WorldWideScience

Sample records for watershed management study

  1. Towards integrated watershed management in highland Ethiopia: the Chemoga watershed case study

    OpenAIRE

    Bewket, W.

    2003-01-01

    Resource degradation is a critical problem in highland Ethiopia. Past soil and water conservation efforts did not bring about significant results. Hence, there is an urgent need to tackle the problem through new conservation approaches and technologies. This thesis discusses the need for and possibilities of implementing integrated watershed management (IWM) approach. A typical highland watershed (the Chemoga watershed) was selected for the research, and multifaceted investigations were condu...

  2. An Adaptive Watershed Management Assessment Based on Watershed Investigation Data

    Science.gov (United States)

    Kang, Min Goo; Park, Seung Woo

    2015-05-01

    The aim of this study was to assess the states of watersheds in South Korea and to formulate new measures to improve identified inadequacies. The study focused on the watersheds of the Han River basin and adopted an adaptive watershed management framework. Using data collected during watershed investigation projects, we analyzed the management context of the study basin and identified weaknesses in water use management, flood management, and environmental and ecosystems management in the watersheds. In addition, we conducted an interview survey to obtain experts' opinions on the possible management of watersheds in the future. The results of the assessment show that effective management of the Han River basin requires adaptive watershed management, which includes stakeholders' participation and social learning. Urbanization was the key variable in watershed management of the study basin. The results provide strong guidance for future watershed management and suggest that nonstructural measures are preferred to improve the states of the watersheds and that consistent implementation of the measures can lead to successful watershed management. The results also reveal that governance is essential for adaptive watershed management in the study basin. A special ordinance is necessary to establish governance and aid social learning. Based on the findings, a management process is proposed to support new watershed management practices. The results will be of use to policy makers and practitioners who can implement the measures recommended here in the early stages of adaptive watershed management in the Han River basin. The measures can also be applied to other river basins.

  3. Farmers' use of nutrient management: lessons from watershed case studies.

    Science.gov (United States)

    Osmond, Deanna L; Hoag, Dana L K; Luloff, Al E; Meals, Donald W; Neas, Kathy

    2015-03-01

    Nutrient enrichment of water resources has degraded coastal waters throughout the world, including in the United States (e.g., Chesapeake Bay, Gulf of Mexico, and Neuse Estuary). Agricultural nonpoint sources have significant impacts on water resources. As a result, nutrient management planning is the primary tool recommended to reduce nutrient losses from agricultural fields. Its effectiveness requires nutrient management plans be used by farmers. There is little literature describing nutrient management decision-making. Here, two case studies are described that address this gap: (i) a synthesis of the National Institute of Food and Agriculture, the Conservation Effects Assessment Project, and (ii) field surveys from three nutrient-impaired river basins/watersheds in North Carolina (Neuse, Tar-Pamlico, and Jordan Lake drainage areas). Results indicate farmers generally did not fully apply nutrient management plans or follow basic soil test recommendations even when they had them. Farmers were found to be hesitant to apply N at university-recommended rates because they did not trust the recommendations, viewed abundant N as insurance, or used recommendations made by fertilizer dealers. Exceptions were noted when watershed education, technical support, and funding resources focused on nutrient management that included easing management demands, actively and consistently working directly with a small group of farmers, and providing significant resource allocations to fund agency personnel and cost-share funds to farmers. Without better dialogue with farmers and meaningful investment in strategies that reward farmers for taking what they perceive as risks relative to nutrient reduction, little progress in true adoption of nutrient management will be made. PMID:26023957

  4. Watershed Management-A case study of Satara Tanda Village

    Directory of Open Access Journals (Sweden)

    P. R. Thakare

    2013-08-01

    Full Text Available Water is the most critical component of life support system. India shares about 16% of the global population but it has only 4% of the water resources. The national water policy gives priority to drinking water followed by agriculture, industry and power. The single most important task before the country in the field of India’s water resource management is to pay special attention to rainwater conservation, especially which falls on our vast rain-fed lands but most of which flows away from it. The Marathwada region is declared the drought for this year by state government, to overcome the water scarcity watershed management is decided to do near the Sataratanda it is the outskirt region of Aurangabad city. The proposed site of watershed management structure bandhara is located on stream flowing near the Sataratanda village. The proposed bandhara is design for the conservation of water and recharging into the ground to raise the water table of this particular area for the benefits to villagers, fields & farmers. Since last few decades the demand for water had rapidly grown and with the increasing population would continue to rise in future. In Maharashtra, the assessment of ground water potential and scope for artificial recharge in the overdeveloped watershed is very crucial. The total cost of cement bandhara works about 9 lakhs thus the scheme is found economically feasible. The quantity of water store in the bandhara basin is 0.74 TCM.

  5. Integrated approach for prioritizing watersheds for management: a study of lidder catchment of kashmir himalayas.

    Science.gov (United States)

    Malik, Mohammad Imran; Bhat, M Sultan

    2014-12-01

    The Himalayan watersheds are susceptible to various forms of degradation due to their sensitive and fragile ecological disposition coupled with increasing anthropogenic disturbances. Owing to the paucity of appropriate technology and financial resources, the prioritization of watersheds has become an inevitable process for effective planning and management of natural resources. Lidder catchment constitutes a segment of the western Himalayas with an area of 1,159.38 km(2). The study is based on integrated analysis of remote sensing, geographic information system, field study, and socioeconomic data. Multicriteria evaluation of geophysical, land-use and land-cover (LULC) change, and socioeconomic indicators is carried out to prioritize watersheds for natural resource conservation and management. Knowledge-based weights and ranks are normalized, and weighted linear combination technique is adopted to determine final priority value. The watersheds are classified into four priority zones (very high priority, high priority, medium priority, and low priority) on the basis of quartiles of the priority value, thus indicating their ecological status in terms of degradation caused by anthropogenic disturbances. The correlation between priority ranks of individual indicators and integrated indicators is drawn. The results reveal that socioeconomic indicators are the most important drivers of LULC change and environmental degradation in the catchment. Moreover, the magnitude and intensity of anthropogenic impact is not uniform in different watersheds of Lidder catchment. Therefore, any conservation and management strategy must be formulated on the basis of watershed prioritization. PMID:25267521

  6. Integrated Approach for Prioritizing Watersheds for Management: A Study of Lidder Catchment of Kashmir Himalayas

    Science.gov (United States)

    Malik, Mohammad Imran; Bhat, M. Sultan

    2014-12-01

    The Himalayan watersheds are susceptible to various forms of degradation due to their sensitive and fragile ecological disposition coupled with increasing anthropogenic disturbances. Owing to the paucity of appropriate technology and financial resources, the prioritization of watersheds has become an inevitable process for effective planning and management of natural resources. Lidder catchment constitutes a segment of the western Himalayas with an area of 1,159.38 km2. The study is based on integrated analysis of remote sensing, geographic information system, field study, and socioeconomic data. Multicriteria evaluation of geophysical, land-use and land-cover (LULC) change, and socioeconomic indicators is carried out to prioritize watersheds for natural resource conservation and management. Knowledge-based weights and ranks are normalized, and weighted linear combination technique is adopted to determine final priority value. The watersheds are classified into four priority zones (very high priority, high priority, medium priority, and low priority) on the basis of quartiles of the priority value, thus indicating their ecological status in terms of degradation caused by anthropogenic disturbances. The correlation between priority ranks of individual indicators and integrated indicators is drawn. The results reveal that socioeconomic indicators are the most important drivers of LULC change and environmental degradation in the catchment. Moreover, the magnitude and intensity of anthropogenic impact is not uniform in different watersheds of Lidder catchment. Therefore, any conservation and management strategy must be formulated on the basis of watershed prioritization.

  7. Geospatial Evaluation for Ecological Watershed Management: A Case Study of Some Chesapeake Bay Sub-Watersheds in Maryland USA

    Directory of Open Access Journals (Sweden)

    Isoken T. Aighewi

    2013-07-01

    Full Text Available Geospatial technology is increasingly being used for various applications in environmental management as the need for sustainable development becomes more evident in today’s rapidly-developing world. As a decision tool, Geographic Information system (GIS and Global positioning System (GPS can support major decisions dealing with natural phenomena distributed in space and time. Such is the case for land use/cover known to impact ecosystems health in very direct ways. Our study examined one such application in managing land use of some sub-watersheds in the eastern Shore of Maryland, USA. We conducted a 20-year historical land use/cover evaluation using Landsat-TM remotely sensed images and GIS analysis and water monitoring data acquired during the period by Maryland Department of Natural Resources, including sewage discharge of some municipalities in the area. The results not only showed general trends in land use patterns, but also detailed dynamics of land use-land cover classes, impact on water quality, as well as other useful information for guiding both terrestrial and aquatic ecosystems management decisions of the sub-watersheds. The use of this technology for evaluating trends in land use/cover on a decade-by-decade basis is recommended as standard practice for managing ecosystem health on a sustainable basis.

  8. Overcoming limited information through participatory watershed management: Case study in Amhara, Ethiopia

    Science.gov (United States)

    Liu, Benjamin M.; Abebe, Yitayew; McHugh, Oloro V.; Collick, Amy S.; Gebrekidan, Brhane; Steenhuis, Tammo S.

    This study highlights two highly degraded watersheds in the semi-arid Amhara region of Ethiopia where integrated water resource management activities were carried out to decrease dependence on food aid through improved management of ‘green’ water. While top-down approaches require precise and centrally available knowledge to deal with the uncertainty in engineering design of watershed management projects, bottom-up approaches can succeed without such information by making extensive use of stakeholder knowledge. This approach works best in conjunction with the development of leadership confidence within local communities. These communities typically face a number of problems, most notably poverty, that prevent them from fully investing in the protection of their natural resources, so an integrated management system is needed to suitably address the interrelated problems. Many different implementing agencies were brought together in the two study watersheds to address water scarcity, crop production, and soil erosion, but the cornerstone was enabling local potential through the creation and strengthening of community watershed management organizations. Leadership training and the reinforcement of stakeholder feedback as a fundamental activity led to increased ownership and willingness to take on new responsibilities. A series of small short term successes ranging from micro-enterprise cooperatives to gully rehabilitation have resulted in the pilot communities becoming confident of their own capabilities and proud to share their successes and knowledge with other communities struggling with natural resource degradation.

  9. Sustainable Agricultural and Watershed Management in Developing Countries - An India Case Study

    Science.gov (United States)

    Kiliszek, A.; Vaicunas, R.; Zook, K.; Popkin, J.; Inamdar, S. P.; Duke, J.; Awokuse, T.; Sims, T.; Hansen, D.; Wani, S. P.

    2011-12-01

    The goal of sustainable agricultural and watershed management is to enhance agricultural productivity while protecting and preserving our environment and natural resources. The vast majority of information on sustainable watershed management practices is primarily derived from studies in developed nations with very few inputs from developing nations. Through a USDA-funded project, the University of Delaware (UD) initiated a collaboration with the International Crop Research Institute for the Semi-Arid Tropics (ICRISAT) located in Hyderabad, India to study sustainable agricultural management practices in developing countries and their impacts on the environment, crop productivity, and socioeconomic conditions of the watershed community. As a part of this project, ICRISAT provided us with a vast amount of data on sustainable agricultural practices and their impacts on runoff, soil and water quality, crop yields, nutrient management and socioeconomic conditions. Conservation practices that were implemented included check dams, groundwater recharge wells, intercropping, nutrient management, integrated pest management and a suite of other practices. Using this information, students and faculty at UD developed teaching modules that were used for education and enrichment of existing UD courses and are also being used for the development of a stand-alone online course. The students and faculty visited India in July 2010 to get a first-hand experience of the conditions in the agricultural watersheds and the impacts of sustainable management practices. The project was a tremendous learning experience for US students and faculty and highlighted the challenges people face in developing countries and how that affects every aspect of their lives. Such challenges include environmental, agricultural, technological, economic, and transportation. Although we experience many of the same challenges, developing countries do not have the technology or economic infrastructure in place to effectively manage these challenges. This presentation highlights: (a) the agricultural and environmental challenges facing developing countries like India; (b) the types of best management practices (BMPs) employed; (c) the impacts of the BMPs in the study watersheds; (d) the development of the online course and (e) the lessons and experiences of the students and faculty from their study visit to India.

  10. Multiagent distributed watershed management

    Science.gov (United States)

    Giuliani, M.; Castelletti, A.; Amigoni, F.; Cai, X.

    2012-04-01

    Deregulation and democratization of water along with increasing environmental awareness are challenging integrated water resources planning and management worldwide. The traditional centralized approach to water management, as described in much of water resources literature, is often unfeasible in most of the modern social and institutional contexts. Thus it should be reconsidered from a more realistic and distributed perspective, in order to account for the presence of multiple and often independent Decision Makers (DMs) and many conflicting stakeholders. Game theory based approaches are often used to study these situations of conflict (Madani, 2010), but they are limited to a descriptive perspective. Multiagent systems (see Wooldridge, 2009), instead, seem to be a more suitable paradigm because they naturally allow to represent a set of self-interested agents (DMs and/or stakeholders) acting in a distributed decision process at the agent level, resulting in a promising compromise alternative between the ideal centralized solution and the actual uncoordinated practices. Casting a water management problem in a multiagent framework allows to exploit the techniques and methods that are already available in this field for solving distributed optimization problems. In particular, in Distributed Constraint Satisfaction Problems (DCSP, see Yokoo et al., 2000), each agent controls some variables according to his own utility function but has to satisfy inter-agent constraints; while in Distributed Constraint Optimization Problems (DCOP, see Modi et al., 2005), the problem is generalized by introducing a global objective function to be optimized that requires a coordination mechanism between the agents. In this work, we apply a DCSP-DCOP based approach to model a steady state hypothetical watershed management problem (Yang et al., 2009), involving several active human agents (i.e. agents who make decisions) and reactive ecological agents (i.e. agents representing environmental interests). Different scenarios of distributed management are simulated, i.e. a situation where all the agents act independently, a situation in which a global coordination takes place and in-between solutions. The solutions are compared with the ones presented in Yang et al. (2009), aiming to present more general multiagent approaches to solve distributed management problems.

  11. Watershed Management-A case study of Satara Tanda Village

    OpenAIRE

    P. R. Thakare; R. A. Jadhav; H. S. Kumawat

    2013-01-01

    Water is the most critical component of life support system. India shares about 16% of the global population but it has only 4% of the water resources. The national water policy gives priority to drinking water followed by agriculture, industry and power. The single most important task before the country in the field of India’s water resource management is to pay special attention to rainwater conservation, especially which falls on our vast rain-fed lands but most of which flows away from ...

  12. WATERSHED MANAGEMENT – A MEANS OF SUSTAINABLE DEVELOPMENT - A CASE STUDY

    OpenAIRE

    Mrs. Vidula Arun Swami,; Dr.Mrs.Sushma Shekhar Kulkarni

    2011-01-01

    In this era of ever increasing water demands and rapidly depleting water resources coupled with overpopulation, it has become necessary to develop the means to recharge the ground water resources which arenecessary for future requirements. This paper presents one such case study where large amount of rainwater is directed to recharge ground water resources. Somwar Peth is a small village located at distance of 15 Kms. from Kolhapur city. Under Social Forestry Department, some measures have be...

  13. WATERSHED MANAGEMENT – A MEANS OF SUSTAINABLE DEVELOPMENT - A CASE STUDY

    Directory of Open Access Journals (Sweden)

    Mrs. Vidula Arun Swami,

    2011-03-01

    Full Text Available In this era of ever increasing water demands and rapidly depleting water resources coupled with overpopulation, it has become necessary to develop the means to recharge the ground water resources which arenecessary for future requirements. This paper presents one such case study where large amount of rainwater is directed to recharge ground water resources. Somwar Peth is a small village located at distance of 15 Kms. from Kolhapur city. Under Social Forestry Department, some measures have been adopted to recharge the ground water resources, ut it has been found that these measures don’t work with full apacity in some cases. Hence it is planned to take such engineering and biological measures which will direct this extra runoff to ground water storage. The most significant feature of the work is that if such technologies are developed and adopted at larger scale in rural areas, it will prevent thousands of villages of the country from water supply by tankers. Moreover this will also help us to tackle the issue of flood which mainly occurs due to excess runoff.

  14. Observing, studying, and managing for change-Proceedings of the Fourth Interagency Conference on Research in the Watersheds

    Science.gov (United States)

    Medley, Nicolas; Patterson, Glenn; Parker, Melanie J.

    2011-01-01

    These proceedings contain the abstracts, manuscripts, and posters of presentations given at the Fourth Interagency Conference on Research in the Watersheds-Observing, Studying, and Managing for Change, held at the Westmark Hotel in Fairbanks, Alaska, September 26-30, 2011. The conference was jointly hosted by the Bureau of Land Management and the National Park Service.

  15. Preliminary study on streamflow in forested and forest plantation experimental watersheds for water resources management

    International Nuclear Information System (INIS)

    The future management of forests for water resources will be more important as population growth and demand for water resources increases. In Malaysia many lowland forests has been earmarked for agricultural crops, and timber concessionaires has moved towards the hillier region of the country where specific and costly logging techniques are required. Hence, planting timber trees, as an industrial timber plantation is an alternative to meet timber demands. Very few research on evaluation of the impact of forest clearance on hydrology attributes from newly established industrial timber plantations have been conducted. In 1989, experimental catchment at Bukit Tarek Tambahan Experimental Watershed (BTEW) was initiated to study the effects of land conversion from forest to industrial timber plantation on hydrological parameters changes. The BTEW is located in Compartment 41, Bukit Tarek Tambahan F. R. at Kerling, Selangor Malaysia. The study site was a regenerated secondary forest logged in 1963. The study area is divided into catchment C1 (32.8 ha) and C3 (12.5 ha). Catchment C1, act as a control whereas C3 is the experimental catchments. Catchment C3 was logged in 1999 and early 2000 and subsequently a forest plantation was established. The forest area in Catchment C3 was clear felled, and the residuals trees were burnt. Buffer zone was not established near the riverbanks. The plantation was established in catchment C3 with Hopea odorata in early 2004. Streamflow was mea odorata in early 2004. Streamflow was measured continuously using the 120 degree V-notch weir at the outlet of each watershed (Weir 1 and Weir 3). The short time interval rainfall was also monitored. In this working paper, the main objective to analyze the data is to examine rainfall-runoff response of forested catchments before establishment of forest plantation. The preliminary study on discharge after the C3 was clear-felled using single storm hydrograph analysis shows that during the storm event, the quick flow runoff dominate the discharge in C3 runoff while the delayed flow runoff dominate the discharge in the C1. (Author)

  16. Applications of remote sensing to watershed management

    Science.gov (United States)

    Rango, A.

    1975-01-01

    Aircraft and satellite remote sensing systems which are capable of contributing to watershed management are described and include: the multispectral scanner subsystem on LANDSAT and the basic multispectral camera array flown on high altitude aircraft such as the U-2. Various aspects of watershed management investigated by remote sensing systems are discussed. Major areas included are: snow mapping, surface water inventories, flood management, hydrologic land use monitoring, and watershed modeling. It is indicated that technological advances in remote sensing of hydrological data must be coupled with an expansion of awareness and training in remote sensing techniques of the watershed management community.

  17. Comparative Assessment of Stormwater and Nonpoint Source Pollution Best Management Practices in Suburban Watershed Management

    OpenAIRE

    Zeyuan Qiu

    2013-01-01

    Nonpoint source pollution control and stormwater management are two objectives in managing mixed land use watersheds like those in New Jersey. Various best management practices (BMPs) have been developed and implemented to achieve both objectives. This study assesses the cost-effectiveness of selected BMPs for agricultural nonpoint source pollution control and stormwater management in the Neshanic River watershed, a typical mixed land use watershed in central New Jersey, USA. The selected BMP...

  18. Engaging Watershed Stakeholders for Cost-Effective Environmental Management Planning with "Watershed Manager"

    Science.gov (United States)

    Williams, Jeffery R.; Smith, Craig M.; Roe, Josh D.; Leatherman, John C.; Wilson, Robert M.

    2012-01-01

    "Watershed Manager" is a spreadsheet-based model that is used in extension education programs for learning about and selecting cost-effective watershed management practices to reduce soil, nitrogen, and phosphorus losses from cropland. It can facilitate Watershed Restoration and Protection Strategy (WRAPS) stakeholder groups' development of…

  19. Multiple Impact of Integrated Watershed Management in Low Rainfall Semi-Arid Region: A Case Study from Eastern Rajasthan, India

    Directory of Open Access Journals (Sweden)

    Prabhakar Pathak

    2013-01-01

    Full Text Available The agriculture in low rainfall areas of eastern Rajasthan, India is characterized by high risks from drought, degraded natural resources and pervasive poverty, food insecurity and malnutrition. In this region, water is the main limiting factor for upgrading rainfed agriculture. For such areas integrated watershed management is recognized as a potential approach for agriculture growth and rehabilitation of fragile and degraded lands. At Gokulpura-Goverdhanpura village in Bundi eastern Rajasthan, India an integrated watershed project was implemented using the holistic systems approach. This paper discusses the impacts of this watershed program on bio-physical, socio-economic, environmental and ecological parameters. Results indicate that due to watershed interventions the groundwater availability has substantially increased which brought changes in cropping patterns with high value crops. Significant increases in irrigated area, cropping intensity along with diversification of crops from traditional to commercial cash crops were recorded. The watershed program also significantly improved the socio-economic status of the watershed community. It has increased the income and reduced poverty of the people in the watershed. The watershed interventions generated good employment opportunities and significantly reduced the migration of both skilled and unskilled labor from the watershed village to urban areas. It has also improved the environmental quality and ecological status in the watershed. The watershed interventions increased the vegetative index or greenery, reduced runoff, soil loss, and land degradations and improved the bio-diversity in fragile ecosystems. Overall, the integrated watershed program at Gokulpura-Goverdhanpura provided resilience by ensuring continued and sustainable multiple outputs, besides soil and water conservation and other positive environmental effects.

  20. Socioeconomic and policy research on watershed management in India: synthesis of past experiences and needs for future research

    Directory of Open Access Journals (Sweden)

    PK Joshi

    2006-08-01

    Full Text Available This book consists of the following chapters: Policy and institutional issues and concepts for watershed management; current policies and institutional arrangement for watershed management; watershed development programs and approaches; case studies and methods; analysis of selection case studies; lessons drawn for success of watershed development; knowledge gaps and areas for future research.

  1. Sustainable Practices in Watershed Management: Global Experiences

    OpenAIRE

    Menon, Sudha

    2007-01-01

    Watershed management is considered by scholars as well as practitioners across the world as the most appropriate approach to ensure the preservation, conservation and sustainability of all land based resources and for improving the living conditions of the people in uplands and low lands. More over watershed management technologies have proven to be effective for mitigating erosion on sloping land, stabilizing landscapes, providing clean water, stabilizing and improving agrarian production sy...

  2. Watershed management program. Final environmental impact statement

    International Nuclear Information System (INIS)

    Under the Northwest Power Act, BPA is responsible for mitigating the loss of fish and wildlife habitat caused by the development of the Federal Columbia River Power System. BPA accomplishes this mitigation by funding projects consistent with those recommended by the Northwest Power Planning Council (Council). The projects are submitted to the Council from Indian tribes, state agencies property owners, private conservation groups, and Federal agencies. Future watershed management actions with potential environmental impacts are expected to include in-channel modifications and fish habitat enhancement structures; riparian restoration and other vegetation management techniques; agricultural management techniques for crop irrigation, animal facilities, and grazing; road, forest, urban area, and recreation management techniques; mining reclamation; and similar watershed conservation actions. BPA needs to ensure that individual watershed management projects are planned and carried out with appropriate consistency across projects, jurisdictions, and ecosystems, as well as over time

  3. Exploring an innovative watershed management approach: From feasibility to sustainability

    International Nuclear Information System (INIS)

    Watershed management is dedicated to solving watershed problems on a sustainable basis. Managing watershed development on a sustainable basis usually entails a balance between the needs of humans and nature, both in the present and in the future. From a watershed or water resources development basis, these problems can be classified into five general categories: lack of water quantity, deterioration in water quality, ecological impacts, weak public participation, and weak economic value. The first three categories can be combined to make up physical sustainability while the last two categories can be defined as social and economic sustainability. Therefore, integrated watershed management should be designed to achieve physical sustainability utilizing, to the greatest extent possible, public participation in an economically viable manner. This study demonstrates an innovative approach using scientific, social, and motivational feasibilities that can be used to improve watershed management. Scientific feasibility is tied to the nature of environmental problems and the scientific means to solve them. Social feasibility is associated with public participation. Motivational feasibility is related to economic stimulation for the stakeholders to take actions. The ecological impacts, lack of water quantity and deterioration in water quality are problems that need scientific means in order to improve watershed health. However, the implementation of these means is typically nolementation of these means is typically not achievable without the right public participation. In addition, public participation is typically accelerated by economic motivation for the stakeholders to use the resources in a manner that improves watershed health. The Big Lost River in south-central Idaho has been used as an illustration for implementing scientific, social and motivational feasibilities and in a manner that can achieve sustainability relative to water resources management. However, the same approach can be used elsewhere after appropriate modifications. (author)

  4. Water management in developing country: A case study of a watershed development program in the state of Bihar, India:

    OpenAIRE

    Ghosh, A.; Bose, N.; Kroesen, O.; Bruining, H; Bawane, V.H.; Chaubey, P.K.

    2010-01-01

    It has for long been assumed that low-income communities do not know their infrastructure needs, so that decisions have been made by authorities without obtaining information and understanding of household and agricultural water demand. This top-down approach has been the reason for the failure of many water management initiatives, particularly in areas of erosion and reduced soil fertility. Watershed management plays a crucial role in sustainable development along the dry northern fringe of ...

  5. INTEGRATED WATERSHED MANAGEMENT: PRINCIPLES AND PRACTICE. Book Review

    Science.gov (United States)

    Through a wide range of information and topics, Integrated Watershed Management Principles and Practice shows how involved the watershed management planning process can be. The book is informative, and the author obviously has researched the subject thoroughly. The book's case...

  6. Environmental Anthropological Study of Watershed Management?Water Quality Conservation of Forest as a Catchment Area in the Southern Part of Australia

    Directory of Open Access Journals (Sweden)

    Akira Hiratsuka

    2014-12-01

    Full Text Available Authors have conducted an experiment of irradiation using sound waves (frequency including ultrasonic waves into water such as drinking water, sea water and forest water and wastewater so far. As a result, almost the same effect of improvement of water quality was confirmed for each sound wave. Then, an environmental anthropological study of watershed management based on the sound was carried out assuming that a water quality management using the sound could be possible. The Goulburn River basin in the southern part of Australia in which indigenous peoples (Yorta Yorta have been concerned with the management for a long time so far was selected as an objective drainage basin this time. As a result, a couple of environmental anthropological perspectives on watershed management were proposed.

  7. A review of watershed management experience

    International Nuclear Information System (INIS)

    A review of watershed management experience was conducted by Beak International Inc., under the auspices of the Ontario Ministry of the Environment, Executive Resource Group. The team assigned to this task conducted Internet searches, conducted interviews with targeted individuals and presented a number of examples of best practice in this field by different organizations. The selection was based on the results obtained from a questionnaire distributed to a number of organizations worldwide, and touched on the following topics: partners, types of resources/issues managed, reporting and monitoring, regulatory framework, and implementation. The short list included the United States Environmental Protection Agency (US EPA), Ohio, New Jersey, Washington, Australia, the United Kingdom as well as agencies in Ontario. The report identified the major characteristics of each of these leading jurisdictions as they relate to watershed management and how the lessons learned could be applied to the situation in Ontario. The key topics were: hydrologic cycle, biophysical units, ecosystem units, miner's canary, cumulative effects, quality of life, integrated resources management, and grass roots support. The conclusions reached indicated that an effective way of addressing issues related to water quality and allocation was through watershed management. A successful watershed planning and management program requires a clear legislative framework, as well as clear targets, monitoring ork, as well as clear targets, monitoring programs and reporting requirements. All parties must be involved in the process of finding solutions to the problem of water quality impairment, considering the numerous causes ranging from industrial to agricultural and urban development. The support for funding and implementation relies heavily on public education and awareness programs. The use of water use surcharge on water/energy bills earmarked for watershed planning and management were successful in some jurisdictions. 8 refs., 2 tabs., 3 appendices

  8. Integrated Resource Management at a Watershed Scale

    Science.gov (United States)

    Byrne, J. M.; MacDonald, R. J.; Cairns, D.; Barnes, C. C.; Mirmasoudi, S. S.; Lewis, D.

    2014-12-01

    Watershed hydrologists, managers and planners have a long list of resources to "manage." Our group has worked for over a decade to develop and apply the GENESYS (Generate Earth Systems Science) high-resolution spatial hydrometeorological model. GENESYS was intended for modelling of alpine snowpack, and that work has been the subject of a series of hydrometeorology papers that applied the model to evaluate how climate change may impact water resources for a series of climate warming scenarios through 2100. GENESYS has research modules that have been used to assess alpine glacier mass balance, soil water and drought, forest fire risk under climate change, and a series of papers linking GENESYS to a water temperature model for small headwater streams. Through a major commercialization grant, we are refining, building, adopting, and adapting routines for flood hydrology and hydraulics, surface and groundwater storage and runoff, crop and ecosystem soil water budgets, and biomass yields. The model will be available for research collaborations in the near future. The central goal of this development program is to provide a series of research and development tools for non-profit integrated resource management in the developed and developing world. A broader question that arises is what are the bounds of watershed management, if any? How long should our list of "managed" resources be? Parallel work is evaluating the relative values of watershed specialists managing many more resources with the watershed. Hydroelectric power is often a key resource complimentary to wind, solar and biomass renewable energy developments; and biomass energy is linked to water supply and agriculture. The August 2014 massive tailings dam failure in British Columbia threatens extensive portions of the Fraser River sockeye salmon run, millions of fish, and there are concerns about long-term contamination of water supplies for many British Columbians. This disaster, and many others that may occur quickly, or challenges like climate and land use change, require water managers to become much more vigilant in protecting our watershed resources.

  9. Multiple Impact of Integrated Watershed Management in Low Rainfall Semi-Arid Region: A Case Study from Eastern Rajasthan, India

    OpenAIRE

    Prabhakar Pathak; Anil Kumar Chourasia; Suhas P. Wani; Raghavendra Sudi

    2013-01-01

    The agriculture in low rainfall areas of eastern Rajasthan, India is characterized by high risks from drought, degraded natural resources and pervasive poverty, food insecurity and malnutrition. In this region, water is the main limiting factor for upgrading rainfed agriculture. For such areas integrated watershed management is recognized as a potential approach for agriculture growth and rehabilitation of fragile and degraded lands. At Gokulpura-Goverdhanpura village in Bundi eastern Rajast...

  10. Developing participatory models of watershed management in the Sugar Creek watershed (Ohio, USA)

    OpenAIRE

    Mark Weaver; Jason Shaw Parker; Richard Moore

    2009-01-01

    The US Environmental Protection Agency (USEPA) has historically used an expert-driven approach to water and watershed management. In an effort to create regulatory limits for pollution-loading to streams in the USA, the USEPA is establishing limits to the daily loading of nutrients specific to each watershed, which will affect many communities in America. As a part of this process, the Ohio Environmental Protection Agency ranked the Sugar Creek Watershed as the second "most-impaired" watershe...

  11. US Environmental Protection Agency Watershed Academy Web: Online Training in Watershed Management

    Science.gov (United States)

    The Environmental Protection Agency (EPA)'s Watershed Academy offers training opportunities for ecologists, managers, and others interested in watersheds. Additionally, 20 Academy 2000 Distance Learning Modules are now available online to highlight key watershed management topics. While some modules are under construction, those currently available provide a solid backbone in many important areas such as Principles of Watershed Management, Human Alteration of the Global Nitrogen Cycle, Watershed Modeling, Economics of Sustainability, and Stream Corridor Restoration. Modules vary in depth (and intended audience), but all are (co)-authored by prominent scientists in the field of watershed ecology. Designed to reach a broad audience, many modules are provided in slide format (navigable by clicking on arrows) and could be supplemented with more technical readings; others are given in .pdf format. The inclusion of color photographs throughout, such as in the Ohio's Virtual Watershed Tour module, supplements the learning experience by providing illustrations and examples of important concepts.

  12. A bacia hidrográfica do Tietê/Jacaré: estudo de caso em pesquisa e gerenciamento / The Tietê/Jacaré watershed: a case study in research and management

    Scientific Electronic Library Online (English)

    José Galizia, Tundisi; Takako, Matsumura-Tundisi; Daniela Cambeses, Pareschi; Anna Paula, Luzia; Paulo H., Von Haeling; Eduardo H., Frollini.

    Full Text Available A bacia do Tietê/Jacaré é uma das 22 Unidades de Gestão de Recursos Hídricos (Ugrhis) do Estado de São Paulo. Um estudo desenvolvido de 2005 a 2007 detalhou as principais características dessa bacia hidrográfica, os usos do solo, a cobertura vegetal, as fontes pontuais e não-pontuais de eutrofização [...] e contaminação e as vulnerabilidades da bacia, que conta com 34 municípios e uma população de 1.200.000 habitantes. A montagem de um banco de dados com as informações ecológicas, hidrológicas, climatológicas e econômicas possibilitou estabelecer um programa de planejamento e gestão baseado em vulnerabilidades da bacia hidrográfica, impactos das mudanças globais e futuras perspectivas para a gestão dos recursos hídricos. Um índice de qualidade da bacia hidrográfica foi desenvolvido com a finalidade de apoiar o planejamento de longo prazo e a gestão de águas superficiais e subterrâneas. Abstract in english The Tietê/Jacaré watershed is one of the units of management of water resources of São Paulo State. São Paulo State has 22 units of management of water resources. A study on the characteristics of the watershed and an evaluation of its environmental situation was carried out from 2005 to 2008. With [...] a population of 1.200.000 inhabitants distributed in 34 towns and an economic activity predominantly agribusiness and industrial activities, this watershed has an extensive hydrographic network, sufficient water resources and intense economic activity. The study considered soil uses; vegetation cover; water quality of rivers, reservoirs, underground waters, erosion processes, vulnerability of the aquatic biota to eutrophication and contamination. With the ecological, hydrological, ecological and economic data, a data bank was established and a management plan with scenarios, perspectives and integration of planning with future activities was developed. An index of watershed quality was developed as a basis for this planning and management activity.

  13. MORPHOMETRIC ANALYSIS AND PRIORITIZATION OF WATERSHED FOR SOIL RESOURCE MANAGEMENT IN YERALA RIVER BASIN

    OpenAIRE

    R. S. Shikalgar

    2013-01-01

    The development of morphometric techniques was a major advance in the quantitative description of thegeometry of the drainage basins and its network. Watershed prioritization on the basis of morphometric parametersis necessary in order to develop a sustainable watershed management plan. The present study aims to assess thelinear and shape morphometric parameters and prioritization of twenty three sub-watersheds of Yerala river basinfor soil resource management. Yerala river basin has an area ...

  14. Quality of Water and Antibiotic Resistance of Escherichia coli from Water Sources of Hilly Tribal Villages with and without Integrated Watershed Management—A One Year Prospective Study

    Directory of Open Access Journals (Sweden)

    Sandeep S. Nerkar

    2014-06-01

    Full Text Available In many hilly tribal areas of the world, water scarcity is a major problem and diarrhoea is common. Poor quality of water also affects the environment. An integrated watershed management programme (IWMP aims to increase availability of water and to improve life conditions. Globally, there is a lack of information on water contamination, occurrence of diarrhoea and antibiotic resistance, a serious global concern, in relation to IWMP in hilly tribal areas. Therefore, a prospective observational study was conducted during 2011–2012 in six villages in a hilly tribal belt of India, three with and three without implementation of an IWMP, to explore quality of water, diarrhoeal cases in the community and antibiotic resistance of Escherichia coli from water sources. The results showed that physico-chemical quality of water was within limits of safe consumption in all samples. The odds of coliform contamination in water samples was 2.3 times higher in non-watershed management villages (NWMV compared to integrated watershed management villages (IWMV (95% CI 0.8–6.45, p = 0.081. The number of diarrhoeal cases (18/663 vs. 42/639, p < 0.05 was lower in IWMV as compared to NWMV. Overall E. coli isolates showed high susceptibility to antibiotics. Resistance to a wider range of antibiotics was observed in NWMV.

  15. A Spatially Explicit Decision Support System for Watershed-Scale Management of Salmon

    Directory of Open Access Journals (Sweden)

    Michael Maher

    2008-12-01

    Full Text Available Effective management for wide-ranging species must be conducted over vast spatial extents, such as whole watersheds and regions. Managers and decision makers must often consider results of multiple quantitative and qualitative models in developing these large-scale multispecies management strategies. We present a scenario-based decision support system to evaluate watershed-scale management plans for multiple species of Pacific salmon in the Lewis River watershed in southwestern Washington, USA. We identified six aquatic restoration management strategies either described in the literature or in common use for watershed recovery planning. For each of the six strategies, actions were identified and their effect on the landscape was estimated. In this way, we created six potential future landscapes, each estimating how the watershed might look under one of the management strategies. We controlled for cost across the six modeled strategies by creating simple economic estimates of the cost of each restoration or protection action and fixing the total allowable cost under each strategy. We then applied a suite of evaluation models to estimate watershed function and habitat condition and to predict biological response to those habitat conditions. The concurrent use of many types of models and our spatially explicit approach enables analysis of the trade-offs among various types of habitat improvements and also among improvements in different areas within the watershed. We report predictions of the quantity, quality, and distribution of aquatic habitat as well as predictions for multiple species of species-specific habitat capacity and survival rates that might result from each of the six management strategies. We use our results to develop four on-the-ground watershed management strategies given alternative social constraints and manager profiles. Our approach provides technical guidance in the study watershed by predicting future impacts of potential strategies, guidance on strategy selection in other watersheds where such detailed analyses have not been completed, and a framework for organizing information and modeled predictions to best manage wide-ranging species.

  16. A digraph permanent approach to evaluation and analysis of integrated watershed management system

    Science.gov (United States)

    Ratha, Dwarikanath; Agrawal, V. P.

    2015-06-01

    In the present study a deterministic quantitative model based on graph theory has been developed for the better development and management of watershed. Graph theory is an integrative systems approach to consider and model structural components of watershed management system along with the interrelationships between them concurrently and integratively. The factors responsible for the development of watershed system are identified. The degree of interaction between one subsystem with others are determined. The eigenvalue formulation is used to take care the inconsistencies arises due to inaccurate judgement in the degree of interaction between the subsystems. In this model the visual analysis is done to abstract the information using the directed graph or digraph. Then the matrix model is developed for computer processing. Variable permanent function in the form of multinomial represents the watershed system uniquely and completely by an index value. Different terms of the multinomial represent all possible subsystems of integrated watershed management system and thus different solutions for watershed management, leading to optimum solution. This index value is used to compare the suitability of the watershed with different alternatives available for its development. So the graph theory analysis presents a powerful tool to generate the optimum solutions for the decision maker for benefit of local people living in the watershed as well as the stakeholders. The proposed methodology is also demonstrated by a suitable example and is applied to the ecosystem and environment subsystem of the lake Qionghai watershed in China.

  17. Elk River Watershed - Flood Study

    Science.gov (United States)

    Barnes, C. C.; Byrne, J. M.; MacDonald, R. J.; Lewis, D.

    2014-12-01

    Flooding has the potential to cause significant impacts to economic activities as well as to disrupt or displace populations. Changing climate regimes such as extreme precipitation events increase flood vulnerability and put additional stresses on infrastructure. Potential flooding from just under 100 (2009 NPRI Reviewed Facility Data Release, Environment Canada) toxic tailings ponds located in Canada increase risk to human safety and the environment. One such geotechnical failure spilt billions of litres of toxic tailings into the Fraser River watershed, British Columbia, when a tailings pond dam breach occurred in August 2014. Damaged and washed out roadways cut access to essential services as seen by the extensive floods that occurred in Saskatchewan and Manitoba in July 2014, and in Southern Alberta in 2013. Recovery efforts from events such as these can be lengthy, and have substantial social and economic impacts both in loss of revenue and cost of repair. The objective of this study is to investigate existing conditions in the Elk River watershed and model potential future hydrological changes that can increase flood risk hazards. By analyzing existing hydrology, meteorology, land cover, land use, economic, and settlement patterns a baseline is established for existing conditions in the Elk River watershed. Coupling the Generate Earth Systems Science (GENESYS) high-resolution spatial hydrometeorological model with flood hazard analysis methodology, high-resolution flood vulnerability base line maps are created using historical climate conditions. Further work in 2015 will examine possible impacts for a range of climate change and land use change scenarios to define changes to future flood risk and vulnerability.

  18. Open Source GIS based integrated watershed management

    Science.gov (United States)

    Byrne, J. M.; Lindsay, J.; Berg, A. A.

    2013-12-01

    Optimal land and water management to address future and current resource stresses and allocation challenges requires the development of state-of-the-art geomatics and hydrological modelling tools. Future hydrological modelling tools should be of high resolution, process based with real-time capability to assess changing resource issues critical to short, medium and long-term enviromental management. The objective here is to merge two renowned, well published resource modeling programs to create an source toolbox for integrated land and water management applications. This work will facilitate a much increased efficiency in land and water resource security, management and planning. Following an 'open-source' philosophy, the tools will be computer platform independent with source code freely available, maximizing knowledge transfer and the global value of the proposed research. The envisioned set of water resource management tools will be housed within 'Whitebox Geospatial Analysis Tools'. Whitebox, is an open-source geographical information system (GIS) developed by Dr. John Lindsay at the University of Guelph. The emphasis of the Whitebox project has been to develop a user-friendly interface for advanced spatial analysis in environmental applications. The plugin architecture of the software is ideal for the tight-integration of spatially distributed models and spatial analysis algorithms such as those contained within the GENESYS suite. Open-source development extends knowledge and technology transfer to a broad range of end-users and builds Canadian capability to address complex resource management problems with better tools and expertise for managers in Canada and around the world. GENESYS (Generate Earth Systems Science input) is an innovative, efficient, high-resolution hydro- and agro-meteorological model for complex terrain watersheds developed under the direction of Dr. James Byrne. GENESYS is an outstanding research and applications tool to address challenging resource management issues in industry, government and nongovernmental agencies. Current research and analysis tools were developed to manage meteorological, climatological, and land and water resource data efficiently at high resolution in space and time. The deliverable for this work is a Whitebox-GENESYS open-source resource management capacity with routines for GIS based watershed management including water in agriculture and food production. We are adding urban water management routines through GENESYS in 2013-15 with an engineering PhD candidate. Both Whitebox-GAT and GENESYS are already well-established tools. The proposed research will combine these products to create an open-source geomatics based water resource management tool that is revolutionary in both capacity and availability to a wide array of Canadian and global users

  19. Optimizing Watershed Management by Coordinated Operation of Storing Facilities

    Science.gov (United States)

    Anghileri, Daniela; Castelletti, Andrea; Pianosi, Francesca; Soncini-Sessa, Rodolfo; Weber, Enrico

    2013-04-01

    Water storing facilities in a watershed are very often operated independently one to another to meet specific operating objectives, with no information sharing among the operators. This uncoordinated approach might result in upstream-downstream disputes and conflicts among different water users, or inefficiencies in the watershed management, when looked at from the viewpoint of an ideal central decision-maker. In this study, we propose an approach in two steps to design coordination mechanisms at the watershed scale with the ultimate goal of enlarging the space for negotiated agreements between competing uses and improve the overall system efficiency. First, we compute the multi-objective centralized solution to assess the maximum potential benefits of a shift from a sector-by-sector to an ideal fully coordinated perspective. Then, we analyze the Pareto-optimal operating policies to gain insight into suitable strategies to foster cooperation or impose coordination among the involved agents. The approach is demonstrated on an Alpine watershed in Italy where a long lasting conflict exists between upstream hydropower production and downstream irrigation water users. Results show that a coordination mechanism can be designed that drive the current uncoordinated structure towards the performance of the ideal centralized operation.

  20. Development of a Watershed Management Model for the Chesapeake Using Multiple Model

    Science.gov (United States)

    Bhatt, G.; Shenk, G.

    2014-12-01

    Calibrated watershed models are widely used as tools for estimating the outcomes of management scenarios. Multiple models are often recommended for well-informed decision making to gain an estimate of uncertainty, to allow for multiple representations of the physical-chemical-biological system, and to provide confidence in the model predictions. Implementing and maintaining multiple watershed models, particularly of a large-scale watershed, poses significant financial and logistical challenges associated with model calibrations, computation requirements, and differences in data formats. Moreover, analysis of results from multiple models adds additional complexity in decision-making. We propose and demonstrate a framework to simulate management scenarios using a 'sensitivity' approach that incorporates the findings of multiple models into a single simulation framework. This simple and easily-understood modeling framework provides the ability to explicitly incorporate the best available science-based understanding of watershed responses to changes in nutrient balances. Generalized watershed nutrient response are derived from the synthesis of multiple lines of evidence, which include studies involving multiple physically-based models of watersheds at catchment to regional scales, along with experimental studies and watershed observatories. The framework provides simplified accounting for planning, implementation, and tracking of management scenarios while providing capabilities to incorporate complex watershed phenomenon such as lag-times in nutrient response. The framework is being developed by the Chesapeake Bay Partnership for an assessment of a Total Maximum Daily Load (TMDL) in 2017 and to develop management plans to meet water quality standards in the Bay waters.

  1. Comparative Assessment of Stormwater and Nonpoint Source Pollution Best Management Practices in Suburban Watershed Management

    Directory of Open Access Journals (Sweden)

    Zeyuan Qiu

    2013-03-01

    Full Text Available Nonpoint source pollution control and stormwater management are two objectives in managing mixed land use watersheds like those in New Jersey. Various best management practices (BMPs have been developed and implemented to achieve both objectives. This study assesses the cost-effectiveness of selected BMPs for agricultural nonpoint source pollution control and stormwater management in the Neshanic River watershed, a typical mixed land use watershed in central New Jersey, USA. The selected BMPs for nonpoint source pollution control include cover crops, prescribed grazing, livestock access control, contour farming, nutrient management, and conservation buffers. The selected BMPs for stormwater management are rain gardens, roadside ditch retrofitting, and detention basin retrofitting. Cost-effectiveness is measured by the reduction in pollutant loads in total suspended solids and total phosphorus relative to the total costs of implementing the selected BMPs. The pollution load reductions for these BMPs are based on the total pollutant loads in the watershed simulated by the Soil and Water Assessment Tool and achievable pollutant reduction rates. The total implementation cost includes BMP installation and maintenance costs. The assessment results indicate that the BMPs for the nonpoint source pollution control are generally much more cost-effective in improving water quality than the BMPs for stormwater management.

  2. Watershed Conservation, Groundwater Management, and Adaptation to Climate Change

    Science.gov (United States)

    Roumasset, J.; Burnett, K.; Wada, C.

    2009-12-01

    Sustainability science is transdisciplinary, organizing research to deliver meaningful and practical contributions to critical issues of resource management. As yet, however, sustainability science has not been integrated with the policy sciences. We provide a step towards integration by providing an integrated model of optimal groundwater management and investment in watershed conservation. The joint optimization problem is solved under alternative forecasts of the changing rainfall distribution for the Koolau Watershed in Oahu, Hawaii. Optimal groundwater management is solved using a simplified one-dimensional model of the groundwater aquifer for analytical tractability. For a constant aquifer recharge, the model solves for the optimal trajectories of water extraction up to the desalination steady state and an incentive compatible pricing scheme. The Koolau Watershed is currently being degraded, however, by invasive plants such as Miconia calvescens and feral animals, especially wild pigs. Runoff and erosion have increased and groundwater recharge is at risk. The Koolau Partnership, a coalition of private owners, the State Department of Land and Natural Resources have proposed a $5 million (present value) conservation plan that promises to halt further losses of recharge. We compare this to the enhanced present value of the aquifer, showing the benefits are an order of magnitude greater than the costs. If conservation is done in the absence of efficient groundwater management, however, more than 40% of the potential benefits would be wasted by under-pricing and overconsumption. We require an estimate of the rainfall-generating distribution and how that distribution is changing over time. We obtain these from statistical downsizing of IPCC climate models. Despite the finding that global warming will increase precipitation for most of the world, the opposite is forecast for Hawaii. A University of Hawaii study finds that the most likely precipitation scenario is a 5-10% reduction in wet season mean precipitation and a 5% increase during the dry season by the end of the 21st century. These trends will be used to condition the time series analysis through Bayesian updating. The resulting distributions, conditioned for seasonality and long-run climate change, will be used to recursively simulate daily rainfalls, thereby allowing for serial correlation and forming a basis for the watershed model to recursively determine components of the water balance equation. The methodology will allow us to generate different sequences of rainfall from the estimated distribution and the corresponding recharge functions. These in turn are used as the basis of optimizing groundwater management under both the watershed conservation program and no conservation. We calculate how much adaptation via joint optimization of watershed conservation and groundwater management decreases the damages from declining precipitation. Inasmuch as groundwater scarcity increases with the forecasted climate change, even under optimal groundwater management, the value of watershed conservation also increases.

  3. ROLE OF WATERSHED SUBDIVISION ON MODELING THE EFFECTIVENESS OF BEST MANAGEMENT PRACTICES WITH SWAT

    Science.gov (United States)

    Distributed parameter watershed models are often used for evaluating the effectiveness of various best management practices (BMPs). Streamflow, sediment, and nutrient yield predictions of a watershed model can be affected by spatial resolution as dictated by watershed subdivisio...

  4. 76 FR 68499 - Draft WaterSMART Cooperative Watershed Management Program Funding Opportunity Announcement

    Science.gov (United States)

    2011-11-04

    ...an existing watershed group. The funding is part...resilience and to reduce conflicts over water by managing local watersheds through...establish a watershed group or expand an existing...shortage and water-use conflicts have become more...

  5. Community participation and implementation of water management instruments in watersheds

    Directory of Open Access Journals (Sweden)

    Mario Alejandro Perez Rincon

    2013-04-01

    Full Text Available The current model of water resources management in Brazil is decentralized, participative and integrated, and adopted the river basin as a planning unit. It is based on the performance of watershed committees; each committee has its own composition and rules of procedure, governed by its statute. The basic principles of this management have been established by the Brazilian Constitution of 1988 and detailed by the National Water Resources Policy in 1997. At the State level, São Paulo enacted its water resources policy in 1991. This paper examined the participatory process in basin committees of the São Paulo State and its implications in the implementation of the instruments of water management, based in a case study of the Tiete - Jacaré Watershed Committee, using questionnaires filled by the Committee’s members (2009 - 2011. Engagement and integration among the stakeholders was observed. Still, the interviews’ results have shown that the Committee’s statute should be reviewed due to differences between the Federal and the State legislation, mainly regarding the participating sectors and representatives. It also showed a need for more information about water resource issues in this basin and in the State of São Paulo, as a whole. At the same time, it is recommended that representativeness of the institutions within the water council management be improved and that the work produced by the technical chambers be recognised at the committee decision-making level.

  6. Managing Watersheds as Couple Human-Natural Systems: A Review of Research Opportunities

    Science.gov (United States)

    Cai, X.

    2011-12-01

    Many watersheds around the world are impaired with severe social and environmental problems due to heavy anthropogenic stresses. Humans have transformed hydrological and biochemical processes in watersheds from a stationary to non-stationary status through direct (e.g., water withdrawals) and indirect (e.g., altering vegetation and land cover) interferences. It has been found that in many watersheds that socio-economic drivers, which have caused increasingly intensive alteration of natural processes, have even overcome natural variability to become the dominant factor affecting the behavior of watershed systems. Reversing this trend requires an understanding of the drivers of this intensification trajectory, and needs tremendous policy reform and investment. As stressed by several recent National Research Council (NRC) reports, watershed management will pose an enormous challenge in the coming decades. Correspondingly, the focus of research has started an evolution from the management of reservoir, stormwater and aquifer systems to the management of integrated watershed systems, to which policy instruments designed to make more rational economic use of water resources are likely to be applied. To provide a few examples: reservoir operation studies have moved from a local to a watershed scale in order to consider upstream best management practices in soil conservation and erosion control and downstream ecological flow requirements and water rights; watersheds have been modeled as integrated hydrologic-economic systems with multidisciplinary modeling efforts, instead of traditional isolated physical systems. Today's watershed management calls for a re-definition of watersheds from isolated natural systems to coupled human-natural systems (CHNS), which are characterized by the interactions between human activities and natural processes, crossing various spatial and temporal scales within the context of a watershed. The importance of the conceptual innovation has been evidenced by 1) institutional innovation for integrated watershed management; 2) real-world management practices involving multidisciplinary expertise; 3) growing role of economics in systems analysis; 4) enhanced research programs such as the CHNS program and Water, Sustainability and Climate (WSC) program at the US National Science Foundation (NSF). Furthermore, recent scientific and technological developments are expected to accommodate integrated watershed system analysis approaches, such as: 1) increasing availability of distributed digital datasets especially from remote sensing products (e.g. digital watersheds); 2) distributed and semi-distributed watershed hydrologic modeling; 3) enhanced hydroclimatic monitoring and forecast; 4) identified evidences of vulnerability and threshold behavior of watersheds; and 5) continuing improvements in computational and optimization algorithms. Managing watersheds as CHNS will be critical for watershed sustainability, which ensures that human societies will benefit forever from the watershed through development of harmonious relationships between human and natural systems. This presentation will provide a review of the research opportunities that take advantage of the concept of CHNS and associated scientific, technological and institutional innovations/developments.

  7. Bridging the gap between uncertainty analysis for complex watershed models and decision-making for watershed-scale water management

    Science.gov (United States)

    Zheng, Y.; Han, F.; Wu, B.

    2013-12-01

    Process-based, spatially distributed and dynamic models provide desirable resolutions to watershed-scale water management. However, their reliability in solving real management problems has been seriously questioned, since the model simulation usually involves significant uncertainty with complicated origins. Uncertainty analysis (UA) for complex hydrological models has been a hot topic in the past decade, and a variety of UA approaches have been developed, but mostly in a theoretical setting. Whether and how a UA could benefit real management decisions remains to be critical questions. We have conducted a series of studies to investigate the applicability of classic approaches, such as GLUE and Markov Chain Monte Carlo (MCMC) methods, in real management settings, unravel the difficulties encountered by such methods, and tailor the methods to better serve the management. Frameworks and new algorithms, such as Probabilistic Collocation Method (PCM)-based approaches, were also proposed for specific management issues. This presentation summarize our past and ongoing studies on the role of UA in real water management. Challenges and potential strategies to bridge the gap between UA for complex models and decision-making for management will be discussed. Future directions for the research in this field will also be suggested. Two common water management settings were examined. One is the Total Maximum Daily Loads (TMDLs) management for surface water quality protection. The other is integrated water resources management for watershed sustainability. For the first setting, nutrients and pesticides TMDLs in the Newport Bay Watershed (Orange Country, California, USA) were discussed. It is a highly urbanized region with a semi-arid Mediterranean climate, typical of the western U.S. For the second setting, the water resources management in the Zhangye Basin (the midstream part of Heihe Baisn, China), where the famous 'Silk Road' came through, was investigated. The Zhangye Basin has a Gobi-oasis system typical of the western China, with extensive agriculture in its oasis.

  8. Watershed Management through Social Mapping - a means of Community Participation

    OpenAIRE

    Kulkarni, Dr S. S.; Swami, V. A.; Borchate, S. S.; Sawant, A. B.

    2011-01-01

    As a growing need of time, today each and every person has to participate in watershed management programmes. Nearly 70% of total population of india is rural having agriculture as the main occupation. Hence at least for rural community every member has to take progressive steps in water conservation. As a part of our last year students, we selected different areas for watershed development, surveyed them, analyzed the data and finalized the proposals. But it was observed in all the projects ...

  9. Estimating Plot Scale Impacts on Watershed Scale Management

    Science.gov (United States)

    Shope, C. L.; Fleckenstein, J. H.; Tenhunen, J. D.; Peiffer, S.; Huwe, B.

    2010-12-01

    Over recent decades, land and resource use as well as climate change have been implicated in reduced ecosystem services (ie: high quality water yield, biodiversity, agricultural and forest products). The prediction of ecosystem services expected under future land use decisions and changing climate conditions has become increasingly important. Complex policy and management decisions require the integration of physical, economic, and social data over several scales to assess effects on water resources and ecology. Field-based meteorology, hydrology, biology, soil physics, plant production, solute and sediment transport, economic, and social behavior data were measured in a catchment of South Korea. A variety of models (Erosion-3D, HBV-Light, VS2DH, Hydrus, PIXGRO, DNDC, and Hydrogeosphere) are being used to simulate plot and field scale measurements within the catchment. Results from each of the local-scale models provide identification of sensitive, local-scale parameters which are then used as inputs into a large-scale watershed model. The experimental field data throughout the catchment was integrated with the spatially-distributed SWAT2005 model. Typically, macroscopic homogeneity and average effective model parameters are assumed when upscaling local-scale heterogeneous measurements to the watershed. The approach of our study was that the range in local-scale model parameter results can be used to define the sensitivity and uncertainty in the large-scale watershed model. The field-based and modeling framework described is being used to develop scenarios to examine spatial and temporal changes in land use practices and climatic effects on water quantity, water quality, and sediment transport. Development of accurate modeling scenarios requires understanding the social relationship between individual and policy driven land management practices and the value of sustainable resources.

  10. BMP analysis system for watershed-based stormwater management.

    Science.gov (United States)

    Zhen, Jenny; Shoemaker, Leslie; Riverson, John; Alvi, Khalid; Cheng, Mow-Soung

    2006-01-01

    Best Management Practices (BMPs) are measures for mitigating nonpoint source (NPS) pollution caused mainly by stormwater runoff. Established urban and newly developing areas must develop cost effective means for restoring or minimizing impacts, and planning future growth. Prince George's County in Maryland, USA, a fast-growing region in the Washington, DC metropolitan area, has developed a number of tools to support analysis and decision making for stormwater management planning and design at the watershed level. These tools support watershed analysis, innovative BMPs, and optimization. Application of these tools can help achieve environmental goals and lead to significant cost savings. This project includes software development that utilizes GIS information and technology, integrates BMP processes simulation models, and applies system optimization techniques for BMP planning and selection. The system employs the ESRI ArcGIS as the platform, and provides GIS-based visualization and support for developing networks including sequences of land uses, BMPs, and stream reaches. The system also provides interfaces for BMP placement, BMP attribute data input, and decision optimization management. The system includes a stand-alone BMP simulation and evaluation module, which complements both research and regulatory nonpoint source control assessment efforts, and allows flexibility in the examining various BMP design alternatives. Process based simulation of BMPs provides a technique that is sensitive to local climate and rainfall patterns. The system incorporates a meta-heuristic optimization technique to find the most cost-effective BMP placement and implementation plan given a control target, or a fixed cost. A case study is presented to demonstrate the application of the Prince George's County system. The case study involves a highly urbanized area in the Anacostia River (a tributary to Potomac River) watershed southeast of Washington, DC. An innovative system of management practices is proposed to minimize runoff, improve water quality, and provide water reuse opportunities. Proposed management techniques include bioretention, green roof, and rooftop runoff collection (rain barrel) systems. The modeling system was used to identify the most cost-effective combinations of management practices to help minimize frequency and size of runoff events and resulting combined sewer overflows to the Anacostia River. PMID:16854811

  11. Evaluating the impact of field-scale management strategies on sediment transport to the watershed outlet.

    Science.gov (United States)

    Sommerlot, Andrew R; Pouyan Nejadhashemi, A; Woznicki, Sean A; Prohaska, Michael D

    2013-10-15

    Non-point source pollution from agricultural lands is a significant contributor of sediment pollution in United States lakes and streams. Therefore, quantifying the impact of individual field management strategies at the watershed-scale provides valuable information to watershed managers and conservation agencies to enhance decision-making. In this study, four methods employing some of the most cited models in field and watershed scale analysis were compared to find a practical yet accurate method for evaluating field management strategies at the watershed outlet. The models used in this study including field-scale model (the Revised Universal Soil Loss Equation 2 - RUSLE2), spatially explicit overland sediment delivery models (SEDMOD), and a watershed-scale model (Soil and Water Assessment Tool - SWAT). These models were used to develop four modeling strategies (methods) for the River Raisin watershed: Method 1) predefined field-scale subbasin and reach layers were used in SWAT model; Method 2) subbasin-scale sediment delivery ratio was employed; Method 3) results obtained from the field-scale RUSLE2 model were incorporated as point source inputs to the SWAT watershed model; and Method 4) a hybrid solution combining analyses from the RUSLE2, SEDMOD, and SWAT models. Method 4 was selected as the most accurate among the studied methods. In addition, the effectiveness of six best management practices (BMPs) in terms of the water quality improvement and associated cost were assessed. Economic analysis was performed using Method 4, and producer requested prices for BMPs were compared with prices defined by the Environmental Quality Incentives Program (EQIP). On a per unit area basis, producers requested higher prices than EQIP in four out of six BMP categories. Meanwhile, the true cost of sediment reduction at the field and watershed scales was greater than EQIP in five of six BMP categories according to producer requested prices. PMID:23851319

  12. A Study of the Relationship between Landslide and Active Tectonic Zones: A Case Study in Karaj Watershed Management

    OpenAIRE

    Rahman Sharifi; Ali Solgi; Mohsen Pourkermani

    2013-01-01

    This research shows a noticeable comparison between slide zones produced with the results using the Nilsen method with active tectonic hazard zonation map. A determination landform of geometry or morphometry factors is one of the best methods for study and evaluation active tectonics. The first image provided is a Dem maps from GIS software showing topography, geology and tectonic maps participant with field activities. The second image provided shows an active tectonic map also generated by...

  13. A Study of the Relationship between Landslide and Active Tectonic Zones: A Case Study in Karaj Watershed Management

    Directory of Open Access Journals (Sweden)

    Rahman Sharifi

    2013-07-01

    Full Text Available This research shows a noticeable comparison between slide zones produced with the results using the Nilsen method with active tectonic hazard zonation map. A determination landform of geometry or morphometry factors is one of the best methods for study and evaluation active tectonics. The first image provided is a Dem maps from GIS software showing topography, geology and tectonic maps participant with field activities. The second image provided shows an active tectonic map also generated by the same above mentioned factors into three classes A, B, C, D and a landslide hazard zonation map which shows five classes: Stable zone, generally stable zone, stable moderately stable zone, moderately stable zone and talented to liquefaction zone. The study and comparison and conformity landslide hazard zonation map with hazard zonations into active tectonic hazard zonation map showed about 79 percent (56,880 hectare moderately unstable zone and talented for liquefaction zone settled in A zone (very high tectonic activity and B zone (high tectonic activity active tectonic map and 21 percent (15,130 hectare remain unsettled sequential 12 percent (8640 hectare and 9 percent (6480 hectare in C (moderate tectonic activity, D (lowest tectonic activity zone of active tectonic hazard zonation produced from above mentioned factors. This research showed a relationship between slide zones produced in landslide hazard zonations using the Nilsen method to measure active tectonic hazard zonation in the study region.

  14. Developing participatory models of watershed management in the Sugar Creek watershed (Ohio, USA

    Directory of Open Access Journals (Sweden)

    Mark Weaver

    2009-01-01

    Full Text Available The US Environmental Protection Agency (USEPA has historically used an expert-driven approach to water and watershed management. In an effort to create regulatory limits for pollution-loading to streams in the USA, the USEPA is establishing limits to the daily loading of nutrients specific to each watershed, which will affect many communities in America. As a part of this process, the Ohio Environmental Protection Agency ranked the Sugar Creek Watershed as the second "most-impaired" watershed in the State of Ohio. This article addresses an alternative approach to watershed management and that emphasises a partnership of farmers and researchers, using community participation in the Sugar Creek to establish a time-frame with goals for water quality remediation. Of interest are the collaborative efforts of a team of farmers, researchers, and agents from multiple levels of government who established this participatory, rather than expert-driven, programme. This new approach created an innovative and adaptive model of non-point source pollution remediation, incorporating strategies to address farmer needs and household decision making, while accounting for local and regional farm structures. In addition, this model has been adapted for point source pollution remediation that creates collaboration among local farmers and a discharge-permitted business that involves nutrient trading.

  15. Interdisciplinary Watershed Studies Provide Science-Society Links

    Science.gov (United States)

    Chambers, R. M.; Hancock, G. S.; Swaddle, J. P.; Hicks, R. L.; Roberts, J. T.

    2005-12-01

    Environmental issues typically occur at the intersection of traditional disciplines such as biology, geology, economics, public policy, and sociology, but many undergraduate students possess neither the tools nor the required interdisciplinary skills to effectively work together to address these complex issues. Our REU program--Interdisciplinary Watershed Studies at the College of William and Mary--with its common watershed theme, improves our students' independence as scientists, increases environmental science literacy across disciplines, and contributes to the educational development of undergraduates as environmental spokespersons. The cohort of students work with W&M faculty mentors on aquatic and associated upland habitats under increasing pressures from urbanization, posing questions integrated across disciplines to address relevant management issues identified by local government agencies and NGOs. Investigations of current hydrogeologic and ecological status in watersheds are completed by analyzing riparian corridor impacts associated with channel incision, stormwater management effectiveness, spatial variation in water quality, lake-wide budgets for water, sediment and nutrients, and population/community structure in aquatic and terrestrial portions of the watershed. Because the status of any watershed system is the result of historical changes in land use, sociologic and economic surveys of residents' perception of development, environmental protection and water and property rights are used to determine the current direction and strength of population and market forcing functions. Students work on each other's projects and develop an understanding of research approaches among fields. In addition to presenting their work at scientific conferences, many students give presentations at local meetings and agency workshops to enhance science-society links. Watershed analysis provides a comprehensive approach to environmental instruction that strengthens the synergy between undergraduate research and education and enhances environmental literacy.

  16. Environmental indicators as an integrated management instrument for watersheds

    Directory of Open Access Journals (Sweden)

    Roxane Lopes de Mello

    2013-12-01

    Full Text Available Environmental problems at the watershed level are complex and require solutions that minimize socioeconomic, environmental, and political-institutional impacts. Within this context, a crosscutting analysis of concepts related to sustainable development, sustainable agriculture, watershed structure, and the use of indicators to measure local sustainability is of paramount importance for planning development at the local level. The objective of this research was to collect information related to management practices and rural development regarding the watersheds of Ribeirão Cachoeirinha and Córrego do Meio in the municipality of São Luiz do Paraitinga, SP. The goal was to propose sustainability indicators that would support an integrated watershed management strategy and promote sustainable development. Indicators should be based on the sustainability of watershed activities, be useful tools for implementing sustainable development and serve as reference in the decision-making process. Methods involved a general characterization of the area and the community using field surveys and published sources. The criteria utilized for defining the boundaries of the area were based on the Watershed State Program developed by the Agriculture and Supply Secretariat of the State of São Paulo. The results led to the development of 83 sustainability indicators and indicated the need for the community to develop an integrated strategy to promote local sustainable development.

  17. Identifying non-point source priority management areas in watersheds with multiple functional zones.

    Science.gov (United States)

    Shen, Zhenyao; Zhong, Yucen; Huang, Qin; Chen, Lei

    2015-01-01

    The concept of water functional zones promotes the comprehensive supervision and scientificoversight of non-point source (NPS) pollution at the watershed scale. Therefore,understanding the spatial distributions and temporal trends in watershed priority managementareas (PMAs) is important in the study and efficient management of NPS pollution.However, no comprehensive studies of PMAs have been conducted to protect waterquality effectively in watersheds with multiple water functional zones. In this study, a newframework is presented that quantifies the perturbations of multiple spatial assessmentunits to the quality of nearby water bodies in various water functional zones. This innovativeapproach, which combines the Soil and Water Assessment Tool (SWAT) and statisticalanalysis, was applied to characterize multiple-level PMAs with a case study of theDaning River watershed in China. Based on the results, the advantage of this new frameworkis better suited to downstream areas, particularly in dry periods and severely pollutedwatersheds. This paper reinforces the view that the concept of zoning should be takenseriously in the framework of PMAs targeting. From the aspect of watershed management,these new PMAs can offer an optimal strategy for locating comprehensive and costeffectivemanagement practices at the watershed scale, particularly in large watershedsor long river systems. PMID:25462762

  18. Can Integrated Watershed Management Contribute to Improvement of Public Health? A Cross-Sectional Study from Hilly Tribal Villages in India

    Directory of Open Access Journals (Sweden)

    Sandeep S. Nerkar

    2015-02-01

    Full Text Available Tribal people living in hilly areas suffer from water scarcity in many parts of the world, including India. Water scarcity adversely impacts all aspects of life, including public health. Implementation of an Integrated Watershed Management Programme (IWMP can help solve the problems arising out of water scarcity in such areas. However, the knowledge about and views of the water scarcity sufferers on the public health implications of IWMP have not been well documented. This cross-sectional study was performed in six purposively selected tribal villages located in Maharashtra, India. In three of the villages IWMP had been implemented (IWMV, but not in the other three (NWMV. The head of each household in all villages was interviewed using a questionnaire covering various public health aspects relevant to the villages. A total of 286/313 (92% households participated in the study. Compared to NWMV, respondents in IWMV experienced significantly lesser prolonged water scarcity (OR = 0.39, had greater number of toilets (OR = 6.95, cultivated more variety of crops (OR = 2.61, had lower migration (OR = 0.59, higher number of girls continuing education (OR = 3.04 and better utilized modern healthcare facilities in the antenatal, natal and postnatal period (OR = 3.75, 2.57, 4.88 respectively. Thus, tribal people in IWMP-implemented villages reported advantages in many aspects of public health.

  19. Can integrated watershed management contribute to improvement of public health? A cross-sectional study from hilly tribal villages in India.

    Science.gov (United States)

    Nerkar, Sandeep S; Pathak, Ashish; Lundborg, Cecilia Stålsby; Tamhankar, Ashok J

    2015-03-01

    Tribal people living in hilly areas suffer from water scarcity in many parts of the world, including India. Water scarcity adversely impacts all aspects of life, including public health. Implementation of an Integrated Watershed Management Programme (IWMP) can help solve the problems arising out of water scarcity in such areas. However, the knowledge about and views of the water scarcity sufferers on the public health implications of IWMP have not been well documented. This cross-sectional study was performed in six purposively selected tribal villages located in Maharashtra, India. In three of the villages IWMP had been implemented (IWMV), but not in the other three (NWMV). The head of each household in all villages was interviewed using a questionnaire covering various public health aspects relevant to the villages. A total of 286/313 (92%) households participated in the study. Compared to NWMV, respondents in IWMV experienced significantly lesser prolonged water scarcity (OR=0.39), had greater number of toilets (OR=6.95), cultivated more variety of crops (OR=2.61), had lower migration (OR=0.59), higher number of girls continuing education (OR=3.04) and better utilized modern healthcare facilities in the antenatal, natal and postnatal period (OR=3.75, 2.57, 4.88 respectively). Thus, tribal people in IWMP-implemented villages reported advantages in many aspects of public health. PMID:25734794

  20. URBAN WATERSHED STUDIES IN SOUTHERN BRAZIL

    Directory of Open Access Journals (Sweden)

    Cristiano Poleto

    2007-12-01

    Full Text Available One of the greatest problems observed in Brazilian urban watersheds are concerned to the amount of solid residues, domestic sewerage and sediments that are disposed in the rivers and streams that drain those areas. This project aims to present these problems through a study of case taken in an urban watershed in Porto Alegre city, Southern Brazil. For this study, different procedures were used, such as field surveys, interviews with the inhabitants, satellite images, sediment samples, flow measures and morphology assessment of part of the local fluvial system to check the degree of instability of the channel. In 2005, it was verified that 42.57% of the watershed was impermeable, considering the paved streets, the residential and commercial buildings and stone pavements. As there was no sewer treatment, most of this sewerage was directly disposed into the stream and the TOC has reached 20% (m/m. Moreover, the occupation of riparian areas, a great amount of soil exposed in the watershed, the nonpaved streets and a great volume of solid residues were causing the instability in the channel, silting the stream bed. The metals (Zn, Pb and Cr selected for this study are most frequently found in high concentrations in urban areas. The results suggest the occurrence of a high enrichment of the fluvial sediment by these metals. The concentrations of these elements vary temporally during storms due to the input of impervious area runoff containing high concentration of elements associated to vehicular traffic and other anthropogenic activities. Then, it is possible to conclude that the contamination of the urban watershed is reflected in the results obtained in the fluvial suspended sediments.

  1. New trends in watershed management and protection

    International Nuclear Information System (INIS)

    I would like to present some new environmental technologies by shoving restoration projects that are currently being implemented in the eastern United States that require this co-operation for successful implementation. The environmental technologies that will be discussed include the use of existing or constructed wetlands to treat surface and groundwater impacted in contaminants from various sources. The main goal of these type projects are to provide a low-cost and effective treatment for existing pollution problems. Many of these projects are initiated by civic associations (or NGOs) that wanted to improve the state of environment in their area. Because everyone has the responsibility to a clean environment in which they live, NGOs, state government, business, and local citizens, and local citizens worked closely together to solve problems in their watersheds. These projects are only examples of what is being done in the United States. However, I would like also to discuss what projects exist in eastern Slovakia, and others that could be started in Slovakia that improve relationships between MGOs and the state and local governmental decision-making process, with the ultimate goal to improve water quality in the Danube watershed in the future. There are severe environmental technologies that can be applied to improve the water quality of rivers throughout the Danube watershed, such as treatment of wastewater using wetland vegetation, and treatment of acid-mine drainage. In April 1996, NGO People and Water in co-operation with the village governments of the Upper Torysa River watershed started the project Villages for the 3 rd millennium in the Carpathian Euro-Region. One of the main goals of this project is to introduce new environmental technologies in the rural communities of the Upper Torysa River area. Since people trust their eyes than their ears. It is important to initiate practical, pilot projects to convince citizens and governments that these low-cost, effective technologies are applicable in Slovakia and in Central and Eastern Europe. (author)

  2. Automatic delineation of a watershed using a DEM. Case study – The Oltet watershed

    Directory of Open Access Journals (Sweden)

    Andreea ZAMFIR

    2011-03-01

    Full Text Available This paper aims to present some solutions for automatic delineation of a watershed. In order to find this study’s applicability in the geographical reality, we decided that the river whose watershed will be delineated to be Oltet river. Automatic delineation of the Olte? watershed was carried out comparatively, using two softwares, ArcGIS Desktop 9.3 andQuantum GIS 1.7.0 Wroclaw, and it based on a SRTM digital elevation model of 90 m. After using GIS techniques, there have resulted two maps showing the boundary of theOlte? watershed. By overlapping the resulted maps, obtained with ArcGIS and QGIS, we found some small differences generated by the different way of working of each softwareinvolved in this study. We have also calculated a circularity coefficient for the Oltet watershed and the value obtained supports its elongated form and all the implication of it.

  3. Game theory and fuzzy programming approaches for bi-objective optimization of reservoir watershed management: a case study in Namazgah reservoir.

    Science.gov (United States)

    Üçler, N; Engin, G Onkal; Köçken, H G; Öncel, M S

    2015-05-01

    In this study, game theory and fuzzy programming approaches were used to balance economic and environmental impacts in the Namazgah reservoir, Turkey. The main goals identified were to maximize economic benefits of land use and to protect water quality of reservoir and land resources. Total phosphorous load (kg ha(-1) year(-1)) and economic income (USD ha(-1) year(-1)) from land use were determined as environmental value and economic value, respectively. The surface area of existing land use types, which are grouped under 10 headings according to the investigations on the watershed area, and the constraint values for the watershed were calculated using aerial photos, master plans, and basin slope map. The results of fuzzy programming approach were found to be very close to the results of the game theory model. It was concluded that the amount of fertilizer used in the current situation presents a danger to the reservoir and, therefore, unnecessary fertilizer use should be prevented. Additionally, nuts, fruit, and vegetable cultivation, instead of wheat and corn cultivation, was found to be more suitable due to their high economic income and low total phosphorus (TP) load. Apart from agricultural activities, livestock farming should also be considered in the area as a second source of income. It is believed that the results obtained in this study will help decision makers to identify possible problems of the watershed. PMID:25687606

  4. Development of a Prototype Web-Based Decision Support System for Watershed Management

    Directory of Open Access Journals (Sweden)

    Dejian Zhang

    2015-02-01

    Full Text Available Using distributed hydrological models to evaluate the effectiveness of reducing non-point source pollution by applying best management practices (BMPs is an important support to decision making for watershed management. However, complex interfaces and time-consuming simulations of the models have largely hindered the applications of these models. We designed and developed a prototype web-based decision support system for watershed management (DSS-WMRJ, which is user friendly and supports quasi-real-time decision making. DSS-WMRJ is based on integrating an open-source Web-based Geographical Information Systems (Web GIS tool (Geoserver, a modeling component (SWAT, Soil and Water Assessment Tool, a cloud computing platform (Hadoop and other open source components and libraries. In addition, a private cloud is used in an innovative manner to parallelize model simulations, which are time consuming and computationally costly. Then, the prototype DSS-WMRJ was tested with a case study. Successful implementation and testing of the prototype DSS-WMRJ lay a good foundation to develop DSS-WMRJ into a fully-fledged tool for watershed management. DSS-WMRJ can be easily customized for use in other watersheds and is valuable for constructing other environmental decision support systems, because of its performance, flexibility, scalability and economy.

  5. Streamwater chemistry and nutrient budgets for forested watersheds in New England: Variability and management implications

    Science.gov (United States)

    Hornbeck, J.W.; Bailey, S.W.; Buso, D.C.; Shanley, J.B.

    1997-01-01

    Chemistry of precipitation and streamwater and resulting input-output budgets for nutrient ions were determined concurrently for three years on three upland, forested watersheds located within an 80 km radius in central New England. Chemistry of precipitation and inputs of nutrients via wet deposition were similar among the three watersheds and were generally typical of central New England. In contrast, chemistry and nutrient outputs in streamwater varied dramatically between watersheds, with chemistries ranging from acidic to alkaline. Comparisons with data reported for 159 other upland, forested watersheds in central New England show that our study watersheds span the regional range likely to be encountered in stream chemistry. The regional variability stems in part from past natural disturbances such as wildfire, and variations in source of soil parent material. An approach is presented for predicting the important influence of glacial till on stream chemistry, including acid-base relationships, aluminum content, and nutrient outputs. Knowledge of streamwater chemistry and controlling factors can serve as an index of how terrestrial and aquatic ecosystems will respond to forest management activities and atmospheric deposition.

  6. Soil Erodibility for Water Pollution Management of Melaka Watershed in Peninsular Malaysia

    Directory of Open Access Journals (Sweden)

    Md. Ibrahim Adham

    2015-07-01

    Full Text Available The relationships between surface runoffand soil erodibility are significant in water pollution and watershed management practices. Land use pattern, soil series and slope percentage are also major factors to develop the relationships. Daily rainfall data were collected and analyzed for variations in precipitation for calculating the surface runoff of these watersheds and surface runoff map was produced by GIS tools. Tew equation was utilized to predict soil erodibility of watershed soils.Results indicated that the weighted curve number varies from 82 to 85 and monthly runoff 23% to 30% among the five watersheds. Soil erodibility varies from 0.038 to 0.06 ton/ha (MJ.mm/ha/h. Linau-Telok-Local Alluvium, Malacca-Munchong, Munchong-Malacca-Serdang and Malacca-Munchong-Tavy are the dominant soil series of this region having the average soil erodibility of about 0.042 ton/ha (MJ.mm/ha/h. The main focus of this study is to provide the information of soil erodibility to reduce the water pollution of a watershed.

  7. A watershed scale assessment of the impacts of suburban turf management on runoff water quality

    Science.gov (United States)

    Bachman, M.; Inamdar, S. P.; Barton, S.; Duke, J.; Tallamy, D.; Bruck, J.

    2014-12-01

    Steadily increasing rates of urbanization have raised concerns about the negative impacts of urban runoff on receiving surface water quality. These concerns have been further amplified by landscaping paradigms that encourage high-input, intensively-managed and mono-culture turf and lawn landscapes. We conducted a watershed-scale assessment of turf management practices on water quality vis-à-vis less-intensive management practices that preserve and enhance more diverse and native vegetation. The study treatments with existing/established vegetation and landscaping practices included turf, urban, forest, meadow, and a mixed site with a professional golf course. Stream water sampling was performed during baseflow and storm events. Highest nutrient (nitrate and total nitrogen) concentrations in runoff were observed for the mixed watershed draining the golf course. In contrast, nutrient concentrations in baseflow from the turf watershed were lower than expected and were comparable to those measured in the surrounding meadow and forest sites. Runoff losses from the turf site may have been minimal due to the optimal quality of management implemented. Total nitrogen concentrations from the turf site increased sharply during the first storms following fertilization, suggesting that despite optimal management there exists a risk for nutrient runoff following fertilization. Dissolved organic carbon (DOC) concentrations from the turf site were elevated and aromatic in content while the mixed watershed site yielded more labile DOM. Overall, this study suggests that turf lawns, when managed properly, pose minimal environmental risk to surrounding surface waters. Based on the results of this study, providing homeowners with increased information regarding best management practices for lawn maintenance may serve as a cost-efficient method for reducing suburban runoff pollution.

  8. GIBSI: an integrated modelling system for watershed management ? sample applications and current developments

    OpenAIRE

    Rousseau, A. N.; Quilbé, R.

    2007-01-01

    Hydrological and pollutant fate models have long been developed for research purposes. Today, they find an application in integrated watershed management, as decision support systems (DSS). GIBSI is such a DSS designed to assist stakeholders in watershed management. It includes a watershed database coupled to a GIS and accessible through a user-friendly interface, as well as modelling tools that simulate, on a daily time step, hydrological processes, soil erosion, agricultural pollutant trans...

  9. Impacts of forest changes on hydrology: a case study of large watersheds in the upper reaches of Minjiang River watershed in China

    Directory of Open Access Journals (Sweden)

    X. Cui

    2012-11-01

    Full Text Available Quantifying the effects of forest changes on hydrology in large watersheds is important for designing forest or land management and adaptation strategies for watershed ecosystem sustainability. Minjiang River watershed, located in the upper reach of the Yangtze River basin, plays a strategic role in the environmental protection and economic and social well-being for both the watershed and the entire Yangtze River basin. The watershed lies in the transition zone from Sichuan Basin to Qinghai-Tibet Plateau with a size of 24 000 km2. Due to its strategic significance, severe historic deforestation and high sensitivity to climate change, the watershed has long been recognized as one of the highest priority watersheds in China for scientific research and resource management. The purpose of this review paper is to provide a state-of-the-art summary on what we have learned from several recently completed research programs (one of them known as "973 of the China National Major Fundamental Science" from 2002 to 2008. This summary paper focused on how land cover or forest change affected hydrology at both forest stand and watershed scales in this large watershed. Inclusion of two different spatial scales is useful, because the results from a small spatial scale (e.g. forest stand level can help interpret the findings on a large spatial scale. Our review suggests that historic forest harvesting or land cover change has caused significant water yield increase due to reduction of forest canopy interception and evapotranspiration caused by removal of forest vegetation on both spatial scales. The impact magnitude caused by forest harvesting indicates that the hydrological effects of forest or land cover changes can be as important as those caused by climate change, while the opposite impact directions suggest their offsetting effects on water yield in the Minjiang River watershed. In addition, different types of forests have different magnitudes of evapotranspiration (ET, with the lowest in old-growth natural coniferous forests (Abies faxoniana Rehd. et Wils. and the highest in coniferous plantations (e.g. Picea asperata Mast. among major forest types in the study watershed. This suggests that selection of different types of forests can have an important role in ET and consequently water yield. Our synthesis indicates that future reforestation and climate change would likely produce the hydrological effects in the same direction and thus place double the pressure on water resource as both key drivers may lead to water yield reduction. The findings can support designing management strategies for protection of watershed ecological functions in the context of future land cover and climate changes.

  10. Comparing the monitoring and evaluation systems of watershed management related development projects in Amhara, Ethiopia

    OpenAIRE

    Kainulainen, Aino

    2012-01-01

    Natural resource degradation is both a cause and a result of poverty in Ethiopia. Therefore it is important to include watershed management into efforts to reduce poverty and food insecurity in the country. In order to see if different interventions are effective in restoring the degraded environment, it is important to have a functioning monitoring and evaluation system that includes natural resource degradation and other environmental factors. This study compares the monitoring and eval...

  11. Best Management Practices for sediment control in a Mediterranean agricultural watershed

    Science.gov (United States)

    Abdelwahab, Ossama M. M.; Bingner, Ronald L.; Milillo, Fabio; Gentile, Francesco

    2015-04-01

    Soil erosion can lead to severe destruction of agricultural sustainability that affects not only productivity, but the entire ecosystem in the neighboring areas. Sediments transported together with the associated nutrients and chemicals can significantly impact downstream water bodies. Various conservation and management practices implemented individually or integrated together as a system can be used to reduce the negative impacts on agricultural watersheds from soil erosion. Hydrological models are useful tools for decision makers when selecting the most effective combination of management practices to reduce pollutant loads within a watershed system. The Annualized Agricultural Non-point Source (AnnAGNPS) pollutant loading management model can be used to analyze the effectiveness of diverse management and conservation practices that can control or reduce the impact of soil erosion processes and subsequent sediment loads in agricultural watersheds. A 506 km2 Mediterranean medium-size watershed (Carapelle) located in Apulia, Southern Italy was used as a case study to evaluate the model and best management practices (BMPs) for sediment load control. A monitoring station located at the Ordona bridge has been instrumented to continuously monitor stream flow and suspended sediment loads. The station has been equipped with an ultrasound stage meter and a stage recorder to monitor stream flow. An infrared optic probe was used to measure suspended sediment concentrations (Gentile et al., 2010 ). The model was calibrated and validated in the Carapelle watershed on an event basis (Bisantino et al., 2013), and the validated model was used to evaluate the effectiveness of BMPs on sediment reduction. Various management practices were investigated including evaluating the impact on sediment load of: (1) converting all cropland areas into forest and grass covered conditions; (2) converting the highest eroding cropland areas to forest or grass covered conditions; and (3) utilizing a crop rotation of wheat and forage crops (Abdelwahab et al., 2014). Further evaluations include scenarios with additional improvements in the input data, in particular better reflecting the management operations within model input parameters used to represent the current conditions applied in the watershed, and the study of the efficiency of the model in predicting runoff and sediment loads at a monthly and annual scale using un-calibrated parameters. The effect of riparian buffers as a natural trap that reduce runoff and increase the in-situ sediment deposition are also investigated. Acknowledgements This work is carried out in the framework of the Italian Research Project of Relevant Interest (PRIN2010-2011), prot. 20104ALME4, "National network for monitoring, modeling, and sustainable management of erosion processes in agricultural land and hilly-mountainous area" National Coordinator prof. Mario Lenzi (University of Padova). References Gentile F., Bisantino T., Corbino R., Milillo F., Romano G., Trisorio Liuzzi G. (2010) Monitoring and analysis of suspended sediment transport dynamics in the Carapelle torrent (southern Italy). Catena 80, 1-8, doi:10.1016/j.catena.2009.08.004. Bisantino T., Bingner R., Chouaib W., Gentile F., Trisorio Liuzzi G. (2013) Estimation of runoff, peak discharge and sediment load at the event scale in a medium-size Mediterranean watershed using the AnnAGNPS model. Land Degradation & Development, wileyonlinelibrary.com, doi: 10.1002/ldr.2213. Abdelwahab O.M.M., Bingner R.L., Milillo F., Gentile F. (2014) Effectiveness of alternative management scenarios on the sediment load in a Mediterranean agricultural watershed. Journal of Agricultural Engineering, vol. XLV:430, 125-136, doi: 10.4081/jae.2014.430.

  12. Analyzing the impacts of forest disturbance and regrowth on watershed hydrology: A case study from the Homochitto Watershed, Mississippi

    Science.gov (United States)

    Yeo, I.; Islam, A.; Huang, C.

    2009-12-01

    Forests are efficient sinks and reservoirs of terrestrial carbons. They can relieve or amplify the adverse impacts of global warming and climate variability and hence, managing forests has been the most important sustainable strategy to mitigate climatic impacts. However, forest management often involves a large scale landscape transformation of land use and cover, and brings significant changes on water resources to the local community. This study is to evaluate the impacts of forest management and disturbance on water quality and quanity in the Homochitto watershed (Mississippi), where forest management and disturbance have occurred on a large scale over long time scales. Using a watershed simulation model (Soil and Water Assessment Tool) and a long term water monitoring data from USGS and US EPA, we will investigate how the spatial heterogeneity of land use, vegetation cover, topography, and climate affect water cycles (e.g., soil water content, water yields), and water quality (e.g., nutrients and sediments) at multiple spatial and temporal scales. Historic chronologies of forest disturbance maps will be generated with a number of satellite-based measurements (such as Landsat, MODIS, and aerial photographs), Geospatial datasets (including MS Gap Analysis Project (GAP), National Land Cover Database (NLCD)), field measurements from the US Forest Service Forest Inventory Analysis (FIA) database, and historic records on forest land management in the region, characterizing the human induced changes in the forest landscape. This study will provide valuable information to better understand the hydrologic feedbacks to changing forests and climate system.

  13. ENVIRONMENTAL SYSTEMS MANAGEMENT AS APPLIED TO WATERSHEDS, UTILIZING REMOTE SENSING, DECISION SUPPORT AND VISUALIZATION

    Science.gov (United States)

    Environmental Systems Management as a conceptual framework and as a set of interdisciplinary analytical approaches will be described within the context of sustainable watershed management, within devergent complex ecosystems. A specific subset of integrated tools are deployed to...

  14. From eutrophic to mesotrophic: modelling watershed management scenarios to change the trophic status of a reservoir.

    Science.gov (United States)

    Mateus, Marcos; Almeida, Carina; Brito, David; Neves, Ramiro

    2014-03-01

    Management decisions related with water quality in lakes and reservoirs require a combined land-water processes study approach. This study reports on an integrated watershed-reservoir modeling methodology: the Soil and Water Assessment Tool (SWAT) model to estimate the nutrient input loads from the watershed, used afterwards as boundary conditions to the reservoir model, CE-QUAL-W2. The integrated modeling system was applied to the Torrão reservoir and drainage basin. The objective of the study was to quantify the total maximum input load that allows the reservoir to be classified as mesotrophic. Torrão reservoir is located in the Tâmega River, one of the most important tributaries of the Douro River in Portugal. The watershed is characterized by a variety of land uses and urban areas, accounting for a total Waste Water Treatment Plants (WWTP) discharge of ~100,000 p.e. According to the criteria defined by the National Water Institute (based on the WWTP Directive), the Torrão reservoir is classified as eutrophic. Model estimates show that a 10% reduction in nutrient loads will suffice to change the state to mesotrophic, and should target primarily WWTP effluents, but also act on diffuse sources. The method applied in this study should provide a basis for water environmental management decision-making. PMID:24625620

  15. From Eutrophic to Mesotrophic: Modelling Watershed Management Scenarios to Change the Trophic Status of a Reservoir

    Directory of Open Access Journals (Sweden)

    Marcos Mateus

    2014-03-01

    Full Text Available Management decisions related with water quality in lakes and reservoirs require a combined land-water processes study approach. This study reports on an integrated watershed-reservoir modeling methodology: the Soil and Water Assessment Tool (SWAT model to estimate the nutrient input loads from the watershed, used afterwards as boundary conditions to the reservoir model, CE-QUAL-W2. The integrated modeling system was applied to the Torrão reservoir and drainage basin. The objective of the study was to quantify the total maximum input load that allows the reservoir to be classified as mesotrophic. Torrão reservoir is located in the Tâmega River, one of the most important tributaries of the Douro River in Portugal. The watershed is characterized by a variety of land uses and urban areas, accounting for a total Waste Water Treatment Plants (WWTP discharge of ~100,000 p.e. According to the criteria defined by the National Water Institute (based on the WWTP Directive, the Torrão reservoir is classified as eutrophic. Model estimates show that a 10% reduction in nutrient loads will suffice to change the state to mesotrophic, and should target primarily WWTP effluents, but also act on diffuse sources. The method applied in this study should provide a basis for water environmental management decision-making.

  16. An economic inquiry into collective action and household behaviour in watershed management

    OpenAIRE

    Devarajulu, Suresh Kumar

    2008-01-01

    The present paper analysed the people’s participation, collective action and farm household behaviour in micro watersheds. Peoples participation in different stages of watershed implementation indicate that farm households show inclination towards participation in planning and project formulation, attending meetings, training and exposure visits when the programme is on-going. Households participation in watershed management is found to influence by household level, supra household level fa...

  17. Quito's Urban Watersheds: Applications of Low Impact Development and Sustainable Watershed Management

    Science.gov (United States)

    Marzion, R.; Serra-Llobet, A.; Ward Simons, C.; Kondolf, G. M.

    2013-12-01

    Quito, Ecuador sits high in an Interandean valley (elevation ~2,830 meters) at the foot of Pichincha volcano. Above the city, mountain streams descend from high-altitude Andean páramo grasslands down steep slopes through quebradas (ravines) to the Machángara River. Quito's rapid urban growth, while indicative of the city's economic vitality, has led to the city's expansion along the valley floor, settlements along precarious hillslopes and ravines, disappearance of wetlands, and loss of páramo. The upper reaches of the watersheds are being rapidly settled by migrants whose land-use practices result in contamination of waters. In the densely-settled downstream reaches, urban encroachment has resulted in filling and narrowing of quebradas with garbage and other poor-quality fill. These practices have dramatically altered natural drainage patterns, reduced the flood conveyance capacity of the channels (increasing the flood risk to surrounding communities), and further deteriorated water quality. The city's stormwater, wastewater, and surface waters suffer from untreated pollutant loads, aging pipes, and sewer overflows. In response to environmental degradation of the quebradas, awareness is increasing, at both local community and municipal levels, of the importance of stream corridors for water quality, wildlife, and recreation for nearby residents. Citizen groups have organized volunteer river cleanups, and municipal agencies have committed to implementing ';green infrastructure' solutions to make Quito a healthier habitat for humans and other species. City leaders are evaluating innovative low impact development (LID) methods to help decontaminate surface waters, mitigate urban flooding, and promote sustainable water systems. Quito's municipal water agency, EPMAPS, invited faculty and students from Quito and Berkeley to collaborate with agency staff and citizen groups to analyze opportunities and to develop plans and designs for sustainable infrastructure. To facilitate the evaluation of LID potential in Quito, we conducted field observations and measurements, completed archival research, analyzed available geographic and hydrologic data, and developed plans and designs for the Quebrada Ortega from its steep headwater reaches down through the densely-populated valley floor. We identified opportunities and constraints for LID, along with strategies from international LID precedent cities that can be applied in the context of Quito's unique physical and climatic characteristics, urban planning practices, and institutional structures. Using remote sensing techniques to determine permeable versus impermeable surface areas, we calculated that basins of at least 1% of the Ortega subwatershed's surface area would be needed to mitigate peak flows from most design storm scenarios. Rainwater harvesting can provide approximately 30% of average daily water needs based on current Quito consumption rates for the subwatershed's residents. By implementing LID strategies while also addressing other water management priorities, Quito provides a unique case study of a city that could bypass prohibitively expensive models used in industrialized countries (e.g., end-of-pipe treatments), and serve as a model for other Latin American cities seeking to resolve similar water management problems.

  18. Watershed Management and Public Health: An Exploration of the Intersection of Two Fields as Reported in the Literature from 2000 to 2010

    Science.gov (United States)

    Bunch, Martin J.; Parkes, Margot; Zubrycki, Karla; Venema, Henry; Hallstrom, Lars; Neudorffer, Cynthia; Berbés-Blázquez, Marta; Morrison, Karen

    2014-08-01

    Watersheds are settings for health and well-being that have a great deal to offer the public health community due to the correspondence between the spatial form of the watershed unit and the importance to health and well-being of water. However, managing watersheds for human health and well-being requires the ability to move beyond typical reductionist approaches toward more holistic methods. Health and well-being are emergent properties of inter-related social and biophysical processes. This paper characterizes points of connection and integration between watershed management and public health and tests a new conceptual model, the Watershed Governance Prism, to determine the prevalence in peer-reviewed literature of different perspectives relating to watersheds and public health. We conducted an initial search of academic databases for papers that addressed the interface between watershed management (or governance) and public health themes. We then generated a sample of these papers and undertook a collaborative analysis informed by the Watershed Governance Prism. Our analysis found that although these manuscripts dealt with a range of biophysical and social determinants of health, there was a tendency for social factors and health outcomes to be framed as context only for these studies, rather than form the core of the relationships being investigated. At least one cluster of papers emerged from this analysis that represented a cohesive perspective on watershed governance and health; "Perspective B" on the Watershed Governance Prism, "water governance for ecosystems and well-being," was dominant. Overall, the integration of watershed management/governance and public health is in its infancy.

  19. Watershed Management through Social Mapping - a means of Community Participation

    Directory of Open Access Journals (Sweden)

    Dr.Mrs.S.S.kulkarni

    2011-09-01

    Full Text Available As a growing need of time, today each and every person has to participate in watershed management programmes. Nearly 70% of total population of india is rural having agriculture as the main occupation. Hence at least for rural community every member has to take progressive steps in water conservation. As a part of our last year students, we selected different areas for watershed development, surveyed them, analyzed the data and finalized the proposals. But it was observed in all the projects that due to nonparticipation of local people there, the proposals remained only on papers, so we decided to develop social contacts with the local people along with carrying out socio-economic survey of the area in the best possibleway. Along with community participation, it was decided that the proposals must be easily acceptable and adoptable by the local people, so that they would not have to depend upon the Government’s financial assistance. These proposals include: 1. Simple technical constructions such as bunds on streams and around the farms, contourtrenches on sloping lands, terracing etc. 2. Agronomical measures such as strip cropping, crop rotation, economical irrigation practicesetc. 3. Clearing the wells and water bodies from silt, improving the village ponds etc. 4. Recharging ground water artificially by rain water harvesting etc. We are sure that the farmers will afford these schemes and will be encouraged as these conservation measures, if implemented, will result in their better prospects in future.

  20. Morphometric Analysis Of The Vidarbha River Basin, Amravati District, Maharashtra With Reference To Watershed Management.

    Directory of Open Access Journals (Sweden)

    Khadri S. F. R

    2013-09-01

    Full Text Available In this present study, an attempt has been made to understand the groundwater regime of the Vidarbha sub-watershed of Wardha River basin exposed Amravati District, Maharashtra using an integrated approach of remote sensing and GIS techniques with Arc GIS Desktop 9.3 and ERDAS Imagine 9.2 software for the sustainable watershed management. The remote sensing data combined with field survey details has provided a unique and hybrid database for the optimal planning and management of the watershed. Morphometry is the measurement and mathematical analysis of the configuration of the earth's surface shape and dimension of its lard forms. The Vidarbha River is a tributary of Wardha River and spread over the 252.10 sq. km area in Amravati district, Maharashtra which have been determine by the morphometry analysis. The results indicate the presence of 6th order drainage basin with dendritic drainage pattern showing uniform lithology. The study area is covered by 98% of Deccan trap which is highly jointed and fractured Basalt.

  1. Role of Science, Policy, and Society in Adaptive Watershed Management

    Science.gov (United States)

    Webb, Richard M. T.

    2009-03-01

    Planning for an Uncertain Future: Monitoring, Integration, and Adaptation; Estes Park, Colorado, 8-11 September 2008; Water managers around the world are being tasked to include potential effects of climate change in their future operations scenarios. One important water manager, the federal government, owns and manages 30% of all land in the United States, the vast majority of which is in western states and Alaska. On 9 March 2007, the Secretary of the Interior signed Order 3270, which states that adaptive management should be considered when (1) there are consequential decisions to be made; (2) there is an opportunity to apply learning; (3) the objectives of management are clear; (4) the value of reducing uncertainty is high; (5) uncertainty can be expressed as a set of competing, testable models; and (6) an experimental design and monitoring system can be put in place with a reasonable expectation of reducing uncertainty. The Third Interagency Conference on Research in the Watersheds provided an appropriate forum to discuss science-driven resource management in the context of new adaptive management strategies. The conference was organized by the U.S. Geological Survey (USGS) and cosponsored by the Consortium of Universities for the Advancement of Hydrologic Science, Inc., the U.S. Environmental Protection Agency, the U.S. Agricultural Research Service, the Natural Resources Conservation Service, the U.S. Forest Service, the National Park Service, the Bureau of Reclamation, the Bureau of Land Management, the U.S. Fish and Wildlife Service, and the U.S. National Oceanic and Atmospheric Administration.

  2. COST-EFFECTIVE ALLOCATION OF WATERSHED MANAGEMENT PRACTICES USING A GENETIC ALGORITHM

    Science.gov (United States)

    Implementation of conservation programs are perceived as being crucial for restoring and protecting waters and watersheds from non-point source pollution. Success of these programs depends to a great extent on planning tools that can assist the watershed management process. Here-...

  3. Adaptation Technology: Benefits of Hydrological Services—Watershed Management in Semi-Arid Region of India

    OpenAIRE

    Anupam Khajuria; Sayaka Yoshikawa; Shinjiro Kanae

    2014-01-01

    Watershed management consists of multifunctional activities to manage and address the increasing water resource problems. Ever increasing water demand and rapidly depleting water resources, it has become necessary to develop the adaptation options to recharge groundwater resources. A watershed is a special kind of Common Pool Resources (CPRs); an area is defined by hydrological linkages where optimal management requires coordinating the use of natural resources by pu...

  4. Watershed regulation and local action: analysis of the Senegal River watershed management by a regional organisation and public participation

    Directory of Open Access Journals (Sweden)

    A. M. Sène

    2007-06-01

    Full Text Available Several social scientists have dealt with the usefulness of a participative approach in development plans. The call for sustainable development has increased the focus on this type of approach in a very classical way, which is the case for the creation of new water tanks. Most of these scientists have also pinpointed the major difficulties and failures faced during the execution of this new approach in developing countries. This study is a concrete example which underlines the lack of this type of approach as far as water management in the Senegal River is concerned, mainly in relation to watershed. We base our study on the analysis and criticism of the regional organization OMVS (Organization for the Development of the Senegal River which is in charge of water management in the Senegal River. The results of the study can, therefore, be summed up as follows: (i An on-site direct observation, individual interviews, group discussion and information analysis point out the lack of participation of local people in water management in the Senegal River and, in general, the harmful socio-economic impacts resulting from it. (ii The reasons for this lack of participative approach are mainly due to the model set up by the OMVS in terms of water management in the Senegal River, a model that has excluded or tackled in a very light way the issue of public participation in decision-making through out its juridical and regulation instruments. (iii Elements of consideration on some measures, which could possibly improve the level of participation of local people in river water management.

  5. Watershed regulation and local action: analysis of the Senegal River watershed management by a regional organisation and public participation

    Science.gov (United States)

    Sène, A. M.; Bonin, S.; Soubeyran, O.

    2007-06-01

    Several social scientists have dealt with the usefulness of a participative approach in development plans. The call for sustainable development has increased the focus on this type of approach in a very classical way, which is the case for the creation of new water tanks. Most of these scientists have also pinpointed the major difficulties and failures faced during the execution of this new approach in developing countries. This study is a concrete example which underlines the lack of this type of approach as far as water management in the Senegal River is concerned, mainly in relation to watershed. We base our study on the analysis and criticism of the regional organization OMVS (Organization for the Development of the Senegal River) which is in charge of water management in the Senegal River. The results of the study can, therefore, be summed up as follows: (i) An on-site direct observation, individual interviews, group discussion and information analysis point out the lack of participation of local people in water management in the Senegal River and, in general, the harmful socio-economic impacts resulting from it. (ii) The reasons for this lack of participative approach are mainly due to the model set up by the OMVS in terms of water management in the Senegal River, a model that has excluded or tackled in a very light way the issue of public participation in decision-making through out its juridical and regulation instruments. (iii) Elements of consideration on some measures, which could possibly improve the level of participation of local people in river water management.

  6. HUMAN-WILDLIFE CONFLICT AND WILDLIFE WATERSHED MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Dheeraj Kumar Mishra, Rathore SS and Devendra Pandey*

    2014-07-01

    Full Text Available In India, man-animal conflict is seen across the country in a variety of forms, including monkey menace in the urban areas, crop raiding by ungulates and wild pigs, depredation by elephants and cattle & human killing by tigers and leopards. Damage to agricultural crops and property, killing of livestock and human beings are some of the worst forms of man-animal conflict. One of the main challenges in and around any reserve forest area is to avoid or at least to minimize the incidences of man-animal conflict. An attempt has been made to analyze one of the main reasons (acute shortage of water in forest areas behind such conflicts and suggest remedial measures to minimize this menace by adopting appropriate watershed management techniques.

  7. Using causal loop diagrams for the initialization of stakeholder engagement in soil salinity management in agricultural watersheds in developing countries: a case study in the Rechna Doab watershed, Pakistan.

    Science.gov (United States)

    Inam, Azhar; Adamowski, Jan; Halbe, Johannes; Prasher, Shiv

    2015-04-01

    Over the course of the last twenty years, participatory modeling has increasingly been advocated as an integral component of integrated, adaptive, and collaborative water resources management. However, issues of high cost, time, and expertise are significant hurdles to the widespread adoption of participatory modeling in many developing countries. In this study, a step-wise method to initialize the involvement of key stakeholders in the development of qualitative system dynamics models (i.e. causal loop diagrams) is presented. The proposed approach is designed to overcome the challenges of low expertise, time and financial resources that have hampered previous participatory modeling efforts in developing countries. The methodological framework was applied in a case study of soil salinity management in the Rechna Doab region of Pakistan, with a focus on the application of qualitative modeling through stakeholder-built causal loop diagrams to address soil salinity problems in the basin. Individual causal loop diagrams were developed by key stakeholder groups, following which an overall group causal loop diagram of the entire system was built based on the individual causal loop diagrams to form a holistic qualitative model of the whole system. The case study demonstrates the usefulness of the proposed approach, based on using causal loop diagrams in initiating stakeholder involvement in the participatory model building process. In addition, the results point to social-economic aspects of soil salinity that have not been considered by other modeling studies to date. PMID:25681287

  8. An integrated system dynamics model developed for managing lake water quality at the watershed scale.

    Science.gov (United States)

    Liu, Hui; Benoit, Gaboury; Liu, Tao; Liu, Yong; Guo, Huaicheng

    2015-05-15

    A reliable system simulation to relate socioeconomic development with water environment and to comprehensively represent a watershed's dynamic features is important. In this study, after identifying lake watershed system processes, we developed a system dynamics modeling framework for managing lake water quality at the watershed scale. Two reinforcing loops (Development and Investment Promotion) and three balancing loops (Pollution, Resource Consumption, and Pollution Control) were constituted. Based on this work, we constructed Stock and Flow Diagrams that embedded a pollutant load model and a lake water quality model into a socioeconomic system dynamics model. The Dianchi Lake in Yunnan Province, China, which is the sixth largest and among the most severely polluted freshwater lakes in China, was employed as a case study to demonstrate the applicability of the model. Water quality parameters considered in the model included chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP). The business-as-usual (BAU) scenario and three alternative management scenarios on spatial adjustment of industries and population (S1), wastewater treatment capacity construction (S2), and structural adjustment of agriculture (S3), were simulated to assess the effectiveness of certain policies in improving water quality. Results showed that S2 is most effective scenario, and the COD, TN, and TP concentrations in Caohai in 2030 are 52.5, 10.9, and 0.8 mg/L, while those in Waihai are 9.6, 1.2, and 0.08 mg/L, with sustained development in the watershed. Thus, the model can help support the decision making required in development and environmental protection strategies. PMID:25770958

  9. Hydromentor: An integrated water resources monitoring and management system at modified semi-arid watersheds

    Science.gov (United States)

    Vasiliades, Lampros; Sidiropoulos, Pantelis; Tzabiras, John; Kokkinos, Konstantinos; Spiliotopoulos, Marios; Papaioannou, George; Fafoutis, Chrysostomos; Michailidou, Kalliopi; Tziatzios, George; Loukas, Athanasios; Mylopoulos, Nikitas

    2015-04-01

    Natural and engineered water systems interact throughout watersheds and while there is clearly a link between watershed activities and the quantity and quality of water entering the engineered environment, these systems are considered distinct operational systems. As a result, the strategic approach to data management and modeling within the two systems is very different, leading to significant difficulties in integrating the two systems in order to make comprehensive watershed decisions. In this paper, we describe the "HYDROMENTOR" research project, a highly-structured data storage and exchange system that integrates multiple tools and models describing both natural and modified environments, to provide an integrated tool for management of water resources. Our underlying objective in presenting our conceptual design for this water information system is to develop an integrated and automated system that will achieve monitoring and management of the water quantity and quality at watershed level for both surface water (rivers and lakes) and ground water resources (aquifers). The uniqueness of the system is the integrated treatment of the water resources management issue in terms of water quantity and quality in current climate conditions and in future conditions of climatic change. On an operational level, the system provides automated warnings when the availability, use and pollution levels exceed allowable limits pre-set by the management authorities. Decision making with respect to the apportionment of water use by surface and ground water resources are aided through this system, while the relationship between the polluting activity of a source to total incoming pollution by sources are determined; this way, the best management practices for dealing with a crisis are proposed. The computational system allows the development and application of actions, interventions and policies (alternative management scenarios) so that the impacts of climate change in quantity, quality and use of water resources could be evaluated and managed. Acknowledgements: This study has been supported by the research project "Hydromentor" funded by the Greek General Secretariat of Research and Technology in the framework of the E.U. co-funded National Action "Cooperation".

  10. Compromise-based Robust Prioritization of Climate Change Adaptation Strategies for Watershed Management

    Science.gov (United States)

    Kim, Y.; Chung, E. S.

    2014-12-01

    This study suggests a robust prioritization framework for climate change adaptation strategies under multiple climate change scenarios with a case study of selecting sites for reusing treated wastewater (TWW) in a Korean urban watershed. The framework utilizes various multi-criteria decision making techniques, including the VIKOR method and the Shannon entropy-based weights. In this case study, the sustainability of TWW use is quantified with indicator-based approaches with the DPSIR framework, which considers both hydro-environmental and socio-economic aspects of the watershed management. Under the various climate change scenarios, the hydro-environmental responses to reusing TWW in potential alternative sub-watersheds are determined using the Hydrologic Simulation Program in Fortran (HSPF). The socio-economic indicators are obtained from the statistical databases. Sustainability scores for multiple scenarios are estimated individually and then integrated with the proposed approach. At last, the suggested framework allows us to prioritize adaptation strategies in a robust manner with varying levels of compromise between utility-based and regret-based strategies.

  11. Women as Milieu Managers in Integrated Watershed Management: Perspectives from the Hilly Areas of Uttarakhand

    Directory of Open Access Journals (Sweden)

    Dr Shyam Bahadur Singh

    2015-03-01

    Full Text Available Integrated watershed management provides a viable mechanism for managing land, water and biomass of a region, especially in the rain-fed areas of India. It foresees a sustainable conservation of available natural resources and embarks upon collective action irrespective of gender bias. In the marginal hilly areas of the country, the burden of livelihood directly falls upon the womenfolk. This is because due to lack of off-farm activities the hills of India see a lot of male outmigration in search of better employment activities. The degradation in the ecosystem/natural resources thus has a direct bearing upon the women of the region, as they are the ultimate stakeholders of the natural endowments. Integrated watershed management provides a ray of hope amidst the swarm of faulty and borrowed developmental plans, especially for the womenfolk of the marginal hilly areas of the country. The present paper assesses the role the women play in managing their immediate surroundings and argues that the level of participation of women remains paramount in integrated watershed management in the hilly areas of Uttarakhand.

  12. A PROBABILISTIC APPROACH FOR ANALYSIS OF UNCERTAINTY IN THE EVALUATION OF WATERSHED MANAGEMENT PRACTICES

    Science.gov (United States)

    A computational framework is presented for analyzing the uncertainty in model estimates of water quality benefits of best management practices (BMPs) in two small (2) watersheds in Indiana. The analysis specifically recognizes the significance of the difference b...

  13. GIBSI: an integrated modelling system for watershed management – sample applications and current developments

    Directory of Open Access Journals (Sweden)

    A. N. Rousseau

    2007-06-01

    Full Text Available Hydrological and pollutant fate models have long been developed for research purposes. Today, they find an application in integrated watershed management, as decision support systems (DSS. GIBSI is such a DSS designed to assist stakeholders in watershed management. It includes a watershed database coupled to a GIS and accessible through a user-friendly interface, as well as modelling tools that simulate, on a daily time step, hydrological processes, soil erosion, agricultural pollutant transport and surface water quality. Therefore, GIBSI can be used to assess a priori the effect of management scenarios (reservoirs, land use, waste water effluents, diffuse sources of pollution that is agricultural pollution on surface hydrology and water quality. For illustration purposes, this paper presents several management-oriented applications using GIBSI on the 6680 km2 Chaudière River watershed, located near Quebec City (Canada. They include impact assessments of: (i timber harvesting; (ii municipal clean water program; (iii agricultural nutrient management scenarios; (iv past land use evolution; (v possible future agricultural land use evolution under climate change, as well as (vi determination of achievable performance standards of pesticides management practices. Current and future developments of GIBSI are also presented as these will extend current uses of this tool and make it useable and applicable by stakeholders on other watersheds. Finally, the conclusion emphasizes some of the challenges that remain for a better use of DSS in integrated watershed management.

  14. GIBSI: an integrated modelling system for watershed management – sample applications and current developments

    Directory of Open Access Journals (Sweden)

    A. N. Rousseau

    2007-11-01

    Full Text Available Hydrological and pollutant fate models have long been developed for research purposes. Today, they find an application in integrated watershed management, as decision support systems (DSS. GIBSI is such a DSS designed to assist stakeholders in watershed management. It includes a watershed database coupled to a GIS and accessible through a user-friendly interface, as well as modelling tools that simulate, on a daily time step, hydrological processes such as evapotranspiration, runoff, soil erosion, agricultural pollutant transport and surface water quality. Therefore, GIBSI can be used to assess a priori the effect of management scenarios (reservoirs, land use, waste water effluents, diffuse sources of pollution that is agricultural pollution on surface hydrology and water quality. For illustration purposes, this paper presents several management-oriented applications using GIBSI on the 6680 km2 Chaudière River watershed, located near Quebec City (Canada. They include impact assessments of: (i municipal clean water program; (ii agricultural nutrient management scenarios; (iii past and future land use changes, as well as (iv determination of achievable performance standards of pesticides management practices. Current and future developments of GIBSI are also presented as these will extend current uses of this tool and make it useable and applicable by stakeholders on other watersheds. Finally, the conclusion emphasizes some of the challenges that remain for a better use of DSS in integrated watershed management.

  15. Environmental quality integrated indicator applied to the management of the Jiquiriçá river watershed, BA, Brazil

    Directory of Open Access Journals (Sweden)

    Raquel Maria de Oliveira

    2010-04-01

    Full Text Available In this work social, economic and environmental aspects were studied using the concept of programming by commitment, with the objective of structuring an integrated indicator capable of estimating the degree of the environmental quality of the Jiquiriça river basin, BA, composed by the indicator of environmental salubrity, water quality and soil’s protection. For the determination of the environmental salubrity indicator, data of the following variables were collected: existence of treated water supply, disposition and treatment of solid residues, diseases vectors control, the existence of the Agenda 21, socioeconomics data and indices of human development for each municipal district located in the area of the watershed. The indicator of the water quality was structured based on the analysis of water samples collected in eight sampling points along Jiquiriçá river and determined by seven parameters. The indicator of soil’s protection was based on the analysis of maps obtained according to the weight of each steepness and land use class. Results indicate that the watershed is in a poor equilibrium condition and suggest the need for structural investments as well as changes in public polices. The methodology used was efficient for this watershed management and could be used as tool for the environmental planning of the region, once it can be adapted to several situations depending on the data availability.

  16. Management-oriented sensitivity analysis for pesticide transport in watershed-scale water quality modeling using SWAT

    Energy Technology Data Exchange (ETDEWEB)

    Luo Yuzhou [University of California, Davis, CA 95616 (United States); Wenzhou Medical College, Wenzhou 325035 (China); Zhang Minghua, E-mail: mhzhang@ucdavis.ed [University of California, Davis, CA 95616 (United States); Wenzhou Medical College, Wenzhou 325035 (China)

    2009-12-15

    The Soil and Water Assessment Tool (SWAT) was calibrated for hydrology conditions in an agricultural watershed of Orestimba Creek, California, and applied to simulate fate and transport of two organophosphate pesticides chlorpyrifos and diazinon. The model showed capability in evaluating pesticide fate and transport processes in agricultural fields and instream network. Management-oriented sensitivity analysis was conducted by applied stochastic SWAT simulations for pesticide distribution. Results of sensitivity analysis identified the governing processes in pesticide outputs as surface runoff, soil erosion, and sedimentation in the study area. By incorporating sensitive parameters in pesticide transport simulation, effects of structural best management practices (BMPs) in improving surface water quality were demonstrated by SWAT modeling. This study also recommends conservation practices designed to reduce field yield and in-stream transport capacity of sediment, such as filter strip, grassed waterway, crop residue management, and tailwater pond to be implemented in the Orestimba Creek watershed. - Selected structural BMPs are recommended for reducing loads of OP pesticides.

  17. Management-oriented sensitivity analysis for pesticide transport in watershed-scale water quality modeling using SWAT

    International Nuclear Information System (INIS)

    The Soil and Water Assessment Tool (SWAT) was calibrated for hydrology conditions in an agricultural watershed of Orestimba Creek, California, and applied to simulate fate and transport of two organophosphate pesticides chlorpyrifos and diazinon. The model showed capability in evaluating pesticide fate and transport processes in agricultural fields and instream network. Management-oriented sensitivity analysis was conducted by applied stochastic SWAT simulations for pesticide distribution. Results of sensitivity analysis identified the governing processes in pesticide outputs as surface runoff, soil erosion, and sedimentation in the study area. By incorporating sensitive parameters in pesticide transport simulation, effects of structural best management practices (BMPs) in improving surface water quality were demonstrated by SWAT modeling. This study also recommends conservation practices designed to reduce field yield and in-stream transport capacity of sediment, such as filter strip, grassed waterway, crop residue management, and tailwater pond to be implemented in the Orestimba Creek watershed. - Selected structural BMPs are recommended for reducing loads of OP pesticides.

  18. Land Use Optimization of Watershed for Soil Erosion Minimization Using Linear Programming (a Case Study of Brimvand Watershed, Kermanshah Province

    Directory of Open Access Journals (Sweden)

    D. Nikkami

    2007-01-01

    Full Text Available Improper management of watershed land utilization has many ill effects on the available resources. Land use optimization is one of the proper strategies to achieve sustainable development and to reduce resource dissipation. Focusing on Brimvand watershed in Kermanshah province which comprises an area of 9572 ha, the present study was conducted to find out the most suitable land allocation to different land uses viz. garden, irrigated farming, dry farming and rangeland to achieve soil erosion minimization and benefit maximization. The soil erosion, net benefit and standard land capability maps were supposed as the inputs of the objective functions and to defined constraints. The multi-objective linear problem was then solved using simplex method with the help of ADBASE software package and ultimately the optimal solution was gained. Additionally, the results of the study revealed that the amount of soil erosion could reduce by 7.78% whereas the benefit increases at the rate of 118.62%, in case of implementation of optimal solution. The above mentioned optimization led to dry farming decrease and garden increase over that area. The results of sensitivity analysis also showed that objective functions were strongly susceptible to the variation of maximum constraint of irrigated farming and garden areas.

  19. APPLYING ECOLOGICAL RISK PRINCIPLES TO WATERSHED ASSESSMENT AND MANAGEMENT

    Science.gov (United States)

    Considerable progress in addressing point source (end of pipe) pollution problems has been made but it is now recognized that further substantial environmental improvements depend on controlling nonpoint source pollution. A watershed approach is being used more frequently to add...

  20. Environmental indicators as an integrated management instrument for watersheds

    OpenAIRE

    Roxane Lopes de Mello; Nelson Wellausen Dias; Maria de Jesus Robim

    2013-01-01

    Environmental problems at the watershed level are complex and require solutions that minimize socioeconomic, environmental, and political-institutional impacts. Within this context, a crosscutting analysis of concepts related to sustainable development, sustainable agriculture, watershed structure, and the use of indicators to measure local sustainability is of paramount importance for planning development at the local level. The objective of this research was to collect information related t...

  1. Critical sampling points methodology: case studies of geographically diverse watersheds.

    Science.gov (United States)

    Strobl, Robert O; Robillard, Paul D; Debels, Patrick

    2007-06-01

    Only with a properly designed water quality monitoring network can data be collected that can lead to accurate information extraction. One of the main components of water quality monitoring network design is the allocation of sampling locations. For this purpose, a design methodology, called critical sampling points (CSP), has been developed for the determination of the critical sampling locations in small, rural watersheds with regard to total phosphorus (TP) load pollution. It considers hydrologic, topographic, soil, vegetative, and land use factors. The objective of the monitoring network design in this methodology is to identify the stream locations which receive the greatest TP loads from the upstream portions of a watershed. The CSP methodology has been translated into a model, called water quality monitoring station analysis (WQMSA), which integrates a geographic information system (GIS) for the handling of the spatial aspect of the data, a hydrologic/water quality simulation model for TP load estimation, and fuzzy logic for improved input data representation. In addition, the methodology was purposely designed to be useful in diverse rural watersheds, independent of geographic location. Three watershed case studies in Pennsylvania, Amazonian Ecuador, and central Chile were examined. Each case study offered a different degree of data availability. It was demonstrated that the developed methodology could be successfully used in all three case studies. The case studies suggest that the CSP methodology, in form of the WQMSA model, has potential in applications world-wide. PMID:16957843

  2. Assessment of Small Reservoir Ensemble System Behavior for Improved Watershed Management

    Science.gov (United States)

    Liebe, J.; Steenhuis, T.; Andreini, M.; van de Giesen, N.

    2004-05-01

    In semi-arid regions, large numbers of small reservoirs serve the scattered rural population with water. Especially, where large parts of the received rainfall are lost through runoff, small reservoirs play an important role for irrigated agriculture, livestock watering, fishing, and household use. Efficient reservoir planning is yet a problematic task in watershed management, especially in data scarce settings such as the Upper East Region of Ghana, where this study is located. It is difficult to optimize the density of small reservoirs without adversely affecting downstream structures, because the ensemble behavior of reservoirs is poorly understood at regional scales. Using relationships on the regional scale that allow translating reservoir surface areas into storage volumes, radar remote sensing qualifies as a weather independent monitoring tool of storage volumes. Storage changes can thus be determined on a monthly basis with systems such as ERS SAR. Watershed managers and planners can use this information as decision support systems to locate suitable sites for further reservoir development, and to assess their downstream impact.

  3. Potential Hydrological Responses, and Carbon and Nitrogen Pools of a Two Distinct Watersheds to Rainfall and Brush Management

    Science.gov (United States)

    Ray, R. L.; Fares, A.; Awal, R.; Johnson, A. B.

    2014-12-01

    Investigating the effects of brush management on hydrologic fluxes, in the parts of the Texas where brush is a dominant component of the landscape is essential for the State of Texas's water management strategy and planning. The main goal of this study is to test the performance of brush management as an effective approach for protecting soil quality (carbon and nitrogen pools), and water resources management and planning. Specifically, this work reports on the potential i) hydrological response and ii) carbon and nitrogen pools of two watersheds, one in Colorado River Basin (arid) and the second one in Neches River Basin (humid), to brush management (uniform thinning vs. clear cutting) simulated using Regional Hydro-ecological Simulation System (RHESSys) model and site specific input data. The selected watersheds have similar potential evapotranspiration level, but their average elevations are 600 m and 250 m for the arid and humid watersheds, respectively. Results are showing that light thinning alone may not be enough to significantly impact water yield and soil quality. They further indicate that the streamflow response to brush reduction is a non-linear positive response.

  4. Development of a socio-ecological environmental justice model for watershed-based management

    Science.gov (United States)

    Sanchez, Georgina M.; Nejadhashemi, A. Pouyan; Zhang, Zhen; Woznicki, Sean A.; Habron, Geoffrey; Marquart-Pyatt, Sandra; Shortridge, Ashton

    2014-10-01

    The dynamics and relationships between society and nature are complex and difficult to predict. Anthropogenic activities affect the ecological integrity of our natural resources, specifically our streams. Further, it is well-established that the costs of these activities are born unequally by different human communities. This study considered the utility of integrating stream health metrics, based on stream health indicators, with socio-economic measures of communities, to better characterize these effects. This study used a spatial multi-factor model and bivariate mapping to produce a novel assessment for watershed management, identification of vulnerable areas, and allocation of resources. The study area is the Saginaw River watershed located in Michigan. In-stream hydrological and water quality data were used to predict fish and macroinvertebrate measures of stream health. These measures include the Index of Biological Integrity (IBI), Hilsenhoff Biotic Index (HBI), Family IBI, and total number of Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa. Stream health indicators were then compared to spatially coincident socio-economic data, obtained from the United States Census Bureau (2010), including race, income, education, housing, and population size. Statistical analysis including spatial regression and cluster analysis were used to examine the correlation between vulnerable human populations and environmental conditions. Overall, limited correlation was observed between the socio-economic data and ecological measures of stream health, with the highest being a negative correlation of 0.18 between HBI and the social parameter household size. Clustering was observed in the datasets with urban areas representing a second order clustering effect over the watershed. Regions with the worst stream health and most vulnerable social populations were most commonly located nearby or down-stream to highly populated areas and agricultural lands.

  5. Application of the SUSTAIN Model to a Watershed-Scale Case for Water Quality Management

    Directory of Open Access Journals (Sweden)

    Chi-Feng Chen

    2014-11-01

    Full Text Available Low impact development (LID is a relatively new concept in land use management that aims to maintain hydrological conditions at a predevelopment level without deteriorating water quality during land development. The United States Environmental Protection Agency (USEPA developed the System for Urban Stormwater Treatment and Analysis Integration model (SUSTAIN to evaluate the performance of LID practices at different spatial scales; however, the application of this model has been limited relative to LID modeling. In this study, the SUSTAIN model was applied to a Taiwanese watershed. Model calibration and verification were performed, and different types of LID facilities were evaluated. The model simulation process and the verified model parameters could be used in other cases. Four LID scenarios combining bioretention ponds, grass swales, and pervious pavements were designed based on the land characteristics. For the SUSTAIN model simulation, the results showed that pollution reduction was mainly due to water quantity reduction, infiltration was the dominant mechanism and plant interception had a minor effect on the treatment. The simulation results were used to rank the primary areas for nonpoint source pollution and identify effective LID practices. In addition to the case study, a sensitivity analysis of the model parameters was performed, showing that the soil infiltration rate was the most sensitive parameter affecting the LID performance. The objectives of the study are to confirm the applicability of the SUSTAIN model and to assess the effectiveness of LID practices in the studied watershed.

  6. Collection of short papers on Beaver Creek watershed studies in West Tennessee, 1989-94

    Science.gov (United States)

    Doyle, W. Harry., (compiler); Baker, Eva G.

    1995-01-01

    In 1989, the U.S. Geological Survey began a scientific investigation to evaluate the effect of agricultural activities on water quality and the effectiveness of agricultural best management practices in the Beaver Creek watershed, West Tennessee. The project is being conducted jointly with other Federal, State, county agencies, the farming community, and academic institutions, in support of the U.S. Department of Agriculture's Hydrologic Unit Area program. The Beaver Creek project has evolved into a long-term watershed assessment and monitoring program. In 1991, a grant was received to develop and evaluate sampling strategies for higher order streams. During the summer of 1992, a reconnaissance of water-quality conditions for the shallow aquifers in Shelby, Tipton, Fayette, and Haywood Counties was conducted and included 89 domestic wells in the Beaver Creek watershed. Results from this effort lead to the development of a 1-year program to evaluate cause- and-effect relations that can explain the observed water-quality conditions for the shallow aquifers in the watershed. In 1992 the USGS, in cooperation with the Soil Conservation Service and the Shelby County Soil Conservation District, began an evaluation of in-stream processes and in-stream resource-management systems. In 1993, a biomonitoring program was established in the watershed. This collection of eight articles and abstracts was originally published in the American Water Resources Association National Symposium on Water Quality Proceedings for the national conference held in Chicago in 1994 and describes what has been learned in the study to date.

  7. Impacts of forest changes on hydrology: a case study of large watersheds in the upper reach of Yangtze River Basin

    OpenAIRE

    CUI, X.; Liu, S.; Wei, X.

    2012-01-01

    Quantifying the effects of forest changes on hydrology in large watersheds is important for designing forest or land management and adaptation strategies for watershed ecosystem sustainability. Minjiang River watershed located in the upper reach of the Yangtze River Basin plays a strategic role in environmental protection and economic and social wellbeing for both the watershed and the entire Yangtze Basin. The watershed lies in the transition zone from Sichuan Basin to Qinghai-Tibet Pla...

  8. Iskuulpa Watershed Management Plan : A Five-Year Plan for Protecting and Enhancing Fish and Wildlife Habitats in the Iskuulpa Watershed.

    Energy Technology Data Exchange (ETDEWEB)

    Confederated Tribes of the Umatilla Indian Reservation Wildlife Program

    2003-01-01

    The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) propose to protect, enhance, and mitigate wildlife and wildlife habitat and watershed resources in the Iskuulpa Watershed. The Iskuulpa Watershed Project was approved as a Columbia River Basin Wildlife Fish and Mitigation Project by the Bonneville Power Administration (BPA) and Northwest Power Planning Council (NWPPC) in 1998. Iskuulpa will contribute towards meeting BPA's obligation to compensate for wildlife habitat losses resulting from the construction of the John Day and McNary Hydroelectric facilities on the Columbia River. By funding the enhancement and operation and maintenance of the Iskuulpa Watershed, BPA will receive credit towards their mitigation debt. The purpose of the Iskuulpa Watershed management plan update is to provide programmatic and site-specific standards and guidelines on how the Iskuulpa Watershed will be managed over the next three years. This plan provides overall guidance on both short and long term activities that will move the area towards the goals, objectives, and desired future conditions for the planning area. The plan will incorporate managed and protected wildlife and wildlife habitat, including operations and maintenance, enhancements, and access and travel management.

  9. Locating farmer-based knowledge and vested interests in natural resource management: the interface of ethnopedology, land tenure and gender in soil erosion management in the Manupali watershed, Philippines

    OpenAIRE

    Price Lisa

    2007-01-01

    Abstract This paper examines local soil knowledge and management in the Manupali watershed in the Philippines. The study focuses on soil erosion and its control. Research methods used in the study include ethnosemantic elicitations on soils and focus group discussions. In addition, in-depth work was conducted with 48 farmers holding 154 parcels at different elevations/locations in the watershed. The on-parcel research consisted of farmer classifications of the soil, topography, and erosion st...

  10. Impacts of forest changes on hydrology: a case study of large watersheds in the upper reach of Yangtze River Basin

    Directory of Open Access Journals (Sweden)

    X. Cui

    2012-05-01

    Full Text Available Quantifying the effects of forest changes on hydrology in large watersheds is important for designing forest or land management and adaptation strategies for watershed ecosystem sustainability. Minjiang River watershed located in the upper reach of the Yangtze River Basin plays a strategic role in environmental protection and economic and social wellbeing for both the watershed and the entire Yangtze Basin. The watershed lies in the transition zone from Sichuan Basin to Qinghai-Tibet Plateau with a size of 24 000 km2. Due to its strategic significance, severe historic deforestation and high sensitivity to climate change, the watershed has long been one of the highest priority watersheds in China for scientific research and resource management. The purpose of this review paper is to provide a state-of-the-art summary on what we have learned from several recently-completed research programs (one of them known as "973 of the China National Major Fundamental Science" with funding of $3.5 million USD in 2002 to 2008. This summary paper focused on how land cover or forest change affected hydrology at both forest stand and watershed scales in this large watershed. Inclusion of two different spatial scales is useful because the results from a small spatial scale (e.g. forest stand level can help interpret the findings at a large spatial scale. Our review suggests that historic forest harvesting or land cover change has caused significant water increase due to reduction of forest canopy interception and evapotranspiration caused by removal of forest vegetation at both spatial scales. The impact magnitudes caused by forest harvesting indicate that the hydrological effects of forest or land cover changes can be as important as those caused by climate change, while the opposite impact directions suggest their offsetting effects on water yields in the Minjiang River watershed. In addition, different types of forests have different magnitudes of ET with old-growth natural coniferous (Abies forests being the lowest and the coniferous plantations (e.g. Spruce being the highest among major forest types in the study watershed, suggesting that selection of different types of forests can have an important role in ET and consequently water yields. Our synthesis indicates that future reforestation and climate change would likely produce the hydrological effects in the same direction and thus place double pressures on water resource as both key drivers may lead to water yield reduction. Implications of the findings are also discussed in the context of future land cover and climate changes.

  11. Rainwater Wildlife Area, Watershed Management Plan, A Columbia Basin Wildlife Mitigation Project, 2002.

    Energy Technology Data Exchange (ETDEWEB)

    Childs, Allen B.

    2002-03-01

    This Management Plan has been developed by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) to document how the Rainwater Wildlife Area (formerly known as the Rainwater Ranch) will be managed. The plan has been developed under a standardized planning process developed by the Bonneville Power Administration (BPA) for Columbia River Basin Wildlife Mitigation Projects (See Appendix A and Guiding Policies Section below). The plan outlines the framework for managing the project area, provides an assessment of existing conditions and key resource issues, and presents an array of habitat management and enhancement strategies. The plan culminates into a 5-Year Action Plan that will focus our management actions and prioritize funding during the Fiscal 2001-2005 planning period. This plan is a product of nearly two years of field studies and research, public scoping, and coordination with the Rainwater Advisory Committee. The committee consists of representatives from tribal government, state agencies, local government, public organizations, and members of the public. The plan is organized into several sections with Chapter 1 providing introductory information such as project location, purpose and need, project goals and objectives, common elements and assumptions, coordination efforts and public scoping, and historical information about the project area. Key issues are presented in Chapter 2 and Chapter 3 discusses existing resource conditions within the wildlife area. Chapter 4 provides a detailed presentation on management activities and Chapter 5 outlines a monitoring and evaluation plan for the project that will help assess whether the project is meeting the intended purpose and need and the goals and objectives. Chapter 6 displays the action plan and provides a prioritized list of actions with associated budget for the next five year period. Successive chapters contain appendices, references, definitions, and a glossary. The purpose of the project is to protect, enhance, and mitigate fish and wildlife resources impacted by Columbia River Basin hydroelectric development. The effort is one of several wildlife mitigation projects in the region developed to compensate for terrestrial habitat losses resulting from the construction of McNary and John Day Hydroelectric facilities located on the mainstem Columbia River. While this project is driven primarily by the purpose and need to mitigate for wildlife habitat losses, it is also recognized that management strategies will also benefit many other non-target fish and wildlife species and associated natural resources. The Rainwater project is much more than a wildlife project--it is a watershed project with potential to benefit resources at the watershed scale. Goals and objectives presented in the following sections include both mitigation and non-mitigation related goals and objectives.

  12. Topographical characteristics and evaluating water quality in watershed management

    OpenAIRE

    Teresa Cristina Tarlé Pissarra; Flavia Mazzer Rodrigues; Christiano Luna Arraes; João Antonio Galbiatti; Maurício José Borges

    2010-01-01

    Topographical characteristics and water quality were evaluated at Hacienda Gloria, in Jaboticabal, São Paulo State, Brazil. Un-derstanding the relief’s morphometric characteristics and the course of the streams in a small watershed supported the hypothesis that land-use affects water quality and helps predict how changes in water-flow and the surrounding landscape occur; areas protected by native forest and those dedicated to agriculture were considered. Water quality was sampled at six si...

  13. Hydrologic-Hydraulic Modeling of Fluvial Sediment Transport During a Storm Event in a Highly Managed Watershed

    Science.gov (United States)

    Bressan, F.; Mantilla, R.

    2014-12-01

    Sediment movement along the main stem of a watershed is strongly affected by the sediment supply and the channel morphology. Anthropogenic interventions tend to alter the hydraulic conveyance and consequently modify the sediment regime of the main stem. This connection between channel hydraulics and sediment transport is often overlooked in hydrologic models where simplified methods are used for flow and sediment routing. In this study, we adopt a hydrologic-hydraulic modeling approach to quantify the fluvial sediment transport along the main stem of a watershed during a storm event. The hydrologic model CUENCAS is implemented to estimate the sub-hourly hydrographs of the major tributaries of the watershed. The simulated hydrographs are used as boundary conditions for the depth-averaged two-dimensional hydraulic model FESMWS to simulate the propagation of the flood wave along the main stem. The corresponding sub-hourly, unsteady non-equilibrium sediment transport along the main stem is also simulated with FESWMS. This procedure is applied to a highly managed agricultural watershed of Iowa. The study site has a catchment area of 70 Km2 with soils that are silty clay loams. The land-use is mostly row crop, but in the past decade a large portion of the watershed was converted to native prairie. The main stem is a meandering stream with a length of 15 Km and ten major tributaries contribute to its flow. Several sections of the main stem have been heavily channelized and straightened since the 1930s. Different grain size distributions and sediment boundary conditions are investigated to discern the effects of land-use changes and channelization on the sediment regime along the main stem. The simulations are able to capture the typical hysteresis between flow and sediment transport. The results indicate that the in-stream sediment transport rate is in general higher in the channelized sections and depends, to a certain extent, on the degree of straightening.

  14. The impact of water management on watershed self-organization

    Science.gov (United States)

    Condon, Laura; Maxwell, Reed

    2014-05-01

    Temporal and spatial self-organization has been demonstrated for hydrologic variables including soil moisture, evapotranspiration and groundwater depth across many hydrologic catchments. Previous work has demonstrated that aquifers act as low pass filters, removing high frequency variability while allowing low frequency variability to pass through. While much research has focused on connections between water management and groundwater-surface water interactions, few studies have considered the impact of water management, specifically groundwater pumping and irrigation, on the scaling behavior of the natural system. We address this gap by simulating moisture dependent groundwater fed irrigation in the Little Washita Basin (Oklahoma, USA) using the fully integrated hydrologic model ParFlow-CLM. We present results from two simulations each spanning twenty years at hourly resolution, one with irrigated agriculture and one without. The model is forced with heterogeneous historical meteorological forcings and is populated with realistic land cover and subsurface units. Model results demonstrate scaling behavior for variables like latent heat flux and water table depth similar to other studies. Additionally, gridded model outputs allow for direct analysis of spatial patterns in temporal organization not possible with previous observational studies. Analysis shows clear spatial patterns in scaling. For example, water table depth and latent heat flux have the most similar scaling coefficients along the river, where groundwater and surface water are closely interacting. While scaling behavior is also observed in the irrigated agriculture scenario, there are notable differences in frequency behavior. Pumping and irrigation attenuate low frequency (inter-annual variability) while amplifying high frequency (intra-annual variability). Water management operations increase persistence in both groundwater and surface water systems and expand the spatial area where the two are closely connected. Results highlight potential impacts of managed agriculture on natural system dynamics that go beyond traditional considerations of water availability. Feedbacks between management operations and underlying system variability are an important consideration for water managers because system reliability is largely a function of natural variance.

  15. Hydrological services and biodiversity conservation under forestation scenarios: comparing options to improve watershed management

    Science.gov (United States)

    Carvalho-Santos, Claudia; Nunes, João Pedro; Sousa-Silva, Rita; Gonçalves, João; Pradinho Honrado, João

    2015-04-01

    Humans rely on ecosystems for the provision of hydrological services, namely water supply and water damage mitigation, and promoting forests is a widely used management strategy for the provision of hydrological services. Therefore, it is important to model how forests will contribute for this provision, taking into account the environmental characteristics of each region, as well as the spatio-temporal patterns of societal demand. In addition, ensuring forest protection and the delivery of forest ecosystem services is one of the aims included in the European Union biodiversity strategy to 2020. On the other hand, forest management for hydrological services must consider possible trade-offs with other services provision, as well as with biodiversity conservation. Accurate modeling and mapping of both hydrological services and biodiversity conservation value is thus important to support spatial planning and land management options involving forests. The objectives of this study were: to analyze the provision and spatial dynamics of hydrological services under two forest cover change scenarios (oak and eucalyptus/pine) compared to the current shrubland-dominated landscape; and to evaluate their spatial trade-offs with biodiversity conservation value. The Vez watershed (250km2), in northwest Portugal, was used as case-study area. SWAT (Soil and Water Assessment Tool) was applied to simulate the provision of hydrological services (water supply quantity, timing and quality; soil erosion and flood regulation), and was calibrated against daily discharge, sediments, nitrates and evapotranspiration. Good agreement was obtained between model predictions and field measurements. The maps for each service under the different scenarios were produced at the Hydrologic Response Unit (HRU) level. Biodiversity conservation value was based on nature protection regimes and on expert valuation applied to a land cover map. Statistical correlations between hydrological services provision and biodiversity conservation value were assessed using the Spearman rank correlation. The current delivery of hydrological services in the Vez watershed is higher at the high and low mountain sub-basins, with lower provision in the valley. The overall performance for water quantity and timing is better under the shrubland and the oak scenarios, when compared to the eucalyptus/pine scenario, which performs better for flood regulation and erosion control, especially in the low mountain sub-basin. However, this scenario is the one with more spatial trade-offs with biodiversity conservation value, especially inside protected areas. Several strategies may be suggested for effective land use planning in the Vez watershed. Eucalyptus/pine is the scenario with the best results for flood regulation and soil erosion control, associated to the positive revenues from the pulp production industry. However, cautions should be taken regarding strategies for biodiversity conservation (preferably by favoring native oak species), as well as the potential increase in fire risk. This study highlights SWAT as an effective tool for modelling and mapping hydrological services generated at the watershed scale, therefore contributing to improve the options for land management.

  16. REMOTE SENSING APPLICATIONS FOR SUSTAINABLE WATERSHED MANAGEMENT AND FOOD SECURITY: JOURNAL ARTICLE

    Science.gov (United States)

    NRMRL-CIN-1496A Rochon*, G., Szlag*, D., Daniel*, F.B., and Chifos**, C. Remote Sensing Applications for Sustainable Watershed Management and Food Security. Proceedings of the 21st European Association of Remote Sensing Laboratories Symposium, Marne-La-Valle, France, 5/14-16/200...

  17. PESTICIDES AND WATERSHED-SCALE MODELING: SOLUTIONS FOR WATER QUALITY MANAGEMENT

    Science.gov (United States)

    The three papers that follow in this issue of JAFC were presented at a Symposium held at the Fall 2004 American Chemical Society meeting in Philadelphia Entitled “Agrochemicals And Watershed-Scale Modeling: Solutions For Water Quality Management.” These papers show that industry pesticide scientist...

  18. EPA?s Experimental Stream Facility: Design and Research Supporting Watershed Management

    Science.gov (United States)

    The EPA?s Experimental Stream Facility (ESF) represents an important tool in research that is underway to further understanding of the relative importance of stream ecosystems and the services they provide for effective watershed management. The ESF is operated under the goal of ...

  19. Modeling and sediment study in the watershed Medjerda, Tunisia

    Science.gov (United States)

    Kotti, Fatma; Mahé, Gil; Habaieb, Hamadi; Dieulin, Claudine; Hermassi, Taoufik

    2015-04-01

    Water projects have experienced a major expansion in the late 1980s, and we now have sufficient perspective to assess their actual performance and their socio-environmental impacts (Payan, 2007). This study focuses on the great watershed of Tunisia namely Medjerda which has an area of about 23,600 km2. In the main river of Medjerda some dams have been created for water retention: Sidi Salem Dam (the largest in the country), El Aroussia dam, and others on tributaries Mellegue Bouhertma, Siliana, Beni Mtir, Lakhemess and Kasseb. Since the construction of dams, essentially Sidi Salem and Siliana, the Medjerda river has undergone significant changes in morphology. The monitoring of the flow of the major hydrological stations in the pre-estuarine zone downstream from Sidi Salem dam is used to measure the impact of the constructions on hydrological regimes: reduction in average rates, reduction in volumes sold, altered seasonal pattern, and most of all reduction of the sediment transport, which the highest values are related to extreme events. In this context, the balance of sediment monitoring appears indispensable for the quantification of sediment transport at the outlet. Our approach is to calculate a specific flow rate relative to the area of the basin for every structure built in the Medjerda watershed, from the information available on transport and sedimentation rates known, combined with contours of each sub watershed. There are about ten dams spread throughout Medjerda watershed. The methodology is primarily developed for the Mellegue dam because we have at this station a long data set from 1955 until 2005. Other stations will be studied later on. The main objective of this study is to provide a series of annual variation of theoretical contributions. These calculated values will be compared with the actual measured sedimentary series. Two cores in the sediments of the pre-estuarine area are performed to determine past variability in sediment inputs over a time series than should be about one century. The cores' analysis results show a succession of sedimentary layers that likely correspond to different flood deposits that succeeded on this site, and especially the datation of the cores shows that the selected area is a very important deposition area. This sedimentary study will help estimate the sediment dynamics to major estuaries, which is poorly known for most of the rivers of Maghreb. The reduction of the sediment supply to the sea is tipped as a major factor to be taken into account for a better understanding of the dynamics of coastal areas in the context of global climate change and sea level rise. Keywords: sediment core, Medjerda watershed, dam, hydrology, modeling, Tunisia

  20. Physical Feasibility Study of Agroforestry Farm Systems to Support Sustainable Agriculture in Konaweha Sub Watershed of Southeast Sulawesi

    OpenAIRE

    Sitti Marwah

    2012-01-01

    The farming systems in Konaweha watershed are mostly mixed garden that are partly managed intensively as well as traditionally. The objectives of this research were to identify and classify agroforestry systems that were practiced by farmers, to study the effect of the agroforestry systems on soil properties, hydrological indicators, and erosion, as well as to analyze farm management feasibility of agroforestry systems to establish sustainable agriculture system. The study was carried out in ...

  1. Demarcation of Drainage Network for Watershed Management of Sangamner Tahsil Using Topographical and GIS Data: A Case Study of Sangamner Tahsil of Ahemadnagar District

    Directory of Open Access Journals (Sweden)

    Ms Deshmukh Pragati P

    2012-02-01

    Full Text Available Water is significant geographical resource, which need to micro level planning for the conservation. It is the fundamental need of all biotic community which is depending on the precipitation sources directly and River, lake, tank water sources circuitously. There is sensitive issue regarding water managements because of its need and availability. So the, variety of research techniques applied for the sustainable development of water resource. In most of region very less rainfall incidence, where need to conservation of water by the appropriate techniques for sustainable development. From the ancient time humans are using variety of techniques for preservation of water, which is now a day becomes a time consuming, resources wastage and less correctness. This traditional techniques replaced by advance GIS and RS techniques where obtain the precise accuracy, digital quality, fewer recourses.

  2. Monitoring, Modeling, and Emergent Toxicology in the East Fork Watershed: Developing a Test Bed for Water Quality Management.

    Science.gov (United States)

    Overarching objectives for the development of the East Fork Watershed Test Bed in Southwestern Ohio include: 1) providing research infrastructure for integrating risk assessment and management research on the scale of a large multi-use watershed (1295 km2); 2) Focusing on process...

  3. Quantify Effects of Integrated Land Management on Water Quality in Agricultural Landscape in South Fork Watershed, Iowa River

    Science.gov (United States)

    Ha, M.; Wu, M. M.

    2014-12-01

    Sustainable biofuel feedstock production — environmental sustainability and economic sustainability — may be achieved by using a multi-faceted approach. This study focuses on quantifying the water sustainability of an integrated landscaping strategy, by which current land use and land management, cropping system, agricultural Best Management Practices (BMPs), and economics play equal roles. The strategy was applied to the South Fork watershed, IA, including the tributaries of Tipton and Beaver Creeks, which expand to 800-km2 drainage areas. The watershed is an agricultural dominant area covered with row-crops production. On the basis of profitability, switchgrass was chosen as a replacement for row crops in low-productivity land. Areas for harvesting agricultural residue were selected on the basis of soil conservation principals. Double cropping with a cover crop was established to further reduce soil loss. Vegetation buffer strips were in place at fields and in riparian areas for water quality control, resource conservation, and eco service improvement. The Soil and Water Assessment Tool (SWAT) was applied to evaluate source reduction under various management schemes and land use changes. SWAT modeling incorporated 10-yr meteorological information, soil data, land slope classification, land use, four-year crop-rotation cycle, and management operations. Tile drain and pothole parameters were modeled to assess the fate and transport of nutrients. The influence of landscape management and cropping systems on nitrogen and phosphorus loadings, erosion process, and hydrological performance at the sub-watershed scale was analyzed and key factors identified. Results suggest strongly that incorporating agricultural BMPs and conservation strategies into integrated landscape management for certain energy crops in row-crop production regions can be economical and environmentally sustainable.

  4. WATERSHED INFORMATION - SURF YOUR WATERSHED

    Science.gov (United States)

    Surf Your Watershed is both a database of urls to world wide web pages associated with the watershed approach of environmental management and also data sets of relevant environmental information that can be queried. It is designed for citizens and decision makers across the count...

  5. A COMPARATIVE STUDY ON CALIBRATION METHODS OF NASH’S RAINFALL-RUNOFF MODEL TO AMMAMEH WATERSHED, IRAN

    Directory of Open Access Journals (Sweden)

    Vahid Nourani

    2008-06-01

    Full Text Available Increasing importance of watershed management during last decades highlighted the need for sufficient data and accurate estimation of rainfall and runoff within watersheds. Therefore, various conceptual models have been developed with parameters based on observed data. Since further investigations depend on these parameters, it is important to accurately estimate them. This study by utilizing various methods, tries to estimate Nash rainfall-runoff model parameters and then evaluate the reliability of parameter estimation methods; moment, least square error, maximum likelihood, maximum entropy and genetic algorithm. Results based on a case study on the data from Ammameh watershed in Central Iran, indicate that the genetic algorithm method, which has been developed based on artificial intelligence, more accurately estimates Nash’s model parameters.

  6. Adaptive Management for Urban Watersheds: The Slavic Village Pilot Project

    Science.gov (United States)

    Adaptive management is an environmental management strategy that uses an iterative process of decision-making to reduce the uncertainty in environmental management via system monitoring. A central tenet of adaptive management is that management involves a learning process that ca...

  7. Methodology for generation of hydrogeologic maps: rio da Palma watershed case study, DF, Brazil

    Directory of Open Access Journals (Sweden)

    Hélio Nóbile Diniz

    2007-08-01

    Full Text Available This paper had the objective of developing a methodology to support the management of water resources, based on hydro geological cartography, tested for the hydro geologic conditions of a watershed located at Central Brazil. Results show two major products: a hydro geologic, and a potential infiltration and recharge maps of the high course of the Rio da Palma watershed. This paper is presented in six parts. The first one discusses the map’s elements, essential thematic maps and appropriate scales. The second part proposes the graphic criteria for the integrated representation of the major parameters of overlaying aquifers. The third part demonstrates the importance of the data basis for the hydro geologic cartography, i.e., the contribution of each theme such as soil, geology, slope, climate and land use, when appropriately integrated. The fourth part discusses the selection and the integration of the main information layers for the Rio da Palma watershed using a Geographic Information System (GIS. On the fifth part, the result of the integration of the porous domain with the fractured domain aquifer information layers is shown and, finally, the potential infiltration and recharge map of the studied area, elaborated from the integration of overlapping of the data basis information layers is presented and discussed. In general, in the studied area, regions with high infiltration potential prevail where human interference is still moderate. Large portions of low infiltration potential are either associated with high slopes, with shallow soils (Cambissolos or else with urban constructions.

  8. Small watershed management as a tool of flood risk prevention

    Science.gov (United States)

    Jakubinsky, J.; Bacova, R.; Svobodova, E.; Kubicek, P.; Herber, V.

    2014-09-01

    According to the International Disaster Database (CRED 2009) frequency of extreme hydrological situations on a global scale is constantly increasing. The most typical example of a natural risk in Europe is flood - there is a decrease in the number of victims, but a significant increase in economic damage. A decrease in the number of victims is caused by the application of current hydrological management that focuses its attention primarily on large rivers and elimination of the damages caused by major flood situations. The growing economic losses, however, are a manifestation of the increasing intensity of floods on small watercourses, which are usually not sufficiently taken into account by the management approaches. The research of small streams should focus both on the study of the watercourse itself, especially its ecomorphological properties, and in particular on the possibility of flood control measures and their effectiveness. An important part of society's access to sustainable development is also the evolution of knowledge about the river landscape area, which is perceived as a significant component of global environmental security and resilience, thanks to its high compensatory potential for mitigation of environmental change. The findings discussed under this contribution are based on data obtained during implementation of the project "GeoRISK" (Geo-analysis of landscape level degradation and natural risks formation), which takes into account the above approaches applied in different case studies - catchments of small streams in different parts of the Czech Republic. Our findings offer an opportunity for practical application of field research knowledge in decision making processes within the national level of current water management.

  9. Tribal Watershed Management: Culture, Science, Capacity, and Collaboration

    Science.gov (United States)

    Cronin, Amanda; Ostergren, David M.

    2007-01-01

    This research focuses on two elements of contemporary American Indian natural resource management. First, the authors explore the capacity of tribes to manage natural resources, including the merging of traditional ecological knowledge (TEK) with Western science. Second, they analyze tribal management in the context of local and regional…

  10. White matter lesions in watershed territories studied with MRI and parenchymography: a comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Minkner, K; Lovblad, K.O.; Yilmaz, H; Alimenti, A.; Delavelle, J; Ruefenacht, D.A. [University Hospital of Geneva, Department of Radiology, Geneva 14 (Switzerland); Sekoranja, L; Sztajzel, R [University Hospital of Geneva, Clinic of Neurology, Geneva 14 (Switzerland)

    2005-06-01

    Brain aging affects an increasing segment of the population and the role of chronic cerebrovascular disease is considered to be one of the main parameters involved. For this purpose we compared retrospectively MRI data with digitized subtraction angiography (DSA) data in a group of 50 patients focusing onto the watershed area of the carotid artery vascular territories. In order to evaluate the presence of white matter lesions (WML) in the hemispheric watershed areas, coronal fluid-attenuated inversion-recovery or axial T2 weighted MRI images of patients with symptomatic cerebrovascular insufficiency areas were compared with the capillary phase of DSA studies in anterior-posterior projection. Presence of cerebrovascular occlusive disease was evaluated on DSA using North American symptomatic carotid endarterectomy trial criteria and including evaluation of collateral vascular supply. Pathological MRI findings in the region of the watershed territories correlated overall in 66% of cases with a defect or delayed filling on DSA. In the case of asymmetrical MRI findings, there was a pathological finding of the capillary phase in the watershed area in 92% of DSA studies. Hypoperfusion in the capillary phase of the watershed area as seen on DSA correlated with the stenosis degree of the concerned carotid artery. Our findings suggest that asymmetrical findings of WML in the watershed areas as seen on MRI are caused by hemodynamic effect and a differentiation between small vessel disease and a consequence of distant stenosis may be possible under such conditions. (orig.)

  11. Legacy Phosphorus in Agricultural Watersheds: Implications for Restoration and Management of Wetlands and Aquatic Systems

    International Nuclear Information System (INIS)

    Phosphorus is added to watersheds in various forms, including fertilizers, nonhazardous wastes (animal manures and biosolids) and nutrient enriched waters. Globally, approximately 14 million metric tons of phosphorus is added as fertilizer to agricultural watersheds. The approximate ratio of nitrogen to phosphorus fertilizer application at the global level is 5.8 (Mullins et al., 2005). Historically, organic wastes such as animal manure were applied to agronomic crops and pastures on the basis of their nitrogen availability, which has resulted in excessive application of phosphorus. The nitrogen to phosphorus ratio of manure is less than 2. As a result, many agricultural watersheds receiving land application of wastes and fertilizers have accumulated phosphorus in excess amounts. However, as soils in agricultural watersheds become saturated or overloaded with phosphorus, a significant portion of stored phosphorus can be released and transported with water during runoff events into adjacent water bodies such as wetlands, streams, shallow lakes and other aquatic systems (Carpenter et al., 1998; Foley et al., 2005). Wetlands, riparian zones and water conservation areas in agricultural watersheds serve as sinks, sources and transformers of nutrients and other chemical contaminants, and as such, they can have a significant impact on water quality, nutrient retention and ecosystem productivity. Here we briefly present a case study of water quality issues in the Lake Okeechof water quality issues in the Lake Okeechobee Basin (LOB), FL, USA and its impact on an adjacent lake.

  12. Calibration of SWAT2009 Using Crop Biomass, Evapotranspiration, and Deep Recharge: Calera Watershed in Zacatecas, Mexico Case Study

    Directory of Open Access Journals (Sweden)

    Alan J. Verser

    2012-07-01

    Full Text Available Groundwater is the main source of water in the semi-arid Calera watershed, located in the State of Zacatecas, Mexico. Due to increasing population, rapid industrial growth, and increased irrigation to meet growing food demand, groundwater extraction in the Calera watershed are exceeding recharge rates. Therefore, development and evaluation of alter-native water management strategies are needed for sustainable development of the region. The Soil and Water Assessment Tool (SWAT model was selected for this purpose as it has been used to simulate a wide range of agricultural production, the extensive testing and application in diverse watersheds worldwide, and the potential for future linkage of this model to groundwater models. However, crucial flow data which are commonly used for calibrating hydrologic models are not available in this watershed. This paper describes a novel calibration methodology that uses biomass and water balance approach which has potential for calibration of hydrologic models in ungauged or data-scarce watersheds, which are prevalent in many parts of the world. Estimated long-term annual average actual evapotranspiration (AET, and deep aquifer recharge rates and plant biomass values based on the expert knowledge of researchers and managers in the watershed were used as targets for calibration. The model performance was assessed using the Nash-Sutcliffe effi-ciency coefficient (NSE, coefficient of determination (R2, and percent bias (PBIAS, % statistics. On average, the calibrated SWAT model yielded annual Nash-Sutcliffe efficiency coefficient values of 0.95, 0.99, and 0.85 for AET, recharge, and biomass, respectively. The coefficient of determination, values for AET, recharge, and biomass were 0.95, 0.94, and 0.99 respectively. The percent bias values of ±2.21%, ±0.18%, and ±0.96% for AET, recharge, and biomass, respectively, indicated that the model reproduced the calibration target values of the three water budget variables within an acceptable value of ± 10.0%. Therefore, it is concluded that the calibrated SWAT model can be used in evaluating alternative water management scenarios for the Calera watershed without further validation. Considering the relative ease in developing calibration data and excellent performance statistics, the calibration methodology proposed in this study may have the potential to be used for ungauged or data-scare agricultural watersheds that are prevalent in many parts of the world.

  13. Ecological Engineering Practices for the Reduction of Excess Nitrogen in Human-Influenced Landscapes: A Guide for Watershed Managers

    Science.gov (United States)

    Passeport, Elodie; Vidon, Philippe; Forshay, Kenneth J.; Harris, Lora; Kaushal, Sujay S.; Kellogg, Dorothy Q.; Lazar, Julia; Mayer, Paul; Stander, Emilie K.

    2013-02-01

    Excess nitrogen (N) in freshwater systems, estuaries, and coastal areas has well-documented deleterious effects on ecosystems. Ecological engineering practices (EEPs) may be effective at decreasing nonpoint source N leaching to surface and groundwater. However, few studies have synthesized current knowledge about the functioning principles, performance, and cost of common EEPs used to mitigate N pollution at the watershed scale. Our review describes seven EEPs known to decrease N to help watershed managers select the most effective techniques from among the following approaches: advanced-treatment septic systems, low-impact development (LID) structures, permeable reactive barriers, treatment wetlands, riparian buffers, artificial lakes and reservoirs, and stream restoration. Our results show a broad range of N-removal effectiveness but suggest that all techniques could be optimized for N removal by promoting and sustaining conditions conducive to biological transformations (e.g., denitrification). Generally, N-removal efficiency is particularly affected by hydraulic residence time, organic carbon availability, and establishment of anaerobic conditions. There remains a critical need for systematic empirical studies documenting N-removal efficiency among EEPs and potential environmental and economic tradeoffs associated with the widespread use of these techniques. Under current trajectories of N inputs, land use, and climate change, ecological engineering alone may be insufficient to manage N in many watersheds, suggesting that N-pollution source prevention remains a critical need. Improved understanding of N-removal effectiveness and modeling efforts will be critical in building decision support tools to help guide the selection and application of best EEPs for N management.

  14. A METHODOLOGY FOR ESTIMATING UNCERTAINTY OF A DISTRIBUTED HYDROLOGIC MODEL: APPLICATION TO POCONO CREEK WATERSHED

    Science.gov (United States)

    Utility of distributed hydrologic and water quality models for watershed management and sustainability studies should be accompanied by rigorous model uncertainty analysis. However, the use of complex watershed models primarily follows the traditional {calibrate/validate/predict}...

  15. Tracking the fate of watershed nitrogen: The “N-Sink” Web Tool and Two Case Studies

    Science.gov (United States)

    This product describes the application of a web-based decision support tool, N-Sink, in two case study watersheds. N-Sink is a customized ArcMap© program that provides maps of N sourcesand sinks within a watershed, and estimates the delivery efficiency of N movement from sou...

  16. Forest Disturbance Through Alpine Ski Area Development: Results of a Paired Watershed Study in the Northeastern U.S.

    Science.gov (United States)

    Wemple, B.; Shanley, J.; Waichler, S.

    2003-12-01

    Disturbance to forested watersheds through suburbanization and resort development is increasingly common, particularly in densely populated regions. We are examining the effects of ski resort development on flow dynamics and water quality through a paired watershed study in northern Vermont. Our watersheds include the West Branch basin (11.7 km2), which encompasses an alpine ski resort, and the Ranch Brook basin (9.6 km2), which serves as our undeveloped control. Our analysis includes empirical interpretation of three years of streamflow and water quality data, as well as model simulations of flow dynamics under current and proposed future conditions, including proposed development of expanded snowmaking, ski trails and slope side village amenities in the West Branch basin. Our results show distinct differences in hydrologic response between the two watersheds, including elevated streamflows and delayed peaks during snowmelt in the developed watershed that may be attributable to trail clearing and snowmaking. Water quality data suggest that runoff from parking lots and other disturbed surfaces result in higher suspended sediment concentrations in the developed West Branch, particularly during the early part of snowmelt and during intense summer rains. Salting of parking lots and roadways within the West Branch basin resulted in elevated chloride concentrations year round (up to 700 ueq L-1 during snowmelt). Nitrate peaked near 70 ueq L-1 in both basins during snowmelt, but generally remained somewhat higher at West Branch. Otherwise, stream chemistry at both sites was dominated by weathering solutes (Ca, Mg, Si). We argue that disturbance to forested watersheds through this form of development may be more persistent than disturbance associated with traditional forest management activities (e.g. forest harvesting) and suggest that the results of our study may provide improved insight into the effects of new forms of human disturbance in the alpine environment.

  17. Methodology for generation of hydrogeologic maps: rio da Palma watershed case study, DF, Brazil

    OpenAIRE

    Hélio Nóbile Diniz; José Eloi Guimarães Campos; Getulio Teixeira Batista; Tatiana Diniz Gonçalves; Marcelo dos Santos Targa

    2007-01-01

    This paper had the objective of developing a methodology to support the management of water resources, based on hydro geological cartography, tested for the hydro geologic conditions of a watershed located at Central Brazil. Results show two major products: a hydro geologic, and a potential infiltration and recharge maps of the high course of the Rio da Palma watershed. This paper is presented in six parts. The first one discusses the map’s elements, essential thematic maps and appropriate sc...

  18. Watershed Boundaries, Wisconsin DNR 2003 Watersheds, Published in 2003, 1:24000 (1in=2000ft) scale, Wisconsin DNR Bureau of Watershed Management.

    NSGIC GIS Inventory (aka Ramona) — This Watershed Boundaries dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Hardcopy Maps information as of 2003. It is described...

  19. REMOTE SENSING APPLICATIONS FOR SUSTAINABLE WATERSHED MANAGEMENT AND FOOD SECURITY

    Science.gov (United States)

    The integration of IKONOS satellite data, airborne color infrared remote sensing, visualization, and decision support tools is discussed, within the contexts of management techniques for minimizing non-point source pollution in inland waterways, such s riparian buffer restoration...

  20. A GIS based watershed information system for water resources management and planning in semi-arid areas

    Science.gov (United States)

    Tzabiras, John; Spiliotopoulos, Marios; Kokkinos, Kostantinos; Fafoutis, Chrysostomos; Sidiropoulos, Pantelis; Vasiliades, Lampros; Papaioannou, George; Loukas, Athanasios; Mylopoulos, Nikitas

    2015-04-01

    The overall objective of this work is the development of an Information System which could be used by stakeholders for the purposes of water management as well as for planning and strategic decision-making in semi-arid areas. An integrated modeling system has been developed and applied to evaluate the sustainability of water resources management strategies in Lake Karla watershed, Greece. The modeling system, developed in the framework of "HYDROMENTOR" research project, is based on a GIS modelling approach which uses remote sensing data and includes coupled models for the simulation of surface water and groundwater resources, the operation of hydrotechnical projects (reservoir operation and irrigation works) and the estimation of water demands at several spatial scales. Lake Karla basin was the region where the system was tested but the methodology may be the basis for future analysis elsewhere. ?wo (2) base and three (3) management scenarios were investigated. In total, eight (8) water management scenarios were evaluated: i) Base scenario without operation of the reservoir and the designed Lake Karla district irrigation network (actual situation) • Reduction of channel losses • Alteration of irrigation methods • Introduction of greenhouse cultivation ii) Base scenario including the operation of the reservoir and the Lake Karla district irrigation network • Reduction of channel losses • Alteration of irrigation methods • Introduction of greenhouse cultivation The results show that, under the existing water resources management, the water deficit of Lake Karla watershed is very large. However, the operation of the reservoir and the cooperative Lake Karla district irrigation network coupled with water demand management measures, like reduction of water distribution system losses and alteration of irrigation methods, could alleviate the problem and lead to sustainable and ecological use of water resources in the study area. Acknowledgements: This study has been supported by the research project "Hydromentor" funded by the Greek General Secretariat of Research and Technology in the framework of the E.U. co-funded National Action "Cooperation"

  1. Effectiveness of alternative management scenarios on the sediment load in a Mediterranean agricultural watershed

    Directory of Open Access Journals (Sweden)

    Ossama M. M. Abdelwahab

    2014-11-01

    Full Text Available The Annualised Agricultural Non-point Source model was used to evaluate the effectiveness of different management practices to control the soil erosion and sediment load in the Carapelle watershed, a Mediterranean medium-size watershed (506 km2 located in Apulia, Southern Italy. The model was previously calibrated and validated using five years of runoff and sediment load data measured at a monitoring station located at Ordona - Ponte dei Sauri Bridge. A total of 36 events were used to estimate the performance of the model during the period 2007-2011. The model performed well in predicting runoff, as the high values of the coefficients of efficiency and determination during the validation process showed. The peak flows predictions were satisfactory especially for the high flow events; the prediction capability of sediment load was good, even if a slight over-estimation was observed. Simulations of alternative management practices show that converting the most eroding cropland cells (13.5% of the catchment area to no tillage would reduce soil erosion by 30%, while converting them to grass or forest would reduce soil erosion by 36.5% in both cases. A crop rotation of wheat and a forage crop can also provide an effective way for soil erosion control as it reduces erosion by 69%. Those results can provide a good comparative analysis for conservation planners to choose the best scenarios to be adopted in the watershed to achieve goals in terms of soil conservation and water quality.

  2. Regionalization of SWAT Model Parameters for Use in Ungauged Watersheds

    Directory of Open Access Journals (Sweden)

    Indrajeet Chaubey

    2010-11-01

    Full Text Available There has been a steady shift towards modeling and model-based approaches as primary methods of assessing watershed response to hydrologic inputs and land management, and of quantifying watershed-wide best management practice (BMP effectiveness. Watershed models often require some degree of calibration and validation to achieve adequate watershed and therefore BMP representation. This is, however, only possible for gauged watersheds. There are many watersheds for which there are very little or no monitoring data available, thus the question as to whether it would be possible to extend and/or generalize model parameters obtained through calibration of gauged watersheds to ungauged watersheds within the same region. This study explored the possibility of developing regionalized model parameter sets for use in ungauged watersheds. The study evaluated two regionalization methods: global averaging, and regression-based parameters, on the SWAT model using data from priority watersheds in Arkansas. Resulting parameters were tested and model performance determined on three gauged watersheds. Nash-Sutcliffe efficiencies (NS for stream flow obtained using regression-based parameters (0.53–0.83 compared well with corresponding values obtained through model calibration (0.45–0.90. Model performance obtained using global averaged parameter values was also generally acceptable (0.4 ? NS ? 0.75. Results from this study indicate that regionalized parameter sets for the SWAT model can be obtained and used for making satisfactory hydrologic response predictions in ungauged watersheds.

  3. Tailored Watershed Assessment and Integrated Management (TWAIM: A Systems Thinking Approach

    Directory of Open Access Journals (Sweden)

    Joe Magner

    2011-06-01

    Full Text Available Control of non-point source (NPS water pollution remains elusive in the United States (US. Many US water-bodies which have been primarily impacted by NPS pollution have not achieved water quality goals set by Clean Water Act. Technological advances have been made since 1972, yet many water resources fail to meet water quality standards. Common Pool Resources Theory is considered to understand the human dimension of NPS pollution by exploring anthropogenic activities superimposed upon dynamic ecosystems. In the final analysis, priority management zones (PMZs for best management practice (BMP implementation must have buy-in from land managers. TWAIM is an iterative systems thinking approach to planning, collecting landscape and land use information and communicating systems understanding to stakeholders. Hydrologic pathways that link the physical, chemical and biological characteristics influence processes occurring in a watershed which drive stream health and ecological function. With better systems understanding and application by technical specialists, there is potential for improved stakeholder interaction and dialogue which could then enable better land use decisions. Issues of pollutant origin, transport, storage and hydraulic residence must be defined and communicated effectively to land managers within a watershed context to observe trends in water quality change. The TWAIM concept provides a logical framework for locally-led assessment and a means to communicate ecohydrologic systems understanding over time to the key land managers such that PMZs can be defined for BMP implementation.

  4. Targeting of Watershed Management Practices for Water Quality Protection

    Science.gov (United States)

    Ensuring a clean and adequate water supply implies conservative use of water and protecting water resources from pollution. Sediment, nutrient, and pesticide losses in runoff are major pollutants of surface waters in the Midwest. This publication addresses the targeting of best management practices ...

  5. The impacts of climate change on the hydrological cycle and on the water resource management of the Peribonka watershed

    International Nuclear Information System (INIS)

    This study evaluated the impacts of climate change on the water resource management in the Peribonka watershed by comparing the hydropower production of 3 power houses with the reliability and vulnerability associated with two climate change scenarios. The Peribonka catchment area was described along with scenarios of climate change for the watershed over a time horizon up to 2080. Synthetic time series for each scenario were then produced with a stochastic weather generator and were introduced in the HSAMI hydrological model in order to simulate future hydrological cycles. The reservoir system simulation model ResSim showed that the hydroelectric power plant Passes-Dangereuses, will experience either an increase in the annual hydroelectric production of 8 per cent or a reduction of 20 per cent, depending on the scenario considered. The simulation showed that the reliability of upstream reservoirs, namely Lakes Manouane and Peribonka, could decrease while their vulnerability could increase. This paper described the procedure used to develop the climatic change scenarios, the stages of hydrological modeling and the modeling of the hydrological cycle. The impacts of the climatic change scenarios on the flows were also presented along with a short discussion of recommendations to be considered for the next stages of the project. Subsequent stages of this water management project will relate specifically to the quantification of partial and total uncertainties associated artial and total uncertainties associated with general circulation models, methods of reduction of scale and the applied hydrological models. 20 refs., 1 tab., 5 figs

  6. Relating management practices and nutrient export in agricultural watersheds of the United States

    Science.gov (United States)

    Sprague, Lori A.; Gronberg, Jo Ann M.

    2012-01-01

    Relations between riverine export (load) of total nitrogen (N) and total phosphorus (P) from 133 large agricultural watersheds in the United States and factors affecting nutrient transport were evaluated using empirical regression models. After controlling for anthropogenic inputs and other landscape factors affecting nutrient transport-such as runoff, precipitation, slope, number of reservoirs, irrigated area, and area with subsurface tile drains-the relations between export and the area in the Conservation Reserve Program (CRP) (N) and conservation tillage (P) were positive. Additional interaction terms indicated that the relations between export and the area in conservation tillage (N) and the CRP (P) progressed from being clearly positive when soil erodibility was low or moderate, to being close to zero when soil erodibility was higher, to possibly being slightly negative only at the 90th to 95th percentile of soil erodibility values. Possible explanations for the increase in nutrient export with increased area in management practices include greater transport of soluble nutrients from areas in conservation tillage; lagged response of stream quality to implementation of management practices because of nitrogen transport in groundwater, time for vegetative cover to mature, and/or prior accumulation of P in soils; or limitations in the management practice and stream monitoring data sets. If lags are occurring, current nutrient export from agricultural watersheds may still be reflecting the influence of agricultural land-use practices that were in place before the implementation of these management practices.

  7. Studies of Giardia spp. and Cryptosporidium spp. in two adjacent watersheds.

    OpenAIRE

    Ong, C.; Moorehead, W; Ross, A.; Isaac-Renton, J.

    1996-01-01

    Two adjacent British Columbia, Canada, watersheds with similar topographical features were studied. Both the Black Mountain Irrigation District (BMID) and the Vernon Irrigation District (VID) serve rural agricultural communities which are active in cattle ranching. The present study was carried out in five phases, during which a total of 249 surface water samples were tested in the study watersheds. The aims of these phases were to determine levels of parasite contamination in raw water sampl...

  8. Handling Water through Irrigation Watershed Management for Coping with Stream Pollution Dilution in Phetchaburi River, Thailand

    OpenAIRE

    Soulivanh Vorovong; Kasem Chunkao; Surat Baulert

    2014-01-01

    The research was aimed to find means how to handle water at Phetchaburi diversion dam for coping with stream pollution in Phetchaburi River through irrigation watershed management. There eight sampling points for collecting water samples since the year of 2002 to 2013 for analyzing water quality in relation to release water flow in consecutive velocity of 22.4, 100, and 377m3/s in order to obtain the better diluted stream water. Accordance with the same trends of water quality indicators, thi...

  9. Decision Support System integrated with Geographic Information System to target restoration actions in watersheds of arid environment: A case study of Hathmati watershed, Sabarkantha district, Gujarat

    Science.gov (United States)

    Patel, Dhruvesh P.; Srivastava, Prashant K.; Gupta, Manika; Nandhakumar, Naresh

    2015-02-01

    Watershed morphometric analysis is important for controlling floods and planning restoration actions. The present study is focused on the identification of suitable sites for locating water harvesting structures using morphometric analysis and multi-criteria based decision support system. The Hathmati watershed of river Hathmati at Idar taluka, Sabarkantha district, Gujarat is experiencing excessive runoff and soil erosion due to high intensity rainfall. Earth observation dataset such as Digital Elevation Model and Geographic Information System are used in this study to determine the quantitative description of the basin geometry. Several morphometric parameters such as stream length, elongation ratio, bifurcation ratio, drainage density, stream frequency, texture ratio, form factor, circularity ratio, and compactness coefficient are taken into account for prioritization of Hathmati watershed. The overall analysis reveals that Hathmati comprises of 13 mini-watersheds out of which, the watershed number 2 is of utmost priority because it has the highest degradation possibilities. The final results are used to locate the sites suitable for water harvesting structures using geo-visualization technique. After all the analyses, the best possibilities of check dams in the mini-watersheds that can be used for soil and water conservation in the watershed are presented.

  10. USING HISTORICAL BIOLOGICAL DATA TO EVALUATE STATUS AND TRENDS IN THE BIG DARBY CREEK WATERSHED (OHIO, USA)

    Science.gov (United States)

    Assessment of watershed ecological status and trends is challenging for managers who lack randomly or consistently sampled data, or monitoring programs developed from a watershed perspective. This study investigated analytical approaches for assessment of status and trends using ...

  11. Quantifying the Functionality of Ephemeral Streams at the Watershed Scale for Land Management Applications

    Science.gov (United States)

    O'Connor, B. L.; Hamada, Y.; Bowen, E. E.; Wuthrich, K. K.; Grippo, M. A.

    2013-12-01

    Land development and associated disturbances in arid environments can adversely affect the ecological functionality of ephemeral stream channels. Land use managers have limited methodologies available for assessing low-impact development plans, or for monitoring changes in stream functionality as land use changes are implemented. The development of utility-scale solar energy facilities is underway in the southwestern United States. Federal and state agencies have developed plans to concentrate facilities in specific regions to minimize transmission limitations (e.g., the Bureau of Land Management's Solar Energy Zones cover 1,100 km2). However, multiple facility footprints in a single desert valley have the potential to drastically alter the natural pattern of ephemeral stream networks. This study focuses on quantifying the sensitivity of ephemeral streams with respect to land disturbance impacts on flow and sediment conveyance, groundwater recharge, and the loss of soil and vegetative habitats. An initial assessment used publicly-available geospatial data (typically 10- to 30-m resolution) on topography, surficial geology, and soil characteristics, as well as data on historical peak discharges and aerial photographs. These datasets were used to inform a professional judgment, score-based ranking of potential land disturbance impacts on the functionality of ephemeral streams. The results were limited to mapped stream channels in the National Hydrography Dataset, but suggested that hydrological and geomorphic impacts were a greater concern in valley piedmont regions, and that habitat concerns were greater in the valley regions where vegetation is sparsely distributed. Current efforts are focused on using a remote sensing approach to obtain high-resolution information on topography, soil, and vegetation in order to map detailed ephemeral stream networks, measure channel bathymetry characteristics, and use spectral indices of soil and vegetation to develop surrogate measures of stream ecological functionality. The initial results for a small watershed (110 km2) using stereoscopic, sub-meter resolution aerial images, detected an increase of more than 100% in identified ephemeral stream channels and habitat patterns were more spatially correlated with ephemeral stream networks than was observed for the initial assessment approach. The eventual goal of these efforts is to refine the methodology for quantifying the disturbance sensitivity of ephemeral streams, from professional judgment rankings to spectral indices of stream functionality, and to close the spatial gap between the need for large-scale assessments for land management planning and the small-scale analyses and data requirements for quantifying ephemeral stream functionality.

  12. 3D Agro-ecological Land Use Planning Using Surfer Tool for Sustainable Land Management in Sumani Watershed, West Sumatra Indonesia

    Directory of Open Access Journals (Sweden)

    Aflizar

    2013-09-01

    Full Text Available Estimation of soil erosion 3D (E3D provides basic information that can help manage agricultural areas sustainably, which has not been sufficiently conducted in Indonesia. Sumani watershed is main rice production area in West Sumatra which has experienced environmental problem such as soil erosion and production problem in recent years. 3D Agro-ecological land use planning based on soil erosion 3D hazard and economic feasibility analyses consist of production cost and prize data for each crop. Using a kriging method in Surfer tool program, have been developed data base from topographic map, Landsat TM image, climatic data and soil psychochemical properties. Using these data, the Universal Soil Loss Equation was used for spatial map of soil erosion 3D and proposed a 3D agro-ecological land use planning for sustainable land management in Sumani watershed. A 3D Agro-ecological land use planning was planned under which the land use type would not cause more than tolerable soil erosion (TER and would be economically feasible. The study revealed that the annual average soil erosion from Sumani watershed was approximately 76.70 Mg ha-1yr-1 in 2011 where more than 100 Mg ha-1yr-1 was found on the cultivated sloping lands at agricultural field, which constitutes large portion of soil erosion in the watershed. Modification of land use with high CP values to one with lower CP values such as erosion control practices by reforestation, combination of mixed garden+beef+chicken (MBC, terrace (TBC or contour cropping+beef+chicken (CBC and sawah+buffalo+chicken (SBC could reduce soil erosion rate by 83.2%, from 76.70 to 12.9 Mg ha-1 yr-1, with an increase in total profit from agricultural production of about 9.2% in whole Sumani watershed.

  13. Assessment and modelling of the influence of man-made networks on the hydrology of a small watershed: implications for fast flow components, water quality and landscape management

    Science.gov (United States)

    Carluer, Nadia; Marsily, Ghislain De

    2004-01-01

    Up to now, most watershed models have been focused on the representation of 'natural' flow and transport processes. In this paper, we discuss the role of man-made networks, such as ditches, roads, hedge rows and hedges, underground drainage by buried pipes, etc. The influence of such features on the hydrology of a watershed may be of particular importance if the aim of the modelling is to predict the effect of landscape management or the fate of contaminants, e.g. pesticides, when a rain event occurs very soon after their spreading on the soil surface. It is likely that such artificial networks may act as conduits or short-circuits for the transport of contaminants, either dissolved or sorbed on soil particles, by-passing some of the retardation mechanisms such as sorption in the soil, retention of surface runoff by grass verges, biodegradation in the unsaturated zone, etc. We first present a small watershed on which the study was conducted, the Kervidy, which is a 5 km 2 'bocage ' catchment in Brittany, France. The man-made networks were observed and their extent and functioning described. We then included the potential hydraulic role of these networks in a distributed watershed model (TOPOG, [J. Hydrol. 150 (1993) 665]). This modified model, ANTHROPOG, was run, for comparison, with and without the man-made network; sensitivity tests were also made to assess the hydrologic importance of these networks. It was shown that they can have a very significant effect on the functioning of a watershed. We conclude on the relevance of the improved distributed model for the management of rural landscapes, and on the type of additional data needed to calibrate the model with parameters representative of the true processes. Bocage is a landscape with grassland, hedges, and occasional trees—often apple trees—typical of Brittany and Normandy.

  14. Streamflow allocation in arid watersheds: a case study in Northwestern China

    OpenAIRE

    He, C.; Zhang, L.; Fu, L; Luo, Y; L. Li; C. DeMarchi

    2012-01-01

    This paper proposes a framework for allocating water resources among the upper, middle, and lower reaches of arid watersheds to meet the multiple demands for water, including rehabilitation of downstream ecosystem. The framework includes: (1) hydrologic simulation of distribution of water resources in the study watershed; (2) development of water allocation criteria; and (3) implementation of the water allocation plan. The advantages of the proposed framework are: (1) spatial integration; ...

  15. Effects of watershed management practice on short-term variation in stream discharge

    Science.gov (United States)

    Worman, L. A.; Lindstrom, G.

    2010-12-01

    Recent research indicates that changes in watershed management practice can affect the discharge spectrum (periodicity) of river basins more than changes in climate and precipitation. Theoretical considerations show that decrease of water depth in stream networks caused by e.g. drainage works in agricultural areas would increase the steepness in the power spectrum of runoff. Wavelet analysis offers a natural choice for representation of non-stationary (drifting) statistics and is used for reference, but is difficult to relate to hydro-mechanical theory for the runoff process. Windowed Fourier spectra were used to represent gradual changes in runoff statistics during the snow free period of the year. An increase of the runoff spectrum was observed for daily discharge observations throughout the 20th century in a pronounced agricultural watershed in Sweden with an area of 953 km^2. For the same period, no trends were observed in the mean value of precipitation or its power spectrum. We find that the drift in spectrum is primarily linked to the periods shorter than 4 days, thus, indicating a successive change in the multi-fractal nature of the runoff spectrum. Since changes are linked to processes with time scales shorter than 4 days, it is likely that the underlying causes include morphological alterations of the stream hydraulics, like ditching and removal of stream pools. Corresponding, but weaker drifts of the runoff spectra were observed also in other watersheds with more pristine nature with size range of 241 - 3710 km^2, as well as a hydropower regulated river basin with a size of 25,058 km^2. The river regulation suddenly induced a drop of the spectrum slope for periods between 4 to 50 days, whereas the the increase in spectrum slope for shorter times is fairly consistent with the other rivers. The changes in runoff spectra can be explained by using the Fourier spectrum analysis, which can be linked to the kinematic wave theory for water surface flows. In the agricultural watershed there is a documented significant alteration in the landscape management during the 20th century including a gradual decrease in surface water area and volume.

  16. Evaluating the effectiveness of management practices on hydrology and water quality at watershed scale with a rainfall-runoff model.

    Science.gov (United States)

    Liu, Yaoze; Bralts, Vincent F; Engel, Bernard A

    2015-04-01

    The adverse influence of urban development on hydrology and water quality can be reduced by applying best management practices (BMPs) and low impact development (LID) practices. This study applied green roof, rain barrel/cistern, bioretention system, porous pavement, permeable patio, grass strip, grassed swale, wetland channel, retention pond, detention basin, and wetland basin, on Crooked Creek watershed. The model was calibrated and validated for annual runoff volume. A framework for simulating BMPs and LID practices at watershed scales was created, and the impacts of BMPs and LID practices on water quantity and water quality were evaluated with the Long-Term Hydrologic Impact Assessment-Low Impact Development 2.1 (L-THIA-LID 2.1) model for 16 scenarios. The various levels and combinations of BMPs/LID practices reduced runoff volume by 0 to 26.47%, Total Nitrogen (TN) by 0.30 to 34.20%, Total Phosphorus (TP) by 0.27 to 47.41%, Total Suspended Solids (TSS) by 0.33 to 53.59%, Lead (Pb) by 0.30 to 60.98%, Biochemical Oxygen Demand (BOD) by 0 to 26.70%, and Chemical Oxygen Demand (COD) by 0 to 27.52%. The implementation of grass strips in 25% of the watershed where this practice could be applied was the most cost-efficient scenario, with cost per unit reduction of $1m3/yr for runoff, while cost for reductions of two pollutants of concern was $445 kg/yr for Total Nitrogen (TN) and $4871 kg/yr for Total Phosphorous (TP). The scenario with very high levels of BMP and LID practice adoption (scenario 15) reduced runoff volume and pollutant loads from 26.47% to 60.98%, and provided the greatest reduction in runoff volume and pollutant loads among all scenarios. However, this scenario was not as cost-efficient as most other scenarios. The L-THIA-LID 2.1 model is a valid tool that can be applied to various locations to help identify cost effective BMP/LID practice plans at watershed scales. PMID:25553544

  17. Sustainable forest management: a challenging task in the siran watershed of district Mansehra in the NWFP of Pakistan

    International Nuclear Information System (INIS)

    Forests play an important socio-economic and environmental role on earth. Exploitation of forest resources within the carrying capacity of the natural ecosystem has always ensured their sustainability but in recent decades man has overexploited these resources to meet various needs. Pakistan with only 4.8% of its total land area under forests was also experiencing unsustainable forest management. In the Siran Watershed of District Mansehra in the North West Frontier Province (NWFP) of Pakistan, forests were exploited to meet not only the domestic and commercial wood-fuel needs but also timber needs of the local and external markets. Moreover, the local communities as a source of income generation have also used forest resources to increase their cash income earnings. Analysis of time series forest cover change in the past three decades was done in three adjacent sub-watersheds having different property right regimes. The GIS based spatial analysis showed that despite government efforts to conserve these forests, 75% of the forests were completely converted either into regeneration area (34%) or barren areas (41 %) during the past three decades. The Protected Forests have lost 41 % of its cover and the Guzara Forests 34%. Results show that the forest degradation stress has greatly increased in the eighties and afterwards. Using stakeholder analysis the key wood demanding stake holders in terms of their wood demand state were the local communities, the external commercie local communities, the external commercial timber consumers, tobacco growers and Afghan refugees. The wood supplies stake holders were the Forest Department that controls the Common Pool Forests (CPF), the Forest Development Corporation (FDC), the Forest Cooperative Societies (FCS) and the farm foresters. Analysis of the cause effect relationship of the system shows that the pressure factors of increased wood demand by various stake holders coupled with the enabling factors of the market failure, government failure and institutional failure has led to unsustainable forest management during the past three decades in the study area. Strategic analysis of the system indicates that lack of national conservation based forest management has further aggravated the problem. Moreover, SWOT (Strength, Weaknesses, Opportunities and Threats) analysis show that the internal weaknesses and external threats outweigh the internal strengths and external opportunities of the Forest Department. Based on these analytical results, priority issues were evaluated in terms of their efficiency, social soundness, institutional acceptability and environmental sustainability. The proposed sustainable forest management options which fulfilled this criteria were the community based forest management, wood demand and supply management interventions, institutional restructuring and income generation opportunities using integrated forest management in the study area. (author)

  18. Establishing ecological and social continuities: new challenges to optimize urban watershed management

    Science.gov (United States)

    Mitroi, V.; de Coninck, A.; Vinçon-Leite, B.; Deroubaix, J.-F.

    2014-09-01

    The (re)construction of the ecological continuity is stated as one of the main objectives of the European Water Framework Directive for watershed management in Europe. Analysing the social, political, technical and scientific processes characterising the implementation of different projects of ecological continuity in two adjacent peri-urban territories in Ile-de-France, we observed science-driven approaches disregarding the social contexts. We show that, in urbanized areas, ecological continuity requires not only important technical and ecological expertise, but also social and political participation to the definition of a common vision and action plan. Being a challenge for both, technical water management institutions and "classical" ecological policies, we propose some social science contributions to deal with ecological unpredictability and reconsider stakeholder resistance to this kind of project.

  19. Multiobjective Optimization Combining BMP Technology and Land Preservation for Watershed-based Stormwater Management

    Science.gov (United States)

    McGarity, A. E.

    2009-12-01

    Recent progress has been made developing decision-support models for optimal deployment of best management practices (BMP’s) in an urban watershed to achieve water quality goals. One example is the high-level screening model StormWISE, developed by the author (McGarity, 2006) that uses linear and nonlinear programming to narrow the search for optimal solutions to certain land use categories and drainage zones. Another example is the model SUSTAIN developed by USEPA and Tetra Tech (Lai, et al., 2006), which builds on the work of Yu, et al., 2002), that uses a detailed, computationally intensive simulation model driven by a genetic solver to select optimal BMP sites. However, a model that deals only with best management practice (BMP) site selections may fail to consider solutions that avoid future nonpoint pollutant loadings by preserving undeveloped land. This paper presents results of a recently completed research project in which water resource engineers partnered with experienced professionals at a land conservation trust to develop a multiobjective model for watershed management. The result is a revised version of StormWISE that can be used to identify optimal, cost-effective combinations of easements and similar land preservation tools for undeveloped sites along with low impact development (LID) and BMP technologies for developed sites. The goal is to achieve the watershed-wide limits on runoff volume and pollutant loads that are necessary to meet water quality goals as well as ecological benefits associated with habitat preservation and enhancement. A nonlinear programming formulation is presented for the extended StormWISE model that achieves desired levels of environmental benefits at minimum cost. Tradeoffs between different environmental benefits are generated by multiple runs of the model while varying the levels of each environmental benefit obtained. The model is solved using piecewise linearization of environmental benefit functions where each linear segment of represents a different option for reducing stormwater runoff volumes and pollutant loadings. The solutions space is comprised of optimal levels of expenditure for categories of BMP's by land use category and optimal land preservation expenditures by drainage zone. To demonstrate the usefulness of the model, results from its application to the Little Crum Creek watershed in suburban Philadelphia are presented. The model has been used to assist a watershed association and four municipalities to develop an action plan for restoration of water quality on this impaired stream. References Lai, F., J. Zhen, J. Riverson, and L. Shoemaker (2006). "SUSTAIN - An Evaluation and Cost-Optimization Tool for Placement of BMPs," ASCE World Environmental and Water Resource Congress 2006. McGarity, A.E. (2006). A Cost Minimization Model to Priortize Urban Catchments for Stormwater BMP Implementation Projects. American Water Resources Association National Meeting, Baltimore, MD, November, 2006. Yu, S., J. X. Zhen, and S.Y. Zhai, (2002). Development of Stormwater Best Management Practice Placement Strategy for the Virginia Department of Transportation. Final Contract Report, VTRC 04-CR9, Virginia Transportation Research Council.

  20. Approaches of Integrated Watershed Management Project: Experiences of the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)

    Science.gov (United States)

    Mula, Rosana P.; Wani, Suhas P.; Dar, William D.

    2008-01-01

    The process of innovation-development to scaling is varied and complex. Various actors are involved in every stage of the process. In scaling the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)-led integrated watershed management projects in India and South Asia, three drivers were identified--islanding approach,…

  1. Watershed Sustainability Index Assessment of a Watershed in Chhattisgarh, India

    Directory of Open Access Journals (Sweden)

    Surendra Kumar Chandniha

    2014-08-01

    Full Text Available In order to achieve continuous sustainable development in a watershed, it is desired that natural resources such as water are assessed and utilized efficiently. Generally, water resources are assessed considering watershed as a unit. Since the water requirements and availability varies in space and time, it is desired to manage the water resources so as to satisfy the demand on sustainable basis. Further, in order to achieve sustainability, it is necessary to consider social, economic and environment aspects of water resources. However it is difficult to bring all these indicators on a single platform. In this study, a watershed sustainability index (WSI which integrates the hydrology, environment, life and policy (HELP has been suggested for Piperiya watershed in Chhattisgarh state of India. This watershed has an area of about 2400km2 and is part of Hasdeo river basin which is located in Koriya district of Chhattisgarh. Further, the majority of population in the area is tribal and illiterate. Providing safe and adequate water to the masses is a challenge in this area. The District has numerous hill ranges with rocky geological formation having steep slope. The district faces an acute water shortage for drinking as well as irrigation. Further, the area has number of coal mines and coal washing plants, which contaminate the surface water as well as groundwater. Thus, the availability of safe and fresh water is quite limited. It has been noticed that the WSI for this watershed is about 0.60, which is moderate level of sustainability. In order to improve the water sustainability in this watershed, a watershed management framework and its utilizationhas been elaborated.

  2. Effects of integrated watershed management on livestock water productivity in water scarce areas in Ethiopia

    Science.gov (United States)

    Descheemaeker, Katrien; Mapedza, Everisto; Amede, Tilahun; Ayalneh, Wagnew

    In the water scarce Lenche Dima watershed in the northern Ethiopian highlands community based integrated watershed management was implemented to fight land degradation, raise agricultural productivity and improve farmers’ livelihoods. The effects of two interventions, namely exclosures and water harvesting structures, were assessed based on data from farmers’ interviews, measurements of feed biomass production, and estimates of energy production and requirements. Water used for livestock feed production was obtained through simple soil water balance modelling. By protecting 40% of the rangelands, the water productivity of the feed increased by about 20%. This indicated that exclosure establishment could lead to similar improvements in livestock water productivity (LWP, defined as the ratio of livestock benefits over the water used in producing these). Water harvesting structures ensured year-round water availability in the homestead, which resulted in less energy used for walking to drinking points. A considerable amount of energy was thus saved, which could be used for livestock production and improved animal health without additional water use. Besides restoring regulating and supporting ecosystem services, both interventions led to a more efficient use of the scarce water resources for biomass and livestock production.

  3. Curative vs. preventive management of nitrogen transfers in rural areas: lessons from the case of the Orgeval watershed (Seine River basin, France).

    Science.gov (United States)

    Garnier, J; Billen, G; Vilain, G; Benoit, M; Passy, P; Tallec, G; Tournebize, J; Anglade, J; Billy, C; Mercier, B; Ansart, P; Azougui, A; Sebilo, M; Kao, C

    2014-11-01

    The Orgeval watershed (104 km(2)) is a long-term experimental observatory and research site, representative of rural areas with intensive cereal farming of the temperate world. Since the past few years, we have been carrying out several studies on nitrate source, transformation and transfer of both surface and groundwaters in relation with land use and agriculture practices in order to assess nitrate (NO3(-)) leaching, contamination of aquifers, denitrification processes and associated nitrous oxide (N2O) emissions. A synthesis of these studies is presented to establish a quantitative diagnosis of nitrate contamination and N2O emissions at the watershed scale. Taking this watershed as a practical example, we compare curative management measures, such as pond introduction, and preventive measures, namely conversion to organic farming practices, using model simulations. It is concluded that only preventive measures are able to reduce the NO3(-) contamination level without further increasing N2O emissions, a result providing new insights for future management bringing together water-agro-ecosystems. PMID:24935024

  4. Analysis of livelihood security: a case study in the Kali-Khola watershed of Nepal.

    Science.gov (United States)

    Bhandari, B S; Grant, M

    2007-10-01

    This paper examines household livelihoods in highland and lowland communities of the Kali-Khola agricultural watershed in western Nepal on the basis of economic, ecological and social security indicators. Significant differences were found in soil fertility status, pests and diseases management, risk and uncertainties, use of agrochemicals and access to social services. No remarkable variations were found in crop diversification, annual agricultural income and food sufficiency. However, uncertainty and risk in agricultural production is relatively low in highland communities. The findings reveal that agriculture production alone is not a viable livelihood option for agricultural watershed communities in Nepal. The households growing crops with hired labour have relatively sustainable livelihoods in Nepal's agricultural watersheds. Insufficient agricultural land, insufficient working manpower within a family, and lack of access to ecological agricultural services are prime factors in being livelihood insecure in agricultural watershed communities. Therefore, long-term policies and plans need to be developed for the empowerment of local farmers and to support rural livelihoods with adaptable and flexible income-generating strategies, resilient resource management institutions and enhancement of knowledge, skills and social capital. PMID:17030404

  5. Watershed Management: An Option to Sustain Dam and Reservoir Function in Ethiopia

    Directory of Open Access Journals (Sweden)

    Kebede Wolka Wolancho

    2012-01-01

    Full Text Available Inappropriate use of land for agriculture and poor management of its ecosystem lead to environmental problems such as land degradation through soil erosion. Accelerated soil erosion is a major watershed problem in many developing countries including Ethiopia. Climate change, which apparently causes major climatic events such as flooding or drought, also accelerates soil erosion. Soil erosion in various forms such as sheet, rill, gully bank and bed, river bed and bank and landslides provide sediment to critical water bodies. Nutrients and chemicals from cropland and urban sewage are transported into the water systems. Many reservoirs which have been established for hydroelectric power, urban water supply and irrigation accumulate an alarmingly higher level of sediment than expected. Koka, Angereb, Legedadi, Gilgel Gibe I and other reservoirs are threatened by this accelerated sedimentation. Consequences of reservoir sedimentation include the loss of storage capacity and its subsequent effects. These effects include water supply shortages for human consumption, irrigation and hydropower; increased hydro-equipment maintenance and repair; a decline in water quality; the cost of removing sediment; blockage of navigational waters and loss of recreation opportunities. Aquatic ecosystems are modified by increased deposition of sediments and adsorbed or dissolved nutrients and chemicals, which commonly causes eutrophication which in turn negatively influences habitats of fish and other organisms. Some of the techniques suggested to reduce reservoir sediment concentration are technically less feasible as it requires design considerations during construction (which is difficult to implement for the existing dams. Removal of sediment is also economically demanding. Among the approaches and techniques proposed and implemented, integrated participatory watershed management is strongly recommended to reduce sediment inflow in sustainable pattern.

  6. Consideration for modelling studies of migration of accidentally released radionuclides in a river watershed

    International Nuclear Information System (INIS)

    Concerning radionuclides that might be released in an event of an accident from a nuclear facility, much attention has been paid to the migration pathways including the atmospheric deposition and subsequent inflow to surface water bodies since the Chernobyl nuclear accident in 1986. In European countries, computer-coded systems for predicting the migration including those pathways and providing scientific supports for decision makers to manage the contamination have been developed. This report is a summary of presentations and discussion made at the occasion of the visit of Dr. Monte in order to have directions related to the current subject of research, development of a mathematical model of the behavior of radionuclides in a river watershed. Those presentations and discussions were made at JAERI and also at prominent universities and institutes of Japan involved in this study field. As a result of these discussions, distinct advantages and key issues in use of a mathematical model for prediction of the migration of radionuclides in a river watershed have been identified and analyzed. It was confirmed that the use of mathematical modeling has distinct advantages. Re-arrangement of the existing experimental knowledge on the environment in an ordered way according to a theory (a mathematical model) will lead to a new angle to consider a problem in that environment, despite several gaps in the data array. A model to assess the radionuclide behaviour in contaminated aquatic ecosystems is a basis of decision analysis tools for helping decision-makers to select the most appropriate intervention strategies for the ecosystems. Practical use of a mathematical model and continuous effort in its validation were recognized as crucial. (author)

  7. Field studies of streamflow generation using natural and injected tracers on Bickford and Walker Branch Watersheds

    International Nuclear Information System (INIS)

    Field studies of streamflow generation were undertaken on two forested watersheds, the West Road subcatchment of Bickford Watershed in central Massachusetts and the West Fork of Walker Branch Watershed in eastern Tennessee. A major component of the research was development of a two-stage methodology for the use of naturally-occurring 222Rn as a tracer. The first of the two stages was solving a mass-balance equation for 222Rn around a stream reach of interest in order to calculate Rnq, the 222Rn content of the lateral inflow to the reach; a conservative tracer (chloride) and a volatile tracer (propane) were injected into the study stream to account for lateral inflow to, and volatilization from, the study reach. The second stage involved quantitative comparison of Rnq to the measured 222Rn concentrations of different subsurface waters in order to assess how important these waters were in contributing lateral inflow to the stream reach

  8. Synthesizing Drainage Morphology of Tectonic Watershed in Upper Ing Watershed (Kwan Phayao Wetland Watershed

    Directory of Open Access Journals (Sweden)

    Rangsan Ket-ord

    2012-12-01

    Full Text Available The study was aimed to synthesize drainage morphology of tectonic watershed in upper Ing Watershed in Phayao province, northern Thailand. The morphometric analysis of 12 sub-watersheds was carried out using Geographic Information System (GIS software-ArcGIS 9.3 for analysing drainage pattern and calculating the 16 theoretical values of drainage morphometric parameters in 3 aspects including linear aspect, areal aspect and relief aspect. The geologic formation and structure are also overlain on drainage morphological map to determine their influence on drainage patterns. The results showed that most areas were dendritic drainage pattern, while rectangular drainage pattern occurs relative to the direction of the fault. Trellis drainage pattern shown on the northeast of the watershed in Mae Puem sub-watershed which the rock layers bend or tilt in syncline structural geology. The upper Ing watershed was classified as a third to fifth order streams, which controlled by physiographic and structural conditions. The tectonic force formed a graben basin which Kwan Phayao wetland is the lowest area of this graben while the high mountain ranges in the western area. As a result, the river is flowing from western highland to lowland quickly especially in the western sub-watershed, this result affecting low permeability, high discharge of runoff and intensity of erosion processes which the calculated drainage morphometric parameters showed the results according to their appearance. It could be said that the drainage patterns in this area is influenced by tectonic structure rather than geologic formation. This study provided more understanding in drainage morphological characteristics of the upper Ing watershed for planning sustainable management of the Kwan Phayao wetland.

  9. Assessment of soil erosion using RUSLE and GIS: a case study of the Maotiao River watershed, Guizhou Province, China

    Science.gov (United States)

    Yue-Qing, Xu; Jian, Peng; Xiao-Mei, Shao

    2009-02-01

    Due to the existence of fragile karst geo-ecological environments, such as environments with extremely poor soil cover, low soil-forming velocity, and fragmentized terrain and physiognomy, as well as inappropriate and intensive land use, soil erosion is a serious problem in Guizhou Province, which is located in the centre of the karst areas of southwestern China; evaluation of soil loss and spatial distribution for conservation planning is urgently needed. This study integrated the revised universal soil loss equation (RUSLE) with a GIS to assess soil loss and identify risk erosion areas in the Maotiao River watershed of Guizhou. Current land use/cover and management practices were evaluated to determine their effects on average annual soil loss and future soil conservation practices were discussed. Data used to generate the RUSLE factors included a Landsat Thematic Mapper image (land cover), digitized topographic and soil maps, and precipitation data. The results of the study compare well with the other studies and local data, and provide useful information for decision makers and planners to take appropriate land management measures in the area. It thus indicates the RUSLE-GIS model is a useful tool for evaluating and mapping soil erosion quantitatively and spatially at a larger watershed scale in Guizhou.

  10. Valuing soft components in agricultural water management interventions in meso-scale watersheds: A review and synthesis

    Directory of Open Access Journals (Sweden)

    Jennie Barron

    2011-06-01

    Full Text Available Meso-scale watershed management (1-10,000 km2 is receiving growing attention as the spatial scale where policy in integrated water resource management (IWRM goes into operational mode. This is also where aggregated field-level agricultural water management (AWM interventions may result in externalities. But there is little synthesised 'lessons learned' on the costs and benefits of interventions at this scale. Here we synthesise selected cases and meta-analyses on the investment cost in 'soft components' accompanying AWM interventions. The focus is on meso-scale watersheds in Asia, sub-Saharan Africa and Latin America. We found very few cases with benefit-to-cost evaluation at full project level, or separate costing of hard and soft components. The synthesis suggests higher development success rates in communities with an initial level of social capital, where projects were implemented with cost- and knowledge-sharing between involved stakeholders, and where one or more 'agents of change' were present to facilitate leadership and communications. There is a need to monitor and evaluate both the external and the internal gains and losses in a more systematic manner to help development agents and other investors to ensure wiser and more effective investments in AWM interventions and watershed management.

  11. Assessment of temporal hydrologic anomalies coupled with drought impact for a transboundary river flow regime: The Diyala watershed case study

    Science.gov (United States)

    Al-Faraj, Furat A. M.; Scholz, Miklas

    2014-09-01

    Recent increases in human activities in shared river basins have unquestionably raised concerns about potential hydrological impacts, especially impacts of dams and large-scale water withdrawal schemes in the highlands. Anthropogenic pressures twinned with drought impacts have exacerbated water management challenges. This article assesses the cumulative consequences of upstream anthropogenic pressures and drought spells on temporal river flow regimes for the downstream country. The size and complexity of problems confronting transboundary river watersheds makes it necessary to use a representative example basin to study the problems and potential solutions. The Diyala (S?rv?n) river basin, which shares dozens of transboundary watersheds between Iraq and Iran, has been selected as a representative case study. A subset of the Indicators of Hydrologic Alteration (IHA) was utilised and climate variability was considered in assessing the combined effect of various forms of upstream human-river regulations and climatic conditions on natural flow regimes in the downstream state. Findings indicated that the anthropogenic river-regulation coupled with the impact of drought periods have noticeably modified the natural flow paradigm. The yearly average runoffs, which are no longer available for the downstream country, have soared to very high levels, particularly over the last fifteen years. More adverse impacts were detected in the non-rainy season. Findings reveal also that damming and considerable water diversion to large-scale irrigation projects in the upstream state are the main regulations affecting the management of shared water resources in the downstream country.

  12. Eliciting stakeholder values for coral reef management tasks in the Guánica Bay watershed, Puerto Rico

    Science.gov (United States)

    The EPA is developing a valuation protocol for southwest Puerto Rico that will support the US Coral Reef Task Force?s (USCRTF) Partnership Initiative in the Guánica Bay/Rio Loco (GB/RL) Watershed. The GB/RL watershed is located in southwestern Puerto Rico and includes the urbaniz...

  13. Estimation of Urban Growth Impact on River Ecosystems through Remote Sensing and GIS Techniques: A Case Study of the Cahaba Watershed Area

    Science.gov (United States)

    Caliskan, S.; Campbell, K.; Cowart, K.; Foreman, M.; Keyes, D. E.; Olson, J.; Padgett-Vasquez, S.

    2011-12-01

    Landscape transformations are the most widespread and potential threat to watershed ecosystems. Different land transformations such as urbanization, deforestation, and expansion of agricultural areas impact land cover, hydrology, and terrestrial and aquatic linkages in the watershed. The Cahaba River, located in Alabama, is among the most biologically diverse rivers in North America, and supplies water to 20% of Alabama residents. The largest metropolitan area in Alabama, the city of Birmingham, is found within the upper sub-watersheds of the Cahaba River watershed. As the city and its population grow there has also been an increase in environmental concern over the recent declines of aquatic species, a rise in endangered wildlife, and issues of water quality, in particular surface runoff and sedimentation. The main objective of this research is to assess the land use and land cover changes and their impacts on the biodiversity and different aquatic habitat species on the Cahaba Watershed. To investigate the land cover changes, LandSAT 5 TM scenes from 2001, 2006 and 2010 were used to derive vegetation cover changes and apply spatio-temporal analyses. The second objective of the study is to establish a GIS model to integrate the social and physical factors impacting the biodiversity with remotely sensed data. The final objective is to apply statistical analyses to investigate the habitat degradation with results of the GIS model. Findings and end products will be vital to policy makers for the Cahaba River Society, City of Birmingham, and Alabama Department of Environmental Management in development of conservation strategies and new land-use plans pertaining to the Cahaba River watershed.

  14. Ecosystem services valuation to support decisionmaking on public lands—A case study of the San Pedro River watershed, Arizona

    Science.gov (United States)

    Bagstad, Kenneth J.; Semmens, Darius; Winthrop, Rob; Jaworksi, Delilah; Larson, Joel

    2012-01-01

    This report details the findings of the Bureau of Land Management–U.S. Geological Survey Ecosystem Services Valuation Pilot Study. This project evaluated alternative methods and tools that quantify and value ecosystem services, and it assessed the tools’ readiness for use in the Bureau of Land Management decisionmaking process. We tested these tools on the San Pedro River watershed in northern Sonora, Mexico, and southeast Arizona. The study area includes the San Pedro Riparian National Conservation Area (managed by the Bureau of Land Management), which has been a focal point for conservation activities and scientific research in recent decades. We applied past site-specific primary valuation studies, value transfer, the Wildlife Habitat Benefits Estimation Toolkit, and the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) and Artificial Intelligence for Ecosystem Services (ARIES) models to value locally important ecosystem services for the San Pedro River watershed—water, carbon, biodiversity, and cultural values. We tested these approaches on a series of scenarios to evaluate ecosystem service changes and the ability of the tools to accommodate scenarios. A suite of additional tools were either at too early a stage of development to run, were proprietary, or were place-specific tools inappropriate for application to the San Pedro River watershed. We described the strengths and weaknesses of these additional ecosystem service tools against a series of evaluative criteria related to their usefulness for Bureau of Land Management decisionmaking. Using these tools, we quantified gains or losses of ecosystem services under three categories of scenarios: urban growth, mesquite management, and water augmentation. These results quantify tradeoffs and could be useful for decisionmaking within Bureau of Land Management district or field offices. Results are accompanied by a relatively high level of uncertainty associated with model outputs, valuation methods, and discount rates applied. Further guidance on representing uncertainty and applying uncertain results in decisionmaking would benefit both tool developers and those offices in using ecosystem services to compare management tradeoffs. Decisionmakers and Bureau of Land Management managers at the State-, district-, and field-office level would also benefit from continuing model improvements, training, and guidance on tool use that can be provided by the U.S. Geological Survey, the Bureau of Land Management, and the Department of the Interior. Tradeoffs were identified in the level of effort needed to parameterize and run tools and the amount and quality of information they provide to the decision process. We found the Wildlife Habitat Benefits Estimation Toolkit, Ecosystem Services Review, and United Nations Environment Programme–World Conservation Monitoring Centre Ecosystem Services Toolkit to be immediately feasible for application by the Bureau of Land Management, given proper guidance on their use. It is also feasible for the Bureau of Land Management to use the InVEST model, but in early 2012 the process of parameterizing the model required resources and expertise that are unlikely to be available in most Bureau of Land Management district or field offices. Application of past primary valuation is feasible, but developing new primary-valuation studies is too time consuming for regular application. Value transfer approaches (aside from the Wildlife Habitat Benefits Estimation Toolkit) are best applied carefully on the basis of guidelines described in this report, to reduce transfer error. The ARIES model can provide useful information in regions modeled in the past (Arizona, California, Colorado, and Washington), but it lacks some features that will improve its usability, such as a generalized model that could be applied anywhere in the United States. Eleven other tools described in this report could become useful as the tools more fully develop, in high-profile cases for which additional resources are available for tool application or in case-st

  15. Characterization of nested watershed hydrologic response from high-resolution rainfall and runoff data in the Baltimore Ecosystem Study LTER

    Science.gov (United States)

    Miller, A. J.; Lindner, G. A.; Smith, J. A.; Baeck, M. L.; Welty, C.; Miller, J.; Meierdiercks, K. L.

    2011-12-01

    This presentation reports initial results from analysis of data collected at a set of six stream gages representing three nested watershed scales (1-2 km2, 5-6 km2, 14 km2) in Dead Run, a highly impervious suburban watershed in Baltimore County, MD, USA. Streamflow data collected at 5-minute temporal resolution during the period 2007-2011 are compared with 1-km2 gridded and watershed-average precipitation data with 15-minute temporal resolution provided by the HydroNEXRAD project for the Baltimore metropolitan area. The period of overlapping precipitation and runoff data currently available for all six nested watersheds includes calendar years 2008 and 2009. Analyses include mass balance for monthly time periods as well as individual storm events; comparison of hydrologic response among nested watersheds of similar scale and across scales; and characterization of spatial and temporal patterns in storm-period rainfall, drainage network structure, watershed morphometry, and urban infrastructure as potential influences on patterns of hydrologic response. We attempted to isolate the effects of watershed characteristics by selecting a subset of storm events with a rainfall "pulse" defined by minimum accumulation of ~10 mm and >80% of storm-total rainfall arriving within a one-hour period at all six nested subwatersheds. Hydrographs were compared to assess characteristic shape, runoff ratio, and timing. We also examined several longer, more complex storm events with multiple rainfall pulses in order to observe the response at multiple watershed scales. Despite the constraints imposed on storm structure we find that even slight variations in the spatial and temporal distribution of rainfall may be associated with major differences in watershed response (volume and timing) at the 1-2 km2 and 5-6 km2 scales. Some of these variations would be difficult to explain without availability of high-resolution rainfall data. In multiple events we observe that the 5-6 km2 watersheds rise and peak at the same time as their tributaries, and in other cases the larger watersheds exhibit a double peak in response to a single rainfall pulse, with the first peak (thought to be derived from local storm drains) occurring before peaks recorded upstream in tributary watersheds. Although there are pronounced differences in patterns of development and extent of stormwater management between the different tributary watersheds, observed hydrologic response does not always conform to the expected effects of these patterns. Hydrograph behavior with the change in scale from 5-6 km2 to 14 km2 is more predictable as a combination of translation and attenuation of the tributary hydrographs.

  16. Farmer-participatory integrated watershed management: Adarsha watershed, Kothapally India - an innovative and upscalable approach: case 7

    OpenAIRE

    Sp, Wani; Hp, Singh; Tk, Sreedevi; Pathak, P.; Tj, Rego; Shiferaw, B.; Sr, Iyer

    2006-01-01

    This is a reprint from the book entitled "Research Towards Integrated Natural Resources Management: Examples of Research Problems, Approaches and Partnerships in Action in the CGIAR" ( Hat-wood, R.R.; Kassam, A.H. eds.).which briefly describes the tools and methods used in research and development for integrated natural resources management. They have been evolving over the years in order to tackle the complexities of farming systems in marginal areas, and the issues of environmental change i...

  17. Hydrogeologic and Hydrochemical Studies in a Semi-arid Watershed in Northern Mexico

    Science.gov (United States)

    Kretzschmar, T.; Vazquez, R.; Hinojosa, A.

    2006-12-01

    Within the Baja California panhandle exist quite a significant number of valleys which hydrogeology conditions are of great importance for the communities of the region. The Guadalupe Valley for example, located 30 km Northeast of Ensenada, hosts an important wine industry which presents a mayor factor for agriculture and tourism in Baja California. The irrigation is carried out basically by groundwater extracted from quaternary sediments filling this post-Miocene depression. Besides the intensive usage of the water by the wine industry in the Guadalupe Valley, the local waterworks installed in 1985 a gallery of 10 wells extracting around 320 l/s or 30 % of the total water extraction in the valley to supply the city of Ensenada with drinking water. A total of more than 500 wells with a combined annual consumption of about 28 Mio m3 are at the moment active in the valley. In the arid portions of northern Mexico Mountain front recharge presents an important recharge source for the alluvial aquifers. Other important sources directly related to precipitation are direct infiltration, recharge by surface water runoff in the arroyos as well as by active fault systems. The principal recharge sources for the Guadalupe Valley aquifer are the Sierra Juárez and the Guadalupe River. To be able to address the state of equilibrium of aquifer, recharge estimates for the watershed were calculated determining the runoff/infiltration relationships obtained by curve number determinations combined with the interpretation of satellite images. These results were integrated into an evaluation and hydrologic modeling of the hydrologic data pointing towards differences of up to over 50 percent in the recharge estimation in comparison to earlier studies carried out in the area. Furthermore hydrochemical and isotopic studies were carried out to show the effects of the excessive ground water extraction on the water quality of the aquifer. The hydrochemical data indicate that intense use of the water resource leads to a degradation of the water quality of the aquifer basically being reflected by an increase in sulfates, sodium and chloride. Combining the results with the hydrologic data and modeling it was possible outline high impact zones with steep water level drops of up to 15 m and high water quality deterioration as well as low impact zones with shallow water level fluctuation less tan on meter and stable water quality. These results will finally lead to a proposal how to guide the Guadalupe watershed towards a sustainable management of the aquifer.

  18. Assessment of the Effectiveness of Green Infrastructure Stormwater Best Management Practices (BMPs) at the Small Watershed Scale

    Science.gov (United States)

    There have been numerous studies of the water quantity and quality functions of stormwater BMPs at the site scale, but relatively few assessments at the watershed scale. This presentation will present an overview and initial results of projects to evaluate the effectiveness of g...

  19. Evaluating Coupled Human-Hydrologic Systems in High Altitude Regions: A Case Study of the Arun Watershed, Eastern Nepal

    Science.gov (United States)

    Voss, K.; Bookhagen, B.; Tague, C.; Lopez-Carr, D.

    2014-12-01

    The Himalaya exhibit dynamic ecological, hydrological, and climatic extremes that magnify the variability and extent of natural hazards, resulting in destruction to both physical and human landscapes. Coupled with poverty, these factors intensify local communities' vulnerability to climate change. This study highlights the Arun watershed in eastern Nepal as a case study to evaluate how local communities in high altitude regions are managing their water for domestic and agricultural needs while coping with extreme events, such as floods and landslides. Remotely-sensed precipitation, snowpack and glacial extent data from the past decade are combined with preliminary results from extensive field-based community surveys in the Arun watershed. The analysis of remotely-sensed data will describe seasonal trends in water availability, glacial lake growth, and the spatial variation of these trends within the basin. These hydrologic changes will be linked to the human survey analysis, which will provide an understanding of locals' perceptions of water challenges and the current water management strategies within the basin. Particular attention will be given to a comparison between the eastern and western tributaries of the Arun River, where the catchments are mainly rain-fed (eastern) versus glacial-fed (western). This contrast will highlight how different hydrologic scenarios evidenced from remote-sensing data motivate diverse human water management responses as defined in field surveys. A particular focus will be given to management decisions related to agriculture expansion and hydropower development. This synthesis of remote-sensing and social research methodologies provides a valuable perspective on coupled human-hydrologic systems.

  20. Effects of best-management practices in Eagle and Joos Valley Creeks in the Waumandee Creek Priority Watershed, Wisconsin, 1990-2007

    Science.gov (United States)

    Graczyk, David J.; Walker, John F.; Bannerman, Roger T.; Rutter, Troy D.

    2012-01-01

    In many watersheds, nonpoint-source contamination is a major contributor to water-quality problems. In response to the recognition of the importance of nonpoint sources, the Wisconsin Nonpoint Source Water Pollution Abatement Program (Nonpoint Program) was enacted in 1978. This report summarizes the results of a study to assess the effectiveness of watershed-management practices for controlling nonpoint-source contamination for the Eagle Creek and Joos Valley Creek Watersheds. Streamflow-gaging stations equipped for automated sample collection and continuous recording of stream stage were installed in July 1990 at Eagle and Joos Valley Creeks and were operated through September 2007. In October 1990, three rain gages were installed in each watershed and were operated through September 2007. Best-Management Practices (BMPs) were installed during 1993 to 2000 in Eagle and Joos Valley Creeks and were tracked throughout the study period. By the year 2000, a majority of the BMPs were implemented in the two watersheds and goals set by the Wisconsin Department of Natural Resources and the local Land Conservation Department had been achieved for the two study watersheds (Wisconsin Department of Natural Resources, 1990). The distributions of the rainstorms that produced surface runoff and storm loads were similar in the pre-BMP (1990-93) and post-BMP implementation (2000-07) periods for both Eagle and Joos Valley Creeks. The highest annual streamflow occurred at both sites in water year 1993, which corresponded to the greatest above normal nonfrozen precipitation measured at two nearby NOAA weather stations. The minimum streamflow occurred in water year 2007 at both sites. Base-flow and stormwater samples were collected and analyzed for suspended solids, total phosphorus, and ammonia nitrogen. For both Eagle and Joos Valley Creeks the median concentrations of suspended solids and total phosphorus in base flow were lower during the post-BMP period compared to the pre-BMP period and were statistically significant at the 0.05 significance level. The decrease in median concentrations of ammonia nitrogen at both sites was not statistically significant at the 0.05 significance level. Multiple linear regression analyses were used to remove the effects of climatologic conditions and seasonality from computed storm loads. For both Eagle and Joos Valley Creeks, the median storm loads for suspended solids, total phosphorus, and ammonia nitrogen were lower during the post-BMP period compared to the pre-BMP period and were statistically significant at the 0.05 significance level. The decreases in storm-load regression residuals from the pre- to the post-BMP periods for both Eagle and Joos Valley Creeks were statistically significant for all three constituents at the 0.05 significance level and indicated an apparent improvement in water-quality in the post-BMP period. Because the rainfall characteristics for individual storms in the pre- and post-BMP periods are likely to be different, separate pre- and post-BMP regressions were used to estimate the theoretical pre- and post-BMP storm loads to allow estimates of precent reductions between the pre- and post-BMP periods. The estimated percent reductions in storm loads for suspended solids, total phosphorus, and ammonia nitrogen were 89, 77, and 66 respectively for Eagle Creek and 84, 67, and 60 respectively for Joos Valley Creek. The apparent improvement in water quality is attributed to the implemented BMPs and to a reduction in the number of cattle in the watersheds.

  1. Planning of water resources management and pollution control for Heshui River watershed, China: A full credibility-constrained programming approach.

    Science.gov (United States)

    Zhang, Y M; Huang, G; Lu, H W; He, Li

    2015-08-15

    A key issue facing integrated water resources management and water pollution control is to address the vague parametric information. A full credibility-based chance-constrained programming (FCCP) method is thus developed by introducing the new concept of credibility into the modeling framework. FCCP can deal with fuzzy parameters appearing concurrently in the objective and both sides of the constraints of the model, but also provide a credibility level indicating how much confidence one can believe the optimal modeling solutions. The method is applied to Heshui River watershed in the south-central China for demonstration. Results from the case study showed that groundwater would make up for the water shortage in terms of the shrinking surface water and rising water demand, and the optimized total pumpage of groundwater from both alluvial and karst aquifers would exceed 90% of its maximum allowable levels when credibility level is higher than or equal to 0.9. It is also indicated that an increase in credibility level would induce a reduction in cost for surface water acquisition, a rise in cost from groundwater withdrawal, and negligible variation in cost for water pollution control. PMID:25897733

  2. Watershed Dynamics: Using Web-based GIS to Access Data and Study the Hydrosphere

    Science.gov (United States)

    Buzby, C. K.; Jona, K.

    2010-12-01

    The Watershed Dynamics project has developed online GIS tools and curriculum to provide high school earth science students with access to data and analysis tools to perform investigations on their local watershed. Using FieldScope web-based GIS tools from National Geographic, students investigate precipitation, stream discharge, and land cover data for the US. Students use the data to study water availability across the US and the world, human impacts on the watershed, and more. Curriculum developers at the Office of STEM Education Partnerships (OSEP) at Northwestern University and the GLOBE Program have created two complete units which scaffold students on their way to independent research using GIS. In the Water Availability unit, students work with precipitation, evaporation, and surface runoff to investigate the water cycle and how it varies regionally and seasonally. In the Human Impact unit, students analyze land cover change over time and investigate stream discharge to figure out how humans are impacting their watershed. These units can be used together or individually, but provide students progressively more research independence, leading them to ask their own questions about the watershed using GIS data. Both units have been pilot tested in high school classrooms and found to be successful at increasing student content knowledge about the water cycle. They are being modified for use at the undergraduate level. The web-based GIS interface has the functionality of desktop GIS, but allows for a simpler user-experience and direct links to relevant data. Students can use these tools to learn scientific content and as a stepping-stone for further GIS investigations.

  3. 2007 Bureau of Land Management (BLM) Lidar: Panther Creek Watershed, Yamhill County

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset represents LiDAR elevations acquired during a leaf-off and a leaf-on vegetative condition for the Upper Panther Creek Watershed in the Yamhill County...

  4. Watershed Restoration Project

    Energy Technology Data Exchange (ETDEWEB)

    Julie Thompson; Betsy Macfarlan

    2007-09-27

    In 2003, the U.S. Department of Energy issued the Eastern Nevada Landscape Coalition (ENLC) funding to implement ecological restoration in Gleason Creek and Smith Valley Watersheds. This project was made possible by congressionally directed funding that was provided through the US Department of Energy, Energy Efficiency and Renewable Energy, Office of the Biomass Program. The Ely District Bureau of Land Management (Ely BLM) manages these watersheds and considers them priority areas within the Ely BLM district. These three entities collaborated to address the issues and concerns of Gleason Creek and Smith Valley and prepared a restoration plan to improve the watersheds’ ecological health and resiliency. The restoration process began with watershed-scale vegetation assessments and state and transition models to focus on restoration sites. Design and implementation of restoration treatments ensued and were completed in January 2007. This report describes the restoration process ENLC undertook from planning to implementation of two watersheds in semi-arid Eastern Nevada.

  5. ASSESSING ECOLOGICAL RISK IN WATERSHEDS: A CASE STUDY OF PROBLEM FORMULATION IN THE BIG DARBY CREEK WATERSHED, OHIO, USA

    Science.gov (United States)

    The Big Darby Creek watershed, a highly valued ecosystem in central Ohio, USA, threatened by intensive agriculture and suburban encroachment, served as an example of how case specifics can be applied to refine and direct the planning and problem formulation stage of the U.S. Env...

  6. Avaliacao ambiental estrategica de planosde bacias hidrograficas / Strategic environmental assessment for watershed management plans

    Scientific Electronic Library Online (English)

    Denise Gallo, Pizella; Marcelo Pereira de, Souza.

    2013-09-01

    Full Text Available A Avaliação Ambiental Estratégica (AAE) é um instrumento de avaliação de impactos ambientais de Políticas, Planos e Programas (PPPs). Tendo em vista o planejamento dos recursos hídricos no Brasil, o objetivo deste artigo foi avaliar as contribuições da AAE para a elaboração de Planos de Bacias Hidro [...] gráficas no país, tendo como objeto de estudo a Bacia do Rio Pardo, no estado de São Paulo. Para tanto, realizaram-se entrevistas com colaboradores do Comitê e acompanhou-se o Grupo de Trabalho do Relatório de Situação dos Recursos Hídricos. Verificou-se que a aplicação da AAE permitiria a incorporação dos princípios de sustentabilidade ambiental no desenvolvimento dos Planos; a integração com outros PPPs correlatos; o levantamento e avaliação de impactos de alternativas de desenvolvimento na Bacia e a identificação de indicadores para o monitoramento do Plano de forma contínua Abstract in english Strategic Environmental Assessment (SEA) is a tool for assessing environmental impacts of Policy, Plans and Programmes (PPPs). In view of the water resources planning in Brazil, this paper aimed to evaluate the contributions of the SEA for the development of Watershed Management Plans in the country [...] , having as object the Pardoâ€(tm)s River Basin, in state of Sao Paulo. To this end, we carried out interviews with staff of the Committee and followed the Working Group of the Status Report of Water Resources. It was found that the application of SEA allowed the incorporation of the environmental sustainability principles in the development of Plans, the integration with other related PPPs, the survey and impact assessment of the development alternatives in the Basin and the identification of indicators for monitoring the Plan

  7. A case study of form-based solutions for watershed protection.

    Science.gov (United States)

    Berg, Hannah E; BenDor, Todd K

    2010-09-01

    Despite an array of policies at the federal and state level aimed at regulating stormwater discharges, engineered solutions enforced by local governments often fall short of meeting water quality standards. Although the implications of land use planning and development regulations are important for stormwater management, they are often overlooked as critical initial steps to improving water quality. This study explores the role of 'form-based' regulations as tools for achieving urban planning and water quality objectives. Form-based codes are a new generation of development codes aimed at regulating urban development based on urban form and density, rather than land use. We present an exploratory case study of the feasibility of form-based codes in the Jordan Lake Watershed in North Carolina, a rapidly growing region where fragmented local governments face stringent nutrient reduction standards under new state regulations. Through program analysis and interviews, we explore the viability of form-based codes for reducing development impacts on Jordan Lake's water quality. We consider the legal feasibility of code enforcement, regional and local barriers and opportunities, and implementation given existing regulatory frameworks. Our findings suggest that high quality information and data modeling are foundational to gaining support for a consensus agreement on the sources and degree of water quality impairment. Furthermore, implementing form-based solutions for water quality is greatly aided by (1) experienced regional planning bodies that have regulatory authority, and (2) local governments whose staff are experienced in implementing complex development ordinances, reviewing architectural renderings, and communicating development requirements with the public and developers. PMID:20563807

  8. Soil Erosion Prediction Using GIS and RUSLE: Study at Sampean Watershed

    OpenAIRE

    Arif Faisol; Indarto

    2010-01-01

    Erosionis one factor that cause soil degradation in Indonesia. RUSLE (Revised Universal Soil Loss Equation) is widely usedto predict average annual rate of soil erosion. This research integrate the Revised Universal Soil Loss Equation(RUSLE) and Geographic Information System (GIS) to predict potential soil erosion losses. Study was conducted atSampean Watershed where located in Eastern part of East Java. Firstly, GIS layer was obtained from available databasethat cover East Java Province. All...

  9. GIS-Based Model to Assess Erosion Sensitivity in Northern Morocco. Laou Watershed Case Study

    OpenAIRE

    Roberto Passalacqua; M. Maâtouk; Abdelkrim El Arrim; Lamiae Khali Issa; Ahmed Raissouni

    2012-01-01

    This application on the Laou watershed represents the first part of study results that concerns the development of a model for mapping soil susceptibility at a regional scale in northern Morocco using spatial databases and geographic information systems (GIS). The model uses qualitative decision rules and hierarchical organization of data represented by different thematic maps. Those laters are derived from input erosion parameters which are coded according to their sensitivity to water erosi...

  10. Site Suitability Analysis of Water Harvesting Structures Using Remote Sensing and GIS - A Case Study of Pisangan Watershed, Ajmer District, Rajasthan

    Science.gov (United States)

    Prasad, H. C.; Bhalla, P.; Palria, S.

    2014-12-01

    Rajasthan is a region with very limited water resources. Water is the most crucial for maintaining an environment and ecosystem conducive to sustaining all forms of life. The principle of watershed management is the proper management of all the precipitation by the way of collection, storage and efficient utilization of runoff water and to recharge the ground water. The present study aim's to identify suitable zones for water harvesting structures in Pisangan watershed of Ajmer district, Rajasthan by using Geographic Information System (GIS) and Multi Criteria Evaluation (MSE). Multi criteria evaluation is carried out in Geographic Information system to help the decision makers in determining suitable zones for water harvesting structures based on the physical characteristics of the watershed. Different layers which were taken into account for multi criteria evaluation are; Soil texture, slope, rainfall data (2000-2012), land use/cover, geomorphology, lithology, lineaments, drainage network. The soil conservation service model was used to estimate the runoff depth of the study area Analytical Hierarchy Processes (AHP) is used to find suitable water harvesting structures on the basis of rainfall. Produced suitability map will help in the selection of harvesting structures such as percolation tanks, storage tank, check dams and stop dams.

  11. Project management case studies

    CERN Document Server

    Kerzner, Harold R

    2013-01-01

    A new edition of the most popular book of project management case studies, expanded to include more than 100 cases plus a ""super case"" on the Iridium Project Case studies are an important part of project management education and training. This Fourth Edition of Harold Kerzner''s Project Management Case Studies features a number of new cases covering value measurement in project management. Also included is the well-received ""super case,"" which covers all aspects of project management and may be used as a capstone for a course. This new edition:Contains 100-plus case studies drawn from re

  12. NITROGEN EXPORT FROM FORESTED AND AGRICULTURAL WATERSHEDS OF SOUTHERN CHILE EXPORTACION DE NITROGENO EN CUENCAS BOSCOSAS Y AGRICOLAS EN EL SUR DE CHILE

    OpenAIRE

    Oyarzu?n, Carlos E.; Anton Huber

    2003-01-01

    Measuring nutrients fluxes in watersheds with different landuse is important for evaluating the effects of conversion of native forests to agricultural land, and for establishing guidelines for land management. Nitrogen (N) concentrations and fluxes were studied over a 12-month period in four watersheds in the Lake Rupanco basin in the Andean Cordillera and four watersheds located in the Lake Huillinco basin in the Coastal Cordillera of southern Chile. Two watersheds in either lake basins wer...

  13. Differences in Net Ecosystem Exchange for an intensely managed watershed using a lumped, regional model and a mechanistic, hillslope-scale model

    Science.gov (United States)

    Wilson, C. G.; Wacha, K.; Papanicolaou, T.; Stanier, C. O.; Jamroensan, A.

    2014-12-01

    In this study, Net Ecosystem Exchange (NEE), and its components Gross Ecosystem Exchange (GEE) and Ecosystem Respiration (RESP), were compared from a lumped, regional model and a mechanistic, hillslope-scale model to determine if the effects of land management on the carbon cycle are captured by larger-scale biosphere models that determine CO2 sources and sinks. WRF-VPRM (Weather Research & Forecasting - Vegetation Photosynthesis & Respiration Model) is a regional-scale model that uses simulated downward shortwave radiation and surface temperatures, along with satellite-derived land cover indices and eddy flux tower-derived parameters to estimate biosphere CO2 fluxes with empirical equations. The DAYCENT biogeochemical model coupled with the Watershed Erosion Prediction Project model (WEPP), which simulates changes in soil carbon stocks due to different land management and the resulting enhanced erosion, can also quantify biosphere CO2 fluxes. Both models (i.e., WRF-VPRM and WEPP-DAYCENT) were used to quantify GEE, RESP, and NEE for the summer of 2008 in the IML-CZO Clear Creek watershed of the U.S. Midwest to examine the role of land management heterogeneity in CO2 exchanges between the biosphere and atmosphere. Comparing average daily GEE rates from WRF-VPRM (-11.0 ± 5.2 g C/m2/d) with WEPP-DAYCENT average values weighted per land use area in the watershed (-10.2 ± 1.5 g C/m2/d) showed no significant differences (t-test; p=0.08). In contrast, daily RESP values were different between the two models. Daily respiration rates were relatively constant for WRF-VPRM (6.0 ± 0.8 g C/m2/d), while WEPP-DAYCENT values for each management practice were significantly greater (7.2 ± 1.8 g C/m2/d; t-test, p<0.001) with the land uses experiencing tillage having the widest ranges. WEPP-DAYCENT accounts for the effects of land management and net erosion/deposition on total SOC stocks and tillage impacts on respiration by increasing decomposition from the breaking of soil aggregates and enhanced mineralization. In WRF-VPRM, respiration is calculated with a regression equation based on air temperature. As a result, comparison of average daily NEE rates from WRF-VPRM (-5.0 ± 5.3 g C/m2/d) with WEPP-DAYCENT average weighted values (-3.0 ± 1.8 g C/m2/d) also showed significant differences (t-test; p<0.001).

  14. Preliminary hydrologic budget studies, Indian Creek watershed and vicinity, Western Paradox Basin, Utah

    International Nuclear Information System (INIS)

    Preliminary quantitative estimates of ground-water discharge into the Colorado River System in the western Paradox Basin were prepared on the basis of existing climatological and streamflow records. Ground-water outflow to the river was deduced as a residual from hydrologic budget equations for two different study areas: (1) the region between gaging stations at Cisco, Green River, and Hite, Utah; and (2) the Indian Creek watershed. An empirical correlation between recharge rates and precipitation amounts derived for several basins in eastern Nevada was applied to estimate recharge amounts for the Indian Creek watershed. A simple Darcian flow model was then used to approximate the ground-water flux outward from the watershed for comparison. Salinity measurements in the Colorado River were also used to approximate ground-water outflow to a river reach in Cataract Canyon in order to provide another comparison with the hydrologic budget results. Although these estimates should be considered only gross approximations, all approaches used provide values of ground-water outflow that are much less than estimates of similar parameters provided by the US Geological Survey in recent hydrologic reconnaissance reports. Estimates contained herein will be refined in future numerical modeling and data collection studies

  15. Watersheds in disordered media

    CERN Document Server

    Araújo, N A M; Herrmann, H J; Andrade, J S

    2014-01-01

    What is the best way to divide a rugged landscape? Since ancient times, watersheds separating adjacent water systems that flow, for example, toward different seas, have been used to delimit boundaries. Interestingly, serious and even tense border disputes between countries have relied on the subtle geometrical properties of these tortuous lines. For instance, slight and even anthropogenic modifications of landscapes can produce large changes in a watershed, and the effects can be highly nonlocal. Although the watershed concept arises naturally in geomorphology, where it plays a fundamental role in water management, landslide, and flood prevention, it also has important applications in seemingly unrelated fields such as image processing and medicine. Despite the far-reaching consequences of the scaling properties on watershed-related hydrological and political issues, it was only recently that a more profound and revealing connection has been disclosed between the concept of watershed and statistical physics o...

  16. Using an integrated method to estimate watershed sediment yield during heavy rain period: a case study in Hualien County, Taiwan

    OpenAIRE

    Hsu, S. M.; Wen, H. Y.; Chen, N. C.; Hsu, S. Y.; Chi, S. Y.

    2012-01-01

    A comprehensive approach estimating sediment yield from a watershed is needed to develop better measures for mitigating sediment disasters and assessing downstream impacts. In the present study, an attempt has been made to develop an integrated method, considering sediment supplies associated with soil erosion, shallow landslide and debris flow to estimate sediment yield from a debris-flow-prone watershed on a storm event basis. The integrated method is based on the HSPF and...

  17. Watershed regulation and local action: analysis of the Senegal River watershed management by a regional organisation and public participation

    OpenAIRE

    Se?ne, A. M.; Bonin, S.; Soubeyran, O.

    2007-01-01

    Several social scientists have dealt with the usefulness of a participative approach in development plans. The call for sustainable development has increased the focus on this type of approach in a very classical way, which is the case for the creation of new water tanks. Most of these scientists have also pinpointed the major difficulties and failures faced during the execution of this new approach in developing countries. This study is a concrete example which underlines the lack of this ty...

  18. Modelling the hydrologic role of glaciers within a Water Evaluation and Planning System (WEAP: a case study in the Rio Santa watershed (Peru

    Directory of Open Access Journals (Sweden)

    T. Condom

    2011-01-01

    Full Text Available For the past 30 years, a process of glacier retreat has been observed in the Andes, raising alarm among regional water resources managers. The purpose of this paper is to develop a model of the role of Andean glaciers in the hydrology of their associated watersheds, which is appropriate for application at a river basin scale, with an eye towards creating an analytical tool that can be used to assess the water management implications of possible future glacier retreat. While the paper delves deeply into our formulation of a glacier module within a water resources management modelling system, the widely subscribed Water Evaluation and Planning System (WEAP, the originality of our work lies less in the domain of glaciology and more in how we apply an existing reduced form representation of glacier evolution within a model of the climate-glacier-hydrology-water management continuum. Key insights gained pertain to appropriate ways to deploy these reduced form representations in a relatively data poor environment and to effectively integrate them into a modelling framework that places glaciers within a wider water management context. The study area is the Rio Santa watershed in Peru which contains many of the expansive glaciers of the singular Cordillera Blanca. The specific objectives of this study included: (i adequately simulating both monitored glacier retreat and observed river flows from the last forty years using historical climate time series as model input; (ii quantifying the proportion of river flow in the Rio Santa produced from melting glaciers during this period; (iii estimating the historical contribution of groundwater accretions to river flows; and (vi reproducing a reasonable simulation of recent hydropower operations in the Rio Santa system. In pursuit objective (i, a split sample calibration-validation of the model was conducted by comparing the simulated glacier area to Landsat images taken in 1987 and 1998 and observed and simulated river flow at 16 control points in the Rio Santa watershed. At the global scale of the watershed, the glacier retreat is correctly simulated for the period 1970/1999 with a calculated retreat equals to ?23% when the observed retreat is of ?24%. Having established that the model can respond to these scientific objectives, the ultimate goal of the study was to demonstrate how this integrated modelling system can be used as a decision support tool to assist in planning water management adaptation to climate change. This sort of integrated assessment is required to adapt water resources management in the Andes to a~range of future climatic conditions, improving the resilience of developing Andean economies such Peru's in the face of a major drive of global change.

  19. COMPARATIVE PERFORMANCE MONITORING OF RAINFED WATERSHEDS APPLYING GIS AND RS TECHNIQUES

    OpenAIRE

    ARUN W. DHAWALE; DR. P. B. ULLAGADDI

    2012-01-01

    Under the watershed development project of the Ministry of Rural Development, many micro watersheds have been identified for development and management. However Government is handicapped inobtaining data on the performance of these programmes due to the absence of watershed performance studies. Rainfed agriculture is clearly critical to agricultural performance in India. Nonetheless, it is difficult to precisely quantify the overall importance of the sector. The widely quoted statistic is tha...

  20. Hydrological and environmental diagnostic of the Cachoeira das Pombas’s watershed, Guanhães, MG, Brazil

    OpenAIRE

    Deuseles João Firme; Carlos Antonio Alvares Soares Ribeiro; Agostinho Lopes de Souza; Herly Carlos Teixeira Dias; Kelly Cristina Tonello; Fernando Palha Leite

    2009-01-01

    The objective of this work was to evaluate hydrological and environmental issues of Cachoeira das Pombas watershed, in Guanhães, eastern Minas Gerais State, Brazil, to support its management plan. The characterization of water springs included the definition of its types, assessment of flow persistence, conservation state, outflow values, and the hydrological and environmental conservation state of the watershed. For a detailed analysis, the watershed was studied considering each of its smal...

  1. Water Quality, Contamination, and Wetlands in the Croton Watershed, New York, USA

    OpenAIRE

    Mckenzie, Jeffrey M.; Siegel, Donald I.; Lautz, Laura K.; Otz, Martin H.; James Hassett; Ines Otz

    2012-01-01

    The Croton Watershed (New York State, USA) is a semi-urban region that provides 10% of the drinking water for the City of New York. Nonpoint source contamination in the watershed is a major concern for managers because the water supply is currently unfiltered water. Results are reported from three synoptic studies of surface water quality from 98 wetland-containing sub-catchments in the Croton Watershed designed to broadly characterize, at a reconnaissance level, the geochemical controls on w...

  2. Estimation of watershed hydrologic processes in arid conditions with a modified watershed model

    Science.gov (United States)

    Sha, Jian; Swaney, Dennis P.; Hong, Bongghi; Wang, Jinnan; Wang, Yuqiu; Wang, Zhong-Liang

    2014-11-01

    Watershed models play an important role in modern water resource management, increasingly demanding a robust hydrologic data framework to estimate watershed hydrochemical processes. The Generalized Watershed Loading Function (GWLF), a typical watershed model with modest data requirements, has been applied to watershed-scale hydrochemical estimation worldwide. However, while it generally successfully estimates flows in humid regions, the model suffers from a weakness in hydrologic estimation during low-flow periods, which are projected to continue increasing with global climate change in many places. To address this issue, three algorithms describing functional responses of flows to saturated water storage, the segment function approach, linear function approach, and exponential function approach, have been proposed in this paper, integrated with a previous leakage mechanism for unsaturated water storage used in two earlier GWLF versions, and applied to a case study of Shuai Shui River watershed in China. Comparisons of this version, including new algorithms or algorithm linkages, with the earlier GWLF versions, show that all the new algorithms improve model accuracy in low-flow months; the linear function approach linking the leakage process has the best effect. This work refines the framework of GWLF model to address both humid and arid conditions that can be used as alternatives for future applications. These new functional dynamic responses should also have potential application in other similar watershed models.

  3. A Total Water Management Analysis of the Las Vegas Wash Watershed, Nevada

    Science.gov (United States)

    Climate change, land use change, and population growth are fundamental factors affecting future hydrologic conditions in streams, especially in arid regions with scarce water resources. Located in the arid southwest, Las Vegas Valley located within the Las Vegas Wash watershed is...

  4. Effects of agricultural best-management practices on total phosphorus yields in the Johnson Brook and Lovejoy Pond watersheds, Kennebec County, Maine, 1980-84

    Science.gov (United States)

    Maloney, Thomas J.; Sowles, John W.

    1987-01-01

    Analysis of daily phosphorus yield and streamflow data collected before and after implementation of agricultural best management practices in the Johnson Brook watershed in south-central Maine indicated statistically significant reductions in phosphorus loading in all flow categories. Reduction of median loadings for five flow categories ranged from 26% to 90%. The annual total phosphorus yield was reduced 17% after implementation of the best management practices. The observed phosphorus yield reduction is considerable because of two streamflow factors. First, the period after implementation of the best management practices had eight more storms. Periods of storm runoff in the post-implementation period had 31 days with greater than average streamflow, and a maximum daily streamflow more than three times greater than those observed in the pre-implementation period. Second, the annual streamflow was 128% greater in the year after the management practices were implemented. Because the potential for phosphorous transport increases with runoff, and greater yields are possible when the volume of water increases, a higher phosphorus yield would be expected in the post-implementation period than during the pre-implementation period, if other factors had remained unchanged. The reductions in phosphorous yield in the study area are not expected to have a significant effect on the eutrophic conditions observed in Lovejoy Pond. Phosphorous concentrations in the pond will continue to be capable of supporting algal blooms. However, the intensity and duration of blooms are expected to be less than those observed before best management practice implementation. (Author 's abstract)

  5. Water-right and water-allocation procedures of farmers' managed perennial spate irrigation systems of mithawan watershed, D.G. Khan, Pakistan

    International Nuclear Information System (INIS)

    A study was conducted on water rights, water allocation and local institutions prevailing in the perennial spate irrigation systems of Mithawan watershed o D.G. Khan District of Punjab. The Study Area was selected is the Mthawan watershed on the D.G. Khan-Quetta Road almost 70 kms from D.G. Khan and 10 km away from the road, representing real-life operating systems. Small-scale isolated and large-scale contiguous perennial spate irrigation systems were selected for study. A three-prong methodology was designed covering (a) interactive dialogue of the focus groups to document the community-perceptions regarding systems water-rights, water allocation and local institution prevailing in the area; (b) structured interviews to document systematic data regarding some of the study-aspects; and (c) diagnostic surveys to document some of the measured data regarding scheme performance. Water rights and allocation procedures both in small-scale isolated and large-scale Contiguous perennial spate irrigation-system are very clearly defined and do not change with time and space. Local institutions like Biradri and Muchi take care of just allocation of water. An irrigator is deputed who takes care of allocated time among various tribes. At the same time, the community is bringing more area under irrigation. Obviously it has increased water-requirements and in turn management of irrigation system. Previously they were reconstructing the diversion structure only. Present expansion in sion structure only. Present expansion in irrigated area has increased the necessity of maintaining the water-conveyance network more frequently, particularly at critical sections. However, the realization regarding water-losses still needs to be promoted. The linkages of resource-management with water-productivity are going to be the future area of consideration in theses systems, due to expansion of the system largely because of increased population and urge to increase their livelihood. (author)

  6. Hydrological characterization of benchmark agricultural watersheds in India, Thailand, and Vietnam

    Directory of Open Access Journals (Sweden)

    P Pathak

    2006-08-01

    Full Text Available Executive Summary Water is one of the most critical resource and constraint in the semi-arid tropics (SAT. To minimize land degradation and sustain crop productivity in the SAT, management and efficient utilization of rainwater is important. Watershed-based resource utilization involves the optimum use of the area’sprecipitation for the improvement and stabilization of agriculture on the watershed through better water, soil, and crop management. More effective utilization of water for the production of crops canbe facilitated by one or more of the following means: (i in situ conservation of moisture; (ii proper drainage, collection, storage, and re-utilization of runoff; and (iii groundwater recovery from wells. For the proper development, conservation, and management of land and water resources, accurate information on surface and groundwater hydrology is crucial. Under the Asian Development Bank(ADB-supported project on integrated watershed management we studied the hydrological behavior of benchmark agricultural watersheds in India, Thailand, and Vietnam. From the five benchmarkwatersheds, the information on topography, rainfall, runoff, groundwater, and other relevant data were collected and analyzed.The hydrological data from the five benchmark watersheds in India, Thailand, and Vietnam clearly show the effectiveness of improved watershed technologies in reducing runoff volume and peakrunoff rate. The highest runoff volume of 433 mm (51% of seasonal rainfall was recorded from the Tad Fa watershed in Thailand, while the lowest runoff volume of 55 mm (7% of seasonal rainfall wasrecorded from the Adarsha watershed in Kothapally, India. The highest peak runoff rate of 0.235 m3 s-1ha-1 was recorded from the untreated watershed at Kothapally. Between the treated and untreatedwatersheds the maximum difference in runoff volume was recorded at Lalatora watershed in India(290 mm in untreated compared to 55 mm in treated watershed. Among the three locations in India, the highest runoff was recorded at Lalatora watershed followed by Ringnodia and Kothapally watersheds. The groundwater observations from the three sites in India, clearly show the effectiveness of the improved watershed technologies in increasing the groundwater recharge therebyimproving the availability of water for agricultural and other uses. Throughout the season the groundwater levels in the treated areas were significantly higher compared to the groundwater levelsin the untreated areas. In terms of prospects of further runoff harvesting and groundwater recharge, the Tad Fa watershed inThailand has the highest potential followed by Lalatora watershed in India. The prospects of further runoff harvesting and groundwater recharge at Ringnodia and Adarsha watersheds in India aremoderate. The region-specific hydrological data reported in this publication will be useful in the planning, design, development, and management of land and water resources in the target regions.

  7. Quantifying the Fecal Coliform Loads in Urban Watersheds by Hydrologic/Hydraulic Modeling: Case Study of the Beauport River Watershed in Quebec

    Directory of Open Access Journals (Sweden)

    Amélie Thériault

    2015-02-01

    Full Text Available A three-step method for the identification of the main sources of fecal coliforms (FC in urban waters and for the analysis of remedial actions is proposed. The method is based on (1 The statistical analysis of the relationship between rainfall and FC concentrations in urban rivers; (2 The simulation of hydrology and hydraulics; and (3 Scenario analysis. The proposed method was applied to the Beauport River watershed, in Canada, covering an area of 28.7 km2. FC loads and concentrations in the river, during and following rainfall events, were computed using the Storm Water Management Model (SWMM hydrological/hydraulic simulation model combined with event mean concentrations. It was found that combined sewer overflows (CSOs are the main FC sources, and that FC from stormwater runoff could still impair recreational activities in the Beauport River even if retention tanks were built to contain CSOs. Thus, intervention measures should be applied in order to reduce the concentration of FC in stormwater outfalls. The proposed method could be applied to water quality components other than FC, provided that they are present in stormwater runoff and/or CSOs, and that the time of concentration of the watershed is significantly lower than their persistence in urban waters.

  8. Climate change impact on meteorological droughts in watershed scale (case study: southwestern Iran

    Directory of Open Access Journals (Sweden)

    Alireza Nikbakht Shahbazi

    2014-12-01

    Full Text Available Drought is one of the major natural disasters in the world which has a lot of social and economic impacts. There are various factors that affect climate changes; the investigation of this incident is also sensitive. Climate scenarios of future climate change studies and investigation of efficient methods for investigating these events on drought should be assumed. This study intends to investigate climate change impacts on drought in Karoon3 watershed in the future. For this purpose, the atmospheric general circulation models (GCM data under Intergovernmental Panel on Climate Change (IPCC scenarios should be investigated. In this study, watershed drought under climate change impacts will be simulated in future periods (2011 to 2099. In this research standard precipitation index (SPI was calculated using mean monthly precipitation data in Karoon3 watershed. SPI was calculated in 6, 12 and 24 months periods. Statistical analysis on daily precipitation and minimum and maximum daily temperature was performed. To determine the feasibility of future periods meteorological data production of LRAS-WG5 model, calibration and verification was performed for the base year (1980-2007. Meteorological data simulation for future periods under General Circulation Models and climate change IPCC scenarios was performed and then the drought status using SPI under climate change effects analyzed. Results showed that differences between monthly maximum and minimum temperature will decrease under climate change and spring precipitation shall increase while summer and autumn rainfall shall decrease. The most increase of precipitation will take place in winter and in December. Normal and wet SPI category is more frequent in B1 and A2 emissions scenarios than A1B. Wet years increases in the study area during 2011-2030 period and the more continuous drought years gradually increases during 2046-2065 period, the more severe and frequent drought will occur during the 2080-2099 period.

  9. Integrating GIS, remote sensing and mathematical modelling for surface water quality management in irrigated watersheds:

    OpenAIRE

    Azab, A. M.

    2012-01-01

    The intensive uses of limited water resources, the growing population rates and the various increasing human activities put high and continuous stresses on these resources. Major problems affecting the water quality of rivers, streams and lakes may arise from inadequately treated sewage, poor land use practices, inadequate controls on the discharges of industrial waste waters, uncontrolled poor agricultural practices, excessive use of fertilizers, and a lack of integrated watershed managemen...

  10. Alternative Land-Use Method for Spatially Informed Watershed Management Decision Making Using SWAT

    Science.gov (United States)

    In this study, a modification is proposed to the Soil and Water Assessment Tool (SWAT) to enable identification of areas where the implementation of best management practices would likely result in the most significant improvement in downstream water quality. To geospatially link...

  11. Locating farmer-based knowledge and vested interests in natural resource management: the interface of ethnopedology, land tenure and gender in soil erosion management in the Manupali watershed, Philippines.

    Science.gov (United States)

    Price, Lisa Leimar

    2007-01-01

    This paper examines local soil knowledge and management in the Manupali watershed in the Philippines. The study focuses on soil erosion and its control. Research methods used in the study include ethnosemantic elicitations on soils and focus group discussions. In addition, in-depth work was conducted with 48 farmers holding 154 parcels at different elevations/locations in the watershed. The on-parcel research consisted of farmer classifications of the soil, topography, and erosion status of their parcels. Soil samples were also taken and examined. Farming households were also examined with regard to erosion control activities conducted by age and sex. Erosion management was examined in relation to tenure of the parcel, which emerged as a salient aspect among focus group members and was evidenced by the actual control measures taken on farmed parcels. The results show that the major constraint in soil erosion management is not local knowledge as much as it is the tenure arrangements which allow "temporary owners" (those working rented or mortgaged parcels) to manage the parcels as they see fit. Most of these temporary owners are not willing to invest in erosion control measures other than water diversion ditches. Parcel owners, in contrast, do invest in longer term erosion control measures on the parcels they actually work. The findings of this paper illustrate that linking local knowledge and practices is often not sufficient in and of itself for addressing questions of sound environmental management. While local knowledge serves farmers generally well, there are some limitations. Importantly, the pressures in the contemporary world of markets and cash can undermine what they know as the right thing to do for the environment. PMID:17803809

  12. Locating farmer-based knowledge and vested interests in natural resource management: the interface of ethnopedology, land tenure and gender in soil erosion management in the Manupali watershed, Philippines

    Directory of Open Access Journals (Sweden)

    Price Lisa

    2007-09-01

    Full Text Available Abstract This paper examines local soil knowledge and management in the Manupali watershed in the Philippines. The study focuses on soil erosion and its control. Research methods used in the study include ethnosemantic elicitations on soils and focus group discussions. In addition, in-depth work was conducted with 48 farmers holding 154 parcels at different elevations/locations in the watershed. The on-parcel research consisted of farmer classifications of the soil, topography, and erosion status of their parcels. Soil samples were also taken and examined. Farming households were also examined with regard to erosion control activities conducted by age and sex. Erosion management was examined in relation to tenure of the parcel, which emerged as a salient aspect among focus group members and was evidenced by the actual control measures taken on farmed parcels. The results show that the major constraint in soil erosion management is not local knowledge as much as it is the tenure arrangements which allow "temporary owners" (those working rented or mortgaged parcels to manage the parcels as they see fit. Most of these temporary owners are not willing to invest in erosion control measures other than water diversion ditches. Parcel owners, in contrast, do invest in longer term erosion control measures on the parcels they actually work. The findings of this paper illustrate that linking local knowledge and practices is often not sufficient in and of itself for addressing questions of sound environmental management. While local knowledge serves farmers generally well, there are some limitations. Importantly, the pressures in the contemporary world of markets and cash can undermine what they know as the right thing to do for the environment.

  13. SEAMONSTER: A wireless Sensor Web prototype applied to studying glaciated watersheds (Invited)

    Science.gov (United States)

    Heavner, M.; Fatland, D. R.; Hood, E. W.; Connor, C. L.

    2009-12-01

    The SouthEast Alaska MOnitoring Network for Science, Telecommunications, Education and Research (SEAMONSTER) Sensor Web is operating in partially glaciated watersheds on the margin of the Juneau Ice Field. Data from distributed, heterogeneous sensors with irregular sampling rates is integrated in a PostGIS (PostgreSQL with GIS extensions) database. Data discovery, data browsing, the sensor web operation and management, and education and publication are facilitated by the integration of the PostGIS database and Geoserver to deliver dynamically generated geospatial output. This presentation will focus on the technology developed to operate the SEAMONSTER sensor web and lessons learned regarding sensing the data using networking both internal and external to the sensor web. We will present examples of data fusion, modeling and reanalysis of the data using Open Geospatial Consortium (OGC) standards, and present future plans to enhance the testbed nature and capabilities of the SEAMONSTER Sensor Web.

  14. Interfaces da gestão ambiental urbana e gestão regional: análise da relação entre Planos Diretores Municipais e Planos de Bacia Hidrográfica / Interfaces of urban environmental management and regional management: analysis of the relationship between Municipal Master Plans and Watershed Plans

    Scientific Electronic Library Online (English)

    Renata Bovo, Peres; Ricardo Siloto da, Silva.

    2013-12-01

    Full Text Available Este artigo relata uma pesquisa que discute como a questão ambiental vem sendo tratada nos instrumentos e práticas de gestão localizadas em dois recortes territoriais: municípios e bacias hidrográficas. Foi analisada a relação da dimensão ambiental com a gestão regional e municipal, por meio dos ins [...] trumentos Planos de Bacia Hidrográfica e Planos Diretores Municipais, tendo como locus a Unidade de Gerenciamento de Recursos Hídricos Tietê-Jacaré do Estado de São Paulo. Os objetos de pesquisa selecionados foram o Plano de Bacia Hidrográfica Tietê-Jacaré e os Planos Diretores de Araraquara e São Carlos. A pesquisa abordou as seguintes categorias de análise: unidades de planejamento, instrumentos ambientais contidos no Plano de Bacia e nos Planos Diretores, instâncias de gestão e grau de infiluência entre os planos analisados. O método se pautou em levantamentos, análises bibliográficas e documentais, entrevistas semiestruturadas e questionários. Os resultados obtidos apontaram que o Plano de Bacia Hidrográfica ainda apresenta lacunas e dificuldades para uma atuação mais ampliada. Não reconhece os confilitos de uso da terra e de organização territorial como uma vulnerabilidade que precisa ser enfrentada. Mostraram, ainda, que os Planos Diretores Municipais concentram-se na aplicação dos instrumentos voltados ao parcelamento e ao zoneamento urbano. Nesses planos, as condições e os aspectos ambientais e regionais se apresentam como uma temática periférica e pouco articulada com as demais políticas. As análises procuraram demonstrar a complexa relação entre políticas, instrumentos e instâncias de planejamento e gestão, explicitando os obstáculos que dificultam a aplicação do conceito de gestão territorial integrada. Abstract in english This article details a research work that discusses how environmental issues have been addressed in the instruments and management practices in two territorial areas: municipalities and watersheds. The environmental relationship of the regional and municipal management was analyzed using the Watersh [...] ed Plans and the Municipal Master Plans, located at the Management Unit of Tietê-Jacaré Water Resources - State of São Paulo. The research subjects selected were the Tietê-Jacaré Watershed Plan and the Master Plans of Araraquara and São Carlos. The study focused on the following analysis categories: the environmental instruments used in the Watershed Plans and the Master Plans, management events and the degree of influence of the plans analyzed. The method was based on surveys, bibliographic and documentary analysis, semistructured interviews and questionnaires. The results showed that there are still gaps and difficulties in the watershed plan to perform a more expanded management planning. It does not acknowledge the conflicts related to land use and territorial organization as a vulnerability that must be addressed. It also showed that the municipal master plans focus on the application of these instruments for urban subdivision and zoning. In these plans, the conditions and regional and environmental aspects are presented as a peripheral issue, which are rarely coordinated with the other policies. The analyses performed sought to demonstrate the complex relationship between policies, instruments and planning and management events, describing the obstacles that interfere with the application of the integrated territorial management concept.

  15. Modeling Fate and Transport of Fecal Coliform Bacteria Using SWAT 2005 (Case Study: Jajrood River Watershed, Iran)

    Science.gov (United States)

    Maghrebi, M.; Tajrishy, M.

    2010-12-01

    Jajrood River watershed is one of the main drinking water resources of the capital city of Tehran, Iran. In addition it has been available as many recreational usages especially in the warm months. As a result of being located near one of the crowded cities of the world, a variety of microbial pollutions is commonly perceived in the Jajrood River. Among them, there are strong concerns about fecal coliform bacteria concentration. This article aimed to model fate and transport of fecal coliform bacteria in Jajrood River watershed using Soil and Water Assessment Tool (SWAT) model version 2005. Potential pollutant sources in the study area were detected and quantified for modeling purposes. In spite of being lack of knowledge about bacteria die-off rate in small river bodies, as well as in other watershed-based forms, fecal coliform bacteria die-off rates were estimated using both laboratory and field data investigations with some simplifications. The SWAT model was calibrated over an extended time period (1997-2002) for this watershed. The river flow calibrated using SUFI-2 software and resulted in a very good outputs (R2=0.82, E=0.81). Furthermore SWAT model was validated over January 2003 to September 2005 in the study area and has resulted in good outputs (R2=0.61, E=0.57). This research illustrates SWAT 2005 capability to model fecal coliform bacteria in a populated watershed, and deals with most of watershed microbial pollution sources that are usually observed in developing countries. Fecal coliform concentration simulation results were mostly in the same order in comparison with real data. However, Differences were judged to be related to lack of input data. In this article different aspects of SWAT capabilities for modeling of fecal coliform bacteria concentration will be reviewed and it will present new insights in bacteria modeling procedures especially for mountainous, high populated and small sized watersheds.

  16. The assessment of land use change impact on watersheds runoff using SWAT: case study of Urmia Lake in Iran

    Science.gov (United States)

    Jabbari, Anahita; Jarihani, Ben; Rezaie, Hossein

    2015-04-01

    Lake Urmia, long counted among the world's largest saltwater lakes, contains only 5% of the amount of water it did just 20 years ago. The decline is generally blamed on a combination of drought, increased water diversion for irrigated agriculture within the lake's watershed and land use mismanagement. It has been believed that land use changes in Lake Urmia basin is one of the most important factors in shrinkage of Urmia Lake in recent decades. Transforming the traditional agricultural practices (i.e., wheat) to the more water consuming practices (i.e., apple orchards) is one of the most important reasons increased agricultural water consumption in the watershed. In this study we assessed the effect of the land use changes of watershed in hydrological runoff processing in the Nazloo chai watershed, one of the most important river basins of the Urmia Lake basin. Actually the rapid and at the same time unreasonable transformations of land use in farm lands of Urmia lake sub basins, extremely has been raised the amount of blue water (surface or groundwater) consumption in watershed which leads to dramatic decrement of watershed runoff amounts. One of the most unfavorable consequences of land use change was changing the blue and green (rainwater insofar as it does not become runoff) water usage patterns in watershed, in addition to water use increment. The soil and water assessment tool (SWAT), one of the most important and reliable models which was used to model the rainfall runoff, has been used in current study. The land use maps were extracted from Landsat images archives for the most severe turning points in respect of land use change in the recent 30 years. After calibrating the model, several land use patterns of historical data were used in the model to produce the runoff. The results showed the strong relation between land use change and runoff reduction in the Lake Urmia basin.

  17. SWITCHGRASS BIOFUELS RESEARCH WITH NATIVE GRASSES AT THE USDA-ARS PASTURE SYSTEMS AND WATERSHED MANAGEMENT RESEARCH UNIT, UNIVERSITY PARK, PENNSYLVANIA

    Science.gov (United States)

    Research on switchgrass (Panicum virgatum L.) as a biomass energy crop is conducted at several USDA-ARS facilities across the USA. At the USDA-ARS Pasture Systems and Watershed Management Research Unit in University Park, Pennsylvania, research on biomass energy focuses on cropping systems, environm...

  18. Watersheds in disordered media

    Science.gov (United States)

    Andrade, Joséi, Jr.; Araújo, Nuno; Herrmann, Hans; Schrenk, Julian

    2015-02-01

    What is the best way to divide a rugged landscape? Since ancient times, watersheds separating adjacent water systems that flow, for example, toward different seas, have been used to delimit boundaries. Interestingly, serious and even tense border disputes between countries have relied on the subtle geometrical properties of these tortuous lines. For instance, slight and even anthropogenic modifications of landscapes can produce large changes in a watershed, and the effects can be highly nonlocal. Although the watershed concept arises naturally in geomorphology, where it plays a fundamental role in water management, landslide, and flood prevention, it also has important applications in seemingly unrelated fields such as image processing and medicine. Despite the far-reaching consequences of the scaling properties on watershed-related hydrological and political issues, it was only recently that a more profound and revealing connection has been disclosed between the concept of watershed and statistical physics of disordered systems. This review initially surveys the origin and definition of a watershed line in a geomorphological framework to subsequently introduce its basic geometrical and physical properties. Results on statistical properties of watersheds obtained from artificial model landscapes generated with long-range correlations are presented and shown to be in good qualitative and quantitative agreement with real landscapes.

  19. Scaling Relations for Watersheds

    CERN Document Server

    Fehr, E; Araújo, N A M; Andrade, J S; Herrmann, H J

    2011-01-01

    We study the morphology of watersheds in two and three dimensional systems subjected to different degrees of spatial correlations. The response of these objects to small, local perturbations is also investigated with extensive numerical simulations. We find the fractal dimension of the watersheds to generally decrease with the Hurst exponent, which quantifies the degree of spatial correlations. Moreover, in two dimensions, our results match the range of fractal dimensions $1.10 \\leq d_f \\leq 1.15$ observed for natural landscapes. We report that the watershed is strongly affected by local perturbations. For perturbed two and three dimensional systems, we observe a power-law scaling behavior for the distribution of areas (volumes) enclosed by the original and the displaced watershed, and for the distribution of distances between outlets. Finite-size effects are analyzed and the resulting scaling exponents are shown to depend significantly on the Hurst exponent. The intrinsic relation between watershed and invas...

  20. Perceiving Patagonia: An Assessment of Social Values and Perspectives Regarding Watershed Ecosystem Services and Management in Southern South America

    Science.gov (United States)

    Zagarola, Jean-Paul A.; Anderson, Christopher B.; Veteto, James R.

    2014-04-01

    Research on human dimensions of ecosystems through the ecosystem services (ES) concept has proliferated over recent decades but has largely focused on monetary value of ecosystems while excluding other community-based values. We conducted 312 surveys of general community members and regional researchers and decision-makers (specialists) to understand local perceptions and values of watershed ES and natural resource management in South America's southern Patagonian ecoregion. Results indicated that specialists shared many similar values of ES with community members, but at the same time their mentalities did not capture the diversity of values that existed within the broader community. The supporting services were most highly valued by both groups, but generally poorly understood by the community. Many services that are not easily captured in monetary terms, particularly cultural services, were highly valued by community members and specialists. Both groups perceived a lack of communication and access to basic scientific information in current management approaches and differed slightly in their perspective on potential threats to ES. We recommend that a community-based approach be integrated into the natural resource management framework that better embodies the diversity of values that exist in these communities, while enhancing the science-society dialog and thereby encouraging the application of multiple forms of ecological knowledge in place-based environmental management.

  1. In search of radiation minima for balancing the needs of forest and water management in snow dominated watersheds (Invited)

    Science.gov (United States)

    Kumar, M.; Seyednasrollah, B.; Link, T. E.

    2013-12-01

    In upland snowfed forested watersheds, where the majority of melt recharge occurs, there is growing interest among water and forest managers to strike a balance between maximizing forest productivity and minimizing impacts on water resources. Implementation of forest management strategies that involve reduction of forest cover generally result in increased water yield and peak flows from forests, which has potentially detrimental consequences including increased erosion, stream destabilization, water shortages in late melt season, and degradation of water quality and ecosystem health. These ill effects can be partially negated by implementing optimal gap patterns and vegetation densities through forest management, that may minimize net radiation on snow-covered forest floor (NRSF). A small NRSF can moderate peak flows and increase water availability late in the melt season. Since forest canopies reduce direct solar (0.28 - 3.5 ?m) radiation but increase longwave (3.5-100 ?m) radiation at the snow surface, by performing detailed quantification of individual radiation components for a range of vegetation density and and gap configurations, we identify the optimal vegetation configurations. We also evaluate the role of site location, its topographic setting, local meteorological conditions and vegetation morphological characteristics, on the optimal configurations. The results can be used to assist forest managers to quantify the radiative regime alteration for various thinning and gap-creation scenarios, as a function of latitudinal, topographic, climatic and vegetation characteristics.

  2. Developing a Framework to Measure Watershed Sustainability by Using Hydrological/Water Quality Model

    Directory of Open Access Journals (Sweden)

    Aditya Sood

    2011-11-01

    Full Text Available A framework is built, wherein hydrological/water quality model is used to measure watershed sustainability. For this framework, watershed sustainability has been defined and quantified by defining social, environmental and biodiversity indicators. By providing weightage to these indicators, a “River Basin Sustainability Index” is built. The watershed sustainability is then calculated based on the concepts of reliability, resilience and vulnerability. The framework is then applied to a case study, where, based on watershed management principles, four land use scenarios are created in GIS. The Soil and Water Assessment Tool (SWAT is used as a hydrology/water quality model. Based on the results the land uses are ranked for sustainability and policy implications have been discussed. This results show that landuse (both type and location impact watershed sustainability. The existing land use is weak in environmental sustainability. Also, riparian zones play a critical role in watershed sustainability, although beyond certain width their contribution is not significant.

  3. Predictive Model of Rainfall-Runoff: A Case Study of the Sanaga Basin at Bamendjin Watershed in Cameroon

    Directory of Open Access Journals (Sweden)

    Terence Kibula Lukong

    2011-12-01

    Full Text Available In order to reduce the energy deficit recorded in Cameroon, management of watersheds where storage dams are situated plays a vital role. The Bamendjin dam situated upstream of the river Sanaga in Cameroon plays a significant role in regulating the flow of the river Sanaga which is used to generate hydroelectric energy for the South Interconnected Network (SIN of AES SONEL (the main producer and distributor of electricity in Cameroon at the power plants of Edea and Songloulou downstream of the Sanaga in Cameroon. This paper proposes a model of the watershed that gives an accurate estimation of the quantity of water that will enter the dam given an estimated future rainfall. The model captures the relationships between rainfall and streamflow and to reliably estimate initial watershed states. While future runoff are mainly dependent on initial watershed states and future rainfall, use of the rainfall-runoff models together with estimated future rainfall can produce skillful forecasts of future runoff which is the basis of this prediction system. The result we obtained is a simulated discharge or hydrograph at the outlet (entrance of the dam. To validate it, a comparison of the simulated flowrate and the observed flowrate is carryout using historic data with the Nash Sutcliffe Efficiency Criterion and we obtained an efficiency of 0.833, meaning that the simulation was good.

  4. Predictive Model of Rainfall-Runoff: A Case Study of the Sanaga Basin at Bamendjin Watershed in Cameroon

    OpenAIRE

    Terence Kibula Lukong; Michel Mbessa; Thomas Tamo Tatietse

    2011-01-01

    In order to reduce the energy deficit recorded in Cameroon, management of watersheds where storage dams are situated plays a vital role. The Bamendjin dam situated upstream of the river Sanaga in Cameroon plays a significant role in regulating the flow of the river Sanaga which is used to generate hydroelectric energy for the South Interconnected Network (SIN) of AES SONEL (the main producer and distributor of electricity in Cameroon) at the power plants of Edea and Songloulou downstream of t...

  5. Participatory Scenario Planning for the Cienega Watershed: Embracing Uncertainty in Public Lands Management in the U.S. Southwest

    Science.gov (United States)

    Hartmann, H.; Morino, K.; Bodner, G.; Markstein, A.; McFarlin, S.

    2013-12-01

    Land managers and communities struggle to sustain natural landscapes and the benefits they provide--especially in an era of rapid and unpredictable changes being driven by shifts in climate and other drivers that are largely outside the control of local managers and residents. The Cienega Watershed Partnership (CWP) is a long-standing multi-agency partnership involved in managing lands and resources over about 700,000 acres in southeast Arizona, surrounding the Bureau of Land Management's Las Cienegas National Conservation Area. The region forms a vital wildlife corridor connecting the diverse ecosystems of the Sonoran and Chihuahuan deserts and grasslands with the Sierra Madrean and Rocky Mountain forests and woodlands. The CWP has long-standing forums and relationships for considering complex issues and novel approaches for management, including practical implementation of adaptive management, development of monitoring programs and protocols, and the use of nested objectives to adjust management targets. However, current plans have objectives and strategies based on what is known or likely to become known about natural and socio-cultural systems; they do not incorporate uncertainties related to rapid changes in climate or have well developed feedback mechanisms for routinely reconsidering climate information. Since 2011, more than 50 individuals from over 20 federal and local governments, non-governmental organizations, and private landowners have participated in scenario planning for the Cienega Watershed. Scenario planning is an important tool for (1) managing risks in the face of high volatility, uncertainty, complexity, and ambiguity; (2) integrating quantitative climate projections, trend and impact assessments, and local expertise to develop qualitative scenario narratives that can inform decisions even by simply provoking insights; and (3) engaging jurisdictions having different missions, objectives, and planning processes. Participants are helping to extend and refine participatory scenario planning methods from the development of regional qualitative narratives to (1) development of scenario narratives that are relevant at the local management level, (2) creation and evaluation of portfolios of management options that can accommodate changes in management objectives, connect to formal agency planning processes, and that can be adjusted as the future evolves, and (3) explicit identification of the data and information that link qualitative narratives to quantitative scenario and adaptation assessments, which can be used to drive the timing and implementation of activities within the adaptation portfolios, and to prioritize monitoring and research activities to resolve near-term uncertainties. Project tasks are structured around four resource teams that focus on their specific management concerns (Montane, Riparian, Upland and Cultural), but that come together periodically to consider interaction and conflict among their scenarios or prospective adaptation. Participants are finding that embracing uncertainty enables them to approach climate change with a sense of empowerment rather than a sense of reacting to crises, and they appreciate the methods and opportunities for thinking differently and crossing boundaries that the scenario planning exercises provide.

  6. Hydrological and environmental diagnostic of the Cachoeira das Pombas’s watershed, Guanhães, MG, Brazil

    Directory of Open Access Journals (Sweden)

    Deuseles João Firme

    2009-04-01

    Full Text Available The objective of this work was to evaluate hydrological and environmental issues of Cachoeira das Pombas watershed, in Guanhães, eastern Minas Gerais State, Brazil, to support its management plan. The characterization of water springs included the definition of its types, assessment of flow persistence, conservation state, outflow values, and the hydrological and environmental conservation state of the watershed. For a detailed analysis, the watershed was studied considering each of its small watersheds. Analyzing the hydrological and environmental conservation state of the watershed, it was concluded that an integrated management of natural resources is necessary inasmuch as the flow rate showed to be irregular, with great variation between the rainy and dry seasons and several erosion and silting spots observed during the study period.

  7. An Integrated Approach to Identification, Assessment and Management of Watershed-Scale Risk for Sustainable Water Use Through Reuse and Recycling

    Science.gov (United States)

    Hunter, C. K.; Bolster, D.; Gironas, J. A.

    2014-12-01

    Water resources are essential to development, not only economically but also socially, politically and ecologically. With growing demand and potentially shrinking supply, water scarcity is one of the most pressing socio-ecological problems of the 21st century. Considering implications of global change and the complexity of interrelated systems, uncertain future conditions compound problems associated with water stress, requiring hydrologic models to re-examine traditional water resource planning and management. The Copiapó water basin, located in the Atacama Desert of northern Chile exhibits a complex resource management scenario. With annual average precipitation of only 28 mm, water intensive sectors such as export agriculture, extensive mining, and a growing population have depleted the aquife?s reserves to near critical levels. Being that global climate change models predict a decrease in already scarce precipitation, and that growing population and economies demand will likely increase, the real future situation might be even worse than that predicted. A viable option for alleviation of water stress, water reuse and recycling has evolved through technological innovation to feasibly meet hydraulic needs with reclaimed water. For the proper application of these methods for resource management, however, stakeholders must possess tools by which to quantify hydrologic risk, understand its factors of causation, and choose between competing management scenarios and technologies so as to optimize productivity. While previous investigations have addressed similar problems, they often overlook aspects of forecasting uncertainty, proposing solutions that while accurate under specific scenarios, lack robustness to withstand future variations. Using the WEAP (Water Evaluation and Planning) platform for hydrologic modeling, this study proposes a methodology, applicable to other stressed watersheds, to quantify inherent risk in water management positions, while considering uncertainties in supply (climate change), demand (market variations), and measurement (risk definition). Applied to the Copaipó case study, this methodology proposes the solution of a 30% demand decrease within the agricultural sector through urban wastewater recycling and increased irrigation efficiency.

  8. Derechos de agua y gestión por cuencas en México: El caso del río Sonora / Water rights and watershed management in Mexico: The Sonora river case

    Scientific Electronic Library Online (English)

    Nicolás, Pineda Pablos; José Luis, Moreno Váquez; Alejandro, Salazar Adams; América Nallely, Lutz Ley.

    2014-12-01

    Full Text Available Este artículo analiza el papel de los derechos de agua en la gestión por cuenca. Esta es considerada como un recurso de uso común donde la intervención estatal y el registro de los derechos de agua pueden ser aprovechados para poner límites a las extracciones y evitar la sobreexplotación del recurso [...] . Para el análisis, se hace un repaso de las ideas de la gestión por cuenca y se revisa el marco legal de los derechos del agua en México; después se revisa una base de datos de derechos de agua de la cuenca del río Sonora; y al final del trabajo se presentan los hallazgos. Entre ellos se encuentran las discrepancias entre los principios del marco legal y la operación concreta de los derechos de agua, así como el desaprovechamiento de estos últimos para ejecutar la gestión por cuencas. Abstract in english This article analyzes the role of water rights in watershed management. The watershed is seen as a common pool resource where State intervention and the register of water rights might be used to constrain water tapping and avoid overexploitation. For this purpose, it reviews the ideas of watershed m [...] anagement and revises the Mexican legal framework for water rights. Then, it analyses a database of water rights in the Sonora River. At the end, findings are presented such as the disagreement between the principles devised by the legal framework and the practical implementation of water rights and that those are not used to undertake watershed management.

  9. Women, Environment and Sustainable Development: A Case Study of Khul Gad Micro Watershed of Kumoun Himalaya

    Directory of Open Access Journals (Sweden)

    Suman Singh

    2014-02-01

    Full Text Available Women in the marginal areas of Uttarakhand have always played and continue to play a significant role in managing and operating most of the household and agricultural activities. They are the main subsistence provider in the hills and considered the backbone of hill agriculture. Their lives are intrinsically related to land, water, forest, which are the main components and integral parts of an eco-system. An adverse effect on any one of these components disturbs the other compo- nents due to strong linkages and interrelationship with each other and creates havoc on the life of people, especially women in the region. However, in recent years, environmental degradation, poor resource management and increased migration of men to the plains have deteriorated the livelihood options and added more workload to women of the region. The sufferings of the com- munities in these hilly areas are gradually increasing and their standard of living is declining be- cause they have been neglected at both policy and practice levels by the government. The nexus between women, environment degradation and poverty are poorly understood and rarely treated in an integrated way. Therefore, the key objective of the present paper is to analyse the work par- ticipation of women operating at different sub-systems, impact of environmental degradation and role of women in sustaining the traditional agro-ecosystem in Khul Gad micro-watershed of Ku- moun Himalaya.

  10. Summary and Synthesis of Mercury Studies in the Cache Creek Watershed, California, 2000-01

    Science.gov (United States)

    Domagalski, Joseph L.; Slotton, Darell G.; Alpers, Charles N.; Suchanek, Thomas H.; Churchill, Ronald; Bloom, Nicolas; Ayers, Shaun M.; Clinkenbeard, John

    2004-01-01

    This report summarizes the principal findings of the Cache Creek, California, components of a project funded by the CALFED Bay?Delta Program entitled 'An Assessment of Ecological and Human Health Impacts of Mercury in the Bay?Delta Watershed.' A companion report summarizes the key findings of other components of the project based in the San Francisco Bay and the Delta of the Sacramento and San Joaquin Rivers. These summary documents present the more important findings of the various studies in a format intended for a wide audience. For more in-depth, scientific presentation and discussion of the research, a series of detailed technical reports of the integrated mercury studies is available at the following website: .

  11. Characterizing a Century of Climate and Hydrological Variability of a Mediterranean and Mountainous Watersheds: the Durance River Case-Study

    Science.gov (United States)

    Mathevet, T.; Kuentz, A.; Gailhard, J.; Andreassian, V.

    2013-12-01

    Improving the understanding of mountain watersheds hydrological variability is a great scientific issue, for both researchers and water resources managers, such as Electricite de France (Energy and Hydropower Company). The past and current context of climate variability enhances the interest on this topic, since multi-purposes water resources management is highly sensitive to this variability. The Durance River watershed (14000 km2), situated in the French Alps, is a good example of the complexity of this issue. It is characterized by a variety of hydrological processes (from snowy to Mediterranean regimes) and a wide range of anthropogenic influences (hydropower, irrigation, flood control, tourism and water supply), mixing potential causes of changes in its hydrological regimes. As water related stakes are numerous in this watershed, improving knowledge on the hydrological variability of the Durance River appears to be essential. In this presentation, we would like to focus on a methodology we developed to build long-term historical hydrometeorological time-series, based on atmospheric reanalysis (20CR : 20th Century Reanalysis) and historical local observations. This methodology allowed us to generate precipitation, air temperature and streamflow time-series at a daily time-step for a sample of 22 watersheds, for the 1883-2010 period. These long-term streamflow reconstructions have been validated thanks to historical searches that allowed to bring to light ten long historical series of daily streamflows, beginning on the early 20th century. Reconstructions appear to have rather good statistical properties, with good correlation (greater than 0.8) and limited mean and variance bias (less than 5%). Then, these long-term hydrometeorological time-series allowed us to characterize the past variability in terms of available water resources, droughts or hydrological regime. These analyses help water resources managers to better know the range of hydrological variabilities, which are usually greatly underestimated with classical available time-series (less than 50 years).

  12. Water management in a complex hydrological basin: application of WEAP to the Lake Kinneret watershed (Briefing 2.3)

    OpenAIRE

    Sivan, Illya; Salingar, Yigal; Rimmer, Alon; Sade, Rotem; Universität Tübingen / Abteilung Vegetationsökologie

    2013-01-01

    Sustainability of fresh water ecosystems and human activities in Mediterranean watersheds under future climate change can be supported with integrated hydrological modeling. The Lake Kinneret Watershed (LKW) is divided between the three countries, Israel, Lebanon, and Syria and incorporates four different hydrogeological units (Mt. Hermon in the north, the Golan Heights in the east, the eastern Galilee Mountains in the west, and the Hula Valley in the central part of the watershed). We simula...

  13. Endangered ecosystem conservation: a 30-year lesson from the evolution of saline-alkali soil management in Manasi river watershed, China

    International Nuclear Information System (INIS)

    Previous studies on saline-alkali soil management mostly followed an instrumental 'prediction and control' approach dominated by technical end-of-pipe solutions. However, those 'integrated' instrumental solutions frequently perished due to the growing social and economic uncertainties in financial support, legal insurance, expertise service and other factors. This investigation summarizes the 30-year period of saline-alkali soil management - the social and economic and ecological (SEE) management innovation - its adoption, diffusion, adaptation and transformation in Manasi River watershed of northern Xinjiang. This area was experiencing three distinct SEE management stages from pure instrumental desalination techniques to integrated desalination technique system following the SEE supporting system. The results of GIS analysis (Fragatats 3.3) and historical documents provide data evidence for above three transition stages. The total area of saline and alkali land was increased by 32.7%, 47.6% during the first two decades but decreased by 11.9% in the recent decade. The numbers of saline land patches were 116, 129 and 121 in 1989, 2000 and 2007 respectively, a similar trend to the changes of total area. However, both perimeter-area fractal dimension (PAFD) and splitting index (SI) continued to increase, with values of 1.265, 1.272 and 1.279 for PAFD and 259.29, 269.68, 272.92 for SI in 1989, 2000 and 2007, respectively. It suggests that saline and alkaline land distribusts that saline and alkaline land distribution had been fragmented, and sequestrated into salt micro-catchments within whole oasis ecosystems. This case is largely associated with effective adoption of integrated engineering and biological desalination programs as a result of local SEE saline-alkali soil management innovation. (author)

  14. Downscaling future climate projections to the watershed scale: a north San Francisco Bay estuary case study

    Science.gov (United States)

    Micheli, Elisabeth; Flint, Lorraine; Flint, Alan; Weiss, Stuart; Kennedy, Morgan

    2012-01-01

    We modeled the hydrology of basins draining into the northern portion of the San Francisco Bay Estuary (North San Pablo Bay) using a regional water balance model (Basin Characterization Model; BCM) to estimate potential effects of climate change at the watershed scale. The BCM calculates water balance components, including runoff, recharge, evapotranspiration, soil moisture, and stream flow, based on climate, topography, soils and underlying geology, and the solar-driven energy balance. We downscaled historical and projected precipitation and air temperature values derived from weather stations and global General Circulation Models (GCMs) to a spatial scale of 270 m. We then used the BCM to estimate hydrologic response to climate change for four scenarios spanning this century (2000–2100). Historical climate patterns show that Marin’s coastal regions are typically on the order of 2 °C cooler and receive five percent more precipitation compared to the inland valleys of Sonoma and Napa because of marine influences and local topography. By the last 30 years of this century, North Bay scenarios project average minimum temperatures to increase by 1.0 °C to 3.1 °C and average maximum temperatures to increase by 2.1 °C to 3.4 °C (in comparison to conditions experienced over the last 30 years, 1981–2010). Precipitation projections for the 21st century vary between GCMs (ranging from 2 to 15% wetter than the 20th-century average). Temperature forcing increases the variability of modeled runoff, recharge, and stream discharge, and shifts hydrologic cycle timing. For both high- and low-rainfall scenarios, by the close of this century warming is projected to amplify late-season climatic water deficit (a measure of drought stress on soils) by 8% to 21%. Hydrologic variability within a single river basin demonstrated at the scale of subwatersheds may prove an important consideration for water managers in the face of climate change. Our results suggest that in arid environments characterized by high topo-climatic variability, land and water managers need indicators of local watershed hydrology response to complement regional temperature and precipitation estimates. Our results also suggest that temperature forcing may generate greater drought stress affecting soils and stream flows than can be estimated by variability in precipitation alone.

  15. A study of nutrient generation in headwater watersheds in Southeastern Australia

    Science.gov (United States)

    Adams, R.; Western, A. W.; Freer, J. E.; Saffarpour, S.; McDonnell, J. J.

    2011-12-01

    Australian research into nutrient generation from agricultural watersheds has been fairly limited to date. Many studies have focused on small scales, typically a hillslope or farm and often a single nutrient (generally phosphorus). Alternatively, integrated catchment studies have focused on large river basins to estimate annual loads of pollutants. Intensive agricultural production, specifically dairy farming in the wetter regions of the continent is known to be a major cause of nutrient loading to receiving waters. This research aims to improve the understanding of pathway dynamics that connect source areas of pollutants to watercourses. We address these issues at scales ranging from hillslope (0.01km2) to small watersheds (4.4 km2) using a nested sampling strategy for a farm located in the Lang Lang catchment SE of Melbourne. Pathways and connectivity of surface and subsurface fluxes are evaluated from observations using stable isotope analysis, coupled with End Member Mixing Analysis (EMMA). Nutrients (nitrogen and phosphorus including dissolved species) along with major ions and stable isotopes (deuterium and 18O) are regularly sampled in streams, rainfall, soil water and groundwater. Characteristics of the landscape that define flowpaths and connectivity are formulated into Dynamic TOPMODEL to test hypotheses of pollutant behavior within this farm system. The modeling approach will include a full uncertainty analysis based initially on the observed runoff data. Additional model components will be added to allow nutrients (nitrogen and phosphorus) and sediments to be modeled in a parsimonious manner. We try to reconcile nested observations with parsimonious model formulation and discuss the potential for understanding the dominant spatial controls of diffuse pollutants and our ability to quantify appropriate process representations.

  16. Using Streamwater Chemistry in Flowpath Analysis of Large-Scale Forested Watersheds Near Stowe, VT: Developed vs. Undeveloped Watersheds

    Science.gov (United States)

    Zinni, B. J.; Wemple, B. C.; Lini, A.; James, S. B.

    2004-05-01

    The analysis of flowpaths in small alpine watersheds has provided insight into the interrelationships between overall streamwater chemistry and the various flowpaths contributing to it. The purpose of this study is to determine whether the methods used in determining the flowpaths of small watersheds are applicable in a large-scale watershed. The two sites being studied are in the Mt. Mansfield region of Vermont. They are the Ranch Brook (9.6km2) and West Branch (11.7km2) watersheds. The techniques being implemented include the isotopic characterization of streamwater samples following a precipitation event, basic streamwater chemistry data and their relationship to stream discharge, and the determination of endmembers to the overall streamwater chemistry. Analysis of stream chemistry data suggests that up to three end members contribute to run-off production in both watersheds. A second aspect of this study is a comparison of the two watersheds. These watersheds are similar in all aspects except for the amount of development within each. Ranch Brook is undeveloped forestland while West Branch encompasses an alpine ski resort. Elevated chloride concentrations in the managed watershed suggest the possibility of contamination due to the application of road-salt. Initial oxygen isotope data suggests different flowpath patterns during snowmelt events, which may be the result of the impacts of ski trails and artificial snow on the West Branch site. These two sites provide the unique opportunity to determine impacts of ski development on the streamwater chemistry of alpine watersheds. Future plans include sampling of potential end members such as soilwater, groundwater and snowpack and analysis of additional isotopic data in order to constrain our assessment of flowpaths contributing to the runoff in these basins.

  17. Management & Communication: Project Management Case Study

    CERN Multimedia

    Nathalie Dumeaux

    2004-01-01

    We are pleased to announce the recent launch of a new workshop on Project Management. This is designed for People with budgetary, scheduling and/or organizational responsibilities in a project or a sub-project. The objectives through a management case study specially suited to CERN are: to become familiar with modern management techniques in use for structuring, planning, scheduling, costing and progress monitoring of a project or a sub-project. to understand in-depth issues associated with Deliverable-oriented Project Management, Earned Value Management, Advanced Project Cost Engineering and Project Risk Management. The full description of this workshop can be found here. The next session will be held on 8 October 2004. If you are interested in this workshop, please contact Nathalie Dumeaux, email or 78144. Programme of Seminars October to December 2004 Situation : 21.09.2004 Séminaires bilingues Dates Jours Places disponibles Project Management Case study 8 October 1 oui Intr...

  18. Prioritizing watersheds for conservation actions in the southeastern coastal plain ecoregion.

    Science.gov (United States)

    Jang, Taeil; Vellidis, George; Kurkalova, Lyubov A; Boll, Jan; Hyman, Jeffrey B

    2015-03-01

    The aim of this study was to apply and evaluate a recently developed prioritization model which uses the synoptic approach to geographically prioritize watersheds in which Best Management Practices (BMPs) can be implemented to reduce water quality problems resulting from erosion and sedimentation. The model uses a benefit-cost framework to rank candidate watersheds within an ecoregion or river basin so that BMP implementation within the highest ranked watersheds will result in the most water quality improvement per conservation dollar invested. The model was developed to prioritize BMP implementation efforts in ecoregions containing watersheds associated with the USDA-NRCS Conservation Effects Assessment Project (CEAP). We applied the model to HUC-8 watersheds within the southeastern Coastal Plain ecoregion (USA) because not only is it an important agricultural area but also because it contains a well-studied medium-sized CEAP watershed which is thought to be representative of the ecoregion. The results showed that the three HUC-8 watersheds with the highest rankings (most water quality improvement expected per conservation dollar invested) were located in the southern Alabama, northern Florida, and eastern Virginia. Within these watersheds, measures of community attitudes toward conservation practices were highly ranked, and these indicators seemed to push the watersheds to the top of the rankings above other similar watersheds. The results, visualized as maps, can be used to screen and reduce the number of watersheds that need further assessment by managers and decision-makers within the study area. We anticipate that this model will allow agencies like USDA-NRCS to geographically prioritize BMP implementation efforts. PMID:25528594

  19. Prioritizing Watersheds for Conservation Actions in the Southeastern Coastal Plain Ecoregion

    Science.gov (United States)

    Jang, Taeil; Vellidis, George; Kurkalova, Lyubov A.; Boll, Jan; Hyman, Jeffrey B.

    2015-03-01

    The aim of this study was to apply and evaluate a recently developed prioritization model which uses the synoptic approach to geographically prioritize watersheds in which Best Management Practices (BMPs) can be implemented to reduce water quality problems resulting from erosion and sedimentation. The model uses a benefit-cost framework to rank candidate watersheds within an ecoregion or river basin so that BMP implementation within the highest ranked watersheds will result in the most water quality improvement per conservation dollar invested. The model was developed to prioritize BMP implementation efforts in ecoregions containing watersheds associated with the USDA-NRCS Conservation Effects Assessment Project (CEAP). We applied the model to HUC-8 watersheds within the southeastern Coastal Plain ecoregion (USA) because not only is it an important agricultural area but also because it contains a well-studied medium-sized CEAP watershed which is thought to be representative of the ecoregion. The results showed that the three HUC-8 watersheds with the highest rankings (most water quality improvement expected per conservation dollar invested) were located in the southern Alabama, northern Florida, and eastern Virginia. Within these watersheds, measures of community attitudes toward conservation practices were highly ranked, and these indicators seemed to push the watersheds to the top of the rankings above other similar watersheds. The results, visualized as maps, can be used to screen and reduce the number of watersheds that need further assessment by managers and decision-makers within the study area. We anticipate that this model will allow agencies like USDA-NRCS to geographically prioritize BMP implementation efforts.

  20. Using Backcast Land-Use Change and Groundwater Travel-Time Models to Generate Land-Use Legacy Maps for Watershed Management

    Directory of Open Access Journals (Sweden)

    Jonah M. Duckles

    2007-12-01

    Full Text Available We couple two spatial-temporal models, a backcast land-use change model and a groundwater flow model, to develop what we call “land-use legacy maps.” We quantify how a land-use legacy map, created from maps of past land use and groundwater travel times, differs from a current land-use map. We show how these map differences can affect land-use planning and watershed management decisions at a variety of spatial and temporal scales. Our approach demonstrates that land-use legacy maps provide a more accurate representation of the linkage between land use/cover and current water quality compared to the current land-use map. We believe that the historical signatures of land-use impacts on current water quality should be considered in land-use planning and watershed management.

  1. A Paired watershed Evaluation of Agroforestry effects on Water Quality on a Corn/Soybean Rotation

    Science.gov (United States)

    Udawatta, Ranjith; Jose, Shibu; Garrett, Harold

    2015-04-01

    Rigorous long-term scientific studies confirming environmental benefits from the use of agroforestry practices are limited and thus limit the adoption of agroforestry practices throughout the world. The objective of the study was to examine non point source pollution (NPSP) reduction by agroforestry buffers in row-crop watersheds. The study consists of three watersheds in a paired watershed design in Knox County, Missouri, USA. Watersheds were established in 1991 and treatments of agroforestry (trees+grass) and grass buffers were established on two watersheds in 1997 after a 7-year calibration period. Runoff water samples were analyzed for sediment, total nitrogen (TN) and total phosphorus (TP) for the 2009 to 2010 period. Results indicated that agroforestry and grass buffers on row crop watersheds significantly reduce runoff, sediment, TN, and TP losses to streams. Buffers in association with row crop management reduced runoff by 26% during the study period as compared to the control treatments. Average sediment loss for row crop management and buffer watersheds was 14.8 and 9.7 kg ha-1 yr-1 respectively. On average, grass and agroforestry buffers reduced sediment, TN, and TP losses by 32, 42, and 46% compared to the control treatments. These differences could in part be attributed to the differences in management, soils, and landscape features. Results from this study strongly indicate that agroforestry and grass buffers can be implemented to reduce NPSP to water bodies while improving land value and environmental quality.

  2. 3D Agro-ecological Land Use Planning Using Surfer Tool for Sustainable Land Management in Sumani Watershed, West Sumatra Indonesia

    OpenAIRE

    Aflizar; Alarima Cornelius Idowu; Roni Afrizal; Jamaluddin; Edi Syafri; Muzakir; Husnain; Tsugiyuki Masunaga

    2013-01-01

    Estimation of soil erosion 3D (E3D) provides basic information that can help manage agricultural areas sustainably, which has not been sufficiently conducted in Indonesia. Sumani watershed is main rice production area in West Sumatra which has experienced environmental problem such as soil erosion and production problem in recent years. 3D Agro-ecological land use planning based on soil erosion 3D hazard and economic feasibility analyses consist of production cost and prize data for each crop...

  3. Climate change and watershed mercury export: a multiple projection and model analysis

    Science.gov (United States)

    Golden, Heather E.; Knightes, Christopher D.; Conrads, Paul A.; Feaster, Toby D.; Davis, Gary M.; Benedict, Stephen T.; Bradley, Paul M.

    2013-01-01

    Future shifts in climatic conditions may impact watershed mercury (Hg) dynamics and transport. An ensemble of watershed models was applied in the present study to simulate and evaluate the responses of hydrological and total Hg (THg) fluxes from the landscape to the watershed outlet and in-stream THg concentrations to contrasting climate change projections for a watershed in the southeastern coastal plain of the United States. Simulations were conducted under stationary atmospheric deposition and land cover conditions to explicitly evaluate the effect of projected precipitation and temperature on watershed Hg export (i.e., the flux of Hg at the watershed outlet). Based on downscaled inputs from 2 global circulation models that capture extremes of projected wet (Community Climate System Model, Ver 3 [CCSM3]) and dry (ECHAM4/HOPE-G [ECHO]) conditions for this region, watershed model simulation results suggest a decrease of approximately 19% in ensemble-averaged mean annual watershed THg fluxes using the ECHO climate-change model and an increase of approximately 5% in THg fluxes with the CCSM3 model. Ensemble-averaged mean annual ECHO in-stream THg concentrations increased 20%, while those of CCSM3 decreased by 9% between the baseline and projected simulation periods. Watershed model simulation results using both climate change models suggest that monthly watershed THg fluxes increase during the summer, when projected flow is higher than baseline conditions. The present study's multiple watershed model approach underscores the uncertainty associated with climate change response projections and their use in climate change management decisions. Thus, single-model predictions can be misleading, particularly in developmental stages of watershed Hg modeling.

  4. Differentiating impacts of land use changes from pasture management in a CEAP watershed using the SWAT model

    Science.gov (United States)

    Due to intensive farm practices, nonpoint-source (NPS) pollution has become one of the most challenging environmental problems in agricultural and mixed land use watersheds. Usually, various conservation practices are implemented in the watershed to control the NPS pollution problem. However, land u...

  5. Imagined Communities, Contested Watersheds: Challenges to Integrated Water Resources Management in Agricultural Areas

    Science.gov (United States)

    Ferreyra, Cecilia; de Loe, Rob C.; Kreutzwiser, Reid D.

    2008-01-01

    Integrated water resources management is one of the major bottom-up alternatives that emerged during the 1980s in North America as part of the trend towards more holistic and participatory styles of environmental governance. It aims to protect surface and groundwater resources by focusing on the integrated and collaborative management of land and…

  6. EVALUATION OF SEDIMENT AND PHOSPHORUS MANAGEMENT PRACTICES IN THE WHITE CLAY LAKE WATERSHED

    Science.gov (United States)

    To evaluate the effects of management practices for protection of water quality in White Clay (Wisconsin), surface and lake waters were monitored for a six-year period before and during structural and management changes for nonpoint pollution source control. The incremental natur...

  7. A Systems-Based Approach To Integrated Nutrient Management in Narragansett Bay and Its Watershed.

    Science.gov (United States)

    EPA?s Office of Research and Development is embarking on a project to develop and demonstrate a systems-based management approach that will achieve more integrated and effective management of nutrients in southern New England. The geographic focus of this multi-year research proj...

  8. Analysis and adaption of tools for water system management of the Lièvre River watershed, Quebec, Canada, to the context of climate change

    Science.gov (United States)

    Leconte, R.; Trudel, M.; Krau, S.; Côté, P.

    2012-04-01

    The basin of the Lièvre River (9542 km2), Quebec, Canada, has a water system consisting of three high-capacity reservoirs. During floods, the reservoir management gives priority to flood control and hydropower generation but also tries to respect constraints associated with environmental issues. Nevertheless, the basin is subject to floods, raising the need for improved water system management tools. Since these reservoirs are also part of the Ottawa River system, the main tributary of the St. Lawrence River, reservoirs of the Lièvre River also impact floods and low flows in the Montreal Archipel, through their influence on streamflows in the Mille-Îles and Des Prairies Rivers. Low flow is an important issue in this area since a large population relies on the streamflow of the Mille-Îles River for freshwater. The effect of an anticipated increase of extreme meteorological events as a result of climate change makes the evaluation of water system capacity of the Lièvre River even more important to reduce the impacts of such hydrometeorological events. This kind of optimization problem has been studied in the past and there are many approaches to obtain, or at least to find an optimal solution, such as linear programming, nonlinear programming and dynamic programming. The later is widely used, but difficult to apply to systems with more than three reservoirs since computational time exponentially increases as the number of state variables increases. One of the goals of this study is to eventually extend the water system management to the entire Ottawa River watershed, which includes more than 40 reservoirs. A nonlinear programming approach using an interior-point algorithm has therefore been chosen for the Lievre reservoir system. Constraints related to the Montreal Archipel constitute a further challenge as the many reservoirs on the Ottawa River watershed upstream from the Lièvre River are managed by various owners. It is therefore difficult to know with precision the management of the various reservoirs. Instead of explicitly simulating these reservoirs, it was decided to approximate the overall behaviour of the entire Ottawa River system using a neural network method to produce regulated streamflow hydrographs from natural streamflows, the latter simulated using a hydrological model. As regulation on the Ottawa River is mainly dictated by the spring melt, the performance of the neural network was improved by adding variables such as snow water equivalent simulated by the hydrological model and degree days of the last ten days. The Nash-Sutcliffe coefficient between the observed (regulated) streamflow and the simulated streamflow with the neural network reached more than 0.84. This allowed establishing inflow constraints to the Montreal Archipel that could be entered in the Lièvre river system optimisation algorithm. The developed tool was used to simulate the management of the Lièvre reservoir system over previous years taking into account flow constraints of the Montreal Archipel. The next step will be to study the Lièvre River water system susceptibility to floods and low flow under climate change conditions and to investigate adaptation strategies to reduce adverse impacts of climate change.

  9. A coupled model approach to reduce nonpoint-source pollution resulting from predicted urban growth: A case study in the Ambos Nogales watershed

    Science.gov (United States)

    Norman, L.M.; Guertin, D.P.; Feller, M.

    2008-01-01

    The development of new approaches for understanding processes of urban development and their environmental effects, as well as strategies for sustainable management, is essential in expanding metropolitan areas. This study illustrates the potential of linking urban growth and watershed models to identify problem areas and support long-term watershed planning. Sediment is a primary source of nonpoint-source pollution in surface waters. In urban areas, sediment is intermingled with other surface debris in transport. In an effort to forecast the effects of development on surface-water quality, changes predicted in urban areas by the SLEUTH urban growth model were applied in the context of erosion-sedimentation models (Universal Soil Loss Equation and Spatially Explicit Delivery Models). The models are used to simulate the effect of excluding hot-spot areas of erosion and sedimentation from future urban growth and to predict the impacts of alternative erosion-control scenarios. Ambos Nogales, meaning 'both Nogaleses,' is a name commonly used for the twin border cities of Nogales, Arizona and Nogales, Sonora, Mexico. The Ambos Nogales watershed has experienced a decrease in water quality as a result of urban development in the twin-city area. Population growth rates in Ambos Nogales are high and the resources set in place to accommodate the rapid population influx will soon become overburdened. Because of its remote location and binational governance, monitoring and planning across the border is compromised. One scenario described in this research portrays an improvement in water quality through the identification of high-risk areas using models that simulate their protection from development and replanting with native grasses, while permitting the predicted and inevitable growth elsewhere. This is meant to add to the body of knowledge about forecasting the impact potential of urbanization on sediment delivery to streams for sustainable development, which can be accomplished in a virtual environment. Copyright ?? 2008 by Bellwether Publishing, Ltd. All rights reserved.

  10. Synthesizing Drainage Morphology of Tectonic Watershed in Upper Ing Watershed (Kwan Phayao Wetland Watershed)

    OpenAIRE

    Rangsan Ket-ord; Nipon Tangtham; Veerasak Udomchoke

    2012-01-01

    The study was aimed to synthesize drainage morphology of tectonic watershed in upper Ing Watershed in Phayao province, northern Thailand. The morphometric analysis of 12 sub-watersheds was carried out using Geographic Information System (GIS) software-ArcGIS 9.3 for analysing drainage pattern and calculating the 16 theoretical values of drainage morphometric parameters in 3 aspects including linear aspect, areal aspect and relief aspect. The geologic formation and structure are also overlain ...

  11. Watershed Charachterization And Prioritization Of Tulasi Subwatershed: A Geospatial Approach

    Directory of Open Access Journals (Sweden)

    V.S.PAWAR-PATIL

    2013-06-01

    Full Text Available It is proficiently important to conserve the limited and precarious natural resources vis land, water and soil which should be categorically studied at watershed level. Due to improper land, soil and water management practices, land and water resources getting degraded and eroded, water getting polluted. In this regard present study is profoundly concerned to characterization and prioritization of Tulasi sub watershed which is small tributary of Bhogavati River in mega Panchganga river basin of Kolhapur district, Maharashtra. The prioritization of this small watershed has been carried out on the basis of morphometric analysis for land reclamation and soil erosion prevention. Database has been prepared in ArcGIS 9.3 desktop application, ARCSWAT extension tool for sub-watershed demarcation and other analysis carried out for certain significant areal, linear morphometric parameters vis stream length, stream frequency, bifurcation ratio, Length of overland flow, perimeter of basin, drainage density etc. have been assessed. Cartosat data used for preparation DEM and delineation of watershed. Above said parameters obtained by using Arc Gis ver.9.3 software and appropriate weightage assigned to them in order to assess the priority of sub watershed. The result reveals that, sub-basin TB-2, TB-3 and TB-4 has comes under the high risk for soil erosion and need to give a high priority for land conservation practices. These studies are significant for soil erosion prevention and surface rainwater harvesting.

  12. Effects of grassed buffer strip management on potential denitrification in a belgian agricultural watershed

    OpenAIRE

    Cors, Marie; Tychon, Bernard

    2003-01-01

    Riparian buffer strips are managed for the enhancement of water quality through control of non point source pollution. Denitrification in riparian buffer strips is thought to be the major process -with nitrate uptake by plant growth- that reduces nitrate input in surface water. We investigated the Denitrifier Enzyme Activity (DEA) to test how the buffer strip management modifies the denitrification process. The experimental site is composed of a crop field and a 11 m wide grassed buffer st...

  13. Grays River Watershed and Biological Assessment, 2006 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    May, Christopher; Geist, David [Pacific Northwest National Laboratory

    2007-04-01

    The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic habitat conditions, and biological integrity. In addition, human land-use impacts are factored into the conceptual model because they can alter habitat quality and can disrupt natural habitat forming processes. In this model (Figure S.1), aquatic habitat--both instream and riparian--is viewed as the link between watershed conditions and biologic responses. Based on this conceptual model, assessment of habitat loss and the resultant declines in salmonid populations can be conducted by relating current and historical (e.g., natural) habitat conditions to salmonid utilization, diversity, and abundance. In addition, assessing disrupted ecosystem functions and processes within the watershed can aid in identifying the causes of habitat change and the associated decline in biological integrity. In this same way, restoration, enhancement, and conservation projects can be identified and prioritized. A watershed assessment is primarily a landscape-scale evaluation of current watershed conditions and the associated hydrogeomorphic riverine processes. The watershed assessment conducted for this project focused on watershed processes that form and maintain salmonid habitat. Landscape metrics describing the level of human alteration of natural ecosystem attributes were used as indicators of water quality, hydrology, channel geomorphology, instream habitat, and biotic integrity. Ecological (watershed) processes are related to and can be predicted based on specific aspects of spatial pattern. This study evaluated the hydrologic regime, sediment delivery regime, and riparian condition of the sub-watersheds that comprise the upper Grays River watershed relative to their natural range of conditions. Analyses relied primarily on available geographic information system (GIS) data describing landscape characteristics such as climate, vegetation type and maturity, geology and soils, topography, land use, and road density. In addition to watershed-scale landscape characteristics, the study area was also evaluated on the riparian scale, with appropriate landscape variables analyzed within

  14. Grays River Watershed and Biological Assessment Final Report 2006.

    Energy Technology Data Exchange (ETDEWEB)

    May, Christopher W.; McGrath, Kathleen E.; Geist, David R. [Pacific Northwest National Laboratory; Abbe, Timothy; Barton, Chase [Herrera Environmental Consultants, Inc.

    2008-02-04

    The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic habitat conditions, and biological integrity. In addition, human land-use impacts are factored into the conceptual model because they can alter habitat quality and can disrupt natural habitat-forming processes. In this model (Figure S.1), aquatic habitat--both instream and riparian--is viewed as the link between watershed conditions and biologic responses. Based on this conceptual model, assessment of habitat loss and the resultant declines in salmonid populations can be conducted by relating current and historical (e.g., natural) habitat conditions to salmonid utilization, diversity, and abundance. In addition, assessing disrupted ecosystem functions and processes within the watershed can aid in identifying the causes of habitat change and the associated decline in biological integrity. In this same way, restoration, enhancement, and conservation projects can be identified and prioritized. A watershed assessment is primarily a landscape-scale evaluation of current watershed conditions and the associated hydrogeomorphic riverine processes. The watershed assessment conducted for this project focused on watershed processes that form and maintain salmonid habitat. Landscape metrics describing the level of human alteration of natural ecosystem attributes were used as indicators of water quality, hydrology, channel geomorphology, instream habitat, and biotic integrity. Ecological (watershed) processes are related to and can be predicted based on specific aspects of spatial pattern. This study evaluated the hydrologic regime, sediment delivery regime, and riparian condition of the sub-watersheds that comprise the upper Grays River watershed relative to their natural range of conditions. Analyses relied primarily on available geographic information system (GIS) data describing landscape characteristics such as climate, vegetation type and maturity, geology and soils, topography, land use, and road density. In addition to watershed-scale landscape characteristics, the study area was also evaluated on the riparian scale, with appropriate landscape variables analyzed within

  15. Watershed Boundaries

    US Forest Service, Department of Agriculture — A map service on the www depicting hydrologic unit boundary layers for the entire United States. Watershed boundaries provide a uniquely identified and uniform...

  16. Watershed District

    Kansas Data Access and Support Center — Boundaries show on this map are derived from legal descriptions contained in petitions to the Kansas Secretary of State for the creation or extension of watershed...

  17. Índice simplificado de gestión de la cuenca del río Naranjo, municipio Majibacoa, provincia Las Tunas / Watershed management simplified index of Naranjo river, Majibacoa municipality, Las Tunas province

    Scientific Electronic Library Online (English)

    Yoandris, García Hidalgo; Carlos E, Balmaseda Espinosa.

    2013-03-01

    Full Text Available La sostenibilidad de las cuencas es de vital importancia para el desarrollo de las comunidades que conviven en ellas. El objetivo de esta investigación fue evaluar la gestión ambiental de la cuenca del río Naranjo a través de un índice. Para ello se empleó el Índice simplificado de Gestión de Cuenca [...] s (IsGC) propuesto por especialistas del Instituto Nacional de Recursos Hidráulicos. Se convocó a 14 expertos para definir el peso de cada variable utilizada. Los valores del IsGC obtenidos para los años 2009-2011, indican que la gestión se clasifica como Media, lo que implica el desarrollo e implementación de estrategias por parte de todos los actores sociales y las comunidades. Abstract in english Watershed sustainability is very important for communities’ development that cohabits in them. The objective of this research was to evaluate the environmental management of the watershed Naranjo River through an index. For it was used the watershed management simplified index (IsGC, for its initial [...] s in Spanish) proposed by specialists of the National Institute of Hydraulic Resources. It was consulted 14 experts to define the weight of each used variable. The values of the IsGC obtained for the years 2009-2011, indicate that the administration is classified Moderate, what implies the development and implementation of strategies on the part of all the social actors and the communities.

  18. Overall uncertainty study of the hydrological impacts of climate change for a Canadian watershed

    Science.gov (United States)

    Chen, Jie; Brissette, FrançOis P.; Poulin, Annie; Leconte, Robert

    2011-12-01

    General circulation models (GCMs) and greenhouse gas emissions scenarios (GGES) are generally considered to be the two major sources of uncertainty in quantifying the climate change impacts on hydrology. Other sources of uncertainty have been given less attention. This study considers overall uncertainty by combining results from an ensemble of two GGES, six GCMs, five GCM initial conditions, four downscaling techniques, three hydrological model structures, and 10 sets of hydrological model parameters. Each climate projection is equally weighted to predict the hydrology on a Canadian watershed for the 2081-2100 horizon. The results show that the choice of GCM is consistently a major contributor to uncertainty. However, other sources of uncertainty, such as the choice of a downscaling method and the GCM initial conditions, also have a comparable or even larger uncertainty for some hydrological variables. Uncertainties linked to GGES and the hydrological model structure are somewhat less than those related to GCMs and downscaling techniques. Uncertainty due to the hydrological model parameter selection has the least important contribution among all the variables considered. Overall, this research underlines the importance of adequately covering all sources of uncertainty. A failure to do so may result in moderately to severely biased climate change impact studies. Results further indicate that the major contributors to uncertainty vary depending on the hydrological variables selected, and that the methodology presented in this paper is successful at identifying the key sources of uncertainty to consider for a climate change impact study.

  19. Modeling the Dynamic Water Resource Needs of California's Coastal Watersheds

    Science.gov (United States)

    Alford, C.

    2009-12-01

    Many watersheds face formidable water supply challenges when it comes to managing water availability to meet diverse water supply and ecosystem management objectives. California’s central coast watersheds are no exception, and both the scarcity of water resources during drier water years and mandates to establish minimum instream flows for salmon habitat have prompted interests in reassessing water management strategies for several of these watersheds. Conventional supply-oriented hydrologic models, however, are not adequate to fully investigate and describe the reciprocal implications of surface water demands for human use and the maintenance of instream flows for salmon habitat that vary both temporally and spatially within a watershed. In an effort to address this issue I developed a coastal watershed management model based on the San Gregorio watershed utilizing the Water Evaluation and Planning (WEAP) system, which permits demand-side prioritization at a time step interval and spatial resolution that captures functional supply and demand relationships. Physiographic input data such as soil type, land cover, elevation, habitat, and water demand sites were extrapolated at a sub-basin level in a GIS. Time-series climate data were collected and processed utilizing the Berkeley Water Center Data Cube at daily time steps for the period 1952 through September 2009. Recent synoptic flow measurements taken at seven tributary sites during the 2009 water year, water depth measured by pressure transducers at six sites within the watershed from September 2005 through September 2009, and daily gauge records from temporary gauges installed in 1981 were used to assess the hydrologic patterns of sub-basins and supplement historic USGS gauge flow records. Empirical functions were used to describe evapotranspiration, surface runoff, sub-surface runoff, and deep percolation. Initial model simulations carried out under both dry and wet water year scenarios were able to capture representative hydrological conditions in both the sample watershed case and an initial test case that utilized base data from a watershed with minimal land disturbance. Results from this study provide valuable insight into the effects of water use through a variety of climactic conditions and provide potential strategies for policy makers, regulators, and stakeholders to strengthen adaptive capacity to achieve sustainable water use within coastal watersheds.

  20. Development of Watershed Evaluation Index for Water Resources Considering Climate Change

    Science.gov (United States)

    Lee, K. S.; Oh, J.; Lee, S.; Chung, E.

    2010-12-01

    The concept of sustainable development is the center of issue between economic development and environmental protection. Water resources development and management is a main part of the issue. With this, integrated watershed management (IWM) which considers flood, drought and water quality control together is needed for watershed management. The Green house effect has been increased by the carbon based and thoughtless development, and climate change caused by global warming will affect all human activities. Accordingly, this study developed watershed evaluation index for water resources to assess water resources of watershed considering flood, drought, water quality control, and climate change and then applied results to actual watershed. This study consists of mainly 2 parts. The first is development of watershed evaluation index to analyze water resources vulnerability considering flood, drought, water quality, and climate change. Watershed evaluation index for water resources consists of flood indicator with climate change, drought indicator with climate change, and water quality indicator with climate change. There are two frameworks to make indices. One is a cause-effect chain framework and the other is a theme framework. Watershed evaluation index for water resources has been developed using DPSIR (Driving force-Pressure-Impact-Response) framework by EEA (European Environment Agency) that can explain interactions between socio-economic and water resources. The second is applying the index to study watershed. Three kinds of date sets are needed to apply the index. These are socio-economic data, meteorological and hydrologic data, and GCM (General Circulation Model) as a future climate change scenario. In this study, the North Han River watershed was selected as a study area. The socio-economic data set was collected using municipal statistics. The meteorological and hydrologic data, especially flow and water quality (BOD, DO et al.) data has been simulated using HSPF (Hydrological Simulation Program - Fortran). In this study, using CGCM (Canadian Global Coupled Model) 3 simulation results based on Special Report on Emission Scenario (SRES) A1B and A2 scenario of Intergovernmental Panel on Climate Change (IPCC) were downscaled by using the Statistical DownScaling Method (SDSM) model. From this study, the water resources in North Han River watershed except North Korea area have been assessed using watershed evaluation index. The index, developed in this study, can be used to estimate the potential risks of watershed for sustainable IWM planning procedures.

  1. Understanding groundwater systems and their functioning through the study of stable water isotopes in a hard-rock aquifer (Maheshwaram watershed, India)

    OpenAIRE

    Négrel, Philippe; Pauwels, Hélène; Dewandel, Benoit; Gandolfi, Jean-Marie; C. Mascré; Ahmed, S

    2011-01-01

    Groundwater degradation through abstraction, contamination, etc., shows a world-wide increase and has been of growing concern for the past decades. In this light, the stable isotopes of the water molecule (d18O and d2H) from a hard-rock aquifer in the Maheshwaram watershed (Andhra Pradesh, India) were studied. This small watershed (53 km2) underlain by granite, is endorheic and representative of agricultural landuse in India, with more than 700 bore wells in use. In such a watershed, the effe...

  2. Integrating Studies on Chironomid (Diptera) Biological Diversity and Biological Assessment in the Selenge River Watershed, Mongolia

    Science.gov (United States)

    Hayford, B.; Gotov, M.

    2005-05-01

    Biological assessment of Chironomidae (Diptera) from eight affluent streams of Lake Hovsgol, Mongolia is combined with diversity survey data from the Hovsgol region. The streams were sampled twice monthly from June through August of 2002 following methods modified from the U.S. EPA Rapid Bioassessment Protocol. All data were combined and analyzed against physical and habitat data by hierarchical cluster analysis. Physical and habitat features of the streams and their watersheds varied little with the exception of substrate and cattle density. Streams in Borsog valley with the lowest density of cattle also had the lowest diversity and abundance of chironomids; whereas Shagnuul gol, which flows through the valley with the highest density of cattle had much higher abundance and diversity and a very unique chironomid assemblage composed of Trichotanypus sp., Derotanypus sibiricus Kruglova and Chernovskij, Potthastia longimani group, and Acricotopus sp. The results of this study are compared to diversity data for the region. This study has resulted in seven new records of chironomids for Mongolia. However, previous qualitative and semi-quantitative sampling of some of the same sites produced markedly different chironomid communities. It is concluded that diversity and ecological sampling are both necessary for biological assessment.

  3. COMPARATIVE PERFORMANCE MONITORING OF RAINFED WATERSHEDS APPLYING GIS AND RS TECHNIQUES

    Directory of Open Access Journals (Sweden)

    ARUN W. DHAWALE

    2012-03-01

    Full Text Available Under the watershed development project of the Ministry of Rural Development, many micro watersheds have been identified for development and management. However Government is handicapped inobtaining data on the performance of these programmes due to the absence of watershed performance studies. Rainfed agriculture is clearly critical to agricultural performance in India. Nonetheless, it is difficult to precisely quantify the overall importance of the sector. The widely quoted statistic is that 70% of cultivated area israinfed, implying that rainfed agriculture is more important than irrigated agriculture. In the present study two rainfed micro-watersheds namely Kolvan valley and Darewadi is taken as case study for performance monitoring using GIS and RS Techniques. An attempt has been made to highlight the role of GIS and RS in estimation of runoff from both the watersheds by SCS curve number method. The methodology developed for the research show that the knowledge extracted from proposed approach can remove the problem of performance monitoring of micro watersheds to great extent. Comparative performance of both micro watersheds having extreme rainfall conditions shows that in Darewadi micro watershed overall success rate is more than Kolvan valley.

  4. Urbanization and watershed sustainability: Collaborative simulation modeling of future development states

    Science.gov (United States)

    Randhir, Timothy O.; Raposa, Sarah

    2014-11-01

    Urbanization has a significant impact on water resources and requires a watershed-based approach to evaluate impacts of land use and urban development on watershed processes. This study uses a simulation with urban policy scenarios to model and strategize transferable recommendations for municipalities and cities to guide urban decisions using watershed ecohydrologic principles. The watershed simulation model is used to evaluation intensive (policy in existing built regions) and extensive (policy outside existing build regions) urban development scenarios with and without implementation of Best Management practices (BMPs). Water quantity and quality changes are simulated to assess effectiveness of five urban development scenarios. It is observed that optimal combination of intensive and extensive strategies can be used to sustain urban ecosystems. BMPs are found critical to reduce storm water and water quality impacts on urban development. Conservation zoning and incentives for voluntary adoption of BMPs can be used in sustaining urbanizing watersheds.

  5. REMOTE SENSING, VISUALIZATION AND DECISION SUPPORT FOR WATERSHED MANAGEMENT AND SUSTAINABLE AGRICULTURE

    Science.gov (United States)

    The integration of satellite and airborne remote sensing, scientific visualization and decision support tools is discussed within the context of management techniques for minimizing the non-point source pollution load of inland waterways and the sustainability of food crop produc...

  6. An Evolving Simulation/Gaming Process to Facilitate Adaptive Watershed Management in Northern Mountainous Thailand

    Science.gov (United States)

    Barnaud, Cecile; Promburom, Tanya; Trebuil, Guy; Bousquet, Francois

    2007-01-01

    The decentralization of natural resource management provides an opportunity for communities to increase their participation in related decision making. Research should propose adapted methodologies enabling the numerous stakeholders of these complex socioecological settings to define their problems and identify agreed-on solutions. This article…

  7. Development and application of a comprehensive simulation model to evaluate impacts of watershed structures and irrigation water use on streamflow and groundwater: The case of Wet Walnut Creek Watershed, Kansas, USA

    Science.gov (United States)

    Ramireddygari, S.R.; Sophocleous, M.A.; Koelliker, J.K.; Perkins, S.P.; Govindaraju, R.S.

    2000-01-01

    This paper presents the results of a comprehensive modeling study of surface and groundwater systems, including stream-aquifer interactions, for the Wet Walnut Creek Watershed in west-central Kansas. The main objective of this study was to assess the impacts of watershed structures and irrigation water use on streamflow and groundwater levels, which in turn affect availability of water for the Cheyenne Bottoms Wildlife Refuge Management area. The surface-water flow model, POTYLDR, and the groundwater flow model, MODFLOW, were combined into an integrated, watershed-scale, continuous simulation model. Major revisions and enhancements were made to the POTYLDR and MODFLOW models for simulating the detailed hydrologic budget for the Wet Walnut Creek Watershed. The computer simulation model was calibrated and verified using historical streamflow records (at Albert and Nekoma gaging stations), reported irrigation water use, observed water-level elevations in watershed structure pools, and groundwater levels in the alluvial aquifer system. To assess the impact of watershed structures and irrigation water use on streamflow and groundwater levels, a number of hypothetical management scenarios were simulated under various operational criteria for watershed structures and different annual limits on water use for irrigation. A standard 'base case' was defined to allow comparative analysis of the results of different scenarios. The simulated streamflows showed that watershed structures decrease both streamflows and groundwater levels in the watershed. The amount of water used for irrigation has a substantial effect on the total simulated streamflow and groundwater levels, indicating that irrigation is a major budget item for managing water resources in the watershed. (C) 2000 Elsevier Science B.V.This paper presents the results of a comprehensive modeling study of surface and groundwater systems, including stream-aquifer interactions, for the Wet Walnut Creek Watershed in west-central Kansas. The main objective of this study was to assess the impacts of watershed structures and irrigation water use on streamflow and groundwater levels, which in turn affect availability of water for the Cheyenne Bottoms Wildlife Refuge Management area. The surface-water flow model, POTYLDR, and the groundwater flow model, MODFLOW, were combined into an integrated, watershed-scale, continuous simulation model. Major revisions and enhancements were made to the POTYLDR and MODFLOW models for simulating the detailed hydrologic budget for the Wet Walnut Creek Watershed. The computer simulation model was calibrated and verified using historical streamflow records (at Albert and Nekoma gaging stations), reported irrigation water use, observed water-level elevations in watershed structure pools, and groundwater levels in the alluvial aquifer system. To assess the impact of watershed structures and irrigation water use on streamflow and groundwater levels, a number of hypothetical management scenarios were simulated under various operational criteria for watershed structures and different annual limits on water use for irrigation. A standard `base case' was defined to allow comparative analysis of the results of different scenarios. The simulated streamflows showed that watershed structures decrease both streamflows and groundwater levels in the watershed. The amount of water used for irrigation has a substantial effect on the total simulated streamflow and groundwater levels, indicating that irrigation is a major budget item for managing water resources in the watershed.A comprehensive simulation model that combines the surface water flow model POTYLDR and the groundwater flow model MODFLOW was used to study the impacts of watershed structures (e.g., dams) and irrigation water use (including stream-aquifer interactions) on streamflow and groundwater. The model was revised, enhanced, calibrated, and verified, then applied to evaluate the hydrologic budget for Wet Wal

  8. Coastal Management case study

    Science.gov (United States)

    Anne Jefferson

    To prepare for the case study, lecture material on coastal landforms and processes is presented. Particular attention is paid to barrier islands, such as the Outer Banks. During the lecture, typical coastal engineering structures, such as groins, breakwaters, and jetties, are introduced. The case study is introduced with a brief overview of North Carolina's coastal management laws, Figure Eight Island's geography, and the current controversy over whether to build a terminal groin. Students are then broken down into small groups and presented with two opposing editorials. The groups are instructed to try to come to consensus as to whether the terminal groin should be allowed or disallowed or to suggest a third alternative. After approximately 25 minutes, each group informally reports out to the rest of the class.

  9. Application of the SUSTAIN Model to a Watershed-Scale Case for Water Quality Management

    OpenAIRE

    Chi-Feng Chen; Ming-Yang Sheng; Chia-Ling Chang; Shyh-Fang Kang; Jen-Yang Lin

    2014-01-01

    Low impact development (LID) is a relatively new concept in land use management that aims to maintain hydrological conditions at a predevelopment level without deteriorating water quality during land development. The United States Environmental Protection Agency (USEPA) developed the System for Urban Stormwater Treatment and Analysis Integration model (SUSTAIN) to evaluate the performance of LID practices at different spatial scales; however, the application of this model has been limited rel...

  10. An evolving simulation and gaming process to facilitate adaptive watershed management in mountain northern Thailand

    OpenAIRE

    Barnaud, Ce?cile; Promburom, Tanya; Tre?buil, Guy; Bousquet, Francois

    2007-01-01

    Decentralization of natural resources management provides an opportunity for communities to increase their participation in related decision-making. Research should propose adapted methodologies enabling the numerous local stakeholders of these complex socio-ecological settings to define themselves their problems and to identify agreed-upon solutions. In the research presented in this paper, a Companion Modelling (ComMod) approach combining Role-Playing Games (RPG) and Multi-Agent Systems (MA...

  11. Variation in Soil Enzyme Activities in a Temperate Agroforestry Watershed

    Science.gov (United States)

    Integration of agroforestry and grass buffers into row crop watersheds improves overall environmental quality, including soil quality. The objective of this study was to examine management and landscape effects on soil carbon, soil nitrogen, microbial diversity, enzyme activity, and DNA concentrati...

  12. Landscape processes, effects and the consequences of migration in their management at the Jatún Mayu watershed (Bolivia)

    Science.gov (United States)

    Penna, Ivanna; Jaquet, Stephanie; Sudmeier-Rieux, Karen; Kaenzig, Raoul; Schwilch, Gudrun; Jaboyedoff, Michel; Liniger, Hanspeter; Machaca, Angelica; Cuba, Edgar; Boillat, Sebastien

    2014-05-01

    Bolivia has a large rural population, mostly composed of subsistence farmers that face natural and anthropogenic driven processes affecting their livelihoods. In order to establish sustainable management strategies, it is important to understand the factors governing landscape changes. This work explores the geomorphic imprint and effects of natural and anthropogenic driven processes on three mountain communities undergoing de-population in the Jatún Mayu watershed (Cochabamba, Bolivia). Based on satellite image interpretation, field work and household surveys, we have identified gullies and landslides as main active processes, causing land losses, affecting inter-communal roads, etc. While landslides are mostly occurring in the middle and lower section of the basin, gullies are especially affecting the upper part (especially the southern slope). Our analysis indicated that in the middle and lower part of the basin, landslides are developing in response to the Jatún Mayu incision (slopes reach a critical angle and slope failures increase). However in the upper part, where no river down-cutting is taking place, preliminary analysis indicates that past and present human interventions (over-grazing, agriculture, road construction, etc.) play a key role on driving land degradation toward the formation of gullies. Based on the comparison of high resolution images from 2004 and 2009, we determined an agricultural land loss rate of 8452 m2/year, mostly in the form of landslides. One single event swept away 0.03 km2 of agricultural lands (~13 parcels), approximately 87% of an average household property. People's main concerns are hail, frost and droughts because they cause an "immediate" loss on family incomes, but the impacts caused by landslides and gullies are not disregarded by the communities and the government. Communities are organized to set up and maintain key infrastructure such as irrigation canals and roads. They also intend to develop protective measures against erosion like check dams based on tyres filled with rocks. In addition, organizations supported by government and institutions from abroad have built dams, reforested some slopes, and raised local capacities to improve soil conservation measures e.g. through slow-forming terraces. However, rural-to-urban migration could be affecting the management of processes leading to land degradation. Around 77% of the 22 households surveyed have at least one migrant family member (permanent, seasonal or double residence migrant). Labour force is reduced and because of de-population, two of the three schools in the area have closed. In spite of the support that communities receive, our findings indicate that high population mobility is affecting land management practices and the capacity of communities to cope with land degradation processes.

  13. Debris flow run off simulation and verification ? case study of Chen-You-Lan Watershed, Taiwan

    OpenAIRE

    -l Lin, M.; -l Wang, K.; -j Huang, J.

    2005-01-01

    In 1996 typhoon Herb struck the central Taiwan area, causing severe debris flow in many subwatersheds of the Chen-You-Lan river watershed. More severe cases of debris flow occurred following Chi-Chi earthquake, 1999. In order to identify the potentially affected area and its severity, the ability to simulate the flow route of debris is desirable. In this research numerical simulation of debris flow deposition process had been carried out using FLO-2D adopting Chui-Sue river watershed as the s...

  14. Community-Based Water Monitoring in Nova Scotia: Solutions for Sustainable Watershed Management

    Directory of Open Access Journals (Sweden)

    Sarah Weston

    2015-03-01

    Full Text Available Community-based water monitoring (CBWM has developed significantly over the last decade, both in Nova Scotia and around the world. Concurrently, the literature has thoroughly examined elements of effective CBWM as well as common barriers to its development. Researchers have subsequently recommended ways to increase the capacity of community-based stewardship organizations to ensure that CBWM work is meaningful and is integrated into governmental decision-making and water management. This paper will review the current state and efficacy of CBWM in Nova Scotia using these recommendations as guidelines. Further, it will examine the role of CURA H2O* in aligning CBWM activities in the Atlantic Region with these guidelines through the implementation of a standardized water quality monitoring training program and an accompanying set of equipment. Additional capacity-building activities led by CURA H2O include participatory research, training workshops, technical support, and the provision of a central database to house data collected through this program. This paper will discuss transferable strengths of this work, and will suggest ways in which developmental barriers can be overcome through adequate financial resources, using an integrated water management model, applying consistent technical standards, maintaining reciprocity with volunteers, and ensuring knowledge and resource-sharing. *CURA H2O (http://curah2o.com/ is a Community University Research Alliance project funded by the Social Sciences and Humanities Research Council of Canada that is focused on increasing capacity for integrated water monitoring and management in Canada and internationally. It is run by the Community-Based Environmental Monitoring Network at Saint Mary’s University in Halifax, Nova Scotia.

  15. Study and Test of Fitting Natural and Synthetic Unit Hydrographs in Zayandehrud-dam Watershed (Pelasjan Sub-basin

    Directory of Open Access Journals (Sweden)

    Mohammad Mahdavi

    1998-07-01

    Full Text Available As unit hydrograph is an important item in flood estimation of the rivers and since flood hydrograph and simultaneous rainfall hyetograph is needed to derive a unit hydrograph, hydrologists recommend synthetic unit hydrographs for areas lacking these hydrometeorological data. A research was conducted in the Zayandehrud-dam watershed (Pelasjan sub-basin to test the efficiency of synthetic unit hydrographs (Snyder, SCS, and Triangular methods in hydrological evaluations. For the purposes of this study, natural and synthetic unit hydrographs were determined and compared, using all morphologic, hydrometric and rainfall data. The results showed that Triangular and SCS methods fit natural unit hydrographs better than Snyder method does, but peak instantaneous flow is estimated to be higher than the observed flow. So, the constant 2.083 in peak flow equation is recommended to be changed to 1.74 in this watershed. The Snyder method predicts good peak flows, compared with the other two methods. Generally, it is concluded that Triangular, SCS, and Snyder methods are ranked 1 to 3 for determination of synthetic unit hydrographs in this watershed.

  16. Participação comunitária e implementação dos instrumentos de gestão da água em bacias hidrográficas / Community participation and implementation of water management instruments in watersheds

    Scientific Electronic Library Online (English)

    Tadeu Fabrício, Malheiros; Mariza Guimarães, Prota; Mario Alejandro, Perez Rincón.

    2013-04-01

    Full Text Available O modelo atual de gestão dos recursos hídricos no Brasil é descentralizado, participativo e integrado, e tem como unidade de planejamento a bacia hidrográfica. Baseia-se na atuação de comitês de bacia, sendo que cada comitê possui composição e regras de funcionamento próprias, regidas por seu estatu [...] to, os quais apresentam semelhanças básicas. Os princípios básicos desta gestão foram ditados pela Constituição Brasileira de 1988 e detalhados pela Política Nacional de Recursos Hídricos em 1997. Em nível estadual, São Paulo promulgou sua Política Estadual de Recursos Hídricos em 1991. Este artigo faz análise do processo de participação nos comitês de bacia do Estado de São Paulo e suas implicações na implementação dos instrumentos de gestão de recursos hídricos, por meio de um estudo de caso no Comitê da Bacia Hidrográfica do Tietê - Jacaré, adotando como metodologia a aplicação de questionários aos seus membros titulares da gestão 2009-2011. Observou-se engajamento e integração entre seus diversos integrantes. Mesmo assim, os resultados encontrados apontam para a necessidade de revisão do estatuto deste comitê, sendo evidenciadas distorções causadas pelas divergências entre a legislação estadual e a federal, principalmente quanto aos segmentos participantes e atores envolvidos. Mostraram também a necessidade de uma maior divulgação das questões de recursos hídricos nesta bacia e no Estado de São Paulo, como um todo. Ao mesmo tempo, recomenda-se colocar esforços para ampliar o exercício da representatividade das instituições no comitê e fortalecer os resultados dos trabalhos desenvolvidos nas câmaras técnicas no espaço de tomada de decisão do comitê de bacia hidrográfica. Abstract in english The current model of water resources management in Brazil is decentralized, participative and integrated, and adopted the river basin as a planning unit. It is based on the performance of watershed committees; each committee has its own composition and rules of procedure, governed by its statute. Th [...] e basic principles of this management have been established by the Brazilian Constitution of 1988 and detailed by the National Water Resources Policy in 1997. At the State level, São Paulo enacted its water resources policy in 1991. This paper examined the participatory process in basin committees of the São Paulo State and its implications in the implementation of the instruments of water management, based in a case study of the Tiete - Jacaré Watershed Committee, using questionnaires filled by the Committee's members (2009 - 2011). Engagement and integration among the stakeholders was observed. Still, the interviews' results have shown that the Committee's statute should be reviewed due to differences between the Federal and the State legislation, mainly regarding the participating sectors and representatives. It also showed a need for more information about water resource issues in this basin and in the State of São Paulo, as a whole. At the same time, it is recommended that representativeness of the institutions within the water council management be improved and that the work produced by the technical chambers be recognised at the committee decision-making level.

  17. Runoff processes and small watersheds

    International Nuclear Information System (INIS)

    Full text: Small watersheds are a fundamental landscape unit for quantifying inputs and outputs of water, sediment and nutrients. Small watersheds have been used historically for defining runoff processes and flood response to storm precipitation. Early conceptualizations of runoff production during the International Hydrological Decade in the 1960s focused on the importance and movement of event water as overland flow to the stream channel. Use of mass balance mixing models using stable isotope tracers in the 1970s and 1980s directly challenged early ideas of where water goes when it rains, residence time of catchment waters and flow paths of subsurface runoff towards the stream. These data showed that the majority of water in the stream during a precipitation event was water that existed in the watershed prior to the event. While credible physical mechanisms of old water mobilization have only been defined in the past decade, stable isotope tracer approaches are now mature enough to offer new potential for informing new model structures of how small watersheds work. Isotope tracer data in small watersheds and mass balance separations also represent new ways of validating and calibrating watershed models. This presentation will chronicle the use of isotope tracers in small watersheds and provide examples of how these data can be used in models of runoff processes and for providing valuable input for water resource management at larger basin scales. (author)at larger basin scales. (author)

  18. Runoff processes and small watershed

    International Nuclear Information System (INIS)

    Full text: Small watersheds are a fundamental landscape unit for quantifying inputs and outputs of water, sediment and nutrients. Small watersheds have been used historically for defining runoff processes and flood response to storm precipitation. Early conceptualizations of runoff production during the International Hydrological Decade in the 1960s focused on the importance and movement of event water as overland flow to the stream channel. Use of mass balance mixing models using stable isotope tracers in the 1970s and 1980s directly challenged early ideas of where water goes when it rains, residence time of catchment waters and flow paths of subsurface runoff towards the stream. These data showed that the majority of water in the stream during a precipitation event was water that existed in the watershed prior to the event. While credible physical mechanisms of old water mobilization have only been defined in the past decade, stable isotope tracer approaches are now mature enough to offer new potential for informing new model structures of how small watersheds work. Isotope tracer data in small watersheds and mass balance separations also represent new ways of validating and calibrating watershed models. This presentation will chronicle the use of isotope tracers in small watersheds and provide examples of how these data can be used in models of runoff processes and for providing valuable input for water resource management at larger basin scales. (author)at larger basin scales. (author)

  19. Long-term water repellency in organic olive orchards in the Cànyoles River watershed. The impact of land management

    Science.gov (United States)

    Cerdà, Artemi; González Pelayo, Óscar; García Orenes, Fuensanta; Jordán, Antonio; Pereira, Paulo; Novara, Agata; Neris, Jonay

    2015-04-01

    Soil water repellency is being researched in many enviroments of the world due to the fact that after two decades of intense investigations we found that soil water repellency is a soil property that can be found at any ecosystem (Atanassava and Doerr, 2011; Goebel et al., 2011; Mataix-Solera et al., 2013; Roper et al., 2013; Young et al., 2013; Badía-Villas et al., 2014; Jordán et al., 2014; Whelan et al., 2014). Soil water repellency inhibits or delays infiltration, encourage surface runoff but also the preferential flow in cracks and other macropores (Arye et al., 2011; Jordán et al., 2011; Madsen et al., 2011; Spohn and Rilling, 2012; García-Moreno et al., 2013; Hallin et al., 2013). Water repellency has been found in many soil types and it is present after forest fire, on forested land and also in agriculture soils (Granjed et al., 2013; Bodí et al., 2012; García Orenes et al., 2013; Jordán et al., 2012; Bodí et al., 2013; Dlapa et al., 2013; González-Peñaloza et al., 2012; López Garrido et al., 2012; León et al., 2013; Hewelke et al., 2014; Santos et al., 2014; Kröpfl et al., 2013). This paper show the measurements caried out by means of the water drop penetration time (WDPT) method in olive plantation in the Cànyoles watershed in Eastern Spain. Conservation practices applied such as no-tillage, manure addition, application of herbicides may contribute to increase soil organic matter and, hence, soil water repellency, and this is unknow under Mediterranean type ecosystems. The effect of long-term addition of plant residues and organic manure, no-tillage and no chemical fertilization (MNT), annual addition of plant residues and no-tillage (NT), application of conventional herbicides and no-tillage (H), and conventional tillage (CT) on soil water repellency in Mediterranean calcareous citrus-cropped soils (Eastern Spain) has been studied. Water repellency was observed in MNT soils, which may be attributed to the input of hydrophobic organic compounds as a consequence of the addition of plant residues and organic manure such has been demonstrated by the soil organic matter measurements. CT reduced the organic matter content and soils remained wettable. Water repellency was observed in soils under NT and H treatments, but it was below 5 seconds. Previos studies developed by González Peñaloza et al., (2013) show that under citrus production the response of the land management was similar. We found also an increase in the soil water repellency due to the time since organic matter is accumulating. This results should be shown in the framework of the land degradation that can trigger (or not) the increase in water repellency (Mekuria and Aynekulu, 2013; Nadal Romero et al., 2013; Neal et al., 2013; Taguas et al., 2013; Zhao et al., 2013). Acknowledgements To the "Ministerio de Economía and Competitividad" of Spanish Government for finance the POSTFIRE project (CGL2013- 47862-C2-1-R). The research projects GL2008-02879/BTE, LEDDRA 243857 and PREVENTING AND REMEDIATING DEGRADATION OF SOILS IN EUROPE THROUGH LAND CARE (RECARE)FP7-ENV-2013- supported this research. References Arye, G., Tarchitzky, J., Chen, Y. 2011. Treated wastewater effects on water repellency and soil hydraulic properties of soil aquifer treatment infiltration basins. Journal of hydrology, 397(1), 136-145. Atanassava and Doerr, 2011; Goebel et al., 2011; Mataix-Solera et al., 2013; Roper et al., 2013; Young et al., 2013; Badía-Villas et al., 2014; Jordán et al., 2014; Whelan et al., 2014; Atanassova, I., Doerr, S. H. 2011. Changes in soil organic compound composition associated with heat-induced increases in soil water repellency. European Journal of Soil Science, 62(4), 516-532. Atanassova, I., Doerr, S. H. 2011. Changes in soil organic compound composition associated with heat-induced increases in soil water repellency. European Journal of Soil Science, 62(4), 516-532. Badía-Villas, D., González-Pérez, J. A., Aznar, J. M., Arjona-Gracia, B., & Martí-Dalmau, C. 2014. Changes in water repellency, aggregation and organic

  20. Watershed management and farmer conservation investments in the semi-arid tropics of India: analysis of determinants of resource use decisions and land productivity benefits

    Directory of Open Access Journals (Sweden)

    Bekele A Shiferaw

    2006-08-01

    Full Text Available Integrated watershed management has been promoted as a suitable strategy for improving productivity and sustainable intensification of agriculture in rainfed drought-prone regions. The paper examines the socioeconomic and biophysical factors influencing farmers' soil and water conservation investment decisions and the resulting economic incentives (productivity benefits from watershed management interventions in the semi-arid tropics of India. The paper develops a theoretical framework to test hypotheses and to explore (a the interlinkages between land productivity, soil quality, input use and conservation investments, and (b the influence of local market imperfections on production and conservation decisions. These relationships are analyzed using plot-level data in six semi-arid villages. A systems approach (3SLS is used for the joint estimation of structural equations related to land productivity, input use, resource investments and land values. The results show that after controlling for input use and germplasm technologies, soil quality and access to supplemental irrigation significantly affect the productivity of land. Off-farm income is negatively associated with resource investments and land productivity. The watershed program seems to have a greater impact on dryland crops (cereals and pulses than on other crop not supported by the project. A plot-wise analysis found some degree of substitution between private and public investments in land and water management. Differential effects of family labor on the decision to invest in agriculture revealed that male labor plays a key role in this decision while female workers significantly influence the level of labor use in production and resource conservation. This indicates that labor market imperfections, especially for female labor, are most likely to affect production and conservation investment.

  1. Effects of best-management practices in the Black Earth Creek Priority Watershed, Wisconsin, 1984-98

    Science.gov (United States)

    Graczyk, David J.; Walker, John F.; Horwatich, J.A.; Bannerman, Roger T.

    2003-01-01

    The Wisconsin Department of Natural Resources and the U.S. Geological Survey began a comprehensive, multidisciplinary evaluation-monitoring program in 1989 to assess the effectiveness of the Wisconsin Nonpoint Source Program. Hydrologic and water-quality data were collected at Brewery and Garfoot Creeks in 1984 and 1985 (pre-best-management practices (BMPs) period) and 1997 and 1998 (post-BMP period). In rural areas, best-management practices may include conservation tillage, contour strip-cropping, streambank protection, and various barnyard-runoff controls. Water-quality samples were collected during base flow and storms. At Brewery Creek, no statistically significant differences in the median base flow water-quality concentrations between the pre- and post-BMP periods. At Garfoot Creek, the median suspended-sediment concentration at base flow decreased by 41 percent between the pre- and post-BMP periods and the median ammonia nitrogen concentration decreased by 67 percent. Both of these differences were statistically significant at the 0.05 (probability) level. For both Brewery and Garfoot Creeks, the median storm loads for suspended sediment, total phosphorus, and ammonia nitrogen were compared statistically by means of the Wilcoxon rank-sum test. This test also was applied to regression residuals for differences between the pre- and post-BMP periods. For Garfoot Creek, only the median load for ammonia nitrogen shows a statistically significant difference between the pre-and post-BMP periods. None of the median storm loads for Brewery Creek were statistically significant at the 0.05 level. The decrease of the regression residuals between the pre- and post-BMP periods for ammonia nitrogen at Brewery Creek and for total phosphorus and ammonia nitrogen at Garfoot Creek all were statistically significant at the 0.05 level. These reductions between the pre- and post-BMP periods likely are results of the installed BMPs. The effectiveness of the BMPs on water quality are watershed specific. The effectiveness of the practice will depend on the type, number, and location of the BMPs implemented.

  2. Using Backcast Land-Use Change and Groundwater Travel-Time Models to Generate Land-Use Legacy Maps for Watershed Management

    OpenAIRE

    Jonah M. Duckles; Anthony D. Kendall; Ray, Deepak K.; Bryan Pijanowski; David W. Hyndman

    2007-01-01

    We couple two spatial-temporal models, a backcast land-use change model and a groundwater flow model, to develop what we call “land-use legacy maps.” We quantify how a land-use legacy map, created from maps of past land use and groundwater travel times, differs from a current land-use map. We show how these map differences can affect land-use planning and watershed management decisions at a variety of spatial and temporal scales. Our approach demonstrates that land-use legacy maps...

  3. A CASE STUDY OF ENVIRONMENTAL DATA MANAGEMENT

    Science.gov (United States)

    In order to support our ongoing research in watershed ecology and global climate change, we gather and analyze environmental data from several government agencies. This case study demonstrates a researcher’s approach to accessing, organizing, and using intersectoral data. T...

  4. Longitudinal study of the impacts of land cover change on hydrologic response in four mesoscale watersheds in New York State, USA

    Science.gov (United States)

    Shaw, Stephen B.; Marrs, John; Bhattarai, Nishan; Quackenbush, Lindi

    2014-11-01

    In humid, temperate regions, there remains limited direct evidence of the influence of land cover changes on hydrologic response (e.g. storm event discharge volume), especially across larger watersheds. Using historic aerial photography dating back to the 1930s in conjunction with long-term stream gaging data, we assessed the role of land cover change on hydrologic response over multi-decadal periods in four mesoscale watersheds in New York State. All four watersheds had increases in forest cover accompanied by small increases in urban land cover. Using a relatively novel methodology for land cover change studies, hydrologic response was evaluated by establishing an empirical function relating precipitation, watershed wetness, and discharge for each era of distinct land cover. This function was then used to estimate discharge for fixed precipitation amounts and wetness levels, allowing weather variables to be controlled across eras. One watershed (Limestone Creek) exhibited virtually no change in hydrologic response despite forest cover increasing by over 100%. One watershed (Fall Creek) exhibited a slight increase in hydrologic response with a greater than 100% increase in forest cover. The two other watersheds exhibited a greater than 20% decrease in hydrologic response, but we speculate the changes in these two watersheds were in part due to the construction of numerous small dams (Wappinger Creek) and a possible loss of riparian wetlands (Sterling Creek). This work demonstrates that the effects of land cover on hydrologic response are not always consistent with standard hydrologic intuition (i.e. increasing forested land does not always reduce storm event discharge volumes) and that often other factors may be more important than basic land cover in controlling hydrologic response.

  5. Evaluating Hydrologic Response of an Agricultural Watershed for Watershed Analysis

    Directory of Open Access Journals (Sweden)

    Manoj Kumar Jha

    2011-06-01

    Full Text Available This paper describes the hydrological assessment of an agricultural watershed in the Midwestern United States through the use of a watershed scale hydrologic model. The Soil and Water Assessment Tool (SWAT model was applied to the Maquoketa River watershed, located in northeast Iowa, draining an agriculture intensive area of about 5,000 km2. The inputs to the model were obtained from the Environmental Protection Agency’s geographic information/database system called Better Assessment Science Integrating Point and Nonpoint Sources (BASINS. Meteorological input, including precipitation and temperature from six weather stations located in and around the watershed, and measured streamflow data at the watershed outlet, were used in the simulation. A sensitivity analysis was performed using an influence coefficient method to evaluate surface runoff and baseflow variations in response to changes in model input hydrologic parameters. The curve number, evaporation compensation factor, and soil available water capacity were found to be the most sensitive parameters among eight selected parameters. Model calibration, facilitated by the sensitivity analysis, was performed for the period 1988 through 1993, and validation was performed for 1982 through 1987. The model was found to explain at least 86% and 69% of the variability in the measured streamflow data for calibration and validation periods, respectively. This initial hydrologic assessment will facilitate future modeling applications using SWAT to the Maquoketa River watershed for various watershed analyses, including watershed assessment for water quality management, such as total maximum daily loads, impacts of land use and climate change, and impacts of alternate management practices.

  6. Management Practices for Phosphorus and Sediment Reduction in the Salton Sea Watershed

    Directory of Open Access Journals (Sweden)

    Khaled M. Bali

    2014-06-01

    Full Text Available Nutrients, sediment and silt in drainage waters have been identified as the leading cause for water quality impairments in rivers and waterbodies in California. Approximately one-third of applied irrigation water leaves irrigated field as surface runoff and subsurface drainage. In this project, we implemented seven standard and improved irrigation and fertigation management practices on a commercial alfalfa field to reduce the load and concentration of phosphorus and sediment in drainage waters. Reducing the amount of surface runoff after the application of P fertilizer is a key factor in reducing the load of P in drainage waters. The loads of P in runoff waters were reduced by as much as 75% compared to normal irrigation and fertigation practices. Water-run application of P increased the concentration and load of P in runoff water by almost 100% compare to broadcast P applications. Avoiding water-run applications can reduce the load of P in runoff water by more than 50%.

  7. Consideration of Experimental Approaches in the Physical and Biological Sciences in Designing Long-Term Watershed Studies in Forested Landscapes

    Science.gov (United States)

    Stallard, R. F.

    2011-12-01

    The importance of biological processes in controlling weathering, erosion, stream-water composition, soil formation, and overall landscape development is generally accepted. The U.S. Geological Survey (USGS) Water, Energy, and Biogeochemical Budgets (WEBB) Project in eastern Puerto Rico and Panama and the Smithsonian Tropical Research Institute (STRI) Panama Canal Watershed Experiment (PCWE) are landscape-scale studies based in the humid tropics where the warm temperatures, moist conditions, and luxuriant vegetation promote especially rapid biological and chemical processes - photosynthesis, respiration, decay, and chemical weathering. In both studies features of small-watershed, large-watershed, and landscape-scale-biology experiments are blended to satisfy the research needs of the physical and biological sciences. The WEBB Project has successfully synthesized its first fifteen years of data, and has addressed the influence of land cover, geologic, topographic, and hydrologic variability, including huge storms on a wide range of hydrologic, physical, and biogeochemical processes. The ongoing PCWE should provide a similar synthesis of a moderate-sized humid tropical watershed. The PCWE and the Agua Salud Project (ASP) within the PCWE are now addressing the role of land cover (mature forests, pasture, invasive-grass dominated, secondary succession, native species plantation, and teak) at scales ranging from small watersheds to the whole Panama Canal watershed. Biologists have participated in the experimental design at both watershed scales, and small (0.1 ha) to large (50 ha) forest-dynamic plots have a central role in interfacing between physical scientists and biologists. In these plots, repeated, high-resolution mapping of all woody plants greater than 1-cm diameter provides a description of population changes through time presumably reflecting individual life histories, interactions with other organisms and the influence of landscape processes and climate, thereby bridging the research needs and conceptual scales of hydrologists and biogeochemists with those of biologists. Both experiments are embedded in larger data-collection networks: the WEBB within the hydrological and meteorological monitoring programs of the USGS and other federal agencies, and the PCWE in the long-term monitoring conducted by the Panama Canal Authority (ACP), its antecedents, and STRI. Examination of landscape-scale processes in a changing world requires the development of detailed landscape-scale data sets, including a formulation of reference states that can act as surrogate experimental controls. For example, the concept of a landscape steady state provides a convenient reference in which present-day observations can be interpreted. Extreme hydrological states must also be described, and both WEBB and PCWE have successfully examined the role of droughts and large storms and their impact on geomorphology, biogeochemistry, and biology. These experiments also have provided platforms for research endeavors never contemplated in the original objectives, a testament to the importance of developing approaches that consider the needs of physical and biological sciences.

  8. Application of a virtual watershed in academic education

    OpenAIRE

    Van Horn, A L; Hörmann, G.; Fohrer, N.

    2005-01-01

    Hydrologic models of watersheds often represent complex systems which are difficult to understand regarding to their structure and dynamics. Virtual watersheds, i.e. watersheds which exist only in the virtual reality of a computer system, are an approach to simplify access to this real-world complexity. In this study we present the virtual watershed KIELSHED-1, a 117 km2 v-shaped valley with grassland on a "Cambisol" soil type. Two weather scenarios are delivered with the watershed:...

  9. Coupled Dynamic Modeling to Assess Human Impact on Watershed Hydrology

    Science.gov (United States)

    Mohammed, I. N.; Tsai, Y.; Turnbull, S.; Bomblies, A.; Zia, A.

    2014-12-01

    Humans are intrinsic to the hydrologic system, both as agents of change and as beneficiaries of ecosystem services. This connection has been underappreciated in hydrology. We present a modeling linkage framework of an agent-based land use change model with a physical-based watershed model. The coupled model framework presented constitutes part of an integrated assessment model that is being developed to study human-ecosystem interaction in Missisquoi Bay, spanning Vermont and Québec, which is experiencing high concentrations of nutrients from the Missisquoi River watershed. The integrated assessment approach proposed is comprised of linking two simulation models: the Interactive Land-Use Transition Agent-Based Model (ILUTABM) and a physically based process model, the Regional Hydro-Ecological Simulation System (RHESSys). The ILUTABM treats both landscape and landowners as agents and simulates annual land-use patterns resulting from landowners annual land-use decisions and Best Management Practices (BMPs) adaptations to landowners utilities, land productivity and perceived impacts of floods. The Missisquoi River at Swanton watershed RHESSys model (drainage area of 2,200 km2) driven by climate data was first calibrated to daily streamflows and water quality sensor data at the watershed outlet. Simulated land-use patterns were then processed to drive the calibrated RHESSys model to obtain streamflow nutrient loading realizations. Nutrients loading realizations are then examined and routed back to the ILUTAB model to obtain public polices needed to manage the Missisquoi watershed as well as the Lake Champlain in general. We infer that the applicability of this approach can be generalized to other similar watersheds. Index Terms: 0402: Agricultural systems; 1800: Hydrology; 1803: Anthropogenic effects; 1834 Human impacts; 6344: System operation and management; 6334: Regional Planning

  10. ALOS DEM quality assessment in a rugged topography, A Lebanese watershed as a case study

    Science.gov (United States)

    Abdallah, Chadi; El Hage, Mohamad; Termos, Samah; Abboud, Mohammad

    2014-05-01

    Deriving the morphometric descriptors of the Earth's surface from satellite images is a continuing application in remote sensing, which has been distinctly pushed with the increasing availability of DEMs at different scales, specifically those derived from high to very high-resolution stereoscopic and triscopic image data. The extraction of the morphometric descriptors is affected by the errors of the DEM. This study presents a procedure for assessing the quality of ALOS DEM in terms of position and morphometric indices. It involves evaluating the impact of the production parameters on the altimetric accuracy through checking height differences between Ground Control Points (GCP) and the corresponding DEM points, on the planimetric accuracy by comparing extracted drainage lines with topographic maps, and on the morphometric indices by comparing profiles extracted from the DEM with those measured on the field. A twenty set of triplet-stereo imagery from the PRISM instrument on the ALOS satellite has been processed to acquire a 5 m DEM covering the whole Lebanese territories. The Lebanese topography is characterized by its ruggedness with two parallel mountainous chains embedding a depression (The Bekaa Valley). The DEM was extracted via PCI Geomatica 2013. Each of the images required 15 GCPs and around 50 tie points. Field measurements was carried out using differential GPS (Trimble GeoXH6000, ProXRT receiver and the LaserACE 1000 Rangefinder) on Al Awali watershed (482 km2, about 5% of the Lebanese terrain). 3545 GPS points were collected at all ranges of elevation specifying the Lebanese terrain diversity, ranging from cliffy, to steep and gently undulating terrain along with narrow and wide flood plains and including predetermined profiles. Moreover, definite points such as road intersections and river beds were also measured in order to assess the extracted streams from the DEM. ArcGIS 10.1 was also utilized to extract the drainage network. Preliminary results showed that using Toutin's Model, enabling Wallis filter and specifying high DEM detail, along with restricting the holes filling option gave the best position accuracy and the least number of failure values. This is mainly due to the ruggedness of the studying area. Comparing GPS heights with the extract DEM showed a Minimum and a maximum error of (-11.9 m, 10.56 m), Mean error (1.32 m) and RMSE of (4.7 m). While extracting the drainage lines showed 80 to 90 % of coincidence of the upper water heads and an order of less than one pixel for the main river course and mountainous road intersection.

  11. Environmental and deteriorating state analyses of the watershed Riacho do Tronco, Boa Vista, PB, Brazil

    Directory of Open Access Journals (Sweden)

    Ronildo Alcântara Pereira

    2010-04-01

    Full Text Available This study proposes, from the subdivision of the watershed of Riacho do Tronco in eight sub-watersheds, to diagnose their potential for land use and occupation, determine the areas of conflicts in land use and the level of environmental deterioration of the watershed as a whole, to support planning and the consequent reduction of the expansion of desertification. Based on GIS analysis and field work, the environmental parameters that allowed the establishment of the roughness coefficient of each sub-watershed were calculated, following the methodology proposed by Rocha (1997 for the classification of the natural potential use of each watershed. The results showed that four sub-watersheds are suitable for agriculture, three for livestock and reforestation and one for reforestation only. It was also possible to diagnose land use and occupation of each one and to determine land use conflicts. This represented by inappropriate use of soil considering the natural vocation of some sub-watershed, as well as the occurrence of bare soil and mining activities that occur in some sub-watersheds. Thus, from the analysis of conflict in land use, areas to be afforested, availability for or intense use of agricultural lands and the estimate of areas where correct management practices have to be implemented, it was observed that the watershed of Riacho do Tronco has 42.7% of its area in deteriorated stage. Therefore, the high level of environmental deterioration is evident, with consequent risk of desertification. In addition, considering that this area is located in the Brazilian semi-arid region with economic activities practiced without conservation concerns, it is necessary that the government and organized society foster sustainable principles in the economic activities in this watershed.

  12. Ecohydrologic connectivity in semiarid watersheds of central Oregon

    Science.gov (United States)

    Ray, G.; Ochoa, C. G.

    2014-12-01

    Understanding the hydrologic connectivity between upland-stream-groundwater components in conjunction with biological systems is crucial when managing semiarid ecosystems. This ongoing study conducted in semi-arid juniper woodlands in central Oregon aims to investigate how different ecologic and hydrologic components respond to the removal of overstory vegetation (i.e. juniper). The main objective is to characterize and compare ecohydrologic interactions occurring in treated (juniper removed) and untreated watersheds. Monitoring transects were established to determine vegetation-soil texture-soil water content relationships by aspect in both watersheds. Also, previously installed piezometers, soil moisture stations, and weather instrumentation were used to estimate precipitation-soil moisture-subsurface flow interactions in each watershed. Preliminary results suggest similarities in soil volumetric water content and vegetation composition when compared to aspect. Seasonal precipitation triggered an increase in soil water content at the deepest soil profile measured (80cm). This soil response and subsequent shallow groundwater level rise observed in selected piezometers seem to indicate a direct connectivity between precipitation, soil, and groundwater. These results were more evident in the treated watershed when compared to the untreated. Results from this study add to the understanding of hydrologic connectivity in semiarid watersheds.

  13. The effect of watershed scale on HEC-HMS calibrated parameters: a case study in the Clear Creek watershed in Iowa, US

    Directory of Open Access Journals (Sweden)

    H. L. Zhang

    2013-07-01

    Full Text Available In this paper, we use the Hydrologic Modeling System (HEC-HMS to simulate two flood events to investigate the effect of watershed subdivision in terms of performance, the calibrated parameter values, the description of hydrologic processes, and the subsequent interpretation of water balance components. We use Stage IV hourly NEXRAD precipitation as the meteorological input for ten model configurations with variable sub-basin sizes. Model parameters are automatically optimized to fit the observed data. The strategy is implemented in Clear Creek Watershed (CCW, which is located in the upper Mississippi River basin. Results show that most of the calibrated parameter values are sensitive to the basin partition scheme and that the relative relevance of physical processes, described by the model, change depending on watershed subdivision. In particular, our results show that parameters derived from different model implementations attribute losses in the system to completely different physical phenomena without a notable effect on the model's performance. Our work adds to the body of evidence demonstrating that automatically calibrated parameters in hydrological models can lead to an incorrect prescription of the internal dynamics of runoff production and transport. Furthermore, it demonstrates that model implementation adds a new dimension to the problem of non-uniqueness in hydrological models.

  14. The effect of watershed scale on HEC-HMS calibrated parameters: a case study in the Clear Creek watershed in Iowa, USA

    Directory of Open Access Journals (Sweden)

    H. L. Zhang

    2013-01-01

    Full Text Available In this paper, we use the Hydrologic Modeling System (HEC-HMS to simulate two flood events to investigate the effect of watershed subdivision in terms of performance, the calibrated parameter values, the description of hydrologic processes, and the subsequent interpretation of water balance components. We use Stage-IV hourly NEXRAD precipitation as the meteorological input for ten model configurations with variable sub-basin sizes. Model parameters are automatically optimized to fit the observed data. The strategy is implemented in Clear Creek Watershed (CCW, which is located in the upper Mississippi River basin. Results show that most of the calibrated parameter values are sensitive to the basin partition scheme and that the relative relevance of physical processes, described by the model, change depending on watershed subdivision. In particular, our results show that parameters derived from different model implementations attribute losses in the system to completely different physical phenomena without a notable effect on the model's performance. Our work adds to the body of evidence demonstrating that automatically calibrated parameters in hydrological models can lead to an incorrect prescription of the internal dynamics of runoff production and transport. Furthermore, it demonstrates that model implementation adds a new dimension to the problem of non-uniqueness in hydrological models.

  15. Stream corridors as indicators of watershed land use: A case study in Istanbul Corredores ribereños como indicadores de uso de suelo de una cuenca: un caso de estudio en Estambul

    OpenAIRE

    Yusuf Serengil; Muhittin ?nan; ?brahim Yurtseven; Ümit Kiliç; Betül Uygur

    2012-01-01

    Riparian ecosystems as components of stream corridors provide a range of regulating ecosystem services including water production. Water quality, a component of water production is a major concern in urbanized watersheds. Water quality monitoring has been a very common method of investigating watershed impairment particularly in case of human impacts but it is now clear that hydrologic and ecological parameters may support and improve monitoring studies substantially. In three major watershed...

  16. Analyses of the Watershed Transform

    Directory of Open Access Journals (Sweden)

    Ramzi Mahmoudi, Mohamed AKIL

    2011-12-01

    Full Text Available In the framework of mathematical morphology, watershed transform (WT represents a key stepin image segmentation procedure. In this paper, we present a thorough analysis of some existingwatershed approaches in the discrete case: WT based on flooding, WT based on path-costminimization, watershed based on topology preservation, WT based on local condition and WTbased on minimum spanning forest. For each approach, we present detailed description ofprocessing procedure followed by mathematical foundations and algorithm of reference. Recentpublications based on some approaches are also presented and discussed. Our study concludeswith a classification of different watershed transform algorithms according to solution uniqueness,topology preservation, prerequisites minima computing and linearity.

  17. A new watershed assessment framework for Nova Scotia: A high-level, integrated approach for regions without a dense network of monitoring stations

    Science.gov (United States)

    Sterling, Shannon M.; Garroway, Kevin; Guan, Yue; Ambrose, Sarah M.; Horne, Peter; Kennedy, Gavin W.

    2014-11-01

    High-level, integrated watershed assessments are a basic requirement for freshwater planning, as they create regional summaries of multiple environmental stressors for the prioritization of watershed conservation, restoration, monitoring, and mitigation. There is a heightened need for a high-level, integrated watershed assessment in Nova Scotia as it faces pressing watershed issues relating to acidification, soil erosion, acid rock drainage, eutrophication, and water withdrawals related to potential shale gas development. But because of the relative sparseness of the on-the-ground effects-based data, for example on water quality or fish assemblages, previously created approaches for integrated watershed assessment cannot be used. In a government/university collaboration, we developed a new approach that relies solely on easier-to-collect and more available exposure-based variables to perform the first high-level watershed assessment in Nova Scotia. In this assessment, a total of 295 watershed units were studied. We used Geographic Information Systems (GIS) to map and analyze 13 stressor variables that represent risks to aquatic environment (e.g., road/stream crossing density, acid rock drainage risk, surface water withdrawals, human land use, and dam density). We developed a model to link stressors with impacts to aquatic systems to serve as a basis for a watershed threat ranking system. Resource management activities performed by government and other stakeholders were also included in this analysis. Our assessment identifies the most threatened watersheds, enables informed comparisons among watersheds, and indicates where to focus resource management and monitoring efforts. Stakeholder communication tools produced by the NSWAP include a watershed atlas to communicate the assessment results to a broader audience, including policy makers and public stakeholders. This new framework for high-level watershed assessments provides a resource for other regions that also have limited availability of effects-based data, an important consideration as expanding human activities impact water resources in less densely monitored regions.

  18. The modified SWAT model for predicting fecal coliforms in the Wachusett Reservoir Watershed, USA.

    Science.gov (United States)

    Cho, Kyung Hwa; Pachepsky, Yakov A; Kim, Joon Ha; Kim, Jung-Woo; Park, Mi-Hyun

    2012-10-01

    This study assessed fecal coliform contamination in the Wachusett Reservoir Watershed in Massachusetts, USA using Soil and Water Assessment Tool (SWAT) because bacteria are one of the major water quality parameters of concern. The bacteria subroutine in SWAT, considering in-stream bacteria die-off only, was modified in this study to include solar radiation-associated die-off and the contribution of wildlife. The result of sensitivity analysis demonstrates that solar radiation is one of the most significant fate factors of fecal coliform. A water temperature-associated function to represent the contribution of beaver activity in the watershed to fecal contamination improved prediction accuracy. The modified SWAT model provides an improved estimate of bacteria from the watershed. Our approach will be useful for simulating bacterial concentrations to provide predictive and reliable information of fecal contamination thus facilitating the implementation of effective watershed management. PMID:22784807

  19. Methods for interfacing IPCC climate change scenarios with higher resolution watershed management models in the Ethiopian Blue Nile Basin

    Science.gov (United States)

    Easton, Z. M.; MacAlister, C.; Fuka, D. R.

    2013-12-01

    As much as 90% of the Nile River flow that reaches Egypt originates in the Highlands of the Ethiopian Blue Nile Basin. This imbalance in water availability poses a threat to water security in the region, and could be severely impacted by projected climate change. This analysis coupled hydrodynamic/watershed models with the Intergovernmental Panel on Climate Change (IPCC) AR4 climate change scenarios to assess the potential impact on water resources and sediment dynamics. Specific AR4 scenarios include the A1B, B1, B2 and COMMIT, which were used to force the baseline hydrodynamic models calibrated against 1979-2011 streamflow for 20 sub-watersheds in the Tana and Beles basins. Transfer functions were developed to distribute the model parameters from the calibrated sub-watersheds to un-gauged portions of the basins based on a similarity index of hydrologic response units. We analyzed the scenario in two manners: first we ran all of the seven individual Global Circulation Model results in the IPCC AR4 report though our watershed models to asses the potential spread of climate change predictions; then we assessed the mean value produced for each IPCC AR4 scenario to better estimate convergence. Results indicate that the Tana basin is expected to experience an increase in mean annual flow. The Beles basin is predicted to experience a small decrease in mean annual flow. Sediment concentrations in the Tana basin increase proportionally more than the flow increase. Interestingly, and perhaps counter to what might be expected for a decrease in flow in the Beles basin, sediment concentrations increase.

  20. Hydromorphologic Recession Analysis: Accounting for Human Influences in Watershed Behaviors

    Science.gov (United States)

    Thomas, B. F.; Famiglietti, J. S.

    2013-12-01

    Integrated management of ground and surface waters has generally relied on baseflow characterization to understand the temporal variability in the contribution of watershed storage to streamflow. Recent research, however, indicates that small disturbances attributed to humans can impact our ability to characterize baseflow behaviors. In this study, we present an approach to account for human impacts on the estimation of baseflow recession parameters in California's Central Valley. The framework assesses how baseflow characterization is impacted by the combination of groundwater abstractions and surface water management strategies used to meet both residential and agricultural water demands. The results highlight the importance of accounting for human influences to characterize watershed properties by evaluating traditional (i.e. natural) and human-corrected recession parameters. Such results can influence studies ranging from water resources management to stream restoration projects that rely on accurate accounting of baseflow, especially during low flows.

  1. The deposition of mercury in throughfall and litterfall in the lake champlain watershed: A short-term study

    Science.gov (United States)

    Rea, Anne W.; Keeler, Gerald J.; Scherbatskoy, Timothy

    As part of an ongoing study of the atmospheric deposition of Hg in the Lake Champlain watershed, event throughfall, event precipitation, ambient, green foliage, and litterfall samples were collected and analyzed for Hg from a mixed hardwood forest in Underhill Center, VT, for six weeks during the months of August and September 1994. During this time period, the volume-weighted mean Hg concentration in throughfall (12.0 ± 8.5 ng ? -1) was higher than in precipitation (6.5 ± 2.8 ng ? -1). In August and September 1994, the total deposition of Hg in throughfall was estimated to be 3.1 ?gm -2 (1.9 ?g m -2 in precipitation) to the deciduous hardwood forests in the Lake Champlain basin. The mean Hg concentration in litterfall (53.2± 11.4 ng g -1) was significantly greater than the mean concentration in green foliage (34.2 +7.2 ng g -1), suggesting uptake of Hg from the atmosphere by foliage. Estimated annual litterfall deposition to the Lake Champlain basin was 13 ?g m -2. This study suggests that throughfall and litterfall play a significant role in the cycling and deposition of Hg in the Lake Champlain watershed.

  2. A method of fingerprinting the sources of fluvial sediment using environmental radionuclides. A case study of Tsuzura river watershed

    International Nuclear Information System (INIS)

    To study the fluvial sediment sources in forested watershed in Shikoku Island, Japan, the concentration of Cs-137 and Pb-210ex and U decay series radionuclides were analyzed. The study area in the midstream of Shimanto River basin, located 700 km southwest of Tokyo. The 0.33 km2 area watershed ranges in elevation from 170 m to 560 m above sea level. The soil sampling was conducted in hillslopes in various locations such as landslide scar, soil surface in unmanaged Hinoki (Chamacecyparis obtusa) plantation and unsealed forest road, and detailed sampling in the stream bed and bank was also conducted in several tributaries. Time-integrated suspended sediment sampler was adopted to obtain enough volume of sample to determine the radionuclides. The activities of Cs-137, Pb-210, Pb-214 and Bi-214 of soils and fluvial sediments were determined by gamma-ray spectrometry. Correction for the effect of particle size distribution and organic matter content on the radionuclides were conducted to compare the radionuclides concentration between the soils of potential suspended sediment sources and fluvial sediments. It was found that there were significant differences of Cs-137 and Pb-210ex concentration between forest floor or runoff sediment and forest road or stream bank. The Cs-137 and Pb-210ex concentration of suspended sediment varied among them, suggesting the possibility of fingerprinting the sources of fluvial sediment by Cs-137 ahe sources of fluvial sediment by Cs-137 and Pb-210ex. (author)

  3. Water Balance Principles: A Review of Studies on Five Watersheds in Iran

    OpenAIRE

    S.M.R. Alavi Moghaddam; A. Ghandhari

    2011-01-01

    Originally, water balance models were introduced to evaluate the importance of different hydrologic parameters under a variety of hydrologic conditions but its present applications are the most common studies at water resources management. In spite of the simple concept of water balance equation, specific considerations are need to proper application. With numerous affecting factors on hydrologic processes, the parsimony trait of water balance equation can cause huge errors or complexities th...

  4. Development of a Tool for Siting Low Impact Development in Urban Watersheds

    Science.gov (United States)

    Martin-Mikle, C.; de Beurs, K.; Julian, J.

    2013-12-01

    Low impact development (LID) -- a comprehensive land use planning and design approach with the goal of mitigating development impacts on hydrologic/nutrient cycles and ecosystems -- is increasingly being touted as an effective approach to lessen overland runoff and pollutant loadings. Examples of LIDs include riparian buffers, grassed swales, detention/retention ponds, rain gardens, green roofs and rain barrels. Broad-scale decision support tools for siting LIDs have been developed for agricultural watersheds, but are rare for urban watersheds, largely due to greater land use complexity and lack of necessary high-resolution geospatial data. Here, we develop a framework to assist city planners and water quality managers in siting LIDs in urban watersheds. One key component of this research is a framework accessible to those interested in using it. Hence, development of the framework has centered around 1) determining optimal data requirements for siting LID in an urban watershed and 2) developing a tool compatible with both open-source and commercial GIS software. We employ a wide variety of landscape metrics to evaluate the tool. A case study of the Lake Thunderbird Watershed, an urbanized watershed southeast of Oklahoma City, illustrates the effectiveness of a tool that is capable of siting LID in an urban watershed.

  5. Hydrological Study of Watersheds Arid and Semi-Arid South-Eastern Algeria (Chott Melghir, Chott El Hodna and Highlands Constantine

    Directory of Open Access Journals (Sweden)

    Fares Belagoune

    2013-12-01

    Full Text Available The objective of the study is to establish the hydrological characteristics, the hydrological behavior of river basins in arid and semi-arid south-eastern Algeria (establish of methodologies and necessary working tools for planning the development and management of water resources. The study on floods in Algeria is established by the National Agency of Water Resources (ANRH shows that the country is confronted with the phenomenon of very destructive floods and floods especially in arid and semi-arid regions. Flooding of rivers in these areas is less known. They are characterized by their sudden duration (rain showers, thunderstorm. The duration of the flood is in the order of minutes to hours. The human and material damages caused by these floods are still high. The study area encompasses three watersheds in semi-arid, arid south and Algeria. There are pools of Chott-Melghir (68,751 km2, highland Constantine-07 (9578 km2 and El Hodna-05 basin (25,843 km2. The total area of this zone is about 104,500km2. Studies of protection against floods and design studies of hydraulic structures (spillway, storm basin, etc. require the raw data which are often unknown in several places particularly at ungauged wadis of these areas.

  6. Hurricane impacts on a pair of coastal forested watersheds: implications of selective hurricane damage to forest structure and streamflow dynamics

    Directory of Open Access Journals (Sweden)

    A. D. Jayakaran

    2013-09-01

    Full Text Available Hurricanes are infrequent but influential disruptors of ecosystem processes in the southeastern Atlantic and Gulf coasts. Every southeastern forested wetland has the potential to be struck by a tropical cyclone. We examined the impact of Hurricane Hugo on two paired coastal watersheds in South Carolina in terms of stream flow and vegetation dynamics, both before and after the hurricane's passage in 1989. The study objectives were to quantify the magnitude and timing of changes including a reversal in relative streamflow-difference between two paired watersheds, and to examine the selective impacts of a hurricane on the vegetative composition of the forest. We related these impacts to their potential contribution to change watershed hydrology through altered evapotranspiration processes. Using over thirty years of monthly rainfall and streamflow data we showed that there was a significant transformation in the hydrologic character of the two watersheds – a transformation that occurred soon after the hurricane's passage. We linked the change in the rainfall-runoff relationship to a catastrophic shift in forest vegetation due to selective hurricane damage. While both watersheds were located in the path of the hurricane, extant forest structure varied between the two watersheds as a function of experimental forest management techniques on the treatment watershed. We showed that the primary damage was to older pines, and to some extent larger hardwood trees. We believe that lowered vegetative water use impacted both watersheds with increased outflows on both watersheds due to loss of trees following hurricane impact. However, one watershed was able to recover to pre hurricane levels of canopy transpiration at a quicker rate due to the greater abundance of pine seedlings and saplings in that watershed.

  7. A WATERSHED APPROACH TO DRINKING WATER QUALITY

    Science.gov (United States)

    The purpose of this presentation is to describe emerging technologies and strategies managing watersheds with the goal of protecting drinking water sources. Included are discussions on decentralized wastewater treatment, whole organism biomonitor detection systems, treatment of...

  8. A preliminary study of the Hg flux from selected Ohio watersheds to Lake Erie

    International Nuclear Information System (INIS)

    New measurements of riverine dissolved and particulate Hg fluxes into Lake Erie from 12 northern Ohio watersheds have been determined from samples collected in April 2002 and analyzed using ultra-clean techniques with cold-vapor atomic fluorescence spectrometry. Total Hg concentrations ranged through 2.5-18.5 ng L-1, with a mean of 10.4 ng L-1 with most Hg in particulate form. Dissolved Hg concentrations ranged through 0.8-4.3 ng L-1, with a mean of 2.5 ng L-1. Highest total Hg concentrations were observed in western rivers with primarily agricultural land use and eastern rivers with mixed land use in their watersheds. Total suspended solid concentrations ranged through 10-180 mg L-1 with particulate Hg concentrations ranging through 47-170 ng g-1, with a mean of 99 ng g-1. Particulate Hg was similar to published data for central Lake Erie bottom sediments but much lower than for bottom sediments in western Lake Erie. Total Hg concentrations were positively correlated with suspended sediment concentrations and negatively with dissolved NO3- concentrations. The total estimated annual Hg fluxes from these rivers into Lake Erie is estimated to be 85 kg, but because only one event was sampled during high flow conditions, this may be an overestimate. This is much lower than previous published estimates of riverine Hg input into Lake Erierie

  9. Assessment and mapping of desertification sensitivity in an insular sahelian mountain region - case study of the Ribeira Seca Watershed, Cape Verde

    Science.gov (United States)

    Tavares, J.

    2012-04-01

    The aim of this study is to present the assessment and mapping of the environmental areas sensitive to desertification in an insular sahelian mountain region, in the catchment area of Ribeira Seca, island of Santiago, Cape Verde. Desertification is a threat for the global environment and it represents a serious ecological problem in Cape Verde. To fight both successfully, it requires an evaluation of its consequences and the building of cartography of the sensitivity for arid and semi-arid ecosystems. The model MEDALUS was the basis for this study with the use of six indicators of quality: climate, soil, vegetation, management, water runoff and social. Several sub-indicators were assigned to each indicator with weights variable between 1 (low) and 2 (high) according to the DESIRE Project (WB2). The geometric mean of each of the six indicators of quality was employed to produce the map of environmental sensitivity areas to desertification. The results of this study show that more than 50% of the watershed present obvious evidence of becoming a desertification area. Key words: Cape Verde, desertification, indicators, MEDALUS model, DESIRE project.

  10. Watershed-scale assessment of oil palm cultivation impact on water quality and nutrient fluxes: a case study in Sumatra (Indonesia).

    Science.gov (United States)

    Comte, Irina; Colin, François; Grünberger, Olivier; Whalen, Joann K; Harto Widodo, Rudi; Caliman, Jean-Pierre

    2015-05-01

    High fertilizer input is necessary to sustain high yields in oil palm agroecosystems, but it may endanger neighboring aquatic ecosystems when excess nutrients are transported to waterways. In this study, the hydrochemical dynamics of groundwater and streams under baseflow conditions were evaluated with bi-monthly measurements for 1 year on 16 watersheds. Hydrochemical measurements were related to the spatial distribution of soil and fertilization practices across a landscape of 100 km(2), dominated by oil palm cultivation, in Central Sumatra, Indonesia. The low nutrient concentrations recorded in streams throughout the landscape indicated that the mature oil palm plantations in this study did not contribute to eutrophication of aquatic ecosystems. This was ascribed to high nutrient uptake by oil palm, a rational fertilizer program, and dilution of nutrient concentrations due to heavy rainfall in the study area. Soil type controlled dissolved inorganic N and total P fluxes, with greater losses of N and P from loamy-sand uplands than loamy lowlands. Organic fertilization helped to reduce nutrient fluxes compared to mineral fertilizers. However, when K inputs exceeded the oil palm requirement threshold, high K export occurred during periods when groundwater had a short residence time. For higher nutrient use efficiency in the long term, the field-scale fertilizer management should be complemented with a landscape-scale strategy of fertilizer applications that accounts for soil variability. PMID:25843822

  11. Técnicas avanzadas para la evaluación de caudales ecológicos en el ordenamiento sostenible de cuencas hidrográficas / Advanced techniques for evaluating instream flows in sustainable watershed management

    Scientific Electronic Library Online (English)

    Juan Manuel, Diez-Hernández; Liliana, Burbano Burbano.

    2006-04-01

    Full Text Available La potencialidad de las corrientes fluviales ha fascinado al hombre por su capacidad para satisfacer las demandas crecientes del recurso hídrico superficial a escala temporal y espacial. Actualmente la idea de que los caudales naturales de un río deban reservarse para preservar el funcionamiento prí [...] stino del ecosistema resulta utópica, al menos en sociedades que progresan. Una ordenación eficaz del recurso hídrico se caracteriza por ser racional y ecosistémica, con una gestión fundamentada en un régimen de caudales ecológicos (RCE) que compagina los usos del agua asegurando una condición aceptable del ecosistema. Este trabajo analiza la problemática de la regulación de caudales y aborda la necesidad de fijar los RCE para salvaguardar la integridad ambiental. Se presentan los métodos para calcular caudales ecológicos y las pautas especificadas en la legislación colombiana. Con la pretensión de estipular un procedimiento para determinar los RCE en Colombia, se resume la metodología IFIM (Instream Flow Incremental Methodology), ampliamente utilizada en el mundo, y que consideramos aplicable en los sistemas fluviales locales. Finalmente, se concretan las pautas operativas básicas de IFIM y el procedimiento que optimiza el balance entre el coste y la confiabilidad de un estudio convencional de caudales ecológicos. Abstract in english Rivers’ potential for satisfying growing water demands has always fascinated human beings. The current idea that a river’s natural flow should be reserved to conserve pristine dynamics is a utopian ideal, at least in countries having established a certain level of progress. Effective watershed plann [...] ing is characterised by being rational and ecological, employing management based on instream flows (IF), combining water use and ensuring acceptable ecosystem conditions. This work addresses the environmental consequences of regulating rivers and focuses on the need to fix IFs to protect fluvial systems’ ecological integrity. The methods for calculating instream flows are presented as well as approaches provisionally specified in Colombia’s legislative framework. Instream flow incremental methodology (IFIM), which is widely used around the world, is summarised to provide a basis for developing a procedure for determining IFs in Colombia as it would seem applicable to local streams. IFIM basic operative rules are then summed up, as is the procedure optimising the balance between a conventional instream flow study’s costs and reliability.

  12. Citizen Participation in Collaborative Watershed Partnerships

    Science.gov (United States)

    Koehler, Brandi; Koontz, Tomas M.

    2008-02-01

    Collaborative efforts are increasingly being used to address complex environmental problems, both in the United States and abroad. This is especially true in the growing field of collaborative watershed management, where diverse stakeholders work together to develop and advance water-quality goals. Active citizen participation is viewed as a key component, yet groups often struggle to attract and maintain citizen engagement. This study examined citizen participation behavior in collaborative watershed partnerships by way of a written survey administered to citizen members of 12 collaborative watershed groups in Ohio. Results for the determination of who joins such groups were consistent with the dominant-status model of participation because group members were not demographically representative of the broader community. The dominant-status model, however, does not explain which members are more likely to actively participate in group activities. Instead, individual characteristics, including political activity, knowledge, and comfort in sharing opinions with others, were positively correlated with active participation. In addition, group characteristics, including government-based membership, rural location, perceptions of open communication, perceptions that the group has enough technical support to accomplish its goals, and perceived homogeneity of participant opinions, were positively correlated with active participation. Overall, many group members did not actively participate in group activities.

  13. Cycling of Organoarsenic Compounds in Agricultural Watersheds

    Science.gov (United States)

    Schreiber, M. E.; Chambers, D. B.; White, J. S.

    2004-12-01

    The use of the organoarsenical roxarsone, added to poultry feed to increase weight gain, results in elevated arsenic concentrations (10-50 mg/kg) in poultry litter. This litter is extensively applied to crop fields and pastures, both as a fertilizer and as a waste disposal technique, in agricultural regions. Using a combination of field sampling and laboratory experiments, we investigated the sources and sinks of arsenic within soils and natural waters in an agricultural watershed in the Shenandoah Valley of Virginia, USA, an area of intense poultry production. Surface, ground, and soil waters were collected in an instrumented field site to examine arsenic and other litter-derived species in different hydrologic compartments and different settings within the field site. We collected soil cores of the Frederick series, common in the Shenandoah Valley, from several areas experiencing different litter application histories in the valley to examine relationships between arsenic and physico-chemical properties of the soils. Last, we conducted a series of batch experiments to examine adsorption and biotransformation characteristics of roxarsone within Ap and Bt soil horizons of the Frederick soils. Results of these combined studies document a complex yet intriguing cycling of arsenic through the watershed, which will provide useful information for management of poultry litter in agricultural watersheds.

  14. Uncertainty based analysis of the impact of watershed phosphorus load on reservoir phosphorus concentration

    Science.gov (United States)

    Karamouz, Mohammad; Taheriyoun, Masoud; Seyedabadi, Mohammadreza; Nazif, Sara

    2015-02-01

    In many regions of the world that depend on surface reservoirs as a source of water supply, eutrophication is a major water quality problem. Developing simulation models to evaluate the impact of watershed nutrient loads on the reservoir's water quality is an essential step in eutrophication management. In this regard, analysis of model uncertainty gives an opportunity to assess the reliability and the margin of safety of the model predictions for Total Maximum Daily Load (TMDL) from the watershed nutrient load. In this study, a computational procedure has been proposed for the analysis of the model uncertainties in simulation of watershed phosphorous load and reservoir phosphorous concentration. Data from the Aharchai watershed which is located upstream of the Satarkhan reservoir in the northwestern part of Iran, is used as the study area to test the effectiveness of the proposed methodology. The Soil and Water Assessment Tools (SWAT) is utilized for assessment of watershed phosphorus load as the main agent resulting in the reservoir eutrophication in the region. The most effective parameters in model performance are identified by a global sensitivity analysis technique named modified Fourier Amplitude Sensitivity Test (FAST) which can incorporate parameter interdependencies. The Generalized Likelihood Uncertainty Estimation (GLUE) technique is also applied to set up behavioral ranges of the parameters that are relevant to the actual observations. Finally, the cumulative weighted-likelihood distribution functions (CWLDF) are derived for outputs of the SWAT. They are used jointly for estimation of results uncertainty limits using the Copula method. To assess the effectiveness of applying Best Management Practices (BMPs) in the watershed, two scenarios of with and without BMPs application are tested. The results showed the effectiveness of the proposed model in uncertainty estimation of watershed phosphorus load and reservoir phosphorus concentration as well as the effectiveness of BMPs in reducing P loads from the watershed.

  15. Baseline Profile of Soil Samples from Upian River Watershed

    Directory of Open Access Journals (Sweden)

    Wilanfranco Caballero TAYONE

    2014-06-01

    Full Text Available The Mines and Geosciences Bureau (MGB in the Philippines is currently mapping out the entire Davao City Watershed Area (DCWA. There are 8 major watershed areas within DCWA that has been identified by the MGB and the largest is the Davao River Watershed Area (DRWA. A smaller sub-watershed within DRWA, the Upian River Watershed Area (URWA, was proposed of which its boundary and soil profile is yet to be established. This study focused on the analyses of the soil samples from URWA. The results for pH, organic matter, cation exchange capacity, N, P, K, Ca and Mg were then compared to the Bureau of Soil standard for its fertility rating. Analysis of lead (Pb was also included as a pollutant indicator for possible soil contamination. There are 4 sampling sites with unfavorable ratings for pH, 3 for both organic matter and phosphorus, and 2 stations for both nitrogen and calcium. Fertility rating is generally good for cation exchange capacity, potassium and magnesium. The Bureau of Soil has no existing standards for micronutrients. However, all sampling sites were found to be too low with micronutrients according to Gershuny and Smillie. No indication of lead contamination or pollution on all sites as far as natural levels of lead in surface soil is concerned. This study will provide baseline information that is useful to all stakeholders, to the people living near the area, farmers, planners, and resource managers. This can also provide inputs to key government agencies in the Philippines like the Department of Environment and Natural Resources (DENR and the City Planning Office of Davao in formulating policies for sustainable management of the resource upon implementation of their programs and projects. Without the aforementioned information, planners would have difficulty in predicting the impact or recommend best management strategies for a specific land use.

  16. Linking watershed geomorphic characteristics to sediment yield: Evidence from the Loess Plateau of China

    Science.gov (United States)

    Zhang, H. Y.; Shi, Z. H.; Fang, N. F.; Guo, M. H.

    2015-04-01

    The geomorphic characteristics of a watershed affect the energy fluxes, mass movement, and water and sediment dispersion within the watershed. This paper examines how watershed complexity affects sediment yield in terms of rainfall and geomorphic characteristics. The geomorphic characteristics include primary, secondary and compound topographic attributes; watershed shape characteristics; relief parameters; and stream network characteristics. Because of the high co-dependence among these characteristics, partial least-squares regression (PLSR) was used to identify the relationships between the sediment yield and 29 selected watershed characteristics. The PLSR combines the features of a principal component analysis and multiple linear regression and is a robust multivariate regression method that is appropriate when the predictors exhibit multiple co-linearity. The first-order factors were determined by calculating the variable importance for the projection (VIP). Those variables with high VIP values are the most relevant for explaining the dependent variable. The results showed that the watershed shape and relief parameters have large influences on the sediment yield. The VIP values revealed that the sediment yield is primarily controlled by the plan curvature (VIP = 1.87) and the highest order channel length (VIP = 1.53), followed by the hypsometric integral (VIP = 1.49), rainfall (VIP = 1.44), basin relief (VIP = 1.19), slope (VIP = 1.15), sediment transport capacity index (VIP = 1.13), length ratio (VIP = 1.06), profile curvature (VIP = 1.01) and divide average relief (VIP = 1.00). This paper quantified the effects and relative importance of different geomorphic attributes on sediment yield. The insight provided by these results can be used in the selection of appropriate geomorphic variables for watershed erosion and hydrological models. Thus, this study is intended to elucidate the internal dynamics of sediment transport and storage in a watershed and provide a guide for watershed management.

  17. Application of the analytical hierarchy process (AHP) for landslide susceptibility mapping: A case study from the Tinau watershed, west Nepal

    Science.gov (United States)

    Kayastha, P.; Dhital, M. R.; De Smedt, F.

    2013-03-01

    Landslide problems are abundant in the mountainous areas of Nepal due to a unique combination of adverse geological conditions, abundant rainfall and anthropogenic factors, which leads to enormous loss of life and property every year. To control such problems, systematic studies of landslides are necessary, including inventory mapping and risk assessment. This study applies the analytical hierarchy process method in the Tinau watershed, Nepal. A landslide susceptibility map is prepared on the basis of available digital data of topography, geology, land-use and hydrology. The landslide susceptibility map is validated through physical and statistical methods. The results reveal that the predicted susceptibility levels are found to be in good agreement with the past landslide occurrences, and, hence, the map is trustworthy for future land-use planning.

  18. Soil organic carbon under different land uses and its storage in two typical watersheds of the Loess Plateau, China

    Science.gov (United States)

    Xue, Zhijing; An, Shaoshan; Cheng, Man

    2013-04-01

    Soil organic carbon distribution and soil organic carbon storage were estimated in two classical small watersheds that based on 163 samples under different land uses and slope positions. Land use conversion would alter land cover, which results in carbon stock changes in biomass as well as in the soil. After the Grain for Green project initiated in 1999, most land of China's loess plateau has been completed vegetation restoration as same as the comprehensive managed watershed (Shanghuang) which with spread vegetation-covered area and lower slope farmland. However, it is not clear how effective the newly initiated project will be. In this study, we found a reference area, original and untreated watershed (Sidigou). It is an area which has not any restore vegetation projects that kept primitive farming management. We found that there were significant differences between two study areas either soil organic carbon concentration or its distribution. The soil organic carbon content in the comprehensive managed watershed (Shanghuang) was higher than the untreated watershed's (Sidigou). As the soil depth increases, the soil organic carbon content gradually decreases. Soil organic carbon concentration and distribution were significantly influenced by land uses and slope positions. More specifically, the soil organic carbon for the shrub land and natural grassland were significantly higher than for the other land uses. In different slope positions, valley's soil organic carbon content was greater than that for the top of mound crests and mound slope. The total soil organic carbon storage of untreated watershed and comprehensively managed watershed were 20099.42 t and 46527.12 t, respectively. The area proportion of land uses is the significant reason for income gap of two study areas. Land use conversion from farmland to shrub land and manmade grassland in Shanghuang watershed played an important role in ecological restoration. It was found that vigorously developing Grain for Green project is of benefit for the Loess Plateau.

  19. Estudio de los procesos hidrológicos de la cuenca del Río Diguillín / Study of the hydrological processes of the Río Diguillín watershed

    Scientific Electronic Library Online (English)

    René, Zúñiga; Enrique, Muñoz; José Luis, Arumí.

    Full Text Available En el valle central del centro sur de Chile existe una gran demanda por recursos hídricos por parte de las actividades económicas como también por las demandas de una mejor calidad del ambiente. La agricultura es una de las principales actividades económicas de la zona, la cual requiere asegurar la [...] disponibilidad de recursos con una planificación y gestión adecuada, en especial para escenarios hidro-meteorológicos que se alejan de las condiciones normales o medias. Para la gestión y planificación de recursos hídricos de la zona resulta necesario conocer los procesos hidrológicos que predominan en la generación de escorrentía y almacenamiento, y disponer de herramientas que permitan estimar condiciones futuras. En el presente estudio se implementa un modelo hidrológico sobre la cuenca del río Diguillín. El modelo incorpora una conexión entre el agua superficial y el agua subterránea en la zona alta de la cuenca con el objeto de reproducir el comportamiento de la cuenca de modo realista. El modelo una vez calibrado es capaz de reproducir condiciones pasadas. Luego, el modelo se utiliza para evaluar el comportamiento de la cuenca ante diferentes escenarios de variabilidad climática producidos por el fenómeno El Niño Oscilación del Sur. Abstract in english In the central valley in South-Central Chile there is a high demand for water resources from the different economical activities as well as from an increasing demand of better environment quality. Agriculture is among the main economic activities in this area, which requires ensuring the availabilit [...] y of water resources with a proper planning and management, especially for not normal or mean hydro-meteorological scenarios. For the planning and management of water resources it is necessary to understand the main hydrological processes that predominate in the runoff generation and storage, and to dispose of tools for the estimation of future conditions. In this study a hydrological model for the Río Diguillín Watershed is implemented. The model incorporates a surface water and groundwater connection in the upper part of the watershed to reproduce by a realistic manner the observed behavior in the basin.Once the model is calibrated it is able to reproduce past conditions. Then, the model is used to evaluate the basin behavior under different scenarios of climate variability caused by El Niño Southern Oscillation.

  20. USING NEXRAD AND RAIN GAUGE PRECIPITATION DATA FOR HYDROLOGIC CALIBRATION OF SWAT IN A NORTHEASTERN WATERSHED

    Energy Technology Data Exchange (ETDEWEB)

    Sexton, Aisha M.; Sadeghi, Ali M.; Zhang, Xuesong; Srinivasan, Ragahvan; Shirmohammadi, Adel

    2010-05-10

    The value of watershed?scale, hydrologic and water quality models to ecosystem management is increasingly evident as more programs adopt these tools to evaluate the effectiveness of different management scenarios and their impact on the environment. Quality of precipitation data is critical for appropriate application of watershed models. In small watersheds, where no dense rain gauge network is available, modelers are faced with a dilemma to choose between different data sets. In this study, we used the German Branch (GB) watershed (~50 km2), which is included in the USDA Conservation Effects Assessment Project (CEAP), to examine the implications of using surface rain gauge and next?generation radar (NEXRAD) precipitation data sets on the performance of the Soil and Water Assessment Tool (SWAT). The GB watershed is located in the Coastal Plain of Maryland on the eastern shore of Chesapeake Bay. Stream flow estimation results using surface rain gauge data seem to indicate the importance of using rain gauges within the same direction as the storm pattern with respect to the watershed. In the absence of a spatially representative network of rain gauges within the watershed, NEXRAD data produced good estimates of stream flow at the outlet of the watershed. Three NEXRAD datasets, including (1)*non?corrected (NC), (2) bias?corrected (BC), and (3) inverse distance weighted (IDW) corrected NEXRAD data, were produced. Nash?Sutcliffe efficiency coefficients for daily stream flow simulation using these three NEXRAD data ranged from 0.46 to 0.58 during calibration and from 0.68 to 0.76 during validation. Overall, correcting NEXRAD with rain gauge data is promising to produce better hydrologic modeling results. Given the multiple precipitation datasets and corresponding simulations, we explored the combination of the multiple simulations using Bayesian model averaging.

  1. CLIMATE AND LAND USE CHANGE EFFECTS ON ECOLOGICAL RESOURCES IN THREE WATERSHEDS: A SYNTHESIS REPORT

    Science.gov (United States)

    This report is a synthesis of three watershed case-study assessments conducted by GCRP to advance the capability of management decisions. The report compares and contrasts methods and processes employed by the three case study teams to learn effective analytic, project managemen...

  2. Detection of Critical LUCC Indices and Sensitive Watershed Regions Related to Lake Algal Blooms: A Case Study of Taihu Lake

    Directory of Open Access Journals (Sweden)

    Chen Lin

    2015-01-01

    Full Text Available Taihu Lake in China has suffered from severe eutrophication over the past 20 years which is partly due to significant land use/cover change (LUCC. There is an increasing need to detect the critical watershed region that significantly affects lake water degradation, which has great significance for environmental protection. However, previous studies have obtained conflicting results because of non–uniform lake indicators and inadequate time periods. To identify the sensitive LUCC indices and buffer distance regions, three lake divisions (Meiliang Lake, Zhushan Lake and Western Coastal region and their watershed region within the Taihu Lake basin were chosen as study sites, the algal area was used as a uniform lake quality indicator and modeled with LUCC indices over the whole time series. Results showed that wetland (WL and landscape index such as Shannon diversity index (SHDI appeared to be sensitive LUCC indices when the buffer distance was less than 5 km, while agricultural land (AL and landscape fragmentation (Ci gradually became sensitive indices as buffer distances increased to more than 5 km. For the relationship between LUCC and lake algal area, LUCC of the WC region seems to have no significant effect on lake water quality. Conversely, LUCC within ML and ZS region influenced algal area of corresponding lake divisions greatly, while the most sensitive regions were found in 3 km to 5 km, rather than the whole catchment. These results will be beneficial for the further understanding of the relationship between LUCC and lake water quality, and will provide a practical basis for the identification of critical regions for lake.

  3. Assessing the effectiveness of winter cover crop on nitrate reduction in two-paired sub-basins on the Coastal Plain of the Chesapeake Bay Watershed

    Science.gov (United States)

    Lee, S.; Yeo, I. Y.; Sadeghi, A. M.; Mccarty, G.; Hively, W. D.; Lang, M. W.

    2014-12-01

    Best management practices (BMPs) have been widely adopted to improve water quality throughout the Chesapeake Bay Watershed (CBW). Winter cover crops (WCC) use has been highlighted for the reduction of nitrate leaching over the fallow season. Although various WCC practices are currently conducted in local croplands, the water quality improvement benefits of WCC have not been studied thoroughly at the watershed scale. The objective of this study is to assess the long-term impacts of WCC on reducing nitrate loadings using a processed-based watershed model, Soil and Water Assessment Tool (SWAT). Remote sensing based estimates of WCC biomass will be used to calibrate plant growth processes of SWAT and its nutrient cycling. The study will be undertaken in two-paired agricultural watersheds in the Coastal Plain of CBW. Multiple WCC practice scenarios will be prepared to investigate how nitrate loading varies with crop species, planting dates, and implementation areas. The performance of WCC on two-paired watersheds will be compared in order to understand the effects of different watershed characteristics on nitrate uptake by crops. The results will demonstrate the nitrate reduction efficiency of different WCC practices and identify the targeting area for WCC implementation at the watershed scale. This study will not only integrate remote sensing data into the physically based model but also extend our understandings of WCC functions. This will provide key information for effective conservation decision making. Key words: Water quality, Chesapeake Bay Watershed, Winter Cover Crop, Soil and Water Assessment Tool (SWAT)

  4. Simulação da expectativa de perdas de solo em microbacia sob diferentes manejos florestais / Soil loss expectancy in a watershed under different forest managements

    Scientific Electronic Library Online (English)

    A.G., Castro; M., Valério Filho.

    1997-09-01

    Full Text Available Este estudo foi designado a avaliar, por meio de simulação cartográfica em Sistema de Informações Geográficas (SIG), o impacto de diferentes estratégias de manejo florestal na escala de uma microbacia hidrográfica. O projeto foi desenvolvido em uma pequena microbacia (2,8 km²), localizada na porção [...] norte do litoral capixaba (Estado do Espírito Santo), inserida em um a área de plantação industrial de eucalipto pertencente ao complexo agroindustrial da Aracruz Celulose S.A. A avaliação dos impactos potenciais foi efetuada por meio da aplicação da equação universal de perdas de solo (EUPS), sendo diferentes cenários simulados com base no processamento digital da base primária de dados (dados ancilares relativos a cobertura pedológica, relevo, clima e vegetação). A simulação considerou quatro diferentes estratégias de manejo, variando de uma situação mais crítica (completa ausência de qualquer técnica conservacionista) até uma abordagem mais próxima da situação atualmente observada (onde diferentes técnicas de manejo têm sido empregadas). Os primeiros resultados permitem denotar a adequacidade do uso dessas técnicas de investigação prospectiva em suporte ao manejo operacional de florestas de produção. Todavia, alguns cuidados devem ser adotados quanto ao alcance desta abordagem, especificamente quanto ao modelo EUPS e, ainda, a uma tendência à dispersão multiplicativa de erros detectada durante o processamento digital. Abstract in english A cartographic simulation in a Geographical Information System (GIS) was used to evaluate the environmental impacts of different forest management strategies on a watershed scale. The project was conducted in a small (2 km²) watershed located at northern coast of the State of Espírito Santo, Brazil, [...] which is inserted in an area of eucalypt-clone plantation comprised by the agro-industrial complex Aracruz Celulose S.A. Potential impacts were assessed by applying the Universal Soil Loss Equation (USLE) in a GIS, where different scenarios were simulated by primary data processing (auxiliary data relating to the surface soil, relief, climate and vegetation). The simulation considered four different management strategies: from the worst possible situation, such as the complete absence of any conservation practice, to a more realistic assumption where management techniques are currently applied. First results demonstrated the adequacy of these technologies for prospective investigations and as guidelines to operational management of forest plantations. Nevertheless, caution must be taken concerning the scope of this approach, specially regarding the USLE model, and the multiplicative error dispersion trend during data processing.

  5. Nuclear materials management storage study

    International Nuclear Information System (INIS)

    The Office of Weapons and Materials Planning (DP-27) requested the Planning Support Group (PSG) at the Savannah River Site to help coordinate a Departmental complex-wide nuclear materials storage study. This study will support the development of management strategies and plans until Defense Programs' Complex 21 is operational by DOE organizations that have direct interest/concerns about or responsibilities for nuclear material storage. They include the Materials Planning Division (DP-273) of DP-27, the Office of the Deputy Assistant Secretary for Facilities (DP-60), the Office of Weapons Complex Reconfiguration (DP-40), and other program areas, including Environmental Restoration and Waste Management (EM). To facilitate data collection, a questionnaire was developed and issued to nuclear materials custodian sites soliciting information on nuclear materials characteristics, storage plans, issues, etc. Sites were asked to functionally group materials identified in DOE Order 5660.1A (Management of Nuclear Materials) based on common physical and chemical characteristics and common material management strategies and to relate these groupings to Nuclear Materials Management Safeguards and Security (NMMSS) records. A database was constructed using 843 storage records from 70 responding sites. The database and an initial report summarizing storage issues were issued to participating Field Offices and DP-27 for comment. This report presents the background for the Storage Study and an initial, unclassified summary of storage issues and concerns identified by the sites

  6. Limnological study of Piraquara river (Upper Iguaçu basin: spatiotemporal variation of physical and chemical variables and watershed zoning

    Directory of Open Access Journals (Sweden)

    Paulo Henrique C. Marques

    2003-06-01

    Full Text Available The Piraquara river basin (Upper Iguaçu River basin - Brazil was studied as an ecological system throughout a complete seasonal cycle, comprising the rainy and dry season. Analyzes of 16 physical and chemical water variables (dissolved oxygen, biochemical oxygen demand, temperature, pH, conductivity, total nitrogen, total phosphorus, ortophosphates, nitrite, nitrate, ammonium, reagent silicate, total suspended solids, chlorophyll - a, flow velocity and depth showed correlations between water composition and watershed physiographic features, and the Principal Component Analysis allowed to evidence spatial gradients and seasonal differences. The sampling points were clustered in patches with homogeneous behavior, according to ecologycal concepts: patch 1, with strong influence of Serra do Mar mountains; patch 2, medium course, under Piraquara Dam influence and patch 3, under wetlands influence. Two main factors of serial discontinuity were identified: the Piraquara dam effect and the influence of wetlands. The watershed zoning based on limnological characteristics seeks to subsidize research and biomonitoring for this public springs area.A bacia hidrográfica do rio Piraquara (Bacia do Alto Rio Iguaçu - PR foi estudada como sistema ecológico ao longo de um ciclo sazonal completo, abrangendo os períodos seco e chuvoso. Análises de 16 variáveis físicas e químicas da água (oxigênio dissolvido, pH, condutividade, DBO5, temperatura, nitrogênio total, fósforo total, ortofosfato, nitrito, nitrato, amônio, silicato, sólidos totais em suspensão, clorofila-a, profundidade e velocidade da corrente demonstraram correlações entre a composição da água e as características fisiográficas da bacia. Os gradiente espaciais e as diferenças sazonais foram evidenciadas pela Análise de Componentes Principais, e a bacia foi dividida em trechos de comportamento homogêneo, sendo identificadas descontinuidades seriais: Trecho 1, com forte influência da Serra do Mar; Trecho 2, curso médio do rio, sob influência da Represa do Piraquara e Trecho 3, sob influência das várzeas. O trabalho Pretende subsidiar ações de pesquisa, planejamento e biomonitoramento para este manancial público.

  7. Quality of runoff from small watersheds in the Twin Cities metropolitan area, Minnesota; a project plan

    Science.gov (United States)

    Ayers, M.A.; Payne, G.A.; Oberts, Gary L.

    1980-01-01

    A program for water-quality sampling to define the relationships between land use, watershed characteristics, and the quantity, quality, and timing of runoff has been started for the Twin Cities metropolitan area of Minnesota. Ten major watersheds were chosen as representative of conditions in the metropolitan area. Each will be sampled at one location near the outlet. Six of the watersheds are agricultural, and range in size from 14.3 to 82.9 square miles. The four remaining watersheds are urbanized and range in size from 1.22 to 31.7 square miles. In addition, seven urban subwatersheds, which range in size from 0.12 to 0.47 square mile and reflect a dominant land-use type, will be sampled. Data collection is designed around the hydrologic conditions expected for each site. Sixteen of 17 sites are instrumented to define stream discharge and 12 sites have automatic water samplers and recording rain gages. In addition, six sites will have automatic wetfall/dryfall precipitation collectors. Samples for analysis of 32 chemical, physical, and biological constituents will be collected at varying frequencies , with emphasis on storm sampling for suspended solids and nutrients. A data-management system being designed for the U.S. Geological Survey Urban Hydrology Studies Program will facilitate data processing. Data interpretation will be aimed at defining the quantity and quality characteristics of runoff from study watersheds. These findings will be extrapolated to unsampled watersheds in the metropolitan area. (USGS)

  8. Assessing Watershed-Wildfire Risks on National Forest System Lands in the Rocky Mountain Region of the United States

    Directory of Open Access Journals (Sweden)

    Jessica R. Haas

    2013-07-01

    Full Text Available Wildfires can cause significant negative impacts to water quality with resultant consequences for the environment and human health and safety, as well as incurring substantial rehabilitation and water treatment costs. In this paper we will illustrate how state-of-the-art wildfire simulation modeling and geospatial risk assessment methods can be brought to bear to identify and prioritize at-risk watersheds for risk mitigation treatments, in both pre-fire and post-fire planning contexts. Risk assessment results can be particularly useful for prioritizing management of hazardous fuels to lessen the severity and likely impacts of future wildfires, where budgetary and other constraints limit the amount of area that can be treated. Specifically we generate spatially resolved estimates of wildfire likelihood and intensity, and couple that information with spatial data on watershed location and watershed erosion potential to quantify watershed exposure and risk. For a case study location we focus on National Forest System lands in the Rocky Mountain Region of the United States. The Region houses numerous watersheds that are critically important to drinking water supplies and that have been impacted or threatened by large wildfires in recent years. Assessment results are the culmination of a broader multi-year science-management partnership intended to have direct bearing on wildfire management decision processes in the Region. Our results suggest substantial variation in the exposure of and likely effects to highly valued watersheds throughout the Region, which carry significant implications for prioritization. In particular we identified the San Juan National Forest as having the highest concentration of at-risk highly valued watersheds, as well as the greatest amount of risk that can be mitigated via hazardous fuel reduction treatments. To conclude we describe future opportunities and challenges for management of wildfire-watershed interactions.

  9. Calibration and Uncertainty Analysis of a Semi-Distributed Model in a Semi-Arid Region, Case Study: Nishabour Watershed

    Directory of Open Access Journals (Sweden)

    K. Davari

    2013-09-01

    Full Text Available Application of conceptual hydrological models is an important issue in watersheds for researchers, especially in arid and semi-arid regions. The hydrological behaviors are complicated in such watersheds and their calibration is more difficult. In this article, the conceptual and semi-distributed SWAT model is used for a semi-arid Nishabour watershed with 9350 km2 area. Streamflow simulation is considered for 8 years. Nishabour watershed modeling led to 22 subbasins and 146 Hydrologic response units. SUfI2 approach is used for calibration and uncertainty analysis of watershed modeling. Results showed that calibration and validation of watershed model is not satisfactory, because of uncertainties in conceptual model such as dam structures, and land subsidence. Another reason is related to the complexity of hydrological system in arid regions which has simplified in hydrological models. Moreover, the complex behavior between runoff and subsurface flow in low depth of rainfall events usually effects in hydrological simulation results. Finally, it concluded that we cannot rely on conceptual hydrologic models with different sources of uncertainty without including them in hydrological modeling at arid and semi-arid watersheds.

  10. Modelado hidrológico de grandes cuencas: caso de estudio del río Senegal, África Occidental / Hydrological modeling of large watersheds: case study of the Senegal River, West Africa

    Scientific Electronic Library Online (English)

    Khalidou M., Bâ; Carlos, Díaz-Delgado; Emmanuelle, Quentin; Víctor Hugo, Guerra-Cobián; Jaime Israel, Ojeda-Chihuahua; Alin Andrei, Cârsteanu; Roberto, Franco-Plata.

    2013-06-01

    Full Text Available El presente trabajo tiene como objetivo la modelación de los escurrimientos diarios de grandes cuencas bajo el empleo del modelo de parámetros distribuidos CEQUEAU y del software de sistemas de información geográfica IDRISI. Se implementó un módulo hidrogeomático que proporciona, bajo un proceso sup [...] ervisado, la información de entrada requerida por el modelo hidrológico. Se han utilizado imágenes de radar SRTM (Shuttle Radar Topography Mission-USGS), con resolución espacial de 30" (? 1 km) para la delimitación del parteaguas de la cuenca, con lo cual se eliminan fuentes de incertidumbre significativas, reduciendo tiempos de procesamiento. El caudal del río Senegal ha sido aforado en la estación hidrométrica Bakel desde inicios del siglo XX y se cuenta con una serie de datos relativamente abundante. Se han llevado a cabo diversos estudios hidrológicos sobre la cuenca, donde se reporta un área de captación cercana a 289 x 10³ km², pero altamente subestimada, según revela este estudio. La cuenca presenta condiciones climáticas muy diversas, con alta variabilidad en la precipitación total anual, desde 2 000 mm en el sur hasta 50 mm en el norte. Los parámetros fisiográficos han sido calculados considerando la extensa superficie de la cuenca localizada en Mauritania, despreciada en estudios previos como parte de ésta. Las simulaciones de caudales para el periodo 1970-2000 generan buenos resultados (coeficiente de Nash, por lo general superiores a 0.80), por ello se concluye que utilizando el nuevo módulo hidrogeomáico y el modelo CEQUEAU, las simulaciones son más adecuadas y representan una base sólida para la gestión de recursos hídricos de la zona. Abstract in english The present paper is focusing on improving the rainfall-runoff modeling in a large basin, at a daily scale, using the distributed hydrological model CEQUEAU and the GIS IDRISI. A hydrogeomatic module was implemented using a supervised process to provide the input data required by the hydrological mo [...] del. SRTM (Shuttle Radar Topography Mission, USGS) images were used, with a spatial resolution of 30" (? 1 km), for the purpose of defining watershed divides, which eliminates significant sources of uncertainty and reduces processing times. On the other hand, the discharge of the Senegal River has been gauged at the Bakel hydrometric station since the beginning of the 20th century until today, so a relatively long time series of data is now available. Various hydrologic studies about this basin have been performed, reporting a watershed area of roughly 289 × 103 km2, which is greatly underestimated according to the present study. The basin contains very diverse climatic conditions, with high variability in total annual precipitation, from 2 000 mm in the south to 50 mm in the north. Physiographic parameters have been computed taking into account the extensive area of the basin located in Mauritania, which had been neglected as part of this watershed by previous studies. Since the simulations of daily volumes for the period 1970-2000 produced good results (Nash coefficients generally above 0.80), it is concluded that simulations are more suitable when using the new hydrogeomatic module and the CEQUEAU and represent a solid basis for water resources management in the area.

  11. Assessing the effectiveness of green infrastructure stormwater best management practices in New England at the small watershed scale.

    Science.gov (United States)

    Methods are needed to evaluate the effectiveness of existing Stormwater Best Management Practices (BMPs) and Low Impact Development and to predict the relative effectiveness of proposed stormwater management plans in maintaining the habitat and biotic integrity of streams in New ...

  12. Can functional gene abundance predict N-fluxes? Examples from a well-studied hydrological flow path in a forested watershed in SW China

    Science.gov (United States)

    Liu, Binbin; Muzammil, Bushra; Dörsch, Peter; Zhu, Jing; Mulder, Jan; Frostegård, Åsa

    2014-05-01

    Edaphic, climatic and management factors shape soil microbial communities taxonomically and functionally, resulting in spatial separation of nitrogen (N) oxidation and reduction processes along hydrological flowpaths. In a recent study, we investigated N-cycling processes and N2O emissions along a mesic hillslope (HS) and a hydrologically connected groundwater discharge zone (GDZ) in a forested headwater catchment dominated by acid soils (pH 4.0 - 4.5) in subtropical China (Chongqing). The watershed receives 50 kg N ha-1 a-1 through atmogenic deposition (2/3 as ammonium), most of which is removed before discharge. Surprisingly, N2O emissions were found to be greatest on the well-drained HS, whereas a drop of NO3- concentrations along the flow path indicated that N removal was highest in the moist GDZ. Nitrification was assumed to be none-limiting as the total flux of NO3- leaving the hill slope soils roughly equalled the input of NH4+. To understand watershed N-cycling and removal in more detail, we studied the abundance of functional genes involved in ammonium oxidation (amoA of AOB and AOA), nitrite oxidation (nxrB) and denitrification (nirK, nirS, nosZ) in top soils from 8 locations along the flow path spanning from the hilltop to the outlet of the GDZ. 16S rRNA gene abundance was assessed as a general marker for bacterial abundance. All genes showed highest abundance per gram soil in the heavily disturbed GDZ (formerly cultivated terraces), despite lower soil organic carbon content (1-4% w/w as opposed to 10-20% w/w in HS topsoil) and periodically stagnant conditions due to high water tables after monsoonal rainfalls. Ratios of nosZ/nirS+nirK, commonly used to predict denitrification product stoichiometry (N2O/N2), yielded counterintuitive results with higher values for HS than for GDZ. However, comparing nir gene with 16S rRNA gene abundance revealed that denitrifiers accounted for up to 10% of the bacterial community in the GDZ soils whereas this value was only 1% in HS soils. Even though GDZ soils harbour less nosZ relative to nirS+nirK denitrifiers (i.e. has a lower nos/nir gene copy ratio), the high relative abundance of denitrifiers in the GDZ communities may still provide sufficient N2O reducing capacity to explain lower N2O emission. High N2O reduction capacity in the GDZ is further supported by higher soil pH (4.5 versus 4.0 at the HS) and diffusion limitation in the denser GDZ soil resulting in high dissolved N2O concentrations promoting nosZ expression. Archaeal ammonia oxidizers (AOA) were about 5000 times more abundant than bacterial ammonia oxidizers (AOB) which is in line with the low pH of these soils, and amounted to up to 3% of 16S rRNA gene counts. Again, abundances were highest in the GDZ despite periodical waterlogging. Abundance of nitrite oxidizers was similar to that of AOA. Our results show that copy numbers of functional genes in complex landscapes cannot be readily interpreted with respect to ecosystem N fluxes, but need to be analysed in a spatially explicit manner in the context of watershed hydrology.

  13. The impact of topographical characteristics and land use change on the quality of Umbaniun micro-watershed water resources, Meghalaya

    Directory of Open Access Journals (Sweden)

    Phyllbor Rymbai

    2012-03-01

    Full Text Available A watershed is a geohydrological unit draining at a common point. Such natural unit has evolved through rain water interaction with land mass, typically comprising arable land, non-arable land and natural drainage lines in rain-fed areas. Sustainable production depends on the health, vitality and purity of a particular environment in which land and water are important constituents. A pilot study was thus undertaken to study the geomorphology, land-use systems and their impact on water resource management on the Meghalaya Umbaniun micro-watershed. In this Micro-watershed (3951.18 ha, water body covers an area of 5.69ha (0.14%. The paper highlights the linkage between geomorphology, land use systems and its impact on quality of water resources on the Umbaniun Micro-Watershed, Meghalaya. Topographical and physical-chemical characteristics, such as pH, conductivity, dissolved oxygen, turbidity and water temperature, were used as environmental degradation indicators

  14. Effects of best-management practices in Bower Creek in the East River priority watershed, Wisconsin, 1991-2009

    Science.gov (United States)

    Corsi, Steven R.; Horwatich, Judy A.; Rutter, Troy D.; Bannerman, Roger T.

    2013-01-01

    Hydrologic and water-quality data were collected at Bower Creek during the periods before best-management practices (BMPs), and after BMPs were installed for evaluation of water-quality improvements. The monitoring was done between 1990 and 2009 with the pre-BMP period ending in July 1994 and the post-BMP period beginning in October 2006. BMPs installed in this basin included streambank protection and fencing, stream crossings, grade stabilization, buffer strips, various barnyard-runoff controls, nutrient management, and a low degree of upland BMPs. Water-quality evaluations included base-flow concentrations and storm loads for total suspended solids, total phosphorus, and ammonia nitrogen. The only reductions detected between the base-flow samples of the pre- and post-BMP periods were in median concentrations of total phosphorus from base-flow samples, but not for total suspended solids or dissolved ammonia nitrogen. Differences in storm loads for the three water-quality constituents monitored were not observed during the study period.

  15. Watershed safety and quality control by safety threshold method

    Science.gov (United States)

    Da-Wei Tsai, David; Mengjung Chou, Caroline; Ramaraj, Rameshprabu; Liu, Wen-Cheng; Honglay Chen, Paris

    2014-05-01

    Taiwan was warned as one of the most dangerous countries by IPCC and the World Bank. In such an exceptional and perilous island, we would like to launch the strategic research of land-use management on the catastrophe prevention and environmental protection. This study used the watershed management by "Safety Threshold Method" to restore and to prevent the disasters and pollution on island. For the deluge prevention, this study applied the restoration strategy to reduce total runoff which was equilibrium to 59.4% of the infiltration each year. For the sediment management, safety threshold management could reduce the sediment below the equilibrium of the natural sediment cycle. In the water quality issues, the best strategies exhibited the significant total load reductions of 10% in carbon (BOD5), 15% in nitrogen (nitrate) and 9% in phosphorus (TP). We found out the water quality could meet the BOD target by the 50% peak reduction with management. All the simulations demonstrated the safety threshold method was helpful to control the loadings within the safe range of disasters and environmental quality. Moreover, from the historical data of whole island, the past deforestation policy and the mistake economic projects were the prime culprits. Consequently, this study showed a practical method to manage both the disasters and pollution in a watershed scale by the land-use management.

  16. Regeneration of Shorea robusta and Schima wallichii under Community Forest Management in Ludikhola watershed, Gorkha district, Nepal

    OpenAIRE

    Klokkeide, Kristin Madsen

    2013-01-01

    Resource and forest management in Nepal: Resource management is of current global interest because of its role in sustaining natural resources and livelihood for future generations. Hardin's paper, the Tragedy of the Commons", served as a starting point to the wider discussion on challenges for sustainable resource management. Hardin's theory is widely cited in the context of forest management, especially to explain forest degradation, e.g. in the Himalaya where forest degradation has a...

  17. Hydrological year 2009 in the small watersheds ?ervík and Malá Ráztoka

    Directory of Open Access Journals (Sweden)

    Zden?k Vícha

    2011-06-01

    Full Text Available Unique experiment, not only with respect to time, is ongoing within the two small watersheds in Beskid Mts. The year 2009 represents already the 56-th year of this long-term forestry-hydrological research. Experimental watershed ?ervík (CE is situated near the village Staré Hamry, watershed Malá Ráztoka (MR near Trojanovice. The aim of the research is to study the impact of forest on the water runoff from the watershed, and the impact of forest management on water balance in the headwater regions. Compared to the long-term time series, the data measured in 2009 seems to be relatively balanced. In 2009 the year precipitation amount within two watersheds was only slightly higher than the long-term average. Snowing had started in the middle of November; more intensive snow fall was registered in February, March, and also at the end of the hydrological year (mid-October. The average year temperatures within the two watersheds are again much higher than the averages of the last 56 years. During the vegetation season only few short period without precipitation was recorded, forest vegetation was not threatened by dryness in this year.

  18. Analysis of Potential Deep-Seated Landslide in Hekeng Watershed by Environment Indices

    Science.gov (United States)

    Hsieh, C. J.; Chompuchan, C.

    2014-12-01

    Landslides are a major natural disaster in Taiwan relevant to the human life. After the catastrophic Xiaolin landslide during Typhoon Morakot in August 2009 caused around 400 casualties, the deep-seated landslide has become a serious issue. This study explored the potential deep-seated landslide in Hekeng watershed extracted from SPOT-5 imageries. The empirical topographic correction was applied to minimize effect of the mountain shaded area due to the difference of sun elevation and terrain angle. Consequently the multi-temporal environmental indices, i.e., modified Normalized Difference Vegetation Index (mNDVI) and modified Normalized Difference Water Index (mNDWI) were corrected. Seasonal vegetation cover and surface moisture change were analyzed incorporate with a slope which obtain from DEM data. The result showed that the distribution of potential deep-seated landslide vulnerable area mainly located at headstream watershed. It could be explained that the headstream watershed has less human interference, therefore the environmental indices interpreted those area as deep soil layer and dense vegetation coverage. However, the upstream canal could suffer from the long-term erosion and possibly cause slope toe collapse. In addition, the western watershed is the afforestation zone whereas the eastern watershed is natural forest zone with higher development ratio. The upslope forest management of eastern and western watershed should be discussed variously.

  19. The typology, frequency and magnitude of some behaviour events in case of torrential hydrographical management works in the upper Tarlung watershed

    Directory of Open Access Journals (Sweden)

    Ioan Clinciu

    2010-09-01

    Full Text Available During the 20-25 years from their startup, the torrential hydrographical management works carried out in the upper T?rlung Watershed (55 dams, 22 sills, 25 traverses and 4 outlet canals have exposed a number of 24 behaviour event types: 13 out of them reduce the safety of exploitation and the sustainability of the works (hereinafter called damages, while the other 11 reduce the functionality of the works (hereinafter called disfunctionalities. The following behaviour events have the highest frequency:(i damages caused by water and alluvia erosion (erosive damages, followed by breakages, in the category of damages, and (ii unsupervised installation of forest vegetation on the managed torrential hydrographical network and apron siltation, in the category of disfunctionalities. For methodological reasons, only the erosive damage of works was successively analysed, according to two criteria: the average depth (cm in the eroded area and the percentage of the erosive area out of the total surface. Further on, by combining the two criteria for analysis, five representation areas with the same damage intensity were defined (very low, low, medium, high and very high intensity. With the aid of the event frequency values recorded in these areas and of the coefficients attributed to each intensity class (from 1 for very low intensity to 5 for very high intensity, the author reached the conclusion that the level of the recorded intensity of the damage caused by water and alluvia erosion ranged from very low to low.

  20. Sediment Budgets and Source Determinations Using Fallout Caesium-137 in a Semiarid Rangeland Watershed, Arizona, USA

    International Nuclear Information System (INIS)

    Analysis of soil redistribution patterns and sediment sources in semiarid and arid watersheds provides information for understanding watershed sediment budgets and for implementing management practices to improve rangeland conditions and reduce sediment loads in streams. The purpose of this research was to develop sediment budgets and to identify potential sediment sources using 137Caesium (137Cs) and other soil properties in a series of small semiarid subwatersheds on the USDA ARS Walnut Gulch Experimental Watershed near Tombstone, Arizona, USA. Soils were sampled in a grid pattern on two small subwatersheds and along transects associated with soils and geomorphology on six larger subwatersheds. Soil samples were analyzed for 137Cs and selected physical and chemical properties (i.e. bulk density, rocks, particle size, soil organic carbon). Suspended sediment samples collected at flume sites on the Walnut Gulch Experimental Watershed were also analyzed for the same properties. Sediment budgets measured using 137Cs inventories for a small shrub and a small grass subwatersheds found eroding areas in these watersheds were losing 5.6 and 3.2 t ha-1 a-1, respectively; however, a sediment budget for each of the small subwatersheds, including depositional areas, found net soil loss to be 4.3 t ha-1 a-1 from the shrub watershed and near zero t ha-1 a-1 from the grass up>-1 a-1 from the grass subwatershed. The suspended sediments collected at the flumes of the larger subwatersheds were enriched in silt, clay, and 40K, but not for 137Cs. Using multivariate mixing models to determine sediment source indicated that the shrub dominated subwatersheds were contributing most of the suspended sediments measured at the outlet flume of the Walnut Gulch Experimental Watershed. Both methodologies (sediment budgets and sediment source analyses) indicate that shrub dominated systems provide more suspended sediments to the stream systems. These studies also suggest that sediment yields measured at the outlet of a watershed may be a poor indicator of actual soil redistribution within a watershed. Using 137Cs provided useful information on soil redistribution within watersheds and sediment source areas for developing management strategies. Management of these semiarid rangelands must consider techniques that will protect grass dominated areas from shrub invasion. (author)

  1. Watershed land use effects on lake water quality in Denmark

    DEFF Research Database (Denmark)

    Nielsen, Anders; Trolle, Dennis

    2012-01-01

    Mitigating nutrient losses from anthropogenic nonpoint sources is today of particular importance for improving the water quality of numerous freshwater lakes worldwide. Several empirical relationships between land use and in-lake water quality variables have been developed, but they are often weak, which can in part be attributed to lack of detailed information about land use activities or point sources. We examined a comprehensive data set comprising land use data, point-source information, and in-lake water quality for 414 Danish lakes. By excluding point-source-influenced lakes (n = 210), the strength in relationship (R2) between in-lake total nitrogen (TN) and total phosphorus (TP) concentrations and the proportion of agricultural land use in the watershed increased markedly, from 10–12% to 39–42% for deep lakes and from 10–12% to 21–23% for shallow lakes, with the highest increase for TN. Relationships between TP and agricultural land use were even stronger for lakes with rivers in their watershed (55%) compared to lakes without (28%), indicating that rivers mediate a stronger linkage between landscape activity and lake water quality by providing a “delivery” mechanism for excess nutrients in the watershed. When examining the effect of different near-freshwater land zones in contrast to the entire watershed, relationships generally improved with size of zone (25, 50, 100, 200, and 400 m from the edge of lake and streams) but were by far strongest using the entire watershed. The proportion of agricultural land use in the entire watershed was best in explaining lake water quality, both relative to estimated nutrient surplus at agricultural field level and near-lake land use, which somewhat contrasts typical strategies of management policies that mainly target agricultural nutrient applications and implementation of near-water buffer zones. This study suggests that transport mechanisms within the whole catchment are important for the nutrient export to lakes. Hence, the whole watershed should be considered whenmanaging nutrient loadings to lakes, and future policies should ideally target measures that reduce the proportion of cultivated land in the watershed to successfully improve lake water quality. Read More: http://www.esajournals.org/doi/abs/10.1890/11-1831.1

  2. Outage management: A case study

    International Nuclear Information System (INIS)

    Outage management issues identified from a field study conducted at a two-unit commercial pressurized water reactor (PWR), when one unit was in a refueling outage and the other unit was at full power operation, are the focus of this paper. The study was conduced as part of the US Nuclear Regulatory Commission's (NRC) organizational factors research program, and therefore the issues to be addressed are from an organizational perspective. Topics discussed refer to areas identified by the NRC as critical for safety during shutdown operations, including outage planning and control, personnel stress, and improvements in training and procedures. Specifically, issues in communication, management attention, involvement and oversight, administrative processes, organizational culture, and human resources relevant to each of the areas are highlighted by example from field data collection. Insights regarding future guidance in these areas are presented based upon additional data collection subsequent to the original study

  3. Outage management: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Haber, S.B.; Barriere, M.T. [Brookhaven National Lab., Upton, NY (United States); Roberts, K.H. [California Univ., Berkeley, CA (United States). Walter A. Haas School of Business

    1992-09-01

    Outage management issues identified from a field study conducted at a two-unit commercial pressurized water reactor (PWR), when one unit was in a refueling outage and the other unit was at full power operation, are the focus of this paper. The study was conduced as part of the US Nuclear Regulatory Commission`s (NRC) organizational factors research program, and therefore the issues to be addressed are from an organizational perspective. Topics discussed refer to areas identified by the NRC as critical for safety during shutdown operations, including outage planning and control, personnel stress, and improvements in training and procedures. Specifically, issues in communication, management attention, involvement and oversight, administrative processes, organizational culture, and human resources relevant to each of the areas are highlighted by example from field data collection. Insights regarding future guidance in these areas are presented based upon additional data collection subsequent to the original study.

  4. Outage management: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Haber, S.B.; Barriere, M.T. (Brookhaven National Lab., Upton, NY (United States)); Roberts, K.H. (California Univ., Berkeley, CA (United States). Walter A. Haas School of Business)

    1992-01-01

    Outage management issues identified from a field study conducted at a two-unit commercial pressurized water reactor (PWR), when one unit was in a refueling outage and the other unit was at full power operation, are the focus of this paper. The study was conduced as part of the US Nuclear Regulatory Commission's (NRC) organizational factors research program, and therefore the issues to be addressed are from an organizational perspective. Topics discussed refer to areas identified by the NRC as critical for safety during shutdown operations, including outage planning and control, personnel stress, and improvements in training and procedures. Specifically, issues in communication, management attention, involvement and oversight, administrative processes, organizational culture, and human resources relevant to each of the areas are highlighted by example from field data collection. Insights regarding future guidance in these areas are presented based upon additional data collection subsequent to the original study.

  5. Community Responses to Government Defunding of Watershed Projects: A Comparative Study in India and the USA

    Science.gov (United States)

    Koontz, Tomas M.; Sen, Sucharita

    2013-03-01

    When central governments decentralize natural resource management (NRM), they often retain an interest in the local efforts and provide funding for them. Such outside investments can serve an important role in moving community-based efforts forward. At the same time, they can represent risks to the community if government resources are not stable over time. Our focus in this article is on the effects of withdrawal of government resources from community-based NRM. A critical question is how to build institutional capacity to carry on when the government funding runs out. This study compares institutional survival and coping strategies used by community-based project organizations in two different contexts, India and the United States. Despite higher links to livelihoods, community participation, and private benefits, efforts in the Indian cases exhibited lower survival rates than did those in the U.S. cases. Successful coping strategies in the U.S. context often involved tapping into existing institutions and resources. In the Indian context, successful coping strategies often involved building broad community support for the projects and creatively finding additional funding sources. On the other hand, the lack of local community interest, due to the top-down development approach and sometimes narrow benefit distribution, often challenged organizational survival and project maintenance.

  6. Trip report: pilot studies of factors linking watershed function and coastal ecosystem health in American Samoa

    Science.gov (United States)

    Atkinson, Carter T.; Medeiros, Arthur C.

    2010-01-01

    Coral reef resources in the territory of American Samoa face significant problems from overfishing, non-point source pollution, global warming, and continuing population growth and development. The islands are still relatively isolated relative to other parts of the Pacific and have managed to avoid some of the more devastating invasive species that have reached other archipelagoes. As a result, there are opportunities for collaborative and integrative research and monitoring programs to help restore and maintain biodiversity and functioning natural ecosystem in the archipelago. We found that the 'Ridge to Reef' paradigm already exists in American Samoa, with a high degree of interagency cooperation and efficient use of limited resources already taking place in the Territory. USGS may be able to make contributions as a partner organization in the Coral Reef Advisory Group (CRAG) through deployment of sediment monitoring instrumentation to supplement stream monitoring by the American Samoa Environmental Protection Agency, by providing high resolution vegetation and land-use maps of main islands, by providing additional support to the American Samoa Department of Marine and Wildlife Resources and the National Park Service for monitoring of invasive species, by working with members of CRAG to initiate sediment transport studies on Samoan reefs, and by developing new projects on the effects of bacterial contamination and pollutants on coral reef physiology and demography.

  7. Surf Your Watershed

    Science.gov (United States)

    This service allows users to locate, use, and share environmental information about watersheds where they live. Individual watersheds can be searched by map, place name, or Zip code. "Adopt your watershed" encourages individuals to become involved in stewardship and conservation of watersheds where they live. An environmental website database contains hundreds of URLs and can be searched by state, full text, information type, or keyword.

  8. Watershed evaluation and habitat response to recent storms; annual report for 1999

    International Nuclear Information System (INIS)

    Large and powerful storm systems moved through the Pacific Northwest during the wet season of 1995--96, triggering flooding, mass erosion, and, alteration of salmon habitats in affected watersheds. This project study was initiated to assess whether watershed conditions are causing damage, triggered by storm events, to salmon habitat on public lands in the Snake River basin. The storms and flooding in 1995--96 provide a prime opportunity to examine whether habitat conditions are improving, because the effects of land management activities on streams and salmon habitat are often not fully expressed until triggered by storms and floods. To address these issues, they are studying the recent storm responses of watersheds and salmon habitat in systematically selected subbasins and watersheds within the Snake River system. The study watersheds include several in the Wenaha and Tucannon subbasins in Washington and Oregon, and the watersheds of Squaw Creek (roaded) and Weir Creek (unroaded) in the Lochsa River subbasin, Idaho. The study was designed to examine possible differences in the effects of the storms in broadly comparable watersheds with differing magnitudes or types of disturbance. Watershed response is examined by comparing storm response mechanisms, such as rates of mass failure, among watersheds with similar attributes, but different levels of land management. The response of salmon habitat conditions is being examined by comparing habitat conditions before and afcomparing habitat conditions before and after the storms in a stream and among streams in watersheds with similar attributes but different levels of land management. If appropriate to the results, the study will identify priority measures for reducing the severity of storm responses in watersheds within the Snake River Basin with habitat for at-risk salmon. This annual report describes the attributes of the study watersheds and the criteria and methods used to select them. The report also describes the watershed and fish habitat attributes evaluated and the methods used to evaluate them. Watershed responses and attributes evaluated include mass failures, historic soil loss, the integration of roads with the drainage network, estimated flood recurrence intervals, and headwater channel morphology. Habitat attributes evaluated include large woody debris, pool frequency and depth, substrate conditions, and bank stability. Multiple analyses of habitat data in the Tucannon and Wenaha subbasins remain to be completed due to difficulties stemming from data characteristics that indicated that some of the pre-existing data may have be of questionable accuracy. Diagnostic attributes of the questionable data included a change in monitoring protocols during the pre- to post-flood analysis period, physically implausible temporal trends in some habitat attributes at some sites, and conflicting results for the same attribute at the same locations from different data sources. Since unreliable data can lead to spurious results, criteria were developed to screen the data for analysis, as described in this report. It is anticipated that while the data screening will prevent spurious results, it will also truncate some of the planned analysis in the Tucannon and Wenaha systems

  9. Watershed Evaluation and Habitat Response to Recent Storms : Annual Report for 1999.

    Energy Technology Data Exchange (ETDEWEB)

    Rhodes, Jonathan J.; Huntington, Charles W.

    2000-02-01

    Large and powerful storm systems moved through the Pacific Northwest during the wet season of 1995--96, triggering flooding, mass erosion, and, alteration of salmon habitats in affected watersheds. This project study was initiated to assess whether watershed conditions are causing damage, triggered by storm events, to salmon habitat on public lands in the Snake River basin. The storms and flooding in 1995--96 provide a prime opportunity to examine whether habitat conditions are improving, because the effects of land management activities on streams and salmon habitat are often not fully expressed until triggered by storms and floods. To address these issues, they are studying the recent storm responses of watersheds and salmon habitat in systematically selected subbasins and watersheds within the Snake River system. The study watersheds include several in the Wenaha and Tucannon subbasins in Washington and Oregon, and the watersheds of Squaw Creek (roaded) and Weir Creek (unroaded) in the Lochsa River subbasin, Idaho. The study was designed to examine possible differences in the effects of the storms in broadly comparable watersheds with differing magnitudes or types of disturbance. Watershed response is examined by comparing storm response mechanisms, such as rates of mass failure, among watersheds with similar attributes, but different levels of land management. The response of salmon habitat conditions is being examined by comparing habitat conditions before and after the storms in a stream and among streams in watersheds with similar attributes but different levels of land management. If appropriate to the results, the study will identify priority measures for reducing the severity of storm responses in watersheds within the Snake River Basin with habitat for at-risk salmon. This annual report describes the attributes of the study watersheds and the criteria and methods used to select them. The report also describes the watershed and fish habitat attributes evaluated and the methods used to evaluate them. Watershed responses and attributes evaluated include mass failures, historic soil loss, the integration of roads with the drainage network, estimated flood recurrence intervals, and headwater channel morphology. Habitat attributes evaluated include large woody debris, pool frequency and depth, substrate conditions, and bank stability. Multiple analyses of habitat data in the Tucannon and Wenaha subbasins remain to be completed due to difficulties stemming from data characteristics that indicated that some of the pre-existing data may have be of questionable accuracy. Diagnostic attributes of the questionable data included a change in monitoring protocols during the pre- to post-flood analysis period, physically implausible temporal trends in some habitat attributes at some sites, and conflicting results for the same attribute at the same locations from different data sources. Since unreliable data can lead to spurious results, criteria were developed to screen the data for analysis, as described in this report. It is anticipated that while the data screening will prevent spurious results, it will also truncate some of the planned analysis in the Tucannon and Wenaha systems.

  10. Impact of large storms on runoff from leeward and windward watersheds, eastern Puerto Rico

    Science.gov (United States)

    Murphy, S. F.; Stallard, R. F.

    2012-12-01

    Water supplies of eastern Puerto Rico are vulnerable to extreme weather events, from severe droughts to powerful tropical storms that cause floods and landslides and damage vegetation and infrastructure. The severity of these events may increase in the future: climate models forecast that the trend of increasing dryness in Puerto Rico will continue, while storm strength may increase due to warmer ocean temperatures. In order to effectively manage water supplies of eastern Puerto Rico, the impact of various weather events needs to be assessed accurately. Precipitation and runoff data over a fifteen-year period were evaluated for four watersheds in eastern Puerto Rico. These watersheds vary in geology, land cover, and location relative to the Luquillo Mountains. Two watersheds windward of the Luquillo Mountains are much wetter, receiving about 4,000 mm precipitation annually, and precipitation is closely related to elevation. Two leeward watersheds receive about half as much precipitation, and precipitation is not well correlated with elevation. Interannual variation in precipitation and runoff is substantial in all four watersheds and is related to regional-scale weather patterns, which are partly explained by large-scale climate oscillations. Greatest precipitation and runoff (both totals and rates) are associated with major storms, such as hurricanes, tropical storms, and upper level troughs. Discharge caused by such storms can be several hundred times greater than average discharge and is a substantial fraction of annual discharge. Rainfall and runoff during the largest storms were similar among all four watersheds, suggesting that higher annual precipitation and runoff in the windward watersheds is probably controlled by the frequent, smaller rain events related to orographic precipitation. The windward/leeward effects dominate hydrologic regimes in these watersheds and overwhelm differences related to bedrock geology or land cover. The impact of reforestation or climate change over the study period cannot be distinguished from the large interannual variations in weather and the passage of occasional large storms.

  11. Role of glaciers in watershed hydrology: a preliminary study of a "Himalayan catchment"

    Directory of Open Access Journals (Sweden)

    R. J. Thayyen

    2010-02-01

    Full Text Available A large number of Himalayan glacier catchments are under the influence of humid climate with snowfall in winter (November–April and south-west monsoon in summer (June–September dominating the regional hydrology. Such catchments are defined as "Himalayan catchment", where the glacier meltwater contributes to the river flow during the period of annual high flows produced by the monsoon. The winter snow dominated Alpine catchments of the Kashmir and Karakoram region and cold-arid regions of the Ladakh mountain range are the other major glacio-hydrological regimes identified in the region. Factors influencing the river flow variations in a "Himalayan catchment" were studied in a micro-scale glacier catchment in the Garhwal Himalaya, covering an area of 77.8 km2. Three hydrometric stations were established at different altitudes along the Din Gad stream and discharge was monitored during the summer ablation period from 1998 to 2004, with an exception in 2002. These data have been analysed along with winter/summer precipitation, temperature and mass balance data of the Dokriani glacier to study the role of glacier and precipitation in determining runoff variations along the stream continuum from the glacier snout to 2360 m a.s.l. The study shows that the inter-annual runoff variation in a "Himalayan catchment" is linked with precipitation rather than mass balance changes of the glacier. This study also indicates that the warming induced an initial increase of glacier runoff and subsequent decline as suggested by the IPCC (2007 is restricted to the glacier degradation-derived component in a precipitation dominant Himalayan catchment and cannot be translated as river flow response. The preliminary assessment suggests that the "Himalayan catchment" could experience higher river flows and positive glacier mass balance regime together in association with strong monsoon. The important role of glaciers in this precipitation dominant system is to augment stream runoff during the years of low summer discharge. This paper intends to highlight the importance of creating credible knowledge on the Himalayan cryospheric processes to develop a more representative global view on river flow response to cryospheric changes and locally sustainable water resources management strategies.

  12. Case Study Report: REDD+ Pilot Project in Community Forests in Three Watersheds of Nepal

    OpenAIRE

    Shanti Shrestha; Bhaskar Singh Karky; Seema Karki

    2014-01-01

    Reducing emissions from deforestation and forest degradation (REDD+) is an international climate policy instrument that is expected to tap into the large mitigation potential for conservation and better management of the world’s forests through financial flows from developed to developing countries. This paper describes the results and lessons learned from a pioneering REDD+ pilot project in Nepal, which is based on a community forest management approach and which was implemented from 2009?...

  13. Soil and Water Assessment Tool (SWAT) Applicability on Nutrients Loadings Prediction in Mountainous Lower Bear Malad River (LBMR) Watershed, Utah.

    Science.gov (United States)

    Salha, A. A.; Stevens, D. K.

    2014-12-01

    The application of watershed simulation models is indispensable when pollution is generated by a nonpoint source. These models should be able to simulate large complex watersheds with varying soils, land use and management conditions over long periods of time. This study presents the application of Soil and Water Assessment Tool (SWAT) to investigate, manage, and research the transport and fate of nutrients in (Subbasin HUC 16010204) Lower Bear Malad River (LBMR) watershed, Box elder County, Utah. Water quality problems arise primarily from high phosphorus and total suspended sediment concentrations that were caused by increasing agricultural and farming activities and complex network of canals and ducts of varying sizes and carrying capacities that transport water (for farming and agriculture uses). Using the available input data (Digital Elevation Model (DEM), land use/Land cover (LULC), soil map and weather and climate data for 20 years (1990-2010) to predict the water quantity and quality of the LBMR watershed using a spatially distributed model version of hydrological ArcSWAT model (ArcSWAT 2012.10_1.14). No previous studies have been found in the literature regarding an in-depth simulation study of the Lower Bear Malad River (LBMR) watershed to simulate stream flow and to quantify the associated movement of nitrogen, phosphorus, and sediment. It is expected that the model mainly will predict monthly mean total phosphorus (TP) concentration and loadings in a mountainous LBRM watershed (steep Wellsville mountain range with peak of (2,857 m)) having into consideration the snow and runoff variables affecting the prediction process. The simulated nutrient concentrations were properly consistent with observations based on the R2 and Nash- Sutcliffe fitness factors. Further, the model will be able to manage and assess the land application in that area with corresponding to proper BMPs regarding water quality management. Keywords: Water Quality Modeling; Soil and Water Assessment Tool (SWAT); Lower Bear-Malad River (LBMR); Mountainous watershed

  14. Morphometry and land cover based multi-criteria analysis for assessing the soil erosion susceptibility of the western Himalayan watershed.

    Science.gov (United States)

    Altaf, Sadaff; Meraj, Gowhar; Romshoo, Shakil Ahmad

    2014-12-01

    Complex mountainous environments such as Himalayas are highly susceptibility to natural hazards particular those that are triggered by the action of water such as floods, soil erosion, mass movements and siltation of the hydro-electric power dams. Among all the natural hazards, soil erosion is the most implicit and the devastating hazard affecting the life and property of the millions of people living in these regions. Hence to review and devise strategies to reduce the adverse impacts of soil erosion is of utmost importance to the planners of watershed management programs in these regions. This paper demonstrates the use of satellite based remote sensing data coupled with the observational field data in a multi-criteria analytical (MCA) framework to estimate the soil erosion susceptibility of the sub-watersheds of the Rembiara basin falling in the western Himalaya, using geographical information system (GIS). In this paper, watershed morphometry and land cover are used as an inputs to the MCA framework to prioritize the sub-watersheds of this basin on the basis of their different susceptibilities to soil erosion. Methodology included the derivation of a set of drainage and land cover parameters that act as the indicators of erosion susceptibility. Further the output from the MCA resulted in the categorization of the sub-watersheds into low, medium, high and very high erosion susceptibility classes. A detailed prioritization map for the susceptible sub-watersheds based on the combined role of land cover and morphometry is finally presented. Besides, maps identifying the susceptible sub-watersheds based on morphometry and land cover only are also presented. The results of this study are part of the watershed management program in the study area and are directed to instigate appropriate measures to alleviate the soil erosion in the study area. PMID:25154685

  15. Heat Management Strategy Trade Study

    International Nuclear Information System (INIS)

    This Heat Management Trade Study was performed in 2008-2009 to expand on prior studies in continued efforts to analyze and evaluate options for cost-effectively managing SNF reprocessing wastes. The primary objective was to develop a simplified cost/benefit evaluation for spent nuclear fuel (SNF) reprocessing that combines the characteristics of the waste generated through reprocessing with the impacts of the waste on heating the repository. Under consideration were age of the SNF prior to reprocessing, plutonium and minor actinide (MA) separation from the spent fuel for recycle, fuel value of the recycled Pu and MA, age of the remaining spent fuel waste prior to emplacement in the repository, length of time that active ventilation is employed in the repository, and elemental concentration and heat limits for acceptable glass waste form durability. A secondary objective was to identify and qualitatively analyze remaining issues such as (a) impacts of aging SNF prior to reprocessing on the fuel value of the recovered fissile materials, and (b) impact of reprocessing on the dose risk as developed in the Yucca Mountain Total System Performance Assessment (TSPA). Results of this study can be used to evaluate different options for managing decay heat in waste streams from spent nuclear fuel.

  16. Effects of best-management practices in Otter Creek in the Sheboygan River Priority Watershed, Wisconsin, 1990-2002

    Science.gov (United States)

    Corsi, Steven R.; Walker, John F.; Wang, Lizhu; Horwatich, Judy A.; Bannerman, Roger T.

    2005-01-01

    The U.S. Geological Survey and the Wisconsin Department of Natural Resources began a comprehensive, multidisciplinary evaluation-monitoring program in 1989 to assess the effectiveness of the Wisconsin Nonpoint Source Program. Hydrologic, water-quality, habitat, and fish data were collected at Otter Creek from 1990 to 2002 with the pre-BMP (best-management practice) period ending in September 1993 and the post-BMP period beginning in October 1999. BMPs installed in this basin included streambank protection and fencing, stream crossings, grade stabilization, buffer strips, various barnyard-runoff controls, nutrient management, and a low degree of upland BMPs. Reductions between pre- and post-BMP periods were detected in median concentrations of base-flow samples for total suspended solids and BOD5 but not for total phosphorus or dissolved ammonia nitrogen; fecal coliform concentrations in base-flow samples increased over the study period. Reductions in rainfall storm loads between the pre- and post-BMP periods during the non-vegetative season (November through May) were detected for all three constituents monitored (total suspended solids, total phosphorus, and dissolved ammonia nitrogen). Differences in rainfall storm loads of these three constituents for the vegetative season (June through October) were not detected. When considering rainfall data from the entire year, reductions in storm loads were detected for total suspended solids and dissolved ammonia nitrogen (reductions were estimated at 58 percent for total suspended solids and 41 percent for dissolved ammonia nitrogen). Annual reductions in rainfall storm loads for the non-vegetative season were estimated at 58 percent for total suspended solids, 48 percent for total phosphorus, and 41 percent for dissolved ammonia nitrogen. Habitat and fish data were collected each year of the study to track the effects of BMPs on stream habitat and fish communities. Final trend analysis was performed using habitat quality index scores, an index of biotic integrity, and some of the originally measured fish and habitat variables. Habitat was improved for stream segments that had either natural riparian buffer or where streambank fencing was installed, but not at the station where the riparian area was pasture and no streambank fencing was installed. The results also suggest that BMP implementation in Otter Creek substantially modified fish community structure, but the overall community quality was not improved.

  17. USDA-ARS Southeast Watershed Laboratory at Tifton, GA:Index Site Design for the Suwannee Basin

    Science.gov (United States)

    Bosch, D.; Strickland, T.; Sheridan, J.; Lowrance, R.; Truman, C.; Hubbard, R.; Potter, T.; Wauchope, D.; Vellidis, G.; Thomas, D.

    2001-12-01

    The Southeast Watershed Hydrology Research Center (SEWHRC) was established in 1966 by order of the U.S. Senate "to identify and characterize those elements that control the flow of water from watersheds in the southeast". A 129 sq.mi. area within the headwaters of Little River Watershed (LRW) in central south Georgia was instrumented to provide data for evaluating and characterizing Coastal Plain hydrologic processes and for development and testing of prediction methodologies for use in ungaged watersheds in regions of low topographic relief. Pesticide analytical capabilities were added in 1976, and inorganic chemistry and sediment transport research were expanded. In 1980, the Center was renamed as the Southeast Watershed Research Laboratory (SEWRL), and laboratories were constructed for nutrient analysis and soil physics. A pesticide analysis laboratory was constructed in 1987. In the early 1990s, a hydraulics laboratory was established for sediment and chemical transport studies, and research on riparian buffers was expanded. The SEWRL research program continues to focus on hydrologic and environmental concerns. Major components of the program are hydrology, pesticides behavior, buffer systems, animal waste management, erosion, remote sensing of watershed condition, and relationships between site-specific agricultural management (BMPs) and small-to-large watershed response. SEWRL's program will be expanded over the next five years to include two additional watersheds comparable in size and instrumentation to the LRW; nesting the LRW within the full Little River drainage and subsequently...all three watersheds within the full Suwannee Basin; and mapping and quantifying irrigation water removals within the Suwannee Basin. We will instrument the three intensive study watersheds and the full Suwannee Basin to provide real-time characterization of precipitation, soil moisture, hydrologic flow, and water quality at a range of spatial and temporal scales. We will couple this information with research on BMP improvement in order to evaluate the relationships between land use, weather and climate, water quantity, water quality, and the impacts of BMP implementation on agricultural profitability. The specific objectives of this expansion are to develop: (a) conceptual understanding of responses in natural resource and environmental systems based on physical, chemical, and biological processes; (b) methodologies to direct optimal use of soil and water resources in the production of quality food and fiber while maintaining short- and long-term productivity requirements, ecosystem stability, and environmental quality; and (c) models and information based systems to guide responsible management decisions for action and regulatory agencies at field, farm, and small and large watershed scales.

  18. Linking economic water use, freshwater ecosystem impacts, and virtual water trade in a Great Lakes watershed

    Science.gov (United States)

    Mubako, S. T.; Ruddell, B. L.; Mayer, A. S.

    2013-12-01

    The impact of human water uses and economic pressures on freshwater ecosystems is of growing interest for water resource management worldwide. This case study for a water-rich watershed in the Great Lakes region links the economic pressures on water resources as revealed by virtual water trade balances to the nature of the economic water use and the associated impacts on the freshwater ecosystem. A water accounting framework that combines water consumption data and economic data from input output tables is applied to quantify localized virtual water imports and exports in the Kalamazoo watershed which comprises ten counties. Water using economic activities at the county level are conformed to watershed boundaries through land use-water use relationships. The counties are part of a region implementing the Michigan Water Withdrawal Assessment Process, including new regulatory approaches for adaptive water resources management under a riparian water rights framework. The results show that at local level, there exists considerable water use intensity and virtual water trade balance disparity among the counties and between water use sectors in this watershed. The watershed is a net virtual water importer, with some counties outsourcing nearly half of their water resource impacts, and some outsourcing nearly all water resource impacts. The largest virtual water imports are associated with agriculture, thermoelectric power generation and industry, while the bulk of the exports are associated with thermoelectric power generation and commercial activities. The methodology is applicable to various spatial levels ranging from the micro sub-watershed level to the macro Great Lakes watershed region, subject to the availability of reliable water use and economic data.

  19. Impacts of land use change scenarios on hydrology and land use patterns in the Wu-Tu watershed in Northern Taiwan

    OpenAIRE

    Lin Yu-Pin; Hong Nien-Ming; Wu Pei-Jung; Wu Chen-Fa; Verburg, P. H.

    2007-01-01

    Developing an approach for simulating and assessing land use changes and their effects on land use patterns and hydrological processes at the watershed level is essential in land use and water resource planning and management. This study provided a novel approach that combines a land use change model, landscape metrics and a watershed hydrological model with an analysis of impacts of future land use scenarios on land use pattern and hydrology. The proposed models were applied to assess the im...

  20. Fecal Contamination of Groundwater in a Small Rural Dryland Watershed in Central Chile Contaminación Fecal en Agua Subterránea en una Pequeña Cuenca de Secano Rural en Chile Central

    OpenAIRE

    Mariela Valenzuela; Bernardo Lagos; Marcelino Claret; Mondaca, Mari?a A.; Claudio Pérez; Oscar Parra

    2009-01-01

    Research on microbiological groundwater quality was conducted in Chile in a rural watershed that has almost no other water source. Forty-two wells were randomly selected and levels of indicator bacteria - total coliforms (TC), fecal coliforms (FC), and fecal streptococci (FS) - were repeatedly measured during the four seasons of 2005. The aim of this study was to characterize microbiological groundwater quality, relate indicator levels to certain watershed features and management characterist...

  1. 2012 Oregon Department of Interior, Bureau of Land Management (BLM) Lidar: Panther Creek Study Area

    National Oceanic and Atmospheric Administration, Department of Commerce — The Oregon Department of Interior, Bureau of Land Management (BLM) contracted with Watershed Sciences, Inc. to collect high resolution topographic LiDAR data for...

  2. The Watershed Connection

    Science.gov (United States)

    Liberty Science Center

    2009-01-01

    In this activity, learners interact with a 3-D model of a watershed to better understand the interconnectedness of terrestrial and aquatic environments. The instructions contain suggestions for "polluting" the watershed (with shredded paper “litter” and chocolate sprinkle “animal droppings”), and for modeling how the watershed cleans itself (using sponges for wetlands). Questions are included for discussing watersheds, how they get polluted, the water cycle, and "actions I can take" based in part on identifying potential pollutants on a real map of the local watershed. The commercial model from EnviroScape is expensive ($800), but the instructions could be used with a more homemade model using bowls and plastic bags.

  3. Study on Irrational Strategic Management

    Directory of Open Access Journals (Sweden)

    Yongbo Guo

    2009-10-01

    Full Text Available With the development of economy, original pure rational strategic management could not adapt to the complex andever-changing environment now. A kind of irrational strategic management is emerging quietly. This passage introduces the development of irrational strategic management and its function in strategic management, and discusses the way of irrational factor playing an active role in strategic management.

  4. A Comparative Study of Ion Chemistry of Groundwater Samples of Typical Highland and Midland Sub-watersheds of the Manimala River Basin, Kerala, South India

    Directory of Open Access Journals (Sweden)

    Vadakkepurakkal Balakrishnan Rekha

    2013-12-01

    Full Text Available Results of the detailed study of the chemistry of ions present in the groundwater samples of Peruvanthanam and Valiyathodu sub-watersheds of the Manimala river basin are analysed using the AQUACHEM 4.0 software to understand general chemical characteristics and geochemical processes involved. The study reveals that cations, such as sodium (Na+, potassium (K+, calcium (Ca2+, and magnesium (Mg2+ and anions, such as bicarbonate (HCO3-, sulphate (SO42-, chloride (Cl-, nitrate (NO3- are present. Recognition methods such as (a Box and Whisker diagram (b Piper diagram (c Durov diagram (d Radial plot and (e Stiff diagram were prepared to delineate the seasonal variations in chemical constituents. The major ionic concentration of the groundwater samples of Peruvanthanam sub-watershed is Mg2+>Ca2+>HCO3->Cl->SO42->NO3->Na+>K+ and that of Valiyathodu is Mg2+>Ca2+>HCO3->Cl->NO3->SO42->Na+>K+. A critical analysis of Piper diagram reveals that in Peruvanthanam sub-watershed the pre monsoon groundwater samples belong to the zone of bicarbonates, chloride and sulphates, the monsoon season samples belong to the bicarbonate and chloride zone and the post monsoon samples belong to the zone of prevailing bicarbonates. In Valiyathodu sub-watershed, the pre monsoon and post monsoon samples have dominant bicarbonates, while the monsoon samples show predominance of both bicarbonates and chloride. Radial plots and Stiff diagrams for Peruvanthanam sub-watershed show that Mg2+-Ca2+-HCO3-, Mg2+-Ca2+-Cl- and Mg2+-Ca2+-HCO3-- Cl- are the dominant water types during the pre monsoon season. Mg2+-Ca2+-HCO3--Cl-, Mg2+-Ca2+-Cl-- HCO3- and Mg2+-Ca2+-HCO3--Cl--SO42- are dominant during the monsoon and Mg2+-Ca2+-HCO3- and Mg2+-Ca2+-HCO3--Cl- are the dominant water types during the post monsoon season. In Valiyathodu sub-watershed during the pre monsoon - Mg2+-Ca2+-HCO3--Cl- and Mg2+-Ca2+-HCO3-, during the monsoonm - Mg2+-Ca2+- HCO3--Cl-, Mg2+-Ca2+-Cl-- HCO3- and Ca2+-Mg2+-HCO3--Cl-, and during the post monsoon - Mg2+-Ca2+-HCO3--Cl- and Ca2+-Mg2+-HCO3--Cl- are the dominant water types.

  5. A Comparative Study of Ion Chemistry of Groundwater Samples of Typical Highland and Midland Sub-watersheds of the Manimala River Basin, Kerala, South India

    Directory of Open Access Journals (Sweden)

    Vadakkepurakkal Balakrishnan Rekha

    2014-01-01

    Full Text Available Results of the detailed study of the chemistry of ions present in the groundwater samples of Peruvanthanam and Valiyathodu sub-watersheds of the Manimala river basin are analysed using the AQUACHEM 4.0 software to understand general chemical characteristics and geochemical processes involved. The study reveals that cations, such as sodium (Na+, potassium (K+, calcium (Ca2+, and magnesium (Mg2+ and anions, such as bicarbonate (HCO3-, sulphate (SO42-, chloride (Cl-, nitrate (NO3- are present. Recognition methods such as (a Box and Whisker diagram (b Piper diagram (c Durov diagram (d Radial plot and (e Stiff diagram were prepared to delineate the seasonal variations in chemical constituents. The major ionic concentration of the groundwater samples of Peruvanthanam sub-watershed is Mg2+>Ca2+>HCO3->Cl->SO42->NO3->Na+>K+ and that of Valiyathodu is Mg2+>Ca2+>HCO3->Cl->NO3->SO42->Na+>K+. A critical analysis of Piper diagram reveals that in Peruvanthanam sub-watershed the pre monsoon groundwater samples belong to the zone of bicarbonates, chloride and sulphates, the monsoon season samples belong to the bicarbonate and chloride zone and the post monsoon samples belong to the zone of prevailing bicarbonates. In Valiyathodu sub-watershed, the pre monsoon and post monsoon samples have dominant bicarbonates, while the monsoon samples show predominance of both bicarbonates and chloride. Radial plots and Stiff diagrams for Peruvanthanam sub-watershed show that Mg2+-Ca2+-HCO3-, Mg2+-Ca2+-Cl- and Mg2+-Ca2+-HCO3-- Cl- are the dominant water types during the pre monsoon season. Mg2+-Ca2+-HCO3--Cl-, Mg2+-Ca2+-Cl-- HCO3- and Mg2+-Ca2+-HCO3--Cl--SO42- are dominant during the monsoon and Mg2+-Ca2+-HCO3- and Mg2+-Ca2+-HCO3--Cl- are the dominant water types during the post monsoon season. In Valiyathodu sub-watershed during the pre monsoon - Mg2+-Ca2+-HCO3--Cl- and Mg2+-Ca2+-HCO3-, during the monsoonm - Mg2+-Ca2+- HCO3--Cl-, Mg2+-Ca2+-Cl-- HCO3- and Ca2+-Mg2+-HCO3--Cl-, and during the post monsoon - Mg2+-Ca2+-HCO3--Cl- and Ca2+-Mg2+-HCO3--Cl- are the dominant water types. DOI: http://dx.doi.org/10.5755/j01.erem.66.4.4037

  6. Hydrologic analysis for selection and placement of conservation practices at the watershed scale

    Science.gov (United States)

    Wilson, C.; Brooks, E. S.; Boll, J.

    2012-12-01

    When a water body is exceeding water quality standards and a Total Maximum Daily Load has been established, conservation practices in the watershed are able to reduce point and non-point source pollution. Hydrological analysis is needed to place conservation practices in the most hydrologically sensitive areas. The selection and placement of conservation practices, however, is challenging in ungauged watersheds with little or no data for the hydrological analysis. The objective of this research is to perform a hydrological analysis for mitigation of erosion and total phosphorus in a mixed land use watershed, and to select and place the conservation practices in the most sensitive areas. The study area is the Hangman Creek watershed in Idaho and Washington State, upstream of Long Lake (WA) reservoir, east of Spokane, WA. While the pollutant of concern is total phosphorus (TP), reductions in TP were translated to total suspended solids or reductions in nonpoint source erosion and sediment delivery to streams. Hydrological characterization was done with a simple web-based tool, which runs the Water Erosion Prediction Project (WEPP) model for representative land types in the watersheds, where a land type is defined as a unique combination of soil type, slope configuration, land use and management, and climate. The web-based tool used site-specific spatial and temporal data on land use, soil physical parameters, slope, and climate derived from readily available data sources and provided information on potential pollutant pathways (i.e. erosion, runoff, lateral flow, and percolation). Multiple land types representative in the watershed were ordered from most effective to least effective, and displayed spatially using GIS. The methodology for the Hangman Creek watershed was validated in the nearby Paradise Creek watershed that has long-term stream discharge and monitoring as well as land use data. Output from the web-based tool shows the potential reductions for different tillage practices, buffer strips, streamside management, and conversion to the conservation reserve program in the watershed. The output also includes the relationship between land area where conservation practices are placed and the potential reduction in pollution, showing the diminished returns on investment as less sensitive areas are being treated. This application of a simple web-based tool and the use of a physically-based erosion model (i.e. WEPP) illustrates that quantitative, spatial and temporal analysis of changes in pollutant loading and site-specific recommendations of conservation practices can be made in ungauged watersheds.

  7. Knowledge Management System- A STUDY

    OpenAIRE

    Nidhi Agrawal

    2014-01-01

    Every organization and institute is facing the savior problem of generating the knowledge on the basis of their assets. Knowledge management is very indispensable for any organization. We discuss about the knowledge management through this paper. This paper provide an outline of knowledge management and how knowledge management is useful to improve the quality of the educational institute. With the help of knowledge management system we can manage any information. We can defin...

  8. Introducing critical management studies: Key dimensions

    OpenAIRE

    Taskin, Laurent; Willmott, Hugh

    2008-01-01

    Critical Management Studies (CMS) comprises a range of alternatives to mainstream management theory with a view to radically transforming management practice. At its core is a deep scepticism regarding the moral defensibility and the social and ecological sustainability of prevailing conceptions and forms of management and organization. Why is the interest in Critical Management Studies growing and what does CMS refer to? What kinds of critiques does CMS develop and how are these legitimized ...

  9. A watershed-based method for environmental vulnerability assessment with a case study of the Mid-Atlantic region

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Liem T., E-mail: ltran1@utk.edu [Department of Geography, University of Tennessee, Knoxville, TN (United States); O& #x27; Neill, Robert V. [OTIE and Associates, Oak Ridge, TN (United States); Smith, Elizabeth R. [U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, Research Triangle Park, NC (United States)

    2012-04-15

    The paper presents a method for environmental vulnerability assessment with a case study of the Mid-Atlantic region. The method is based on the concept of 'self-/peer-appraisal' of a watershed in term of vulnerability. The self-/peer-appraisal process is facilitated by two separate linear optimization programs. The analysis provided insights on the environmental conditions, in general, and the relative vulnerability pattern, in particular, of the Mid-Atlantic region. The suggested method offers a simple but effective and objective way to perform a regional environmental vulnerability assessment. Consequently the method can be used in various steps in environmental assessment and planning. - Highlights: Black-Right-Pointing-Pointer We present a method for regional environmental vulnerability assessment. Black-Right-Pointing-Pointer It is based on the self-/peer-appraisal concept in term of vulnerability. Black-Right-Pointing-Pointer The analysis is facilitated by two separate linear optimization programs. Black-Right-Pointing-Pointer The method provides insights on the regional relative vulnerability pattern.

  10. Pasture evapotranspiration as indicators of degradation in the Brazilian Savanna: a case study for Alto Tocantins watershed

    Science.gov (United States)

    Andrade, Ricardo G.; de C. Teixeira, Antônio H.; Sano, Edson E.; Leivas, Janice F.; Victoria, Daniel C.; Nogueira, Sandra F.

    2014-10-01

    The Alto Tocantins watershed, located in the Brazilian Savanna (Cerrado biome), is under an intense land use and occupation process, causing increased pressure on natural resources. Pasture areas in the region are highly relevant to the rational use of natural resources in order to achieve economic and environmental sustainability. In this context, remote sensing techniques have been essential for obtaining information relevant to the assessment of vegetation conditions on a large scale. This study aimed to apply this tool in conjunction with field measurements to evaluate evapotranspiration (ET) against pasture degradation indicators. The SAFER algorithm was applied to estimate ET using MODIS images and weather station data from year 2012. Results showed that ET was lower in degraded pastures. It is noteworthy that during low rainfall period, ET values were 22.2% lower in relation to non-degraded pastures. This difference in ET indicates changes in the partition of the energy balance and may impact the microclimate. These results may contribute to public policies that aim to reduce the loss of the productive potential of pastures.

  11. REVERSE AUCTION RESULTS FOR IMPLEMENTATION OF DECENTRALIZED RETROFIT BEST MANAGEMENT PRACTICES IN A SMALL URBAN WATERSHED (CINCINNATI OH)

    Science.gov (United States)

    Although urban stormwater is typically conveyed to centralized infrastructure, there is great potential for reducing stormwater runoff quantity through decentralization. In this case we hypothesize that smaller-scale retrofit best management practices (BMPs) such as rain gardens ...

  12. The Role of Agency Partnerships in Collaborative Watershed Groups: Lessons from the Pacific Northwest Experience

    Science.gov (United States)

    Chaffin, Brian C.; Mahler, Robert L.; Wulfhorst, J. D.; Shafii, Bahman

    2015-01-01

    Collaborative watershed group experiences reveal commonalities in their approaches to facilitate decentralized and inclusive watershed planning and management in the United States, and increasingly around the world. Although watershed groups are widely recognized in the United States for positive accomplishments across local, state, and regional scales, the role of government agencies as watershed group partners often remains ambiguous and inconsistent. This paper details results of a survey used to determine the status of Pacific Northwest (PNW) watershed group-agency partnerships relative to planning and management. Specific inquiry was directed toward: (1) the role of technical information flow; and (2) watershed group needs. Mail surveys were administered to 304 watershed group participants in Idaho, Oregon, and Washington. Sixty-nine percent of the surveys were completed and returned. Based on the collected survey data, PNW watershed groups rely heavily on agency officials for technical watershed information. Respondents perceive support of state government to be the highest relative to federal agencies, local governments, and university Extension offices. However, evidence from the survey suggests that partnerships are underutilized across all agencies and organizations concurrently vested in watershed planning and management in the PNW. Sustained operational funding, increased group participation, and baseline watershed data are the most pressing needs of PNW watershed groups and present a significant opportunity for expanding watershed group-agency partnerships.

  13. Prioritization of sub-watersheds in semi arid region, Western Maharashtra, India using Geographical Information System

    Directory of Open Access Journals (Sweden)

    Abhijit M.Zende

    2013-10-01

    Full Text Available - The study area is one of the sub-river basin of Krishna river, covering an area of 3035 km² and lies in west part of Maharashtra state bounded by Latitude 16055’ to 17028’ N and Longitude 74020’ to 74040’ E. Poor soil cover, sparse vegetation, erratic rainfall and lack of soil moisture characterize the study area for most part of the year. Due to unavailability/poor managed of surface water storage structures, more than 50% area depends upon groundwater for their daily needs. Recurring drought coupled with increase in ground water exploitation results in decline in the ground water level. So the entire study area has been further divided into 9 sub-watersheds named SWS1 to SWS9, ranging in geographical area from 76 km² to 492 km² and has been taken up for prioritization based on morphometric analysis using Geographical information system (GIS and remote sensing techniques. The drainage density of sub-watersheds varies between 2.07 to 3.26 km/km² and low drainage density values of sub-watershed SWS5 indicates that it has highly resistant, impermeable subsoil material with dense vegetative cover and low relief. The elongation ratio varies from 0.2 to 0.35 which indicates low relief and gentle ground slope. The high value of circularity ratio for SWS 8 sub-watershed 0.6 indicates the late maturity stage of topography. This anomaly is due to diversity of slope, relief and structural conditions prevailing in this sub-watershed. The compound parameter values are calculated and the sub-watershed with the lowest compound parameter is given the highest priority. The sub-watershed SWS3 has a minimum compound parameter value of 1.68 and SWS 8 has a maximum compound parameter 3.08. Hence it should be provided with immediate soil conservation measures because sedimentation is the major problem for surface water storage structures.

  14. Knowledge Management Analysis: A Case Study

    Science.gov (United States)

    Mecha, Ezi I.; Desai, Mayur S.; Richards, Thomas C.

    2009-01-01

    It is imperative for businesses to manage knowledge and stay competitive in the marketplace. Knowledge management is critical and is a key to prevent organizations from duplicating their efforts with a subsequent improvement in their efficiency. This study focuses on overview of knowledge management, analyzes the current knowledge management in…

  15. Case Study Report: REDD+ Pilot Project in Community Forests in Three Watersheds of Nepal

    Directory of Open Access Journals (Sweden)

    Shanti Shrestha

    2014-09-01

    Full Text Available Reducing emissions from deforestation and forest degradation (REDD+ is an international climate policy instrument that is expected to tap into the large mitigation potential for conservation and better management of the world’s forests through financial flows from developed to developing countries. This paper describes the results and lessons learned from a pioneering REDD+ pilot project in Nepal, which is based on a community forest management approach and which was implemented from 2009–2013 with support from NORAD’s Climate and Forest Initiative. The major focus of the project was to develop and demonstrate an innovative benefit-sharing mechanism for REDD+ incentives, as well as institutionally and socially inclusive approaches to local forest governance. The paper illustrates how community-based monitoring, reporting, and verification (MRV and performance-based payments for forest management can be implemented. The lessons on REDD+ benefit sharing from this demonstration project could provide insights to other countries which are starting to engage in REDD+, in particular in South Asia.

  16. Critical management studies: some reflections

    Scientific Electronic Library Online (English)

    Christine, McLean; Rafael, Alcadipani.

    2008-03-01

    Full Text Available This paper seeks to challenge some assumptions associated with Critical Management Studies (CMS). This is done based on insights originating from the Actor-Network Theory (ANT), an approach that can be considered as an empirical form of post-structuralism and that has gained prominence in social sci [...] ences. Fundamentally, this paper broadly reviews some key CMS ideas associated with this perspective ontology to argue that what CMS usually tends to take as explanation is exactly what has to be explained. Moreover, it discusses CMS' problematic view of objects and its tendency to neglect how existence is kept and maintained.

  17. Hydrological characterization of watersheds in the Blue Nile Basin, Ethiopia

    Directory of Open Access Journals (Sweden)

    S. G. Gebrehiwot

    2011-01-01

    Full Text Available Thirty-two watersheds (31–4350 km2, in the Blue Nile Basin, Ethiopia, were hydrologically characterized with data from a study of water and land resources by the US Department of Interior, Bureau of Reclamation (USBR published in 1964. The USBR document contains data on flow, topography, geology, soil type, and land use for the period 1959 to 1963. The aim of the study was to identify watershed variables best explaining the variation in the hydrological regime, with a special focus on low flows. Moreover, this study aimed to identify variables that may be susceptible to management policies for developing and securing water resources in dry periods. Principal Component Analysis (PCA and Partial Least Square (PLS were used to analyze the relationship between five hydrologic response variables (total flow, high flow, low flow, runoff coefficient, low flow index and 30 potential explanatory watershed variables. The explanatory watershed variables were classified into three groups: land use, climate and topography as well as geology and soil type. Each of the three groups had almost equal influence on the variation in hydrologic variables (R2 values ranging from 0.3 to 0.4. Specific variables from within each of the three groups of explanatory variables were better in explaining the variation. Low flow and low flow index were positively correlated to land use types woodland, dense wet forest and savannah grassland, whereas grazing land and bush land were negatively correlated. We concluded that extra care for preserving low flow should be taken on tuffs/basalts which comprise 52% of the Blue Nile Basin. Land use management plans should recognize that woodland, dense wet forest and savannah grassland can promote higher low flows, while grazing land diminishes low flows.

  18. Accountability to Public Stakeholders in Watershed-Based Restoration

    Science.gov (United States)

    There is an increasing push at the federal, state, and local levels for watershed-based conservation projects. These projects work to address water quality issues in degraded waterways through the implementation of a suite of best management practices on land throughout a watersh...

  19. Development of SPAWM: selection program for available watershed models.

    Science.gov (United States)

    Cho, Yongdeok; Roesner, Larry A

    2014-01-01

    A selection program for available watershed models (also known as SPAWM) was developed. Thirty-three commonly used watershed models were analyzed in depth and classified in accordance to their attributes. These attributes consist of: (1) land use; (2) event or continuous; (3) time steps; (4) water quality; (5) distributed or lumped; (6) subsurface; (7) overland sediment; and (8) best management practices. Each of these attributes was further classified into sub-attributes. Based on user selected sub-attributes, the most appropriate watershed model is selected from the library of watershed models. SPAWM is implemented using Excel Visual Basic and is designed for use by novices as well as by experts on watershed modeling. It ensures that the necessary sub-attributes required by the user are captured and made available in the selected watershed model. PMID:25098866

  20. Multi-year precipitation variations and watershed sediment yield in a CEAP benchmark watershed

    Science.gov (United States)

    A case study was conducted on the Fort Cobb Reservoir watershed in central Oklahoma to investigate impacts and implications of persistent multi-year precipitation variations on watershed runoff and sediment yield. Several persistent multi-year precipitation variations, called wet and dry periods, o...

  1. Conservation practice establishment in two northeast Iowa watersheds: Strategies, water quality implications, and lessons learned

    Science.gov (United States)

    Gassman, P.W.; Tisl, J.A.; Palas, E.A.; Fields, C.L.; Isenhart, T.M.; Schilling, K.E.; Wolter, C.F.; Seigley, L.S.; Helmers, M.J.

    2010-01-01

    Coldwater trout streams are important natural resources in northeast Iowa. Extensive efforts have been made by state and federal agencies to protect and improve water quality in northeast Iowa streams that include Sny Magill Creek and Bloody Run Creek, which are located in Clayton County. A series of three water quality projects were implemented in Sny Magill Creek watershed during 1988 to 1999, which were supported by multiple agencies and focused on best management practice (BMP) adoption. Water quality monitoring was performed during 1992 to 2001 to assess the impact of these installed BMPs in the Sny Magill Creek watershed using a paired watershed approach, where the Bloody Run Creek watershed served as the control. Conservation practice adoption still occurred in the Bloody Run Creek watershed during the 10-year monitoring project and accelerated after the project ended, when a multiagency supported water quality project was implemented during 2002 to 2007. Statistical analysis of the paired watershed results using a pre/post model indicated that discharge increased 8% in Sny Magill Creek watershed relative to the Bloody Run Creek watershed, turbidity declined 41%, total suspended sediment declined 7%, and NOx-N (nitrate-nitrogen plus nitrite-nitrogen) increased 15%. Similar results were obtained with a gradual change statistical model.The weak sediment reductions and increased NOx-N levels were both unexpected and indicate that dynamics between adopted BMPs and stream systems need to be better understood. Fish surveys indicate that conditions for supporting trout fisheries have improved in both streams. Important lessons to be taken from the overall study include (1) committed project coordinators, agency collaborators, and landowners/producers are all needed for successful water quality projects; (2) smaller watershed areas should be used in paired studies; (3) reductions in stream discharge may be required in these systems in order for significant sediment load decreases to occur; (4) long-term monitoring on the order of decades can be required to detect meaningful changes in water quality in response to BMP implementation; and (5) all consequences of specific BMPs need to be considered when considering strategies for watershed protection.

  2. Study on spent fuel management

    International Nuclear Information System (INIS)

    The purpose of this study is to examine the storage proplem of spent fuel at nuclear power plants which may occur sometime in early 1990's and to fine out the best option for spent fuel management by the evaluating both technical and ecomomical aspects. In this study 3 scenaios have been evaluated: 1) once-through fuel cycle, 2) reprocessing outside our country and 3) reprocessing inside our country. Spent fuel arisings from nuclear power plants by 2000 have been calculated by using SCENARIOS program which was obtained from IAEA. Various storage options inculding rod consolidation at reactor and away from reactor storage have been analyzed mainly based on information which has been supplied U.S. DOE and Pacific Northwest Lab(PNL). This study has been performed as a part of U.S./Korea Joint Spent Fuel Study which was agreed between MOST of Korea and U.S. DOS/DOE in June, 1982. As an agreement, U.S. PNL and KAERI will primary carry out joint study under the guidance of both governments by the end of 1983. As a result of first yesr study, thermal recycle option with domestic reprocessing at around 2000 will be economically feasible comparing with once-through option. Due to the uncertainties and storage of reprocessing facilities in the world, thermal recycle option will toll reprocessing will not be feasible and most expensive, according to examination carried out by KEPCO and KAERI through this year. (Author)

  3. The effect of organic matter on chemical weathering: study of a small tropical watershed: nsimi-zoétélé site, cameroon

    Science.gov (United States)

    Oliva, Priscia; Viers, Jerôme; Dupré, Bernard; Fortuné, Jean Pôl; Martin, François; Braun, Jean Jacques; Nahon, Daniel; Robain, Henri

    1999-12-01

    The effect of organic matter during soil/water interaction is still a debated issue on the controls of chemical weathering in a tropical environment. In order to study this effect in detail, we focused on the weathering processes occurring in a small tropical watershed (Nsimi-Zoetélé, South Cameroon). This site offers an unique opportunity to study weathering mechanisms in a lateritic system within a small basin by coupling soil and water chemistry. The lateritic cover in this site can reach up to 40 m in depth and show two pedological distinct zones: unsaturated slope soils on the hills and/or elevated areas; and water-saturated soils in the swamp zone which represent 20% of the basin surface. The study present chemical analysis performed on water samples collected monthly from different localities between 1994-1997 and on soil samples taken during a well drilling in December 1997. The results suggest the existence of chemical and spatial heterogeneities of waters in the basin: colored waters flooding the swamp zone have much higher concentrations of both organic matter (i.e., DOC) and inorganic ions (e.g., Ca, Mg, Al, Fe, Th, Zr) than those from springs and groundwater from the hills. Nevertheless, these organic-rich waters present cation concentrations (Na, Ca, Mg, K) which are among the lowest compared to that of most world rivers. The main minerals in the soils are secondary kaolinite, iron oxi-hydroxides, quartz, and accessory minerals (e.g., zircon, rutile). We mainly focused on the mineralogical and geochemical study of the swamp zone soils and showed through SEM observations the textural characterization of weathered minerals such as kaolinite, zircon, rutile, and the secondary recrystallization of kaolinite microcrystals within the soil profile. Water chemistry and mineralogical observations suggest that hydromorphic soils of the swamp zone are responsible for almost all chemical weathering in the basin. Thus, in order to explain the increase of element concentration in the organic-rich waters, we suggest that organic acids enhance dissolution of minerals such as kaolinite, goethite, and zircon and also favors the transport of insoluble elements such as Al, Fe, Ti, Zr, and REE by chemical complexation. SiO 2(aq) concentrations in these waters are above saturation with respect to quartz. Dissolution of phytholithes (amorphous silica) may be responsible for this relatively high SiO 2(aq.) concentration. Al/Mg ratios obtained for the soil and the Mengong river waters show that a significant amount of Al does not leave the system due to kaolinite recrystallisation in the swamp zone soils. Geochemical data obtained for this watershed show the important contribution of vegetation and organic matter on chemical weathering in the swamp zone. Quantitatively we propose that the increasing amount in total dissolved solid (TDS) due to organic matter and vegetation effect is about 35%. In summary, this interaction between soils and waters occurs mostly in soils that are very depleted in soluble elements. Thus, the low concentration of major elements in these water is a direct consequence of the depleted nature of the soils.

  4. The Demonstration Test Catchment Approach to Land and Water Management in the river Eden Watershed, UK. (Invited)

    Science.gov (United States)

    Jonczyk, J.; Quinn, P. F.; Haygarth, P.; Reaney, S.; Wilkinson, M.; Burke, S.; McGonigle, D.; Harris, B.

    2010-12-01

    The Demonstration Test Catchment (DTC) initiative is a five year project to address pollution issues in catchments. The initiative will study the wider environmental problems suffered by catchments which are under intense farming pressures and potential climate change impacts. The UK Department for Food, Agriculture and Rural Affairs (Defra) in partnership with the Environment Agency for England and Wales (EA) have funded this initiative to answer key policy concerns in catchments. The first key step has been the establishment of a ‘research platform’ at three catchments in the UK (The Eden, Wensum and Hampshire Avon) whereby funding of 9.3 million dollars has gone into funding new equipment and pollution sampling regimes have been established. Within each catchment between three and four, 8-10km2 sub-catchments have been established. The experimental design and thinking for DTCs will be explained fully in this paper. The next phase of the project will install an extensive suite of land management and pollution mitigation interventions. In parallel to this monitoring work, a full knowledge exchange package will seek to engage with farmers, the rural community and understand the governance regime at the broader catchment scale. There is also a need for a modelling component to upscale the findings to the whole of the UK. Whilst this is an ambitious goal, there is a very basic commitment of working with rural communities to come up with real solutions that will help underpin effective policy making for the future. The research platform covers a multi-scale approach to the monitoring strategy that will allow local grouping of mitigation measures to be studied local in terms of impact and propagated to the catchment scale. Even with high level of funding, the DTC can only fully instrument a catchment of 8-10km2. Beyond this scale, the EA and the standard catchment monitoring will continue as normal. The focus here is to prove that mitigation can be achieved within smaller land units that have a clear catchment scale benefit. This will provide the evidence base for future policy which is of use to all location in the UK. Hence, the need to have suite of parameters that can be evaluated has given rise to specific experimental design. Fundamental to this is to use continuous telemetered sampling at as many location as possible, including field laboratories capable of measuring, Nitrate, Ammonia, Total Phosphorus, dissolved phosphorus, suspended sediment and chlorophyll a. Standard hydro-metrological equipment is also fully telemetered. The goal is to allow all the data to be freely available to all end users via an internet data portal. The long term goal is to invite experts from many environmental and social sciences to work at the established research platform and ultimately give a better understanding of what a healthy catchment should be like. Being able to communicate this point to both local and national audiences will also be made and will link closely to the UK Virtual Observatory project funded by the NERC.

  5. Study of industry safety management

    International Nuclear Information System (INIS)

    This book introduces outline of disaster, measures for disaster prevention, frequency and strength of disaster occurrence, and safety and safety management in companies. It also deals with responsible system for safety management, measures for machinery safety disaster such as placement of machinery, environmental safety in working places including disaster relationship according to temperature and humidity, measures for electricity safety disaster such as electric shock, safety management of facilities, examination of safe works including gas explosion, and safety management of construction places.

  6. NUMERICAL MODELS FOR PREDICTING WATERSHED ACIDIFICATION

    Science.gov (United States)

    Three numerical models of watershed acidification, including the MAGIC II, ETD, and ILWAS models, are reviewed, and a comparative study is made of the specific process formulations that are incorporated in the models to represent hydrological, geochemical, and biogeochemical proc...

  7. Choosing Different Contour Interval on a Fully Raster-Based Erosion Modeling: Case Study at Merawu Watershed, Banjarnegara, Central Java

    Directory of Open Access Journals (Sweden)

    Bambang Sulistyo

    2011-09-01

    Full Text Available The research was aimed to study the efect of choosing different contour interval to produce Digital Elevation Model on a fully raster-based erosion modeling of The Universal Soil Loss Equation using remote sensing data and a geographical information system technique. Methods were applied by analyzing all factors that affecting erosion in GIS environment such data were in the form of raster. Those data were R , K, LS, C and P factors. LS factor was derived from Digital Elevation Model by taking flow direction from each pixel into consideration. Research used 3 contour intervals to produce Digital Elevation Model, i.e. 12.5, 25 and 50 meter. C factor was derived from the formula after applying linearly regression analysis between Normalized Difference Vegetation index of remote sensing data and C factor measured directly on the field. Another analysis was the creation of map of Bulk Density used to convert erosion unit as from Mg ha-1mo-1 to mm mo-1. To know the model accuracy, validation of the model was done by applying statistical analysis and by comparing the result of erosion model (Emodel with actual erosion (Eactual which was measured regularly in Merawu watershed. A threshold value of > 0.80 or > 80% was chosen to justify whether the model was accurate or not. The results showed that all Emodel using 3 countour intervals have correlation value of > 0.8. These results were strenghtened with the result of analysis of variance which showing there were no difference between Emodel and Eactual. Among the 3 models, only Emodel using 50 meter countour interval reached the accuracy of 81.13% while the other only had 50.87% (using countour interval 25 meter and 32.92% (using countour interval 12.5 meter.

  8. The typology, frequency and magnitude of some behaviour events in case of torrential hydrographical management works in the upper Tarlung watershed

    Directory of Open Access Journals (Sweden)

    Ioan Clinciu

    2013-12-01

    Full Text Available During the 20-25 years from their startup, the torrential hydrographicalmanagement works carried out in the upper T?rlung Watershed(55 dams, 22 sills, 25 traverses and 4 outlet canals have exposed a number of 24 behaviour event types: 13 out of them reduce the safety of exploitation and the sustainability of the works (hereinafter called damages, while the other 11 reduce the functionality of the works (hereinafter called disfunctionalities. The following behaviour events have the highest frequency:(i damages caused by water and alluvia erosion (erosive damages,followed by breakages, in the category of damages, and (ii unsupervised installation of forest vegetation on the managed torrential hydrographical network and apron siltation, in the category of disfunctionalities. For methodological reasons, only the erosive damage of works was successively analysed, according to two criteria: the average depth (cm in the eroded area and the percentage of the erosive area out of the total surface. Further on, by combining the two criteria for analysis, five representation areas with the same damage intensity were defined (very low, low, medium, high and very high intensity. With the aid of the event frequency values recorded in these areas and of the coefficients attributed to each intensity class (from 1 for very low intensity to 5 for very high intensity, the author reached the conclusion that the level of the recorded intensity of the damage caused by water and alluvia erosion ranged from very low to low.

  9. CARANGA Y EL MANEJO SIMBÓLICO DE LA VERTIENTE OCCIDENTAL ANDINA (PRECORDILLERA DE ARICA / THE CARANGA AND THE SYMBOLIC MANAGEMENT OF THE WESTERN ANDEAN WATERSHED (PRECORDILLERA OF ARICA

    Scientific Electronic Library Online (English)

    Juan, Chacama Rodríguez.

    Full Text Available Se propone que durante la prehistoria tardía de la precordillera de Arica o Altos de Arica se llevó a cabo en dicha zona una interacción cultural, política y económica entre poblaciones de tradición de valles occidentales y poblaciones altiplánicas, específicamente Caranga. Paralelamente a las menci [...] onadas formas de interacción, la etnia Caranga habría sostenido además un manejo simbólico del espacio cordillerano, al que hoy podemos acceder mediante ciertos tipos de representaciones que han dejado sus huellas en el imaginario de estas poblaciones así como en el paisaje cultural dejado por ellas. Dichas representaciones hacen referencia a la invocación de los cerros y a la construcción de estructuras arquitectónicas vinculadas al ámbito ritual, que en su conjunto nos aproximan a la ideología Caranga y por ende al manejo simbólico de la vertiente occidental andina. Abstract in english It is proposed that during the late prehistory of the precordillera of Arica or 'Altos de Arica', there were cultural, political and economic interactions between populations of the western valleys and the highland populations, specifically the Caranga. Parallel to the above forms of interaction, th [...] e ethnic Caranga have also held the mountain as a symbolic space, which today can be unders-tood through certain types of representations that have left their mark in the minds of these populations as well as in the cultural landscape. These representations make reference to the invocation of the hills and the construction of architectural structures linked to the ritual sphere, which when together allow us to approximate the Caranga ideology and therefore the symbolic management of the Andean western watershed.

  10. Combine the soil water assessment tool (SWAT) with sediment geochemistry to evaluate diffuse heavy metal loadings at watershed scale.

    Science.gov (United States)

    Jiao, Wei; Ouyang, Wei; Hao, Fanghua; Huang, Haobo; Shan, Yushu; Geng, Xiaojun

    2014-09-15

    Assessing the diffuse pollutant loadings at watershed scale has become increasingly important when formulating effective watershed water management strategies, but the process was seldom achieved for heavy metals. In this study, the overall temporal-spatial variability of particulate Pb, Cu, Cr and Ni losses within an agricultural watershed was quantitatively evaluated by combining SWAT with sediment geochemistry. Results showed that the watershed particulate heavy metal loadings displayed strong variability in the simulation period 1981-2010, with an obvious increasing trend in recent years. The simulated annual average loadings were 20.21 g/ha, 21.75 g/ha, 47.35 g/ha and 21.27 g/ha for Pb, Cu, Cr and Ni, respectively. By comparison, these annual average values generally matched the estimated particulate heavy metal loadings at field scale. With spatial interpolation of field loadings, it was found that the diffuse heavy metal pollution mainly came from the sub-basins dominated with cultivated lands, accounting for over 70% of total watershed loadings. The watershed distribution of particulate heavy metal losses was very similar to that of soil loss but contrary to that of heavy metal concentrations in soil, highlighting the important role of sediment yield in controlling the diffuse heavy metal loadings. PMID:25169808

  11. Pesticide retention in the watershed and in a small constructed wetland treating diffuse pollution.

    Science.gov (United States)

    Haarstad, K; Braskerud, B C

    2005-01-01

    Loss of pesticides is likely from watersheds where pesticides are used. The herbicides propachlor, linuron and metamitron, and the fungicides propiconazole, fenpropimorph and metribuzin and metalaxyl, were applied on an arable soil plot. A mass balance study showed that approximately 96% of the applied pesticides disappeared within the watershed. Three pesticides remained as residuals in the soil profile one year after the application. The 4% of the pesticides that were lost from the watershed gave peak concentrations, appearing immediately after spraying, reaching levels that can be hazardous to aquatic life. The constructed wetland situated in the first-order stream generally managed to lower the peak concentrations significantly. For the summer season, retention varied from 12 to 67% the first year. The second year, we observed both loss and retention. Increasing the wetland surface from 0.2% to 0.4% of the watershed area increased the average retention with 21% units the first year and 9% units the second year. Chemical properties of the pesticides could explain some of the behaviour in the watershed and in the wetland. PMID:15850184

  12. Effect of subsurface drainage on streamflow in an agricultural headwater watershed

    Science.gov (United States)

    King, K. W.; Fausey, N. R.; Williams, M. R.

    2014-11-01

    Artificial drainage, also known as subsurface or tile drainage is paramount to sustaining crop production agriculture in the poorly-drained, humid regions of the world. Hydrologic assessments of individual plots and fields with tile drainage are becoming common; however, a major void exists in our understanding of the contribution of systematic tile drainage to watershed hydrology. A headwater watershed (4 km2) in central Ohio, USA and all functioning tile were monitored from 2005 to 2010 in order to characterize the magnitude and frequency of flows, quantify the role and seasonal contributions of tile drainage to watershed hydrology, and relate tile drainage to precipitation and antecedent conditions. Results indicated that tile drainage contributions to watershed hydrology were significant. Specifically, 21% of precipitation (206 mm) was recovered through tile drainage annually. Tile drainage also accounted for 47% of watershed discharge and was seasonally variable. Median monthly tile discharges in winter (23.4 mm), spring (10.2 mm), and fall (15.6 mm) were significantly greater (P < 0.05) than the median monthly summer discharge (0.9 mm). Results from this study will help enhance hydrology and water quality prediction technologies as well as the design and implementation of best management practices that address water quality concerns.

  13. Hydrologic study and evaluation of Ish Creek watershed (West Chestnut Ridge proposed disposal site)

    International Nuclear Information System (INIS)

    As part of site characterization work for the proposed West Chestnut Ridge Central Waste Disposal Facility, hydrologic information has been assembled from literature sources and direct field measurements. Earlier studies provide the basis for estimating flow frequency and expected high and low flows for catchments on Knox Group formations. Seven waterflow-gaging installations were established and used to characterize runoff patterns in the study area. Based on findings of this study, a practical design capacity for a flume to measure site runoff would range between 1 and 3000 L/s, although flows up to 4500 L/s (10-year recurrence interval) may be encountered. 7 references, 2 figures, 5 tables

  14. ASSESSMENT SPATIAL VARIABILITY OF SOIL ERODIBILITY BY USING OF GEOSTATISTIC AND GIS (Case study MEHR watershed of SABZEVAR

    Directory of Open Access Journals (Sweden)

    Ayoubi, S.A

    2005-05-01

    Full Text Available Soil erodibility is one of the key factors on some sediment and soil erosion models such as USLE, MUSLE, RUSLE, AUSLE (USLE modified in LS factor and MMF and represents like K factor and is function of particle distribution, organic mater, soil structure and ermeability. Traditional methods do not take spatial variability and estimate precision of variables in to consideration and amount of them are constant across the whole of soil series .This study was performed to assess spatial variability of soil erodibility and its relevant variables at MEHR watershed from Khorasan province, in northern Iran. Interested network was designed by 110 samples like nested- systematic with distance about 50, 100, 250 and 500 meter across the study area by preparing point map at GIS. Sampling points were identified in field by an Global Positioning system. Soil sampling was done at depth of 0-5cm of ground surface and permeability was studied at depth of 5-30 cm. Some soil properties such as particle distribution and organic mater were measured at laboratory. Particle size distribution was determined by Hydrometer method and Organic matter was measured by wet oxidation approach. Then spatial analysis was done. Variography analysis on soil attributes according to soil erodibility, showed that Gaussian, exponential and spherical models were the most models to predict spatial variability of soil parameters. The range of spatial dependencies was changed from 320 to 3200 m. Soil attribute maps prepared by kriging technique using models parameters. Then soil attributes were composed by Wischmeier (1978 formula in Illwis media to calculate K factor. Amount of soil erodibility changed from 0.13 to 0.91 that it's maximum and minimum was identified in east and southwest of studiedarea. Soil spatial variability pattern, is similar to silt pattern due to high effect of silt on soil rodibility, Also that is partially confirmed with geology map, indicated which soil erodibility attribute controlled by parent material. High amount of soil erodibility in southwest area of given study area showed need to more attention for conservation the soil and control erosion.

  15. STUDY OF A RISK MANAGEMENT MODEL

    Directory of Open Access Journals (Sweden)

    Marn-Ling Shing

    2011-06-01

    Full Text Available Risk management has become an important issue in the information security area. This study proposes a Semi-Markov chain model to manage the information security risk. When the state information is not recognized as a normal state, the model can send a warning signal to the manager. A simulated model was used to validate the semi-Markov chain model.

  16. Study on Case Teaching of Financial Management

    OpenAIRE

    Zhenghong Che; Zhengmei Che

    2011-01-01

    Case teaching is an efficient teaching method of management. It plays an important role to enhance the students’ ability to practice the theory. However, case teaching of financial management has not achieved the expected results. The paper aims to study the importance, characteristics and corresponding methods of case teaching method of financial management.

  17. Book Review of Emerging Markets for Ecosystem Services: A Case Study of the Panama Canal Watershed

    Science.gov (United States)

    This book is an outstanding contribution to our current, applied knowledge on markets of ecosystems services. In an integrated framework of study, the authors assessed the opportunities and limitations of carbon sequestration mainly via reforestation, hydrological services (water quantity and qualit...

  18. Application of SWAT2000 Model for Estimating Runoff and Sediment in Beheshtabad Watershed, a Sub-basin of Northern Karun

    Directory of Open Access Journals (Sweden)

    R Rostamian

    2009-01-01

    Full Text Available Soil erosion is an important economical, social and environmental problem requiring intensive watershed management for its control. In recent years, modeling has become a useful approach for assessing the impact of various erosion-reduction approaches. ?Due to limited hydrologic data in mountainous watersheds, watershed modeling is, however, subject to large uncertainties. In this study, SWAT2000 was applied to simulate runoff and sediment discharge in Beheshtabad watershed, a sub-basin of Northern Karun catchment in central Iran, with an area of 3860 km2. Model calibration and uncertainty analysis were performed with SUFI-2. Four indices were used to assess the goodness of calibration, viz., P-factor, d-factor, R2 and Nash-Sutcliffe (NS. Runoff data (1996-2004 of six hydrometery stations were used for calibration and validation of this watershed. The results of monthly calibration p-factor, d-factor, R2 and NS values for runoff at the watershed outlet were 0.61, 0.48, 0.85 and 0.75, respectively, and for the validation, these statistics were 0.53, 0.38, 0.85 and 0.57, respectively. The values for calibration of sediment concentration at the watershed outlet were 0.55, 0.41, 0.55 and 0.52, respectively, and for the validation, these statistics were 0.69, 0.29, 0.60 and 0.27, respectively. In general, SWAT simulated runoff much better than sediment. Weak simulation of runoff at some months of the year might be due to under-prediction of snowmelt in this mountainous watershed, model’s assumptions in frozen and saturated soil layers, and lack of sufficient data. Improper simulation of sediment load could be attributed to weak simulation of runoff, insufficient data and periodicity of sediment data.

  19. Advances in Stated Preference Studies for Valuing and Managing the Environment : A Developing Country Context

    DEFF Research Database (Denmark)

    Kassahun, Habtamu Tilahun

    2014-01-01

    The most important factor that inspires the work of this dissertation is the loss of ecosystem services. Soil erosion, deforestation, and loss of biodiversity are prevalent in developing countries. Thus, reliable estimates of their values are crucial for policy making and sustainable management of environmental and natural resources. However, empirical evidence shows that many valuation studies conducted in developing countries are of poor quality, questioning the reliability of their results. Therefore, the core work presented in this dissertation aims at improving the reliability of stated preference (SP) studies by addressing critical issues across four self-contained articles using three examples of SP surveys related to the Blue Nile ecosystem service valuation and watershed management. The dissertation answers three core research questions: 1) What incentive mechanisms can motivate farmers to participate in a new integrated private and common land management activity to reduce both on-site and offsite impacts of soil erosion and hence provide ecosystem services? 2) How much are ecosystem service users willing to pay for watershed management in the Blue Nile Basin?, And 3) How can stated preference methods be improved to get reliable value estimates? From this PhD study, we can draw three general conclusions regarding managing watershed externalities and application of SP methods in a developing country context. 1. There is no uniform incentive to motivate ecosystem service providers to implement land management strategies to reduce both on-site and offsite impacts of soil erosion. Thus, policy design to address both the on-site and off-site effects of soil erosion in the Ethiopian highlands of the Upper Blue Nile Basin should consider the heterogeneity of preference for incentives across different groups of farmers. 2. Citizens are willing to pay a substantial amount of money for environmental services. However, from our results we can conclude that the overall WTP for environmental services are often underestimated. 3. SP methods can provide reliable estimates of value in a developing country context. However, several issues need to be considered in the design of the survey instrument as well as in the data analysis.

  20. Delineation of groundwater potential zones in the Comoro watershed, Timor Leste using GIS, remote sensing and analytic hierarchy process (AHP) technique

    Science.gov (United States)

    Pinto, Domingos; Shrestha, Sangam; Babel, Mukand S.; Ninsawat, Sarawut

    2015-02-01

    Groundwater plays an important role for socio-economic development of Comoro watershed in Timor Leste. Despite the significance of groundwater for sustainable development, it has not always been properly managed in the watershed. Therefore, this study seeks to identify groundwater potential zones in the Comoro watershed, using geographical information systems and remote sensing and analytic hierarchy process technique. The groundwater potential zones thus obtained were divided into five classes and validated with the recorded bore well yield data. It was found that the alluvial plain in the northwest along the Comoro River has very high groundwater potential zone which covers about 5.4 % (13.5 km2) area of the watershed. The high groundwater potential zone was found in the eastern part and along the foothills and covers about 4.8 % (12 km2) of the area; moderate zone covers about 2.0 % (5 km2) of the area and found in the higher elevation of the alluvial plain. The poor and very poor groundwater potential zone covers about 87.8 % (219.5 km2) of the watershed. The hilly terrain located in the southern and central parts of the study area has a poor groundwater potential zone due to higher degree of slope and low permeability of conglomerate soil type. The demarcation of groundwater potential zones in the Comoro watershed will be helpful for future planning, development and management of the groundwater resources.

  1. WATERSHED INFORMATION NETWORK

    Science.gov (United States)

    Resource Purpose: The Watershed Information Network is a set of about 30 web pages that are organized by topic. These pages access existing databases like the American Heritage Rivers Services database and Surf Your Watershed. WIN in itself has no data or data sets. L...

  2. Study of International Standards of Risk Management

    Directory of Open Access Journals (Sweden)

    Dykan Volodymyr L.

    2014-01-01

    Full Text Available The goal of the article lies in the study of existing international standards of risk management, an important factor of improvement of risk management in domestic corporations and enterprises and development of recommendations on application of international standards in Ukraine, in particular, within the framework of building corporate systems of risk management. The conducted study shows that approaches on organisation of the process of risk management, used in standards of risk management, are of general character and differ with the degree of detailing. Their undoubted value in development of risk management in Ukraine is identification of a general direction of building corporate systems of risk management in practice. The said approaches at the national and corporate levels of standardisation in Ukraine within the framework of building corporate systems of risk management would allow improvement of risk management in corporations and enterprises. The prospect of further studies of domestic specialists in the field of risk management is development of the domestic standard of risk management with consideration of modern domestic specific features of development of risk management in Ukraine and leading foreign experience.

  3. Protect and Restore Mill Creek Watershed; Annual Report 2004-2005.

    Energy Technology Data Exchange (ETDEWEB)

    McRoberts, Heidi (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

    2005-12-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. The Nez Perce Tribe and the Nez Perce National Forest (NPNF) have formed a partnership in completing watershed restoration activities, and through this partnership, more work is accomplished by sharing funding and resources in our effort. The Nez Perce Tribe began watershed restoration projects within the Mill Creek watershed of the South Fork Clearwater River in 2000. Progress has been made in restoring the watershed through excluding cattle from critical riparian areas through fencing. Starting in FY 2002, continuing into 2004, trees were planted in riparian areas in the meadow of the upper watershed. In addition, a complete inventory of culverts at road-stream crossings was completed. Culverts have been prioritized for replacement to accommodate fish passage throughout the watershed, and one high priority culvert was replaced in 2004. Maintenance to the previously built fence was also completed.

  4. Watershed Cuts: Thinnings, Shortest Path Forests, and Topological Watersheds

    OpenAIRE

    Cousty, Jean; Bertrand, Gilles; Najman, Laurent; Couprie, Michel

    2010-01-01

    We recently introduced the watershed cuts, a notion of watershed in edge-weighted graphs. In this paper, our main contribution is a thinning paradigm from which we derive three algorithmic watershed cut strategies: the first one is well suited to parallel implementations, the second one leads to a flexible linear-time sequential implementation whereas the third one links the watershed cuts and the popular flooding algorithms. We state that watershed cuts preserve a notion of contrast, called ...

  5. Examining Land-Use/Land-Cover Change in the Lake Dianchi Watershed of the Yunnan-Guizhou Plateau of Southwest China with Remote Sensing and GIS Techniques: 1974-2008

    OpenAIRE

    Yingchun Fu; Ke Zhang; Yaolong Zhao; Hong Zhang(Department of Physics and Center for Quantum Spacetime (CQUeST), Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 121-742 Korea)

    2012-01-01

    Monitoring land-use/land-cover change (LULCC) and exploring its mechanisms are important processes in the environmental management of a lake watershed. The purpose of this study was to examine the spatiotemporal pattern of LULCC by using multi landscape metrics in the Lake Dianchi watershed, which is located in the Yunnan-Guizhou Plateau of Southwest China. Landsat images from the years 1974, 1988, 1998, and 2008 were analyzed using geographical information system (GIS) techniques. The result...

  6. Contamination of the Sulfur River Wildlife Management Area and watershed in and near Texarkana, Arkansas and Texas

    US Fish and Wildlife Service, Department of the Interior — The U.S. Fish and Wildlife Service conducted this study in response to the concern of local citizens that contaminants from four industrial facilities two of which...

  7. Information Management in Communication Studies

    OpenAIRE

    Alemany Marti?nez, Dolores

    2011-01-01

    An introduction to the concept of Information Management. Its close relation to other disciplines, the tasks it covers and its impact in Information Society. Digital citizens and Information Literacy.

  8. Study of industry safety management

    International Nuclear Information System (INIS)

    This book deals with general remarks, industrial accidents, statistics of industrial accidents, unsafe actions, making machinery and facilities safe, safe activities, having working environment safe, survey of industrial accidents and analysis of causes, system of safety management and operations, safety management planning, safety education, human engineering such as human-machines system, system safety, and costs of disaster losses. It lastly adds individual protective equipment and working clothes including protect equipment for eyes, face, hands, arms and feet.

  9. A risk explicit interval linear programming model for uncertainty-based environmental economic optimization in the Lake Fuxian watershed, China.

    Science.gov (United States)

    Zhang, Xiaoling; Huang, Kai; Zou, Rui; Liu, Yong; Yu, Yajuan

    2013-01-01

    The conflict of water environment protection and economic development has brought severe water pollution and restricted the sustainable development in the watershed. A risk explicit interval linear programming (REILP) method was used to solve integrated watershed environmental-economic optimization problem. Interval linear programming (ILP) and REILP models for uncertainty-based environmental economic optimization at the watershed scale were developed for the management of Lake Fuxian watershed, China. Scenario analysis was introduced into model solution process to ensure the practicality and operability of optimization schemes. Decision makers' preferences for risk levels can be expressed through inputting different discrete aspiration level values into the REILP model in three periods under two scenarios. Through balancing the optimal system returns and corresponding system risks, decision makers can develop an efficient industrial restructuring scheme based directly on the window of "low risk and high return efficiency" in the trade-off curve. The representative schemes at the turning points of two scenarios were interpreted and compared to identify a preferable planning alternative, which has the relatively low risks and nearly maximum benefits. This study provides new insights and proposes a tool, which was REILP, for decision makers to develop an effectively environmental economic optimization scheme in integrated watershed management. PMID:24191144

  10. Sensoriamento remoto e geoprocessamento aplicados ao uso da terra em microbacias hidrográficas, Botucatu - SP Remote sensing and gis applied to study the land use in watersheds in Botucatu, Brazil

    Directory of Open Access Journals (Sweden)

    Sérgio Campos

    2004-08-01

    Full Text Available O presente trabalho teve como objetivo identificar e quantificar o uso da terra em dez microbacias ocorrentes na bacia do Rio Capivara, município de Botucatu - SP, a partir da estruturação de um banco de dados utilizando o Sistema de Informações Geográficas (SIG - IDRISI. Os resultados mostram que as classes de uso da terra, "uso agrícola" e "pastagem", foram as mais significativas, pois ocuparam mais da metade da área das microbacias. O alto índice de uso da terra por pastagens, capoeiras, reflorestamento e matas reflete a predominância de solos arenosos com baixa fertilidade. As imagens obtidas do satélite LANDSAT 5 permitiram o mapeamento do uso da terra de maneira rápida, além de fornecer um excelente banco de dados para futuro planejamento e gerenciamento das atividades agropecuárias regionais. O SIG-IDRISI permitiu identificar, por meio de seus diferentes módulos para georreferenciamento, classificação digital e modelo matemático, as classes de uso da terra com rapidez.This study aimed to identify and quantify the land use in ten watersheds in the Capivara river-basin, in the municipality of Botucatu - SP, Brazil. A database was made using the Geographical Information System - IDRISI. The results showed that the classes of agriculture and pasture were the most significant land use, as they occupied more than half of the area of the watersheds. The high index of land use by pasture, brushwood, reforestation and forests, reflected the predominance of sandy soils with low fertility. The images of the satellite LANDSAT-5 allowed the mapping of the land use in a fast and reliable way. In addition they supplied an excellent database for future planning and management of the regional agricultural activities. GIS - IDRISI allowed the identification, digital classification and mathematical modeling of several areas of land use.

  11. Sensoriamento remoto e geoprocessamento aplicados ao uso da terra em microbacias hidrográficas, Botucatu - SP / Remote sensing and gis applied to study the land use in watersheds in Botucatu, Brazil

    Scientific Electronic Library Online (English)

    Sérgio, Campos; Armindo A., Araújo Júnior; Zacarias X., Barros; Lincoln G., Cardoso; Edson L., Piroli.

    2004-08-01

    Full Text Available O presente trabalho teve como objetivo identificar e quantificar o uso da terra em dez microbacias ocorrentes na bacia do Rio Capivara, município de Botucatu - SP, a partir da estruturação de um banco de dados utilizando o Sistema de Informações Geográficas (SIG) - IDRISI. Os resultados mostram que [...] as classes de uso da terra, "uso agrícola" e "pastagem", foram as mais significativas, pois ocuparam mais da metade da área das microbacias. O alto índice de uso da terra por pastagens, capoeiras, reflorestamento e matas reflete a predominância de solos arenosos com baixa fertilidade. As imagens obtidas do satélite LANDSAT 5 permitiram o mapeamento do uso da terra de maneira rápida, além de fornecer um excelente banco de dados para futuro planejamento e gerenciamento das atividades agropecuárias regionais. O SIG-IDRISI permitiu identificar, por meio de seus diferentes módulos para georreferenciamento, classificação digital e modelo matemático, as classes de uso da terra com rapidez. Abstract in english This study aimed to identify and quantify the land use in ten watersheds in the Capivara river-basin, in the municipality of Botucatu - SP, Brazil. A database was made using the Geographical Information System - IDRISI. The results showed that the classes of agriculture and pasture were the most sig [...] nificant land use, as they occupied more than half of the area of the watersheds. The high index of land use by pasture, brushwood, reforestation and forests, reflected the predominance of sandy soils with low fertility. The images of the satellite LANDSAT-5 allowed the mapping of the land use in a fast and reliable way. In addition they supplied an excellent database for future planning and management of the regional agricultural activities. GIS - IDRISI allowed the identification, digital classification and mathematical modeling of several areas of land use.

  12. Fort Cobb Reservoir Watershed, Oklahoma and Thika River Watershed, Kenya Twinning Pilot Project

    Science.gov (United States)

    Moriasi, D.; Steiner, J.; Arnold, J.; Allen, P.; Dunbar, J.; Shisanya, C.; Gathenya, J.; Nyaoro, J.; Sang, J.

    2007-12-01

    The Fort Cobb Reservoir Watershed (FCRW) (830 km2) is a watershed within the HELP Washita Basin, located in Caddo and Washita Counties, OK. It is also a benchmark watershed under USDA's Conservation Effects Assessment Project, a national project to quantify environmental effects of USDA and other conservation programs. Population in south-western Oklahoma, in which FCRW is located, is sparse and decreasing. Agricultural focuses on commodity production (beef, wheat, and row crops) with high costs and low margins. Surface and groundwater resources supply public, domestic, and irrigation water. Fort Cobb Reservoir and contributing stream segments are listed on the Oklahoma 303(d) list as not meeting water quality standards based on sedimentation, trophic level of the lake associated with phosphorus loads, and nitrogen in some stream segments in some seasons. Preliminary results from a rapid geomorphic assessment results indicated that unstable stream channels dominate the stream networks and make a significant but unknown contribution to suspended-sediment loadings. Impairment of the lake for municipal water supply, recreation, and fish and wildlife are important factors in local economies. The Thika River Watershed (TRW) (867 km2) is located in central Kenya. Population in TRW is high and increasing, which has led to a poor land-population ratio with population densities ranging from 250 people/km2 to over 500 people/km2. The poor land-population ratio has resulted in land sub-division, fragmentation, over- cultivation, overgrazing, and deforestation which have serious implications on soil erosion, which poses a threat to both agricultural production and downstream reservoirs. Agricultural focuses mainly on subsistence and some cash crops (dairy cattle, corn, beans, coffee, floriculture and pineapple) farming. Surface and groundwater resources supply domestic, public, and hydroelectric power generation water. Thika River supplies 80% of the water for the city of Nairobi. A dam was constructed in 1994 with a water reservoir of 70 million m3. Thika River also supplies water to Masinga Reservoir to supply the seven forks dams, which together supply 75% of the nation's electricity. The quantity of water in rivers and reservoirs is decreased due to sedimentation while water quality is degraded by sediments, and sediment-borne nutrients and pesticides. The focus of this pilot twinning project is watershed erosion and reservoir sedimentation assessment. This will be accomplished by (1) a rapid watershed/catchment erosion assessment using ground based measurements and remote sensing/GIS techniques, 2) use of Acoustic Profiling Systems (APS) for reservoir sedimentation measurement studies, and 3) advanced water quality modeling using the soil and water assessment tool (SWAT) model. Data acquired will be used for sediment transport modeling to1) determine sediment "hot spots" and management practices that will minimize sediments into reservoirs in order to 2) maintain the reservoirs on which many farmers depend for their livelihood and a cleaner environment. This project will provide an opportunity for 1) sharing knowledge and experience among the stakeholders, 2) building capacity through formal and informal education opportunities through reciprocal hosting of decision makers and water experts, and 3) technology transfer of pilot results with recommended management practices to reduce reservoir sedimentation rates.

  13. Calibration and Validation of the SWAT2000 Watershed Model for Phosphorus Loading to the Cannonsville Reservoir

    Science.gov (United States)

    Tolson, B. A.; Shoemaker, C. A.

    2002-12-01

    A comprehensive modeling effort was undertaken to simulate phosphorus (P) loading to the Cannonsville Reservoir in upstate New York. The Cannonsville Reservoir is one of the City of New York's drinking water supply reservoirs and drains an 1178 km2 watershed that is predominantly agricultural (dairy farming) and forested. The occurrence of eutrophic conditions in the reservoir, due to excessive P loading, resulted in the reservoir being classified as `phosphorus restricted'. This classification restricts future economic growth in the watershed when the growth directly or indirectly increases P loadings. The Soil and Water Assessment Tool (SWAT2000) was used to model the P loading to the reservoir in order to help investigate the effectiveness of proposed management options for reducing P loading. SWAT2000 is a distributed watershed model developed by the Agricultural Research Service of the United States Department of Agriculture. This study is the first to apply SWAT2000 for P loading predictions in the Northeast US. SWAT2000 model development with respect to P focused initially on developing Cannonsville Watershed specific P inputs. Agricultural practices in the watershed were generalized, initial soil P levels were determined using aggregated watershed-wide soil P test results, manure spreading was based on the available manure masses as projected from local cattle population estimates and manure production characteristics were based on local manure studies. Ten years of daily P loading data were available for calibration and validation of the model. Additional bi-weekly sampling data of surface water P concentrations across the watershed were also utilized to test the spatial performance of the model. Comparison with measured data and further analysis of model equations showed that the model equations for sediment generation under snow melt conditions required modifications. In addition a number of P model parameters required calibration. Calibration results are presented that show generally good predictive performance for P loading while validation results presented show slightly improved predictive performance. In addition, the ability of the model to closely replicate the observed spatial trends in the bi-weekly surface water P concentrations is also demonstrated. The slightly modified SWAT2000 model for the Cannonsville Watershed is considered to be a suitable tool for the evaluation of various P management scenarios.

  14. Valuing investments in sustainable land management using an integrated modelling framework to support a watershed conservation scheme in the Upper Tana River, Kenya

    Science.gov (United States)

    Hunink, Johannes E.; Bryant, Benjamin P.; Vogl, Adrian; Droogers, Peter

    2015-04-01

    We analyse the multiple impacts of investments in sustainable land use practices on ecosystem services in the Upper Tana basin (Kenya) to support a watershed conservation scheme (a "water fund"). We apply an integrated modelling framework, building on previous field-based and modelling studies in the basin, and link biophysical outputs to economic benefits for the main actors in the basin. The first step in the modelling workflow is the use of a high-resolution spatial prioritization tool (Resource Investment Optimization System -- RIOS) to allocate the type and location of conservation investments in the different subbasins, subject to budget constraints and stakeholder concerns. We then run the Soil and Water Assessment Tool (SWAT) using the RIOS-identified investment scenarios to produce spatially explicit scenarios that simulate changes in water yield and suspended sediment. Finally, in close collaboration with downstream water users (urban water supply and hydropower) we link those biophysical outputs to monetary metrics, including: reduced water treatment costs, increased hydropower production, and crop yield benefits for upstream farmers in the conservation area. We explore how different budgets and different spatial targeting scenarios influence the return of the investments and the effectiveness of the water fund scheme. This study is novel in that it presents an integrated analysis targeting interventions in a decision context that takes into account local environmental and socio-economic conditions, and then relies on detailed, process-based, biophysical models to demonstrate the economic return on those investments. We conclude that the approach allows for an analysis on different spatial and temporal scales, providing conclusive evidence to stakeholders and decision makers on the contribution and benefits of the land-based investments in this basin. This is serving as foundational work to support the implementation of the Upper Tana-Nairobi Water Fund, a public-private partnership to safeguard ecosystem service provision and food security.

  15. Integrated Landsat Image Analysis and Hydrologic Modeling to Detect Impacts of 25-Year Land-Cover Change on Surface Runoff in a Philippine Watershed

    Directory of Open Access Journals (Sweden)

    Enrico Paringit

    2011-05-01

    Full Text Available Landsat MSS and ETM+ images were analyzed to detect 25-year land-cover change (1976–2001 in the critical Taguibo Watershed in Mindanao Island, Southern Philippines. This watershed has experienced historical modifications of its land-cover due to the presence of logging industries in the 1950s, and continuous deforestation due to illegal logging and slash-and-burn agriculture in the present time. To estimate the impacts of land-cover change on watershed runoff, land-cover information derived from the Landsat images was utilized to parameterize a GIS-based hydrologic model. The model was then calibrated with field-measured discharge data and used to simulate the responses of the watershed in its year 2001 and year 1976 land-cover conditions. The availability of land-cover information on the most recent state of the watershed from the Landsat ETM+ image made it possible to locate areas for rehabilitation such as barren and logged-over areas. We then created a “rehabilitated” land-cover condition map of the watershed (re-forestation of logged-over areas and agro-forestation of barren areas and used it to parameterize the model and predict the runoff responses of the watershed. Model results showed that changes in land-cover from 1976 to 2001 were directly related to the significant increase in surface runoff. Runoff predictions showed that a full rehabilitation of the watershed, especially in barren and logged-over areas, will be likely to reduce the generation of a huge volume of runoff during rainfall events. The results of this study have demonstrated the usefulness of multi-temporal Landsat images in detecting land-cover change, in identifying areas for rehabilitation, and in evaluating rehabilitation strategies for management of tropical watersheds through its use in hydrologic modeling.

  16. C-BAND RADAR MONITORING OF HYDROLOGY IN MID-ATLANTIC COASTAL PLAIN FORESTS: IMPLICATION FOR IMPROVED WATER QUALITY MANAGEMENT IN THE CHESAPEAKE BAY WATERSHED

    Science.gov (United States)

    The Chesapeake Bay Watershed has lost over half of its historic wetlands, and most of those that remain are forested, Coastal Plain wetlands. Unfortunately, remaining wetlands are at high risk for future loss, due to inadequate legal protection and rapid population growth. Hydrology (flooding and so...

  17. On the equivalence between hierarchical segmentations and ultrametric watersheds

    OpenAIRE

    Najman, Laurent

    2011-01-01

    We study hierarchical segmentation in the framework of edge-weighted graphs. We define ultrametric watersheds as topological watersheds null on the minima. We prove that there exists a bijection between the set of ultrametric watersheds and the set of hierarchical segmentations. We end this paper by showing how to use the proposed framework in practice in the example of constrained connectivity; in particular it allows to compute such a hierarchy following a classical waters...

  18. Water Quality, Contamination, and Wetlands in the Croton Watershed, New York, USA

    Directory of Open Access Journals (Sweden)

    Jeffrey M. McKenzie

    2012-01-01

    Full Text Available The Croton Watershed (New York State, USA is a semi-urban region that provides 10% of the drinking water for the City of New York. Nonpoint source contamination in the watershed is a major concern for managers because the water supply is currently unfiltered water. Results are reported from three synoptic studies of surface water quality from 98 wetland-containing sub-catchments in the Croton Watershed designed to broadly characterize, at a reconnaissance level, the geochemical controls on water quality, in particular as it relates to wetlands. Total dissolved organic carbon concentrations in surface waters draining wetlands correlated well (average R2 of 0.93 with standard Gelbstoff (g440 color measurements, although there is very little correlation between dissolved organic carbon concentrations and wetland areas in the sub-catchments. This may be a potential indication of other sources of colored organic material. Concentrations of dissolved sodium and chloride, while related to road length, stochiometrically had more chloride than expected for pure road-salt dissolution. This offset is likely due to cation exchange and sorbtion of sodium by wetlands in the Croton watershed. The results show contamination in the Croton hydrologic system that should addressed in ongoing management policies and decision-making.

  19. Management and climate change in coastal Oregon forests: The Panther Creek Watershed as a case study

    Science.gov (United States)

    The highly productive forests of the Oregon Coast Range Mountains have been intensively harvested for many decades, and recent interest has emerged in the potential for removing harvest residue as a source of renewable woody biomass energy. However, the long-term consequences of ...

  20. Land use change impacts on water quality in three lake winnipeg watersheds.

    Science.gov (United States)

    Yang, Qi; Leon, Luis F; Booty, William G; Wong, Isaac W; McCrimmon, Craig; Fong, Phil; Michiels, Patsy; Vanrobaeys, Jason; Benoy, Glenn

    2014-09-01

    Lake Winnipeg eutrophication results from excess nutrient loading due to agricultural activities across the watershed. Estimating nonpoint-source pollution and the mitigation effects of beneficial management practices (BMPs) is an important step in protecting the water quality of streams and receiving waters. The use of computer models to systematically compare different landscapes and agricultural systems across the Red-Assiniboine basin has not been attempted at watersheds of this size in Manitoba. In this study, the Soil and Water Assessment Tool was applied and calibrated for three pilot watersheds of the Lake Winnipeg basin. Monthly flow calibration yielded overall satisfactory Nash-Sutcliffe efficiency (NSE), with values above 0.7 for all simulations. Total phosphorus (TP) calibration NSE ranged from 0.64 to 0.76, total N (TN) ranged from 0.22 to 0.75, and total suspended solids (TSS) ranged from 0.29 to 0.68. Based on the assessment of the TP exceedance levels from 1993 to 2007, annual loads were above proposed objectives for the three watersheds more than half of the time. Four BMP scenarios based on land use changes were studied in the watersheds: annual cropland to hay land (ACHL), wetland restoration (WR), marginal annual cropland conversion to hay land (MACHL), and wetland restoration on marginal cropland (WRMAC). Of these land use change scenarios, ACHL had the greatest impact: TSS loads were reduced by 33 to 65%, TN by 58 to 82%, and TP by 38 to 72% over the simulation period. By analyzing unit area and percentage of load reduction, the results indicate that the WR and WRMAC scenarios had a significant impact on water quality in high loading zones in the three watersheds. Such reductions of sediment, N, and P are possible through land use change scenarios, suggesting that land conservation should be a key component of any Lake Winnipeg restoration strategy. PMID:25603255

  1. Soil bio-engineering for watershed management and disaster mitigation in Ecuador: a short-term species suitability test

    Directory of Open Access Journals (Sweden)

    Preti F

    2013-02-01

    Full Text Available This paper reports a soil bio-engineering technical assessment program conducted in the Santo Domingo, Ecuador region. Autochthonous plant species survivorship and vegetative growth was evaluated in a short-term palisade experimental regime. Among the four species evaluated, Brugmansia versicolor, Malvaviscus penduliflorus, and Trichanthera gigantea performed well, evidenced by > 70% survivorship, however Euphorbia cotinifolia exhibited increased mortality (59%. Significant differences and notable variability in terminal shoot length and stem diameter among species indicated further study is warranted in growth parameters.

  2. LOCAL RESOURCE MANAGEMENT INSTITUTIONS: A CASE STUDY ON SOKSHING MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Sangay Wangchuk

    2001-09-01

    Full Text Available Local resource management institutions have evolved as a result of the need to have some form of measures to control the resource use to ensure sustainability and reduce access-deferential to the resources in and around the local communities. While some of the local resource management institutions have died away, others have become more relevant. This may be a reflection of the relevancy of the institutions to the present socioeconomic state, and the institutionalisation of some of these local resource management institutions in the laws and by-laws of the country. Land Act 1978 and Forest and Nature Conservation Act 1995 have been responsible for the disappearance of some of the local resource management institutions as these were either over-ruled by the provisions of the acts, or just were overlooked while enacting these acts. However, some of the local resource management institutions have been incorporated into laws and by-laws, and have been adopted as effective resource management strategies. The results of the case study carried out in Trashigang, Bumthang and Paro on the local resource management institutions are presented below.

  3. Application of a virtual watershed in academic education

    Directory of Open Access Journals (Sweden)

    A. L. Horn

    2005-01-01

    Full Text Available Hydrologic models of watersheds often represent complex systems which are difficult to understand regarding to their structure and dynamics. Virtual watersheds, i.e. watersheds which exist only in the virtual reality of a computer system, are an approach to simplify access to this real-world complexity. In this study we present the virtual watershed KIELSHED-1, a 117 km2 v-shaped valley with grassland on a "Cambisol" soil type. Two weather scenarios are delivered with the watershed: a simplified artificial weather scenario based on long-term data of a German weather station as well as an unmodified data record. The input data and parameters are compiled according to the conventions of the SWAT 2000 hydrological model. KIELSHED-1 is mainly used for education, and illustrative application examples, i.e. calculation of water balance, model calibration, development of land use scenarios, give an insight to the capabilities of the virtual watershed.

  4. Modeling nitrogen loading in a small watershed in southwest China using a DNDC model with hydrological enhancements

    Directory of Open Access Journals (Sweden)

    J. Deng

    2011-10-01

    Full Text Available The degradation of water quality has been observed worldwide, and inputs of nitrogen (N, along with other nutrients, play a key role in the process of contamination. The quantification of N loading from non-point sources at a watershed scale has long been a challenge. Process-based models have been developed to address this problem. Because N loading from non-point sources result from interactions between biogeochemical and hydrological processes, a model framework must include both types of processes if it is to be useful. This paper reports the results of a study in which we integrated two fundamental hydrologic features, the SCS (Soil Conservation Service curve function and the MUSLE (Modified Universal Soil Loss, into a biogeochemical model, the DNDC. The SCS curve equation and the MUSLE are widely used in hydrological models for calculating surface runoff and soil erosion. Equipped with the new added hydrologic features, DNDC was substantially enhanced with the new capacity of simulating both vertical and horizontal movements of water and N at a watershed scale. A long-term experimental watershed in Southwest China was selected to test the new version of the DNDC. The target watershed's 35.1 ha of territory encompass 19.3 ha of croplands, 11.0 ha of forest lands, 1.1 ha of grassplots, and 3.7 ha of residential areas. An input database containing topographic data, meteorological conditions, soil properties, vegetation information, and management applications was established and linked to the enhanced DNDC. Driven by the input database, the DNDC simulated the surface runoff flow, the subsurface leaching flow, the soil erosion, and the N loadings from the target watershed. The modeled water flow, sediment yield, and N loading from the entire watershed were compared with observations from the watershed and yielded encouraging results. The sources of N loading were identified by using the results of the model. In 2008, the modeled runoff-induced loss of total N from the watershed was 904 kg N yr?1, of which approximately 67 % came from the croplands. The enhanced DNDC model also estimated the watershed-scale N losses (1391 kg N yr?1 from the emissions of the N-containing gases (ammonia, nitrous oxide, nitric oxide, and dinitrogen. Ammonia volatilization (1299 kg N yr?1 dominated the gaseous N losses. The study indicated that process-based biogeochemical models such as the DNDC could contribute more effectively to watershed N loading studies if the hydrological components of the models were appropriately enhanced.

  5. Modeling nitrogen loading in a small watershed in Southwest China using a DNDC model with hydrological enhancements

    Directory of Open Access Journals (Sweden)

    J. Deng

    2011-07-01

    Full Text Available The degradation of water quality has been observed worldwide, and inputs of nitrogen (N, along with other nutrients, play a key role in the process of contamination. The quantification of N loading from non-point sources at a watershed scale has long been a challenge. Process-based models have been developed to address this problem. Because N loading from non-point sources result from interactions between biogeochemical and hydrological processes, a model framework must include both types of processes if it is to be useful. This paper reports the results of a study in which we integrated two fundamental hydrologic features, the SCS (Soil Conservation Service curve function and the MUSLE (Modified Universal Soil Loss, into a biogeochemical model, the DNDC. The SCS curve equation and the MUSLE are widely used in hydrological models for calculating surface runoff and soil erosion. Equipped with the new added hydrologic features, DNDC was substantially enhanced with the new capacity of simulating both vertical and horizontal movements of water and N at a watershed scale. A long-term experimental watershed in Southwest China was selected to test the new version of the DNDC. The target watershed's 35.1 ha of territory encompass 19.3 ha of croplands, 11.0 ha of forest lands, 1.1 ha of grassplots, and 3.7 ha of residential areas. An input database containing topographic data, meteorological conditions, soil properties, vegetation information, and management applications was established and linked to the enhanced DNDC. Driven by the input database, the DNDC simulated the surface runoff flow, the subsurface leaching flow, the soil erosion, and the N loadings from the target watershed. The modeled water flow, sediment yield, and N loading from the entire watershed were compared with observations from the watershed and yielded encouraging results. The sources of N loading were identified by using the results of the model. In 2008, the modeled runoff-induced loss of total N from the watershed was 904 kg N yr?1, of which approximately 67 % came from the croplands. The enhanced DNDC model also estimated the watershed-scale N losses (1391 kg N yr?1 from the emissions of the N-containing gases (ammonia, nitrous oxide, nitric oxide, and dinitrogen. Ammonia volatilization (1299 kg N yr?1 dominated the gaseous N losses. The study indicated that process-based biogeochemical models such as the DNDC could contribute more effectively to watershed N loading studies if the hydrological components of the models were appropriately enhanced.

  6. Disconnected runoff contributing areas: Evidence provided by ancient watershed management systems in arid north-eastern Marmarica (NW-Egypt)

    Science.gov (United States)

    Vetter, T.; Rieger, A.-K.; Nicolay, A.

    2014-05-01

    This study presents the importance of disconnectivity in dryland area runoff demonstrated by manmade water harvesting structures dated to Greco-Roman times. Located on the coastal strip of some 20 km width along the Mediterranean coast of modern northwestern Egypt covering the north-eastern part of the region known in antiquity as Marmarica, the area receives winterly rainfalls of up to 140 mm. Further south, precipitation decreases quickly and desert conditions become more pronounced. Bedrocks are predominantly calcareous, soils are loamy, stony, calcareous, and shallow, except in relief sinks with sedimentary deposits. The land rises from the coast up to 230 m a.s.l. on the Marmarica Plateau in a sequence of zonal northsloping plains and scarps the northern parts of which are dissected and drained by wadis. Agriculturally suitable areas comprise some 9% of the coastal zone and adjacent tablelands. Overland flow controls the discharge dynamics and is the main source of wadi runoff and hence agricultural water supply. The land use pattern is scattered because cropping areas depend mainly on suitability of soils and the generation of runoff harvest, which are closely interrelated because of the arid water and sediment regime. The patchiness of runoff generation increases further south where aridity is higher and topography inhibits greater drainage patterns. The abundance of cisterns, many of them originally Greco-Roman, is strong evidence that tableland overland flows occur and are frequently disconnected from larger drainage systems.

  7. Water Quality Monitoring and Assessment in Northern New Jersey Watershed, USA

    Science.gov (United States)

    Feng, H.; Mirrer, L. K.; Pelak, N. F.; Wu, M. S.

    2012-12-01

    Over a century of rapid urbanization and industrialization in New Jersey brought visible ever-increasing stress on the resource and environmental capacities of the watershed. Environmental quality is a major concern in this region with the urbanization and economic development. As a 8-week long National Science Foundation (NSF)-supported Research Experience for Undergraduate Students (REU) program, this study compares the stream water quality in four Northern New Jersey watersheds with different land use types (i.e., urban, agricultural, and forested). A total of eight sites were chosen for this study with two sites for each watershed to investigate if the land use type has an effect on the water quality, and if so, what that effect is. Physical and chemical parameters, such as temperature, pH, conductivity, solids content, nitrate, and phosphate, were measured during this study as indicators of the water quality. A number of correlations between these parameters were found during the data analysis. Our preliminary results indicate that the land use change has a significant impact on the water quality, causing impaired rivers, streams, lakes and reservoirs in New Jersey watershed. The results from this study are important and useful for developing future environmental management strategies for environmental restoration and urban coastal development. Acknowledgement: The research was supported in part by the US National Science Foundation (Award EAR-1004829).

  8. Assessing sediment dynamics in small alpine watersheds: Linking short-term processes study to dynamic geomorphological mapping

    Science.gov (United States)

    Theler, D.; Reynard, E.

    2009-04-01

    Assessing sediment volumes and transfer processes is necessary to understand the hydro-geomorphological functioning of small alpine watersheds prone to channelised debris flow triggering because their occurrence often depends on the amount of debris available in the gully ("weathering/supply limited system") (Sterling and Slaymaker 2007). Torrential systems should therefore be studied through the thematic of sediment budgets studies (Warburton 2007). According to Reid and Dunne (1996), the development of a sediment budget necessitates the identification of processes of erosion, transportation and deposition within a catchment, and their rates and controls. This kind of study may be complex because if sediment transfer starts generally from the hill slopes - where physical weathering followed by gravitational processes are predominant - the time of residence of sediments is very variable depending on the topographic setting and the intensity of processes. Moreover in drainage catchments sediments may often have a second repository when they reach the main active gully where the time of residence depends on water runoff. Transfer processes were investigated in two small catchments by field measurements and more specifically through geomorphological mapping (Theler et al. 2008). A dynamic geomorphological mapping methodology based on data directly derived from GIS analysis using high resolution DEM, field measurements and aerial photographs observations was developed for estimating the importance of the global sediment transfer dynamics of the drainage catchment. It highlights the role of different sediment stores. This approach is quite innovative in geomorphological mapping research because most available mapping legend systems are not sufficient for mapping alpine environments with high geomorphological activity and complexity as debris flows catchments. Furthermore downscaling to small catchment scale increases the difficulties: distinction and mapping erosion and accumulation processes is complex because both of them are sometimes combined. A the Bruchi torrent, qualitative information were also derived from field measurements. Methods used to estimate intensity of processes (sediment fluxes and denudation rates) in the field included reference coloured lines, painted stones and wooden markers. They provide a simple view of surface processes directly supplying the Bruchi torrent and acting on the different sediment stores. LiDar scanning of the drainage basin and of a landslide and a natural levee supplying the main channel realised during summer and autumn 2008 should provide more quantitative information. This combined approach allows us to consider the catchment as a succession of connected reservoir subsystems (tanks) varying in storage period and emptying velocity. References Reid L.M. and Dunne T. (1996). Rapid evaluation of sediment budgets. Catena Verlag. Sterling S., Slaymaker O. (2007). Lithologic control of debris torrent occurrence. Geomorphology 86, 307-319. Theler D, Reynard E., Bardou E. (2008). Assessing sediment dynamics from geomorphological maps: Bruchi torrential system, Swiss Alps. Journal of Maps v2008, 277-289. Warburton J. (2007). Sediment budgets and rates of sediment transfer across cold environments in Europe: a commentary. Geogr. Ann. 89, 95-100.

  9. Coaching managers : A Q methodological study of managers’ subjective experience of being coaching managers

    OpenAIRE

    Halvorsen, Marit G.

    2013-01-01

    The aim of this study is to explore managers’ subjective experience of having a coaching approach to management. This has been researched through a Q methodological approach where 18 participants sorted a sample of 36 statements based on their subjective experience. These statements were prepared on the basis of a research design which included how managers perceive their role as both manager and coach, how they relate to a focus on process and product, and how they experience the relationa...

  10. Optimizing Streamgage Network through Spatial Evolutionary Algorithms toward Digital Watershed Development

    Science.gov (United States)

    Wang, J.; Cai, X.

    2008-12-01

    The streamflow gage network is at the base of the infrastructure of any digital watershed that is supposed to provide reliable, dynamic, online streamflow and water quality information for watershed management. The task for streamgage network optimization is to decide the location of gages and the concomitant link to reliability of water management decisions. The gage network is modeled as a large-scale spatial system, which brings challenges because large-scale spatial problems are computationally expensive for traditional optimization methods. However, spatial patterns (information) provide some opportunities for upgrading regular optimization algorithms for spatial problems. Spatial Evolutionary Algorithms (SEA) is designed to incorporate the spatial knowledge of the system into an evolutionary algorithm. A hierarchical tree structure is designed to encode the spatial datasets in the gage network and shows an increased computational efficiency for large-scale spatial problems. Adopting the tree structure, we design and implement the operators of crossover and mutation, which forms the unique elements of the newly developed SEA. Specifically, splitting and merging procedures based on sensitivity in the mutation operation introduce exploitation into mutation and helps to speed up the optimal search; crossover swaps the nodes within the same area between individuals, maintains locally good information and passes it on to future generations. This study applies the SEA to a case study watershed, the Salt Creek watershed. The streamgage network refinement is defined as a multi-objective optimization problem to maximize the effectiveness of the network extension and minimize the cost. A consistent framework is developed to integrate the model calibration and streamflow gage network optimization. We employ Cross-Entropy (CE) as a measure of incremental information gain and maximize CE to search for the optimal network refinement. The results from the case study watershed demonstrate the effectiveness and computational efficiency of the SEA. Expansion of the method for sensor network design is also discussed.

  11. Mid-level synoptic analysis of flood-generating systems in South-west of Iran (case study: Dalaki watershed river basin

    Directory of Open Access Journals (Sweden)

    A. A. Sabziparvar

    2010-11-01

    Full Text Available Flood is known as one of the most distractive natural disaster worldwide. Therefore, its prediction is of great importance from the socio-economical point of view. Despite the great improvement in computational techniques and numerical weather prediction approaches, so far, in Iran, an acceptable flood prediction method has not yet been introduced. The main aim of this study is to recognize and classify the patterns of synoptic systems leading to torrential rainfalls in a watershed basin located in south-west of Iran. In this research, 20 major floods characterized by high rainfall intensities and severe damage were selected. The pattern, extension, and the direction of movement of the selected synoptic maps from surface to 500 hPa pressure levels were identified. Furthermore, the position of cyclones, anti-cyclones and mid-level trough lines were carefully tracked and classified into different groups. The results show that the major severe floods occurring in Dalaki watershed river basin are mainly influenced by strengthening of the center of Sudan heat low (SHL and the coincidence moisture feeding by the Indian Ocean and Mediterranean Sea. It was found that simultaneous merging of the SHL system and Mediterranean frontal system would intensify the flood intensities over the basin. The mean positions of high pressures, low pressures, the Red Sea trough lines and 1015 hPa isobars of the major floods are also discussed.

  12. What is a Watershed?

    Science.gov (United States)

    2012-02-24

    From Foothill College and the Using a Web-Based GIS to Teach Problem-Based Science in High School and College project, this document discusses watersheds. Topics include pollution, elevation, and drainage divides. A worksheet and teaching guide are also included. The document is available in Microsoft Word format at: www.foothill.edu/fac/klenkeit/nsf/curriculum/GISWhatisA%20Watershed.doc

  13. Coal combustion waste management study

    International Nuclear Information System (INIS)

    Coal-fired generation accounted for almost 55 percent of the production of electricity in the United States in 1990. Coal combustion generates high volumes of ash and flue gas desulfurization (FGD) wastes, estimated at almost 90 million tons. The amount of ash and flue gas desulfurization wastes generated by coal-fired power plants is expected to increase as a result of future demand growth, and as more plants comply with Title IV of the 1990 Clean Air Act Amendments. Nationwide, on average, over 30 percent of coal combustion wastes is currently recycled for use in various applications; the remaining percentage is ultimately disposed in waste management units. There are a significant number of on-site and off-site waste management units that are utilized by the electric utility industry to store or dispose of coal combustion waste. Table ES-1 summarizes the number of disposal units and estimates of waste contained at these unites by disposal unit operating status (i.e, operating or retired). Further, ICF Resources estimates that up to 120 new or replacement units may need to be constructed to service existing and new coal capacity by the year 2000. The two primary types of waste management units used by the industry are landfills and surface impoundments. Utility wastes have been exempted by Congress from RCRA Subtitle C hazardous waste regulation since 1980. As a result of this exemption, coal combustion wastes are currently being regulated under Subtitle D of RCRA. being regulated under Subtitle D of RCRA. As provided under Subtitle D, wastes not classified as hazardous under Subtitle C are subject to State regulation. At the same time Congress developed this exemption, also known as the ''Bevill Exclusion,'' it directed EPA to prepare a report on coal combustion wastes and make recommendations on how they should be managed

  14. Isotopic studies in Pacific Panama mangrove estuaries reveal lack of effect of watershed deforestation on food webs.

    Science.gov (United States)

    Viana, Inés G; Valiela, Ivan; Martinetto, Paulina; Monteiro Pierce, Rita; Fox, Sophia E

    2015-02-01

    Stable isotopic N, C, and S in food webs of 8 mangrove estuaries on the Pacific coast of Panama were measured to 1) determine whether the degree of deforestation of tropical forests on the contributing watersheds was detectable within the estuarine food web, and 2) define external sources of the food webs within the mangrove estuaries. Even though terrestrial rain forest cover on the contributing watersheds differed between 23 and 92%, the effect of deforestation was not detectable on stable isotopic values in food webs present at the mouth of the receiving estuaries. We used stable isotopic measures to identify producers or organic sources that supported the estuarine food web. N isotopic values of consumers spanned a broad range, from about 2.7 to 12.3‰. Mean ?(15)N of primary producers and organic matter varied from 3.3 for macroalgae to 4.7‰ for suspended particulate matter and large particulate matter. The ?(13)C consumer data varied between -26 and -9‰, but isotopic values of the major apparent producers or organic matter sampled could not account for this range variability. The structure of the food web was clarified when we added literature isotopic values of microphytobenthos and coralline algae, suggesting that these, or other producers with similar isotopic signature, may be part of the food webs. PMID:25481652

  15. Effect of Wildfire on Hydrological Processes in a Monoculture Invasive Grass Catchment within the Panama Canal Watershed

    Science.gov (United States)

    Regina, J. A.; Ogden, F. L.

    2014-12-01

    Hydrological processes in the humid tropics are poorly understood and an important topic when it comes to watershed management in the seasonal tropics. The Smithsonian Tropical Research Institute, Panama Canal Watershed Experiment, Agua Salud Project, seeks to understand these processes and quantify the long-term effects of different land cover and uses across the Panama Canal Watershed. One question posed by this project concerns the hydrologic role of fire in tropical environments. Within the Panama Canal Watershed, fire has seen widespread use among agriculturalists. This study focused on a monoculture invasive grass (Saccharum spontaneum) catchment. Specifically, the effects of significant wildfire events on hydrological processes in the catchment were analyzed. The catchment is within Panama's protected Soberania National Park, which is part of the greater Panama Canal Watershed. Installed instrumentation includes a rain gauge cluster, a two-stage v-notch weir, atmometer and an assortment of meteorological and automated geochemical sampling systems. Spatial, rainfall, runoff and ET data across the catchment is available from 2009-2013. Various hydrologic characteristics, such as runoff ratio, peak flow per unit area, time to peak, runoff duration, and leaf area index, from before and after the events were compared. These characteristics are related to rates of ground water recharge and the occurrence of flash floods. This study provides a baseline from which the potential impacts of fire on hydrological processes in tropical environments can be analyzed.

  16. The Study Alborz Integrated land in Forest Management of Based on Biodiversity Parameters (With Cooperation of World Bank)

    OpenAIRE

    Mohammad Amozad; Sadrollah Safaei; Alireza Eslami

    2012-01-01

    The project area is considered part of the Caspian (Khazar) forest area of Iran. The Alborz Integrated Land and Water Management Project (2007) is meant to introduce Integrated Water Resources Management principles to the Upper Watershed area. The specific objectives of Component 1 are: Reduce erosion and sedimentation in the upper watershed with a particular focus on protecting the Alborz irrigation water reservoir, Restore and protect natural rangeland and forests and Increase productivity ...

  17. A Risk Explicit Interval Linear Programming Model for Uncertainty-Based Environmental Economic Optimization in the Lake Fuxian Watershed, China

    OpenAIRE

    Xiaoling Zhang; Kai Huang; Rui Zou; Yong Liu; Yajuan Yu

    2013-01-01

    The conflict of water environment protection and economic development has brought severe water pollution and restricted the sustainable development in the watershed. A risk explicit interval linear programming (REILP) method was used to solve integrated watershed environmental-economic optimization problem. Interval linear programming (ILP) and REILP models for uncertainty-based environmental economic optimization at the watershed scale were developed for the management of Lake Fuxian watersh...

  18. The typology, frequency and magnitude of some behaviour events in case of torrential hydrographical management works in the upper Tarlung watershed

    OpenAIRE

    Ioan Clinciu; Ion C?t?lin Petri?an; Mihai Daniel Ni??; Nicu Constantin Tudose

    2010-01-01

    During the 20-25 years from their startup, the torrential hydrographicalmanagement works carried out in the upper T?rlung Watershed(55 dams, 22 sills, 25 traverses and 4 outlet canals) have exposed a number of 24 behaviour event types: 13 out of them reduce the safety of exploitation and the sustainability of the works (hereinafter called damages), while the other 11 reduce the functionality of the works (hereinafter called disfunctionalities). The following behaviour events have the hig...

  19. Hydrological Modeling in a watershed of the Lower Araguaia River Basin, TO

    Directory of Open Access Journals (Sweden)

    Marcelo Ribeiro Viola

    2012-01-01

    Full Text Available Hydrological simulation is an important tool for water resources management since it allows for practitioners toevaluate the impacts of anthropic activities and climatic changes on water availability. The Lontra River watershedis situated in the Lower Araguaia River Basin which is an important economic region of Northern Tocantins State.The understanding of its hydrological features is fundamental for the development of environmental studies forsupporting the decision-making related to the water resources management as strong pressure has been observeddue to both the agricultural frontier expansion and installed economic center. The LASH hydrological model (standsfor Lavras Simulation of Hydrology is characterized as a deterministic, semi conceptual and spatially distributedmodel and has been successfully applied in watersheds located in Southeastern Brazil. It was found in this study thatthe model was able to adequately capture the overall hydrological regime in the studied watershed. Three statisticalcoefficients used for measuring the model goodness-of-fit, Nash-Sutcliffe (CNS, Log (CNS and determinationcoefficient (R², have shown values greater than 0.74, 0.80 and 0.90, respectively. The simulated flow duration curvepresented a good fit in relation to the observed one, with small errors for prediction of minimum and maximumstream flows. Thus, we can be conclude that LASH model simulated properly the hydrological regime in the LontraRiver Watershed and it can be applied for either evaluation water availability or planning and management ofwater resources in the Lower Araguaia River Basin.

  20. The Future Management of Thai Musical Study

    OpenAIRE

    Supatra Vilailuck; Supunnee Leauboonshoo; Sudarat Janlekha

    2014-01-01

    The two aims of this investigation wereto study the management of Thai musical education and study the trends of Thai musical education management and improvement for the academic year 2013 to the academic year 2022. Data was gathered using aholistic approach between qualitative analysis and the Delphi method. For the Delphi method, 17 specialists were consulted. The results show that Thai music courses have been prescribed in 3 categories. Courses are assigned containing both theoretical and...