WorldWideScience

Sample records for watershed management study

  1. Interior West Watershed Management

    United States Department of Agriculture, Forest Service

    1981-01-01

    Habitat type classification systems are reviewed for potential use in watershed management. Information on climate, soils, and vegetation related to the classifications are discussed. Possible cooperative applications of vegetation and habitat type classifications to watershed management are explored.

  2. Watershed Management-A case study of Satara Tanda Village

    P. R. Thakare

    2013-08-01

    Full Text Available Water is the most critical component of life support system. India shares about 16% of the global population but it has only 4% of the water resources. The national water policy gives priority to drinking water followed by agriculture, industry and power. The single most important task before the country in the field of India’s water resource management is to pay special attention to rainwater conservation, especially which falls on our vast rain-fed lands but most of which flows away from it. The Marathwada region is declared the drought for this year by state government, to overcome the water scarcity watershed management is decided to do near the Sataratanda it is the outskirt region of Aurangabad city. The proposed site of watershed management structure bandhara is located on stream flowing near the Sataratanda village. The proposed bandhara is design for the conservation of water and recharging into the ground to raise the water table of this particular area for the benefits to villagers, fields & farmers. Since last few decades the demand for water had rapidly grown and with the increasing population would continue to rise in future. In Maharashtra, the assessment of ground water potential and scope for artificial recharge in the overdeveloped watershed is very crucial. The total cost of cement bandhara works about 9 lakhs thus the scheme is found economically feasible. The quantity of water store in the bandhara basin is 0.74 TCM.

  3. Experimental study using coir geotextiles in watershed management

    Vishnudas, S.; Savenije, H. H. G.; van der Zaag, P.; Anil, K. R.; Balan, K.

    2005-11-01

    This paper presents the results of a field experiment conducted in Kerala, South India, to test the effectiveness of coir geotextiles for embankment protection. In the context of sustainable watershed management, coir is a cheap and locally available material that can be used to strengthen traditional earthen bunds or protect the banks of village ponds from erosion. Particularly in developing countries, where coir is abundantly available and textiles can be produced by small-scale industry, this is an attractive alternative for conventional methods.

  4. Evaluating watershed management projects:

    Kerr, John; Chung, Kimberly

    2001-01-01

    Watershed projects play an increasingly important role in managing soil and water resources throughout the world. Research is needed to ensure that new projects draw upon lessons from their predecessors' experiences. However, the technical and social complexities of watershed projects make evaluation difficult. Quantitative and qualitative evaluation methods, which traditionally have been used separately, both have strengths and weaknesses. Combining them can make evaluation more effective, p...

  5. WATERSHED MANAGEMENT RESEARCH TEAM (URBAN WATERSHED MANAGEMENT BRANCH - WSWRD)

    The Urban Watershed Management Branch researches, develops, and evaluates technologies, practices, and systems to manage risks to human health and ecosystems from Wet Weather Flow (WWF) sources in urban watersheds. The focus is on the risk management aspects of WWF research.One...

  6. Multiagent distributed watershed management

    Giuliani, M.; Castelletti, A.; Amigoni, F.; Cai, X.

    2012-04-01

    Deregulation and democratization of water along with increasing environmental awareness are challenging integrated water resources planning and management worldwide. The traditional centralized approach to water management, as described in much of water resources literature, is often unfeasible in most of the modern social and institutional contexts. Thus it should be reconsidered from a more realistic and distributed perspective, in order to account for the presence of multiple and often independent Decision Makers (DMs) and many conflicting stakeholders. Game theory based approaches are often used to study these situations of conflict (Madani, 2010), but they are limited to a descriptive perspective. Multiagent systems (see Wooldridge, 2009), instead, seem to be a more suitable paradigm because they naturally allow to represent a set of self-interested agents (DMs and/or stakeholders) acting in a distributed decision process at the agent level, resulting in a promising compromise alternative between the ideal centralized solution and the actual uncoordinated practices. Casting a water management problem in a multiagent framework allows to exploit the techniques and methods that are already available in this field for solving distributed optimization problems. In particular, in Distributed Constraint Satisfaction Problems (DCSP, see Yokoo et al., 2000), each agent controls some variables according to his own utility function but has to satisfy inter-agent constraints; while in Distributed Constraint Optimization Problems (DCOP, see Modi et al., 2005), the problem is generalized by introducing a global objective function to be optimized that requires a coordination mechanism between the agents. In this work, we apply a DCSP-DCOP based approach to model a steady state hypothetical watershed management problem (Yang et al., 2009), involving several active human agents (i.e. agents who make decisions) and reactive ecological agents (i.e. agents representing

  7. Restoration in the Anacostia river watershed: An ecosystem management case study

    Martin, L.R.

    1995-12-01

    This paper discusses various aspects of an ecosystem approach to watershed restoration as illustrated by the Anacostia River Watershed Restoration initiative. This information was derived from a case study conducted as part of the Interagency Ecosystem Management Initiative (IEMI), an outgrowth of a recommendation in the National Performance Review. The purpose of this study was to identify components of the ecosystem approach used in the Anacostia initiative that may be useful to other ecosystem restoration and management initiatives in the future. Water quality and ecological conditions within the Anacostia River watershed have become degraded due to urban and suburban development and other activities in the watershed over the last two centuries. An intergovernmental partnership has been formed to cooperatively assess the specific problems in the basin and to direct and implement restoration efforts. The Anacostia initiative includes a number of cooperative efforts that cross political boundaries, and involves numerous states, local agencies, civic groups, and private individuals in addition to the Federal players. In contrast with some of the other case studies in the IEMI, the Anacostia restoration effort is primarily driven by state and local governments. There has, however, been Federal involvement in the restoration and use of Federal grants. In addition, the establishment of a forum for setting goals, priorities and resolving differences was viewed as essential. Closer relationships between planning and regulatory functions can help advance the restoration goals. Public participation, including education, outreach and involvement, is essential to viable ecosystem initiatives. Comprehensive planning and modeling must be balanced with continuous visible results in order to sustain administrative and public support for the initiative.

  8. Realities of the Watershed Management Approach: The Magat Watershed Experience

    Elazegui, Dulce D.; Combalicer, Edwin A.

    2004-01-01

    This paper aims to showcase the experience of the Magat watershed in the implementation of the watershed management approach. Magat watershed was declared as a forest-reservation area through Proclamation No. 573 on June 26, 1969 because of its great importance to human survival and environmental balance in the region. The Magat case demonstrates the important role that ‘champions’ like the local government unit (LGU) could play in managing the country’s watersheds. With the Nueva Viscaya pro...

  9. Study on nitrogen load reduction efficiency of agricultural conservation management in a small agricultural watershed.

    Liu, Xiaoli; Chen, Qiuwen; Zeng, Zhaoxia

    2014-01-01

    Different crops can generate different non-point source (NPS) loads because of their spatial topography heterogeneity and variable fertilization application rates. The objective of this study was to assess nitrogen NPS load reduction efficiency by spatially adjusting crop plantings as an agricultural conservation management (ACM) measure in a typical small agricultural watershed in the black soil region in northeast China. The assessment was undertaken using the Soil and Water Assessment Tool (SWAT). Results showed that lowland crops produce higher nitrogen NPS loads than those in highlands. It was also found that corn gave a comparatively larger NPS load than soybeans due to its larger fertilization demand. The ACM assessed was the conversion of lowland corn crops into soybean crops and highland soybean crops into corn crops. The verified SWAT model was used to evaluate the impact of the ACM action on nitrogen loads. The results revealed that the ACM could reduce NO3-N and total nitrogen loads by 9.5 and 10.7%, respectively, without changing the area of crops. Spatially optimized regulation of crop planting according to fertilizer demand and geological landscapes can effectively decrease NPS nitrogen exports from agricultural watersheds. PMID:24759530

  10. ASSESSMENT AND MANAGEMENT OF WATERSHED MICROBIAL CONTAMINANTS

    Numerous sources of infectious disease causing microorganisms exist in watersheds and can impact recreational and drinking water quality. Organisms of concern include bacteria, viruses, and parasites. The watershed manager is challenged to limit human contact with pathogens, limi...

  11. Community-Based Integrated Watershed Management

    Li Qianxiang; Kennedy N.logbokwe; Li Jiayong

    2005-01-01

    Community-based watershed management is different from the traditional natural resources management. Traditional natural resources management is a way from up to bottom, but the community-based watershed management is from bottom to up. This approach focused on the joining of different stakeholders in integrated watershed management, especially the participation of the community who has been ignored in the past. The purpose of this paper is to outline some of the important basic definitions, concepts and operational framework for initiating community-based watershed management projects and programs as well as some successes and practical challenges associated with the approach.

  12. Preliminary study on streamflow in forested and forest plantation experimental watersheds for water resources management

    The future management of forests for water resources will be more important as population growth and demand for water resources increases. In Malaysia many lowland forests has been earmarked for agricultural crops, and timber concessionaires has moved towards the hillier region of the country where specific and costly logging techniques are required. Hence, planting timber trees, as an industrial timber plantation is an alternative to meet timber demands. Very few research on evaluation of the impact of forest clearance on hydrology attributes from newly established industrial timber plantations have been conducted. In 1989, experimental catchment at Bukit Tarek Tambahan Experimental Watershed (BTEW) was initiated to study the effects of land conversion from forest to industrial timber plantation on hydrological parameters changes. The BTEW is located in Compartment 41, Bukit Tarek Tambahan F. R. at Kerling, Selangor Malaysia. The study site was a regenerated secondary forest logged in 1963. The study area is divided into catchment C1 (32.8 ha) and C3 (12.5 ha). Catchment C1, act as a control whereas C3 is the experimental catchments. Catchment C3 was logged in 1999 and early 2000 and subsequently a forest plantation was established. The forest area in Catchment C3 was clear felled, and the residuals trees were burnt. Buffer zone was not established near the riverbanks. The plantation was established in catchment C3 with Hopea odorata in early 2004. Streamflow was measured continuously using the 120 degree V-notch weir at the outlet of each watershed (Weir 1 and Weir 3). The short time interval rainfall was also monitored. In this working paper, the main objective to analyze the data is to examine rainfall-runoff response of forested catchments before establishment of forest plantation. The preliminary study on discharge after the C3 was clear-felled using single storm hydrograph analysis shows that during the storm event, the quick flow runoff dominate the

  13. User participation in watershed management and research:

    Johnson, Nancy; Ravnborg, Helle Munk; Westermann, Olaf; Probst, Kirsten

    2001-01-01

    Many watershed development projects around the world have performed poorly because they failed to take into account the needs, constraints, and practices of local people. Participatory watershed management—in which users help to define problems, set priorities, select technologies and policies, and monitor and evaluate impacts—is expected to improve performance. User participation in watershed management raises new questions for watershed research, including how to design appropriate mechanis...

  14. 18 CFR 801.9 - Watershed management.

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Watershed management... GENERAL POLICIES § 801.9 Watershed management. (a) The character, extent, and quality of water resources... management including soil and water conservation measures, land restoration and rehabilitation,...

  15. Engaging Watershed Stakeholders for Cost-Effective Environmental Management Planning with "Watershed Manager"

    Williams, Jeffery R.; Smith, Craig M.; Roe, Josh D.; Leatherman, John C.; Wilson, Robert M.

    2012-01-01

    "Watershed Manager" is a spreadsheet-based model that is used in extension education programs for learning about and selecting cost-effective watershed management practices to reduce soil, nitrogen, and phosphorus losses from cropland. It can facilitate Watershed Restoration and Protection Strategy (WRAPS) stakeholder groups' development of…

  16. Comparative Assessment of Stormwater and Nonpoint Source Pollution Best Management Practices in Suburban Watershed Management

    Zeyuan Qiu

    2013-01-01

    Nonpoint source pollution control and stormwater management are two objectives in managing mixed land use watersheds like those in New Jersey. Various best management practices (BMPs) have been developed and implemented to achieve both objectives. This study assesses the cost-effectiveness of selected BMPs for agricultural nonpoint source pollution control and stormwater management in the Neshanic River watershed, a typical mixed land use watershed in central New Jersey, USA. The selected BMP...

  17. Watershed Management: Lessons from Common Property Theory

    John Kerr

    2007-10-01

    Full Text Available Watershed development is an important component of rural development and natural resource management strategies in many countries. A watershed is a special kind of common pool resource: an area defined by hydrological linkages where optimal management requires coordinated use of natural resources by all users. Management is difficult because natural resources comprising the watershed system have multiple, conflicting uses, so any given management approach will spread benefits and costs unevenly among users. To address these challenges, watershed approaches have evolved from more technocratic to a greater focus on social organization and participation. However, the latter cannot necessarily be widely replicated. In addition, participatory approaches have worked better at a small scale, but hydrological relationships cover a larger scale and some projects have faced tradeoffs in choosing between the two. Optimal approaches for future efforts are not clear, and theories from common property research do not support the idea that complex watershed management can succeed everywhere. Solutions may include simplifying watershed projects, pursuing watershed projects where conditions are favorable, and making other investments elsewhere, including building the organizational capacity that can facilitate watershed management.

  18. Diagnostic Systems Approach to Watershed Management

    Davisson, M L

    2001-02-23

    The water quality of discharge from the surface water system is ultimately dictated by land use and climate within the watershed. Water quality has vastly improved from point source reduction measures, yet, non-point source pollutants continue to rise. 30 to 40% of rivers still do not meet water quality standards for reasons that include impact from urban storm water runoff, agricultural and livestock runoff, and loss of wetlands. Regulating non-point source pollutants proves to be difficult since specific dischargers are difficult to identify. However, parameters such as dissolved organic carbon (DOC) limit the amounts of chlorination due to simultaneous disinfection by-product formation. The concept of watershed management has gained much ground over the years as a means to resolve non-point source problems. Under this management scheme stakeholders in a watershed collectively agree to the nature and extent of non-point sources, determine water quality causes using sound scientific approaches, and together develop and implement a corrective plan. However, the ''science'' of watershed management currently has several shortcomings according to a recent National Research Council report. The scientific component of watershed management depends on acquiring knowledge that links water quality sources with geographic regions. However, there is an observational gap in this knowledge. In particular, almost all the water quality data that exists at a utility are of high frequency collected at a single point over a long period of time. Water quality data for utility purposes are rarely collected over an entire watershed. The potential is high, however, for various utilities in a single watershed to share and integrate water quality data, but no regulatory incentives exist at this point. The only other available water quality data originate from special scientific studies. Unfortunately these data rarely have long-term records and are usually tailored to

  19. Water environmental planning and management at the watershed scale:A case study of Lake Qilu,China

    2008-01-01

    Water environmental planning and management has become essential for guiding the water pollution control activities.Past water pollution control activities have been site specific,with little thought on water quality standard reaching at the watershed scale.Based on the watershed approach,a seven-step methodological framework for water environmental planning and management was developed.The framework was applied to water environmental planning and management of the Lake Qilu watershed in Yunnan Province,China.Results show that the reduction amount of total nitrogen (TN) under the plan is 1,205 tons per year so that the target of environmental capacity can be reached in 2020.Compared with traditional methods,the framework has its prevalence and could be generalized to analogous watersheds.

  20. Watershed Conservation Management Planning Using AGNPS

    A watershed scale assessment of the effect of conservation practices on the environment is critical when recommending best management practices to agricultural producers. The environmental benefits of these practices have not been widely quantified at the watershed scale, which would require extens...

  1. Realities of the Watershed Management Approach: The Manupali Watershed Experience

    Rola, Agnes C.; Suminguit, Vel J.; Sumbalan, Antonio T.

    2004-01-01

    Local research in the Manupali watershed, with about 60% of its land area belonging to the upland municipality of Lantapan, Bukidnon, found that water quantity and quality declined due to soil erosion and domestic waste contamination. As population grows and agriculture becomes more integrated to the market, water deterioration is projected to worsen. Both economic and environmental sustainability then depend on the following management bodies: 1) the management of the Mt. Kitanglad range, th...

  2. Sustainable Practices in Watershed Management: Global Experiences

    Menon, Sudha

    2007-01-01

    Watershed management is considered by scholars as well as practitioners across the world as the most appropriate approach to ensure the preservation, conservation and sustainability of all land based resources and for improving the living conditions of the people in uplands and low lands. More over watershed management technologies have proven to be effective for mitigating erosion on sloping land, stabilizing landscapes, providing clean water, stabilizing and improving agrarian production sy...

  3. Forest Management Influence On Hydric Production in a Temperate Rain Forest: a Comparative Study of Small Watersheds

    Alvarez, C.; McPhee, J.

    2007-12-01

    In this work we compare hydric production between two micro-watersheds (surface area less than 10 hectares) covered with Nothofagus oblicua and Nothofagus alpina saplings. One of the watersheds was subject to management by thinning on 2002, and contains 23% less trees, which is equivalent to 33% less basal surface respect to the unmanaged control basin. It is expected that differences be solely related to land use differences given that both watersheds have similar geomorphology. Four years (April 2003 through Jun 2007) of hourly streamflow and precipitation data collected on each watershed are analyzed by separating base flow and direct runoff for specific storms selected to represent different conditions of initial soil moisture. Several hydrograph- separation algorithms are tested in order to increase the robustness of our conclusions. Variations in rainfall- runoff coefficients are analyzed in relation to differences in soil cover and antecedent moisture. Preliminary results show that managed watersheds produce more direct runoff, albeit subject to initial moisture conditions. On the other hand a greater fraction of precipitation becomes baseflow for natural forests. This has important implications for ecosystem hydrologic services valuation and management.

  4. Optimal allocation of watershed management cost among different water users

    Wang Zanxin; Margaret M.Calderon

    2006-01-01

    The issue of water scarcity highlights the importance of watershed management. A sound watershed management should make all water users share the incurred cost. This study analyzes the optimal allocation of watershed management cost among different water users. As a consumable, water should be allocated to different users the amounts in which their marginal utilities (Mus) or marginal products (MPs) of water are equal. The value of Mus or MPs equals the water price that the watershed manager charges. When water is simultaneously used as consumable and non-consumable, the watershed manager produces the quantity of water in which the sum of Mus and/or MPs for the two types of uses equals the marginal cost of water production. Each water user should share the portion of watershed management cost in the percentage that his MU or MP accounts for the sum of Mus and/or MPs. Thus, the price of consumable water does not equal the marginal cost of water production even if there is no public good.

  5. Watershed management program. Final environmental impact statement

    Under the Northwest Power Act, BPA is responsible for mitigating the loss of fish and wildlife habitat caused by the development of the Federal Columbia River Power System. BPA accomplishes this mitigation by funding projects consistent with those recommended by the Northwest Power Planning Council (Council). The projects are submitted to the Council from Indian tribes, state agencies property owners, private conservation groups, and Federal agencies. Future watershed management actions with potential environmental impacts are expected to include in-channel modifications and fish habitat enhancement structures; riparian restoration and other vegetation management techniques; agricultural management techniques for crop irrigation, animal facilities, and grazing; road, forest, urban area, and recreation management techniques; mining reclamation; and similar watershed conservation actions. BPA needs to ensure that individual watershed management projects are planned and carried out with appropriate consistency across projects, jurisdictions, and ecosystems, as well as over time

  6. SUSTAINABLE URBAN TECHNOLOGIES TEAM (URBAN WATERSHED MANAGEMENT BRANCH - WSWRD)

    The National Risk Management Research Laboratory's Urban Watershed Management Branch researches, develops and evaluates technologies, practices, and systems to manage risks to human health and ecosystems from Wet Weather Flow (WWF) sources in urban watersheds. The focus is on the...

  7. Realities of Watershed Management in the Philippines: The Case of the Iloilo-Maasin Watershed

    Francisco, Herminia A.; Salas, Jessica C.

    2004-01-01

    The paper analyzed the presence or absence of elements needed to have an effective system of watershed management in the Maasin Watershed, Iloilo Province. IT concluded that: a) both the legal and institutional structures needed support watershed management effort are in place; b) there is evidence of a strong social capital existing in the upland and lowland communities; c) there is an adequate level of technical capital investment to sustainably manage the watershed; and d) there is suffici...

  8. Exploring an innovative watershed management approach: From feasibility to sustainability

    Said, A. [Department of Civil and Environmental Engineering, University of South Florida, Tampa, FL 33620 (United States); Sehlke, G. [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Stevens, D.K.; Sorensen, D.; Walker, W.; Hardy, T. [Civil and Environmental Department, Utah State University, Logan, UT 84321 (United States); Glover, T. [Economics Department, Utah State University, Logan, UT 84321 (United States)

    2006-10-15

    Watershed management is dedicated to solving watershed problems on a sustainable basis. Managing watershed development on a sustainable basis usually entails a balance between the needs of humans and nature, both in the present and in the future. From a watershed or water resources development basis, these problems can be classified into five general categories: lack of water quantity, deterioration in water quality, ecological impacts, weak public participation, and weak economic value. The first three categories can be combined to make up physical sustainability while the last two categories can be defined as social and economic sustainability. Therefore, integrated watershed management should be designed to achieve physical sustainability utilizing, to the greatest extent possible, public participation in an economically viable manner. This study demonstrates an innovative approach using scientific, social, and motivational feasibilities that can be used to improve watershed management. Scientific feasibility is tied to the nature of environmental problems and the scientific means to solve them. Social feasibility is associated with public participation. Motivational feasibility is related to economic stimulation for the stakeholders to take actions. The ecological impacts, lack of water quantity and deterioration in water quality are problems that need scientific means in order to improve watershed health. However, the implementation of these means is typically not achievable without the right public participation. In addition, public participation is typically accelerated by economic motivation for the stakeholders to use the resources in a manner that improves watershed health. The Big Lost River in south-central Idaho has been used as an illustration for implementing scientific, social and motivational feasibilities and in a manner that can achieve sustainability relative to water resources management. However, the same approach can be used elsewhere after

  9. Exploring an innovative watershed management approach: From feasibility to sustainability

    Watershed management is dedicated to solving watershed problems on a sustainable basis. Managing watershed development on a sustainable basis usually entails a balance between the needs of humans and nature, both in the present and in the future. From a watershed or water resources development basis, these problems can be classified into five general categories: lack of water quantity, deterioration in water quality, ecological impacts, weak public participation, and weak economic value. The first three categories can be combined to make up physical sustainability while the last two categories can be defined as social and economic sustainability. Therefore, integrated watershed management should be designed to achieve physical sustainability utilizing, to the greatest extent possible, public participation in an economically viable manner. This study demonstrates an innovative approach using scientific, social, and motivational feasibilities that can be used to improve watershed management. Scientific feasibility is tied to the nature of environmental problems and the scientific means to solve them. Social feasibility is associated with public participation. Motivational feasibility is related to economic stimulation for the stakeholders to take actions. The ecological impacts, lack of water quantity and deterioration in water quality are problems that need scientific means in order to improve watershed health. However, the implementation of these means is typically not achievable without the right public participation. In addition, public participation is typically accelerated by economic motivation for the stakeholders to use the resources in a manner that improves watershed health. The Big Lost River in south-central Idaho has been used as an illustration for implementing scientific, social and motivational feasibilities and in a manner that can achieve sustainability relative to water resources management. However, the same approach can be used elsewhere after

  10. Environmental Management of Agricultural Watersheds

    Golubev, G.N.

    1983-01-01

    It is well known that agricultural activity has a considerable influence on hydrological processes such as run-off and its regime, erosion and sedimentation, transport of dissolved chemicals, etc. But the influence goes beyond hydrology. Water just plays the role of an agent or carrier in geoecosystems. That is why we have chosen the watershed as a natural territorial unit where the components are united by hydrological processes. The policy usually adopted for normal agricultural dev...

  11. Water Quality Response Times to Pasture Management Changes in Small and Large Watersheds

    To interpret the effects of best management practices on water quality at a regional or large watershed scale likely response times at various scales must be known. Therefore, 4 small (<1 ha, 2.5 ac) watersheds, in rotational grazing studies at the North Appalachian Experimental Watershed (NAEW) nea...

  12. Integrated Resource Management at a Watershed Scale

    Byrne, J. M.; MacDonald, R. J.; Cairns, D.; Barnes, C. C.; Mirmasoudi, S. S.; Lewis, D.

    2014-12-01

    Watershed hydrologists, managers and planners have a long list of resources to "manage." Our group has worked for over a decade to develop and apply the GENESYS (Generate Earth Systems Science) high-resolution spatial hydrometeorological model. GENESYS was intended for modelling of alpine snowpack, and that work has been the subject of a series of hydrometeorology papers that applied the model to evaluate how climate change may impact water resources for a series of climate warming scenarios through 2100. GENESYS has research modules that have been used to assess alpine glacier mass balance, soil water and drought, forest fire risk under climate change, and a series of papers linking GENESYS to a water temperature model for small headwater streams. Through a major commercialization grant, we are refining, building, adopting, and adapting routines for flood hydrology and hydraulics, surface and groundwater storage and runoff, crop and ecosystem soil water budgets, and biomass yields. The model will be available for research collaborations in the near future. The central goal of this development program is to provide a series of research and development tools for non-profit integrated resource management in the developed and developing world. A broader question that arises is what are the bounds of watershed management, if any? How long should our list of "managed" resources be? Parallel work is evaluating the relative values of watershed specialists managing many more resources with the watershed. Hydroelectric power is often a key resource complimentary to wind, solar and biomass renewable energy developments; and biomass energy is linked to water supply and agriculture. The August 2014 massive tailings dam failure in British Columbia threatens extensive portions of the Fraser River sockeye salmon run, millions of fish, and there are concerns about long-term contamination of water supplies for many British Columbians. This disaster, and many others that may occur

  13. A review of watershed management experience

    A review of watershed management experience was conducted by Beak International Inc., under the auspices of the Ontario Ministry of the Environment, Executive Resource Group. The team assigned to this task conducted Internet searches, conducted interviews with targeted individuals and presented a number of examples of best practice in this field by different organizations. The selection was based on the results obtained from a questionnaire distributed to a number of organizations worldwide, and touched on the following topics: partners, types of resources/issues managed, reporting and monitoring, regulatory framework, and implementation. The short list included the United States Environmental Protection Agency (US EPA), Ohio, New Jersey, Washington, Australia, the United Kingdom as well as agencies in Ontario. The report identified the major characteristics of each of these leading jurisdictions as they relate to watershed management and how the lessons learned could be applied to the situation in Ontario. The key topics were: hydrologic cycle, biophysical units, ecosystem units, miner's canary, cumulative effects, quality of life, integrated resources management, and grass roots support. The conclusions reached indicated that an effective way of addressing issues related to water quality and allocation was through watershed management. A successful watershed planning and management program requires a clear legislative framework, as well as clear targets, monitoring programs and reporting requirements. All parties must be involved in the process of finding solutions to the problem of water quality impairment, considering the numerous causes ranging from industrial to agricultural and urban development. The support for funding and implementation relies heavily on public education and awareness programs. The use of water use surcharge on water/energy bills earmarked for watershed planning and management were successful in some jurisdictions. 8 refs., 2 tabs., 3

  14. DEVELOPING A SERVICE-LEARNING PROGRAM FOR WATERSHED MANAGEMENT: Lessons from the Stroubles Creek Watershed Initiative

    de Leon, Raymond F.

    2002-01-01

    There has been a growing interest and support by many state and local programs to address aquatic resource protection and restoration at a watershed level. The desire by many programs to implement watershed management programs has become more than just a need, rather a necessity to ensure suitable water resources. However, many challenges arise when developing and sustaining watershed programs. One such challenge is that watershed programs are resource intensive. These programs require si...

  15. Statewide Watershed Management Effects on Local Watershed Groups: A Comparison of Wisconsin, Kentucky, and Virginia

    Gorder, Joel Steven

    2001-01-01

    While there are no federal mandates for states to establish watershed management frameworks, many states see the benefits of doing so and have established such approaches. The main advantage of statewide watershed management over traditional resource management is the cost effectiveness and the formation of integrated solutions to water quality problems. Statewide watershed frameworks provide a geographic focus and partnerships in order to develop comprehensive solutions...

  16. MORPHOMETRIC ANALYSIS AND PRIORITIZATION OF WATERSHED FOR SOIL RESOURCE MANAGEMENT IN YERALA RIVER BASIN

    R. S. Shikalgar

    2013-01-01

    The development of morphometric techniques was a major advance in the quantitative description of thegeometry of the drainage basins and its network. Watershed prioritization on the basis of morphometric parametersis necessary in order to develop a sustainable watershed management plan. The present study aims to assess thelinear and shape morphometric parameters and prioritization of twenty three sub-watersheds of Yerala river basinfor soil resource management. Yerala river basin has an area ...

  17. PROFILE: Management of Sedimentation in Tropical Watersheds.

    NAGLE; FAHEY; LASSOIE

    1999-05-01

    reducing sedimentation. When sedimentation of reservoirs is the key issue, sediment budgets must focus especially on channel transport rates and sediment delivery from hillsides. Sediment budgets are especially critical for tropical areas where project funds and technical help are limited. Once sediment budgets are available, watershed managers will be able to direct erosion control programs towards locations where they will be most effective. KEY WORDS: Tropical watersheds; Sedimentation; Reservoirs; Erosion control PMID:10085377

  18. LEAST-COST WATERSHED MANAGEMENT SOLUTIONS: USING GIS DATA IN ECONOMIC MODELING OF A WATERSHED

    Ancev, Tihomir; Stoecker, Arthur L.

    2003-01-01

    Phosphorus pollution from excessive litter application causes eutorphication of lakes in the Eucha-Spavinaw watershed in eastern Oklahoma and western Arkansas. Consequent algal blooms impair the taste of municipal water supply drawn from the watershed. The paper shows how GIS data based biophysical modeling can be used to derive spatially optimal, least-cost allocation of management practices to reduce phosphorus runoff in the watershed. Transportation activities were added to the model so th...

  19. WATERSHED MANAGEMENT – A MEANS OF SUSTAINABLE DEVELOPMENT - A CASE STUDY

    Mrs. Vidula Arun Swami,

    2011-03-01

    Full Text Available In this era of ever increasing water demands and rapidly depleting water resources coupled with overpopulation, it has become necessary to develop the means to recharge the ground water resources which arenecessary for future requirements. This paper presents one such case study where large amount of rainwater is directed to recharge ground water resources. Somwar Peth is a small village located at distance of 15 Kms. from Kolhapur city. Under Social Forestry Department, some measures have been adopted to recharge the ground water resources, ut it has been found that these measures don’t work with full apacity in some cases. Hence it is planned to take such engineering and biological measures which will direct this extra runoff to ground water storage. The most significant feature of the work is that if such technologies are developed and adopted at larger scale in rural areas, it will prevent thousands of villages of the country from water supply by tankers. Moreover this will also help us to tackle the issue of flood which mainly occurs due to excess runoff.

  20. Elk River Watershed - Flood Study

    Barnes, C. C.; Byrne, J. M.; MacDonald, R. J.; Lewis, D.

    2014-12-01

    Flooding has the potential to cause significant impacts to economic activities as well as to disrupt or displace populations. Changing climate regimes such as extreme precipitation events increase flood vulnerability and put additional stresses on infrastructure. Potential flooding from just under 100 (2009 NPRI Reviewed Facility Data Release, Environment Canada) toxic tailings ponds located in Canada increase risk to human safety and the environment. One such geotechnical failure spilt billions of litres of toxic tailings into the Fraser River watershed, British Columbia, when a tailings pond dam breach occurred in August 2014. Damaged and washed out roadways cut access to essential services as seen by the extensive floods that occurred in Saskatchewan and Manitoba in July 2014, and in Southern Alberta in 2013. Recovery efforts from events such as these can be lengthy, and have substantial social and economic impacts both in loss of revenue and cost of repair. The objective of this study is to investigate existing conditions in the Elk River watershed and model potential future hydrological changes that can increase flood risk hazards. By analyzing existing hydrology, meteorology, land cover, land use, economic, and settlement patterns a baseline is established for existing conditions in the Elk River watershed. Coupling the Generate Earth Systems Science (GENESYS) high-resolution spatial hydrometeorological model with flood hazard analysis methodology, high-resolution flood vulnerability base line maps are created using historical climate conditions. Further work in 2015 will examine possible impacts for a range of climate change and land use change scenarios to define changes to future flood risk and vulnerability.

  1. Using GIS as a watershed management education tool

    Williams, T. M.; English, W.R.; Lipscomb, Donald J.; Nickel, Christopher S,

    2002-01-01

    Global Information Systems, including the capacity of these systems to store and manipulate data, have found great utility in analyzing spatial information. The spatial information that is most useful to watershed managers includes accounting of land-use practices that both damage and enhance water quality in watersheds. The capacity of GIS to present data visually is very helpful when trying to educate those concerned with watershed management issues.

  2. Open Source GIS based integrated watershed management

    Byrne, J. M.; Lindsay, J.; Berg, A. A.

    2013-12-01

    Optimal land and water management to address future and current resource stresses and allocation challenges requires the development of state-of-the-art geomatics and hydrological modelling tools. Future hydrological modelling tools should be of high resolution, process based with real-time capability to assess changing resource issues critical to short, medium and long-term enviromental management. The objective here is to merge two renowned, well published resource modeling programs to create an source toolbox for integrated land and water management applications. This work will facilitate a much increased efficiency in land and water resource security, management and planning. Following an 'open-source' philosophy, the tools will be computer platform independent with source code freely available, maximizing knowledge transfer and the global value of the proposed research. The envisioned set of water resource management tools will be housed within 'Whitebox Geospatial Analysis Tools'. Whitebox, is an open-source geographical information system (GIS) developed by Dr. John Lindsay at the University of Guelph. The emphasis of the Whitebox project has been to develop a user-friendly interface for advanced spatial analysis in environmental applications. The plugin architecture of the software is ideal for the tight-integration of spatially distributed models and spatial analysis algorithms such as those contained within the GENESYS suite. Open-source development extends knowledge and technology transfer to a broad range of end-users and builds Canadian capability to address complex resource management problems with better tools and expertise for managers in Canada and around the world. GENESYS (Generate Earth Systems Science input) is an innovative, efficient, high-resolution hydro- and agro-meteorological model for complex terrain watersheds developed under the direction of Dr. James Byrne. GENESYS is an outstanding research and applications tool to address

  3. Geomorphometry through remote sensing and GIS for watershed management

    Application of remote sensing and GIS for effective determination of the quantitative description of drainage basin geometry for watershed management prioritization forms the theme of this paper. In the present study, each of the eight sub watersheds of Racherla watershed of Prakasam (District) Andhra Pradesh, have been studied in terms of the morphometric parameters -stream length, bifurcation ratio, length ratio, drainage density, stream frequency, texture ratio, form factor area, perimeter, circularity ratio, elongation ratio and sediment yield index. The prioritization of the eight sub watersheds is carried out considering morphometry and sediment yield index. Using IRS IC satellite imagery, a computerized database is created availing ARC / INFO software. The initial drainage map prepared from the survey of India toposheets was later unified with satellite imagery. The prioritization of sub sheds based on morphometry compared with sediment yield prioritization and found nearly same for the study area. The information obtained from all the thematic map is integrated and action plan is suggested for land and water resources development on a sustainable basis. (author)

  4. A digraph permanent approach to evaluation and analysis of integrated watershed management system

    Ratha, Dwarikanath; Agrawal, V. P.

    2015-06-01

    In the present study a deterministic quantitative model based on graph theory has been developed for the better development and management of watershed. Graph theory is an integrative systems approach to consider and model structural components of watershed management system along with the interrelationships between them concurrently and integratively. The factors responsible for the development of watershed system are identified. The degree of interaction between one subsystem with others are determined. The eigenvalue formulation is used to take care the inconsistencies arises due to inaccurate judgement in the degree of interaction between the subsystems. In this model the visual analysis is done to abstract the information using the directed graph or digraph. Then the matrix model is developed for computer processing. Variable permanent function in the form of multinomial represents the watershed system uniquely and completely by an index value. Different terms of the multinomial represent all possible subsystems of integrated watershed management system and thus different solutions for watershed management, leading to optimum solution. This index value is used to compare the suitability of the watershed with different alternatives available for its development. So the graph theory analysis presents a powerful tool to generate the optimum solutions for the decision maker for benefit of local people living in the watershed as well as the stakeholders. The proposed methodology is also demonstrated by a suitable example and is applied to the ecosystem and environment subsystem of the lake Qionghai watershed in China.

  5. Watershed Management Policies and Institutional Mechanisms: A Critical Review

    Javier, Jesus A.

    1999-01-01

    While most government efforts are directed toward watershed conservation, its management has remained challenging and complex. This short article argues for reconsideration of existing policies and regulations. It also pushes for a long-term comprehensive national strategy to address several watershed management concerns.

  6. A Spatially Explicit Decision Support System for Watershed-Scale Management of Salmon

    Michael Maher

    2008-12-01

    Full Text Available Effective management for wide-ranging species must be conducted over vast spatial extents, such as whole watersheds and regions. Managers and decision makers must often consider results of multiple quantitative and qualitative models in developing these large-scale multispecies management strategies. We present a scenario-based decision support system to evaluate watershed-scale management plans for multiple species of Pacific salmon in the Lewis River watershed in southwestern Washington, USA. We identified six aquatic restoration management strategies either described in the literature or in common use for watershed recovery planning. For each of the six strategies, actions were identified and their effect on the landscape was estimated. In this way, we created six potential future landscapes, each estimating how the watershed might look under one of the management strategies. We controlled for cost across the six modeled strategies by creating simple economic estimates of the cost of each restoration or protection action and fixing the total allowable cost under each strategy. We then applied a suite of evaluation models to estimate watershed function and habitat condition and to predict biological response to those habitat conditions. The concurrent use of many types of models and our spatially explicit approach enables analysis of the trade-offs among various types of habitat improvements and also among improvements in different areas within the watershed. We report predictions of the quantity, quality, and distribution of aquatic habitat as well as predictions for multiple species of species-specific habitat capacity and survival rates that might result from each of the six management strategies. We use our results to develop four on-the-ground watershed management strategies given alternative social constraints and manager profiles. Our approach provides technical guidance in the study watershed by predicting future impacts of potential

  7. Optimizing Watershed Management by Coordinated Operation of Storing Facilities

    Anghileri, Daniela; Castelletti, Andrea; Pianosi, Francesca; Soncini-Sessa, Rodolfo; Weber, Enrico

    2013-04-01

    Water storing facilities in a watershed are very often operated independently one to another to meet specific operating objectives, with no information sharing among the operators. This uncoordinated approach might result in upstream-downstream disputes and conflicts among different water users, or inefficiencies in the watershed management, when looked at from the viewpoint of an ideal central decision-maker. In this study, we propose an approach in two steps to design coordination mechanisms at the watershed scale with the ultimate goal of enlarging the space for negotiated agreements between competing uses and improve the overall system efficiency. First, we compute the multi-objective centralized solution to assess the maximum potential benefits of a shift from a sector-by-sector to an ideal fully coordinated perspective. Then, we analyze the Pareto-optimal operating policies to gain insight into suitable strategies to foster cooperation or impose coordination among the involved agents. The approach is demonstrated on an Alpine watershed in Italy where a long lasting conflict exists between upstream hydropower production and downstream irrigation water users. Results show that a coordination mechanism can be designed that drive the current uncoordinated structure towards the performance of the ideal centralized operation.

  8. Advances in Watershed Management: Modeling, Monitoring, and Assessment

    Benham, B. L.; Yagow, G.; Chaubey, I.; Douglas-Mankin, K. R.

    2011-01-01

    This article introduces a special collection of nine articles that address a wide range of topics all related to improving the application of watershed management planning. The articles are grouped into two broadly defined categories.. modeling applications, and monitoring and assessment. The modeling application articles focus on one of two widely used watershed-scale water quality modeling packages: HSPF or SWAT The HSPF article assesses the model's robustness when applied to watersheds acr...

  9. Comparative Assessment of Stormwater and Nonpoint Source Pollution Best Management Practices in Suburban Watershed Management

    Zeyuan Qiu

    2013-03-01

    Full Text Available Nonpoint source pollution control and stormwater management are two objectives in managing mixed land use watersheds like those in New Jersey. Various best management practices (BMPs have been developed and implemented to achieve both objectives. This study assesses the cost-effectiveness of selected BMPs for agricultural nonpoint source pollution control and stormwater management in the Neshanic River watershed, a typical mixed land use watershed in central New Jersey, USA. The selected BMPs for nonpoint source pollution control include cover crops, prescribed grazing, livestock access control, contour farming, nutrient management, and conservation buffers. The selected BMPs for stormwater management are rain gardens, roadside ditch retrofitting, and detention basin retrofitting. Cost-effectiveness is measured by the reduction in pollutant loads in total suspended solids and total phosphorus relative to the total costs of implementing the selected BMPs. The pollution load reductions for these BMPs are based on the total pollutant loads in the watershed simulated by the Soil and Water Assessment Tool and achievable pollutant reduction rates. The total implementation cost includes BMP installation and maintenance costs. The assessment results indicate that the BMPs for the nonpoint source pollution control are generally much more cost-effective in improving water quality than the BMPs for stormwater management.

  10. Improvement in health and empowerment of families as a result of watershed management in a tribal area in India - a qualitative study

    Nerkar, Sandeep S.; Tamhankar, Ashok J.; Johansson, Eva; Lundborg, Cecilia Stålsby

    2013-01-01

    Background Tribal people in India, as in other parts of the world, reside mostly in forests and/or hilly terrains. Water scarcity and health problems related to it are their prime concern. Watershed management can contribute to resolve their health related problems and can put them on a path of socio-economic development. Integrated management of land, water and biomass resources within a watershed, i.e. in an area or a region which contributes rainfall water to a river or lake, is referred t...

  11. Effective Factors on Rural People’s Non-Participation of Mahabad’s Dam Catchment in Watershed Management Projects

    Soleiman Rasouliazar

    2015-03-01

    Full Text Available The purpose of this descriptive-correlation study was to investigate effective factors on rural people’s non-participation of Mahabad’s dam catchment in Watershed Management Projects. The research instrument was structural questionnaire with close-ended questions, which its validity confirmed by panel of academic staff and reliability of questionnaire was confirmed. The target population of this study consisted of all householders who lived in Mahabad’s dam catchment (N=2458 out of them, according to Cochran's formula 175 people were selected by using cluster sampling in a simple randomization method (n=175. The descriptive results showed lack of financial ability for participating in watershed management, lack of awareness about watershed management efficiency, the longterm rate of return on the investment attracted in watershed management were the main variables related to rural people’s non participation in watershed management. By applying Factor Analysis Explanatory Technique, effective factors on rural people’s non-participation in watershed management were reduced to five factors namely weakness of agricultural extension services, getting watershed management out of governmental control, no achieving success to implement another rural projects by government, and no considering local individuals or organization by government. These five factors expressed 84% of the total variance of the non-participation people on Mahabad’s dam catchment in watershed management projects. Therefore points to these factors could solve the barriers of non-participation people on Mahabad’s dam catchment in watershed management projects.

  12. Watershed management for water supply in developing world city

    车越; 杨凯; 吕永鹏; 张宏伟; 吴健; 杨永川

    2009-01-01

    The water supply system in Shanghai provides about 2.55×109 m3/a,of which more than 50% is derived from the Upper Huangpu River Watershed. During the process of rapid urbanization and industrialization,the role of watershed management in sustaining clean drinking water quality at surface sources is emphasized in Shanghai. This paper proposes an integrated watershed management (IWM) approach in the context of the current pressures and problems of source water protection at the Upper Huangpu River Watershed in Shanghai. Based on data sets of land use,water quality and regional development,multi-criteria analysis and system dynamics techniques were used to evaluate effectiveness and improve decision-making of source water protection at a watershed scale. Different scenarios for potential source water quality changing from 2008 to 2020 were predicted,based on a systematic analysis and system dynamics modeling,a watershed management approach integrating land use prioritization and stakeholder involvement was designed to conserve the source water quality. The integrated watershed management (IWM) approach may help local authorities better understand and address the complex source water system,and develop improved safe drinking water strategies to better balance urban expansion and source water protection.

  13. Community participation and implementation of water management instruments in watersheds

    Mario Alejandro Perez Rincon

    2013-04-01

    Full Text Available The current model of water resources management in Brazil is decentralized, participative and integrated, and adopted the river basin as a planning unit. It is based on the performance of watershed committees; each committee has its own composition and rules of procedure, governed by its statute. The basic principles of this management have been established by the Brazilian Constitution of 1988 and detailed by the National Water Resources Policy in 1997. At the State level, São Paulo enacted its water resources policy in 1991. This paper examined the participatory process in basin committees of the São Paulo State and its implications in the implementation of the instruments of water management, based in a case study of the Tiete - Jacaré Watershed Committee, using questionnaires filled by the Committee’s members (2009 - 2011. Engagement and integration among the stakeholders was observed. Still, the interviews’ results have shown that the Committee’s statute should be reviewed due to differences between the Federal and the State legislation, mainly regarding the participating sectors and representatives. It also showed a need for more information about water resource issues in this basin and in the State of São Paulo, as a whole. At the same time, it is recommended that representativeness of the institutions within the water council management be improved and that the work produced by the technical chambers be recognised at the committee decision-making level.

  14. Managing Watersheds as Couple Human-Natural Systems: A Review of Research Opportunities

    Cai, X.

    2011-12-01

    Many watersheds around the world are impaired with severe social and environmental problems due to heavy anthropogenic stresses. Humans have transformed hydrological and biochemical processes in watersheds from a stationary to non-stationary status through direct (e.g., water withdrawals) and indirect (e.g., altering vegetation and land cover) interferences. It has been found that in many watersheds that socio-economic drivers, which have caused increasingly intensive alteration of natural processes, have even overcome natural variability to become the dominant factor affecting the behavior of watershed systems. Reversing this trend requires an understanding of the drivers of this intensification trajectory, and needs tremendous policy reform and investment. As stressed by several recent National Research Council (NRC) reports, watershed management will pose an enormous challenge in the coming decades. Correspondingly, the focus of research has started an evolution from the management of reservoir, stormwater and aquifer systems to the management of integrated watershed systems, to which policy instruments designed to make more rational economic use of water resources are likely to be applied. To provide a few examples: reservoir operation studies have moved from a local to a watershed scale in order to consider upstream best management practices in soil conservation and erosion control and downstream ecological flow requirements and water rights; watersheds have been modeled as integrated hydrologic-economic systems with multidisciplinary modeling efforts, instead of traditional isolated physical systems. Today's watershed management calls for a re-definition of watersheds from isolated natural systems to coupled human-natural systems (CHNS), which are characterized by the interactions between human activities and natural processes, crossing various spatial and temporal scales within the context of a watershed. The importance of the conceptual innovation has been

  15. Area Study prior to Companion Modelling to Integrate Multiple Interests in Upper Watershed Management of Northern Thailand

    Barnaud, Cécile; Trebuil, Guy; Dumrongrojwatthana, Pongchai; Marie, Jérôme

    2008-01-01

    International audience Ethnic minorities living in the highlands of northern Thailand have long been accused of degrading the upper watersheds of the country's major basins. In the nineties, the government reinforced his environmental policies and further restricted their access to farm and forest resources. In the meanwhile, the policy framework also favoured decentralization and public participation. This contradiction resulted in an increasing number of conflicts over land-use between l...

  16. Area Study Prior to Companion Modelling to Integrate Multiple Interests in Upper Watershed Management of Northern Thailand

    Barnaud, Cecile; Trebuil, Guy; Dumrongrojwatthana, Pongchai; MARIE, Jerome

    2008-01-01

    Ethnic minorities living in the highlands of northern Thailand have long been accused of degrading the upper watersheds of the country's major basins. In the nineties, the Thai government reinforced his environmental policies and further restricted their access to farm and forest resources. In the meanwhile, the policy framework also favoured decentralization and public participation. This contradiction resulted in an increasing number of conflicts over land-use between local communities and ...

  17. Social Safeguards for REDD+ in Mexico’s Watershed Management Program

    Garduño Diaz, Philippe Youssef

    2012-01-01

    Case studies on environmental governance are essential to improve comprehension on howto implement international agreements. This study focuses on seven social safeguards relevant toREDD+. The existence of these social safeguards is examined in Mexico’s watershed managementprogram in La Sierra Madre and La Costa of Chiapas. The watershed management program is anotherPayment for Ecosystem Services (PES) scheme similar to REDD+. Questionnaires and interviews wereused to conduct primary research...

  18. Management and Cost of Watershed Reforestation: The Pantabangan and Magat

    Galvez, Jose A.

    1984-01-01

    Experiences of the National Irrigation Administration in its reforestation of the Pantabangan and Magat watersheds are presented in this paper, as it identifies the basic requirements of a successful reforestation program for denuded areas. The problems encountered in the implementation of the Watershed Management and Erosion Control Projects as well as the factors that significantly affected the success or failure of the project are identified.

  19. Integrating socio-economic and biophysical data to enhance watershed management and planning

    Pirani, Farshad Jalili; Mousavi, Seyed Alireza

    2016-09-01

    Sustainability has always been considered as one of the main aspects of watershed management plans. In many developing countries, watershed management practices and planning are usually performed by integrating biophysical layers, and other existing layers which cannot be identified as geographic layers are ignored. We introduce an approach to consider some socioeconomic parameters which are important for watershed management decisions. Ganj basin in Chaharmahal-Bakhtiari Province was selected as the case study area, which includes three traditional sanctums: Ganj, Shiremard and Gerdabe Olya. Socioeconomic data including net agricultural income, net ranching income, population and household number, literacy rate, unemployment rate, population growth rate and active population were mapped within traditional sanctums and then were integrated into other biophysical layers. After overlaying and processing these data to determine management units, different quantitative and qualitative approaches were adopted to achieve a practical framework for watershed management planning and relevant plans for homogeneous units were afterwards proposed. Comparing the results with current plans, the area of allocated lands to different proposed operations considering both qualitative and quantitative approaches were the same in many cases and there was a meaningful difference with current plans; e.g., 3820 ha of lands are currently managed under an enclosure plan, while qualitative and quantitative approaches in this study suggest 1388 and 1428 ha to be allocated to this operation type, respectively. Findings show that despite the ambiguities and complexities, different techniques could be adopted to incorporate socioeconomic conditions in watershed management plans. This introductory approach will help to enhance watershed management decisions with more attention to societal background and economic conditions, which will presumably motivate local communities to participate in

  20. Developing Participatory Models of Watershed Management in the Sugar Creek Watershed (Ohio, USA

    Jason Shaw Parker

    2009-02-01

    Full Text Available The US Environmental Protection Agency (USEPA has historically used an expert-driven approach to water and watershed management. In an effort to create regulatory limits for pollution-loading to streams in the USA, the USEPA is establishing limits to the daily loading of nutrients specific to each watershed, which will affect many communities in America. As a part of this process, the Ohio Environmental Protection Agency ranked the Sugar Creek Watershed as the second "most-impaired" watershed in the State of Ohio. This article addresses an alternative approach to watershed management and that emphasises a partnership of farmers and researchers, using community participation in the Sugar Creek to establish a time-frame with goals for water quality remediation. Of interest are the collaborative efforts of a team of farmers, researchers, and agents from multiple levels of government who established this participatory, rather than expert-driven, programme. This new approach created an innovative and adaptive model of non-point source pollution remediation, incorporating strategies to address farmer needs and household decision making, while accounting for local and regional farm structures. In addition, this model has been adapted for point source pollution remediation that creates collaboration among local farmers and a discharge-permitted business that involves nutrient trading.

  1. Bridging the gap between uncertainty analysis for complex watershed models and decision-making for watershed-scale water management

    Zheng, Y.; Han, F.; Wu, B.

    2013-12-01

    Process-based, spatially distributed and dynamic models provide desirable resolutions to watershed-scale water management. However, their reliability in solving real management problems has been seriously questioned, since the model simulation usually involves significant uncertainty with complicated origins. Uncertainty analysis (UA) for complex hydrological models has been a hot topic in the past decade, and a variety of UA approaches have been developed, but mostly in a theoretical setting. Whether and how a UA could benefit real management decisions remains to be critical questions. We have conducted a series of studies to investigate the applicability of classic approaches, such as GLUE and Markov Chain Monte Carlo (MCMC) methods, in real management settings, unravel the difficulties encountered by such methods, and tailor the methods to better serve the management. Frameworks and new algorithms, such as Probabilistic Collocation Method (PCM)-based approaches, were also proposed for specific management issues. This presentation summarize our past and ongoing studies on the role of UA in real water management. Challenges and potential strategies to bridge the gap between UA for complex models and decision-making for management will be discussed. Future directions for the research in this field will also be suggested. Two common water management settings were examined. One is the Total Maximum Daily Loads (TMDLs) management for surface water quality protection. The other is integrated water resources management for watershed sustainability. For the first setting, nutrients and pesticides TMDLs in the Newport Bay Watershed (Orange Country, California, USA) were discussed. It is a highly urbanized region with a semi-arid Mediterranean climate, typical of the western U.S. For the second setting, the water resources management in the Zhangye Basin (the midstream part of Heihe Baisn, China), where the famous 'Silk Road' came through, was investigated. The Zhangye

  2. BMP analysis system for watershed-based stormwater management.

    Zhen, Jenny; Shoemaker, Leslie; Riverson, John; Alvi, Khalid; Cheng, Mow-Soung

    2006-01-01

    Best Management Practices (BMPs) are measures for mitigating nonpoint source (NPS) pollution caused mainly by stormwater runoff. Established urban and newly developing areas must develop cost effective means for restoring or minimizing impacts, and planning future growth. Prince George's County in Maryland, USA, a fast-growing region in the Washington, DC metropolitan area, has developed a number of tools to support analysis and decision making for stormwater management planning and design at the watershed level. These tools support watershed analysis, innovative BMPs, and optimization. Application of these tools can help achieve environmental goals and lead to significant cost savings. This project includes software development that utilizes GIS information and technology, integrates BMP processes simulation models, and applies system optimization techniques for BMP planning and selection. The system employs the ESRI ArcGIS as the platform, and provides GIS-based visualization and support for developing networks including sequences of land uses, BMPs, and stream reaches. The system also provides interfaces for BMP placement, BMP attribute data input, and decision optimization management. The system includes a stand-alone BMP simulation and evaluation module, which complements both research and regulatory nonpoint source control assessment efforts, and allows flexibility in the examining various BMP design alternatives. Process based simulation of BMPs provides a technique that is sensitive to local climate and rainfall patterns. The system incorporates a meta-heuristic optimization technique to find the most cost-effective BMP placement and implementation plan given a control target, or a fixed cost. A case study is presented to demonstrate the application of the Prince George's County system. The case study involves a highly urbanized area in the Anacostia River (a tributary to Potomac River) watershed southeast of Washington, DC. An innovative system of

  3. Non point source pollution modelling in the watershed managed by Integrated Conctructed Wetlands: A GIS approach.

    Vyavahare, Nilesh

    2008-01-01

    The non-point source pollution has been recognised as main cause of eutrophication in Ireland (EPA Ireland, 2001). Integrated Constructed Wetland (ICW) is a management practice adopted in Annestown stream watershed, located in the south county of Waterford in Ireland, used to cleanse farmyard runoff. Present study forms the annual pollution budget for the Annestown stream watershed. The amount of pollution from non-point sources flowing into the stream was simulated by using GIS techniques; u...

  4. An Integrated Mobile Application to Improve the Watershed Management in Taiwan

    Chou, T. Y.; Chen, M. H.; Lee, C. Y.

    2015-12-01

    This study aims to focus on the application of information technology on the reservoir watershed management. For the civil and commercial water usage, reservoirs and its upstream plays a significant role due to water scarcity and inequality, especially in Taiwan. Due to the progress of information technology, apply it can improve the efficiency and accuracy of daily affairs significantly which already proved by previous researches. Taipei Water Resource District (TWRD) is selected as study area for this study, it is the first reservoir watershed which authorized as special protection district by urban planning act. This study has designed a framework of mobile application, which addressed three types of public affairs relate to watershed management, includes building management, illegal land-use investigation, and a dashboard of real time stream information. This mobile application integrated a dis-connected map and interactive interface to collect, record and calculate field information which helps the authority manage the public affairs more efficiency.

  5. Quantifying Urban Watershed Stressor Gradients and Evaluating How Different Land Cover Datasets Affect Stream Management

    Smucker, Nathan J.; Kuhn, Anne; Charpentier, Michael A.; Cruz-Quinones, Carlos J.; Elonen, Colleen M.; Whorley, Sarah B.; Jicha, Terri M.; Serbst, Jonathan R.; Hill, Brian H.; Wehr, John D.

    2016-03-01

    Watershed management and policies affecting downstream ecosystems benefit from identifying relationships between land cover and water quality. However, different data sources can create dissimilarities in land cover estimates and models that characterize ecosystem responses. We used a spatially balanced stream study (1) to effectively sample development and urban stressor gradients while representing the extent of a large coastal watershed (>4400 km2), (2) to document differences between estimates of watershed land cover using 30-m resolution national land cover database (NLCD) and create monitoring programs and indicators responsive to anthropogenic impacts. Differences between land cover datasets could affect resource protection due to misguided management targets, watershed development and conservation practices, or water quality criteria.

  6. Can Integrated Watershed Management Contribute to Improvement of Public Health? A Cross-Sectional Study from Hilly Tribal Villages in India

    Nerkar, Sandeep S.; Ashish Pathak; Cecilia Stålsby Lundborg; Tamhankar, Ashok J.

    2015-01-01

    Tribal people living in hilly areas suffer from water scarcity in many parts of the world, including India. Water scarcity adversely impacts all aspects of life, including public health. Implementation of an Integrated Watershed Management Programme (IWMP) can help solve the problems arising out of water scarcity in such areas. However, the knowledge about and views of the water scarcity sufferers on the public health implications of IWMP have not been well documented. This cross-sectional ...

  7. Institutional Development to Build a Succesfull Local Collective Action in Forest Management from Arau Watershed Unit

    Nursidah Nursidah; Bramasto Nugroho; Dudung Darusman; Omo Rusdiana; Yuzirwan Rasyid

    2012-01-01

    The study was aimed to build institution model of sustainable forest management, through analysis of action arena, community attributes and forest management rules in Arau Watershed Unit Management Area.  To achieve sustainable forest management, recognition and incorporation of local institutions in forest policy formulation is very important because it had great potential for collective action and had characteristics of common pools resources sustainable management needed.  To achieve a suc...

  8. Watershed hydrological responses to changes in land use and land cover, and management practices at Hare watershed, Ethiopia

    Mengistu, Kassa Tadele

    2009-01-01

    This study investigates hydrological responses to changes in land use, land cover and management practices at Hare River watershed, Southern Rift Valley Lakes Basin, Ethiopia. It addresses methods that are required to better characterize impacts of land use and cover and climate change scenarios and understand the upstream-downstream linkages with respect to irrigation water allocation. Understanding how the changes in land use and cover influence streamflow and subsequently optimization of a...

  9. New trends in watershed management and protection

    I would like to present some new environmental technologies by shoving restoration projects that are currently being implemented in the eastern United States that require this co-operation for successful implementation. The environmental technologies that will be discussed include the use of existing or constructed wetlands to treat surface and groundwater impacted in contaminants from various sources. The main goal of these type projects are to provide a low-cost and effective treatment for existing pollution problems. Many of these projects are initiated by civic associations (or NGOs) that wanted to improve the state of environment in their area. Because everyone has the responsibility to a clean environment in which they live, NGOs, state government, business, and local citizens, and local citizens worked closely together to solve problems in their watersheds. These projects are only examples of what is being done in the United States. However, I would like also to discuss what projects exist in eastern Slovakia, and others that could be started in Slovakia that improve relationships between MGOs and the state and local governmental decision-making process, with the ultimate goal to improve water quality in the Danube watershed in the future. There are severe environmental technologies that can be applied to improve the water quality of rivers throughout the Danube watershed, such as treatment of wastewater using wetland vegetation, and treatment of acid-mine drainage. In April 1996, NGO People and Water in co-operation with the village governments of the Upper Torysa River watershed started the project Villages for the 3 rd millennium in the Carpathian Euro-Region. One of the main goals of this project is to introduce new environmental technologies in the rural communities of the Upper Torysa River area. Since people trust their eyes than their ears. It is important to initiate practical, pilot projects to convince citizens and governments that these low

  10. Spatial optimization of watershed management practices for nitrogen load reduction using a modeling-optimization framework

    Best management practices (BMPs) are perceived as being effective in reducing nutrient loads transported from non-point sources (NPS) to receiving water bodies. The objective of this study was to develop a modeling-optimization framework that can be used by watershed management p...

  11. Can Integrated Watershed Management Contribute to Improvement of Public Health? A Cross-Sectional Study from Hilly Tribal Villages in India

    Sandeep S. Nerkar

    2015-02-01

    Full Text Available Tribal people living in hilly areas suffer from water scarcity in many parts of the world, including India. Water scarcity adversely impacts all aspects of life, including public health. Implementation of an Integrated Watershed Management Programme (IWMP can help solve the problems arising out of water scarcity in such areas. However, the knowledge about and views of the water scarcity sufferers on the public health implications of IWMP have not been well documented. This cross-sectional study was performed in six purposively selected tribal villages located in Maharashtra, India. In three of the villages IWMP had been implemented (IWMV, but not in the other three (NWMV. The head of each household in all villages was interviewed using a questionnaire covering various public health aspects relevant to the villages. A total of 286/313 (92% households participated in the study. Compared to NWMV, respondents in IWMV experienced significantly lesser prolonged water scarcity (OR = 0.39, had greater number of toilets (OR = 6.95, cultivated more variety of crops (OR = 2.61, had lower migration (OR = 0.59, higher number of girls continuing education (OR = 3.04 and better utilized modern healthcare facilities in the antenatal, natal and postnatal period (OR = 3.75, 2.57, 4.88 respectively. Thus, tribal people in IWMP-implemented villages reported advantages in many aspects of public health.

  12. Can integrated watershed management contribute to improvement of public health? A cross-sectional study from hilly tribal villages in India.

    Nerkar, Sandeep S; Pathak, Ashish; Lundborg, Cecilia Stålsby; Tamhankar, Ashok J

    2015-03-01

    Tribal people living in hilly areas suffer from water scarcity in many parts of the world, including India. Water scarcity adversely impacts all aspects of life, including public health. Implementation of an Integrated Watershed Management Programme (IWMP) can help solve the problems arising out of water scarcity in such areas. However, the knowledge about and views of the water scarcity sufferers on the public health implications of IWMP have not been well documented. This cross-sectional study was performed in six purposively selected tribal villages located in Maharashtra, India. In three of the villages IWMP had been implemented (IWMV), but not in the other three (NWMV). The head of each household in all villages was interviewed using a questionnaire covering various public health aspects relevant to the villages. A total of 286/313 (92%) households participated in the study. Compared to NWMV, respondents in IWMV experienced significantly lesser prolonged water scarcity (OR=0.39), had greater number of toilets (OR=6.95), cultivated more variety of crops (OR=2.61), had lower migration (OR=0.59), higher number of girls continuing education (OR=3.04) and better utilized modern healthcare facilities in the antenatal, natal and postnatal period (OR=3.75, 2.57, 4.88 respectively). Thus, tribal people in IWMP-implemented villages reported advantages in many aspects of public health. PMID:25734794

  13. URBAN WATERSHED STUDIES IN SOUTHERN BRAZIL

    Cristiano Poleto

    2007-12-01

    Full Text Available One of the greatest problems observed in Brazilian urban watersheds are concerned to the amount of solid residues, domestic sewerage and sediments that are disposed in the rivers and streams that drain those areas. This project aims to present these problems through a study of case taken in an urban watershed in Porto Alegre city, Southern Brazil. For this study, different procedures were used, such as field surveys, interviews with the inhabitants, satellite images, sediment samples, flow measures and morphology assessment of part of the local fluvial system to check the degree of instability of the channel. In 2005, it was verified that 42.57% of the watershed was impermeable, considering the paved streets, the residential and commercial buildings and stone pavements. As there was no sewer treatment, most of this sewerage was directly disposed into the stream and the TOC has reached 20% (m/m. Moreover, the occupation of riparian areas, a great amount of soil exposed in the watershed, the nonpaved streets and a great volume of solid residues were causing the instability in the channel, silting the stream bed. The metals (Zn, Pb and Cr selected for this study are most frequently found in high concentrations in urban areas. The results suggest the occurrence of a high enrichment of the fluvial sediment by these metals. The concentrations of these elements vary temporally during storms due to the input of impervious area runoff containing high concentration of elements associated to vehicular traffic and other anthropogenic activities. Then, it is possible to conclude that the contamination of the urban watershed is reflected in the results obtained in the fluvial suspended sediments.

  14. 76 FR 68499 - Draft WaterSMART Cooperative Watershed Management Program Funding Opportunity Announcement

    2011-11-04

    ... Office of the Secretary Draft WaterSMART Cooperative Watershed Management Program Funding Opportunity... Cooperative Watershed Management Program whose goals are to improve water quality and ecological resilience and to reduce conflicts over water by managing local watersheds through collaborative conservation....

  15. Vertical Collective Action: Addressing Vertical Asymmetries in Watershed Management

    Cárdenas, Juan-Camilo; Rodriguez, Luz Angela; Johnson, Nancy

    2015-01-01

    Watersheds and irrigation systems have the characteristic of connecting people vertically by water flows. The location of users along these systems defines their role in the provision and appropriation of water which adds complexity to the potential for cooperation. Verticality thus imposes a challenge to collective action. This paper presents the results of field experiments conducted in four watersheds of Colombia (South America) and Kenya (East Africa) to study the role that location plays...

  16. Economic Tools for Managing Nitrogen in Coastal Watersheds

    Watershed managers are interested in using economics to communicate the value of estuarine resources to the wider community, determine the most cost-effective means to reduce nitrogen pollution, and evaluate the benefits of taking action to improve coastal ecosystems. We spoke to...

  17. Community participation and implementation of water management instruments in watersheds

    Mario Alejandro Perez Rincon; Mariza Guimarães Prota; Tadeu Fabricio Malheiros

    2013-01-01

    The current model of water resources management in Brazil is decentralized, participative and integrated, and adopted the river basin as a planning unit. It is based on the performance of watershed committees; each committee has its own composition and rules of procedure, governed by its statute. The basic principles of this management have been established by the Brazilian Constitution of 1988 and detailed by the National Water Resources Policy in 1997. At the State level, São Paulo enacted ...

  18. Economics of Integrated Watershed Management in the Presence of a Dam

    Yoon Lee; Taeyeon Yoon; Farhed Shah

    2009-01-01

    A dynamic optimization framework is used to analyze integrated watershed management and suggest appropriate policies. Soil conservation, reservoir level sediment release, downstream water allocation and water quality are subject to control. Application of the model to the Aswan Dam watershed illustrates the need for international cooperation to manage shared watersheds.

  19. Watershed-based natural research management: Lessons from projects in the Andean region

    Sowell, A.R.

    2009-01-01

    This Undergraduate Honors Thesis focuses on how different factors affect the success of a watershed management project and lessons learned from projects in the Andean Region. LTRA-3 (Watershed-based NRM for Small-scale Agriculture)

  20. Manage Hydrologic Fluxes Instead of Land Cover in Watershed Services Projects

    Brauman, K. A.; Ponette-González, A. G.; Marin-Spiotta, E.; Farley, K. A.; Weathers, K. C.; Young, K. R.; Curran, L. M.

    2014-12-01

    Payments for Watershed Services (PWS), Water Funds, and other payment schemes intended to increase the delivery of hydrologic ecosystem services have great potential for ensuring water resources for downstream beneficiaries while improving livelihoods for upstream residents. However, it is often ambiguous which land-management options should be promoted to enhance watershed service delivery. In many watershed investment programs, specific land covers are promoted as proxies for water service delivery. This approach is based on assumed relationships between land cover and water service outcomes. When land cover does not sufficiently describe ecosystem characteristics that affect water flow, however, desired water services may not be delivered. The use of land cover proxies is especially problematic for watershed investments in the tropics, where many projects are located, because these proxies rely on generalizations about landscape hydrology established for temperate zones. Based on an extensive review of hydrologic fluxes in the high-elevation tropics, we argue that direct management of hydrologic fluxes is a good design for achieving quantifiable results. We use case studies from sites in the Caribbean and Latin American tropics to illustrate how designers of watershed payment projects can manage hydrologic fluxes. To do so, projects must explicitly articulate the water service of interest based on the specific social setting. Projects must also explicitly account for the particulars of the geographic setting. Finally, outcomes must be assessed relative to water services delivered under an alternative land use or land cover scenario.

  1. Summary of Determinants and impact of sustainable land and watershed management investments:

    Schmidt, Emily; Chinowsky, Paul; Robinson, Sherman; Strzepek, Kenneth M.

    2014-01-01

    Ongoing debate over water resource management and land degradation suggests a need for efficient sustainable land management mechanisms to improve agricultural output in the Blue Nile basin in Ethiopia. Numerous econometric and hydrological models have been developed to assess the effects of sustainable land and watershed management (SLWM) investments. However, these models fail to address the trade-offs faced by rural farmers in maintaining such structures. This study combines household surv...

  2. Linking Farmer, Forest and Watershed: Agricultural Systems and Natural Resources Management Along the Upper Njoro River, Kenya

    Krupnik, Timothy J.; Jenkins, Marion W.

    2006-01-01

    This paper describes subsistence farmers’ agricultural and natural resource management techniques and perceptions in the upper catchment of the River Njoro, Kenya and explores their implications for further research and action by watershed managers and policy makers. In East Africa and elsewhere in developing countries, small-scale poor farming households often form a critical group in the link between upland natural resource conditions and watershed services. A small-scale pilot study of a...

  3. Nitrogen management challenges in major watersheds of South America

    Bustamante, Mercedes M. C.; Martinelli, Luiz Antonio; Pérez, Tibisay; Rasse, Rafael; Ometto, Jean Pierre H. B.; Siqueira Pacheco, Felipe; Rafaela Machado Lins, Silvia; Marquina, Sorena

    2015-06-01

    Urbanization and land use changes alter the nitrogen (N) cycle, with critical consequences for continental freshwater resources, coastal zones, and human health. Sewage and poor watershed management lead to impoverishment of inland water resources and degradation of coastal zones. Here we review the N contents of rivers of the three most important watersheds in South America: the Amazon, La Plata, and Orinoco basins. To evaluate potential impacts on coastal zones, we also present data on small- and medium-sized Venezuelan watersheds that drain into the Caribbean Sea and are impacted by anthropogenic activities. Median concentrations of total dissolved nitrogen (TDN) were 325 μg L-1 and 275 μg L-1 in the Amazon and Orinoco basins, respectively, increasing to nearly 850 μg L-1 in La Plata Basin rivers and 2000 μg L-1 in small northern Venezuelan watersheds. The median TDN yield of Amazon Basin rivers (approximately 4 kg ha-1 yr-1) was larger than TDN yields of undisturbed rivers of the La Plata and Orinoco basins; however, TDN yields of polluted rivers were much higher than those of the Amazon and Orinoco rivers. Organic matter loads from natural and anthropogenic sources in rivers of South America strongly influence the N dynamics of this region.

  4. Nitrogen management challenges in major watersheds of South America

    Urbanization and land use changes alter the nitrogen (N) cycle, with critical consequences for continental freshwater resources, coastal zones, and human health. Sewage and poor watershed management lead to impoverishment of inland water resources and degradation of coastal zones. Here we review the N contents of rivers of the three most important watersheds in South America: the Amazon, La Plata, and Orinoco basins. To evaluate potential impacts on coastal zones, we also present data on small- and medium-sized Venezuelan watersheds that drain into the Caribbean Sea and are impacted by anthropogenic activities. Median concentrations of total dissolved nitrogen (TDN) were 325 μg L−1 and 275 μg L−1 in the Amazon and Orinoco basins, respectively, increasing to nearly 850 μg L−1 in La Plata Basin rivers and 2000 μg L−1 in small northern Venezuelan watersheds. The median TDN yield of Amazon Basin rivers (approximately 4 kg ha−1 yr−1) was larger than TDN yields of undisturbed rivers of the La Plata and Orinoco basins; however, TDN yields of polluted rivers were much higher than those of the Amazon and Orinoco rivers. Organic matter loads from natural and anthropogenic sources in rivers of South America strongly influence the N dynamics of this region. (letter)

  5. Water Quality Management in Utah Mountain Watersheds

    Kimball, Keith R.; Middlebrooks, E. Joe

    1986-01-01

    What Quality Management in Utah Mountain Streams: Several years of thorough monitoring of water quality parameters in Little Cottonwood Creek in Salt Lake County, Utah, measured the natural levels of the major water constituents, spotted significant (largely nonpoint) pollution sources, identified the pollutants deserving primary attention, and suggested the approaches to land and water management for pollution co...

  6. Application of the ReNuMa model in the Sha He river watershed: tools for watershed environmental management.

    Sha, Jian; Liu, Min; Wang, Dong; Swaney, Dennis P; Wang, Yuqiu

    2013-07-30

    Models and related analytical methods are critical tools for use in modern watershed management. A modeling approach for quantifying the source apportionment of dissolved nitrogen (DN) and associated tools for examining the sensitivity and uncertainty of the model estimates were assessed for the Sha He River (SHR) watershed in China. The Regional Nutrient Management model (ReNuMa) was used to infer the primary sources of DN in the SHR watershed. This model is based on the Generalized Watershed Loading Functions (GWLF) and the Net Anthropogenic Nutrient Input (NANI) framework, modified to improve the characterization of subsurface hydrology and septic system loads. Hydrochemical processes of the SHR watershed, including streamflow, DN load fluxes, and corresponding DN concentration responses, were simulated following calibrations against observations of streamflow and DN fluxes. Uncertainty analyses were conducted with a Monte Carlo analysis to vary model parameters for assessing the associated variations in model outputs. The model performed accurately at the watershed scale and provided estimates of monthly streamflows and nutrient loads as well as DN source apportionments. The simulations identified the dominant contribution of agricultural land use and significant monthly variations. These results provide valuable support for science-based watershed management decisions and indicate the utility of ReNuMa for such applications. PMID:23603774

  7. Fuzzy Multicriteria Decision Analysis for Adaptive Watershed Management

    Chang, N.

    2006-12-01

    The dramatic changes of societal complexity due to intensive interactions among agricultural, industrial, and municipal sectors have resulted in acute issues of water resources redistribution and water quality management in many river basins. Given the fact that integrated watershed management is more a political and societal than a technical challenge, there is a need for developing a compelling method leading to justify a water-based land use program in some critical regions. Adaptive watershed management is viewed as an indispensable tool nowadays for providing step-wise constructive decision support that is concerned with all related aspects of the water consumption cycle and those facilities affecting water quality and quantity temporally and spatially. Yet the greatest challenge that decision makers face today is to consider how to leverage ambiguity, paradox, and uncertainty to their competitive advantage of management policy quantitatively. This paper explores a fuzzy multicriteria evaluation method for water resources redistribution and subsequent water quality management with respect to a multipurpose channel-reservoir system--the Tseng- Wen River Basin, South Taiwan. Four fuzzy operators tailored for this fuzzy multicriteria decision analysis depict greater flexibility in representing the complexity of various possible trade-offs among management alternatives constrained by physical, economic, and technical factors essential for adaptive watershed management. The management strategies derived may enable decision makers to integrate a vast number of internal weirs, water intakes, reservoirs, drainage ditches, transfer pipelines, and wastewater treatment facilities within the basin and bring up the permitting issue for transboundary diversion from a neighboring river basin. Experience gained indicates that the use of different types of fuzzy operators is highly instructive, which also provide unique guidance collectively for achieving the overarching goals

  8. DECENTRALIZED STORMWATER MANAGEMENT: RETROFITTING HOMES, RESTORING WATERSHEDS

    Stormwater runoff from impervious surfaces in urban and suburban areas has led to human safety risks and widespread stream ecosystem impairment. While centralized stormwater management can minimize large fluctuations in stream flows and flooding risk to urban areas, this approac...

  9. Floristic study of Zangelanlo watershed (Khorassan, Iran)

    Mohammad Sadegh Amiri; Parham Jabbarzadeh

    2011-01-01

    Zangelanlo watershed is located in Northeast of Iran, 28 km of Southeast of Daregaz between 37º13´ to 37º27´ north latitude and 59º8´ to 59º35´ east longitude. The surface area of the region is approximately 2482 ha. This area is mountainous with mean annual precipitation of about 412.7 mm. The mean maximum temperature is 20.8ºC in August and minimum temperature is -9ºC in January. The flora of the area was studied and life forms and chorotypes of the plants were identified. In this research,...

  10. Development of a Prototype Web-Based Decision Support System for Watershed Management

    Dejian Zhang

    2015-02-01

    Full Text Available Using distributed hydrological models to evaluate the effectiveness of reducing non-point source pollution by applying best management practices (BMPs is an important support to decision making for watershed management. However, complex interfaces and time-consuming simulations of the models have largely hindered the applications of these models. We designed and developed a prototype web-based decision support system for watershed management (DSS-WMRJ, which is user friendly and supports quasi-real-time decision making. DSS-WMRJ is based on integrating an open-source Web-based Geographical Information Systems (Web GIS tool (Geoserver, a modeling component (SWAT, Soil and Water Assessment Tool, a cloud computing platform (Hadoop and other open source components and libraries. In addition, a private cloud is used in an innovative manner to parallelize model simulations, which are time consuming and computationally costly. Then, the prototype DSS-WMRJ was tested with a case study. Successful implementation and testing of the prototype DSS-WMRJ lay a good foundation to develop DSS-WMRJ into a fully-fledged tool for watershed management. DSS-WMRJ can be easily customized for use in other watersheds and is valuable for constructing other environmental decision support systems, because of its performance, flexibility, scalability and economy.

  11. Participatory integrated watershed management in the north-western highlands of Rwanda

    Kagabo, M.D.

    2013-01-01

    This thesis is the result of assessments on the extent of existing resource use and management practices using a Participatory Integrated Watershed Management (PIWM) as a viable approach to promote best soil water conservation (SWC) measures towards more sustainable land use. The study was conducted in two contrasting agro-ecological zones of the north-western highlands of Rwanda, namely; Gataraga and Rwerere in the framework of “Agasozi ndatwa”  referred to as PIWM. "Ag...

  12. Research article: Watershed management councils and scientific models: Using diffusion literature to explain adoption

    King, M.D.; Burkardt, N.; Clark, B.T.

    2006-01-01

    Recent literature on the diffusion of innovations concentrates either specifically on public adoption of policy, where social or environmental conditions are the dependent variables for adoption, or on private adoption of an innovation, where emphasis is placed on the characteristics of the innovation itself. This article uses both the policy diffusion literature and the diffusion of innovation literature to assess watershed management councils' decisions to adopt, or not adopt, scientific models. Watershed management councils are a relevant case study because they possess both public and private attributes. We report on a survey of councils in the United States that was conducted to determine the criteria used when selecting scientific models for studying watershed conditions. We found that specific variables from each body of literature play a role in explaining the choice to adopt scientific models by these quasi-public organizations. The diffusion of innovation literature contributes to an understanding of how organizations select models by confirming the importance of a model's ability to provide better data. Variables from the policy diffusion literature showed that watershed management councils that employ consultants are more likely to use scientific models. We found a gap between those who create scientific models and those who use these models. We recommend shrinking this gap through more communication between these actors and advancing the need for developers to provide more technical assistance.

  13. Soil Erodibility for Water Pollution Management of Melaka Watershed in Peninsular Malaysia

    Md. Ibrahim Adham

    2015-07-01

    Full Text Available The relationships between surface runoffand soil erodibility are significant in water pollution and watershed management practices. Land use pattern, soil series and slope percentage are also major factors to develop the relationships. Daily rainfall data were collected and analyzed for variations in precipitation for calculating the surface runoff of these watersheds and surface runoff map was produced by GIS tools. Tew equation was utilized to predict soil erodibility of watershed soils.Results indicated that the weighted curve number varies from 82 to 85 and monthly runoff 23% to 30% among the five watersheds. Soil erodibility varies from 0.038 to 0.06 ton/ha (MJ.mm/ha/h. Linau-Telok-Local Alluvium, Malacca-Munchong, Munchong-Malacca-Serdang and Malacca-Munchong-Tavy are the dominant soil series of this region having the average soil erodibility of about 0.042 ton/ha (MJ.mm/ha/h. The main focus of this study is to provide the information of soil erodibility to reduce the water pollution of a watershed.

  14. Climate change and drought risk management in Mediterranean watersheds (Invited)

    Pulwarty, R. S.; Maia, R.; Garrido, A.; Hoerling, M. P.

    2013-12-01

    As a result of major droughts and floods over the past two decades, the European Union has expressed major concerns regarding climate change impacts on the resilience of ecosystems and water resources. The EU Water Framework Directive established a framework for action in the field of water olicy committing European Union member states to achieve develop integrated watershed management plans and improve the quality of water bodies by 2015. Key to meeting these goals are understanding and planning for changes in extreme events, groundwater and surface water changes, and the level of integrated water resources management infrastructure. In the northern European basins, water shortages are mostly offset by irrigation systems. This is not the case for southern basins in the Mediterranean (e.g. Guadiana, Ebro, Po), where water supply systems are already stressed, and where socioeconomic losses due to droughts are more significant. Precipitation variability in the Mediterranean basin is characterized by substantial interdecadal variations and long-term trends. This paper presents an assessment of climate and the socioeconomic impacts of drought in the Mediterranean basin including the factors that determine the vulnerability of different sectors to the risks posed by climate change. The studies are based on two projects in which the authors are involved: the European Commission funded PREEMPT project 'Policy-relevant assessment of the socio-economic effects of droughts and floods' and 'Development of methodologies for integration of climate change on water resources managements for the Guadiana Basin', that analyze drought events, economic losses, risk management efforts and the prospect for adaptation. Studies show that the land area surrounding the Mediterranean Sea has experienced 10 of the 12 driest winters since 1902 in just the last 20 years. A change in wintertime Mediterranean precipitation toward drier conditions has likely occurred over 1902-2010. Anthropogenic

  15. EFFECTS OF WATERSHED MANAGEMENT ON THE REDUCTION OF SEDIMENT AND RUNOFF IN THE JIALING RIVER,CHINA

    Shixiong HU; Zhaoyin WANG; Gang WANG; Xiaoying LIU

    2004-01-01

    The Three Gorges Project is one of the largest hydro-projects in the world and has drawn many debates inside China and abroad.The major concern is that sediment load from the river basin may eventually fail the functions of the project for flood control and power generation.To reduce sedimentation in the reservoir,watershed management has been adopted.However,there is limited information regarding the effectiveness of various control measures such as terracing and afforestation on a watershed scale.The Jialing River,a main tributary of the Yangtze River,contributes approximately 25% of the total sediment load in the main river but only represents 8% of the whole basin area.There have been various land use patterns and extensive human activities for thousands of years in the Jialing River watershed.Based on analysis of the major factors affecting erosion in the Jialing River watershed,the main watershed management strategies (afforestation,farming and engineering practice) are illustrated,and their effects on the reduction of sediment and runoff are studied in detail.The sediment budget of the watershed shows that 1/3 of the sediment yield is trapped by the erosion control measures (afforestation and farming) on the slope,1/3 is trapped by the reservoirs,ponds and dams within the watershed,and only about 1/3 is transported into the Yangtze River,which will affect the Three Gorges Project.

  16. Urban Stormwater Temperature Surges: A Central US Watershed Study

    Sean J. Zeiger

    2015-10-01

    Full Text Available Impacts of urban land use can include increased stormwater runoff temperature (Tw leading to receiving water quality impairment. There is therefore a need to target and mitigate sources of thermal pollution in urban areas. However, complex relationships between urban development, stormwater runoff and stream water heating processes are poorly understood. A nested-scale experimental watershed study design was used to investigate stormwater runoff temperature impacts to receiving waters in a representative mixed-use urbanizing watershed of the central US. Daily maximum Tw exceeded 35.0 °C (threshold for potential mortality of warm-water biota at an urban monitoring site for a total of five days during the study period (2011–2013. Sudden increases of more than 1.0 °C within a 15 min time interval of Tw following summer thunderstorms were significantly correlated (CI = 95%; p < 0.01 to cumulative percent urban land use (r2 = 0.98; n = 29. Differences in mean Tw between monitoring sites were significantly correlated (CI = 95%; p = 0.02 to urban land use practices, stream distance and increasing discharge. The effects of the 2012 Midwest USA drought and land use on Tw were also observed with maximum Tw 4.0 °C higher at an urban monitoring site relative to a rural site for 10.5 h. The current work provides quantitative evidence of acute increases in Tw related to urban land use. Results better inform land managers wishing to create management strategies designed to preserve suitable thermal stream habitats in urbanizing watersheds.

  17. Watershed Conservation and Groundwater Management: An Integrated Perspective

    Kaiser, B. A.

    2005-05-01

    US natural resource policy has explicitly acknowledged the hydrological connection between forest resources and water resources from the inception of the USDA Forest Service for the dual purpose of timber and watershed management,, but it is often overlooked in short run policy decisions. In Hawaii, these closely interconnected resources led to the establishment of the Ko`olau Mountains Conservation District in the early 1900s in order to improve water supplies. This early action on the part of the state has enabled today a healthy watershed. The health of the watershed, however, is now under threat from incremental ecosystem change, particularly in the form of invasive species (e.g. pigs (Sus scrofa) and weedy shrubs (Miconia calvescens)) that change the hydrological properties of the watershed to increase runoff and reduce aquifer recharge. Economic costs of reduced recharge in the face of rising water demand from a growing population are potentially large, with preliminary estimates suggesting the losses from reduced groundwater recharge in the Pearl Harbor aquifer have a present value of 1.4 to 2.6 billion dollars (Kaiser and Roumasset, 2002). To refine and improve these preliminary estimates we use spatial analysis of the water balance in the Ko`olaus to relate land use and land cover to recharge and we simultaneously explore the risk of degradation of the forest quality for recharge purposes through a survey of watershed experts. Using this information together with a dynamic model of water pricing as a function of aquifer recharge and use, we examine how much of an economic return (in present value) forest conservation expenditures may produce in the form of protecting aquifer recharge. In conjunction, we begin to examine additional integrated benefits of reducing runoff to near-shore resources by relating upland conservation to reef quality using monitoring data from the Hawaii Coral Reef Assessment and Monitoring Program. Kaiser and Roumasset (2002

  18. Impacts of forest changes on hydrology: a case study of large watersheds in the upper reaches of Minjiang River watershed in China

    X. Cui

    2012-11-01

    evapotranspiration (ET, with the lowest in old-growth natural coniferous forests (Abies faxoniana Rehd. et Wils. and the highest in coniferous plantations (e.g. Picea asperata Mast. among major forest types in the study watershed. This suggests that selection of different types of forests can have an important role in ET and consequently water yield. Our synthesis indicates that future reforestation and climate change would likely produce the hydrological effects in the same direction and thus place double the pressure on water resource as both key drivers may lead to water yield reduction. The findings can support designing management strategies for protection of watershed ecological functions in the context of future land cover and climate changes.

  19. Impacts of forest changes on hydrology: a case study of large watersheds in the upper reaches of Minjiang River watershed in China

    Cui, X.; Liu, S.; Wei, X.

    2012-11-01

    the lowest in old-growth natural coniferous forests (Abies faxoniana Rehd. et Wils.) and the highest in coniferous plantations (e.g. Picea asperata Mast.) among major forest types in the study watershed. This suggests that selection of different types of forests can have an important role in ET and consequently water yield. Our synthesis indicates that future reforestation and climate change would likely produce the hydrological effects in the same direction and thus place double the pressure on water resource as both key drivers may lead to water yield reduction. The findings can support designing management strategies for protection of watershed ecological functions in the context of future land cover and climate changes.

  20. An Adirondack Watershed Data Base: Attribute and mapping information for regional acidic deposition studies

    Rosen, A.E.; Olson, R.J.; Gruendling, G.K.; Bogucki, D.J.; Malanchuk, J.L.; Durfee, R.C.; Turner, R.S.; Adams, K.B.; Wilson, D.L.; Coleman, P.R.

    1988-12-01

    The Adirondack Watershed Data Base (AWDB) provides a means to test hypotheses concerning the relative importance of various watershed attributes that may contribute to increased acidification of Adirondack surface waters. The AWDB is a valuable resource for the study of other ecological phenomena. The AWDB consists of digital watershed boundaries and digital geographic data, stored within a geographic information system, and watershed/lake attribute data stored in a data management system (SAS) for 463 Adirondack headwater lakes. Attributes include watershed morphology, physiography, bedrock, soils, land cover, wetlands, disturbances (e.g., cabins, fire, and logging), beaver activity, precipitation, and atmospheric deposition. Over 600 variables are available for each watershed. These data can be combined with water chemistry data and fish community status for regional-scale examinations of watershed attributes that may account for variability and change in water chemistry and fish populations in the Adirondacks. This report describes the design of the AWDB, documents sources and history of the data; defines the format of the AWDB contents; and characterizes the data using summary statistics, frequency bar charts, and other graphics. In addition, it provides information necessary for researchers using the data base on their own computer systems. 37 refs., 42 figs., 4 tabs.

  1. Automatic delineation of a watershed using a DEM. Case study – The Oltet watershed

    Andreea ZAMFIR

    2011-03-01

    Full Text Available This paper aims to present some solutions for automatic delineation of a watershed. In order to find this study’s applicability in the geographical reality, we decided that the river whose watershed will be delineated to be Oltet river. Automatic delineation of the Olteţ watershed was carried out comparatively, using two softwares, ArcGIS Desktop 9.3 andQuantum GIS 1.7.0 Wroclaw, and it based on a SRTM digital elevation model of 90 m. After using GIS techniques, there have resulted two maps showing the boundary of theOlteţ watershed. By overlapping the resulted maps, obtained with ArcGIS and QGIS, we found some small differences generated by the different way of working of each softwareinvolved in this study. We have also calculated a circularity coefficient for the Oltet watershed and the value obtained supports its elongated form and all the implication of it.

  2. Best Management Practices for sediment control in a Mediterranean agricultural watershed

    Abdelwahab, Ossama M. M.; Bingner, Ronald L.; Milillo, Fabio; Gentile, Francesco

    2015-04-01

    Soil erosion can lead to severe destruction of agricultural sustainability that affects not only productivity, but the entire ecosystem in the neighboring areas. Sediments transported together with the associated nutrients and chemicals can significantly impact downstream water bodies. Various conservation and management practices implemented individually or integrated together as a system can be used to reduce the negative impacts on agricultural watersheds from soil erosion. Hydrological models are useful tools for decision makers when selecting the most effective combination of management practices to reduce pollutant loads within a watershed system. The Annualized Agricultural Non-point Source (AnnAGNPS) pollutant loading management model can be used to analyze the effectiveness of diverse management and conservation practices that can control or reduce the impact of soil erosion processes and subsequent sediment loads in agricultural watersheds. A 506 km2 Mediterranean medium-size watershed (Carapelle) located in Apulia, Southern Italy was used as a case study to evaluate the model and best management practices (BMPs) for sediment load control. A monitoring station located at the Ordona bridge has been instrumented to continuously monitor stream flow and suspended sediment loads. The station has been equipped with an ultrasound stage meter and a stage recorder to monitor stream flow. An infrared optic probe was used to measure suspended sediment concentrations (Gentile et al., 2010 ). The model was calibrated and validated in the Carapelle watershed on an event basis (Bisantino et al., 2013), and the validated model was used to evaluate the effectiveness of BMPs on sediment reduction. Various management practices were investigated including evaluating the impact on sediment load of: (1) converting all cropland areas into forest and grass covered conditions; (2) converting the highest eroding cropland areas to forest or grass covered conditions; and (3

  3. Quito's Urban Watersheds: Applications of Low Impact Development and Sustainable Watershed Management

    Marzion, R.; Serra-Llobet, A.; Ward Simons, C.; Kondolf, G. M.

    2013-12-01

    facilitate the evaluation of LID potential in Quito, we conducted field observations and measurements, completed archival research, analyzed available geographic and hydrologic data, and developed plans and designs for the Quebrada Ortega from its steep headwater reaches down through the densely-populated valley floor. We identified opportunities and constraints for LID, along with strategies from international LID precedent cities that can be applied in the context of Quito's unique physical and climatic characteristics, urban planning practices, and institutional structures. Using remote sensing techniques to determine permeable versus impermeable surface areas, we calculated that basins of at least 1% of the Ortega subwatershed's surface area would be needed to mitigate peak flows from most design storm scenarios. Rainwater harvesting can provide approximately 30% of average daily water needs based on current Quito consumption rates for the subwatershed's residents. By implementing LID strategies while also addressing other water management priorities, Quito provides a unique case study of a city that could bypass prohibitively expensive models used in industrialized countries (e.g., end-of-pipe treatments), and serve as a model for other Latin American cities seeking to resolve similar water management problems.

  4. Public participation in watershed management: International practices for inclusiveness

    Perkins, Patricia E. (Ellie)

    This paper outlines a number of examples from around the world of participatory processes for watershed decision-making, and discusses how they work, why they are important, their social and ecological potential, and the practical details of how to start, expand and develop them. Because of long-standing power differentials in all societies along gender, class and ethnic lines, equitable public participation requires the recognition that different members of society have different kinds of relationships with the environment in general, and with water in particular. From a range of political perspectives, inclusive participatory governance processes have many benefits. The author has recently completed a 5 year project linking universities and NGOs in Brazil and Canada to develop methods of broadening public engagement in local watershed management committees, with a special focus on gender and marginalized communities. The innovative environmental education and multi-lingual international public engagement practices of the Centre for Socio-Environmental Knowledge and Care of the La Plata Basin (which spans Brazil, Argentina, Uruguay, Paraguay and Bolivia) are also discussed in this paper.

  5. Novel GIS approaches to watershed science and management: Description, prediction, and integration

    Spatial data and geographic information systems (GIS) are playing an increasingly important role in watershed science and management, particularly in the face of increasing climate uncertainty and demand for water resources. Concomitantly, scientists and managers are presented wi...

  6. Analyzing the impacts of forest disturbance and regrowth on watershed hydrology: A case study from the Homochitto Watershed, Mississippi

    Yeo, I.; Islam, A.; Huang, C.

    2009-12-01

    Forests are efficient sinks and reservoirs of terrestrial carbons. They can relieve or amplify the adverse impacts of global warming and climate variability and hence, managing forests has been the most important sustainable strategy to mitigate climatic impacts. However, forest management often involves a large scale landscape transformation of land use and cover, and brings significant changes on water resources to the local community. This study is to evaluate the impacts of forest management and disturbance on water quality and quanity in the Homochitto watershed (Mississippi), where forest management and disturbance have occurred on a large scale over long time scales. Using a watershed simulation model (Soil and Water Assessment Tool) and a long term water monitoring data from USGS and US EPA, we will investigate how the spatial heterogeneity of land use, vegetation cover, topography, and climate affect water cycles (e.g., soil water content, water yields), and water quality (e.g., nutrients and sediments) at multiple spatial and temporal scales. Historic chronologies of forest disturbance maps will be generated with a number of satellite-based measurements (such as Landsat, MODIS, and aerial photographs), Geospatial datasets (including MS Gap Analysis Project (GAP), National Land Cover Database (NLCD)), field measurements from the US Forest Service Forest Inventory Analysis (FIA) database, and historic records on forest land management in the region, characterizing the human induced changes in the forest landscape. This study will provide valuable information to better understand the hydrologic feedbacks to changing forests and climate system.

  7. Impacts of forest changes on hydrology: a case study of large watersheds in the upper reaches of Minjiang River watershed in China

    Cui, X; Liu, S; Wei, X.

    2012-01-01

    Quantifying the effects of forest changes on hydrology in large watersheds is important for designing forest or land management and adaptation strategies for watershed ecosystem sustainability. Minjiang River watershed, located in the upper reach of the Yangtze River basin, plays a strategic role in the environmental protection and economic and social well-being for both the watershed and the entire Yangtze River basin. The watershed lies in the transition zone from Sichuan ...

  8. Impacts of forest changes on hydrology: a case study of large watersheds in the upper reaches of Minjiang River watershed in China

    Cui, X; Liu, S; Wei, X.

    2012-01-01

    Quantifying the effects of forest changes on hydrology in large watersheds is important for designing forest or land management and adaptation strategies for watershed ecosystem sustainability. Minjiang River watershed, located in the upper reach of the Yangtze River basin, plays a strategic role in the environmental protection and economic and social well-being for both the watershed and the entire Yangtze River basin. The watershed lies in the transition zone from Sichuan Basin to Qinghai-T...

  9. Soil Erodibility for Water Pollution Management of Melaka Watershed in Peninsular Malaysia

    Md. Ibrahim Adham; Sharif Moniruzzaman Shirazi; Faridah Othman; Noorul Hassan Zardari; Zulkifli Yusop; Zubaidah Ismail

    2015-01-01

    The relationships between surface runoffand soil erodibility are significant in water pollution and watershed management practices. Land use pattern, soil series and slope percentage are also major factors to develop the relationships. Daily rainfall data were collected and analyzed for variations in precipitation for calculating the surface runoff of these watersheds and surface runoff map was produced by GIS tools. Tew equation was utilized to predict soil erodibility of watershed soils.Res...

  10. Small Watershed Rehabilitation and Management in a Changing Economic and Policy Environment

    Fock, Achim; Cao, Wendao

    2016-01-01

    China is considered one of the most seriously eroded countries in the world. The many causes of this degradation can be divided into natural, human-induced and root causes. The consequences of watershed degradation are severe and reach even beyond the country’s boundaries. Addressing this issue requires a sustainable participatory and integrated watershed management approach. The Loess Plateau Watershed Rehabilitation Projects, implemented by the Ministry of Water Resources and...

  11. An economic inquiry into collective action and household behaviour in watershed management

    Devarajulu, Suresh Kumar

    2008-01-01

    The present paper analysed the people’s participation, collective action and farm household behaviour in micro watersheds. Peoples participation in different stages of watershed implementation indicate that farm households show inclination towards participation in planning and project formulation, attending meetings, training and exposure visits when the programme is on-going. Households participation in watershed management is found to influence by household level, supra household level fact...

  12. Forest use strategies in watershed management and restoration: application to three small mountain watersheds in Latin America

    Juan Ángel Mintegui Aguirre

    2014-06-01

    Full Text Available The effect of forests on flow and flood lamination decreases as the magnitude and intensity of torrential events and the watershed surface increase, thus resulting negligible when extreme events affect large catchments. However the effect of forests is advantageous in case of major events, which occur more often, and is particularly effective in soil erosion control. As a result, forests have been extensively used for watershed management and restoration, since they regulate water and sediments cycles, preventing the degradation of catchments.

  13. From eutrophic to mesotrophic: modelling watershed management scenarios to change the trophic status of a reservoir.

    Mateus, Marcos; Almeida, Carina; Brito, David; Neves, Ramiro

    2014-03-01

    Management decisions related with water quality in lakes and reservoirs require a combined land-water processes study approach. This study reports on an integrated watershed-reservoir modeling methodology: the Soil and Water Assessment Tool (SWAT) model to estimate the nutrient input loads from the watershed, used afterwards as boundary conditions to the reservoir model, CE-QUAL-W2. The integrated modeling system was applied to the Torrão reservoir and drainage basin. The objective of the study was to quantify the total maximum input load that allows the reservoir to be classified as mesotrophic. Torrão reservoir is located in the Tâmega River, one of the most important tributaries of the Douro River in Portugal. The watershed is characterized by a variety of land uses and urban areas, accounting for a total Waste Water Treatment Plants (WWTP) discharge of ~100,000 p.e. According to the criteria defined by the National Water Institute (based on the WWTP Directive), the Torrão reservoir is classified as eutrophic. Model estimates show that a 10% reduction in nutrient loads will suffice to change the state to mesotrophic, and should target primarily WWTP effluents, but also act on diffuse sources. The method applied in this study should provide a basis for water environmental management decision-making. PMID:24625620

  14. Floristic study of Zangelanlo watershed (Khorassan, Iran

    Mohammad Sadegh Amiri

    2011-01-01

    Full Text Available Zangelanlo watershed is located in Northeast of Iran, 28 km of Southeast of Daregaz between 37º13´ to 37º27´ north latitude and 59º8´ to 59º35´ east longitude. The surface area of the region is approximately 2482 ha. This area is mountainous with mean annual precipitation of about 412.7 mm. The mean maximum temperature is 20.8ºC in August and minimum temperature is -9ºC in January. The flora of the area was studied and life forms and chorotypes of the plants were identified. In this research, 64 families, 238 genera and 286 species were identified among which 8 species were endemic to Iran. The largest plant family was Asteraceae with 40 genera and 51 species and the largest genus was Astragalus of Fabaceae with 7 species. Hemicryptophytes, therophytes and cryptophytes were the most frequent life forms 114 species (39.87%, 89 species (31.12% and 44 species (15.38%, respectively. High percentage of Hemicryptophytes indicated that the area had a cold mountain climate. Irano – Turanian plants were the most frequent chorotype of the area with 146 species (51.05%.

  15. HUMAN-WILDLIFE CONFLICT AND WILDLIFE WATERSHED MANAGEMENT

    Dheeraj Kumar Mishra, Rathore SS and Devendra Pandey*

    2014-07-01

    Full Text Available In India, man-animal conflict is seen across the country in a variety of forms, including monkey menace in the urban areas, crop raiding by ungulates and wild pigs, depredation by elephants and cattle & human killing by tigers and leopards. Damage to agricultural crops and property, killing of livestock and human beings are some of the worst forms of man-animal conflict. One of the main challenges in and around any reserve forest area is to avoid or at least to minimize the incidences of man-animal conflict. An attempt has been made to analyze one of the main reasons (acute shortage of water in forest areas behind such conflicts and suggest remedial measures to minimize this menace by adopting appropriate watershed management techniques.

  16. Watershed Dynamics, with focus on connectivity index and management of water related impacts on road infrastructure

    Kalantari, Z.

    2015-12-01

    In Sweden, spatially explicit approaches have been applied in various disciplines such as landslide modelling based on soil type data and flood risk modelling for large rivers. Regarding flood mapping, most previous studies have focused on complex hydrological modelling on a small scale whereas just a few studies have used a robust GIS-based approach integrating most physical catchment descriptor (PCD) aspects on a larger scale. This study was built on a conceptual framework for looking at SedInConnect model, topography, land use, soil data and other PCDs and climate change in an integrated way to pave the way for more integrated policy making. The aim of the present study was to develop methodology for predicting the spatial probability of flooding on a general large scale. This framework can provide a region with an effective tool to inform a broad range of watershed planning activities within a region. Regional planners, decision-makers, etc. can utilize this tool to identify the most vulnerable points in a watershed and along roads to plan for interventions and actions to alter impacts of high flows and other extreme weather events on roads construction. The application of the model over a large scale can give a realistic spatial characterization of sediment connectivity for the optimal management of debris flow to road structures. The ability of the model to capture flooding probability was determined for different watersheds in central Sweden. Using data from this initial investigation, a method to subtract spatial data for multiple catchments and to produce soft data for statistical analysis was developed. It allowed flood probability to be predicted from spatially sparse data without compromising the significant hydrological features on the landscape. This in turn allowed objective quantification of the probability of floods at the field scale for future model development and watershed management.

  17. Evaluation of alternative management practices with the AnnAGNPS model in the Carapelle Watershed

    The Annualized Agricultural Non-point Source (AnnAGNPS) model can be used to analyze the effectiveness of management and conservation practices that can control the impact of erosion and subsequent sediment loads in agricultural watersheds. A Mediterranean medium-size watershed (Carapelle) in Apulia...

  18. COST-EFFECTIVE ALLOCATION OF WATERSHED MANAGEMENT PRACTICES USING A GENETIC ALGORITHM

    Implementation of conservation programs are perceived as being crucial for restoring and protecting waters and watersheds from non-point source pollution. Success of these programs depends to a great extent on planning tools that can assist the watershed management process. Here-...

  19. Locating Farmer-based Knowledge and Vested Interests in Natural Resource Management in the Manupali Watershed, Philipines

    Price, L.L.

    2007-01-01

    This paper examines local soil knowledge and management in the Manupali watershed in the Philippines. The study focuses on soil erosion and its control. Research methods used in the study include ethnosemantic elicitations on soils and focus group discussions. In addition, in-depth work was conducte

  20. Beyond Impervious: Urban Land-Cover Pattern Variation and Implications for Watershed Management

    Beck, Scott M.; McHale, Melissa R.; Hess, George R.

    2016-07-01

    Impervious surfaces degrade urban water quality, but their over-coverage has not explained the persistent water quality variation observed among catchments with similar rates of imperviousness. Land-cover patterns likely explain much of this variation, although little is known about how they vary among watersheds. Our goal was to analyze a series of urban catchments within a range of impervious cover to evaluate how land-cover varies among them. We then highlight examples from the literature to explore the potential effects of land-cover pattern variability for urban watershed management. High-resolution (1 m2) land-cover data were used to quantify 23 land-cover pattern and stormwater infrastructure metrics within 32 catchments across the Triangle Region of North Carolina. These metrics were used to analyze variability in land-cover patterns among the study catchments. We used hierarchical clustering to organize the catchments into four groups, each with a distinct landscape pattern. Among these groups, the connectivity of combined land-cover patches accounted for 40 %, and the size and shape of lawns and buildings accounted for 20 %, of the overall variation in land-cover patterns among catchments. Storm water infrastructure metrics accounted for 8 % of the remaining variation. Our analysis demonstrates that land-cover patterns do vary among urban catchments, and that trees and grass (lawns) are divergent cover types in urban systems. The complex interactions among land-covers have several direct implications for the ongoing management of urban watersheds.

  1. Hydromentor: An integrated water resources monitoring and management system at modified semi-arid watersheds

    Vasiliades, Lampros; Sidiropoulos, Pantelis; Tzabiras, John; Kokkinos, Konstantinos; Spiliotopoulos, Marios; Papaioannou, George; Fafoutis, Chrysostomos; Michailidou, Kalliopi; Tziatzios, George; Loukas, Athanasios; Mylopoulos, Nikitas

    2015-04-01

    Natural and engineered water systems interact throughout watersheds and while there is clearly a link between watershed activities and the quantity and quality of water entering the engineered environment, these systems are considered distinct operational systems. As a result, the strategic approach to data management and modeling within the two systems is very different, leading to significant difficulties in integrating the two systems in order to make comprehensive watershed decisions. In this paper, we describe the "HYDROMENTOR" research project, a highly-structured data storage and exchange system that integrates multiple tools and models describing both natural and modified environments, to provide an integrated tool for management of water resources. Our underlying objective in presenting our conceptual design for this water information system is to develop an integrated and automated system that will achieve monitoring and management of the water quantity and quality at watershed level for both surface water (rivers and lakes) and ground water resources (aquifers). The uniqueness of the system is the integrated treatment of the water resources management issue in terms of water quantity and quality in current climate conditions and in future conditions of climatic change. On an operational level, the system provides automated warnings when the availability, use and pollution levels exceed allowable limits pre-set by the management authorities. Decision making with respect to the apportionment of water use by surface and ground water resources are aided through this system, while the relationship between the polluting activity of a source to total incoming pollution by sources are determined; this way, the best management practices for dealing with a crisis are proposed. The computational system allows the development and application of actions, interventions and policies (alternative management scenarios) so that the impacts of climate change in quantity

  2. Evaluating watershed service availability under future management and climate change scenarios in the Pangani Basin

    Notter, Benedikt; Hurni, Hans; Wiesmann, Urs; Ngana, James O.

    Watershed services are the benefits people obtain from the flow of water through a watershed. While demand for such services is increasing in most parts of the world, supply is getting more insecure due to human impacts on ecosystems such as climate or land use change. Population and water management authorities therefore require information on the potential availability of watershed services in the future and the trade-offs involved. In this study, the Soil and Water Assessment Tool (SWAT) is used to model watershed service availability for future management and climate change scenarios in the East African Pangani Basin. In order to quantify actual “benefits”, SWAT2005 was slightly modified, calibrated and configured at the required spatial and temporal resolution so that simulated water resources and processes could be characterized based on their valuation by stakeholders and their accessibility. The calibrated model was then used to evaluate three management and three climate scenarios. The results show that by the year 2025, not primarily the physical availability of water, but access to water resources and efficiency of use represent the greatest challenges. Water to cover basic human needs is available at least 95% of time but must be made accessible to the population through investments in distribution infrastructure. Concerning the trade-off between agricultural use and hydropower production, there is virtually no potential for an increase in hydropower even if it is given priority. Agriculture will necessarily expand spatially as a result of population growth, and can even benefit from higher irrigation water availability per area unit, given improved irrigation efficiency and enforced regulation to ensure equitable distribution of available water. The decline in services from natural terrestrial ecosystems (e.g. charcoal, food), due to the expansion of agriculture, increases the vulnerability of residents who depend on such services mostly in times

  3. Compromise-based Robust Prioritization of Climate Change Adaptation Strategies for Watershed Management

    Kim, Y.; Chung, E. S.

    2014-12-01

    This study suggests a robust prioritization framework for climate change adaptation strategies under multiple climate change scenarios with a case study of selecting sites for reusing treated wastewater (TWW) in a Korean urban watershed. The framework utilizes various multi-criteria decision making techniques, including the VIKOR method and the Shannon entropy-based weights. In this case study, the sustainability of TWW use is quantified with indicator-based approaches with the DPSIR framework, which considers both hydro-environmental and socio-economic aspects of the watershed management. Under the various climate change scenarios, the hydro-environmental responses to reusing TWW in potential alternative sub-watersheds are determined using the Hydrologic Simulation Program in Fortran (HSPF). The socio-economic indicators are obtained from the statistical databases. Sustainability scores for multiple scenarios are estimated individually and then integrated with the proposed approach. At last, the suggested framework allows us to prioritize adaptation strategies in a robust manner with varying levels of compromise between utility-based and regret-based strategies.

  4. Solid waste management practices in wet coffee processing industries of Gidabo watershed, Ethiopia.

    Ulsido, Mihret D; Li, Meng

    2016-07-01

    The financial and social contributions of coffee processing industries within most coffee export-based national economies like Ethiopia are generally high. The type and amount of waste produced and the waste management options adopted by these industries can have negative effects on the environment. This study investigated the solid waste management options adopted in wet coffee processing industries in the Gidabo watershed of Ethiopia. A field observation and assessment were made to identify whether the operational characteristics of the industries have any effect on the waste management options that were practiced. The investigation was conducted on 125 wet coffee processing industries about their solid waste handling techniques. Focus group discussion, structured questionnaires, key informant interview and transect walks are some of the tools employed during the investigation. Two major types of wastes, namely hull-bean-pulp blended solid waste and wastewater rich in dissolved and suspended solids were generated in the industries. Wet mills, on average, released 20.69% green coffee bean, 18.58% water and 60.74% pulp by weight. Even though these wastes are rich in organic matter and recyclables; the most favoured solid waste management options in the watershed were disposal (50.4%) and industrial or household composting (49.6%). Laxity and impulsive decision are the driving motives behind solid waste management in Gidabo watershed. Therefore, to reduce possible contamination of the environment, wastes generated during the processing of red coffee cherries, such as coffee wet mill solid wastes, should be handled properly and effectively through maximisation of their benefits with minimised losses. PMID:27091048

  5. GIBSI: an integrated modelling system for watershed management - sample applications and current developments

    Quilbé, R.; Rousseau, A. N.

    2007-11-01

    Hydrological and pollutant fate models have long been developed for research purposes. Today, they find an application in integrated watershed management, as decision support systems (DSS). GIBSI is such a DSS designed to assist stakeholders in watershed management. It includes a watershed database coupled to a GIS and accessible through a user-friendly interface, as well as modelling tools that simulate, on a daily time step, hydrological processes such as evapotranspiration, runoff, soil erosion, agricultural pollutant transport and surface water quality. Therefore, GIBSI can be used to assess a priori the effect of management scenarios (reservoirs, land use, waste water effluents, diffuse sources of pollution that is agricultural pollution) on surface hydrology and water quality. For illustration purposes, this paper presents several management-oriented applications using GIBSI on the 6680 km2 Chaudière River watershed, located near Quebec City (Canada). They include impact assessments of: (i) municipal clean water program; (ii) agricultural nutrient management scenarios; (iii) past and future land use changes, as well as (iv) determination of achievable performance standards of pesticides management practices. Current and future developments of GIBSI are also presented as these will extend current uses of this tool and make it useable and applicable by stakeholders on other watersheds. Finally, the conclusion emphasizes some of the challenges that remain for a better use of DSS in integrated watershed management.

  6. GIBSI: an integrated modelling system for watershed management – sample applications and current developments

    A. N. Rousseau

    2007-06-01

    Full Text Available Hydrological and pollutant fate models have long been developed for research purposes. Today, they find an application in integrated watershed management, as decision support systems (DSS. GIBSI is such a DSS designed to assist stakeholders in watershed management. It includes a watershed database coupled to a GIS and accessible through a user-friendly interface, as well as modelling tools that simulate, on a daily time step, hydrological processes, soil erosion, agricultural pollutant transport and surface water quality. Therefore, GIBSI can be used to assess a priori the effect of management scenarios (reservoirs, land use, waste water effluents, diffuse sources of pollution that is agricultural pollution on surface hydrology and water quality. For illustration purposes, this paper presents several management-oriented applications using GIBSI on the 6680 km2 Chaudière River watershed, located near Quebec City (Canada. They include impact assessments of: (i timber harvesting; (ii municipal clean water program; (iii agricultural nutrient management scenarios; (iv past land use evolution; (v possible future agricultural land use evolution under climate change, as well as (vi determination of achievable performance standards of pesticides management practices. Current and future developments of GIBSI are also presented as these will extend current uses of this tool and make it useable and applicable by stakeholders on other watersheds. Finally, the conclusion emphasizes some of the challenges that remain for a better use of DSS in integrated watershed management.

  7. GIBSI: an integrated modelling system for watershed management – sample applications and current developments

    A. N. Rousseau

    2007-11-01

    Full Text Available Hydrological and pollutant fate models have long been developed for research purposes. Today, they find an application in integrated watershed management, as decision support systems (DSS. GIBSI is such a DSS designed to assist stakeholders in watershed management. It includes a watershed database coupled to a GIS and accessible through a user-friendly interface, as well as modelling tools that simulate, on a daily time step, hydrological processes such as evapotranspiration, runoff, soil erosion, agricultural pollutant transport and surface water quality. Therefore, GIBSI can be used to assess a priori the effect of management scenarios (reservoirs, land use, waste water effluents, diffuse sources of pollution that is agricultural pollution on surface hydrology and water quality. For illustration purposes, this paper presents several management-oriented applications using GIBSI on the 6680 km2 Chaudière River watershed, located near Quebec City (Canada. They include impact assessments of: (i municipal clean water program; (ii agricultural nutrient management scenarios; (iii past and future land use changes, as well as (iv determination of achievable performance standards of pesticides management practices. Current and future developments of GIBSI are also presented as these will extend current uses of this tool and make it useable and applicable by stakeholders on other watersheds. Finally, the conclusion emphasizes some of the challenges that remain for a better use of DSS in integrated watershed management.

  8. The magnitude of lost ecosystem structure and function in urban streams and the effectiveness of watershed-based management (Invited)

    Smucker, N. J.; Detenbeck, N. E.; Kuhn, A.

    2013-12-01

    Watershed development is a leading cause of stream impairment and increasingly threatens the availability, quality, and sustainability of freshwater resources. In a recent global meta-analysis, we found that measures of desirable ecological structure (e.g., algal, macroinvertebrate, and fish communities) and functions (e.g., metabolism, nutrient uptake, and denitrification) in streams with developed watersheds were only 23% and 34%, respectively, of those in minimally disturbed reference streams. As humans continue to alter watersheds in response to growing and migrating populations, characterizing ecological responses to watershed development and management practices is urgently needed to inform future development practices, decisions, and policy. In a study of streams in New England, we found that measures of macroinvertebrate and algal communities had threshold responses between 1-10% and 1-5% impervious cover, respectively. Macroinvertebrate communities had decreases in sensitive taxa and predators occurring from 1-3.5% and transitions in trophic and habitat guilds from 4-9% impervious cover. Sensitive algal taxa declined at 1%, followed by increases in tolerant taxa at 3%. Substantially altered algal communities persisted above 5% impervious cover and were dominated by motile taxa (sediment resistant) and those with high nutrient demands. Boosted regression tree analysis showed that sites with >65% and ideally >80% forest and wetland cover in near-stream buffers were associated with a 13-34% decrease in the effects of watershed impervious cover on algal communities. While this reduction is substantial, additional out-of-stream management efforts are needed to protect and restore stream ecosystems (e.g., created wetlands and stormwater ponds), but understanding their effectiveness is greatly limited by sparse ecological monitoring. Our meta-analysis found that restoration improved ecological structure and functions in streams by 48% and 14%, respectively, when

  9. Water and Poverty in Two Colombian Watersheds

    Nancy Johnson; James Garcia; Jorge E. Rubiano; Marcela Quintero; Ruben Dario Estrada; Esther Mwangi; Adriana Morena; Alexandra Peralta; Sara Granados

    2009-01-01

    Watersheds, especially in the developing world, are increasingly being managed for both environmental conservation and poverty alleviation. How complementary are these objectives? In the context of a watershed, the actual and potential linkages between land and water management and poverty are complex and likely to be very site specific and scale dependent. This study analyses the importance of watershed resources in the livelihoods of the poor in two watersheds in the Colombian Andes. Result...

  10. Linking farmer, forest and watershed: Understanding forestry and soil resource management along the upper Njoro River, Kenya

    Krupnik, Timothy J.

    2004-01-01

    This paper presents research-in-progress to understand small farmers’ soil and forestry management techniques in the Upper Catchment of the River Njoro (UCRN) in Kenya. This paper seeks to answer the following questions: How do farmers in the UCRN view and manage soil and forestry resources? What does this imply for development and conservation planners concerned with watershed and environmental services? The study blends social science approaches and biophysical assessment. Interviews were...

  11. Hydrologic and Water Quality Assessment from an Intensively Managed Watershed Scale Turfgrass System

    Managed turf accounts for approximately 17 million hectares of land in the U.S. and is the most intensively managed system in the urban landscape. The primary objective of this research effort was to assess the watershed scale hydrologic and surface water quality impact from a well managed golf cour...

  12. Emergy evaluation of the artificial forest ecosystems in the watershed of Miyun Reservoir:a case study for ecosystems valuation and environmental management

    2007-01-01

    To build the artificial forest ecoaystem is the major eco-economic development model in the watershed of Miyun Reservoir.It is very important to evaluate the benefits of those ecosystems.Emergy theories are very helpful for us to establish a science-based assessment framework.Emergy evatuation of the artificial forest ecosystems in the watershed of Miyun Reservoir is used to asses the relative values of several ecological hinctions (sometimes called ecosystem services)and main ecosystem storages(sometimes called natural capital).The main driving energtes,internal processes and storages are evaluated.The main functions,including transpiration,GPP and infiltration,are evaluated,which are 609em$/ha/yr,6,245em$/ha/yr and 340em$/ha/yr respectively.The total values of major environmental services are 4,683em$/ha/yr in the artificial forest ecosystem.The main storages of natural capital including live biomass,soil moisture,organic matter,underground water and landform are estimated,which are 112,028em$/ha,9em$/ha,40,718em$/ha,34em$/ha and 6,400.514em$/ha respectively.The largest value is landform,which accounts for97.7%of these calculated total emdollar values.The concept of replacement value is explored using the emergy values of both ecosystem services and natural capital.The total calculated replacement values are 302,160em$/ha.

  13. Transaction Cost Analysis of Upstream-Downstream Relations in Watershed Services: Lessons from Community-Based Forestry Management in Sumatra, Indonesia

    Arifin, Bustanul

    2006-01-01

    This study analyzes transaction costs occurred in the existing set-up of upstream-downstream relations and reward mechanisms of the watershed services in Sumatra, Indonesia. The rewards are manifested through property right reforms in terms of "recognition" and "loss of fear of eviction" among local communities to utilize land within the "protection forest", such as implemented under the community-based forestry management (CBFM) policy. The study sites of Sumber Jaya watershed in Sumatra, In...

  14. OPTIMAL SPATIAL ALLOCATION OF WASTE MANAGEMENT PRACTICES TO REDUCE PHOSPHORUS POLLUTION IN A WATERSHED

    Ancev, Tihomir; Stoecker, Arthur L.; Daniel E. Storm

    2003-01-01

    Phosphorus pollution from excessive litter application and municipal discharges causes eutorphication of lakes in the Eucha-Spavinaw watershed in eastern Oklahoma and western Arkansas. Consequent algae blooms impair the taste of drinking water supply drawn from the watershed and reduce the recreational values of the lakes. The paper shows how GIS data based biophysical modeling can be used to derive spatially optimal, least-cost allocation of agricultural management practices to be combined w...

  15. The integration of ecological risk assessment and structured decision making into watershed management.

    Ohlson, Dan W; Serveiss, Victor B

    2007-01-01

    Watershed management processes continue to call for more science and improved decision making that take into account the full range of stakeholder perspectives. Increasingly, the core principles of ecological risk assessment (i.e., the development and use of assessment endpoints and conceptual models, conducting exposure and effects analysis) are being incorporated and adapted in innovative ways to meet the call for more science. Similarly, innovative approaches to adapting decision analysis tools and methods for incorporating stakeholder concerns in complex natural resource management decisions are being increasingly applied. Here, we present an example of the integration of ecological risk assessment with decision analysis in the development of a watershed management plan for the Greater Vancouver Water District in British Columbia, Canada. Assessment endpoints were developed, ecological inventory data were collected, and watershed models were developed to characterize the existing and future condition of 3 watersheds in terms of the potential risks to water quality. Stressors to water quality include sedimentation processes (landslides, streambank erosion) and forest disturbance (wildfire, major insect or disease outbreak). Three landscape-level risk management alternatives were developed to reflect different degrees of management intervention. Each alternative was evaluated under different scenarios and analyzed by explicitly examining value-based trade-offs among water quality, environmental, financial, and social endpoints. The objective of this paper is to demonstrate how the integration of ecological risk assessment and decision analysis approaches can support decision makers in watershed management. PMID:17283600

  16. Management-oriented sensitivity analysis for pesticide transport in watershed-scale water quality modeling using SWAT.

    Luo, Yuzhou; Zhang, Minghua

    2009-12-01

    The Soil and Water Assessment Tool (SWAT) was calibrated for hydrology conditions in an agricultural watershed of Orestimba Creek, California, and applied to simulate fate and transport of two organophosphate pesticides chlorpyrifos and diazinon. The model showed capability in evaluating pesticide fate and transport processes in agricultural fields and instream network. Management-oriented sensitivity analysis was conducted by applied stochastic SWAT simulations for pesticide distribution. Results of sensitivity analysis identified the governing processes in pesticide outputs as surface runoff, soil erosion, and sedimentation in the study area. By incorporating sensitive parameters in pesticide transport simulation, effects of structural best management practices (BMPs) in improving surface water quality were demonstrated by SWAT modeling. This study also recommends conservation practices designed to reduce field yield and in-stream transport capacity of sediment, such as filter strip, grassed waterway, crop residue management, and tailwater pond to be implemented in the Orestimba Creek watershed. PMID:19616876

  17. Management-oriented sensitivity analysis for pesticide transport in watershed-scale water quality modeling using SWAT

    The Soil and Water Assessment Tool (SWAT) was calibrated for hydrology conditions in an agricultural watershed of Orestimba Creek, California, and applied to simulate fate and transport of two organophosphate pesticides chlorpyrifos and diazinon. The model showed capability in evaluating pesticide fate and transport processes in agricultural fields and instream network. Management-oriented sensitivity analysis was conducted by applied stochastic SWAT simulations for pesticide distribution. Results of sensitivity analysis identified the governing processes in pesticide outputs as surface runoff, soil erosion, and sedimentation in the study area. By incorporating sensitive parameters in pesticide transport simulation, effects of structural best management practices (BMPs) in improving surface water quality were demonstrated by SWAT modeling. This study also recommends conservation practices designed to reduce field yield and in-stream transport capacity of sediment, such as filter strip, grassed waterway, crop residue management, and tailwater pond to be implemented in the Orestimba Creek watershed. - Selected structural BMPs are recommended for reducing loads of OP pesticides.

  18. Beyond Impervious: Urban Land-Cover Pattern Variation and Implications for Watershed Management.

    Beck, Scott M; McHale, Melissa R; Hess, George R

    2016-07-01

    Impervious surfaces degrade urban water quality, but their over-coverage has not explained the persistent water quality variation observed among catchments with similar rates of imperviousness. Land-cover patterns likely explain much of this variation, although little is known about how they vary among watersheds. Our goal was to analyze a series of urban catchments within a range of impervious cover to evaluate how land-cover varies among them. We then highlight examples from the literature to explore the potential effects of land-cover pattern variability for urban watershed management. High-resolution (1 m(2)) land-cover data were used to quantify 23 land-cover pattern and stormwater infrastructure metrics within 32 catchments across the Triangle Region of North Carolina. These metrics were used to analyze variability in land-cover patterns among the study catchments. We used hierarchical clustering to organize the catchments into four groups, each with a distinct landscape pattern. Among these groups, the connectivity of combined land-cover patches accounted for 40 %, and the size and shape of lawns and buildings accounted for 20 %, of the overall variation in land-cover patterns among catchments. Storm water infrastructure metrics accounted for 8 % of the remaining variation. Our analysis demonstrates that land-cover patterns do vary among urban catchments, and that trees and grass (lawns) are divergent cover types in urban systems. The complex interactions among land-covers have several direct implications for the ongoing management of urban watersheds. PMID:27094440

  19. Agile data management for curation of genomes to watershed datasets

    Varadharajan, C.; Agarwal, D.; Faybishenko, B.; Versteeg, R.

    2015-12-01

    A software platform is being developed for data management and assimilation [DMA] as part of the U.S. Department of Energy's Genomes to Watershed Sustainable Systems Science Focus Area 2.0. The DMA components and capabilities are driven by the project science priorities and the development is based on agile development techniques. The goal of the DMA software platform is to enable users to integrate and synthesize diverse and disparate field, laboratory, and simulation datasets, including geological, geochemical, geophysical, microbiological, hydrological, and meteorological data across a range of spatial and temporal scales. The DMA objectives are (a) developing an integrated interface to the datasets, (b) storing field monitoring data, laboratory analytical results of water and sediments samples collected into a database, (c) providing automated QA/QC analysis of data and (d) working with data providers to modify high-priority field and laboratory data collection and reporting procedures as needed. The first three objectives are driven by user needs, while the last objective is driven by data management needs. The project needs and priorities are reassessed regularly with the users. After each user session we identify development priorities to match the identified user priorities. For instance, data QA/QC and collection activities have focused on the data and products needed for on-going scientific analyses (e.g. water level and geochemistry). We have also developed, tested and released a broker and portal that integrates diverse datasets from two different databases used for curation of project data. The development of the user interface was based on a user-centered design process involving several user interviews and constant interaction with data providers. The initial version focuses on the most requested feature - i.e. finding the data needed for analyses through an intuitive interface. Once the data is found, the user can immediately plot and download data

  20. Development of a socio-ecological environmental justice model for watershed-based management

    Sanchez, Georgina M.; Nejadhashemi, A. Pouyan; Zhang, Zhen; Woznicki, Sean A.; Habron, Geoffrey; Marquart-Pyatt, Sandra; Shortridge, Ashton

    2014-10-01

    The dynamics and relationships between society and nature are complex and difficult to predict. Anthropogenic activities affect the ecological integrity of our natural resources, specifically our streams. Further, it is well-established that the costs of these activities are born unequally by different human communities. This study considered the utility of integrating stream health metrics, based on stream health indicators, with socio-economic measures of communities, to better characterize these effects. This study used a spatial multi-factor model and bivariate mapping to produce a novel assessment for watershed management, identification of vulnerable areas, and allocation of resources. The study area is the Saginaw River watershed located in Michigan. In-stream hydrological and water quality data were used to predict fish and macroinvertebrate measures of stream health. These measures include the Index of Biological Integrity (IBI), Hilsenhoff Biotic Index (HBI), Family IBI, and total number of Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa. Stream health indicators were then compared to spatially coincident socio-economic data, obtained from the United States Census Bureau (2010), including race, income, education, housing, and population size. Statistical analysis including spatial regression and cluster analysis were used to examine the correlation between vulnerable human populations and environmental conditions. Overall, limited correlation was observed between the socio-economic data and ecological measures of stream health, with the highest being a negative correlation of 0.18 between HBI and the social parameter household size. Clustering was observed in the datasets with urban areas representing a second order clustering effect over the watershed. Regions with the worst stream health and most vulnerable social populations were most commonly located nearby or down-stream to highly populated areas and agricultural lands.

  1. Influence of dem in Watershed Management as Flood Zonation Mapping

    Alrajhi, Muhamad; Khan, Mudasir; Afroz Khan, Mohammad; Alobeid, Abdalla

    2016-06-01

    Despite of valuable efforts from working groups and research organizations towards flood hazard reduction through its program, still minimal diminution from these hazards has been realized. This is mainly due to the fact that with rapid increase in population and urbanization coupled with climate change, flood hazards are becoming increasingly catastrophic. Therefore there is a need to understand and access flood hazards and develop means to deal with it through proper preparations, and preventive measures. To achieve this aim, Geographical Information System (GIS), geospatial and hydrological models were used as tools to tackle with influence of flash floods in the Kingdom of Saudi Arabia due to existence of large valleys (Wadis) which is a matter of great concern. In this research paper, Digital Elevation Models (DEMs) of different resolution (30m, 20m,10m and 5m) have been used, which have proven to be valuable tool for the topographic parameterization of hydrological models which are the basis for any flood modelling process. The DEM was used as input for performing spatial analysis and obtaining derivative products and delineate watershed characteristics of the study area using ArcGIS desktop and its Arc Hydro extension tools to check comparability of different elevation models for flood Zonation mapping. The derived drainage patterns have been overlaid over aerial imagery of study area, to check influence of greater amount of precipitation which can turn into massive destructions. The flow accumulation maps derived provide zones of highest accumulation and possible flow directions. This approach provide simplified means of predicting extent of inundation during flood events for emergency action especially for large areas because of large coverage area of the remotely sensed data.

  2. Impact of Environmental Policies on the Adoption of Animal Waste Management Practices in the Chesapeake Bay Watershed

    Savage, Jeff; Ribaudo, Marc

    2012-01-01

    We use data from the ERS-NASS ARMS surveys to compare the use of best management practices on poultry and livestock farms inside the watershed and outside the watershed. Animal operations within the Chesapeake Bay States were found to be adopting some important manure management practices at a greater rate than operations outside the watershed. Adoption was taking place before the implementation of the TMDL, indicating that farmers may have been acting in response to building public pressure ...

  3. Potential Hydrological Responses, and Carbon and Nitrogen Pools of a Two Distinct Watersheds to Rainfall and Brush Management

    Ray, R. L.; Fares, A.; Awal, R.; Johnson, A. B.

    2014-12-01

    Investigating the effects of brush management on hydrologic fluxes, in the parts of the Texas where brush is a dominant component of the landscape is essential for the State of Texas's water management strategy and planning. The main goal of this study is to test the performance of brush management as an effective approach for protecting soil quality (carbon and nitrogen pools), and water resources management and planning. Specifically, this work reports on the potential i) hydrological response and ii) carbon and nitrogen pools of two watersheds, one in Colorado River Basin (arid) and the second one in Neches River Basin (humid), to brush management (uniform thinning vs. clear cutting) simulated using Regional Hydro-ecological Simulation System (RHESSys) model and site specific input data. The selected watersheds have similar potential evapotranspiration level, but their average elevations are 600 m and 250 m for the arid and humid watersheds, respectively. Results are showing that light thinning alone may not be enough to significantly impact water yield and soil quality. They further indicate that the streamflow response to brush reduction is a non-linear positive response.

  4. Iskuulpa Watershed Management Plan : A Five-Year Plan for Protecting and Enhancing Fish and Wildlife Habitats in the Iskuulpa Watershed.

    Confederated Tribes of the Umatilla Indian Reservation Wildlife Program

    2003-01-01

    The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) propose to protect, enhance, and mitigate wildlife and wildlife habitat and watershed resources in the Iskuulpa Watershed. The Iskuulpa Watershed Project was approved as a Columbia River Basin Wildlife Fish and Mitigation Project by the Bonneville Power Administration (BPA) and Northwest Power Planning Council (NWPPC) in 1998. Iskuulpa will contribute towards meeting BPA's obligation to compensate for wildlife habitat losses resulting from the construction of the John Day and McNary Hydroelectric facilities on the Columbia River. By funding the enhancement and operation and maintenance of the Iskuulpa Watershed, BPA will receive credit towards their mitigation debt. The purpose of the Iskuulpa Watershed management plan update is to provide programmatic and site-specific standards and guidelines on how the Iskuulpa Watershed will be managed over the next three years. This plan provides overall guidance on both short and long term activities that will move the area towards the goals, objectives, and desired future conditions for the planning area. The plan will incorporate managed and protected wildlife and wildlife habitat, including operations and maintenance, enhancements, and access and travel management.

  5. The participation of public institutions and private sector stakeholders to Devrekani Watershed management planning process

    Sevgi Öztürk

    2014-07-01

    Full Text Available Watershed management is creating the ecological balance between human beings and habitats and natural resources especially water resources. In this study the nature and human beings and all of the components involving on human activities in nature were tried to be tackled and the strengths and weaknesses, threats and opportunities (SWOT analysis of the area were evaluated by prioritizing R’WOT (Ranking + SWOT analysis for ensuring the participation and evaluating the ideas and attitudes of public institutions and private sector which are interest groups of Devrekani Watershed. According to the analysis result, both of the participant groups stated that the planned Hydroelectric Power Plant (HPP in the basin will negatively affect the natural resource value. The economical deficiency- for the local administration- and the lack of qualified labour force –for private sector- issues are determined as the most important issues. Having an environmental plan (EP, supporting the traditional animal husbandry were determined as the highest priority factors by the local administration group and the presence of forests and grasslands and the eco-tourism potential were determined as the highest priority factors for the private sector. Creating awareness to local administration group, who are one of the most important decision making mechanisms in the area and did not prefer threats in a high priority way, is foreseen according to the context of the study.

  6. Valuing the effects of hydropower development on watershed ecosystem services: Case studies in the Jiulong River Watershed, Fujian Province, China

    Wang, Guihua; Fang, Qinhua; Zhang, Luoping; Chen, Weiqi; Chen, Zhenming; Hong, Huasheng

    2010-02-01

    Hydropower development brings many negative impacts on watershed ecosystems which are not fully integrated into current decision-making largely because in practice few accept the cost and benefit beyond market. In this paper, a framework was proposed to valuate the effects on watershed ecosystem services caused by hydropower development. Watershed ecosystem services were classified into four categories of provisioning, regulating, cultural and supporting services; then effects on watershed ecosystem services caused by hydropower development were identified to 21 indicators. Thereafter various evaluation techniques including the market value method, opportunity cost approach, project restoration method, travel cost method, and contingent valuation method were determined and the models were developed to valuate these indicators reflecting specific watershed ecosystem services. This approach was applied to three representative hydropower projects (Daguan, Xizaikou and Tiangong) of Jiulong River Watershed in southeast China. It was concluded that for hydropower development: (1) the value ratio of negative impacts to positive benefits ranges from 64.09% to 91.18%, indicating that the negative impacts of hydropower development should be critically studied during its environmental administration process; (2) the biodiversity loss and water quality degradation (together accounting for 80-94%) are the major negative impacts on watershed ecosystem services; (3) the average environmental cost per unit of electricity is up to 0.206 Yuan/kW h, which is about three quarters of its on-grid power tariff; and (4) the current water resource fee accounts for only about 4% of its negative impacts value, therefore a new compensatory method by paying for ecosystem services is necessary for sustainable hydropower development. These findings provide a clear picture of both positive and negative effects of hydropower development for decision-makers in the monetary term, and also provide a

  7. Impacts of forest changes on hydrology: a case study of large watersheds in the upper reach of Yangtze River Basin

    Cui, X; Liu, S; Wei, X.

    2012-01-01

    Quantifying the effects of forest changes on hydrology in large watersheds is important for designing forest or land management and adaptation strategies for watershed ecosystem sustainability. Minjiang River watershed located in the upper reach of the Yangtze River Basin plays a strategic role in environmental protection and economic and social wellbeing for both the watershed and the entire Yangtze Basin. The watershed lies in the transition zone from Sichuan Basin to Qinghai-Tibet Pla...

  8. Oued Zeroud watershed management and Sidi Saad Dam protection

    The Government of Tunisia has decided to construct the Qued Zeroud Dam to protect Kairouan from flooding, to irrigate 4,080 ha, and to maintain the groundwater supply. To prevent silting of the dam 100,000 ha of the Qued Zeroud watershed will undergo a conservation programme. Terraces, waterways and drop structures will be constructed and forage and tree plantations will be developed using Atriplex and cactus. Cultural and grazing practices will be controlled. (author)

  9. Relating sediment impacts on coral reefs to watershed sources, processes and management: a review.

    Bartley, Rebecca; Bainbridge, Zoe T; Lewis, Stephen E; Kroon, Frederieke J; Wilkinson, Scott N; Brodie, Jon E; Silburn, D Mark

    2014-01-15

    Modification of terrestrial sediment fluxes can result in increased sedimentation and turbidity in receiving waters, with detrimental impacts on coral reef ecosystems. Preventing anthropogenic sediment reaching coral reefs requires a better understanding of the specific characteristics, sources and processes generating the anthropogenic sediment, so that effective watershed management strategies can be implemented. Here, we review and synthesise research on measured runoff, sediment erosion and sediment delivery from watersheds to near-shore marine areas, with a strong focus on the Burdekin watershed in the Great Barrier Reef region, Australia. We first investigate the characteristics of sediment that pose the greatest risk to coral reef ecosystems. Next we track this sediment back from the marine system into the watershed to determine the storage zones, source areas and processes responsible for sediment generation and run-off. The review determined that only a small proportion of the sediment that has been eroded from the watershed makes it to the mid and outer reefs. The sediment transported >1 km offshore is generally the clay to fine silt (sediment fractions (sediments is still under investigation; however, the Bowen, Upper Burdekin and Lower Burdekin sub-watersheds appear to be the dominant source of the clay and fine silt fractions. Sub-surface erosion is the dominant process responsible for the fine sediment exported from these watersheds in recent times, although further work on the particle size of this material is required. Maintaining average minimum ground cover >75% will likely be required to reduce runoff and prevent sub-soil erosion; however, it is not known whether ground cover management alone will reduce sediment supply to ecologically acceptable levels. PMID:24121565

  10. Locating farmer-based knowledge and vested interests in natural resource management: the interface of ethnopedology, land tenure and gender in soil erosion management in the Manupali watershed, Philippines

    Price Lisa

    2007-01-01

    Abstract This paper examines local soil knowledge and management in the Manupali watershed in the Philippines. The study focuses on soil erosion and its control. Research methods used in the study include ethnosemantic elicitations on soils and focus group discussions. In addition, in-depth work was conducted with 48 farmers holding 154 parcels at different elevations/locations in the watershed. The on-parcel research consisted of farmer classifications of the soil, topography, and erosion st...

  11. Impacts of forest changes on hydrology: a case study of large watersheds in the upper reach of Yangtze River Basin

    X. Cui

    2012-05-01

    Full Text Available Quantifying the effects of forest changes on hydrology in large watersheds is important for designing forest or land management and adaptation strategies for watershed ecosystem sustainability. Minjiang River watershed located in the upper reach of the Yangtze River Basin plays a strategic role in environmental protection and economic and social wellbeing for both the watershed and the entire Yangtze Basin. The watershed lies in the transition zone from Sichuan Basin to Qinghai-Tibet Plateau with a size of 24 000 km2. Due to its strategic significance, severe historic deforestation and high sensitivity to climate change, the watershed has long been one of the highest priority watersheds in China for scientific research and resource management. The purpose of this review paper is to provide a state-of-the-art summary on what we have learned from several recently-completed research programs (one of them known as "973 of the China National Major Fundamental Science" with funding of $3.5 million USD in 2002 to 2008. This summary paper focused on how land cover or forest change affected hydrology at both forest stand and watershed scales in this large watershed. Inclusion of two different spatial scales is useful because the results from a small spatial scale (e.g. forest stand level can help interpret the findings at a large spatial scale. Our review suggests that historic forest harvesting or land cover change has caused significant water increase due to reduction of forest canopy interception and evapotranspiration caused by removal of forest vegetation at both spatial scales. The impact magnitudes caused by forest harvesting indicate that the hydrological effects of forest or land cover changes can be as important as those caused by climate change, while the opposite impact directions suggest their offsetting effects on water yields in the Minjiang River watershed. In addition, different types of forests have different magnitudes of ET

  12. Impacts of forest changes on hydrology: a case study of large watersheds in the upper reach of Yangtze River Basin

    Cui, X.; Liu, S.; Wei, X.

    2012-05-01

    Quantifying the effects of forest changes on hydrology in large watersheds is important for designing forest or land management and adaptation strategies for watershed ecosystem sustainability. Minjiang River watershed located in the upper reach of the Yangtze River Basin plays a strategic role in environmental protection and economic and social wellbeing for both the watershed and the entire Yangtze Basin. The watershed lies in the transition zone from Sichuan Basin to Qinghai-Tibet Plateau with a size of 24 000 km2. Due to its strategic significance, severe historic deforestation and high sensitivity to climate change, the watershed has long been one of the highest priority watersheds in China for scientific research and resource management. The purpose of this review paper is to provide a state-of-the-art summary on what we have learned from several recently-completed research programs (one of them known as "973 of the China National Major Fundamental Science" with funding of 3.5 million USD in 2002 to 2008). This summary paper focused on how land cover or forest change affected hydrology at both forest stand and watershed scales in this large watershed. Inclusion of two different spatial scales is useful because the results from a small spatial scale (e.g. forest stand level) can help interpret the findings at a large spatial scale. Our review suggests that historic forest harvesting or land cover change has caused significant water increase due to reduction of forest canopy interception and evapotranspiration caused by removal of forest vegetation at both spatial scales. The impact magnitudes caused by forest harvesting indicate that the hydrological effects of forest or land cover changes can be as important as those caused by climate change, while the opposite impact directions suggest their offsetting effects on water yields in the Minjiang River watershed. In addition, different types of forests have different magnitudes of ET with old-growth natural

  13. Riverine threat indices to assess watershed condition and identify primary management capacity of agriculture natural resource management agencies.

    Fore, Jeffrey D; Sowa, Scott P; Galat, David L; Annis, Gust M; Diamond, David D; Rewa, Charles

    2014-03-01

    Managers can improve conservation of lotic systems over large geographies if they have tools to assess total watershed conditions for individual stream segments and can identify segments where conservation practices are most likely to be successful (i.e., primary management capacity). The goal of this research was to develop a suite of threat indices to help agriculture resource management agencies select and prioritize watersheds across Missouri River basin in which to implement agriculture conservation practices. We quantified watershed percentages or densities of 17 threat metrics that represent major sources of ecological stress to stream communities into five threat indices: agriculture, urban, point-source pollution, infrastructure, and all non-agriculture threats. We identified stream segments where agriculture management agencies had primary management capacity. Agriculture watershed condition differed by ecoregion and considerable local variation was observed among stream segments in ecoregions of high agriculture threats. Stream segments with high non-agriculture threats were most concentrated near urban areas, but showed high local variability. 60 % of stream segments in the basin were classified as under U.S. Department of Agriculture's Natural Resources Conservation Service (NRCS) primary management capacity and most segments were in regions of high agricultural threats. NRCS primary management capacity was locally variable which highlights the importance of assessing total watershed condition for multiple threats. Our threat indices can be used by agriculture resource management agencies to prioritize conservation actions and investments based on: (a) relative severity of all threats, (b) relative severity of agricultural threats, and (c) and degree of primary management capacity. PMID:24390081

  14. 75 FR 27552 - Guidance for Federal Land Management in the Chesapeake Bay Watershed

    2010-05-17

    ... Information Executive Order 13508, Chesapeake Bay Protection and Restoration, dated May 12, 2009 (74 FR 23099... 24, 2010 (75 FR 91294, March 24). This final guidance incorporates revisions resulting from public... AGENCY Guidance for Federal Land Management in the Chesapeake Bay Watershed AGENCY:...

  15. Integrated watershed management: a planning methodology for construction of new dams in Ethiopia

    Bezuayehu, Tefera; Stroosnijder, L.

    2007-01-01

    Integrated watershed management (IWM) is emerging as an alternative to the centrally planned and sectoral approaches that currently characterize the planning process for dam construction in Ethiopia. This report clarifies the concept of IWM, and reviews the major social, environmental and economic p

  16. Rainwater Wildlife Area, Watershed Management Plan, A Columbia Basin Wildlife Mitigation Project, 2002.

    Childs, Allen B.

    2002-03-01

    This Management Plan has been developed by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) to document how the Rainwater Wildlife Area (formerly known as the Rainwater Ranch) will be managed. The plan has been developed under a standardized planning process developed by the Bonneville Power Administration (BPA) for Columbia River Basin Wildlife Mitigation Projects (See Appendix A and Guiding Policies Section below). The plan outlines the framework for managing the project area, provides an assessment of existing conditions and key resource issues, and presents an array of habitat management and enhancement strategies. The plan culminates into a 5-Year Action Plan that will focus our management actions and prioritize funding during the Fiscal 2001-2005 planning period. This plan is a product of nearly two years of field studies and research, public scoping, and coordination with the Rainwater Advisory Committee. The committee consists of representatives from tribal government, state agencies, local government, public organizations, and members of the public. The plan is organized into several sections with Chapter 1 providing introductory information such as project location, purpose and need, project goals and objectives, common elements and assumptions, coordination efforts and public scoping, and historical information about the project area. Key issues are presented in Chapter 2 and Chapter 3 discusses existing resource conditions within the wildlife area. Chapter 4 provides a detailed presentation on management activities and Chapter 5 outlines a monitoring and evaluation plan for the project that will help assess whether the project is meeting the intended purpose and need and the goals and objectives. Chapter 6 displays the action plan and provides a prioritized list of actions with associated budget for the next five year period. Successive chapters contain appendices, references, definitions, and a glossary. The purpose of the project is

  17. Automatic delineation of a watershed using a DEM. Case study – The Oltet watershed

    ZAMFIR Andreea; Daniel SIMULESCU

    2011-01-01

    This paper aims to present some solutions for automatic delineation of a watershed. In order to find this study’s applicability in the geographical reality, we decided that the river whose watershed will be delineated to be Oltet river. Automatic delineation of the Olteţ watershed was carried out comparatively, using two softwares, ArcGIS Desktop 9.3 andQuantum GIS 1.7.0 Wroclaw, and it based on a SRTM digital elevation model of 90 m. After using GIS techniques, there have resulted two maps s...

  18. Hydrological services and biodiversity conservation under forestation scenarios: comparing options to improve watershed management

    Carvalho-Santos, Claudia; Nunes, João Pedro; Sousa-Silva, Rita; Gonçalves, João; Pradinho Honrado, João

    2015-04-01

    Humans rely on ecosystems for the provision of hydrological services, namely water supply and water damage mitigation, and promoting forests is a widely used management strategy for the provision of hydrological services. Therefore, it is important to model how forests will contribute for this provision, taking into account the environmental characteristics of each region, as well as the spatio-temporal patterns of societal demand. In addition, ensuring forest protection and the delivery of forest ecosystem services is one of the aims included in the European Union biodiversity strategy to 2020. On the other hand, forest management for hydrological services must consider possible trade-offs with other services provision, as well as with biodiversity conservation. Accurate modeling and mapping of both hydrological services and biodiversity conservation value is thus important to support spatial planning and land management options involving forests. The objectives of this study were: to analyze the provision and spatial dynamics of hydrological services under two forest cover change scenarios (oak and eucalyptus/pine) compared to the current shrubland-dominated landscape; and to evaluate their spatial trade-offs with biodiversity conservation value. The Vez watershed (250km2), in northwest Portugal, was used as case-study area. SWAT (Soil and Water Assessment Tool) was applied to simulate the provision of hydrological services (water supply quantity, timing and quality; soil erosion and flood regulation), and was calibrated against daily discharge, sediments, nitrates and evapotranspiration. Good agreement was obtained between model predictions and field measurements. The maps for each service under the different scenarios were produced at the Hydrologic Response Unit (HRU) level. Biodiversity conservation value was based on nature protection regimes and on expert valuation applied to a land cover map. Statistical correlations between hydrological services provision

  19. Adaptive Management for Urban Watersheds: The Slavic Village Pilot Project

    Adaptive management is an environmental management strategy that uses an iterative process of decision-making to reduce the uncertainty in environmental management via system monitoring. A central tenet of adaptive management is that management involves a learning process that ca...

  20. Evaluating water management strategies in watersheds by new hybrid Fuzzy Analytical Network Process (FANP) methods

    RazaviToosi, S. L.; Samani, J. M. V.

    2016-03-01

    Watersheds are considered as hydrological units. Their other important aspects such as economic, social and environmental functions play crucial roles in sustainable development. The objective of this work is to develop methodologies to prioritize watersheds by considering different development strategies in environmental, social and economic sectors. This ranking could play a significant role in management to assign the most critical watersheds where by employing water management strategies, best condition changes are expected to be accomplished. Due to complex relations among different criteria, two new hybrid fuzzy ANP (Analytical Network Process) algorithms, fuzzy TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) and fuzzy max-min set methods are used to provide more flexible and accurate decision model. Five watersheds in Iran named Oroomeyeh, Atrak, Sefidrood, Namak and Zayandehrood are considered as alternatives. Based on long term development goals, 38 water management strategies are defined as subcriteria in 10 clusters. The main advantage of the proposed methods is its ability to overcome uncertainty. This task is accomplished by using fuzzy numbers in all steps of the algorithms. To validate the proposed method, the final results were compared with those obtained from the ANP algorithm and the Spearman rank correlation coefficient is applied to find the similarity in the different ranking methods. Finally, the sensitivity analysis was conducted to investigate the influence of cluster weights on the final ranking.

  1. Building Virtual Watersheds: A Global Opportunity to Strengthen Resource Management and Conservation

    Benda, Lee; Miller, Daniel; Barquin, Jose; McCleary, Richard; Cai, TiJiu; Ji, Y.

    2016-03-01

    Modern land-use planning and conservation strategies at landscape to country scales worldwide require complete and accurate digital representations of river networks, encompassing all channels including the smallest headwaters. The digital river networks, integrated with widely available digital elevation models, also need to have analytical capabilities to support resource management and conservation, including attributing river segments with key stream and watershed data, characterizing topography to identify landforms, discretizing land uses at scales necessary to identify human-environment interactions, and connecting channels downstream and upstream, and to terrestrial environments. We investigate the completeness and analytical capabilities of national to regional scale digital river networks that are available in five countries: Canada, China, Russia, Spain, and United States using actual resource management and conservation projects involving 12 university, agency, and NGO organizations. In addition, we review one pan-European and one global digital river network. Based on our analysis, we conclude that the majority of the regional, national, and global scale digital river networks in our sample lack in network completeness, analytical capabilities or both. To address this limitation, we outline a general framework to build as complete as possible digital river networks and to integrate them with available digital elevation models to create robust analytical capabilities (e.g., virtual watersheds). We believe this presents a global opportunity for in-country agencies, or international players, to support creation of virtual watersheds to increase environmental problem solving, broaden access to the watershed sciences, and strengthen resource management and conservation in countries worldwide.

  2. Chlorothalonil and 2,4-D losses in surface water discharge from a managed turf watershed.

    King, K W; Balogh, J C

    2010-08-01

    Managed turf sites (golf courses) are the most intensively managed landscapes in the urban environment. Yet, long-term watershed scale studies documenting the environmental transport of agrichemicals applied to these systems are rare. The objective of this study was to quantify the surface discharge losses of two commonly applied pesticides (chlorothalonil and 2,4-D) resulting from prevailing practices on a managed golf course. Inflow and outflow discharge waters on a subarea of Northland Country Club located in Duluth, MN were measured for both quantity and quality from April through November from 2003 to 2008. The median chlorothalonil outflow concentration (0.58 microg L(-1)) was significantly greater (p acute toxicity levels (7.6 microg L(-1)) reported for rainbow trout. No 2,4-D concentrations exceeded any human or aquatic species published toxicity level; however, the maximum measured 2,4-D concentration (67.1 microg L(-1)), which rarely occurred, did approach the 70 microg L(-1) maximum contaminant level (MCL) for that compound. Losses of both pesticides were detectable throughout the annual sampling period. Mean annual chlorothalonil loading was 10.5 g ha(-1) or 0.3% of applied, while mean annual 2,4-D loading was 4.9 g ha(-1) or 0.5% of applied. The findings of this study provide quantifiable evidence of agrichemical transport resulting from typical turfgrass management and highlight the need for implementation of best management practices to combat the offsite transport of agrichemicals used in professional turf management. PMID:20526481

  3. MANAGING RISKS USING MEASUREMENTS OF STREAM COMMUNITY METABOLISM, NUTRIENT AND SEDIMENT DYNAMICS AND GEOMORPHOLOGY IN THE LMR WATERSHED

    The goal of this project, and associated research, is to establish thresholds for ecological response to watershed disturbance and to develop tools and insights that will help us manage risks. Changes in the amount and types of land use in a watershed can result in increased ris...

  4. Watershed runoff and sediment transport impacts from management decisions using integrated AnnAGNPS and CCHE1D models

    Conservation planning tools that consider all sources of erosion, sheet and rill, gully, and channels, is critical to developing an effective watershed management plan that considers the integrated effect of all practices on the watershed system. The Annualized Agricultural Non-Point Source polluta...

  5. A Contingent Valuation Approach to Community-based Watershed Management in Beyşehir Lake Basin

    Fadim YAVUZ OZDEMIR; Tüzin BAYCAN-LEVENT

    2011-01-01

    Community-based watershed management has become more predominant as part of the trend towards more holistic and participatory approaches to water resources management. Locally based planning at the watershed scale is seen as an operative way to enhance long-term water resources management and environmental sustainability. Large-scale (regional) ecological systems can be most effectively regulated by small-scale (local) social organizations. Consequently motivating local people to actively par...

  6. Quantify Effects of Integrated Land Management on Water Quality in Agricultural Landscape in South Fork Watershed, Iowa River

    Ha, M.; Wu, M. M.

    2014-12-01

    Sustainable biofuel feedstock production — environmental sustainability and economic sustainability — may be achieved by using a multi-faceted approach. This study focuses on quantifying the water sustainability of an integrated landscaping strategy, by which current land use and land management, cropping system, agricultural Best Management Practices (BMPs), and economics play equal roles. The strategy was applied to the South Fork watershed, IA, including the tributaries of Tipton and Beaver Creeks, which expand to 800-km2 drainage areas. The watershed is an agricultural dominant area covered with row-crops production. On the basis of profitability, switchgrass was chosen as a replacement for row crops in low-productivity land. Areas for harvesting agricultural residue were selected on the basis of soil conservation principals. Double cropping with a cover crop was established to further reduce soil loss. Vegetation buffer strips were in place at fields and in riparian areas for water quality control, resource conservation, and eco service improvement. The Soil and Water Assessment Tool (SWAT) was applied to evaluate source reduction under various management schemes and land use changes. SWAT modeling incorporated 10-yr meteorological information, soil data, land slope classification, land use, four-year crop-rotation cycle, and management operations. Tile drain and pothole parameters were modeled to assess the fate and transport of nutrients. The influence of landscape management and cropping systems on nitrogen and phosphorus loadings, erosion process, and hydrological performance at the sub-watershed scale was analyzed and key factors identified. Results suggest strongly that incorporating agricultural BMPs and conservation strategies into integrated landscape management for certain energy crops in row-crop production regions can be economical and environmentally sustainable.

  7. Small watershed management as a tool of flood risk prevention

    Jakubinsky, J.; Bacova, R.; Svobodova, E.; Kubicek, P.; Herber, V.

    2014-09-01

    According to the International Disaster Database (CRED 2009) frequency of extreme hydrological situations on a global scale is constantly increasing. The most typical example of a natural risk in Europe is flood - there is a decrease in the number of victims, but a significant increase in economic damage. A decrease in the number of victims is caused by the application of current hydrological management that focuses its attention primarily on large rivers and elimination of the damages caused by major flood situations. The growing economic losses, however, are a manifestation of the increasing intensity of floods on small watercourses, which are usually not sufficiently taken into account by the management approaches. The research of small streams should focus both on the study of the watercourse itself, especially its ecomorphological properties, and in particular on the possibility of flood control measures and their effectiveness. An important part of society's access to sustainable development is also the evolution of knowledge about the river landscape area, which is perceived as a significant component of global environmental security and resilience, thanks to its high compensatory potential for mitigation of environmental change. The findings discussed under this contribution are based on data obtained during implementation of the project "GeoRISK" (Geo-analysis of landscape level degradation and natural risks formation), which takes into account the above approaches applied in different case studies - catchments of small streams in different parts of the Czech Republic. Our findings offer an opportunity for practical application of field research knowledge in decision making processes within the national level of current water management.

  8. Tribal Watershed Management: Culture, Science, Capacity, and Collaboration

    Cronin, Amanda; Ostergren, David M.

    2007-01-01

    This research focuses on two elements of contemporary American Indian natural resource management. First, the authors explore the capacity of tribes to manage natural resources, including the merging of traditional ecological knowledge (TEK) with Western science. Second, they analyze tribal management in the context of local and regional…

  9. Methodology for generation of hydrogeologic maps: rio da Palma watershed case study, DF, Brazil

    Hélio Nóbile Diniz

    2007-08-01

    Full Text Available This paper had the objective of developing a methodology to support the management of water resources, based on hydro geological cartography, tested for the hydro geologic conditions of a watershed located at Central Brazil. Results show two major products: a hydro geologic, and a potential infiltration and recharge maps of the high course of the Rio da Palma watershed. This paper is presented in six parts. The first one discusses the map’s elements, essential thematic maps and appropriate scales. The second part proposes the graphic criteria for the integrated representation of the major parameters of overlaying aquifers. The third part demonstrates the importance of the data basis for the hydro geologic cartography, i.e., the contribution of each theme such as soil, geology, slope, climate and land use, when appropriately integrated. The fourth part discusses the selection and the integration of the main information layers for the Rio da Palma watershed using a Geographic Information System (GIS. On the fifth part, the result of the integration of the porous domain with the fractured domain aquifer information layers is shown and, finally, the potential infiltration and recharge map of the studied area, elaborated from the integration of overlapping of the data basis information layers is presented and discussed. In general, in the studied area, regions with high infiltration potential prevail where human interference is still moderate. Large portions of low infiltration potential are either associated with high slopes, with shallow soils (Cambissolos or else with urban constructions.

  10. A COMPARATIVE STUDY ON CALIBRATION METHODS OF NASH’S RAINFALL-RUNOFF MODEL TO AMMAMEH WATERSHED, IRAN

    Vahid Nourani

    2008-06-01

    Full Text Available Increasing importance of watershed management during last decades highlighted the need for sufficient data and accurate estimation of rainfall and runoff within watersheds. Therefore, various conceptual models have been developed with parameters based on observed data. Since further investigations depend on these parameters, it is important to accurately estimate them. This study by utilizing various methods, tries to estimate Nash rainfall-runoff model parameters and then evaluate the reliability of parameter estimation methods; moment, least square error, maximum likelihood, maximum entropy and genetic algorithm. Results based on a case study on the data from Ammameh watershed in Central Iran, indicate that the genetic algorithm method, which has been developed based on artificial intelligence, more accurately estimates Nash’s model parameters.

  11. Effect of Nutrient Management Planning on Crop Yield, Nitrate Leaching and Sediment Loading in Thomas Brook Watershed

    Amon-Armah, Frederick; Yiridoe, Emmanuel K.; Ahmad, Nafees H. M.; Hebb, Dale; Jamieson, Rob; Burton, David; Madani, Ali

    2013-11-01

    Government priorities on provincial Nutrient Management Planning (NMP) programs include improving the program effectiveness for environmental quality protection, and promoting more widespread adoption. Understanding the effect of NMP on both crop yield and key water-quality parameters in agricultural watersheds requires a comprehensive evaluation that takes into consideration important NMP attributes and location-specific farming conditions. This study applied the Soil and Water Assessment Tool (SWAT) to investigate the effects of crop and rotation sequence, tillage type, and nutrient N application rate on crop yield and the associated groundwater leaching and sediment loss. The SWAT model was applied to the Thomas Brook Watershed, located in the most intensively managed agricultural region of Nova Scotia, Canada. Cropping systems evaluated included seven fertilizer application rates and two tillage systems (i.e., conventional tillage and no-till). The analysis reflected cropping systems commonly managed by farmers in the Annapolis Valley region, including grain corn-based and potato-based cropping systems, and a vegetable-horticulture system. ANOVA models were developed and used to assess the effects of crop management choices on crop yield and two water-quality parameters (i.e., leaching and sediment loading). Results suggest that existing recommended N-fertilizer rate can be reduced by 10-25 %, for grain crop production, to significantly lower leaching ( P > 0.05) while optimizing the crop yield. The analysis identified the nutrient N rates in combination with specific crops and rotation systems that can be used to manage leaching while balancing impacts on crop yields within the watershed.

  12. The Potential Importance of Conservation, Restoration and Altered Management Practices for Water Quality in the Wabash River Watershed

    Yang, G.; Best, E. P.; Goodwin, S.

    2013-12-01

    Non-point source (NPS) pollution is one of the leading causes of water quality impairment within the United States. Conservation, restoration and altered management (CRAM) practices may effectively reduce NPS pollutants to receiving water bodies and enhance local and regional ecosystem services. Barriers for the implementation of CRAM include uncertainties related to the extent to which nutrients are removed by CRAM at various spatial and temporal scales, longevity, optimal placement of CRAM within the landscape, and implementation / operation / maintenance costs. We conducted a study aimed at the identification of optimal placement of CRAM in watersheds that reduces N loading to an environmentally sustainable level, at an acceptable, known, cost. For this study, we used a recently developed screening-level modeling approach, WQM-TMDL-N, running in the ArcGIS environment, to estimate nitrogen loading under current land use conditions (NLCD 2006). This model was equipped with a new option to explore the performances of placement of various CRAM types and areas to reduce nitrogen loading to a State-accepted Total Maximum Daily Load (TMDL) standard, with related annual average TN concentration, and a multi-objective algorithm optimizing load and cost. CRAM practices explored for implementation in rural area included buffer strips, nutrient management practices, and wetland restoration. We initially applied this modeling approach to the Tippecanoe River (TR) watershed (8-digit HUC), a headwater of the Wabash River (WR) watershed, where CRAM implementation in rural and urban areas is being planned and implemented at various spatial scales. Consequences of future land use are explored using a 2050 land use/land cover map forecasted by the Land Transformation Model. The WR watershed, IN, drains two-thirds of the state's 92 counties and supports predominantly agricultural land use. Because the WR accounts for over 40% of the nutrient loads of the Ohio River and

  13. Legacy Phosphorus in Agricultural Watersheds: Implications for Restoration and Management of Wetlands and Aquatic Systems

    Phosphorus is added to watersheds in various forms, including fertilizers, nonhazardous wastes (animal manures and biosolids) and nutrient enriched waters. Globally, approximately 14 million metric tons of phosphorus is added as fertilizer to agricultural watersheds. The approximate ratio of nitrogen to phosphorus fertilizer application at the global level is 5.8 (Mullins et al., 2005). Historically, organic wastes such as animal manure were applied to agronomic crops and pastures on the basis of their nitrogen availability, which has resulted in excessive application of phosphorus. The nitrogen to phosphorus ratio of manure is less than 2. As a result, many agricultural watersheds receiving land application of wastes and fertilizers have accumulated phosphorus in excess amounts. However, as soils in agricultural watersheds become saturated or overloaded with phosphorus, a significant portion of stored phosphorus can be released and transported with water during runoff events into adjacent water bodies such as wetlands, streams, shallow lakes and other aquatic systems (Carpenter et al., 1998; Foley et al., 2005). Wetlands, riparian zones and water conservation areas in agricultural watersheds serve as sinks, sources and transformers of nutrients and other chemical contaminants, and as such, they can have a significant impact on water quality, nutrient retention and ecosystem productivity. Here we briefly present a case study of water quality issues in the Lake Okeechobee Basin (LOB), FL, USA and its impact on an adjacent lake.

  14. Integrating GIS, remote sensing and mathematical modelling for surface water quality management in irrigated watersheds

    Azab, A. M.

    2012-01-01

    The intensive uses of limited water resources, the growing population rates and the various increasing human activities put high and continuous stresses on these resources. Major problems affecting the water quality of rivers, streams and lakes may arise from inadequately treated sewage, poor land use practices, inadequate controls on the discharges of industrial waste waters, uncontrolled poor agricultural practices, excessive use of fertilizers, and a lack of integrated watershed management...

  15. Optimal Reoperation of Multi-Reservoirs for Integrated Watershed Management with Multiple Benefits

    Xinyi Xu; Lingling Bin; Chengzhong Pan; Aizhong Ding; Desheng Chen

    2014-01-01

    Constructing reservoirs can make more efficient use of water resources for human society. However, the negative impacts of these projects on the environment are often ignored. Optimal reoperation of reservoirs, which considers not only in socio-economic values but also environmental benefits, is increasingly important. A model of optimal reoperation of multi-reservoirs for integrated watershed management with multiple benefits was proposed to alleviate the conflict between water use and env...

  16. Fostering Incentive-Based Policies and Partnerships for Integrated Watershed Management in the Southeast Asian Uplands

    Andreas Neef

    2012-08-01

    Full Text Available This paper attempts to identify the major factors associated with some of the failures and successes of integrated watershed management policies and projects with a particular emphasis on the uplands of mainland Southeast Asia. It argues that many policy measures have been misguided by failing to acknowledge the multi-dimensional facets of sustainable watershed management and putting too much emphasis on command-and-control approaches to resource management and one-size-fits-all conservation models. Attempts to introduce soil and water conservation measures, for instance, have largely failed because they concentrated merely on the technical feasibility and potential ecological effects, while neglecting economic viability and socio-cultural acceptance. The production of agricultural commodities, on the other hand, has mostly been market-driven and often induced boom and bust cycles that compromised the ecological and social dimensions of sustainability. Purely community-based approaches to watershed management, on their part, have often failed to address issues of elite capture and competing interests within and between heterogeneous uplands communities. Drawing on a review of recent experience and on lessons from initiatives in a long-term collaborative research program in Thailand (The Uplands Program aimed at bridging the various dimensions of sustainability in the Southeast Asian uplands, this paper discusses how a socially, institutionally and ecologically sustainable mix of agricultural production, ecosystem services and rural livelihood opportunities can be achieved through incentive-based policies and multi-stakeholder partnerships that attempt to overcome the (perceived antagonism between conservation and development in upland watersheds of Southeast Asia.

  17. Community-led Watershed-based Water Resources Management: The Case of Balian, Pangil, Laguna

    Contreras, Antonio P.

    2004-01-01

    In Balian, the presence of indigenous institutions borne by a well entrenched and historically rooted and highly developed sociopolitical arrangement has enabled the local community to effectively link their governance and production activities to the watershed resource, despite opposition from some local political interests. The core of this is the Samahan ng Balian para sa Pagpapauwi ng Tubig, Inc. (SBPTI), a barangay based people’s organization formed in 1926 with the goal of managing the ...

  18. The effects of scales, flows and filters on property rights and collective action in watershed management:

    Swallow, Brent M.; Garrity, Dennis P.; van Noordwijk, Meine

    2001-01-01

    Research and policy on property rights, collective action and watershed management requires good understanding of ecological and socio-political processes at different social-spatial scales. On-farm soil erosion is a plot or farm-level problem that can be mitigated through more secure property rights for individual farmers, while the sedimentation of streams and deterioration of water quality are larger-scale problems that may require more effective collective action and / or more secure prop...

  19. Environmental quality integrated indicator applied to the management of the Jiquiriçá river watershed, BA, Brazil

    Raquel Maria de Oliveira

    2010-04-01

    Full Text Available In this work social, economic and environmental aspects were studied using the concept of programming by commitment, with the objective of structuring an integrated indicator capable of estimating the degree of the environmental quality of the Jiquiriça river basin, BA, composed by the indicator of environmental salubrity, water quality and soil’s protection. For the determination of the environmental salubrity indicator, data of the following variables were collected: existence of treated water supply, disposition and treatment of solid residues, diseases vectors control, the existence of the Agenda 21, socioeconomics data and indices of human development for each municipal district located in the area of the watershed. The indicator of the water quality was structured based on the analysis of water samples collected in eight sampling points along Jiquiriçá river and determined by seven parameters. The indicator of soil’s protection was based on the analysis of maps obtained according to the weight of each steepness and land use class. Results indicate that the watershed is in a poor equilibrium condition and suggest the need for structural investments as well as changes in public polices. The methodology used was efficient for this watershed management and could be used as tool for the environmental planning of the region, once it can be adapted to several situations depending on the data availability.

  20. REMOTE SENSING APPLICATIONS FOR SUSTAINABLE WATERSHED MANAGEMENT AND FOOD SECURITY

    The integration of IKONOS satellite data, airborne color infrared remote sensing, visualization, and decision support tools is discussed, within the contexts of management techniques for minimizing non-point source pollution in inland waterways, such s riparian buffer restoration...

  1. Science Education for Environmental Sustainability: A Case Study of the Palouse Watershed

    Lyman, Samson E.

    2009-01-01

    This study uses case study and qualitative content analysis methodologies to answer the question: What is the relationship between Washington State's k-12 science education standards and the environmental sustainability needs of the Palouse River Watershed? After defining the Palouse Watershed's attributes, the author presents a land use history…

  2. Evaluating changes in water quality with respect to nonpoint source nutrient management strategies in the Chesapeake Bay Watershed

    Keisman, J.; Sekellick, A.; Blomquist, J.; Devereux, O. H.; Hively, W. D.; Johnston, M.; Moyer, D.; Sweeney, J.

    2014-12-01

    Chesapeake Bay is a eutrophic ecosystem with periodic hypoxia and anoxia, algal blooms, diminished submerged aquatic vegetation, and degraded stocks of marine life. Knowledge of the effectiveness of actions taken across the watershed to reduce nitrogen (N) and phosphorus (P) loads to the bay (i.e. "best management practices" or BMPs) is essential to its restoration. While nutrient inputs from point sources (e.g. wastewater treatment plants and other industrial and municipal operations) are tracked, inputs from nonpoint sources, including atmospheric deposition, farms, lawns, septic systems, and stormwater, are difficult to measure. Estimating reductions in nonpoint source inputs attributable to BMPs requires compilation and comparison of data on water quality, climate, land use, point source discharges, and BMP implementation. To explore the relation of changes in nonpoint source inputs and BMP implementation to changes in water quality, a subset of small watersheds (those containing at least 10 years of water quality monitoring data) within the Chesapeake Watershed were selected for study. For these watersheds, data were compiled on geomorphology, demographics, land use, point source discharges, atmospheric deposition, and agricultural practices such as livestock populations, crop acres, and manure and fertilizer application. In addition, data on BMP implementation for 1985-2012 were provided by the Environmental Protection Agency Chesapeake Bay Program Office (CBPO) and the U.S. Department of Agriculture. A spatially referenced nonlinear regression model (SPARROW) provided estimates attributing N and P loads associated with receiving waters to different nutrient sources. A recently developed multiple regression technique ("Weighted Regressions on Time, Discharge and Season" or WRTDS) provided an enhanced understanding of long-term trends in N and P loads and concentrations. A suite of deterministic models developed by the CBPO was used to estimate expected

  3. FARMERS’ MOTIVATIONS FOR ADOPTING MANAGEMENT PRACTICES IN THE GOODWATER CREEK EXPERIMENTAL WATERSHED

    The purpose of this work was to evaluate farm operator opinions relative to soil and water conservation practices in the Goodwater Creek Watershed in Central Missouri. This study reveals the outcome of structured interviews conducted with 25 farm operators within the Conservation Effects Assessment...

  4. A system method for the assessment of integrated water resources management (IWRM) in mountain watershed areas: the case of the "Giffre" watershed (France).

    Charnay, Bérengère

    2011-07-01

    In the last fifty years, many mountain watersheds in temperate countries have known a progressive change from self-standing agro-silvo-pastoral systems to leisure dominated areas characterized by a concentration of tourist accommodations, leading to a drinking water peak during the winter tourist season, when the water level is lowest in rivers and sources. The concentration of water uses increases the pressure on "aquatic habitats" and competition between uses themselves. Consequently, a new concept was developed following the international conferences in Dublin (International Conference on Water and the Environment - ICWE) and Rio de Janeiro (UN Conference on Environment and Development), both in 1992, and was broadly acknowledged through international and European policies. It is the concept of Integrated Water Resource Management (IWRM). It meets the requirements of different uses of water and aquatic zones whilst preserving the natural functions of such areas and ensuring a satisfactory economic and social development. This paper seeks to evaluate a local water resources management system in order to implement it using IWRM in mountain watersheds. The assessment method is based on the systemic approach to take into account all components influencing a water resources management system at the watershed scale. A geographic information system was built to look into interactions between water resources, land uses, and water uses. This paper deals specifically with a spatial comparison between hydrologically sensitive areas and land uses. The method is applied to a French Alps watershed: the Giffre watershed (a tributary of the Arve in Haute-Savoie). The results emphasize both the needs and the gaps in implementing IWRM in vulnerable mountain regions. PMID:21547433

  5. Spatial and temporal estimation of soil loss for the sustainable management of a wet semi-arid watershed cluster.

    Rejani, R; Rao, K V; Osman, M; Srinivasa Rao, Ch; Reddy, K Sammi; Chary, G R; Pushpanjali; Samuel, Josily

    2016-03-01

    The ungauged wet semi-arid watershed cluster, Seethagondi, lies in the Adilabad district of Telangana in India and is prone to severe erosion and water scarcity. The runoff and soil loss data at watershed, catchment, and field level are necessary for planning soil and water conservation interventions. In this study, an attempt was made to develop a spatial soil loss estimation model for Seethagondi cluster using RUSLE coupled with ARCGIS and was used to estimate the soil loss spatially and temporally. The daily rainfall data of Aphrodite for the period from 1951 to 2007 was used, and the annual rainfall varied from 508 to 1351 mm with a mean annual rainfall of 950 mm and a mean erosivity of 6789 MJ mm ha(-1) h(-1) year(-1). Considerable variation in land use land cover especially in crop land and fallow land was observed during normal and drought years, and corresponding variation in the erosivity, C factor, and soil loss was also noted. The mean value of C factor derived from NDVI for crop land was 0.42 and 0.22 in normal year and drought years, respectively. The topography is undulating and major portion of the cluster has slope less than 10°, and 85.3% of the cluster has soil loss below 20 t ha(-1) year(-1). The soil loss from crop land varied from 2.9 to 3.6 t ha(-1) year(-1) in low rainfall years to 31.8 to 34.7 t ha(-1) year(-1) in high rainfall years with a mean annual soil loss of 12.2 t ha(-1) year(-1). The soil loss from crop land was higher in the month of August with an annual soil loss of 13.1 and 2.9 t ha(-1) year(-1) in normal and drought year, respectively. Based on the soil loss in a normal year, the interventions recommended for 85.3% of area of the watershed includes agronomic measures such as contour cultivation, graded bunds, strip cropping, mixed cropping, crop rotations, mulching, summer plowing, vegetative bunds, agri-horticultural system, and management practices such as broad bed furrow, raised sunken beds, and harvesting available water

  6. Methods for Environmental Management Research at Landscape and Watershed Scales

    Agriculture is as much as ever and perhaps more so today a landscape enterprise. And as we move into an era in which ecosystem services from agriculture are tabulated, valued, and judged by society, landscape involvement and management will become ever more important. The majority of the non-comm...

  7. Effectiveness of alternative management scenarios on the sediment load in a Mediterranean agricultural watershed

    Ossama M. M. Abdelwahab

    2014-11-01

    Full Text Available The Annualised Agricultural Non-point Source model was used to evaluate the effectiveness of different management practices to control the soil erosion and sediment load in the Carapelle watershed, a Mediterranean medium-size watershed (506 km2 located in Apulia, Southern Italy. The model was previously calibrated and validated using five years of runoff and sediment load data measured at a monitoring station located at Ordona - Ponte dei Sauri Bridge. A total of 36 events were used to estimate the performance of the model during the period 2007-2011. The model performed well in predicting runoff, as the high values of the coefficients of efficiency and determination during the validation process showed. The peak flows predictions were satisfactory especially for the high flow events; the prediction capability of sediment load was good, even if a slight over-estimation was observed. Simulations of alternative management practices show that converting the most eroding cropland cells (13.5% of the catchment area to no tillage would reduce soil erosion by 30%, while converting them to grass or forest would reduce soil erosion by 36.5% in both cases. A crop rotation of wheat and a forage crop can also provide an effective way for soil erosion control as it reduces erosion by 69%. Those results can provide a good comparative analysis for conservation planners to choose the best scenarios to be adopted in the watershed to achieve goals in terms of soil conservation and water quality.

  8. Assisting community management of groundwater: Irrigator attitudes in two watersheds in Rajasthan and Gujarat, India

    Varua, M. E.; Ward, J.; Maheshwari, B.; Oza, S.; Purohit, R.; Hakimuddin; Chinnasamy, P.

    2016-06-01

    The absence of either state regulations or markets to coordinate the operation of individual wells has focussed attention on community level institutions as the primary loci for sustainable groundwater management in Rajasthan and Gujarat, India. The reported research relied on theoretical propositions that livelihood strategies, groundwater management and the propensity to cooperate are associated with the attitudinal orientations of well owners in the Meghraj and Dharta watersheds, located in Gujarat and Rajasthan respectively. The research tested the hypothesis that attitudes to groundwater management and farming practices, household income and trust levels of assisting agencies were not consistent across the watersheds, implying that a targeted approach, in contrast to default uniform programs, would assist communities craft rules to manage groundwater across multiple hydro-geological settings. Hierarchical cluster analysis of attitudes held by survey respondents revealed four statistically significant discrete clusters, supporting acceptance of the hypothesis. Further analyses revealed significant differences in farming practices, household wealth and willingness to adapt across the four groundwater management clusters. In conclusion, the need to account for attitudinal diversity is highlighted and a framework to guide the specific design of processes to assist communities craft coordinating instruments to sustainably manage local aquifers described.

  9. The relationship between the Municipal Master Plan and local Watershed Plans in water management

    Denise Gallo Pizella

    2015-07-01

    Full Text Available The National Water Resources Policy has as one of its tools the drafting of local Water Resource Plans. In view of water resources planning and its relationship to land use planning, the aim of this work is to analyze the institutional and legal difficulties and the potential for an integrated system of water resources management. For this, we used the method of documentary and bibliographic research, beginning with the “Estatuto da Cidade”, a law for urban policy in Brazil, and literature on water management at the municipal and watershed levels. At the municipal level, the “Master Plan” (municipal plan of land use planning became the main instrument of territorial and municipal management, defining the parameters for the compliance of social, environmental and economic functions of real property. In this sense, the municipalities have a responsibility to protect water resources and, without local support, territorial and water management cannot be integrated in the context of the river basin. Despite the difficulties of including environmental variable in urban planning, the Master Plan has the potential to shape local water management systems that are environmentally sustainable and that progressively improve water quality and quantity within the watershed. Similarly, with more significant participation of the municipality in the Basin Committee, it is possible that the forms of municipal land use and occupation can be considered during the development and implementation of the Basin Plan. Thus, the management of water resources can occur integrally.

  10. Chemical characterization of sediment "Legacy P" in watershed streams - implications for P loading under land management

    Audette, Yuki; O'Halloran, Ivan; Voroney, Paul

    2016-04-01

    Transfer of dissolved phosphorus (P) in runoff water via streams is regulated mainly by both stream sediment P adsorption and precipitation processes. The adsorption capacity of stream sediments acting as a P sink was a great benefit to preserving water quality in downstream lakes in the past, as it minimized the effects of surplus P loading from watershed streams. However, with long-term continued P loading the capacity of the sediments to store P has diminished, and eventually converted stream sediments from P sinks to sources of dissolved P. This accumulation of 'legacy P' in stream sediments has become the major source of dissolved P and risk to downstream water quality. Agricultural best management practices (BMP) for P typically attempt to minimize the transfer of P from farmland. However, because of the limitation in sediment P adsorption capacity, adoption of BMPs, such as reduction of external P loading, may not result in an immediate improvement in water quality. The goal of the research is to chemically characterize the P forms contributing to legacy P in stream sediments located in the watershed connecting to Cook's Bay, one of three basins of Lake Simcoe, Ontario, Canada. This watershed receives the largest amount of external P loading and has the highest rate of sediment build-up, both of which are attributed to agriculture. Water samples were collected monthly at six study sites from October 2015 for analysis of pH, temperature, dissolved oxygen, total P, dissolved reactive P, particulate P, total N, NH4-N, NO3-N, TOC and other elements including Al, Fe, Mn, Mg, Ca, S, Na, K and Zn. Sediment core samples were collected in November 2015 and will continue to be collected in March, July and October 2016. Various forms of P in five vertical sections were characterized by sequential fractionation and solution 31P NMR spectroscopy techniques. Pore water, sediment texture and clay identification were performed. The concentration of total P in water samples

  11. iWHAM- Integrated water, health and agriculture management : public health implications of integrated watershed management in a tribal area

    Nerkar, Sandeep

    2015-01-01

    Background: Water scarcity remains a major hurdle in the overall development of tribal people living on hilly terrain, and it is one of the major reasons for their various health problems. Integrated watershed management (IWM) aims to increase water availability and to enhance socio-economic development in such areas. There is a lack of information on the implications of IWM on various aspects of public health, especially in hilly tribal areas. Aim: The overall aim of this thesis was t...

  12. Collaborative research and watershed management for optimization of forest road best management practices

    Riedel, Mark S.

    2003-01-01

    The Coweeta Hydrologic Laboratory, USFS Southern Research Station, worked with state and local agencies and various organizations to provide guidance and tools to reduce sedimentation and facilitate restoration of the 1900km2 Conasauga River watershed in northern Georgia and southern Tennessee. The Conasauga River has the most diverse aquatic ecosystem of any river in the region and is currently being considered for designation as a Federal wild and scenic river. The watershed is encircled an...

  13. Minnesota Watersheds

    Minnesota Department of Natural Resources — Statewide minor watershed delineations with major/minor watershed identifiers and names for provinces, major watersheds, and basins. Also included are watershed...

  14. Why watershed-based water management makes sense

    Francisco, H.

    2002-01-01

    The alarming increase in the scarcity of water in various parts of the world has focused global attention on the need for a stronger and more appropriate water resource management solution. With about 166 million people in 18 countries suffering from water scarcity and about 270 million in 11 countries having "water stresses" conditions (World Bank 2002), it becomes imperative for nations to come up with more focused and direct measures that would address and stem this resource scarcity.

  15. Tailored Watershed Assessment and Integrated Management (TWAIM: A Systems Thinking Approach

    Joe Magner

    2011-06-01

    Full Text Available Control of non-point source (NPS water pollution remains elusive in the United States (US. Many US water-bodies which have been primarily impacted by NPS pollution have not achieved water quality goals set by Clean Water Act. Technological advances have been made since 1972, yet many water resources fail to meet water quality standards. Common Pool Resources Theory is considered to understand the human dimension of NPS pollution by exploring anthropogenic activities superimposed upon dynamic ecosystems. In the final analysis, priority management zones (PMZs for best management practice (BMP implementation must have buy-in from land managers. TWAIM is an iterative systems thinking approach to planning, collecting landscape and land use information and communicating systems understanding to stakeholders. Hydrologic pathways that link the physical, chemical and biological characteristics influence processes occurring in a watershed which drive stream health and ecological function. With better systems understanding and application by technical specialists, there is potential for improved stakeholder interaction and dialogue which could then enable better land use decisions. Issues of pollutant origin, transport, storage and hydraulic residence must be defined and communicated effectively to land managers within a watershed context to observe trends in water quality change. The TWAIM concept provides a logical framework for locally-led assessment and a means to communicate ecohydrologic systems understanding over time to the key land managers such that PMZs can be defined for BMP implementation.

  16. A GIS based watershed information system for water resources management and planning in semi-arid areas

    Tzabiras, John; Spiliotopoulos, Marios; Kokkinos, Kostantinos; Fafoutis, Chrysostomos; Sidiropoulos, Pantelis; Vasiliades, Lampros; Papaioannou, George; Loukas, Athanasios; Mylopoulos, Nikitas

    2015-04-01

    The overall objective of this work is the development of an Information System which could be used by stakeholders for the purposes of water management as well as for planning and strategic decision-making in semi-arid areas. An integrated modeling system has been developed and applied to evaluate the sustainability of water resources management strategies in Lake Karla watershed, Greece. The modeling system, developed in the framework of "HYDROMENTOR" research project, is based on a GIS modelling approach which uses remote sensing data and includes coupled models for the simulation of surface water and groundwater resources, the operation of hydrotechnical projects (reservoir operation and irrigation works) and the estimation of water demands at several spatial scales. Lake Karla basin was the region where the system was tested but the methodology may be the basis for future analysis elsewhere. Τwo (2) base and three (3) management scenarios were investigated. In total, eight (8) water management scenarios were evaluated: i) Base scenario without operation of the reservoir and the designed Lake Karla district irrigation network (actual situation) • Reduction of channel losses • Alteration of irrigation methods • Introduction of greenhouse cultivation ii) Base scenario including the operation of the reservoir and the Lake Karla district irrigation network • Reduction of channel losses • Alteration of irrigation methods • Introduction of greenhouse cultivation The results show that, under the existing water resources management, the water deficit of Lake Karla watershed is very large. However, the operation of the reservoir and the cooperative Lake Karla district irrigation network coupled with water demand management measures, like reduction of water distribution system losses and alteration of irrigation methods, could alleviate the problem and lead to sustainable and ecological use of water resources in the study area. Acknowledgements: This study

  17. Participatory watershed management to decrease land degradation and sediment transport in Kagera and Nyando catchments of Lake Victoria basin

    Kenge, James Gunya

    2009-01-01

    Attention to participatory watershed management is increasing across the developing world as soil erosion continues to degrade agricultural land; reservoirs and irrigation infrastructure are clogged with sediment. The realization of the importance of watersheds is crucial for sustainable utilization especially in developing countries where rural livelihoods and economies are highly dependant on the exploitation of natural resources. The Lake Victoria basin is characterized by high population ...

  18. Economics of integrated watershed management in the presence of a dam

    Lee, Yoon; Yoon, Taeyeon; Shah, Farhed A.

    2011-10-01

    This paper presents an optimal control model of integrated watershed management in the presence of a dam. Management efforts focus on upstream soil conservation, reservoir-level sediment removal, and downstream damage control from water pollution. Increased soil conservation potentially benefits farmers and also has the external benefit of reducing sediment accumulation in the reservoir. Sediment is released downstream of the reservoir using the hydrosuction sediment removal system (HSRS). This sediment release extends reservoir life and provides nutrients to downstream farmers who then use less fertilizer. Also included in the functions of the dam manager are the provision of water to downstream farms, the control of instream flow to mitigate downstream damages from water pollution, and the use of water treatment to meet quality standards for water supplied directly from the reservoir to residential users. An illustrative application of the model to Lake Aswan, located between Egypt and Sudan, indicates substantial benefits from far-sighted behavior and cooperation across all agents. Moving from the baseline case that reflects the status quo to the socially optimal solution increases watershed net present value by more than $500 billion. Other scenarios with varying types of collaboration among the agents are also explored. Interestingly, while decisions with respect to soil conservation do impact the welfare of upstream farmers, the benefits to reservoir management and agriculture in Egypt are modest compared to benefits Egypt gets from improved control of instream flow. Also, subject to technical limits, increasing reservoir life through practice of HSRS is economically desirable.

  19. Mathematical modeling of synthetic unit hydrograph case study: Citarum watershed

    Islahuddin, Muhammad; Sukrainingtyas, Adiska L. A.; Kusuma, M. Syahril B.; Soewono, Edy

    2015-09-01

    Deriving unit hydrograph is very important in analyzing watershed's hydrologic response of a rainfall event. In most cases, hourly measures of stream flow data needed in deriving unit hydrograph are not always available. Hence, one needs to develop methods for deriving unit hydrograph for ungagged watershed. Methods that have evolved are based on theoretical or empirical formulas relating hydrograph peak discharge and timing to watershed characteristics. These are usually referred to Synthetic Unit Hydrograph. In this paper, a gamma probability density function and its variant are used as mathematical approximations of a unit hydrograph for Citarum Watershed. The model is adjusted with real field condition by translation and scaling. Optimal parameters are determined by using Particle Swarm Optimization method with weighted objective function. With these models, a synthetic unit hydrograph can be developed and hydrologic parameters can be well predicted.

  20. Community-based shared values as a 'Heart-ware' driver for integrated watershed management: Japan-Malaysia policy learning perspective

    Mohamad, Zeeda Fatimah; Nasaruddin, Affan; Abd Kadir, Siti Norasiah; Musa, Mohd Noor; Ong, Benjamin; Sakai, Nobumitsu

    2015-11-01

    This paper explores the case for using "community-based shared values" as a potential driver for the "Heartware" aspects of governance in Integrated Watershed Management (IWM) - from a Japan-Malaysia policy learning perspective. This policy approach was originally inspired by the Japanese experience, and the paper investigates whether a similar strategy can be adapted in the Malaysian context-based on a qualitative exploratory case study of a local downstream watershed community. The community-based shared values are categorized into six functional values that can be placed on a watershed: industry, ecosystem, lifestyle, landscape, water resource and spirituality. The study confirmed the availability of a range of community-based shared values in each category that are promising to drive the heartware for integrated watershed management in the local Malaysian context. However, most of these shared values are either declining in its appreciation or nostalgic in nature. The paper ends with findings on key differences and similarities between the Malaysian and Japanese contexts, and concludes with lessons for international transfer of IWM heartware policy strategies between the two countries.

  1. The impacts of climate change on the hydrological cycle and on the water resource management of the Peribonka watershed

    This study evaluated the impacts of climate change on the water resource management in the Peribonka watershed by comparing the hydropower production of 3 power houses with the reliability and vulnerability associated with two climate change scenarios. The Peribonka catchment area was described along with scenarios of climate change for the watershed over a time horizon up to 2080. Synthetic time series for each scenario were then produced with a stochastic weather generator and were introduced in the HSAMI hydrological model in order to simulate future hydrological cycles. The reservoir system simulation model ResSim showed that the hydroelectric power plant Passes-Dangereuses, will experience either an increase in the annual hydroelectric production of 8 per cent or a reduction of 20 per cent, depending on the scenario considered. The simulation showed that the reliability of upstream reservoirs, namely Lakes Manouane and Peribonka, could decrease while their vulnerability could increase. This paper described the procedure used to develop the climatic change scenarios, the stages of hydrological modeling and the modeling of the hydrological cycle. The impacts of the climatic change scenarios on the flows were also presented along with a short discussion of recommendations to be considered for the next stages of the project. Subsequent stages of this water management project will relate specifically to the quantification of partial and total uncertainties associated with general circulation models, methods of reduction of scale and the applied hydrological models. 20 refs., 1 tab., 5 figs

  2. Regionalization of SWAT Model Parameters for Use in Ungauged Watersheds

    Indrajeet Chaubey

    2010-11-01

    Full Text Available There has been a steady shift towards modeling and model-based approaches as primary methods of assessing watershed response to hydrologic inputs and land management, and of quantifying watershed-wide best management practice (BMP effectiveness. Watershed models often require some degree of calibration and validation to achieve adequate watershed and therefore BMP representation. This is, however, only possible for gauged watersheds. There are many watersheds for which there are very little or no monitoring data available, thus the question as to whether it would be possible to extend and/or generalize model parameters obtained through calibration of gauged watersheds to ungauged watersheds within the same region. This study explored the possibility of developing regionalized model parameter sets for use in ungauged watersheds. The study evaluated two regionalization methods: global averaging, and regression-based parameters, on the SWAT model using data from priority watersheds in Arkansas. Resulting parameters were tested and model performance determined on three gauged watersheds. Nash-Sutcliffe efficiencies (NS for stream flow obtained using regression-based parameters (0.53–0.83 compared well with corresponding values obtained through model calibration (0.45–0.90. Model performance obtained using global averaged parameter values was also generally acceptable (0.4 ≤ NS ≤ 0.75. Results from this study indicate that regionalized parameter sets for the SWAT model can be obtained and used for making satisfactory hydrologic response predictions in ungauged watersheds.

  3. Upstream to downstream: a multiple-assessment-point approach for targeting non-point-source priority management areas at large watershed scale

    Chen, L.; Zhong, Y.; Wei, G; Shen, Z.

    2014-01-01

    The identification of priority management areas (PMAs) is essential for the control of non-point-source (NPS) pollution, especially for a large-scale watershed. However, previous studies have typically focused on small-scale catchments adjacent to specific assessment points; thus, the interactions between multiple river points remain poorly understood. In this study, a multiple-assessment-point PMA (MAP-PMA) framework was proposed by integrating the upstream sources and the ...

  4. Interactions of Soil Order and Land Use Management on Soil Properties in the Kukart Watershed, Kyrgyzstan

    Zulfiia Sakbaeva; Veronica Acosta-Martínez; Jennifer Moore-Kucera; Wayne Hudnall; Karabaev Nuridin

    2012-01-01

    Surveys of soil properties related to soil functioning for many regions of Kyrgyzstan are limited. This study established ranges of chemical (soil organic matter (SOM), pH and total N (TN)), physical (soil texture), and biochemical (six enzyme activities of C, N, P, and S cycling) characteristics for nine profiles from the Kukart watershed of Jalal-Abad region in Kyrgyzstan. These profiles represent different soil orders (Inceptisols, Alfisols, and Mollisols) and land uses (cultivated, nut-fr...

  5. Decision Support System integrated with Geographic Information System to target restoration actions in watersheds of arid environment: A case study of Hathmati watershed, Sabarkantha district, Gujarat

    Dhruvesh P Patel; Prashant K Srivastava; Manika Gupta; Naresh Nandhakumar

    2015-02-01

    Watershed morphometric analysis is important for controlling floods and planning restoration actions. The present study is focused on the identification of suitable sites for locating water harvesting structures using morphometric analysis and multi-criteria based decision support system. The Hathmati watershed of river Hathmati at Idar taluka, Sabarkantha district, Gujarat is experiencing excessive runoff and soil erosion due to high intensity rainfall. Earth observation dataset such as Digital Elevation Model and Geographic Information System are used in this study to determine the quantitative description of the basin geometry. Several morphometric parameters such as stream length, elongation ratio, bifurcation ratio, drainage density, stream frequency, texture ratio, form factor, circularity ratio, and compactness coefficient are taken into account for prioritization of Hathmati watershed. The overall analysis reveals that Hathmati comprises of 13 mini-watersheds out of which, the watershed number 2 is of utmost priority because it has the highest degradation possibilities. The final results are used to locate the sites suitable for water harvesting structures using geo-visualization technique. After all the analyses, the best possibilities of check dams in the mini-watersheds that can be used for soil and water conservation in the watershed are presented.

  6. Physical characterization of a watershed through GIS: a study in the Schmidt stream, Brazil.

    Reis, D R; Plangg, R; Tundisi, J G; Quevedo, D M

    2015-12-01

    Remote sensing and geoprocessing are essential tools for obtaining and maintaining records of human actions on space over the course of time; these tools offer the basis for diagnoses of land use, environmental interference and local development. The Schmidt stream watershed, located in the Sinos River basin, in southern Brazil, has an environmental situation similar to that of the majority of small streams draining rural and urban areas in southern Brazil: agricultural and urbanization practices do not recognize the riparian area and there is removal of original vegetation, disregarding the suitability of land use; removal of wetlands; intensive water use for various activities; and lack of control and monitoring in the discharge of wastewater, among other factors, deteriorate the quality of this important environment.This article aims to achieve a physical characterization of the Schmidt stream watershed (Sinos river basin) identifying elements such as land use and occupation, soil science, geology, climatology, extent and location of watershed, among others, so as to serve as the basis for a tool that helps in the integrated environmental management of watersheds. By applying geographic information system - GIS to the process of obtaining maps of land use and occupation, pedologicaland geological, and using climatological data from the Campo Bom meteorological station, field visit, review of literature and journals, and publicly available data, the physical characterization of the Schmidt stream watershed was performed, with a view to the integrated environmental management of this watershed. Out of the total area of the Schmidt stream watershed (23.92 km(2)), in terms of geology, it was observed that 23.7% consist of colluvial deposits, 22.6% consist of grass facies, and 53.7% consist of Botucatu formation. Major soil types of the watershed: 97.4% Argisols and only 2.6% Planosols. Land use and occupation is characterized by wetland (0.5%), Native Forest (12

  7. Assessment of Watershed Technologies

    Lim Suan, Medel P.

    1999-01-01

    Dealing with various topics such as watershed classification, computer simulation and modeling and computer application in watershed research, this paper assembles and summarizes technologies that are currently being used or have potential for application in the Philippines. This is in the hope of helping watershed managers, planners and researchers.

  8. Modeling effectiveness of management practices for flood mitigation using GIS spatial analysis functions in Upper Cilliwung watershed

    Darma Tarigan, Suria

    2016-01-01

    Flooding is caused by excessive rainfall flowing downstream as cumulative surface runoff. Flooding event is a result of complex interaction of natural system components such as rainfall events, land use, soil, topography and channel characteristics. Modeling flooding event as a result of interaction of those components is a central theme in watershed management. The model is usually used to test performance of various management practices in flood mitigation. There are various types of management practices for flood mitigation including vegetative and structural management practices. Existing hydrological model such as SWAT and HEC-HMS models have limitation to accommodate discrete management practices such as infiltration well, small farm reservoir, silt pits in its analysis due to the lumped structure of these models. Aim of this research is to use raster spatial analysis functions of Geo-Information System (RGIS-HM) to model flooding event in Ciliwung watershed and to simulate impact of discrete management practices on surface runoff reduction. The model was validated using flooding data event of Ciliwung watershed on 29 January 2004. The hourly hydrograph data and rainfall data were available during period of model validation. The model validation provided good result with Nash-Suthcliff efficiency of 0.8. We also compared the RGIS-HM with Netlogo Hydrological Model (NL-HM). The RGIS-HM has similar capability with NL-HM in simulating discrete management practices in watershed scale.

  9. Evaluation of Distributed BMPs in an Urban Watershed - High Resolution Modeling for Stormwater Management

    Fry, T. J.; Maxwell, R. M.; McCray, J. E.; Higgins, C. P.

    2015-12-01

    Urbanization presents challenging water resource problems for communities worldwide. The hydromodifications associated with urbanization results in increased runoff rates and volumes and increased peak flows which can lead to increased erosion and stream destabilization, decreased evapotranspiration, decreased ground water recharge, increases in pollutant loading, and localized anthropogenic climate change or Urban Heat Islands. Stormwater management is shifting from a drainage-efficiency focus to a natural systems focus. The natural system focus, referred to as Low Impact Development (LID), or Green Infrastructure, uses best management practices (BMPs) to reduce the impacts caused by urbanization hydromodification. Currently there are two modeling approaches used to evaluate BMPs in urban watersheds, conceptually-based coarse resolution hydrologic models and high-resolution physically-based models. Conceptual urban hydrology-hydraulic models typically are used to determine peak flow hydrographs within a watershed based on uniform rainfall, the basins size, shape, and percent of impervious land cover. Physically-based hydrologic models simulate integrated surface and subsurface water flow. Here, we use high-resolution physically based hydrologic models of the urban hydrologic cycle with explicit inclusion of the built environment. We compare the inclusion and exclusion of LID features to evaluate the parameterizations used to model these components in more conceptually based models. Differences in response are discussed and a road map is put forth for improving LID representation in commonly used urban water models.

  10. Oral histories as a baseline of landscape restoration – co-management and watershed knowledge in Jukajoki river

    Tero Mustonen

    2013-08-01

    Full Text Available This article explores local oral histories and selected communal written texts and their role in the severely damaged watershed of Jukajoki [and adjacent lake Jukajärvi watershed] located in Kontiolahti and Joensuu municipalities, North Karelia, Finland. All in all 35 narratives were collected 2010−2012. Four narratives have been presented in this paper as an example of the materials. Empirical materials have been analysed by using a framework of both Integrated Ecosystem Management and co-management. Three readings of the river Jukajoki and the adjacent watershed emerged from the materials – Sámi times, Savo-Karelian times and times of damages, or the industrial age of the river. Local knowledge, including optic histories, provided information about pre-industrial fisheries, fish ecology and behaviour and bird habitats. Lastly, special oral histories of keepers of the local tradition provided narratives which are consistent with inquiries from other parts of Finland, non-Euclidian readings of time and space and hint at what the Indigenous scholars have proposed as an intimate interconnection between nature and human societies extending beyond notions of social-ecological systems. Empirical oral histories also conceptualize collaborative governance with a formal role of local ecological knowledge as a future management option for the Jukajoki watershed. Watershed restoration and associated baseline information benefits greatly from the oral histories recorded with people who still remember pre-industrial and pre-war ecosystems and their qualities.

  11. Watershed-based systems

    Walker, S; Mostaghimi, S.

    2009-01-01

    Metadata only record This chapter discusses the application of adaptive watershed management strategies and their importance to maintaining water supply. The watershed, which is an area of land that drains to a particular point or outlet, can be any size and is physically governed by topography. Thoroughly understanding these physical properties is essential to formulating an effective management plan for a watershed. In turn, proper management can improve and maintain soil quality and wat...

  12. Study on Characteristics of Climatic Variation in Yanhe Watershed during 1974-2004

    2011-01-01

    [Objective] The aim was to study the climate changes of Yanhe watershed during 1974-2004. [Method] The monthly temperature and precipitation during 1974-2004 in seven representative stations in Yanhe watershed were chosen. By dint of climate statistics analysis method, accumulated anomaly and signal/noise ratio method, the regional temperature and precipitation changes in recent 31 years were expounded and its changes features and the year having climate mutation were found out. [Result] The climate changes...

  13. Application of risk-based multiple criteria decision analysis for selection of the best agricultural scenario for effective watershed management.

    Javidi Sabbaghian, Reza; Zarghami, Mahdi; Nejadhashemi, A Pouyan; Sharifi, Mohammad Bagher; Herman, Matthew R; Daneshvar, Fariborz

    2016-03-01

    Effective watershed management requires the evaluation of agricultural best management practice (BMP) scenarios which carefully consider the relevant environmental, economic, and social criteria involved. In the Multiple Criteria Decision-Making (MCDM) process, scenarios are first evaluated and then ranked to determine the most desirable outcome for the particular watershed. The main challenge of this process is the accurate identification of the best solution for the watershed in question, despite the various risk attitudes presented by the associated decision-makers (DMs). This paper introduces a novel approach for implementation of the MCDM process based on a comparative neutral risk/risk-based decision analysis, which results in the selection of the most desirable scenario for use in the entire watershed. At the sub-basin level, each scenario includes multiple BMPs with scores that have been calculated using the criteria derived from two cases of neutral risk and risk-based decision-making. The simple additive weighting (SAW) operator is applied for use in neutral risk decision-making, while the ordered weighted averaging (OWA) and induced OWA (IOWA) operators are effective for risk-based decision-making. At the watershed level, the BMP scores of the sub-basins are aggregated to calculate each scenarios' combined goodness measurements; the most desirable scenario for the entire watershed is then selected based on the combined goodness measurements. Our final results illustrate the type of operator and risk attitudes needed to satisfy the relevant criteria within the number of sub-basins, and how they ultimately affect the final ranking of the given scenarios. The methodology proposed here has been successfully applied to the Honeyoey Creek-Pine Creek watershed in Michigan, USA to evaluate various BMP scenarios and determine the best solution for both the stakeholders and the overall stream health. PMID:26734840

  14. Assessment of best management practice effects on metolachlor mitigation in an agricultural watershed

    Beasley Lake watershed in the Mississippi Delta is a 915 ha intensively cultivated watershed (49-78% in row crop production) that was monitored for the herbicide metolachlor from 1998-2009. As part of the USDA Conservation Effects Assessment Program (CEAP), the watershed was assessed for the effecti...

  15. Sustainable forest management: a challenging task in the siran watershed of district Mansehra in the NWFP of Pakistan

    Forests play an important socio-economic and environmental role on earth. Exploitation of forest resources within the carrying capacity of the natural ecosystem has always ensured their sustainability but in recent decades man has overexploited these resources to meet various needs. Pakistan with only 4.8% of its total land area under forests was also experiencing unsustainable forest management. In the Siran Watershed of District Mansehra in the North West Frontier Province (NWFP) of Pakistan, forests were exploited to meet not only the domestic and commercial wood-fuel needs but also timber needs of the local and external markets. Moreover, the local communities as a source of income generation have also used forest resources to increase their cash income earnings. Analysis of time series forest cover change in the past three decades was done in three adjacent sub-watersheds having different property right regimes. The GIS based spatial analysis showed that despite government efforts to conserve these forests, 75% of the forests were completely converted either into regeneration area (34%) or barren areas (41 %) during the past three decades. The Protected Forests have lost 41 % of its cover and the Guzara Forests 34%. Results show that the forest degradation stress has greatly increased in the eighties and afterwards. Using stakeholder analysis the key wood demanding stake holders in terms of their wood demand state were the local communities, the external commercial timber consumers, tobacco growers and Afghan refugees. The wood supplies stake holders were the Forest Department that controls the Common Pool Forests (CPF), the Forest Development Corporation (FDC), the Forest Cooperative Societies (FCS) and the farm foresters. Analysis of the cause effect relationship of the system shows that the pressure factors of increased wood demand by various stake holders coupled with the enabling factors of the market failure, government failure and institutional failure

  16. ACHIEVING EFFICIENCY AND EQUITY IN IRRIGATION MANAGEMENT: AN OPTIMIZATION MODEL OF THE EL ANGEL WATERSHED, CARCHI, ECUADOR

    Evans, Elizabeth M; Lee, David R.; Boisvert, Richard N.

    2002-01-01

    The objective of this paper is to address the problems of inefficiency and inequity in water allocation in the El Angel watershed, located in Ecuador's Sierra region. Water is captured in a high-altitude region of the watershed and distributed downstream to producers in four elevation-defined zones via a system of canals. Upstream and downstream producers face radically different conditions with respect to climate and terrain. A mathematical programming model was created to study the conseque...

  17. Delineation and Characterization of Furnace Brook Watershed in Marshfield, Massachusetts: A Study of Effects upon Conjunctive Water Use within a Watershed

    Croll, E. D.; Enright, R.

    2012-12-01

    An understanding of conjunctive use between surface and ground water is essential to resource management both for sustained public use and watershed conservation practices. The Furnace Brook watershed in Marshfield, Massachusetts supplies a coastal community of 25,132 residents with nearly 50% of the town water supply. As with many other coastal communities, development pressure has increased creating a growing demand for freshwater extraction. It has been observed, however, that portions of the stream and Furnace Pond disappear entirely. This has created a conflict between protection of the designated wetland areas and meeting public pressure for water resources, even within what is traditionally viewed as a humid region. Questions have arisen as to whether the town water extraction is influencing this losing behavior by excessively lowering water-table elevations and potentially endangering the health of the stream. This study set out to initially characterize these behaviors and identify possible influences of anthropogenic and natural sources acting upon the watershed including stream flow obstructions, water extraction, and geologic conditions. The initial characterization was conducted utilizing simple, low-cost and minimally intrusive methods as outlined by Lee and Cherry (1978), Rosenberry and LaBaugh (2008) and others during a six week period. Five monitoring stations were established along a 3.0 mile reach of the basin consisting of mini-piezometers, seepage meters, survey elevation base-lines, and utilizing a Marsh-McBirney flow velocity meter. At each station stream discharge, seepage flux rates and hydraulic gradients were determined to develop trends of stream behavior. This methodology had the benefit of demonstrating the efficacy of an intrinsically low-expense, minimally intrusive initial approach to characterizing interactions between surface and ground water resources. The data was correlated with town pumping information, previous geologic

  18. WMOST: A tool for assessing cost-benefits of watershed management decisions affecting community resilience under varying climate regimes.

    The Watershed Management Optimization Support Tool (WMOST v.1) was released by the US Environmental Protection Agency in December 2013(http://www2.epa.gov/exposure-assessment-models/wmost-10-download-page). The objective of WMOST is to serve as a public-domain screening toolthat ...

  19. Approaches of Integrated Watershed Management Project: Experiences of the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)

    Mula, Rosana P.; Wani, Suhas P.; Dar, William D.

    2008-01-01

    The process of innovation-development to scaling is varied and complex. Various actors are involved in every stage of the process. In scaling the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)-led integrated watershed management projects in India and South Asia, three drivers were identified--islanding approach,…

  20. An establishment on the hazard mitigation system of large scale landslides for Zengwen reservoir watershed management in Taiwan

    Tsai, Kuang-Jung; Lee, Ming-Hsi; Chen, Yie-Ruey; Huang, Meng-Hsuan; Yu, Chia-Ching

    2016-04-01

    hazard mitigation program operated by local government and reservoir watershed management in southern Taiwan. Keywords: large scale landslide, disaster prevention, hazard mitigation, watershed management

  1. A Study of Disaster Adaptation Behavior and Risk Communication for watershed Area Resident - the Case of Kaoping River Watershed in Taiwan

    Te Pai, Jen; Chen, Yu-Yun; Huang, Kuan-Hua

    2016-04-01

    Along with the global climate change, the rainfall patterns become more centralized and cause natural disasters more frequently and heavily. Residents in river watersheds area are facing high risk of natural disasters and severe impacts, especially in Taiwan. From the experience of Typhoon Morakot in 2009, we learned that poor risk communication between the governments and the households and communities would lead to tremendous loss of property and life. Effective risk communication can trigger action to impending and current events. On the other hand, it can also build up knowledge on hazards and risks and encourage adaptation behaviors. Through the participation and cooperation of different stakeholders in disaster management, can reduce vulnerability, enhance adaptive capacity, improve the interaction between different stakeholders and also avoid conflicts. However, in Taiwan there are few studies about how households and communities perceive flood disaster risks, the process of risk communications between governments and households, or the relationship between risk communication and adaptation behaviors. Therefore, this study takes household and community of Kaoping River Watershed as study area. It aims to identify important factors in the process of disaster risk communication and find out the relationship between risk communication and adaptation behaviors. A framework of risk communication process was established to describe how to trigger adaptation behaviors and encourage adaptation behaviors with risk communication strategies. An ISM model was utilized to verify the framework by using household questionnaire survey. Moreover, a logit choice model was build to test the important factors for effective risk communication and adaption behavior. The result of this study would provide governments or relevant institutions suggestions about risk communication strategies and adaptation strategies to enhance the adaptive capacity of households and reduce the

  2. USGS perspectives on an integrated approach to watershed and coastal management

    Larsen, Matthew C.; Hamilton, Pixie A.; Haines, John W.; Mason, Jr., Robert R.

    2010-01-01

    The writers discuss three critically important steps necessary for achieving the goal for improved integrated approaches on watershed and coastal protection and management. These steps involve modernization of monitoring networks, creation of common data and web services infrastructures, and development of modeling, assessment, and research tools. Long-term monitoring is needed for tracking the effectiveness approaches for controlling land-based sources of nutrients, contaminants, and invasive species. The integration of mapping and monitoring with conceptual and mathematical models, and multidisciplinary assessments is important in making well-informed decisions. Moreover, a better integrated data network is essential for mapping, statistical, and modeling applications, and timely dissemination of data and information products to a broad community of users.

  3. Global change impacts on river ecosystems: A high-resolution watershed study of Ebro river metabolism.

    Val, Jonatan; Chinarro, David; Pino, María Rosa; Navarro, Enrique

    2016-11-01

    Global change is transforming freshwater ecosystems, mainly through changes in basin flow dynamics. This study assessed how the combination of climate change and human management of river flow impacts metabolism of the Ebro River (the largest river basin in Spain, 86,100km(2)), assessed as gross primary production-GPP-and ecosystem respiration-ER. In order to investigate the influence of global change on freshwater ecosystems, an analysis of trends and frequencies from 25 sampling sites of the Ebro river basin was conducted. For this purpose, we examined the effect of anthropogenic flow control on river metabolism with a Granger causality study; simultaneously, took into account the effects of climate change, a period of extraordinary drought (largest in past 140years). We identified periods of sudden flow changes resulting from both human management and global climate effects. From 1998 to 2012, the Ebro River basin was trending toward a more autotrophic condition indicated by P/R ratio. Particularly, the results show that floods that occurred after long periods of low flows had a dramatic impact on the respiration (i.e., mineralization) capacity of the river. This approach allowed for a detailed characterization of the relationships between river metabolism and drought impacts at the watershed level. These findings may allow for a better understanding of the ecological impacts provoked by flow management, thus contributing to maintain the health of freshwater communities and ecosystem services that rely on their integrity. PMID:27392332

  4. Parcelling out the Watershed: The Recurring Consequences of Organising Columbia River Management within a Basin-Based Territory

    Eve Vogel

    2012-02-01

    Full Text Available This article examines a 75-year history of North America’s Columbia river to answer the question: what difference does a river basin territory actually make? Advocates reason that river basins and watersheds are natural and holistic water management spaces, and can avoid the fragmentations and conflicts endemic to water management within traditional political territories. However, on the Columbia, this reasoning has not played out in practice. Instead, basin management has been shaped by challenges from and negotiations with more traditional jurisdictional spaces and political districts. The recurring result has been 'parcelling out the watershed': coordinating river management to produce a few spreadable benefits, and distributing these benefits, as well as other responsibilities and policy-making influence, to jurisdictional parts and political districts. To provide generous spreadable benefits, river management has unevenly emphasised hydropower, resulting in considerable environmental losses. However, benefits have been widely spread and shared – and over time challengers have forced management to diversify. Thus a river basin territory over time produced patterns of both positive and negative environmental, social, economic, and democratic outcomes. To improve the outcomes of watershed-based water management, we need more interactive and longer-term models attentive to dynamic politics and geographies.

  5. Poverty and Environmental Services: Case Study in Way Besai Watershed, Lampung Province, Indonesia

    Beria Leimona

    2007-12-01

    Full Text Available Local communities in developing countries are often forbidden to earn their livelihood from state-owned forests, but nonetheless local people commonly manage these lands and depend on them to survive. In these places, community participation is the key to successful conservation programs intended to rehabilitate environmental functions and produce environmental services for beneficiaries outside the area. This paper reviews the relationship between poverty and environmental services and briefly discusses the main ways in which approaches that rely on payment for environmental services are thought likely to alleviate poverty. It also discusses the poverty profile and inequality of upland dwellers in the Sumberjaya watershed in Indonesia's Lampung Province, using income, education, and land-holding indicators. Data related to these three indicators were collected from intensive household surveys and interviews and used via Gini decomposition to measure inequality. In addition, analysis of data on stem at breast height and horizontal root diameter of coffee and other noncoffee trees planted on coffee farms showed that index of root shallowness could be used as an estimator of environmental services. This study revealed that state forest land in Lampung Province, Indonesia, not only provides important income for poor farmers but also leads to a more equitable distribution of income and land holdings. These farmers have also successfully rehabilitated degraded land by establishing coffee-based agroforestry. As found in other recent studies, these findings show that coffee-based agroforestry can perform watershed service functions similar to those of natural, undisturbed forests. This supports the argument that poor farmers who provide environmental services through their activities in state-owned forests should be rewarded with land rights as a policy to alleviate poverty.

  6. Collective Action for Integrated Community Watershed Management in Semi-Arid India: Analysis of Multiple Livelihood Impacts and the Drivers of Change

    Shiferaw, Bekele A.; Bantilan, Ma Cynthia S.; Wani, Suhas; Sreedevi, T.K.; Rao, G.D. Nageswara

    2006-01-01

    Spatial and temporal attributes of watersheds and associated market failures require institutional arrangements for coordinating use and management of natural resources. Effective collective action (CA) for watershed management has the potential to provide multiple economic and environmental benefits - tangible and non-tangible - to rural communities. This allows smallholder farmers to jointly invest in management practices that provide collective benefits to community members. The functions ...

  7. The effects of multiple beneficial management practices on hydrology and nutrient losses in a small watershed in the Canadian prairies.

    Li, Sheng; Elliott, Jane A; Tiessen, Kevin H D; Yarotski, James; Lobb, David A; Flaten, Don N

    2011-01-01

    Most beneficial management practices (BMPs) recommended for reducing nutrient losses from agricultural land have been established and tested in temperate and humid regions. Previous studies on the effects of these BMPs in cold-climate regions, especially at the small watershed scale, are rare. In this study, runoff and water quality were monitored from 1999 to 2008 at the outlets of two subwatersheds in the South Tobacco Creek watershed in Manitoba, Canada. Five BMPs-a holding pond below a beef cattle overwintering feedlot, riparian zone and grassed waterway management, grazing restriction, perennial forage conversion, and nutrient management-were implemented in one of these two subwatersheds beginning in 2005. We determined that >80% of the N and P in runoff at the outlets of the two subwatersheds were lost in dissolved forms, ≈ 50% during snowmelt events and ≈ 33% during rainfall events. When all snowmelt- and rainfall-induced runoff events were considered, the five BMPs collectively decreased total N (TN) and total P (TP) exports in runoff at the treatment subwatershed outlet by 41 and 38%, respectively. The corresponding reductions in flow-weighted mean concentrations (FWMCs) were 43% for TN and 32% for TP. In most cases, similar reductions in exports and FWMCs were measured for both dissolved and particulate forms of N and P, and during both rainfall and snowmelt-induced runoff events. Indirect assessment suggests that retention of nutrients in the holding pond could account for as much as 63 and 57%, respectively, of the BMP-induced reductions in TN and TP exports at the treatment subwatershed outlet. The nutrient management BMP was estimated to have reduced N and P inputs on land by 36 and 59%, respectively, in part due to the lower rates of nutrient application to fields converted from annual crop to perennial forage. Overall, even though the proportional contributions of individual BMPs were not directly measured in this study, the collective reduction

  8. Effective Modeling of Nutrient Losses and Nutrient Management Practices in an Agricultural and Urbanizing Watershed

    Liu, Yingmei

    2011-01-01

    The Lake Manassas Watershed is a 189 km2 basin located in the Northern Virginia suburbs of Washington, DC. Lake Manassas is a major waterbody in the watershed and serves as a drinking water source for the City of Manassas. Lake Manassas is experiencing eutrophication due to nutrient loads associated with agricultural activities and urban development in its drainage areas. Two watershed model applications using HSPF, and one receiving water quality model application using CE-QUAL-W2, were link...

  9. Consideration for modelling studies of migration of accidentally released radionuclides in a river watershed

    Concerning radionuclides that might be released in an event of an accident from a nuclear facility, much attention has been paid to the migration pathways including the atmospheric deposition and subsequent inflow to surface water bodies since the Chernobyl nuclear accident in 1986. In European countries, computer-coded systems for predicting the migration including those pathways and providing scientific supports for decision makers to manage the contamination have been developed. This report is a summary of presentations and discussion made at the occasion of the visit of Dr. Monte in order to have directions related to the current subject of research, development of a mathematical model of the behavior of radionuclides in a river watershed. Those presentations and discussions were made at JAERI and also at prominent universities and institutes of Japan involved in this study field. As a result of these discussions, distinct advantages and key issues in use of a mathematical model for prediction of the migration of radionuclides in a river watershed have been identified and analyzed. It was confirmed that the use of mathematical modeling has distinct advantages. Re-arrangement of the existing experimental knowledge on the environment in an ordered way according to a theory (a mathematical model) will lead to a new angle to consider a problem in that environment, despite several gaps in the data array. A model to assess the radionuclide behaviour in contaminated aquatic ecosystems is a basis of decision analysis tools for helping decision-makers to select the most appropriate intervention strategies for the ecosystems. Practical use of a mathematical model and continuous effort in its validation were recognized as crucial. (author)

  10. Interactions of Soil Order and Land Use Management on Soil Properties in the Kukart Watershed, Kyrgyzstan

    Zulfiia Sakbaeva

    2012-01-01

    Full Text Available Surveys of soil properties related to soil functioning for many regions of Kyrgyzstan are limited. This study established ranges of chemical (soil organic matter (SOM, pH and total N (TN, physical (soil texture, and biochemical (six enzyme activities of C, N, P, and S cycling characteristics for nine profiles from the Kukart watershed of Jalal-Abad region in Kyrgyzstan. These profiles represent different soil orders (Inceptisols, Alfisols, and Mollisols and land uses (cultivated, nut-fruit forests, and pasture. The Sierozem (Inceptisols soils had the highest pH and contained the lowest SOM and TN contents compared to the Brown, Black-brown, and Meadow-steppe soils (Alfisols and Mollisols. Enzymatic activities within surface horizons (0–18 cm typically decreased in the following order: forest > pasture > cultivated. Enzyme activity trends due to land use were present regardless of elevation, climate, and soil types although subtle differences among soil types within land use were observed. The significant reductions in measured soil enzyme activities involved in C, N, P, and S nutrient transformations under cultivation compared to pasture and forest ecosystems and lower values under Inceptisols can serve as soil quality indicators for land use decisions in the watershed.

  11. Field studies of streamflow generation using natural and injected tracers on Bickford and Walker Branch Watersheds

    Field studies of streamflow generation were undertaken on two forested watersheds, the West Road subcatchment of Bickford Watershed in central Massachusetts and the West Fork of Walker Branch Watershed in eastern Tennessee. A major component of the research was development of a two-stage methodology for the use of naturally-occurring 222Rn as a tracer. The first of the two stages was solving a mass-balance equation for 222Rn around a stream reach of interest in order to calculate Rnq, the 222Rn content of the lateral inflow to the reach; a conservative tracer (chloride) and a volatile tracer (propane) were injected into the study stream to account for lateral inflow to, and volatilization from, the study reach. The second stage involved quantitative comparison of Rnq to the measured 222Rn concentrations of different subsurface waters in order to assess how important these waters were in contributing lateral inflow to the stream reach

  12. Identification and prioritization of critical sub-basins in a highly mountainous watershed using SWAT model

    Asghar Besalatpour; M. Ali Hajabbasi; Shamsolah Ayoubi; Ahmad Jalalian

    2012-01-01

    A few areas in a large watershed might be more critical and responsible for high amount of runoff and soil losses. For an effective and efficient implementation of watershed management practices, identification of these critical areas is vital. In this study, we used the Soil and Water Assessment Tool (SWAT, 2009) to identify and prioritize the critical sub-basins in a highly mountainous watershed with imprecise and uncertain data (Bazoft watershed, southwestern Iran). Three different SWAT mo...

  13. Optimal Reoperation of Multi-Reservoirs for Integrated Watershed Management with Multiple Benefits

    Xinyi Xu

    2014-04-01

    Full Text Available Constructing reservoirs can make more efficient use of water resources for human society. However, the negative impacts of these projects on the environment are often ignored. Optimal reoperation of reservoirs, which considers not only in socio-economic values but also environmental benefits, is increasingly important. A model of optimal reoperation of multi-reservoirs for integrated watershed management with multiple benefits was proposed to alleviate the conflict between water use and environmental deterioration. The social, economic, water quality and ecological benefits were respectively taken into account as the scheduling objectives and quantified according to economic models. River minimum ecological flows and reservoir water levels based on flood control were taken as key constraint conditions. Feasible search discrete differential dynamic programming (FS-DDDP was used to run the model. The proposed model was used in the upstream of the Nanpan River, to quantitatively evaluate the difference between optimal reoperation and routine operation. The results indicated that the reoperation could significantly increase the water quality benefit and have a minor effect on the benefits of power generation and irrigation under different hydrological years. The model can be readily adapted to other multi-reservoir systems for water resources management.

  14. Sustaining the Earth's Watersheds-Agricultural Research Data System: Data development, user interaction, and operations management

    To support the Agricultural Research Service’s Conservation Effects Assessment Project (CEAP) in assessing USDA conservation programs and practices on soil and water quality, a publicly available web-based watershed data system, called Sustaining the Earth’s Watersheds, Agricultural Research Data Sy...

  15. Valuing Soft Components in Agricultural Water Management Interventions in Meso-Scale Watersheds: A Review and Synthesis

    Jennie Barron

    2011-06-01

    Full Text Available Meso-scale watershed management (1-10,000 km2 is receiving growing attention as the spatial scale where policy in integrated water resource management (IWRM goes into operational mode. This is also where aggregated field-level agricultural water management (AWM interventions may result in externalities. But there is little synthesised 'lessons learned' on the costs and benefits of interventions at this scale. Here we synthesise selected cases and meta-analyses on the investment cost in 'soft components' accompanying AWM interventions. The focus is on meso-scale watersheds in Asia, sub-Saharan Africa and Latin America. We found very few cases with benefit-to-cost evaluation at full project level, or separate costing of hard and soft components. The synthesis suggests higher development success rates in communities with an initial level of social capital, where projects were implemented with cost- and knowledge-sharing between involved stakeholders, and where one or more 'agents of change' were present to facilitate leadership and communications. There is a need to monitor and evaluate both the external and the internal gains and losses in a more systematic manner to help development agents and other investors to ensure wiser and more effective investments in AWM interventions and watershed management.

  16. Impediments and Solutions to Sustainable, Watershed-Scale Urban Stormwater Management: Lessons from Australia and the United States

    Roy, Allison H.; Wenger, Seth J.; Fletcher, Tim D.; Walsh, Christopher J.; Ladson, Anthony R.; Shuster, William D.; Thurston, Hale W.; Brown, Rebekah R.

    2008-08-01

    In urban and suburban areas, stormwater runoff is a primary stressor on surface waters. Conventional urban stormwater drainage systems often route runoff directly to streams and rivers, thus exacerbating pollutant inputs and hydrologic disturbance, and resulting in the degradation of ecosystem structure and function. Decentralized stormwater management tools, such as low impact development (LID) or water sensitive urban design (WSUD), may offer a more sustainable solution to stormwater management if implemented at a watershed scale. These tools are designed to pond, infiltrate, and harvest water at the source, encouraging evaporation, evapotranspiration, groundwater recharge, and re-use of stormwater. While there are numerous demonstrations of WSUD practices, there are few examples of widespread implementation at a watershed scale with the explicit objective of protecting or restoring a receiving stream. This article identifies seven major impediments to sustainable urban stormwater management: (1) uncertainties in performance and cost, (2) insufficient engineering standards and guidelines, (3) fragmented responsibilities, (4) lack of institutional capacity, (5) lack of legislative mandate, (6) lack of funding and effective market incentives, and (7) resistance to change. By comparing experiences from Australia and the United States, two developed countries with existing conventional stormwater infrastructure and escalating stream ecosystem degradation, we highlight challenges facing sustainable urban stormwater management and offer several examples of successful, regional WSUD implementation. We conclude by identifying solutions to each of the seven impediments that, when employed separately or in combination, should encourage widespread implementation of WSUD with watershed-based goals to protect human health and safety, and stream ecosystems.

  17. Determining Watershed Management Efficacy in West Maui: line-point-intercept and photo quadrat surveys of benthic communities for benthic cover from 2014 to 2015

    National Oceanic and Atmospheric Administration, Department of Commerce — The focus of the Wahikuli-Honokowai Watershed Management Plan is the land use practices and alterations affected in the agricultural and urban districts that have...

  18. Determining Watershed Management Efficacy in West Maui: Belt transect surveys of coral demography (adult and juvenile corals) from 2014 to 2015

    National Oceanic and Atmospheric Administration, Department of Commerce — The focus of the Wahikuli-Honokowai Watershed Management Plan is the land use practices and alterations affected in the agricultural and urban districts that have...

  19. Study on Ecological Remediation for Water and Soil Conservation of a Small Watershed

    Chunjuan; ZHANG; Xueying; HE

    2013-01-01

    Taking the waterhead area of the middle line project for diverting water from the south to the north,Hanjiang watershed in Shiquan, as an example,ecological remediation of the small watershed was studied from aspects of necessity,practicability,plans and aims. The ecological restoration for soil and water conservation in Hanjiang River basin can not only control soil erosion and effectively protect water resources to provide clean water for people living in the lower reaches of Hanjiang mainstream,but also increase farmers’ income and protect environment, which is both typical and exemplary.

  20. Farmer-participatory integrated watershed management: Adarsha watershed, Kothapally India - an innovative and upscalable approach: case 7

    SP Wani; HP Singh; TK Sreedevi; P. Pathak; TJ Rego; Shiferaw, B.; SR Iyer

    2006-01-01

    This is a reprint from the book entitled "Research Towards Integrated Natural Resources Management: Examples of Research Problems, Approaches and Partnerships in Action in the CGIAR" ( Hat-wood, R.R.; Kassam, A.H. eds.).which briefly describes the tools and methods used in research and development for integrated natural resources management. They have been evolving over the years in order to tackle the complexities of farming systems in marginal areas, and the issues of environmental change i...

  1. Assessment of soil erosion using RUSLE and GIS: a case study of the Maotiao River watershed, Guizhou Province, China

    Yue-Qing, Xu; Jian, Peng; Xiao-Mei, Shao

    2009-02-01

    Due to the existence of fragile karst geo-ecological environments, such as environments with extremely poor soil cover, low soil-forming velocity, and fragmentized terrain and physiognomy, as well as inappropriate and intensive land use, soil erosion is a serious problem in Guizhou Province, which is located in the centre of the karst areas of southwestern China; evaluation of soil loss and spatial distribution for conservation planning is urgently needed. This study integrated the revised universal soil loss equation (RUSLE) with a GIS to assess soil loss and identify risk erosion areas in the Maotiao River watershed of Guizhou. Current land use/cover and management practices were evaluated to determine their effects on average annual soil loss and future soil conservation practices were discussed. Data used to generate the RUSLE factors included a Landsat Thematic Mapper image (land cover), digitized topographic and soil maps, and precipitation data. The results of the study compare well with the other studies and local data, and provide useful information for decision makers and planners to take appropriate land management measures in the area. It thus indicates the RUSLE-GIS model is a useful tool for evaluating and mapping soil erosion quantitatively and spatially at a larger watershed scale in Guizhou.

  2. Maasin Watershed Rehabilitation Project

    Iloilo City

    2007-01-01

    Metadata only record "Iloilo city government had great interest in preserving the main source of water for the city and the Maasin municipality wanted support to manage the watershed reserve. Degradation of the watershed is seen as the cause of increasing water scarcity and frequent floods. PES-1 (Payments for Environmental Services Associate Award)

  3. 2007 Bureau of Land Management (BLM) Lidar: Panther Creek Watershed, Yamhill County

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset represents LiDAR elevations acquired during a leaf-off and a leaf-on vegetative condition for the Upper Panther Creek Watershed in the Yamhill County...

  4. EQUITY IN DISTRIBUTION OF BENEFITS FROM WATER HARVESTING AND GROUNDWATER RECHARGE – AN ECONOMIC STUDY IN SUJALA WATERSHED PROJECT IN KARNATAKA

    Seema, H.M.; Chandrakanth, Mysore G.; Nagaraj, N.

    2008-01-01

    In this study, economic impact of water harvesting and groundwater recharging was analyzed in the context of Sujala watershed equity and efficiency in the distribution of benefits in Chitradurga district, Karnataka. Field data for 2004-05 (drought year) and 2005-06 (normal year) from 30 sample farmers in Sujala watershed form the data base for the study. Another sample of 30 farmers from Non-Sujala (or DPAP) watershed, and 30 from outside watershed area form the control. Farmers were further ...

  5. Hydrogeologic and Hydrochemical Studies in a Semi-arid Watershed in Northern Mexico

    Kretzschmar, T.; Vazquez, R.; Hinojosa, A.

    2006-12-01

    Within the Baja California panhandle exist quite a significant number of valleys which hydrogeology conditions are of great importance for the communities of the region. The Guadalupe Valley for example, located 30 km Northeast of Ensenada, hosts an important wine industry which presents a mayor factor for agriculture and tourism in Baja California. The irrigation is carried out basically by groundwater extracted from quaternary sediments filling this post-Miocene depression. Besides the intensive usage of the water by the wine industry in the Guadalupe Valley, the local waterworks installed in 1985 a gallery of 10 wells extracting around 320 l/s or 30 % of the total water extraction in the valley to supply the city of Ensenada with drinking water. A total of more than 500 wells with a combined annual consumption of about 28 Mio m3 are at the moment active in the valley. In the arid portions of northern Mexico Mountain front recharge presents an important recharge source for the alluvial aquifers. Other important sources directly related to precipitation are direct infiltration, recharge by surface water runoff in the arroyos as well as by active fault systems. The principal recharge sources for the Guadalupe Valley aquifer are the Sierra Juárez and the Guadalupe River. To be able to address the state of equilibrium of aquifer, recharge estimates for the watershed were calculated determining the runoff/infiltration relationships obtained by curve number determinations combined with the interpretation of satellite images. These results were integrated into an evaluation and hydrologic modeling of the hydrologic data pointing towards differences of up to over 50 percent in the recharge estimation in comparison to earlier studies carried out in the area. Furthermore hydrochemical and isotopic studies were carried out to show the effects of the excessive ground water extraction on the water quality of the aquifer. The hydrochemical data indicate that intense use of

  6. Impact of over-exploitation on groundwater quality: A case study from WR-2Watershed, India

    Anil M Pophare; Bhushan R Lamsoge; Yashwant B Katpatal; Vijay P Nawale

    2014-10-01

    The WR-2 watershed is located in the Deccan trap basaltic terrain of Maharashtra State, India. The watershed area incorporates a rich orange orchard belt that requires a huge quantity of water for irrigation. This requirement is mostly met through groundwater, extracted from the shallow aquifers of the WR-2 watershed. However, over the years, excess withdrawal of groundwater from these aquifers has resulted in depletion of groundwater level. The declining trends of groundwater level, both long term and short term, have had a negative impact on the groundwater quality of the study area. This effect can be gauged through the rising electrical conductivity (EC) of groundwater in the shallow aquifers (dug wells) of the WR-2 watershed. It is observed that the long term declining trend of groundwater level, during 1977–2010, varied from 0.03 to 0.04 m per year, whereas the corresponding trend of rising EC varied from 1.90 to 2.94 S/cm per year. During 2007–2010, about 56% dug wells showed a positive correlation between depleting groundwater level and rising EC values. The groundwater level depletion during this period ranged from 0.03 to 0.67 m per year, whereas the corresponding trend of rising EC ranged from 0.52 to 46.91 S/cm per year. Moreover, the water quality studies reveal that groundwater from more than 50% of the dug wells of the WR-2 watershed is not suitable for drinking purpose. The groundwater, though mostly suitable for irrigation purpose, is corrosive and saturated with respect to mineral equilibrium and shows a tendency towards chemical scale formation.

  7. Longer-term Stream Nitrogen Dynamics after Wildfire and Salvage Harvesting: Implications for Management Concepts based on Trajectories of Post-disturbance Watershed Recovery.

    Silins, U.; Emelko, M. B.; Bladon, K. D.; Stone, M.; Williams, C.; Martens, A. M.; Wagner, M. J.

    2015-12-01

    Biogeochemical processes reflecting interaction of vegetation and hydrology govern long-term export of nutrients such as nitrogen, phosphorus, and carbon over successional time scales. While management concepts of watershed "recovery" from disturbance back towards pre-disturbance conditions are often considered over much shorter timescales, few studies have directly explored watershed biogeochemical responses to disturbance long enough to directly document the longer-term trajectory of responses to severe land disturbance on nitrogen export. The objectives of this study were to document both the initial magnitude and patterns of longer-term recovery of stream nitrogen after the 2003 Lost Creek wildfire over nine years in front ranges of the Rocky Mountains in south-west Alberta, Canada. The study was conducted in seven instrumented catchments (4-14 km2), including burned, burned and salvage logged, and unburned (reference) conditions since 2004. Total nitrogen (TN) and nitrate (NO3-) concentrations and area-normalized yields were greater and more variable in burned and post-fire salvage logged catchments when compared with unburned catchments. Large initial increases in stream TN and NO3- production 1-3 years after both wildfire and post-fire salvage logging declined strongly to levels similar to, or below that of unburned watersheds 4-6 years after the fire, and continued to decline (although more slowly) 7-9 years after the wildfire. Post-fire salvage logging produced lower impacts on TN and NO3- in streams and these effects declined even more rapidly compared to the effects of wildfire alone. These changes closely corresponded to the early trajectory of establishment and rapid juvenile growth of post-fire regenerating forest vegetation in both catchment groups. While the concept of hydrologic recovery from disturbance is both a practical and meaningful concept for integrated landscape management for protection of forest water resources, the benchmark for

  8. Impact of Integrated Watershed Management on Complex Interlinked Factors Influencing Health: Perceptions of Professional Stakeholders in a Hilly Tribal Area of India.

    Nerkar, Sandeep S; Tamhankar, Ashok J; Johansson, Eva; Lundborg, Cecilia Stålsby

    2016-03-01

    Lack of access to water has a significant impact on the health of people in tribal areas, where water in households as well as for productive purposes is essential for life. In resource-limited settings such as hilly tribal areas, implementation of an integrated watershed management programme (IWMP) can have a significant impact on public health by providing a solution to water scarcity and related problems. The professional stakeholders in rural healthcare and development administration are important pillars of the system that implements various programmes and policies of government and non-government organizations, and act as facilitators for the improvement of public health in tribal areas. Information about the perceptions of these stakeholders on public health implications of the integrated watershed management programme is important in this context. A qualitative study was conducted using face to face semi-structured interviews and focus group discussions (FGDs) with stakeholders involved in healthcare provision, education and development administration. The transcripts of interviews and FGDs were analyzed using manifest and latent content analysis. The perceptions and experiences shared by healthcare and development administration stakeholders suggest that implementation of IWMP in tribal areas helps efficient water and agriculture management, which results in improved socio-economic conditions that lead to positive health outcomes. PMID:26959039

  9. Impact of Integrated Watershed Management on Complex Interlinked Factors Influencing Health: Perceptions of Professional Stakeholders in a Hilly Tribal Area of India

    Sandeep S. Nerkar

    2016-03-01

    Full Text Available Lack of access to water has a significant impact on the health of people in tribal areas, where water in households as well as for productive purposes is essential for life. In resource-limited settings such as hilly tribal areas, implementation of an integrated watershed management programme (IWMP can have a significant impact on public health by providing a solution to water scarcity and related problems. The professional stakeholders in rural healthcare and development administration are important pillars of the system that implements various programmes and policies of government and non-government organizations, and act as facilitators for the improvement of public health in tribal areas. Information about the perceptions of these stakeholders on public health implications of the integrated watershed management programme is important in this context. A qualitative study was conducted using face to face semi-structured interviews and focus group discussions (FGDs with stakeholders involved in healthcare provision, education and development administration. The transcripts of interviews and FGDs were analyzed using manifest and latent content analysis. The perceptions and experiences shared by healthcare and development administration stakeholders suggest that implementation of IWMP in tribal areas helps efficient water and agriculture management, which results in improved socio-economic conditions that lead to positive health outcomes.

  10. The Investigation on the Legislative Model of Watershed Management in China%我国流域管理立法模式探讨

    曾祥华

    2012-01-01

    加强流域管理立法是改善流域环境的一个重要途径,流域管理立法应当坚持可持续性原则、协调性原则、整体性原则、时效性原则。我国现行流域管理立法具有分散性、多层次性和应急性等特征。完善流域立法应当提高立法层次,加强协商机制和公众参与,解决区际协议的效力,及时废改旧法,创制统一的流域管理基本法,加强流域管理专门立法。%It is an important way to improve the watershed environment by strengthening the watershed management legislation, which should adhere to the principles of sustainability, coordination, integrity and timeliness. Current watershed management legislation has dispersion, multi--level quality, emergency response and other features. The improvement of the watershed legislation should improve the legislative level, strengthen the consultation mechanism and public participation, address the effectiveness of the inter--district agreement, and timely abolish the old law, and create a unified basic watershed management law, and strengthen the specific watershed management legislation.

  11. Benthic habitat map of the U.S. Coral Reef Task Force Watershed Partnership Initiative Kā'anapali priority study area and the State of Hawai'i Kahekili Herbivore Fisheries Management Area, west-central Maui, Hawai'i

    Cochran, Susan A.; Gibbs, Ann E.; White, Darla J.

    2014-01-01

    Nearshore areas off of west-central Maui, Hawai‘i, once dominated by abundant coral coverage, now are characterized by an increased abundance of turf algae and macroalgae. In an effort to improve the health and resilience of the coral reef system, the Kahekili Herbivore Fisheries Management Area was established by the State of Hawai‘i, and the U.S. Coral Reef Task Force selected the Kā‘anapali region as a priority study area. To support these efforts, the U.S. Geological survey mapped nearly 5 km2 of sea floor from the shoreline to water depths of about 30 m. Unconsolidated sediment (predominantly sand) constitutes 65 percent of the sea floor in the mapped area. Reef and other hardbottom potentially available for coral recruitments constitutes 35 percent of the mapped area. Of this potentially available hardbottom, only 51 percent is covered with a minimum of 10 percent coral, and most is found between 5 and 10 m water depth.

  12. A COLLABORATIVE LEARNING MATRIX FOR COMBINING SCIENCE WITH STAKEHOLDER INVOLVEMENT TO PRIORITIZE WATERSHED IMPLEMENTATION IN ARKANSAS' NONPOINT SOURCE STATE MANAGEMENT PLAN

    ROBERT MORGAN; MARTY MATLOCK

    2008-01-01

    In 2004, the Ecological Engineering Group at the University of Arkansas received a grant to update Arkansas' nonpoint source pollution (NPS) management program. A stakeholder involvement process was developed that used collaborative learning (CL) and comparative risk assessment (CRA) to prioritise watersheds for NPS implementation. The relative ecological risk posed by nonpoint pollution to each watershed was assessed and values assigned using available water quality, GIS, and demographic dat...

  13. Evaluating Coupled Human-Hydrologic Systems in High Altitude Regions: A Case Study of the Arun Watershed, Eastern Nepal

    Voss, K.; Bookhagen, B.; Tague, C.; Lopez-Carr, D.

    2014-12-01

    The Himalaya exhibit dynamic ecological, hydrological, and climatic extremes that magnify the variability and extent of natural hazards, resulting in destruction to both physical and human landscapes. Coupled with poverty, these factors intensify local communities' vulnerability to climate change. This study highlights the Arun watershed in eastern Nepal as a case study to evaluate how local communities in high altitude regions are managing their water for domestic and agricultural needs while coping with extreme events, such as floods and landslides. Remotely-sensed precipitation, snowpack and glacial extent data from the past decade are combined with preliminary results from extensive field-based community surveys in the Arun watershed. The analysis of remotely-sensed data will describe seasonal trends in water availability, glacial lake growth, and the spatial variation of these trends within the basin. These hydrologic changes will be linked to the human survey analysis, which will provide an understanding of locals' perceptions of water challenges and the current water management strategies within the basin. Particular attention will be given to a comparison between the eastern and western tributaries of the Arun River, where the catchments are mainly rain-fed (eastern) versus glacial-fed (western). This contrast will highlight how different hydrologic scenarios evidenced from remote-sensing data motivate diverse human water management responses as defined in field surveys. A particular focus will be given to management decisions related to agriculture expansion and hydropower development. This synthesis of remote-sensing and social research methodologies provides a valuable perspective on coupled human-hydrologic systems.

  14. Empirical streamflow simulation for water resource management in data-scarce seasonal watersheds

    J. E. Shortridge

    2015-10-01

    Full Text Available In the past decade, certain methods for empirical rainfall–runoff modeling have seen extensive development and been proposed as a useful complement to physical hydrologic models, particularly in basins where data to support process-based models is limited. However, the majority of research has focused on a small number of methods, such as artificial neural networks, despite the development of multiple other approaches for non-parametric regression in recent years. Furthermore, this work has generally evaluated model performance based on predictive accuracy alone, while not considering broader objectives such as model interpretability and uncertainty that are important if such methods are to be used for planning and management decisions. In this paper, we use multiple regression and machine-learning approaches to simulate monthly streamflow in five highly-seasonal rivers in the highlands of Ethiopia and compare their performance in terms of predictive accuracy, error structure and bias, model interpretability, and uncertainty when faced with extreme climate conditions. While the relative predictive performance of models differed across basins, data-driven approaches were able to achieve reduced errors when compared to physical models developed for the region. Methods such as random forests and generalized additive models may have advantages in terms of visualization and interpretation of model structure, which can be useful in providing insights into physical watershed function. However, the uncertainty associated with model predictions under climate change should be carefully evaluated, since certain models (especially generalized additive models and multivariate adaptive regression splines became highly variable when faced with high temperatures.

  15. Empirical streamflow simulation for water resource management in data-scarce seasonal watersheds

    Shortridge, J. E.; Guikema, S. D.; Zaitchik, B. F.

    2015-10-01

    In the past decade, certain methods for empirical rainfall-runoff modeling have seen extensive development and been proposed as a useful complement to physical hydrologic models, particularly in basins where data to support process-based models is limited. However, the majority of research has focused on a small number of methods, such as artificial neural networks, despite the development of multiple other approaches for non-parametric regression in recent years. Furthermore, this work has generally evaluated model performance based on predictive accuracy alone, while not considering broader objectives such as model interpretability and uncertainty that are important if such methods are to be used for planning and management decisions. In this paper, we use multiple regression and machine-learning approaches to simulate monthly streamflow in five highly-seasonal rivers in the highlands of Ethiopia and compare their performance in terms of predictive accuracy, error structure and bias, model interpretability, and uncertainty when faced with extreme climate conditions. While the relative predictive performance of models differed across basins, data-driven approaches were able to achieve reduced errors when compared to physical models developed for the region. Methods such as random forests and generalized additive models may have advantages in terms of visualization and interpretation of model structure, which can be useful in providing insights into physical watershed function. However, the uncertainty associated with model predictions under climate change should be carefully evaluated, since certain models (especially generalized additive models and multivariate adaptive regression splines) became highly variable when faced with high temperatures.

  16. Study of the relationship between runoff, rainfall and evaporation watershed in the southern zone of the Mediterranean (case of Algeria)

    Water resources in Algeria are not distributed evenly inspace and time that engenders enormous difficulties for their mobilization. Water shortage is becoming a major problem. A number of regions already suffers from water deficiency and the others will soon follow. To solve this problem, the construction of new dams becomes indispensable. Through the hydrological studies and the exploitation of future dams, the evaluation of wateryield in sites of these structures is indispensable. At present, the calculation of the interannual runoff in absence of data for the not gauged watercourse is determined from empirical formulae established especially for the climatic and geographical conditions of Algeria. Unfortunately, all these formulas do not provide accurate results.Watersheds which were used in the study represent almost the entire surface of Northern Algeria whose number is 106 basins.The objective of the present study is to establish working tools, allowing the planners and the managers to determine the value of the interannual runoff of watershed for the climatic conditions of Algeria without going through the empirical formulae often used in the absence of measurable dataand leading to absurd errors.The calculation parameters for interannual runoff from the proposed model are standard meteorological data (air temperature, humidity and pluviometry), always available and periodically broadcastedby meteorological services and hydrology of Algeria. Runoff values calculated by the model are close to the values of measured runoff.The difference between them didnot exceed 15 to 20%. (author)

  17. A framework model for investigating the export of phosphorus to surface waters in forested watersheds: Implications to management.

    Santos, R M B; Sanches Fernandes, L F; Pereira, M G; Cortes, R M V; Pacheco, F A L

    2015-12-01

    The present study was developed in four sub-basins of rivers Cávado and Douro, located in the North of mainland Portugal. The goal was to identify main stressors as well as driving and attenuating processes responsible for the presence of phosphorus in masses of surface water in those catchments. To accomplish the goal, the basins were selected where a quality station was present at the outlet, the forest occupation was greater than 75% and the phosphorus concentrations have repeatedly exceeded the threshold for the good ecological status in the period 2000-2006. Further, in two basins the quality station was installed in a lotic (free-flow water) environment whereas in the other two was placed in a lentic (dammed water) environment. The ArcMap GIS-based software package was used for the spatial analysis of stressors and processes. The yields of phosphorus vary widely across the studied basins, from 0.2-30 kg·ha(-1)·yr(-1). The results point to post-fire soil erosion and hardwood clear cuttings as leading factors of phosphorus exports across the watersheds, with precipitation intensity being the key variable of erosion. However, yields can be attenuated by sediment deposition along the pathway from burned or managed areas to water masses. The observed high yields and concentrations of phosphorus in surface water encompass serious implications for water resources management in the basins, amplified in the lentic cases by potential release of phosphorus from lake sediments especially during the summer season. Therefore, a number of measures were proposed as regards wildfire combat, reduction of phosphorus exports after tree cuts, attenuation of soil erosion and improvement of riparian buffers, all with the purpose of preventing phosphorus concentrations to go beyond the regulatory good ecological status. PMID:26225737

  18. Land use change for flood protection: A prospective study for the restoration of the river Jelašnica watershed

    Ristić Ratko

    2011-01-01

    Full Text Available Serbia’s hilly-mountainous regions are extremely vulnerable to flooding as a consequence of their natural characteristics and human impacts. Land mismanagement influences the development of erosion processes, and causes soil degradation that significantly reduces the land’s capacity to infiltrate and retain rainwater. Inappropriate land use as well as development activities replace permeable with impervious surfaces in the watershed. This leads to more rapid runoff generation and the more frequent appearance of torrential floods and bed-load deposits on downstream sections. Environmental degradation creates economicsocial problems within local societies which is often followed by depopulation. Restoring watersheds to their optimal hydrologic state would reduce flood discharge and by increasing groundwater recharge would increase both low-flow and average discharges in springs and streams. Best management practices could be developed through the application of specific combinations of biotechnical, technical and administrative measures, and by using the concept of ″natural reservoirs″. The design of such practices is explored through a case study of the watershed of the river Jelašnica, southeastern Serbia. Realization of these planned restoration works should help decrease the annual yields of erosive material by 44.1% and the specific annual transport of sediment through hydrographic network by 43.6%. Representative value of the coefficient of erosion will be reduced from Z=0.555 to Z=0.379. The value of maximal discharge Qmax-AMCIII (1%=54.17 m3•s-1, before restoration, is decreased to Qmax-AMCIII (1%=41.22 m3•s-1 after restoration, indicating the improvement of hydrological conditions, as a direct consequence of land use changes. Administrative measures are applied through ″Plans for announcement of erosive regions and protection from torrential floods in the territory of Leskovac municipality″.

  19. Managing Broiler Litter Application Rate and Grazing to Decrease Watershed Runoff Losses

    Pasture management and broiler litter application rate are critical factors influencing the magnitude of nutrients being transported by runoff from fields. This study was conducted to investigate the impact of pasture management (haying, grazing, and a haying and grazing combination) and broiler lit...

  20. Field studies of streamflow generation using natural and injected tracers on Bickford and Walker Branch Watersheds

    Genereux, D.; Hemond, H. (Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Civil Engineering); Mulholland, P. (Oak Ridge National Lab., TN (United States))

    1992-05-01

    Field studies of streamflow generation were undertaken on two forested watersheds, the West Road subcatchment of Bickford Watershed in central Massachusetts and the West Fork of Walker Branch Watershed in eastern Tennessee. A major component of the research was development of a two-stage methodology for the use of naturally-occurring {sup 222}Rn as a tracer. The first of the two stages was solving a mass-balance equation for {sup 222}Rn around a stream reach of interest in order to calculate Rn{sub q}, the {sup 222}Rn content of the lateral inflow to the reach; a conservative tracer (chloride) and a volatile tracer (propane) were injected into the study stream to account for lateral inflow to, and volatilization from, the study reach. The second stage involved quantitative comparison of Rn{sub q} to the measured {sup 222}Rn concentrations of different subsurface waters in order to assess how important these waters were in contributing lateral inflow to the stream reach.

  1. Quality of Water and Antibiotic Resistance of Escherichia coli from Water Sources of Hilly Tribal Villages with and without Integrated Watershed Management—A One Year Prospective Study

    Sandeep S. Nerkar

    2014-06-01

    Full Text Available In many hilly tribal areas of the world, water scarcity is a major problem and diarrhoea is common. Poor quality of water also affects the environment. An integrated watershed management programme (IWMP aims to increase availability of water and to improve life conditions. Globally, there is a lack of information on water contamination, occurrence of diarrhoea and antibiotic resistance, a serious global concern, in relation to IWMP in hilly tribal areas. Therefore, a prospective observational study was conducted during 2011–2012 in six villages in a hilly tribal belt of India, three with and three without implementation of an IWMP, to explore quality of water, diarrhoeal cases in the community and antibiotic resistance of Escherichia coli from water sources. The results showed that physico-chemical quality of water was within limits of safe consumption in all samples. The odds of coliform contamination in water samples was 2.3 times higher in non-watershed management villages (NWMV compared to integrated watershed management villages (IWMV (95% CI 0.8–6.45, p = 0.081. The number of diarrhoeal cases (18/663 vs. 42/639, p < 0.05 was lower in IWMV as compared to NWMV. Overall E. coli isolates showed high susceptibility to antibiotics. Resistance to a wider range of antibiotics was observed in NWMV.

  2. Milti-scaled studies of watershed characteristics within the Tongass National Forest, Southeast Alaska

    Edwards, R. T.; D'Amore, D. V.; Hood, E.; Fellman, J. B.; Norberg, E. C.; Biles, F. E.

    2005-12-01

    The Tongass National Forest (Tongass), in Southeast Alaska, is the largest temperate maritime, rainforest in North America. It covers an area of 68,798 km2, stretches over 6 degrees of latitude, encompasses over 5,000 anadramous salmon reaches, and includes over 70 ecoregions, associated with several major geologic terranes. Wetlands dominate this wet region, comprising about 30% of terrestrial area. The region is currently experiencing climate change with potentially profound impacts on wetland soil processes, forest structure, stream productivity and the large and valuable salmon fishery. Because of the size and remoteness of the forest, there are little data on stream chemistry, biological productivity, or discharge. To better predict the impacts of climate change, forest practices, or land use change on stream productivity, we require much better baseline data on naturally occurring variability in watershed and stream characteristics and the major biophysical drivers that control stream biogeochemistry. Our efforts to develop a systematic understanding of watershed types and responses include studies at three spatial, temporal and organizational scales. One study is aimed at developing a process-based understanding of how major wetland and vegetation types influence stream chemistry, particularly dissolved organic carbon, through hydrologic coupling and carbon, nitrogen and phosphorus transport. This study is restricted to paired or longitudinal watershed studies with intense sampling frequency and a broad array of detailed measurements. Costs are high and the generality of the results are implied but not confirmed. A second study, of intermediate temporal and spatial scale seeks to identify broader patterns in stream chemistry among three common Tongass stream types within the vicinity of Juneau, Alaska: glacial, brownwater and clearwater. This study has confirmed that these broad stream classes respond differently on a seasonal basis but provides no

  3. Methodology for a stormwater sensitive urban watershed design

    Romnée, Ambroise; Evrard, Arnaud; Trachte, Sophie

    2015-11-01

    In urban stormwater management, decentralized systems are nowadays worldwide experimented, including stormwater best management practices. However, a watershed-scale approach, relevant for urban hydrology, is almost always neglected when designing a stormwater management plan with best management practices. As a consequence, urban designers fail to convince public authorities of the actual hydrologic effectiveness of such an approach to urban watershed stormwater management. In this paper, we develop a design oriented methodology for studying the morphology of an urban watershed in terms of sustainable stormwater management. The methodology is a five-step method, firstly based on the cartographic analysis of many stormwater relevant indicators regarding the landscape, the urban fabric and the governance. The second step focuses on the identification of many territorial stakes and their corresponding strategies of a decentralized stormwater management. Based on the indicators, the stakes and the strategies, the third step defines many spatial typologies regarding the roadway system and the urban fabric system. The fourth step determines many stormwater management scenarios to be applied to both spatial typologies systems. The fifth step is the design of decentralized stormwater management projects integrating BMPs into each spatial typology. The methodology aims to advise urban designers and engineering offices in the right location and selection of BMPs without given them a hypothetical unique solution. Since every location and every watershed is different due to local guidelines and stakeholders, this paper provide a methodology for a stormwater sensitive urban watershed design that could be reproduced everywhere. As an example, the methodology is applied as a case study to an urban watershed in Belgium, confirming that the method is applicable to any urban watershed. This paper should be helpful for engineering and design offices in urban hydrology to define a

  4. A Total Water Management Analysis of the Las Vegas Wash Watershed, Nevada

    Climate change, land use change, and population growth are fundamental factors affecting future hydrologic conditions in streams, especially in arid regions with scarce water resources. Located in the arid southwest, Las Vegas Valley located within the Las Vegas Wash watershed is...

  5. Quantifying Urban Watershed Stressor Gradients and Evaluating How Different Land Cover Datasets Affect Stream Management

    We used a gradient (divided into impervious cover categories), spatially-balanced, random design (1) to sample streams along an impervious cover gradient in a large coastal watershed, (2) to characterize relationships between water chemistry and land cover, and (3) to document di...

  6. Preliminary hydrologic budget studies, Indian Creek watershed and vicinity, Western Paradox Basin, Utah

    Preliminary quantitative estimates of ground-water discharge into the Colorado River System in the western Paradox Basin were prepared on the basis of existing climatological and streamflow records. Ground-water outflow to the river was deduced as a residual from hydrologic budget equations for two different study areas: (1) the region between gaging stations at Cisco, Green River, and Hite, Utah; and (2) the Indian Creek watershed. An empirical correlation between recharge rates and precipitation amounts derived for several basins in eastern Nevada was applied to estimate recharge amounts for the Indian Creek watershed. A simple Darcian flow model was then used to approximate the ground-water flux outward from the watershed for comparison. Salinity measurements in the Colorado River were also used to approximate ground-water outflow to a river reach in Cataract Canyon in order to provide another comparison with the hydrologic budget results. Although these estimates should be considered only gross approximations, all approaches used provide values of ground-water outflow that are much less than estimates of similar parameters provided by the US Geological Survey in recent hydrologic reconnaissance reports. Estimates contained herein will be refined in future numerical modeling and data collection studies

  7. Watersheds in disordered media

    Araújo, N A M; Herrmann, H J; Andrade, J S

    2014-01-01

    What is the best way to divide a rugged landscape? Since ancient times, watersheds separating adjacent water systems that flow, for example, toward different seas, have been used to delimit boundaries. Interestingly, serious and even tense border disputes between countries have relied on the subtle geometrical properties of these tortuous lines. For instance, slight and even anthropogenic modifications of landscapes can produce large changes in a watershed, and the effects can be highly nonlocal. Although the watershed concept arises naturally in geomorphology, where it plays a fundamental role in water management, landslide, and flood prevention, it also has important applications in seemingly unrelated fields such as image processing and medicine. Despite the far-reaching consequences of the scaling properties on watershed-related hydrological and political issues, it was only recently that a more profound and revealing connection has been disclosed between the concept of watershed and statistical physics o...

  8. 农业最佳管理措施在全分布式水文模型中的表达--以罗玉沟流域为例%Representation of Agricultural Best Management Practices in a Fully Distributed Hydrologic Model:A Case Study in the Luoyugou Watershed

    吴辉; 刘永波; 刘军志; 朱阿兴

    2014-01-01

    Agricultural Best Management Practices (BMPs) are effective ways to reduce agricultural nonpoint source pol ution from their source area to receiving water bodies. Characterization of BMPs in a watershed model is a critical prerequisite for evaluating their impacts on water quantity and water quality in a complex system. However, limited research has reported about the representation of BMPs in fully distributed models. This paper presents a stepwise procedure for representation of several BMPs and assessment of their hydrologic impacts with a ful y distributed model, SEIM (Spatially Explicit Integrated Modeling). A case study is conducted in the 73 km2 Luoyugou watershed located in the Loess Plateau of China, where rainstorm erosion accounts for more than 60%of annual sediment load in average. Three BMPs are selected in this study including (i) conversion from farmland to forest, (i ) terrace, and (i i) no-til farming. These management practices are represented in the model through the alteration of model parameters characterizing their physical processes in the ifeld. The results of scenario assessment for a historical storm event showed that the maximum sediment reduction after terrace is about 97.3%, the average sediment reduction after no-till farming is about 9.5%, and the average sediment reduction after conversion from farmland to forest is 75.6%.%农业最佳管理措施(BMPs)是为了减少由农业活动引起的非点源污染,防止污染物进入受纳水体的一系列措施。分布式水文模型是流域非点源污染模拟和BMPs评估的重要工具。利用分布式水文模型评估BMPs在水土保持、拦沙减污的有效性,首先要在模型中对BMPs进行刻画和表达。但是,在全分布式水文模型中,如何进行BMPs表达的研究比较缺乏。本文以黄土高原丘陵沟壑区典型小流域罗玉沟流域为例,基于一个全分布式模型,SEIM(Spatially Explicit Integrated Modeling)模型,逐步

  9. Using Four Capitals to Assess Watershed Sustainability

    Pérez-Maqueo, Octavio; Martinez, M. Luisa; Vázquez, Gabriela; Equihua, Miguel

    2013-03-01

    The La Antigua watershed drains into the Gulf of Mexico and can be considered as one of the most important areas in Mexico because of its high productivity, history, and biodiversity, although poverty remains high in the area in spite of these positive attributes. In this study, we performed an integrated assessment of the watershed to recommend a better direction toward a sustainable management in which the four capitals (natural, human, social, and built) are balanced. We contrasted these four capitals in the municipalities of the upper, middle and lower watershed and found that natural capital (natural ecosystems and ecosystem services) was higher in the upper and middle watershed, while human and social capitals (literacy, health, education and income) were generally higher downstream. Overall, Human Development Index was negatively correlated with the percentage of natural ecosystems in the watershed, especially in the upper and lower watershed regions. Our results indicate that natural capital must be fully considered in projections for increasing human development, so that natural resources can be preserved and managed adequately while sustaining intergenerational well-being.

  10. Tracking the Primary Sources of Fecal Pollution in a Tropical Watershed in a One-Year Study

    Toledo-Hernandez, Carlos; Ryu, Hodon; Gonzalez-Nieves, Joel; Huertas, Evelyn; Gary A Toranzos; Santo Domingo, Jorge W.

    2013-01-01

    A study was conducted to determine the primary sources of fecal pollution in a subtropical watershed using host-specific assays developed in temperate regions. Water samples (n = 534) from 10 different sites along the Rio Grande de Arecibo (RGA) watershed were collected mostly on a weekly basis (54 sampling events) during 13 months. DNA extracts from water samples were used in PCR assays to determine the occurrence of fecal bacteria (Bacteroidales, Clostridium coccoides, and enterococci) and ...

  11. Site Suitability Analysis of Water Harvesting Structures Using Remote Sensing and GIS - A Case Study of Pisangan Watershed, Ajmer District, Rajasthan

    Prasad, H. C.; Bhalla, P.; Palria, S.

    2014-12-01

    Rajasthan is a region with very limited water resources. Water is the most crucial for maintaining an environment and ecosystem conducive to sustaining all forms of life. The principle of watershed management is the proper management of all the precipitation by the way of collection, storage and efficient utilization of runoff water and to recharge the ground water. The present study aim's to identify suitable zones for water harvesting structures in Pisangan watershed of Ajmer district, Rajasthan by using Geographic Information System (GIS) and Multi Criteria Evaluation (MSE). Multi criteria evaluation is carried out in Geographic Information system to help the decision makers in determining suitable zones for water harvesting structures based on the physical characteristics of the watershed. Different layers which were taken into account for multi criteria evaluation are; Soil texture, slope, rainfall data (2000-2012), land use/cover, geomorphology, lithology, lineaments, drainage network. The soil conservation service model was used to estimate the runoff depth of the study area Analytical Hierarchy Processes (AHP) is used to find suitable water harvesting structures on the basis of rainfall. Produced suitability map will help in the selection of harvesting structures such as percolation tanks, storage tank, check dams and stop dams.

  12. HYDROGEOMORPHOLOGICAL STUDIES IN JAIPANDA WATERSHED, WEST BENGAL STATE, INDIA USING REMOTE SENSING AND GIS TECHNIQUES

    SUBODH CHANDRA PAL

    2013-05-01

    Full Text Available To evaluate the hydrogeomorphological conditions of Jaipanda watershed, Bankura district, West Bengal geological, hydrogeological and geomorphological studies were carried out, through visual interpretation of satellite data (LANDSAT, ETM+ with adequate ground truth. The study shows that the Jaipanda river basin is occupied by granites and gneisses of Archaean age. The recent alluvium deposits are present along the steam courses. The study area is traversed by various directional features or lineaments and most of them are NE-SW, ENE-WSW and EW directions. Groundwater potential of geomorphological unites viz. Denudational hill, Residual hill, Pediment, Pediplain and Valley fill is discussed.

  13. Emerging Technologies for Ecohydrological Studies during the North American Monsoon in a Chihuahuan Desert Watershed

    Templeton, R. C.; Vivoni, E. R.; Mendez-Barroso, L. A.; Rango, A.; Laliberte, A.; Saripalli, S.

    2010-12-01

    Monsoonal systems are due to seasonal shifts in atmospheric circulation that may result in a large fraction of the annual precipitation falling within a few months. The North American Monsoon System (NAMS) contributes approximately 55% of the annual rainfall in the New Mexico Chihuahuan Desert during the summer period. Relatively frequent storm events during the NAMS result in increased soil moisture that drive greater soil microbial activity and increased ecosystem primary productivity. During severe storms, runoff production can lead to flood events that recharge the subsurface through channel losses. In this study, we present preliminary results from a network of soil, channel, and atmospheric monitoring equipment in a small watershed (~0.05 km2) located in the Jornada Experimental Range (JER) near Las Cruces, New Mexico. Using the instrument network, we characterize the temporal and spatial variability of rainfall (5 rain gauges), soil moisture and temperature (16 profile locations), and channel runoff (4 flumes) within the watershed during the summer of 2010. In addition, we utilize CO2, H2O, and energy flux measurements by an eddy covariance tower to quantify the seasonal changes in land-atmosphere exchanges. These coordinated, spatially-distributed observations are complemented by the novel use of two Unmanned Aerial Vehicle (UAV) platforms for watershed characterization. Using a small airplane (the MLB BAT 3), we obtained a set of very high-resolution images (~7 cm) and created an orthomosaic to characterize vegetation cover and species prior to the NAMS and after full canopy development. Several instrument packages (optical, stereo and LIDAR) on board a SR30 UAV Electric helicopter also provide detailed information on the watershed, including a high-resolution digital elevation model (DEM). The conjunctive use of these datasets will allow for unprecedented analysis of how the onset and progression of the NAMS affects water, energy and carbon fluxes in a

  14. Cicatih Watershed

    CIFOR

    2007-01-01

    On the 15 of March, IPB and CIFOR organized a workshop as an initial effort to invite all stakeholders of CICATIH watershed (Sukabumi - West Java) to discuss potentials and constrains in protecting the watershed and improving the quality of life of the people residing within the watershed. PES-1 (Payments for Environmental Services Associate Award)

  15. Watershed Seasons

    Endreny, Anna

    2007-01-01

    All schools are located in "watersheds," land that drains into bodies of water. Some watersheds, like the one which encompasses the school discussed in this article, include bodies of water that are walking distance from the school. The watershed cited in this article has a brook and wetland within a several-block walk from the school. This…

  16. Feasibility Study of Carbon Sequestration Through Reforestation in the Chesapeake Bay Watershed of Virginia

    Andy Lacatell; David Shoch; Bill Stanley; Zoe Kant

    2007-03-01

    The Chesapeake Rivers conservation area encompasses approximately 2,000 square miles of agricultural and forest lands in four Virginia watersheds that drain to the Chesapeake Bay. Consulting a time series of classified Landsat imagery for the Chesapeake Rivers conservation area, the project team developed a GIS-based protocol for identifying agricultural lands that could be reforested, specifically agricultural lands that had been without forest since 1990. Subsequent filters were applied to the initial candidate reforestation sites, including individual sites > 100 acres and sites falling within TNC priority conservation areas. The same data were also used to produce an analysis of baseline changes in forest cover within the study period. The Nature Conservancy and the Virginia Department of Forestry identified three reforestation/management models: (1) hardwood planting to establish old-growth forest, (2) loblolly pine planting to establish working forest buffer with hardwood planting to establish an old-growth core, and (3) loblolly pine planting to establish a working forest. To assess the relative carbon sequestration potential of these different strategies, an accounting of carbon and total project costs was completed for each model. Reforestation/management models produced from 151 to 171 tons carbon dioxide equivalent per acre over 100 years, with present value costs of from $2.61 to $13.28 per ton carbon dioxide equivalent. The outcome of the financial analysis was especially sensitive to the land acquisition/conservation easement cost, which represented the most significant, and also most highly variable, single cost involved. The reforestation/management models explored all require a substantial upfront investment prior to the generation of carbon benefits. Specifically, high land values represent a significant barrier to reforestation projects in the study area, and it is precisely these economic constraints that demonstrate the economic additionality

  17. Watershed Restoration Project

    Julie Thompson; Betsy Macfarlan

    2007-09-27

    In 2003, the U.S. Department of Energy issued the Eastern Nevada Landscape Coalition (ENLC) funding to implement ecological restoration in Gleason Creek and Smith Valley Watersheds. This project was made possible by congressionally directed funding that was provided through the US Department of Energy, Energy Efficiency and Renewable Energy, Office of the Biomass Program. The Ely District Bureau of Land Management (Ely BLM) manages these watersheds and considers them priority areas within the Ely BLM district. These three entities collaborated to address the issues and concerns of Gleason Creek and Smith Valley and prepared a restoration plan to improve the watersheds’ ecological health and resiliency. The restoration process began with watershed-scale vegetation assessments and state and transition models to focus on restoration sites. Design and implementation of restoration treatments ensued and were completed in January 2007. This report describes the restoration process ENLC undertook from planning to implementation of two watersheds in semi-arid Eastern Nevada.

  18. Project management case studies

    Kerzner, Harold R

    2013-01-01

    A new edition of the most popular book of project management case studies, expanded to include more than 100 cases plus a ""super case"" on the Iridium Project Case studies are an important part of project management education and training. This Fourth Edition of Harold Kerzner''s Project Management Case Studies features a number of new cases covering value measurement in project management. Also included is the well-received ""super case,"" which covers all aspects of project management and may be used as a capstone for a course. This new edition:Contains 100-plus case studies drawn from re

  19. Ecosystem services valuation to support decisionmaking on public lands—A case study of the San Pedro River watershed, Arizona

    Bagstad, Kenneth J.; Semmens, Darius; Winthrop, Rob; Jaworksi, Delilah; Larson, Joel

    2012-01-01

    This report details the findings of the Bureau of Land Management–U.S. Geological Survey Ecosystem Services Valuation Pilot Study. This project evaluated alternative methods and tools that quantify and value ecosystem services, and it assessed the tools’ readiness for use in the Bureau of Land Management decisionmaking process. We tested these tools on the San Pedro River watershed in northern Sonora, Mexico, and southeast Arizona. The study area includes the San Pedro Riparian National Conservation Area (managed by the Bureau of Land Management), which has been a focal point for conservation activities and scientific research in recent decades. We applied past site-specific primary valuation studies, value transfer, the Wildlife Habitat Benefits Estimation Toolkit, and the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) and Artificial Intelligence for Ecosystem Services (ARIES) models to value locally important ecosystem services for the San Pedro River watershed—water, carbon, biodiversity, and cultural values. We tested these approaches on a series of scenarios to evaluate ecosystem service changes and the ability of the tools to accommodate scenarios. A suite of additional tools were either at too early a stage of development to run, were proprietary, or were place-specific tools inappropriate for application to the San Pedro River watershed. We described the strengths and weaknesses of these additional ecosystem service tools against a series of evaluative criteria related to their usefulness for Bureau of Land Management decisionmaking. Using these tools, we quantified gains or losses of ecosystem services under three categories of scenarios: urban growth, mesquite management, and water augmentation. These results quantify tradeoffs and could be useful for decisionmaking within Bureau of Land Management district or field offices. Results are accompanied by a relatively high level of uncertainty associated with model outputs, valuation

  20. Investigation of the promotion and adoption of sustainable natural resource management agricultural practices in the Chimbo watershed of Ecuador

    Alwang, Jeffrey

    2009-01-01

    Final report for SANREM summer internship in Ecuador. Describes evaluation of determinants of adoption of soil conservation practices in Chimbo watershed, Ecuador LTRA-3 (Watershed-based NRM for Small-scale Agriculture)

  1. Modelling the hydrologic role of glaciers within a Water Evaluation and Planning System (WEAP: a case study in the Rio Santa watershed (Peru

    T. Condom

    2011-01-01

    Full Text Available For the past 30 years, a process of glacier retreat has been observed in the Andes, raising alarm among regional water resources managers. The purpose of this paper is to develop a model of the role of Andean glaciers in the hydrology of their associated watersheds, which is appropriate for application at a river basin scale, with an eye towards creating an analytical tool that can be used to assess the water management implications of possible future glacier retreat. While the paper delves deeply into our formulation of a glacier module within a water resources management modelling system, the widely subscribed Water Evaluation and Planning System (WEAP, the originality of our work lies less in the domain of glaciology and more in how we apply an existing reduced form representation of glacier evolution within a model of the climate-glacier-hydrology-water management continuum. Key insights gained pertain to appropriate ways to deploy these reduced form representations in a relatively data poor environment and to effectively integrate them into a modelling framework that places glaciers within a wider water management context. The study area is the Rio Santa watershed in Peru which contains many of the expansive glaciers of the singular Cordillera Blanca. The specific objectives of this study included: (i adequately simulating both monitored glacier retreat and observed river flows from the last forty years using historical climate time series as model input; (ii quantifying the proportion of river flow in the Rio Santa produced from melting glaciers during this period; (iii estimating the historical contribution of groundwater accretions to river flows; and (vi reproducing a reasonable simulation of recent hydropower operations in the Rio Santa system. In pursuit objective (i, a split sample calibration-validation of the model was conducted by comparing the simulated glacier area to Landsat images taken in 1987 and 1998 and observed and

  2. Water-right and water-allocation procedures of farmers' managed perennial spate irrigation systems of mithawan watershed, D.G. Khan, Pakistan

    A study was conducted on water rights, water allocation and local institutions prevailing in the perennial spate irrigation systems of Mithawan watershed o D.G. Khan District of Punjab. The Study Area was selected is the Mthawan watershed on the D.G. Khan-Quetta Road almost 70 kms from D.G. Khan and 10 km away from the road, representing real-life operating systems. Small-scale isolated and large-scale contiguous perennial spate irrigation systems were selected for study. A three-prong methodology was designed covering (a) interactive dialogue of the focus groups to document the community-perceptions regarding systems water-rights, water allocation and local institution prevailing in the area; (b) structured interviews to document systematic data regarding some of the study-aspects; and (c) diagnostic surveys to document some of the measured data regarding scheme performance. Water rights and allocation procedures both in small-scale isolated and large-scale Contiguous perennial spate irrigation-system are very clearly defined and do not change with time and space. Local institutions like Biradri and Muchi take care of just allocation of water. An irrigator is deputed who takes care of allocated time among various tribes. At the same time, the community is bringing more area under irrigation. Obviously it has increased water-requirements and in turn management of irrigation system. Previously they were reconstructing the diversion structure only. Present expansion in irrigated area has increased the necessity of maintaining the water-conveyance network more frequently, particularly at critical sections. However, the realization regarding water-losses still needs to be promoted. The linkages of resource-management with water-productivity are going to be the future area of consideration in theses systems, due to expansion of the system largely because of increased population and urge to increase their livelihood. (author)

  3. Discussions about some theoretical issues of small watershed comprehensive management%小流域综合治理的几个理论问题探讨

    余新晓

    2012-01-01

    Soil and water resources are vital basic resources in mankind' s living and development progress. The Loss of soil and water resources caused by soil erosion has already seriously obstructed economy development of our country, which has been the first environmental problem. Therefore, it is essential for our country to carry out comprehensive management of soil erosion, with small watershed as unit. After SO years of exploration and development, the achievements of the small watershed management model are positive and remarkable. However, many weaknesses and outstanding theoretical problems we faced must be resolved. In order to solve the outstanding theory problems and provide some references for future study, this paper summarized the problems existed in comprehensive management of small watershed from the following aspects: soil erosion, hydrology and water resources, ecosystem economy, health, environment and ecosystem engineering.%水土资源是人类生存和发展过程中不可代替的基础资源,而由土壤侵蚀引发的水土资源流失问题已严重阻碍了我国经济的可持续发展,成为我国的头号环境问题.为此以小流域为单元,开展水土流失综合治理是我国可持续发展的必然选择.经过50多年的不断探索与发展,小流域综合治理模式成效显著,治理模式已日趋成熟,然而在肯定成果的同时,也面临着不少薄弱环节和突出理论问题亟待解决.为此,主要基于理论角度,从流域土壤侵蚀、流域水文与水资源、流域生态经济、流域生态系统健康、流域环境和流域生态工程等6方面对小流域综合治理过程中存在的问题加以总结,为小流域综合治理的未来发展提供一定参考.

  4. Modeling the Effects of Fire on Streamflow in a Chaparral Watershed

    McMichael, Christine E.

    2004-01-01

    A comprehensive understanding of the effects of fire and post-fire succession on streamflow dynamics in California chaparral watersheds is needed to facilitate effective planning and management in these semi-arid shrublands. Watershed experiments have provided insights into the hydrologic effects of fire and post fire succession in chaparral watersheds, however extrapolation of these results is constrained by the small number of studies and the limited space and/or time scales examined. As i...

  5. Construction Management : Study Book

    Ilveskoski, Olli; Niittymäki, Seppo

    2015-01-01

    This publication is a summary of the Construction Management course handscript. The objective is that as the students gets involved with the Construction Management of Building Projects they will learn Construction Management topics like Building Process, Production planning, Quantity Take Off, Cost Estimation, Scheduling, Work Safety and Quality Control. The study book has been in use in Construction Management courses in Häme University of Applied Sciences.

  6. Watersheds in disordered media

    Andrade, Joséi, Jr.; Araújo, Nuno; Herrmann, Hans; Schrenk, Julian

    2015-02-01

    What is the best way to divide a rugged landscape? Since ancient times, watersheds separating adjacent water systems that flow, for example, toward different seas, have been used to delimit boundaries. Interestingly, serious and even tense border disputes between countries have relied on the subtle geometrical properties of these tortuous lines. For instance, slight and even anthropogenic modifications of landscapes can produce large changes in a watershed, and the effects can be highly nonlocal. Although the watershed concept arises naturally in geomorphology, where it plays a fundamental role in water management, landslide, and flood prevention, it also has important applications in seemingly unrelated fields such as image processing and medicine. Despite the far-reaching consequences of the scaling properties on watershed-related hydrological and political issues, it was only recently that a more profound and revealing connection has been disclosed between the concept of watershed and statistical physics of disordered systems. This review initially surveys the origin and definition of a watershed line in a geomorphological framework to subsequently introduce its basic geometrical and physical properties. Results on statistical properties of watersheds obtained from artificial model landscapes generated with long-range correlations are presented and shown to be in good qualitative and quantitative agreement with real landscapes.

  7. Water quality in watershed of the Jaboatão River (Pernambuco, Brazil: a case study

    Souza Antonio Donizetti Gonçalves de

    2003-01-01

    Full Text Available The purpose of the present work was to evaluate anthropogenic influences on the water quality and to offer a subsidy to the establishment of water quality goals in the Jaboatão River Basin (Pernambuco State, Brazil. Eight sampling points were established and were sampled monthly during one hydrological cycle (March/98-February/99. The following variables were analyzed: temperature, pH, conductivity, chlorine, alkalinity, dissolved oxygen, biochemical oxygen demand, fecal coliforms, nitrate, total phosphorus and total solids. The most critical variables related to water quality objectives were dissolved oxygen, fecal coliforms and total phosphorus. Maps of land use, legally protected areas, area industries, and water withdrawals were utilized in order to propose division of the watershed into regions and to provide water quality management information.

  8. Towards integrated watershed management in highland Ethiopia: the Chemoga watershed case study

    Bewket, W.

    2003-01-01

    Resource degradation is a critical problem in highland Ethiopia. Past soil and water conservation efforts did not bring about significant results. Hence, there is an urgent need to tackle the problem through new conservation approaches and technologies. This thesis discusses the need for and possibi

  9. SWITCHGRASS BIOFUELS RESEARCH WITH NATIVE GRASSES AT THE USDA-ARS PASTURE SYSTEMS AND WATERSHED MANAGEMENT RESEARCH UNIT, UNIVERSITY PARK, PENNSYLVANIA

    Research on switchgrass (Panicum virgatum L.) as a biomass energy crop is conducted at several USDA-ARS facilities across the USA. At the USDA-ARS Pasture Systems and Watershed Management Research Unit in University Park, Pennsylvania, research on biomass energy focuses on cropping systems, environm...

  10. Study of the quality and quantity of waters of a tributary watershed of Paraíba do Sul river- São Paulo, after environmental preservation actions

    Alexandra Andrade

    2012-12-01

    Full Text Available Monitoring programs of water quality and quantity are necessary to provide subsidies to assess the conditions of the watersheds and for decision making regarding to the management of water resources. This study analyzed the quality and quantity of waters of the Macacos stream watershed, a tributary of the Paraíba do Sul river, in São Paulo State, by monitoring the parameters: temperature, pH, conductivity and dissolved oxygen at five sites in the watershed. The measurements of flow and height of water depth during dry and wet seasons of 2010 and 2011 allowed the construction of the "rating curve" in four points of water quality monitoring and to reconstruct the series of water flow in these seasons. The analysis results showed that there is indication of changes in water quality parameters due to the conservation practices adopted. The water temperature parameter was the most influenced by the seasonal variation in runoff. Several physical factors may have influenced the correlation of the other parameters with runoff, especially the different environmental recovery actions implemented in the study to achieve the sustainability of the water resources.

  11. The assessment of land use change impact on watersheds runoff using SWAT: case study of Urmia Lake in Iran

    Jabbari, Anahita; Jarihani, Ben; Rezaie, Hossein

    2015-04-01

    Lake Urmia, long counted among the world's largest saltwater lakes, contains only 5% of the amount of water it did just 20 years ago. The decline is generally blamed on a combination of drought, increased water diversion for irrigated agriculture within the lake's watershed and land use mismanagement. It has been believed that land use changes in Lake Urmia basin is one of the most important factors in shrinkage of Urmia Lake in recent decades. Transforming the traditional agricultural practices (i.e., wheat) to the more water consuming practices (i.e., apple orchards) is one of the most important reasons increased agricultural water consumption in the watershed. In this study we assessed the effect of the land use changes of watershed in hydrological runoff processing in the Nazloo chai watershed, one of the most important river basins of the Urmia Lake basin. Actually the rapid and at the same time unreasonable transformations of land use in farm lands of Urmia lake sub basins, extremely has been raised the amount of blue water (surface or groundwater) consumption in watershed which leads to dramatic decrement of watershed runoff amounts. One of the most unfavorable consequences of land use change was changing the blue and green (rainwater insofar as it does not become runoff) water usage patterns in watershed, in addition to water use increment. The soil and water assessment tool (SWAT), one of the most important and reliable models which was used to model the rainfall runoff, has been used in current study. The land use maps were extracted from Landsat images archives for the most severe turning points in respect of land use change in the recent 30 years. After calibrating the model, several land use patterns of historical data were used in the model to produce the runoff. The results showed the strong relation between land use change and runoff reduction in the Lake Urmia basin.

  12. Modeling Fate and Transport of Fecal Coliform Bacteria Using SWAT 2005 (Case Study: Jajrood River Watershed, Iran)

    Maghrebi, M.; Tajrishy, M.

    2010-12-01

    Jajrood River watershed is one of the main drinking water resources of the capital city of Tehran, Iran. In addition it has been available as many recreational usages especially in the warm months. As a result of being located near one of the crowded cities of the world, a variety of microbial pollutions is commonly perceived in the Jajrood River. Among them, there are strong concerns about fecal coliform bacteria concentration. This article aimed to model fate and transport of fecal coliform bacteria in Jajrood River watershed using Soil and Water Assessment Tool (SWAT) model version 2005. Potential pollutant sources in the study area were detected and quantified for modeling purposes. In spite of being lack of knowledge about bacteria die-off rate in small river bodies, as well as in other watershed-based forms, fecal coliform bacteria die-off rates were estimated using both laboratory and field data investigations with some simplifications. The SWAT model was calibrated over an extended time period (1997-2002) for this watershed. The river flow calibrated using SUFI-2 software and resulted in a very good outputs (R2=0.82, E=0.81). Furthermore SWAT model was validated over January 2003 to September 2005 in the study area and has resulted in good outputs (R2=0.61, E=0.57). This research illustrates SWAT 2005 capability to model fecal coliform bacteria in a populated watershed, and deals with most of watershed microbial pollution sources that are usually observed in developing countries. Fecal coliform concentration simulation results were mostly in the same order in comparison with real data. However, Differences were judged to be related to lack of input data. In this article different aspects of SWAT capabilities for modeling of fecal coliform bacteria concentration will be reviewed and it will present new insights in bacteria modeling procedures especially for mountainous, high populated and small sized watersheds.

  13. Investigation of accuracy of CORINE 2006 land cover data used in watershed studies

    Ayhan Ateşoğlu

    2016-01-01

    Full Text Available There have been many studies concerning the use of sustainable natural resources. The planning concerning the results of watershed-based studies is made for the future. The issue to be considered in these studies, is obtaining accurate data. The most important data of the studies in the watershed basin is obtaining land cover/use data. Land cover / land classification done by using remote sensing and GIS and monitoring the change periodically are both easy and economical. To this end, CORINE (Coordination of Information on the Environment land cover program was initiated by The European Commission (CEC. The accuracy of CORINE 2006 land cover data was evaluated using high resolution Google Earth data in two separate test areas located in the Black Sea and Central Anatolia region. Random 5000 points for each test area were assigned to classes according to the CORINE classification method using Google Earth and were compared with the CORINE 2006 data. The accuracy of first test area in Black Sea region was calculated as 51.80% the accuracy of second test area in Central Anatolia region was calculated as 55.32%. For each test area, CORINE 2006 data has not been found to be up to date and has been detected to have low accuracy.

  14. Landslide susceptibility analysis using Probabilistic Certainty Factor Approach: A case study on Tevankarai stream watershed, India

    Evangelin Ramani Sujatha; G Victor Rajamanickam; P Kumaravel

    2012-10-01

    This paper reports the use of a GIS based Probabilistic Certainty Factor method to assess the geo-environmental factors that contribute to landslide susceptibility in Tevankarai Ar sub-watershed, Kodaikkanal. Landslide occurrences are a common phenomenon in the Tevankarai Ar sub-watershed, Kodaikkanal owing to rugged terrain at high altitude, high frequency of intense rainfall and rapidly expanding urban growth. The spatial database of the factors influencing landslides are compiled primarily from topographical maps, aerial photographs and satellite images. They are relief, slope, aspect, curvature, weathering, soil, land use, proximity to road and proximity to drainage. Certainty Factor Approach is used to study the interaction between the factors and the landslide, highlighting the importance of each factor in causing landslide. The results show that slope, aspect, soil and proximity to roads play important role in landslide susceptibility. The landslide susceptibility map is classified into five susceptible classes – low, very low, uncertain, high and very high − 93.32% of the study area falls under the stable category and 6.34% falls under the highly and very highly unstable category. The relative landslide density index (R index) is used to validate the landslide susceptibility map. R index increases with the increase in the susceptibility class. This shows that the factors selected for the study and susceptibility mapping using certainty factor are appropriate for the study area. Highly unstable zones show intense anthropogenic activities like high density settlement areas, and busy roads connecting the hill town and the plains.

  15. Stability of patches of oasis landscape in arid areas: A case study of Sangong River Watershed, Xinjiang, China

    LUO Geping; ZHOU Chenghu; CHEN Xi

    2006-01-01

    The stability of oases is one of the key scientific issues in the process of evolution and management of oases in arid areas. The stability of oases and its representation are also different at different scales. This paper deals with the stability of oases at the landscape patch scale with a case study in the Sangong River Watershed of Tianshan Mountains.We employed the remote sensing, geographic information system and mathematical statistical methods to process the remote sensing images of three periods in 1978, 1987 and 1998, and put forward the approaches for representing the oasis stability at the landscape patch scale. The landscape control capacity of oasis patches is a kind of natural driving forces of the dynamic landscape change. The control capacity of a certain patch type on landscape change increases with its area and shape complexity and contrasts between it and other patches, and reduces with its spatial distances between it and other patches. The patch type with the strongest control capacity should be the matrix of landscape. The conversion of oasis landscape patches results from both natural and anthropogenic driving forces, particularly the anthropogenic driving forces. The higher the conversion proportion is, the lower the stability of patch types is and the stronger the anthropogenic disturbance is. The patch type with the strongest net control capacity in the Sangong River Watershed in 1987 was the desert grassland, which was the matrix of landscapes; but the matrix of landscapes had been changed into the irrigated lands in 1987 and 1998.The control capacities of landscape patches on the oasis landscape evolution have gradually reduced with time in the Sangong River Watershed, and the change extents also have reduced gradually. This reveals that the interaction among the landscape patch types generally tends to reduce, and the natural stability of the oasis landscape patches generally tends to increase. However, the conversion among the

  16. Managing Microbial Risks from Indirect Wastewater Reuse for Irrigation in Urbanizing Watersheds.

    Verbyla, Matthew E; Symonds, Erin M; Kafle, Ram C; Cairns, Maryann R; Iriarte, Mercedes; Mercado Guzmán, Alvaro; Coronado, Olver; Breitbart, Mya; Ledo, Carmen; Mihelcic, James R

    2016-07-01

    Limited supply of clean water in urbanizing watersheds creates challenges for safely sustaining irrigated agriculture and global food security. On-farm interventions, such as riverbank filtration (RBF), are used in developing countries to treat irrigation water from rivers with extensive fecal contamination. Using a Bayesian approach incorporating ethnographic data and pathogen measurements, quantitative microbial risk assessment (QMRA) methods were employed to assess the impact of RBF on consumer health burdens for Giardia, Cryptosporidium, rotavirus, norovirus, and adenovirus infections resulting from indirect wastewater reuse, with lettuce irrigation in Bolivia as a model system. Concentrations of the microbial source tracking markers pepper mild mottle virus and HF183 Bacteroides were respectively 2.9 and 5.5 log10 units lower in RBF-treated water than in the river water. Consumption of lettuce irrigated with river water caused an estimated median health burden that represents 37% of Bolivia's overall diarrheal disease burden, but RBF resulted in an estimated health burden that is only 1.1% of this overall diarrheal disease burden. Variability and uncertainty associated with environmental and cultural factors affecting exposure correlated more with QMRA-predicted health outcomes than factors related to disease vulnerability. Policies governing simple on-farm interventions like RBF can be intermediary solutions for communities in urbanizing watersheds that currently lack wastewater treatment. PMID:26992352

  17. Willingness to Adopt Best Management Practice Bundles by Beef Cattle Operations in an East Tennessee Watershed

    Kutz, Alicia M.; Christopher D. Clark; Christopher N. Boyer; Lambert, Dayton M.

    2014-01-01

    Voluntary programs to reduce nonpoint source pollution are an important component of efforts to reduce water quality degradation in the U.S. Understanding the factors influencing the willingness of nonpoint sources such as farms to participate in these programs is critical to effectively designing and implementing these programs. This study examines factors influencing willingness to adopt four different best management practices—rotational grazing, pasture improvement, stream water crossing,...

  18. Locating farmer-based knowledge and vested interests in natural resource management: the interface of ethnopedology, land tenure and gender in soil erosion management in the Manupali watershed, Philippines

    Price Lisa

    2007-09-01

    Full Text Available Abstract This paper examines local soil knowledge and management in the Manupali watershed in the Philippines. The study focuses on soil erosion and its control. Research methods used in the study include ethnosemantic elicitations on soils and focus group discussions. In addition, in-depth work was conducted with 48 farmers holding 154 parcels at different elevations/locations in the watershed. The on-parcel research consisted of farmer classifications of the soil, topography, and erosion status of their parcels. Soil samples were also taken and examined. Farming households were also examined with regard to erosion control activities conducted by age and sex. Erosion management was examined in relation to tenure of the parcel, which emerged as a salient aspect among focus group members and was evidenced by the actual control measures taken on farmed parcels. The results show that the major constraint in soil erosion management is not local knowledge as much as it is the tenure arrangements which allow "temporary owners" (those working rented or mortgaged parcels to manage the parcels as they see fit. Most of these temporary owners are not willing to invest in erosion control measures other than water diversion ditches. Parcel owners, in contrast, do invest in longer term erosion control measures on the parcels they actually work. The findings of this paper illustrate that linking local knowledge and practices is often not sufficient in and of itself for addressing questions of sound environmental management. While local knowledge serves farmers generally well, there are some limitations. Importantly, the pressures in the contemporary world of markets and cash can undermine what they know as the right thing to do for the environment.

  19. Hydrological characterization of benchmark agricultural watersheds in India, Thailand, and Vietnam

    P Pathak

    2006-08-01

    Full Text Available Executive Summary Water is one of the most critical resource and constraint in the semi-arid tropics (SAT. To minimize land degradation and sustain crop productivity in the SAT, management and efficient utilization of rainwater is important. Watershed-based resource utilization involves the optimum use of the area’sprecipitation for the improvement and stabilization of agriculture on the watershed through better water, soil, and crop management. More effective utilization of water for the production of crops canbe facilitated by one or more of the following means: (i in situ conservation of moisture; (ii proper drainage, collection, storage, and re-utilization of runoff; and (iii groundwater recovery from wells. For the proper development, conservation, and management of land and water resources, accurate information on surface and groundwater hydrology is crucial. Under the Asian Development Bank(ADB-supported project on integrated watershed management we studied the hydrological behavior of benchmark agricultural watersheds in India, Thailand, and Vietnam. From the five benchmarkwatersheds, the information on topography, rainfall, runoff, groundwater, and other relevant data were collected and analyzed.The hydrological data from the five benchmark watersheds in India, Thailand, and Vietnam clearly show the effectiveness of improved watershed technologies in reducing runoff volume and peakrunoff rate. The highest runoff volume of 433 mm (51% of seasonal rainfall was recorded from the Tad Fa watershed in Thailand, while the lowest runoff volume of 55 mm (7% of seasonal rainfall wasrecorded from the Adarsha watershed in Kothapally, India. The highest peak runoff rate of 0.235 m3 s-1ha-1 was recorded from the untreated watershed at Kothapally. Between the treated and untreatedwatersheds the maximum difference in runoff volume was recorded at Lalatora watershed in India(290 mm in untreated compared to 55 mm in treated watershed. Among the three

  20. Identifying Watershed Regions Sensitive to Soil Erosion and Contributing to Lake Eutrophication—A Case Study in the Taihu Lake Basin (China)

    Chen Lin; Ronghua Ma; Bin He

    2015-01-01

    Taihu Lake in China is suffering from severe eutrophication partly due to non-point pollution from the watershed. There is an increasing need to identify the regions within the watershed that most contribute to lake water degradation. The selection of appropriate temporal scales and lake indicators is important to identify sensitive watershed regions. This study selected three eutrophic lake areas, including Meiliang Bay (ML), Zhushan Bay (ZS), and the Western Coastal region (WC), as well as ...

  1. THE FEASIBILITY OF WETLAND RESTORATION TO REDUCE FLOODING IN THE RED RIVER VALLEY: A CASE STUDY OF THE MAPLE RIVER WATERSHED, NORTH DAKOTA

    Shultz, Steven D.; Leitch, Jay A.

    2001-01-01

    The economic feasibility of alternative wetland restoration activities to store water and reduce flood damage was evaluated in the Maple River Watershed, North Dakota, a sub-watershed of the Red River of the North Watershed. The evaluation was based on recent hydrologic modeling and wetland restoration studies, the National Wetland Inventory, local land rental values, and site-specific historical flood damage. With benefit-cost ratios ranging from 0.08 to 0.13, neither simple wetland restorat...

  2. River Sediment Monitoring Using Remote Sensing and GIS (case Study Karaj Watershed)

    Shafaie, M.; Ghodosi, H.; Mostofi, K. H.

    2015-12-01

    Whereas the tank volume and dehydrating digits from kinds of tanks are depended on repository sludge, so calculating the sediments is so important in tank planning and hydraulic structures. We are worry a lot about soil erosion in the basin area leading to deposit in rivers and lakes. It holds two reasons: firstly, because the surface soil of drainage would lose its fertility and secondly, the capacity of the tank decreases also it causes the decrease of water quality in downstream. Several studies have shown that we can estimate the rate of suspension sediments through remote sensing techniques. Whereas using remote sensing methods in contrast to the traditional and current techniques is faster and more accurate then they can be used as the effective techniques. The intent of this study has already been to estimate the rate of sediments in Karaj watershed through remote sensing and satellite images then comparing the gained results to the sediments data to use them in gauge-hydraulic station. We mean to recognize the remote sensing methods in calculating sediment and use them to determine the rate of river sediments so that identifying their accuracies. According to the results gained of the shown relations at this article, the amount of annual suspended sedimentary in KARAJ watershed have been 320490 Tones and in hydrologic method is about 350764 Tones .

  3. RIVER SEDIMENT MONITORING USING REMOTE SENSING AND GIS (CASE STUDY KARAJ WATERSHED

    M. Shafaie

    2015-12-01

    Full Text Available Whereas the tank volume and dehydrating digits from kinds of tanks are depended on repository sludge, so calculating the sediments is so important in tank planning and hydraulic structures. We are worry a lot about soil erosion in the basin area leading to deposit in rivers and lakes. It holds two reasons: firstly, because the surface soil of drainage would lose its fertility and secondly, the capacity of the tank decreases also it causes the decrease of water quality in downstream. Several studies have shown that we can estimate the rate of suspension sediments through remote sensing techniques. Whereas using remote sensing methods in contrast to the traditional and current techniques is faster and more accurate then they can be used as the effective techniques. The intent of this study has already been to estimate the rate of sediments in Karaj watershed through remote sensing and satellite images then comparing the gained results to the sediments data to use them in gauge-hydraulic station. We mean to recognize the remote sensing methods in calculating sediment and use them to determine the rate of river sediments so that identifying their accuracies. According to the results gained of the shown relations at this article, the amount of annual suspended sedimentary in KARAJ watershed have been 320490 Tones and in hydrologic method is about 350764 Tones .

  4. Perceiving Patagonia: An Assessment of Social Values and Perspectives Regarding Watershed Ecosystem Services and Management in Southern South America

    Zagarola, Jean-Paul A.; Anderson, Christopher B.; Veteto, James R.

    2014-04-01

    Research on human dimensions of ecosystems through the ecosystem services (ES) concept has proliferated over recent decades but has largely focused on monetary value of ecosystems while excluding other community-based values. We conducted 312 surveys of general community members and regional researchers and decision-makers (specialists) to understand local perceptions and values of watershed ES and natural resource management in South America's southern Patagonian ecoregion. Results indicated that specialists shared many similar values of ES with community members, but at the same time their mentalities did not capture the diversity of values that existed within the broader community. The supporting services were most highly valued by both groups, but generally poorly understood by the community. Many services that are not easily captured in monetary terms, particularly cultural services, were highly valued by community members and specialists. Both groups perceived a lack of communication and access to basic scientific information in current management approaches and differed slightly in their perspective on potential threats to ES. We recommend that a community-based approach be integrated into the natural resource management framework that better embodies the diversity of values that exist in these communities, while enhancing the science-society dialog and thereby encouraging the application of multiple forms of ecological knowledge in place-based environmental management.

  5. Modeling of Soil Erosion by IntErO model: The Case Study of the Novsicki Potok Watershed, of the Prokletije high mountains of Montenegro

    Spalevic, Velibor; Al-Turki, Ali M.; Barovic, Goran; Leandro Naves Silva, Marx; Djurovic, Nevenka; Soares Souza, Walisson; Veloso Gomes Batista, Pedro; Curovic, Milic

    2016-04-01

    The application of soil conservation programs to combat erosion and sedimentation are significantly contributing to the protection of the natural resources. Watershed management practices include the assessment of Physical-Geographical, Climate, Geological, Pedological characteristics, including the analysis of Land Use of the regions concerned. The policy makers are increasingly looking for the different land uses and climatic scenarios that can be used for valuable projections for watershed management. To increase knowledge about those processes, use of hydrological and soil erosion models is needed and that is allowing quantification of soil redistribution and sediment productions. We focused on soil erosion processes in one of Northern Montenegrin mountain watersheds, the Novsicki Potok Watershed of the Polimlje River Basin, using modeling techniques: the IntErO model for calculation of runoff and soil loss. The model outcomes were validated through measurements of lake sediment deposition at the Potpec hydropower plant dam. Our findings indicate a medium potential of soil erosion risk. With 464 m³ yr‑1 of annual sediment yield, corresponding to an area-specific sediment yield of 270 m³km-2 yr‑1, the Novsicki Potok drainage basin belongs to the Montenegrin basins with the medium sediment discharge; according to the erosion type, it is surface erosion. The value of the Z coefficient was calculated on 0.403, what indicates that the river basin belongs to 3rd destruction category (of five). Our results suggest that the calculated peak discharge from the river basin was 82 m3s-1 for the incidence of 100 years. According to our analysis there is a possibility for large flood waves to appear in the studied river basin. With this research we, to some extent, improved the knowledge on the status of sediment yield and runoff of the river basins of Montenegro, where the map of Soil erosion is still not prepared. The IntErO model we used in this study is relatively

  6. Potential and limitations of Payments for Environmental Services (PES as a means to manage watershed services in mainland Southeast Asia

    Alana George

    2009-04-01

    Full Text Available Based on two case studies conducted at local sites in Northern Thailand and Lao PDR, the objectives of this paper are (i to assess whether conditions for the establishment of PES at the watershed level exist in the uplands of mainland SE Asia and (ii to examine and discuss limitations that are likely to impinge on direct transfer of the PES concept as well as the institutional adaptations and support that are required for the successful implementation of PES markets in this regional context. The study's main findings are that: (i acceptance of PES principles and constraints are directly related to stakeholders' perception of their land rights irrespective of their actual rights; (ii willingness to pay (WTP is very low among local stakeholders, making any PES market unlikely to emerge without external support; (iii the classical scheme for watershed services hardly applies in its original form because environmental service (ES providers and buyers are generally the same people; (iv where potential ES buyers feel that ES providers are better-off or wealthier than them, they do not have any WTP for ES; (v good governance, including a strong liaising at various levels between people and the authorities is a strong prerequisite for the successful establishment of PES markets, even without direct government funding

  7. Participatory Scenario Planning for the Cienega Watershed: Embracing Uncertainty in Public Lands Management in the U.S. Southwest

    Hartmann, H.; Morino, K.; Bodner, G.; Markstein, A.; McFarlin, S.

    2013-12-01

    Land managers and communities struggle to sustain natural landscapes and the benefits they provide--especially in an era of rapid and unpredictable changes being driven by shifts in climate and other drivers that are largely outside the control of local managers and residents. The Cienega Watershed Partnership (CWP) is a long-standing multi-agency partnership involved in managing lands and resources over about 700,000 acres in southeast Arizona, surrounding the Bureau of Land Management's Las Cienegas National Conservation Area. The region forms a vital wildlife corridor connecting the diverse ecosystems of the Sonoran and Chihuahuan deserts and grasslands with the Sierra Madrean and Rocky Mountain forests and woodlands. The CWP has long-standing forums and relationships for considering complex issues and novel approaches for management, including practical implementation of adaptive management, development of monitoring programs and protocols, and the use of nested objectives to adjust management targets. However, current plans have objectives and strategies based on what is known or likely to become known about natural and socio-cultural systems; they do not incorporate uncertainties related to rapid changes in climate or have well developed feedback mechanisms for routinely reconsidering climate information. Since 2011, more than 50 individuals from over 20 federal and local governments, non-governmental organizations, and private landowners have participated in scenario planning for the Cienega Watershed. Scenario planning is an important tool for (1) managing risks in the face of high volatility, uncertainty, complexity, and ambiguity; (2) integrating quantitative climate projections, trend and impact assessments, and local expertise to develop qualitative scenario narratives that can inform decisions even by simply provoking insights; and (3) engaging jurisdictions having different missions, objectives, and planning processes. Participants are helping to

  8. Exploring the Potential Impact of Serious Games on Social Learning and Stakeholder Collaborations for Transboundary Watershed Management of the St. Lawrence River Basin

    Wietske Medema

    2016-04-01

    Full Text Available The meaningful participation of stakeholders in decision-making is now widely recognized as a crucial element of effective water resource management, particularly with regards to adapting to climate and environmental change. Social learning is increasingly being cited as an important component of engagement if meaningful participation is to be achieved. The exact definition of social learning is still a matter under debate, but is taken to be a process in which individuals experience a change in understanding that is brought about by social interaction. Social learning has been identified as particularly important in transboundary contexts, where it is necessary to reframe problems from a local to a basin-wide perspective. In this study, social learning is explored in the context of transboundary water resource management in the St. Lawrence River Basin. The overarching goal of this paper is to explore the potential role of serious games to improve social learning in the St. Lawrence River. To achieve this end, a two-pronged approach is followed: (1 Assessing whether social learning is currently occurring and identifying what the barriers to social learning are through interviews with the region’s water resource managers; (2 Undertaking a literature review to understand the mechanisms through which serious games enhance social learning to understand which barriers serious games can break down. Interview questions were designed to explore the relevance of social learning in the St. Lawrence River basin context, and to identify the practices currently employed that impact on social learning. While examples of social learning that is occurring have been identified, preliminary results suggest that these examples are exceptions rather than the rule, and that on the whole, social learning is not occurring to its full potential. The literature review of serious games offers an assessment of such collaborative mechanisms in terms of design principles

  9. Community forestry, REDD+ pilot project, power, and corruption : a case study of Ludikhola watershed in Gorkha District, Nepal

    Kandel, Tara

    2015-01-01

    REDD integrates conservation, sustainable management of forest and enhancement of forest carbon stocks, emerged though a global partnership under the United Nations Framework Convention on Climate Change. Ludikhola watershed in Gorkha district, Nepal, is selected for this research where REDD+ pilot project was carried out from 2010 to 2013. The dynamic relationship between actors, knowledge, power, corruption and policy at the micro level and the reciprocal effects of these relationships on g...

  10. Field Studies of Streamflow Generation Using Natural and Injected Tracers on Bickford and Walker Branch Watersheds

    Genereux, D.

    1992-01-01

    Field studies of streamflow generation were undertaken on two forested watersheds, the West Road subcatchment of Bickford Watershed in central Massachusetts and the West Fork of Walker Branch Watershed in eastern Tennessee. A major component of the research was development of a two-stage methodology for the use of naturally-occurring {sup 222}Rn as a tracer. The first of the two stages was solving a mass-balance equation for {sup 222}Rn around a stream reach of interest in order to calculate [Rn]{sub q}, the {sup 222}Rn content of the lateral inflow to the reach; a conservative tracer (chloride) and a volatile tracer (propane) were injected into the study stream to account for lateral inflow to, and {sup 222}Rn volatilization from, the study reach. The second stage involved quantitative comparison of [Rn]{sub q} to the measured {sup 222}Rn concentrations of different subsurface waters in order to assess how important these waters were in contributing lateral inflow to the stream reach. The method was first applied to a 34 m stream reach at Bickford during baseflow; results suggested that {ge} 70% of the lateral inflow could be considered vadose zone water (water which had been in a saturated zone for less than a few days), and the remainder ''soil groundwater'' or ''saturated zone water'' (which had a longer residence time in a soil saturated zone). The method was then applied to two stream reaches on the West Fork of Walker Branch over a wide range of flow conditions; four springs were also investigated. It was found that springwater and inflow to the stream could be viewed as a mixture of water from three end members: the two defined at Bickford (vadose zone water and soil groundwater) and a third (bedrock groundwater) to account for the movement of water through fractured dolomite bedrock. Calcium was used as a second naturally-occurring tracer to distinguish bedrock groundwater from the other two end members. The behavior

  11. An Integrated Approach to Identification, Assessment and Management of Watershed-Scale Risk for Sustainable Water Use Through Reuse and Recycling

    Hunter, C. K.; Bolster, D.; Gironas, J. A.

    2014-12-01

    Water resources are essential to development, not only economically but also socially, politically and ecologically. With growing demand and potentially shrinking supply, water scarcity is one of the most pressing socio-ecological problems of the 21st century. Considering implications of global change and the complexity of interrelated systems, uncertain future conditions compound problems associated with water stress, requiring hydrologic models to re-examine traditional water resource planning and management. The Copiapó water basin, located in the Atacama Desert of northern Chile exhibits a complex resource management scenario. With annual average precipitation of only 28 mm, water intensive sectors such as export agriculture, extensive mining, and a growing population have depleted the aquifeŕs reserves to near critical levels. Being that global climate change models predict a decrease in already scarce precipitation, and that growing population and economies demand will likely increase, the real future situation might be even worse than that predicted. A viable option for alleviation of water stress, water reuse and recycling has evolved through technological innovation to feasibly meet hydraulic needs with reclaimed water. For the proper application of these methods for resource management, however, stakeholders must possess tools by which to quantify hydrologic risk, understand its factors of causation, and choose between competing management scenarios and technologies so as to optimize productivity. While previous investigations have addressed similar problems, they often overlook aspects of forecasting uncertainty, proposing solutions that while accurate under specific scenarios, lack robustness to withstand future variations. Using the WEAP (Water Evaluation and Planning) platform for hydrologic modeling, this study proposes a methodology, applicable to other stressed watersheds, to quantify inherent risk in water management positions, while considering

  12. Debris flow run off simulation and verification ‒ case study of Chen-You-Lan Watershed, Taiwan

    M.-L. Lin

    2005-01-01

    Full Text Available In 1996 typhoon Herb struck the central Taiwan area, causing severe debris flow in many subwatersheds of the Chen-You-Lan river watershed. More severe cases of debris flow occurred following Chi-Chi earthquake, 1999. In order to identify the potentially affected area and its severity, the ability to simulate the flow route of debris is desirable. In this research numerical simulation of debris flow deposition process had been carried out using FLO-2D adopting Chui-Sue river watershed as the study area. Sensitivity study of parameters used in the numerical model was conducted and adjustments were made empirically. The micro-geomorphic database of Chui-Sue river watershed was generated and analyzed to understand the terrain variations caused by the debris flow. Based on the micro-geomorphic analysis, the debris deposition in the Chui-Sue river watershed in the downstream area, and the position and volume of debris deposition were determined. The simulated results appeared to agree fairly well with the results of micro-geomorphic study of the area when not affected by other inflow rivers, and the trends of debris distribution in the study area appeared to be fairly consistent.

  13. 77 FR 71404 - Intent To Prepare an Environmental Impact Statement for the Proposed Flood Risk Management Study...

    2012-11-30

    ... Proposed Flood Risk Management Study for the Blanchard River Watershed Including Communities of Findlay and... preparing the EIS. The EIS will consider Federal actions associated with the proposed Flood Risk Management... measures to improve flood risk management, navigation, water quality, recreation, and fish and...

  14. Endangered ecosystem conservation: a 30-year lesson from the evolution of saline-alkali soil management in Manasi river watershed, China

    Previous studies on saline-alkali soil management mostly followed an instrumental 'prediction and control' approach dominated by technical end-of-pipe solutions. However, those 'integrated' instrumental solutions frequently perished due to the growing social and economic uncertainties in financial support, legal insurance, expertise service and other factors. This investigation summarizes the 30-year period of saline-alkali soil management - the social and economic and ecological (SEE) management innovation - its adoption, diffusion, adaptation and transformation in Manasi River watershed of northern Xinjiang. This area was experiencing three distinct SEE management stages from pure instrumental desalination techniques to integrated desalination technique system following the SEE supporting system. The results of GIS analysis (Fragatats 3.3) and historical documents provide data evidence for above three transition stages. The total area of saline and alkali land was increased by 32.7%, 47.6% during the first two decades but decreased by 11.9% in the recent decade. The numbers of saline land patches were 116, 129 and 121 in 1989, 2000 and 2007 respectively, a similar trend to the changes of total area. However, both perimeter-area fractal dimension (PAFD) and splitting index (SI) continued to increase, with values of 1.265, 1.272 and 1.279 for PAFD and 259.29, 269.68, 272.92 for SI in 1989, 2000 and 2007, respectively. It suggests that saline and alkaline land distribution had been fragmented, and sequestrated into salt micro-catchments within whole oasis ecosystems. This case is largely associated with effective adoption of integrated engineering and biological desalination programs as a result of local SEE saline-alkali soil management innovation. (author)

  15. Determining Watershed Management Efficacy in West Maui: line-point-intercept and photo quadrat surveys of benthic communities for benthic cover from 2014-06-24 to 2015-07-31 (NCEI Accession 0138585)

    National Oceanic and Atmospheric Administration, Department of Commerce — The focus of the Wahikuli-Honokowai Watershed Management Plan is the land use practices and alterations affected in the agricultural and urban districts that have...

  16. Determining Watershed Management Efficacy in West Maui: Belt transect surveys of coral demography (adult and juvenile corals) from 2014-06-29 to 2015-12-01 (NCEI Accession 0137092)

    National Oceanic and Atmospheric Administration, Department of Commerce — The focus of the Wahikuli-Honokowai Watershed Management Plan is the land use practices and alterations affected in the agricultural and urban districts that have...

  17. A Decision Support System (talsim) For Integrated Management of Reservoir Controlled Watersheds

    Lohr, H.; Ostrowski, M.; Leichtfuss, A.

    Both, the European Water Framework Directives and the discussion of the report of the world commission on dams (WCD-Report) ask for efficient and transparent decision support tools for rivers and river basins controlled by reservoir systems. It is evident that in contrast to historical planning conditions new objectives according to sustain- ability criteria have to be considered. Also, climate and land use changes have to be considered to account for changes of the hydrological cycle. In addition to river basin management dam safety has become a major issue in recent European discussions. In most cases decision support systems for reservoir systems have been individually tai- lored systems being only applicable to the system they had been developed for. Any transfer to other systems was strongly restricted as system definition and operation rules were implemented in the program code. Thus, a generic DSS for reservoir sys- tems modelling and optimisation is required to serve as a basic tool to support reser- voir operators and water administration to account for new objectives under changing boundary conditions. During the last six years a DSS for reservoir systems including their catchments and river reaches has been developed to fulfill these requirements (named TALSIM). The work has been supported by the Environmental Agency of the German Federal State of North-Rhine Westfalia. During the development and test phases the DSS has been applied to several reservoir systems in Germany and Africa. At present it is applied to one of the most complex German systems. The scope of the presentation is to present - the new requirements for decision making procedures in reservoir management - the structure of the TALSIM DSS including simulation and optimisation modules - completed and ongoing case studies

  18. Interdecadal trends of sediment discharge in mountain watersheds in Japan

    Koi, Takashi; Hotta, Norifumi; Suzuki, Masakazu

    2010-05-01

    After sediment production, such as by a landslide, some sediment immediately discharges from the basin outlet. However, part of the sediment remains in the basin, to be removed and re-deposited by subsequent rainfall and flooding before finally being discharged. Such sediment dynamics occur at various timescales, depending on the frequency and magnitude of sediment production and the various agents of sediment transport. Thus, interdecadal trends of sediment discharge differ by watershed. Understanding sediment dynamics over longer timescales is important for studies of geomorphological processes and for basin management. This study examined factors associated with interdecadal sediment discharge by comparing two mountain watersheds in Japan. The study sites were the Nakagawagawa watershed (39 km2) in the Kanto district, where widespread landslides were induced by a catastrophic earthquake (M 7.9) in 1923, and the Dogawa watershed (81 km2) in the Kyushu district, where heavy rainfall events (continuous rainfall of over 1000 mm) have repeatedly triggered landslides. Long-term reservoir sedimentation data were available for both watersheds, covering 25 years in the Nakagawagawa watershed and 53 years in the Dogawa watershed. Although both watersheds had high sediment yield (103 m3km-2year-1 order) for their decadal averages, the interdecadal time series showed different waveform trends. The waveform of the Nakagawagawa watershed was nearly constant over 25 years. The waveform of the Dogawa watershed showed interdecadal fluctuation over 50 years. These waveforms were distinguished according to the difference between maximum and minimum sediment yields of the N-year moving average. Annual sediment discharges roughly corresponded with the rainfall magnitude, yet rainfall was not a main factor controlling interdecadal variability of sediment discharge. These sediment dynamics can be discussed from the perspective of temporarily stored sediment. In the Nakagawagawa

  19. Hydrological and environmental diagnostic of the Cachoeira das Pombas’s watershed, Guanhães, MG, Brazil

    Deuseles João Firme; Carlos Antonio Alvares Soares Ribeiro; Agostinho Lopes de Souza; Herly Carlos Teixeira Dias; Kelly Cristina Tonello; Fernando Palha Leite

    2009-01-01

    The objective of this work was to evaluate hydrological and environmental issues of Cachoeira das Pombas watershed, in Guanhães, eastern Minas Gerais State, Brazil, to support its management plan. The characterization of water springs included the definition of its types, assessment of flow persistence, conservation state, outflow values, and the hydrological and environmental conservation state of the watershed. For a detailed analysis, the watershed was studied considering each of its small...

  20. Potential for Hybrid Poplar Riparian Buffers to Provide Ecosystem Services in Three Watersheds with Contrasting Agricultural Land Use

    Julien Fortier; Benoit Truax; Daniel Gagnon; France Lambert

    2016-01-01

    In temperate agricultural watersheds, the rehabilitation of tree vegetation in degraded riparian zones can provide many ecosystem services. This study evaluated ecosystem service provision potential following the conversion of non-managed herbaceous buffers to hybrid poplar (Populus spp.) buffers in three watersheds (555–771 km2) of southern Québec (Canada), with contrasting agricultural land uses. To extrapolate services at the watershed level, total stream length where hybrid poplars could ...

  1. Estimation of runoff and sediment yield in the Redrock Creek watershed using AnnAGNPS and GIS

    Tsou Ming-Shu; ZHAN Xiao-yong

    2004-01-01

    Sediment has been identified as a significant threat to water quality and channel clogging that in turn may lead to river flooding. With the increasing awareness of the impairment from sediment to water bodies in a watershed, identifying the locations of the major sediment sources and reducing the sediment through management practices will be important for an effective watershed management. The annualized agricultural non-point source pollution(AnnAGNPS) model and newly developed GIS interface for it were applied in a small agricultural watershed, Redrock Creek watershed, Kansas, in this pilot study for exploring the effectiveness of using this model as a management tool. The calibrated model appropriately simulated monthly runoff and sediment yield through the practices in this study and potentially suggested the ways of sediment reduction through evaluating the changes of land use and field operation in the model for the purpose of watershed management.

  2. Imagined Communities, Contested Watersheds: Challenges to Integrated Water Resources Management in Agricultural Areas

    Ferreyra, Cecilia; de Loe, Rob C.; Kreutzwiser, Reid D.

    2008-01-01

    Integrated water resources management is one of the major bottom-up alternatives that emerged during the 1980s in North America as part of the trend towards more holistic and participatory styles of environmental governance. It aims to protect surface and groundwater resources by focusing on the integrated and collaborative management of land and…

  3. Assessing the role of spatial rainfall variability on watersheds response using weather radar A case study in the Gard region, France

    Anggraheni, Evi; Payrastre, Olivier; Emmanuel, Isabelle; Andrieu, Herve

    2014-05-01

    The consideration of spatial rainfall variability in hydrological modeling is not only an important scientific issue but also, with the current development of high resolution rainfall data from weather radars, an increasing request from managers of sewerage networks and from flood forecasting services. Although the literature on this topic is already significant, at this time the conclusions remain contrasted. The impact of spatial rainfall variability on the hydrological responses appears to highly depend both on the organization of rainfall fields and on the watershed characteristics. The objective of the study presented here is to confirm and analyze the high impact of spatial rainfall variability in the specific context of flash floods. The case study presented is located in the Gard region in south east of France and focuses on four events which occurred on 13 different watersheds in 2008. The hydrological behaviors of these watersheds have been represented by the distributed rainfall - runoff model CINECAR, which already proved to well represent the hydrological responses in this region (Naulin et al., 2013). The influence of spatial rainfall variability has been studied here by considering two different rainfall inputs: radar data with a resolution of 1 km x 1 km and the spatial average rainfall over the catchment. First, the comparison between simulated and measured hydrographs confirms the good performances of the model for intense rainfall events, independently of the level of spatial rainfall variability of these events. Secondly, the simulated hydrographs obtained from radar data are taken as reference and compared to those obtained from the average rainfall inputs by computing two values: the time difference and the difference of magnitude between the simulated peaks discharge. The results highly depend on the rainfall event considered, and on the level of organization of the spatial rainfall variability. According to the model, the behavior of the

  4. Impact of Integrated Watershed Management on Complex Interlinked Factors Influencing Health: Perceptions of Professional Stakeholders in a Hilly Tribal Area of India

    Nerkar, Sandeep S; Tamhankar, Ashok J.; Eva Johansson; Cecilia Stålsby Lundborg

    2016-01-01

    Lack of access to water has a significant impact on the health of people in tribal areas, where water in households as well as for productive purposes is essential for life. In resource-limited settings such as hilly tribal areas, implementation of an integrated watershed management programme (IWMP) can have a significant impact on public health by providing a solution to water scarcity and related problems. The professional stakeholders in rural healthcare and development administration are ...

  5. A model to study the grain size components of the sediment deposited in aeolian-fluvial interplay erosion watershed

    Zhang, Xiang; Li, Zhanbin; Li, Peng; Cheng, Shengdong; Zhang, Yang; Tang, Shanshan; Wang, Tian

    2015-12-01

    Aeolian-fluvial interplay erosion areas with complex dynamics and physical sources are the main suppliers of coarse sediment in the Yellow River. Understanding the composition, distribution, and sources of deposited sediments in such areas is of great importance for the control of sediment transport in rivers. In this paper, a typical aeolian-fluvial interplay erosion watershed - the Dongliu Gully - was studied and the frequency distribution curves of sediments deposited in the stream channel were fitted using the Weibull function. Sources of deposited sediment in the stream channel were analyzed based on the law of the conservation of matter. Results showed that the hilly zone accounted for 78% of deposited sediments, which were dominated by material with a median grain size (d50) of 0.093 mm, and the desert zone accounted for 22% of deposited sediments, which were dominated by material with a d50 of 0.01 mm. Wind erosion dynamics accounted for 72% of deposited sediments, while water erosion dynamics accounted for only 28%. This research provides a theoretical basis for the control and management of rivers with high sediment content.

  6. Integrated modelling as an analytical and optimisation tool for urban watershed management.

    Erbe, V; Frehmann, T; Geiger, W F; Krebs, P; Londong, J; Rosenwinkel, K H; Seggelke, K

    2002-01-01

    In recent years numerical modelling has become a standard procedure to optimise urban wastewater systems design and operation. Since the models were developed for the subsystems independently, they did not support an integrated view to the operation of the sewer system, the wastewater treatment plant (WWTP) and the receiving water. After pointing out the benefits of an integrated approach and the possible synergy effects that may arise from analysing the interactions across the interfaces, three examples of modelling case studies carried out in Germany are introduced. With these examples we intend to demonstrate the potential of integrated models, though their development cannot be considered completed. They are set up with different combinations of self-developed and commercially available software. The aim is to analyse fluxes through the total wastewater system or to integrate pollution-based control in the upstream direction, that is e.g. managing the combined water retention tanks as a function of state variables in the WWTP or the receiving water. Furthermore the interface between the sewer and the WWTP can be optimised by predictive simulations such that the combined water flow can be maximised according to the time- and dynamics-dependent state of the treatment processes. PMID:12380985

  7. Watershed District

    Kansas Data Access and Support Center — Boundaries show on this map are derived from legal descriptions contained in petitions to the Kansas Secretary of State for the creation or extension of watershed...

  8. Influence of watershed-scale pesticide management on channelized agricultural headwater streams

    Channelized agricultural headwater streams are streams that have been created or modified for agricultural drainage. Elevated pesticide concentrations frequently occur within these modified streams and represent a threat to their ecological integrity. Pesticide management (i.e., use of alternative ...

  9. Using multiple-criteria decision-making techniques for eco-environmental vulnerability assessment: a case study on the Chi-Jia-Wan Stream watershed, Taiwan.

    Huang, Pi-Hui; Tsai, Jing-Shyan; Lin, Wen-Tzu

    2010-09-01

    The Chi-Jia-Wan Stream watershed, located in the area of the upstream Da-Chia River in central Taiwan, is famous for slopeland agriculture and the land-locked salmon. Improper agricultural activities have caused apparent ecosystem vulnerability and sensitivity. In this study, a system that combined three watershed-based environmental indicators with multiple-criteria decision-making techniques, the Analytical Hierarchy Process, and the Preference Ranking Organization METHod for Enrichment Evaluations was developed to assess eco-environmental vulnerability. The composite evaluation index system was set up including sediment, runoff, and nutrient factors. Supported by geographic information system and K-means clustering and taking the subwatershed as the evaluation unit, the vulnerability is classified into four levels: potential, low, moderate, and high. The evaluated results show that 8.82% of subwatersheds (six subwatersheds) are in the moderately and highly vulnerable zones. These subwatersheds represent vertical-belt distribution, mainly concentrated in the right side of the studied area and near the riparian zone along the Chi-Jia-Wan Stream. The exploited farmland in the moderately and highly vulnerable zones is about 142.21 ha, occupying 75.38% of the total farmland in the studied watershed. These seriously vulnerable zones that have caused degradation in the quality of the eco-environment should be treated with more best management practices for eco-environmental rehabilitation. Additionally, the proposed model can effectively evaluate the eco-environmental vulnerability grade for reference in policy planning and ecological restoration in this area. PMID:19629735

  10. Management & Communication: Project Management Case Study

    Nathalie Dumeaux

    2004-01-01

    We are pleased to announce the recent launch of a new workshop on Project Management. This is designed for People with budgetary, scheduling and/or organizational responsibilities in a project or a sub-project. The objectives through a management case study specially suited to CERN are: to become familiar with modern management techniques in use for structuring, planning, scheduling, costing and progress monitoring of a project or a sub-project. to understand in-depth issues associated with Deliverable-oriented Project Management, Earned Value Management, Advanced Project Cost Engineering and Project Risk Management. The full description of this workshop can be found here. The next session will be held on 8 October 2004. If you are interested in this workshop, please contact Nathalie Dumeaux, email or 78144. Programme of Seminars October to December 2004 Situation : 21.09.2004 Séminaires bilingues Dates Jours Places disponibles Project Management Case study 8 October 1 oui Intr...

  11. Prioritizing Watersheds for Conservation Actions in the Southeastern Coastal Plain Ecoregion

    Jang, Taeil; Vellidis, George; Kurkalova, Lyubov A.; Boll, Jan; Hyman, Jeffrey B.

    2015-03-01

    The aim of this study was to apply and evaluate a recently developed prioritization model which uses the synoptic approach to geographically prioritize watersheds in which Best Management Practices (BMPs) can be implemented to reduce water quality problems resulting from erosion and sedimentation. The model uses a benefit-cost framework to rank candidate watersheds within an ecoregion or river basin so that BMP implementation within the highest ranked watersheds will result in the most water quality improvement per conservation dollar invested. The model was developed to prioritize BMP implementation efforts in ecoregions containing watersheds associated with the USDA-NRCS Conservation Effects Assessment Project (CEAP). We applied the model to HUC-8 watersheds within the southeastern Coastal Plain ecoregion (USA) because not only is it an important agricultural area but also because it contains a well-studied medium-sized CEAP watershed which is thought to be representative of the ecoregion. The results showed that the three HUC-8 watersheds with the highest rankings (most water quality improvement expected per conservation dollar invested) were located in the southern Alabama, northern Florida, and eastern Virginia. Within these watersheds, measures of community attitudes toward conservation practices were highly ranked, and these indicators seemed to push the watersheds to the top of the rankings above other similar watersheds. The results, visualized as maps, can be used to screen and reduce the number of watersheds that need further assessment by managers and decision-makers within the study area. We anticipate that this model will allow agencies like USDA-NRCS to geographically prioritize BMP implementation efforts.

  12. Prioritizing watersheds for conservation actions in the southeastern coastal plain ecoregion.

    Jang, Taeil; Vellidis, George; Kurkalova, Lyubov A; Boll, Jan; Hyman, Jeffrey B

    2015-03-01

    The aim of this study was to apply and evaluate a recently developed prioritization model which uses the synoptic approach to geographically prioritize watersheds in which Best Management Practices (BMPs) can be implemented to reduce water quality problems resulting from erosion and sedimentation. The model uses a benefit-cost framework to rank candidate watersheds within an ecoregion or river basin so that BMP implementation within the highest ranked watersheds will result in the most water quality improvement per conservation dollar invested. The model was developed to prioritize BMP implementation efforts in ecoregions containing watersheds associated with the USDA-NRCS Conservation Effects Assessment Project (CEAP). We applied the model to HUC-8 watersheds within the southeastern Coastal Plain ecoregion (USA) because not only is it an important agricultural area but also because it contains a well-studied medium-sized CEAP watershed which is thought to be representative of the ecoregion. The results showed that the three HUC-8 watersheds with the highest rankings (most water quality improvement expected per conservation dollar invested) were located in the southern Alabama, northern Florida, and eastern Virginia. Within these watersheds, measures of community attitudes toward conservation practices were highly ranked, and these indicators seemed to push the watersheds to the top of the rankings above other similar watersheds. The results, visualized as maps, can be used to screen and reduce the number of watersheds that need further assessment by managers and decision-makers within the study area. We anticipate that this model will allow agencies like USDA-NRCS to geographically prioritize BMP implementation efforts. PMID:25528594

  13. Climate change and watershed mercury export: a multiple projection and model analysis

    Golden, Heather E.; Knightes, Christopher D.; Conrads, Paul A.; Feaster, Toby D.; Davis, Gary M.; Benedict, Stephen T.; Bradley, Paul M.

    2013-01-01

    Future shifts in climatic conditions may impact watershed mercury (Hg) dynamics and transport. An ensemble of watershed models was applied in the present study to simulate and evaluate the responses of hydrological and total Hg (THg) fluxes from the landscape to the watershed outlet and in-stream THg concentrations to contrasting climate change projections for a watershed in the southeastern coastal plain of the United States. Simulations were conducted under stationary atmospheric deposition and land cover conditions to explicitly evaluate the effect of projected precipitation and temperature on watershed Hg export (i.e., the flux of Hg at the watershed outlet). Based on downscaled inputs from 2 global circulation models that capture extremes of projected wet (Community Climate System Model, Ver 3 [CCSM3]) and dry (ECHAM4/HOPE-G [ECHO]) conditions for this region, watershed model simulation results suggest a decrease of approximately 19% in ensemble-averaged mean annual watershed THg fluxes using the ECHO climate-change model and an increase of approximately 5% in THg fluxes with the CCSM3 model. Ensemble-averaged mean annual ECHO in-stream THg concentrations increased 20%, while those of CCSM3 decreased by 9% between the baseline and projected simulation periods. Watershed model simulation results using both climate change models suggest that monthly watershed THg fluxes increase during the summer, when projected flow is higher than baseline conditions. The present study's multiple watershed model approach underscores the uncertainty associated with climate change response projections and their use in climate change management decisions. Thus, single-model predictions can be misleading, particularly in developmental stages of watershed Hg modeling.

  14. An Evolving Simulation/Gaming Process to Facilitate Adaptive Watershed Management in Northern Mountainous Thailand

    Barnaud, Cecile; Promburom, Tanya; Trebuil, Guy; Bousquet, Francois

    2007-01-01

    The decentralization of natural resource management provides an opportunity for communities to increase their participation in related decision making. Research should propose adapted methodologies enabling the numerous stakeholders of these complex socioecological settings to define their problems and identify agreed-on solutions. This article…

  15. Watershed-based natural resource management in small-scale agriculture: Sloped areas of the Andean Region

    Alwang, Jeffrey

    2008-01-01

    This presentation summarizes the long term research activities of the SANREM project "Watershed-based NRM for Small-scale Agriculture" from 2004-2009. Research findings highlight the role of national institutions such as national research and extension systems, participatory learning based in trust, the useful applications of watershed modeling, a need to focus on risk and efficiency in working with smallholders and the importance of developing forward and backward linkages in the market to t...

  16. User friendly tools to target vulnerable areas at watershed scale: evaluation of the soil vulnerability and conductivity claypan indices

    One finding of the Conservation Effects Assessment Program (CEAP) watershed studies was that Best Management practices (BMPs) were not always installed where most needed: in many watersheds, only a fraction of BMPs were implemented in the most vulnerable areas. While complex computer simulation mode...

  17. A coupled model approach to reduce nonpoint-source pollution resulting from predicted urban growth: A case study in the Ambos Nogales watershed

    Norman, L.M.; Guertin, D.P.; Feller, M.

    2008-01-01

    The development of new approaches for understanding processes of urban development and their environmental effects, as well as strategies for sustainable management, is essential in expanding metropolitan areas. This study illustrates the potential of linking urban growth and watershed models to identify problem areas and support long-term watershed planning. Sediment is a primary source of nonpoint-source pollution in surface waters. In urban areas, sediment is intermingled with other surface debris in transport. In an effort to forecast the effects of development on surface-water quality, changes predicted in urban areas by the SLEUTH urban growth model were applied in the context of erosion-sedimentation models (Universal Soil Loss Equation and Spatially Explicit Delivery Models). The models are used to simulate the effect of excluding hot-spot areas of erosion and sedimentation from future urban growth and to predict the impacts of alternative erosion-control scenarios. Ambos Nogales, meaning 'both Nogaleses,' is a name commonly used for the twin border cities of Nogales, Arizona and Nogales, Sonora, Mexico. The Ambos Nogales watershed has experienced a decrease in water quality as a result of urban development in the twin-city area. Population growth rates in Ambos Nogales are high and the resources set in place to accommodate the rapid population influx will soon become overburdened. Because of its remote location and binational governance, monitoring and planning across the border is compromised. One scenario described in this research portrays an improvement in water quality through the identification of high-risk areas using models that simulate their protection from development and replanting with native grasses, while permitting the predicted and inevitable growth elsewhere. This is meant to add to the body of knowledge about forecasting the impact potential of urbanization on sediment delivery to streams for sustainable development, which can be

  18. 祁连山水源林经营模式研究%Management model for watershed forests in Qilian Mountains

    李金良; 郑小贤; 陆元昌; 刘波

    2012-01-01

    水源林经营系统是一个复杂系统,关系着中国的水资源和生态安全,意义重大.为适应祁连山水源林经营管理实践和西部生态建设的需要,在实地调查的基础上,采用复杂性科学的新理论与新方法提出了一个有科学依据的、定量化、可操作的祁连山水源林经营模式,创新了原来的经营模式.该模式融合了水源林经营理论、水源林目标体系、水源林经营原则、水源林目标结构体系和水源林经营技术体系.该模式通过改善水源林结构,实践水源林的可持续经营,逐步实现水源林经营的生态效益、社会效益和经济效益目标,从而提供中国河西走廊地区稳定的优质水资源,促进该地区可持续发展和应对全球气候变化.根据该模式,对祁连山水源林区现有青海云杉Picea crassifolia林经营提出了经营建议.该模式对提高该区水源林的经营水平和经营效益具有现实指导意义.%The watershed forest management system is a complexity system, and is important for protecting our national water resources and ecological environment safety. In order to meet the needs of the watershed forest management practice in Qilian Mountains and the ecological environment construction in western China, based on field investigations and new theories and methods of complexity science, a scientific, quantitative and operational watershed forest management model is set up. The watershed forest management theories, management objectives, management principles, target forest structure and management technique system are integrated in this new model. Through improving the forest structure and practicing sustainable watershed forest management, the ecological, social and economic benefits from the watershed forest management will be gradually realized. And it will promote steady high quality water supply and the sustainable development for Hexi Corridor Area in China, and help to address global climate

  19. 流域城市化进程中雨洪综合管理量化关系分析%Quantitative analysis of stormwater management strategies in the process of watershed urbanization

    王虹; 李昌志; 程晓陶

    2015-01-01

    针对城市化进程中流域尺度暴雨洪涝水文特征的变异及径流峰值与总量的增加,采用GIS技术划分子流域并应用数值模拟方法,对流域范围内不同蓄滞渗排与雨洪利用组合方案进行模拟分析及量化研究。研究结果显示,以流域为整体,实施雨洪综合调蓄管理措施明显优于传统的各子流域分散管理方式。以位于美国伊利诺伊州的黑莓溪流域为例,经过优化分析,流域尺度所需的雨洪蓄滞容积,较之于子流域分散蓄滞方式可减少24.7%。在单纯流域蓄滞的基础上加之于源头与社区尺度的低影响开发(LID)与雨洪利用等新型综合管理措施,可将流域尺度的蓄滞容积减少60.3%之多,有益于缓解城市雨洪管理中的蓄滞占用土地、耗资巨大和运行维护困难的结症。本文为流域尺度雨洪综合优化管理决策提供了新的规划评估思路与参考。%Utilizing GIS and hydrologic modeling techniques, this study analyzed various urban stormwater management strategies. Due to data limitation and availability in China, a typical watershed in the United States was chosen as a demonstration. The 185-square-kilometer watershed, located in the vicinity of the City of Chicago, Illinois, USA, has been experiencing urbanization in recent decades. Considering the land use pattern of 2005 as pre-development condition and projected land development of 2040 as post-develop⁃ment condition, a numeric model was constructed using HEC-HMS software, and hydrologic effects of ur⁃banization were examined. Moreover,various urban stormwater management measures,such as detention,re⁃tention, infiltration, and rain water harvesting, were modeled both at sub-catchment scale and watershed scale;the quantitative relationships among the various measures were investigated at watershed scale. The outcomes demonstrate that the sustainable urban stormwater management integrated at watershed level can

  20. Preliminary studies on occurrence of monensin antibiotic in Bosque River Watershed

    Sudarshan Kurwadkar; Victoria Sicking; Barry Lambert; Anne McFarland; Forrest Mitchell

    2013-01-01

    Water quality impact due to excessive nutrients has been extensively studied.In recent years,however,micro-pollutants such as pharmaceuticals and hormonal products used in animal agriculture have added an additional impact to overall water quality.Pharmaceuticals used in the poultry,swine,beef,and dairy industries have been detected in various environmental matrices such as,soil,groundwater and surface water.In this study,26 surface water samples were collected throughout the Bosque River Watershed (BRW) with samples representing a range of land use conditions and locations of major dairy operations.Samples were analyzed using commercially available Enzyme-Linked Immunosorbent Assay test.Of the 26 samples,three samples consistently tested positive for monensin antibiotic with concentration ranging from 0.30 to 3.41 μg/L.These three samples were collected from sites that received varying amount of agriculture wastes (11.7% to 31.3%) and located downstream from sites associated with moderate levels of animal agriculture.The preliminary results suggest that there is a potential for monensin occurrence in the BRW,although initial findings indicate only very low levels.

  1. Goddard DEVELOP Students: Using NASA Remote Sensing Technology to Study the Chesapeake Bay Watershed

    Moore, Rachel

    2011-01-01

    The DEVELOP National Program is an Earth Science research internship, operating under NASA s Applied Sciences Program. Each spring, summer, and fall, DEVELOP interns form teams to investigate Earth Science related issues. Since the Fall of 2003, Goddard Space Flight Center (GSFC) has been home to one of 10 national DEVELOP teams. In past terms, students completed a variety of projects related to the Applied Sciences Applications of National Priority, such as Public Health, Natural Disasters, Water Resources, and Ecological Forecasting. These projects have focused on areas all over the world, including the United States, Africa, and Asia. Recently, Goddard DEVELOP students have turned their attention to a local environment, the Chesapeake Bay Watershed. The Chesapeake Bay Watershed is a complex and diverse ecosystem, spanning approximately 64,000 square miles. The watershed encompasses parts of six states: Delaware, Maryland, New York, Pennsylvania, Virginia, and West Virginia, as well as the District of Columbia. The Bay itself is the biggest estuary in the United States, with over 100,000 tributaries feeding into it. The ratio of fresh water to salt water varies throughout the Bay, allowing for a variety of habitats. The Bay s wetlands, marshes, forests, reefs, and rivers support more than 3,600 plant and animal species, including birds, mammals, reptiles, amphibians, fish, and crabs. The Bay is also commercially significant. It is ranked third in the nation in fishery catch, and supplies approximately 500 million pounds of seafood annually. In addition to its abundant flora and fauna, the Chesapeake Bay watershed is home to approximately 16.6 million people, who live and work throughout the watershed, and who use its diverse resources for recreational purposes. Over the past several decades, the population throughout the watershed has increased rapidly, resulting in land use changes, and ultimately decreasing the health of the Chesapeake Bay Watershed. Over the

  2. Examination of Land Use, Hydrology, and Perceptions of Use and Management of the Colombian Paramo with Implications for Water Quality and Availability Concerns for Affected Watersheds

    Tyson, A. F.; Covino, T.; Riveros-Iregui, D. A.; Gonzalez-Pinzon, R.

    2015-12-01

    The Northern and Central Andes have experienced greater anthropogenic land use/land-cover (LULC) change than nearly any other high mountain system on Earth. In particular, páramo ecosystems, high elevation grasslands of the tropical Andes of Colombia, are undergoing rapid conversion to cropland and pasture. These systems have strong hydrologic buffering capacity and have historically provided consistent freshwater flows to downstream communities. Therefore, loss of these systems could threaten the viability of freshwater resources in the region. While this region has some of the highest runoff ratios, precipitation, and largest river flows in the world, the resiliency of these hydrologic systems and the influence LULC change may have on them remains poorly understood. Here we seek to develop a deeper understanding of these relationships through quantitative analyses of LULC change and impacts on the quantity and quality of water exported from páramo landscapes of Colombia. Our results indicate the intensity and spatial distribution of LULC change, build upon past remote sensing studies of the region, and aid in prioritizing areas of concern for hydrologic research on the ground. This information provides an initial framework for characterizing the degree of modification and impact to water quantity/quality, as well as the long-term sustainability of water resources in the region. We highlight the complexities of watershed management practices in the Colombian páramo and the need to account for the impact of human activity on changes in water quantity and quality in the region.

  3. Channel enlargement in semiarid suburbanizing watersheds: A southern California case study

    Hawley, R. J.; Bledsoe, B. P.

    2013-07-01

    Semiarid channels exhibit an extreme sensitivity to upstream urban development, particularly in unconfined valleys with unprotected grades. For example, one of our study streams in southern California has increased its cross-sectional area by nearly 14-fold relative to its pre-developed channel form in a watershed that has been only lightly developed (10.4% imperviousness). Multivariate regression models of cross-sectional channel enlargement at 61 sites were highly dependent on the ratio of post- to pre-urban sediment-transport capacity over cumulative duration simulations of 25 yrs (Lr), which explained nearly 60% of the variance. The proximity of a channel hard point such as bedrock or artificial grade control was also significant, indicating that channel enlargement increased moving upstream from grade control. The enlargement models point to the importance of balancing the post-developed sediment transport to the pre-developed setting over an entire range of flows rather than a single flow in order to reduce the risk of adverse channel responses to hydromodification. The need for controlling a wide range of flows was underscored by logistic-regression analyses that indicated a high risk of instability in systems with Lr > 1, especially for fine-grained systems (i.e., d50 < 16 mm).

  4. Soil, environmental, and watershed measurements in support of carbon cycling studies in northwestern Mississippi

    Huntington, T.G.; Harden, J.W.; Dabney, S.M.; Marion, D.A.; Alonso, C.; Sharpe, J.M.; Fries, T.L.

    1998-01-01

    Measurements including soil respiration, soil moisture, soil temperature, and carbon export in suspended sediments from small watersheds were recorded at several field sites in northwestern Mississippi in support of hillslope process studies associated with the U.S. Geological Survey's Mississippi Basin Carbon Project (MBCP). These measurements were made to provide information about carbon cycling in agricultural and forest ecosystems to understand the potential role of erosion and deposition in the sequestration of soil organic carbon in upland soils. The question of whether soil erosion and burial constitutes an important net sink of atmospheric carbon dioxide is one hypothesis that the MBCP is evaluating to better understand carbon cycling and climate change. This report contains discussion of methods used and presents data for the period December 1996 through March 1998. Included in the report are ancillary data provided by the U.S. Department of Agriculture (USDA) ARS National Sedimentation Laboratory and U.S. Forest Service (USFS) Center for Bottomland Hardwoods Research on rainfall, runoff, sediment yield, forest biomass and grain yield. Together with the data collected by the USGS these data permit the construction of carbon budgets and the calibration of models of soil organic matter dynamics and sediment transport and deposition. The U.S. Geological Survey (USGS) has established cooperative agreements with the USDA and USFS to facilitate collaborative research at research sites in northwestern Mississippi.

  5. ANALISIS OF STREAM DISCHARGE OF MICRO WATERSHED AND ITS UTILIZATION POTENTIAL

    Hunggul Y.S.H. Nugroho

    2015-01-01

    Trough understanding of hydrology characteristic of watershed, water resource can be  managed for wider goals such as economic, social, and sustainainable utilization.  In fact, current watershed managements have more been focused  on erosion, sedimentation, drought, and flood control and less attention paid on fulfilling the need of upper watershed inhabitat on water yield.  The research of Micro Watershed was conducted in three Micro Watersheds as representation of priority watersheds in So...

  6. Landscape processes, effects and the consequences of migration in their management at the Jatún Mayu watershed (Bolivia)

    Penna, Ivanna; Jaquet, Stephanie; Sudmeier-Rieux, Karen; Kaenzig, Raoul; Schwilch, Gudrun; Jaboyedoff, Michel; Liniger, Hanspeter; Machaca, Angelica; Cuba, Edgar; Boillat, Sebastien

    2014-05-01

    Bolivia has a large rural population, mostly composed of subsistence farmers that face natural and anthropogenic driven processes affecting their livelihoods. In order to establish sustainable management strategies, it is important to understand the factors governing landscape changes. This work explores the geomorphic imprint and effects of natural and anthropogenic driven processes on three mountain communities undergoing de-population in the Jatún Mayu watershed (Cochabamba, Bolivia). Based on satellite image interpretation, field work and household surveys, we have identified gullies and landslides as main active processes, causing land losses, affecting inter-communal roads, etc. While landslides are mostly occurring in the middle and lower section of the basin, gullies are especially affecting the upper part (especially the southern slope). Our analysis indicated that in the middle and lower part of the basin, landslides are developing in response to the Jatún Mayu incision (slopes reach a critical angle and slope failures increase). However in the upper part, where no river down-cutting is taking place, preliminary analysis indicates that past and present human interventions (over-grazing, agriculture, road construction, etc.) play a key role on driving land degradation toward the formation of gullies. Based on the comparison of high resolution images from 2004 and 2009, we determined an agricultural land loss rate of 8452 m2/year, mostly in the form of landslides. One single event swept away 0.03 km2 of agricultural lands (~13 parcels), approximately 87% of an average household property. People's main concerns are hail, frost and droughts because they cause an "immediate" loss on family incomes, but the impacts caused by landslides and gullies are not disregarded by the communities and the government. Communities are organized to set up and maintain key infrastructure such as irrigation canals and roads. They also intend to develop protective measures

  7. Watershed Sustainability Index Assessment of a Watershed in Chhattisgarh, India

    Surendra Kumar Chandniha; M. L Kansal; G. Anvesh

    2014-01-01

    In order to achieve continuous sustainable development in a watershed, it is desired that natural resources such as water are assessed and utilized efficiently. Generally, water resources are assessed considering watershed as a unit. Since the water requirements and availability varies in space and time, it is desired to manage the water resources so as to satisfy the demand on sustainable basis. Further, in order to achieve sustainability, it is necessary to consider social, economic and en...

  8. Modeling increased riverine nitrogen export: Source tracking and integrated watershed-coast management.

    Yu, Dan; Yan, Weijin; Chen, Nengwang; Peng, Benrong; Hong, Huasheng; Zhuo, Guihua

    2015-12-30

    The global NEWS model was calibrated and then used to quantify the long term trend of dissolved inorganic nitrogen (DIN) export from two tributaries of Jiulong River (SE China). Anthropogenic N inputs contributed 61-92% of river DIN yield which increased from 337 in 1980s to 1662 kg N km(-2) yr(-1) in 2000s for the North River, and from 653 to 3097 kg N km(-2) yr(-1) for the West River. North River and West River contributed 55% and 45% respectively of DIN loading to the estuary. Rapid development and poor management driven by national policies were responsible for increasing riverine N export. Scenario analysis and source tracking suggest that reductions of anthropogenic N inputs of at least 30% in the North River (emphasis on fertilizer and manure) and 50% in the West River (emphasis on fertilizer) could significantly improve water quality and mitigate eutrophication in both river and coastal waters. PMID:26517942

  9. Using an integrated method to estimate watershed sediment yield during heavy rain period: a case study in Hualien County, Taiwan

    S. M. Hsu

    2012-06-01

    Full Text Available A comprehensive approach estimating sediment yield from a watershed is needed to develop better measures for mitigating sediment disasters and assessing downstream impacts. In the present study, an attempt has been made to develop an integrated method, considering sediment supplies associated with soil erosion, shallow landslide and debris flow to estimate sediment yield from a debris-flow-prone watershed on a storm event basis. The integrated method is based on the HSPF and TRIGRS models for predicting soil erosion and shallow landslide sediment yield, and the FLO-2D model for calculating debris flow sediment yield. The proposed method was applied to potential debris-flow watersheds located in the Sioulin Township of Hualien County. The available data such as hourly rainfall data, historical streamflow and sediment records as well as event-based landslide inventory maps have been used for model calibration and validation. Results for simulating sediment yield have been confirmed by comparisons of observed data from several typhoon events. The verified method employed a 24-h design hyetograph with the 100-yr return period to simulate sediment yield within the study area. The results revealed that the influence of shallow landslides on sediment supply as compared with soil erosion was significant. The estimate of landslide transport capacity into a main channel indicated the sediment delivery ratio on a typhoon event basis was approximately 38.4%. In addition, a comparison of sediment yields computed from occurrence and non-occurrence of debris flow scenarios showed that the sediment yield from an occurrence condition was found to be increasing at about 14.2 times more than estimated under a non-occurrence condition. This implied watershed sediment hazard induced by debris flow may cause severe consequences.

  10. Analysis of Hollinshed watershed using GIS software

    Hipp, Michael.

    1999-01-01

    CIVINS The objective of this study is to apply GIS and storm water modeling software to develop an accurate hydrologic model of the Hollinshed watershed. Use of GIS will allow the user to quickly change the land use of specific areas within in the watershed to determine the hydrologic effects throughout the watershed using the storm water model. Specific objectives were to: (1) develop a GIS database for the Hollinshed watershed; (2) Develop an appropriate link/ node diagram and correspond...

  11. Development of Watershed Evaluation Index for Water Resources Considering Climate Change

    Lee, K. S.; Oh, J.; Lee, S.; Chung, E.

    2010-12-01

    The concept of sustainable development is the center of issue between economic development and environmental protection. Water resources development and management is a main part of the issue. With this, integrated watershed management (IWM) which considers flood, drought and water quality control together is needed for watershed management. The Green house effect has been increased by the carbon based and thoughtless development, and climate change caused by global warming will affect all human activities. Accordingly, this study developed watershed evaluation index for water resources to assess water resources of watershed considering flood, drought, water quality control, and climate change and then applied results to actual watershed. This study consists of mainly 2 parts. The first is development of watershed evaluation index to analyze water resources vulnerability considering flood, drought, water quality, and climate change. Watershed evaluation index for water resources consists of flood indicator with climate change, drought indicator with climate change, and water quality indicator with climate change. There are two frameworks to make indices. One is a cause-effect chain framework and the other is a theme framework. Watershed evaluation index for water resources has been developed using DPSIR (Driving force-Pressure-Impact-Response) framework by EEA (European Environment Agency) that can explain interactions between socio-economic and water resources. The second is applying the index to study watershed. Three kinds of date sets are needed to apply the index. These are socio-economic data, meteorological and hydrologic data, and GCM (General Circulation Model) as a future climate change scenario. In this study, the North Han River watershed was selected as a study area. The socio-economic data set was collected using municipal statistics. The meteorological and hydrologic data, especially flow and water quality (BOD, DO et al.) data has been simulated

  12. COMPARATIVE PERFORMANCE MONITORING OF RAINFED WATERSHEDS APPLYING GIS AND RS TECHNIQUES

    ARUN W. DHAWALE

    2012-03-01

    Full Text Available Under the watershed development project of the Ministry of Rural Development, many micro watersheds have been identified for development and management. However Government is handicapped inobtaining data on the performance of these programmes due to the absence of watershed performance studies. Rainfed agriculture is clearly critical to agricultural performance in India. Nonetheless, it is difficult to precisely quantify the overall importance of the sector. The widely quoted statistic is that 70% of cultivated area israinfed, implying that rainfed agriculture is more important than irrigated agriculture. In the present study two rainfed micro-watersheds namely Kolvan valley and Darewadi is taken as case study for performance monitoring using GIS and RS Techniques. An attempt has been made to highlight the role of GIS and RS in estimation of runoff from both the watersheds by SCS curve number method. The methodology developed for the research show that the knowledge extracted from proposed approach can remove the problem of performance monitoring of micro watersheds to great extent. Comparative performance of both micro watersheds having extreme rainfall conditions shows that in Darewadi micro watershed overall success rate is more than Kolvan valley.

  13. Urbanization and watershed sustainability: Collaborative simulation modeling of future development states

    Randhir, Timothy O.; Raposa, Sarah

    2014-11-01

    Urbanization has a significant impact on water resources and requires a watershed-based approach to evaluate impacts of land use and urban development on watershed processes. This study uses a simulation with urban policy scenarios to model and strategize transferable recommendations for municipalities and cities to guide urban decisions using watershed ecohydrologic principles. The watershed simulation model is used to evaluation intensive (policy in existing built regions) and extensive (policy outside existing build regions) urban development scenarios with and without implementation of Best Management practices (BMPs). Water quantity and quality changes are simulated to assess effectiveness of five urban development scenarios. It is observed that optimal combination of intensive and extensive strategies can be used to sustain urban ecosystems. BMPs are found critical to reduce storm water and water quality impacts on urban development. Conservation zoning and incentives for voluntary adoption of BMPs can be used in sustaining urbanizing watersheds.

  14. A machine-to-machine architecture for the real-time study of urban watersheds

    Kerkez, B.; Zhao, Y.

    2013-12-01

    Complex patterns of water quality across urban watersheds are driven by yet to be understood dynamics between natural and human-induced phenomena. More spatiotemporally representative data are required to improve our understanding of the contributions of various land-use patterns on water quality. This is particular true of the Great Lakes watersheds in the mid-western United States, where significant stream nutrient loading is adversely affecting ecosystem health. We discuss the development of a machine-to-machine architecture to enable the long-term, reliable, real-time measurement of water parameters across large, urbanized watersheds. Our sensor network is presently being deployed in a 2300km2 watershed in southeastern Michigan, where temperature fluctuations between -10C to 32C and annual precipitation of up to 750mm impose significant challenges on deployed hardware. Exploiting the cellular coverage of urban environments enables the use of ultra-low-power, low-cost, embedded wireless modules for measurement, computation and communication. Bi-directional links between sensor nodes and cloud-based services permit extreme network configurability and ease of deployment, while permitting seamless access to sensors via an IP-based addressing scheme. We show how hardware and software selection will enable years of battery life without sacrificing temporal data resolutions. Initial results indicate that the system provides a reliable means by which to collect and analyze real-time water quantity and water quality data.

  15. Runoff processes and small watersheds

    Full text: Small watersheds are a fundamental landscape unit for quantifying inputs and outputs of water, sediment and nutrients. Small watersheds have been used historically for defining runoff processes and flood response to storm precipitation. Early conceptualizations of runoff production during the International Hydrological Decade in the 1960s focused on the importance and movement of event water as overland flow to the stream channel. Use of mass balance mixing models using stable isotope tracers in the 1970s and 1980s directly challenged early ideas of where water goes when it rains, residence time of catchment waters and flow paths of subsurface runoff towards the stream. These data showed that the majority of water in the stream during a precipitation event was water that existed in the watershed prior to the event. While credible physical mechanisms of old water mobilization have only been defined in the past decade, stable isotope tracer approaches are now mature enough to offer new potential for informing new model structures of how small watersheds work. Isotope tracer data in small watersheds and mass balance separations also represent new ways of validating and calibrating watershed models. This presentation will chronicle the use of isotope tracers in small watersheds and provide examples of how these data can be used in models of runoff processes and for providing valuable input for water resource management at larger basin scales. (author)

  16. Evaluating Hydrologic Response of an Agricultural Watershed for Watershed Analysis

    Manoj Kumar Jha

    2011-06-01

    Full Text Available This paper describes the hydrological assessment of an agricultural watershed in the Midwestern United States through the use of a watershed scale hydrologic model. The Soil and Water Assessment Tool (SWAT model was applied to the Maquoketa River watershed, located in northeast Iowa, draining an agriculture intensive area of about 5,000 km2. The inputs to the model were obtained from the Environmental Protection Agency’s geographic information/database system called Better Assessment Science Integrating Point and Nonpoint Sources (BASINS. Meteorological input, including precipitation and temperature from six weather stations located in and around the watershed, and measured streamflow data at the watershed outlet, were used in the simulation. A sensitivity analysis was performed using an influence coefficient method to evaluate surface runoff and baseflow variations in response to changes in model input hydrologic parameters. The curve number, evaporation compensation factor, and soil available water capacity were found to be the most sensitive parameters among eight selected parameters. Model calibration, facilitated by the sensitivity analysis, was performed for the period 1988 through 1993, and validation was performed for 1982 through 1987. The model was found to explain at least 86% and 69% of the variability in the measured streamflow data for calibration and validation periods, respectively. This initial hydrologic assessment will facilitate future modeling applications using SWAT to the Maquoketa River watershed for various watershed analyses, including watershed assessment for water quality management, such as total maximum daily loads, impacts of land use and climate change, and impacts of alternate management practices.

  17. Variation in Soil Enzyme Activities in a Temperate Agroforestry Watershed

    Integration of agroforestry and grass buffers into row crop watersheds improves overall environmental quality, including soil quality. The objective of this study was to examine management and landscape effects on soil carbon, soil nitrogen, microbial diversity, enzyme activity, and DNA concentrati...

  18. Consideration of Experimental Approaches in the Physical and Biological Sciences in Designing Long-Term Watershed Studies in Forested Landscapes

    Stallard, R. F.

    2011-12-01

    The importance of biological processes in controlling weathering, erosion, stream-water composition, soil formation, and overall landscape development is generally accepted. The U.S. Geological Survey (USGS) Water, Energy, and Biogeochemical Budgets (WEBB) Project in eastern Puerto Rico and Panama and the Smithsonian Tropical Research Institute (STRI) Panama Canal Watershed Experiment (PCWE) are landscape-scale studies based in the humid tropics where the warm temperatures, moist conditions, and luxuriant vegetation promote especially rapid biological and chemical processes - photosynthesis, respiration, decay, and chemical weathering. In both studies features of small-watershed, large-watershed, and landscape-scale-biology experiments are blended to satisfy the research needs of the physical and biological sciences. The WEBB Project has successfully synthesized its first fifteen years of data, and has addressed the influence of land cover, geologic, topographic, and hydrologic variability, including huge storms on a wide range of hydrologic, physical, and biogeochemical processes. The ongoing PCWE should provide a similar synthesis of a moderate-sized humid tropical watershed. The PCWE and the Agua Salud Project (ASP) within the PCWE are now addressing the role of land cover (mature forests, pasture, invasive-grass dominated, secondary succession, native species plantation, and teak) at scales ranging from small watersheds to the whole Panama Canal watershed. Biologists have participated in the experimental design at both watershed scales, and small (0.1 ha) to large (50 ha) forest-dynamic plots have a central role in interfacing between physical scientists and biologists. In these plots, repeated, high-resolution mapping of all woody plants greater than 1-cm diameter provides a description of population changes through time presumably reflecting individual life histories, interactions with other organisms and the influence of landscape processes and climate

  19. Hydrologic Responses to Land Use Change in the Loess Plateau: Case Study in the Upper Fenhe River Watershed

    Zhixiang Lu

    2015-01-01

    Full Text Available We applied an integrated approach to investigate the impacts of land use and land cover (LULC changes on hydrology at different scales in the Loess Plateau of China. Hydrological modeling was conducted for the LULC maps from remote sensing images at two times in the Upper Fenhe River watershed using the SWAT model. The main LULC changes in this watershed from 1995 to 2010 were the transformation of farmland into forests, grassland, and built-up land. The simulation results showed that forested land contributed more than any other LULC class to water yield, but built-up land had most impact due to small initial loss and infiltration. At basin scale, a comparison of the simulated hydrological components of two LULC maps showed that there were slight increases in average annual potential evapotranspiration, actual evapotranspiration, and water yield, but soil water decreased, between the two intervals. In subbasins, obvious LULC changes did not have clear impacts on hydrology, and the impacts may be affected by precipitation conditions. By linking a hydrological model to remote sensing image analysis, our approach of quantifying the impacts of LULC changes on hydrology at different scales provide quantitative information for stakeholders in making decisions for land and water resource management.

  20. SIMULATIONS OF SEDIMENT YIELD AND PHOSPHORUS YIELD FROM A WATERSHED IN TAIWAN, CHINA

    Cheng-Daw HSIEH; Wan-Fa YANG; Wen C.WANG

    2006-01-01

    Long term sediment yield and phosphorus yield from a watershed are important information for watershed management planning. Since sediment and water quality data for the streams draining a watershed are most often observed only periodically, a method is needed to extend the knowledge gained from the observed data to the rest of the observation period. In this study, it is proposed that suspended sediment load be established as a power function of stream discharge, and total phosphorus load as a power function of suspended sediment load. The propositions are applied to a watershed in Taiwan. Using suspended sediment load and total phosphorus load data, parameters for the functions are calibrated. The functions are used to simulate daily suspended sediment load and daily total phosphorus load based on observed daily stream discharges for the gauging station near the watershed outlet. Annual sediment yield and total phosphorus yield are then calculated from the simulated daily load. It is shown in this study that the intercepts of the power functions are related to watershed land use activities and can be calibrated using those data. The relations may be used to develop watershed management strategies for controlling sediment and phosphorus exports.

  1. Statewide Watershed Protection and Local Implementation: A Comparison of Washington, Minnesota, and Oregon

    Holst, David J.

    1999-01-01

    Abstract In 1991 EPA embraced the watershed protection approach for environmental management. EPA defines watershed protection as â a strategy for effectively protecting and restoring aquatic ecosystems and protecting human health.â To encourage statewide watershed protection, EPA developed the â Statewide Watershed Protection Approachâ document, which is designed to aid states in developing their own watershed protection program. The watershed protection approach is n...

  2. The effect of watershed scale on HEC-HMS calibrated parameters: a case study in the Clear Creek watershed in Iowa, USA

    Zhang, H. L.; Wang, Y. J.; Wang, Y. Q.; Li, D. X.; Wang, X. K.

    2013-01-01

    In this paper, we use the Hydrologic Modeling System (HEC-HMS) to simulate two flood events to investigate the effect of watershed subdivision in terms of performance, the calibrated parameter values, the description of hydrologic processes, and the subsequent interpretation of water balance components. We use Stage-IV hourly NEXRAD precipitation as the meteorological input for ten model configurations with variable sub-basin sizes. Model parameters are automatically optimized to fit the observed data. The strategy is implemented in Clear Creek Watershed (CCW), which is located in the upper Mississippi River basin. Results show that most of the calibrated parameter values are sensitive to the basin partition scheme and that the relative relevance of physical processes, described by the model, change depending on watershed subdivision. In particular, our results show that parameters derived from different model implementations attribute losses in the system to completely different physical phenomena without a notable effect on the model's performance. Our work adds to the body of evidence demonstrating that automatically calibrated parameters in hydrological models can lead to an incorrect prescription of the internal dynamics of runoff production and transport. Furthermore, it demonstrates that model implementation adds a new dimension to the problem of non-uniqueness in hydrological models.

  3. The effect of watershed scale on HEC-HMS calibrated parameters: a case study in the Clear Creek watershed in Iowa, US

    Zhang, H. L.; Wang, Y. J.; Wang, Y. Q.; Li, D. X.; Wang, X. K.

    2013-07-01

    In this paper, we use the Hydrologic Modeling System (HEC-HMS) to simulate two flood events to investigate the effect of watershed subdivision in terms of performance, the calibrated parameter values, the description of hydrologic processes, and the subsequent interpretation of water balance components. We use Stage IV hourly NEXRAD precipitation as the meteorological input for ten model configurations with variable sub-basin sizes. Model parameters are automatically optimized to fit the observed data. The strategy is implemented in Clear Creek Watershed (CCW), which is located in the upper Mississippi River basin. Results show that most of the calibrated parameter values are sensitive to the basin partition scheme and that the relative relevance of physical processes, described by the model, change depending on watershed subdivision. In particular, our results show that parameters derived from different model implementations attribute losses in the system to completely different physical phenomena without a notable effect on the model's performance. Our work adds to the body of evidence demonstrating that automatically calibrated parameters in hydrological models can lead to an incorrect prescription of the internal dynamics of runoff production and transport. Furthermore, it demonstrates that model implementation adds a new dimension to the problem of non-uniqueness in hydrological models.

  4. Tracking fluorescent dissolved organic matter in multistage rivers using EEM-PARAFAC analysis: implications of the secondary tributary remediation for watershed management.

    Nie, Zeyu; Wu, Xiaodong; Huang, Haomin; Fang, Xiaomin; Xu, Chen; Wu, Jianyu; Liang, Xinqiang; Shi, Jiyan

    2016-05-01

    Profound understanding of behaviors of organic matter from sources to multistage rivers assists watershed management for improving water quality of river networks in rural areas. Ninety-one water samples were collected from the three orders of receiving rivers in a typical combined polluted subcatchment (diffuse agricultural pollutants and domestic sewage) located in China. Then, the fluorescent dissolved organic matter (FDOM) information for these samples was determined by the excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC). Consequently, two typical humic-like (C1 and C2) and other two protein-like (C3 and C4) components were separated. Their fluorescence peaks were located at λ ex/em = 255(360)/455, 60 %). Principal component analysis (PCA) further demonstrated that, except for the autochthonous produced C4, the allochthonous components (C1 and C2) had the same terrestrial origins, but C3 might possess the separate anthropogenic and biological sources. Moreover, the spatial heterogeneity of contamination levels was noticeable in multistage rivers, and the allochthonous FDOM was gradually homogenized along the migration directions. Interestingly, the average content of the first three PARAFAC components in secondary tributaries and source pollutants had significantly higher levels than that in subsequent receiving rivers, thus suggesting that the supervision and remediation for secondary tributaries would play a prominent role in watershed management works. PMID:26805924

  5. Study on Ecological Risk of Land Use in Urbanization Watershed Based on RS and GIS:A Case Study of Songhua River Watershed in Harbin Section

    Li; YUAN; Wenfeng; GONG; Yongfeng; DANG; Zexu; LONG

    2013-01-01

    By using RS and GIS technology,the ecological risk index ( ERI) was constructed based on the analysis of land use change and structural characteristics in urbanization watershed of Songhua River in Harbin section. Afterwards,the spatial distribution and change characteristics maps of ERI obtained by using block Kriging were analyzed to reveal the spatial and temporal evolution characteristics,change rules and formation mechanisms of ecological risk based on land use under the background of urbanization,and to minimize land use risk during urbanization process. The results showed that during the past 18 years,moderate ecological risk level was major,while proportion of high ecological risk was the lowest,and the area of higher and lower ecological risk region changed most greatly; high and higher ecological risk were focused on urban region and the transition zone from urban to suburban region,while low and lower ecological risk mainly distributed in forestland with higher vegetation coverage,water bodies,grassland,shrub land and so on. Meanwhile,the transition zone from high to low ecological risk was very obvious. In addition,ecological risk became slightly worse in some region due to the transformation from cropland to residential and urban land,while it became slightly better in other regions because of the transformation from cropland to forestland; the center of gravity in lower ecological risk region shifted most greatly,while the shift was the smallest in high ecological risk region,namely 12. 31 and 0. 57 km respectively.

  6. Rapid Assessment of Logging-Associated Sediment-Delivery Pathways in an Intensively-Managed Forested Watershed in the Southern Cascades, Northern California

    Coe, D. B.; Wopat, M. A.; Lindsay, D.; Stanish, S.; Boone, M.; Beck, B.; Wyman, A.; Bull, J.

    2012-12-01

    The potential for water-quality impacts in intensively-managed forested watersheds depends partly upon the frequency of overland flow paths linking logging-related hillslope sediment sources to the channel network, as well as the volume of sediment delivered along these flow paths. In response to public concerns over perceived water-quality impacts from clearcut timber harvesting, the Battle Creek Task Force, composed of subject-matter experts from 4 different state agencies, performed a rapid assessment for visible evidence of sediment delivery pathways from multiple logging-associated features in the upper Battle Creek watershed - an area underlain predominantly by Holocene- and Late Pleistocene-aged volcanic rock types, with highly permeable soils, and relatively few streams. Logging-associated features were selected for assessment based on erosion potential and proximity to stream channels. Identified sediment-delivery pathways were then characterized by dominant erosion process and the relative magnitude of sediment delivery (i.e., low, moderate, and high) was estimated. Approximately 26 km of stream buffers adjacent to 55 clearcut harvest units were assessed, and the single detected instance of sediment delivery was found to be of low magnitude and the result of illegal encroachment by logging equipment into a 5-m wide stream-adjacent equipment-limitation zone. The proportion of sampled sites delivering sediment was found to be highest for tractor-stream crossings, followed by road-stream crossings, stream-adjacent road segments, stream-adjacent landings, and clearcut harvest units, respectively. All 5 tractor-stream crossings delivered sediment, but were generally delivering a low magnitude of sediment derived from sheetwash and rilling. Road-stream crossings (n=39) and stream-adjacent road segments (n=24) delivered observable sediment 69 and 67 percent of the time, respectively. The highest magnitudes of sediment delivery from roads were associated with

  7. Doctoral Women: Managing Emotions, Managing Doctoral Studies

    Aitchison, Claire; Mowbray, Susan

    2013-01-01

    This paper explores the experiences of women doctoral students and the role of emotion during doctoral candidature. The paper draws on the concept of emotional labour to examine the two sites of emotional investment students experienced and managed during their studies: writing and family relationships. Emotion is perceived by many dominant…

  8. Spatiotemporal nutrient loading to Cultus Lake: Context for eutrophication and implications for integrated watershed-lake management

    Putt, Annika Elsie

    2014-01-01

    Cultus Lake, British Columbia experiences significant anthropogenic nutrient loadings and eutrophication. If continued unabated, these stresses threaten the persistence of two resident species at risk (coastrange sculpin and Cultus Lake sockeye salmon) and the many ecosystem services provided by the lake. We constructed water and nutrient budgets for the Cultus Lake watershed to identify major sources of nitrogen and phosphorus loadings to the lake. A steady-state water quality model calibrat...

  9. Data base management study

    1976-01-01

    Data base management techniques and applicable equipment are described. Recommendations which will assist potential NASA data users in selecting and using appropriate data base management tools and techniques are presented. Classes of currently available data processing equipment ranging from basic terminals to large minicomputer systems were surveyed as they apply to the needs of potential SEASAT data users. Cost and capabilities projections for this equipment through 1985 were presented. A test of a typical data base management system was described, as well as the results of this test and recommendations to assist potential users in determining when such a system is appropriate for their needs. The representative system tested was UNIVAC's DMS 1100.

  10. Interacting Effects of Land Management Strategies and Climate Change on the Ecohydrologic Systems of the Semi-Arid Santa Fe Municipal Watershed

    Dugger, A. L.; Tague, C.; Allen, C. D.; Ringler, T.

    2009-12-01

    Current regional climate models predict overall warming in the Southwest U.S. along with increased drying and potential shifts in the timing and intensity of precipitation events. While climate controls on the water budget through precipitation inputs and the timing of snow accumulation and melt are critical in semi-arid mountain watersheds, we also expect vegetation water use and productivity changes to exert a strong control on the distribution, timing, and quantity of water availability. Given that management practices can significantly alter the structure and density of vegetation, land management has the potential to either mitigate or exacerbate certain climate change impacts on the water system. Our main goal is to examine climate, subsurface, and vegetation interactions in the semi-arid Santa Fe Municipal Watershed to determine the dominant controls on streamflow as well as the envelope of expected hydrologic behavior under potential climate and land management changes. We use a process-based, spatially distributed, integrated hydro-ecological model (RHESSys) to simulate water and vegetation carbon cycling. Specifically, we build a physically-based model calibrated for soil and effective drainage parameters and apply a range of climate inputs based on historical variability and forced with extremes in projected climate shifts. We then investigate the spatially and seasonally variable responses of vegetation, the timing and amounts of streamflow, and the interactions between these processes under different land management and disturbance schemes. This modeling exercise produces a series of probability distributions for annual and seasonal streamflow yields under various conditions, which under a statistical lens reveals the dominant controls on the magnitude and timing of streamflow. Results from this analysis highlight confounding (or mitigating) impacts on the vulnerability of water yields to climate change.

  11. Enhancements to TauDEM to support Rapid Watershed Delineation Services

    Sazib, N. S.; Tarboton, D. G.

    2015-12-01

    Watersheds are widely recognized as the basic functional unit for water resources management studies and are important for a variety of problems in hydrology, ecology, and geomorphology. Nevertheless, delineating a watershed spread across a large region is still cumbersome due to the processing burden of working with large Digital Elevation Model. Terrain Analysis Using Digital Elevation Models (TauDEM) software supports the delineation of watersheds and stream networks from within desktop Geographic Information Systems. A rich set of watershed and stream network attributes are computed. However limitations of the TauDEM desktop tools are (1) it supports only one type of raster (tiff format) data (2) requires installation of software for parallel processing, and (3) data have to be in projected coordinate system. This paper presents enhancements to TauDEM that have been developed to extend its generality and support web based watershed delineation services. The enhancements of TauDEM include (1) reading and writing raster data with the open-source geospatial data abstraction library (GDAL) not limited to the tiff data format and (2) support for both geographic and projected coordinates. To support web services for rapid watershed delineation a procedure has been developed for sub setting the domain based on sub-catchments, with preprocessed data prepared for each catchment stored. This allows the watershed delineation to function locally, while extending to the full extent of watersheds using preprocessed information. Additional capabilities of this program includes computation of average watershed properties and geomorphic and channel network variables such as drainage density, shape factor, relief ratio and stream ordering. The updated version of TauDEM increases the practical applicability of it in terms of raster data type, size and coordinate system. The watershed delineation web service functionality is useful for web based software as service deployments

  12. Environmental and deteriorating state analyses of the watershed Riacho do Tronco, Boa Vista, PB, Brazil

    Ronildo Alcântara Pereira

    2010-04-01

    Full Text Available This study proposes, from the subdivision of the watershed of Riacho do Tronco in eight sub-watersheds, to diagnose their potential for land use and occupation, determine the areas of conflicts in land use and the level of environmental deterioration of the watershed as a whole, to support planning and the consequent reduction of the expansion of desertification. Based on GIS analysis and field work, the environmental parameters that allowed the establishment of the roughness coefficient of each sub-watershed were calculated, following the methodology proposed by Rocha (1997 for the classification of the natural potential use of each watershed. The results showed that four sub-watersheds are suitable for agriculture, three for livestock and reforestation and one for reforestation only. It was also possible to diagnose land use and occupation of each one and to determine land use conflicts. This represented by inappropriate use of soil considering the natural vocation of some sub-watershed, as well as the occurrence of bare soil and mining activities that occur in some sub-watersheds. Thus, from the analysis of conflict in land use, areas to be afforested, availability for or intense use of agricultural lands and the estimate of areas where correct management practices have to be implemented, it was observed that the watershed of Riacho do Tronco has 42.7% of its area in deteriorated stage. Therefore, the high level of environmental deterioration is evident, with consequent risk of desertification. In addition, considering that this area is located in the Brazilian semi-arid region with economic activities practiced without conservation concerns, it is necessary that the government and organized society foster sustainable principles in the economic activities in this watershed.

  13. Landslide mapping with multi-scale object-based image analysis - a case study in the Baichi watershed, Taiwan

    Lahousse, T.; Chang, K. T.; Lin, Y. H.

    2011-10-01

    We developed a multi-scale OBIA (object-based image analysis) landslide detection technique to map shallow landslides in the Baichi watershed, Taiwan, after the 2004 Typhoon Aere event. Our semi-automated detection method selected multiple scales through landslide size statistics analysis for successive classification rounds. The detection performance achieved a modified success rate (MSR) of 86.5% with the training dataset and 86% with the validation dataset. This performance level was due to the multi-scale aspect of our methodology, as the MSR for single scale classification was substantially lower, even after spectral difference segmentation, with a maximum of 74%. Our multi-scale technique was capable of detecting landslides of varying sizes, including very small landslides, up to 95 m2. The method presented certain limitations: the thresholds we established for classification were specific to the study area, to the landslide type in the study area, and to the spectral characteristics of the satellite image. Because updating site-specific and image-specific classification thresholds is easy with OBIA software, our multi-scale technique is expected to be useful for mapping shallow landslides at watershed level.

  14. Landslide mapping with multi-scale object-based image analysis – a case study in the Baichi watershed, Taiwan

    T. Lahousse

    2011-10-01

    Full Text Available We developed a multi-scale OBIA (object-based image analysis landslide detection technique to map shallow landslides in the Baichi watershed, Taiwan, after the 2004 Typhoon Aere event. Our semi-automated detection method selected multiple scales through landslide size statistics analysis for successive classification rounds. The detection performance achieved a modified success rate (MSR of 86.5% with the training dataset and 86% with the validation dataset. This performance level was due to the multi-scale aspect of our methodology, as the MSR for single scale classification was substantially lower, even after spectral difference segmentation, with a maximum of 74%. Our multi-scale technique was capable of detecting landslides of varying sizes, including very small landslides, up to 95 m2. The method presented certain limitations: the thresholds we established for classification were specific to the study area, to the landslide type in the study area, and to the spectral characteristics of the satellite image. Because updating site-specific and image-specific classification thresholds is easy with OBIA software, our multi-scale technique is expected to be useful for mapping shallow landslides at watershed level.

  15. A method of fingerprinting the sources of fluvial sediment using environmental radionuclides. A case study of Tsuzura river watershed

    To study the fluvial sediment sources in forested watershed in Shikoku Island, Japan, the concentration of Cs-137 and Pb-210ex and U decay series radionuclides were analyzed. The study area in the midstream of Shimanto River basin, located 700 km southwest of Tokyo. The 0.33 km2 area watershed ranges in elevation from 170 m to 560 m above sea level. The soil sampling was conducted in hillslopes in various locations such as landslide scar, soil surface in unmanaged Hinoki (Chamacecyparis obtusa) plantation and unsealed forest road, and detailed sampling in the stream bed and bank was also conducted in several tributaries. Time-integrated suspended sediment sampler was adopted to obtain enough volume of sample to determine the radionuclides. The activities of Cs-137, Pb-210, Pb-214 and Bi-214 of soils and fluvial sediments were determined by gamma-ray spectrometry. Correction for the effect of particle size distribution and organic matter content on the radionuclides were conducted to compare the radionuclides concentration between the soils of potential suspended sediment sources and fluvial sediments. It was found that there were significant differences of Cs-137 and Pb-210ex concentration between forest floor or runoff sediment and forest road or stream bank. The Cs-137 and Pb-210ex concentration of suspended sediment varied among them, suggesting the possibility of fingerprinting the sources of fluvial sediment by Cs-137 and Pb-210ex. (author)

  16. Hydrologic calibration of paired watersheds using a MOSUM approach

    Ssegane, H.; Amatya, D. M.; Muwamba, A.; Chescheir, G. M.; Appelboom, T.; Tollner, E. W.; Nettles, J. E.; Youssef, M. A.; Birgand, F.; Skaggs, R. W.

    2015-01-01

    Paired watershed studies have historically been used to quantify hydrologic effects of land use and management practices by concurrently monitoring two neighboring watersheds (a control and a treatment) during the calibration (pre-treatment) and post-treatment periods. This study characterizes seasonal water table and flow response to rainfall during the calibration period and tests a change detection technique of moving sums of recursive residuals (MOSUM) to select calibration periods for each control-treatment watershed pair when the regression coefficients for daily water table elevation (WTE) were most stable to reduce regression model uncertainty. The control and treatment watersheds included 1-3 year intensively managed loblolly pine (Pinus taeda L.) with natural understory, same age loblolly pine intercropped with switchgrass (Panicum virgatum), 14-15 year thinned loblolly pine with natural understory (control), and switchgrass only. Although monitoring during the calibration period spanned 2009 to 2012, silvicultural operational practices that occurred during this period such as harvesting of existing stand and site preparation for pine and switchgrass establishment may have acted as external factors, potentially shifting hydrologic calibration relationships between control and treatment watersheds. Results indicated that MOSUM was able to detect significant changes in regression parameters for WTE due to silvicultural operations. This approach also minimized uncertainty of calibration relationships which could otherwise mask marginal treatment effects. All calibration relationships developed using this MOSUM method were quantifiable, strong, and consistent with Nash-Sutcliffe Efficiency (NSE) greater than 0.97 for WTE and NSE greater than 0.92 for daily flow, indicating its applicability for choosing calibration periods of paired watershed studies.

  17. Hydrologic calibration of paired watersheds using a MOSUM approach

    H. Ssegane

    2015-01-01

    Full Text Available Paired watershed studies have historically been used to quantify hydrologic effects of land use and management practices by concurrently monitoring two neighboring watersheds (a control and a treatment during the calibration (pre-treatment and post-treatment periods. This study characterizes seasonal water table and flow response to rainfall during the calibration period and tests a change detection technique of moving sums of recursive residuals (MOSUM to select calibration periods for each control-treatment watershed pair when the regression coefficients for daily water table elevation (WTE were most stable to reduce regression model uncertainty. The control and treatment watersheds included 1–3 year intensively managed loblolly pine (Pinus taeda L. with natural understory, same age loblolly pine intercropped with switchgrass (Panicum virgatum, 14–15 year thinned loblolly pine with natural understory (control, and switchgrass only. Although monitoring during the calibration period spanned 2009 to 2012, silvicultural operational practices that occurred during this period such as harvesting of existing stand and site preparation for pine and switchgrass establishment may have acted as external factors, potentially shifting hydrologic calibration relationships between control and treatment watersheds. Results indicated that MOSUM was able to detect significant changes in regression parameters for WTE due to silvicultural operations. This approach also minimized uncertainty of calibration relationships which could otherwise mask marginal treatment effects. All calibration relationships developed using this MOSUM method were quantifiable, strong, and consistent with Nash–Sutcliffe Efficiency (NSE greater than 0.97 for WTE and NSE greater than 0.92 for daily flow, indicating its applicability for choosing calibration periods of paired watershed studies.

  18. Simulating nitrate response functions in watersheds: Case studies in the United States and New Zealand

    Gusyev, Maksym; Abrams, Daniel; Morgenstern, Uwe; Stewart, Michael

    2016-04-01

    Non-point sources of nitrate contamination are a common concern in different parts of the world and are difficult to characterize. Due to the solubility of nitrate, it easily enters groundwater and may take years or decades to completely flush to a stream. During this time, it may undergo denitrification, in particular if dissolved oxygen levels are low, requiring a representation of spatially distributed nitrate input as well as detailed hydrogeology. In this presentation, nitrate response functions are generated with four different methodologies that are listed in the order of decreasing degrees of freedom: groundwater flow and chemical transport (MODFLOW/MT3D), groundwater flow with solute particle tracing (MODFLOW/MODPATH), cross-sectional groundwater flow model (MODFLOW), and lumped parameter models (LPMs). We tested these approaches in selected watersheds in the Eastern and Midwestern United States as well as New Zealand and found similar nitrate results in all cases despite different model complexities. It is noted that only the fully three dimensional MODFLOW models with MT3D or MODPATH could account for detailed patterns of land use and nitrate applications; the cross-sectional models and lumped parameter models could only do so approximately. Denitrification at depth could also be explicitly accounted for in all four approaches, although this was not a major factor in any of the watersheds investigated.

  19. Estimated Forest Ecological Water Requirements in the Jinghe Watershed-Theory and Case Study

    He Yongtao; Min Qingwen; Li Wenhua; Li Guicai; Jin Liwei

    2006-01-01

    The ecological water requirement of forests is defined as the water resources used to maintain and improve the natural balance of forest ecosystems,which can be expressed by evapotranspiration of trees during the growing season.The relationship of evapotranspiration and soil moisture of forestland with tree growth showed that,if the soil moisture was above the temporary wilting point or the point of growth retardation,the growth of trees can,respectively,be basically or normally sustained.Therefore,they can be taken as the minimum and the suitable ecological water requirements of the forest.These points can be estimated by introducing the soil factor (Ks) and tree species factor (Kt) to potential evapotranspiration with the Penman formula.With geographic information system (GIS),the ecological water requirement for forests in the Jinghe watershed,western China was estimated.The results revealed that the minimum and suitable ecological water requirements of the forests in the Jinghe watershed were approximately 204×107 and 340×107 m,respectively.

  20. A preliminary study of the Hg flux from selected Ohio watersheds to Lake Erie

    New measurements of riverine dissolved and particulate Hg fluxes into Lake Erie from 12 northern Ohio watersheds have been determined from samples collected in April 2002 and analyzed using ultra-clean techniques with cold-vapor atomic fluorescence spectrometry. Total Hg concentrations ranged through 2.5-18.5 ng L-1, with a mean of 10.4 ng L-1 with most Hg in particulate form. Dissolved Hg concentrations ranged through 0.8-4.3 ng L-1, with a mean of 2.5 ng L-1. Highest total Hg concentrations were observed in western rivers with primarily agricultural land use and eastern rivers with mixed land use in their watersheds. Total suspended solid concentrations ranged through 10-180 mg L-1 with particulate Hg concentrations ranging through 47-170 ng g-1, with a mean of 99 ng g-1. Particulate Hg was similar to published data for central Lake Erie bottom sediments but much lower than for bottom sediments in western Lake Erie. Total Hg concentrations were positively correlated with suspended sediment concentrations and negatively with dissolved NO3- concentrations. The total estimated annual Hg fluxes from these rivers into Lake Erie is estimated to be 85 kg, but because only one event was sampled during high flow conditions, this may be an overestimate. This is much lower than previous published estimates of riverine Hg input into Lake Erie

  1. Watershed management planning for a pre-alpine river in Switzerland - River 'Kleine Emme' in Canton Lucerne

    A watershed planning system is presented which considers for the first time new European and Swiss guidelines and recommendations. The principles and procedures for integrated protection and sustainable use of water resources in a river basin are proposed. The existing survey data in water use, hydrology, water quality, biology, eco morphology and barriers preventing upstream migration are interpreted and evaluated. Based on a deficiency analysis, the need for action and measures as rehabilitation, restoration, construction of fish bypass and improvement of the water habitat are recommended in order to ensure the ecological function of the whole river system

  2. Analysis Of Leakage In Carbon Sequestration Projects In Forestry:A Case Study Of Upper Magat Watershed, Philippines

    Lasco, Rodel D.; Pulhin, Florencia B.; Sales, Renezita F.

    2007-06-01

    The role of forestry projects in carbon conservation andsequestration is receiving much attention because of their role in themitigation of climate change. The main objective of the study is toanalyze the potential of the Upper Magat Watershed for a carbonsequestration project. The three main development components of theproject are forest conservation, tree plantations, and agroforestry farmdevelopment. At Year 30, the watershed can attain a net carbon benefit of19.5 M tC at a cost of US$ 34.5 M. The potential leakage of the projectis estimated using historical experience in technology adoption inwatershed areas in the Philippines and a high adoption rate. Two leakagescenarios were used: baseline and project leakage scenarios. Most of theleakage occurs in the first 10 years of the project as displacement oflivelihood occurs during this time. The carbon lost via leakage isestimated to be 3.7 M tC in the historical adoption scenario, and 8.1 MtC under the enhanced adoption scenario.

  3. Assessment of Groundwater Quality Using Gis: A Case Study of Walayar Watershed, Parambikulam-Aliyar-Palar Basin, Tamilnadu, India

    K. Balathandayutham

    2015-08-01

    Full Text Available Good groundwater quality is essential for crop yield, soil productivity and environmental protection. Suitability of groundwater for irrigation purposes is determined by its geochemistry. Groundwater geochemistry explains links between chemical composition of groundwater and subsurface geological and non-geological pollutants. Subsurface rock formations control the composition of soil and hence that of water and vegetation. The ground water samples were analyzed for physico-chemical parameters like Electrical Conductivity (EC, Hydrogen ion concentration (pH, Bicarbonate (HCO3-, Calcium (Ca2+, Magnesium (Mg2+, Sodium (Na+, Potassium (K+, Sulphate (SO42-, Nitrate (NO3-, and Chloride (Cl-. Inverse distance weighted method of the Geographical Information Systems is used to prepare the distribution map of physio-chemical parameters of groundwater while overlay method is used to assess spatial, temporal changes and prepare groundwater quality zones of Walayar watershed in Parambikulam-Aliyar-Palar basin situated in Coimbatore district, Tamil Nadu, India. The results of study show that the quality of groundwater varies both spatially and temporally in Walayar watershed. The groundwater samples in some of the wells showed deviation from water quality standards indicating groundwater contamination. Hence, proper care must be taken to avoid any contamination of groundwater and its quality be monitored periodically.

  4. A Corresponding Study of Water Quality Evaluation of the Pasquotank Watershed in Northeastern North Carolina

    Stevenson, J.; Walthall, S.; McKenzie, R.; Dixon, R.

    2015-12-01

    The Pasquotank River Watershed covers 450 sq miles in the Coastal Plain of NE North Carolina. It flows from the Great Dismal Swamp at the VA/NC border into the Albemarle Sound. The watershed provides a transition between spawning grounds and waters of the Albemarle Sound. Forested swamp wetlands border much of the waterways. Increased agricultural and urban development has greatly affected water quality during recent years. Test were completed along the tributaries and the river itself, adding to the previously data from 2011, 2013, and 2014. Streams tested were the Newbegun Creek, Knobbs Creek, Areneuse Creek, Mill Dam Creek, and Sawyers Creek. These streams cover a large area of the watershed and provide a wide variety of shore development from swampland and farmland to industrial development. Samples were tested for pH, salinity, total dissolved solids, and conductivity. Air/water temperature, dissolved oxygen, wind speed/direction, and turbidity/clarity measurements were taken in the field. The results were placed into an online database and correlated to the location of the sample using Google Maps®. Analysis tools were developed to compare the data from all years. Excel spreadsheets were developed to look more closely at individual points and tests for each point. This database was connected to a data visualization page utilizing Google Maps®. The results show variations for the individual water quality scores, but the overall water quality score for all the tested water sources remained at a comparable level from previous years. Mill Dam Creek rose above the previous three scores of 48 (2011), 47 (2013), and 49 (2014) and achieved a medium water quality score of 57. Areneuse Creek improved in water quality with a medium water quality score of 60. Sawyers Creek became the lowest scoring waterway tested at 35. Knobbs Creek decreased from previous years with a water quality score of 42. For a fourth consecutive testing year, Newbegun Creek fell within the

  5. Regional scale modeling of hillslope sediment delivery: a case study in the Ésera—Isábena watershed, central Spanish Pyrenees, with WATEM/SEDEM

    Alatorre, L. C.; BEGUERÍA Santiago; García-Ruiz, José María

    2009-01-01

    Soil erosion and sediment delivery to streams is an important environmental problem and a major concern for sustainable development. The spatial nature of soil erosion and sediment delivery, as well as the variety of possible soil conservation and sediment control measures, require an integrated approach to catchment management. A spatially-distributed soil erosion and sediment delivery model (WATEM/SEDEM) was applied to the watershed of the Barasona Reservoir (1504 km2; centra...

  6. A new watershed assessment framework for Nova Scotia: A high-level, integrated approach for regions without a dense network of monitoring stations

    Sterling, Shannon M.; Garroway, Kevin; Guan, Yue; Ambrose, Sarah M.; Horne, Peter; Kennedy, Gavin W.

    2014-11-01

    High-level, integrated watershed assessments are a basic requirement for freshwater planning, as they create regional summaries of multiple environmental stressors for the prioritization of watershed conservation, restoration, monitoring, and mitigation. There is a heightened need for a high-level, integrated watershed assessment in Nova Scotia as it faces pressing watershed issues relating to acidification, soil erosion, acid rock drainage, eutrophication, and water withdrawals related to potential shale gas development. But because of the relative sparseness of the on-the-ground effects-based data, for example on water quality or fish assemblages, previously created approaches for integrated watershed assessment cannot be used. In a government/university collaboration, we developed a new approach that relies solely on easier-to-collect and more available exposure-based variables to perform the first high-level watershed assessment in Nova Scotia. In this assessment, a total of 295 watershed units were studied. We used Geographic Information Systems (GIS) to map and analyze 13 stressor variables that represent risks to aquatic environment (e.g., road/stream crossing density, acid rock drainage risk, surface water withdrawals, human land use, and dam density). We developed a model to link stressors with impacts to aquatic systems to serve as a basis for a watershed threat ranking system. Resource management activities performed by government and other stakeholders were also included in this analysis. Our assessment identifies the most threatened watersheds, enables informed comparisons among watersheds, and indicates where to focus resource management and monitoring efforts. Stakeholder communication tools produced by the NSWAP include a watershed atlas to communicate the assessment results to a broader audience, including policy makers and public stakeholders. This new framework for high-level watershed assessments provides a resource for other regions that also

  7. 东北黑土区小流域综合治理实践探究——以老二色小流域为例%Exploration on the Practice of Comprehensive Management for Small Watershed in Black Soil Region of the Northeast——Taking Laoerse Small Watershed as an Example

    梁淑娟; 赵法领

    2011-01-01

    Comprehensive management model and system for small watershed have been becoming perfect in the regions of Loess Plateau,the earth and rock mountainous of southwest and the black soil of northeast.To realize sustainable development of watershed management,it is combined with the experience of watershed management in the black soil region,and the problems existing in the management are analyzed.As Laoerse small watershed is selected as the key management project to expand domestic demand for country,it is taken as the typical case to explore sustainable management way of the watershed.The field investigation has been undertaken in the small watershed.With regard to the existing problems,the principles of slope erosion control,gully protection,natural rehabilitation and artificial maintenance were implemented,models of biological,engineering and biological-engineering comprehensive measures for different slope and typical gullies were adopted.The results showed that the ecological fragility and poverty had been improved,significant ecological,economic and social benefits had been obtained.%黄土高原区、西南土石山区、东北黑土区小流域综合治理模式和体系日趋成熟,为实现流域治理可持续发展,结合黑土区流域治理的经验,分析流域治理存在的问题,以国家扩大内需重点治理项目——老二色小流域为典型案例,探究黑土区小流域可持续经营道路。对老二色小流域进行实地调查,针对存在问题,坚持坡面治理、沟道防护、自然修复、人工维护的原则,对不同坡面和典型沟道采取生物措施治理、工程措施治理、生物工程综合治理的模式。结果表明:老二色小流域治理取得了显著的生态、经济和社会效益,改善了小流域生态脆弱和贫困落后的面貌。

  8. Protect and Restore Mill Creek Watershed : Annual Report CY 2005.

    McRoberts, Heidi

    2006-03-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. The Nez Perce Tribe and the Nez Perce National Forest (NPNF) have formed a partnership in completing watershed restoration activities, and through this partnership, more work is accomplished by sharing funding and resources in our effort. The Nez Perce Tribe began watershed restoration projects within the Mill Creek watershed of the South Fork Clearwater River in 2000. Progress has been made in restoring the watershed through excluding cattle from critical riparian areas through fencing. Starting in FY 2002, continuing into 2004, trees were planted in riparian areas in the meadow of the upper watershed. In addition, a complete inventory of culverts at road-stream crossings was completed. Culverts have been prioritized for replacement to accommodate fish passage throughout the watershed, and one high priority culvert was replaced in 2004. Maintenance to the previously built fence was also completed.

  9. Hurricane impacts on a pair of coastal forested watersheds: implications of selective hurricane damage to forest structure and streamflow dynamics

    A. D. Jayakaran

    2013-09-01

    Full Text Available Hurricanes are infrequent but influential disruptors of ecosystem processes in the southeastern Atlantic and Gulf coasts. Every southeastern forested wetland has the potential to be struck by a tropical cyclone. We examined the impact of Hurricane Hugo on two paired coastal watersheds in South Carolina in terms of stream flow and vegetation dynamics, both before and after the hurricane's passage in 1989. The study objectives were to quantify the magnitude and timing of changes including a reversal in relative streamflow-difference between two paired watersheds, and to examine the selective impacts of a hurricane on the vegetative composition of the forest. We related these impacts to their potential contribution to change watershed hydrology through altered evapotranspiration processes. Using over thirty years of monthly rainfall and streamflow data we showed that there was a significant transformation in the hydrologic character of the two watersheds – a transformation that occurred soon after the hurricane's passage. We linked the change in the rainfall-runoff relationship to a catastrophic shift in forest vegetation due to selective hurricane damage. While both watersheds were located in the path of the hurricane, extant forest structure varied between the two watersheds as a function of experimental forest management techniques on the treatment watershed. We showed that the primary damage was to older pines, and to some extent larger hardwood trees. We believe that lowered vegetative water use impacted both watersheds with increased outflows on both watersheds due to loss of trees following hurricane impact. However, one watershed was able to recover to pre hurricane levels of canopy transpiration at a quicker rate due to the greater abundance of pine seedlings and saplings in that watershed.

  10. Does social capital improve watershed environmental governance?

    Monteiro, Fernando

    2006-01-01

    International audience In Brazil, water management has been both sectored and centralized. In the 1990s, a series of state level reforms granted substantial participation to civil society and water users' organizations by incorporating Integrated Water Resourse Management principles and Watershed Committees as its guideline. However, its full implementation should produce quite different outcomes, understood as improved or poorer watershed environmental governance. That means that the key ...

  11. Calibration of SWAT2009 using crop biomass, evapotranspiration, and deep recharge: Calera watershed in Zacatecas, Mexico case study

    Groundwater is the main source of water in the semi-arid Calera watershed, located in the State of Zacatecas, Mexico. Due to increasing population, rapid industrial growth, and increased irrigation to meet growing food demand, groundwater extraction in the Calera watershed are exceeding recharge rat...

  12. Community Capacity for Watershed Conservation: A Quantitative Assessment of Indicators and Core Dimensions

    Brinkman, Elliot; Seekamp, Erin; Davenport, Mae A.; Brehm, Joan M.

    2012-10-01

    Community capacity for watershed management has emerged as an important topic for the conservation of water resources. While much of the literature on community capacity has focused primarily on theory construction, there have been few efforts to quantitatively assess community capacity variables and constructs, particularly for watershed management and conservation. This study seeks to identify predictors of community capacity for watershed conservation in southwestern Illinois. A subwatershed-scale survey of residents from four communities located within the Lower Kaskaskia River watershed of southwestern Illinois was administered to measure three specific capacity variables: community empowerment, shared vision and collective action. Principal component analysis revealed key dimensions of each variable. Specifically, collective action was characterized by items relating to collaborative governance and social networks, community empowerment was characterized by items relating to community competency and a sense of responsibility and shared vision was characterized by items relating to perceptions of environmental threats, issues with development, environmental sense of place and quality of life. From the emerging factors, composite measures were calculated to determine the extent to which each variable contributed to community capacity. A stepwise regression revealed that community empowerment explained most of the variability in the composite measure of community capacity for watershed conservation. This study contributes to the theoretical understanding of community capacity by quantifying the role of collective action, community empowerment and shared vision in community capacity, highlighting the need for multilevel interaction to address watershed issues.

  13. Citizen Participation in Collaborative Watershed Partnerships

    Koehler, Brandi; Koontz, Tomas M.

    2008-02-01

    Collaborative efforts are increasingly being used to address complex environmental problems, both in the United States and abroad. This is especially true in the growing field of collaborative watershed management, where diverse stakeholders work together to develop and advance water-quality goals. Active citizen participation is viewed as a key component, yet groups often struggle to attract and maintain citizen engagement. This study examined citizen participation behavior in collaborative watershed partnerships by way of a written survey administered to citizen members of 12 collaborative watershed groups in Ohio. Results for the determination of who joins such groups were consistent with the dominant-status model of participation because group members were not demographically representative of the broader community. The dominant-status model, however, does not explain which members are more likely to actively participate in group activities. Instead, individual characteristics, including political activity, knowledge, and comfort in sharing opinions with others, were positively correlated with active participation. In addition, group characteristics, including government-based membership, rural location, perceptions of open communication, perceptions that the group has enough technical support to accomplish its goals, and perceived homogeneity of participant opinions, were positively correlated with active participation. Overall, many group members did not actively participate in group activities.

  14. Assessment and mapping of desertification sensitivity in an insular sahelian mountain region - case study of the Ribeira Seca Watershed, Cape Verde

    Tavares, J.

    2012-04-01

    The aim of this study is to present the assessment and mapping of the environmental areas sensitive to desertification in an insular sahelian mountain region, in the catchment area of Ribeira Seca, island of Santiago, Cape Verde. Desertification is a threat for the global environment and it represents a serious ecological problem in Cape Verde. To fight both successfully, it requires an evaluation of its consequences and the building of cartography of the sensitivity for arid and semi-arid ecosystems. The model MEDALUS was the basis for this study with the use of six indicators of quality: climate, soil, vegetation, management, water runoff and social. Several sub-indicators were assigned to each indicator with weights variable between 1 (low) and 2 (high) according to the DESIRE Project (WB2). The geometric mean of each of the six indicators of quality was employed to produce the map of environmental sensitivity areas to desertification. The results of this study show that more than 50% of the watershed present obvious evidence of becoming a desertification area. Key words: Cape Verde, desertification, indicators, MEDALUS model, DESIRE project.

  15. 加拿大最佳管理措施流域评价项目评述%A Review of the Canadian Watershed Evaluation of Beneficial Management Practices Project

    刘永波; 吴辉; 刘军志

    2012-01-01

    可持续农业的目的是在保持良好环境质量的同时获得较高的农业生产率.最佳管理措施( BMPs)在世界范围内已得到广泛应用,以减少农业污染物对水环境的影响.自2004年以来,加拿大农业部实施了最佳管理措施流域评价(WEBs)项目,在全国各地选择了有代表性的9个小流域,对BMPs的环境和经济效益进行评价.笔者对过去几年来WEBs项目的进展、研究方法及主要成果进行简要的回顾,并对在中国开展类似项目的必要性和启示进行了探讨.%The objective of sustainable agriculture is to maintain high agriculture productivity while preserving a sound environmental quality. However, water quality degradation caused by excessive sediment and nutrient runoff has become a critical environment impact on agricultural watersheds all over the world. Beneficial management practices ( BMPs) are therefore designed and implemented to minimize these negative impacts on water environment. In 2004, Agriculture and Agri-Food Canada ( AAFC) launched a watershed evaluation of BMPs ( WEBs) project with a primary goal of assessing the environmental and economic performance of nine selected small watersheds across Canada under BMPs. The WEBs is composed of four main components, including biophysical evaluation, economic evaluation, hydrologic modeling, and integrated modeling. So far, WEBs has made significant progress in understanding the environmental and economic performance of the BMPs selected for the study and in validating hydrologic models using results from the field-tested BMPs, and WEBs has successfully begun to integrate biophysical and economic findings for planning for broader scales of land. The innovative and interdisciplinary research conducted in the WEBs watersheds will help farmers decide what practices might work best on their farm and will help the governments develop policies and programs to assist farmers in implementing effective BMPs for improving water

  16. Baseline Profile of Soil Samples from Upian River Watershed

    Wilanfranco Caballero TAYONE

    2014-06-01

    Full Text Available The Mines and Geosciences Bureau (MGB in the Philippines is currently mapping out the entire Davao City Watershed Area (DCWA. There are 8 major watershed areas within DCWA that has been identified by the MGB and the largest is the Davao River Watershed Area (DRWA. A smaller sub-watershed within DRWA, the Upian River Watershed Area (URWA, was proposed of which its boundary and soil profile is yet to be established. This study focused on the analyses of the soil samples from URWA. The results for pH, organic matter, cation exchange capacity, N, P, K, Ca and Mg were then compared to the Bureau of Soil standard for its fertility rating. Analysis of lead (Pb was also included as a pollutant indicator for possible soil contamination. There are 4 sampling sites with unfavorable ratings for pH, 3 for both organic matter and phosphorus, and 2 stations for both nitrogen and calcium. Fertility rating is generally good for cation exchange capacity, potassium and magnesium. The Bureau of Soil has no existing standards for micronutrients. However, all sampling sites were found to be too low with micronutrients according to Gershuny and Smillie. No indication of lead contamination or pollution on all sites as far as natural levels of lead in surface soil is concerned. This study will provide baseline information that is useful to all stakeholders, to the people living near the area, farmers, planners, and resource managers. This can also provide inputs to key government agencies in the Philippines like the Department of Environment and Natural Resources (DENR and the City Planning Office of Davao in formulating policies for sustainable management of the resource upon implementation of their programs and projects. Without the aforementioned information, planners would have difficulty in predicting the impact or recommend best management strategies for a specific land use.

  17. Nitrogen Losses in Runoff from Row-cropped Watersheds: Environmental Benefits of Native Prairie Filter Strips

    Zhou, X.; Helmers, M. J.; Asbjornsen, H.; Kolka, R. K.; Tomer, M. D.

    2011-12-01

    Loss of nitrogen in runoff from agricultural landscapes is a serious problem in the Midwestern United States due to inappropriate/intensive management practices. Among other best management practices, vegetative filter strips have been effectively adopted to reduce pollutant transport with agricultural runoff. In this study, twelve ephemeral watersheds at the Neal Smith National Wildlife Refuge in Central Iowa were used to evaluate the effectiveness of native prairie filter strips (NPFS) in reducing total nitrogen (TN) and nitrate-N (NO3-N) loss from row-cropped watersheds. Small amounts of NPFS were incorporated at different locations within the watersheds in fall 2006 using a balanced incomplete block design. A no-till 2-yr corn-soybean rotation was adopted in nonperennial areas since spring 2007. Each watershed was instrumented with an H-flume, a flow-monitoring device, and an ISCO water sampler in 2007. Runoff samples during the growing season between 2007 and 2010 were analyzed for TN and NO3-N concentrations for each individual rainfall event. The 4-year mean annual TN loss for watersheds with NPFS was 6.9 kg ha-1, approximately 85% lower than TN loss from 100% row-cropped watersheds (47.7 kg ha-1). Mean annual NO3-N loss during the growing season was 4.2 and 1.3 kg ha-1 for the watersheds with and without NPFS, respectively. The results of this study suggest that incorporation of small amounts of NPFS within annual rowcrop systems could greatly reduce TN and NO3-N loss from agricultural watersheds.

  18. Prioritization of sub-watersheds based on morphometric analysis using geospatial technique in Piperiya watershed, India

    Chandniha, Surendra Kumar; Kansal, Mitthan Lal

    2014-11-01

    Hydrological investigation and behavior of watershed depend upon geo-morphometric characteristics of catchment. Morphometric analysis is commonly used for development of regional hydrological model of ungauged watershed. A critical valuation and assessment of geo-morphometric constraints has been carried out. Prioritization of watersheds based on water plot capacity of Piperiya watershed has been evaluated by linear, aerial and relief aspects. Morphometric analysis has been attempted for prioritization for nine sub-watersheds of Piperiya watershed in Hasdeo river basin, which is a tributary of the Mahanadi. Sub-watersheds are delineated by ArcMap 9.3 software as per digital elevation model (DEM). Assessment of drainages and their relative parameters such as stream order, stream length, stream frequency, drainage density, texture ratio, form factor, circulatory ratio, elongation ratio, bifurcation ratio and compactness ratio has been calculated separately for each sub-watershed using the Remote Sensing (RS) and Geospatial techniques. Finally, the prioritized score on the basis of morphometric behavior of each sub-watershed is assigned and thereafter consolidated scores have been estimated to identify the most sensitive parameters. The analysis reveals that stream order varies from 1 to 5; however, the first-order stream covers maximum area of about 87.7 %. Total number of stream segment of all order is 1,264 in the watershed. The study emphasizes the prioritization of the sub-watersheds on the basis of morphometric analysis. The final score of entire nine sub-watersheds is assigned as per erosion threat. The sub-watershed with the least compound parameter value was assigned as highest priority. However, the sub-watersheds has been categorized into three classes as high (4.1-4.7), medium (4.8-5.3) and low (>5.4) priority on the basis of their maximum (6.0) and minimum (4.1) prioritized score.

  19. Dynamic root distributions in ecohydrological modeling: A case study at Walnut Gulch Experimental Watershed

    Sivandran, Gajan; Bras, Rafael L.

    2013-06-01

    Arid regions are characterized by high variability in the arrival of rainfall, and species found in these areas have adapted mechanisms to ensure the capture of this scarce resource. In particular, the rooting strategies employed by vegetation can be critical to their survival. However, land surface models currently prescribe rooting profiles as a function of only the plant functional type of interest with no consideration for the soil texture or rainfall regime of the region being modeled. Additionally, these models do not incorporate the ability of vegetation to dynamically alter their rooting strategies in response to transient changes in environmental forcings or competition from other plant species and therefore tend to underestimate the resilience of these ecosystems. To address the simplicity of the current representation of roots in land surface models, a new dynamic rooting scheme was incorporated into the framework of the distributed ecohydrological model tRIBS+VEGGIE. The new scheme optimizes the allocation of carbon to the root zone to reduce the perceived stress of the vegetation, so that root profiles evolve based upon local climate and soil conditions. The ability of the new scheme to capture the complex dynamics of natural systems was evaluated by comparisons to hourly timescale energy flux, soil moisture, and vegetation growth observations from the Walnut Gulch Experimental Watershed, Arizona. Robust agreement was found between the model and observations, providing confidence that the improved model is able to capture the multidirectional interactions between climate, soil, and vegetation at this site.

  20. Possible Scenarios of Impacts of Climatic Change on Potential Evapotranspiration in the Watershed of the Conchos River, Mexico

    Raynal-Villasenor, J. A.; Rodriguez-Pineda, J. A.

    2007-12-01

    The watershed of the Conchos River is the main watershed of the state of Chihuahua, Mexico, and it is the main source of water of the watershed of the Grande river downstream El Paso, Texas. Such part of the watershed of the Grande River is also the border between Mexico and the United States of America, from El Paso-Ciudad Juarez up to Brownsville-Matamoros. It is very important for the state of Chihuahua and Mexico as a whole, to construct possible scenarios of the effects of the global climatic change in the potential evapotranspiration in such watershed and to construct likely scenarios which results will help to define an integrated watershed management to mitigate those global climate change impacts. The results of a recent study sponsored by the alliance between WWF-Fundacion Gonzalo Rio Arronte, are presented in the paper. The study was conducted to construct possible scenarios on the effects of the global climatic change on the potential evapotranspiration in the watershed of the Conchos River in Mexico. Three watershed characteristic meteorological stations were selected to conduct such study. The predictions of change of the surface air temperature and the change of the rainfall produced by the global climatic change, by the end of the XXI Century, were those published by the Hadley Center. The results show that air temperature increment of one degree centigrade increases evapotranspiration values between 3 and 3.5% with respect current values. As a consequence moisture deficiency increases from 9% to 40%. With an air temperature increment of three degrees centigrades, the potential evapotranspiration increases between 8.8% and 10% increasing moisture deficiency from 27.5% up to 116%. The expected rainfall increment values show a negligible contribution for the potential evapotranspiration reduction in the Rio Conchos watershed. These results conclude that immediate actions need to be taken to mitigate climate change impacts all along the watershed.

  1. Regeneration of Shorea robusta and Schima wallichii under Community Forest Management in Ludikhola watershed, Gorkha district, Nepal

    Klokkeide, Kristin Madsen

    2013-01-01

    Resource and forest management in Nepal: Resource management is of current global interest because of its role in sustaining natural resources and livelihood for future generations. Hardin's paper, the Tragedy of the Commons", served as a starting point to the wider discussion on challenges for sustainable resource management. Hardin's theory is widely cited in the context of forest management, especially to explain forest degradation, e.g. in the Himalaya where forest degradation has a long...

  2. Assessment of morphometric characteristics of Chakrar watershed in Madhya Pradesh India using geospatial technique

    Soni, Sandeep

    2016-02-01

    The quantitative analysis of the watershed is important for the quantification of the channel network and to understand its geo-hydrological behaviour. Assessment of drainage network and their relative parameters have been quantitatively carried out for the Chakrar watershed of Madhya Pradesh, India, to understand the prevailing geological variation, topographic information and structural setup of the watershed and their interrelationship. Remote Sensing and Geographical Information System (GIS) has been used for the delineation and calculation of the morphometric parameters of the watershed. The Chakrar watershed is sprawled over an area of 415 km2 with dendritic, parallel and trellis drainage pattern. It is sub-divided into nine sub-watersheds. The study area is designated as sixth-order basin and lower and middle order streams mostly dominate the basin with the drainage density value of 2.46 km/km2 which exhibits gentle to steep slope terrain, medium dense vegetation, and less permeable with medium precipitation. The mean bifurcation value of the basin is 4.16 and value of nine sub-watersheds varies from 2.83 to 4.44 which reveals drainage networks formed on homogeneous rocks when the influences of geologic structures on the stream network is negligible. Form factor, circularity ratio and elongation ratio indicate an elongated basin shape having less prone to flood, lower erosion and sediment transport capacities. The results from the morphometric assessment of the watershed are important in water resources evaluation and its management and for the selection of recharge structure in the area for future water management.

  3. Impacts of future climate change on river discharge based on hydrological inference: A case study of the Grand River Watershed in Ontario, Canada.

    Li, Zhong; Huang, Guohe; Wang, Xiuquan; Han, Jingcheng; Fan, Yurui

    2016-04-01

    Over the recent years, climate change impacts have been increasingly studied at the watershed scale. However, the impact assessment is strongly dependent upon the performance of the climatic and hydrological models. This study developed a two-step method to assess climate change impacts on water resources based on the Providing Regional Climates for Impacts Studies (PRECIS) modeling system and a Hydrological Inference Model (HIM). PRECIS runs provided future temperature and precipitation projections for the watershed under the Intergovernmental Panel on Climate Change SRES A2 and B2 emission scenarios. The HIM based on stepwise cluster analysis is developed to imitate the complex nonlinear relationships between climate input variables and targeted hydrological variables. Its robust mathematical structure and flexibility in predictor selection makes it a desirable tool for fully utilizing various climate modeling outputs. Although PRECIS and HIM cannot fully cover the uncertainties in hydro-climate modeling, they could provide efficient decision support for investigating the impacts of climate change on water resources. The proposed method is applied to the Grand River Watershed in Ontario, Canada. The model performance is demonstrated with comparison to observation data from the watershed during the period 1972-2006. Future river discharge intervals that accommodate uncertainties in hydro-climatic modeling are presented and future river discharge variations are analyzed. The results indicate that even though the total annual precipitation would not change significantly in the future, the inter-annual distribution is very likely to be altered. The water availability is expected to increase in Winter while it is very likely to decrease in Summer over the Grand River Watershed, and adaptation strategies would be necessary. PMID:26802348

  4. Adopt Your Watershed

    U.S. Environmental Protection Agency — Adopt Your Watershed is a Website that encourages stewardship of the nation's water resources and serves as a national inventory of local watershed groups and...

  5. pyLIDEM: A Python-Based Tool to Delineate Coastal Watersheds Using LIDAR Data

    O'Banion, R.; Alameddine, I.; Gronewold, A.; Reckhow, K.

    2008-12-01

    Accurately identifying the boundary of a watershed is one of the most fundamental and important steps in any hydrological assessment. Representative applications include defining a study area, predicting overland flow, estimating groundwater infiltration, modeling pollutant accumulation and wash-off rates, and evaluating effectiveness of pollutant mitigation measures. The United States Environmental Protection Agency (USEPA) Total Maximum Daily Load (TMDL) program, the most comprehensive water quality management program in the United States (US), is just one example of an application in which accurate and efficient watershed delineation tools play a critical role. For example, many impaired water bodies currently being addressed through the TMDL program drain small coastal watersheds with relatively flat terrain, making watershed delineation particularly challenging. Most of these TMDL studies use 30-meter digital elevation models (DEMs) that rarely capture all of the small elevation changes in coastal watersheds, leading to errors not only in watershed boundary delineation, but in subsequent model predictions (such as watershed runoff flow and pollutant deposition rate predictions) for which watershed attributes are key inputs. Manually delineating these low-relief coastal watersheds through the use of expert knowledge of local water flow patterns, often produces relatively accurate (and often more accurate) watershed boundaries as compared to the boundaries generated by the 30-meter DEMs. Yet, manual delineation is a costly and time consuming procedure that is often not opted for. There is a growing need, therefore, particularly to address the ongoing needs of the TMDL program (and similar environmental management programs), for software tools which can utilize high resolution topography data to more accurately delineate coastal watersheds. Here, we address this need by developing pyLIDEM (python LIdar DEM), a python-based tool which processes bare earth high

  6. Movement and Habitat Use of Bonneville Cutthroat Trout (Oncorhynchus Clarki Utah): A Case Study In the Temple Fork Watershed

    Lokteff, Ryan L.

    2014-01-01

    Movement patterns and habitat use of Bonneville cutthroat trout (Oncorhynchus clarki utah) in tributaries of the Logan River watershed are greatly aected by habitat alterations created by North American Beaver (Castor canadensis). Evaluation of cutthroat trout habitat use in these watersheds is also complicated by biotic interactions with invasive brown trout (Salmo trutta) and brook trout (Salvelinus fontinalis). My objectives in this thesis were to 1.) Evaluate the passage of beaver dams by...

  7. Using Linked Models to Study Interactions Between Water Use Decisions and Climate Change-Driven Watershed Processes in the Pacific Northwest Region

    Orr, C. H.; Adam, J. C.; Beall, A. M.; Barber, M. E.; Nguyen, T. T.

    2012-12-01

    . Stakeholder processes that openly discuss the range of potential futures are helpful for mitigating the paralysis of water management policy caused by scientific and social uncertainty. The Palouse Basin bordering SE Washington and NW Idaho used collaborative modeling as to explore scientific uncertainty and potential futures in a sole source aquifer system with negligible recharge. In the Spokane Coeur D'Alene basin, a stakeholder exercise revealed that measurement uncertainty inclined stakeholders were inclined to pass up a costly Total Maximum Daily Load (TMDL) process and go directly to mitigation. Both cases revealed feedbacks to the physical system that are the result of decisions, preferences, and beliefs. This modeling framework is part of a larger development effort Watershed Integrated Systems Dynamics Model or "WISDM" to construct linked models to study interactions between water use decisions and climate change-driven watershed processes, and then to explore how participant / stakeholder involvement in the modeling could both improve understanding of the systems and lay the groundwork for adaptive changes in institutional arrangements.

  8. A GIS-BASED DISTRIBUTED SOIL EROSION MODEL:A CASE STUDY OF TYPICAL WATERSHED, SICHUAN BASIN

    Zaijian YUAN; Qiangguo CAI; Yingmin CHU

    2007-01-01

    Based on the measuring data and Digital Elevation Data (DEM) in a typical watershed--Hemingguan Watershed, Nanbu County, Sichuan Province of China, a GIS-based distributed soil erosion model was developed particularly for the purple soil type. It takes 20 m × 20 m grid as calculating unit and operates at 10-minute time interval. The required input data to the model include DEM, soil, land use, and time-series of precipitation and evaporation loss. The model enables one to estimate runoff, erosion and sediment yield for each grid cell and route the flow along its flow path to the watershed outlet. Furthermore, the model is capable of calculating the total runoff; erosion and sediment yield for the entire watershed by recursion algorithm. The validation of the model demonstrated that it could quantitatively simulate the spatial distribution of hydrological variables in a watershed, such as runoff, vegetation entrapment, soil erosion, the degree of soil and water loss. Moreover, it can evaluate the effect of land use change on the runoff generation and soil erosion with an accuracy of 80% and 75% respectively. The application of this model to a neighboring watershed with similar conditions indicates that this distributed model could be extended to other similar regions in China.

  9. Can functional gene abundance predict N-fluxes? Examples from a well-studied hydrological flow path in a forested watershed in SW China

    Liu, Binbin; Muzammil, Bushra; Dörsch, Peter; Zhu, Jing; Mulder, Jan; Frostegård, Åsa

    2014-05-01

    Edaphic, climatic and management factors shape soil microbial communities taxonomically and functionally, resulting in spatial separation of nitrogen (N) oxidation and reduction processes along hydrological flowpaths. In a recent study, we investigated N-cycling processes and N2O emissions along a mesic hillslope (HS) and a hydrologically connected groundwater discharge zone (GDZ) in a forested headwater catchment dominated by acid soils (pH 4.0 - 4.5) in subtropical China (Chongqing). The watershed receives 50 kg N ha-1 a-1 through atmogenic deposition (2/3 as ammonium), most of which is removed before discharge. Surprisingly, N2O emissions were found to be greatest on the well-drained HS, whereas a drop of NO3- concentrations along the flow path indicated that N removal was highest in the moist GDZ. Nitrification was assumed to be none-limiting as the total flux of NO3- leaving the hill slope soils roughly equalled the input of NH4+. To understand watershed N-cycling and removal in more detail, we studied the abundance of functional genes involved in ammonium oxidation (amoA of AOB and AOA), nitrite oxidation (nxrB) and denitrification (nirK, nirS, nosZ) in top soils from 8 locations along the flow path spanning from the hilltop to the outlet of the GDZ. 16S rRNA gene abundance was assessed as a general marker for bacterial abundance. All genes showed highest abundance per gram soil in the heavily disturbed GDZ (formerly cultivated terraces), despite lower soil organic carbon content (1-4% w/w as opposed to 10-20% w/w in HS topsoil) and periodically stagnant conditions due to high water tables after monsoonal rainfalls. Ratios of nosZ/nirS+nirK, commonly used to predict denitrification product stoichiometry (N2O/N2), yielded counterintuitive results with higher values for HS than for GDZ. However, comparing nir gene with 16S rRNA gene abundance revealed that denitrifiers accounted for up to 10% of the bacterial community in the GDZ soils whereas this value was

  10. Nuclear materials management storage study

    The Office of Weapons and Materials Planning (DP-27) requested the Planning Support Group (PSG) at the Savannah River Site to help coordinate a Departmental complex-wide nuclear materials storage study. This study will support the development of management strategies and plans until Defense Programs' Complex 21 is operational by DOE organizations that have direct interest/concerns about or responsibilities for nuclear material storage. They include the Materials Planning Division (DP-273) of DP-27, the Office of the Deputy Assistant Secretary for Facilities (DP-60), the Office of Weapons Complex Reconfiguration (DP-40), and other program areas, including Environmental Restoration and Waste Management (EM). To facilitate data collection, a questionnaire was developed and issued to nuclear materials custodian sites soliciting information on nuclear materials characteristics, storage plans, issues, etc. Sites were asked to functionally group materials identified in DOE Order 5660.1A (Management of Nuclear Materials) based on common physical and chemical characteristics and common material management strategies and to relate these groupings to Nuclear Materials Management Safeguards and Security (NMMSS) records. A database was constructed using 843 storage records from 70 responding sites. The database and an initial report summarizing storage issues were issued to participating Field Offices and DP-27 for comment. This report presents the background for the Storage Study and an initial, unclassified summary of storage issues and concerns identified by the sites

  11. Nuclear materials management storage study

    Becker, G.W. Jr.

    1994-02-01

    The Office of Weapons and Materials Planning (DP-27) requested the Planning Support Group (PSG) at the Savannah River Site to help coordinate a Departmental complex-wide nuclear materials storage study. This study will support the development of management strategies and plans until Defense Programs` Complex 21 is operational by DOE organizations that have direct interest/concerns about or responsibilities for nuclear material storage. They include the Materials Planning Division (DP-273) of DP-27, the Office of the Deputy Assistant Secretary for Facilities (DP-60), the Office of Weapons Complex Reconfiguration (DP-40), and other program areas, including Environmental Restoration and Waste Management (EM). To facilitate data collection, a questionnaire was developed and issued to nuclear materials custodian sites soliciting information on nuclear materials characteristics, storage plans, issues, etc. Sites were asked to functionally group materials identified in DOE Order 5660.1A (Management of Nuclear Materials) based on common physical and chemical characteristics and common material management strategies and to relate these groupings to Nuclear Materials Management Safeguards and Security (NMMSS) records. A database was constructed using 843 storage records from 70 responding sites. The database and an initial report summarizing storage issues were issued to participating Field Offices and DP-27 for comment. This report presents the background for the Storage Study and an initial, unclassified summary of storage issues and concerns identified by the sites.

  12. Ultrametric watersheds: a bijection theorem for hierarchical edge-segmentation

    Najman, Laurent

    2010-01-01

    We study hierachical segmentation in the framework of edge-weighted graphs. We define ultrametric watersheds as topological watersheds null on the minima. We prove that there exists a bijection between the set of ultrametric watersheds and the set of hierarchical edgesegmentations. We end this paper by showing how the proposed framework allows to see constrained connectivity as a classical watershed-based morphological scheme, which provides an efficient algorithm to compute the whole hierarchy.

  13. Role of glaciers in watershed hydrology: a preliminary study of a "Himalayan catchment"

    R. J. Thayyen

    2010-02-01

    Full Text Available A large number of Himalayan glacier catchments are under the influence of humid climate with snowfall in winter (November–April and south-west monsoon in summer (June–September dominating the regional hydrology. Such catchments are defined as "Himalayan catchment", where the glacier meltwater contributes to the river flow during the period of annual high flows produced by the monsoon. The winter snow dominated Alpine catchments of the Kashmir and Karakoram region and cold-arid regions of the Ladakh mountain range are the other major glacio-hydrological regimes identified in the region. Factors influencing the river flow variations in a "Himalayan catchment" were studied in a micro-scale glacier catchment in the Garhwal Himalaya, covering an area of 77.8 km2. Three hydrometric stations were established at different altitudes along the Din Gad stream and discharge was monitored during the summer ablation period from 1998 to 2004, with an exception in 2002. These data have been analysed along with winter/summer precipitation, temperature and mass balance data of the Dokriani glacier to study the role of glacier and precipitation in determining runoff variations along the stream continuum from the glacier snout to 2360 m a.s.l. The study shows that the inter-annual runoff variation in a "Himalayan catchment" is linked with precipitation rather than mass balance changes of the glacier. This study also indicates that the warming induced an initial increase of glacier runoff and subsequent decline as suggested by the IPCC (2007 is restricted to the glacier degradation-derived component in a precipitation dominant Himalayan catchment and cannot be translated as river flow response. The preliminary assessment suggests that the "Himalayan catchment" could experience higher river flows and positive glacier mass balance regime together in association with strong monsoon. The important role of glaciers in this precipitation dominant system is

  14. Climate Variability Impacts on Watershed Nutrient Delivery and Reservoir Production

    White, J. D.; Prochnow, S. J.; Zygo, L. M.; Byars, B. W.

    2005-05-01

    Reservoirs in agricultural dominated watersheds tend to exhibit pulse-system behavior especially if located in climates dominated by summer convective precipitation inputs. Concentration and bulk mass of nutrient and sediment inputs into reservoir systems vary in terms of timing and magnitude of delivery from watershed sources to reservoirs under these climate conditions. Reservoir management often focuses on long-term average inputs without considering short and long-term impacts of variation in loading. In this study we modeled a watershed-reservoir system to assess how climate variability affects reservoir primary production through shifts in external loading and internal recycling of limiting nutrients. The Bosque watershed encompasses 423,824 ha in central Texas which delivers water to Lake Waco, a 2900 ha reservoir that is the primary water source for the city of Waco and surrounding areas. Utilizing the Soil Water Assessment Tool for the watershed and river simulations and the CE-Qual-2e model for the reservoir, hydrologic and nutrient dynamics were simulated for a 10 year period encompassing two ENSO cycles. The models were calibrated based on point measurement of water quality attributes for a two year time period. Results indicated that watershed delivery of nutrients was affected by the presence and density of small flood-control structure in the watershed. However, considerable nitrogen and phosphorus loadings were derived from soils in the upper watershed which have had long-term waste-application from concentrated animal feeding operations. During El Niño years, nutrient and sediment loads increased by 3 times above non-El Niño years. The simulated response within the reservoir to these nutrient and sediment loads had both direct and indirect. Productivity evaluated from chlorophyll a and algal biomass increased under El Niño conditions, however species composition shifts were found with an increase in cyanobacteria dominance. In non-El Niño years

  15. Sediment Budgets and Source Determinations Using Fallout Caesium-137 in a Semiarid Rangeland Watershed, Arizona, USA

    Analysis of soil redistribution patterns and sediment sources in semiarid and arid watersheds provides information for understanding watershed sediment budgets and for implementing management practices to improve rangeland conditions and reduce sediment loads in streams. The purpose of this research was to develop sediment budgets and to identify potential sediment sources using 137Caesium (137Cs) and other soil properties in a series of small semiarid subwatersheds on the USDA ARS Walnut Gulch Experimental Watershed near Tombstone, Arizona, USA. Soils were sampled in a grid pattern on two small subwatersheds and along transects associated with soils and geomorphology on six larger subwatersheds. Soil samples were analyzed for 137Cs and selected physical and chemical properties (i.e. bulk density, rocks, particle size, soil organic carbon). Suspended sediment samples collected at flume sites on the Walnut Gulch Experimental Watershed were also analyzed for the same properties. Sediment budgets measured using 137Cs inventories for a small shrub and a small grass subwatersheds found eroding areas in these watersheds were losing 5.6 and 3.2 t ha-1 a-1, respectively; however, a sediment budget for each of the small subwatersheds, including depositional areas, found net soil loss to be 4.3 t ha-1 a-1 from the shrub watershed and near zero t ha-1 a-1 from the grass subwatershed. The suspended sediments collected at the flumes of the larger subwatersheds were enriched in silt, clay, and 40K, but not for 137Cs. Using multivariate mixing models to determine sediment source indicated that the shrub dominated subwatersheds were contributing most of the suspended sediments measured at the outlet flume of the Walnut Gulch Experimental Watershed. Both methodologies (sediment budgets and sediment source analyses) indicate that shrub dominated systems provide more suspended sediments to the stream systems. These studies also suggest that sediment yields measured at the outlet of a

  16. A novel solution for outlier removal of ICESat altimetry data:a case study in the Yili watershed, China

    Xiaodong HUANG; Hongjie XIE; Guoqing ZHANG; Tiangang LIANG

    2013-01-01

    Due to the influence of cloud and saturated waveforms,ICESat data contain many contaminated elevation data that cannot be directly used in examining surface elevation and change.This study provides a novel solution for removing bad data and getting clean ICESat data for land applications by using threshold values of reflectivity,saturation,and gain directly from ICESat's GLAS (Geoscience Laser Alteimeter System) 01,05,and 06 products.It is found that each laser campaign needs different threshold compositions to assure qualified ICESat data and that bad data removal rates range from 9.6% (laser 2A) to 62.3% (laser 2B) for the test area in the Yili watershed,China.These thresholds would possibly be used in other regions to extract qualified ICESat footprints for land applications.However,it is recommended to use the steps proposed here to further examine the transferability of threshold values for other regions of different elevations and climate regimes.As an example,the resulting ICESat data are applied to examine lake level changes of two lakes in the study area.

  17. Grays River Watershed and Biological Assessment, 2006 Final Report.

    May, Christopher; Geist, David [Pacific Northwest National Laboratory

    2007-04-01

    The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic

  18. Grays River Watershed and Biological Assessment Final Report 2006.

    May, Christopher W.; McGrath, Kathleen E.; Geist, David R. [Pacific Northwest National Laboratory; Abbe, Timothy; Barton, Chase [Herrera Environmental Consultants, Inc.

    2008-02-04

    The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic

  19. The impact of topographical characteristics and land use change on the quality of Umbaniun micro-watershed water resources, Meghalaya

    Phyllbor Rymbai

    2012-03-01

    Full Text Available A watershed is a geohydrological unit draining at a common point. Such natural unit has evolved through rain water interaction with land mass, typically comprising arable land, non-arable land and natural drainage lines in rain-fed areas. Sustainable production depends on the health, vitality and purity of a particular environment in which land and water are important constituents. A pilot study was thus undertaken to study the geomorphology, land-use systems and their impact on water resource management on the Meghalaya Umbaniun micro-watershed. In this Micro-watershed (3951.18 ha, water body covers an area of 5.69ha (0.14%. The paper highlights the linkage between geomorphology, land use systems and its impact on quality of water resources on the Umbaniun Micro-Watershed, Meghalaya. Topographical and physical-chemical characteristics, such as pH, conductivity, dissolved oxygen, turbidity and water temperature, were used as environmental degradation indicators

  20. Using GIS-based distributed soil loss modeling and morphometric analysis to prioritize watershed for soil conservation in Bago river basin of Lower Myanmar

    Kay Thwe HLAING; Shigeko HARUYAMA; Maung Maung AYE

    2008-01-01

    Bago River is an important river in Myanmar. Although shorter than other rivers, it has its own river system, and people along the river rely heavily on it for their daily lives. The upper part of the watershed has changed rapidly from dosed forest to open forest land in the 1990s. Since the recent degradation of the forest environment, annual flooding has become worse during the rainy season in Bago City. This paper aims at determining soil conser-vation prioritization of watershed based on soil loss due to erosion and morphometric analysis in the Bago Watershed by integrating remote sensing and geographic information system (GIS) techniques. In this study, soil erosion of the Bago watershed was determined using the Universal Soil Loss Equation. Such factor maps as rainfall, soil erodibility, slope length gradient, and crop management were compiled as input parameters for the modeling; and the soil loss from 26 sub-watersheds were estimated. Then, the soil erosion maps of the Bago watershed for 2005 were developed. The resulting Soil Loss Tolerance Map could be utilized in developing watershed management planning, forestry management planning, etc.

  1. Watershed safety and quality control by safety threshold method

    Da-Wei Tsai, David; Mengjung Chou, Caroline; Ramaraj, Rameshprabu; Liu, Wen-Cheng; Honglay Chen, Paris

    2014-05-01

    Taiwan was warned as one of the most dangerous countries by IPCC and the World Bank. In such an exceptional and perilous island, we would like to launch the strategic research of land-use management on the catastrophe prevention and environmental protection. This study used the watershed management by "Safety Threshold Method" to restore and to prevent the disasters and pollution on island. For the deluge prevention, this study applied the restoration strategy to reduce total runoff which was equilibrium to 59.4% of the infiltration each year. For the sediment management, safety threshold management could reduce the sediment below the equilibrium of the natural sediment cycle. In the water quality issues, the best strategies exhibited the significant total load reductions of 10% in carbon (BOD5), 15% in nitrogen (nitrate) and 9% in phosphorus (TP). We found out the water quality could meet the BOD target by the 50% peak reduction with management. All the simulations demonstrated the safety threshold method was helpful to control the loadings within the safe range of disasters and environmental quality. Moreover, from the historical data of whole island, the past deforestation policy and the mistake economic projects were the prime culprits. Consequently, this study showed a practical method to manage both the disasters and pollution in a watershed scale by the land-use management.

  2. Impact of large storms on runoff from leeward and windward watersheds, eastern Puerto Rico

    Murphy, S. F.; Stallard, R. F.

    2012-12-01

    Water supplies of eastern Puerto Rico are vulnerable to extreme weather events, from severe droughts to powerful tropical storms that cause floods and landslides and damage vegetation and infrastructure. The severity of these events may increase in the future: climate models forecast that the trend of increasing dryness in Puerto Rico will continue, while storm strength may increase due to warmer ocean temperatures. In order to effectively manage water supplies of eastern Puerto Rico, the impact of various weather events needs to be assessed accurately. Precipitation and runoff data over a fifteen-year period were evaluated for four watersheds in eastern Puerto Rico. These watersheds vary in geology, land cover, and location relative to the Luquillo Mountains. Two watersheds windward of the Luquillo Mountains are much wetter, receiving about 4,000 mm precipitation annually, and precipitation is closely related to elevation. Two leeward watersheds receive about half as much precipitation, and precipitation is not well correlated with elevation. Interannual variation in precipitation and runoff is substantial in all four watersheds and is related to regional-scale weather patterns, which are partly explained by large-scale climate oscillations. Greatest precipitation and runoff (both totals and rates) are associated with major storms, such as hurricanes, tropical storms, and upper level troughs. Discharge caused by such storms can be several hundred times greater than average discharge and is a substantial fraction of annual discharge. Rainfall and runoff during the largest storms were similar among all four watersheds, suggesting that higher annual precipitation and runoff in the windward watersheds is probably controlled by the frequent, smaller rain events related to orographic precipitation. The windward/leeward effects dominate hydrologic regimes in these watersheds and overwhelm differences related to bedrock geology or land cover. The impact of reforestation

  3. Outage management: A case study

    Outage management issues identified from a field study conducted at a two-unit commercial pressurized water reactor (PWR), when one unit was in a refueling outage and the other unit was at full power operation, are the focus of this paper. The study was conduced as part of the US Nuclear Regulatory Commission's (NRC) organizational factors research program, and therefore the issues to be addressed are from an organizational perspective. Topics discussed refer to areas identified by the NRC as critical for safety during shutdown operations, including outage planning and control, personnel stress, and improvements in training and procedures. Specifically, issues in communication, management attention, involvement and oversight, administrative processes, organizational culture, and human resources relevant to each of the areas are highlighted by example from field data collection. Insights regarding future guidance in these areas are presented based upon additional data collection subsequent to the original study

  4. Outage management: A case study

    Haber, S.B.; Barriere, M.T. (Brookhaven National Lab., Upton, NY (United States)); Roberts, K.H. (California Univ., Berkeley, CA (United States). Walter A. Haas School of Business)

    1992-01-01

    Outage management issues identified from a field study conducted at a two-unit commercial pressurized water reactor (PWR), when one unit was in a refueling outage and the other unit was at full power operation, are the focus of this paper. The study was conduced as part of the US Nuclear Regulatory Commission's (NRC) organizational factors research program, and therefore the issues to be addressed are from an organizational perspective. Topics discussed refer to areas identified by the NRC as critical for safety during shutdown operations, including outage planning and control, personnel stress, and improvements in training and procedures. Specifically, issues in communication, management attention, involvement and oversight, administrative processes, organizational culture, and human resources relevant to each of the areas are highlighted by example from field data collection. Insights regarding future guidance in these areas are presented based upon additional data collection subsequent to the original study.

  5. Outage management: A case study

    Haber, S.B.; Barriere, M.T. [Brookhaven National Lab., Upton, NY (United States); Roberts, K.H. [California Univ., Berkeley, CA (United States). Walter A. Haas School of Business

    1992-09-01

    Outage management issues identified from a field study conducted at a two-unit commercial pressurized water reactor (PWR), when one unit was in a refueling outage and the other unit was at full power operation, are the focus of this paper. The study was conduced as part of the US Nuclear Regulatory Commission`s (NRC) organizational factors research program, and therefore the issues to be addressed are from an organizational perspective. Topics discussed refer to areas identified by the NRC as critical for safety during shutdown operations, including outage planning and control, personnel stress, and improvements in training and procedures. Specifically, issues in communication, management attention, involvement and oversight, administrative processes, organizational culture, and human resources relevant to each of the areas are highlighted by example from field data collection. Insights regarding future guidance in these areas are presented based upon additional data collection subsequent to the original study.

  6. Modeling the impact of climate change on sediment transport and morphology in coupled watershed-coast systems:A case study using an integrated approach

    Achilleas GSAMARAS; Christopher GKOUTITAS

    2014-01-01

    Climate change is an issue of major concern nowadays. Its impact on the natural and human environment is studied intensively, as the expected shift in climate will be significant in the next few decades. Recent experience shows that the effects will be critical in coastal areas, resulting in erosion and inundation phenomena worldwide. In addition to that, coastal areas are subject to"pressures"from upstream watersheds in terms of water quality and sediment transport. The present paper studies the impact of climate change on sediment transport and morphology in the aforementioned coupled system. The study regards a sandy coast and its upstream watershed in Chalkidiki, North Greece; it is based on: (a) an integrated approach for the quantitative correlation of the two through numerical modeling, developed by the authors, and (b) a calibrated application of the relevant models Soil and Water Assessment Tool (SWAT) and PELNCON-M, applied to the watershed and the coastal zone, respectively. The examined climate change scenarios focus on a shift of the rainfall distribution towards fewer and more extreme rainfall events, and an increased frequency of occurrence of extreme wave events. Results indicate the significance of climatic pressures in wide-scale sediment dynamics, and are deemed to provide a useful perspective for researchers and policy planners involved in the study of coastal morphology evolution in a changing climate.

  7. Watershed Evaluation and Habitat Response to Recent Storms : Annual Report for 1999.

    Rhodes, Jonathan J.; Huntington, Charles W.

    2000-02-01

    Large and powerful storm systems moved through the Pacific Northwest during the wet season of 1995--96, triggering flooding, mass erosion, and, alteration of salmon habitats in affected watersheds. This project study was initiated to assess whether watershed conditions are causing damage, triggered by storm events, to salmon habitat on public lands in the Snake River basin. The storms and flooding in 1995--96 provide a prime opportunity to examine whether habitat conditions are improving, because the effects of land management activities on streams and salmon habitat are often not fully expressed until triggered by storms and floods. To address these issues, they are studying the recent storm responses of watersheds and salmon habitat in systematically selected subbasins and watersheds within the Snake River system. The study watersheds include several in the Wenaha and Tucannon subbasins in Washington and Oregon, and the watersheds of Squaw Creek (roaded) and Weir Creek (unroaded) in the Lochsa River subbasin, Idaho. The study was designed to examine possible differences in the effects of the storms in broadly comparable watersheds with differing magnitudes or types of disturbance. Watershed response is examined by comparing storm response mechanisms, such as rates of mass failure, among watersheds with similar attributes, but different levels of land management. The response of salmon habitat conditions is being examined by comparing habitat conditions before and after the storms in a stream and among streams in watersheds with similar attributes but different levels of land management. If appropriate to the results, the study will identify priority measures for reducing the severity of storm responses in watersheds within the Snake River Basin with habitat for at-risk salmon. This annual report describes the attributes of the study watersheds and the criteria and methods used to select them. The report also describes the watershed and fish habitat attributes

  8. Watershed evaluation and habitat response to recent storms; annual report for 1999

    Large and powerful storm systems moved through the Pacific Northwest during the wet season of 1995--96, triggering flooding, mass erosion, and, alteration of salmon habitats in affected watersheds. This project study was initiated to assess whether watershed conditions are causing damage, triggered by storm events, to salmon habitat on public lands in the Snake River basin. The storms and flooding in 1995--96 provide a prime opportunity to examine whether habitat conditions are improving, because the effects of land management activities on streams and salmon habitat are often not fully expressed until triggered by storms and floods. To address these issues, they are studying the recent storm responses of watersheds and salmon habitat in systematically selected subbasins and watersheds within the Snake River system. The study watersheds include several in the Wenaha and Tucannon subbasins in Washington and Oregon, and the watersheds of Squaw Creek (roaded) and Weir Creek (unroaded) in the Lochsa River subbasin, Idaho. The study was designed to examine possible differences in the effects of the storms in broadly comparable watersheds with differing magnitudes or types of disturbance. Watershed response is examined by comparing storm response mechanisms, such as rates of mass failure, among watersheds with similar attributes, but different levels of land management. The response of salmon habitat conditions is being examined by comparing habitat conditions before and after the storms in a stream and among streams in watersheds with similar attributes but different levels of land management. If appropriate to the results, the study will identify priority measures for reducing the severity of storm responses in watersheds within the Snake River Basin with habitat for at-risk salmon. This annual report describes the attributes of the study watersheds and the criteria and methods used to select them. The report also describes the watershed and fish habitat attributes

  9. Hydrological response of a High-Arctic catchment to changing climate over the past 35 years: a case study of Bayelva watershed, Svalbard

    Nowak, Aga; Hodson, Andy

    2013-01-01

    Our study considers climate change and its influence upon the hydrology and water balance of the glacierized Bayelva watershed in Svalbard. We find that changes are most noticeable within the last 10 years, when winters have become warmer and wetter. The change is most significant during the shoulder months, especially September, when the transition from summer ablation to winter accumulation is taking place. Winter rainfalls, when extreme, produce ground icings and runoff outside the summer ...

  10. Real time Measurement of Nitrate in Stream Water for a Paired Basin Study within the Choptank River Watershed, Maryland, USA.

    McCarty, Greg

    2013-04-01

    For this study, a robust water quality monitoring system was designed to measure nitrate and sediment using a commercially available UV-Vis spectrometer probe. To increase reliability for monitoring highly dynamic small streams and reduce susceptibility to vandalism in public place installations, an innovative the monitoring system was implemented around the use of a flow cell attachment for the probe with automated stream water sample delivery using a peristaltic pump. This permitted all instrumentation and electronics to be housed in secure enclosures with maximum flexibility in sampling location in the dynamic stream cross section. Monitoring systems were successfully deployed at two USGS stream gauge stations located at public parks near the towns of Ruthsburg and Greensboro within the Choptank Watershed which established a paired basin comparison of water quality. Both basins have a mixed land use of cropland in largely corn - soybean rotation and forests containing extensive wetland complexes. The basins have very similar amounts of cropland area but the Greensboro basin contains more wetlands and cropland formed from wetland drainage. Monitoring data has shown that the Ruthsburg basin exports about 25% more nitrate per area of cropland than the Greensboro basin. These results are indicative of greater landscape processing of nitrate in the Greensboro basin due to greater prevalence of wetlands and poorly drained soils in crop production.

  11. Study of the distribution of non-point source pollution in the watershed of the Miyun Reservoir, Beijing, China.

    Wang, X; Li, T; Xu, A; He, W

    2001-01-01

    Nitrogen and phosphorus are major nutrients to cause eutrophication to degrade the water quality of the Miyun Reservoir, a very important drinking water source of Beijing in China. These are mainly from non-point sources. The watershed in Miyun County is selected as the study region with a total area of 1400 km2. Four typical monitoring catchments and two experimental units were used to monitor the precipitation, runoff, sediment yield and pollutant loading related to various land uses in the meantime. The results show that the total nutrient loss amount of TN and TP is 898.07 t/a, and 40.70 t/a, respectively, in which nutrient N and P carried by runoff is 91.3% and 77.3%, respectively. There is relatively heavier soil erosion at the northern mountain area whereas the main nutrient loss occurs near the northeast rim of the reservoir. Different land uses influence the loss of non-point source pollutants. The amount of nutrient loss from agricultural land per unit is the highest, nutrient loss from forestry is the second highest and that from grassland is the lowest. However, due to the variability of land use areas, agricultural land contributes the greatest amount of TP and forestry lands the greatest amount of TN. PMID:11724492

  12. A watershed-based method for environmental vulnerability assessment with a case study of the Mid-Atlantic region

    The paper presents a method for environmental vulnerability assessment with a case study of the Mid-Atlantic region. The method is based on the concept of “self-/peer-appraisal” of a watershed in term of vulnerability. The self-/peer-appraisal process is facilitated by two separate linear optimization programs. The analysis provided insights on the environmental conditions, in general, and the relative vulnerability pattern, in particular, of the Mid-Atlantic region. The suggested method offers a simple but effective and objective way to perform a regional environmental vulnerability assessment. Consequently the method can be used in various steps in environmental assessment and planning. - Highlights: ► We present a method for regional environmental vulnerability assessment. ► It is based on the self-/peer-appraisal concept in term of vulnerability. ► The analysis is facilitated by two separate linear optimization programs. ► The method provides insights on the regional relative vulnerability pattern.

  13. Case Study Report: REDD+ Pilot Project in Community Forests in Three Watersheds of Nepal

    Shanti Shrestha

    2014-09-01

    Full Text Available Reducing emissions from deforestation and forest degradation (REDD+ is an international climate policy instrument that is expected to tap into the large mitigation potential for conservation and better management of the world’s forests through financial flows from developed to developing countries. This paper describes the results and lessons learned from a pioneering REDD+ pilot project in Nepal, which is based on a community forest management approach and which was implemented from 2009–2013 with support from NORAD’s Climate and Forest Initiative. The major focus of the project was to develop and demonstrate an innovative benefit-sharing mechanism for REDD+ incentives, as well as institutionally and socially inclusive approaches to local forest governance. The paper illustrates how community-based monitoring, reporting, and verification (MRV and performance-based payments for forest management can be implemented. The lessons on REDD+ benefit sharing from this demonstration project could provide insights to other countries which are starting to engage in REDD+, in particular in South Asia.

  14. Effects of conservation reserve program on runoff and lake water quality in an oxbow lake watershed

    Sediment and its associated pollutants entering a water body can be destructive to the ecological health of the system. Best Management Practices (BMPs) can be used to reduce these pollutants, but understanding the most effective practices is difficult. A case study of Beasley Lake Watershed, typica...

  15. Watershed Boundaries - Watershed Boundary Database for Montana

    NSGIC GIS Inventory (aka Ramona) — This data set is a complete digital hydrologic unit boundary layer of the Subbasins (8-digit), Watersheds (10-digit), and Subwatersheds (12-digit) for Montana. This...

  16. The Potential Importance of Conservation, Restoration, and Altered Management Practices for Water Quality in the Wabash River Watershed

    Non-point source (NPS) pollution is one of the leading causes of water quality impairment within the United States. Conservation, restoration and altered management (CRAM) practices may effectively reduce NPS pollutants discharge into receiving water bodies and enhance local and ...

  17. Platforms and Terraces : Bridging participation and GIS in joint-learning for watershed management with the Ifugaos of the Philippines

    Gonzalez, R.M.

    2000-01-01

    Complex multi-actor problem situations in natural resource management (NRM) need the convergence of different knowledge processes, first of all, in understanding and agreeing what the problem is before aspiring for joint-action. This is a joint-learning approach in NRM. Geographic information system

  18. Heat Management Strategy Trade Study

    Nick Soelberg; Steve Priebe; Dirk Gombert; Ted Bauer

    2009-09-01

    This Heat Management Trade Study was performed in 2008-2009 to expand on prior studies in continued efforts to analyze and evaluate options for cost-effectively managing SNF reprocessing wastes. The primary objective was to develop a simplified cost/benefit evaluation for spent nuclear fuel (SNF) reprocessing that combines the characteristics of the waste generated through reprocessing with the impacts of the waste on heating the repository. Under consideration were age of the SNF prior to reprocessing, plutonium and minor actinide (MA) separation from the spent fuel for recycle, fuel value of the recycled Pu and MA, age of the remaining spent fuel waste prior to emplacement in the repository, length of time that active ventilation is employed in the repository, and elemental concentration and heat limits for acceptable glass waste form durability. A secondary objective was to identify and qualitatively analyze remaining issues such as (a) impacts of aging SNF prior to reprocessing on the fuel value of the recovered fissile materials, and (b) impact of reprocessing on the dose risk as developed in the Yucca Mountain Total System Performance Assessment (TSPA). Results of this study can be used to evaluate different options for managing decay heat in waste streams from spent nuclear fuel.

  19. Estimating sediment, nitrogen, and phosphorous loads from the Pipestem Creek watershed, North Dakota, using AnnAGNPS

    Pease, Lyndon M.; Oduor, P.; Padmanabhan, G.

    2010-03-01

    Agricultural pollution is a significant problem in North Dakota. Water quality in the Pipestem Creek watershed upstream of Pingree, North Dakota, USA, has been a major environmental concern amongst other adjacent watersheds within the region. The annualized agricultural non-point source (AnnAGNPS) model, a large-scale watershed model designed to predict sediment and nutrient loads, was used to evaluate non-point source pollution in a typical agricultural watershed. The best available data were assembled and used in the analysis. The model predicted runoff of 0.31 m 3/s, compared to a measured value of 0.46 m 3/s. A poor correlation was observed when comparing the model's predicted nitrogen, phosphorus, and sediment with the observed counterparts. The model's poor performance was most likely a result of the large size of the study area and the high variability in land use and management practices.

  20. The Walnut Gulch - Santa Rita Wildland Watershed-Scale LTAR Sites

    Goodrich, D. C.; Heilman, P.; Scott, R. L.; Nearing, M. A.; Moran, M. S.; Nichols, M.; Vivoni, E. R.; Archer, S. R.; Biederman, J.; Naito, A. T.

    2015-12-01

    The 150 km2 Walnut Gulch Experimental Watershed (WGEW), a Long-Term Agroecosystem Research (LTAR) site, near Tombstone, Arizona was established in 1953 by the USDA-ARS Southwest Watershed Research Center in Tucson. It is one of the most intensively instrumented semiarid experimental watersheds in the world with elevation ranging from 1220 to 1950 m with mean annual temperature and precipitation equal to 17.7°C and 312 mm. Desert shrubs dominate the lower two thirds of the watershed and grasses the upper third. Spatial variation in precipitation is measured with a network of 88 weighing-type recording rain gauges. Surface runoff is quantified over a range of scales (0.002 to 0.06 km2) to characterize interactions between rainfall intensity, soils and vegetation at nine sub-watersheds. Channel network processes and rainfall spatial variability are studied using 11 nested watersheds (2 to 150 km2). Sediment from the small sub-watersheds is sampled. Meteorological, soil moisture and temperature, and energy/water/CO2 flux measurements are made within two vegetation/soil complexes. Parallel investigations dating back to 1974 have also been conducted on eight small experimental watersheds at the Santa Rita Experimental Range (SRER) 80 km west of Walnut Gulch. In contrast to the creosote bush-grass WGEW, the mesquite-grass SRER is publicly owned, which ensures control and consistent reporting of management for research purposes. A key LTAR objective is to contrast a "business as usual" to an alternate management strategy presumed to have the potential of significantly improving forage and livestock production and diversification of ecosystem services. Consequently, a new ARS-U. of Arizona-Arizona State U. partnership will assess the watershed-scale impacts of brush management, a common land use practice typically applied in conjunction with livestock grazing, on a suite of ecosystem services at the SRER including provisioning (forage production, water yield), supporting

  1. Discover a Watershed: The Everglades.

    Robinson, George B.; And Others

    This publication is designed for both classroom teachers and nonformal educators of young people in grades 6 through 12. It can provide a 6- to 8-week course of study on the watershed with students participating in activities as they are ordered in the guide, or activities may be used in any order with educators selecting those appropriate for the…

  2. Morphometry and land cover based multi-criteria analysis for assessing the soil erosion susceptibility of the western Himalayan watershed.

    Altaf, Sadaff; Meraj, Gowhar; Romshoo, Shakil Ahmad

    2014-12-01

    Complex mountainous environments such as Himalayas are highly susceptibility to natural hazards particular those that are triggered by the action of water such as floods, soil erosion, mass movements and siltation of the hydro-electric power dams. Among all the natural hazards, soil erosion is the most implicit and the devastating hazard affecting the life and property of the millions of people living in these regions. Hence to review and devise strategies to reduce the adverse impacts of soil erosion is of utmost importance to the planners of watershed management programs in these regions. This paper demonstrates the use of satellite based remote sensing data coupled with the observational field data in a multi-criteria analytical (MCA) framework to estimate the soil erosion susceptibility of the sub-watersheds of the Rembiara basin falling in the western Himalaya, using geographical information system (GIS). In this paper, watershed morphometry and land cover are used as an inputs to the MCA framework to prioritize the sub-watersheds of this basin on the basis of their different susceptibilities to soil erosion. Methodology included the derivation of a set of drainage and land cover parameters that act as the indicators of erosion susceptibility. Further the output from the MCA resulted in the categorization of the sub-watersheds into low, medium, high and very high erosion susceptibility classes. A detailed prioritization map for the susceptible sub-watersheds based on the combined role of land cover and morphometry is finally presented. Besides, maps identifying the susceptible sub-watersheds based on morphometry and land cover only are also presented. The results of this study are part of the watershed management program in the study area and are directed to instigate appropriate measures to alleviate the soil erosion in the study area. PMID:25154685

  3. Ingestion risks of metals in groundwater based on TIN model and dose-response assessment - A case study in the Xiangjiang watershed, central-south China

    Groundwater samples were collected in the Xiangjiang watershed in China from 2002 to 2008 to analyze concentrations of arsenic, cadmium, chromium, copper, iron, lead, mercury, manganese, and zinc. Spatial and seasonal trends of metal concentrations were then discussed. Combined with geostatistics, an ingestion risk assessment of metals in groundwater was performed using the dose-response assessment method and the triangulated irregular network (TIN) model. Arsenic concentration in groundwater had a larger variation from year to year, while the variations of other metal concentrations were minor. Meanwhile, As concentrations in groundwater over the period of 2002-2004 were significantly higher than that over the period of 2005-2007, indicating the improvement of groundwater quality within the later year. The hazard index (HI) in 2002 was also significantly higher than that in 2005, 2006, 2007 and 2008. Moreover, more than 80% of the study area recorded an HI of more than 1.0 for children, suggesting that some people will experience deleterious health effects from drinking groundwater in the Xiangjiang watershed. Arsenic and manganese were the largest contributors to human health risks (HHRs). This study highlights the value of long-term health risk evaluation and the importance of geographic information system (GIS) technologies in the assessment of watershed-scale human health risk.

  4. Linking economic water use, freshwater ecosystem impacts, and virtual water trade in a Great Lakes watershed

    Mubako, S. T.; Ruddell, B. L.; Mayer, A. S.

    2013-12-01

    The impact of human water uses and economic pressures on freshwater ecosystems is of growing interest for water resource management worldwide. This case study for a water-rich watershed in the Great Lakes region links the economic pressures on water resources as revealed by virtual water trade balances to the nature of the economic water use and the associated impacts on the freshwater ecosystem. A water accounting framework that combines water consumption data and economic data from input output tables is applied to quantify localized virtual water imports and exports in the Kalamazoo watershed which comprises ten counties. Water using economic activities at the county level are conformed to watershed boundaries through land use-water use relationships. The counties are part of a region implementing the Michigan Water Withdrawal Assessment Process, including new regulatory approaches for adaptive water resources management under a riparian water rights framework. The results show that at local level, there exists considerable water use intensity and virtual water trade balance disparity among the counties and between water use sectors in this watershed. The watershed is a net virtual water importer, with some counties outsourcing nearly half of their water resource impacts, and some outsourcing nearly all water resource impacts. The largest virtual water imports are associated with agriculture, thermoelectric power generation and industry, while the bulk of the exports are associated with thermoelectric power generation and commercial activities. The methodology is applicable to various spatial levels ranging from the micro sub-watershed level to the macro Great Lakes watershed region, subject to the availability of reliable water use and economic data.

  5. Soil and Water Assessment Tool (SWAT) Applicability on Nutrients Loadings Prediction in Mountainous Lower Bear Malad River (LBMR) Watershed, Utah.

    Salha, A. A.; Stevens, D. K.

    2014-12-01

    The application of watershed simulation models is indispensable when pollution is generated by a nonpoint source. These models should be able to simulate large complex watersheds with varying soils, land use and management conditions over long periods of time. This study presents the application of Soil and Water Assessment Tool (SWAT) to investigate, manage, and research the transport and fate of nutrients in (Subbasin HUC 16010204) Lower Bear Malad River (LBMR) watershed, Box elder County, Utah. Water quality problems arise primarily from high phosphorus and total suspended sediment concentrations that were caused by increasing agricultural and farming activities and complex network of canals and ducts of varying sizes and carrying capacities that transport water (for farming and agriculture uses). Using the available input data (Digital Elevation Model (DEM), land use/Land cover (LULC), soil map and weather and climate data for 20 years (1990-2010) to predict the water quantity and quality of the LBMR watershed using a spatially distributed model version of hydrological ArcSWAT model (ArcSWAT 2012.10_1.14). No previous studies have been found in the literature regarding an in-depth simulation study of the Lower Bear Malad River (LBMR) watershed to simulate stream flow and to quantify the associated movement of nitrogen, phosphorus, and sediment. It is expected that the model mainly will predict monthly mean total phosphorus (TP) concentration and loadings in a mountainous LBRM watershed (steep Wellsville mountain range with peak of (2,857 m)) having into consideration the snow and runoff variables affecting the prediction process. The simulated nutrient concentrations were properly consistent with observations based on the R2 and Nash- Sutcliffe fitness factors. Further, the model will be able to manage and assess the land application in that area with corresponding to proper BMPs regarding water quality management. Keywords: Water Quality Modeling; Soil and

  6. The Demonstration Test Catchment Approach to Land and Water Management in the river Eden Watershed, UK. (Invited)

    Jonczyk, J.; Quinn, P. F.; Haygarth, P.; Reaney, S.; Wilkinson, M.; Burke, S.; McGonigle, D.; Harris, B.

    2010-12-01

    The Demonstration Test Catchment (DTC) initiative is a five year project to address pollution issues in catchments. The initiative will study the wider environmental problems suffered by catchments which are under intense farming pressures and potential climate change impacts. The UK Department for Food, Agriculture and Rural Affairs (Defra) in partnership with the Environment Agency for England and Wales (EA) have funded this initiative to answer key policy concerns in catchments. The first key step has been the establishment of a ‘research platform’ at three catchments in the UK (The Eden, Wensum and Hampshire Avon) whereby funding of 9.3 million dollars has gone into funding new equipment and pollution sampling regimes have been established. Within each catchment between three and four, 8-10km2 sub-catchments have been established. The experimental design and thinking for DTCs will be explained fully in this paper. The next phase of the project will install an extensive suite of land management and pollution mitigation interventions. In parallel to this monitoring work, a full knowledge exchange package will seek to engage with farmers, the rural community and understand the governance regime at the broader catchment scale. There is also a need for a modelling component to upscale the findings to the whole of the UK. Whilst this is an ambitious goal, there is a very basic commitment of working with rural communities to come up with real solutions that will help underpin effective policy making for the future. The research platform covers a multi-scale approach to the monitoring strategy that will allow local grouping of mitigation measures to be studied local in terms of impact and propagated to the catchment scale. Even with high level of funding, the DTC can only fully instrument a catchment of 8-10km2. Beyond this scale, the EA and the standard catchment monitoring will continue as normal. The focus here is to prove that mitigation can be achieved within

  7. Platforms and Terraces : Bridging participation and GIS in joint-learning for watershed management with the Ifugaos of the Philippines

    Gonzalez, R. M.

    2000-01-01

    Complex multi-actor problem situations in natural resource management (NRM) need the convergence of different knowledge processes, first of all, in understanding and agreeing what the problem is before aspiring for joint-action. This is a joint-learning approach in NRM. Geographic information systems (GIS), with their integrative, analytic, and visualization capabilities, offer promising means to facilitate this approach. However, using GIS relies heavily on specialists that develop and inter...

  8. Assessing the Nonpoint Source Pollutant Removal Efficiencies of a Two-Basin Stormwater Management System in an Urbanizing Watershed

    Lovern, Sharla Benjamin

    2000-01-01

    Monitoring of a regional stormwater management facility, located on the Virginia Tech campus in Blacksburg VA, was conducted in order to assess its efficacy in reducing nonpoint source pollutant losses downstream. The facility design includes both an upper water quality (wet) pond and a lower 100-yr-event quantity (dry) pond. These on-stream ponds capture both baseflow and storm runoff from the southern portion of the Virginia Tech campus and surrounding lands, and release the water back to...

  9. USDA-ARS Southeast Watershed Laboratory at Tifton, GA:Index Site Design for the Suwannee Basin

    Bosch, D.; Strickland, T.; Sheridan, J.; Lowrance, R.; Truman, C.; Hubbard, R.; Potter, T.; Wauchope, D.; Vellidis, G.; Thomas, D.

    2001-12-01

    The Southeast Watershed Hydrology Research Center (SEWHRC) was established in 1966 by order of the U.S. Senate "to identify and characterize those elements that control the flow of water from watersheds in the southeast". A 129 sq.mi. area within the headwaters of Little River Watershed (LRW) in central south Georgia was instrumented to provide data for evaluating and characterizing Coastal Plain hydrologic processes and for development and testing of prediction methodologies for use in ungaged watersheds in regions of low topographic relief. Pesticide analytical capabilities were added in 1976, and inorganic chemistry and sediment transport research were expanded. In 1980, the Center was renamed as the Southeast Watershed Research Laboratory (SEWRL), and laboratories were constructed for nutrient analysis and soil physics. A pesticide analysis laboratory was constructed in 1987. In the early 1990s, a hydraulics laboratory was established for sediment and chemical transport studies, and research on riparian buffers was expanded. The SEWRL research program continues to focus on hydrologic and environmental concerns. Major components of the program are hydrology, pesticides behavior, buffer systems, animal waste management, erosion, remote sensing of watershed condition, and relationships between site-specific agricultural management (BMPs) and small-to-large watershed response. SEWRL's program will be expanded over the next five years to include two additional watersheds comparable in size and instrumentation to the LRW; nesting the LRW within the full Little River drainage and subsequently...all three watersheds within the full Suwannee Basin; and mapping and quantifying irrigation water removals within the Suwannee Basin. We will instrument the three intensive study watersheds and the full Suwannee Basin to provide real-time characterization of precipitation, soil moisture, hydrologic flow, and water quality at a range of spatial and temporal scales. We will

  10. Collaborative environmental planning in river management: An application of multicriteria decision analysis in the White River Watershed in Vermont

    Hermans, C.; Erickson, J.; Noordewier, T.; Sheldon, A.; Kline, M.

    2007-01-01

    Multicriteria decision analysis (MCDA) provides a well-established family of decision tools to aid stakeholder groups in arriving at collective decisions. MCDA can also function as a framework for the social learning process, serving as an educational aid in decision problems characterized by a high level of public participation. In this paper, the framework and results of a structured decision process using the outranking MCDA methodology preference ranking organization method of enrichment evaluation (PROMETHEE) are presented. PROMETHEE is used to frame multi-stakeholder discussions of river management alternatives for the Upper White River of Central Vermont, in the northeastern United States. Stakeholders met over 10 months to create a shared vision of an ideal river and its services to communities, develop a list of criteria by which to evaluate river management alternatives, and elicit preferences to rank and compare individual and group preferences. The MCDA procedure helped to frame a group process that made stakeholder preferences explicit and substantive discussions about long-term river management possible. ?? 2006 Elsevier Ltd. All rights reserved.

  11. Discussion on the Landscape Pattern Change of Watershed

    ZHANG Jun-bin

    2006-01-01

    Evaluating the transition of landscape can understand that ecosystem processes are being influenced by disturbance. For this reason, it is essential that using appropriate mapping techniques and quantitative methods to assess landscape condition within different disturbance regimes. Landscape metrics were calculated for segmented areas of homogeneous land use in watershed to allow understanding and characterization of ecosystem.Chen-yu-lan watershed, located in the central of Taiwan, is a sensitivity area for disaster such as earthquakes and typhoons. In this study we focus on how the natural disaster affect landscape pattern. The study shows that landscape metrics can measure the effect of typhoon and earthquake disturbance regime. The analysis shows that evaluating landscape transition can contribute more detailed information for managing ecosystem.

  12. Knowledge Management System- A STUDY

    Nidhi Agrawal

    2014-01-01

    Every organization and institute is facing the savior problem of generating the knowledge on the basis of their assets. Knowledge management is very indispensable for any organization. We discuss about the knowledge management through this paper. This paper provide an outline of knowledge management and how knowledge management is useful to improve the quality of the educational institute. With the help of knowledge management system we can manage any information. We can defin...

  13. Protect and Restore Mill Creek Watershed; Annual Report 2002-2003.

    McRoberts, Heidi (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

    2004-01-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. Watershed restoration projects within the Mill Creek watershed are coordinated with the Nez Perce National Forest. The Nez Perce Tribe began watershed restoration projects within the Mill Creek watershed of the South Fork Clearwater River in 2000. Progress has been made in restoring the watershed through excluding cattle from critical riparian areas through fencing. During the FY 2002, trees were planted in riparian areas in the meadow of the upper watershed. In addition, a complete inventory of culverts at road-stream crossings was completed. Culverts have been prioritized for replacement to accommodate fish passage throughout the watershed. Maintenance to the previously built fence was also completed.

  14. 2012 Oregon Department of Interior, Bureau of Land Management (BLM) Lidar: Panther Creek Study Area

    National Oceanic and Atmospheric Administration, Department of Commerce — The Oregon Department of Interior, Bureau of Land Management (BLM) contracted with Watershed Sciences, Inc. to collect high resolution topographic LiDAR data for...

  15. CONSTRUCTED WETLANDS VS. RETENTION POND BMPS: MESOCOSM STUDIES FOR IMPROVED POLLUTANT MANAGEMENT IN URBAN STORMWATER TREATMENT

    Increased urbanization has increased the amount of directly connected impervious area that results in large quantities of stormwater runoff. This runoff can contribute significant amounts of debris and pollutants to receiving waters. Urban watershed managers often incorporate b...

  16. Modeling flood reduction effects of low impact development at a watershed scale.

    Ahiablame, Laurent; Shakya, Ranish

    2016-04-15

    Low impact development (LID) is a land development approach that seeks to mimic a site's pre-development hydrology. This study is a case study that assessed flood reduction capabilities of large-scale adoption of LID practices in an urban watershed in central Illinois using the Personal Computer Storm Water Management Model (PCSWMM). Two flood metrics based on runoff discharge were developed to determine action flood (43 m(3)/s) and major flood (95 m(3)/s). Four land use scenarios for urban growth were evaluated to determine the impacts of urbanization on runoff and flooding. Flood attenuation effects of porous pavement, rain barrel, and rain garden at various application levels were also evaluated as retrofitting technologies in the study watershed over a period of 30 years. Simulation results indicated that increase in urban land use from 50 to 94% between 1992 and 2030 increased average annual runoff and flood events by more than 30%, suggesting that urbanization without sound management would increase flood risks. The various implementation levels of the three LID practices resulted in 3-47% runoff reduction in the study watershed. Flood flow events that include action floods and major floods were also reduced by 0-40%, indicating that LID practices can be used to mitigate flood risk in urban watersheds. The study provides an insight into flood management with LID practices in existing urban areas. PMID:26878221

  17. Spate Irrigation Systems and Watershed Development in Eritrea: the case of Sheeb watershed

    Tesfai, M.H.

    2002-01-01

    This paper describes the interactions of the Spate Irrigation System (SIS) in Eritrea with their upper watersheds, as a case study in Sheeb watershed. The spate irrigation practices, among others, include techniques to harvest runoff water, sediments, and nutrients. A strong relationship exists betw

  18. Modeling reservoir sedimentation in the Agno watershed, Philippines

    Ham, D.; Vasque, P. [Northwest Hydraulic Consultants, North Vancouver, BC (Canada); McLean, D. [Northwest Hydraulic Consultants, Nanaimo, BC (Canada); Valdez, T. [San Roque Power Corp., Makati City (Philippines)

    2008-07-01

    The exceptionally high sedimentation rate in the mountainous Agno River Watershed in the Philippines has affected dam operations on the Ambuklao and Binga reservoirs which were built in the late 1950s. In addition, sediment inflow scenarios have revealed that sedimentation will significantly reduce the total storage volume in the new San Roque facility which has been constructed downstream of those reservoirs. As such, watershed management plans will need to address conditions in the entire basin, not just the portion downstream of Binga Dam. Sediment will be deposited in the reservoir in the form of a delta front that will advance from the head of the reservoir towards the dam. Sedimentation in water reservoirs affects the utility to sustain power production, water supply and flood control objectives. It will likely be very difficult to reduce the sediment yield to any great degree by watershed restoration such as re-vegetation or tree planting. However, since sediment production from road-related slope failures appears to the main contributor to reservoir sedimentation, future developments in the basin related to road construction, mining activity and construction of new towns will need to adopt best management practices to avoid increased erosion or land disturbance. Empirical and analytic techniques were used in this study to assess sedimentation volumes and patterns, with particular emphasis on a GIS-based sediment yield model. The GIS model identified where sediment yield is greatest within the watershed, providing a means for developing sediment management and mitigation strategies that focus limited resources on key areas that give the highest rates of return. 25 refs., 3 tabs., 4 figs.

  19. McKenzie River Focus Watershed Coordination: Fiscal Year 1998.

    Runyon, John; Davis-Born, Renee

    1998-01-01

    This report summarizes accomplishments made by the McKenzie River Focus Watershed Council in the areas of coordination and administration during Fiscal Year 1998. Coordination and administration consists of tasks associated with Focus Watershed Council staffing, project management, and public outreach.

  20. Regional scale modeling of hill slope sediment delivery: a case study in the Esera-Isabena watershed, central Spanish Pyrenees, with WATEM/SEDEM

    Alatorre, L. C.; Begueria, S.; Garcia-Ruiz, J. M.

    2009-07-01

    Soil ersoion and sediment delivery to streams is an important environmental problem and a major concern for sustainable development. The spatial nature of soil erosion and sediment delivery, as well as the variety of possible soil conservation and sediment control measures, require an integrated approach to catchment management. A spatially-distributed soil erosion and sediment delivery model (WATEM/SEDEM) was applied to the watershed of the Barasona Reservoir (1504 km{sup 2}, central Spanish Pyrenees), which is drained by the Esera and Isabena rivers. Several input data layers with a 20 x 20 m resolution were derived using a GIS package comprising a digital terrain model (DTM), and stream network, land use, rainfall erosivity, soil erodibility and crop management factors. (Author) 6 refs.

  1. Regional scale modeling of hill slope sediment delivery: a case study in the Esera-Isabena watershed, central Spanish Pyrenees, with WATEM/SEDEM

    Soil ersoion and sediment delivery to streams is an important environmental problem and a major concern for sustainable development. The spatial nature of soil erosion and sediment delivery, as well as the variety of possible soil conservation and sediment control measures, require an integrated approach to catchment management. A spatially-distributed soil erosion and sediment delivery model (WATEM/SEDEM) was applied to the watershed of the Barasona Reservoir (1504 km2, central Spanish Pyrenees), which is drained by the Esera and Isabena rivers. Several input data layers with a 20 x 20 m resolution were derived using a GIS package comprising a digital terrain model (DTM), and stream network, land use, rainfall erosivity, soil erodibility and crop management factors. (Author) 6 refs.

  2. Management by Values: A Case Study

    Liu, Zhen

    2012-01-01

    The intention of this paper is to conclude the management approach by the case study of Chinese enterprise. There are a lot of management approaches in practice, one of the most influential and famous one is management by objective which is invented by the father of modern management discipline Peter F Drucker, he observed the case of American most successful enterprise such as GM and then concluded and created the relevant meaningful management tools, in effect, such valuable manage...

  3. ANALISIS OF STREAM DISCHARGE OF MICRO WATERSHED AND ITS UTILIZATION POTENTIAL

    Hunggul Y.S.H. Nugroho

    2015-05-01

    Full Text Available Trough understanding of hydrology characteristic of watershed, water resource can be  managed for wider goals such as economic, social, and sustainainable utilization.  In fact, current watershed managements have more been focused  on erosion, sedimentation, drought, and flood control and less attention paid on fulfilling the need of upper watershed inhabitat on water yield.  The research of Micro Watershed was conducted in three Micro Watersheds as representation of priority watersheds in South Sulawesi  namely Mamasa, Saddang, and Jeneberang. The aim was to find out stream discharge pattern of those three Micro Watershed related to precipitation, landuse and its utilization potential for local community.  The results showed that the more extensive forest cover, the better water yield and the higher its utilization potential . Concerning to precipitation and water yield, the three micro watersheds have the potentially to be source of water for irigation and household consumption.

  4. Hydrologic study and evaluation of Ish Creek watershed (West Chestnut Ridge proposed disposal site)

    As part of site characterization work for the proposed West Chestnut Ridge Central Waste Disposal Facility, hydrologic information has been assembled from literature sources and direct field measurements. Earlier studies provide the basis for estimating flow frequency and expected high and low flows for catchments on Knox Group formations. Seven waterflow-gaging installations were established and used to characterize runoff patterns in the study area. Based on findings of this study, a practical design capacity for a flume to measure site runoff would range between 1 and 3000 L/s, although flows up to 4500 L/s (10-year recurrence interval) may be encountered. 7 references, 2 figures, 5 tables

  5. Hydrological characterization of watersheds in the Blue Nile Basin, Ethiopia

    S. G. Gebrehiwot

    2011-01-01

    Full Text Available Thirty-two watersheds (31–4350 km2, in the Blue Nile Basin, Ethiopia, were hydrologically characterized with data from a study of water and land resources by the US Department of Interior, Bureau of Reclamation (USBR published in 1964. The USBR document contains data on flow, topography, geology, soil type, and land use for the period 1959 to 1963. The aim of the study was to identify watershed variables best explaining the variation in the hydrological regime, with a special focus on low flows. Moreover, this study aimed to identify variables that may be susceptible to management policies for developing and securing water resources in dry periods. Principal Component Analysis (PCA and Partial Least Square (PLS were used to analyze the relationship between five hydrologic response variables (total flow, high flow, low flow, runoff coefficient, low flow index and 30 potential explanatory watershed variables. The explanatory watershed variables were classified into three groups: land use, climate and topography as well as geology and soil type. Each of the three groups had almost equal influence on the variation in hydrologic variables (R2 values ranging from 0.3 to 0.4. Specific variables from within each of the three groups of explanatory variables were better in explaining the variation. Low flow and low flow index were positively correlated to land use types woodland, dense wet forest and savannah grassland, whereas grazing land and bush land were negatively correlated. We concluded that extra care for preserving low flow should be taken on tuffs/basalts which comprise 52% of the Blue Nile Basin. Land use management plans should recognize that woodland, dense wet forest and savannah grassland can promote higher low flows, while grazing land diminishes low flows.

  6. It's all about Balance: Using a watershed model to evaluate costs, benefits and tradeoffs for Monponsett Ponds watershed

    As part of an EPA Region 1 RARE project, EPA Region 1 reached out to towns in the Taunton River watershed to identify those interested in testing new version of EPA watershed management tool (WMOST version 2)and found Halifax, MA in need of assistance in dealing with a suite of w...

  7. Conservation practice establishment in two northeast Iowa watersheds: Strategies, water quality implications, and lessons learned

    Gassman, P.W.; Tisl, J.A.; Palas, E.A.; Fields, C.L.; Isenhart, T.M.; Schilling, K.E.; Wolter, C.F.; Seigley, L.S.; Helmers, M.J.

    2010-01-01

    Coldwater trout streams are important natural resources in northeast Iowa. Extensive efforts have been made by state and federal agencies to protect and improve water quality in northeast Iowa streams that include Sny Magill Creek and Bloody Run Creek, which are located in Clayton County. A series of three water quality projects were implemented in Sny Magill Creek watershed during 1988 to 1999, which were supported by multiple agencies and focused on best management practice (BMP) adoption. Water quality monitoring was performed during 1992 to 2001 to assess the impact of these installed BMPs in the Sny Magill Creek watershed using a paired watershed approach, where the Bloody Run Creek watershed served as the control. Conservation practice adoption still occurred in the Bloody Run Creek watershed during the 10-year monitoring project and accelerated after the project ended, when a multiagency supported water quality project was implemented during 2002 to 2007. Statistical analysis of the paired watershed results using a pre/post model indicated that discharge increased 8% in Sny Magill Creek watershed relative to the Bloody Run Creek watershed, turbidity declined 41%, total suspended sediment declined 7%, and NOx-N (nitrate-nitrogen plus nitrite-nitrogen) increased 15%. Similar results were obtained with a gradual change statistical model.The weak sediment reductions and increased NOx-N levels were both unexpected and indicate that dynamics between adopted BMPs and stream systems need to be better understood. Fish surveys indicate that conditions for supporting trout fisheries have improved in both streams. Important lessons to be taken from the overall study include (1) committed project coordinators, agency collaborators, and landowners/producers are all needed for successful water quality projects; (2) smaller watershed areas should be used in paired studies; (3) reductions in stream discharge may be required in these systems in order for significant sediment

  8. WATERSHED INFORMATION NETWORK

    Resource Purpose:The Watershed Information Network is a set of about 30 web pages that are organized by topic. These pages access existing databases like the American Heritage Rivers Services database and Surf Your Watershed. WIN in itself has no data or data sets.L...

  9. Developing a Watershed Challenge

    Roman, Harry T.

    2010-01-01

    This article presents a watershed challenge that gives students an opportunity to investigate the challenge of using a watershed area as a site for development, examining the many aspects of this multifaceted problem. This design challenge could work well in a team-based format, with students taking on specific aspects of the challenges and…

  10. Regional solid waste management study

    1992-09-01

    In 1990, the Lower Savannah Council of Governments (LSCOG) began dialogue with the United States Department of Energy (DOE) regarding possibilities for cooperation and coordination of solid waste management practices among the local governments and the Savannah River Site. The Department of Energy eventually awarded a grant to the Lower Savannah Council of Governments for the development of a study, which was initiated on March 5, 1992. After careful analysis of the region`s solid waste needs, this study indicates a network approach to solid waste management to be the most viable. The network involves the following major components: (1) Rural Collection Centers, designed to provide convenience to rural citizens, while allowing some degree of participation in recycling; (2) Rural Drop-Off Centers, designed to give a greater level of education and recycling activity; (3) Inert landfills and composting centers, designed to reduce volumes going into municipal (Subtitle D) landfills and produce useable products from yard waste; (4) Transfer Stations, ultimate landfill disposal; (5) Materials Recovery Facilities, designed to separate recyclables into useable and sellable units, and (6) Subtitle D landfill for burial of all solid waste not treated through previous means.

  11. Study of International Standards of Risk Management

    Dykan Volodymyr L.; Posokhov Igor M.

    2014-01-01

    The goal of the article lies in the study of existing international standards of risk management, an important factor of improvement of risk management in domestic corporations and enterprises and development of recommendations on application of international standards in Ukraine, in particular, within the framework of building corporate systems of risk management. The conducted study shows that approaches on organisation of the process of risk management, used in standards of risk management...

  12. Identification and prioritization of critical sub-basins in a highly mountainous watershed using SWAT model

    Asghar Besalatpour

    2012-01-01

    Full Text Available A few areas in a large watershed might be more critical and responsible for high amount of runoff and soil losses. For an effective and efficient implementation of watershed management practices, identification of these critical areas is vital. In this study, we used the Soil and Water Assessment Tool (SWAT, 2009 to identify and prioritize the critical sub-basins in a highly mountainous watershed with imprecise and uncertain data (Bazoft watershed, southwestern Iran. Three different SWAT models were first developed using different climate input data sets. The first data set (denoted as CRU was derived from the climate research unit data set developed by the British Atmosphere Data Center (BADC. The second data set (denoted as CDW was included the climate data obtained from the precipitation and air temperature stations in the study area. The third set (denoted as COM was a combination of CRU and CDW climate data. The Generalized Likelihood Uncertainty Estimation (GLUE program was used for calibrating and validating the SWAT model. Daily rainfall, temperature, and runoff data of 20 years (1989-2008 were used in this study. In results, the constructed SWAT model using COM data set simulated the runoff more satisfactorily than the two other developed SWAT models according to the statistical evaluation criteria. The correlation coefficient and Nash-Sutcliff values for the constructed SWAT model using COM data set were 0.40 and 0.38, respectively. The model simulated the runoff satisfactorily; however, the predicted runoff values were much more in agreement with the measured data for the calibration period than those for the validation period. Sub-basins S10, S12, and S13 were assigned as the most top critical sub-basins in runoff production in the watershed. The study revealed that the SWAT model could successfully be used for identifying the critical sub-basins in a watershed with imprecise and uncertain data for management purposes.

  13. Long-term water repellency in organic olive orchards in the Cànyoles River watershed. The impact of land management

    Cerdà, Artemi; González Pelayo, Óscar; García Orenes, Fuensanta; Jordán, Antonio; Pereira, Paulo; Novara, Agata; Neris, Jonay

    2015-04-01

    Soil water repellency is being researched in many enviroments of the world due to the fact that after two decades of intense investigations we found that soil water repellency is a soil property that can be found at any ecosystem (Atanassava and Doerr, 2011; Goebel et al., 2011; Mataix-Solera et al., 2013; Roper et al., 2013; Young et al., 2013; Badía-Villas et al., 2014; Jordán et al., 2014; Whelan et al., 2014). Soil water repellency inhibits or delays infiltration, encourage surface runoff but also the preferential flow in cracks and other macropores (Arye et al., 2011; Jordán et al., 2011; Madsen et al., 2011; Spohn and Rilling, 2012; García-Moreno et al., 2013; Hallin et al., 2013). Water repellency has been found in many soil types and it is present after forest fire, on forested land and also in agriculture soils (Granjed et al., 2013; Bodí et al., 2012; García Orenes et al., 2013; Jordán et al., 2012; Bodí et al., 2013; Dlapa et al., 2013; González-Peñaloza et al., 2012; López Garrido et al., 2012; León et al., 2013; Hewelke et al., 2014; Santos et al., 2014; Kröpfl et al., 2013). This paper show the measurements caried out by means of the water drop penetration time (WDPT) method in olive plantation in the Cànyoles watershed in Eastern Spain. Conservation practices applied such as no-tillage, manure addition, application of herbicides may contribute to increase soil organic matter and, hence, soil water repellency, and this is unknow under Mediterranean type ecosystems. The effect of long-term addition of plant residues and organic manure, no-tillage and no chemical fertilization (MNT), annual addition of plant residues and no-tillage (NT), application of conventional herbicides and no-tillage (H), and conventional tillage (CT) on soil water repellency in Mediterranean calcareous citrus-cropped soils (Eastern Spain) has been studied. Water repellency was observed in MNT soils, which may be attributed to the input of hydrophobic organic

  14. Evaluation of land use plan in Citarum Hulu watershed considering environmental degradation of soil erosion

    Dharma, Nyoman Gde Gita Yogi; Deguchi, Chikashi; Yoshitake, Tetsunobu

    2011-01-01

    The Citarum Hulu watershed is one of the most important watersheds in West Java, Indonesia; it supplies water to the Bandung Metropolitan Area. However, land use in the watershed has been changed and causes some environmental degradation, such as erosion and sedimentation that will affect the performance of water supply system. Another impact is accumulation of sedimentation in the river causing floods, landslides, etc. Therefore, watershed management requires integrated and comprehensive app...

  15. Tucannon River Temperature Study, Prepared for : Watershed Resource Inventory Area (WRIA) 35.

    HDR Engineering.

    2006-06-30

    This report presents the results of a temperature analysis of the Tucannon River completed for the WRIA 35 Planning Unit. The Tucannon River is located in southeastern Washington and flows approximately 100 kilometers (km) (62 miles) from the Blue Mountains to the Snake River. High water temperature in the Tucannon River has been identified as a limiting factor for salmonid fish habitat (Columbia Conservation District, 2004). Several segments of the Tucannon River are included on Washington State Department of Ecology (Ecology) 303(d) list of impaired waterbodies due to temperature. Ecology is currently conducting scoping for a temperature Total Maximum Daily Load (TMDL) study of the Tucannon River. The WRIA 35 Planning Unit retained HDR Engineering to evaluate water temperature in the Tucannon River. The project objectives are: (1) Review recent and historic data and studies to characterize temperature conditions in the river; (2) Perform field studies and analyses to identify and quantify heating and cooling processes in the river; (3) Develop and calibrate a computer temperature model to determine the sources of heat to the Tucannon River and to predict the temperature of the river that would occur with increased natural riparian shading assuming the current river morphology; (4) Evaluate differences in river temperatures between current and improved riparian shading during the 'critical' period - low river flows and high temperatures; and (5) Determine the potential benefits of riparian shading as a mechanism to decrease river temperature.

  16. Knowledge Management Analysis: A Case Study

    Mecha, Ezi I.; Desai, Mayur S.; Richards, Thomas C.

    2009-01-01

    It is imperative for businesses to manage knowledge and stay competitive in the marketplace. Knowledge management is critical and is a key to prevent organizations from duplicating their efforts with a subsequent improvement in their efficiency. This study focuses on overview of knowledge management, analyzes the current knowledge management in…

  17. Nuclear watershed

    In 1979 the accident at Three Mile Island brought nuclear power to the forefront of national attention. Over the last five years there have been no new orders for nuclear plants, construction costs and lead times have increased drastically, and numerous plants have been cancelled. In the coming years many new plants will come on line, and the first round of nuclear plant retirements will begin. Thus, the new set of issues faced by utilities are whether to complete plants currently under construction, how to recover the cost of abandoned plants, how to handle the potential rate shock of bringing costly plants into rate base, and how to accomplish decommissioning and retirement of nuclear plants. This paper presents and analyzes these issues. First, the history of the nuclear electric generation industry is reviewed. Next a case study illustrating the cost momentum built into nuclear power plant construction is presented. The issues involved in plant cancellation are discussed. Finally, a case study involving rate phase-in strategies is analyzed. 1 reference, 7 figures

  18. Monitoring and evaluation of soil bioengineering interventions for watershed management, disaster mitigation and environmental restoration in Latin America

    Petrone, Alessandro; Preti, Federico

    2013-04-01

    In recent decades the institutions responsible for land management and civil protection have showed a great interest in relation to the use of more environmentally friendly techniques to mitigate the risk of landslides and floods. Soil bioengineering has responded to this need and several research groups are carrying out experimentations using the techniques of this discipline in the countries in the developing world. The Deistaf from University of Florence has concentrated its activities in this area over the past decade promoting the use of the techniques of Soil bioengineering in Latin America through the implementation of training and experimentation programmes. Numerous works have been completed both in riverbanks and on slopes in Nicaragua, Guatemala, Ecuador and Colombia. It was decided to make a census of interventions in Latin America from different institutions that may be related to Soil bioengineering in order to obtain an overview of the state of the art in the specific context taking into account also environmental and socio-economic issues. Taking advantage of its network of contacts, DEISTAF has collected dozens of sheets that describe interventions. These sheets describe, among other fields focused on the environment in which the work has been carried out, the materials and techniques used, and the impact of the intervention. In the sheets we present also the monitoring that has been realized for some of these works in the months of October and November 2012; we include the identification of the current condition and functionality of the intervention and, in the case of the presence of some damages, the formulation of instructions to fix them as well as the economic quantification of the repairs to be carried out.

  19. Contamination of the Sulfur River Wildlife Management Area and watershed in and near Texarkana, Arkansas and Texas

    US Fish and Wildlife Service, Department of the Interior — The U.S. Fish and Wildlife Service conducted this study in response to the concern of local citizens that contaminants from four industrial facilities (two of which...

  20. 小流域非点源污染管理措施的多目标优化配置模拟%Multi-objective optimization modeling for non-point pollution management measures in small watershed

    耿润哲; 王晓燕; 段淑怀; 杨华; 南哲

    2015-01-01

    Eutrophication caused by the enrichment of nutrients from diffusing sources is degrading surface water quality throughout the world, while an increased loss of agricultural nutrients is a growing concern for water quality in drinking water areas of Beijing. Best management practices (BMPs) have been proven to actually reduce nitrogen (N), phosphorus (P) and sulfur (S) pollutant loads from agricultural areas. However, in a watershed with multiple farms and multiple BMPs feasible for implementation, it becomes a daunting task to choose the right combination of BMPs that provides maximum pollution reduction with least implementation costs. Several studies have shown that best BMPs are effective in controlling water pollution. However, those issues affecting water quality need water management plans that take into consideration BMPs selection, placement and affordability. In this study, a framework of “Risk assessment-Planning and zoning- differentiated management” was developed, and it included three tools: 1) A new “risk assessment” tool was introduced for potential loads estimation of N, P and S pollution in BeiZhai small watershed by analyzing social economic data, land use, soil type, water and soil conservation practices and agricultural management measures under current conditions, and then the critical source area was identified according to the pollution loads based on GIS technology; 2) A multi-criteria index ranking system for the BMPs was devised. First, each individual second-level index was assigned a numeric value that was based on site characteristics and information on LIDBMPs. The quantified indices were normalized and then integrated to obtain the score for each first-level index. The final evaluation score of each BMP was then calculated based on the scores for the first-level indices. Finally, the appropriate BMP types for a specific installation site were determined according to the rank of the final evaluation scores, and furthermore the

  1. Spatio-temporal variation in stream water chemistry in a tropical urban watershed

    Alonso Ramírez

    2014-06-01

    Full Text Available Urban activities and related infrastructure alter the natural patterns of stream physical and chemical conditions. According to the Urban Stream Syndrome, streams draining urban landscapes are characterized by high concentrations of nutrients and ions, and might have elevated water temperatures and variable oxygen concentrations. Here, we report temporal and spatial variability in stream physicochemistry in a highly urbanized watershed in Puerto Rico. The main objective of the study was to describe stream physicochemical characteristics and relate them to urban intensity, e.g., percent impervious surface cover, and watershed infrastructure, e.g., road and pipe densities. The Río Piedras Watershed in the San Juan Metropolitan Area, Puerto Rico, is one of the most urbanized regions on the island. The Río Piedras presented high solute concentrations that were related to watershed factors, such as percent impervious cover. Temporal variability in ion concentrations lacked seasonality, as did all other parameters measured except water temperature, which was lower during winter and highest during summer, as expected based on latitude. Spatially, stream physicochemistry was strongly related to watershed percent impervious cover and also to the density of urban infrastructure, e.g., roads, pipe, and building densities. Although the watershed is serviced by a sewage collection system, illegal discharges and leaky infrastructure are probably responsible for the elevated ion concentration found. Overall, the Río Piedras is an example of the response of a tropical urban watershed after major sewage inputs are removed, thus highlighting the importance of proper infrastructure maintenance and management of runoff to control ion concentrations in tropical streams.

  2. Land use change for flood protection: A prospective study for the restoration of the river Jelašnica watershed

    Ristić Ratko; Radić Boris; Vasiljević Nevena; Nikić Zoran

    2011-01-01

    Serbia’s hilly-mountainous regions are extremely vulnerable to flooding as a consequence of their natural characteristics and human impacts. Land mismanagement influences the development of erosion processes, and causes soil degradation that significantly reduces the land’s capacity to infiltrate and retain rainwater. Inappropriate land use as well as development activities replace permeable with impervious surfaces in the watershed. This leads to more rapi...

  3. SPATIAL MODELING OF SEDIMENTATION ON THE INTERFACE REGION WATERSHED AND COASTAL AREA : CASE STUDY ON BAUBAU DISTRICT SOUTHEAST SULAWESI INDONESIA

    Arman, Andi; Baja, Sumbangan; Zubair, Hazairin

    2013-01-01

    Dynamics of space and population pressures cause changes in land-uses in the upstream watershed that resulted in increased rate of erosion and sedimentation in the "interface" of Baubau. This research aims to analyze the form of the current distribution pattern of sediments and its influence on the development of green space. The method used by using equation of USLE (Universal Soil Loss Equation) to estimate the rate of erosion and SDR???s equation (Sediment Delivery Ratio) to calculate the ...

  4. Watershed Cuts: Thinnings, Shortest Path Forests, and Topological Watersheds

    Cousty, Jean; Bertrand, Gilles; Najman, Laurent; Couprie, Michel

    2010-01-01

    International audience We recently introduced the watershed cuts, a notion of watershed in edge-weighted graphs. In this paper, our main contribution is a thinning paradigm from which we derive three algorithmic watershed cut strategies: the first one is well suited to parallel implementations, the second one leads to a flexible linear-time sequential implementation whereas the third one links the watershed cuts and the popular flooding algorithms. We state that watershed cuts preserve a n...

  5. Using Multiple Watershed-scale Dye Tracing Tests to Study Water and Solute Transport in Naturally Obstructed Stream Channels

    Jin, L.; Meeks, J. L.; Hubbard, K. A.; Kurian, L. M.; Siegel, D. I.; Lautz, L. K.; Otz, M. H.

    2007-12-01

    Temporary storage of surface water at channel sides and pools significantly affects water and solute transport downstream in watersheds. Beavers, natural "stream channel engineers", build dams which obstruct stream flow and temporarily store water in small to large ponds within stream channels. These ponds substantially delay water movement and increase the water residence time in the system. To study how water and solutes move through these obstructed stream channels, we did multiple dye tracing tests at Cherry Creek, a main tributary to Red Canyon Creek (Wind River Range, Wyoming). First we surveyed beaver dam distributions in detail within the study reaches. We then introduced dyes four times from July 2nd to 6th, 2007 using a scale-up approach. The observation site was fixed at the mouth of Cherry Creek, and 1.5 grams of Rhodamine WT (RWT) dye was injected sequentially at upstream sites with increasing test reach length. The reach lengths scaled up from 500m to 2.5 km. A field fluorometer recorded RWT concentrations every 15 seconds. The results show non-linear decreases of the peak concentration of the dye tracing cloud as the reach scaled up. Also, the times to 1.) the arrivals of the leading edges (Tl), 2.) the peak concentrations (Tp) and 3.) the tailing edges (Tt) and 4) the durations of the tracer cloud (Td) behaved non-linearly as function of length scale. For example, plots of arrivals of leading edges and tailing edges with scale distance appear to define curves of the form; Tl=27.665e1.07× Distance (r2=0.99) and Tt=162.62e0.8551× Distance (r2=0.99), respectively. The greatest non-linearity occurred for the time of tailing and the least for the time of leading edge. These observations are consistent with what would be expected with greater density of dams and/or storage volumes as the reach length increased upgradient. To come to a first approximation, we are currently modeling the breakthrough curves with the solute transport code OTIS to address

  6. Hydrologic Effects of Brush Management in Central Texas

    Banta, J. R.; Slattery, R.

    2011-12-01

    Encroachment of woody vegetation into traditional savanna grassland ecosystems in central Texas has largely been attributed to land use practices of settlers, most notably overgrazing and fire suppression. Implementing brush management practices (removing the woody vegetation and allowing native grasses to reestablish in the area), could potentially change the hydrology in a watershed. The U.S. Geological Survey, in cooperation with several local, State, and Federal cooperators, studied the hydrologic effects of ashe juniper (Juniperus ashei) removal as a brush management conservation practice in the Honey Creek State Natural Area in Comal County, Tex. Two adjacent watersheds of 104 and 159 hectares were used in a paired study. Rainfall, streamflow, evapotranspiration (Bowen ratio method), and water quality data were collected in both watersheds. Using a hydrologic mass balance approach, rainfall was allocated to surface-water runoff, evapotranspiration, and groundwater recharge. Groundwater recharge was not directly measured, but estimated as the residual of the hydrologic mass balance. After hydrologic data were collected in both watersheds for 3 years, approximately 80 percent of the woody vegetation (ashe juniper) was selectively removed from the 159 hectare watershed (treatment watershed). Brush management was not implemented in the other (reference) watershed. Hydrologic data were collected in both watersheds for six years after brush management implementation. The resulting data were examined for differences in the hydrologic budget between the reference and treatment watersheds as well as between pre- and post-brush management periods to assess effects of the treatment. Preliminary results indicate there are differences in the hydrologic budget as well as water quality between the watersheds during pre- and post-treatment periods.

  7. A Watershed Cooperative Addresses Short and Long-Term Perspectives for the Management of Harmful Algae at a Southwestern Ohio Drinking Water Reservoir

    The multi-agency East Fork Watershed Cooperative (EFWCoop) has focused discussion and consequent leveraged monitoring efforts to understand how to ensure water safety in the short term. The EFWCoop is also collecting the dense data sets required to consider potential options for...

  8. Valuing investments in sustainable land management using an integrated modelling framework to support a watershed conservation scheme in the Upper Tana River, Kenya

    Hunink, Johannes E.; Bryant, Benjamin P.; Vogl, Adrian; Droogers, Peter

    2015-04-01

    We analyse the multiple impacts of investments in sustainable land use practices on ecosystem services in the Upper Tana basin (Kenya) to support a watershed conservation scheme (a "water fund"). We apply an integrated modelling framework, building on previous field-based and modelling studies in the basin, and link biophysical outputs to economic benefits for the main actors in the basin. The first step in the modelling workflow is the use of a high-resolution spatial prioritization tool (Resource Investment Optimization System -- RIOS) to allocate the type and location of conservation investments in the different subbasins, subject to budget constraints and stakeholder concerns. We then run the Soil and Water Assessment Tool (SWAT) using the RIOS-identified investment scenarios to produce spatially explicit scenarios that simulate changes in water yield and suspended sediment. Finally, in close collaboration with downstream water users (urban water supply and hydropower) we link those biophysical outputs to monetary metrics, including: reduced water treatment costs, increased hydropower production, and crop yield benefits for upstream farmers in the conservation area. We explore how different budgets and different spatial targeting scenarios influence the return of the investments and the effectiveness of the water fund scheme. This study is novel in that it presents an integrated analysis targeting interventions in a decision context that takes into account local environmental and socio-economic conditions, and then relies on detailed, process-based, biophysical models to demonstrate the economic return on those investments. We conclude that the approach allows for an analysis on different spatial and temporal scales, providing conclusive evidence to stakeholders and decision makers on the contribution and benefits of the land-based investments in this basin. This is serving as foundational work to support the implementation of the Upper Tana-Nairobi Water Fund

  9. A Dual Isotope Study of Nitrates in Aquifer and Surface Waters: Initial Results at the Watershed Scale

    Savard, M. M.; Simpson, S.; Smirnoff, A.; Somers, G.; van Bochove, E.

    2004-12-01

    This dual isotope-nitrate study is aimed at contributing to the quantification of the annual N budget of the Wilmot River watershed on Prince-Edward Island (PEI, Canada). Aquifers constitute the only source of freshwater on PEI. In many areas, nitrate concentrations in groundwater (GW) have been increasing over time. It is assumed that mineral fertilization for potato cropping constitutes a major source of nitrates. However, a better understanding of the transfer dynamics of nitrates from soils to GW is required to reduce their detrimental effects. Here we report on N concentrations ([N-NO3-]), nitrate isotope analyses (N and O), and water isotope ratios (H and O) obtained after one year of seasonal sampling of surface water and groundwater (GW). The analyses of the nitrate isotopes were performed on silver nitrates using EA-CF- and Pyrolysis/EA-IRMS systems for N and O, respectively. Water isotopes were analysed with an equilibration system in continuous flow. Our 2003 summer and fall results indicate that 23% of the samples have N-NO3 concentrations above the threshold established for human health (10 mg/L), whereas 10% have concentrations within natural ranges (water isotope results suggest that during summer and fall most nitrates in the Wilmot River are derived from GW, and that about 75% of the GW samples contain nitrates from chemical fertilizers while the remaining 25% of nitrates are from natural soils, manures or septic wastes. Moreover, the N isotopes-nitrate concentration trend for GW departs significantly from the curve expected to result from microbial denitrification and corresponds better to natural attenuation due to dilution of nitrate-rich waters with water devoid of nitrates. The oxygen isotopes in GW nitrates indicate that summer rain and evaporated vadose water likely represent the O sources involved in soil nitrification. Future work will involve characterization of potential nitrate sources and of N-species from the vadose zone

  10. Disconnected runoff contributing areas: Evidence provided by ancient watershed management systems in arid north-eastern Marmarica (NW-Egypt)

    Vetter, T.; Rieger, A.-K.; Nicolay, A.

    2014-05-01

    This study presents the importance of disconnectivity in dryland area runoff demonstrated by manmade water harvesting structures dated to Greco-Roman times. Located on the coastal strip of some 20 km width along the Mediterranean coast of modern northwestern Egypt covering the north-eastern part of the region known in antiquity as Marmarica, the area receives winterly rainfalls of up to 140 mm. Further south, precipitation decreases quickly and desert conditions become more pronounced. Bedrocks are predominantly calcareous, soils are loamy, stony, calcareous, and shallow, except in relief sinks with sedimentary deposits. The land rises from the coast up to 230 m a.s.l. on the Marmarica Plateau in a sequence of zonal northsloping plains and scarps the northern parts of which are dissected and drained by wadis. Agriculturally suitable areas comprise some 9% of the coastal zone and adjacent tablelands. Overland flow controls the discharge dynamics and is the main source of wadi runoff and hence agricultural water supply. The land use pattern is scattered because cropping areas depend mainly on suitability of soils and the generation of runoff harvest, which are closely interrelated because of the arid water and sediment regime. The patchiness of runoff generation increases further south where aridity is higher and topography inhibits greater drainage patterns. The abundance of cisterns, many of them originally Greco-Roman, is strong evidence that tableland overland flows occur and are frequently disconnected from larger drainage systems.

  11. Traditional and Host-Associated Fecal Indicator Bacterial Patterns in Southern California Watersheds: Field Source Identification Studies and Laboratory Microcosms Investigating Presence and Persistence in Water and Sediments

    Mika, Kathryn Beth

    Overall, recreational beach water quality remains an issue of concern in Southern California and across the globe. Many factors come into play when determining water quality, including physical issues such as the myriad sources that contribute pollution to the site and financial and political issues that control the way water quality is monitored and determined. Current national regulations require the monitoring of fecal indicator bacteria in order to determine recreational water quality. However, it is also important to identify biological and geographical sources of pollution to consistently impaired locations. A commonly applied approach to meet the goals of source identification is to sample sites that have been high in FIB for further study. A tiered approach such as this, however, assumes a correlation between FIB and the sources of interest in the watershed. The research described in this dissertation tests this assumption in two Southern California watersheds, Santa Monica Canyon and Ventura Harbor. In both cases, a tiered approach to sampling using FIB as a first tier to guide sampling would have failed to identify sources of human fecal pollution (as identified by the presence of the human-associated Bacteroides marker HF183). Every watershed is a distinct environment that has different potential sources of bacteria and many factors contributing to the persistence of the bacteria. Rather than attempting to apply an indicator that has worked as a first tier in other watersheds, it would be better to have as a first tier an in-depth study of the watershed using historical data or local experts to provide information on the most likely sources of pollution in the watershed. Using this information it would be possible to design a study using FIB and one or more source-associated parameters to identify specific sources of pollution in the watershed. In addition, sampling FIB and other parameters such as HF183 allow the application of other microbial source

  12. Retrospective Review of Watershed Characteristics and a Framework for Future Research in the Sarasota Bay Watershed, Florida

    Kish, George R.; Harrison, Arnell S.; Alderson, Mark

    2008-01-01

    -resources managers to ensure the future health of the watershed.

  13. Software for Managing Parametric Studies

    Yarrow, Maurice; McCann, Karen M.; DeVivo, Adrian

    2003-01-01

    The Information Power Grid Virtual Laboratory (ILab) is a Practical Extraction and Reporting Language (PERL) graphical-user-interface computer program that generates shell scripts to facilitate parametric studies performed on the Grid. (The Grid denotes a worldwide network of supercomputers used for scientific and engineering computations involving data sets too large to fit on desktop computers.) Heretofore, parametric studies on the Grid have been impeded by the need to create control language scripts and edit input data files painstaking tasks that are necessary for managing multiple jobs on multiple computers. ILab reflects an object-oriented approach to automation of these tasks: All data and operations are organized into packages in order to accelerate development and debugging. A container or document object in ILab, called an experiment, contains all the information (data and file paths) necessary to define a complex series of repeated, sequenced, and/or branching processes. For convenience and to enable reuse, this object is serialized to and from disk storage. At run time, the current ILab experiment is used to generate required input files and shell scripts, create directories, copy data files, and then both initiate and monitor the execution of all computational processes.

  14. An enhanced Bayesian fingerprinting framework for studying sediment source dynamics in intensively managed landscapes

    Abban, B.; (Thanos) Papanicolaou, A. N.; Cowles, M. K.; Wilson, C. G.; Abaci, O.; Wacha, K.; Schilling, K.; Schnoebelen, D.

    2016-06-01

    An enhanced revision of the Fox and Papanicolaou (hereafter referred to as "F-P") (2008a) Bayesian, Markov Chain Monte Carlo fingerprinting framework for estimating sediment source contributions and their associated uncertainties is presented. The F-P framework included two key deterministic parameters, α and β, that, respectively, reflected the spatial origin attributes of sources and the time history of eroded material delivered to and collected at the watershed outlet. However, the deterministic treatment of α and β is limited to cases with well-defined spatial partitioning of sources, high sediment delivery, and relatively short travel times with little variability in transport within the watershed. For event-based studies in intensively managed landscapes, this may be inadequate since landscape heterogeneity results in variabilities in source contributions, their pathways, delivery times, and storage within the watershed. Thus, probabilistic treatments of α and β are implemented in the enhanced framework to account for these variabilities. To evaluate the effects of the treatments of α and β on source partitioning, both frameworks are applied to the South Amana Subwatershed (SASW) in the U.S. midwest. The enhanced framework is found to estimate mean source contributions that are in good agreement with estimates from other studies in SASW. The enhanced framework is also able to produce expected trends in uncertainty during the study period, unlike the F-P framework, which does not perform as expected. Overall, the enhanced framework is found to be less sensitive to changes in α and β than the F-P framework, and, therefore, is more robust and desirable from a management standpoint.

  15. A watershed-based adaptive knowledge system for developing ecosystem stakeholder partnerships

    Lin, Hebin; Thornton, Jeffrey A.; Shadrin, Nickolai

    2015-11-01

    This study proposes a Watershed-based Adaptive Knowledge System (WAKES) to consistently coordinate multiple stakeholders in developing sustainable partnerships for ecosystem management. WAKES is extended from the institutional mechanism of Payments for Improving Ecosystem Services at the Watershed-scale (PIES-W). PIES-W is designed relating to the governance of ecosystem services fl ows focused on a lake as a resource stock connecting its infl owing and outfl owing rivers within its watershed. It explicitly realizes the values of conservation services provided by private land managers and incorporates their activities into the public organizing framework for ecosystem management. It implicitly extends the "upstream-to-downstream" organizing perspective to a broader vision of viewing the ecosystems as comprised of both "watershed landscapes" and "marine landscapes". Extended from PIES-W, WAKES specifies two corresponding feedback: Framework I and II. Framework I is a relationship matrix comprised of three input-output structures of primary governance factors intersecting three subsystems of a watershed with regard to ecosystem services and human stakeholders. Framework II is the Stakeholder-and-Information structure channeling five types of information among four stakeholder groups in order to enable the feedbacks mechanism of Framework I. WAKES identifies the rationales behind three fundamental information transformations, illustrated with the Transboundary Diagnostic Analysis and the Strategic Action Program of the Bermejo River Binational Basin. These include (1) translating scientific knowledge into public information within the Function-and-Service structure corresponding to the ecological subsystem, (2) incorporating public perceptions into political will within the Service- and- Value structure corresponding to the economic subsystem, and (3) integrating scientific knowledge, public perceptions and political will into management options within the Value

  16. Protect and Restore Mill Creek Watershed; Annual Report 2004-2005.

    McRoberts, Heidi (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

    2005-12-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. The Nez Perce Tribe and the Nez Perce National Forest (NPNF) have formed a partnership in completing watershed restoration activities, and through this partnership, more work is accomplished by sharing funding and resources in our effort. The Nez Perce Tribe began watershed restoration projects within the Mill Creek watershed of the South Fork Clearwater River in 2000. Progress has been made in restoring the watershed through excluding cattle from critical riparian areas through fencing. Starting in FY 2002, continuing into 2004, trees were planted in riparian areas in the meadow of the upper watershed. In addition, a complete inventory of culverts at road-stream crossings was completed. Culverts have been prioritized for replacement to accommodate fish passage throughout the watershed, and one high priority culvert was replaced in 2004. Maintenance to the previously built fence was also completed.

  17. Protect and Restore Mill Creek Watershed; Annual Report 2003-2004.

    McRoberts, Heidi (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

    2004-06-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. The Nez Perce Tribe and the Nez Perce National Forest have formed a partnership in completing watershed restoration activities, and through this partnership, more work is accomplished by sharing funding and resources in our effort. The Nez Perce Tribe began watershed restoration projects within the Mill Creek watershed of the South Fork Clearwater River in 2000. Progress has been made in restoring the watershed through excluding cattle from critical riparian areas through fencing. Starting in FY 2002, continuing into 2004, trees were planted in riparian areas in the meadow of the upper watershed. In addition, a complete inventory of culverts at road-stream crossings was completed. Culverts have been prioritized for replacement to accommodate fish passage throughout the watershed, and designs completed on two of the high priority culverts. Maintenance to the previously built fence was also completed.

  18. Long-term water repellency in organic olive orchards in the Cànyoles River watershed. The impact of land management

    Cerdà, Artemi; González Pelayo, Óscar; García Orenes, Fuensanta; Jordán, Antonio; Pereira, Paulo; Novara, Agata; Neris, Jonay

    2015-04-01

    Soil water repellency is being researched in many enviroments of the world due to the fact that after two decades of intense investigations we found that soil water repellency is a soil property that can be found at any ecosystem (Atanassava and Doerr, 2011; Goebel et al., 2011; Mataix-Solera et al., 2013; Roper et al., 2013; Young et al., 2013; Badía-Villas et al., 2014; Jordán et al., 2014; Whelan et al., 2014). Soil water repellency inhibits or delays infiltration, encourage surface runoff but also the preferential flow in cracks and other macropores (Arye et al., 2011; Jordán et al., 2011; Madsen et al., 2011; Spohn and Rilling, 2012; García-Moreno et al., 2013; Hallin et al., 2013). Water repellency has been found in many soil types and it is present after forest fire, on forested land and also in agriculture soils (Granjed et al., 2013; Bodí et al., 2012; García Orenes et al., 2013; Jordán et al., 2012; Bodí et al., 2013; Dlapa et al., 2013; González-Peñaloza et al., 2012; López Garrido et al., 2012; León et al., 2013; Hewelke et al., 2014; Santos et al., 2014; Kröpfl et al., 2013). This paper show the measurements caried out by means of the water drop penetration time (WDPT) method in olive plantation in the Cànyoles watershed in Eastern Spain. Conservation practices applied such as no-tillage, manure addition, application of herbicides may contribute to increase soil organic matter and, hence, soil water repellency, and this is unknow under Mediterranean type ecosystems. The effect of long-term addition of plant residues and organic manure, no-tillage and no chemical fertilization (MNT), annual addition of plant residues and no-tillage (NT), application of conventional herbicides and no-tillage (H), and conventional tillage (CT) on soil water repellency in Mediterranean calcareous citrus-cropped soils (Eastern Spain) has been studied. Water repellency was observed in MNT soils, which may be attributed to the input of hydrophobic organic

  19. Groundwater pollution of post-mined phosphate rock in Tuojiang watershed (Sichuan, China)

    changwen, ye

    2014-05-01

    Phosphate rock is the source of phosphorus used to make phosphatic fertilizers, essential for growing the food needed by humans in the world today and in the future. The erosion and eluviation on exposed phosphrite layer and overburden in the phosphate rock areas result in the releasing of fluoride and phosphorus and groundwater polluting. Meanwhile, the waste water and untreated mineral waste residue in the beneficiation and mining operations are also main source of pollution. The un-restored post-mined phosphate rock areas in Tuojiang watershed is large scale. The investigation of the amounts of pollutants releasing from mined lands and transporting by runoffs was conducted. The releasing and transporting amounts of pollutants were calculated according to the results of column leaching studies and acreages of exposed phosphrite layers and overburdens. In conclusion, phosphorus mining activity is an important non-point source of groundwater contamination of Tuojiang watershed.Study about the management and engineering measurement can be carried out according to the non-point source: agriculture, Pollution, Phosphorous mine and chemical plant. The study can provide the practical consultation and help making the decision about the management and treatment of groundwater resource in Tuojiang watershed. Keywords: Tuojiang watershed; Groundwater pollution; Losing process; Fluorine; Phosphorus

  20. Geographic information system/watershed model interface

    Fisher, Gary T.

    1989-01-01

    Geographic information systems allow for the interactive analysis of spatial data related to water-resources investigations. A conceptual design for an interface between a geographic information system and a watershed model includes functions for the estimation of model parameter values. Design criteria include ease of use, minimal equipment requirements, a generic data-base management system, and use of a macro language. An application is demonstrated for a 90.1-square-kilometer subbasin of the Patuxent River near Unity, Maryland, that performs automated derivation of watershed parameters for hydrologic modeling.