil organic matter measurements. CT reduced the organic matter content and soils remained wettable. Water repellency was observed in soils under NT and H treatments, but it was below 5 seconds. Previos studies developed by González Peñaloza et al., (2013) show that under citrus production the response of the land management was similar. We found also an increase in the soil water repellency due to the time since organic matter is accumulating. This results should be shown in the framework of the land degradation that can trigger (or not) the increase in water repellency (Mekuria and Aynekulu, 2013; Nadal Romero et al., 2013; Neal et al., 2013; Taguas et al., 2013; Zhao et al., 2013). Acknowledgements To the "Ministerio de Economía and Competitividad" of Spanish Government for finance the POSTFIRE project (CGL2013- 47862-C2-1-R). The research projects GL2008-02879/BTE, LEDDRA 243857 and PREVENTING AND REMEDIATING DEGRADATION OF SOILS IN EUROPE THROUGH LAND CARE (RECARE)FP7-ENV-2013- supported this research. References Arye, G., Tarchitzky, J., Chen, Y. 2011. Treated wastewater effects on water repellency and soil hydraulic properties of soil aquifer treatment infiltration basins. Journal of hydrology, 397(1), 136-145. Atanassava and Doerr, 2011; Goebel et al., 2011; Mataix-Solera et al., 2013; Roper et al., 2013; Young et al., 2013; Badía-Villas et al., 2014; Jordán et al., 2014; Whelan et al., 2014; Atanassova, I., Doerr, S. H. 2011. Changes in soil organic compound composition associated with heat-induced increases in soil water repellency. European Journal of Soil Science, 62(4), 516-532. Atanassova, I., Doerr, S. H. 2011. Changes in soil organic compound composition associated with heat-induced increases in soil water repellency. European Journal of Soil Science, 62(4), 516-532. Badía-Villas, D., González-Pérez, J. A., Aznar, J. M., Arjona-Gracia, B., & Martí-Dalmau, C. 2014. Changes in water repellency, aggregation and organic matter of a mollic horizon burned in laboratory: soil depth affected by fire. Geoderma, 213, 400-407. Badía-Villas, D., González-Pérez, J. A., Aznar, J. M., Arjona-Gracia, B., & Martí-Dalmau, C. 2014. Changes in water repellency, aggregation and organic matter of a mollic horizon burned in laboratory: soil depth affected by fire. Geoderma, 213, 400-407. Bodí, M.B. Doerr, S.H., Cerdà, A., Mataix-Solera, J. 2012. Hydrological effects of a layer of vegetation ash on underlying wettable and water repellent soils. Geoderma, 191, 14-23. http://dx.doi.org/10.1016/j.geoderma.2012.01.006 Bodí, M.B., Muñoz-Santa, I., Armero, C., Doerr, S.H., Mataix-Solera, J., Cerdà, A. 2013. Spatial and temporal variations of water repellency and probability of its occurrence in calcareous Mediterranean rangeland soils affected by fires. Catena, 108, 14-24. http://dx.doi.org/10.1016/j.catena.2012.04.002 Dlapa, P., Bodí, M.B., Mataix-Solera, J., Cerdà, A., Doerr, S.H. 2013. FT-IR spectroscopy reveals that ash water repellency is highly dependent on ash chemical composition. Catena, 108, 35-43. Doi:10.1016/j.catena.2012.02.011 García-Moreno, J., Gordillo-Rivero, Á. J., Zavala, L. M., Jordán, A., & Pereira, P. 2013. Mulch application in fruit orchards increases the persistence of soil water repellency during a 15-years period. Soil and Tillage Research, 130, 62-68. García-Orenes, F., Roldán, A., Mataix-Solera, J., Cerdà, A., Campoy, M., Arcenegui, V., Caravaca, F. 2012 Soil structural stability and erosion rates influenced by agricultural management practices in a semi-arid Mediterranean agro-ecosystem. Soil Use and Management 28(4): 571-579. DOI: 10.1111/j.1475-2743.2012.00451.x Goebel, M. O., Bachmann, J., Reichstein, M., Janssens, I. A., Guggenberger, G. 2011. Soil water repellency and its implications for organic matter decomposition-is there a link to extreme climatic events?. Global Change Biology, 17(8), 2640-2656. González-Peñaloza, F.A., Cerdà, A., Zavala, L.M., Jordán, A., Giménez-Morera, A., Arcenegui, V. 2012. Do conservative agriculture practices increase soil water repellency? A case study in citrus-cropped soils. Soil and Tillage Research, 124, 233-239. http://dx.doi.org/10.1016/j.still.2012.06.015 Granged, A. J., Jordán, A., Zavala, L. M., Bárcenas, G. (2011): Fire-induced changes in soil water repellency increased fingered flow and runoff rates following the 2004 Huelva wildfire. Hydrological Processes, 25: 1614-1629. Hallin, I., Douglas, P., Doerr, S. H., Bryant, R. 2013. The Role of Drop Volume and Number on Soil Water Repellency Determination. Soil Science Society of America Journal, 77(5), 1732-1743. Hewelke, E., Szaty?owicz, J., Gnatowski, T., Oleszczuk, R. (2014). EFFECTS OF SOIL WATER REPELLENCY ON MOISTURE PATTERNS IN A DEGRADED SAPRIC HISTOSOL. Land Degradation & Development. DOI: 10.1002/ldr.2305 Jiménez-Morillo, N. T., González-Pérez, J. A., Jordán, A., Zavala, L. M., Rosa, J. M., Jiménez-González, M. A., & González-Vila, F. J. (2014). Organic matter fractions controlling soil water repellency in Sandy soils from the Doñana National Park (Southwestern Spain). Land Degradation & Development.| DOI: 10.1002/ldr.2314 Jordán, A., García-Moreno, J., Gordillo-Rivero, Á. J., Zavala, L. M., Cerdà, A. 2014. Organic carbon, water repellency and soil stability to slaking under different crops and managements: a case study at aggregate and intra-aggregate scales. SOIL Discussions, 1(1), 295-325. Jordán, A., Zavala, L. M., Mataix-Solera, J., Doerr, S. H. 2013. Soil water repellency: origin, assessment and geomorphological consequences. Catena, 108, 1-5. Jordán, A., Zavala, L. M., Mataix-Solera, J., Nava, A. L., & Alanís, N. 2011. Effect of fire severity on water repellency and aggregate stability on Mexican volcanic soils. Catena, 84(3), 136-147. Kröpfl, A. I., Cecchi, G. A., Villasuso, N. M., Distel, R. A. 2013. Degradation and recovery processes in Semi-Arid patchy rangelands of northern Patagonia, Argentina. Land Degradation & Development, 24: 393- 399. DOI 10.1002/ldr.1145 León, J. Bodí, M.B., Cerdà, A., Badía, D. 2013. The contrasted response of ash to wetting. The effects of ash type, thickness and rainfall events. Geoderma, 209-210, 143-152. http://dx.doi.org/10.1016/j.geoderma.2012.01.006 López-Garrido, R., Deurer, M., Madejón, E., Murillo, J. M., Moreno, F. 2012. Tillage influence on biophysical soil properties: The example of a long-term tillage experiment under Mediterranean rainfed conditions in South Spain. Soil and Tillage Research, 118, 52-60. Lozano, E., Jiménez-Pinilla, P., Mataix-Solera, J., Arcenegui, V., Bárcenas, G. M., González-Pérez, J. A., Mataix-Beneyto, J. 2013. Biological and chemical factors controlling the patchy distribution of soil water repellency among plant species in a Mediterranean semiarid forest. Geoderma, 207, 212-220. Madsen, M. D., Zvirzdin, D. L., Petersen, S. L., Hopkins, B. G., Roundy, B. A., Chandler, D. G. 2011. Soil water repellency within a burned piñon-juniper woodland: Spatial distribution, severity, and ecohydrologic implications. Soil Science Society of America Journal, 75(4), 1543-1553. Mataix-Solera, J., Arcenegui, V., Tessler, N., Zornoza, R., Wittenberg, L., Martínez, C., Jordán, M. M. 2013. Soil properties as key factors controlling water repellency in fire-affected areas: evidences from burned sites in Spain and Israel. Catena, 108, 6-13. Mekuria, W., Aynekulu, E. 2013. Exclosure land management for restoration of the soils in degrade communal grazing lands in Northern Ethiopia. Land Degradation & Development, 24: 528- 538. DOI 10.1002/ldr.1146 Nadal-Romero, E., Lasanta, T., García-Ruiz, J. M. 2013. Runoff and sediment yield from land under various uses in a Mediterranean mountain area: long-term results from an experimental station. Earth Surface Processes and Landforms, 38(4), 346-355. Neal, C., Reynolds, B., Norris, D., Kirchner, J. W., Neal, M., Rowland, P., Wright, D. 2011. Three decades of water quality measurements from the Upper Severn experimental catchments at Plynlimon, Wales: an openly accessible data resource for research, modelling, environmental management and education. Hydrological Processes, 25(24), 3818-3830. Roper, M. M., Ward, P. R., Keulen, A. F., Hill, J. R. (2013). Under no-tillage and stubble retention, soil water content and crop growth are poorly related to soil water repellency. Soil and Tillage Research, 126, 143-150. Santos, J. M., Verheijen, F. G., Tavares Wahren, F., Wahren, A., Feger, K. H., Bernard-Jannin, L., Nunes, J. P. (2015). Soil water repellency dynamics in pine and eucalupt plantation in Portugal - a high- resolution series. Land Degradation & Development. DOI: 10.1002/ldr.2251 Spohn, M., Rillig, M. C. 2012. Temperature-and moisture-dependent soil water repellency induced by the basidiomycete Agaricus bisporus. Pedobiologia, 55(1), 59-61. Stoof, C. R., Moore, D., Ritsema, C. J., Dekker, L. W. 2011. Natural and fire-induced soil water repellency in a Portuguese shrubland. Soil Science Society of America Journal, 75(6), 2283-2295. Taguas, E. V., Carpintero, E., and Ayuso, J. L. 2013. Assessing land degradation risk through the long-term analysis of erosivity: a case study in Southern Spain. Land Degradation & Development, 24: 179- 187. DOI 10.1002/ldr.1119 Whelan, A., Kechavarzi, C., Coulon, F., Doerr, S. H. 2014. Experimental characterization of the impact of temperature and humidity on the breakdown of soil water repellency in sandy soils and composts. Hydrological Processes. Young, I. M., Feeney, D. S., O'Donnell, A. G., Goulding, K. W. 2012. Fungi in century old managed soils could hold key to the development of soil water repellency. Soil Biology and Biochemistry, 45, 125-127. Zhao, G., Mu, X., Wen, Z., Wang, F., and Gao, P. 2013. Soil erosion, conservation, and Eco-environment changes in the Loess Plateau of China. Land Degradation & Development, 24: 499- 510. DOI 10.1002/ldr.2246

  18. GIS and ordination techniques for studying influence of watershed characteristics on river water quality.

    Science.gov (United States)

    Ou, Yang; Wang, Xiaoyan

    2011-01-01

    Landscape characteristics of twenty-eight sub-catchments within the Miyun reservoir watershed in Miyun County, northeast Beijing of China were examined to identify relationships with stream water chemistry. The influences of the entire catchment and 300 m buffer zone on water quality were compared using multiple regression analysis and redundancy analysis during three seasons. Results showed that strong seasonal differences in nitrate, nitrite and ammonium are observed whereas no difference in total phosphorus and conductivity. Landscape factors were significantly correlated to stream water quality. Residential area and stream density contributed markedly to river condition variability. Water quality was better explained by interactions with the landscape during and after rainy season. There was also a seasonal shift in the landscape factors that were the dominant explanatory variables. The relationships between landscape attributes and water quality on watershed scale were slightly different from those on riparian scale; however, landscape attributes may have stronger influences on water chemistry. PMID:22097072

  19. Modelling the hydrologic role of glaciers within a Water Evaluation and Planning System (WEAP): a case study in the Rio Santa watershed (Peru)

    OpenAIRE

    T. Condom; Escobar, M.; D. Purkey; J. C. Pouget; Suarez, W.; Ramos, C; J. Apaestegui; Zapata, M; Gomez, J.; W. Vergara

    2011-01-01

    For the past 30 years, a process of glacier retreat has been observed in the Andes, raising alarm among regional water resources managers. The purpose of this paper is to develop a model of the role of Andean glaciers in the hydrology of their associated watersheds, which is appropriate for application at a river basin scale, with an eye towards creating an analytical tool that can be used to assess the water management implications of possible future glacier retreat. While the paper d...

  20. The effect of watershed scale on HEC-HMS calibrated parameters: a case study in the Clear Creek watershed in Iowa, USA

    OpenAIRE

    Zhang, H. L.; Y. J. Wang; Wang, Y. Q.; D.X. Li; Wang, X.K.

    2013-01-01

    In this paper, we use the Hydrologic Modeling System (HEC-HMS) to simulate two flood events to investigate the effect of watershed subdivision in terms of performance, the calibrated parameter values, the description of hydrologic processes, and the subsequent interpretation of water balance components. We use Stage-IV hourly NEXRAD precipitation as the meteorological input for ten model configurations with variable sub-basin sizes. Model parameters are automatically optimized to fit the obse...

  1. The effect of watershed scale on HEC-HMS calibrated parameters: a case study in the Clear Creek watershed in Iowa, US

    Directory of Open Access Journals (Sweden)

    H. L. Zhang

    2013-07-01

    Full Text Available In this paper, we use the Hydrologic Modeling System (HEC-HMS to simulate two flood events to investigate the effect of watershed subdivision in terms of performance, the calibrated parameter values, the description of hydrologic processes, and the subsequent interpretation of water balance components. We use Stage IV hourly NEXRAD precipitation as the meteorological input for ten model configurations with variable sub-basin sizes. Model parameters are automatically optimized to fit the observed data. The strategy is implemented in Clear Creek Watershed (CCW, which is located in the upper Mississippi River basin. Results show that most of the calibrated parameter values are sensitive to the basin partition scheme and that the relative relevance of physical processes, described by the model, change depending on watershed subdivision. In particular, our results show that parameters derived from different model implementations attribute losses in the system to completely different physical phenomena without a notable effect on the model's performance. Our work adds to the body of evidence demonstrating that automatically calibrated parameters in hydrological models can lead to an incorrect prescription of the internal dynamics of runoff production and transport. Furthermore, it demonstrates that model implementation adds a new dimension to the problem of non-uniqueness in hydrological models.

  2. ALOS DEM quality assessment in a rugged topography, A Lebanese watershed as a case study

    Science.gov (United States)

    Abdallah, Chadi; El Hage, Mohamad; Termos, Samah; Abboud, Mohammad

    2014-05-01

    Deriving the morphometric descriptors of the Earth's surface from satellite images is a continuing application in remote sensing, which has been distinctly pushed with the increasing availability of DEMs at different scales, specifically those derived from high to very high-resolution stereoscopic and triscopic image data. The extraction of the morphometric descriptors is affected by the errors of the DEM. This study presents a procedure for assessing the quality of ALOS DEM in terms of position and morphometric indices. It involves evaluating the impact of the production parameters on the altimetric accuracy through checking height differences between Ground Control Points (GCP) and the corresponding DEM points, on the planimetric accuracy by comparing extracted drainage lines with topographic maps, and on the morphometric indices by comparing profiles extracted from the DEM with those measured on the field. A twenty set of triplet-stereo imagery from the PRISM instrument on the ALOS satellite has been processed to acquire a 5 m DEM covering the whole Lebanese territories. The Lebanese topography is characterized by its ruggedness with two parallel mountainous chains embedding a depression (The Bekaa Valley). The DEM was extracted via PCI Geomatica 2013. Each of the images required 15 GCPs and around 50 tie points. Field measurements was carried out using differential GPS (Trimble GeoXH6000, ProXRT receiver and the LaserACE 1000 Rangefinder) on Al Awali watershed (482 km2, about 5% of the Lebanese terrain). 3545 GPS points were collected at all ranges of elevation specifying the Lebanese terrain diversity, ranging from cliffy, to steep and gently undulating terrain along with narrow and wide flood plains and including predetermined profiles. Moreover, definite points such as road intersections and river beds were also measured in order to assess the extracted streams from the DEM. ArcGIS 10.1 was also utilized to extract the drainage network. Preliminary results showed that using Toutin's Model, enabling Wallis filter and specifying high DEM detail, along with restricting the holes filling option gave the best position accuracy and the least number of failure values. This is mainly due to the ruggedness of the studying area. Comparing GPS heights with the extract DEM showed a Minimum and a maximum error of (-11.9 m, 10.56 m), Mean error (1.32 m) and RMSE of (4.7 m). While extracting the drainage lines showed 80 to 90 % of coincidence of the upper water heads and an order of less than one pixel for the main river course and mountainous road intersection.

  3. Variation of ecosystem services and human activities: A case study in the Yanhe Watershed of China

    Science.gov (United States)

    Su, Chang-hong; Fu, Bo-Jie; He, Chan-Sheng; Lü, Yi-He

    2012-10-01

    The concept of 'ecosystem service' provides cohesive views on mechanisms by which nature contributes to human well-being. Fast social and economic development calls for research on interactions between human and natural systems. We took the Yanhe Watershed as our study area, and valued the variation of ecosystem services and human activities of 2000 and 2008. Five ecosystem services were selected i.e. net primary production (NPP), carbon sequestration and oxygen production (CSOP), water conservation, soil conservation, and grain production. Human activity was represented by a composite human activity index (HAI) that integrates human population density, farmland ratio, influence of residential sites and road network. Analysis results of the five ecosystem services and human activity (HAI) are as follows: (i) NPP, CSOP, water conservation, and soil conservation increased from 2000 to 2008, while grain production declined. HAI decreased from 2000 to 2008. Spatially, NPP, CSOP, and water conservation in 2000 and 2008 roughly demonstrated a pattern of decline from south to north, while grain production shows an endocentric increasing spatial pattern. Soil conservation showed a spatial pattern of high in the south and low in the north in 2000 and a different pattern of high in the west and low in the east in 2008 respectively. HAI is proportional to the administrative level and economic development. Variation of NPP/CSOP between 2000 and 2008 show an increasing spatial pattern from northwest to southeast. In contrast, the variation of soil conservation shows an increasing pattern from southeast to northwest. Variation of water conservation shows a fanning out decreasing pattern. Variation of grain production doesn't show conspicuous spatial pattern. (ii) Variation of water conservation and of soil conservation is significantly positively correlated at 0.01 level. Both variations of water conservation and soil conservation are negatively correlated with variation of HAI at 0.01 level. Variations of NPP/CSOP are negatively correlated with variations of soil conservation and grain production at 0.05 level. (iii) Strong tradeoffs exist between regulation services and provision service, while synergies exist within regulation services. Driving effect of human activities on ecosystem services and tradeoffs and synergies among ecosystem service are also discussed.

  4. Application of a virtual watershed in academic education

    OpenAIRE

    Horn, A. L.; Hörmann, G; N. Fohrer

    2005-01-01

    Hydrologic models of watersheds often represent complex systems which are difficult to understand regarding to their structure and dynamics. Virtual watersheds, i.e. watersheds which exist only in the virtual reality of a computer system, are an approach to simplify access to this real-world complexity. In this study we present the virtual watershed KIELSHED-1, a 117 km2 v-shaped valley with grassland on a "Cambisol" soil type. Two weather scenarios are delivered with the watershed:...

  5. a Study on the Comprehensive Simulation of Nonpoint Source Pollution for Er-Hai Lake's Watershed in Dali of China

    Science.gov (United States)

    Yang, K.; Xu, Q. L.; Ye, L. Y.

    2012-07-01

    Er-hai Lake lies in state of Dali of Yunnan Province in China, which is so important to the local people that they revere her as the Mother Lake. Unfortunately, she is threatened by the more serious pollution of water. And from the water quality assessment of Er-hai Lake over the years, it is indicated that the major water pollution source come from nonpoint source pollution. The argument is that what has formed the nonpoint source pollution? As we known, the land use and cover change of watershed called LUCC is deemed as the major reason for Non-point pollution of water. However, what has made the land use and cover changes? It is another important question we should give an answer for water pollution. Many evidences have given that the change of LUCC is more due to the human activities in watershed, especially those for agriculture production. Thereby, there is a chain process for water pollution formation in Er-hai Lake Watershed, which could be described like this: Human activities (more in agriculture) have changed LUCC, and LUCC leads non-point source pollution. As a result, in this paper, those have been discussed according to the driving mechanism of nonpoint source water pollution in Er-hai Lake, which include three explorations. The first is how to build a ABM-LUCC model by using Repast and GIS technology, and the second is the method and implementation for hydrological and water quality model by using SWAT model and GIS, as well as Remote Sensing technology. And establishing a platform for comprehensively simulating the whole process of water pollution by integrating GIS, ABM-LUCC models and hydrological models is the last work for this study.

  6. Evaluation of the Agro-EcoSystem-Watershed (AgES-W)model for estimating nutrient dynamics on a midwest agricultural watershed

    Science.gov (United States)

    In order to satisfy the requirements of Conservation Effects Assessment Project (CEAP) Watershed Assessment Study (WAS) Objective 5 (“develop and verify regional watershed models that quantify environmental outcomes of conservation practices in major agricultural regions”), a new watershed model dev...

  7. Application of SWAT model for assessing effect on main functions of watershed ecosystem in Headwater, Thailand

    Directory of Open Access Journals (Sweden)

    W. Sudjarit

    2015-06-01

    Full Text Available The Soil and Water Assessment Tool (SWAT is a well prediction accuracy of agricultural watershed ecosystem depends on how well model input spatial parameters describe the characteristics of watershed. The aim of this study was to assess the effects on watershed ecosystem main functions in terms of water and sediment yield. It was calibrated and validated for streamflow in the watershed to evaluate alternative management scenarios and estimate their effects on watershed functions. The goodness of the calibration results was assessed by the coefficient of determination (R2. Results indicated that the average annual rainfall and streamflow estimations were quite satisfactory. On a daily scale R2 was about 0.69 and a monthly scale was 0.97 which can be considered as acceptable. However, using for the case study of an intensive agricultural watershed ecosystem, it was shown that model versions are able to appropriately reproduce the water balance, nutrients balance, carbon balance, and energy balance. Crop yield, total streamflow and total suspended sediment (TSS losses calibration were performed using field survey information and data during 2008-2012. This study showed that SWAT model was able to apply for simulating and assessing streamflow, sediment, and nutrients successfully and can be used to study the effects of land use practices on water balance, nutrient balance, carbon balance and energy balance in the small scale of sub-watershed ecosystem as well.

  8. Landslide mapping with multi-scale object-based image analysis – a case study in the Baichi watershed, Taiwan

    Directory of Open Access Journals (Sweden)

    T. Lahousse

    2011-10-01

    Full Text Available We developed a multi-scale OBIA (object-based image analysis landslide detection technique to map shallow landslides in the Baichi watershed, Taiwan, after the 2004 Typhoon Aere event. Our semi-automated detection method selected multiple scales through landslide size statistics analysis for successive classification rounds. The detection performance achieved a modified success rate (MSR of 86.5% with the training dataset and 86% with the validation dataset. This performance level was due to the multi-scale aspect of our methodology, as the MSR for single scale classification was substantially lower, even after spectral difference segmentation, with a maximum of 74%. Our multi-scale technique was capable of detecting landslides of varying sizes, including very small landslides, up to 95 m2. The method presented certain limitations: the thresholds we established for classification were specific to the study area, to the landslide type in the study area, and to the spectral characteristics of the satellite image. Because updating site-specific and image-specific classification thresholds is easy with OBIA software, our multi-scale technique is expected to be useful for mapping shallow landslides at watershed level.

  9. A method of fingerprinting the sources of fluvial sediment using environmental radionuclides. A case study of Tsuzura river watershed

    International Nuclear Information System (INIS)

    To study the fluvial sediment sources in forested watershed in Shikoku Island, Japan, the concentration of Cs-137 and Pb-210ex and U decay series radionuclides were analyzed. The study area in the midstream of Shimanto River basin, located 700 km southwest of Tokyo. The 0.33 km2 area watershed ranges in elevation from 170 m to 560 m above sea level. The soil sampling was conducted in hillslopes in various locations such as landslide scar, soil surface in unmanaged Hinoki (Chamacecyparis obtusa) plantation and unsealed forest road, and detailed sampling in the stream bed and bank was also conducted in several tributaries. Time-integrated suspended sediment sampler was adopted to obtain enough volume of sample to determine the radionuclides. The activities of Cs-137, Pb-210, Pb-214 and Bi-214 of soils and fluvial sediments were determined by gamma-ray spectrometry. Correction for the effect of particle size distribution and organic matter content on the radionuclides were conducted to compare the radionuclides concentration between the soils of potential suspended sediment sources and fluvial sediments. It was found that there were significant differences of Cs-137 and Pb-210ex concentration between forest floor or runoff sediment and forest road or stream bank. The Cs-137 and Pb-210ex concentration of suspended sediment varied among them, suggesting the possibility of fingerprinting the sources of fluvial sediment by Cs-137 and Pb-210ex. (author)

  10. Management case study: Tampa Bay, Florida

    Science.gov (United States)

    Morrison, G.; Greening, H.S.; Yates, K.K.

    2012-01-01

    Tampa Bay, Florida,USA, is a shallow,subtropical estuary that experienced severe cultural eutrophication between the 1940s and 1980s, a period when the human population of its watershed quadrupled. In response, citizen action led to the formation of a public- and private-sector partnership (the Tampa Bay Estuary Program), which adopted a number of management objectives to support the restoration and protection of the bay’s living resources. These included numeric chlorophyll a and water-clarity targets, as well as long-term goals addressing the spatial extent of sea grasses and other selected habitat types, to support estuarine-dependent faunal guilds.

  11. Assessment of groundwater quality for drinking and irrigation purposes: a case study of Peddavanka watershed, Anantapur District, Andhra Pradesh, India

    Science.gov (United States)

    Gowd, S. Srinivasa

    2005-09-01

    In India, the quantity and quality of water available for irrigation is variable from place to place. Assessment of water quality has been carried out to determine the sources of dissolved ions in groundwater. Quality of groundwater in a 398 km2 Peddavanka watershed of a semi-arid region of south India is evaluated for its suitability for drinking and irrigation purposes. The middle Proterozoic Cuddapah Supergroup and Kurnool Group of rocks underlie most of the watershed. The main lithologic units consist chiefly of quartzite, limestone, and shale. Seventy-six water samples were collected from open-wells and bore-holes. Water samples were collected representative of the post-monsoon (winter) and pre-monsoon (summer). The quality assessment is made through the estimation of Ca2+, Mg2+, Na+, K+, Cl-, SO{4/2-}, CO{3/2-}, HCO{3/-}, total hardness as CaCO3, TDS, EC, and pH. Based on these analyses, parameters like sodium adsorption ratio, % sodium, residual sodium carbonate, non-carbonate hardness, potential salinity, Kelley’s ratio, magnesium ratio, index of base exchange and permeability index were calculated. According to Gibbs‘ ratio samples in both seasons fall in the rock dominance field. The overall quality of waters in the study area in post-monsoon season is high for all constituents ruling out pollution from extraneous sources.

  12. Regional scale modeling of hillslope sediment delivery: a case study in the Ésera—Isábena watershed, central Spanish Pyrenees, with WATEM/SEDEM

    OpenAIRE

    Alatorre, L. C.; Beguería, Santiago; García-Ruiz, José María

    2009-01-01

    Soil erosion and sediment delivery to streams is an important environmental problem and a major concern for sustainable development. The spatial nature of soil erosion and sediment delivery, as well as the variety of possible soil conservation and sediment control measures, require an integrated approach to catchment management. A spatially-distributed soil erosion and sediment delivery model (WATEM/SEDEM) was applied to the watershed of the Barasona Reservoir (1504 km2; centra...

  13. Técnicas avanzadas para la evaluación de caudales ecológicos en el ordenamiento sostenible de cuencas hidrográficas / Advanced techniques for evaluating instream flows in sustainable watershed management

    Scientific Electronic Library Online (English)

    Juan Manuel, Diez-Hernández; Liliana, Burbano Burbano.

    2006-04-01

    Full Text Available La potencialidad de las corrientes fluviales ha fascinado al hombre por su capacidad para satisfacer las demandas crecientes del recurso hídrico superficial a escala temporal y espacial. Actualmente la idea de que los caudales naturales de un río deban reservarse para preservar el funcionamiento prí [...] stino del ecosistema resulta utópica, al menos en sociedades que progresan. Una ordenación eficaz del recurso hídrico se caracteriza por ser racional y ecosistémica, con una gestión fundamentada en un régimen de caudales ecológicos (RCE) que compagina los usos del agua asegurando una condición aceptable del ecosistema. Este trabajo analiza la problemática de la regulación de caudales y aborda la necesidad de fijar los RCE para salvaguardar la integridad ambiental. Se presentan los métodos para calcular caudales ecológicos y las pautas especificadas en la legislación colombiana. Con la pretensión de estipular un procedimiento para determinar los RCE en Colombia, se resume la metodología IFIM (Instream Flow Incremental Methodology), ampliamente utilizada en el mundo, y que consideramos aplicable en los sistemas fluviales locales. Finalmente, se concretan las pautas operativas básicas de IFIM y el procedimiento que optimiza el balance entre el coste y la confiabilidad de un estudio convencional de caudales ecológicos. Abstract in english Rivers’ potential for satisfying growing water demands has always fascinated human beings. The current idea that a river’s natural flow should be reserved to conserve pristine dynamics is a utopian ideal, at least in countries having established a certain level of progress. Effective watershed plann [...] ing is characterised by being rational and ecological, employing management based on instream flows (IF), combining water use and ensuring acceptable ecosystem conditions. This work addresses the environmental consequences of regulating rivers and focuses on the need to fix IFs to protect fluvial systems’ ecological integrity. The methods for calculating instream flows are presented as well as approaches provisionally specified in Colombia’s legislative framework. Instream flow incremental methodology (IFIM), which is widely used around the world, is summarised to provide a basis for developing a procedure for determining IFs in Colombia as it would seem applicable to local streams. IFIM basic operative rules are then summed up, as is the procedure optimising the balance between a conventional instream flow study’s costs and reliability.

  14. A study of remote sensing as applied to regional and small watersheds. Volume 2: Supporting technical details. [using computerized simulation models

    Science.gov (United States)

    1974-01-01

    The Stanford Watershed Model, the Kentucky Watershed Model and OPSET program, and the NASA-IBM system for simulation and analysis of watersheds are described in terms of their applications to the study of remote sensing of water resources. Specific calibration processes and input and output parameters that are instrumental in the simulations are explained for the following kinds of data: (1) hourly precipitation data; (2) daily discharge data; (3) flood hydrographs; (4) temperature and evaporation data; and (5) snowmelt data arrays. The Sensitivity Analysis Task, which provides a method for evaluation of any of the separate simulation runs in the form of performance indices, is also reported. The method is defined and a summary of results is given which indicates the values obtained in the simulation runs performed for Town Creek, Alabama; Alamosa Creek, Colorado; and Pearl River, Louisiana. The results are shown in tabular and plot graph form. For Vol. 1, see N74-27813.

  15. Chamberino Floodplain Management Study

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The Dona Ana County Flood Commission requested the United States Department of Agriculture's Natural Resources Conservation Service to conduct a study of the...

  16. Protect and Restore Mill Creek Watershed : Annual Report CY 2005.

    Energy Technology Data Exchange (ETDEWEB)

    McRoberts, Heidi

    2006-03-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. The Nez Perce Tribe and the Nez Perce National Forest (NPNF) have formed a partnership in completing watershed restoration activities, and through this partnership, more work is accomplished by sharing funding and resources in our effort. The Nez Perce Tribe began watershed restoration projects within the Mill Creek watershed of the South Fork Clearwater River in 2000. Progress has been made in restoring the watershed through excluding cattle from critical riparian areas through fencing. Starting in FY 2002, continuing into 2004, trees were planted in riparian areas in the meadow of the upper watershed. In addition, a complete inventory of culverts at road-stream crossings was completed. Culverts have been prioritized for replacement to accommodate fish passage throughout the watershed, and one high priority culvert was replaced in 2004. Maintenance to the previously built fence was also completed.

  17. Development of a Tool for Siting Low Impact Development in Urban Watersheds

    Science.gov (United States)

    Martin-Mikle, C.; de Beurs, K.; Julian, J.

    2013-12-01

    Low impact development (LID) -- a comprehensive land use planning and design approach with the goal of mitigating development impacts on hydrologic/nutrient cycles and ecosystems -- is increasingly being touted as an effective approach to lessen overland runoff and pollutant loadings. Examples of LIDs include riparian buffers, grassed swales, detention/retention ponds, rain gardens, green roofs and rain barrels. Broad-scale decision support tools for siting LIDs have been developed for agricultural watersheds, but are rare for urban watersheds, largely due to greater land use complexity and lack of necessary high-resolution geospatial data. Here, we develop a framework to assist city planners and water quality managers in siting LIDs in urban watersheds. One key component of this research is a framework accessible to those interested in using it. Hence, development of the framework has centered around 1) determining optimal data requirements for siting LID in an urban watershed and 2) developing a tool compatible with both open-source and commercial GIS software. We employ a wide variety of landscape metrics to evaluate the tool. A case study of the Lake Thunderbird Watershed, an urbanized watershed southeast of Oklahoma City, illustrates the effectiveness of a tool that is capable of siting LID in an urban watershed.

  18. Effects of best-management practices in Otter Creek in the Sheboygan River Priority Watershed, Wisconsin, 1990-2002

    Science.gov (United States)

    Corsi, Steven R.; Walker, John F.; Wang, Lizhu; Horwatich, Judy A.; Bannerman, Roger T.

    2005-01-01

    The U.S. Geological Survey and the Wisconsin Department of Natural Resources began a comprehensive, multidisciplinary evaluation-monitoring program in 1989 to assess the effectiveness of the Wisconsin Nonpoint Source Program. Hydrologic, water-quality, habitat, and fish data were collected at Otter Creek from 1990 to 2002 with the pre-BMP (best-management practice) period ending in September 1993 and the post-BMP period beginning in October 1999. BMPs installed in this basin included streambank protection and fencing, stream crossings, grade stabilization, buffer strips, various barnyard-runoff controls, nutrient management, and a low degree of upland BMPs. Reductions between pre- and post-BMP periods were detected in median concentrations of base-flow samples for total suspended solids and BOD5 but not for total phosphorus or dissolved ammonia nitrogen; fecal coliform concentrations in base-flow samples increased over the study period.

  19. Hurricane impacts on a pair of coastal forested watersheds: implications of selective hurricane damage to forest structure and streamflow dynamics

    Directory of Open Access Journals (Sweden)

    A. D. Jayakaran

    2013-09-01

    Full Text Available Hurricanes are infrequent but influential disruptors of ecosystem processes in the southeastern Atlantic and Gulf coasts. Every southeastern forested wetland has the potential to be struck by a tropical cyclone. We examined the impact of Hurricane Hugo on two paired coastal watersheds in South Carolina in terms of stream flow and vegetation dynamics, both before and after the hurricane's passage in 1989. The study objectives were to quantify the magnitude and timing of changes including a reversal in relative streamflow-difference between two paired watersheds, and to examine the selective impacts of a hurricane on the vegetative composition of the forest. We related these impacts to their potential contribution to change watershed hydrology through altered evapotranspiration processes. Using over thirty years of monthly rainfall and streamflow data we showed that there was a significant transformation in the hydrologic character of the two watersheds – a transformation that occurred soon after the hurricane's passage. We linked the change in the rainfall-runoff relationship to a catastrophic shift in forest vegetation due to selective hurricane damage. While both watersheds were located in the path of the hurricane, extant forest structure varied between the two watersheds as a function of experimental forest management techniques on the treatment watershed. We showed that the primary damage was to older pines, and to some extent larger hardwood trees. We believe that lowered vegetative water use impacted both watersheds with increased outflows on both watersheds due to loss of trees following hurricane impact. However, one watershed was able to recover to pre hurricane levels of canopy transpiration at a quicker rate due to the greater abundance of pine seedlings and saplings in that watershed.

  20. Does social capital improve watershed environmental governance?

    OpenAIRE

    Monteiro, Fernando

    2006-01-01

    In Brazil, water management has been both sectored and centralized. In the 1990s, a series of state level reforms granted substantial participation to civil society and water users' organizations by incorporating Integrated Water Resourse Management principles and Watershed Committees as its guideline. However, its full implementation should produce quite different outcomes, understood as improved or poorer watershed environmental governance. That means that the key reason why some of these n...

  1. Community Capacity for Watershed Conservation: A Quantitative Assessment of Indicators and Core Dimensions

    Science.gov (United States)

    Brinkman, Elliot; Seekamp, Erin; Davenport, Mae A.; Brehm, Joan M.

    2012-10-01

    Community capacity for watershed management has emerged as an important topic for the conservation of water resources. While much of the literature on community capacity has focused primarily on theory construction, there have been few efforts to quantitatively assess community capacity variables and constructs, particularly for watershed management and conservation. This study seeks to identify predictors of community capacity for watershed conservation in southwestern Illinois. A subwatershed-scale survey of residents from four communities located within the Lower Kaskaskia River watershed of southwestern Illinois was administered to measure three specific capacity variables: community empowerment, shared vision and collective action. Principal component analysis revealed key dimensions of each variable. Specifically, collective action was characterized by items relating to collaborative governance and social networks, community empowerment was characterized by items relating to community competency and a sense of responsibility and shared vision was characterized by items relating to perceptions of environmental threats, issues with development, environmental sense of place and quality of life. From the emerging factors, composite measures were calculated to determine the extent to which each variable contributed to community capacity. A stepwise regression revealed that community empowerment explained most of the variability in the composite measure of community capacity for watershed conservation. This study contributes to the theoretical understanding of community capacity by quantifying the role of collective action, community empowerment and shared vision in community capacity, highlighting the need for multilevel interaction to address watershed issues.

  2. Watershed-scale assessment of oil palm cultivation impact on water quality and nutrient fluxes: a case study in Sumatra (Indonesia).

    Science.gov (United States)

    Comte, Irina; Colin, François; Grünberger, Olivier; Whalen, Joann K; Harto Widodo, Rudi; Caliman, Jean-Pierre

    2015-05-01

    High fertilizer input is necessary to sustain high yields in oil palm agroecosystems, but it may endanger neighboring aquatic ecosystems when excess nutrients are transported to waterways. In this study, the hydrochemical dynamics of groundwater and streams under baseflow conditions were evaluated with bi-monthly measurements for 1 year on 16 watersheds. Hydrochemical measurements were related to the spatial distribution of soil and fertilization practices across a landscape of 100 km(2), dominated by oil palm cultivation, in Central Sumatra, Indonesia. The low nutrient concentrations recorded in streams throughout the landscape indicated that the mature oil palm plantations in this study did not contribute to eutrophication of aquatic ecosystems. This was ascribed to high nutrient uptake by oil palm, a rational fertilizer program, and dilution of nutrient concentrations due to heavy rainfall in the study area. Soil type controlled dissolved inorganic N and total P fluxes, with greater losses of N and P from loamy-sand uplands than loamy lowlands. Organic fertilization helped to reduce nutrient fluxes compared to mineral fertilizers. However, when K inputs exceeded the oil palm requirement threshold, high K export occurred during periods when groundwater had a short residence time. For higher nutrient use efficiency in the long term, the field-scale fertilizer management should be complemented with a landscape-scale strategy of fertilizer applications that accounts for soil variability. PMID:25843822

  3. A watershed-based method for environmental vulnerability assessment with a case study of the Mid-Atlantic region

    International Nuclear Information System (INIS)

    The paper presents a method for environmental vulnerability assessment with a case study of the Mid-Atlantic region. The method is based on the concept of “self-/peer-appraisal” of a watershed in term of vulnerability. The self-/peer-appraisal process is facilitated by two separate linear optimization programs. The analysis provided insights on the environmental conditions, in general, and the relative vulnerability pattern, in particular, of the Mid-Atlantic region. The suggested method offers a simple but effective and objective way to perform a regional environmental vulnerability assessment. Consequently the method can be used in various steps in environmental assessment and planning. - Highlights: ? We present a method for regional environmental vulnerability assessment. ? It is based on the self-/peer-appraisal concept in term of vulnerability. ? The analysis is facilitated by two separate linear optimization programs. ? The method provides insights on the regional relative vulnerability pattern.

  4. Estudio de los procesos hidrológicos de la cuenca del Río Diguillín / Study of the hydrological processes of the Río Diguillín watershed

    Scientific Electronic Library Online (English)

    René, Zúñiga; Enrique, Muñoz; José Luis, Arumí.

    Full Text Available En el valle central del centro sur de Chile existe una gran demanda por recursos hídricos por parte de las actividades económicas como también por las demandas de una mejor calidad del ambiente. La agricultura es una de las principales actividades económicas de la zona, la cual requiere asegurar la [...] disponibilidad de recursos con una planificación y gestión adecuada, en especial para escenarios hidro-meteorológicos que se alejan de las condiciones normales o medias. Para la gestión y planificación de recursos hídricos de la zona resulta necesario conocer los procesos hidrológicos que predominan en la generación de escorrentía y almacenamiento, y disponer de herramientas que permitan estimar condiciones futuras. En el presente estudio se implementa un modelo hidrológico sobre la cuenca del río Diguillín. El modelo incorpora una conexión entre el agua superficial y el agua subterránea en la zona alta de la cuenca con el objeto de reproducir el comportamiento de la cuenca de modo realista. El modelo una vez calibrado es capaz de reproducir condiciones pasadas. Luego, el modelo se utiliza para evaluar el comportamiento de la cuenca ante diferentes escenarios de variabilidad climática producidos por el fenómeno El Niño Oscilación del Sur. Abstract in english In the central valley in South-Central Chile there is a high demand for water resources from the different economical activities as well as from an increasing demand of better environment quality. Agriculture is among the main economic activities in this area, which requires ensuring the availabilit [...] y of water resources with a proper planning and management, especially for not normal or mean hydro-meteorological scenarios. For the planning and management of water resources it is necessary to understand the main hydrological processes that predominate in the runoff generation and storage, and to dispose of tools for the estimation of future conditions. In this study a hydrological model for the Río Diguillín Watershed is implemented. The model incorporates a surface water and groundwater connection in the upper part of the watershed to reproduce by a realistic manner the observed behavior in the basin.Once the model is calibrated it is able to reproduce past conditions. Then, the model is used to evaluate the basin behavior under different scenarios of climate variability caused by El Niño Southern Oscillation.

  5. Development of a comprehensive watershed model applied to study stream yield under drought conditions

    Science.gov (United States)

    Perkins, S.P.; Sophocleous, M.

    1999-01-01

    We developed a model code to simulate a watershed's hydrology and the hydraulic response of an interconnected stream-aquifer system, and applied the model code to the Lower Republican River Basin in Kansas. The model code links two well-known computer programs: MODFLOW (modular 3-D flow model), which simulates ground water flow and stream-aquifer interaction; and SWAT (soil water assessment tool), a soil water budget simulator for an agricultural watershed. SWAT represents a basin as a collection of subbasins in terms of soil, land use, and weather data, and simulates each subbasin on a daily basis to determine runoff, percolation, evaporation, irrigation, pond seepages and crop growth. Because SWAT applies a lumped hydrologic model to each subbasin, spatial heterogeneities with respect to factors such as soil type and land use are not resolved geographically, but can instead be represented statistically. For the Republican River Basin model, each combination of six soil types and three land uses, referred to as a hydrologic response unit (HRU), was simulated with a separate execution of SWAT. A spatially weighted average was then taken over these results for each hydrologic flux and time step by a separate program, SWBAVG. We wrote a package for MOD-FLOW to associate each subbasin with a subset of aquifer grid cells and stream reaches, and to distribute the hydrologic fluxes given for each subbasin by SWAT and SWBAVG over MODFLOW's stream-aquifer grid to represent tributary flow, surface and ground water diversions, ground water recharge, and evapotranspiration from ground water. The Lower Republican River Basin model was calibrated with respect to measured ground water levels, streamflow, and reported irrigation water use. The model was used to examine the relative contributions of stream yield components and the impact on stream yield and base flow of administrative measures to restrict irrigation water use during droughts. Model results indicate that tributary flow is the dominant component of stream yield and that reduction of irrigation water use produces a corresponding increase in base flow and stream yield. However, the increase in stream yield resulting from reduced water use does not appear to be of sufficient magnitude to restore minimum desirable streamflows.

  6. Baseline Profile of Soil Samples from Upian River Watershed

    Directory of Open Access Journals (Sweden)

    Wilanfranco Caballero TAYONE

    2014-06-01

    Full Text Available The Mines and Geosciences Bureau (MGB in the Philippines is currently mapping out the entire Davao City Watershed Area (DCWA. There are 8 major watershed areas within DCWA that has been identified by the MGB and the largest is the Davao River Watershed Area (DRWA. A smaller sub-watershed within DRWA, the Upian River Watershed Area (URWA, was proposed of which its boundary and soil profile is yet to be established. This study focused on the analyses of the soil samples from URWA. The results for pH, organic matter, cation exchange capacity, N, P, K, Ca and Mg were then compared to the Bureau of Soil standard for its fertility rating. Analysis of lead (Pb was also included as a pollutant indicator for possible soil contamination. There are 4 sampling sites with unfavorable ratings for pH, 3 for both organic matter and phosphorus, and 2 stations for both nitrogen and calcium. Fertility rating is generally good for cation exchange capacity, potassium and magnesium. The Bureau of Soil has no existing standards for micronutrients. However, all sampling sites were found to be too low with micronutrients according to Gershuny and Smillie. No indication of lead contamination or pollution on all sites as far as natural levels of lead in surface soil is concerned. This study will provide baseline information that is useful to all stakeholders, to the people living near the area, farmers, planners, and resource managers. This can also provide inputs to key government agencies in the Philippines like the Department of Environment and Natural Resources (DENR and the City Planning Office of Davao in formulating policies for sustainable management of the resource upon implementation of their programs and projects. Without the aforementioned information, planners would have difficulty in predicting the impact or recommend best management strategies for a specific land use.

  7. Linking watershed geomorphic characteristics to sediment yield: Evidence from the Loess Plateau of China

    Science.gov (United States)

    Zhang, H. Y.; Shi, Z. H.; Fang, N. F.; Guo, M. H.

    2015-04-01

    The geomorphic characteristics of a watershed affect the energy fluxes, mass movement, and water and sediment dispersion within the watershed. This paper examines how watershed complexity affects sediment yield in terms of rainfall and geomorphic characteristics. The geomorphic characteristics include primary, secondary and compound topographic attributes; watershed shape characteristics; relief parameters; and stream network characteristics. Because of the high co-dependence among these characteristics, partial least-squares regression (PLSR) was used to identify the relationships between the sediment yield and 29 selected watershed characteristics. The PLSR combines the features of a principal component analysis and multiple linear regression and is a robust multivariate regression method that is appropriate when the predictors exhibit multiple co-linearity. The first-order factors were determined by calculating the variable importance for the projection (VIP). Those variables with high VIP values are the most relevant for explaining the dependent variable. The results showed that the watershed shape and relief parameters have large influences on the sediment yield. The VIP values revealed that the sediment yield is primarily controlled by the plan curvature (VIP = 1.87) and the highest order channel length (VIP = 1.53), followed by the hypsometric integral (VIP = 1.49), rainfall (VIP = 1.44), basin relief (VIP = 1.19), slope (VIP = 1.15), sediment transport capacity index (VIP = 1.13), length ratio (VIP = 1.06), profile curvature (VIP = 1.01) and divide average relief (VIP = 1.00). This paper quantified the effects and relative importance of different geomorphic attributes on sediment yield. The insight provided by these results can be used in the selection of appropriate geomorphic variables for watershed erosion and hydrological models. Thus, this study is intended to elucidate the internal dynamics of sediment transport and storage in a watershed and provide a guide for watershed management.

  8. Uncertainty based analysis of the impact of watershed phosphorus load on reservoir phosphorus concentration

    Science.gov (United States)

    Karamouz, Mohammad; Taheriyoun, Masoud; Seyedabadi, Mohammadreza; Nazif, Sara

    2015-02-01

    In many regions of the world that depend on surface reservoirs as a source of water supply, eutrophication is a major water quality problem. Developing simulation models to evaluate the impact of watershed nutrient loads on the reservoir's water quality is an essential step in eutrophication management. In this regard, analysis of model uncertainty gives an opportunity to assess the reliability and the margin of safety of the model predictions for Total Maximum Daily Load (TMDL) from the watershed nutrient load. In this study, a computational procedure has been proposed for the analysis of the model uncertainties in simulation of watershed phosphorous load and reservoir phosphorous concentration. Data from the Aharchai watershed which is located upstream of the Satarkhan reservoir in the northwestern part of Iran, is used as the study area to test the effectiveness of the proposed methodology. The Soil and Water Assessment Tools (SWAT) is utilized for assessment of watershed phosphorus load as the main agent resulting in the reservoir eutrophication in the region. The most effective parameters in model performance are identified by a global sensitivity analysis technique named modified Fourier Amplitude Sensitivity Test (FAST) which can incorporate parameter interdependencies. The Generalized Likelihood Uncertainty Estimation (GLUE) technique is also applied to set up behavioral ranges of the parameters that are relevant to the actual observations. Finally, the cumulative weighted-likelihood distribution functions (CWLDF) are derived for outputs of the SWAT. They are used jointly for estimation of results uncertainty limits using the Copula method. To assess the effectiveness of applying Best Management Practices (BMPs) in the watershed, two scenarios of with and without BMPs application are tested. The results showed the effectiveness of the proposed model in uncertainty estimation of watershed phosphorus load and reservoir phosphorus concentration as well as the effectiveness of BMPs in reducing P loads from the watershed.

  9. Calibration and Uncertainty Analysis of a Semi-Distributed Model in a Semi-Arid Region, Case Study: Nishabour Watershed

    Directory of Open Access Journals (Sweden)

    K. Davari

    2013-09-01

    Full Text Available Application of conceptual hydrological models is an important issue in watersheds for researchers, especially in arid and semi-arid regions. The hydrological behaviors are complicated in such watersheds and their calibration is more difficult. In this article, the conceptual and semi-distributed SWAT model is used for a semi-arid Nishabour watershed with 9350 km2 area. Streamflow simulation is considered for 8 years. Nishabour watershed modeling led to 22 subbasins and 146 Hydrologic response units. SUfI2 approach is used for calibration and uncertainty analysis of watershed modeling. Results showed that calibration and validation of watershed model is not satisfactory, because of uncertainties in conceptual model such as dam structures, and land subsidence. Another reason is related to the complexity of hydrological system in arid regions which has simplified in hydrological models. Moreover, the complex behavior between runoff and subsurface flow in low depth of rainfall events usually effects in hydrological simulation results. Finally, it concluded that we cannot rely on conceptual hydrologic models with different sources of uncertainty without including them in hydrological modeling at arid and semi-arid watersheds.

  10. Risk of flooding: Activities, parameters and regional peculiarities, Case study: Varbitsa watershed basin, Bulgaria

    Directory of Open Access Journals (Sweden)

    Lubenov Todor

    2009-01-01

    Full Text Available An overview of the activities overtaken during risk of flooding situations, in one of the more often flooding region - the watershed of Varbitsa river (Southeastern part of Bulgaria - has been performed. The main cognitive parameters for risk perception and risk definition, depending on regional, social and historical factors have been examined. The existing information and instructions for mass media communication in relation to the process of interaction in a disaster situation have been discussed. In connection to determination of the risky segments in the basin and plans for announcement, the prevention communication measures have been outlined. On the basis of the Bulgarian normative legislation, the activities concerning organization of communications in a risk-of-disaster situation and mutual aid between authorities, which are part of the Integrated Help System have been indicated. It has been accented on the necessity of a more effective realization of the action plans during natural disasters and especially flooding, in order to improve the partnership between authorities and participants in the communication process during risk-of-flooding situations.

  11. Limnological study of Piraquara river (Upper Iguaçu basin: spatiotemporal variation of physical and chemical variables and watershed zoning

    Directory of Open Access Journals (Sweden)

    Paulo Henrique C. Marques

    2003-06-01

    Full Text Available The Piraquara river basin (Upper Iguaçu River basin - Brazil was studied as an ecological system throughout a complete seasonal cycle, comprising the rainy and dry season. Analyzes of 16 physical and chemical water variables (dissolved oxygen, biochemical oxygen demand, temperature, pH, conductivity, total nitrogen, total phosphorus, ortophosphates, nitrite, nitrate, ammonium, reagent silicate, total suspended solids, chlorophyll - a, flow velocity and depth showed correlations between water composition and watershed physiographic features, and the Principal Component Analysis allowed to evidence spatial gradients and seasonal differences. The sampling points were clustered in patches with homogeneous behavior, according to ecologycal concepts: patch 1, with strong influence of Serra do Mar mountains; patch 2, medium course, under Piraquara Dam influence and patch 3, under wetlands influence. Two main factors of serial discontinuity were identified: the Piraquara dam effect and the influence of wetlands. The watershed zoning based on limnological characteristics seeks to subsidize research and biomonitoring for this public springs area.A bacia hidrográfica do rio Piraquara (Bacia do Alto Rio Iguaçu - PR foi estudada como sistema ecológico ao longo de um ciclo sazonal completo, abrangendo os períodos seco e chuvoso. Análises de 16 variáveis físicas e químicas da água (oxigênio dissolvido, pH, condutividade, DBO5, temperatura, nitrogênio total, fósforo total, ortofosfato, nitrito, nitrato, amônio, silicato, sólidos totais em suspensão, clorofila-a, profundidade e velocidade da corrente demonstraram correlações entre a composição da água e as características fisiográficas da bacia. Os gradiente espaciais e as diferenças sazonais foram evidenciadas pela Análise de Componentes Principais, e a bacia foi dividida em trechos de comportamento homogêneo, sendo identificadas descontinuidades seriais: Trecho 1, com forte influência da Serra do Mar; Trecho 2, curso médio do rio, sob influência da Represa do Piraquara e Trecho 3, sob influência das várzeas. O trabalho Pretende subsidiar ações de pesquisa, planejamento e biomonitoramento para este manancial público.

  12. Possible Scenarios of Impacts of Climatic Change on Potential Evapotranspiration in the Watershed of the Conchos River, Mexico

    Science.gov (United States)

    Raynal-Villasenor, J. A.; Rodriguez-Pineda, J. A.

    2007-12-01

    The watershed of the Conchos River is the main watershed of the state of Chihuahua, Mexico, and it is the main source of water of the watershed of the Grande river downstream El Paso, Texas. Such part of the watershed of the Grande River is also the border between Mexico and the United States of America, from El Paso-Ciudad Juarez up to Brownsville-Matamoros. It is very important for the state of Chihuahua and Mexico as a whole, to construct possible scenarios of the effects of the global climatic change in the potential evapotranspiration in such watershed and to construct likely scenarios which results will help to define an integrated watershed management to mitigate those global climate change impacts. The results of a recent study sponsored by the alliance between WWF-Fundacion Gonzalo Rio Arronte, are presented in the paper. The study was conducted to construct possible scenarios on the effects of the global climatic change on the potential evapotranspiration in the watershed of the Conchos River in Mexico. Three watershed characteristic meteorological stations were selected to conduct such study. The predictions of change of the surface air temperature and the change of the rainfall produced by the global climatic change, by the end of the XXI Century, were those published by the Hadley Center. The results show that air temperature increment of one degree centigrade increases evapotranspiration values between 3 and 3.5% with respect current values. As a consequence moisture deficiency increases from 9% to 40%. With an air temperature increment of three degrees centigrades, the potential evapotranspiration increases between 8.8% and 10% increasing moisture deficiency from 27.5% up to 116%. The expected rainfall increment values show a negligible contribution for the potential evapotranspiration reduction in the Rio Conchos watershed. These results conclude that immediate actions need to be taken to mitigate climate change impacts all along the watershed.

  13. Nuclear materials management storage study

    International Nuclear Information System (INIS)

    The Office of Weapons and Materials Planning (DP-27) requested the Planning Support Group (PSG) at the Savannah River Site to help coordinate a Departmental complex-wide nuclear materials storage study. This study will support the development of management strategies and plans until Defense Programs' Complex 21 is operational by DOE organizations that have direct interest/concerns about or responsibilities for nuclear material storage. They include the Materials Planning Division (DP-273) of DP-27, the Office of the Deputy Assistant Secretary for Facilities (DP-60), the Office of Weapons Complex Reconfiguration (DP-40), and other program areas, including Environmental Restoration and Waste Management (EM). To facilitate data collection, a questionnaire was developed and issued to nuclear materials custodian sites soliciting information on nuclear materials characteristics, storage plans, issues, etc. Sites were asked to functionally group materials identified in DOE Order 5660.1A (Management of Nuclear Materials) based on common physical and chemical characteristics and common material management strategies and to relate these groupings to Nuclear Materials Management Safeguards and Security (NMMSS) records. A database was constructed using 843 storage records from 70 responding sites. The database and an initial report summarizing storage issues were issued to participating Field Offices and DP-27 for comment. This report presents the background for the Storage Study and an initial, unclassified summary of storage issues and concerns identified by the sites

  14. Soil organic carbon under different land uses and its storage in two typical watersheds of the Loess Plateau, China

    Science.gov (United States)

    Xue, Zhijing; An, Shaoshan; Cheng, Man

    2013-04-01

    Soil organic carbon distribution and soil organic carbon storage were estimated in two classical small watersheds that based on 163 samples under different land uses and slope positions. Land use conversion would alter land cover, which results in carbon stock changes in biomass as well as in the soil. After the Grain for Green project initiated in 1999, most land of China's loess plateau has been completed vegetation restoration as same as the comprehensive managed watershed (Shanghuang) which with spread vegetation-covered area and lower slope farmland. However, it is not clear how effective the newly initiated project will be. In this study, we found a reference area, original and untreated watershed (Sidigou). It is an area which has not any restore vegetation projects that kept primitive farming management. We found that there were significant differences between two study areas either soil organic carbon concentration or its distribution. The soil organic carbon content in the comprehensive managed watershed (Shanghuang) was higher than the untreated watershed's (Sidigou). As the soil depth increases, the soil organic carbon content gradually decreases. Soil organic carbon concentration and distribution were significantly influenced by land uses and slope positions. More specifically, the soil organic carbon for the shrub land and natural grassland were significantly higher than for the other land uses. In different slope positions, valley's soil organic carbon content was greater than that for the top of mound crests and mound slope. The total soil organic carbon storage of untreated watershed and comprehensively managed watershed were 20099.42 t and 46527.12 t, respectively. The area proportion of land uses is the significant reason for income gap of two study areas. Land use conversion from farmland to shrub land and manmade grassland in Shanghuang watershed played an important role in ecological restoration. It was found that vigorously developing Grain for Green project is of benefit for the Loess Plateau.

  15. Impacts of future climate change on river discharge based on hydrological inference: A case study of the Grand River Watershed in Ontario, Canada.

    Science.gov (United States)

    Li, Zhong; Huang, Guohe; Wang, Xiuquan; Han, Jingcheng; Fan, Yurui

    2016-04-01

    Over the recent years, climate change impacts have been increasingly studied at the watershed scale. However, the impact assessment is strongly dependent upon the performance of the climatic and hydrological models. This study developed a two-step method to assess climate change impacts on water resources based on the Providing Regional Climates for Impacts Studies (PRECIS) modeling system and a Hydrological Inference Model (HIM). PRECIS runs provided future temperature and precipitation projections for the watershed under the Intergovernmental Panel on Climate Change SRES A2 and B2 emission scenarios. The HIM based on stepwise cluster analysis is developed to imitate the complex nonlinear relationships between climate input variables and targeted hydrological variables. Its robust mathematical structure and flexibility in predictor selection makes it a desirable tool for fully utilizing various climate modeling outputs. Although PRECIS and HIM cannot fully cover the uncertainties in hydro-climate modeling, they could provide efficient decision support for investigating the impacts of climate change on water resources. The proposed method is applied to the Grand River Watershed in Ontario, Canada. The model performance is demonstrated with comparison to observation data from the watershed during the period 1972-2006. Future river discharge intervals that accommodate uncertainties in hydro-climatic modeling are presented and future river discharge variations are analyzed. The results indicate that even though the total annual precipitation would not change significantly in the future, the inter-annual distribution is very likely to be altered. The water availability is expected to increase in Winter while it is very likely to decrease in Summer over the Grand River Watershed, and adaptation strategies would be necessary. PMID:26802348

  16. USING NEXRAD AND RAIN GAUGE PRECIPITATION DATA FOR HYDROLOGIC CALIBRATION OF SWAT IN A NORTHEASTERN WATERSHED

    Energy Technology Data Exchange (ETDEWEB)

    Sexton, Aisha M.; Sadeghi, Ali M.; Zhang, Xuesong; Srinivasan, Ragahvan; Shirmohammadi, Adel

    2010-05-10

    The value of watershed?scale, hydrologic and water quality models to ecosystem management is increasingly evident as more programs adopt these tools to evaluate the effectiveness of different management scenarios and their impact on the environment. Quality of precipitation data is critical for appropriate application of watershed models. In small watersheds, where no dense rain gauge network is available, modelers are faced with a dilemma to choose between different data sets. In this study, we used the German Branch (GB) watershed (~50 km2), which is included in the USDA Conservation Effects Assessment Project (CEAP), to examine the implications of using surface rain gauge and next?generation radar (NEXRAD) precipitation data sets on the performance of the Soil and Water Assessment Tool (SWAT). The GB watershed is located in the Coastal Plain of Maryland on the eastern shore of Chesapeake Bay. Stream flow estimation results using surface rain gauge data seem to indicate the importance of using rain gauges within the same direction as the storm pattern with respect to the watershed. In the absence of a spatially representative network of rain gauges within the watershed, NEXRAD data produced good estimates of stream flow at the outlet of the watershed. Three NEXRAD datasets, including (1)*non?corrected (NC), (2) bias?corrected (BC), and (3) inverse distance weighted (IDW) corrected NEXRAD data, were produced. Nash?Sutcliffe efficiency coefficients for daily stream flow simulation using these three NEXRAD data ranged from 0.46 to 0.58 during calibration and from 0.68 to 0.76 during validation. Overall, correcting NEXRAD with rain gauge data is promising to produce better hydrologic modeling results. Given the multiple precipitation datasets and corresponding simulations, we explored the combination of the multiple simulations using Bayesian model averaging.

  17. The typology, frequency and magnitude of some behaviour events in case of torrential hydrographical management works in the upper Tarlung watershed

    Directory of Open Access Journals (Sweden)

    Ioan Clinciu

    2010-09-01

    Full Text Available During the 20-25 years from their startup, the torrential hydrographical management works carried out in the upper T?rlung Watershed (55 dams, 22 sills, 25 traverses and 4 outlet canals have exposed a number of 24 behaviour event types: 13 out of them reduce the safety of exploitation and the sustainability of the works (hereinafter called damages, while the other 11 reduce the functionality of the works (hereinafter called disfunctionalities. The following behaviour events have the highest frequency:(i damages caused by water and alluvia erosion (erosive damages, followed by breakages, in the category of damages, and (ii unsupervised installation of forest vegetation on the managed torrential hydrographical network and apron siltation, in the category of disfunctionalities. For methodological reasons, only the erosive damage of works was successively analysed, according to two criteria: the average depth (cm in the eroded area and the percentage of the erosive area out of the total surface. Further on, by combining the two criteria for analysis, five representation areas with the same damage intensity were defined (very low, low, medium, high and very high intensity. With the aid of the event frequency values recorded in these areas and of the coefficients attributed to each intensity class (from 1 for very low intensity to 5 for very high intensity, the author reached the conclusion that the level of the recorded intensity of the damage caused by water and alluvia erosion ranged from very low to low.

  18. pyLIDEM: A Python-Based Tool to Delineate Coastal Watersheds Using LIDAR Data

    Science.gov (United States)

    O'Banion, R.; Alameddine, I.; Gronewold, A.; Reckhow, K.

    2008-12-01

    Accurately identifying the boundary of a watershed is one of the most fundamental and important steps in any hydrological assessment. Representative applications include defining a study area, predicting overland flow, estimating groundwater infiltration, modeling pollutant accumulation and wash-off rates, and evaluating effectiveness of pollutant mitigation measures. The United States Environmental Protection Agency (USEPA) Total Maximum Daily Load (TMDL) program, the most comprehensive water quality management program in the United States (US), is just one example of an application in which accurate and efficient watershed delineation tools play a critical role. For example, many impaired water bodies currently being addressed through the TMDL program drain small coastal watersheds with relatively flat terrain, making watershed delineation particularly challenging. Most of these TMDL studies use 30-meter digital elevation models (DEMs) that rarely capture all of the small elevation changes in coastal watersheds, leading to errors not only in watershed boundary delineation, but in subsequent model predictions (such as watershed runoff flow and pollutant deposition rate predictions) for which watershed attributes are key inputs. Manually delineating these low-relief coastal watersheds through the use of expert knowledge of local water flow patterns, often produces relatively accurate (and often more accurate) watershed boundaries as compared to the boundaries generated by the 30-meter DEMs. Yet, manual delineation is a costly and time consuming procedure that is often not opted for. There is a growing need, therefore, particularly to address the ongoing needs of the TMDL program (and similar environmental management programs), for software tools which can utilize high resolution topography data to more accurately delineate coastal watersheds. Here, we address this need by developing pyLIDEM (python LIdar DEM), a python-based tool which processes bare earth high-resolution Light Detection and Ranging (LIDAR) data, generates fine scale DEMs, and delineates watershed boundaries for a given pour point. Because LIDAR data are typically distributed in large sets of predefined tiles, our tool is capable of combining only the minimum number of bare earth LIDAR tiles required to delineate a watershed of interest. Our tool then processes the LIDAR data into Triangulated Irregular Networks, generates DEMs at user- specified cell sizes, and creates the required files needed to delineate watersheds within ArcGIS. To make pyLIDEM more accessible to the modeling community, we have bundled it within an ArcGIS toolbox, which also allows users to run it directly from an ArcGIS platform. We assess pyLIDEM functionality and accuracy by delineating several impaired small coastal watersheds in the Newport River Estuary in Eastern North Carolina using LIDAR data collected for the North Carolina Flood Mapping Program. We then compare the pyLIDAR-based watershed boundaries with those generated manually and with those generated using the 30-meter DEMs, and find that the pyLIDAR-based boundaries are more accurate than the 30-meter DEMs, and provide a significant time savings compared to manual delineation, particularly in cases where multiple watersheds need to be delineated for a single project.

  19. Adopt Your Watershed

    Data.gov (United States)

    U.S. Environmental Protection Agency — Adopt Your Watershed is a Website that encourages stewardship of the nation's water resources and serves as a national inventory of local watershed groups and...

  20. Estimating Nitrogen Loading in the Wabash River Subwatershed Using a GIS Schematic Processing Network in Support of Sustainable Watershed Management Planning

    Science.gov (United States)

    The Wabash River is a tributary of the Ohio River. This river system consists of headwaters and small streams, medium river reaches in the upper Wabash watershed, and large river reaches in the lower Wabash watershed. A large part of the river system is situated in agricultural a...

  1. Modelado hidrológico de grandes cuencas: caso de estudio del río Senegal, África Occidental / Hydrological modeling of large watersheds: case study of the Senegal River, West Africa

    Scientific Electronic Library Online (English)

    Khalidou M., Bâ; Carlos, Díaz-Delgado; Emmanuelle, Quentin; Víctor Hugo, Guerra-Cobián; Jaime Israel, Ojeda-Chihuahua; Alin Andrei, Cârsteanu; Roberto, Franco-Plata.

    2013-06-01

    Full Text Available El presente trabajo tiene como objetivo la modelación de los escurrimientos diarios de grandes cuencas bajo el empleo del modelo de parámetros distribuidos CEQUEAU y del software de sistemas de información geográfica IDRISI. Se implementó un módulo hidrogeomático que proporciona, bajo un proceso sup [...] ervisado, la información de entrada requerida por el modelo hidrológico. Se han utilizado imágenes de radar SRTM (Shuttle Radar Topography Mission-USGS), con resolución espacial de 30" (? 1 km) para la delimitación del parteaguas de la cuenca, con lo cual se eliminan fuentes de incertidumbre significativas, reduciendo tiempos de procesamiento. El caudal del río Senegal ha sido aforado en la estación hidrométrica Bakel desde inicios del siglo XX y se cuenta con una serie de datos relativamente abundante. Se han llevado a cabo diversos estudios hidrológicos sobre la cuenca, donde se reporta un área de captación cercana a 289 x 10³ km², pero altamente subestimada, según revela este estudio. La cuenca presenta condiciones climáticas muy diversas, con alta variabilidad en la precipitación total anual, desde 2 000 mm en el sur hasta 50 mm en el norte. Los parámetros fisiográficos han sido calculados considerando la extensa superficie de la cuenca localizada en Mauritania, despreciada en estudios previos como parte de ésta. Las simulaciones de caudales para el periodo 1970-2000 generan buenos resultados (coeficiente de Nash, por lo general superiores a 0.80), por ello se concluye que utilizando el nuevo módulo hidrogeomáico y el modelo CEQUEAU, las simulaciones son más adecuadas y representan una base sólida para la gestión de recursos hídricos de la zona. Abstract in english The present paper is focusing on improving the rainfall-runoff modeling in a large basin, at a daily scale, using the distributed hydrological model CEQUEAU and the GIS IDRISI. A hydrogeomatic module was implemented using a supervised process to provide the input data required by the hydrological mo [...] del. SRTM (Shuttle Radar Topography Mission, USGS) images were used, with a spatial resolution of 30" (? 1 km), for the purpose of defining watershed divides, which eliminates significant sources of uncertainty and reduces processing times. On the other hand, the discharge of the Senegal River has been gauged at the Bakel hydrometric station since the beginning of the 20th century until today, so a relatively long time series of data is now available. Various hydrologic studies about this basin have been performed, reporting a watershed area of roughly 289 × 103 km2, which is greatly underestimated according to the present study. The basin contains very diverse climatic conditions, with high variability in total annual precipitation, from 2 000 mm in the south to 50 mm in the north. Physiographic parameters have been computed taking into account the extensive area of the basin located in Mauritania, which had been neglected as part of this watershed by previous studies. Since the simulations of daily volumes for the period 1970-2000 produced good results (Nash coefficients generally above 0.80), it is concluded that simulations are more suitable when using the new hydrogeomatic module and the CEQUEAU and represent a solid basis for water resources management in the area.

  2. Comment on “Suburban watershed nitrogen retention: Estimating the effectiveness of stormwater management structures” by Koch et al. (Elem Sci Anth 3:000063, July 2015

    Directory of Open Access Journals (Sweden)

    Christopher J. Walsh

    2015-12-01

    Full Text Available Abstract I reassess a recent analysis of uncertainty in estimates of nitrogen export from stormwater control measures, using structured expert judgment, which concluded that nitrogen export from a watershed in the Piedmont physiographic province of the Chesapeake Bay basin was an order of magnitude greater than from a watershed in the adjacent the Coastal Plain province. Re-analysis of expert responses suggests that hydrographic measurement error is a likely large source of uncertainty in N export from one of the watersheds. Mass-balance estimates of impervious runoff into stormwater drainage systems suggest that nitrogen export from the Coastal Plain watershed is an order of magnitude larger than estimated. This analysis highlights the importance of stormwater drainage infrastructure in driving the hydrology of streams in urban catchments by quarantining impervious runoff from watershed soils.

  3. Assessment Erosion 3D Hazard with USLE and Surfer Tool: A Case Study of Sumani Watershed in West Sumatra Indonesia

    OpenAIRE

    Aflizar; Roni Afrizal; Tsugiyuki Masunaga

    2013-01-01

    Quantitative evaluation of soil erosion rate is an important basic to investigate and improve land use system, which has not been sufficiently conducted in Indonesia. The Universal Soil Loss Equation (USLE) and Erosion Three Dimension (E3D) in Surfer were used to identify characteristic of dominant erosion factors in Sumani Watershed in West Sumatra, Indonesia using data soil survey and monitoring sediment yield in outlet watershed. Climatologydata from three stations were used to calculate R...

  4. Land use influence in the Cerrado biome water quality: a comparative study between watersheds in the Goiás State, Brazil

    OpenAIRE

    Luis Fernando Stone; Silvando Carlos da Silva; José Vicente Granato de Araújo; Manuel Eduardo Ferreira; Marisa Prado Gomes; Clarisse Guimarães Rabelo

    2009-01-01

    Based on the assumption that the water quality in a watershed is directly related to the degree of equilibrium between the natural and anthropic factors, in this paper we examined the effects of the land cover changes in areas of savanna (Cerrado biome) over the watersheds ecological viability (expressed here as Water Quality Index). Thus, we analyzed two middle-sized basins located in the Goiás State (a representative area of this biome), with different characteristics regarding both the phy...

  5. Community Responses to Government Defunding of Watershed Projects: A Comparative Study in India and the USA

    Science.gov (United States)

    Koontz, Tomas M.; Sen, Sucharita

    2013-03-01

    When central governments decentralize natural resource management (NRM), they often retain an interest in the local efforts and provide funding for them. Such outside investments can serve an important role in moving community-based efforts forward. At the same time, they can represent risks to the community if government resources are not stable over time. Our focus in this article is on the effects of withdrawal of government resources from community-based NRM. A critical question is how to build institutional capacity to carry on when the government funding runs out. This study compares institutional survival and coping strategies used by community-based project organizations in two different contexts, India and the United States. Despite higher links to livelihoods, community participation, and private benefits, efforts in the Indian cases exhibited lower survival rates than did those in the U.S. cases. Successful coping strategies in the U.S. context often involved tapping into existing institutions and resources. In the Indian context, successful coping strategies often involved building broad community support for the projects and creatively finding additional funding sources. On the other hand, the lack of local community interest, due to the top-down development approach and sometimes narrow benefit distribution, often challenged organizational survival and project maintenance.

  6. Trip report: pilot studies of factors linking watershed function and coastal ecosystem health in American Samoa

    Science.gov (United States)

    Atkinson, Carter T.; Medeiros, Arthur C.

    2010-01-01

    Coral reef resources in the territory of American Samoa face significant problems from overfishing, non-point source pollution, global warming, and continuing population growth and development. The islands are still relatively isolated relative to other parts of the Pacific and have managed to avoid some of the more devastating invasive species that have reached other archipelagoes. As a result, there are opportunities for collaborative and integrative research and monitoring programs to help restore and maintain biodiversity and functioning natural ecosystem in the archipelago. We found that the 'Ridge to Reef' paradigm already exists in American Samoa, with a high degree of interagency cooperation and efficient use of limited resources already taking place in the Territory. USGS may be able to make contributions as a partner organization in the Coral Reef Advisory Group (CRAG) through deployment of sediment monitoring instrumentation to supplement stream monitoring by the American Samoa Environmental Protection Agency, by providing high resolution vegetation and land-use maps of main islands, by providing additional support to the American Samoa Department of Marine and Wildlife Resources and the National Park Service for monitoring of invasive species, by working with members of CRAG to initiate sediment transport studies on Samoan reefs, and by developing new projects on the effects of bacterial contamination and pollutants on coral reef physiology and demography.

  7. Framework for Placement of BMPs in Urban Watersheds (2008)

    Science.gov (United States)

    The U.S. Environmental Protection Agency’s Urban Watershed Management Branch is responsible for developing and demonstrating methods to manage the risk to public health, property and the environment from wet-weather flows (WWF) in urban watersheds. The activities are primarily a...

  8. Protect and Restore Lolo Creek Watershed : Annual Report CY 2005.

    Energy Technology Data Exchange (ETDEWEB)

    McRoberts, Heidi

    2006-03-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. Watershed restoration projects within the Lolo Creek watershed are coordinated with the Clearwater National Forest and Potlatch Corporation. The Nez Perce Tribe began watershed restoration projects within the Lolo Creek watershed of the Clearwater River in 1996. Fencing to exclude cattle for stream banks, stream bank stabilization, decommissioning roads, and upgrading culverts are the primary focuses of this effort. The successful completion of the replacement and removal of several passage blocking culverts represent a major improvement to the watershed. These projects, coupled with other recently completed projects and those anticipated in the future, are a significant step in improving habitat conditions in Lolo Creek.

  9. Land Use Scenarios and Optimization in a Watershed

    OpenAIRE

    D. Nikkami; Shabani, M.; H. Ahmadi

    2009-01-01

    The main objective of this research is to study the optimized combination of land allocation to different land uses like rangeland, orchard, irrigated farming and dry farming for minimized soil erosion and maximized people`s net income in Kharestan watershed located in the Northwest of Eghlid, Fars province, Iran. A multi-objective Linear Programming (LP) model was applied in three different land use scenarios including existing land uses plus land management (Scenario 1), existing land...

  10. Outage management: A case study

    International Nuclear Information System (INIS)

    Outage management issues identified from a field study conducted at a two-unit commercial pressurized water reactor (PWR), when one unit was in a refueling outage and the other unit was at full power operation, are the focus of this paper. The study was conduced as part of the US Nuclear Regulatory Commission's (NRC) organizational factors research program, and therefore the issues to be addressed are from an organizational perspective. Topics discussed refer to areas identified by the NRC as critical for safety during shutdown operations, including outage planning and control, personnel stress, and improvements in training and procedures. Specifically, issues in communication, management attention, involvement and oversight, administrative processes, organizational culture, and human resources relevant to each of the areas are highlighted by example from field data collection. Insights regarding future guidance in these areas are presented based upon additional data collection subsequent to the original study

  11. Traditional and Host-Associated Fecal Indicator Bacterial Patterns in Southern California Watersheds: Field Source Identification Studies and Laboratory Microcosms Investigating Presence and Persistence in Water and Sediments

    Science.gov (United States)

    Mika, Kathryn Beth

    Overall, recreational beach water quality remains an issue of concern in Southern California and across the globe. Many factors come into play when determining water quality, including physical issues such as the myriad sources that contribute pollution to the site and financial and political issues that control the way water quality is monitored and determined. Current national regulations require the monitoring of fecal indicator bacteria in order to determine recreational water quality. However, it is also important to identify biological and geographical sources of pollution to consistently impaired locations. A commonly applied approach to meet the goals of source identification is to sample sites that have been high in FIB for further study. A tiered approach such as this, however, assumes a correlation between FIB and the sources of interest in the watershed. The research described in this dissertation tests this assumption in two Southern California watersheds, Santa Monica Canyon and Ventura Harbor. In both cases, a tiered approach to sampling using FIB as a first tier to guide sampling would have failed to identify sources of human fecal pollution (as identified by the presence of the human-associated Bacteroides marker HF183). Every watershed is a distinct environment that has different potential sources of bacteria and many factors contributing to the persistence of the bacteria. Rather than attempting to apply an indicator that has worked as a first tier in other watersheds, it would be better to have as a first tier an in-depth study of the watershed using historical data or local experts to provide information on the most likely sources of pollution in the watershed. Using this information it would be possible to design a study using FIB and one or more source-associated parameters to identify specific sources of pollution in the watershed. In addition, sampling FIB and other parameters such as HF183 allow the application of other microbial source tracking tools including indicator ratios and detection frequencies. Source identification studies do not necessarily have to be long-term to identify consistent sources of pollution. For example, within the first four months of sampling at Ventura, the increased frequency of detection of HF183 at the Marina Dock sample location was apparent, and a dry weather influx of HF183 was seen in the Keys channels. In addition to the many sources of FIB to the environment such as storm drains, leaking sewers, and wildlife, there are important environmental reservoirs such as sand and seaweed that can foster FIB growth and persistence in the environment. As such, it is important to understand the effect of different factors on the ability of bacteria to survive and persist in these reservoirs. Microcosm experiments conducted during the course of this dissertation research found that in dry beach sand (0.1% moisture), the addition of moisture was detrimental to the survival of the indicators studied (General Bacteroidales, E. coli, and enterococci). While increased moisture was not always detrimental to bacterial survival, these results point to the ability of bacteria to persist for long periods of time in beach environments under in-situ conditions (including dry sand). These findings point to the importance of understanding the behavior of indicator bacteria populations that have evolved to survive in environmental conditions so that their potential impact on overlying or adjacent water quality can be better understood. In summation, results from this research point to the importance of selecting indicators and sample locations that are most relevant to watershed concerns rather than using a first tier such as FIB to preferentially select sites for further analysis. Measuring a marker for human fecal pollution in both watershed studies provided useful information for potential human inputs that would have been missed if sites were chosen based on high FIB levels. In addition it is very important to underst

  12. Role of glaciers in watershed hydrology: a preliminary study of a "Himalayan catchment"

    Directory of Open Access Journals (Sweden)

    R. J. Thayyen

    2010-02-01

    Full Text Available A large number of Himalayan glacier catchments are under the influence of humid climate with snowfall in winter (November–April and south-west monsoon in summer (June–September dominating the regional hydrology. Such catchments are defined as "Himalayan catchment", where the glacier meltwater contributes to the river flow during the period of annual high flows produced by the monsoon. The winter snow dominated Alpine catchments of the Kashmir and Karakoram region and cold-arid regions of the Ladakh mountain range are the other major glacio-hydrological regimes identified in the region. Factors influencing the river flow variations in a "Himalayan catchment" were studied in a micro-scale glacier catchment in the Garhwal Himalaya, covering an area of 77.8 km2. Three hydrometric stations were established at different altitudes along the Din Gad stream and discharge was monitored during the summer ablation period from 1998 to 2004, with an exception in 2002. These data have been analysed along with winter/summer precipitation, temperature and mass balance data of the Dokriani glacier to study the role of glacier and precipitation in determining runoff variations along the stream continuum from the glacier snout to 2360 m a.s.l. The study shows that the inter-annual runoff variation in a "Himalayan catchment" is linked with precipitation rather than mass balance changes of the glacier. This study also indicates that the warming induced an initial increase of glacier runoff and subsequent decline as suggested by the IPCC (2007 is restricted to the glacier degradation-derived component in a precipitation dominant Himalayan catchment and cannot be translated as river flow response. The preliminary assessment suggests that the "Himalayan catchment" could experience higher river flows and positive glacier mass balance regime together in association with strong monsoon. The important role of glaciers in this precipitation dominant system is to augment stream runoff during the years of low summer discharge. This paper intends to highlight the importance of creating credible knowledge on the Himalayan cryospheric processes to develop a more representative global view on river flow response to cryospheric changes and locally sustainable water resources management strategies.

  13. Ultrametric watersheds: a bijection theorem for hierarchical edge-segmentation

    CERN Document Server

    Najman, Laurent

    2010-01-01

    We study hierachical segmentation in the framework of edge-weighted graphs. We define ultrametric watersheds as topological watersheds null on the minima. We prove that there exists a bijection between the set of ultrametric watersheds and the set of hierarchical edgesegmentations. We end this paper by showing how the proposed framework allows to see constrained connectivity as a classical watershed-based morphological scheme, which provides an efficient algorithm to compute the whole hierarchy.

  14. Assessing Watershed-Wildfire Risks on National Forest System Lands in the Rocky Mountain Region of the United States

    Directory of Open Access Journals (Sweden)

    Jessica R. Haas

    2013-07-01

    Full Text Available Wildfires can cause significant negative impacts to water quality with resultant consequences for the environment and human health and safety, as well as incurring substantial rehabilitation and water treatment costs. In this paper we will illustrate how state-of-the-art wildfire simulation modeling and geospatial risk assessment methods can be brought to bear to identify and prioritize at-risk watersheds for risk mitigation treatments, in both pre-fire and post-fire planning contexts. Risk assessment results can be particularly useful for prioritizing management of hazardous fuels to lessen the severity and likely impacts of future wildfires, where budgetary and other constraints limit the amount of area that can be treated. Specifically we generate spatially resolved estimates of wildfire likelihood and intensity, and couple that information with spatial data on watershed location and watershed erosion potential to quantify watershed exposure and risk. For a case study location we focus on National Forest System lands in the Rocky Mountain Region of the United States. The Region houses numerous watersheds that are critically important to drinking water supplies and that have been impacted or threatened by large wildfires in recent years. Assessment results are the culmination of a broader multi-year science-management partnership intended to have direct bearing on wildfire management decision processes in the Region. Our results suggest substantial variation in the exposure of and likely effects to highly valued watersheds throughout the Region, which carry significant implications for prioritization. In particular we identified the San Juan National Forest as having the highest concentration of at-risk highly valued watersheds, as well as the greatest amount of risk that can be mitigated via hazardous fuel reduction treatments. To conclude we describe future opportunities and challenges for management of wildfire-watershed interactions.

  15. REVERSE AUCTION RESULTS FOR IMPLEMENTATION OF DECENTRALIZED RETROFIT BEST MANAGEMENT PRACTICES IN A SMALL URBAN WATERSHED (CINCINNATI OH)

    Science.gov (United States)

    Although urban stormwater is typically conveyed to centralized infrastructure, there is great potential for reducing stormwater runoff quantity through decentralization. In this case we hypothesize that smaller-scale retrofit best management practices (BMPs) such as rain gardens ...

  16. Spate Irrigation Systems and Watershed Development in Eritrea: the case of Sheeb watershed

    OpenAIRE

    Tesfai, M.H.

    2002-01-01

    This paper describes the interactions of the Spate Irrigation System (SIS) in Eritrea with their upper watersheds, as a case study in Sheeb watershed. The spate irrigation practices, among others, include techniques to harvest runoff water, sediments, and nutrients. A strong relationship exists between the SIS in the lowlands of Eritrea and their upper watersheds. For example, the spate irrigation system in the lowlands of Sheeb area entirely depends for water, soils and nutrients on the reso...

  17. Artificial neural networks applied to flow prediction scenarios in Tomebamba River - Paute watershed, for flood and water quality control and management at City of Cuenca Ecuador

    Science.gov (United States)

    Cisneros, Felipe; Veintimilla, Jaime

    2013-04-01

    The main aim of this research is to create a model of Artificial Neural Networks (ANN) that allows predicting the flow in Tomebamba River both, at real time and in a certain day of year. As inputs we are using information of rainfall and flow of the stations along of the river. This information is organized in scenarios and each scenario is prepared to a specific area. The information is acquired from the hydrological stations placed in the watershed using an electronic system developed at real time and it supports any kind or brands of this type of sensors. The prediction works very good three days in advance This research includes two ANN models: Back propagation and a hybrid model between back propagation and OWO-HWO. These last two models have been tested in a preliminary research. To validate the results we are using some error indicators such as: MSE, RMSE, EF, CD and BIAS. The results of this research reached high levels of reliability and the level of error are minimal. These predictions are useful for flood and water quality control and management at City of Cuenca Ecuador

  18. Hydrological year 2009 in the small watersheds ?ervík and Malá Ráztoka

    Directory of Open Access Journals (Sweden)

    Zden?k Vícha

    2011-06-01

    Full Text Available Unique experiment, not only with respect to time, is ongoing within the two small watersheds in Beskid Mts. The year 2009 represents already the 56-th year of this long-term forestry-hydrological research. Experimental watershed ?ervík (CE is situated near the village Staré Hamry, watershed Malá Ráztoka (MR near Trojanovice. The aim of the research is to study the impact of forest on the water runoff from the watershed, and the impact of forest management on water balance in the headwater regions. Compared to the long-term time series, the data measured in 2009 seems to be relatively balanced. In 2009 the year precipitation amount within two watersheds was only slightly higher than the long-term average. Snowing had started in the middle of November; more intensive snow fall was registered in February, March, and also at the end of the hydrological year (mid-October. The average year temperatures within the two watersheds are again much higher than the averages of the last 56 years. During the vegetation season only few short period without precipitation was recorded, forest vegetation was not threatened by dryness in this year.

  19. Heat Management Strategy Trade Study

    International Nuclear Information System (INIS)

    This Heat Management Trade Study was performed in 2008-2009 to expand on prior studies in continued efforts to analyze and evaluate options for cost-effectively managing SNF reprocessing wastes. The primary objective was to develop a simplified cost/benefit evaluation for spent nuclear fuel (SNF) reprocessing that combines the characteristics of the waste generated through reprocessing with the impacts of the waste on heating the repository. Under consideration were age of the SNF prior to reprocessing, plutonium and minor actinide (MA) separation from the spent fuel for recycle, fuel value of the recycled Pu and MA, age of the remaining spent fuel waste prior to emplacement in the repository, length of time that active ventilation is employed in the repository, and elemental concentration and heat limits for acceptable glass waste form durability. A secondary objective was to identify and qualitatively analyze remaining issues such as (a) impacts of aging SNF prior to reprocessing on the fuel value of the recovered fissile materials, and (b) impact of reprocessing on the dose risk as developed in the Yucca Mountain Total System Performance Assessment (TSPA). Results of this study can be used to evaluate different options for managing decay heat in waste streams from spent nuclear fuel.

  20. Heat Management Strategy Trade Study

    Energy Technology Data Exchange (ETDEWEB)

    Nick Soelberg; Steve Priebe; Dirk Gombert; Ted Bauer

    2009-09-01

    This Heat Management Trade Study was performed in 2008-2009 to expand on prior studies in continued efforts to analyze and evaluate options for cost-effectively managing SNF reprocessing wastes. The primary objective was to develop a simplified cost/benefit evaluation for spent nuclear fuel (SNF) reprocessing that combines the characteristics of the waste generated through reprocessing with the impacts of the waste on heating the repository. Under consideration were age of the SNF prior to reprocessing, plutonium and minor actinide (MA) separation from the spent fuel for recycle, fuel value of the recycled Pu and MA, age of the remaining spent fuel waste prior to emplacement in the repository, length of time that active ventilation is employed in the repository, and elemental concentration and heat limits for acceptable glass waste form durability. A secondary objective was to identify and qualitatively analyze remaining issues such as (a) impacts of aging SNF prior to reprocessing on the fuel value of the recovered fissile materials, and (b) impact of reprocessing on the dose risk as developed in the Yucca Mountain Total System Performance Assessment (TSPA). Results of this study can be used to evaluate different options for managing decay heat in waste streams from spent nuclear fuel.

  1. A GIS-based study on non-point source pollutant distribution around Miyun Reservoir Watershed, Beijing, China

    Science.gov (United States)

    Wang, X.; wang, y; cai, x; wang, x

    2001-12-01

    Nitrogen and phosphorus, coming mainly from non-point sources (NPS), are major nutrients to cause eutrophication to degrade water quality of Miyun Reservoir, the only one surface drinking water source of Beijing, China. The spatial nature of the NPS pollution problem necessitates the use of a geographic information system (GIS) to manipulate, retrieve, and display the large volumes of spatial data. Based on the relevant data which range from meteorological and hydrological data to land use, fertilizer and pesticide usage, and even livestock raising information, the database of NPS of Shixia Catchment in Miyun Reservoir watershed were established. Using GIS, abstracting attribute data, digitizing, editing, coordinate transferring and generating the digital elevation model (DEM) could be finished. A total of four land use scenarios were modeled to evaluate various land management strategies on sediment and nutrient loading from catchment. The results suggest that high nutrient loads are associated with village, which has unsuitable livestock raising. Different land use influences intensively the loss of pollutants, especially slope tilling in agricultural land. The amount of nutrient loss from the agricultural land per unit is the highest, that from forestry is the secondary and that from grassland is the lowest. However, due to the variability of land use areas, agricultural land contributes the greatest effort to TP and forestry lands to TN. The loss amount of pollutant in flood season is nearly 60% of annual loss amount. The amount of nutrient loss from hill areas is larger than that from mountain areas. Pattern of non-point source pollution in Miyun County is showed that near the north and east boundary of the Reservoir is the heaviest area. It is indicated that nutrient loss is correlated with people density, fertilizer usage and soil erosion.

  2. Spatio-Temporal Mechanistic Watershed Modeling of Mercury, Carbon, and Nitrogen Fate and Transport in a Coastal Plain Watershed (McTier Creek watershed, SC, USA)

    Science.gov (United States)

    Knightes, C. D.; Golden, H. E.; Davis, G. M.; Bradley, P. M.; Journey, C.; Conrads, P. A.; Brigham, M. E.

    2011-12-01

    The Coastal Plain of the US is a hotspot of methylmercury (MeHg) production and bioaccumulation due to the mix of high Hg deposition, widespread wetland coverage, and high DOC and/or acidic surface waters. However, research in mercury fate and transport is just recently emerging in this region. Although atmospheric deposition is the primary source of mercury to many aquatic ecosystems, there is little understanding and associated modeling representation of how atmospherically deposited mercury transports and transforms within the watershed on its way to receiving streams, particularly within watersheds with different drainage areas within similar physiographical provinces. In this study, we examine mercury and linked biogeochemical cycling (nitrogen (N) and carbon (C)) cycling at a variety of spatial scales within a set of nested sub-basins of the McTier Creek watershed, South Carolina, which is located in the upper Coastal Plain of the Southeastern US. Our goal is to advance current understanding of mercury dynamics in the Coastal Plain and discern important processes governing multi-scale transformation, fate, and transport of mercury. We apply a spatially-explicit, linked process-based watershed hydrology and biogeochemical cycling (N, C, and Hg) model (Visualizing Ecosystems for Land Management Assessment; VELMA) to predict daily flow and daily fluxes and concentrations of total mercury (THg), methylmercury (MeHg), dissolved organic carbon (DOC), dissolved inorganic nitrogen (DIN), and dissolved organic nitrogen (DON). The modeling effort was performed in concert with a rigorous sampling effort as part of the USGS NAWQA Mercury in Stream Ecosystems Program. VELMA was applied at a series of different scales including a focused reach (0.11 km^2), two sub-watersheds (28 km^2, 24 km^2) and the full watershed (79.4 km^2). We scale VELMA parameterization and processes occurring within the focused study reach to the larger sub-watersheds to investigate how well the current model structure represents the system and evaluate areas for future improvements. This approach provides insights into governing processes influencing mercury concentrations and fluxes at the catchment outlet and identifies whether these dynamics are consistent at a variety of spatial scales.

  3. Grays River Watershed and Biological Assessment, 2006 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    May, Christopher; Geist, David [Pacific Northwest National Laboratory

    2007-04-01

    The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic habitat conditions, and biological integrity. In addition, human land-use impacts are factored into the conceptual model because they can alter habitat quality and can disrupt natural habitat forming processes. In this model (Figure S.1), aquatic habitat--both instream and riparian--is viewed as the link between watershed conditions and biologic responses. Based on this conceptual model, assessment of habitat loss and the resultant declines in salmonid populations can be conducted by relating current and historical (e.g., natural) habitat conditions to salmonid utilization, diversity, and abundance. In addition, assessing disrupted ecosystem functions and processes within the watershed can aid in identifying the causes of habitat change and the associated decline in biological integrity. In this same way, restoration, enhancement, and conservation projects can be identified and prioritized. A watershed assessment is primarily a landscape-scale evaluation of current watershed conditions and the associated hydrogeomorphic riverine processes. The watershed assessment conducted for this project focused on watershed processes that form and maintain salmonid habitat. Landscape metrics describing the level of human alteration of natural ecosystem attributes were used as indicators of water quality, hydrology, channel geomorphology, instream habitat, and biotic integrity. Ecological (watershed) processes are related to and can be predicted based on specific aspects of spatial pattern. This study evaluated the hydrologic regime, sediment delivery regime, and riparian condition of the sub-watersheds that comprise the upper Grays River watershed relative to their natural range of conditions. Analyses relied primarily on available geographic information system (GIS) data describing landscape characteristics such as climate, vegetation type and maturity, geology and soils, topography, land use, and road density. In addition to watershed-scale landscape characteristics, the study area was also evaluated on the riparian scale, with appropriate landscape variables analyzed within riparian buffers around each stream or river channel. Included in the overall watershed assessment are field habitat surveys and analyses of the physical and hydrological characteristics of primary chum and fall Chinook salmon spawning areas and spawning habitat availability and use. This assessment is a significant step in a comprehensive program to ensure the survival and recovery of Columbia River chum salmon in its most productive system and builds on existing recovery planning efforts for these ESA-listed salmonids within the Grays River and the lower Columbia River. This assessment also provides a basis for the recovery of other fish species in the Grays River, including coho salmon, winter steelhead, coastal cutthroat trout, and Pacific lamprey.

  4. Grays River Watershed and Biological Assessment Final Report 2006.

    Energy Technology Data Exchange (ETDEWEB)

    May, Christopher W.; McGrath, Kathleen E.; Geist, David R. [Pacific Northwest National Laboratory; Abbe, Timothy; Barton, Chase [Herrera Environmental Consultants, Inc.

    2008-02-04

    The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic habitat conditions, and biological integrity. In addition, human land-use impacts are factored into the conceptual model because they can alter habitat quality and can disrupt natural habitat-forming processes. In this model (Figure S.1), aquatic habitat--both instream and riparian--is viewed as the link between watershed conditions and biologic responses. Based on this conceptual model, assessment of habitat loss and the resultant declines in salmonid populations can be conducted by relating current and historical (e.g., natural) habitat conditions to salmonid utilization, diversity, and abundance. In addition, assessing disrupted ecosystem functions and processes within the watershed can aid in identifying the causes of habitat change and the associated decline in biological integrity. In this same way, restoration, enhancement, and conservation projects can be identified and prioritized. A watershed assessment is primarily a landscape-scale evaluation of current watershed conditions and the associated hydrogeomorphic riverine processes. The watershed assessment conducted for this project focused on watershed processes that form and maintain salmonid habitat. Landscape metrics describing the level of human alteration of natural ecosystem attributes were used as indicators of water quality, hydrology, channel geomorphology, instream habitat, and biotic integrity. Ecological (watershed) processes are related to and can be predicted based on specific aspects of spatial pattern. This study evaluated the hydrologic regime, sediment delivery regime, and riparian condition of the sub-watersheds that comprise the upper Grays River watershed relative to their natural range of conditions. Analyses relied primarily on available geographic information system (GIS) data describing landscape characteristics such as climate, vegetation type and maturity, geology and soils, topography, land use, and road density. In addition to watershed-scale landscape characteristics, the study area was also evaluated on the riparian scale, with appropriate landscape variables analyzed within riparian buffers around each stream or river channel. Included in the overall watershed assessment are field habitat surveys and analyses of the physical and hydrological characteristics of primary chum and fall Chinook salmon spawning areas and spawning habitat availability and use. This assessment is a significant step in a comprehensive program to ensure the survival and recovery of Columbia River chum salmon in its most productive system and builds on existing recovery planning efforts for these ESA-listed salmonids within the Grays River and the lower Columbia River. This assessment also provides a basis for the recovery of other fish species in the Grays River, including coho salmon, winter steelhead, coastal cutthroat trout, and Pacific lamprey.

  5. Practices, awareness and attitudes of Maranao farmers in three watershed barangays in Masiu, Lanao Del Sur, Philippines towards the protection and conservation of the Lake Lanao Watershed

    OpenAIRE

    Gatocod M. Rascal; Rodolfo C. Aranico; Nimfa L. Bracamonte; Ruben F. Amparado Jr.

    2012-01-01

    The study determined the practices, awareness and attitudes of Maranao farmers in the LakeLanao Watershed in three watershed barangays namely: Gabar Sawer, Lanco Dimapatoy and Lacadun inMasiu, Lanao Del Sur, Philippines and their implications to the protection and conservation of Lake LanaoWatershed. The awareness and attitudes of the farmers are geared towards the conservation andprotection of the said watershed to serve the needs of the people living within the watershed. The sociodemograph...

  6. Knowledge Management System- A STUDY

    OpenAIRE

    Nidhi Agrawal

    2014-01-01

    Every organization and institute is facing the savior problem of generating the knowledge on the basis of their assets. Knowledge management is very indispensable for any organization. We discuss about the knowledge management through this paper. This paper provide an outline of knowledge management and how knowledge management is useful to improve the quality of the educational institute. With the help of knowledge management system we can manage any information. We can defin...

  7. Watershed Evaluation and Habitat Response to Recent Storms : Annual Report for 1999.

    Energy Technology Data Exchange (ETDEWEB)

    Rhodes, Jonathan J.; Huntington, Charles W.

    2000-02-01

    Large and powerful storm systems moved through the Pacific Northwest during the wet season of 1995--96, triggering flooding, mass erosion, and, alteration of salmon habitats in affected watersheds. This project study was initiated to assess whether watershed conditions are causing damage, triggered by storm events, to salmon habitat on public lands in the Snake River basin. The storms and flooding in 1995--96 provide a prime opportunity to examine whether habitat conditions are improving, because the effects of land management activities on streams and salmon habitat are often not fully expressed until triggered by storms and floods. To address these issues, they are studying the recent storm responses of watersheds and salmon habitat in systematically selected subbasins and watersheds within the Snake River system. The study watersheds include several in the Wenaha and Tucannon subbasins in Washington and Oregon, and the watersheds of Squaw Creek (roaded) and Weir Creek (unroaded) in the Lochsa River subbasin, Idaho. The study was designed to examine possible differences in the effects of the storms in broadly comparable watersheds with differing magnitudes or types of disturbance. Watershed response is examined by comparing storm response mechanisms, such as rates of mass failure, among watersheds with similar attributes, but different levels of land management. The response of salmon habitat conditions is being examined by comparing habitat conditions before and after the storms in a stream and among streams in watersheds with similar attributes but different levels of land management. If appropriate to the results, the study will identify priority measures for reducing the severity of storm responses in watersheds within the Snake River Basin with habitat for at-risk salmon. This annual report describes the attributes of the study watersheds and the criteria and methods used to select them. The report also describes the watershed and fish habitat attributes evaluated and the methods used to evaluate them. Watershed responses and attributes evaluated include mass failures, historic soil loss, the integration of roads with the drainage network, estimated flood recurrence intervals, and headwater channel morphology. Habitat attributes evaluated include large woody debris, pool frequency and depth, substrate conditions, and bank stability. Multiple analyses of habitat data in the Tucannon and Wenaha subbasins remain to be completed due to difficulties stemming from data characteristics that indicated that some of the pre-existing data may have be of questionable accuracy. Diagnostic attributes of the questionable data included a change in monitoring protocols during the pre- to post-flood analysis period, physically implausible temporal trends in some habitat attributes at some sites, and conflicting results for the same attribute at the same locations from different data sources. Since unreliable data can lead to spurious results, criteria were developed to screen the data for analysis, as described in this report. It is anticipated that while the data screening will prevent spurious results, it will also truncate some of the planned analysis in the Tucannon and Wenaha systems.

  8. Watershed evaluation and habitat response to recent storms; annual report for 1999

    International Nuclear Information System (INIS)

    Large and powerful storm systems moved through the Pacific Northwest during the wet season of 1995--96, triggering flooding, mass erosion, and, alteration of salmon habitats in affected watersheds. This project study was initiated to assess whether watershed conditions are causing damage, triggered by storm events, to salmon habitat on public lands in the Snake River basin. The storms and flooding in 1995--96 provide a prime opportunity to examine whether habitat conditions are improving, because the effects of land management activities on streams and salmon habitat are often not fully expressed until triggered by storms and floods. To address these issues, they are studying the recent storm responses of watersheds and salmon habitat in systematically selected subbasins and watersheds within the Snake River system. The study watersheds include several in the Wenaha and Tucannon subbasins in Washington and Oregon, and the watersheds of Squaw Creek (roaded) and Weir Creek (unroaded) in the Lochsa River subbasin, Idaho. The study was designed to examine possible differences in the effects of the storms in broadly comparable watersheds with differing magnitudes or types of disturbance. Watershed response is examined by comparing storm response mechanisms, such as rates of mass failure, among watersheds with similar attributes, but different levels of land management. The response of salmon habitat conditions is being examined by comparing habitat conditions before and after the storms in a stream and among streams in watersheds with similar attributes but different levels of land management. If appropriate to the results, the study will identify priority measures for reducing the severity of storm responses in watersheds within the Snake River Basin with habitat for at-risk salmon. This annual report describes the attributes of the study watersheds and the criteria and methods used to select them. The report also describes the watershed and fish habitat attributes evaluated and the methods used to evaluate them. Watershed responses and attributes evaluated include mass failures, historic soil loss, the integration of roads with the drainage network, estimated flood recurrence intervals, and headwater channel morphology. Habitat attributes evaluated include large woody debris, pool frequency and depth, substrate conditions, and bank stability. Multiple analyses of habitat data in the Tucannon and Wenaha subbasins remain to be completed due to difficulties stemming from data characteristics that indicated that some of the pre-existing data may have be of questionable accuracy. Diagnostic attributes of the questionable data included a change in monitoring protocols during the pre- to post-flood analysis period, physically implausible temporal trends in some habitat attributes at some sites, and conflicting results for the same attribute at the same locations from different data sources. Since unreliable data can lead to spurious results, criteria were developed to screen the data for analysis, as described in this report. It is anticipated that while the data screening will prevent spurious results, it will also truncate some of the planned analysis in the Tucannon and Wenaha systems

  9. Hydrological response of a High-Arctic catchment to changing climate over the past 35 years: a case study of Bayelva watershed, Svalbard

    OpenAIRE

    Aga Nowak; Andy Hodson

    2013-01-01

    Our study considers climate change and its influence upon the hydrology and water balance of the glacierized Bayelva watershed in Svalbard. We find that changes are most noticeable within the last 10 years, when winters have become warmer and wetter. The change is most significant during the shoulder months, especially September, when the transition from summer ablation to winter accumulation is taking place. Winter rainfalls, when extreme, produce ground icings and runoff outside the summer ...

  10. Study of the distribution of non-point source pollution in the watershed of the Miyun Reservoir, Beijing, China.

    Science.gov (United States)

    Wang, X; Li, T; Xu, A; He, W

    2001-01-01

    Nitrogen and phosphorus are major nutrients to cause eutrophication to degrade the water quality of the Miyun Reservoir, a very important drinking water source of Beijing in China. These are mainly from non-point sources. The watershed in Miyun County is selected as the study region with a total area of 1400 km2. Four typical monitoring catchments and two experimental units were used to monitor the precipitation, runoff, sediment yield and pollutant loading related to various land uses in the meantime. The results show that the total nutrient loss amount of TN and TP is 898.07 t/a, and 40.70 t/a, respectively, in which nutrient N and P carried by runoff is 91.3% and 77.3%, respectively. There is relatively heavier soil erosion at the northern mountain area whereas the main nutrient loss occurs near the northeast rim of the reservoir. Different land uses influence the loss of non-point source pollutants. The amount of nutrient loss from agricultural land per unit is the highest, nutrient loss from forestry is the second highest and that from grassland is the lowest. However, due to the variability of land use areas, agricultural land contributes the greatest amount of TP and forestry lands the greatest amount of TN. PMID:11724492

  11. Influence of land use on nutrients transport using SWAT model: Study case of Ardila Watershed

    OpenAIRE

    Durão, A; Brito, D.; Morais, M; Fernandes, R.M.; Neves, R.

    2011-01-01

    The impacts of agricultural activities in the environment are due to the lixiviation and soil erosion. Pollution of agricultural origin presents diffuse characteristics reaching the environment through surface runoff, lateral flow and groundwater flow. Models can contribute to understand the sources and the processes responsible for pollution, also identifying areas of concern. To evaluate the status of river water bodies is important to consider management options, being water quality models...

  12. Poverty and Environmental Services: Case Study in Way Besai Watershed, Lampung Province, Indonesia

    OpenAIRE

    Beria Leimona; Noviana Khususiyah; Suyanto, S.

    2007-01-01

    Local communities in developing countries are often forbidden to earn their livelihood from state-owned forests, but nonetheless local people commonly manage these lands and depend on them to survive. In these places, community participation is the key to successful conservation programs intended to rehabilitate environmental functions and produce environmental services for beneficiaries outside the area. This paper reviews the relationship between poverty and environmental services and brief...

  13. Case Study Report: REDD+ Pilot Project in Community Forests in Three Watersheds of Nepal

    Directory of Open Access Journals (Sweden)

    Shanti Shrestha

    2014-09-01

    Full Text Available Reducing emissions from deforestation and forest degradation (REDD+ is an international climate policy instrument that is expected to tap into the large mitigation potential for conservation and better management of the world’s forests through financial flows from developed to developing countries. This paper describes the results and lessons learned from a pioneering REDD+ pilot project in Nepal, which is based on a community forest management approach and which was implemented from 2009–2013 with support from NORAD’s Climate and Forest Initiative. The major focus of the project was to develop and demonstrate an innovative benefit-sharing mechanism for REDD+ incentives, as well as institutionally and socially inclusive approaches to local forest governance. The paper illustrates how community-based monitoring, reporting, and verification (MRV and performance-based payments for forest management can be implemented. The lessons on REDD+ benefit sharing from this demonstration project could provide insights to other countries which are starting to engage in REDD+, in particular in South Asia.

  14. The Potential Importance of Conservation, Restoration, and Altered Management Practices for Water Quality in the Wabash River Watershed

    Science.gov (United States)

    Non-point source (NPS) pollution is one of the leading causes of water quality impairment within the United States. Conservation, restoration and altered management (CRAM) practices may effectively reduce NPS pollutants discharge into receiving water bodies and enhance local and ...

  15. Effects of conservation reserve program on runoff and lake water quality in an oxbow lake watershed

    Science.gov (United States)

    Sediment and its associated pollutants entering a water body can be destructive to the ecological health of the system. Best Management Practices (BMPs) can be used to reduce these pollutants, but understanding the most effective practices is difficult. A case study of Beasley Lake Watershed, typica...

  16. The potential for agricultural land use change to reduce flood risk in a large watershed

    Science.gov (United States)

    Effects of agricultural land management practices on surface runoff are evident at local scales, but evidence for watershed-scale impacts is limited. In this study, we used the Soil and Water Assessment Tool model to assess changes in downstream flood risks under different land uses for the large, ...

  17. CONSTRUCTED WETLANDS VS. RETENTION POND BMPS: MESOCOSM STUDIES FOR IMPROVED POLLUTANT MANAGEMENT IN URBAN STORMWATER TREATMENT

    Science.gov (United States)

    Increased urbanization has increased the amount of directly connected impervious area that results in large quantities of stormwater runoff. This runoff can contribute significant amounts of debris and pollutants to receiving waters. Urban watershed managers often incorporate b...

  18. 2012 Oregon Department of Interior, Bureau of Land Management (BLM) Lidar: Panther Creek Study Area

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Oregon Department of Interior, Bureau of Land Management (BLM) contracted with Watershed Sciences, Inc. to collect high resolution topographic LiDAR data for...

  19. Watershed Boundaries - Watershed Boundary Database for Montana

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This data set is a complete digital hydrologic unit boundary layer of the Subbasins (8-digit), Watersheds (10-digit), and Subwatersheds (12-digit) for Montana. This...

  20. Watershed Boundaries - Watershed Boundary Database for Montana

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This data set is a complete digital hydrologic unit boundary layer of the Subbasins (8-digit), Watersheds (10-digit), and Subwatersheds (12-digit) for Montana. This...

  1. Management by Values: A Case Study

    OpenAIRE

    Liu, Zhen

    2012-01-01

    The intention of this paper is to conclude the management approach by the case study of Chinese enterprise. There are a lot of management approaches in practice, one of the most influential and famous one is management by objective which is invented by the father of modern management discipline Peter F Drucker, he observed the case of American most successful enterprise such as GM and then concluded and created the relevant meaningful management tools, in effect, such valuable manage...

  2. Ingestion risks of metals in groundwater based on TIN model and dose-response assessment - A case study in the Xiangjiang watershed, central-south China

    International Nuclear Information System (INIS)

    Groundwater samples were collected in the Xiangjiang watershed in China from 2002 to 2008 to analyze concentrations of arsenic, cadmium, chromium, copper, iron, lead, mercury, manganese, and zinc. Spatial and seasonal trends of metal concentrations were then discussed. Combined with geostatistics, an ingestion risk assessment of metals in groundwater was performed using the dose-response assessment method and the triangulated irregular network (TIN) model. Arsenic concentration in groundwater had a larger variation from year to year, while the variations of other metal concentrations were minor. Meanwhile, As concentrations in groundwater over the period of 2002-2004 were significantly higher than that over the period of 2005-2007, indicating the improvement of groundwater quality within the later year. The hazard index (HI) in 2002 was also significantly higher than that in 2005, 2006, 2007 and 2008. Moreover, more than 80% of the study area recorded an HI of more than 1.0 for children, suggesting that some people will experience deleterious health effects from drinking groundwater in the Xiangjiang watershed. Arsenic and manganese were the largest contributors to human health risks (HHRs). This study highlights the value of long-term health risk evaluation and the importance of geographic information system (GIS) technologies in the assessment of watershed-scale human health risk.

  3. Morphometry and land cover based multi-criteria analysis for assessing the soil erosion susceptibility of the western Himalayan watershed.

    Science.gov (United States)

    Altaf, Sadaff; Meraj, Gowhar; Romshoo, Shakil Ahmad

    2014-12-01

    Complex mountainous environments such as Himalayas are highly susceptibility to natural hazards particular those that are triggered by the action of water such as floods, soil erosion, mass movements and siltation of the hydro-electric power dams. Among all the natural hazards, soil erosion is the most implicit and the devastating hazard affecting the life and property of the millions of people living in these regions. Hence to review and devise strategies to reduce the adverse impacts of soil erosion is of utmost importance to the planners of watershed management programs in these regions. This paper demonstrates the use of satellite based remote sensing data coupled with the observational field data in a multi-criteria analytical (MCA) framework to estimate the soil erosion susceptibility of the sub-watersheds of the Rembiara basin falling in the western Himalaya, using geographical information system (GIS). In this paper, watershed morphometry and land cover are used as an inputs to the MCA framework to prioritize the sub-watersheds of this basin on the basis of their different susceptibilities to soil erosion. Methodology included the derivation of a set of drainage and land cover parameters that act as the indicators of erosion susceptibility. Further the output from the MCA resulted in the categorization of the sub-watersheds into low, medium, high and very high erosion susceptibility classes. A detailed prioritization map for the susceptible sub-watersheds based on the combined role of land cover and morphometry is finally presented. Besides, maps identifying the susceptible sub-watersheds based on morphometry and land cover only are also presented. The results of this study are part of the watershed management program in the study area and are directed to instigate appropriate measures to alleviate the soil erosion in the study area. PMID:25154685

  4. Collaborative environmental planning in river management: An application of multicriteria decision analysis in the White River Watershed in Vermont

    Science.gov (United States)

    Hermans, C.; Erickson, J.; Noordewier, T.; Sheldon, A.; Kline, M.

    2007-01-01

    Multicriteria decision analysis (MCDA) provides a well-established family of decision tools to aid stakeholder groups in arriving at collective decisions. MCDA can also function as a framework for the social learning process, serving as an educational aid in decision problems characterized by a high level of public participation. In this paper, the framework and results of a structured decision process using the outranking MCDA methodology preference ranking organization method of enrichment evaluation (PROMETHEE) are presented. PROMETHEE is used to frame multi-stakeholder discussions of river management alternatives for the Upper White River of Central Vermont, in the northeastern United States. Stakeholders met over 10 months to create a shared vision of an ideal river and its services to communities, develop a list of criteria by which to evaluate river management alternatives, and elicit preferences to rank and compare individual and group preferences. The MCDA procedure helped to frame a group process that made stakeholder preferences explicit and substantive discussions about long-term river management possible. ?? 2006 Elsevier Ltd. All rights reserved.

  5. Soil and Water Assessment Tool (SWAT) Applicability on Nutrients Loadings Prediction in Mountainous Lower Bear Malad River (LBMR) Watershed, Utah.

    Science.gov (United States)

    Salha, A. A.; Stevens, D. K.

    2014-12-01

    The application of watershed simulation models is indispensable when pollution is generated by a nonpoint source. These models should be able to simulate large complex watersheds with varying soils, land use and management conditions over long periods of time. This study presents the application of Soil and Water Assessment Tool (SWAT) to investigate, manage, and research the transport and fate of nutrients in (Subbasin HUC 16010204) Lower Bear Malad River (LBMR) watershed, Box elder County, Utah. Water quality problems arise primarily from high phosphorus and total suspended sediment concentrations that were caused by increasing agricultural and farming activities and complex network of canals and ducts of varying sizes and carrying capacities that transport water (for farming and agriculture uses). Using the available input data (Digital Elevation Model (DEM), land use/Land cover (LULC), soil map and weather and climate data for 20 years (1990-2010) to predict the water quantity and quality of the LBMR watershed using a spatially distributed model version of hydrological ArcSWAT model (ArcSWAT 2012.10_1.14). No previous studies have been found in the literature regarding an in-depth simulation study of the Lower Bear Malad River (LBMR) watershed to simulate stream flow and to quantify the associated movement of nitrogen, phosphorus, and sediment. It is expected that the model mainly will predict monthly mean total phosphorus (TP) concentration and loadings in a mountainous LBRM watershed (steep Wellsville mountain range with peak of (2,857 m)) having into consideration the snow and runoff variables affecting the prediction process. The simulated nutrient concentrations were properly consistent with observations based on the R2 and Nash- Sutcliffe fitness factors. Further, the model will be able to manage and assess the land application in that area with corresponding to proper BMPs regarding water quality management. Keywords: Water Quality Modeling; Soil and Water Assessment Tool (SWAT); Lower Bear-Malad River (LBMR); Mountainous watershed

  6. Linking economic water use, freshwater ecosystem impacts, and virtual water trade in a Great Lakes watershed

    Science.gov (United States)

    Mubako, S. T.; Ruddell, B. L.; Mayer, A. S.

    2013-12-01

    The impact of human water uses and economic pressures on freshwater ecosystems is of growing interest for water resource management worldwide. This case study for a water-rich watershed in the Great Lakes region links the economic pressures on water resources as revealed by virtual water trade balances to the nature of the economic water use and the ass