WorldWideScience

Sample records for water injection oil

  1. Water-injection or oil-injection for srew-compressors in comparison; Wassereinspritzung oder Oeleinspritzung fuer Schraubenkompressoren im Vergleich

    Energy Technology Data Exchange (ETDEWEB)

    Rinder, L.; Kuchler, M.; Hackl, H. [TU Vienna (Austria). Inst. fuer Maschinenelemente

    2004-07-01

    Water injection in screw compressors has in comparison with the currently used oil-injection many advantages but also severe disadvantages. This is the reason why water injection is not common today. The main advantages of water-injected compressors are: oil-free air, saving of energy, no danger of condensate in the oil-separator vessel and in the bearing lubricant, low temperatures, no fire hazard, no environmental pollution and high pressure ratios in one stage are possible. The main disadvantages of water injected compressors are: Separate bearing-lubrication-system, problems with the sealing of the bearing casing, inadequate lubrication of the rotor flanks, expensive materials for the rotors and stainless materials for the housing, high accuracy of manufacturing, poor sealing of the rotor gaps, high noise level, high water consumption and steam saturated air at the outlet as well as problems with biological contamination after long periods out of use. The aim of our experimental investigation was to find out how far it is possible to use modified standard screw compressor with oil injection for water injection. The limits for the tip speed, the pressures and the temperatures were determined. A comparison between oil-injection and water-injection for the same compressor was carried out. (orig.)

  2. Managing Injected Water Composition To Improve Oil Recovery: A Case Study of North Sea Chalk Reservoirs

    DEFF Research Database (Denmark)

    Zahid, Adeel; Shapiro, Alexander; Stenby, Erling Halfdan; Yan, Wei

    2012-01-01

    with the following injecting fluids: distilled water, brine with and without sulfate, and brine containing only magnesium ions. The total oil recovery, recovery rate, and interaction mechanisms of ions with rock were studied for different injecting fluids at different temperatures and wettability...... only the injection brine composition but also the formation water composition affected the oil recovery at high temperatures from the Stevns Klint chalk rock....

  3. An additive to well injection water for increasing the oil yield

    Energy Technology Data Exchange (ETDEWEB)

    Absov, M.T.; Abutalybov, M.G.; Aslanov, S.M.; Movruzov, E.N.; Musaev, R.A.; Tairov, N.D.

    1979-03-05

    This invention relates to oil production using flooding. The goal of this invention is to increase the oil yield of a producing formation. This is achieved by using a saponin solution as an additive to the water injected into the formation (with related organic substances which are complex organic nitrogen-free compounds from the glycoside group; these substances yield solution that foam easily with an agitation). The use of saponin facilitates good solubility in fresh, sea and formation (alkaline and hard) waters, as well as the absence of sediment formation during dissolution, low solid adsorption, and a significant decrease in the surface water tension on the oil-water boundary. The aqueous saponin solution makes it possible to decrease the production cost of oil, as well as to decrease the development time of the fields and the volume of water injected into the formation and to significantly increase the oil yield.

  4. Experimental Investigation on Dilation Mechanisms of Land-Facies Karamay Oil Sand Reservoirs under Water Injection

    Science.gov (United States)

    Lin, Botao; Jin, Yan; Pang, Huiwen; Cerato, Amy B.

    2016-04-01

    The success of steam-assisted gravity drainage (SAGD) is strongly dependent on the formation of a homogeneous and highly permeable zone in the land-facies Karamay oil sand reservoirs. To accomplish this, hydraulic fracturing is applied through controlled water injection to a pair of horizontal wells to create a dilation zone between the dual wells. The mechanical response of the reservoirs during this injection process, however, has remained unclear for the land-facies oil sand that has a loosely packed structure. This research conducted triaxial, permeability and scanning electron microscopy (SEM) tests on the field-collected oil sand samples. The tests evaluated the influences of the field temperature, confining stress and injection pressure on the dilation mechanisms as shear dilation and tensile parting during injection. To account for petrophysical heterogeneity, five reservoir rocks including regular oil sand, mud-rich oil sand, bitumen-rich oil sand, mudstone and sandstone were investigated. It was found that the permeability evolution in the oil sand samples subjected to shear dilation closely followed the porosity and microcrack evolutions in the shear bands. In contrast, the mudstone and sandstone samples developed distinct shear planes, which formed preferred permeation paths. Tensile parting expanded the pore space and increased the permeability of all the samples in various degrees. Based on this analysis, it is concluded that the range of injection propagation in the pay zone determines the overall quality of hydraulic fracturing, while the injection pressure must be carefully controlled. A region in a reservoir has little dilation upon injection if it remains unsaturated. Moreover, a cooling of the injected water can strengthen the dilation potential of a reservoir. Finally, it is suggested that the numerical modeling of water injection in the Karamay oil sand reservoirs must take into account the volumetric plastic strain in hydrostatic loading.

  5. Toxicity of methylmercury injected into eggs when dissolved in water versus corn oil

    Science.gov (United States)

    Heinz, G.H.; Hoffman, D.J.; Klimstra, J.D.; Stebbins, K.R.; Kondrad, S.L.

    2011-01-01

    In a previous study, the embryotoxicity of methylmercury dissolved in corn oil was compared among 26 species of birds. Corn oil is not soluble in the water-based matrix that constitutes the albumen of an egg. To determine whether the use of corn oil limited the usefulness of this earlier study, a comparison was made of the embryotoxicity of methylmercury dissolved in corn oil versus water. Mallard (Anas platyrhynchos) and chicken (Gallus gallus) eggs were injected with methylmercury chloride dissolved in corn oil or water to achieve concentrations of 0, 0.2, 0.4, 0.8, and 1.6??g/g mercury in the egg on a wet weight basis. Hatching success at each dose of mercury was compared between the two solvents. For mallards, 16.4% of the eggs injected with 1.6??g/g mercury dissolved in water hatched, which was statistically lower than the 37.6% hatch rate of eggs injected with 1.6??g/g mercury dissolved in corn oil, but no differences in hatching success were observed between corn oil and water at any of the other doses. With chicken eggs, no significant differences occurred in percentage hatch of eggs between corn oil and water at any of the mercury doses. Methylmercury dissolved in corn oil seems to have a toxicity to avian embryos similar to that of does methylmercury dissolved in water. Consequently, the results from the earlier study that described the toxicity of methylmercury dissolved in corn oil to avian embryos were probably not compromised by the use of corn oil as a solvent. ?? 2011 SETAC.

  6. Modeling Reservoir Formation Damage due to Water Injection for Oil Recovery

    DEFF Research Database (Denmark)

    Yuan, Hao

    The elliptic equation for non-Fickian transport of suspension in porous media is applied to simulate the reservoir formation damage due to water injection for oil recovery. The deposition release (erosion of reservoir formation) and the suspension deposition (pore plugging) are both taken into...... account. 1-D numerical simulations are carried out to reveal the erosion of reservoir formation due to water injection. 2-D numerical simulations are carried out to obtain the suspension and deposition profiles around the injection wells. These preliminary results indicate the non-Fickian behaviors of...... suspended reservoir fines and the corresponding formation damage due to erosion and relocation of reservoir fines....

  7. Development and testing of the U.S. Coast Guard water injection enhanced viscous oil pumping system (VOPS)

    Energy Technology Data Exchange (ETDEWEB)

    Loesch, R. [United States Coast Guard Headquarters, Washington, DC (United States). Ocean Engineering Div; Moffatt, C. [PCCI-GPC, Williamsburg, VA (United States); Knutson, S. [United States Thirteenth Coast Guard District, Seattle, WA (United States)

    2000-07-01

    A series of workshops related to marine oil spills were held to find ways to improve the viscous oil pumping capability of the U.S. Coast Guard, U.S. Navy and industry at minimal costs and without increasing existing inventories. A prototype viscous oil pumping/off-loading system which consists of a water injection annulus flange mounted on the discharge end of a Desmi DOP-250 positive displacement screw pump. The annulus sends small amounts of water at high pressure into the oil stream creating a water ring that reduces the friction between the viscous oil and the hose wall. This reduces the high pressure losses found in viscous ship-to-ship or ship-to-shore oil transfer operations. It was determined that water injection significantly increases both the quantity of very viscous product and the distance it can be pumped. Other operational procedures were also developed. This included ensuring that water is injected first through the hose to prelubricate the system before pumping the oil. A method to slowly increase the flow rate of oil discharge so as not to choke the water injection was also developed. 6 refs., 8 figs.

  8. Barium Sulfate Scale Formation in Oil Reservoir During Water Injection at High-Barium Formation Water

    Directory of Open Access Journals (Sweden)

    Amer Badr Bin Merdhah

    2007-01-01

    Full Text Available This study presents the results of laboratory experiments carried out to investigate the formation of barium sulfate in sandstone cores from mixing injected sea water and formation water contain high concentration of barium at various temperatures (50 and 80°C and differential pressures (100, 150 and 200 psig. The morphology of scaling crystals as shown by Scanning Electron Microscopy (SEM is presented. Results show a large extent of permeability damage caused by barium sulfate deposits on the rock pore surface. The rock permeability decline indicates the influence of the concentration of barium ions.

  9. Scale Formation in Oil Reservoir During Water Injection at High-Salinity Formation Water

    Directory of Open Access Journals (Sweden)

    Amer Badr Bin Merdhah

    2007-01-01

    Full Text Available This study presents the results of Laboratory experiments carried out to investigate the formation of calcium and strontium sulfates in sandstone cores from mixing injected sea water and formation water contain high concentration of calcium and strontium ions at various temperatures (50 and 80°C and differential pressures (100 and 200 psig. The morphology of scaling crystals as shown by Scanning Electron Microscopy (SEM is presented. Results show a large extent of permeability damage caused by calcium and strontium sulfates deposit on the rock pore surface. The rock permeability decline indicates the influence of the concentration of calcium and strontium ions.

  10. Mobilization of waterflood residual oil by gas injection for water-wet conditions

    Energy Technology Data Exchange (ETDEWEB)

    Billiotte, J. (Ecole des Mines de Paris (FR))

    1992-03-01

    This paper reports that mechanisms by which waterflood residual oil is mobilized and recovered during tertiary gasflooding at quasistatic rates and strongly water-wet conditions were investigated with 2D glass micromodels. Two three-phase oil/water/gas systems were used in the displacement experiments. One system had a positive spreading coefficient, the other a negative coefficient. Results for the two systems were compared to determine the differences in displacement mechanisms and oil recovery efficiency. Displacement in both systems proceeds by a double-drainage mechanism where a gas/oil displacement is always associated with an oil/water displacement. The oil/water displacement leads to coalescence and reconnection of oil blobs. Oil recovery was significantly higher for the positive spreading system. The higher displacement efficiency resulted from flow through thin but continuous oil films that always separated the oil and water phases in the positive spreading system. The absence of oil films and the possibility of direct gas/water displacements reduced oil recovery for the negative spreading system.

  11. An injectable hybrid nanoparticle-in-oil-in-water submicron emulsion for improved delivery of poorly soluble drugs

    Science.gov (United States)

    Wang, Shuo; Wang, Hua; Liang, Wenquan; Huang, Yongzhuo

    2012-04-01

    Poor drugability problems are commonly seen in a class of chemical entities with poor solubility in water and oil, and moreover, physicochemical instability of these compounds poses extra challenges in design of dosage forms. Such problems contribute a significant high failure rate in new drug development. A hybrid nanoparicle-in-oil-in-water (N/O/W) submicron emulsion was proposed for improved delivery of poorly soluble and unstable drugs (e.g., dihydroartemisinin (DHA)). DHA is known for its potent antimalarial effect and antitumor activity. However, its insolubility and instability impose big challenges for formulations, and so far, no injectable dosage forms are clinically available yet. Therefore, an injectable DHA N/O/W system was developed. Unlike other widely-explored systems (e.g., liposomes, micelles, and emulsions), in which low drug load and only short-term storage are often found, the hybrid submicron emulsion possesses three-fold higher drug-loading capacity than the conventional O/W emulsion. Of note, it can be manufactured into a freeze-drying form and can render its storage up to 6 months even in room temperature. The in vivo studies demonstrated that the PK profiles were significantly improved, and this injectable system was effective in suppressing tumor growth. The strategy provides a useful solution to effective delivery of such a class of drugs.

  12. Pre-injection Comparison of Methods for Sampling Formation Water and Associated Gas from a Monitoring Well at a Carbon Dioxide Injection Site, Citronelle Oil Field, Alabama

    Science.gov (United States)

    Conaway, C.; Thordsen, J. J.; Manning, M. A.; Cook, P. J.; Abedini, A. A.; Trautz, R. C.; Thomas, B.; Kharaka, Y. K.

    2012-12-01

    The chemical composition of formation water and associated gases from the lower Cretaceous Paluxy Formation was determined using four different sampling methods at a well in the Citronelle Oil Field, Alabama, a site that will be used for a carbon dioxide injection experiment. Prior to each of the two sampling periods, the well was cleaned from the drilling fluids and KCl solutions by producing at least three pore volumes of formation water. Accurate measurements of the chemical composition of groundwater or formation water, including dissolved gasses, and gas samples is essential in understanding subsurface geochemical processes occurring as a result of geologic carbon dioxide injection, which is used for enhanced oil recovery (EOR) and has been proposed as a means of carbon sequestration. In this study, formation water and gas samples for geochemical analyses were obtained from well D-9-8 #2 at Citronelle using nitrogen lift, submersible pump, U-Tube, and a downhole (Kuster) sampler. Field chemical analyses included electrical conductivity, hydrogen sulfide, alkalinity, and pH, and laboratory analyses included major, minor and trace elements by mass spectrometry and ion chromatography, dissolved carbon, organic acid anions, free and dissolved gas species. The formation water obtained from this well is a Na-Ca-Cl brine with a salinity of 160,000 and 200,000 mg/L total dissolved solids (TDS). Differences were evident between sampling methodologies, particularly in pH, Fe and alkalinity measurements. The results of the comparison demonstrate the difficulty and importance of preserving volatile analytes in samples, with the downhole sampler and U-Tube system performing most favorably in this aspect.

  13. Characterization and Alteration of Wettability States of Alaskan Reserviors to Improve Oil Recovery Efficiency (including the within-scope expansion based on Cyclic Water Injection - a pulsed waterflood for Enhanced Oil Recovery)

    Energy Technology Data Exchange (ETDEWEB)

    Abhijit Dandekar; Shirish Patil; Santanu Khataniar

    2008-12-31

    Numerous early reports on experimental works relating to the role of wettability in various aspects of oil recovery have been published. Early examples of laboratory waterfloods show oil recovery increasing with increasing water-wetness. This result is consistent with the intuitive notion that strong wetting preference of the rock for water and associated strong capillary-imbibition forces gives the most efficient oil displacement. This report examines the effect of wettability on waterflooding and gasflooding processes respectively. Waterflood oil recoveries were examined for the dual cases of uniform and non-uniform wetting conditions. Based on the results of the literature review on effect of wettability and oil recovery, coreflooding experiments were designed to examine the effect of changing water chemistry (salinity) on residual oil saturation. Numerous corefloods were conducted on reservoir rock material from representative formations on the Alaska North Slope (ANS). The corefloods consisted of injecting water (reservoir water and ultra low-salinity ANS lake water) of different salinities in secondary as well as tertiary mode. Additionally, complete reservoir condition corefloods were also conducted using live oil. In all the tests, wettability indices, residual oil saturation, and oil recovery were measured. All results consistently lead to one conclusion; that is, a decrease in injection water salinity causes a reduction in residual oil saturation and a slight increase in water-wetness, both of which are comparable with literature observations. These observations have an intuitive appeal in that water easily imbibes into the core and displaces oil. Therefore, low-salinity waterfloods have the potential for improved oil recovery in the secondary recovery process, and ultra low-salinity ANS lake water is an attractive source of injection water or a source for diluting the high-salinity reservoir water. As part of the within-scope expansion of this project, cyclic water injection tests using high as well as low salinity were also conducted on several representative ANS core samples. These results indicate that less pore volume of water is required to recover the same amount of oil as compared with continuous water injection. Additionally, in cyclic water injection, oil is produced even during the idle time of water injection. It is understood that the injected brine front spreads/smears through the pores and displaces oil out uniformly rather than viscous fingering. The overall benefits of this project include increased oil production from existing Alaskan reservoirs. This conclusion is based on the performed experiments and results obtained on low-salinity water injection (including ANS lake water), vis-a-vis slightly altering the wetting conditions. Similarly, encouraging cyclic water-injection test results indicate that this method can help achieve residual oil saturation earlier than continuous water injection. If proved in field, this would be of great use, as more oil can be recovered through cyclic water injection for the same amount of water injected.

  14. Water over oil

    Energy Technology Data Exchange (ETDEWEB)

    Roche, Pat

    2011-11-15

    In the fall of 2009, a large heavy oil producer approached Champion Technologies Inc., the world's second biggest oilfield chemical company, with a problem. The company had several wells that had the potential to be good producers if one obstacle could be overcome. The oil viscosity was so high that operators couldn't run the pumps at high enough speeds to get good production rates. After a year of research and development, Champion did its first field trial of a chemical additive called Champion Flow Plus VR-1100. The VR-1100 chemical is added to produce water injected into the annular space of the wellbore in order to encapsulate the oil in the water to create globules or droplets of oil surrounded by a water external surface. The goal is to reduce drag and enable the oil to flow more freely. The oil is dispersed within the water, and that oil-and-water dispersion has a lower viscosity than straight oil. When the oil/water dispersion reaches the surface production facilities and is allowed to sit in a tank, the oil and water separate readily. The primary purpose of the VR-1100 is to restore or increase production in wells that have the potential to be good producers if the viscosity problem can be overcome.

  15. Fluid injection for salt water disposal and enhanced oil recovery as a potential problem for the WIPP: Proceedings of a June 1995 workshop and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Silva, M.K.

    1996-08-01

    The Waste Isolation Pilot Plant (WIPP) is a facility of the U.S. Department of Energy (DOE), designed and constructed for the permanent disposal of transuranic (TRU) defense waste. The repository is sited in the New Mexico portion of the Delaware Basin, at a depth of 655 meters, in the salt beds of the Salado Formation. The WIPP is surrounded by reserves and production of potash, crude oil and natural gas. In selecting a repository site, concerns about extensive oil field development eliminated the Mescalero Plains site in Chaves County and concerns about future waterflooding in nearby oil fields helped eliminate the Alternate II site in Lea County. Ultimately, the Los Medanos site in Eddy County was selected, relying in part on the conclusion that there were no oil reserves at the site. For oil field operations, the problem of water migrating from the injection zone, through other formations such as the Salado, and onto adjacent property has long been recognized. In 1980, the DOE intended to prohibit secondary recovery by waterflooding in one mile buffer surrounding the WIPP Site. However, the DOE relinquished the right to restrict waterflooding based on a natural resources report which maintained that there was a minimal amount of crude oil likely to exist at the WIPP site, hence waterflooding adjacent to the WIPP would be unlikely. This document presents the workshop presentations and analyses for the fluid injection for salt water disposal and enhanced oil recovery utilizing fluid injection and their potential effects on the WIPP facility.

  16. Fluid injection for salt water disposal and enhanced oil recovery as a potential problem for the WIPP: Proceedings of a June 1995 workshop and analysis

    International Nuclear Information System (INIS)

    The Waste Isolation Pilot Plant (WIPP) is a facility of the U.S. Department of Energy (DOE), designed and constructed for the permanent disposal of transuranic (TRU) defense waste. The repository is sited in the New Mexico portion of the Delaware Basin, at a depth of 655 meters, in the salt beds of the Salado Formation. The WIPP is surrounded by reserves and production of potash, crude oil and natural gas. In selecting a repository site, concerns about extensive oil field development eliminated the Mescalero Plains site in Chaves County and concerns about future waterflooding in nearby oil fields helped eliminate the Alternate II site in Lea County. Ultimately, the Los Medanos site in Eddy County was selected, relying in part on the conclusion that there were no oil reserves at the site. For oil field operations, the problem of water migrating from the injection zone, through other formations such as the Salado, and onto adjacent property has long been recognized. In 1980, the DOE intended to prohibit secondary recovery by waterflooding in one mile buffer surrounding the WIPP Site. However, the DOE relinquished the right to restrict waterflooding based on a natural resources report which maintained that there was a minimal amount of crude oil likely to exist at the WIPP site, hence waterflooding adjacent to the WIPP would be unlikely. This document presents the workshop presentations and analyses for the fluid injection for salt water disposal and enhanced oil recovery utilizing fluid injection and their potential effects on the WIPP facility

  17. Effects of Saline-Wastewater Injection on Water Quality in the Altamont-Bluebell Oil and Gas Field, Duchesne County, Utah, 1990-2005

    Science.gov (United States)

    Steiger, Judy I.

    2007-01-01

    The Altamont-Bluebell oil and gas field in the Uinta Basin in northeastern Utah has been an important oil and natural gas production area since the 1950s. Saline water is produced along with oil during the oil-well drilling and pumping process. The saline wastewater is disposed of by injection into wells completed in the Duchesne River Formation, Uinta Formation, and other underlying formations. There are concerns that the injected saline wastewater could migrate into the upper part of the Duchesne River and Uinta Formations and surficial deposits that are used for drinking-water supply and degrade the quality of the drinking water. The U.S. Geological Survey, in cooperation with the Utah Department of Natural Resources, Division of Oil, Gas, and Mining, began a program in 1990 to monitor water quality in five wells in the Altamont-Bluebell oil and gas field. By 1996, water-quality samples had been collected from 20 wells. Ten of the 20 wells were sampled yearly during 1996-2005 and analyzed for bromide, chloride, and stable isotopes. Comparison of major chemical constituents, bromide-to-chloride ratios, trend analysis, and isotope ratios were used to assess if saline wastewater is migrating into parts of the formation that are developed for drinking-water supplies. Results of four different analyses all indicate that saline wastewater injected into the lower part of the Duchesne River and Uinta Formations and underlying formations is not migrating upward into the upper parts of the formations that are used for drinking-water supplies.

  18. An injectable hybrid nanoparticle-in-oil-in-water submicron emulsion for improved delivery of poorly soluble drugs

    OpenAIRE

    WANG, SHUO; Wang, Hua; Liang, Wenquan; Huang, Yongzhuo

    2012-01-01

    Poor drugability problems are commonly seen in a class of chemical entities with poor solubility in water and oil, and moreover, physicochemical instability of these compounds poses extra challenges in design of dosage forms. Such problems contribute a significant high failure rate in new drug development. A hybrid nanoparicle-in-oil-in-water (N/O/W) submicron emulsion was proposed for improved delivery of poorly soluble and unstable drugs (e.g., dihydroartemisinin (DHA)). DHA is known for it...

  19. Water injection profiling

    International Nuclear Information System (INIS)

    A method of neutron-gamma logging is described, in which water, injected in a cased well borehole with peforations, is irradiated with neutrons of 10 MeV or greater, and subsequent gamma radiation is detected by a pair of detectors along the borehole. Counting rates of detectors are analyzed in terms of two gamma ray energy windows. Linear flow velocity of fluid moving downward within the casing is used in conjunction with count rate data to determine volume flow rates of water moving in other directions. Apparatus includes a sonde with a neutron source and appropriate gamma sensors

  20. Water injection dredging

    OpenAIRE

    Verhagen, H.J.

    2000-01-01

    Some twenty years ago WIS-dredging has been developed in the Netherlands. By injecting water into the mud layer, the water content of the mud becomes higher, it becomes fluid mud and will start to flow. The advantages of this system are that there is no need of transporting the mud in a hopper, and no need for a pipeline. Also from an energetic point of view the solution is attractive. The system requires however a different way of payment. Most efficient is a maintenance contract with a dred...

  1. Improved Water Flooding through Injection Brine Modification

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Eric Partridge; Thomas, Charles Phillip; Morrow, Norman; (U of Wyoming)

    2003-01-01

    Crude oil/brine/rock interactions can lead to large variations in the displacement efficiency of waterflooding, by far the most widely applied method of improved oil recovery. Laboratory waterflood tests show that injection of dilute brine can increase oil recovery. Numerous fields in the Powder River basin have been waterflooded using low salinity brine (about 500 ppm) from the Madison limestone or Fox Hills sandstone. Although many uncertainties arise in the interpretation and comparison of field production data, injection of low salinity brine appears to give higher recovery compared to brine of moderate salinity (about 7,000 ppm). Laboratory studies of the effect of brine composition on oil recovery cover a wide range of rock types and crude oils. Oil recovery increases using low salinity brine as the injection water ranged from a low of no notable increase to as much as 37.0% depending on the system being studied. Recovery increases using low salinity brine after establishing residual oil saturation (tertiary mode) ranged from no significant increase to 6.0%. Tests with two sets of reservoir cores and crude oil indicated slight improvement in recovery for low salinity brine. Crude oil type and rock type (particularly the presence and distribution of kaolinite) both play a dominant role in the effect that brine composition has on waterflood oil recovery.

  2. Enhanced heavy oil recovery by immiscible WAG injection

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.P.; Sayegh, S.; Huang, S. [Saskatchewan Research Council, Saskatoon, SK (Canada)

    2006-07-01

    With the increase in energy consumption and the decline of conventional oil in western Canada, there has been an increased interest in heavy oil for supplying Canada's energy needs. Some of the technical challenges facing enhanced heavy oil recovery were discussed. In addition to being very viscous, the heavy oil in western Canada is located in thin and shallow formations with low reservoir pressures. As such, miscibility between the oil and injected solvent gases, such as carbon dioxide (CO{sub 2}), cannot be achieved. This study examined the feasibility of using CO{sub 2} and enriched flue gas in an immiscible water-alternating-gas (WAG) injection process in a Saskatchewan reservoir where thermal recovery methods are not economical. In an immiscible WAG process, gas and water are alternately injected. The water following gas injection drives the reduced-viscosity oil, resulting in displacement with an improved mobility ratio. In addition to reducing viscosity, the dissolved gas swells the oil so that for a given fixed residual oil saturation, less oil remains after a waterflood. This study focused on phase behaviour and fluid property measurements of CO{sub 2}, nitrogen and an enriched flue gas mixed with a heavy crude oil with an API gravity of 12.4. Coreflooding tests of immiscible WAG injection at reservoir conditions were performed to examine the effect of different gases, such as CO{sub 2} and impure CO{sub 2}, on oil recovery efficiency in the WAG process. Laboratory measurements were carried out to characterize the system, determine the influential mechanisms, and supply data for simulation of the field implementation. Tertiary recoveries of about 6 per cent initial oil in place were obtained, indicating that nitrogen in the enriched flue gas had a positive effect on oil recovery, as did the addition of a foaming agent with the injected CO{sub 2}. The phase behaviour measurements showed that the viscosity reduction mechanism of a conventional immiscible injection process cannot alone account for the results obtained in the laboratory coreflood tests. Additional mechanisms are suggested for oil recovery and water blocking by free gas. 10 refs., 5 tabs., 6 figs.

  3. POLYMER GELS FOR CONTROLLING WATER THIEF ZONES IN INJECTION WELLS

    OpenAIRE

    Gustavo-Adolfo Maya-Toro; Rubén-Hernán Castro-García; Zarith del Pilar Pachón-Contreras; José-Francisco Zapata-Arango

    2012-01-01

    ABSTRACT Oil recovery by water injection is the most extended technology in the world for additional recovery, however, formation heterogeneity can turn it into highly inefficient and expensive by channeling injected water. This work presents a chemical option that allows controlling the channeling of important amounts of injection water in specific layers, or portions of layers, which is the main explanation for low efficiency in many secondary oil recovery processes. The core of the stages ...

  4. Oil injection into the blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Dongsheng Liao; Mannila, P.; Haerkki, J.

    1997-12-31

    Fuel injection techniques have been extensively used in the commercial blast furnaces, a number of publications concerning the fuels injection have been reported. This present report only summarizes the study achievements of oil injection due to the research need the of authors, it includes the following parts: First, the background and the reasons reducing coke rate of oil injection are analyzed. Reducing coke rate and decreasing the ironmaking costs are the main deriving forces, the contents of C, H and ash are direct reasons reducing coke rate. It was also found that oil injection had great effects on the state of blast furnace, it made operation stable, center gas flow develop fully, pressure drop increase, descent speed of burden materials decrease and generation of thermal stagnation phenomena, the quality of iron was improved. Based on these effects, as an ideal mean, oil injection was often used to adjust the state of blast furnace. Secondly, combustion behavior of oil in the raceway and tuyere are discussed. The distribution of gas content was greatly changed, the location of CO, H{sub 2} generation was near the tuyere; the temperature peak shifts from near the raceway boundary to the tuyere. Oxygen concentration and blast velocity were two important factors, it was found that increasing excess oxygen ratio 0.9 to 1.3, the combustion time of oil decreases 0.5 msec, an increase of the blast velocity results in increasing the flame length. In addition, the nozzle position and oil rate had large effects on the combustion of oil. Based on these results, the limit of oil injection is also discussed, soot formation is the main reason limiting to further increase oil injection rate, it was viewed that there were three types of soot which were generated under blast furnace operating conditions. The reason generating soot is the incomplete conversion of the fuel. Finally, three methods improving combustion of oil in the raceway are given: Improvement of oil atomization, increased blast temperature and oxygen and injection of reducing gases into the bosh zone. (orig.) 25 refs.

  5. Water quality considerations resulting in the impaired injectivity of water injection and disposal wells

    International Nuclear Information System (INIS)

    An environmentally responsible way to improve hydrocarbon recovery is to maintain pressure by water injection. This is a desirable method because unwanted produced water from oil and gas wells can be re-injected into producing or disposal formations. The success of the operation, however, depends on injecting the necessary volume of water economically, below the fracture gradient pressure of the formation. Well placement, geometry and inherent formation quality and relative permeability characteristics are some of the many other factors which influence the success of any injection project. Poor injection or poor quality of disposal water can also compromise the injectivity for even high quality sandstone or carbonate formations. This would necessitate costly workovers and recompletions. This paper presented some leading edge diagnostic techniques and evaluation methods to determine the quality of injected water. The same techniques could be used to better understand the effect of potential contaminants such as suspended solids, corrosion products, skim/carryover oil and grease, scales, precipitates, emulsions, oil wet hydrocarbon agglomerates and many other conditions which cause injectivity degradation. 14 refs., 1 tab., 15 figs

  6. Influence of Gamma Radiation on the Treatment of Sulfate Reducing Bacteria in the Injection Water Used for the Enhanced Oil Recovery

    International Nuclear Information System (INIS)

    The counts of sulfate reducing bacteria (SRB) in the water samples collected from the well head (formation water) and outlet of petroleum treatment plant (Produced water) in a petroleum field in middle delta- Egypt were determined. The data showed a low count of (SRB) in the collected formation water sample and there was an obvious increase in the bacterial counts which appeared in the produced water, that may reveal that the presence of appropriate conditions for the growth of (SRB) in the closed system in treatment plant. Two scale inhibitors were tested through jar test, the scale inhibitor I had maximum efficiency at 20 ppm, two SRB biocides were screened for their bactericidal activities. It was found that the biocides A was slightly superior in respect to the antibacterial efficacy compared to B in presence of 20 ppm scale inhibitor. These biocides were test for the study of the combined treatment with gamma radiation to maximize the efficiency on sulfate reducing bacteria using the minimum effective dose of both radiation and biocides to eliminate the negative impacts of the chemicals used and the radiation applied. The results demonstrated that, the lethal doses of biocides were (300 ppm) of biocides A or (400 ppm) of biocides B at 1 kGy irradiation dose. The treated produced water was evaluated in respect of enhanced oil recovery, the data showed increase of the recovery capacity by the irradiation and chemical treatment. This technology could be used for the water that are injected into reservoirs, and suitable for oil field and pipeline operators, and presented a viable bacteria control method

  7. Water issues associated with heavy oil production.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A.; Quinn, J. J.; Environmental Science Division

    2008-11-28

    Crude oil occurs in many different forms throughout the world. An important characteristic of crude oil that affects the ease with which it can be produced is its density and viscosity. Lighter crude oil typically can be produced more easily and at lower cost than heavier crude oil. Historically, much of the nation's oil supply came from domestic or international light or medium crude oil sources. California's extensive heavy oil production for more than a century is a notable exception. Oil and gas companies are actively looking toward heavier crude oil sources to help meet demands and to take advantage of large heavy oil reserves located in North and South America. Heavy oil includes very viscous oil resources like those found in some fields in California and Venezuela, oil shale, and tar sands (called oil sands in Canada). These are described in more detail in the next chapter. Water is integrally associated with conventional oil production. Produced water is the largest byproduct associated with oil production. The cost of managing large volumes of produced water is an important component of the overall cost of producing oil. Most mature oil fields rely on injected water to maintain formation pressure during production. The processes involved with heavy oil production often require external water supplies for steam generation, washing, and other steps. While some heavy oil processes generate produced water, others generate different types of industrial wastewater. Management and disposition of the wastewater presents challenges and costs for the operators. This report describes water requirements relating to heavy oil production and potential sources for that water. The report also describes how water is used and the resulting water quality impacts associated with heavy oil production.

  8. Economics of water injected air screw compressor systems

    Science.gov (United States)

    Venu Madhav, K.; Kovačević, A.

    2015-08-01

    There is a growing need for compressed air free of entrained oil to be used in industry. In many cases it can be supplied by oil flooded screw compressors with multi stage filtration systems, or by oil free screw compressors. However, if water injected screw compressors can be made to operate reliably, they could be more efficient and therefore cheaper to operate. Unfortunately, to date, such machines have proved to be insufficiently reliable and not cost effective. This paper describes an investigation carried out to determine the current limitations of water injected screw compressor systems and how these could be overcome in the 15-315 kW power range and delivery pressures of 6-10 bar. Modern rotor profiles and approach to sealing and cooling allow reasonably inexpensive air end design. The prototype of the water injected screw compressor air system was built and tested for performance and reliability. The water injected compressor system was compared with the oil injected and oil free compressor systems of the equivalent size including the economic analysis based on the lifecycle costs. Based on the obtained results, it was concluded that water injected screw compressor systems could be designed to deliver clean air free of oil contamination with a better user value proposition than the oil injected or oil free screw compressor systems over the considered range of operations.

  9. Cooling of oil injected screw compressors by oil atomisation

    International Nuclear Information System (INIS)

    This paper addresses the effect of oil atomisation in an oil-injected screw compressor. A test rig was built to assess the performance of different types of atomisers. Atomisers varying from fine atomisation to coarse atomisation were tested. Experiments on the test rig show that lowering the oil droplet diameter results in a considerably higher heat transfer. Growing oil flow rate, also gives a better cooling effectiveness. In parallel with the experiments, a thermodynamic model is developed by which the compression process can be calculated for every degree of revolution of the male-rotor. This way the influence of cooling oil temperature, cooling oil mass flow rate and injection point can be analysed. Having a better heat transfer effectiveness does not give a considerable gain in specific work. Lowering oil temperature gives better results, while changing the oil flow rate only gives small gains. Furthermore it is shown that cooling oil coming from the bearings has a negative influence on the performance. This paper shows that trying to reach isothermal compression through oil atomisation is not possible. The importance of the cooling effectiveness in the thermodynamic process is too small to have a significant influence

  10. Geochemical effects of CO2 injection on produced water chemistry at an enhanced oil recovery site in the Permian Basin of northwest Texas, USA: Preliminary geochemical and Li isotope results

    Science.gov (United States)

    Pfister, S.; Gardiner, J.; Phan, T. T.; Macpherson, G. L.; Diehl, J. R.; Lopano, C. L.; Stewart, B. W.; Capo, R. C.

    2014-12-01

    Injection of supercritical CO2 for enhanced oil recovery (EOR) presents an opportunity to evaluate the effects of CO2 on reservoir properties and formation waters during geologic carbon sequestration. Produced water from oil wells tapping a carbonate-hosted reservoir at an active EOR site in the Permian Basin of Texas both before and after injection were sampled to evaluate geochemical and isotopic changes associated with water-rock-CO2 interaction. Produced waters from the carbonate reservoir rock are Na-Cl brines with TDS levels of 16.5-34 g/L and detectable H2S. These brines are potentially diluted with shallow groundwater from earlier EOR water flooding. Initial lithium isotope data (?7Li) from pre-injection produced water in the EOR field fall within the range of Gulf of Mexico Coastal sedimentary basin and Appalachian basin values (Macpherson et al., 2014, Geofluids, doi: 10.1111/gfl.12084). Pre-injection produced water 87Sr/86Sr ratios (0.70788-0.70795) are consistent with mid-late Permian seawater/carbonate. CO2 injection took place in October 2013, and four of the wells sampled in May 2014 showed CO2 breakthrough. Preliminary comparison of pre- and post-injection produced waters indicates no significant changes in the major inorganic constituents following breakthrough, other than a possible drop in K concentration. Trace element and isotope data from pre- and post-breakthrough wells are currently being evaluated and will be presented.

  11. Air injection low temperature oxidation process for enhanced oil recovery from light oil reservoirs

    International Nuclear Information System (INIS)

    This paper represents EOR (Enhanced Oil Recovery) methods to recover unswept oil from depleted light oil reservoirs. The essential theme here is the removal of oxygen at LTO (Low Temperature Oxidation) from the injected air for a light oil reservoir by means of some chemical reactions occurring between oil and oxygen. In-situ combustion process, HTO (High Temperature Oxidation) is not suitable for deep light oil reservoirs. In case of light oil reservoirs LTO is more suitable to prevail as comparative to HTO. Few laboratory experimental results were obtained from air injection process, to study the LTO reactions. LTO process is suitable for air injection rate in which reservoir has sufficiently high temperature and spontaneous reaction takes place. Out comes of this study are the effect of LTO reactions in oxygen consumption and the recovery of oil. This air injection method is economic compared to other EOR methods i.e. miscible hydrocarbon gas, nitrogen, and carbon dioxide flooding etc. This LTO air injection process is suitable for secondary recovery methods where water flooding is not feasible due to technical problems. (author)

  12. Water injection performance in Libyan carbonate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Nasr, M.; Rajab, B. Ben [Libya Univ., Tripoli (Libya). Dept. of Petroleum Engineering; Aattia, Ali [Veba Oil Operations, Tripoli (Libya)

    1998-07-01

    Formation damage caused by inappropriate drilling, completion, workover, production scheme and water injection operation is a major cost to the oil and gas industry worldwide. The reservoir rocks and resident fluids are essentially in a state of physiochemical and thermodynamic equilibrium. Disruption of this equilibrium due to changes in pressure, temperature and fluid chemistry around the wellbore region can create barriers to flow and yield low production rates. (author)

  13. Water-cooled insulated steam-injection wells

    Science.gov (United States)

    Back, L. H.; Jaffe, L. D.

    1980-01-01

    Water is used as insulated coolant and heat-transfer medium for steam-injection oil wells. Approach is somewhat analogous to cooling system in liquid-propellant rocket. In addition to trapping and delivering heat to steam-injection point, water will also keep casing cooler, preventing or reducing casing failures caused by thermal stresses.

  14. Enhanced oil recovery: air injection in a Potiguar basin light oil reservoir

    International Nuclear Information System (INIS)

    The feasibility of air injection, at reservoir temperature and pressure, is studied with a view towards enhanced oil recovery from the Potiguar Basin (Brazil). The aim is to inject air in such a way that almost all oxygen is consumed and the residual gas, basically nitrogen, displaces the oil. In this work, the reactivity of crude oil samples is studied at conditions of Low Temperature Oxidation (LTO). As a first step, the kinetic and equilibrium properties are measured using a variable volume PVT glass equilibrium cell, which enabled to simultaneously observe the sample and measure the reaction rates and phase compositions, needed for estimating oxygen consumption. Different strategies are then studied for enhanced recovery by water and air injection, using a commercial reservoir simulator for thermal processes. The results show that it was possible to delineate an optimum strategy for LTO recovery of light crude oils. (author)

  15. Numerical Simulation of Geostress and Pore Pressure Evolution around Oil or Water Well under Different Injection-Production Ratio

    OpenAIRE

    Liu Jian-jun; Yu Xian-bin; Zhao Jin-zhou

    2013-01-01

    Geostress evolution in the process of oil field development can directly influence wellbore stability. Therefore, it is significant to strengthen the research of the evolution rule for well drilling and casing protection. Considering the interaction between reservoir seepage and stress fields, a mathematical model to characterize the stress evolution around wellbore was built. Using the FEM Software ABAQUS, through numerical simulation, the authors studied the evolution features of pore press...

  16. Measuring and Modeling the Displacement of Connate Water in Chalk Core Plugs during Water Injection

    DEFF Research Database (Denmark)

    Korsbech, Uffe C C; Aage, Helle Karina; Andersen, Bertel Lohmann; Hedegaard, Kathrine; Springer, Niels

    2006-01-01

    The movement of connate water spiked with gamma emitting 22Na was studied during laboratory water flooding of oil saturated chalk from a North Sea oil reservoir. Using a one dimensional gamma monitoring technique is was observed that connate water is piled-up at the front of the injection water a...

  17. Additive to sea water injected into a stratum. [Sulfate anilines

    Energy Technology Data Exchange (ETDEWEB)

    Abasov, M.T.; Aliev, D.A.; Kasinov, F.A.; Tairov, N.D.

    1980-01-15

    An additive is proposed which lowers the sedimentation and the seal of the stratum while sea waters interact with the stratal fluid and which increases the oil recovery coefficient. Sulphate anilines are used as admixtures instead of the hydroethylene phenols used earlier. Here, the oil recovery coefficient increases by 83% (instead of 78%) when injecting a volume of water into the stratum that is equal to 3-4 times the volume of the stratal pores (instead of 8-10). One advantage of the invention is that the labor expended in water injection is decreased, and consequently the cost of the extracted oil is also lowered.

  18. Utilization of carbon steel with one per cent of chromium in water injection wells equipment in oil fields; Utilizacao de aco carbono com 1 por cento de cromo em equipamentos de pocos de injecao de agua em campos de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Coutinho, A.; Barbosa, B. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Exploracao e Producao; Joia, C.; Andrade, C. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas; Silva, Julio M. [Vallourec e Mannesmann do Brasil, Rio de Janeiro, RJ (Brazil)

    2000-07-01

    In order to produce oil in some oil reservoirs of Campos Fields, water has to be injected in the reservoir just to keep the pressure and not to decrease the production rate. Water injection wells are used and carbon steel is the material that it is widely used due to its lower price. Water treatment has therefore to be carried out in off-shore platforms to maintain corrosion rates controlled. Dissolved oxygen content is the most important variable specified. It has to be kept below 10 ppb to allow the specified equipment, pipeline and tubing life to be reached. In this work the effect of 1% Cr addition to the chemical composition of carbon steel to the corrosion rate is evaluated, as well as the effects of oxygen content, the temperature and the speed flow. (author)

  19. Analysis of Dynamic Characteristics of Water Injection Pump

    International Nuclear Information System (INIS)

    Water injection pump outputs oil with high pressure during this process, seawater is injected into the well to recover the well pressure and maintain high productivity. A water injection pump has high productivity, and herefore, it serves as a key piece of equipment in marine plants. In this light, water injection pumps are being studied widely in industry. In this study, the rotor dynamics is analyzed to determine the natural frequency according to the bearing stiffness and operation speed change. This study aims to establish the pump reliability through critical speed, stability, and unbalance response analysis

  20. Ammonium Concentrations in Produced Waters from a Mesothermic Oil Field Subjected to Nitrate Injection Decrease through Formation of Denitrifying Biomass and Anammox Activity?

    OpenAIRE

    Cornish Shartau, S. L.; Yurkiw, M.; Lin, S.; Grigoryan, A. A.; Lambo, A.; Park, H*-S; Lomans, B. P.; VAN BIEZEN, E; Jetten, M. S. M.; Voordouw, G

    2010-01-01

    Community analysis of a mesothermic oil field, subjected to continuous field-wide injection of nitrate to remove sulfide, with denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA genes indicated the presence of heterotrophic and sulfide-oxidizing, nitrate-reducing bacteria (hNRB and soNRB). These reduce nitrate by dissimilatory nitrate reduction to ammonium (e.g., Sulfurospirillum and Denitrovibrio) or by denitrification (e.g., Sulfurimonas, Arcobacter, and Thauera). Moni...

  1. Production of light oil by injection of hot inert gas

    Science.gov (United States)

    Ruidas, Bidhan C.; Ganguly, Somenath

    2016-05-01

    Hot inert gas, when injected into an oil reservoir is capable of generating a vaporization-condensation drive and as a consequence, a preferential movement of the lighter components to the production well. This form of displacement is an important unit mechanism in hot flue-gas injection, or in thermal recovery from a watered-out oil reservoir. This article presents the movement of heat front vis-à-vis the changes in the saturation profile, and the gas-phase composition. The plateau in the temperature profile due to the exchange of latent heat, and the formation of water bank at the downstream are elaborated. The broadening of the vaporization-condensation zone with continued progression is discussed. The effect of inert gas temperature on the cumulative production of oil is reviewed. The results provide insight to the vaporization-condensation drive as a stand-alone mechanism. The paper underscores the relative importance of this mechanism, when operated in tandem with other processes in improved oil recovery and CO2 sequestration.

  2. Improved residual light oil recovery by air injection (LTO process)

    Energy Technology Data Exchange (ETDEWEB)

    Greaves, M.; Ren, S.R.; Rathbone, R.R. [Bath Univ., Bath (United Kingdom); Fishluck, T.; Ireland, R. [AEA Technology, (United Kingdom)

    1998-09-01

    A study was conducted to examine the feasibility of a new air injection technique called the low temperature oxidation (LTO) process for improved oil recovery from light oil reservoirs. Enhanced oil recovery from deep, light oil reservoirs using the LTO process is achieved by removing the oxygen from the injected air through low temperature oxidation with oil in the reservoir. Preliminary results on reaction kinetics and oil displacements were presented. Air injection has been used successfully in onshore operations, but has not been applied to any offshore installation. Safety issues regarding air injection for offshore use were also discussed. Experimental results obtained from a small batch reactor and an oxidation tube have shown that North Sea light oils were sufficiently reactive at near-reservoir conditions for the LTO process to be feasible. Significant oil recovery was obtained under the low rate LTO conditions using both crushed reservoir core and sandpacks. 11 refs., 1 tab., 4 figs.

  3. Oil water laboratory

    International Nuclear Information System (INIS)

    Usually, the oily water effluent from petroleum processes needs to be treated prior to its environment discard and/or reuse. The synthesis of such water effluent residues in an Oily Water Laboratory - equipped with Water Treatment Pilot Scale Units - is fundamental to the study and effectiveness comparison among the typical industrial water treatment processes. The Oily Water Laboratory will allow the reproduction - in a small scale - of any oily water effluent produced in the industrial PETROBRAS units - such reproduction can be obtained by using the same fluids, oily concentration, salinity, process temperature, particle size distribution etc. Such Laboratory also allows the performance analysis of typical industrial equipment used throughout the water treatment schemes (e.g., hydro-cyclones), resulting in design and/or operational guidelines for these industrial scale schemes. In the particular niche of very small diameter oil droplet removal, more efficient and non-conventional schemes - such as centrifuges and/or membrane filtration - will be also studied in the Laboratory. In addition, the Laboratory shall be used in the certification of in-line oily water analyzers (e.g., TOC - Total Organic Carbon and OWC - Oil Wax Content). This paper describes the characteristics of such Laboratory and its main operational philosophy. (author)

  4. Study on the Fine Optimization of Water Injection in SZ Oilfield of Bohai Bay

    OpenAIRE

    SUN Guangyi; MA Kuiqian; Yang, Jing

    2014-01-01

    Bohai SZ Oilfield has entered into high water cut stage, how to realize the goal of fine optimization of water injection to enhance oil recovery is an important problem for reservoir engineers. Fine optimization of water injection needs ‘inject enough’, ‘inject well’ and ‘inject effectively’. The paper gets relationship between annual oil production rate and annual water production rate of different water cut stages of SZ Oilfield with the life cycle theory and draws the annual water injectio...

  5. Steam injection for heavy oil recovery: Modeling of wellbore heat efficiency and analysis of steam injection performance

    International Nuclear Information System (INIS)

    Highlights: • A comprehensive mathematical model was established to estimate wellbore heat efficiency of steam injection wells. • A simplified approach of predicting steam pressure in wellbores was proposed. • High wellhead injection rate and wellhead steam quality can improve wellbore heat efficiency. • High wellbore heat efficiency does not necessarily mean good performance of heavy oil recovery. • Using excellent insulation materials is a good way to save water and fuels. - Abstract: The aims of this work are to present a comprehensive mathematical model for estimating wellbore heat efficiency and to analyze performance of steam injection for heavy oil recovery. In this paper, we firstly introduce steam injection process briefly. Secondly, a simplified approach of predicting steam pressure in wellbores is presented and a complete expression for steam quality is derived. More importantly, both direct and indirect methods are adopted to determine the wellbore heat efficiency. Then, the mathematical model is solved using an iterative technique. After the model is validated with measured field data, we study the effects of wellhead injection rate and wellhead steam quality on steam injection performance reflected in wellbores. Next, taking cyclic steam stimulation as an example, we analyze steam injection performance reflected in reservoirs with numerical reservoir simulation method. Finally, the significant role of improving wellbore heat efficiency in saving water and fuels is discussed in detail. The results indicate that we can improve the wellbore heat efficiency by enhancing wellhead injection rate or steam quality. However, high wellbore heat efficiency does not necessarily mean satisfactory steam injection performance reflected in reservoirs or good performance of heavy oil recovery. Moreover, the paper shows that using excellent insulation materials is a good way to save water and fuels due to enhancement of wellbore heat efficiency

  6. The shift of microbial population composition accompanying the injected water flowing in the water-flooding petroleum reservoirs

    OpenAIRE

    Gao, P. K.; G. Q. Li; Tian, H. M.; Wang, Y.S.; Sun, H. W.; Ma, T.

    2014-01-01

    In water-flooding petroleum reservoir, microbial populations in injected water are expected to migrate into oil-bearing strata and reach production wells. To demonstrate this, we firstly investigated microbial compositions in a homogeneous sandstone reservoir. The results indicated that the injected water harbored more microbial cells than produced water, and the shared populations and their abundance accounted for a minor fraction in injected water, while dominated i...

  7. Produced water management - clean and safe oil and gas production

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The conference contains 22 presentations on topics within pollution sources and abatement, discharge reductions, water analysis and monitoring, water production, treatment and injection, enhanced recovery, condensate water, produced water markets, separation technologies for oil/gas/condensate and water, oil removal from solids, environmental risks of oil and gas production and environmental impacts on ecosystems and fisheries. Some oil field case histories are presented. The main focus is on the northern areas such as the North Sea, the north Atlantic Ocean and the Barents Sea, and technological aspects (tk)

  8. Produced water management - clean and safe oil and gas production

    International Nuclear Information System (INIS)

    The conference contains 22 presentations on topics within pollution sources and abatement, discharge reductions, water analysis and monitoring, water production, treatment and injection, enhanced recovery, condensate water, produced water markets, separation technologies for oil/gas/condensate and water, oil removal from solids, environmental risks of oil and gas production and environmental impacts on ecosystems and fisheries. Some oil field case histories are presented. The main focus is on the northern areas such as the North Sea, the north Atlantic Ocean and the Barents Sea, and technological aspects (tk)

  9. Injection of heavy fuel oil into the blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Paloposki, T. [Helsinki Univ. of Technology, Otaniemi (Finland); Hakala, J.; Mannila, P.; Laukkanen, J. [Oulu Univ. (Finland)

    1996-12-31

    This study deals with the injection and combustion of heavy fuel oil in blast furnaces. The injection of the oil was studied experimentally in a small-scale test rig. The combustion of the oil was analysed with a commercial computer program for flow and combustion simulations. Results from computer simulations show that the combustion of the oil can be improved by decreasing the size of the oil drops and by enhancing the mixing between the oil drops and the hot blast. The devolatilization rate of the oil mainly depends on the size of the oil drops. The combustion rate of the volatiles mainly depends on the effectiveness of turbulent mixing with combustion air. Methods to decrease the size of the oil drops were sought in the experimental part of the study. Experimental results show that the size of the oil drops increases with increasing mass flow rate of the oil and decreases with increasing velocity of the hot blast. Methods to improve the mixing between the oil drops and the hot blast are suggested but have not yet been experimentally tested. (author) (4 refs.)

  10. Scale Formation Due to Water Injection in Berea Sandstone Cores

    OpenAIRE

    A.B.B. Merdhah; A.A.M. Yassin

    2009-01-01

    This study was conducted to investigate the permeability reduction caused by deposition of calcium, strontium and barium sulfates in Berea sandstone cores from mixing of injected Malaysian sea waters (Angsi and Barton) and formation water that contained high concentration of calcium, barium and strontium ions at various temperatures (60-90°C) and differential pressures (75-100 psig). The solubility of common oil field scales formed and how their solubilities were affected by changes in salini...

  11. Removal of colloidal suspensions from injection water

    Energy Technology Data Exchange (ETDEWEB)

    Parcalabescu, I.D.; Manea, F.

    1981-01-01

    The relationship is presented between the content of colloidal particles in the injection water and temperature (from 0 to 30/sup 0/C). This relationship is explained by the structural formation of colloidal particles of injection water and the laws governing ion exchange.

  12. INJECTION PROFILE MODIFICATION IN A HOT, DEEP MINNELUSA WATER INJECTION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Lyle A. Johnson Jr.

    2001-09-01

    As oil fields in the United States age, production enhancements and modifications will be needed to increase production from deeper and hotter oil reservoirs. New techniques and products must be tested in these areas before industry will adapt them as common practice. The Minnelusa fields of northeastern Wyoming are relatively small, deep, hot fields that have been developed in the past ten to twenty years. As part of the development, operators have established waterfloods early in the life of the fields to maximize cumulative oil production. However, channeling between injectors and producers does occur and can lead to excessive water production and bypassed oil left in the reservoir. The project evaluated the use of a recently developed, high-temperature polymer to modify the injection profiles in a waterflood project in a high-temperature reservoir. The field is the Hawk Point field in Campbell County, Wyoming. The field was discovered in 1986 and initially consisted of eight producing wells with an average depth of 11,500 feet and a temperature of 260 F (127 C). The polymer system was designed to plug the higher permeable channels and fractures to provide better conformance, i.e. sweep efficiency, for the waterflood. The project used a multi-well system to evaluate the treatment. Injection profile logging was used to evaluate the injection wells both before and after the polymer treatment. The treatment program was conducted in January 2000 with a treatment of the four injection wells. The treatment sizes varied between 500 bbl and 3,918 bbl at a maximum allowable pressure of 1,700 psig. Injection in three of the wells was conducted as planned. However, the injection in the fourth well was limited to 574 bbl instead of the planned 3,750 bbl because of a rapid increase in injection pressure, even at lower than planned injection rates. Following completion of polymer placement, the injection system was not started for approximately one week to permit the gel to set. The system then returned to operation as before the test with no major change in the fieldwide injection. The injection and production rates for the field were monitored for approximately one year to give the production side of the system time to stabilize. The polymer treatment conducted on the injection wells in Hawk Point is believed to be the largest treatment of a hot, deep reservoir to date. These injection well treatments did produce some change in the injection profile of the injection wells. However, it is very disappointing that there was no significant improvement in the performance of the field. There was no noticeable reduction in the water production, the water-oil ratio (WOR), or an increase in oil production. The cosponsor has determined that the field is currently at its economic limit because of the high cost of this deep operation and the continual downhole problems. A restructuring of the injection-production pattern is presently being done to prolong the life of the field.

  13. The Hot Water Oil Expulsion Technique for Geothermal Resources

    OpenAIRE

    Xuezhong Wang

    2012-01-01

    With the rapid development of Chinese petroleum industry, Oil production way of burning crude oil to produce steam need change. Heavy oil reservoir with thin layer or edgewater is unsuitable thermal recovery, electric heating leads to considerable electrical consumption, low injection water temperature decreases reservoir temperature and increased crude oil viscosity. The prolonged temperature difference break up reservoir pore throat cement and framework minerals. To improve high-capacity ch...

  14. Oil and rising water

    International Nuclear Information System (INIS)

    Middle Eastern oil producers have an obligation to future generations to tackle the causes of global warming. In the Middle East, we have a special need to pay attention to these warnings. As many of the countries of the region are low-lying and short of water, we are under threat from rising sea levels and desertification. Earlier this year the Intergovernmental Panel on Climate Change concluded that by the end of this century sea levels could rise by as much as 88 centimetres. This could flood not only coastal areas of the United Arab Emirates (UAE), but also much of the heavily populated Nile Delta in Egypt and the lower reaches of the Tigris and Euphrates river system in Iraq

  15. Oil production and water management in Oman

    International Nuclear Information System (INIS)

    This paper describes the development of integrated (production) water management in Petroleum Development Oman. In its existing oil fields the water cut is rising rapidly and water production is expected to increase two to three times in the next 15 years. Re-injection of production water will continue to account for less than half of the volume of co-produced water. Current subsurface disposal of production water to shallow Tertiary formations is based on thorough knowledge of the local hydrogeology and does not affect potable water resources. However, in view of the expected increase in production water volume, utilization and disposal options have been re-evaluated. This review has been facilitated by recently acquired data on production water quality and by the results of research in dehydration and de-oiling technologies and of tests with production chemicals. The combined knowledge base is used to arrive at water management strategies for individual oil fields that are sound both in principle and in practice

  16. THAI : Toe to Heel Air Injection : a revolutionary heavy oil and oil sands in-situ recovery technology

    Energy Technology Data Exchange (ETDEWEB)

    Bloomer, C. [Petrobank Energy and Resources Ltd., Calgary, AB (Canada)]|[Orion Oil Canada Ltd., Calgary, AB (Canada)

    2003-07-01

    This paper reviews the evolution of an in-situ recovery method for heavy oil and oil sands called toe-to-heel air injection (THAI). THAI is an integrated horizontal well process for in situ recovery and upgrading of heavy oil and bitumen. It uses both a vertical injection well and a horizontal producer well. The process was developed in 1993 at the University of Bath, in the United Kingdom and has been patented in the United States, Canada, Venezuela and the United Kingdom. Successful field scale runs have been conducted and an application has been submitted to the Alberta Energy and Utilities Board for an experimental pilot test to be performed in 2004 at the Whitesands pilot project site near Fort McMurray. The key pilot experimental parameters will include: oil, water and gas production rates; quality of the produced oil; effectiveness of produced gas lift; production temperatures; quality of the produced water; and, composition of the produced gas. The THAI process has many advantages over the steam assisted gravity drainage (SAGD) process, including: minimal quantities of fresh water are needed; minimal quantities of natural gas are consumed; 85 per cent less water is produced; recovered heat can be used for electricity generation; the use of upgraded oil eliminates the need for diluent; 50 per cent less carbon dioxide emissions; and, a higher resource recovery rate. 3 tabs., 13 figs.

  17. Radial oil injection applied to main engine bearings: evaluation of injection control rules

    DEFF Research Database (Denmark)

    Estupiñan, EA; Santos, Ilmar

    2012-01-01

    dynamic behaviour of the main bearing of a medium-size engine is theoretically analysed when the engine operates with controllable radial oil injection and four different injection control rules. The theoretical investigation is based on a single-cylinder combustion engine model. The performance of the......The performance of main bearings in a combustion engine affects key functions such as durability, noise and vibration. Thus, with the aim of reducing friction losses and vibrations between the crankshaft and the bearings, the work reported here evaluates different strategies for applying...... controllable radial oil injection to main crankshaft journal bearings. In an actively lubricated bearing, conventional hydrodynamic lubrication is combined with controllable hydrostatic lubrication, where the oil injection pressures can be modified depending on the operational conditions. In this study, the...

  18. Steam injection and enhanced bioremediation of heavy fuel oil contamination

    International Nuclear Information System (INIS)

    Steam injection has been shown to be successful in remediating sites impacted by heavy fuel oils. Field demonstrations at both pilot and full scale have removed No. 2 diesel fuel and Navy Special Fuel Oil (No. 5 fuel oil) from impacted soils. Removal mechanisms include enhanced volatilization of vapor- and adsorbed-phase contaminants and enhanced mobility due to decreased viscosity and associated residual saturation of separate- and adsorbed-phase contaminants. Laboratory studies have shown that indigenous biologic populations are significantly reduced, but are not eliminated by steam injection operations. Populations were readily reestablished by augmentation with nutrients. This suggests that biodegradation enhanced by warm, moist, oxygenated environments can be expected to further reduce concentrations of contaminants following cessation of steam injection operations

  19. Assessing Atmospheric Water Injection from Oceanic Impacts

    Science.gov (United States)

    Pierazzo, E.

    2005-01-01

    Collisions of asteroids and comets with the Earth s surface are rare events that punctuate the geologic record. Due to the vastness of Earth s oceans, oceanic impacts of asteroids or comets are expected to be about 4 times more frequent than land impacts. The resulting injections of oceanic water into the upper atmosphere can have important repercussions on Earth s climate and atmospheric circulation. However, the duration and overall effect of these large injections are still unconstrained. This work addresses atmospheric injections of large amounts of water in oceanic impacts.

  20. Flow improvers for water injection based on surfactants

    International Nuclear Information System (INIS)

    In many cases it is desirable to increase the flow of injection water when an oil well deteriorates. It is very costly in offshore operation to lay down an additional water pipe to the injection site. Flow improvers for the injection water will thus be the most cost-effective way to increase the flow rate. During the last years water-soluble polymers have also been applied for this purpose. These drag-reducing polymers are however only slowly biodegraded which has been an incentive for the development of readily biodegradable surfactants as flow improvers for injection water. A combination of a zwitterionic and an anionic surfactant has been tested in a 5.5 inch, 700 m long flow loop containing sulphate brine with salinity similar to sea water. A drag reduction between 75 and 80% was achieved with 119 ppm in solution of the surfactant blend at an average velocity of 1.9 m/s and between 50 and 55% at 2.9 m/s. The surfactants in this formulation were also found to be readily biodegradable in sea water and low bio accumulating which means they have an improved environmental profile compared to the polymers used today. Due to the self-healing properties of the drag-reducing structures formed by surfactants, these may be added before the pump section - contrary to polymers which are permanently destroyed by high shear forces. (Author)

  1. Flow improvers for water injection based on surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Oskarsson, H.; Uneback, I.; Hellsten, M.

    2006-03-15

    In many cases it is desirable to increase the flow of injection water when an oil well deteriorates. It is very costly in offshore operation to lay down an additional water pipe to the injection site. Flow improvers for the injection water will thus be the most cost-effective way to increase the flow rate. During the last years water-soluble polymers have also been applied for this purpose. These drag-reducing polymers are however only slowly biodegraded which has been an incentive for the development of readily biodegradable surfactants as flow improvers for injection water. A combination of a zwitterionic and an anionic surfactant has been tested in a 5.5 inch, 700 m long flow loop containing sulphate brine with salinity similar to sea water. A drag reduction between 75 and 80% was achieved with 119 ppm in solution of the surfactant blend at an average velocity of 1.9 m/s and between 50 and 55% at 2.9 m/s. The surfactants in this formulation were also found to be readily biodegradable in sea water and low bio accumulating which means they have an improved environmental profile compared to the polymers used today. Due to the self-healing properties of the drag-reducing structures formed by surfactants, these may be added before the pump section - contrary to polymers which are permanently destroyed by high shear forces. (Author)

  2. Heavy-oil recovery in naturally fractured reservoirs with varying wettability by steam solvent co-injection

    Energy Technology Data Exchange (ETDEWEB)

    Al Bahlani, A. [Alberta Univ., Edmonton, AB (Canada); Babadagli, T. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Alberta Univ., Edmonton, AB (Canada)

    2008-10-15

    Steam injection may not be an efficient oil recovery process in certain circumstances, such as in deep reservoirs, where steam injection may be ineffective because of hot-water flooding due to excessive heat loss. Steam injection may also be ineffective in oil-wet fractured carbonates, where steam channels through fracture zones without effectively sweeping the matrix oil. Steam flooding is one of the many solutions for heavy oil recovery in unconsolidated sandstones that is in commercial production. However, heavy-oil fractured carbonates are more challenging, where the recovery is generally limited only to matrix oil drainage gravity due to unfavorable wettability or thermal expansion if heat is introduced during the process. This paper proposed a new approach to improve steam/hot-water injection and efficiency for heavy-oil fractured carbonate reservoirs. The paper provided background information on oil recovery from fractured carbonates and provided a statement of the problem. Three phases were described, including steam/hot-waterflooding phase (spontaneous imbibition); miscible flooding phase (diffusion); and steam/hot-waterflooding phase (spontaneous imbibition or solvent retention). The paper also discussed core preparation and saturation procedures. It was concluded that efficient oil recovery is possible using alternate injection of steam/hot water and solvent. 43 refs., 1 tab., 13 figs.

  3. Oil troubles waters

    International Nuclear Information System (INIS)

    The sea provides a vast array of natural resources for thousands of local communities in the tropics. But the presence of the oil industry has significant social and environmental impacts, both from accidents and from routine activities like seismic exploration, drilling and the generation of polluting wastes. When accidents occur, sessile life (species attached to surface such as rocks or the seabed) is the first to be affected; its mortality increases as oil accumulates, although certain organisms, like gastropods, tolerate it better

  4. Downhole cuttings injection allows use of oil-base muds

    International Nuclear Information System (INIS)

    This paper reports that of the potential methods for handling oily drill cuttings, the most attractive is their injection downhole. This approach, which has been used by BP on its Gyda platform in the North Sea where stringent new environmental regulations are expected, will enable operators to enjoy the economic advantages of using oil-based muds. The discharge of oil-based-mud-contaminated cuttings form offshore drilling operations has a significant, though localized, environmental impact. This is despite the change from diesel-based fluids to less toxic, low aromatic, base oils which occurred in the late 1970s

  5. An objective estimation of impurities in oil field stagnant waters

    Energy Technology Data Exchange (ETDEWEB)

    Abashev, R.G.; Runets, S.A.

    1984-01-01

    Studies and an analysis of published materials are used to establish the predominant role of the mechanical impurities of various origins covered by layers of the heavy components of petroleum products in reducing the injectivity of injection wells for injecting stagnant waters containing concretions. A method is proposed for determining the impurities in the oil field stagnant waters used for flooding; this method makes it possible to obtain more reliable results on the concentration of the concretions responsible in such conditions for the drop in the injectivity of the formation reservoirs. A comparative evaluation of the results from an analysis of the impurities determined by the existing method and the proposed method is given. This method is useful in oil field laboratories in the systematic quality control over injected waters.

  6. Coal-oil mixture combustion program: injection into a blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Jansto, S.G.; Mertdogan, A.; Marlin, L.A.; Beaucaire, V.D.

    1982-04-30

    A chemically stabilized coal-oil mixture (COM) was made and used as an auxiliary fuel in a blast furnace for 44 days. Approximately 485,000 gallons of COM were produced at an on-site COM plant. Composition was 47.9% coal, 47.6% No. 6 oil, 4.0% water, and 0.5% emulsifier. Average injection rates were 3.8 to 13.0 gpm during different periods of the trial. Coal handling equipment, mixing and processing equipment, pumps, piping, fuel lances, and instrumentation are discussed. The blast furnace performance during the trial is compared to a Base Period of injecting No. 6 oil. Blast furnace performance was satisfactory, with one pound of COM replacing one pound of coke or 0.8 pound of No. 6 oil. The production of COM and its usage in a blast furnace is economical and feasible.

  7. Muscle enhancement using intramuscular injections of oil in bodybuilding

    DEFF Research Database (Denmark)

    Schäfer, Ch. N.; Hvolris, Jørgen Jesper; Karlsmark, Tonny; Plambech, M

    2012-01-01

    BACKGROUND: Self-administered intramuscular injection of site enhancement oil (SEO) is a cosmetic and performance-enhancing procedure used to reshape muscles in the bodybuilder subculture, but its consequences and complications are only sporadically described. Methods: A systematic search in...

  8. Bubble scrub : process aims to reduce oil content and dispose of solids in produced water

    International Nuclear Information System (INIS)

    The oil and water separation processes used by the petroleum industry typically leave behind between 5000 and 30,000 parts per million of oil in its produced water. The water is then injected back into the ground or disposed of in tailings ponds. This article described a water-oil remediation technology designed to reduce the hydrocarbon content in injected water to less than 5 parts per million. The process used aeration in a tank configuration that injected gas into the produced water. The aeration process created micron-sized gas bubbles that super-saturated the produced water in order to break the oil-water interfaces. A prototype unit has been designed to process 1000 bbls per day of water-oil mixture and is currently being used by an Alberta producer. It was concluded that the new system will help to reduce the massive amounts of water used in oil sands production. 1 fig

  9. Effect Of Hot Water Injection On Sandstone Permeability

    DEFF Research Database (Denmark)

    Rosenbrand, Esther; Fabricius, Ida Lykke

    published results regarding the effect of temperature on sandstone permeability. These tests are performed with mineral oil, nitrogen gas, distilled water and solutions of NaCl, KCl, CaCl2 as well as brines that contain a mixture of salts. Thirteen sandstone formations, ranging from quartz arenites to...... account for all the permeability reductions observed. Permeablity reduction occurs both when distilled water is the saturating fluid as well as in tests with NaCl, KCl or CaCl2 solutions, however, this is not the case in tests with mineral oil or nitrogen gas. The formation of a filter cake or influx of......The seasonal imbalance between supply and demand of renewable energy requires temporary storage, which can be achieved by hot water injection in warm aquifers. This requires that the permeability and porosity of the aquifer are not reduced significantly by heating. We present an overview of...

  10. Water injection device of cooling water and nuclear reactor

    International Nuclear Information System (INIS)

    A jet pump is disposed to a water injection flow channel below a pressure accumulation vessel incorporating cooling water and pressurized gases. A driving water nozzle in the jet pump is connected to a driving water flow channel having an opening below the liquid surface of cooling water in the pressure accumulation vessel. A sucking channel in communication with the diffuser guide portion of the jet pump is disposed to the bottom of the pressure accumulation vessel. Upon reactor accident, cooling water in the driving water channel is jetted from the driving water nozzle to a throat of the diffuser of the jet pump. With such a procedure, cooling water in the sucking flow channel is sucked into the throat of the diffuser and mixed with the cooling water from the driving water nozzle. As a result, a great amount of cooling water flows to the water injection channel and is injected into a reactor pressure vessel. If the water level in the pressure accumulation vessel is reduced lower than the opening of the driving water flow channel, the operation of the jet pump is stopped. The flow rate of the water injection is changed to small amount only from the sucking flow channel by the stoppage of the jet pump. (I.N.)

  11. Optimization of injection timing and injection pressure of a DI diesel engine fueled with preheated rice bran oil

    OpenAIRE

    R. Raghu1, G. Ramadoss

    2011-01-01

    In the present study experiments were carried out in a constant speed, stationary direct injection diesel engine and the performance was investigated. Initially the engine fueled with diesel, rice bran biodiesel (methyl ester), raw rice bran oil and preheated rice bran oil with standard injection timing and injection pressures at different load conditions and the performances were compared. With the help of a heat exchanger and using the exhaust gases, the rice bran oil was preheated. It was ...

  12. Gas injection may have triggered earthquakes in the Cogdell oil field, Texas.

    Science.gov (United States)

    Gan, Wei; Frohlich, Cliff

    2013-11-19

    Between 1957 and 1982, water flooding was conducted to improve petroleum production in the Cogdell oil field north of Snyder, TX, and a contemporary analysis concluded this induced earthquakes that occurred between 1975 and 1982. The National Earthquake Information Center detected no further activity between 1983 and 2005, but between 2006 and 2011 reported 18 earthquakes having magnitudes 3 and greater. To investigate these earthquakes, we analyzed data recorded by six temporary seismograph stations deployed by the USArray program, and identified 93 well-recorded earthquakes occurring between March 2009 and December 2010. Relocation with a double-difference method shows that most earthquakes occurred within several northeast-southwest-trending linear clusters, with trends corresponding to nodal planes of regional focal mechanisms, possibly indicating the presence of previously unidentified faults. We have evaluated data concerning injection and extraction of oil, water, and gas in the Cogdell field. Water injection cannot explain the 2006-2011 earthquakes, especially as net volumes (injection minus extraction) are significantly less than in the 1957-1982 period. However, since 2004 significant volumes of gases including supercritical CO2 have been injected into the Cogdell field. The timing of gas injection suggests it may have contributed to triggering the recent seismic activity. If so, this represents an instance where gas injection has triggered earthquakes having magnitudes 3 and larger. Further modeling studies may help evaluate recent assertions suggesting significant risks accompany large-scale carbon capture and storage as a strategy for managing climate change. PMID:24191019

  13. Optimizing geologic CO2 sequestration by injection in deep saline formations below oil reservoirs

    International Nuclear Information System (INIS)

    The purpose of this research is to present a best-case paradigm for geologic CO2 storage: CO2 injection and sequestration in saline formations below oil reservoirs. This includes the saline-only section below the oil-water contact (OWC) in oil reservoirs, a storage target neglected in many current storage capacity assessments. This also includes saline aquifers (high porosity and permeability formations) immediately below oil-bearing formations. While this is a very specific injection target, we contend that most, if not all, oil-bearing basins in the US contain a great volume of such strata, and represent a rather large CO2 storage capacity option. We hypothesize that these are the best storage targets in those basins. The purpose of this research is to evaluate this hypothesis. We quantitatively compared CO2 behavior in oil reservoirs and brine formations by examining the thermophysical properties of CO2, CO2-brine, and CO2-oil in various pressure, temperature, and salinity conditions. In addition, we compared the distribution of gravity number (N), which characterizes a tendency towards buoyancy-driven CO2 migration, and mobility ratio (M), which characterizes the impeded CO2 migration, in oil reservoirs and brine formations. Our research suggests competing advantages and disadvantages of CO2 injection in oil reservoirs vs. brine formations: (1) CO2 solubility in oil is significantly greater than in brine (over 30 times); (2) the tendency of buoyancy-driven CO2 migration is smaller in oil reservoirs because density contrast between oil and CO2 is smaller than it between brine and oil (the approximate density contrast between CO2 and crude oil is ∝100 kg/m3 and between CO2 and brine is ∝350 kg/m3); (3) the increased density of oil and brine due to the CO2 dissolution is not significant (about 7-15 kg/m3); (4) the viscosity reduction of oil due to CO2 dissolution is significant (from 5790 to 98 mPa s). We compared these competing properties and processes by performing numerical simulations. Results suggest that deep saline CO2 injection immediately below oil formations reduces buoyancy-driven CO2 migration and, at the same time, minimizes the amount of mobile CO2 compared to conventional deep saline CO2 injection (i.e., CO2 injection into brine formations not below oil-bearing strata). Finally, to investigate practical aspects and field applications of this injection paradigm, we characterized oil-bearing formations and their thickness (capacity) as a component of the Southwest Regional Partnership on Carbon Sequestration (SWP) field deployments. The field-testing program includes specific sites in Utah, New Mexico, Wyoming, and western Texas of the United States. (author)

  14. Optimizing geologic CO2 sequestration by injection in deep saline formations below oil reservoirs

    International Nuclear Information System (INIS)

    The purpose of this research is to present a best-case paradigm for geologic CO2 storage: CO2 injection and sequestration in saline formations below oil reservoirs. This includes the saline-only section below the oil-water contact (OWC) in oil reservoirs, a storage target neglected in many current storage capacity assessments. This also includes saline aquifers (high porosity and permeability formations) immediately below oil-bearing formations. While this is a very specific injection target, we contend that most, if not all, oil-bearing basins in the US contain a great volume of such strata, and represent a rather large CO2 storage capacity option. We hypothesize that these are the best storage targets in those basins. The purpose of this research is to evaluate this hypothesis. We quantitatively compared CO2 behavior in oil reservoirs and brine formations by examining the thermophysical properties of CO2, CO2-brine, and CO2-oil in various pressure, temperature, and salinity conditions. In addition, we compared the distribution of gravity number (N), which characterizes a tendency towards buoyancy-driven CO2 migration, and mobility ratio (M), which characterizes the impeded CO2 migration, in oil reservoirs and brine formations. Our research suggests competing advantages and disadvantages of CO2 injection in oil reservoirs vs. brine formations: (1) CO2 solubility in oil is significantly greater than in brine (over 30 times); (2) the tendency of buoyancy-driven CO2 migration is smaller in oil reservoirs because density contrast between oil and CO2 is smaller than it between brine and oil (the approximate density contrast between CO2 and crude oil is ∼100 kg/m3 and between CO2 and brine is ∼350 kg/m3); (3) the increased density of oil and brine due to the CO2 dissolution is not significant (about 7-15 kg/m3); (4) the viscosity reduction of oil due to CO2 dissolution is significant (from 5790 to 98 mPa s). We compared these competing properties and processes by performing numerical simulations. Results suggest that deep saline CO2 injection immediately below oil formations reduces buoyancy-driven CO2 migration and, at the same time, minimizes the amount of mobile CO2 compared to conventional deep saline CO2 injection (i.e., CO2 injection into brine formations not below oil-bearing strata). Finally, to investigate practical aspects and field applications of this injection paradigm, we characterized oil-bearing formations and their thickness (capacity) as a component of the Southwest Regional Partnership on Carbon Sequestration (SWP) field deployments. The field-testing program includes specific sites in Utah, New Mexico, Wyoming, and western Texas of the United States.

  15. Analysis of oil-water replacement in limestone by MR imaging

    International Nuclear Information System (INIS)

    Three types of experiment were performed: a) oil was injected into a water-saturated limestone sample, b) water was injected into an oil-saturated sample, and c) D2O was injected into a water-saturated sample. The measuring protocol comprised the acquisition of a 1D spectrum, a CPMG experiment to estimate the T2 relaxation time, and the acquisition of spin-echo images. (orig.)

  16. Heated water injection in an experimental region at the Russkii field

    Energy Technology Data Exchange (ETDEWEB)

    Vashurkin, K.I.; Gerasimov, V.P.; Tsybulko, A.N.; Vorobev, M.A.; Yusupov, P.S.

    1981-01-01

    The actual results from injecting heated water in an experimental region of the Russkii field are given, together with industrial studies on the oil wells. The low efficiency of standard flooding is demonstrated together with the difficulty of producing high viscosity oil.

  17. Water injection device for reactor container

    International Nuclear Information System (INIS)

    A pressure vessel incorporating a reactor core is placed and secured on a pedestal in a dry well of a reactor container. A pedestal water injection line is disposed opened at one end in a pedestal cavity passing through the side wall of the pedestal and led at the other end to the outside of the reactor container. A substitution dry well spray line is connected to a spray header disposed at the upper portion of the dry well. When the pressure vessel should be damaged by a molten reactor core and the molten reactor core should drop to the dry well upon occurrence of an accident, the molten reactor core on the floor of the pedestal is cooled by water injection from the pedestal water injection line. At the same time, the elevation of the pressure and the temperature in the reactor container is suppressed by the water injection of the substitution dry well spray line. This can avoid large scaled release of radioactive materials to the environmental circumference. (I.N.)

  18. Quantification of the recovered oil and water fractions during water flooding laboratory experiments

    DEFF Research Database (Denmark)

    Katika, Konstantina; Halim, Amalia Yunita; Shapiro, Alexander; Fabricius, Ida Lykke

    2015-01-01

    During core flooding experiments where water is injected in residual oil saturated core plugs, the fluids are often produced in small amounts. Oil and water come out of the core and are collected in glass vials using a fraction collector. Quantification of these fluids is often difficult since the...... determination, and an account of advantages and disadvantages of each method is given. Both methods are reproducible with high accuracy. The NMR method was capable of direct quantification of both oil and water fractions, while the UV/visible spectroscopy quantifies only the oil fraction using a standard curve....

  19. Evaluating oil/water separators

    International Nuclear Information System (INIS)

    Four commercially available oil/water separators were tested at an oil refinery test facility. The separators were the Alfa-Laval OFPX 413 disk-stack centrifuge, the Conoco Vortoil hydrocyclone system, International Separation Technology's Intr-Septor 250, and a modified Flo Trend gravity separator. Each machine was tested against mixtures of salt water and crude oil, and mixtures of salt water and a water-in-oil emulsion. The impact on separator performance from simulated sea motion, and from the addition of emulsion breakers and debris to the influent, were also evaluated. The test equipment, instrumentation, analysis facilities, test plans, and procedures to conduct the tests are described, but test results are not reported. Recommendations for improved test procedures are included. The inability to accurately monitor flow rates was found to have the greatest negative impact on test performance and results. Aspects of the test program that worked well included the use of flexible and semi-rigid hoses for customizing the test setups, the use of modular and leased tanks, and the sea motion simulator swing table design. 3 refs., 2 tabs

  20. Acute glaucoma following vitrectomy and silicone oil injection.

    OpenAIRE

    Zborowski-Gutman, L; TREISTER, G.; Naveh, N; Chen, V.; Blumenthal, M.

    1987-01-01

    Three cases are described of acute glaucoma following vitrectomy and silicone oil injection in proliferative vitreous retinopathy. The first case developed silicone-induced pupillary block in a phakic eye. Cases 2 and 3 developed elevated pressure in aphakic eyes with deep anterior chambers. Cases 1 and 3 were treated by laser iridectomy. Case 2 was treated by removal of silicone. The pathogenesis and treatment of these problems are discussed.

  1. Water injection system for reactor container

    International Nuclear Information System (INIS)

    In the present invention, water is injected rapidly to a reactor container disposed in a nuclear power plant. Namely, a residual-heat removing system (RHR system) removes residue-heat from the reactor container. A reactor equipment cooling sea water system (RCWS system) transfers the heat in the RHR system to sea water. In a water injection system for the reactor container, the RHR system and the RCWS system are connected by a tie line. In the present invention, an electromotive isolation valve and a booster pump are disposed to the tie line. With such a constitution, opening/closing operation for the electromotive isolation valve can be performed by remote operation from a central operation chamber. Accordingly, after occurrence of some or other phenomenon, it is not necessary for an operator to perform manual opening/closing operation in the field. In addition, operation of removing a closing plate is also unnecessary. Further, since the pump is disposed to the tie line to a lifting stroke of the tie line pump is added to the lift stroke of the RCWS pump, so that water can be injected even if pressure in the reactor container is elevated. (I.S.)

  2. Interpreting Reservoir Microseismicity Detected During CO2 Injection at the Aneth Oil Field

    Science.gov (United States)

    Rutledge, J. T.

    2009-12-01

    Microseismic monitoring is expected to be a useful tool in CO2 sequestration projects for mapping pressure fronts and detecting fault activation and potential leakage paths. Downhole microseismic monitoring and several other techniques are being tested for their efficacy in tracking movement and containment of CO2 injected at the Aneth oil field located in San Juan County, Utah. The Southwest Regional Partnership on CO2 Sequestration is conducting the monitoring activities in collaboration with Resolute Natural Resources Company, under the support of the U.S. Department of Energy’s National Energy Technology Laboratory. The CO2 injection at Aneth is associated with a field-wide enhanced oil recovery operation following decades of pressure maintenance and oil recovery by water-flood injection. A 60-level geophone string was cemented into a monitoring well equipped with both 3-component and vertical component geophones spanning from 800 to 1700 m depth. The top of the oil reservoir in the study area is at approximately 1730 m depth. Over the first year of monitoring, approximately 3800 microearthquakes have been detected within about 3 km of the geophone string. The Aneth reservoir events are relatively large with magnitudes ranging from approximately -1 to 1. For comparison, reservoir seismicity induced during hydraulic fracturing treatments typically result in events with magnitudes fracture zones located on opposite flanks of the reservoir. Injection activity is fairly uniform over the entire field area, and the microseismicity does not correlate either temporally or spatially with any anomalous changes in injection or production activities near the source locations. Because the activity is fairly isolated and relatively energetic, I speculate that the seismicity may be due to critically stressed structures driven by longer-term production- and/or injection-induced stress changes. Ongoing analysis includes extracting precise arrival time to improve relative source locations and looking for correlations of event occurrence and moment release with field-wide rates of injection and production.

  3. STUDYING OF THE EFFECTIVE PARAMETERS ON ENHANCED HEAVY OIL RECOVERY BY STEAM INJECTION

    Directory of Open Access Journals (Sweden)

    Kh.Mohamadbeigy

    2006-06-01

    Full Text Available High viscosity of some crude oil makes difficult to recover with primary or secondary production methods. Therefore, thermal oil recovery techniques are recommended for the Enhanced Oil Recovery (EOR of heavy oil. In this experimental study, steam injection was used to investigate the effectiveness parameters on heavy oil production rate. The result is shown that, by increasing pressure, steam reaches the breakthrough point sooner, but recovery decreases. If the oils are a little different in viscosity, recovery in the light oil is more than that in heavy oil. Also in the highly viscous oils and light oils, recovery in the heavy oil is much higher than in light oil.

  4. Scale Formation Due to Water Injection in Malaysian Sandstone Cores

    Directory of Open Access Journals (Sweden)

    Amer B.B. Merdhah

    2009-01-01

    Full Text Available Problem statement: Scale deposition is one of the most serious oil field problems that inflict water injection systems primarily when two incompatible waters are involved. Approach: This study was conducted to investigate the permeability reduction caused by deposition of calcium, strontium and barium sulphates in sandstone cores from mixing of injected Malaysian sea waters (Angsi and Barton and formation water that contained high concentration of calcium, barium and strontium ions at various temperatures (60-90°C and differential pressures (125-175 psig. The solubility of common oil field scales formed and how their solubilities were affected by changes in salinity and temperatures (40-90°C were also studied. The morphology and particle size of scaling crystals formed as shown by Scanning Electron Microscopy (SEM were also presented. Results: The results showed that a large extent of permeability damage caused by calcium, strontium and barium sulphates that deposited on the rock pore surface. The rock permeability decline indicates the influence of the concentration of calcium, barium and strontium ions. Conclusion: At higher temperatures, the deposition of CaSO4 and SrSO4 scales increases and the deposition of BaSO4 scale decreases since the solubilities of CaSO4 and SrSO4 scales decreases and the solubility of BaSO4 increases with increasing temperature. The deposition of CaSO4, SrSO4 and BaSO4 scales during flow of injection waters into porous media was shown by Scanning Electron Microscopy (SEM micrographs.

  5. Enhanced oil recovery by nanoparticles injection: Modeling and simulation

    KAUST Repository

    El-Amin, Mohamed

    2013-01-01

    In the present paper, a mathematical model and numerical simulation to describe the nanoparticles-water suspension imbibes into a water-oil two-phase flow in a porous medium is introduced. We extend the model to include the negative capillary pressure and mixed relative permeabilities correlations to fit with the mixed-wet system. Also, buoyancy and capillary forces as well as Brownian diffusion are considered. Throughout this investigation, we monitor the changing of the fluids and solid properties due to addition of the nanoparticles and check for possible enhancement of the oil recovery process using numerical experiments.

  6. Core cooling in pressurized-water reactor during water injection

    International Nuclear Information System (INIS)

    In this paper, the reactor core cooling and its melt progression terminating is evaluated, and the initiation criterion for reactor cavity flooding during water injection is determined. The core cooling in pressurized-water reactor of severe accident is simulated with the thermal hydraulic and severe accident code of SCDAP/RELAP5. The results show that the core melt progression is terminated by water injection, before the core debris has formed at bottom of core, and the initiation of reactor cavity flooding is indicated by the core exit temperature. (authors)

  7. Optimization of injection timing and injection pressure of a DI diesel engine fueled with preheated rice bran oil

    Directory of Open Access Journals (Sweden)

    R. Raghu1, G. Ramadoss

    2011-07-01

    Full Text Available In the present study experiments were carried out in a constant speed, stationary direct injection diesel engine and the performance was investigated. Initially the engine fueled with diesel, rice bran biodiesel (methyl ester, raw rice bran oil and preheated rice bran oil with standard injection timing and injection pressures at different load conditions and the performances were compared. With the help of a heat exchanger and using the exhaust gases, the rice bran oil was preheated. It was found that the pre heated rice bran oil exhibits a closer performance as compared to rice bran biodiesel. Then the injection timing and injection were varied and the performance and emission parameters were investigated using preheated rice bran oil. It was found that the brake thermal efficiency and oxides of nitrogen were found to be higher and BSFC and smoke were found to be lower at 21° CA bTDC of injection timing and 230 bar injection pressure. From the test results the optimum injection timing and injection timing for the engine fueled with preheated rice bran oil were evaluated.

  8. Optimization of injection timing and injection pressure of DI diesel engine fueled with preheated rice bran oil

    Energy Technology Data Exchange (ETDEWEB)

    Raghu, R. [Department of Mechanical Engineering, Jayam College of Engineering and Technology, Dharmapuri, Tamil Nadu (India); Ramadoss, G. [Department of Mechanical Engineering, St. Peter' s University, Chennai, Tamil Nadu (India)

    2011-07-01

    In the present study experiments were carried out in a constant speed, stationary direct injection diesel engine and the performance was investigated. Initially the engine fueled with diesel, rice bran biodiesel (methyl ester), raw rice bran oil and preheated rice bran oil with standard injection timing and injection pressures at different load conditions and the performances were compared. With the help of a heat exchanger and using the exhaust gases, the rice bran oil was preheated. It was found that the pre heated rice bran oil exhibits a closer performance as compared to rice bran biodiesel. Then the injection timing and injection were varied and the performance and emission parameters were investigated using preheated rice bran oil. It was found that the brake thermal efficiency and oxides of nitrogen were found to be higher and BSFC and smoke were found to be lower at 21{sup o} CA bTDC of injection timing and 230 bar injection pressure. From the test results the optimum injection timing and injection timing for the engine fueled with preheated rice bran oil were evaluated.

  9. Boric-acid water solution injecting device

    International Nuclear Information System (INIS)

    Purpose: To enable to rapidly lower the reactor power upon occurrence of scram-operation inability accidents in BWR type reactos. Constitution: The boric-acid water solution injecting device comprises pipeways connected at one end to the inside of a lower tube body of pressure vessel in a BWR type reactor and connected at the other end with a boric acid storage tank. A turbine driven pump driven by the steams from the pressure vessel is disposed at the midway of the pipeways. Since a great flow rate of boric-acid water solution can be supplied from the pump, the reactor power can be lowered rapidly. (Kawakami, Y.)

  10. Can Oil Float Completely Submerged in Water?

    CERN Document Server

    Nath, Saurabh; Chatterjee, Souvick

    2013-01-01

    Droplet formation in a system of two or more immiscible fluids is a celebrated topic of research in the fluid mechanics community. In this work, we propose an innovative phenomenon where oil when injected drop-wise into a pool of water moves towards the air-water interface where it floats in a fully submerged condition. The configuration, however, is not stable and a slight perturbation to the system causes the droplet to burst and float in partially submerged condition. The droplet contour is analyzed using edge detection. Temporal variation of a characteristic length of the droplet is analyzed using MATLAB image processing. The constraint of small Bond Number established the assumption of lubrication regime in the thin gap. A brief theoretical formulation also showed the temporal variation of the gap thickness

  11. Microseismic monitoring of CO{sub 2} injection at the Weyburn oil field, Saskatchewan, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Fabriol, H.; Jousset, P. [Bureau de Recherches Geologiques et Minieres, Orleans (France); White, D. [Natural Resources Canada, Ottawa, ON (Canada). Geological Survey of Canada; Maxwell, S. [Engineering Seismology Group Canada Inc., Kingston, ON (Canada); Deflandre, J.P. [Institut Francais du Petrole, Rueil-Malmaison (France)

    2005-07-01

    Microseismic monitoring has been conducted as part of the International Energy Agency Weyburn CO2 Monitoring and Storage Project where carbon dioxide (CO{sub 2}) has been injected into an oil depleted reservoir in southern Saskatchewan since 2000. CO{sub 2} flood has been supplied by pipeline from North Dakota. As a result of this CO{sub 2} enhanced oil recovery (EOR) operation, it is expected that 20 million tonnes of anthropogenic CO{sub 2} that would otherwise be released to the atmosphere will be permanently sequestered within the Mississippian strata at a depth of 1.4 km. Passive seismic monitoring has been used around the world to map fracturing induced by fluid injection for EOR, by hydraulic stimulation, or by reservoir compaction phenomena linked to hydrocarbon production. There are few examples of microseismicity recorded during underground gas storage or CO{sub 2} EOR projects. The purpose of applying microseismic monitoring at Weyburn was to assess the seismic hazard due to injection, and to determine the feasibility of using passive monitoring as a mapping tool for the spread of injected CO{sub 2}, via fracturing or fracture reactivation induced by local overpressure within the reservoir. Results to date show that recording microseismicity in a CO{sub 2}-injection field is technically feasible. Since injection of CO{sub 2} has only recently started, no microseismicity linked directly to the spread of CO{sub 2} within the reservoir has been identified. However, different kinds of events have been recorded related to production or completion activities. Analysis of waveforms, event locations and production data will be required in order to identify the events induced by the CO{sub 2} injection. In terms of seismic hazard due to injection, microseismicity observed to date does not exceed magnitudes associated with water flood or gas injection in other monitored fields. 3 refs., 3 figs.

  12. Performance indicators for water injections projects; Indicadores de desempenho para projetos de injecao de agua

    Energy Technology Data Exchange (ETDEWEB)

    Hastenreiter, Livia; Correa, Antonio C. de F.; Mendes, Roberta A. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    Currently, the water injection process into oil reservoirs is the method of secondary recovery more important to increase the recovery factor. Thus, it is necessary an efficient project management, with constant data acquisitions and interpretation. This paper aims to present some indicators to evaluate the performance of water injection projects. Each indicator is presented based on a methodology that transforms the data collected in information. The results are expressed in graphical form for better viewing of the indicators measurement. (author)

  13. Extraction of oil from stable oil-water emulsions

    International Nuclear Information System (INIS)

    This patent describes a process of extracting oil from oil-water emulsions containing suspended solid particulates. It comprises introducing the emulsion into vessel in an extraction system, pressurizing the vessel with a volatile hydrocarbon whereby the volatile hydrocarbon is in the liquified state and forms a two-phase system with the emulsion, maintaining the pressure for a period of time sufficient to effect the replacement of at least some of the oil in the emulsion phase with the volatile hydrocarbon, the replaced oil being dissolved in the volatile hydrocarbon phase, withdrawing at least a portion of the oil-containing volatile hydrocarbon phase while maintaining the pressure on the two-phase system, reducing the pressure on the two-phase system whereby volatile hydrocarbon dissolved in the emulsion is vaporized, and the emulsion separates into a water phase and an oil phase, and recovering the oil phase from the water phase

  14. Deep injection of waste water in the Western Canada sedimentary basin.

    Science.gov (United States)

    Ferguson, Grant

    2015-01-01

    Injection of wastes into the deep subsurface has become a contentious issue, particularly in emerging regions of oil and gas production. Experience in other regions suggests that injection is an effective waste management practice and that widespread environmental damage is unlikely. Over the past several decades, 23 km(3) of water has been injected into the Western Canada Sedimentary Basin (WCSB). The oil and gas industry has injected most of this water but large amounts of injection are associated with mining activities. The amount of water injected into this basin during the past century is 2 to 3 orders magnitude greater than natural recharge to deep formations in the WCSB. Despite this large-scale disturbance to the hydrogeological system, there have been few documented cases of environmental problems related to injection wells. Deep injection of waste appears to be a low risk activity based on this experience but monitoring efforts are insufficient to make definitive statements. Serious uncharacterized legacy issues could be present. Initiating more comprehensive monitoring and research programs on the effects of injection in the WCSB could provide insight into the risks associated with injection in less developed sedimentary basins. PMID:24841226

  15. Experimental investigation of the effect of steam injection rate on recovery of an Iranian heavy oil reservoir using sand packed and core samples

    Energy Technology Data Exchange (ETDEWEB)

    Tabatabaei-Nejad, S.A.R. [Sahand University of Technology and Sahand Petroleum Research Center (Iran, Islamic Republic of)

    2011-07-01

    Heavy oils and tar sands reserves worldwide account for more than half of Earth's oil resources and, world-wide, these are primarily located in north and south America, Asia and the Middle East. Enhanced oil recovery techniques are a crucial aspect for these heavy oil reservoirs, the predominant one being the steam injection method. This presentation reports the results of an experimental investigation into the effect of the steam injection rate on oil efficiency recovery at an Iranian heavy oil reservoir. The steam injection method is briefly presented and an efficiency up to 50-60% in oil recovery is mentioned, depending on the operating temperature. Eleven tests were then conducted, with different steam injection rates, oil samples, and saturation pressures. Results show that an increased steam injection rate leads to a reduction of the steam-to-oil ratio and of the overall oil recovery time; it also requires a smaller volume of water for equivalent operation. In short, increase in the steam injection rate leads to better oil recovery efficiency in heavy oil reservoirs.

  16. The shift of microbial population composition accompanying the injected water flowing in the water-flooding petroleum reservoirs

    Science.gov (United States)

    Gao, P. K.; Li, G. Q.; Tian, H. M.; Wang, Y. S.; Sun, H. W.; Ma, T.

    2014-12-01

    In water-flooding petroleum reservoir, microbial populations in injected water are expected to migrate into oil-bearing strata and reach production wells. To demonstrate this, we firstly investigated microbial compositions in a homogeneous sandstone reservoir. The results indicated that the injected water harbored more microbial cells than produced water, and the shared populations and their abundance accounted for a minor fraction in injected water, while dominated in produced water, suggesting that most populations in injected water did hardly reach production wells in this reservoir. We further investigated microbial communities in water samples collected from wellhead and downhole of injection wells and production wells in a heterogeneous conglomerate reservoir. The results indicated that, except for the community reconstruction mainly resulted from dissolved oxygen, most populations were simultaneously detected in the wellhead and downhole of injection wells and production wells, suggesting that most microbial populations in injected water reached the production wells. This study suggest that microbial populations in injected water can pass through reservoir strata and reach production wells, but the reservoir heterogeneity, interwell spacing, sieve effect of strata and dissolved oxygen exert significant influence on microbial migration and distribution in reservoirs.

  17. The Influence of CO2 Solubility in Brine on Simulation of CO2 Injection into Water Flooded Reservoir and CO2 WAG

    DEFF Research Database (Denmark)

    Yan, Wei; Stenby, Erling Halfdan

    2010-01-01

    Injection of CO2 into depleted oil reservoirs is not only a traditional way to enhance oil recovery but also a relatively cheaper way to sequester CO2 underground since the increased oil production can offset some sequestration cost. CO2 injection process is often applied to water flooded reservo...

  18. Fast water oil spill response

    International Nuclear Information System (INIS)

    Of the many manuals currently available for oil spill response, few have any information on fast-water conditions even though just more than half of all oil spilled by volume in the United States between 1992 and 1997 happened in waterways with currents exceeding one knot. The Coast Guard recognized the absence of standard terminology that could be used for fast-water responses. For that reason, an initiative was undertaken to create a document that addresses only fast-water issues. Two major parts of the project were to provide information on deployment strategies and techniques to identify equipment that could improve recovery capabilities where existing systems do not work well. This paper described field demonstrations where boom deflectors and boom vanes were used. Efforts to increase the capability of booms and skimmers were also described. A field guide was developed for training and response purposes for spills in fast-water which makes it possible for on-scene commanders and area supervisors to define techniques and terminology for responders in the field. It is particularly useful for Coast Guard Marine Safety Units when working with Coast Guard operational units during an emergency response. 20 refs., 4 figs

  19. Removal of oil from water by bentonite

    International Nuclear Information System (INIS)

    Many materials, included activated carbon, peat, coal, fiberglass, polypropylene, organoclay and bentonite have been used for removing oils and grease from water. However, bentonite has been used only rarely for this purpose. In this study Na-bentonite was used to remove oil from oil-in-water emulsions of various kinds such as standard mineral oil, cutting oils, refinery effluent and produced water from production wells at Estevan, Saskatchewan. Removal efficiencies obtained were 85 to 96 per cent for cutting oils, 84 to 86 per cent for produced water and 54 to 87 per cent for refinery effluent. Bentonite proved to be more effective in the removal of oil from oil-in-water emulsions than from actual waste waters; up to 96 percent from oil-in-water emulsions to only 87 per cent from actual waste water. The percentage of oil removed was found to be a function of the amount of bentonite added and the adsorption time up to the equilibrium time. Result also showed that the Langmuir, Freundlich and BET isotherms are well suited to describe the adsorption of oil by bentonite from the various oily waters employed in this study. 15 refs

  20. Produced water from off-shore oil and gas production, a new challenge in marine pollution monitoring

    International Nuclear Information System (INIS)

    Produced water consists of water naturally present in the oil and gas reservoir (formation water), flood water previously injected into the formation, and/or, in the case of some gas production, condensed water. Produced water is part of the well stream together with oil and/or gas

  1. Treatment of Oil & Gas Produced Water.

    Energy Technology Data Exchange (ETDEWEB)

    Dwyer, Brian P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-02-01

    Production of oil and gas reserves in the New Mexico Four Corners Region results in large volumes of "produced water". The common method for handling the produced water from well production is re-injection in regulatory permitted salt water disposal wells. This is expensive (%7E $5/bbl.) and does not recycle water, an ever increasingly valuable commodity. Previously, Sandia National Laboratories and several NM small business tested pressure driven membrane-filtration techniques to remove the high TDS (total dissolved solids) from a Four Corners Coal Bed Methane produced water. Treatment effectiveness was less than optimal due to problems with pre-treatment. Inadequate pre-treatment allowed hydrocarbons, wax and biological growth to foul the membranes. Recently, an innovative pre-treatment scheme using ozone and hydrogen peroxide was pilot tested. Results showed complete removal of hydrocarbons and the majority of organic constituents from a gas well production water. ACKNOWLEDGEMENTS This report was made possible through funding from the New Mexico Small Business Administration (NMSBA) Program at Sandia National Laboratories. Special thanks to Juan Martinez and Genaro Montoya for guidance and support from project inception to completion. Also, special thanks to Frank McDonald, the small businesses team POC, for laying the ground work for the entire project; Teresa McCown, the gas well owner and very knowledgeable- fantastic site host; Lea and Tim Phillips for their tremendous knowledge and passion in the oil & gas industry.; and Frank Miller and Steve Addleman for providing a pilot scale version of their proprietary process to facilitate the pilot testing.

  2. VSP Monitoring of CO2 Injection at the Aneth Oil Field in Utah

    Science.gov (United States)

    Huang, L.; Rutledge, J.; Zhou, R.; Denli, H.; Cheng, A.; Zhao, M.; Peron, J.

    2008-12-01

    Remotely tracking the movement of injected CO2 within a geological formation is critically important for ensuring safe and long-term geologic carbon sequestration. To study the capability of vertical seismic profiling (VSP) for remote monitoring of CO2 injection, a geophone string with 60 levels and 96 channels was cemented into a monitoring well at the Aneth oil field in Utah operated by Resolute Natural Resources and Navajo National Oil and Gas Company. The oil field is located in the Paradox Basin of southeastern Utah, and was selected by the Southwest Regional Partnership on Carbon Sequestration, supported by the U.S. Department of Energy, to demonstrate combined enhanced oil recovery (EOR) and CO2 sequestration. The geophones are placed at depths from 805 m to 1704 m, and the oil reservoir is located approximately from 1731 m to 1786 m in depth. A baseline VSP dataset with one zero-offset and seven offset source locations was acquired in October, 2007 before CO2 injection. The offsets/source locations are approximately 1 km away from the monitoring well with buried geophone string. A time-lapse VSP dataset with the same source locations was collected in July, 2008 after five months of CO2/water injection into a horizontal well adjacent to the monitoring well. The total amount of CO2 injected during the time interval between the two VSP surveys was 181,000 MCF (million cubic feet), or 10,500 tons. The time-lapse VSP data are pre-processed to balance the phase and amplitude of seismic events above the oil reservoir. We conduct wave-equation migration imaging and interferometry analysis using the pre-processed time-lapse VSP data. The results demonstrate that time-lapse VSP surveys with high-resolution migration imaging and scattering analysis can provide reliable information about CO2 migration. Both the repeatability of VSP surveys and sophisticated time-lapse data pre-processing are essential to make VSP as an effective tool for monitoring CO2 injection.

  3. Scale Formation Due to Water Injection in Berea Sandstone Cores

    Directory of Open Access Journals (Sweden)

    A.B.B. Merdhah

    2009-01-01

    Full Text Available This study was conducted to investigate the permeability reduction caused by deposition of calcium, strontium and barium sulfates in Berea sandstone cores from mixing of injected Malaysian sea waters (Angsi and Barton and formation water that contained high concentration of calcium, barium and strontium ions at various temperatures (60-90°C and differential pressures (75-100 psig. The solubility of common oil field scales formed and how their solubilities were affected by changes in salinity and temperatures (40-90°C were also studied. The morphology and particle size of scaling crystals formed as shown by Scanning Electron Microscopy (SEM were also presented. The results showed that a large extent of permeability damage caused by calcium, strontium and barium sulfates that deposited on the rock pore surface. The rock permeability decline indicates the influence of the concentration of calcium, barium and strontium ions. At higher temperatures, the deposition of CaSO4 and SrSO4 scales increases and the deposition of BaSO4 scale decreases, since the solubilities of CaSO4 and SrSO4 scales decreases and the solubility of BaSO4 increases with increasing temperature. The deposition of CaSO4, SrSO4 and BaSO4 scales during flow of injection waters into porous media was shown by Scanning Electron Microscopy (SEM micrographs.

  4. Performance and exhaust emission characteristics of direct-injection Diesel engine when operating on shale oil

    International Nuclear Information System (INIS)

    This article presents the comparative bench testing results of a naturally aspirated, four stroke, four cylinder, water cooled, direct injection Diesel engine when running on Diesel fuel and shale oil that is produced in Estonia from local oil shale. The purpose of this research is to investigate the possibility of practical usage of the shale oil as the alternative fuel for a high speed Diesel engine as well as to evaluate the combustion efficiency, brake specific fuel consumption, emission composition changes and the smoke opacity of the exhausts. Test results show that when fuelling a fully loaded engine with shale oil, the brake specific fuel consumption at the maximum torque and rated power is correspondingly higher by 12.3% and 20.4%. However, the brake thermal efficiencies do not differ widely and their maximum values remain equal to 0.36-0.37 for Diesel fuel and 0.32-0.33 for shale oil. The total nitrogen oxide emissions from the shale oil at engine partial loads remain considerably lower although when running at the maximum torque and rated power, the NOx emissions become correspondingly higher by 21.8% and 27.6%. The smoke opacity of the fully loaded engine at a wide range of speeds is lower by 30-35%, whereas the carbon monoxide and unburned hydrocarbon emissions in the exhausts at moderate and full load regimes do not undergo significant changes

  5. Displacement of light oil by water

    Energy Technology Data Exchange (ETDEWEB)

    Abasov, M.T.; Dadash-zade, K.I.; Orudzhaliev, F.G.

    1981-01-01

    The research results provided clearly show that the process of displacement of light oil by water has its own specific features which make it significantly different from the process of displacing gasified oil with water. Predicting the indices of developing formations of light oils using the water-pressure method must be done only based on a model of the flow in a porous medium of substantially mutually soluble hydrocarbon fluids.

  6. Brine crude oil interactions at the oil-water interface

    DEFF Research Database (Denmark)

    Chakravarty, Krishna Hara; Fosbøl, Philip Loldrup; Thomsen, Kaj

    mechanisms. The ion specific interaction between fines and polar fractions of crude oil at the oil-water interface has been less explored. In this study the relative affinity between different ions and the oil surface was determined. The experiments prove the importance of Ca2+, SO42-, and HPO42- ions in......The impact of brine salinity and its ionic composition on oil displacement efficiency has been investigated extensively in recent years due to the potential of enhanced oil recovery (EOR). Wettability alterations through relative interactions at the mineral surface have been the basis of proposed...... enhancing oil emulsion formation by increasing interactions between polar acids and brine solutions. The results propose the potential use of HPO42- ions in reservoirs having inactive mineral surfaces. The relative oil affinity of different ions including K+, Na+, Mg2+, and Ca2+ (cations), and Cl-, SO42...

  7. Separation of oil and water in oil spill recovery operations

    International Nuclear Information System (INIS)

    The separation of water from oil that is collected in any oil spill recovery operation is a continuing and necessary requirement during every stage of the effort. Its importance is reflected in the cost of transport and storage of large volumes of oily water, the salvage value of separated oil and the added labor costs associated with long-term recovery operations. This paper addresses the effects of weathering and emulsion generation which increase the problems normally associated with water extraction. Separation theory, practical separation technology and recommendations for the future direction of research and development are presented. (author)

  8. Geomechanics of subsurface water withdrawal and injection

    Science.gov (United States)

    Gambolati, Giuseppe; Teatini, Pietro

    2015-06-01

    Land subsidence and uplift, ground ruptures, and induced seismicity are the principal geomechanic effects of groundwater withdrawal and injection. The major environmental consequence of groundwater pumping is anthropogenic land subsidence. The first observation concerning land settlement linked to subsurface processes was made in 1926 by the American geologists Pratt and Johnson, who wrote that "the cause of subsidence is to be found in the extensive extraction of fluid from beneath the affected area." Since then, impressive progress has been made in terms of: (a) recognizing the basic hydrologic and geomechanic principles underlying the occurrence; (b) measuring aquifer compaction and ground displacements, both vertical and horizontal; (c) modeling and predicting the past and future event; and (d) mitigating environmental impact through aquifer recharge and/or surface water injection. The first milestone in the theory of pumped aquifer consolidation was reached in 1923 by Terzaghi, who introduced the principle of "effective intergranular stress." In the early 1970s, the emerging computer technology facilitated development of the first mathematical model of the subsidence of Venice, made by Gambolati and Freeze. Since then, the comprehension, measuring, and simulation of the occurrence have improved dramatically. More challenging today are the issues of ground ruptures and induced/triggered seismicity, which call for a shift from the classical continuum approach to discontinuous mechanics. Although well known for decades, anthropogenic land subsidence is still threatening large urban centers and deltaic areas worldwide, such as Bangkok, Jakarta, and Mexico City, at rates in the order of 10 cm/yr.

  9. PCA: uma ferramenta para identificao de traadores qumicos para gua de formao e gua de injeo associadas produo de petrleo / PCA: a tool for identification of chemical tracers for formation and injection waters associated with oil production

    Scientific Electronic Library Online (English)

    Fabiana Alves de Lima, Ribeiro; Guilherme Alvarenga, Mantovani; Ronei Jesus, Poppi; Francisca Ferreira do, Rosrio; Maria Carmen Moreira, Bezerra; Andre Luis Mathias, Bastos; Vera Lcia Alves de, Melo.

    Full Text Available [...] Abstract in english This study describes the use of Principal Component Analysis to evaluate the chemical composition of water produced from eight oil wells in three different production areas. A total of 609 samples of produced water, and a reference sample of seawater, were characterized according to their levels of [...] salinity, calcium, magnesium, strontium, barium and sulphate (mg L-1) contents, and analyzed by using PCA with autoscaled data. The method allowed the identification of variables salinity, calcium and strontium as tracers for formation water, and variables magnesium and sulphate as tracers for seawater.

  10. Miscibility study of carbon dioxide injection to enhance oil recovery from Abu-Dhabi oil field Thani reservoire

    Science.gov (United States)

    Aljarwan, Abdulla Humaid Saif Saeed

    The subject field in this study has been recognized among the largest offshore oil fields in the world, located in the Arabian Gulf 63 kilometers to the Northwest of Abu Dhabi, producing large quantities of crude oil and associated gas from three different carbonate reservoirs, Thani-I, II and IIII since 1963. In the early 1970's peripheral water injection scheme was adopted to maintain the reservoir pressure and sustain production. Simultaneously, partial waterflooding was applied to one sector of the field, but stopped soon after implementation shadowed by poor sweep efficiency and dramatic escalation of water-cut. Furthermore, hydrocarbon miscible gas injection was implemented in the year 2000 but stopped seven years later, due to high gas oil ratio and aspheltene deposition. In light of such recovery complications, management is considering serious recovery measures to extend plateau production and meet long-term production from this field. Post initial screening phase, it became evident that CO 2 miscible injection is the most suitable way forward. Characteristics of the Thani-III reservoir are within the favorable range for both immiscible and miscible CO2 injection criteria set by Taber, Martine and Serigh. Thani-III reservoir is considered more homogenous, less fractured and with higher production potential than Thani-I and II, hence promoted to be the target of CO2 miscible gas injection. This thesis aims to study the miscibility features of CO2 miscible injecton to enhanced oil recovery from Thani-III reservoir. Comprehensive simulation model is used to determine multi contact miscibility and suitable equation of state with CO2 as a separate pseudo component using one of the industry standard simulation software. Experimental PVT data for bottom hole and separator samples including compositional analysis, differential liberation test, separator tests, constant composition expansion, viscosity measurements and swelling tests for pure CO2 were used to generate and validate the model. In addition to that, simulation studies were conducted to produce coreflooding and slimtube experimental models, which are compared with the conclusions drawn from experimental results. Results of this study have shown comparable results with the lab experimental data in regards to minimum miscibility pressure (MMP) calculation and recovery factor estimation, where the marginal errors between both data sets were no more than 7% at its worst. For example, slimtube experimental results suggested 4230 psig as minimum miscibility pressure, where the simulation study EoS figure is 4130 psig and the slimtube simulation model results is 4180 psig. Similarly, coreflooding experimental data recovery factor at 1.2 PV injected solvent was 75% and a value of 72% recovery factor was obtained from the software single core model at same conditions of pressure and saturations. Results from this study are expected to assist the operator of this field to plan and implement a very attractive enhanced oil recovery program, giving that other factors are well accounted for such as asphaltene deposition, reservoir pressure maintenance, oil saturation, CO2 sequestering and choosing the most appropriate time to maximize the net positive value (NPV) and expected project gain.

  11. Characterization of crude oil-water and solid -water interfaces and adsorption / desorption properties of crude oil fractions: The effect of low salinity water and pH

    Energy Technology Data Exchange (ETDEWEB)

    Farooq, Umer

    2010-09-15

    The reservoirs of conventional oil are rapidly depleting because of increased production and consumption of crude oil in the world. Mature and mostly depleted oil reservoirs require advanced recovery techniques to sustain the production rates. During the past years, a variety of enhanced oil recovery (EOR) methods have been developed and implemented to increase the oil recovery from mature reservoirs. Low Salinity Waterflooding (LSW) is an emerging EOR process of injecting water containing low concentrations (<4000 ppm) of total dissolved solids into the reservoir. This moderate cost process yields relatively higher incremental recoveries than other water based recovery methods. Investigation of mechanisms for increased recovery is quite challenging because this process depends upon complex crude oil/water/rock properties. This work was done to study the surface chemistry of typical reservoir surfaces where LSW can be used for EOR. The oil water and solid-water interfaces were characterised in low salinity aqueous solutions and investigated how the electrolytes and pH of solutions affect the interfacial and surface properties. The influence of low saline aqueous solution on the desorption behaviour of different fractions (acid-free oil and base-free oil) of crude oils was also explored. Reservoir minerals are sensitive to small changes in solution properties and therefore model, outcrop and reservoir particles were characterized in low salinity aqueous solutions. The extent of ionic adsorption on the mineral surfaces was found by various techniques. Particles were also characterized with respect to their elemental compositions. Asphaltene adsorption/desorption on reservoir rock surfaces play an important role in EOR processes. Various injection sequences of low saline aqueous solution of Na +, Ca2+ and sea water were considered to study the desorption of asphaltenes from silica surfaces. Composition of the aqueous phase influenced the interfacial properties of crude oil. Acids, bases and asphaltenes were selectively removed from crude oils and demonstrated the significance of each component on the interfacial behaviour in the aqueous phase under various electrolyte concentrations, type of electrolytes and pH ranges. It was determined that the crude oil acids and electrolyte type played an important role for interfacial properties at high pH conditions. Adsorption/desorption properties of various crude oil fractions on silica coated quartz surfaces were also studied. The influence of electrolyte types and pH conditions of low salinity aqueous solutions on desorption behaviour of different oil fractions was considered. Finally, the dynamic interfacial behaviour of two different crude oils and their fractions were evaluated in different aqueous solutions. The effects of mono and divalent ionic concentrations on interfacial properties were compared. (Author)

  12. Diffusion as an Oil Recovery Mechanism During CO2 Injection in Fractured Reservoirs

    OpenAIRE

    Lie, Stig Holme

    2013-01-01

    This thesis is part of an ongoing study of enhanced oil recovery by CO2 injection in the Reservoir Physics research group at the Department of Physics and Technology (IFT) at the University of Bergen. This work investigates the feasibility of oil recovery from diffusion during miscible CO2 injection in fractured core plugs by conducting appropriate laboratory tests and numerical simulations. A total of 10 miscible CO2 injection tests were conducted in the laboratory using artificially fractur...

  13. High throughput flow injection bioluminometric method for olive oil antioxidant capacity.

    Science.gov (United States)

    Minioti, Katerina S; Georgiou, Constantinos A

    2008-07-15

    This paper describes a rapid flow injection automated method for the determination of olive oil total antioxidant capacity. The chemistry involved is the horseradish peroxidase (HRP) catalysed oxidation of luminol by hydrogen peroxide. Oxidation results in light emission (bioluminescence) that is enhanced using p-iodophenol sensitizer. Olive oil (0.7mL) is extracted with two 0.7mL aliquots of 80-20% (v/v) methanol-water solvent. A 17μL aliquot of the extract containing hydrophilic antioxidants is injected in a phosphate buffer channel that subsequently merges with a luminol-HRP-p-iodophenol reagent stream. Bioluminescence resulting after merging the mixture with a hydrogen peroxide stream is suppressed upon increasing antioxidants' concentration resulting in negative peaks due to hydrogen peroxide consumption by antioxidants. The method has been optimized on (a) number of manifold channels, (b) flow rates, (c) coil length and (d) HRP, hydrogen peroxide and p-iodophenol concentrations. Detection limit is calculated at 1.5×10(-7)M gallic acid, linear range is between 1.0×10(-6) and 1×10(-4)M and precision is better than 2.8% RSD (n=4). The fully automated method is achieving a rate of sampling equal 180 probes per hour. The proposed method is applied for the assessment of 50 extra-virgin olive oil samples of different Greek cultivars and regions. PMID:26003372

  14. Oil, Gas, and Injection Wells in Louisiana, Geographic NAD83, LDNR (2007) [oil_gas_wells_LDNR_2007

    Data.gov (United States)

    Louisiana Geographic Information Center — This is a point dataset containing the location of over 230,000 oil and gas and injection wells in the state of Louisiana. It was developed from the DNR Office of...

  15. Dispersibility of crude oil in fresh water

    Energy Technology Data Exchange (ETDEWEB)

    Wrenn, B.A.; Virkus, A.; Mukherjee, B. [Department of Energy, Environmental, and Chemical Engineering, Washington University, St. Louis, MO 63130 (United States); Venosa, A.D., E-mail: venosa.albert@epa.go [U.S. Environmental Protection Agency, National Risk Management Research Laboratory, Cincinnati, OH 45268 (United States)

    2009-06-15

    The effects of surfactant composition on the ability of chemical dispersants to disperse crude oil in fresh water were investigated. The objective of this research was to determine whether effective fresh water dispersants can be designed in case this technology is ever considered for use in fresh water environments. Previous studies on the chemical dispersion of crude oil in fresh water neither identified the dispersants that were investigated nor described the chemistry of the surfactants used. This information is necessary for developing a more fundamental understanding of chemical dispersion of crude oil at low salinity. Therefore, we evaluated the relationship between surfactant chemistry and dispersion effectiveness. We found that dispersants can be designed to drive an oil slick into the freshwater column with the same efficiency as in salt water as long as the hydrophilic-lipophilic balance is optimum. - This study was conducted to advance our understanding of dispersion chemistry in fresh waters.

  16. Application of naturally occurring isotopes and artificial radioactive tracer for monitoring water flooding in oil field

    International Nuclear Information System (INIS)

    Water flooding is an important operation to enhance oil recovery. Water is injected in the oil formation under high pressure through an injection well. Movement of the injected water is needed to be traced to test the performance of water flood, investigate unexpected anomalies in flow and verify suspected geological barriers or flow channels, etc. In the present study environmental isotopes and artificial radiotracer (tritium) were used at Fimkassar Oil Field of Oil and Gas Development Company Limited (OGDCL) where water flooding was started in March 1996 in Sakessar formation to maintain its pressure and enhance the oil recovery. Environmental isotopes: /sup 18/O, /sup 2/H and /sup 3/H, and chloride contents were used to determine the breakthrough/transit time and contribution of fresh injected water. Water samples were collected from the injection well, production well and some other fields for reference indices of Sakessar Formation during June 1998 to August 1999. These samples were analyzed for the /sup 18/O, /sup 2/H and /sup 3/H, and chloride contents. Results show that the water of production well is mixture of fresh water and formation water. The fresh water contribution varied from 67% to 80%, while remaining component was the old recharged formation water. This percentage did not change significantly from the time of break-through till the last sampling which indicates good mixing in the reservoir and absence of any quick channel. The initial breakthrough time was 27 months as the fresh water contributed significantly in the first appearance of water in the production well in June 1998. Tritium tracer, which was injected in November 1998, appeared in the production well after 8 months. It show that breakthrough time decreased with the passage of time. /sup 14/C of inorganic carbon in the water in Chorgali and Sakessar Formations was also analyzed which indicates that the water is at least few thousand years old. (author)

  17. The Influence of CO2 Solubility in Brine on Simulation of CO2 Injection into Water Flooded Reservoir and CO2 WAG

    DEFF Research Database (Denmark)

    Yan, Wei; Stenby, Erling Halfdan

    2010-01-01

    factors, including temperature, pressure, salinity, water injection pore volume, WAG ratio and CO2 slug size, on the simulation results was also discussed. In addition, the results for CO2 injection into water flooded reservoirs were also compared with those from the previous study.......Injection of CO2 into depleted oil reservoirs is not only a traditional way to enhance oil recovery but also a relatively cheaper way to sequester CO2 underground since the increased oil production can offset some sequestration cost. CO2 injection process is often applied to water flooded...... reservoirs and in many situations alternating injection of water and CO2 is required to stabilize the injection front. Both scenarios involve a large amount of water, making CO2 solubility in brine, which is around ten times higher than methane solubility, a non-negligible factor in the relevant reservoir...

  18. Eos modeling and reservoir simulation study of bakken gas injection improved oil recovery in the elm coulee field, Montana

    Science.gov (United States)

    Pu, Wanli

    The Bakken Formation in the Williston Basin is one of the most productive liquid-rich unconventional plays. The Bakken Formation is divided into three members, and the Middle Bakken Member is the primary target for horizontal wellbore landing and hydraulic fracturing because of its better rock properties. Even with this new technology, the primary recovery factor is believed to be only around 10%. This study is to evaluate various gas injection EOR methods to try to improve on that low recovery factor of 10%. In this study, the Elm Coulee Oil Field in the Williston Basin was selected as the area of interest. Static reservoir models featuring the rock property heterogeneity of the Middle Bakken Member were built, and fluid property models were built based on Bakken reservoir fluid sample PVT data. By employing both compositional model simulation and Todd-Longstaff solvent model simulation methods, miscible gas injections were simulated and the simulations speculated that oil recovery increased by 10% to 20% of OOIP in 30 years. The compositional simulations yielded lower oil recovery compared to the solvent model simulations. Compared to the homogeneous model, the reservoir model featuring rock property heterogeneity in the vertical direction resulted in slightly better oil recovery, but with earlier CO2 break-through and larger CO2 production, suggesting that rock property heterogeneity is an important property for modeling because it has a big effect on the simulation results. Long hydraulic fractures shortened CO2 break-through time greatly and increased CO 2 production. Water-alternating-gas injection schemes and injection-alternating-shut-in schemes can provide more options for gas injection EOR projects, especially for gas production management. Compared to CO2 injection, separator gas injection yielded slightly better oil recovery, meaning separator gas could be a good candidate for gas injection EOR; lean gas generated the worst results. Reservoir simulations also indicate that original rock properties are the dominant factor for the ultimate oil recovery for both primary recovery and gas injection EOR. Because reservoir simulations provide critical inputs for project planning and management, more effort needs to be invested into reservoir modeling and simulation, including building enhanced geologic models, fracture characterization and modeling, and history matching with field data. Gas injection EOR projects are integrated projects, and the viability of a project also depends on different economic conditions.

  19. Studies of water-in-oil emulsions : formation of water-in-oil states from heavy oils

    International Nuclear Information System (INIS)

    The formation of water-in-oil states from heavy oils was examined. Previous studies have demonstrated that viscosity is a significant factor affecting the formation and stability of water-in-oil emulsions. It was suggested that a viscosity window is a necessary requirement for the formation of stable emulsions. Highly viscous oils produce an entrained water state. A stable or meso-stable emulsion is rarely produced by heavy oils. In most cases, heavy oils result in an entrained water-in-oil state that lasts days longer than the entrained water-on-oil state of lighter oils. This can be explained by the lower migration rate of water droplets from a heavy oil compared to that of a light oil. These results were used to conduct an evaluation of the basis for using the stability index. This index provides a quantitative characterization of the stability of an emulsion, under varying formation regimes. The stability factor has been previously defined as the complex modulus of the water-in-oil state after emulsion formation, divided by the starting oil viscosity. It was shown that this stability factor remains a robust indicator, despite being less predictive in the case of heavy oils. The use of the newly developed stability scale produced values that were similar for water-in-oil states of both light and heavy oils. It was concluded that this new stability scale is complex, but the discriminating power over the old stability scale is not better. 6 refs., 6 tabs., 2 figs

  20. Partitioning of olive oil antioxidants between oil and water phases.

    Science.gov (United States)

    Rodis, Panayotis S; Karathanos, Vaios T; Mantzavinou, Antonia

    2002-01-30

    The partition coefficient (K(p)) of the natural phenolic antioxidant compounds in the olive fruit between aqueous and olive oil phases was determined. The antioxidants of olive oil are either present in the olive fruit or formed during the olive oil extraction process. The antioxidants impart stability to and determine properties of the oil and are valuable from the nutritional point of view. The olive oil antioxidants are amphiphilic in nature and are more soluble in the water than in the oil phase. Consequently, a large amount of the antioxidants is lost with the wastewater during processing. The determination of antioxidants was performed using HPLC, and the K(p) was estimated to be from as low as 0.0006 for oleuropein to a maximum of 1.5 for 3,4-DHPEA-EA (di-hydroxy-phenyl-ethanol-elenolic acid, oleuropein aglycon). Henry's law fitted very well to the experimental data. The partition coefficients were also estimated by applying the activity coefficients of the antioxidants in the two phases using a predictive group contribution method, the UNIFAC equation. The K(p) values estimated with UNIFAC method were of the same order of magnitude but varied from the experimental values. Nevertheless, this method may be a rough predictive tool for process optimization or design. Because the K(p) values were very low, some changes in the process are recommended in order to achieve a higher concentration of antioxidants in the oil. A temperature increase may lead to increasing the partition coefficient. Also, limiting the quantity of water during oil extraction could be a basis for designing alternative processes for increasing the antioxidant concentration in the olive oil. PMID:11804535

  1. A fast alternative to core plug tests for optimising injection water salinity for EOR

    DEFF Research Database (Denmark)

    Hassenkam, Tue; Andersson, Martin Peter; Hilner, Emelie Kristin Margareta; Matthiesen, Jesper; Dobberschütz, Sören; Dalby, Kim Nicole; Bovet, Nicolas Emile; Stipp, Susan Louise Svane; Salino, P.; Reddick, C.; Collins, I. R.

    Core tests have demonstrated that decreasing the salinity of injection water can increase oil recovery. Although recovery is enhanced by simply decreasing salt content, optimising injection water salinty would offer a clear economic advantage for several reasons. Too low salinity risks swelling of...... resulting from different cores. Gathering statistics is limited by the time required for each test and the fact that core material is in short supply. Thus, our aim was to explore the possibility of a cheaper, faster alternative. We developed a method that uses atomic force microscopy (AFM) to investigate...... the relationship between the wettability of pore surfaces and water salinity. We functionalise AFM tips with organic molecules and use them to represent tiny oil droplets of nonpolar or polar molecules and we use sand grains removed from core plugs to represent the pore walls in sandstone. We bring...

  2. Numerical simulation of water injection into vapor-dominated reservoirs

    Science.gov (United States)

    Pruess, K.

    1995-01-01

    Water injection into vapor-dominated reservoirs is a means of condensate disposal, as well as a reservoir management tool for enhancing energy recovery and reservoir life. We review different approaches to modeling the complex fluid and heat flow processes during injection into vapor-dominated systems. Vapor pressure lowering, grid orientation effects, and physical dispersion of injection plumes from reservoir heterogeneity are important considerations for a realistic modeling of injection effects. An example of detailed three-dimensional modeling of injection experiments at The Geysers is given.

  3. The effects of wettability and heterogeneities on the recovery of waterflood residual oil with low pressure inert gas injection, assisted by gravity drainage

    Energy Technology Data Exchange (ETDEWEB)

    Dullien, F.A.L.; Catalan, L.; Collins, A. (Department of Chemical Engineering, Univ. of Waterloo, ON (Canada))

    1991-01-01

    It is shown that in the laboratory a very high percentage of the waterflood residual oil can be recovered with low pressure inert gas injection, assisted by gravity drainage, from both water-wet and oil-wet samples. A mixed wet semipermeable paste assures the production of both oil and water but it prevents gas production. Stacks of short core plugs can be produced equally as a single long core if a coarse version of the mixed wet paste is used between adjacent plugs. In water-wet cores displacement of waterflood residual oil requires a positive spreading coefficient of oil on water in air. Parallel-type macroscopic heterogeneities in the formation may have relatively little effect on the course of oil recovery, but they prevent a uniform saturation to be established in the core cross-section. Microscopic pore scale heterogeneities decrease the recovery efficiency. 5 refs., 8 figs., 3 tabs.

  4. Stability Proxies for Water-in-Oil Emulsions and Implications in Aqueous-based Enhanced Oil Recovery

    OpenAIRE

    Mehrnoosh Moradi; Xiuyu Wang; Vladimir Alvarado

    2011-01-01

    Several researchers have proposed that mobility control mechanisms can positively contribute to oil recovery in the case of emulsions generated in Enhanced-Oil Recovery (EOR) operations. Chemical EOR techniques that use alkaline components or/and surfactants are known to produce undesirable emulsions that create operational problems and are difficult to break. Other water-based methods have been less studied in this sense. EOR processes such as polymer flooding and LoSalTM injection require a...

  5. Particle retention in porous media: Applications to water injectivity decline

    Energy Technology Data Exchange (ETDEWEB)

    Wennberg, Kjell Erik

    1998-12-31

    This thesis studies the problem of migration and deposition of colloidal particles within porous media, theoretically and by computerized simulation. Special emphasis is put on the prediction of injectivity decline in water injection wells due to inherent particles in the injection water. The study of particle deposition within porous media requires a correct prediction of the deposition rate or filtration coefficient. A thorough review of the modeling approaches used in the past are combined with new ideas in order to arrive at an improved model for the prediction of the filtration coefficient. A new way of determining the transition time for the dominant deposition mechanism to change from internal deposition to external cake formation is proposed. From this fundamental theory, equations are given for water injectivity decline predictions. A computer program called WID for water injectivity decline predictions was developed. Using water quality, formation properties, injection rate/pressure and completion information as input, WID predicts decline in vertical and horizontal injection wells with openhole, perforated and fractured completions. The calculations agree fairly well with field data; in some cases the agreement is excellent. A poor match in a few cases indicates that more mechanisms may be responsible for injectivity decline than those presently accounted for by the simulator. The second part of the study deals with a theoretical investigation of the multi-dimensional nature of particle deposition in porous media. 112 refs., 100 figs., 9 tabs.

  6. Modelling of water-in-oil emulsions

    International Nuclear Information System (INIS)

    Water-in-oil emulsions are grouped into the following four states: stable, mesostable, unstable and entrained water. Only stable and mesostable states are characterized as emulsions. The states are established by their stability over time, their appearance, and by rheological measurements. This paper described the development of a new modelling scheme in which density, viscosity, saturate, asphaltene and resin contents are used to compute a class index, which predicts an unstable or entrained water-in-oil state of a meso-stable or stable emulsion. A prediction scheme was also presented to estimate the water content and viscosity of the resulting water-in-oil state and the time to formation given a sea wave-height. The study demonstrated that empirical data can be used to predict the formation and characteristics of emulsions. 16 refs., 5 tabs., 2 figs

  7. Measurement of electrical impedance of a Berea sandstone core during the displacement of saturated brine by oil and CO2 injections

    Science.gov (United States)

    Liu, Yu; Xue, Ziqiu; Park, Hyuck; Kiyama, Tamotsu; Zhang, Yi; Nishizawa, Osamu; Chae, Kwang-seok

    2015-12-01

    Complex electrical impedance measurements were performed on a brine-saturated Berea sandstone core while oil and CO2 were injected at different pressures and temperatures. The saturations of brine, oil, and CO2 in the core were simultaneously estimated using an X-ray computed tomography scanner. The formation factor of this Berea core and the resistivity indexes versus the brine saturations were calculated using Archie's law. The experimental results found different flow patterns of oil under different pressures and temperatures. Fingers were observed for the first experiment at 10 MPa and 40 °C. The fingers were restrained as the viscosity ratio of oil and water changed in the second (10 MPa and 25 °C) and third (5 MPa and 25 °C) experiments. The resistivity index showed an exponential increase with a decrease in brine saturation. The saturation exponent varied from 1.4 to 4.0 at different pressure and temperature conditions. During the oil injection procedure, the electrical impedance increased with oil saturation and was significantly affected by different oil distributions; therefore, the impedance varied whether the finger was remarkable or not, even if the oil saturation remained constant. During the CO2 injection steps, the impedance showed almost no change with CO2 saturation because the brine in the pores became immobile after the oil injection.

  8. Enhanced Oil Recovery by CO2 and CO2-foam Injection in Fractured Limestone Rocks

    OpenAIRE

    Langlo, Stig Andre Winter

    2013-01-01

    This thesis is part of an ongoing study of integrated enhanced oil recovery methods in Reservoir Physics group at the Department of Physics and Technology at the University of Bergen. This experimental thesis investigates through laboratory tests the miscible, liquid CO2 injection for enhanced oil recovery in an outcrop limestone rock, analogue to carbonate reservoirs. A total of 18 CO2 injection experiments have been performed to study the influence on CO2 EOR from parameters such as presenc...

  9. Dielectric Properties of Flocculated Water-in-Oil Emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Skodvin, T.

    1995-12-31

    When an offshore oil field is near completion, water occupies a large fraction of the available pore volume. Thus, in collecting the oil and gas reserves, one has to deal with a high co-production of either formation- or injected water. This doctoral thesis focuses on the effect of water-in-oil emulsions on the dielectric properties, in particular the effect of flocculation. Various dielectric models are applied to obtain methods for qualitative and quantitative characterization of the flocculated state. Permittivity and measurement of dielectric properties are discussed as a basis for the interpretation of the dielectric properties of the emulsions. Various flocculation models are presented. It is concluded that the dielectric properties of water-in-oil emulsions are strongly influenced by continuously ongoing processes in the system. Because of flocculation and sedimentation the traditional dielectric mixture models cannot satisfactorily predict the dielectric behaviour. The experimentally obtained permittivities for the emulsions can be reproduced by including flocculation in the models and treating the floc aggregates as spheroids or subsystems with dielectric properties given by the degree of flocculation. The models discussed have difficulties reproducing the complete frequency behaviour found experimentally. This is probably because the dielectric relaxation may be influenced by processes not included in the models, such as the effects of dipolar or multipolar interactions between the droplets. For further research it is recommended that rheological and dielectric measurements be combined. 227 refs., 61 figs., 16 tabs.

  10. Enhanced Oil Recovery (EOR by Miscible CO2 and Water Flooding of Asphaltenic and Non-Asphaltenic Oils

    Directory of Open Access Journals (Sweden)

    Edwin A. Chukwudeme

    2009-09-01

    Full Text Available An EOR study has been performed applying miscible CO2 flooding and compared with that for water flooding. Three different oils are used, reference oil (n-decane, model oil (n-C10, SA, toluene and 0.35 wt % asphaltene and crude oil (10 wt % asphaltene obtained from the Middle East. Stearic acid (SA is added representing a natural surfactant in oil. For the non-asphaltenic oil, miscible CO2 flooding is shown to be more favourable than that by water. However, it is interesting to see that for first years after the start of the injection (< 3 years it is shown that there is almost no difference between the recovered oils by water and CO2, after which (> 3 years oil recovery by gas injection showed a significant increase. This may be due to the enhanced performance at the increased reservoir pressure during the first period. Maximum oil recovery is shown by miscible CO2 flooding of asphaltenic oil at combined temperatures and pressures of 50 °C/90 bar and 70 °C/120 bar (no significant difference between the two cases, about 1% compared to 80 °C/140 bar. This may support the positive influence of the high combined temperatures and pressures for the miscible CO2 flooding; however beyond a certain limit the oil recovery declined due to increased asphaltene deposition. Another interesting finding in this work is that for single phase oil, an almost linear relationship is observed between the pressure drop and the asphaltene deposition regardless of the flowing fluid pressure.

  11. Assistance to state underground injection control programs and the oil and gas industry with class 2 injection well data management and technology transfer. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Paque, M.J.

    1995-11-23

    The Underground Injection Practices Research Foundation (UIPRF) administered a grant project funded by the US Department of Energy relating to Class 2 injection well operations in various primacy and direct implementation states throughout the country. This effort provided substantial benefits to state regulatory agencies and oil and gas producing companies. It enhanced the protection of the environment through the protection of ground water resources and improved oil and gas production operations within affected states. This project involved the following accomplishment: (1) Completed the design and installation of the only comprehensive, fully relational PC-Based Oil and Gas regulatory data management system (the Risk Based Data Management System) in the country. Additionally, training and data conversion was conduced and the RBDMS User`s Guide and the RBDMS Administrator`s Guide were completed. (2) State wide Area-Of-Review (AOR) workshop were held in California and Oklahoma and a national three-day workshop was held in Kansas City, Missouri where 24 state oil and gas agencies were represented.

  12. New heavy fuel oil injection system; Neues Schweroel-Common-Rail-Einspritzsystem

    Energy Technology Data Exchange (ETDEWEB)

    Senghaas, Clemens; Schneider, Hartmut; Reinhard, Steffen [L' Orange GmbH, Stuttgart (Germany). Bereich Entwicklung; Jay, Dave; Ehrstroem, Kenneth [Waertsilae, Vaasa (Finland)

    2011-01-15

    In 2001 Waertsilaeand L'Orange launched the first common rail injection system for heavy fuel oil applications on the WaertsilaeW32 engine. This common rail system is very complex and relatively slow, compared to the marine diesel common rail systems. The second generation of heavy fuel oil common rail systems will be improved regarding functionality, costs, lifetime and maintainability. (orig.)

  13. Water Jet Impingement Flow Characteristics in Direct Vessel Injection System

    International Nuclear Information System (INIS)

    Water jet impingement is a peculiar phenomenon in the APR1400 (Advanced Power Reactor 1400 MWe) in which the safety injection nozzle is located in the outer reactor vessel, not in the cold leg such as in OPR1000 (Optimized Power Reactor 1,000 MWe). Therefore, the injected emergency core coolant (ECC) water spreads with a form of parabolic liquid film in the inner barrel after impinging. It is presently considered that the downcomer flow behavior is strongly governed by the location and geometry of the water injection nozzles. The impingement in the reactor vessel downcomer is one of the unknown important phenomena during a loss-of-coolant accident (LOCA). There is thus a strong need to find how the injected flow strikes the inner downcomer wall and how wide the liquid film spreads by the impingement phenomenon. The liquid film gets in contact with the steam flow in the reactor downcomer such that the interfacial area of liquid film affects the direct bypass according to the nozzle location and geometry. The water jet impingement consists of three rather distinctive flow regions. Albeit the relevant hydrodynamic characteristics are simple and well known in simple geometries, the findings are not readily applicable in the annular reactor downcomer. Analytical and experimental approaches for impingement flow by water injection have yielded detailed flow mechanisms classified in the downcomer. The water injected through three boundaries showed varying behavior according to the injection velocity, injection nozzle diameter, wall curvature, and injection nozzle inclination. As the water injection velocity increases the liquid film spreading width increases, but the spreading width proportional to the injection velocity is tapered due to breakup. Given the injection velocity, a large diameter of injection nozzle increases the film spreading width. Impingement on the flat plate has a larger film spreading width than on the curved plate. Moreover, a larger curvature decreases the film spreading width. The inclined angle of the injection nozzle is a pivotal factor in reducing the film width by increasing the downward velocity. Given the same conditions, the film spreading width lessens as the inclined angle increases. (authors)

  14. Feasibility evaluation of downhole oil/water separator (DOWS) technology.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A.; Langhus, B. G.; Belieu, S.

    1999-01-31

    The largest volume waste stream associated with oil and gas production is produced water. A survey conducted by the American Petroleum Institute estimated that 20.9 billion barrels of produced water were disposed of in 1985 (Wakim 1987). Of this total, 91% was disposed of through disposal wells or was injected for enhanced oil recovery projects. Treatment and disposal of produced water represents a significant cost for operators. A relatively new technology, downhole oil/water separators (DOWS), has been developed to reduce the cost of handling produced water. DOWS separate oil and gas from produced water at the bottom of the well and reinject some of the produced water into another formation or another horizon within the same formation, while the oil and gas are pumped to the surface. Since much of the produced water is not pumped to the surface, treated, and pumped from the surface back into a deep formation, the cost of handling produced water is greatly reduced. When DOWS are used, additional oil may be recovered as well. In cases where surface processing or disposal capacity is a limiting factor for further production within a field, the use of DOWS to dispose of some of the produced water can allow additional production within that field. Simultaneous injection using DOWS minimizes the opportunity for contamination of underground sources of drinking water (USDWs) through leaks in tubing and casing during the injection process. This report uses the acronym 'DOWS' although the technology may also be referred to as DHOWS or as dual injection and lifting systems (DIALS). Simultaneous injection using DOWS has the potential to profoundly influence the domestic oil industry. The technology has been shown to work in limited oil field applications in the United States and Canada. Several technical papers describing DOWS have been presented at oil and gas industry conferences, but for the most part, the information on the DOWS technology has not been widely transferred to operators, particularly to small or medium-sized independent U.S. companies. One of the missions of the U.S. Department of Energy's (DOE's) National Petroleum Technology Office (NPTO) is to assess the feasibility of promising oil and gas technologies that offer improved operating performance, reduced operating costs, or greater environmental protection. To further this mission, the NPTO provided funding to a partnership of three organizations a DOE national laboratory (Argonne National Laboratory), a private-sector consulting firm (CH2M-Hill), and a state government agency (Nebraska Oil and Gas Conservation Commission) to assess the feasibility of DOWS. The purpose of this report is to provide general information to the industry on DOWS by describing the existing uses of simultaneous injection, summarizing the regulatory implications of simultaneous injection, and assessing the potential future uses of the technology. Chapter 2 provides a more detailed description of the two major types of DOWS. Chapter 3 summarizes the existing U.S. and Canadian installations of DOWS equipment, to the extent that operators have been willing to share their data. Data are provided on the location and geology of existing installations, production information before and after installation of the DOWS, and costs. Chapter 4 provides an overview of DOWS-specific regulatory requirements imposed by some state agencies and discusses the regulatory implications of handling produced water downhole, rather than pumping it to the surface and reinjecting it. Findings and conclusions are presented in Chapter 5 and a list of the references cited in the report is provided in Chapter 6. Appendix A presents detailed data on DOWS installations. This report presents the findings of Phase 1 of the simultaneous injection project, the feasibility assessment. Another activity of the Phase 1 investigation is to design a study plan for Phase 2 of the project, field pilot studies. The Phase 2 study plan is being developed separately and is not included in this report.

  15. Reduction of Altitude Diffuser Jet Noise Using Water Injection

    Science.gov (United States)

    Allgood, Daniel C.; Saunders, Grady P.; Langford, Lester A.

    2014-01-01

    A feasibility study on the effects of injecting water into the exhaust plume of an altitude rocket diffuser for the purpose of reducing the far-field acoustic noise has been performed. Water injection design parameters such as axial placement, angle of injection, diameter of injectors, and mass flow rate of water have been systematically varied during the operation of a subscale altitude test facility. The changes in acoustic far-field noise were measured with an array of free-field microphones in order to quantify the effects of the water injection on overall sound pressure level spectra and directivity. The results showed significant reductions in noise levels were possible with optimum conditions corresponding to water injection at or just upstream of the exit plane of the diffuser. Increasing the angle and mass flow rate of water injection also showed improvements in noise reduction. However, a limit on the maximum water flow rate existed as too large of flow rate could result in un-starting the supersonic diffuser.

  16. Organically modified clay removes oil from water

    International Nuclear Information System (INIS)

    When bentonite or other clays and zeolites are modified with quaternary amines, they become organophilic. Such modified bentonites are used to remove mechanically emulsified oil and grease, and other sparingly soluble organics. If the organoclay is granulated, it is placed into a liquid phase carbon filter vessel to remove FOG's and chlorinated hydrocarbons. In this application the clay is mixed with anthrazite to prevent early plugging of the filter by oil or grease droplets. In batch systems a powered organoclay is employed. Types of oil found in water can include fats, lubricants, cutting fluids, heavy hydrocarbons such as tars, grease, crude oil, diesel oils; and light hydrocarbons such as kerosene, jet fuel, and gasoline

  17. Near well simulation of heavy oil reservoir with water drive

    OpenAIRE

    Ediriweera, Mahesh Priyankara

    2015-01-01

    The Depletion of oil production and the low recovery rate are major challenges faced in oil production at Norwegian continental self. Several studies have shown that considerable amount of oil still remains after the well shutdown. Heavy oil reservoirs occupy more than two third of globally oil reserves. Therefore, extensive studies are undergone to optimize the oil recovery in heavy oil reservoirs. Water flooding and Enhanced Oil Recovery (EOR) methods are successfully implemente...

  18. Enhanced oil recovery by CO{sub 2} injection

    Energy Technology Data Exchange (ETDEWEB)

    Moctezuma Berthier, Andres E. [Instituto Mexicano del Petroleo, Mexico, D.F. (Mexico)

    2008-07-15

    Firstly are presented some basic concepts on the enhanced oil recovery; then a description is made of where the oil deposits in Mexico are located; comments are made over what has been done in Mexico in terms of enhanced oil recovery, the projects of the Instituto Mexicano del Petroleo that have dealt with the subject of enhanced oil recovery, and finally an approach is presented towards the problem of oil recovery using CO{sub 2}. [Spanish] Primeramente se presentan unos conceptos basicos sobre la recuperacion mejorada de petroleo; luego se hace una descripcion de donde se encuentran los yacimientos de petroleo en Mexico; se comenta sobre que se ha hecho en Mexico en terminos de recuperacion mejorada de petroleo; se mencionan los proyectos del Instituto Mexicano del Petroleo que han abordado el tema de la recuperacion mejorada del petroleo y por ultimo se presenta un enfoque hacia el problema de la recuperacion del petroleo usando CO{sub 2}.

  19. A Performance, Emission and Combustion Investigation on Hot Air Assisted Eucalyptus Oil Direct Injected Compression Ignition Engine

    OpenAIRE

    D. TAMILVENDHAN; ILANGOVAN.V

    2011-01-01

    A diesel engine modified for eucalyptus oil direct injection (EuDI) has been tested to study eucalyptus oil behavior. Since the eucalyptus oil possesses low cetane number fails to auto ignite, the test engine was modified to supply hot air during suction stroke which helps to auto-ignite the injected eucalyptus oil. The engine with this facility was operated using eucalyptus oil under various load conditions and at various intake temperatures. The results of the investigation were proved that...

  20. Disposal of oil cuttings by downhole fracturing injections : slurry product specifications issues

    International Nuclear Information System (INIS)

    The technique of using on-site injection of oil contaminated drill cuttings is attracting considerable attention as a cost effective means of complying with environmental legislation concerning discharges of drilling wastes. The slurrification and injection of oil based cuttings into a casing annulus, a process developed in 1989 by a major oil and gas producer/ operator, has proven to be a significant step toward reduction of such environmental waste. This paper discusses the development of the cuttings reinjection, slurrification, slurry properties and benefits of quality slurry, and behaviour of solid laden slurries in a fracture in conjunction with down-hole disposal operations

  1. Simulation study to determine the feasibility of injecting hydrogen sulfide, carbon dioxide and nitrogen gas injection to improve gas and oil recovery oil-rim reservoir

    Science.gov (United States)

    Eid, Mohamed El Gohary

    This study is combining two important and complicated processes; Enhanced Oil Recovery, EOR, from the oil rim and Enhanced Gas Recovery, EGR from the gas cap using nonhydrocarbon injection gases. EOR is proven technology that is continuously evolving to meet increased demand and oil production and desire to augment oil reserves. On the other hand, the rapid growth of the industrial and urban development has generated an unprecedented power demand, particularly during summer months. The required gas supplies to meet this demand are being stretched. To free up gas supply, alternative injectants to hydrocarbon gas are being reviewed to support reservoir pressure and maximize oil and gas recovery in oil rim reservoirs. In this study, a multi layered heterogeneous gas reservoir with an oil rim was selected to identify the most optimized development plan for maximum oil and gas recovery. The integrated reservoir characterization model and the pertinent transformed reservoir simulation history matched model were quality assured and quality checked. The development scheme is identified, in which the pattern and completion of the wells are optimized to best adapt to the heterogeneity of the reservoir. Lateral and maximum block contact holes will be investigated. The non-hydrocarbon gases considered for this study are hydrogen sulphide, carbon dioxide and nitrogen, utilized to investigate miscible and immiscible EOR processes. In November 2010, re-vaporization study, was completed successfully, the first in the UAE, with an ultimate objective is to examine the gas and condensate production in gas reservoir using non hydrocarbon gases. Field development options and proces schemes as well as reservoir management and long term business plans including phases of implementation will be identified and assured. The development option that maximizes the ultimate recovery factor will be evaluated and selected. The study achieved satisfactory results in integrating gas and oil reservoir management methodology to maximize both fluid recovery and free up currently injected HC gases for domestic consumption. Moreover, this study identified the main uncertainty parameters impacting the gas and oil production performance with all proposed alternatives. Maximizing both fluids oil and gas in oil rim reservoir are challenging. The reservoir heterogeneity will have a major impact on the performance of non hydrocarbon gas flooding. Therefore, good reservoir description is a key to achieve acceptable development process and make reliable prediction. The lab study data were used successfully to as a tool to identify the range of uncertainty parameters that are impacting the hydrocarbon recovery.

  2. Reductions in Multi-Component Jet Noise by Water Injection

    Science.gov (United States)

    Norum, Thomas D.

    2004-01-01

    An experimental investigation was performed in the NASA Langley Low Speed Aeroacoustics Wind Tunnel to determine the extent of jet exhaust noise reduction that can be obtained using water injection in a hot jet environment. The effects of water parameters such as mass flow rate, injection location, and spray patterns on suppression of dominant noise sources in both subsonic and supersonic jets were determined, and extrapolations to full-scale engine noise reduction were made. Water jets and sprays were injected in to the shear layers of cold and hot circular jets operating at both subsonic and supersonic exhaust conditions. Use of convergent-divergent and convergent nozzles (2.7in. D) allowed for simulations of all major jet noise sources. The experimental results show that water injection clearly disrupts shock noise sources within the jet plume, with large reductions in radiated shock noise. There are smaller reductions in jet mixing noise, resulting in only a small decrease in effective perceived noise level when projections are made to full scale. The fact that the measured noise reduction in the direction upstream of the nozzle was consistently larger than in the noisier downstream direction contributed to keeping effective perceived noise reductions small. Variations in the operation of the water injection system clearly show that injection at the nozzle exit rather than further downstream is required for the largest noise reduction. Noise reduction increased with water pressure as well as with its mass flow, although the type of injector had little effect.

  3. Simulation bidimensional of water and gas alternative injection; Simulacao bidimensional de injecao alternada de agua e gas

    Energy Technology Data Exchange (ETDEWEB)

    Santana, Ana Paula Silva C. de

    1999-07-01

    This dissertation presents a study of the unidimensional of water and gas alternate injection (WAG) using the stream line theory. It is considered incompressible fluid., unit mobility ratio, negligible capillary and gravitational effects, homogeneous and isotropic reservoir, isothermal flow two phases, oil and water, and three components, oil, water and gas. In the stream line theory, the following injection schemes are considered: staggered line five-spot, direct line and seven-spot. It is also considered that there is no flow among the streams. In the WAG calculations it is used the fractional flow theory and the method of characteristics, which consists of shock waves and rarefactions. The composition of these waves is said compatible if it satisfies the entropy condition. The solution goes through a certain path from the left to the right side constrained by the initial and boundary conditions. The gas injection is at a high pressure to ensure miscible displacement. It is considered first injection of a water bank and then, injection of a gas bank. We concluded that the gas injection at a high pressure recoveries all residual oil and the water saturation remains is greater than initial saturation. (author)

  4. Investigating New Innovations to Detect Small Salt-Water Fraction Component in Mineral Oil and Small Oil Fraction Component in Salt-Water Projects

    Directory of Open Access Journals (Sweden)

    E.R.R. Mucunguzi-Rugwebe

    2011-09-01

    Full Text Available The main purpose of this study is to present the key findings on the effects of small salt-water fraction component, ? expressed in volume % per L on rotation are presented in the temperature range of 19.0 to 24.0C. It was found that rotations in oils with low boiling point known as light oils like Final diesel No. 2 were greater than the rotations which occurred in oils with high boiling point called heavy oils such as Esso diesel. Small oil fraction components, ?s expressed in mL/L of salt water down to 10 ppm were detected. The greatest impact on rotation of these oils was found in light oils like Fina No. 2 diesel. At 40 ppm which is the oil content level below which the environment authority considers process water to be free from oil environmental hazards, the observed rotation angles were 23.2 for Esso, 36.7 for Nors Hydro AS, and 71.8 in Fina No. 2 diesel. It was observed that light oils molecules have drastic effect on optical properties of the mixture in which they exist. It was found that for all oils, oil fractions greater than 100 ppm, caused the medium to be optically dense. This technology has shown a very high potential of being used as an environmental monitor to detect oil fractions down to 10 ppm and the technique can use laser beam to control re-injected process water with oil fractions between 100-2000 ppm.

  5. Mine Drainage and Oil Sand Water.

    Science.gov (United States)

    Wei, Xinchao; Wolfe, F Andrew; Li, Yanjun

    2015-10-01

    Mine drainage from the mining of mineral resources (coal, metals, oil sand, or industrial minerals) remains as a persistent environmental problem. This review summarizes the scientific literature published in 2014 on the technical issues related to mine drainage or mine water in active and abandoned coal/hard rock mining sites or waste spoil piles. Also included in this review is the water from oil sand operations. This review is divided into the four sections: 1) mine drainage characterization, 2) prediction and environmental impact, 3) treatment technologies, 4) oil sand water. Many papers presented in this review address more than one aspect and different sections should not be regarded as being mutuallyexclusive or all-inclusive. PMID:26420092

  6. The use of chemical tracers to water injection processes applied on Romanian reservoirs

    Directory of Open Access Journals (Sweden)

    Zecheru M.

    2013-05-01

    Full Text Available The hydrocarbon reservoirs are extremely complex, each reservoir having its own identity. Reservoirs heterogeneity (mainly regarding the layered ones frequently results in low recovery efficiencies, both under the primary regime and when different agents are injected from the surface. EOR processes efficiency depends on how detailed the reservoir is known and on the information related to fluids flow through reservoir. There are certain analyzes, investigations and tests providing good knowledge about the reservoir. The tracer tests are among them, being frequently used to water injection processes. Depending on the method used, IWTT (Interwell tracer test, SWTT (Single-Well Tracer Test, TWTT (Two-Well Tracer Test, information are obtained as related to: the setting of the preferential flow path of the injected fluid, the identification of water channels, evidencing the geological barriers, determining the residual oil saturation, around the well bore or along the tracer's path between two wells. This paper is focused on ICPT Cmpina efforts related to the use of the chemical tracers to the water injection processes applied to the oil reservoirs of Romania. It describes the usual tracers and the methods used to detect them in the reaction wells. Up to now, more than 50 tests with IWTT tracers have been performed on-site and this work presents some of their results.

  7. The use of chemical tracers to water injection processes applied on Romanian reservoirs

    International Nuclear Information System (INIS)

    The hydrocarbon reservoirs are extremely complex, each reservoir having its own identity. Reservoirs heterogeneity (mainly regarding the layered ones) frequently results in low recovery efficiencies, both under the primary regime and when different agents are injected from the surface. EOR processes efficiency depends on how detailed the reservoir is known and on the information related to fluids flow through reservoir. There are certain analyzes, investigations and tests providing good knowledge about the reservoir. The tracer tests are among them, being frequently used to water injection processes. Depending on the method used, IWTT (Inter-well tracer test), SWTT (Single-Well Tracer Test), TWTT (Two-Well Tracer Test), information are obtained as related to: the setting of the preferential flow path of the injected fluid, the identification of water channels, evidencing the geological barriers, determining the residual oil saturation, around the well bore or along the tracer's path between two wells. This paper is focused on ICPT Campina efforts related to the use of the chemical tracers to the water injection processes applied to the oil reservoirs of Romania. It describes the usual tracers and the methods used to detect them in the reaction wells. Up to now, more than 50 tests with IWTT tracers have been performed on-site and this work presents some of their results. (authors)

  8. Differences in microbial community composition between injection and production water samples of water flooding petroleum reservoirs

    OpenAIRE

    Gao, P. K.; G. Q. Li; Tian, H. M.; Wang, Y.S.; Sun, H. W.; Ma, T.

    2015-01-01

    Microbial communities in injected water are expected to have significant influence on those of reservoir strata in long-term water flooding petroleum reservoirs. To investigate the similarities and differences in microbial communities in injected water and reservoir strata, high-throughput sequencing of microbial partial 16S rRNA of the water samples collected from the wellhead and downhole of injection wells, and from production wells in a homogeneous sandstone reservoir an...

  9. Injection of Emulsified Vegetable Oil for Long-Term Bioreduction of Uranium

    Science.gov (United States)

    Brooks, S. C.; Watson, D. B.; Schadt, C. W.; Jardine, P. M.; Gihring, T. M.; Zhang, G.; Mehlhorn, T.; Lowe, K.; Phillips, J.; Earles, J.; Wu, W.; Criddle, C. S.; Kemner, K. M.; Boyanov, M.

    2011-12-01

    In situ bioremediation of a uranium and nitrate-contaminated aquifer with the slow-release electron donor, emulsified vegetable oil (EVO), was tested at the US DOE Subsurface Biogeochemical Research Program (SBR) Integrated Field Research Challenge (IFRC) site, in Oak Ridge, TN. The EVO injection took place in Area 2 of the IFRC located about 300 m downgradient of the former S-3 disposal ponds. Liquid wastes, disposed in the ponds from 1951 to 1983, were primarily composed of nitric acid, plating wastes containing various metals (Cr, Ni) radionuclides (U, Tc), inorganics (nitrate, sulfate) and organic contaminants (tetrachloroethylene, acetone). Prior pond closure in 1987, large volumes of waste fluids migrated into the subsurface, down Bear Creek Valley and into Bear Creek. Contaminants detected at Area 2 were transported through a high permeability gravelly fill that is considered a preferred transport pathway for U to Bear Creek. Groundwater in the gravelly fill is contaminated with U (1-3 mg/L), sulfate (95-130 mg/L), and nitrate (20-40 mg/L) and 500 mg/kg or higher U has been detected on the solid phase of the fill material. The objective of this study is to investigate the feasibility and long-term sustainability of U(VI) reduction and immobilization, and nitrate degradation in the high permeability, high flow gravel fill using EVO as the electron donor. A one-time EVO injection was conducted over a 2 hour period in the highly permeable gravel (hydraulic conductivity 0.08 cm/sec) in the well instrumented IFRC Area 2 field plot. Extensive monitoring of geochemical parameters, dissolved gases and microbial populations were conducted during the test. A bromide tracer test was conducted prior to the injection of the EVO to assess transport pathways and rates. Geochemical analysis of site groundwater demonstrated the sequential bioreduction of oxygen, nitrate, Mn(IV), Fe(III) and sulfate. Transient accumulation of acetate was observed as an intermediate in the oil degradation. Reduction and removal of U and nitrate from groundwater was observed in all wells in hydraulic connection to the injection wells after 2-4 weeks. U concentrations in groundwater were reduced to below 30 ppb (US EPA drinking water standard) at some well locations and nitrate was reduced to below detectable levels. Rebound of U in groundwater was observed together with the rebound of sulfate concentrations as the EVO was consumed. The flux of U and nitrate contamination from groundwater to the surface water receptor (Bear Creek) was significantly reduced by the EVO injection over a one year period. Uranium (VI) reduction to U(IV) in the field tests was confirmed by X-ray absorption near-edge spectroscopy (XANES) analysis. The reduced U(IV) was determined by X-ray absorption fine structure (XAFS) to be in an Fe-U complex, not uraninite. The activities of major Fe(III)- and sulfate-reducing bacteria with U(VI)-reducing capability as well as methanogens was stimulated after injection of the oil.

  10. Integrated use of NMR, petrel and modflow in the modeling of SAGD produced water re-injection

    International Nuclear Information System (INIS)

    In the oil industry, steam assisted gravity drainage (SAGD) is a method used to enhance oil recovery in which production water disposal is a challenge. During this process, production water is re-injected into the reservoir and operators have to verify that it will not affect the quality of the surrounding fresh groundwater. This research aimed at determining the flow path and the time that produced water would take to reach an adjacent aquifer. This study was carried out on a horizontal well pair at the Axe Lake Area in northwestern Saskatchewan, using existing site data in Petrel to create a static hydrogeological model which was then exported to Modflow to simulate injection scenarios. This innovative method provided flow path of the re-injected water and time to reach the fresh with advantages over conventional hydrogeological modeling. The innovative workflow presented herein successfully provided useful information to assess the feasibility of the SAGD project and could be used for other projects.

  11. Integrated use of NMR, petrel and modflow in the modeling of SAGD produced water re-injection

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, K. [Miswaco(CANADA); Phair, C [Mneme Corp, CALGARY (Canada); Alloisio, S [SWS, Vancouver (CANADA); Novotny, M [SWS, Denver, (United States); Raven, S [Oilsands Quest Inc., Calgary (CANADA)

    2011-07-01

    In the oil industry, steam assisted gravity drainage (SAGD) is a method used to enhance oil recovery in which production water disposal is a challenge. During this process, production water is re-injected into the reservoir and operators have to verify that it will not affect the quality of the surrounding fresh groundwater. This research aimed at determining the flow path and the time that produced water would take to reach an adjacent aquifer. This study was carried out on a horizontal well pair at the Axe Lake Area in northwestern Saskatchewan, using existing site data in Petrel to create a static hydrogeological model which was then exported to Modflow to simulate injection scenarios. This innovative method provided flow path of the re-injected water and time to reach the fresh with advantages over conventional hydrogeological modeling. The innovative workflow presented herein successfully provided useful information to assess the feasibility of the SAGD project and could be used for other projects.

  12. Oil spill research : salt water and fresh water

    International Nuclear Information System (INIS)

    The difference in oil spill response activities between marine and freshwater environments were reviewed. Although containment, recovery and in-situ burning remain the same in both environments, the fate of oil is different due to water density and salinity considerations. The lower energy of lakes and the lack of major currents changes the advection of the oil. Rivers have high currents, and wind speed and direction are highly influenced by topographic effects. Tidal action is not a consideration for the inland situation, but water levels in rivers can change due to sudden rain events or the action of control devices upstream from the spill. Typically, the volume of oil released in freshwater environments is lower than in marine tanker situations, but spills from pipelines or a major train derailment can exceed 1000 m3. Since the use of water for human consumption and irrigation is another important factor in inland spills, it is important to have a means of obtaining information on the dynamics of spills and a system for archiving the response activities, such as the shoreline cleanup assessment technique (SCAT)and resulting cleanup. It was suggested that research studies must be undertaken to improve response strategies for freshwater spills. These include the dynamics of oil in freshwater environments such as rivers, lakes and sloughs; the role of oil-fine interactions in freshwater situations; the process involved in the formation of tar balls; and, the dynamics of oil in a freshwater situation. The response techniques that must be developed to improve the response to freshwater spills include techniques to remove oil from the bottom; techniques to filter and remove oil from the water column; and, development and testing of dispersants for freshwater environments

  13. Adsorption of diatoms at the oil-water interface

    Science.gov (United States)

    Fathollahi, Niloofar; Sheng, Jian

    2013-11-01

    Statistically robust experimental observations on 3D trajectory of diatoms approaching an oil-water interface is crucial for understanding sorption mechanisms of active particles, and interfacial rheology with over-arching implications in interfacial dynamics, droplet break and coalescence. Digital Holographic Cinematography is utilized to measure 3-D trajectories of diatoms, Thalassiosira pseudomona and T. weissflogii and simultaneously track the interface. Experiments are conducted in a 300 × 100 × 100 mm chamber containing 32 ppt artificial seawater. A stationary pendant drop is created on the tip of a needle located at the center of the chamber. Three oil samples, Louisiana crude, hexadecane, and mineral oil, are used. Diatoms are injected at a height above the drop with a negligible velocity, where Diatom precipitates freely on its excess weight. Holograms of diatom and drop are recorded at 5 fps with a magnification of 1.3X and are streamed in real time allowing for long-term study of sorption onto a slowly aging interface. A novel autofocus algorithm enables us to determine 3D locations within an uncertainty of 0.05 particle diameter. This allows us to perform super-resolution measurement to determine the effects of location and orientation of diatoms on the adsorption rate at the oil-water interface. Funded by GoMRI.

  14. Movement of tritiated water injected into blanket peat

    Directory of Open Access Journals (Sweden)

    R.S. Clymo

    2016-04-01

    Full Text Available In 1966, tritiated water was injected at five sites at depths between 25 and 100 cm into blanket bog at Moor House National Nature Reserve. The distribution of tritium activity on a logarithmically spaced grid around these sites was sampled in 1990, 24 years after placement. The proportions of tritium accounted for ranged from 80 % for the injection at 100 cm deep, to 20 % for the injection at 25 cm deep. Both 80 and 20 should be considered as ± 10 %. Results imply that diffusion close to the injection may have played a part in movement of tritium; evapotranspiration is not inconsistent with the losses inversely proportional to depth of placement; but the main process of movement is probably bulk (mass flow of water through the peat.

  15. Treatment of oil pollution on water

    International Nuclear Information System (INIS)

    Oil or other polluting material on or near the surface of a body of water is treated by a device comprising a tube having a slot through which fluid within the tube emerges. A cover directs the emerging fluid over the curved outer surface of the tube. The fluid may be water or a mixture of water and a dispersant. The device may be provided with fins. Some or all of the treated water may be collected in a tank and some or all may be returned to the sea. The device may be rendered buoyant by a pair of floats or may be part of a larger sea-going vessel. (Author)

  16. A new Experimental Rig for Oil Burning on Water

    DEFF Research Database (Denmark)

    Brogaard, Nicholas L.; Sørensen, Martin X.; Fritt-Rasmussen, Janne; Rangwala, Ali S.; Jomaas, Grunde

    2014-01-01

    A new experimental apparatus, the Crude Oil Flammability Apparatus (COFA), has been developed to study in-situ burning of crude and pure oils spilled on water in a controlled laboratory environment with large water-to-oil ratios. The parameters and phenomena studied for an asphaltic crude oil...

  17. Removing the colliodal particles from injection waters

    Energy Technology Data Exchange (ETDEWEB)

    Parcalabescu, I.D.; Manea, F.

    1980-09-01

    In order to avoid the collapse of the growing precipitation particles, this method takes into consideration the type of deposit water, optimal doses of Ca(OH)/sub 2/ and Al/sub 2/(SO/sub 4/)/sub 3/, temperature, clarification time, and the critical velocity of the moving liquid into the reactor. Because a single solution is not possible, the problem must be solved quantitatively for every type of deposit.

  18. Use of tobacco seed oil methyl ester in a turbocharged indirect injection diesel engine

    International Nuclear Information System (INIS)

    Vegetable oils and their methyl/ethyl esters are alternative renewable fuels for compression ignition engines. Different kinds of vegetable oils and their methyl/ethyl esters have been tested in diesel engines. However, tobacco seed oil and tobacco seed oil methyl ester have not been tested in diesel engines, yet. Tobacco seed oil is a non-edible vegetable oil and a by-product of tobacco leaves production. To the author's best knowledge, this is the first study on tobacco seed oil methyl ester as a fuel in diesel engines. In this study, potential tobacco seed production throughout the world, the oil extraction process from tobacco seed and the transesterification process for biodiesel production were examined. The produced tobacco seed oil methyl ester was characterized by exposing its major properties. The effects of tobacco seed oil methyl ester addition to diesel No. 2 on the performance and emissions of a four cycle, four cylinder turbocharged indirect injection (IDI) diesel engine were examined at both full and partial loads. Experimental results showed that tobacco seed oil methyl ester can be partially substituted for the diesel fuel at most operating conditions in terms of performance parameters and emissions without any engine modification and preheating of the blends. (Author)

  19. Multi-Phase Modeling of Rainbird Water Injection

    Science.gov (United States)

    Vu, Bruce T.; Moss, Nicholas; Sampson, Zoe

    2014-01-01

    This paper describes the use of a Volume of Fluid (VOF) multiphase model to simulate the water injected from a rainbird nozzle used in the sound suppression system during launch. The simulations help determine the projectile motion for different water flow rates employed at the pad, as it is critical to know if water will splash on the first-stage rocket engine during liftoff.

  20. Development of Improved Oil Field Waste Injection Disposal Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Terralog Technologies USA Inc.

    2001-12-17

    The goals of this DOE sponsored project are to: (1) assemble and analyze a comprehensive database of past waste injection operations; (2) develop improved diagnostic techniques for monitoring fracture growth and formation changes; (3) develop operating guidelines to optimize daily operations and ultimate storage capacity of the target formation; and (4) to test these improved models and guidelines in the field.

  1. Development of Improved Oil Field Waste Injection Disposal Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Terralog Technologies

    2002-11-25

    The goals of this project have was to: (1) assemble and analyze a comprehensive database of past waste injection operations; (2) develop improved diagnostic techniques for monitoring fracture growth and formation changes; (3) develop operating guidelines to optimize daily operations and ultimate storage capacity of the target formation; and (4) to apply these improved models and guidelines in the field.

  2. Intercomparison of oil spill prediction models for accidental blowout scenarios with and without subsea chemical dispersant injection.

    Science.gov (United States)

    Socolofsky, Scott A; Adams, E Eric; Boufadel, Michel C; Aman, Zachary M; Johansen, istein; Konkel, Wolfgang J; Lindo, David; Madsen, Mads N; North, Elizabeth W; Paris, Claire B; Rasmussen, Dorte; Reed, Mark; Rnningen, Petter; Sim, Lawrence H; Uhrenholdt, Thomas; Anderson, Karl G; Cooper, Cortis; Nedwed, Tim J

    2015-07-15

    We compare oil spill model predictions for a prototype subsea blowout with and without subsea injection of chemical dispersants in deep and shallow water, for high and low gas-oil ratio, and in weak to strong crossflows. Model results are compared for initial oil droplet size distribution, the nearfield plume, and the farfield Lagrangian particle tracking stage of hydrocarbon transport. For the conditions tested (a blowout with oil flow rate of 20,000 bbl/d, about 1/3 of the Deepwater Horizon), the models predict the volume median droplet diameter at the source to range from 0.3 to 6mm without dispersant and 0.01 to 0.8 mm with dispersant. This reduced droplet size owing to reduced interfacial tension results in a one to two order of magnitude increase in the downstream displacement of the initial oil surfacing zone and may lead to a significant fraction of the spilled oil not reaching the sea surface. PMID:26021288

  3. Performance and emissions characteristics of Jatropha oil (preheated and blends) in a direct injection compression ignition engine

    International Nuclear Information System (INIS)

    The scarce and rapidly depleting conventional petroleum resources have promoted research for alternative fuels for internal combustion engines. Among various possible options, fuels derived from triglycerides (vegetable oils/animal fats) present promising ''greener'' substitutes for fossil fuels. Vegetable oils, due to their agricultural origin, are able to reduce net CO2 emissions to the atmosphere along with import substitution of petroleum products. However, several operational and durability problems of using straight vegetable oils in diesel engines reported in the literature, which are because of their higher viscosity and low volatility compared to mineral diesel fuel. In the present research, experiments were designed to study the effect of reducing Jatropha oil's viscosity by increasing the fuel temperature (using waste heat of the exhaust gases) and thereby eliminating its effect on combustion and emission characteristics of the engine. Experiments were also conducted using various blends of Jatropha oil with mineral diesel to study the effect of reduced blend viscosity on emissions and performance of diesel engine. A single cylinder, four stroke, constant speed, water cooled, direct injection diesel engine typically used in agricultural sector was used for the experiments. The acquired data were analyzed for various parameters such as thermal efficiency, brake specific fuel consumption (BSFC), smoke opacity, CO2, CO and HC emissions. While operating the engine on Jatropha oil (preheated and blends), performance and emission parameters were found to be very close to mineral diesel for lower blend concentrations. However, for higher blend concentrations, performance and emissions were observed to be marginally inferior. (author)

  4. Comparison of Microbial Community Compositions of Injection and Production Well Samples in a Long-Term Water-Flooded Petroleum Reservoir

    OpenAIRE

    Ren, Hong-Yan; Zhang, Xiao-jun; Song, Zhi-yong; Rupert, Wieger; Gao, Guang-Jun; Guo, Sheng-xue; Zhao, Li-Ping

    2011-01-01

    Water flooding plays an important role in recovering oil from depleted petroleum reservoirs. Exactly how the microbial communities of production wells are affected by microorganisms introduced with injected water has previously not been adequately studied. Using denaturing gradient gel electrophoresis (DGGE) approach and 16S rRNA gene clone library analysis, the comparison of microbial communities is carried out between one injection water and two production waters collected from a working bl...

  5. Destruction of secondary water-oil emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Abashev, R.G.; Isayev, M.G.; Nikolayeva, T.M.; Zheryakova, N.I.

    1984-01-01

    The article advances a number of requirements for the object, methods and means of destroying secondary water-oil emulsions (WOE) which currently cannot be recovered. By using the latest advances in science: chemistry of oil and surfactants, physicochemical surface phenomena, physical mechanics of dispersed systems, hydrodynamics and engineering chemistry jointly with the fundamentals of economics, efficient solutions are indicated for stabilization of the composition and property of WOE, and their destruction in a stationary technological process. A flowsheet is established for the recommended technology.

  6. Oil recovery from naturally fractured reservoirs by steam injection methods. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Reis, J.C.; Miller, M.A.

    1995-05-01

    Oil recovery by steam injection is a proven, successful technology for nonfractured reservoirs, but has received only limited study for fractured reservoirs. Preliminary studies suggest recovery efficiencies in fractured reservoirs may be increased by as much as 50% with the application of steam relative to that of low temperature processes. The key mechanisms enhancing oil production at high temperature are the differential thermal expansion between oil and the pore volume, and the generation of gases within matrix blocks. Other mechanisms may also contribute to increased production. These mechanisms are relatively independent of oil gravity, making steam injection into naturally fractured reservoirs equally attractive to light and heavy oil deposits. The objectives of this research program are to quantify the amount of oil expelled by these recovery mechanisms and to develop a numerical model for predicting oil recovery in naturally fractured reservoirs during steam injection. The experimental study consists of constructing and operating several apparatuses to isolate each of these mechanisms. The first measures thermal expansion and capillary imbibition rates at relatively low temperature, but for various lithologies and matrix block shapes. The second apparatus measures the same parameters, but at high temperatures and for only one shape. A third experimental apparatus measures the maximum gas saturations that could build up within a matrix block. A fourth apparatus measures thermal conductivity and diffusivity of porous media. The numerical study consists of developing transfer functions for oil expulsion from matrix blocks to fractures at high temperatures and incorporating them, along with the energy equation, into a dual porosity thermal reservoir simulator. This simulator can be utilized to make predictions for steam injection processes in naturally-fractured reservoirs. Analytical models for capillary imbibition have also been developed.

  7. The effect of hot water injection on sandstone permeability

    DEFF Research Database (Denmark)

    Rosenbrand, Esther; Haugwitz, Christian; Jacobsen, Peter Sally Munch; Kjøller, Claus; Fabricius, Ida Lykke

    2014-01-01

    Seasonal energy storage can be achieved by hot water injection in geothermal sandstone aquifers. We present an analysis of literature data in combination with new short-term flow through permeability experiments in order to address physical and physico-chemical mechanisms that can alter permeabil......Seasonal energy storage can be achieved by hot water injection in geothermal sandstone aquifers. We present an analysis of literature data in combination with new short-term flow through permeability experiments in order to address physical and physico-chemical mechanisms that can alter...

  8. Comparison of asymmetric with symmetric feed oil injection parameters in a riser reactor.

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, B. J.; Chang, S. L.; Lottes, S. A.; Zhou, C. Q.

    1999-04-20

    A computational fluid dynamic (CFD) computer code was used to determine the effects of product yields of three feed injection parameters in a fluidized catalytic cracking (FCC) riser reactor. This study includes the effects of both symmetrical and non-symmetrical injection parameters. All these parameters have significant effects on the feed oil spray distribution, vaporization rates and the resulting product yields. This study also indicates that optimum parameter ranges exist for the investigated parameters.

  9. In situ generation of steam and alkaline surfactant for enhanced oil recovery using an exothermic water reactant (EWR)

    Science.gov (United States)

    Robertson, Eric P

    2011-05-24

    A method for oil recovery whereby an exothermic water reactant (EWR) encapsulated in a water soluble coating is placed in water and pumped into one or more oil wells in contact with an oil bearing formation. After the water carries the EWR to the bottom of the injection well, the water soluble coating dissolves and the EWR reacts with the water to produce heat, an alkali solution, and hydrogen. The heat from the EWR reaction generates steam, which is forced into the oil bearing formation where it condenses and transfers heat to the oil, elevating its temperature and decreasing the viscosity of the oil. The aqueous alkali solution mixes with the oil in the oil bearing formation and forms a surfactant that reduces the interfacial tension between the oil and water. The hydrogen may be used to react with the oil at these elevated temperatures to form lighter molecules, thus upgrading to a certain extent the oil in situ. As a result, the oil can flow more efficiently and easily through the oil bearing formation towards and into one or more production wells.

  10. Nuclear-energy application studied as source of injection steam for heavy-oil recovery

    International Nuclear Information System (INIS)

    This study into the feasibility of adapting a well-proven nuclear reactor as a centralized source of injection steam for the recovery of heavy oil has shown that the reactor modifications are practicable and well within the bounds of current technology. The gas-cooled reactor is capable of meeting the highest steam supply pressure requirement and it possesses a high degree of inherent safety. The injection of steam for the recovery of heavy oil is the most well developed of the available options. At current price levels of oil and uranium, nuclear heat can be generated at a fraction of the running costs of oil fired thermal plant. Taken over a project lifetime of 25 years for the field model used for this assessment, the improved earnings for the nuclear option could amount to as much as /10 billion. The program requirements for a typical development have been examined and the construction times for the gas reactor steam plant, the oil-field development and the upgrading plant are compatible at between five and six years. The economic advantage of steam generation by nuclear energy gives a further recovery breakthrough. It becomes possible to continue the steam drive process up to much more adverse recovery ratios of steam quantity injected for unit oil produced if nuclear energy is employed

  11. Combination of low salinity water flooding with surfactant injection : a new hybrid EOR process

    Energy Technology Data Exchange (ETDEWEB)

    Alagic, Edin

    2010-03-15

    This work addresses different aspects related to the hybrid EOR process, low salinity surfactant injection including closely connected topics such as low salinity water injection and physicochemical properties of micro emulsions. In the first part, measurements of self-diffusion, ultrasonic speed, density and viscosity (i.e., shear dependency) are evaluated as methods to detect the structural changes in the micro emulsions imposed with a variation of the brine salinity. The viscosity measurements on Winsor type micro emulsions and adjacent excess phases all show Newtonian behaviour for shear controlled measurements in the interval 1- 1 000 s-1. The microemulsion viscosity reaches a maximum at the phase transition between Winsor I and Winsor III, which is likely to be coupled to structural changes (i.e., clustering of the oil-in-water droplets where attractive interactions between separate aggregates lead to the formation of increasing number of transient clusters) or existence of a percolation threshold. Microemulsion densities seem to be a good indicator for the phase transitions. The results obtained from speed of sound and self-diffusion measurements indicate, however, structural changes of the surfactant aggregates within the Winsor I region. The diffusion coefficient of the surfactant reaches a maximum in the middle of the Winsor III phase, which coincide well with the optimal salinity, SP found in static phase behaviour studies. All investigated parameters indicate changes at the phase transition boundary from Winsor III to Winsor II. In the second part, we sought a better understanding of low salinity water injection method by conducting core displacement experiments using the same COBR ensemble. The results from both secondary and tertiary injections proves that injection of low salinity water (LS) into aged Berea core samples give a moderate increase in oil recovery compared to the results obtained with sea water (SW) as the displacing fluid. This is attributed to destabilisation of adsorbed oil layers by the injection of brine lower in salinity than the connate water. A comparison of the performance of tertiary LS floods versus secondary LS floods indicates that in both cases the total oil recovery falls roughly into the same range. It has also been shown that secondary LS floods performed on the aged core samples affect output parameters (i.e., oil recovery profile, water breakthrough (WBT), endpoint permeability to water k{sub w}(S{sub 0r}) and differential pressure) in another fashion than secondary SW floods. Further, the results from secondary SW floods conducted on the aged cores were used to confirm that aging process with crude oil at elevated temperature for extended time period has indeed managed to decrease the water-wetness of the core samples. By establishing this reference and exploiting the close relationship between the aforementioned parameters and wettability, a qualitative differentiation of wettability regimes is thus used to elucidate the observed difference in behaviour of water floods. Features accompanied with secondary LS floods such as delayed WBT, reduced two-phase production period after WBT, lower k{sub w}(S{sub 0r}) after LS floods at lower S{sub 0r}compared to k{sub w}(S{sub 0r}) after SW floods at higher S{sub 0r}, indicate a wettability change toward more water-wet state during LS injections. An attempt to relate low k{sub w}(S{sub 0r}) after LS floods to possible fines migration and subsequent blocking in pore constrictions, revealed that turbidity of the effluent from a more water-wet core (i.e., used in its natural state) was significantly higher than from the aged core. Increased turbidity of effluent indicates a larger quantity of eluted fine particles from the core matrix in the former case. Partially, these results infer that fines migration is not the predominant mechanism explaining increased oil recovery by LS injection in our experiments. The effluent ion analysis from secondary LS floods showed that Mg2+ were strongly retained in the aged cores while Ca2+ were being produced from both the aged cores and the unaged core. The latter was attributed mainly to calcite dissolution. The effluent ion analysis from tertiary LS floods initiated at the outset of SW floods showed that only smaller traces of Ca2+ along with Mg2+ eluted from the core matrix. This suggests that at higher sea water saturations rock surface is more firmly stabilised by divalents. Finally, a hybrid EOR process, combined low salinity surfactant injection (LS-S), is proposed and the viability of concept is tested. The idea is that a more efficient oil recovery method can be obtained by combining destabilisation of oil layers during the LS injection with low interfacial tensions (IFT) in a low salinity environment that prevents re-trapping of these layers as well as reducing surfactant retention.

  12. Stabilization of Oil-Water Emulsions by Hydrophobic Bacteria

    OpenAIRE

    Dorobantu, Loredana S.; Yeung, Anthony K. C.; Foght, Julia M.; Gray, Murray R.

    2004-01-01

    Formation of oil-water emulsions during bacterial growth on hydrocarbons is often attributed to biosurfactants. Here we report the ability of certain intact bacterial cells to stabilize oil-in-water and water-in-oil emulsions without changing the interfacial tension, by inhibition of droplet coalescence as observed in emulsion stabilization by solid particles like silica.

  13. Stability Proxies for Water-in-Oil Emulsions and Implications in Aqueous-based Enhanced Oil Recovery

    Directory of Open Access Journals (Sweden)

    Mehrnoosh Moradi

    2011-07-01

    Full Text Available Several researchers have proposed that mobility control mechanisms can positively contribute to oil recovery in the case of emulsions generated in Enhanced-Oil Recovery (EOR operations. Chemical EOR techniques that use alkaline components or/and surfactants are known to produce undesirable emulsions that create operational problems and are difficult to break. Other water-based methods have been less studied in this sense. EOR processes such as polymer flooding and LoSalTM injection require adjustments of water chemistry, mainly by lowering the ionic strength of the solution or by decreasing hardness. The decreased ionic strength of EOR solutions can give rise to more stable water-in-oil emulsions, which are speculated to improve mobility ratio between the injectant and the displaced oil. The first step toward understanding the connection between the emulsions and EOR mechanisms is to show that EOR conditions, such as salinity and hardness requirements, among others, are conducive to stabilizing emulsions. In order to do this, adequate stability proxies are required. This paper reviews commonly used emulsion stability proxies and explains the advantages and disadvantage of methods reviewed. This paper also reviews aqueous-based EOR processes with focus on heavy oil to contextualize in-situ emulsion stabilization conditions. This context sets the basis for comparison of emulsion stability proxies.

  14. Injection

    International Nuclear Information System (INIS)

    The author presents an introduction to beam injection. Especially considered are single-turn injection, multi-turn injection, H- charge-exchange injection, and injection from a cyclotron into a synchrotron. Finally some novel injection schemes are briefly mentioned. (HSI)

  15. Effect of advanced injection timing on the performance of rapeseed oil in diesel engines

    International Nuclear Information System (INIS)

    Combustion studies on both diesel fuel and vegetable oil fuels, with the standard and advanced injection timing, were carried out using the same engine and test procedures so that comparative assessments may be made. The diesel engine principle demands self-ignition of the fuel as it is injected at some degrees before top dead centre (BTDC) into the hot compressed cylinder gas. Longer delays between injection and ignition lead to unacceptable rates of pressure rise with the result of diesel knock because too much fuel is ready to take part in premixed combustion. Alternative fuels have been noted to exhibit longer delay periods and slower burning rate especially at low load operating conditions hence resulting in late combustion in the expansion stroke. Advanced injection timing is expected to compensate these effects. The engine has standard injection timing of 30degC BTDC. The injection was first advanced by 5.5degC given injection timing of 35.5degC BTDC. The engine performance was very erratic on this timing. The injection was then advanced by 3.5degC and the effects are presented in this paper. The engine performance was smooth especially at low load levels. The ignition delay was reduced through advanced injection but tended to incur a slight increase in fuel consumption. Moderate advanced injection timing is recommended for low speed operations. (Author)

  16. Simulation of altering residual water saturation near wellbore for CO2 injectivity

    Science.gov (United States)

    Park, Y.; Lee, T.; Lee, S.; Park, K.

    2014-12-01

    Volumetric CO2 storage capacity in brine aquifers is one of the most important factor for large scale CCS projects. The maximum sustainable injection rate or the injectivity is another important criterion which is dependent on many reservoir specific properties including permeability, porosity, formation thickness, areal extent, pressure and relative permeability. Among those parameters, we focused on the residual wetting phase saturation expressed in relative permeability curve. From previous experiments, residual brine saturation is typically between 0.4 and 0.6. Higher displacement efficiency cannot be expected with those values because the displacement efficiency is inversely proportional to the residual oil saturation. Also, it is natural that the end-point relative permeability for CO2 should be low. The reason is that the high CO2-brine interfacial tension disturbs CO2 invasion into small pores. In this study, chemical flooding was assumed with surfactants or intermediate fluid which is miscible with both water and CO2 to reduce the interfacial tension. We didn't use the chemicals to improve the displacement efficiency all over the field but intend to improve the injectivity at least near the wellbore region swept by the chemicals. Once lower residual brine saturation was achieved, the higher CO2 saturation could be maintained and the better CO2 injectivity was shown. Injection tests using a commercial model showed that the increase of the injectivity was not very high but the enhancement was meaningful.

  17. Co2 injection into oil reservoir associated with structural deformation

    KAUST Repository

    El-Amin, Mohamed

    2012-01-01

    In this work, the problem of structural deformation with two-phase flow of carbon sequestration is presented. A model to simulate miscible CO2 injection with structural deformation in the aqueous phase is established. In the first part of this paper, we developed analytical solution for the problem under consideration with certain types of boundary conditions, namely, Dirichlet and Neumann boundary conditions. The second part concerns to numerical simulation using IMPDES scheme. A simulator based on cell-centered finite difference method is used to solve this equations system. Distributions of CO2 saturation, and horizontal and vertical displacements have been introduced.

  18. Highly efficient 6-stroke engine cycle with water injection

    Science.gov (United States)

    Szybist, James P; Conklin, James C

    2012-10-23

    A six-stroke engine cycle having improved efficiency. Heat is recovered from the engine combustion gases by using a 6-stroke engine cycle in which combustion gases are partially vented proximate the bottom-dead-center position of the fourth stroke cycle, and water is injected proximate the top-dead-center position of the fourth stroke cycle.

  19. Comparison of water use for hydraulic fracturing for unconventional oil and gas versus conventional oil.

    Science.gov (United States)

    Scanlon, B R; Reedy, R C; Nicot, J-P

    2014-10-21

    We compared water use for hydraulic fracturing (HF) for oil versus gas production within the Eagle Ford shale. We then compared HF water use for Eagle Ford oil with Bakken oil, both plays accounting for two-thirds of U.S. unconventional oil production in 2013. In the Eagle Ford, we found similar average water use in oil and gas zones per well (4.7-4.9 × 10(6) gallons [gal]/well). However, about twice as much water is used per unit of energy (water-to-oil ratio, WOR, vol water/vol oil) in the oil zone (WOR: 1.4) as in the gas zone (water-to-oil-equivalent-ratio, WOER: 0.6). We also found large differences in water use for oil between the two plays, with mean Bakken water use/well (2.0 × 10(6) gal/well) about half that in the Eagle Ford, and a third per energy unit. We attribute these variations mostly to geological differences. Water-to-oil ratios for these plays (0.6-1.4) will further decrease (0.2-0.4) based on estimated ultimate oil recovery of wells. These unconventional water-to-oil ratios (0.2-1.4) are within the lower range of those for U.S. conventional oil production (WOR: 0.1-5). Therefore, the U.S. is using more water because HF has expanded oil production, not because HF is using more water per unit of oil production. PMID:25233450

  20. Keratopathy and pachymetric changes after photorefractive keratectomy and vitrectomy with silicone oil injection

    DEFF Research Database (Denmark)

    Buch, H; Vesti Nielsen, N

    2000-01-01

    We present a man who, after bilateral excimer laser photorefractive keratectomy (PRK) for high myopia in the right eye, had repeated retinal detachment surgery with lensectomy and injection of silicone oil. Visual acuity fluctuated in accordance with significant central corneal thickness diurnal...

  1. Enhanced oil recovery using improved aqueous fluid-injection methods: an annotated bibliography. [328 citations

    Energy Technology Data Exchange (ETDEWEB)

    Meister, M.J.; Kettenbrink, G.K.; Collins, A.G.

    1976-10-01

    This annotated bibliography contains abstracts, prepared by the authors, of articles published between 1968 and early 1976 on tests of improved aqueous fluid injection methods (i.e., polymer and surfactant floods). The abstracts have been written and organized to facilitate studies of the oil recovery potential of polymer and surfactant floods under known reservoir conditions. 328 citations.

  2. Study of the effect of Illite and Kaolinite on low salinity water injection

    Directory of Open Access Journals (Sweden)

    Sina Rezaei-Gomari

    2015-07-01

    Full Text Available Low salinity water flooding as an Enhanced Oil Recovery (EOR Technique refers to the injection of brine with a lower salt content or ionic strength into an oil reservoir. Although the mechanisms have not yet been verified, the solution and surface chemistry as well as rock/fluid interactions have important roles that can be attributed to reservoir minerals being sensitive to small changes in solution properties. Among the proposed mechanisms, the clay content of rock and type of clay has been of significant interest in shedding light on the low salinity water flooding process. In this paper, two clay types (illite and kaolinite have been selected to investigate the individual contribution of each on the rock surface characterization andlow salinity water flooding performance. The results from contact angle measurement on the oil-wet calcite by low salinity water at room temperature show that the presence of low content of illite in the rock materials, in contrast to the kaolinite, reduces the contact angle significantly. This observation demonstrates that the low salinity water flooding performance depends strongly on the type of clay not on the amount of clay.

  3. Correlation Study Between Streaming Potential Signal and Waterfront Progression During Water Alternate Gas (WAG Injection

    Directory of Open Access Journals (Sweden)

    S.M.M. Anuar

    2014-01-01

    Full Text Available Spontaneous Potential (SP is commonly measured during reservoir characterization. The SP signals are also generated during hydrocarbon production due to the streaming potential occurrence. Measurement of streaming potential has been previously proposed to detect the water encroachment towards a production well. The objectives of this study are to quantify the magnitude of the SP signal during production by WAG injection and to investigate the possibility of using SP measurements to monitor the sweep efficiency. The peak of the signal corresponds to the waterfront, where there is a change of saturation from ionic water to non-polar hydrocarbon. Similar trend is predicted in the case of WAG, where we have several interfaces between the injected water and the injected gas. This project involves numerical modeling and experimental work. Results from the experimental work will be used in the simulation work to correlate the measured SP signals with the distance of the waterfront in the WAG process. These observations suggest that WAG displacement process can be monitored indirectly from the signal acquired. Water or gas override can be detected and controlled if wells were equipped with inflow-control valves. This study is significant because monitoring the progress of water and gas in a WAG process is key in the effectiveness of this enhanced oil recovery method. Measurement of the streaming potential provides another method besides using tracers to monitor the WAG profile. Better monitoring will lead to more efficient displacement and great benefits in term of economy and environment.

  4. Mathematical modeling of chemical oil-soluble transport for water control in porous media

    Science.gov (United States)

    Valiollahi, H.; Ziabakhsh, Z.; Zitha, P. L. J.

    2012-08-01

    High water-cut is a long-standing problem in the upstream petroleum industry. Typically one-fourth of the produced fluids from oil wells worldwide are hydrocarbons and the remaining is water. Self-selective in-situ gel formation is a new potential technology to decrease the production of water from oil reservoirs. In this method an oil-soluble chemical is being injected in the reservoir. The chemical, which in this case is tetra-methyl-ortho-silicate or tetramethoxysilane (TMOS) reacts with water and ultimately results in the formation of a semi-rigid gel in the water phase. Due to this gelation, the relative permeabilities of the formation to water and oil change in favor of the oil phase; therefore the ultimate effect of this gelation is a reduction of the water production rate from the reservoir. The subject of this paper was to model the flow of TMOS in a core, including the mass transfer of TMOS from oil phase to the water phase, and the occurring chemical reaction in the water phase.

  5. Horizontal one-dimensional redistribution of oil and water with hysteresis due to oil entrapment

    OpenAIRE

    Dijke, M.I.J. van; van der Zee, S.E.A.T.M.

    1998-01-01

    Redistribution of oil and water in a long horizontal column, including oil entrapment by water, is described by a nonlinear diffusion problem with a spatially varying diffusion coefficient. This problem admits a similarity solution that was found previously for redistribution of water with capillary hysteresis. The distributions of both the free and the trapped oil saturations are computed and additionally the effect of initially trapped oil on the solution is demonstrated.

  6. CO2 and H2S gas injection heavy oil field

    Energy Technology Data Exchange (ETDEWEB)

    Padua, K.G.O. [Petrobras (Canada)

    2011-07-01

    Heavy oils constitute one of the largest fossil fuel reserves on earth; among them there are naturally fractured carbonate reservoirs under bottomwater. Those reservoirs are composed of sour heavy oil and its recovery is difficult, miscible processes are expensive and thermal methods are inefficient due to the harsh conditions. The aim of this paper is to investigate the use of injection of carbon dioxide and hydrogen sulfide mixtures. Fluid and reservoir characterizations were conducted using published observations, dynamic modeling and a comparative study. Reservoir performance under natural depletion and immiscible gas injection with effluent gas were then analyzed and compared. Expected breakthrough and composition of the produced fluid were presented in this study to provide the input necessary for operational planning. This paper presented a comparison between reservoir performance under natural depletion and immiscible gas injection, providing qualitative information to evaluate an effluent gas project.

  7. Discrimination of fish oil and mineral oil slicks on sea water

    Science.gov (United States)

    Mac Dowall, J.

    1969-01-01

    Fish oil and mineral oil slicks on sea water can be discriminated by their different spreading characteristics and by their reflectivities and color variations over a range of wavelengths. Reflectivities of oil and oil films are determined using a duel beam reflectance apparatus.

  8. Oil flow in deep waters: comparative study between light oils and heavy oils

    Energy Technology Data Exchange (ETDEWEB)

    Andreolli, Ivanilto [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2009-12-19

    Ultra deeper waters fields are being exploited due to technological development. Under this scenario, the flow design is accomplished through pipelines subjected to low temperature and high pressure. Moreover, these flow lines are usually long causing a fast fluid cooling, which may affect flow assurance in some cases. Problems during topsides production plant's restart might occur if the oil is viscous and even in steady state a significant different behavior can be noticed, if compared to a less viscous oil. A comparison between light and heavy oil through a case study with the objective to show some heavy oil flow particularities is the purpose of this paper. Permanent and transient analyses for a specific geometry are presented. The results showed that thermal and proper viscosity modeling are required for heavy oil flow, differently from that of light oil flow, due to the exponential viscosity dependence to temperature and because the predominant laminar regime. In addition, on heavier and heavier oil flow systems, it is essential to consider exportation system's restart. (author)

  9. Preparation and characterization of water/oil and water/oil/water emulsions containing biopolymer-gelled water droplets.

    Science.gov (United States)

    Surh, Jeonghee; Vladisavljevi Cacute, Goran T; Mun, Saehun; McClements, D Julian

    2007-01-10

    The purpose of this study was to create water-in-oil (W/O) and water-in-oil-in-water (W/O/W) emulsions containing gelled internal water droplets. Twenty weight percent W/O emulsions stabilized by a nonionic surfactant (6.4 wt % polyglycerol polyricinoleate, PGPR) were prepared that contained either 0 or 15 wt % whey protein isolate (WPI) in the aqueous phase, with the WPI-containing emulsions being either unheated or heated (80 degrees C for 20 min) to gel the protein. Optical microscopy and sedimentation tests did not indicate any significant changes in droplet characteristics of the W/O emulsions depending on WPI content (0 or 15%), shearing (0-7 min at constant shear), thermal processing (30-90 degrees C for 30 min), or storage at room temperature (up to 3 weeks). W/O/W emulsions were produced by homogenizing the W/O emulsions with an aqueous Tween 20 solution using either a membrane homogenizer (MH) or a high-pressure valve homogenizer (HPVH). For the MH the mean oil droplet size decreased with increasing number of passes, whereas for the HPVH it decreased with increasing number of passes and increasing homogenization pressure. The HPVH produced smaller droplets than the MH, but the MH produced a narrower particle size distribution. All W/O/W emulsions had a high retention of water droplets (>95%) within the larger oil droplets after homogenization. This study shows that W/O/W emulsions containing oil droplets with gelled water droplets inside can be produced by using MH or HPVH. PMID:17199330

  10. Differences in microbial community composition between injection and production water samples of water flooding petroleum reservoirs

    Science.gov (United States)

    Gao, P. K.; Li, G. Q.; Tian, H. M.; Wang, Y. S.; Sun, H. W.; Ma, T.

    2015-06-01

    Microbial communities in injected water are expected to have significant influence on those of reservoir strata in long-term water flooding petroleum reservoirs. To investigate the similarities and differences in microbial communities in injected water and reservoir strata, high-throughput sequencing of microbial partial 16S rRNA of the water samples collected from the wellhead and downhole of injection wells, and from production wells in a homogeneous sandstone reservoir and a heterogeneous conglomerate reservoir were performed. The results indicate that a small number of microbial populations are shared between the water samples from the injection and production wells in the sandstone reservoir, whereas a large number of microbial populations are shared in the conglomerate reservoir. The bacterial and archaeal communities in the reservoir strata have high concentrations, which are similar to those in the injected water. However, microbial population abundance exhibited large differences between the water samples from the injection and production wells. The number of shared populations reflects the influence of microbial communities in injected water on those in reservoir strata to some extent, and show strong association with the unique variation of reservoir environments.

  11. Cfd Modelling of Water Injection for Turbine Blade Cleaning

    Science.gov (United States)

    Yao, J.; Yao, Y.; Mason, P. J.; Zhang, T.; Heyes, F. J. G.; Roach, P. E.

    CFD modeling of water injection for turbine blade cleaning has been carried out to predict the water coverage on a stationary blade row, which will enable a better understanding on the interactions between hot-air flow and cold-water droplets. A generic configuration was used in a priori in-house experiment, which provides test data for CFD validation. The two-phase flow CFD model adopts the Eulerian-Lagrangian approach, in which the air-flow was treated as the continuous phase and water droplets as the dispersed phase. CFD predictions are found in fairly good agreement with test results, particularly the water coverage on the downstream blade row. Moreover, CFD modeling provides further details, including the trajectory of water droplets, which are difficult to be obtained by experiments, and yet extremely useful for understanding the flow physics.

  12. Effect of Combined Low Salinity and Surfactant Injection on Oil Recovery in Aged Bentheimer Sandstones at Different Temperatures

    OpenAIRE

    Riisøen, Solveig

    2012-01-01

    A moderate increase in crude oil recovery by reduction in salinity of the injection brine has been observed for numerous laboratory core flood experiments. The underlying mechanisms behind increased recovery by low salinity injection are not fully understood and are suggested to relate to complex crude oil/rock/brine interactions. Recent studies have also shown a positive effect by combining injection of low salinity brine and surfactant flooding. In this study, core experiments were conducte...

  13. Bio-physicochemical treatment of oil contaminated sea water

    International Nuclear Information System (INIS)

    This article introduces a combined physicochemical and biological process for treatment of oil contaminated sea water. In this process, a new polymeric surfactant is successfully applied with a dosage of 0.0015 g/g of crude oil to accumulate oil spots on the sea water in a microcosm. In the next step, microbial degradation of accumulated oil spots using isolated bacteria from oil contaminated Caspian Sea water was studied. The results of a proposed process for treatment of contaminated sea water in a pilot scale, using a 1500-l microcosm with several basins at different conditions are presented

  14. Melt quenching and coolability by water injection from below: Co-injection of water and non-condensable gas

    International Nuclear Information System (INIS)

    The interaction and mixing of high-temperature melt and water is the important technical issue in the safety assessment of water-cooled reactors to achieve ultimate core coolability. For specific advanced light water reactor (ALWR) designs, deliberate mixing of the core melt and water is being considered as a mitigative measure, to assure ex-vessel core coolability. The goal of our work is to provide the fundamental understanding needed for melt-water interfacial transport phenomena, thus enabling the development of innovative safety technologies for advanced LWRs that will assure ex-vessel core coolability. The work considers the ex-vessel coolability phenomena in two stages. The first stage is the melt quenching process and is being addressed by Argonne National Lab and University of Wisconsin in modified test facilities. Given a quenched melt in the form of solidified debris, the second stage is to characterize the long-term debris cooling process and is being addressed by Korean Maritime University via test and analyses. In this paper, experiments on melt quenching by the injection of water from below are addressed. The test section represented one-dimensional flow-channel simulation of the bottom injection of water into a core melt in the reactor cavity. The melt simulant was molten lead or a lead alloy (Pb-Bi). For the experimental conditions employed (i.e., melt depth and water flow rates), it was found that: (1) the volumetric heat removal rate increased with increasing water mass flow rate and (2) the non-condensable gas mixed with the injected water had no impairing effect on the overall heat removal rate. Implications of these current experimental findings for ALWR ex-vessel coolability are discussed

  15. COMBUSTION ANALYSIS OF ALGAL OIL METHYL ESTER IN A DIRECT INJECTION COMPRESSION IGNITION ENGINE

    Directory of Open Access Journals (Sweden)

    HARIRAM V.

    2013-02-01

    Full Text Available Algal oil methyl ester was derived from microalgae (Spirulina sp. The microalga was cultivated in BG 11 media composition in a photobioreactor. Upon harvesting, the biomass was filtered and dried. The algal oil was obtained by a two step solvent extraction method using hexane and ether solvent. Cyclohexane was added to biomass to expel the remaining algal oil. By this method 92% of algal oil is obtained. Transesterification process was carried out to produce AOME by adding sodium hydroxide and methanol. The AOME was blended with straight diesel in 5%, 10% and 15% blend ratio. Combustion parameters were analyzed on a Kirloskar single cylinder direct injection compression ignition engine. The cylinder pressure characteristics, the rate of pressure rise, heat release analysis, performance and emissions were studied for straight diesel and the blends of AOME’s. AOME 15% blend exhibits significant variation in cylinder pressure and rate of heat release.

  16. Modelling the effect of gas injections on the stability of asphaltene-containing crude oils

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.; Moorwood, T. [Infochem, Munich (Germany); Merino Garcia, D.; Pena Diez, J.L. [Repsol YPF, Madrid (Spain)

    2008-07-01

    In oil fields where asphaltene deposits occur, they present major remediation problems and can halt production due to flow blockage. Crude oils which precipitate asphaltenes generally contain both asphaltene molecules and lighter resin molecules. Resins are thought to solvate the asphaltene molecules, thus stabilizing the solution, while light gases have the opposite effect. In order to model asphaltene phase behaviour, it is important to understand the impact of adding gas to asphaltene-containing crudes. This study presented several experimental investigations of gas injection into asphaltene-containing crudes. The trends of asphaltene destabilization were discussed. The injection gases ranged from pure gases to a gas condensate. The data were modelled using a conventional equation of state together with an extra term that considered the association between asphaltene molecules and their solvation by resins. Since the model could simultaneously described the gas, oil and asphaltene phases, it was possible to calculate phase stability and phase equilibria. However, a different model had to be used to obtain the gas-oil equilibrium because the use of solubility parameters only allows the stability of the asphaltene phase to be calculated. The model correctly predicted that the gases will promote asphaltene precipitation. In its original form, the model tended to over-predict the trend. The optimal parameter values needed to represent all the available experimental data were determined. The extent to which the effect of gas injection on asphaltenes can be predicted was then discussed.

  17. Underground upgrading of heavy oil using THAI : toe-to-heel air injection

    Energy Technology Data Exchange (ETDEWEB)

    Greaves, M.; Xia, T.X. [Bath Univ., Bath, England (United Kingdom); Ayasse, C. [Petrobank Energy and Resources Ltd., Calgary, AB (Canada)

    2005-11-01

    Petrobank Energy and Resources Ltd. is building its first field test of the Toe-to-Heel Air Injection (THAI) process through its subsidiary, Whitesands Insitu Ltd. THAI is a thermal recovery method that achieves very stable combustion performance in heavy oil wells by controlling gas override. It also captures the underground upgrading because the horizontal producer well process operates through by a short-distance displacement mechanism, similar to that of the steam assisted gravity drainage (SAGD) process. In the THAI process, injected air migrates preferentially to the combustion front into a horizontal producer well. This paper described the reservoir and site features, processing plant design, pilot objectives and the expected economics and environmental benefits of the pilot project at Christina Lake, Alberta. There is a stable combustion front propagation in all THAI direct line-drive well configurations, which include a parallel pair arrangement. Very high sweep efficiencies are achieved, according to the movement of the high temperature front through the sandpack. A well-controlled, narrow mobile oil zone (MOZ) lies just ahead ahead of the combustion front, creating a pathway for the injected air to reach the combustion front and for combustion gases and mobilized fluids to be produced via the open section of the horizontal producer well. A cold heavy oil layer exists downstream of the combustion front-MOZ region. Results indicate that excellent upgrading can be achieved and there were several positive indicators regarding the quality of the produced oil. 8 refs., 5 tabs., 13 figs.

  18. Bioinspired oil strider floating at the oil/water interface supported by huge superoleophobic force.

    Science.gov (United States)

    Liu, Xueli; Gao, Jun; Xue, Zhongxin; Chen, Li; Lin, Ling; Jiang, Lei; Wang, Shutao

    2012-06-26

    Oil pollution to aquatic devices, especially to those oil-cleaning devices and equipment-repairing robots during oil spill accidents, has drawn great attention and remains an urgent problem to be resolved. Developing devices that can move freely in an oil/water system without contamination from oil has both scientific and practical importance. In nature, the insect water strider can float on water by utilizing the superhydrophobic supporting force received by its legs. Inspired by this unique floating phenomenon, in this article, we designed a model device named "oil strider" that could float stably at the oil/water interface without contamination by oil. The floating capability of the oil strider originated from the huge underwater superoleophobic supporting force its "legs" received. We prepared the micro/nanohierarchical structured copper-oxide-coated copper wires, acting as the artificial legs of oil strider, by a simple base-corrosion process. The surface structures and hydrophilic chemical components of the coatings on copper wires induced the huge superoleophobic force at the oil/water interface, to support the oil strider from sinking into the oil. Experimental results and theoretical analysis demonstrate that this supporting force is mainly composed of three parts: the buoyancy force, the curvature force, and the deformation force. We anticipate that this artificial oil strider will provide a guide for the design of smart aquatic devices that can move freely in an oil/water system with excellent oil repellent capability, and be helpful in practical situations such as oil handling and oil spill cleanup. PMID:22607241

  19. Analysis of effect of late water injection on RCS repressurization

    International Nuclear Information System (INIS)

    Effect of late water injection on RCS repressurization during high pressure severe accident sequence in a typical PWR was analyzed. As the results shown, late water injection could increase RCS pressure when RPV failed without RCS passive depressurization. Especially in the condition of opening one PORV, RCS pressure could reach high pressure limit when RPV failed and the risk of HPME and DCH was dramatically increased. Integrity of containment could be threatened. However, in the condition of RCS passive depressurization induced by pressurizer surge line creep failure, RCS pressure could be decreased to very low level even only one PORV was opened and two trains of emergency core cooling were implemented. The risk of HPME and DCH was eliminated. The more PORVs were opened, the faster accident progression was and the earlier RPV failed. RCS pressure was a little higher when PRV failed if two trains of emergency core cooling was implemented comparing with the condition with only one train of emergency core cooling. However the time of RPV failure was obviously delayed. From the point of delaying RPV failure and preventing containment early failure of view, the optimized late water injection was opening three PORVs and implementing two trains of emergency core cooling. (authors)

  20. Performance evaluation of common rail direct injection (CRDI engine fuelled with Uppage Oil Methyl Ester (UOME

    Directory of Open Access Journals (Sweden)

    D.N. Basavarajappa

    2015-02-01

    Full Text Available For economic and social development of any country energy is one of the most essential requirements. Continuously increasing price of crude petroleum fuels in the present days coupled with alarming emissions and stringent emission regulations has led to growing attention towards use of alternative fuels like vegetable oils, alcoholic and gaseous fuels for diesel engine applications. Use of such fuels can ease the burden on the economy by curtailing the fuel imports. Diesel engines are highly efficient and the main problems associated with them is their high smoke and NOx emissions. Hence there is an urgent need to promote the use of alternative fuels in place of high speed diesel (HSD as substitute. India has a large agriculture base that can be used as a feed stock to obtain newer fuel which is renewable and sustainable. Accordingly Uppage oil methyl ester (UOME biodiesel was selected as an alternative fuel. Use of biodiesels in diesel engines fitted with mechanical fuel injection systems has limitation on the injector opening pressure (300 bar. CRDI system can overcome this drawback by injecting fuel at very high pressures (1500-2500 bar and is most suitable for biodiesel fuels which are high viscous. This paper presents the performance and emission characteristics of a CRDI diesel engine fuelled with UOME biodiesel at different injection timings and injection pressures. From the experimental evidence it was revealed that UOME biodiesel yielded overall better performance with reduced emissions at retarded injection timing of -10 BTDC in CRDI mode of engine operation.

  1. Performance evaluation of common rail direct injection (CRDI engine fuelled with Uppage Oil Methyl Ester (UOME

    Directory of Open Access Journals (Sweden)

    D.N. Basavarajappa

    2015-02-01

    Full Text Available For economic and social development of any country energy is one of the most essential requirements. Continuously increasing price of crude petroleum fuels in the present days coupled with alarming emissions and stringent emission regulations has led to growing attention towards use of alternative fuels like vegetable oils, alcoholic and gaseous fuels for diesel engine applications. Use of such fuels can ease the burden on the economy by curtailing the fuel imports. Diesel engines are highly efficient and the main problems associated with them is their high smoke and NOx emissions. Hence there is an urgent need to promote the use of alternative fuels in place of high speed diesel (HSD as substitute. India has a large agriculture base that can be used as a feed stock to obtain newer fuel which is renewable and sustainable. Accordingly Uppage oil methyl ester (UOME biodiesel was selected as an alternative fuel. Use of biodiesels in diesel engines fitted with mechanical fuel injection systems has limitation on the injector opening pressure (300 bar. CRDI system can overcome this drawback by injecting fuel at very high pressures (1500-2500 bar and is most suitable for biodiesel fuels which are high viscous. This paper presents the performance and emission characteristics of a CRDI diesel engine fuelled with UOME biodiesel at different injection timings and injection pressures. From the experimental evidence it was revealed that UOME biodiesel yielded overall better performance with reduced emissions at retarded injection timing of -10 BTDC in CRDI mode of engine operation.

  2. Intrt de l'injection d'eau alcaline en rcupration assiste Significance of Allkaline Water Injection for Enhanced Recovery

    Directory of Open Access Journals (Sweden)

    Minssieux L.

    2006-11-01

    Full Text Available L'tude prsente ici s'insre dans un programme de recherche destin dterminer les conditions d'emploi de l'injection de soude, partir d'une meilleure connaissance des mcanismes physico-chimiques mis en jeu dans le processus de rcupration de l'huile. L'activit interfaciale de la soude est lie essentiellement la composition chimique des huiles brutes dplacer, en particulier leur teneur en acides. Suivant cette teneur, l'abaissement de tension interfaciale en prsence de soude peut tre permanent ou juste transitoire, il dpend aussi de la concentration en soude utilise et de la salinit de l'eau d'injection. Les tests de rcupration raliss en milieux grseux et calcaires avec diffrentes huiles brutes, montrent que l'amlioration de rcupration obtenue par la soude, rsulte de l'action combine de deux mcanismes - importante rduction de la tension interfaciale eau-huile ; - augmentation de la mouillabilit l'eau de la roche. Ce dernier effet a t mis en vidence par des tests complmentaires d'imbibition ou par la comparaison des permabilits relatives dtermines avec et sans additif dans la phase aqueuse. This article reports on a research project aimed at determining the conditions for using sodium-hydroxide injection on the basis of a better understanding of the physicochemical mechanisms involved in the cil recovery process. The interfacial activity of sodium hydroxide is mainly linked to the chemical composition of the crude cils to be displaced, in particular to their acid content. Depending on this content, the lowering of interfacial tension in the presence of sodium hydroxide may be permanent or merely transitory. It also depends on the sodium-hydroxide concentration utilized and on the salinity of the injection water. Recovery tests mode in sandstone and limestone media with different crude oils show that the improvement in recovery obtained with sodium hydroxide is the result of the combined action of two mechanisms, i. e. a considerable reduction in the water/cil interfacial tension and an increase in the wafer wettability of the rock. The latter effect has been revealed by supplementary imbibition tests or by comparing relative permeabilities determined with and without th additive in the aqueous phase.

  3. Conceptual design of safety injection tanks using saturated water

    International Nuclear Information System (INIS)

    Safety Injection Tanks (SITs) which is the one of Safety Injection System (SIS) play an important role in mitigating the Loss of Coolant Accidents (LOCAs) in Pressurized Water Reactor (PWR). APR1400 has the advanced 4 SITs directly connected to a reactor vessel. We expect the capacity of the SITs is getting more important since the coolant from SITs equipped with a FD during LBLOCA can replace the injection from low pressure safety injection pumps (LPSIPs). In designing a larger capacity SIT, we may have three problems; the excessively large volume for pressurized N2 gas, which is about 1/3 of the total volume, the difficulties controlling injection flowrate and the solubility of the non-condensable N2 gas in the coolant. In here, there is the contradiction which is 'there must be nitrogen gas for pressurization but there must not be nitrogen gas for more coolant.' For this problem, the axiomatic design (AD) theory enabled us to define or regularize the intrinsic problem which is termed the coupling and the contradiction. TRIZ facilitates creating solutions on the contradiction. This study proposes a conceptual design of SITs which are pressurized by steam from the saturated water as a demonstration of the conceptual design framework, AD theory and TRIZ. The purpose of this conceptual design is to increase coolant volume and to reduce N2 gas volume in SITs. In order to investigate the feasibility of the proposed design, we derived an analytical model to find the heat loss of saturated water and thermo-hydraulic safety analysis using MARS3.1. To confirm the safety and integrity of core, we conducted LBLOCA simulation to find peak cladding temperature (PCT) of design using the proposed SITs comparing with the conventional SITs. From the analysis results, the benefits of the new SIT design were observed in terms of the PCT, the quenching time and the size. And the new SIT design may enable emergency core cooling water to be injected efficiently and can be applicable to SIT which has smaller size than the existing and simplified design of SIS

  4. Conceptual design of safety injection tanks using saturated water

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hae Min; Jeong, Yong Hoon; Chang, Won Joon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2009-07-01

    Safety Injection Tanks (SITs) which is the one of Safety Injection System (SIS) play an important role in mitigating the Loss of Coolant Accidents (LOCAs) in Pressurized Water Reactor (PWR). APR1400 has the advanced 4 SITs directly connected to a reactor vessel. We expect the capacity of the SITs is getting more important since the coolant from SITs equipped with a FD during LBLOCA can replace the injection from low pressure safety injection pumps (LPSIPs). In designing a larger capacity SIT, we may have three problems; the excessively large volume for pressurized N{sub 2} gas, which is about 1/3 of the total volume, the difficulties controlling injection flowrate and the solubility of the non-condensable N{sub 2} gas in the coolant. In here, there is the contradiction which is 'there must be nitrogen gas for pressurization but there must not be nitrogen gas for more coolant.' For this problem, the axiomatic design (AD) theory enabled us to define or regularize the intrinsic problem which is termed the coupling and the contradiction. TRIZ facilitates creating solutions on the contradiction. This study proposes a conceptual design of SITs which are pressurized by steam from the saturated water as a demonstration of the conceptual design framework, AD theory and TRIZ. The purpose of this conceptual design is to increase coolant volume and to reduce N{sub 2} gas volume in SITs. In order to investigate the feasibility of the proposed design, we derived an analytical model to find the heat loss of saturated water and thermo-hydraulic safety analysis using MARS3.1. To confirm the safety and integrity of core, we conducted LBLOCA simulation to find peak cladding temperature (PCT) of design using the proposed SITs comparing with the conventional SITs. From the analysis results, the benefits of the new SIT design were observed in terms of the PCT, the quenching time and the size. And the new SIT design may enable emergency core cooling water to be injected efficiently and can be applicable to SIT which has smaller size than the existing and simplified design of SIS.

  5. Sustainable water management in Alberta's oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Byers, Bill; Usher, Robyn; Roach, Andrea [CH2M HILL, Englewood, CO (United States); Lambert, Gord; Kotecha, Prit [Suncor Energy Inc., Calgary (Canada)

    2012-07-01

    The Canadian Association of Petroleum Producers forecast published in 2011 predicts that oil production from oil sands will increase by 50% in the next 3 years and double by 2020. This rate of growth will result in significant pressure on water resources; water use per barrel of oil sands production is comparable to other energy resources - about 2.5 barrels of fresh water per barrel of oil produced are used by mining operations and 0.5 barrels by in-situ operations. Suncor Energy Inc. (Suncor) was the first company to develop the oil sands in northern Alberta and holds one of the largest oil sands positions in Canada. In 2010, Suncor announced plans to increase production to more than 1 million barrels of oil equivalent per day by 2020, which it plans to achieve through oil sands production growth of approximately 10% per year. Because water supply and potential impacts to water quality are critical to its future growth, in 2010-2011 Suncor conducted a risk assessment to identify water-related business risks related to its northern Alberta operations. The assessment identified more than 20 high level business risks in strategic water risk areas including water supply, water reuse, storm water management, groundwater, waste management and river water return. The risk assessment results prompted development of a strategic roadmap to guide water stewardship across Suncor's regional operations. The roadmap describes goals, objectives, and specific activities for each of six key water risk areas, and informs prioritization and selection of prospective water management activities. Suncor is not only exploring water within its own boundaries, but is also collaborating with other oil sands producers to explore ways of integrating its water systems through industry consortia; Suncor is a member of the Oil Sands Leadership Initiative and of the recently formed Canadian Oil Sands Innovation Alliance, among others. (author)

  6. Flow oscillations induced by subcooled water injection into steam flow

    International Nuclear Information System (INIS)

    Condensation of steam occurs when subcooled water is injected into steam flow in pipe, and steam-water condensing flow oscillates under a certain condition. The mechanisms of the oscillations and also the predominant parameters to them were made clear through both small scale simulation experiments and simplified analyses. Oscillation threshold was analyzed using the linear stability criterion. Frequencies of both plug oscillation and ON-OFF oscillation were analyzed basing on the linear oscillation theory and on a simplified analytical model, respectively. The analyses were also applied to explain the experiments by Akimoto et al. and CREARE. Heat transfer coefficients at direct contact condensation during oscillation were also discussed

  7. Pressure-transient testing of water-injection wells

    Energy Technology Data Exchange (ETDEWEB)

    Abbaszadeh, M.; Kamal, M.

    1989-02-01

    This paper presents an interpretation method for injectivity and falloff testing in a single-layer oil reservoir that is under waterflooding and develops analytical solutions for pressure and saturation distributions. The effects of relative permeability, wellbore storage, and skin are considered in these solutions. New field-dependent type curves for falloff tests, which exhibit features that do not appear in the currently available single-phase-flow type curves, are also presented. Matching of field data on these curves yields fluid mobilities in various banks, skin, formation permeability, and flood-front location. Field data interpretation with the new method shows that falloff tests can be used to monitor the progress of waterfloods.

  8. Water Injection on Commercial Aircraft to Reduce Airport Nitrogen Oxides

    Science.gov (United States)

    Daggett, David L.; Hendricks, Robert C.; Fucke, Lars; Eames, David J. H.

    2010-01-01

    The potential nitrogen oxide (NO(x) reductions, cost savings, and performance enhancements identified in these initial studies of waterinjection technology strongly suggest that it be further pursued. The potential for engine maintenance cost savings from this system should make it very attractive to airline operators and assure its implementation. Further system tradeoff studies and engine tests are needed to answer the optimal system design question. Namely, would a low-risk combustor injection system with 70- to 90-percent NO(x) reduction be preferable, or would a low-pressure compressor (LPC) misting system with only 50-percent NO(x) reduction but larger turbine inlet temperature reductions be preferable? The low-pressure compressor injection design and operability issues identified in the report need to be addressed because they might prevent implementation of the LPC type of water-misting system. If water-injection technology challenges are overcome, any of the systems studied would offer dramatic engine NO(x) reductions at the airport. Coupling this technology with future emissions-reduction technologies, such as fuel-cell auxiliary power units will allow the aviation sector to address the serious challenges of environmental stewardship, and NO(x) emissions will no longer be an issue at airports.

  9. Alternative water injection device to reactor equipment facility

    International Nuclear Information System (INIS)

    The device of the present invention injects water to the reactor and the reactor container continuously for a long period of time for preventing occurrence of a severe accident in a BWR type reactor and maintaining the integrity of the reactor container even if the accident should occur. Namely, diesel-driven pumps disposed near heat exchangers of a reactor after-heat removing system (RHR) are operated before the reactor is damaged by the after heat to cause reactor melting. A sucking valve disposed to a pump sucking pipeline connecting a secondary pipeline of the RHR heat exchanger and the diesel driving pump is opened. A discharge valve disposed to a pump discharge pipeline connecting a primary pipeline of the RHR heat exchanger and the diesel driving pump is opened. With such procedures, sea water is introduced from a sea water taking port through the top end of the secondary pipeline of the RHR heat exchanger and water is injected into the inside of the pressure vessel or the reactor container by way of the primary pipeline of the RHR heat exchanger. As a result, the reactor core is prevented from melting even upon occurrence of a severe accident. (I.S.)

  10. Comparison of different injection modes in edible oil minor components analysis.

    Science.gov (United States)

    Purcaro, Giorgia; Barp, Laura; Conte, Lanfranco

    2015-07-01

    Waxes and fatty acid alkyl esters are minor components used as official parameters to control the authenticity and quality of a high-value olive oil product. A poor measurement can lead to a misleading classification of the oil. The official method requires their analysis together by capillary gas chromatography equipped with a flame ionization detector and an on-column injector to avoid discrimination and thermal degradation. The degradation can occur to a different extent if different (and not properly optimized) injectors are used. However, other injection techniques, such as programmed-temperature vaporizer, are much more versatile and more widespread. The aim of the present work was to compare the performance of a programmed-temperature vaporizer injector, in on-column and splitless mode, with the on-column injector to analyze alkyl esters and waxes. Discrimination among high-boiling compounds was evaluated, as well as the occurrence of thermal degradation, especially of sterols and diterpene alcohol (phytyl and geranylgeraniol) esters. A proper optimization of a programmed-temperature vaporizer injection, with particular attention to the liner selection, was proven to provide comparable results to the traditional on-column injection. A performance comparison was carried out both on standard mixtures and on real oil samples. PMID:25903351

  11. Wrestling challenges : CO{sub 2} cyclic injection shows promise of additional heavy oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, L.

    2008-05-15

    Carbon dioxide (CO{sub 2}) cyclic injection is now being used to recovery additional heavy oil at a project in Saskatchewan. The province has an estimated 18 billion barrels of heavy oil, and only 9 per cent of it is currently recoverable using cyclic steam injection (CSS) and steam assisted gravity drainage (SAGD) techniques. The use of CO{sub 2} huff and puff technology may result in recovery rates of between 13 and 14 per cent. The technique will be field tested in the next 3 years. Miscible flooding with CO{sub 2} can be accomplished at lower temperatures and pressures than other enhanced recovery fluids. The research is being conducted by a 50-person research team that is using a full core analysis laboratory to examine rock and fluid interactions. Laboratory models are being injected with CO{sub 2} in order to reduce its viscosity. The team has now designed experiments that closely simulate heavy oil reservoirs. 3 figs.

  12. Water-in-crude oil emulsion formation and stability for crude oils in fresh, brackish and salt water. Volume 2

    International Nuclear Information System (INIS)

    Crude oil spilled at sea is subjected to weathering. The main physical process of weathering are water-in-oil emulsification, evaporation, dispersion, dissolution and oil-sediment interaction. For medium to heavy oils, evaporation and dispersion are less important, and the onset of water-in-oil emulsion formation becomes the most important weathering process for spill response. Emulsification involves the incorporation of water droplets into the continuous oil phase. As such, it has a pronounced effect on the physical properties and characteristics of an oil, affecting its behaviour and ultimate fate. Emulsions formed from heavy oils contain higher proportions of asphaltenes and resins and may persist for long periods or indefinitely. This paper provided a direct comparison of stability for emulsions formed from crude oils with both fresh and salt water containing 20 or 33 per cent sodium chloride. Emulsions from 5 crude oil were compared. It was noted that oils that form emulsions in salt water will also form in fresh water, in the same stability class. Stable fresh water emulsions have lower values of the viscoelastic parameters, indicating decreased stability compared to stable salt water emulsions. The difference between stable and meso-stable emulsions formed from water of 20 and 33 per cent salinity was small, but meso-stable emulsions from fresh water could achieve higher levels of water content and have higher initial values of the viscoelastic parameters than with salt water. The nature of stabilizer deficiency determines the form of degraded meso-stable emulsions. It was concluded that since entrained water states are created by a different chemical-physical process or mixing mode, there is no difference in emulsions product due to the ionic content of salt water. However, wax content may be a contributor to the stabilization for entrained water states. 14 refs., 5 tabs., 6 figs

  13. A study on the fuel injection and atomization characteristics of soybean oil methyl ester (SME)

    International Nuclear Information System (INIS)

    The spray atomization characteristics of an undiluted biodiesel fuel (soybean oil methyl ester, SME) in a diesel engine were investigated and compared with that of diesel fuel (ultra low sulfur diesel, ULSD). The experimental results were compared with numerical results predicted by the KIVA-3V code. The spray characteristics of the spray tip penetration, spray area, spray centroid and injection delay were analyzed using images obtained from a visualization system. The Sauter mean diameter (SMD) was analyzed using a droplet analyzer system to investigate the atomization characteristics. It was found that the peak injection rate increases and advances when the injection pressure increases due to the increase of the initial injection momentum. The injection rate of the SME, which has a higher density than diesel fuel, is higher than that of diesel fuel despite its low injection velocity. The high ambient pressure induces the shortening of spray tip penetration of the SME. Moreover, the predicted spray tip penetration pattern is similar to the pattern observed experimentally. The SMD of the SME decreases along the axial distance. The predicted local and overall SMD distribution patterns of diesel and SME fuels illustrate similar tendencies when compared with the experimental droplet size distribution patterns

  14. HYDERAULIC/CHEMICAL CHANGES DURING GROUND-WATER RECHARGE BY INJECTION.

    Science.gov (United States)

    Hamlin, Scott N.

    1987-01-01

    Ground-water recharge by injection of reclaimed water is a feasible method of improving ground-water quality in the shallow aquifer system in the Palo Alto Baylands along the San Franciso Bay. Ground water was initially more saline than sea water. Reclaimed water was injected at a rate of 10 gallons per minute from June 5, 1980, to July 1, 1980. At the completion of injection, water from an observation well 31 feet from the injection well was 98 percent injected water - in essence, fresh water. An abrupt rise in the water level in the injection well of about 1. 5 feet during the initial injection test was the result of a 3. 5 percent density difference between injected fresh water and saline ground water. The arrival of injected water at observation wells showed the same effect, allowing monitoring of chemical and hydraulic changes entirely through water-level data. Prior to injection the saline ground water was super-saturated withn calcite. Dilution, as injection proceeded, eventually produced an undersaturation of calcite. An increase in well specific capacity indicates that calcite dissolved from the aquifer matrix, improving hydraulic conductivity.

  15. Dynamic graphene filters for selective gas-water-oil separation

    Science.gov (United States)

    Bong, Jihye; Lim, Taekyung; Seo, Keumyoung; Kwon, Cho-Ah; Park, Ju Hyun; Kwak, Sang Kyu; Ju, Sanghyun

    2015-09-01

    Selective filtration of gas, water, and liquid or gaseous oil is essential to prevent possible environmental pollution and machine/facility malfunction in oil-based industries. Novel materials and structures able to selectively and efficiently filter liquid and vapor in various types of solutions are therefore in continuous demand. Here, we investigate selective gas-water-oil filtration using three-dimensional graphene structures. The proposed approach is based on the adjustable wettability of three-dimensional graphene foams. Three such structures are developed in this study; the first allows gas, oil, and water to pass, the second blocks water only, and the third is exclusively permeable to gas. In addition, the ability of three-dimensional graphene structures with a self-assembled monolayer to selectively filter oil is demonstrated. This methodology has numerous potential practical applications as gas, water, and/or oil filtration is an essential component of many industries.

  16. Subsurface injection of treated sewage into a saline-water aquifer at St. Petersburg, Florida - Water-quality changes and potential for recovery of injected sewage

    Science.gov (United States)

    Hickey, J.J.; Ehrlich, G.G.

    1984-01-01

    The city of St. Petersburg is testing subsurface injection of treated sewage into the Floridan aquifer as a means of eliminating discharge of sewage to surface waters and as a means of storing treated sewage for future nonpotable reuse. The injection zone at the test site at the start of injection contained saline water with chloride concentrations ranging from 14,000 to 20,000 milligrams per liter (mg/l). Treated sewage with a mean chloride concentration of 170 mg/ml was injected through a single well for 12 months at a mean rate of 4.7 x 105 cubic feet per day. The volume of water injected during the year was 1.7x108 cubic feet. Dissolved oxygen was contained in the sewage prior to injection. Water removed from the injection zone during injection was essentially free of oxygen. Probable growth of denitrifying bacteria and, thus, microbial denitrification, was suggested by bacterial counts in water from two observation wells that were close to the injection well. The volume fraction of treated sewage in water from wells located 35 feet and 733 feet from the injection well and open to the upper part of the injection zone stabilized at about 0.9 and 0.75, respectively. Chloride concentrations stabilized at about 1,900 mg/l in water from the well that was 35 feet from the injection well and stabilized at about 4,000 mg/l in water from the well that was 733 feet from the injection well. These and other data suggest that very little near injection-quality treated sewage would be recoverable from storage in the injection zone.The city of St. Petersburg is testing subsurface injection of treated sewage into the Floridan aquifer as a means of eliminating discharge of sewage to surface waters and as a means of storing treated sewage for future nonpotable reuse. The injection zone at the test site at the start of injection contained saline water with chloride concentrations ranging from 14,000 to 20,000 milligrams per liter (mg/l). Data suggest that very little near injection-quality treated sewage would be recoverable from storage in the injection zone.

  17. Oil pollution in the surface water of the Aegean Sea

    OpenAIRE

    ÖZTÜRK Bayram; Güven, Kasim C.; Nesimigil, Filiz; Cumali, Selin; Dede, Ayhan

    2006-01-01

    Abstract Oil pollution in the surface water of the Aegean Sea was investigated from the Çanakkale Strait (Dardanelles) to the Marmaris Harbour, during 17-25 April in 2005. The oil pollution of samples was determined by UVF, through various crude oils and also chrysene as references materials. The oil pollution in water was ranged from 6.17 μg/L at Datca to 59.58 μg/L at Kusadasi through Russian crude oil equivalent. The highest polluted areas were Babakale-Kusadasi Bay, West of Giadoros Islan...

  18. Synthesis of radiolabelled organic compounds for use as water tracers in oil reservoirs

    International Nuclear Information System (INIS)

    Injection of water into oil containing strata to maintain field pressure and to replace oil is usually the primary choice to enhance oil-recovery. Use of tracer methods is becoming an important part of the oil companies' basis for making economical decisions. Such water tracing requires passive tracers, i.e. compounds that behave exactly like the substance studied under the conditions of interest. This implies that a water-tracer in a water-flooded oil-field must fulfil requirements like no absorption to reservoir rock, no partitioning (or distribution) with respect to the other fluids present, long time thermal stability, microbial resistance and high detectability. In addition, the tracer compound has to be environmentally acceptable and available at a reasonable cost. Among the extensive number of compounds tested according to these criteria in the laboratory we have qualified four compounds as tracers for water in oil reservoirs. For three of them we propose radiolabelling syntheses with 14C as radioactive label to lower detection limits. The compounds are benzene 1,2- and 1,3-dicarboxylic acids and benzene 1,3,5-tricarboxylic acid. (author)

  19. A study of water chemistry extends the benefits of using silica-based nanoparticles on enhanced oil recovery

    Science.gov (United States)

    Hendraningrat, Luky; Torsæter, Ole

    2016-01-01

    Chemistry of the injected water has been investigated as an important parameter to improve/enhance oil recovery (IOR/EOR). Numerous extensive experiments have observed that water chemistry, such as ionic composition and salinity, can be modified for IOR/EOR purposes. However, the possible oil displacement mechanism remains debatable. Nanoparticle recently becomes more popular that have shown a great potential for IOR/EOR purposes in lab-scale, where in most experiments, water-based fluid were used as dispersed fluid. As yet, there has been no discussion in the literature on the study of water chemistry on enhanced oil recovery using silica-based nanoparticles. A broad range of laboratory studies involving rock, nanoparticles and fluid characterization; fluid-fluid and fluid-rock interactions; surface conductivity measurement; coreflood experiment; injection strategy formulation; filtration mechanism and contact angle measurement are conducted to investigate the impact of water chemistry, such as water salinity and ionic composition including hardness cations, on the performance of silica-based nanoparticles in IOR/EOR process and reveal possible displacement mechanism. The experimental results demonstrated that water salinity and ionic composition significantly impacted oil recovery using hydrophilic silica-based nanoparticles and that the oil recovery increased with the salinity. The primary findings from this study are that the water salinity, the ionic composition and the injection strategy are important parameters to be considered in Nano-EOR.

  20. Water-in-oil emulsification and development of model EMU

    OpenAIRE

    Kvočka, Davor

    2013-01-01

    Oil-spill at sea represents one of the greatest threats for the environment. Immediately after occurence of an oil-spill several physical, chemical and biological processes occur, among which the process of emulsification is one of the most important. Emulsified oil is very difficult to clean; therefore, understnding of the emulsification processes is of great importance for successful clean-up. Preconditions for formation of water-in-oil emulsion are adequate chemical conditions ...

  1. Cold water injection into two-phase mixtures

    International Nuclear Information System (INIS)

    This report presents the results of a review of the international literature regarding the dynamic loadings associated with the injection of cold water into two-phase mixtures. The review placed emphasis on waterhammer in nuclear power plants. Waterhammmer incidence data were reviewed for information related to thermalhydraulic conditions, underlying causes and consequential damage. Condensation induced waterhammer was found to be the most significant consequence of injecting cold water into a two-phase system. Several severe waterhammer incidents have been attributed to slug formation and steam bubble collapse under conditions of stratified steam and cold water flows. These phenomena are complex and not well understood. The current body of experimental and analytical knowledge is not large enough to establish maps of expected regimes of condensation induced waterhammer. The Electric Power Research Institute, in the United States, has undertaken a major research and development programme to develop the knowledge base for this area. The limited models and data currently available show that mechanical parameters are as important as thermodynamic conditions for the initiation of condensation induced waterhammer. Examples of bounds for avoiding two-phase waterhammer are given. These bounds are system specific and depend upon parameters such as pump capacity, pipe length and pipe orientation

  2. Crack Extension in Hydraulic Fracturing of Shale Cores Using Viscous Oil, Water, and Liquid Carbon Dioxide

    Science.gov (United States)

    Bennour, Ziad; Ishida, Tsuyoshi; Nagaya, Yuya; Chen, Youqing; Nara, Yoshitaka; Chen, Qu; Sekine, Kotaro; Nagano, Yu

    2015-07-01

    We performed hydraulic fracturing experiments on cylindrical cores of anisotropic shale obtained by drilling normal to the sedimentary plane. Experiments were conducted under ambient condition and uniaxial stresses, using three types of fracturing fluid: viscous oil, water, and liquid carbon dioxide (L-CO2). In the experiments using water and oil, cracks extended along the loading direction normal to the sedimentary plane under the uniaxial loading and extended along the sedimentary plane without loading. These results suggest that the direction of crack extension is strongly affected by in situ stress conditions. Fluorescent microscopy revealed that hydraulic fracturing with viscous oil produced linear cracks with few branches, whereas that with water produced cracks with many branches inclining from the loading axis. Statistical analysis of P wave polarity of acoustic emission waveforms showed that viscous oil tended to induce Mode I fracture, whereas both water and L-CO2 tended to induce Mode II fracture. Crack extension upon injection of L-CO2 was independent of loading condition unlike extension for the other two fluids. This result seemed attributable to the low viscosity of L-CO2 and was consistent with previous observations for granite specimens that low-viscosity fluids like CO2 tend to induce widely extending cracks with many branches, with Mode II fractures being dominant. These features are more advantageous for shale gas production than those induced by injection of conventional slick water.

  3. Oxidative Stability and Rheological Properties of Oil-In-Water Emulsions with Walnut Oil

    OpenAIRE

    Kremena Nikovska

    2010-01-01

    The oxidative stability of walnut oil and oil-in-water (O/W) emulsions with walnut oil stabilized bysoy protein isolate (SI) and Whey Protein Isolate (W PI) was evaluated. The food emulsions w ere more stablethan walnut oil, as indicated by measuring the formation of primary and secondary oxidation products. It wasshown that the emulsions with WPI had a better oxidative stability than the emulsions with SI, probably dueto the ability of whey proteins to inactivate peroxil radicals. In additio...

  4. Influence of pumpkin seed oil in continuous phase on droplet size and stability of water-in-oil emulsions

    OpenAIRE

    Nikolovski Branislava G.; Ili? Jelena D.; Sovilj Milan N.; Nikoli? Milan P.; Milanovi? Jadranka L.

    2011-01-01

    The aim of this work was to contribute to the optimized production of water-in-oil emulsions with pumpkin seed oil in the oil phase using a high-speed homogenizer. Pumpkin seed oil is a valuable natural source of essential fatty acids and biologically active micronutrients that contribute to its nutritive value and medical uses, and reduce interfacial tension between water and the oil phases. Therefore, pumpkin seed oil can be considered as a prosperous oil phase whose use can possibly ...

  5. Aging study of boiling water reactor high pressure injection systems

    International Nuclear Information System (INIS)

    The purpose of high pressure injection systems is to maintain an adequate coolant level in reactor pressure vessels, so that the fuel cladding temperature does not exceed 1,200 degrees C (2,200 degrees F), and to permit plant shutdown during a variety of design basis loss-of-coolant accidents. This report presents the results of a study on aging performed for high pressure injection systems of boiling water reactor plants in the United States. The purpose of the study was to identify and evaluate the effects of aging and the effectiveness of testing and maintenance in detecting and mitigating aging degradation. Guidelines from the United States Nuclear Regulatory Commission's Nuclear Plant Aging Research Program were used in performing the aging study. Review and analysis of the failures reported in databases such as Nuclear Power Experience, Licensee Event Reports, and the Nuclear Plant Reliability Data System, along with plant-specific maintenance records databases, are included in this report to provide the information required to identify aging stressors, failure modes, and failure causes. Several probabilistic risk assessments were reviewed to identify risk-significant components in high pressure injection systems. Testing, maintenance, specific safety issues, and codes and standards are also discussed

  6. Aging study of boiling water reactor high pressure injection systems

    Energy Technology Data Exchange (ETDEWEB)

    Conley, D.A.; Edson, J.L.; Fineman, C.F. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1995-03-01

    The purpose of high pressure injection systems is to maintain an adequate coolant level in reactor pressure vessels, so that the fuel cladding temperature does not exceed 1,200{degrees}C (2,200{degrees}F), and to permit plant shutdown during a variety of design basis loss-of-coolant accidents. This report presents the results of a study on aging performed for high pressure injection systems of boiling water reactor plants in the United States. The purpose of the study was to identify and evaluate the effects of aging and the effectiveness of testing and maintenance in detecting and mitigating aging degradation. Guidelines from the United States Nuclear Regulatory Commission`s Nuclear Plant Aging Research Program were used in performing the aging study. Review and analysis of the failures reported in databases such as Nuclear Power Experience, Licensee Event Reports, and the Nuclear Plant Reliability Data System, along with plant-specific maintenance records databases, are included in this report to provide the information required to identify aging stressors, failure modes, and failure causes. Several probabilistic risk assessments were reviewed to identify risk-significant components in high pressure injection systems. Testing, maintenance, specific safety issues, and codes and standards are also discussed.

  7. Operation Clean Feather: Reducing oil pollution in Newfoundland waters

    International Nuclear Information System (INIS)

    Oil pollution of marine waters around Newfoundland, and particularly in the vicinity of Placentia Bay, is a frequent occurrence. Many oiled seabirds are found on beaches in the bay, particularly in winter. The most likely pollution sources are ship operators who dump waste oils from bilges and slop tanks. In an effort to reduce the chronic discharge of waste oil into Placentia Bay, and thus the incidence of bird oiling, Operation Clean Feather was launched in 1991-92 and consisted of weekly surveys of Placentia Bay beaches, sampling of oil from vessels using the bay and from oiled birds and beaches, and experimentation to determine possible recovery rates of birds oiled at sea. The operation was considered a success at a number of levels. Significant reductions in numbers of oiled birds were noted in both 1991 and 1992 compared to 1989 or 1990. Estimated oil-related mortality was reduced to ca 25% of levels seen in the two years prior to the operation. The operation also provided the opportunity to test and refine an organizational framework designed to deal with the problem of chronic oil pollution reports. Communication efforts heightened the awareness of the oil pollution problem in Newfoundland waters. These efforts included distribution of pamphlets in various languages to ship operators, describing the seriousness of oil-related marine bird mortality and warning of the substantial fines that can be imposed under the Canada Shipping Act. 6 refs., 3 figs., 1 tab

  8. Panorama 2011: Water in fuel production Oil production and refining

    International Nuclear Information System (INIS)

    Water plays a vital role in the production of fuels. Against a background of extremely high pressure to do with the need to protect the environment, better manage energy use and operate in a socially responsible manner - as well as the need to protect water as a resource and reduce greenhouse gas emissions, water management has become a major issue for the oil industry. These issues have all more or less been factored into the integrated water management programmes which have been introduced both in oil production and oil refining. These programmes have been designed to keep waste and emissions to a minimum, and to reduce the quantities of water required. (author)

  9. Toluene diisocyanate based phase-selective supramolecular oil gelator for effective removal of oil spills from polluted water.

    Science.gov (United States)

    Wang, Yongzhen; Wang, Youshan; Yan, Xingru; Wu, Songquan; Shao, Lu; Liu, Yuyan; Guo, Zhanhu

    2016-06-01

    Due to tremendous resource wastes and great harm to ecological environment caused by the accidental oil spills, an alkyl bicarbamate supramolecular oil gelator was synthesized and applied to selectively gelate oils from oil/water mixtures. Interestingly, the oil gelator could be self-assembled in a series of organic solvents, i.e., edible oils and fuel oils to form 3D networks and then turned into thermally reversible organogels, allowing easy separation and removal of oil spills from oil/water mixtures. The possible self-assembly mode for the formation of organogels was proposed. What's more, the optimal conditions for using the oil gelator to recover oils were experimentally determined. Inspiringly, taking gasoline as the co-congealed solvent, a complete gelation of oil phase was achieved within 15 min with high oil removal rate and oil retention rate after convenient salvage and cleanup of oil gels from oil/water mixtures. The oil gelator had some advantages in solidifying oil spills on water surface, exhibiting fast oil gelation, convenient and thorough oil removal and easy recovery. This work illustrates the significant role of oil gelators in the potential cleanup of spilled oils for water purification. PMID:27035386

  10. EMISSION ANALYSIS OF DI-DIESEL ENGINE AT DIFFERENT INJECTION PRESSURES USING JATROPHA AND RUBBER SEED OIL BLENDED WITH DIESEL

    Directory of Open Access Journals (Sweden)

    S. Mahalingam

    2014-04-01

    Full Text Available Biodiesel as a renewable fuel has been considered as the best alternate for diesel fuel now a days.This fossil fuel can be used in diesel engine with or without any modi?cation.The injection pressure and injection timing are the major influencing parameters forthe performance and emission of diesel engine.In thispresentstudy,the emission analysis of vegetable oil, Jatropha oil and rubber seed oil crushed from the seed, esterified and blended with pure diesel fuel. A single cylinder constant speed direct injection (DI diesel engine has been used to analyze the emission characteristics of biodiesel.The diesel engine for various fuel injection pressures (210,220 and 240 bar at no load to full load wasinvestigated. The injection pressure was changed in the engine head by adjusting the fuel injector spring tension. The two proportions of biodiesel were used in diesel engine such as 20% of biodiesel (Jatropha oil and Rubber seed oil with 80% of pure diesel fuel named as B20 and 40% of biodiesel with 60% of pure diesel fuel named as B40.From the test result,the nitric oxide (NOx was analyzed for different injection pressures. In emission characteristicsanalysis, it was found that the increase in injector opening pressure increases the NOxemission. The injection pressure of 240 bar and B20 proportion gives better emission reduction compared to other blended fuels.

  11. OIL/WATER SEPARATION: STATE-OF-THE-ART

    Science.gov (United States)

    This report reviews the state-of-the-art for oil/water separating devices and processes. Devices and process are classified according to the primary mechanism that induces separation of oil/water mixtures. The basic concepts, specific design features, operational conditions, and ...

  12. Hydraulic Systems with Tap Water versus Bio-oils

    DEFF Research Database (Denmark)

    Conrad, Finn

    Deals with the advantages of using pure tap water hydraulics versus bio-oils for suiteable applications. Focus is in particular on food processing industry.......Deals with the advantages of using pure tap water hydraulics versus bio-oils for suiteable applications. Focus is in particular on food processing industry....

  13. Multisyringe flow injection spectrophotometric determination of uranium in water samples

    International Nuclear Information System (INIS)

    A multisyringe flow injection analysis method for the determination of uranium in water samples was developed. The methodology was based on the complexation reaction of uranium with arsenazo (III) at pH 2.0. Uranium concentrations were spectrophotometrically detected at 649 nm using a light emitting diode. Under the optimized conditions, a linear dynamic range from 0.1 to 4.0 ?g mL-1, a 3? detection limit of 0.04 ?g mL-1, and a 10? quantification limit of 0.10 ?g mL-1 were obtained. The reproducibility (%) at 0.5, 2.5, and 4.0 ?g mL-1 was 2.5, 0.9, and 0.6%, respectively (n = 10). The interference effect of some ions was tested. The proposed method was successfully applied to the determination of uranium in water samples. (author)

  14. Behavior of water spray injected into air/steam environment

    International Nuclear Information System (INIS)

    The behavior of a water spray injected into both an air and a steam environment was studied. The water spray was divided into two parts - sheet portion and droplet portion. An analytical model is proposed for explaining the spray behavior. Experiments were performed to substantiate the analytical results. Holographic pictures were used to obtain the droplet size distribution. These size distributions were used for computing the motion of spray droplets in the analytical model. For the sprays used in this study, the sheet portion plays a very important role in the heat transfer phenomenon. The spray angle is primarily governed by the sheet portion. In addition, the axial extent (length) of sheet is a very important parameter in determining the spray angle. A correlation is obtained experimentally for breakup length in terms of the Weber number and the Jakob number

  15. Numerical modeling of oil spills in continental and estuarine waters

    International Nuclear Information System (INIS)

    The application of the European Water Framework Directive on water quality for human consumption and industrial activities creates a need for water quality assessment and monitoring systems. The MIGR'HYCAR research project (http://www.migrhycar.com) was initiated to provide decisional tools for risks connected to oil spills in continental waters (rivers, lakes and estuaries), which represent more than 50% of accidental spills in France. Within the framework of this project, a new numerical oil spill model has been developed, as part of the TELEMAC hydro-informatics system (http://www.opentelemac.org), by combining Lagrangian and Eulerian methods. The Lagrangian model describes the transport of an oil spill near the free surface. The oil spill model enables to simulate the main processes driving oil plumes: advection, diffusion, oil beaching, oil re-floating, evaporation, dissolution, spreading and volatilization. Though generally considered as a minor process, dissolution is important from the point of view of toxicity. To model dissolved oil in water, an Eulerian advection-diffusion model is used. The fraction of dissolved oil is represented by a passive tracer. This approach is able to follow dissolved hydrocarbons in the water column. Laboratory experiments were conducted to characterise the numerous kinetics of the processes listed above. In addition, meso-scale dynamic experiments in artificial channels and test cases derived from the literature are used to validate the numerical model. (author)

  16. Geochemical monitoring of fluid-rock interaction and CO2 storage at the Weyburn CO2-injection enhanced oil recovery site, Saskatchewan, Canada

    International Nuclear Information System (INIS)

    The Weyburn Oil Field, Saskatchewan is the site of a large (5000 tonnes/day of CO2) CO2-EOR injection project By EnCana Corporation. Pre- and post-injection samples (Baseline and Monitor-1, respectively) of produced fluids from approximately 45 vertical wells were taken and chemically analyzed to determine changes in the fluid chemistry and isotope composition between August 2000 and March 2001. After 6 months of CO2 injection, geochemical parameters including pH, [HCO3], [Ca], [Mg], and ?13CO2(g) point to areas in which injected CO2 dissolution and reservoir carbonate mineral dissolution have occurred. Pre-injection fluid compositions suggest that the reservoir brine in the injection area may be capable of storing as much as 100 million tonnes of dissolved CO2. Modeling of water-rock reactions show that clay minerals and feldspar, although volumetrically insignificant, may be capable of acting as pH buffers, allowing injected CO2 to be stored as bicarbonate in the formation water or as newly precipitated carbonate minerals, given favorable reaction kinetics

  17. Methodology for surge pressure evaluation in a water injection system

    Energy Technology Data Exchange (ETDEWEB)

    Meliande, Patricia; Nascimento, Elson A. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Dept. de Engenharia Civil; Mascarenhas, Flavio C.B. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Lab. de Hidraulica Computacional; Dandoulakis, Joao P. [SHELL of Brazil, Rio de Janeiro, RJ (Brazil)

    2009-07-01

    Predicting transient effects, known as surge pressures, is of high importance for offshore industry. It involves detailed computer modeling that attempts to simulate the complex interaction between flow line and fluid in order to ensure efficient system integrity. Platform process operators normally raise concerns whether the water injection system is adequately designed or not to be protected against possible surge pressures during sudden valve closure. This report aims to evaluate the surge pressures in Bijupira and Salema water injection systems due to valve closure, through a computer model simulation. Comparisons among the results from empirical formulations are discussed and supplementary analysis for Salema system were performed in order to define the maximum volumetric flow rate for which the design pressure was able to withstand. Maximum surge pressure values of 287.76 bar and 318.58 bar, obtained in Salema and Bijupira respectively, using empirical formulations have surpassed the operating pressure design, while the computer model results have pointed the greatest surge pressure value of 282 bar in Salema system. (author)

  18. Effect of stratification on segregation in carbon dioxide miscible flooding in a water-flooded oil reservoir

    International Nuclear Information System (INIS)

    Oil reservoirs are subjected to tertiary recovery by deploying any enhanced oil recovery (EOR) technique for the recovery of left over oil. Amongst many EOR methods one of the widely applied worldwide is CO/sub 2/ flooding through miscible, near miscible or immiscible displacement processes. CO/sub 2/ flooding process responds to a number of reservoir and fluid characteristics. These characteristics have strong effect on overall efficiency of the displacement process. Better understanding of the effect of different characteristics on displacement process is important to plan an efficient displacement process. In this work, the effect of stratification resulting in gravity segregation of the injected fluid is studied in an oil reservoir which is water-flooded during secondary phase of recovery. Sensitivity analysis is performed through successive simulation on Eclipse 300 (compositional) reservoir simulator. Process involves the continuous CO/sub 2/ injection in an oil reservoir with more than 1/3rd of original oil in place left after water flooding. Reservoir model with four different permeability layers is studied. Four patterns by changing the arrangement of the permeabilities of the layers are analysed. The effect of different arrangement or stratification on segregation of CO/sub 2/ and ultimately on the incremental oil recovery, is investigated. It has been observed that out of four arrangements, upward fining pattern relatively overcame the issue of the segregation of CO/sub 2/ and consequently 33% more oil with half injection volume is recovered when compared with the downward fining pattern. (author)

  19. Death by water: precautionary water submersion for intravitreal injection of retinoblastoma eyes.

    Science.gov (United States)

    Francis, Jasmine H; Xu, Xiaoliang L; Gobin, Y Pierre; Marr, Brian P; Brodie, Scott E; Abramson, David H

    2014-01-01

    There is growing interest in intravitreal injections of chemotherapy for retinoblastoma. However, concerns for potential tumor seeding through the needle track has prompted the use of risk-reducing precautionary methods. Presented here is a novel technique, which can be easily replicated, requires minimal sophisticated equipment and with laboratory data supporting its concept. Sterile distilled water submersion for 3 minutes renders retinoblastoma cells nonviable and can be employed as a precautionary method following intravitreal injection in the technique described here. PMID:24949111

  20. Paclitaxel Injection

    Science.gov (United States)

    ... with other medications. Paclitaxel injection manufactured with polyoxyethylated castor oil is used to treat ovarian cancer (cancer that ... cancer, and lung cancer. Paclitaxel injection with polyoxyethylated castor oil is also used to treat Kaposi's sarcoma (a ...

  1. Isotopic composition of uranium, water and oils of some oil-gas bearing provinces

    International Nuclear Information System (INIS)

    A study into the pattern of distribution of uranium isotopes and 234U/238U ratio in the stratal waters, oils and water-bearing rocks of active water-exchange zones and oil fields in Central Asia, the Terek-Sunzha region, and the Volga region has been made. The radioactive ratios for stratal waters in the water-oil contact area are suggestive of an active isotopic exchange which leads to an isotopic equilibrium at the water-oil interface. The less intensive interphase isotopic exchange of uranium in the ''oil-rock'' system, as compared to the ''water-rock'' system, is indicative of a stronger link between uranium and oil, than between uranium and water. The deficit of the 234U isotope in the hypergenesis zone attests to the fact that, in the active water-exchange zone, depletion of rocks in 234U is currently taking place, while the values of 234U/238U ratios close to equilibrium, in water-bearing rocks indicate the absence of processes of intensive uranium migration in the rocks of the oil-gas provinces studied

  2. Myths and facts on wastewater injection, hydraulic fracturing, enhanced oil recovery, and induced seismicity

    Science.gov (United States)

    Rubinstein, Justin L.; Mahani, Alireza Babaie

    2015-01-01

    The central United States has undergone a dramatic increase in seismicity over the past 6 years (Fig. 1), rising from an average of 24 M≥3 earthquakes per year in the years 1973–2008 to an average of 193 M≥3 earthquakes in 2009–2014, with 688 occurring in 2014 alone. Multiple damaging earthquakes have occurred during this increase including the 2011 M 5.6 Prague, Oklahoma, earthquake; the 2011 M 5.3 Trinidad, Colorado, earthquake; and the 2011M 4.7 Guy‐Greenbrier, Arkansas, earthquake. The increased seismicity is limited to a few areas and the evidence is mounting that the seismicity in many of these locations is induced by the deep injection of fluids from nearby oil and gas operations. Earthquakes that are caused by human activities are known as induced earthquakes. Most injection operations, though, do not appear to induce earthquakes. Although the message that these earthquakes are induced by fluid injection related to oil and gas production has been communicated clearly, there remains confusion in the popular press beyond this basic level of understanding.

  3. Simultaneous injection of polymer and surfactant for improving oil recovery; Injecao simultanea de polimero e surfactante para aumento da recuperacao de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Ana C.R.; Valentim, Adriano C.M.; Marcelino, Cleuton P.; Fagundes, Fabio P.; Girao, Joaquim H.S.; Garcia, Rosangela B. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Lab. de Pesquisa em Petroleo (LAPET)

    2004-07-01

    The injection of polymeric solutions in petroleum reservoirs is a supplemental method of petroleum recovery, that seeks to increase the volumetric efficiency of swept of the oil with the decrease of the mobility of the injection water. In the contact between two non miscible fluids, superficial tensions are established, that can influence the relations between the rock and the fluids, depending on the nature of both. Therefore, the combined injection of a surfactant and a polymer can promote improvements in the injectivity and in the global recovery efficiency. In this work it was used samples of commercial polyacrylamide, which were characterized through hydrolysis degree, molecular weight and rheological behavior. From these results it was chosen one sample to be used associated to a polymeric surfactant. Through a core flood system, the following tests were done: injection of polymer solution; injection of surfactant solution followed by polymer solution and injection of surfactant / polymer mixture. The results showed that the injection of surfactant / polymer mixture promoted a significant increase in the residual resistance factor, in relation to the other situations. (author)

  4. Gas/oil/water flow measurement by electrical capacitance tomography

    International Nuclear Information System (INIS)

    In the oil industry, it is important to measure gas/oil/water flows produced from oil wells. To determine oil production, it is necessary to measure the water-in-liquid ratio (WLR), liquid fraction and some other parameters, which are related to multiphase flow rates. A research team from the University of Manchester and Schlumberger Gould Research have developed an experimental apparatus for gas/oil/water flow measurement based on a flow-conditioning device and electrical capacitance tomography (ECT) and microwave sensors. This paper presents the ECT part of the developed apparatus, including the re-engineering of an ECT sensor and a model-based image reconstruction algorithm, which is used to derive the WLR and the thickness of the liquid layer in oil-continuous annular flows formed by the flow-conditioning device. The ECT sensor was tested both at Schlumberger and on TUV-NEL's Multiphase Flow Facility. The experimental results are promising. (paper)

  5. Research on Dispersed Oil Droplets Breakage and Emulsification in the Dynamic Oil and Water Hydrocyclone

    Directory of Open Access Journals (Sweden)

    Guangdong Guo

    2013-08-01

    Full Text Available Oil and water dynamic hydrocyclone is one type of facilities that separate two phases or multiple phases applied widely in the fields such as food processing, environmental protection, biological pharmacy, petroleum and chemistry. The dispersed oil droplets in the dynamic oil and water hydrocyclone were often broken into small drops by shear force, which decreased the separation efficiency of dynamic oil-water hydrocyclone greatly. To avoid the breakage of the oil droplets, the turbulence field and the velocity field of the dynamic hydrocyclone were studied by the software of Fluent to analyze the main reason that led to breakage of oil droplets. Results indicated that the deformation of oil droplets was caused by the viscous shear force; the breakage of oil droplets was caused by the Reynolds shear stress and the local pressure fluctuations. The main area that the drops were prone to breakup of the dynamic hydrocyclone is that the rotating grating nearby, the wall boundary layer of the drum and center axis of the drum. Finally, the breakage of oil droplets and emulsification of oil and water in the dynamic hydrocyclone were verified by the experiments.

  6. The separation of stable water-in-oil emulsions

    International Nuclear Information System (INIS)

    Stable oil-in-water emulsions are a major problem in the recovery of spilled oils. Such emulsions can contain as little as 10% oil and can have properties very different from the original oils, making their storage and disposal difficult. These problems have led to experiments testing the feasibility of a process for separating these stable emulsions into dischargeable water and reusable oil. The technique investigated involves use of a recyclable solvent to remove the oil and subsequent distillation and/or membrane treatment to recover the oil and recycle the solvent. Results of preliminary tests show that stable water-in-oil emulsions can be separated quite readily with a regenerated solvent system. The only products of these systems are oil, which can be sent to a refinery, and dischargeable water. The recycled solvent can be used many times without any significant decrease in separation efficiency. In order to enhance the throughput of the system, a solvent vapor stripping method was invented. This stripping method also improves the quality of the products and the recycled solvent. Membrane methods can be used as a post-treatment for the produced water in order to achieve more adequate compliance with discharge limits. 4 refs., 3 figs., 5 tabs

  7. Land and water impacts of oil sands production in Alberta.

    Science.gov (United States)

    Jordaan, Sarah M

    2012-04-01

    Expansion of oil sands development results not only in the release of greenhouse gas emissions, but also impacts land and water resources. Though less discussed internationally due to to their inherently local nature, land and water impacts can be severe. Research in key areas is needed to manage oil sands operations effectively; including improved monitoring of ground and surface water quality. The resulting information gap means that such impacts are not well understood. Improved analyses of oil sands products are required that compare land and water use with other transportation fuel pathways and use a regional perspective so local effects can be considered and mitigated. PMID:22364164

  8. Advanced Membrane Filtration Technology for Cost Effective Recovery of Fresh Water from Oil & Gas Produced Brine

    Energy Technology Data Exchange (ETDEWEB)

    David B. Burnett

    2005-09-29

    This study is developing a comprehensive study of what is involved in the desalination of oil field produced brine and the technical developments and regulatory changes needed to make the concept a commercial reality. It was originally based on ''conventional'' produced water treatment and reviewed (1) the basics of produced water management, (2) the potential for desalination of produced brine in order to make the resource more useful and available in areas of limited fresh water availability, and (3) the potential beneficial uses of produced water for other than oil production operations. Since we have begun however, a new area of interest has appeared that of brine water treatment at the well site. Details are discussed in this technical progress report. One way to reduce the impact of O&G operations is to treat produced brine by desalination. The main body of the report contains information showing where oil field brine is produced, its composition, and the volume available for treatment and desalination. This collection of information all relates to what the oil and gas industry refers to as ''produced water management''. It is a critical issue for the industry as produced water accounts for more than 80% of all the byproducts produced in oil and gas exploration and production. The expense of handling unwanted waste fluids draws scarce capital away for the development of new petroleum resources, decreases the economic lifetimes of existing oil and gas reservoirs, and makes environmental compliance more expensive to achieve. More than 200 million barrels of produced water are generated worldwide each day; this adds up to more than 75 billion barrels per year. For the United States, the American Petroleum Institute estimated about 18 billion barrels per year were generated from onshore wells in 1995, and similar volumes are generated today. Offshore wells in the United States generate several hundred million barrels of produced water per year. Internationally, three barrels of water are produced for each barrel of oil. Production in the United States is more mature; the US average is about 7 barrels of water per barrel of oil. Closer to home, in Texas the Permian Basin produces more than 9 barrels of water per barrel of oil and represents more than 400 million gallons of water per day processed and re-injected.

  9. Influence of ph on corrosion control of carbon steel by peroxide injection in sour water

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Martins Magda; Baptista, Walmar; Joia, Carlos Jose Bandeira de Mello [PROTEMP - PETROBRAS/CENPES, Cidade Universitaria, Quadra 7, Rio de Janeiro, CEP 21949-900 (Brazil); Ponciano, Gomes Jose Antonio da Cunha [Departamento de Engenharia Metalurgica e de Materiais-COPPE/UFRJ, Cidade Universitaria, Rio de Janeiro (Brazil)

    2004-07-01

    Sour hydrogen damage is considered the most important corrosive process in the light-ends recovery section of Fluid Catalytic Cracking Units (FCCU). Corrosion in this condition is due to heavy gas oil that originates great amount of contaminants, such as H{sub 2}S, NH{sub 3} and HCN. Hydrogen absorption is promoted by the presence of free cyanides in the environment. The attenuation of this process requires the use of some inhibitors, such as oxygen, hydrogen peroxide (H{sub 2}O{sub 2}) or commercial polysulfides. The effect of these compounds is to neutralize free cyanides (CN{sup -}) into thio-sulfides (SCN{sup -}). When peroxide injection is selected, cyanide concentration in sour water has been used as key parameter to start the peroxide introduction. However, the importance of pH in this system has been pointed out by many authors. The aim of this work is to investigate the influence of pH when peroxide injection is carried out in less alkaline conditions of sour water. Electrochemical techniques - like anodic polarization and hydrogen permeation tests - and weight loss measurements were used to evaluate the effectiveness of corrosion control of carbon steel. It was concluded that at pH 7.5 peroxide injection can drive to an increment of the corrosion rate. Besides that, it was concluded that hydrogen permeation into the metal is promoted. Both detrimental effects were due to elemental sulfur generation in this pH range. The adoption of pH as a key parameter for peroxide injection is then suggested. (authors)

  10. Strategies for Efficient Microfiltration of Oil-in-Water Emulsions

    Science.gov (United States)

    Darvishzadeh, Tohid; Priezjev, Nikolai

    2011-11-01

    This study addresses the issue of the separation of oil droplets from water for oil spill mitigation and produced water treatment. The effective separation of oil-in-water dispersions involves high flux of water through a membrane and, at the same time, high rejection rate of oil droplets, while avoiding membrane fouling. In this study, the effects of transmembrane pressure and crossflow velocity on rejection of oil droplets by pores of different cross-section are investigated numerically by solving the Navier-Stokes equation. We found that in the absence of crossflow, the critical transmembrane pressure, which is required for the oil droplet entry into a circular pore of given surface hydrophobicity, agrees well with analytical predictions based on the Young-Laplace equation. With increasing crossflow velocity, the shape of the oil droplet residing at the pore entrance is elongated along the flow and the critical pressure increases. In the case of pores with an elliptical cross-section, the water flux through the membrane is enhanced, in agreement with simple analytical considerations. The results of the numerical simulations are used to outline strategies for the experimental design of porous filters for oil spill remediation and produced water treatment applications.

  11. Evaluation of Water Injection Effect on NO(x) Formation for a Staged Gas Turbine Combustor

    Science.gov (United States)

    Fan, L.; Yang, S. L.; Kundu, K. P.

    1996-01-01

    NO(x) emission control by water injection on a staged turbine combustor (STC) was modeled using the KIVA-2 code with modification. Water is injected into the rich-burn combustion zone of the combustor by a single nozzle. Parametric study for different water injection patterns was performed. Results show NO(x) emission will decrease after water being injected. Water nozzle location also has significant effect for NO formation and fuel ignition. The chemical kinetic model is also sensitive to the excess water. Through this study, a better understanding of the physics and chemical kinetics is obtained, this will enhance the STC design process.

  12. Microbiological treatment of oil mill waste waters

    Directory of Open Access Journals (Sweden)

    Ranalli, A.

    1992-02-01

    Full Text Available Experiments of the biological treatment of the oil mill waste waters, deriving from continuous system, have been carried out with selected mutant ferments, adapted to rather forced toxic conditions. The commercial microbio formulations SNKD, LLMO and PSBIO have been utilized; the last two are liquid suspensions, constituted by living micro-organisms that, in contrast to those frozen or lyophilized, do not need be revitalized before their use and became completely active in short time. The experiments with the SNKD biological preparation were carried out both on filtered oil mill outflows (type A with an initial COD of approximately 43 g/l and on waste water dephenolized by Caro-acid (type B with a COD equal to 30 g/l. The experiments with LLMO and PSBIO complexes were conduced both on oil mill outflows filtered and diluted (ratio 1:0.5 with an initial COD equal to 44 g/l (type C, and on waste water that were filtered and preventatively subjected to a cryogenic treatment (type D, with an initial COD of approximately 22 g/l. The residual COD with the microbio formulation SNKD, was about 15 g/l (type A and 5 g/l (type B; with the PSBIO It was about 7 g/l (type C and 1.5 g/l (type D; with the microbio formulation LLMO it resulted in 6 g/l (type C and 1.3 g/l (type D.

    Han sido efectuadas pruebas de tratamiento biológico de alpechines, provenientes de sistemas continuos, con fermentos seleccionados adaptados a condiciones de toxicidad muy elevadas. Han sido utilizadas las formulaciones microbianas SNKD, LLMO y PSBIO; las dos últimas son suspensiones líquidas, constituidas por microorganismos vivos, los cuales a diferencia de los liofilizados o congelados, no deben ser revitalizados antes del uso; estos tienen una fase «lag» más breve y entran antes en completa actividad. Las pruebas con la preparación biológica SNKD han sido efectuadas en los alpechines filtrados (tipo A con DQO inicial alrededor de 43 g/l, y también con alpechín filtrado «defenolado» con ácido de Caro (H2SO5 (tipo B, con DCX igual a 30 g/l; los complexos LLMO y PSBIO se utilizan en alpechines provenientes de la elaboración de otras variedades de aceitunas, filtradas y diluidas en la relación 1:0,5 (tipo C con DQO inicial igual a 44 g/l, y también en alpechín filtrado y sometido previamente a criotratamiento (tipo D, con DQO inicial de 22 g/l aproximadamente. La DQO residual, con la formulación microbiana SNKD, ha resultado igual a 15 g/l (Tipo A y a 5 g/l (tipo B, con el PSBIO a 7 g/l (tipo C y a 1,5 g/l (tipo D; con la formulación microbiana LLMO a 6 g/l (tipo C y a 1,3 g/l (tipo D.

  13. Resolution of oil-in-water emulsions containing uranium

    International Nuclear Information System (INIS)

    A method of resolving oil-in-water emulsions resulting from the organic solvent extraction of uranium from aqueous acidic leach liquors which comprises treating the emulsions in accordance with the following steps: (a) adding to the emulsions a water-in-oil emulsion which contains from 2 to 50% by weight of a water-soluble acrylamide copolymer which contains from 5 to 50% by weight of a lower alkyl substituted tertiary aminoethyl methacrylate and quaternary ammonium salts thereof in an amount to provide at least 20 parts per million of the acrylamide copolymer; (b) adjusting the pH of the emulsion being treated with ammonia to at least 9; (c) adding to the ammonia treated emulsion a water-soluble surfactant which is capable of inverting the water-in-oil emulsion which contains the polymer; and then (d) slowly mixing the treated oil-in-water emulsion for at least one-half hour to obtain good resolution thereof

  14. Technique for locating injected gas in oil bearing formations behind casing

    International Nuclear Information System (INIS)

    A method is described for determining the location of injected gas in an oil well comprising the steps of: obtaining data representing a near count rate from a compensated neutron logging tool; obtaining data representing a far count rate from a compensated neutron logging tool; scaling the near count rate and the far count rate; plotting the scaled near count rate and the scaled far rate; comparing the scaled near count rate plot and the scaled far count rate plot and; determining the location of injected gas whenever the plot of the scaled near count rate and the plot of the scaled far count rate differ by a predetermined factor; obtaining data representing a second near count rate for a compensated neutron logging tool at a second time; obtaining data representing a second far count rate from a compensated neutron logging tool at the second time; scaling the second near count rate and the second far count rate; plotting the scaled second near count rate and the scaled second far count rate; comparing the scaled second near count rate plot and the scaled second far count rate plot; determining a second location of injected gas whenever the plot of the scaled second near count rate and the plot of the scaled second far count rate differ by a predetermined factor; and determining the migration of the injected gas by comparing the location with the second location

  15. Infrared Spectroscopy of Bilberry Extract Water-in-Oil Emulsions: Sensing the Water-Oil Interface

    Directory of Open Access Journals (Sweden)

    Johannes Kiefer

    2016-04-01

    Full Text Available Water-in-oil (w/o emulsions are of great interest in many areas of the life sciences, including food technology, bioprocess engineering, and pharmaceuticals. Such emulsions are complex multi-component systems and the molecular mechanisms which lead to a stable emulsion are yet to be fully understood. In this work, attenuated total reflection (ATR infrared (IR spectroscopy is applied to a series of w/o emulsions of an aqueous anthocyanin-rich bilberry extract dispersed in a medium chain triglyceride (MCT oil phase. The content of the emulsifier polyglycerin-polyricinoleat (PGPR has been varied systematically in order to investigate whether or not its concentration has an impact on the molecular stabilization mechanisms. The molecular stabilization is accessed by a careful analysis of the IR spectrum, where changes in the vibrational frequencies and signal strengths indicate alterations of the molecular environment at the water/oil interface. The results suggest that adding emulsifier in excess of 1% by weight does not lead to an enhanced stabilization of the emulsion.

  16. Infrared Spectroscopy of Bilberry Extract Water-in-Oil Emulsions: Sensing the Water-Oil Interface.

    Science.gov (United States)

    Kiefer, Johannes; Frank, Kerstin; Zehentbauer, Florian M; Schuchmann, Heike P

    2016-01-01

    Water-in-oil (w/o) emulsions are of great interest in many areas of the life sciences, including food technology, bioprocess engineering, and pharmaceuticals. Such emulsions are complex multi-component systems and the molecular mechanisms which lead to a stable emulsion are yet to be fully understood. In this work, attenuated total reflection (ATR) infrared (IR) spectroscopy is applied to a series of w/o emulsions of an aqueous anthocyanin-rich bilberry extract dispersed in a medium chain triglyceride (MCT) oil phase. The content of the emulsifier polyglycerin-polyricinoleat (PGPR) has been varied systematically in order to investigate whether or not its concentration has an impact on the molecular stabilization mechanisms. The molecular stabilization is accessed by a careful analysis of the IR spectrum, where changes in the vibrational frequencies and signal strengths indicate alterations of the molecular environment at the water/oil interface. The results suggest that adding emulsifier in excess of 1% by weight does not lead to an enhanced stabilization of the emulsion. PMID:27089376

  17. Influence of fuel additives on performance of direct-injection Diesel engine and exhaust emissions when operating on shale oil

    International Nuclear Information System (INIS)

    The article presents the comparative bench testing results of a naturally aspirated four stroke, four cylinder, water cooled, direct injection Diesel engine when running on shale oil that has been treated with multi-functional fuel additives. The purpose of the research is to evaluate the effectiveness of the fuel additives Marisol FT (Sweden) and SO-2E (Estonia) as well as to verify their ability to increase energy conversion and reduce brake specific fuel consumption, contamination and smoke opacity of the exhausts when fuelling the Diesel engine with shale oil. Test results show that application of these additives could be a very efficient means to improve Diesel engine performance on shale oil, especially when operating at the light load range. The brake specific fuel consumption at light loads and speeds of 1400-2000 min-1 reduces by 18.3-11.0% due to the application of the Marisol FT. The additive SO-2E proves to produce nearly the same effect. The total NO x emission from the fully loaded Diesel engine fuelled with the treated shale oil reduces by 29.1% (SO-2E) and 23.0% (Marisol FT). It is important that the lower NO x is obtained due to reducing both harmful pollutants, NO and NO2. The CO emission at rated power increases by 16.3% (SO-2E) and 48.0% (Marisol FT), whereas the smoke opacity of the exhausts increases by 35% and over 2 times, respectively. The effect of the fuel additives on the HC emission seems to be complicated and ambiguous

  18. Freeze-thaw stability of water-in-oil emulsions.

    Science.gov (United States)

    Ghosh, S; Rousseau, D

    2009-11-01

    Factors influencing water-in-oil emulsion stability during freeze/thaw-cycling, namely interfacial crystallization vs. network crystallization and the sequence of crystallization events (i.e., dispersed vs. continuous phase or vice versa), are assessed. We show that destabilization is most apparent with a liquid-state emulsifier and a continuous oil phase that solidifies prior to the dispersed phase. Emulsions stable to F/T-cycling are obtained when the emulsifier crystallizes at the oil-water interface or in emulsions where the continuous phase crystallizes after the dispersed aqueous phase. The materials used are two food-grade oil-soluble emulsifiers - polyglycerol polyricinoleate (PGPR) and glycerol monostearin (GMS) and two continuous oil phases with differing crystallization temperatures - canola oil and coconut oil. Emulsion stability is assessed with pulsed field gradient NMR droplet size analysis, sedimentation, microscopy and differential scanning calorimetry. This study demonstrates the sequence of crystallization events and the physical state of the surfactant at the oil-water interface strongly impact the freeze-thaw stability of water-in-oil emulsions. PMID:19683718

  19. Application of tritiated water as a tracer for quantitative determination of water flow distribution in an oil-field

    International Nuclear Information System (INIS)

    In order to study the flow of water in an underground oil reservoir, tritiated water was injected in a well and, subsequently, tritium was determined in the water produced by the surrounding wells. Since the specific radioactivity of the water produced by the more remote wells appeared to be rather low, partly owing to dilution of the tritium water by the water present in the formation, enrichment methods were used, in order to increase counting sensitivity. Three methods of enrichment were examined: exchange with ethanol, conversion to toluene, and electrolysis. The latter method proved to be the most useful. The tritium was determined with a liquid scintillation counter; the scintillator consisted of a toluene-ethanol (2:1) mixture with DPO and POPOP, the water sample being dissolved in this liquid. Some statistical problems in connexion with the minimum detectable specific activity and the reduction of background are discussed briefly. (author)

  20. Comparative toxicity test of water-accommodated fractions of oils and oil dispersants to marine organisms

    International Nuclear Information System (INIS)

    This reference method describes a simple procedure for comparing the toxicity of oil, oil dispersants, and mixtures thereof, to marine animals. It allows the toxicity of different dispersants to be rapidly compared to that of oil, or of a mixture of oil an oil dispersant. It is designed for routine monitoring and screening purposes and is not appropriate as a research method. The physical and chemical properties of oil dispersants create many difficulties in the measurements of their toxicity to marine organisms. Strictly speaking, their toxicity can only be accurately estimated using complex procedures and apparatus. (A relatively simple apparatus for preparing oil/water or oil/water/oil dispersant emulsions is described in Appendix B). Simpler methods can provide useful information, provided their limitations are clearly understood and taken into consideration in the assessment and application of their results. Some of the special considerations relating to the measurement of the toxicity of oil and oil dispersants are described in Appendix A. The Appendix also explains the rationale and limitations of the method described here. 3 refs, 4 figs, 2 tabs

  1. Poroelastic modeling to assess the effect of water injection for land subsidence mitigation

    OpenAIRE

    Aichi, M; T. Tokunaga

    2015-01-01

    The possible effect of water injection to mitigate land subsidence was studied through numerical simulations based on the theory of poroelasticity. The Kujukuri Plain, Japan, was chosen as a study area. The effect of past injection was evaluated by comparing a model with injection and the one without injection. The calculated results suggested that the past injection played a significant role to reduce land subsidence. For achieving more effective mitigation practices in the...

  2. Particle-Stabilized Powdered Water-in-Oil Emulsions.

    Science.gov (United States)

    Binks, Bernard P; Tyowua, Andrew T

    2016-04-01

    The preparation of powdered water-in-oil (w/o) emulsions by gentle aeration of w/o emulsions stabilized by hydrophobic fumed silica particles in the presence of oleophobic fluorinated clay particles is reported for an alkane and a triglyceride oil. The resultant powders consist of water drops dispersed in oil globules themselves dispersed in air (w/o/a). They contain ∼80 wt % of the precursor w/o emulsion and were stable to phase separation for over 1 year but release oil and water when sheared on a substrate. Above a certain ratio of w/o emulsion:fluorinated clay particles, the powdered emulsions partially invert to an emulsion paste, composed of air bubbles and water droplets dispersed in oil. The tap density and angle of repose of the powdered emulsions were measured and compared with those of the corresponding powdered oils making up the continuous phase of the precursor emulsions. The contact angles of water droplets under oil on glass slides spin coated with silica particles and oil drops and w/o emulsion droplets in air on compressed disks of fluorinated clay particles are consistent with the stabilization of w/o emulsions and powdered emulsions, respectively. PMID:27002604

  3. Imaging of CO{sub 2} injection during an enhanced-oil-recovery experiment

    Energy Technology Data Exchange (ETDEWEB)

    Gritto, Roland; Daley, Thomas M.; Myer, Larry R.

    2003-04-29

    A series of time-lapse seismic cross well and single well experiments were conducted in a diatomite reservoir to monitor the injection of CO{sub 2} into a hydrofracture zone, using P- and S-wave data. During the first phase the set of seismic experiments were conducted after the injection of water into the hydrofrac-zone. The set of seismic experiments was repeated after a time period of 7 months during which CO{sub 2} was injected into the hydrofractured zone. The issues to be addressed ranged from the detectability of the geologic structure in the diatomic reservoir to the detectability of CO{sub 2} within the hydrofracture. During the pre-injection experiment, the P-wave velocities exhibited relatively low values between 1700-1900 m/s, which decreased to 1600-1800 m/s during the post-injection phase (-5 percent). The analysis of the pre-injection S-wave data revealed slow S-wave velocities between 600-800 m/s, while the post-injection data revealed velocities between 500-700 m/s (-6 percent). These velocity estimates produced high Poisson ratios between 0.36 and 0.46 for this highly porous ({approx} 50 percent) material. Differencing post- and pre-injection data revealed an increase in Poisson ratio of up to 5 percent. Both, velocity and Poisson estimates indicate the dissolution of CO{sub 2} in the liquid phase of the reservoir accompanied by a pore-pressure increase. The results of the cross well experiments were corroborated by single well data and laboratory measurements on core data.

  4. Oil spill dispersants. Risk assessment for Swedish waters

    Energy Technology Data Exchange (ETDEWEB)

    Lindgren, C.; Lager, H.; Fejes, J.

    2001-12-01

    IVL has compiled a list of the international usage of oil spill dispersants and presents the technical limitations with the use of such agents as well as the biological effects of these chemical products. IVL, has also conducted an analysis of the pros and cons to using dispersants against oil spills in waters and has applied this with a risk assessment of chemical methods to combat oil spills in the Kattegat and Skagerrak and the Baltic Sea.

  5. Oil spill dispersants. Risk assessment for Swedish waters

    International Nuclear Information System (INIS)

    IVL has compiled a list of the international usage of oil spill dispersants and presents the technical limitations with the use of such agents as well as the biological effects of these chemical products. IVL, has also conducted an analysis of the pros and cons to using dispersants against oil spills in waters and has applied this with a risk assessment of chemical methods to combat oil spills in the Kattegat and Skagerrak and the Baltic Sea

  6. Distribution of Complex Chemicals in Oil-Water Systems

    DEFF Research Database (Denmark)

    Riaz, Muhammad

    life. Furthermore distribution of chemicals is important information for downstream processing of oil and gas. The purpose of this project is the experimental measurement and the thermodynamic modeling of distribution of these complex chemicals in oil-water systems. Traditionally distribution of...... thermodynamic model for the distribution of chemicals in oil-water systems experimental data are required but such data with natural gas-condensate/oil systems are very rare in the literature. In this project experimental work has been carried at Statoil R & D and an experimental method has been established and...... correct. In the first phase of this project experimental data on Kow, Koil-water and Khw (hexane-water partition coefficients) are collected and investigations were carried out to develop correlations so that Koil-water can be predicted using Kow and Khw. However, due to scarcity of experimental data and...

  7. Stability Investigation of Water-in-Crude Oil Emulsion

    OpenAIRE

    Abdurahman H. Nour; Rosli Mohd. Yunus

    2006-01-01

    The water in-crude oil emulsion has great importance in the oil industry. Experimental data are presented to investigate the stability of water-in-crude oil emulsions in both creaming and coalescence states were measured as a function of sodium chloride concentration. Also the stability of w/o emulsion is investigated over a wide range of parameters. These parameters are salt concentration (0-5.5%), mixing speed (800-1600 rpm), water concentration (10-80%) and temperature. For economic and op...

  8. Breaking of Oil -Water Emulsion for the Improvement of Oil Recovery Operations in the Niger Delta Oilfields

    OpenAIRE

    C. Ijogbemeye Oseghale; Akpabio E. J; Udottong, G

    2012-01-01

    Emulsified water is generally present in crude oil as a result of mixing occurring during production operations. The formation of emulsion leads to problems in production and also transportation. Therefore the need to break oil/water emulsions system through demulsification process using chemical surfactants for improved oil recovery operations. Selected cationic surfactants were effective in separating oil-water emulsions expected during a surfactant/polymer (SP) process for improved oil rec...

  9. From oil-based mud to water-based mud

    International Nuclear Information System (INIS)

    Maersk Olie og Gas AS has used low toxic oil-based muds extensively since 1982 for drilling development wells and later in the development of horizontal well drilling techniques. However, in view of the strong drive towards a reduction in the amount of oil discharged to the North Sea from the oil industry, Maersk Olie og Gas AS initiated trials with new or improved types of water-based mud, first in deviated wells (1989) and then in horizontal wells (1990). The paper reviews Maersk Olie og Gas As experience with oil-based mud since the drilling of the first horizontal well in 1987, specifically with respect to cuttings washing equipment, oil retention on cuttings, and the procedure for monitoring of this parameter. It describes the circumstances leading to the decision to revert to water-based mud systems. Finally, it reviews the experience gained so far with the new improved types of water-based mud systems, mainly glycol and KCl/polymer mud systems. Comparison of operational data, such as rate of penetration, torque and drag, etc., is made between wells drilled with oil-based mud and water-based mud. The trials with the new improved types of water-based mud systems have been positive, i.e. horizontal wells can be drilled successfully with water-based mud. As a result, Maersk Olie og and Gas AS has decided to discontinue the use of low toxic oil-based muds in the Danish sector of the North Sea

  10. Experimental and Analytical Determination of the Motion of Hydraulically Operated Valve Stems in Oil Engine Injection Systems

    Science.gov (United States)

    Gelalles, A G; Rothrock, A M

    1930-01-01

    This research on the pressure variations in the injection system of the N.A.C.A. Spray Photography Equipment and on the effects of these variations on the motion of the timing valve stem was undertaken in connection with the study of fuel injection systems for high-speed oil engines. The methods of analysis of the pressure variations and the general equation for the motion of the spring-loaded stem for the timing valve are applicable to a spring-loaded automatic injection valve, and in general to all hydraulically operated valves. A sample calculation for a spring-loaded automatic injection valve is included.

  11. Diversity of Microbial Communities in Production and Injection Waters of Algerian Oilfields Revealed by 16S rRNA Gene Amplicon 454 Pyrosequencing

    Science.gov (United States)

    Lenchi, Nesrine; ?nceo?lu, zgl; Kebbouche-Gana, Salima; Gana, Mohamed Lamine; Llirs, Marc; Servais, Pierre; Garca-Armisen, Tamara

    2013-01-01

    The microorganisms inhabiting many petroleum reservoirs are multi-extremophiles capable of surviving in environments with high temperature, pressure and salinity. Their activity influences oil quality and they are an important reservoir of enzymes of industrial interest. To study these microbial assemblages and to assess any modifications that may be caused by industrial practices, the bacterial and archaeal communities in waters from four Algerian oilfields were described and compared. Three different types of samples were analyzed: production waters from flooded wells, production waters from non-flooded wells and injection waters used for flooding (water-bearing formations). Microbial communities of production and injection waters appeared to be significantly different. From a quantitative point of view, injection waters harbored roughly ten times more microbial cells than production waters. Bacteria dominated in injection waters, while Archaea dominated in production waters. Statistical analysis based on the relative abundance and bacterial community composition (BCC) revealed significant differences between production and injection waters at both OTUs0.03 and phylum level. However, no significant difference was found between production waters from flooded and non-flooded wells, suggesting that most of the microorganisms introduced by the injection waters were unable to survive in the production waters. Furthermore, a Venn diagram generated to compare the BCC of production and injection waters of one flooded well revealed only 4% of shared bacterial OTUs. Phylogenetic analysis of bacterial sequences indicated that Alpha-, Beta- and Gammaproteobacteria were the main classes in most of the water samples. Archaeal sequences were only obtained from production wells and each well had a unique archaeal community composition, mainly belonging to Methanobacteria, Methanomicrobia, Thermoprotei and Halobacteria classes. Many of the bacterial genera retrieved had already been reported as degraders of complex organic molecules and pollutants. Nevertheless, a large number of unclassified bacterial and archaeal sequences were found in the analyzed samples, indicating that subsurface waters in oilfields could harbor new and still-non-described microbial species. PMID:23805243

  12. Water-in-oil emulsions : studies on water resolution and rheology over time

    International Nuclear Information System (INIS)

    Water-in-oil emulsions, which often form following oil spills, make cleanup very difficult because the physical properties and characteristics of the oil change significantly after the spill. In this study, water-in-oil mixtures from crude oil and petroleum products were studied in a laboratory for up to one year. The types of mixtures were characterized by resolution of water and rheology measurements at one and seven days, and some after one year. Oil and petroleum products formed 4 clearly-defined water-in-oil types when mixed with water. These were categorized as stable, unstable, mesostable and entrained. The distinct physical properties of each category were described in this paper. The water-in-oil types were characterized using a newly developed numerical stability index which is the product of the ratio of viscosity increase and a ratio of the elasticity increase. The index was also used to correlate stability with oil compositions and properties. The asphaltene and resin content in the starting oil, along with its viscosity and density were the most important factors for water uptake and emulsion formation, as determined by a comparative evaluation of the properties of the starting oils before mixing. The saturate content and asphaltene-to-resin ratio are other important factors. 42 refs., 7 tabs., 8 figs

  13. Successful water management for the oil sands industry

    International Nuclear Information System (INIS)

    Water is a key requirement to produce oil from thermal oil sands projects. Historically, water was considered as a renewable resource that could be used when necessary. Water use is currently examined in a wider context. Canadian Natural Resources Limited has used fresh water for thermal projects in the past, including its thermal operations at Primrose and Wolf Lake. However, technical advancements have made it possible to use recycled water. This allows companies to survive within their licenses while increasing production. Other advances include the use of brackish water, and innovations such as using depleted reservoir sections to store water to increase the use of recycled water. It was noted that brackish water resources need to be mapped and understood in greater detail. The objective is to use brackish water at a cost equal to, or less, than fresh water

  14. Poroelastic modeling to assess the effect of water injection for land subsidence mitigation

    Science.gov (United States)

    Aichi, M.; Tokunaga, T.

    2015-11-01

    The possible effect of water injection to mitigate land subsidence was studied through numerical simulations based on the theory of poroelasticity. The Kujukuri Plain, Japan, was chosen as a study area. The effect of past injection was evaluated by comparing a model with injection and the one without injection. The calculated results suggested that the past injection played a significant role to reduce land subsidence. For achieving more effective mitigation practices in the future, we proposed to install injection wells in shallower formations. The effect of proposed injection method to mitigate land subsidence from 2014 to 2030 was also investigated. The calculated results show that the proposed method can work similarly by lesser water injection than the past method. The results also indicate that the upper limit of injection rate should be carefully determined to control the pore pressure build-up in the formation to be small enough to avoid formation failure.

  15. Water-in-oil emulsions results of formation studies and applicability to oil spill modelling

    International Nuclear Information System (INIS)

    This paper summarises studies of water-in-oil emulsions, their stability, and modelling of their formation. Studies show that water-in-oil emulsions might be characterised into three categories (stable, mesostable and unstable). These categories were established by visual appearance, elasticity and viscosity difference. It was also shown that water content was not an important factor. A fourth category of water-in-oil exists, that of water entrainment, which is not an emulsion. Water-in-oil emulsions made from crude oils have different classes of stabilities as a result of the asphaltene and resin contents. The differences in the emulsion types are readily distinguished both by their rheological properties, and simply by appearance. The apparent viscosity of a stable emulsion at a shear rate of one reciprocal second, is at least three orders-of-magnitude greater than the starting oil. An unstable emulsion usually has a viscosity no more than one order-of-magnitude greater than that of the starting oil. A stable emulsion has a significant elasticity, whereas an unstable emulsion does not. Stable emulsions have sufficient asphaltenes (>∼7%) to establish films of these compounds around water droplets. Mesostable emulsions have insufficient asphaltenes to render them completely stable. Stability is achieved by visco-elastic retention of water and secondarily by the presence of asphaltene or resin films. Mesostable emulsions display apparent viscosities of about 80-600 times that of the starting oil and true viscosities of 20-200 times that of the starting oil. Mesostable emulsions have an asphaltene and resin content greater than 3%. Entrained water occurs when a viscous oil retains larger water droplets, but conditions are not suitable for the formation of an emulsion. Entrained water may have a viscosity that is similar or slightly greater (∼ 2-10 times) than the starting oil. It was found that emulsion formation occurs at a threshold energy, however this energy has not been accurately defined. Emulsions from many oils have been characterised. This information is used to describe how this process can be accurately modelled and what information gaps exist for complete description of the physical process. The modelling of emulsions is reviewed. A new modelling scheme based on the new physical findings, is suggested. (Author)

  16. Performance and exhaust emission of turpentine oil powered direct injection diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Anand, B. Prem; Saravanan, C.G.; Srinivasan, C. Ananda [Department of Mechanical Engineering, Annamalai University, Annamalainagar 608 002, Tamil Nadu (India)

    2010-06-15

    This paper presents the results of experimental work carried out to evaluate the combustion performance and exhaust emission characteristics of turpentine oil fuel (TPOF) blended with conventional diesel fuel (DF) fueled in a diesel engine. Turpentine oil derived from pyrolysis mechanism or resin obtained from pine tree dissolved in a volatile liquid can be used as a bio-fuel due to its properties. The test engine was fully instrumented to provide all the required measurements for determination of the needed combustion, performance and exhaust emission variables. The physical and chemical properties of the test fuels were earlier determined in accordance to the ASTM standards. Indicated that the engine operating on turpentine oil fuel at manufacture's injection pressure - time setting (20.5 MPa and 23 BTDC) had lower carbon monoxide (CO), unburned hydrocarbons (HC), oxides of nitrogen (NO{sub x}), smoke level and particulate matter. Further the results showed that the addition of 30% TPOF with DF produced higher brake power and net heat release rate with a net reduction in exhaust emissions such as CO, HC, NO{sub x}, smoke and particulate matter. Above 30% TPOF blends, such as 40% and 50% TPOF blends, developed lower brake power and net heat release rate were noted due to the fuels lower calorific value; nevertheless, reduced emissions were still noted. (author)

  17. Oil field produced water discharges into wetlands in Wyoming

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Approximately 600 oil field produced water discharges are permitted in Wyoming by the States Department of Environmental Qualitys WDEQ National Pollutant Discharge...

  18. Turbulent flow of oil-water emulsions with polymer additives

    International Nuclear Information System (INIS)

    The article outlines direct and reverse oil-water emulsions. Microphotography study of these emulsions was carried out. The effect of water-soluble and oil soluble polymers on the emulsion structure and their turbulent flow velocity in cylindrical channel was investigated. It has been experimentally proven that if the fluid being transported is not homogeneous, but a two-phase oil-water emulsion, only the polymer that is compatible with dispersion medium and capable of dissolving in this medium can reduce the hydrodynamic resistance of the fluid flow. Thus, the resistance in direct emulsions can be reduced by water- soluble polyacrylamide, while oil-soluble polyhexene can be applied for reverse emulsions

  19. Protonated Melamine Sponge for Effective Oil/Water Separation

    Science.gov (United States)

    Wang, Chih-Feng; Huang, Hsiang-Ching; Chen, Liang-Ting

    2015-09-01

    In this study, we fabricated a superhydrophilic and underwater superoleophobic protonated melamine sponge for effective separation of water-rich immiscible oil/water mixtures with extremely high separation efficiency. This protonated melamine sponge exhibited excellent antifouling properties and could be used to separate oil/water mixtures continuously for up to 12 h without any increase in the oil content in filtrate. Moreover, our compressed protonated melamine sponge could separate both surfactant-free and -stabilized oil-in-water emulsions with high separation efficiencies. The high performance of this protonated melamine sponge and its efficient, energy- and cost-effective preparation suggest that it has great potential for use in practical applications.

  20. Analysis of thrust augmentation of turbojet engines by water injection at compressor inlet including charts for calculating compression processes with water injection

    Science.gov (United States)

    Wilcox, E Clinton; Trout, Arthur M

    1951-01-01

    A psychrometric chart having total pressure (sum of partial pressures of air and water vapor) as a variable, a Mollier diagram for air saturated with water vapor, and charts showing the thermodynamic properties of various air-water vapor and exhaust gas-water vapor mixtures are presented as aids in calculating the thrust augmentation of a turbojet engine resulting from the injection of water at the compressor inlet. Curves are presented that show the theoretical performance of the augmentation method for various amounts of water injected and the effects of varying flight Mach number, altitude, ambient-air temperature, ambient relative humidity, compressor pressure ratio, and inlet-diffuser efficiency. Numerical examples, illustrating the use of the psychrometric chart and the Mollier diagram in calculating both compressor-inlet and compressor-outlet conditions when water is injected at the compressor inlet, are presented.

  1. Crude oil desulfurization

    Science.gov (United States)

    Kalvinskas, J. J.; Hsu, G. C.; Ernest, J. B. (Inventor)

    1982-01-01

    High sulfur crude oil is desulfurized by a low temperature (25-80 C.) chlorinolysis at ambient pressure in the absence of organic solvent or diluent but in the presence of water (water/oil=0.3) followed by a water and caustic wash to remove sulfur and chlorine containing reaction products. The process described can be practiced at a well site for the recovery of desulfurized oil used to generate steam for injection into the well for enhanced oil recovery.

  2. Water footprints of products of oil palm plantations and palm oil mills in Thailand.

    Science.gov (United States)

    Suttayakul, Phetrada; H-Kittikun, Aran; Suksaroj, Chaisri; Mungkalasiri, Jitti; Wisansuwannakorn, Ruthairat; Musikavong, Charongpun

    2016-01-15

    The water footprint (WF) of fresh fruit bunches (FFBs) from oil palm plantations and crude palm oil (CPO) from palm oil mills in southern and eastern Thailand were determined over 25 years. Climatic conditions, soil characteristics, and the characteristics of oil palm growth were considered. The WF of FFBs was 1063 m(3)/ton (t) on average. Green, blue, and grey waters comprised of 68, 18, and 14% of total WF, respectively. The oil palm plantations in Thailand required smaller amounts of indirect blue water. The average WF for producing a ton of CPO of seven mills was 5083 m(3). Most of the waters used in the mills originated from indirect green, blue and grey waters from the plantations. The direct blue water used in the mills had less impact on the total WF, lower than 1% of the total WF. Average percentages of green, blue, and grey waters of 69, 16, and 15% of total WF were determined for the mills, respectively. The water deprivation of the FFBs and CPO ranged from 0.73-12.9 and 3.44-58.3 m(3)H2Oeq/t, respectively. In 2013, the CPO production in Thailand including green, blue, and grey waters from plantation and blue water from mills required 11,343 million m(3) water. If the oil palm variety Suratthani 7 is used in the plantation, it would increase the yield from 15.2 to 22.8 t FFBs/ha-year and decrease the WF to 888 m(3)/t FFBs. The average value of the oil extraction rate (OER) of mills was 18.1%. With an increase in the OER of 1%, a reduction of the WF of 250 m(3)/t CPO or 5.1% of total WF could be obtained. PMID:26520275

  3. The radioactive elements of oil and of derrick water in several oil mines of Apsheron peninsula

    International Nuclear Information System (INIS)

    It is known that oil extracted from deep strata of the ground directly contacts with minerals and ores and it is a carrier of several radioactive elements. Radio-ecological investigations conducted in several oil mines of Apsheron peninsula, show that there are radioactive elements, such as uranium, radium, thorium and radon in the structures of oil and derrick water. Amount of these radioactive elements is changeable depending on the chemical structures of oil and derrick water. So, amount of uranium in the structure of naften (aromatic oil) is more, than in the structure of oil with paraffin. Besides, migration of uranium from strata water to oil leads to increasing the amount of uranium. Radio spectro metrical analysis of oil and derrick water extracted from the territories of Surahany, Sabunchi, Balahany, Qaradah, Bayil and Romana located in the Apsheron peninsula was conducted by us. Amount of the radioactive elements in specimens of oil are distributed in the following way: Uranium - 2.3 - 13.6 ·10-7 g/kg; Radium - 1.2 - 3.5 ·10-12 g/kg; Thorium - 8.2 - 17.0 ·10-7 g/kg. Amount of the radioactive elements in derrick water are: Uranium - 1.2 - 4.5 ·10-6 g/l; Radium - 2.5 - 3.2· 10-11 g/l; Thorium - 1.1 - 3.1 ·10-7 g/l.. There are ponds around the derricks, which are source of radioactive pollution in most of the oil mines. It was found that level of radiation is about 150-500 micro R/h in these ponds and near of the derricks

  4. Hydrodynamic characteristics of water-jet pump for removing oils

    International Nuclear Information System (INIS)

    The hydrodynamic characteristics of a bend-type of water-jet pump for removing oils and solid materials with water are discussed theoretically and experimentally. This type of water-jet pump is composed of a bend and a water-jet nozzle. The water-jet nozzle is connected directly to the bend at the outside of bend. The transportation characteristics are derived theoretically using the continuity, momentum and energy equations. The experiments for 45o bend-type of water-jet pump are carried out. The solid spheres with the specific gravity about 1.00 were used. The theoretically-predicted characteristics for removing solid materials agree well with the experimental results. The experimental results for transporting various heavy oils are discussed comparing with the theoretical results. The flows for transporting various heavy oils are visualized. (author)

  5. Novel concepts for the containment of oil in flowing water

    International Nuclear Information System (INIS)

    Both a laboratory study of the hydrodynamic properties of variously shaped objects and a meso-scale flume study of several containment concepts have been undertaken to determine whether these can be used to contain oil in fast flowing water. The laboratory study showed that stable vortices are difficult to generate and that spilled oil is not easily trapped by them. Only two of the structures studied showed some promise of trapping oil in fast moving water: a partially submerged barrier with fins placed at an angle across the flume and a horizontal hydrofoil placed across the channel near the surface. Several filter materials were tested in an outdoor flowing channel with both floating and neutrally buoyant oil. Although some of these materials trapped and held heavy oil, they were not a significant improvement over nylon fishing nets which had been tested previously. The filter materials would not hold a medium gravity oil. A hydrofoil device which generated a horizontal eddy successfully trapped and held surface oil at water speeds up to 0.35 m/s. Neutrally buoyant oil was often caught by the eddy but was never held for more than 1-2 minutes. 9 refs., 5 figs., 3 tabs

  6. The containment of heavy oil in flowing water

    International Nuclear Information System (INIS)

    Viscous bitumen from Alberta oil sand deposits is diluted with a gas condensate before pipeline transport. Because of its unique properties, the diluent/bitumen mix (dilbit) may require novel containment and recovery techniques in the case of an accidental spill. Preliminary experiments were conducted in a large flowing water channel to determine whether several conventional containment devices could be utilized to trap weathered and emulsified dilbit and bitumen. These devices included a conventional river boom, a nylon fine-weave net, and a low-pressure bubble barrier. The behavior of the oil samples during boom failure was noted in order to understand more completely the mechanisms of failure. The river boom failed to hold viscous floating oil by vortex shedding at flows of under 0.25 m/s. A fine mesh net successfully trapped both floating and mid-channel neutrally buoyant oil but the retention time depends on the oil viscosity. The bubble barrier was not successful in trapping either floating viscous oil or neutrally buoyant oil. At low water velocities, the barrier was able to divert some oils but in an inconsistent manner. The results indicate that conventional barriers need improvement to be effective at higher water velocities and suggest that new concepts in containment should be considered. 9 refs., 3 figs., 2 tabs

  7. Behavior of Malondialdehyde in Oil-in-Water Emulsions.

    Science.gov (United States)

    Vandemoortele, Angelique; De Meulenaer, Bruno

    2015-06-17

    The impact of temperature, emulsifier, and protein type on the reactivity of malondialdehyde in oil-in-water emulsions was elucidated. Malondialdehyde recoveries in aqueous buffer, protein solutions, saturated oil, and fully hydrogenated coconut oil-in-water emulsions stabilized by whey proteins or Tween 20 at 4 or 40 °C were compared. At both temperatures, the reactivity of malondialdehyde in aqueous buffer was the same. In protein solutions, malondialdehyde concentrations were reduced further and its decrease was protein-dependent. Similar trends were found for emulsions. Surprisingly, malondialdehyde was very reactive in saturated oil because only 15% was recovered at 40 °C. However, the degradation in oil proved to be strongly temperature-dependent; at 4 °C, losses amounted to only 8%. This study revealed that malondialdehyde is a very reactive molecule, both in the presence and absence of proteins. Its use as a general oxidation marker should therefore be considered with care. PMID:26016781

  8. Optimizing Injection Molding Processing Parameters for Enhanced Mechanical Performance of Oil Palm Empty Fruit Bunch High Density Polyethylene Composites

    Directory of Open Access Journals (Sweden)

    M.S. Ramli

    2011-01-01

    Full Text Available This study reports on the influence of injection molding processing parameters on mechanical properties of oil palm Empty Fruit Bunch (EFB filled High Density Poly Ethylene (HDPE. The biocomposite pellets were first prepared using an extruder with 20 wt% EFB content before being processed in an injection-molding machine for specimen fabrication. Two processing parameters were varied systematically and independently during the composite sample fabrication. The holding pressure was increased from 60 to 90 bars while the injection temperature was varied from 150 to 210C. The highest tensile strength of the composites was achieved at 70 bar holding pressure and 150C injection temperature. However, the highest fracture strength was achieved at 80 bars whilst maintaining the injection temperature at 150C. Flexural strength was shown to be unaffected by the varying pressure. The optimal processing parameters for highest mechanical performance were found to be at holding pressure of 80 bars and injection tempera

  9. Supercritical fluid extraction of Moroccan (Timahdit) oil shale with water

    Energy Technology Data Exchange (ETDEWEB)

    El Harfi, K.; Mokhlisse, A.; Ben Chanaa, M. [Laboratoire de Chimie Physique, Universite Caddi Ayyad, Faculte des Sciences de Marrakech, Semlalia (Morocco); Bennouna, C. [Labratoire de Chimie Organique Appliquee, Universite Caddi Ayyad, Faculte des Sciences de Marrakech, Semlalia (Morocco); Lemee, L.; Joffre, J.; Ambles, A. [Laboratoire Chimie XII, URA CNRS 1468, 40 Avenue du Recteur-Pineau, 86022 Poitiers (France)

    1999-06-01

    Timahdit oil shale was subjected to supercritical water extraction. The results reveal significant difference in oil yields and composition when compared with those obtained from conventional pyrolysis. In addition, the effect of temperature and residence time on the supercritical water extraction of oil was investigated in a set of three experiments. The results revealed that the yield and the fraction of paraffins and aromatics increase while the percentage of asphaltenes decreases as the temperature is increased from 380 to 400C. The residence time was found to affect the yield and the fraction of asphaltenes and polar compounds

  10. An Analytical Model for Simulating Heavy-Oil Recovery by Cyclic Steam Injection Using Horizontal Wells, SUPRI TR-118

    Energy Technology Data Exchange (ETDEWEB)

    Diwan, Utpal; Kovscek, Anthony R.

    1999-08-09

    In this investigation, existing analytical models for cyclic steam injection and oil recovery are reviewed and a new model is proposed that is applicable to horizontal wells. A new flow equation is developed for oil production during cyclic steaming of horizontal wells. The model accounts for the gravity-drainage of oil along the steam-oil interface and through the steam zone. Oil viscosity, effective permeability, geometry of the heated zone, porosity, mobile oil saturation, and thermal diffusivity of the reservoir influence the flow rate of oil in the model. The change in reservoir temperature with time is also modeled, and it results in the expected decline in oil production rate during the production cycle as the reservoir cools. Wherever appropriate, correlations and incorporated to minimize data requirements. A limited comparison to numerical simulation results agrees well, indicating that essential physics are successfully captured. Cyclic steaming appears to be a systematic met hod for heating a cold reservoir provided that a relatively uniform distribution of steam is obtained along the horizontal well during injection. A sensitivity analysis shows that the process is robust over the range of expected physical parameters.

  11. Sodium-water reaction acoustic noise for liquid phase injections. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Callis, K.R.; Greene, D.A.; Malovrh, J.W.

    1981-02-01

    Data on liquid and steam injections into sodium were recorded during a series of wastage experiments. These data are analyzed for acoustic power and spectral characteristics, expanding the data base up to 10 gm/sec injection rates from the earlier 0.5 gms/sec. No significant difference in acoustic power was measured between low temperature steam and liquid injections for the same mass flowrates. The bandwidth for steam injections is broader than for liquid injections. Reaction product deposition during water injections appears to cause a decrease in signal strength with test duration.

  12. Flow-injection chemiluminescence determination of formaldehyde in water.

    Science.gov (United States)

    Motyka, Kamil; Onjia, Antonije; Mikuska, Pavel; Vecera, Zbynek

    2007-02-15

    A modification of the Trautz-Schorigin reaction into a flow-injection analysis configuration is described. Different approaches were used at the optimization of chemiluminescence determination of formaldehyde in water based on the reaction of formaldehyde, gallic acid and hydrogen peroxide in an alkaline solution. Detection system with a 218microl chemiluminescence cell was optimized by both a one-variable-at-a-time method, and a modified simplex method. A calibration graph is linear in the concentration range 4x10(-8) to 1x10(-5)M HCHO. The detection limit of formaldehyde for a signal-to-noise ratio of 3 is 4x10(-8)M. The relative standard deviations for 15 repeated measurements of 1x10(-6) and 5x10(-6)mol l(-1) HCHO are 4.32 and 3.33%, respectively. The analysis time is 1.5min. The method was applied to the determination of formaldehyde in urban rainwater. A comparison of results found by proposed method with those obtained by fluorimetric reference method provided a good agreement. PMID:19071392

  13. Optimizing Injection Molding Processing Parameters for Enhanced Mechanical Performance of Oil Palm Empty Fruit Bunch High Density Polyethylene Composites

    OpenAIRE

    M.S. Ramli; M.R. Abdul Latif; P.S.M. Megat-Yusoff

    2011-01-01

    This study reports on the influence of injection molding processing parameters on mechanical properties of oil palm Empty Fruit Bunch (EFB) filled High Density Poly Ethylene (HDPE). The biocomposite pellets were first prepared using an extruder with 20 wt% EFB content before being processed in an injection-molding machine for specimen fabrication. Two processing parameters were varied systematically and independently during the composite sample fabrication. The holding pressure was increased ...

  14. A review of knowledge on water-in-oil emulsions

    International Nuclear Information System (INIS)

    This paper outlined the basics of water-in-oil emulsification which is often considered to be the second most important behavioural characteristic of oil after evaporation. In the event of oil spills on water, water in-oil emulsions are formed by the emulsification process which changes the physical properties and characteristics of the oil. Stable emulsions contain from 60 to 80 per cent water, thereby expanding the spilled material from 2 to 5 times the original volume. The density of the resulting emulsion is also greater than the starting density and the viscosity of the oil generally increases. The liquid product is thus transformed into a heavy, semi-solid material. As a result of emulsification, evaporation of oil spills slows by orders-of-magnitude, spreading slows and the oil rides lower in the water column. Emulsification also affects cleanup response because emulsions are hard to treat, burn or recover mechanically. This paper also reviewed dielectric and rheological methods that study the formation mechanisms and stability of emulsions made from different types of oils. Other standard chemical techniques such as nuclear magnetic resonance (NMR), chemical analysis techniques, near-infrared spectroscopy, microscopy, interfacial pressure and interfacial tension have also been applied to emulsions. After 15 years of studies, data on water-in-oil emulsions have shown good correlation between laboratory, test tank and field scale studies. Reported test results on about 400 oils and petroleum products have shown that emulsions can be grouped into 3 categories, each with distinct physical properties. These include stable, unstable and meso-stable emulsions. An examination of the asphaltene and resin content has shown that the stability of emulsions can be predicted by the asphaltene content and its viscosity. Emulsion formation was found to occur at a threshold energy, defined in terms of relative sea state. A recently proposed numerical modeling scheme based on empirical data and corresponding physical knowledge of emulsion formation has been proposed. A class index of unstable or entrained water-in-oil state and a meso-stable or stable emulsion was determined based on density, viscosity, saturate, asphaltene and resin content. 133 refs., 2 tabs., 12 figs

  15. In-situ burning of water-in-oil emulsions

    International Nuclear Information System (INIS)

    The report describes an experimental program on the in-situ burning of emulsions. This study is the third in a series of experimental studies on the in-situ burning of water-in-oil emulsions. The main objective of this study was to improve the capabilities and reduce the limitations of existing systems for igniting water-in-oil emulsions. A secondary objective was to study the feasibility of ferrocene as a soot reducing agent for oils and emulsions, and was incorporated into the experimental program. The experimental work for this research project was accomplished by conducting small-scale laboratory burns and heat transfer experiments, and by conducting meso-scale field experiments under Arctic springtime conditions. Experiments conducted to study emulsion burning processes revealed that: in order to ignite and burn the emulsion, water is first removed from the emulsion and released mainly through evaporation and that the temperature of the water-in-oil emulsions does not exceed approximately 100oC. Improvements were made to an existing igniter technology. It was found that the addition of emulsion breakers to gelled crude oil can increase the effectiveness of this igniter when dealing with emulsions with water contents greater than 50%. Experiments with ferrocene show this compound to be an effective soot inhibitor when mixed with oil or emulsions at concentrations as low as 0.13 wt%. Ferrocene may have some effect on the burning process but further testing is required to conform this. 38 refs., 86 figs., 27 tabs

  16. Surfactant controlled switching of water-in-oil wetting behaviour of porous silica films grown at oil-water interfaces

    Indian Academy of Sciences (India)

    Manish M Kulkarni; Rajdip Bandyopadhyaya; Ashutosh Sharma

    2008-11-01

    Selective permeation of oil and water across a porous medium, as in oil recovery operations, depends on the preferential wetting properties of the porous medium. We show a profound influence of surfactants in wetting of porous media and thus demonstrate a new route for the control of water-in-oil wetting of porous substrates by changing the concentration of surfactants in an aqueous sub-phase below the substrate. This strategy is employed to engineer partial reversible wetting transitions on a porous silica film. The film itself is grown and stabilized on a flat, macroscopic interface between an oil phase and an aqueous sub-phase. On increasing the surfactant (CTAB) concentration in the sub-phase, contact angle of a water drop (placed on the oil side of the film) changes from 140° to 16° in 25 min by diffusion of the surfactant across the porous film. On further replacement of the sub-phase with pure water, diffusion of the surfactant from the water drop back to the sub-phase was slower, increasing the contact angle in the process from 16° to 90° in 2 h. Wettability control by a cationic surfactant (CTAB) was found to be much faster (6 deg/min) than that offered by an anionic surfactant, SDS (0.05 deg/min). Switching of the surface wettability due to the surfactant diffusion may have implications in oil-water separation, chemical bed reactors and microfluidic devices.

  17. Rotor clearance design and evaluation for an oil injected twin screw compressor

    Science.gov (United States)

    Buckney, D.; Kovacevic, A.; Stosic, N.

    2015-08-01

    Designing twin screw compressors to safely operate at higher than normal temperatures poses a challenge as the compressor must accommodate larger peak thermal distortions while ideally maintaining efficiency at nominal operating conditions. This paper will present a case study of an oil injected compressor tested at elevated discharge temperatures with original and revised clearances. The local thermal distortions occurring within the compressor during operation were estimated using a procedure developed by the authors - thermodynamic results from a chamber model were used to approximate component temperature distributions that are then used to predict possible thermal distortions and the resulting affect on clearance gaps. The original and revised clearance designs are evaluated and performance penalties incurred due to the modifications are discussed.

  18. Determination of oil/water and octanol/water distribution coefficients from aqueous solutions from four fossil fuels. [MS thesis; in oil-water and octanol-water

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, B.L.

    1984-07-01

    Liquid fossil fuels, both petroleum and synthetically derived oils, are exceedingly complex mixtures of thousands of components. The effect of many of these energy-related components on the environment is largely unknown. Octanol/water distribution coefficients relate both to toxicity and to the bioaccumulation potential of chemical components. Use of these partition data in conjunction with component concentrations in the oils in environmental models provides important information on the fate of fossil fuel components when released to the environment. Octanol/water distribution data are not available for many energy-related organic compounds, and those data that are available have been determined for individual components in simple, one-component octanol/water equilibrium mixtures. In this study, methods for determining many octanol/water distribution coefficients from aqueous extracts of oil products were developed. Sample aqueous mixtures were made by equilibrating liquid fossil fuels with distilled water. This approach has the advantage of detecting interactions between components of interest and other sample components. Compound types studied included phenols, nitrogen bases, hydrocarbons, sulfur heterocyclic compounds, and carboxylic acids. Octanol/water distribution coefficients that were determined in this study ranged from 9.12 for aniline to 67,600 for 1,2-dimethylnaphthalene. Within a compound type, distribution coefficients increased logarithmically with increasing alkyl substitution and molecular weight. Additionally, oil/water distribution data were determined for oil components. These data are useful in predicting maximum environmental concentrations in water columns. 96 references, 26 figures, and 40 tables.

  19. An Oil Fate Model for Shallow-Waters

    Directory of Open Access Journals (Sweden)

    Juan M. Restrepo

    2015-12-01

    Full Text Available We introduce a model for the dynamics of oil in suspension, appropriate for shallow waters, including the nearshore environment. This model is capable of oil mass conservation and does so by evolving the oil on the sea surface as well as the oil in the subsurface. The shallower portion of the continental shelf poses compounding unique modeling challenges. Many of these relate to the complex nature of advection and dispersion of oil in an environment in which wind, waves, as well as currents all play a role, as does the complex bathymetry and the nearshore geography. In this study we present an overview of the model as well as derive the most fundamental of processes, namely, the shallow water advectiion and dispersion processes. With regard to this basic transport, we superate several fundamental challenges associated with creating a transport model for oil and other buoyant pollutants, capable of capturing the dynamics at the large spatio-temporal scales demanded by environmental and hazard mitigation studies. Some of the strategies are related to dimension reduction and upscaling, and leave discussion of these to companion papers. Here we focus on wave-filtering, ensemble and depth-averaging. Integral to the model is the proposal of an ocean dynamics model that is consistent with the transport. This ocean dynamics model is detailed here. The ocean/oil transport model is applied to a couple of physically-inspired oil-spill problems in demonstrate its specialized capabilities.

  20. Policy Analysis of Water Availability and Use Issues for Domestic Oil Shale and Oil Sands Development

    Energy Technology Data Exchange (ETDEWEB)

    Ruple, John; Keiter, Robert

    2010-12-31

    Oil shale and oil sands resources located within the intermountain west represent a vast, and as of yet, commercially untapped source of energy. Development will require water, and demand for scarce water resources stands at the front of a long list of barriers to commercialization. Water requirements and the consequences of commercial development will depend on the number, size, and location of facilities, as well as the technologies employed to develop these unconventional fuels. While the details remain unclear, the implication is not – unconventional fuel development will increase demand for water in an arid region where demand for water often exceeds supply. Water demands in excess of supplies have long been the norm in the west, and for more than a century water has been apportioned on a first-come, first-served basis. Unconventional fuel developers who have not already secured water rights stand at the back of a long line and will need to obtain water from willing water purveyors. However, uncertainty regarding the nature and extent of some senior water claims combine with indeterminate interstate river management to cast a cloud over water resource allocation and management. Quantitative and qualitative water requirements associated with Endangered Species protection also stand as barriers to significant water development, and complex water quality regulations will apply to unconventional fuel development. Legal and political decisions can give shape to an indeterminate landscape. Settlement of Northern Ute reserved rights claims would help clarify the worth of existing water rights and viability of alternative sources of supply. Interstate apportionment of the White River would go a long way towards resolving water availability in downstream Utah. And energy policy clarification will help determine the role oil shale and oil sands will play in our nation’s future.

  1. Oil capture from a water surface by a falling sphere

    Science.gov (United States)

    Smolka, Linda; McLaughlin, Clare; Witelski, Thomas

    2015-11-01

    When a spherical particle is dropped from rest into an oil lens that floats on top of a water surface, a portion of the oil adheres to the sphere. Once the sphere comes to rest at the subsurface, the oil forms a pendant drop that remains attached in equilibrium to the sphere effectively removing oil from the water surface. Best fit solutions of the Laplace equation to experimental profiles are used to investigate the parameter dependence of the radius of curvature and the filling and contact angles at the three-phase contact line of the pendant drop for spheres with different wetting properties, densities and radii. The volume of oil captured by a sphere increases with a sphere's mass and diameter. However, lighter and smaller spheres capture more oil relative to their own volume than do heavier and larger spheres (scaling with the sphere mass ~M - 0 . 544) and are thus more efficient at removing oil from a water surface. The authors wish to acknowledge the support of the National Science Foundation Grant Nos. DMS-0707755 and DMS-0968252.

  2. The Use of Demulsifiers for Separating Water from Anthracene Oil

    Directory of Open Access Journals (Sweden)

    Zečević, N.

    2008-03-01

    Full Text Available The main feedstocks for the production of oil-furnace carbon black are different kinds of liquid hydrocarbons. The quality and utilization of oil-furnace carbon black mainly depends on the type of liquid hydrocarbons contained in the oil feedstocks.In practice, both carbochemical and petrochemical oils are used as feedstock sources. Carbochemical oils are fractions obtained during coal tar distillation. Anthracene oil is one of these oils. Depending on the conditions of distillation, coal tars contain up to w = 18·10 –2 highly aromatic fractions, which can be used as carbon black feedstock. The sulphur fraction of these oils can vary between w = 0.5 and 0.7·10 –2, depending on the origin of the coal. The availability of carbochemical oils obtained from coal tar is largely dependent on the production of coke used in the manufacture of steel. The quantities available today are insufficient to satisfy the demand for carbon black feedstock. In addition, in highly industrialized countries, production of carbochemicaloils is declining.Although, carbochemical oils are preferred in terms of efficiency, petrochemical oils are more important in terms of quantities available, particularly in the production of furnace blacks. These are residual oils resulting either from catalytic cracking processes or from the production of olefins in steam crackers using naphtha or gas oil as raw material. Nevertheless, the choice of carbon black feedstock is not determined merely by price and efficiency, but also by specific quality criteria. However, due to their origin, the feedstocks are mixtures of a large number of individual substances and are, therefore, not easy to characterize. More than 200 different components have been recorded in the range detectable by gas chromatography.Some important components of carbon black feedstock are listed in table 1.1 An important parameter for the evaluation of carbon black feedstock is density, since it increases with increasing aromaticity. It is also used for determination of the Bureau of Mines Correlation Index (BMCI,2 which is obtained either from density and midboiling point, or from density andviscosity for those feedstocks which cannot be distilled completely. This index is used by the carbon black industry as an important criteria for feedstock evaluation.The sulphur fraction in feedstocks should not exceed w = 2.5 ·10–2, because a higher content greatly affects the quality of carbon black, pollutes the atmosphere, and accelerates corrosion of the facility. The maximum sulphur content in the typical hydrocarbon feedstock is w = 1.2 · 10–2.3. A very important factor of hydrocarbon feedstock is the fraction of alkaline earth metals, especially sodium and potassium. The maximum sodium fraction may be w = 20·10–6, while the maximum potassium fraction is w = 2·10 –6.The maximum fraction of asphalthenes is w = 15 ·10–2. Asphalthenes, determined as pentane-insoluble matter, provide indications concerning the possibility of grit formation. Another very important factor is the temperature range of distillation, which should be low enough, because the hydrocarbon feedstock must evaporize before entering the hot region of the reactor. The viscosity, the pour point, and for safety reasons, the flash point determines the handling properties and storage conditions of the feedstock.In addition, the water fraction in the hydrocarbon feedstock is one of the most important factors. The water fraction in hydrocarbon feedstock influences the handling properties of the same. The maximum water fraction in hydrocarbon feedstock may be w = 2.0·10–2, and desirably below w = 1.0·10–2. A higher water fraction represent a considerable impact on the financial construction. Also, it is very difficult to manipulate such feedstock, especially unloading, and in the production of oil-furnace carbon black. Namely, every water fraction higher than w = 2.0·10–2 in the hydrocarbon feedstock, causes the phenomenon of cavitations.In the oil-furnace carbon black plant of Petrokemija d. d. Kutina, the storage tank TK48003, was filled with 800 tons of anthracene oil. The average water fraction in the tank was w = 10·10 –2. It was impossible to manipulate in the process of production, because the mentioned water fraction caused the cavitations effect. Therefore, it was necessary to decrease the water fraction to below w = 2.0·10 –2, which will be satisfactory for production.As the water and anthracene oil formed a homogeneous emulsion (similar density at all temperatures, it was impossible to manage decanting the water from the anthracene oil. Additionally, it was impossible to manage evaporation of the water from the oil by heating the whole emulsion,because the flash point of anthracene oil is in the temperature range of T = 100 to 105 °C. Distillation of the whole emulsion of 800 tons was also impossible, because there was no distillation column adequate for separating the water from the anthracene oil. Thus, the use of different demulsifiers proved as a potential solution for separating the homogeneous mixture of anthracene oil and water. Namely, demulsifiers are a special type of high molecular tensides and organic solvents, which serve for separation the water from different hydrocarbons.The most common use is in emulsions with “lighter” hydrocarbons, especially when the density is not above r=0.850 g cm–3. Since the density of anthracene oil ranges from r=1.05 to 1.09 g cm–3, it was necessary to customise the conditions of application, and to choose the mostadequate demulsifier for the separation of water from anthracene oil. Therefore, we experimented with different kinds of demulsifiers in cooperation with the companies TEH PROJEKT KEMO d. o. o. and KEM PROJEKT d. o. o. In laboratory conditions, we tested five different demulsifiers with different concentrations, and their efficiency in separating the water from anthracene oil. We then chose the most adequate demulsifier, which was applied on an industrial level.

  3. Oil palm plantation effects on water quality in Kalimantan, Indonesia

    Science.gov (United States)

    Carlson, K. M.; Curran, L. M.

    2011-12-01

    Global demand for palm oil has stimulated a 7-fold increase in oil palm (Elaeis guineensis) plantation area in Indonesia since 1990. Expansion will continue as Indonesia plans to double current production by 2020. Oil palm fertilizers, effluent from oil palm mills, and erosion from land clearing and roads threaten river water quality near plantations. These rivers provide essential ecosystem services including water for drinking, cooking, and washing. Robust empirical measurements of plantation expansion impacts on water resources are necessary to discern the effects of agribusiness on local livelihoods and ecosystems. In Ketapang District, West Kalimantan, Indonesian Borneo, we evaluated the effects of land cover change on water quality by assessing water chemistry in streams draining four end-member watersheds ( ~600-1900 ha watershed-1): Logged forest, mixed agro-forest dominated by rubber and upland rice fallows, young oil palm forest (0-5 years), and old oil palm forest (10-15 years). To assess land cover change, we used CLASLite software to derive fractional cover from a time series (1989-2008) of Landsat data. Nearest neighbor classification and post-classification change detection yielded classes including primary forest, logged forest, secondary forest regrowth, smallholder agriculture, and oil palm. Stream water quality (temperature, dissolved oxygen, turbidity, optical chlorphyll, and pH) and quantity (discharge) were quantified with the YSI 6600-V2 sonde. The sonde was deployed in each stream for month-long intervals 2-3 times from 2009-2010. Such extended deployment captures episodic events such as intense storms and allows examination of interdiel dynamics by sampling continuously and at high frequency, every 10 minutes. We find that across the Ketapang District study region (~12,000 km2), oil palm has cleared mostly forests (49%) and agroforests (39%). What are the impacts of such land cover changes on water quality? Compared to forests and agroforests, streams draining oil palm show greater biological activity, as indicated by elevated pH and reduced dissolved oxygen levels. Moreover, turbidity is elevated in young oil palm plantations watersheds compared to forest, agroforest, and old oil palm land covers. We discuss the implications of these findings for communities and ecosystems.

  4. Selection of potential cold water marine species for testing of oil dispersants, and chemically dispersed oil

    International Nuclear Information System (INIS)

    A study regarding marine species for toxicity testing for Alaska conditions was presented and the potential adverse impacts of a large marine oil spill in cold water were discussed with the objective to determine if the spill should be treated by the use of oil dispersants. Without dispersion, the oil can pollute marine epifauna and can deposit on beaches. The decision to apply dispersants to a marine oil spill requires knowledge of the toxicity of the undispersed oil to pelagic marine life occurring via natural dispersion as opposed to the toxicity of the oil-dispersant mixture. Most standard toxicity tests apply to warm water species. This paper discussed the need to have a standard test species relevant to Alaska waters for toxicity testing. In this study, toxicity testing was done according to the methods of the Chemical Response to Oil Spills : Ecological Effects Research Forum (CROSERF). The testing included capturing adult species in the winter and holding them until larval hatching. Toxicity testing was completed in a narrow time frame before hatching ceased. Many chemical samples were tested. Topsmelt, urchins, shellfish, mysids, copepods, pink salmon fry, and tidepool sculpin were considered by the author to be the most useful for certain types of toxicity testing. 29 refs

  5. Selection of potential cold water marine species for testing of oil dispersants, and chemically dispersed oil

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, R.A. [Alaska Univ., Fairbanks, AK (United States). Dept. of Civil and Environmental Engineering

    2000-07-01

    A study regarding marine species for toxicity testing for Alaska conditions was presented and the potential adverse impacts of a large marine oil spill in cold water were discussed with the objective to determine if the spill should be treated by the use of oil dispersants. Without dispersion, the oil can pollute marine epifauna and can deposit on beaches. The decision to apply dispersants to a marine oil spill requires knowledge of the toxicity of the undispersed oil to pelagic marine life occurring via natural dispersion as opposed to the toxicity of the oil-dispersant mixture. Most standard toxicity tests apply to warm water species. This paper discussed the need to have a standard test species relevant to Alaska waters for toxicity testing. In this study, toxicity testing was done according to the methods of the Chemical Response to Oil Spills : Ecological Effects Research Forum (CROSERF). The testing included capturing adult species in the winter and holding them until larval hatching. Toxicity testing was completed in a narrow time frame before hatching ceased. Many chemical samples were tested. Topsmelt, urchins, shellfish, mysids, copepods, pink salmon fry, and tidepool sculpin were considered by the author to be the most useful for certain types of toxicity testing. 29 refs.

  6. Behavior of a fuel oil during the combustion cycle of a direct injection diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Barbella, R.; Bertoli, C.; Ciajolo, A.; D' Anna, A. (CNR, Istituto Ricerche Combustione, Istituto Motori, 80125 Napoli (IT))

    1990-11-01

    In-cylinder sampling and analysis of particulate (soot and condensed hydrocarbon species), light hydrocarbons, and gaseous inorganic species has been performed at two positions of a single cylinder direct injection diesel engine by means of a fast sampling valve, in order to follow the behavior of a diesel oil during the engine cycle. It has been shown that the combustion process in a diesel engine proceeds through a preignition phase of heating and vaporization of the injected fuel, which causes the transformation of the fuel components in light gaseous products and oxygenated compounds that rapidly disappear at the ignition. After ignition, the formation of soot has been found, particularly in the high-temperature position, but the formation of soot precursors, i.e., acetylene and combustion-formed polycyclic aromatic hydrocarbons (PAHs), was not in evidence. In whichever phase of the combustion cycle the PAHs are composed of unburned fuel PAHs but in the low-temperature position the PAH percentage increases, as opposed to the high-temperature position, and this can be due to the high resistance of the fuel PAHs to complete oxidation in this temperature condition. At the same time the appearance of high-molecular-weight material of oxygenated character has been found at the low-temperature position.

  7. Factors in the Design of Centrifugal Type Injection Valves for Oil Engines

    Science.gov (United States)

    Joachim, W F; Beardsley, E G

    1928-01-01

    This research was undertaken in connection with a general study of the application of the fuel injection engine to aircraft. The purpose of the investigation was to determine the effect of four important factors in the design of a centrifugal type automatic injection valve on the penetration, general shape, and distribution of oil sprays. The general method employed was to record the development of single sprays by means of special high-speed photographic apparatus capable of taking 25 consecutive pictures of the moving spray at a rate of 4,000 per second. Investigations were made concerning the effects on spray characteristics, of the helix angle of helical grooves, the ratio of the cross-sectional area of the orifice to that of the grooves, the ratio of orifice length to diameter, and the position of the seat. Maximum spray penetration was obtained with a ratio of orifice length to diameter of about 1.5. Slightly greater penetration was obtained with the seat directly before the orifice.

  8. Cleaning of Oil Fouling with Water Enabled by Zwitterionic Polyelectrolyte Coatings: Overcoming the Imperative Challenge of Oil-Water Separation Membranes.

    Science.gov (United States)

    He, Ke; Duan, Haoran; Chen, George Y; Liu, Xiaokong; Yang, Wensheng; Wang, Dayang

    2015-09-22

    Herein we report a self-cleaning coating derived from zwitterionic poly(2-methacryloyloxylethyl phosphorylcholine) (PMPC) brushes grafted on a solid substrate. The PMPC surface not only exhibits complete oil repellency in a water-wetted state (i.e., underwater superoleophobicity), but also allows effective cleaning of oil fouled on dry surfaces by water alone. The PMPC surface was compared with typical underwater superoleophobic surfaces realized with the aid of surface roughening by applying hydrophilic nanostructures and those realized by applying smooth hydrophilic polyelectrolyte multilayers. We show that underwater superoleophobicity of a surface is not sufficient to enable water to clean up oil fouling on a dry surface, because the latter circumstance demands the surface to be able to strongly bond water not only in its pristine state but also in an oil-wetted state. The PMPC surface is unique with its described self-cleaning performance because the zwitterionic phosphorylcholine groups exhibit exceptional binding affinity to water even when they are already wetted by oil. Further, we show that applying this PMPC coating onto steel meshes produces oil-water separation membranes that are resilient to oil contamination with simply water rinsing. Consequently, we provide an effective solution to the oil contamination issue on the oil-water separation membranes, which is an imperative challenge in this field. Thanks to the self-cleaning effect of the PMPC surface, PMPC-coated steel meshes can not only separate oil from oil-water mixtures in a water-wetted state, but also can lift oil out from oil-water mixtures even in a dry state, which is a very promising technology for practical oil-spill remediation. In contrast, we show that oil contamination on conventional hydrophilic oil-water separation membranes would permanently induce the loss of oil-water separation function, and thus they have to be always used in a completely water-wetted state, which significantly restricts their application in practice. PMID:26260326

  9. Subcritical Water Extraction of Monosaccharides from Oil Palm Fronds Hemicelluloses

    International Nuclear Information System (INIS)

    Oil palm plantations in Malaysia generate more than 36 million tones of pruned and felled oil palm fronds (OPF) and are generally considered as waste. The composition of monosaccharide in oil palm frond can be extracted using hydrothermal treatment for useful applications. The objectives of this study were to quantify the yield of monosaccharides at various reaction conditions; temperature 170 to 200 degree Celsius, pressure from 500 psi to 800 psi, reaction time from 5 to 15 min using subcritical water extraction and to determine the composition of oil palm frond hemicelluloses at optimum condition. The monosaccharides composition of oil palm frond hemicelluloses were analysed using High Performance Liquid Chromatography (HPLC). The highest yield of monosaccharides can be extracted from OPF at temperature of 190 degree Celsius, pressure of 600 psi and 10 min of contact time which is xylose the most abundant composition (11.79 %) followed with arabinose (2.82 %), glucose (0.61 %) and mannose (0.66 %). (author)

  10. An environmentally safe water-based alternative to oil muds

    International Nuclear Information System (INIS)

    In this paper, a mechanism describing the onset of bit balling is given. On the basis of this mechanism, a new copolymer/polypropylene glycol (COP/PPG) water-based drilling fluid was developed. The properties of this fluid are described, and field test comparisons are made with water- and oil-based fluids

  11. CHARACTERIZATION OF OIL SHALE MINE WATERS, CENTRAL PICEANCE BASIN, COLORADO

    Science.gov (United States)

    A study was conducted to characterize the oil shale mine waters in the Piceance Basin. The study sites were Federal Prototype Lease Tracts C-a and C-b, located in the central portion of the basin. The objective was to collect water quality data in order to characterize the mine w...

  12. Comparative toxicity of water-accommodated fractions of oil and dispersed oil to marine fish larvae

    International Nuclear Information System (INIS)

    The use of chemical dispersants to clean oil spills on water can increase the risk of toxic effects to early life stages of fish by increasing their exposure to polycyclic aromatic hydrocarbons (PAHs). In this study, water-accommodated fractions of dispersed crude oil were prepared with weathered Mesa light crude oil and filtered seawater with and without Corexit 9500. Newly hatched larvae of mummichog, Fundulus heteroclitus, were exposed to the mixtures to examine the biological effects on the larvae. For an oil loading of 0.2 g/L, the addition of dispersant caused a 2-fold and 7-fold increase in total PAH and high molecular weight PAH with 3 or more benzene rings. A 5-fold increase in ethoxyresorufin-O-deethylase (EROD) activity was observed in larvae exposed to dispersed crude oil water accommodated fractions at a loading of 0.05 g/L. A 4-fold increase was noted when the crude oil water accommodated fractions were loaded at 1 g/L. Both mixtures resulted in reduced body length. The study confirmed that dispersants increase the risk of toxic effects for the early life stage of fish

  13. Subacute fat-embolism-like syndrome following high-volume intramuscular and accidental intravascular injection of mineral oil

    DEFF Research Database (Denmark)

    Hjort, Mathias; Hoegberg, Lotte Christine Groth; Jansen, Tejs; Almind, Merete

    Objective. We present a rare case of subacute fat-embolism-like syndrome (FES-like) following intravascular injection of mineral oil-steroid solution with delayed diagnosis, acute onset of pulmonary distress, and transient clinical deterioration. Case report. A 40-year-old man was admitted...

  14. Engine Company Evaluation of Feasibility of Aircraft Retrofit Water-Injected Turbomachines

    Science.gov (United States)

    Becker, Arthur

    2006-01-01

    This study supports the NASA Glenn Research Center and the U.S. Air Force Research Laboratory in their efforts to evaluate the effect of water injection on aircraft engine performance and emissions. In this study, water is only injected during the takeoff and initial climb phase of a flight. There is no water injection during engine start or ground operations, nor during climb, cruise, descent, or landing. This study determined the maintenance benefit of water injection during takeoff and initial climb and evaluated the feasibility of retrofitting a current production engine, the PW4062 (Pratt & Whitney, East Hartford, CT), with a water injection system. Predicted NO(x) emissions based on a 1:1 water-tofuel ratio are likely to be reduced between 30 to 60 percent in Environmental Protection Agency parameter (EPAP). The maintenance cost benefit for an idealized combustor water injection system installed on a PW4062 engine in a Boeing 747-400ER aircraft (The Boeing Company, Chicago, IL) is computed to be $22 per engine flight hour (EFH). Adding water injection as a retrofit kit would cost up to $375,000 per engine because of the required modifications to the fuel system and addition of the water supply system. There would also be significant nonrecurring costs associated with the development and certification of the system that may drive the system price beyond affordability.

  15. Stability of additive-free water-in-oil emulsions

    International Nuclear Information System (INIS)

    We calculate ion distributions near a planar oil-water interface within nonlinear Poisson-Boltzmann theory, taking into account the Born self-energy of the ions in the two media. For unequal self-energies of cations and anions a spontaneous charge separation is found, such that the water and oil phases become oppositely charged in slabs with a typical thickness of the Debye screening length in the two media. From the analytical solutions, the corresponding interfacial charge density and the contribution to the interfacial tension is derived, together with an estimate for the Yukawa potential between two spherical water droplets in oil. The parameter regime is explored where the plasma coupling parameter exceeds the crystallization threshold, i.e. where the droplets are expected to form crystalline structures due to a strong Yukawa repulsion, as recently observed experimentally. Extensions of the theory that we discuss briefly, include numerical calculations on spherical water droplets in oil, and analytical calculations of the linear PB-equation for a finite oil-water interfacial width.

  16. Effect of Ultrasonication on Stability of Oil in Water Emulsions

    OpenAIRE

    Kiran A Ramisetty; R. Shyamsunder

    2011-01-01

    Effect of ultrasonic waves on stability of oil in water system of light liquid paraffin oil (HLB = 12) as internal phase and tween20 (HLB = 16.7), span20 (HLB = 8.6) as emulsifying agents was studied. A comparison was made to determine the stability of emulsions prepared by mechanical agitation method and ultrasonication technique. Droplet size measurement method was used to determine the stability of emulsions. Physico-chemical parameters like concentration of emulsifying agent, volume fract...

  17. Finding Balance Between Biological Groundwater Treatment and Treated Injection Water

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Mark A.; Nielsen, Kellin R.; Byrnes, Mark E.; Simmons, Sally A.; Morse, John J.; Geiger, James B.; Watkins, Louis E.; McFee, Phillip M.; Martins, K.

    2015-01-14

    At the U.S. Department of Energy’s Hanford Site, CH2M HILL Plateau Remediation Company operates the 200 West Pump and Treat which was engineered to treat radiological and chemical contaminants in groundwater as a result of the site’s former plutonium production years. Fluidized bed bioreactors (FBRs) are used to remove nitrate, metals, and volatile organic compounds. Increasing nitrate concentrations in the treatment plant effluent and the presence of a slimy biomass (a typical microorganism response to stress) in the FBRs triggered an investigation of nutrient levels in the system. Little, if any, micronutrient feed was coming into the bioreactors. Additionally, carbon substrate (used to promote biological growth) was passing through to the injection wells, causing biological fouling of the wells and reduced specific injectivity. Adjustments to the micronutrient feed improved microorganism health, but the micronutrients were being overfed (particularly manganese) plugging the injection wells further. Injection well rehabilitation to restore specific injectivity required repeated treatments to remove the biological fouling and precipitated metal oxides. A combination of sulfamic and citric acids worked well to dissolve metal oxides and sodium hypochlorite effectively removed the biological growth. Intensive surging and development techniques successfully removed clogging material from the injection wells. Ultimately, the investigation and nutrient adjustments took months to restore proper balance to the microbial system and over a year to stabilize injection well capacities. Carefully tracking and managing the FBRs and well performance monitoring are critical to balancing the needs of the treatment system while reducing fouling mechanisms in the injection wells.

  18. Geohydrology and water quality in northern Portage County, Ohio, in relation to deep-well brine injection

    Science.gov (United States)

    Eberts, S.M.

    1991-01-01

    Geohydrology and water quality of the principal freshwater aquifers near oilfield and gasfield brine-injection wells in northern Portage County, Ohio, were evaluated. Since 1975, 13 wells in this part of the Country have been used to dispose of more than 4.5 million barrels of brine by injection into Silurian carbonate and sandstone rocks that generally are greater than 3,500 feet below land surface. More than 3,000 feet of interbedded shales, sandstones, carbonates, and evaporites separate the freshwater aquifers from these brine-injection zones. The shallowest brine-injection zone is greater than 2,200 feet below sea level. Native fluids in the injection zones have dissolved-solids concentrations greater than 125,000 milligrams per liter and are hydraulically isolated from the freshwater aquifers. No known faults or fracture systems are present in northern Portage County, although abandoned oil and gas wells could exist and serve as conduits for migration of injected brine. Pennsylvanian clastic units are freshwater bearing in northern Portage County, and two bedrock aquifers generally are recognized. The shallower bedrock aquifer (Connoquenessing Sandstone Member of the Pottsville Formation) principally consists of sandstone; this aquifer is separated from a deeper sandstone and conglomerate aquifer in the lower part of the Sharon Member (Pottsville Formation) by shale in the upper part of the Sharon Member that acts as a confining unit. The upper sandstone aquifer is the surficial aquifer where overlying glacial deposits are unsaturated in the uplands; glacial deposits comprise the surficial aquifer in buried valleys where the sandstone is absent. These two surficial aquifers are hydraulically connected and act as a single unit. The lower sandstone and conglomerate aquifer is the most areally extensive aquifer within the project area. From November 1987 through August 1988, ground-water levels remained at least 60 feet higher in the upper sandstone aquifer than in the lower sandstone and conglomerate aquifer at a topographically high recharge area. Water levels in the surficial aquifers and the lower sandstone and conglomerate aquifer were nearly the same along the Cuyahoga River. Ground water in the upper sandstone aquifer flows radially from topographically high recharge areas into the glacial deposits in the buried valleys. Much of the ground water in these surficial aquifers discharges into the Cuyahoga River. Most ground water in the lower sandstone and conglomerate aquifer flows toward discharge areas near the Cuyahoga River and Eagle Creek. In June 1988, the Cuyahoga River gained 15.8 cubic feet per second of water from the aquifers between the northern edge of Portage County and State Route 303. Ground water may have discharged into the upstream end of Lake Rockwell but did not discharge into the downstream end of the Lake during most of the period from October 1987 through September 1988. Measurements of the specific conductance of ground water sampled from areas near the 13 brine-injection wells and along the Cuyahoga River indicate no widespread ground-water contamination related to brine injection. Chemical analysis of water from 25 wells indicates that most ground waters are a calcium bicarbonate type. Water analyses show that four wells sampled contain water with chloride concentrations greater than 250 milligrams per liter. Sodium concentrations in water from these four wells ranged from 67 to 190 milligrams per liter. A mixing diagram constructed from bromide and chloride data was used to distinguish between the sources of elevated chloride concentrations in these four wells. Waters from two of the wells have been mixed with oilfield and gasfield brine, and waters from the other two wells have been mixed with a salt-solution brine such as that derived from diluted highway-deicing salts.

  19. Formation and Stability of an Oil in Water Emulsion Containing Lecithin, Xanthan Gum and Sunflower Oil

    OpenAIRE

    Traynor, Mark; Burke, Roisin; Frias, Jesus Maria; Gaston, Edurne; Barry-Ryan, Catherine

    2013-01-01

    The optimisation of the formation and stability of an oil in water emulsion containing lecithin, xanthan gum and sunflower oil was evaluated using Response Surface Methodology (RSM) and nonlinear regression. The main and combined effects of three independent variables; concentration of sunflower oil (10-20% v/v), soy lecithin (1-5% w/v) and xanthan gum (0.01-3% w/v) on the responses were examined. The main objectives of the study were to model and optimise maximum emulsion storage stability a...

  20. [Monitoring Water in Lubricating Oil with Min-Infrared LED].

    Science.gov (United States)

    Yu, Liang-wu; Tian, Hong-xiang; Ming, Ting-feng; Yang, Kun

    2015-06-01

    A method that could be used to quantify the water concentration in ship machinery lubricating oil based on Mid-infrared LED is discussed. A Mid-infrared LED with peak emission wavelength of 2 840 nm and FWHM of 400 nm is used as the light source, the emitting light is partly absorbed by the oil sample, the remaining is received by the infrared detector. The percentage of water is determined according to the absorbance. In the experiment, a optical configuration including the transmission, absorbing and receiving of infrared light is designed, calcium fluoride wafer is used as the window, a hard metal coil with circular section is selected as the washer to get the fixed thickness of oil film accurately, a photoelectric diode with detection wavelength of 2 500-4 800 nm and response time of 10-20 ns is used as the detector of light intensity. Matching with this, a system of signal preamplifier, microcontroller-based data acquisition, storage and communication is developed. Absorbance data of six oil samples with different water mass concentration: 0, 0.062 5%, 0.125%, 0.25%, 0.375% and 0.5% is acquired through experiment. Fitting the data by the method of least squares, a linear equation in terms of absorbance and water concentration is obtained, and the determination coefficient is 0.996. Finally, in order to test the accuracy of this measurement method, using oil sample with water concentration of 0.317 5% to validate the equation, measuring the absorbance by the experimental device, the water content is calculated through the linear equation, the results show that the relative error is 2.7% between the percentage calculated and the real sample, indicating that this method can accurately measure the water concentration in the oil. PMID:26601352

  1. Soil water repellency at old crude oil spill sites

    International Nuclear Information System (INIS)

    This thesis presents the current state of knowledge regarding the cause of soil water repellency and characterizes disaggregated nonwettable surface soils found at old crude oil spill sites. Pollution-induced water repellency generally develops following prolonged exposures of soil to liquid- or vapour-phase petroleum hydrocarbons. The condition varies significantly in terms of severity and persistence. Soil water repellency retards plant growth and disturbs the hydrological balance of ecosystems. Disaggregated water-repellent soils are also very susceptible to dispersal by erosion, posing a threat to the productivity of surrounding soils. The author described the probable causes of soil water repellency under the following three main themes: (1) accumulation of hydrophobic organic material in soil, (2) redistribution and re-organisation of this material in soil, and (3) stabilisation of the hydrophobic organic material. This final process is necessary to ensure persistence of induced water repellency symptoms. Petroleum residues as water-repellent substances in weathered nonwettable oil-contaminated soils were also discussed and a hypothesis about soil water repellency was presented which deals with flexible conformation in organic matter coatings. Processes leading to the development of soil water repellency following crude oil contamination were also described. It was determined that soil water repellency is a function of the packing density and the chain conformation of amphiphilic organic molecules in the outermost layer of soil organic matter coatings. This research suggests that the fractional coverage of alkyl chains on soil particle surfaces determines the degree of water repellency that is displayed by soil. It was shown that prompt remediation of some oil-contaminated plots can effectively prevent the development of soil water repellency. 4 refs., 32 tabs., 22 figs., 5 appendices

  2. Design and operation of laboratory combustion cell for air injection into light oil reservoirs: potential application in Sindh field

    International Nuclear Information System (INIS)

    Historical experimental work on the combustion oil recovery processes consists of both laboratory and field studies. Although field experiments are the ultimate test of any oil recovery process, they are costly, time consuming and difficult to analyze quantitatively. Laboratory CC (Combustion Cell) experiments are cost effective and less time consuming, but are subject to scaling and interpretation challenges. Experimental set up has been developed to understand air injection process for improving oil recovery from light oil reservoirs taking into account the sand pack petro physical and fluid properties. Some important design problems; operational criteria and considerations important to interpretation of results are pointed out. To replicate subsurface reservoir conditions or pressure and temperature, experiments up to 6895 KPa, at non-isothermal conditions with 5 deg. C/min ramp-up are performed on unconsolidated cores with reservoir oil samples. Correlations were obtained for low temperature oxidation rate of oil, the fuel deposition rate and the rate of burning fuel as a fuel concentration. Various parameters such as (sand pack, pressure, oil saturation and flow rate/air flux) were changed to investigate their impact on reaction and chemical nature of the fuel burned. To determine the importance of distribution and pyrolysis on these reactions, he hydrogen-carbon ratio and m-ratio was calculated. For further confirmation Arrhenius graphs were drawn by assuming 1.0 order of reaction with carbon concentration which is also confirmed.This research will contribute to the overall understanding of air injection process; help to determine the most appropriate lOR (Improved Oil Recovery) technique in the development of the tertiary phase of production in light oil reservoirs in Lower Indus Basin (Sindh) fields. (author)

  3. EFFECT OF WATER CONTENT, TEMPERATURE AND AVERAGE DROPLET SIZE ON THE SETTLING VELOCITY OF WATER-IN-OIL EMULSIONS

    OpenAIRE

    W. J. Souza; K. M. C. Santos; Cruz, A A; E. Franceschi; C. Dariva; Santos, A. F.; Santana, C C

    2015-01-01

    AbstractWater-in-oil (W/O) emulsions are complex mixtures generally found in crude oil production in reservoirs and processing equipment. Sedimentation studies of water-oil emulsions enable the analysis of the fluid dynamic behavior concerning separation of this system composed of two immiscible liquids. Gravitational settling was evaluated in this article for a model emulsion system consisting of water and a Brazilian crude oil diluted in a clear mineral oil as organic phase. The effects of ...

  4. [Mineral oil drinking water pollution accident in Slavonski Brod, Croatia].

    Science.gov (United States)

    Medverec Kneevi?, Zvonimira; Nadih, Martina; Josipovi?, Renata; Grgi?, Ivanka; Cvitkovi?, Ante

    2011-12-01

    On 21 September 2008, heavy oil penetrated the drinking water supply in Slavonski Brod, Croatia. The accident was caused by the damage of heat exchange units in hot water supply. The system was polluted until the beginning of November, when the pipeline was treated with BIS O 2700 detergent and rinsed with water. Meanwhile, water samples were taken for chemical analysis using spectrometric and titrimetric methods and for microbiological analysis using membrane filtration and total plate count. Mineral oils were determined with infrared spectroscopy. Of the 192 samples taken for mineral oil analysis, 55 were above the maximally allowed concentration (MAC). Five samples were taken for polycyclic aromatic hydrocarbon (PAH), benzene, toluene, ethylbenzene, and xylene analysis (BTEX), but none was above MAC. Epidemiologists conducted a survey about health symptoms among the residents affected by the accident. Thirty-six complained of symptoms such as diarrhoea, stomach cramps, vomiting, rash, eye burning, chills, and gastric disorders.This is the first reported case of drinking water pollution with mineral oil in Slavonski Brod and the accident has raised a number of issues, starting from poor water supply maintenance to glitches in the management of emergencies such as this. PMID:22202469

  5. Using bio-impedance for rapid screening of water injection into chicken filets

    OpenAIRE

    Simeone, F.C.; Brouwer, S.E.; Ruth, van, S.

    2015-01-01

    Injecting chicken products with water has emerged as a considerably spread method for increasing the weights of the product in order to increase profits. Due to the huge number of products that are retailed daily, it is out of reach to test them with conventional methods for water injection. Here we present results for rapid screening of water amount in chicken filets done by electrical bio-impedance, a technique that is easy to implement, rapid, portable. Electrical impedance depends on stru...

  6. Optimal waste heat recovery in micro gas turbine cycles through liquid water injection

    International Nuclear Information System (INIS)

    Water injection in the compressor exhaust, to recuperate waste heat, is considered a possible route to improve the electric efficiency and overall performance of the micro Gas Turbine turbine (mGT). Many research exists on water injection in mGTs, however a generic study to determine the optimal route for waste heat recovery is still missing. To determine the optimal cycle settings for waste heat recovery through water injection, we have performed simulations using a two-step method. In a first step, the thermodynamic limit for water injection is sought using a black box method. In a second step, the cycle layout is designed by means of composite curve theory. This paper summarizes the results of two scenarios. In the first scenario, the black box is considered as adiabatic and no fixed stack temperature is imposed (thus allowing condensation of the exhaust gasses). One of the major concerns when injecting water is the water consumption, which can be compensated in some cases through condensation and recycling the condensate. Therefore, in the second scenario, the cycle is made self-sufficient with water. In this case, the black box is no longer considered adiabatic and heat exchange with the environment is allowed for condensation of the flue gasses. Black box simulations showed that lowering the stack temperature to 53 °C results in an injection of 17 %wt of water and an increase in electric efficiency of 9% absolute. To keep the mGT cycle layout simple, low cost and not too complex, a maximum of two heat exchangers was imposed for the heat exchanger network design. Although black box analysis indicated a large potential for water introduction, this potential could not be achieved with the considered networks in this paper. Finally, injection of preheated water was identified as the optimal water injection scheme for waste heat recovery resulting in 4.6% absolute electric efficiency increase and a final stack temperature of 62 °C. Results of simulations of the second case indicate that the stack temperature needs to be lowered under 26 °C in order to make the cycle self-sufficient with water. - Highlights: • Adiabatic black box method was used to find the optimal route for waste heat recovery through water injection. • Full water recovery was added as a constraint for the black box analysis. • Composite curve theory was used to design the heat exchange and injection network. • Direct injection of water results in an absolute efficiency increase of 4.6%. • Stack temperature needs to be below 26 °C to have full recovery of water

  7. Theoretical analysis of the effect of water and ethanol injection on axial compressor instabilities

    International Nuclear Information System (INIS)

    Two types of instabilities that occur in compression systems rotating stall and surge have an adverse effect on the compressor performance. Several techniques have been explored to minimize the effect of these instabilities. It has been observed that injection of a liquid into the compressor not only improves thermodynamic efficiencies but also results in stabilizing the system. Therefore, water and ethanol injection has been investigated as an effective tool for controlling these compressor instabilities. In the present paper a modified Moore-Greitzer model has been proposed for wet compression-based system using water and ethanol. Under this work the effect of injection of water (1) at various stages of compressor, (2) at different altitudes and (3) by varying amounts has also been presented. The effect of various parameters on wet compression such as (a) Optimum stage for liquid injection (b) Optimum amount of liquid injection and (c) Effect of altitude on liquid injection is also examined in the present work which shows that the liquid injection helps in improving the performance of compression systems in terms of increase in the stall margin and pressure rise coefficient. - Highlights: → We model the effect of liquid injection on the performance of axial flow compressors. → The basic Moore-Grietzer's model has been appropriately modified. → Injection of liquid in the later stages of the compressor resulted in improved stall margin and pressure rise. → Use of ethanol was found to give better performance than water.

  8. Use of Drag Reducer in Improving Water (Flooding Injectivity in Ukpokiti Field, Niger Delta

    Directory of Open Access Journals (Sweden)

    Amieibibama JOSEPH

    2010-12-01

    Full Text Available Evaluation of water-flooding injectivity involves identifying the causes of the problem(s of the operation and coming up with possible solutions. Ukpokiti field was projected to be injected with 40,000BWPD, however, on commencement of operation only about 30,000BWPD could be injected. This live field experimental work identified pipeline restriction to the injector wellheads as responsible for the lower injectivity. The test involved injecting 15ppm, 20pm and 27ppm of Conoco drag reducer (CDR downstream the turbine pumps that supply water to the injector wells. Velocity and the injection rate of water to the injector wells (with no CDR added were measured. From the field results, 20ppm of CDR injection gave optimum injection increase of 13% and adding a third side outlet 3? pipeline into the wellheads gives independent 16% increase in injectivity. The test had no negative impact on the environment. The result could be applied as an aid and quick means of predicting water-flooding operation in similar operating condition as Ukpokiti field.

  9. Determination of Zinc-Based Additives in Lubricating Oils by Flow-Injection Analysis with Flame-AAS Detection Exploiting Injection with a Computer-Controlled Syringe

    Directory of Open Access Journals (Sweden)

    Gustavo Pignalosa

    2005-01-01

    Full Text Available A flow-injection system is proposed for the determination of metal-based additives in lubricating oils. The system, operating under computer control uses a motorised syringe for measuring and injecting the oil sample (200 μL in a kerosene stream, where it is dispersed by means of a packed mixing reactor and carried to an atomic absorption spectrometer which is used as detector. Zinc was used as model analyte. Two different systems were evaluated, one for low concentrations (range 0–10 ppm and the second capable of providing higher dilution rates for high concentrations (range 0.02%–0.2% w/w. The sampling frequency was about 30 samples/h. Calibration curves fitted a second-degree regression model (r2 = 0.996. Commercial samples with high and low zinc levels were analysed by the proposed method and the results were compared with those obtained with the standard ASTM method. The t test for mean values showed no significant differences at the 95% confidence level. Precision (RSD% was better than 5% (2% typical for the high concentrations system. The carryover between successive injections was found to be negligible.

  10. Conversion of Crude Oil to Methane by a Microbial Consortium Enriched From Oil Reservoir Production Waters

    Directory of Open Access Journals (Sweden)

    LisaGieg

    2014-05-01

    Full Text Available The methanogenic biodegradation of crude oil is an important process occurring in petroleum reservoirs and other oil-containing environments such as contaminated aquifers. In this process, syntrophic bacteria degrade hydrocarbon substrates to products such as acetate, and/or H2 and CO2 that are then used by methanogens to produce methane in a thermodynamically dependent manner. We enriched a methanogenic crude oil-degrading consortium from production waters sampled from a low temperature heavy oil reservoir. Alkylsuccinates indicative of fumarate addition to C5 and C6 n-alkanes were identified in the culture (above levels found in controls, corresponding to the detection of an alkyl succinate synthase gene (assA in the culture. In addition, the enrichment culture was tested for its ability to produce methane from residual oil in a sandstone-packed column system simulating a mature field. Methane production rates of up 5.8 ?mol CH4/g of oil/day were measured in the column system. Amounts of produced methane were in relatively good agreement with hydrocarbon loss showing depletion of more than 50% of saturate and aromatic hydrocarbons. Microbial community analysis revealed that the enrichment culture was dominated by members of the genus Smithella, Methanosaeta, and Methanoculleus. However, a shift in microbial community occurred following incubation of the enrichment in the sandstone columns. Here, Methanobacterium sp. were most abundant, as were bacterial members of the genus Pseudomonas and other known biofilm forming organisms. Our findings show that microorganisms enriched from petroleum reservoir waters can bioconvert crude oil components to methane both planktonically and in sandstone-packed columns as test systems. Further, the results suggest that different organisms may contribute to oil biodegradation within different phases (e.g., planktonic versus sessile within a subsurface crude oil reservoir.

  11. Studies of water-in-oil emulsions : stability and oil properties

    International Nuclear Information System (INIS)

    The stability of water-in-oil emulsions were studied by examining the asphaltene and resin content of oils. The visco-elastic properties of 82 oils from Environment Canada's Emergencies Science Division were also examined to determine which factors are responsible for the stability regimes. The stability of emulsions were grouped into three categories: (1) stable, (2) unstable, and (3) meso-stable. It was shown that there is a range of compositions and viscosities in which each type of water-in-oil state exists. It was also shown that the viscosity of a stable emulsion at a shear rate of one reciprocal second is about three times greater than that of the starting oil. An unstable emulsion typically had a viscosity of 20 times greater than that of the starting oil. A stable emulsion had pronounced elasticity, but an unstable emulsion did not. A meso-stable emulsion had properties between stable and unstable, but broke down after a few days of standing. It was concluded that the formation of both stable and meso-stable emulsions is due to the combination of surface-active forces from resins and asphaltenes from viscous forces. Only a small difference was detected between stable and meso-stable emulsions. Stable emulsions were found to have more asphaltenes and less resins and a narrow viscosity window. Instability results when the oil has either a high viscosity or a very low viscosity and when the resins and asphaltenes are less than about 3 per cent. In highly viscous oils, the migration of asphaltenes and resins is too low to permit droplet stabilization, therefore the formation of stable or meso-stable emulsions does not occur in highly viscous oils. 18 refs., 8 tabs., 8 figs

  12. Strontium isotopes test long-term zonal isolation of injected and Marcellus formation water after hydraulic fracturing.

    Science.gov (United States)

    Kohl, Courtney A Kolesar; Capo, Rosemary C; Stewart, Brian W; Wall, Andrew J; Schroeder, Karl T; Hammack, Richard W; Guthrie, George D

    2014-08-19

    One concern regarding unconventional hydrocarbon production from organic-rich shale is that hydraulic fracture stimulation could create pathways that allow injected fluids and deep brines from the target formation or adjacent units to migrate upward into shallow drinking water aquifers. This study presents Sr isotope and geochemical data from a well-constrained site in Greene County, Pennsylvania, in which samples were collected before and after hydraulic fracturing of the Middle Devonian Marcellus Shale. Results spanning a 15-month period indicated no significant migration of Marcellus-derived fluids into Upper Devonian/Lower Mississippian units located 900-1200 m above the lateral Marcellus boreholes or into groundwater sampled at a spring near the site. Monitoring the Sr isotope ratio of water from legacy oil and gas wells or drinking water wells can provide a sensitive early warning of upward brine migration for many years after well stimulation. PMID:25024106

  13. Optical imaging of air and water bubbles flowing through oil

    Science.gov (United States)

    Dutra, Guilherme; Martelli, Cicero; Patyk, Rodolfo L.; da Silva, Marco J.; Vendruscolo, Tiago P.; Morales, Rigoberto E. M.

    2015-07-01

    The feasibility of optically detecting air and water bubbles flowing through the oil is presented. By scanning wavelengths it is possible to add functionalities by implementing a spectroscopy based chemical detection that can directly lead to chemical detection and imaging and/or chemical species tomography of flowing fluids. In this article, a halogen lamp (175 - 1000 W and centered at 1.2 mm) and an IR-array camera (8-12 μm, 31 x 32 pixels and 10 fps) is used to observe the three-phase flow involving oil, air and water.

  14. Oil pollution in and around the waters of Belgium

    OpenAIRE

    Schallier, R.; Van Roy, W.

    2016-01-01

    Although the waters of Belgium only form a minor part of the North Sea, they contain some of the busiest shipping routes in the world with the Dover Strait and some of the biggest European ports in the immediate vicinity. It is therefore recognized as a key maritime risk area, also in terms of ship-source oil pollution. This chapter first discusses the significant, stepwise decrease of illegal oil discharges from ships in and around the waters of Belgium based on national aerial surveillance ...

  15. A pulse radiolysis study of oil/water microemulsions

    International Nuclear Information System (INIS)

    The spectrum and yield of eaq- in quaternary benzene/water and dodecane/water microemulsions were found to be identical with those in pure water. This indicates probably the scavenging of excess electrons produced in the oil by water. To the contrary, the yield of OH radicals, determined after scavenging and conversion into (SCN)2-·, was proportional to water content of the microemulsion. The eaq- decay and the total yield of peroxides in aerated microemulsion were determined and the characteristics of oxidation in microemulsion was discussed. (author)

  16. Chemical Demulsification of Water-in-Crude Oil Emulsions

    Directory of Open Access Journals (Sweden)

    Abdurahman, H. Nour

    2007-01-01

    Full Text Available Demulsification (emulsion breaking is necessary in many practical applications such as the petroleum industry, painting and waste-water treatment in environmental technology. Chemical demulsification is the most widely applied method of treating water-in-crude oil emulsions and involves the use of chemical additives to accelerate the emulsion breaking process. The effect of chemical demulsification operations on the stability and properties of water-in-crude oil emulsions was assessed experimentally. In this regard, Amine Demulsifier, Polyhydric Alcohol, Acid and Polymeric demulsifiers were used. Using samples of w/o, the data presented for several commercial-type demulsifiers show a strong connection (correlation between good performance (fast coalescence and the demulsifiers. The relative rates of water separation were characterized via beaker tests. The amine group demulsifiers promoted best coalescence of droplets. In contrast, polymeric demulsifier group is the least in water separation.

  17. Direct numerical simulation of water droplet coalescence in the oil

    International Nuclear Information System (INIS)

    Highlights: ► VOF computational technique has been used to simulate coalescence of two water droplets in oil. ► The model was validated with the experimental data for binary droplet coalescence. ► Based on the CFD simulation results a correlation has been proposed to predict the coalescence time. - Abstract: Coalescence of two water droplets in the oil was simulated using Computational Fluid Dynamics (CFD) techniques. The finite volume numerical method was applied to solve the Navier–Stokes equations in conjunction with the Volume of Fluid (VOF) approach for interface tracking. The effects of some parameters consisting of the collision velocity, off-center collision parameter, oil viscosity and water–oil interfacial tension on the coalescence time were investigated. The simulation results were validated against the experimental data available in the literature. The results revealed that quicker coalescence could be achieved if the head-on collisions occur or the droplets approach each other with a high velocity. In addition, low oil viscosities or large water–oil interfacial tensions cause less coalescence time. Moreover, a correlation was developed to predict coalescence efficiency as a function of the mentioned parameters.

  18. Oil spill trajectory analysis for US coastal waters

    International Nuclear Information System (INIS)

    Under Section 4111(b)(7) of the Oil Pollution Act of 1990 (OPA 90), the US Coast Guard must evaluate whether areas of navigable waters and the Exclusive Economic Zone should be designated as zones where the movement of tankers should be limited or prohibited. The legislative history of OPA 90 specifies that the open-quotes tanker-free zoneclose quotes evaluation should particularly include areas where oil and gas leasing, exploration, or development are presently prohibited by legislative action. The Minerals Management Service (MMS) and the Coast Guard have combined efforts to provide offshore oil spill trajectory estimates in support of that evaluation. Multiple runs of the MMS Oil Spill Risk Analysis (OSRA) model were used to characterize potential movements of tanker oil spills in US coastal waters off the east and west coasts and in the eastern Gulf of Mexico. The mapped locations of 220 sensitive environmental resources were provided for the analysis by coastal academic institutions under subcontract to the Coast Guard. More than 3 million oil-spill trajectories were simulated in a stochastic analysis over all seasons. The modeled spills were moved in increments of 3 hours for up to 30 days at sea, based on a suite of wind and oceanographic data and models. Trajectory results from multiple spill sites offshore are expressed as mapped open-quotes risk contoursclose quotes showing the chance of seasonal contacts with coastal resources, assuming spill occurrence. Examples of the information used and the results of the simulations are shown

  19. Determination of naturally occurring radioactive materials (NORM) in formation water during oil exploration

    International Nuclear Information System (INIS)

    The present study is conducted, in order to contribute to a future waste management policy related to the presence of technologically enhanced natural occurring radioactive material (TENORM) in Iran petroleum industry. Samples were collected from offshore oil company for analysis of 238U, 235U, and 232Th series in produced waters. The activities of samples were determined by high-purity germanium detector, well for low level activity γ-spectrometry. The results have shown that, 226Ra concentration ranges from 5.26 Bq/L to 27.93 Bq/L. Also the total activity in produced water is in the range of 16-840 Bq/L were mainly due to enhanced levels of dissolved 226Ra, 214Pb, 214Bi ions. Also, enhanced dissolution of elements such as radium by increasing of salinity, result in higher concentration of NORM in old oil region. Measured values are above EPA regulation (40 CFR 141055) and aqueous Derived Release Limit (DRL) of Canadian guideline for the management of (NORM). Therefore produced water has to dispose in pits which have to design for decrease the environmental effects. Also according to this study, re-injection of produced water in to abandon well of Iran Offshore Oil Company in Persian Gulf, have preference over discharging to the pits. (author)

  20. Modeling and detection of oil in sea water

    DEFF Research Database (Denmark)

    Xenaki, Angeliki; Gerstoft, Peter; Mosegaard, Klaus

    2013-01-01

    methods to map acoustically submerged oil in the sea. In this paper, high-frequency acoustic methods are proposed to localize the oil polluted area and characterize the parameters of its spatial covariance, i.e., variance and correlation. A model is implemented to study the underlying mechanisms of...... for inference of spatial covariance parameters is proposed to describe the scattering field in terms of its second-order statistics from the backscattered returns. The results indicate that high-frequency acoustic methods not only are suitable for large-scale detection of oil contamination in the...... water column but also allow inference of the spatial covariance parameters resulting in a statistical description of the oil field....

  1. Gray Comprehensive Evaluation Method on Coal Seam Water Injection in Order of Difficulty

    Directory of Open Access Journals (Sweden)

    Liu Xiao Li

    2016-01-01

    Full Text Available In order to evaluate the coal mine water injection accurately, the gray comprehensive evaluation is applied in this paper, the depth of coal seam, the development degree of coal seam crack, porosity, gas pressure in coal seam, wetting edge of coal, firmness coefficient of coal are chosen as the main index to evaluate the method of water injection into coal mine. The results show that the gray comprehensive evaluation model has a relatively high reliability and accuracy, which can be used to predict the difficulty degree of water injection.

  2. TREATMENT EFFECTIVENESS: OIL TANKER BALLAST WATER FACILITY

    Science.gov (United States)

    A study dealing with the effectiveness of large-scale treatment of ballast water was conducted at the terminal facility of the TransAlaska Pipeline in Valdez, Alaska. The plant was found to be generally effective in reducing the petroleum content of the ballast water. On the aver...

  3. Water-in-Crude Oil Emulsions: Its Stabilization and Demulsification

    Directory of Open Access Journals (Sweden)

    Abdurahman H. Nour

    2007-01-01

    Full Text Available Traditional ways of breaking emulsions using heat and chemicals are disadvantageous from both economic and environmental perspectives. In this research, the potentials of microwave technology in demulsification of water-in-crude oil emulsions are investigated. The study began with some characterization studies to provide understandings of fundamental issues such as formation, formulation and breaking of emulsions by both chemical and microwave approaches. The aim was to obtain optimized operating conditions as well as fundamental understanding of water-in-oil emulsion stability upon which further developments on demulsification processes could be developed. It was found that emulsion stability was related to some parameters such as, the surfactant concentration, water content, temperature and agitation speed. Experimental results found that microwave radiation method can enhance the demulsification of water-in-oil emulsions in a very short time compared to the conventional heating methods. The results obtained in this study have exposed the capability of microwave technology in demulsification of water-in-oil emulsion. Further works are nevertheless required to provide deeper understanding of the mechanisms involved to facilitate the development of an optimum system applicable to the industry.

  4. Water-in-Crude Oil Emulsions: Its Stabilization and Demulsification

    Science.gov (United States)

    Nour, Abdurahman H.; Mohd. Yunus, R.; Anwaruddin, H.

    Traditional ways of breaking emulsions using heat and chemicals are disadvantageous from both economic and environmental perspectives. In this research, the potentials of microwave technology in demulsification of water-in-crude oil emulsions are investigated. The study began with some characterization studies to provide understandings of fundamental issues such as formation, formulation and breaking of emulsions by both chemical and microwave approaches. The aim was to obtain optimized operating conditions as well as fundamental understanding of water-in-oil emulsion stability upon which further developments on demulsification processes could be developed. It was found that emulsion stability was related to some parameters such as, the surfactant concentration, water content, temperature and agitation speed. Experimental results found that microwave radiation method can enhance the demulsification of water-in-oil emulsions in a very short time compared to the conventional heating methods. The results obtained in this study have exposed the capability of microwave technology in demulsification of water-in-oil emulsion. Further works are nevertheless required to provide deeper understanding of the mechanisms involved to facilitate the development of an optimum system applicable to the industry.

  5. Analysis of nitrogen injection as alternative fluid to steam in heavy oil reservoir; Analise da injecao de nitrogenio como fluido alternativo ao vapor em reservatorio de oleo pesado

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Marcos Allyson Felipe; Galvao, Edney Rafael Viana Pinheiro; Barillas, Jennys Lourdes; Mata, Wilson da; Dutra Junior, Tarcilio Viana [Universidade Federal do Rio Grande do Norte (UFRN), RN (Brazil)

    2012-07-01

    Many of hydrocarbon reserves existing in the world are formed by heavy oils (deg API between 10 and 20). Moreover, several heavy oil fields are mature and, thus, offer great challenges for oil industry. Among the thermal methods used to recover these resources, steam flooding has been the main economically viable alternative. Latent heat carried by steam heats the reservoir, reducing oil viscosity and facilitating the production. This method has many variations and has been studied both theoretically and experimentally (in pilot projects and in full field applications). In order to increase oil recovery and reduce steam injection costs, the injection of alternative fluid has been used on three main ways: alternately, co-injected with steam and after steam injection interruption. The main objective of these injection systems is to reduce the amount of heat supplied to the reservoir, using cheaper fluids and maintaining the same oil production levels. In this paper, the use of N{sub 2} as an alternative fluid to the steam was investigated. The analyzed parameters were oil recoveries and net cumulative oil productions. The reservoir simulation model corresponds to an oil reservoir of 100 m x 100 m x 28 m size, on a Cartesian coordinates system (x, y and z directions). It is a semi synthetic model with some reservoir data similar to those found in Potiguar Basin, Brazil. All studied cases were done using the simulator STARS from CMG (Computer Modelling Group, version 2009.10). It was found that N{sub 2} injection after steam injection interruption achieved the highest net cumulative oil compared to others injection system. Moreover, it was observed that N2 as alternative fluid to steam did not present increase on oil recovery. (author)

  6. Endocrine disrupting activities of surface water associated with a West Virginia oil and gas industry wastewater disposal site.

    Science.gov (United States)

    Kassotis, Christopher D; Iwanowicz, Luke R; Akob, Denise M; Cozzarelli, Isabelle M; Mumford, Adam C; Orem, William H; Nagel, Susan C

    2016-07-01

    Currently, >95% of end disposal of hydraulic fracturing wastewater from unconventional oil and gas operations in the US occurs via injection wells. Key data gaps exist in understanding the potential impact of underground injection on surface water quality and environmental health. The goal of this study was to assess endocrine disrupting activity in surface water at a West Virginia injection well disposal site. Water samples were collected from a background site in the area and upstream, on, and downstream of the disposal facility. Samples were solid-phase extracted, and extracts assessed for agonist and antagonist hormonal activities for five hormone receptors in mammalian and yeast reporter gene assays. Compared to reference water extracts upstream and distal to the disposal well, samples collected adjacent and downstream exhibited considerably higher antagonist activity for the estrogen, androgen, progesterone, glucocorticoid and thyroid hormone receptors. In contrast, low levels of agonist activity were measured in upstream/distal sites, and were inhibited or absent at downstream sites with significant antagonism. Concurrent analyses by partner laboratories (published separately) describe the analytical and geochemical profiling of the water; elevated conductivity as well as high sodium, chloride, strontium, and barium concentrations indicate impacts due to handling of unconventional oil and gas wastewater. Notably, antagonist activities in downstream samples were at equivalent authentic standard concentrations known to disrupt reproduction and/or development in aquatic animals. Given the widespread use of injection wells for end-disposal of hydraulic fracturing wastewater, these data raise concerns for human and animal health nearby. PMID:27073166

  7. Efficiency of pulsed neutron method in determining of flowing gas-oil and oil-water surfaces in oil margin of 13. horizon in Gazly

    International Nuclear Information System (INIS)

    Described are physical bases of pulsed neutron-neutron logging method as well as the technique of its realization and interpretation of the data obtained using the above method to determine flowing gas-oil and oil-water surfaces in oil margin of the 13 horizon of Gasly oil field. To define the character of stratum-reservoir saturation in the process of oil margin development, mean neutron lifetime is determined by layers, and obtained data are compared with data for key horizons. According to the degree of deviation of these values, determined are flowing values of horizon-reservoir saturation with oil, gas or water or values for gas-oil, oil-water, gas-water surfaces

  8. Flow-injection chemiluminescence determination of formaldehyde in water

    Czech Academy of Sciences Publication Activity Database

    Motyka, Kamil; Onjia, A.; Mikuška, Pavel; Večeřa, Zbyněk

    2007-01-01

    Roč. 71, č. 2 (2007), s. 900-905. ISSN 0039-9140 Institutional research plan: CEZ:AV0Z40310501 Keywords : formaldehyde * chemiluminescence * flow - injection analysis Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.374, year: 2007

  9. Cerro Prieto cold water injection: effects on nearby production wells

    Energy Technology Data Exchange (ETDEWEB)

    Truesdell, A.H.; Lippmann, M.J.; De Leon, J.; Rodriguez, M.H.

    1999-07-01

    The liquid-dominated Cerro Prieto geothermal field of northern Baja California, Mexico has been under commercial exploitation since 1973. During the early years of operation, all waste brines were sent to an evaporation pond built west of the production area. In 1989, cooled pond brines began to be successfully injected into the reservoir along the western boundary of the geothermal system. The injection rate varied over the years, and is at present about 20% of the total fluid extracted. As expected under the continental desert conditions prevailing in the area, the temperature and salinity of the pond brines change with the seasons, being higher during the summer and lower during the winter. The chemistry of pond brines is also affected by precipitation of silica, oxidation of H{sub 2}S and reaction with airborne clays. Several production wells in the western part of the field (CP-I area) showed beneficial effects from injection. The chemical (chloride, isotopic) and physical (enthalpy, flow rate) changes observed in producers close to the injectors are reviewed. Some wells showed steam flow increases, in others steam flow decline rates flattened. Because of their higher density, injected brines migrated downward in the reservoir and showed up in deep wells.

  10. Scale formation at various locations in a geothermal operation due to injection of imported waters

    Energy Technology Data Exchange (ETDEWEB)

    Vetter, O.J.; Kandarpa, V.

    1982-06-22

    The injection of waters that are not native to a geothermal formation generates various physical and chemical problems. The major chemical problem resulting from such injections is the formation of sulfate scales (particularly CaSO4, BaSO4 and SrSO4) at various locations starting from the injection well through the production well to the surface facilities of any geothermal operation. One of the ways to prevent this type of scale formation is by reducing the sulfate concentration of the injection waters. The effect of sulfate deionization on scale formation at various locations of the geothermal operations is studied. Some experimental results on the CaSO4 scale formation in porous media upon heating an injection water with and without addition of scale inhibitors are also given.

  11. Streaming Potential In Rocks Saturated With Water And Oil

    Science.gov (United States)

    Tarvin, J. A.; Caston, A.

    2011-12-01

    Fluids flowing through porous media generate electrical currents. These currents cause electric potentials, called "streaming potentials." Streaming potential amplitude depends on the applied pressure gradient, on rock and fluid properties, and on the interaction between rock and fluid. Streaming potential has been measured for rocks saturated with water (1) and with water-gas mixtures. (2) Few measurements (3) have been reported for rocks saturated with water-oil mixtures. We measured streaming potential for sandstone and limestone saturated with a mixture of brine and laboratory oil. Cylindrical samples were initially saturated with brine and submerged in oil. Saturation was changed by pumping oil from one end of a sample to the other and then through the sample in the opposite direction. Saturation was estimated from sample resistivity. The final saturation of each sample was determined by heating the sample in a closed container and measuring the pressure. Measurements were made by modulating the pressure difference (of oil) between the ends of a sample at multiple frequencies below 20 Hz. The observed streaming potential is a weak function of the saturation. Since sample conductivity decreases with increasing oil saturation, the electro-kinetic coupling coefficient (Pride's L (4)) decreases with increasing oil saturation. (1) David B. Pengra and Po-zen Wong, Colloids and Surfaces, vol., p. 159 283-292 (1999). (2) Eve S. Sprunt, Tony B. Mercer, and Nizar F. Djabbarah, Geophysics, vol. 59, p. 707-711 (1994). (3) Vinogradov, J., Jackson, M.D., Geophysical Res. L., Vol. 38, Article L01301 (2011). (4) Steve Pride, Phys. Rev. B, vol. 50, pp. 15678-15696 (1994).

  12. Experimental and Theoretical Investigation of the CO2 Minimum Miscibility Pressurefor the Omani Oils for CO2 Injection EOR Method

    Directory of Open Access Journals (Sweden)

    Khalid Al-Hinai

    2014-04-01

    Full Text Available In Oman there are still large remaining oil reserves that require implementation of Enhanced Oil Recovery processes such as CO2 injection, for light oil. CO2-Oil Minimum Miscibility Pressure (MMP is the key parameter for the design and operations of successful CO2 flood. This study is based on developing a method of calculating the MMP for Omani oil reservoirs. Part-1 of the studyis the experimental work based on the Rising Bubble Apparatus (RBA measurement of MMP and part-2 is the examination of the existing models for MMP predictions and the adjustment of parameters for obtaining the most accurate predictions by the equation of state fluid PVT modeling simulator PVTPro5.2.1software. The RBA system set-up was successfully developed for the first time at Sultan Qaboos University. CO2 MMP measurements were carried out for three different oil samples using the RBA. For the RBA experiments, the PVTPro5.2.1 simulator was used to adjust the best setting parameters for CO2 MMP predictions. Very good agreement between the experimental MMP and the software predictions were achieved within the range of 2.27% error maximum. Moreover, some existing well-known models have been examined for CO2Oil MMP predictions with the observed errors of up to 43.55%.

  13. Production, automatic delivery and bolus injection of [15O]water for positron emission tomography studies

    International Nuclear Information System (INIS)

    An automatic system allowing repetitive bolus injection of oxygen-15-labeled water for PET studies is described in this report. The production of this radiopharmaceutical by the 16O(p,pn)15O nuclear reaction on H216O, its purification and delivery nearby the PET camera, the injection system, and the quality controls are presented

  14. Approaching viscosity control: electrical heating of extra heavy oil as alternative to diluent injection in down hole in Cerro Negro Field, Faja Petrolifera del Orinoco

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, Manuel [Petroleos de Venezuela SA, PDVSA (Venezuela)

    2011-07-01

    Electrical heating is a method used to enhance oil recovery in extra heavy oil reservoirs. This method can be used when diluent injection or other methods are not able to reduce oil viscosity sufficiently or when problems of product quality or quantity arise. The aim of this paper is to evaluate the performance of electrical heating, individually and simultaneously with injection of diluents. For this purpose, simulations were undertaken in one well with integrated electrical heating and diluent injection in Cerro Negro Field in the Orinoco oil belt, Venezuela. Results have shown that the application of both methods together is more profitable than the application of electrical heating alone. This paper demonstrated that the use of electrical heating and diluent injection combined is a valid alternative to diluent injection alone, reducing production loss.

  15. Massive dominance of Epsilonproteobacteria in formation waters from a Canadian oil sands reservoir containing severely biodegraded oil

    OpenAIRE

    Hubert, Casey R. J.; Oldenburg, Thomas B P; Fustic, Milovan; Gray, Neil D; Larter, Stephen R; Penn, Kevin; Rowan, Arlene K.; Seshadri, Rekha; Sherry, Angela; Swainsbury, Richard; Voordouw, Gerrit; Voordouw, Johanna K.; Head, Ian M

    2012-01-01

    The subsurface microbiology of an Athabasca oil sands reservoir in western Canada containing severely biodegraded oil was investigated by combining 16S rRNA gene- and polar lipid-based analyses of reservoir formation water with geochemical analyses of the crude oil and formation water. Biomass was filtered from formation water, DNA was extracted using two different methods, and 16S rRNA gene fragments were amplified with several different primer pairs prior to cloning and sequencing or commun...

  16. Water quality changes at three reclaimed mine sites related to the injection of coal combustion residues

    International Nuclear Information System (INIS)

    Surface and groundwater pollution is a common problem associated with post-surface mining operations. The US Bureau of Mines (BOM) participated in the testing of subsurface injections of coal combustion residues (CCR) at three reclaimed surface mine sites. The addition of alkaline CCR to the subsurface environment can raise the pH, limit propagation of pyrite oxidizing bacteria and reduce the rate of acid generation. Many CCR's can also form cement-like grout, which when injected into buried spoil may decrease its permeability and porosity, diverting water away from the pyritic material. The objective of this work was to develop an effective, economical and permanent method to abate or reduce post-mining water pollution. The effectiveness of CCR injection as an acid mine drainage abatement technique was evaluated by the BOM by monitoring water quality at three sites in: Upshur County, WV, Clinton County, PA and Greene County, PA. Geophysical techniques were used at all sites to locate monitoring and injection wells that were subsequently drilled into the spoil. Grout injection work was completed between 1990 and 1994 at the three sites. Baseline water quality data were collected at all three sites for a minimum of one year. Post-grouting water quality at the discharge of the three sites showed a slight, long-term improvement and no apparent degradation in water quality resulting from the injection of the coal combustion residues. Notable and long-term improvements in water quality at various monitoring wells (on all sites) were also observed

  17. Synthesis of Hydroxytyrosyl Alkyl Ethers from Olive Oil Waste Waters

    Directory of Open Access Journals (Sweden)

    Juan Fernández-Bolaños

    2009-05-01

    Full Text Available The preparation of a new type of derivatives of the naturally occurring antioxidant hydroxytyrosol is reported. Hydroxytyrosyl alkyl ethers were obtained in high yield by a three-step procedure starting from hydroxytyrosol isolated from olive oil waste waters. Preliminary results obtained by the Rancimat method have shown that these derivatives retain the high protective capacity of free hydroxytyrosol.

  18. Synthesis of hydroxytyrosyl alkyl ethers from olive oil waste waters

    OpenAIRE

    Juan Fernández-Bolaños; Mariana Trujillo; Guillermo Rodríguez; Raquel Mateos; Gema Pereira-Caro; Andrés Madrona; Espartero, José L.

    2009-01-01

    The preparation of a new type of derivatives of the naturally occurring antioxidant hydroxytyrosol is reported. Hydroxytyrosyl alkyl ethers were obtained in high yield by a three-step procedure starting from hydroxytyrosol isolated from olive oil waste waters. Preliminary results obtained by the Rancimat method have shown that these derivatives retain the high protective capacity of free hydroxytyrosol.

  19. Synthesis of hydroxytyrosyl alkyl ethers from olive oil waste waters.

    Science.gov (United States)

    Madrona, Andrs; Pereira-Caro, Gema; Mateos, Raquel; Rodrguez, Guillermo; Trujillo, Mariana; Fernndez-Bolaos, Juan; Espartero, Jos L

    2009-01-01

    The preparation of a new type of derivatives of the naturally occurring antioxidant hydroxytyrosol is reported. Hydroxytyrosyl alkyl ethers were obtained in high yield by a three-step procedure starting from hydroxytyrosol isolated from olive oil waste waters. Preliminary results obtained by the Rancimat method have shown that these derivatives retain the high protective capacity of free hydroxytyrosol. PMID:19471196

  20. Method of purifying oil and bed water from hydrogen sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Dyadechko, V.N.; Kuzovatkin, R.I.; Nesterov, I.N.; Stavitskiy, B.P.

    1982-01-01

    A method is proposed for purifying oil and bed water of hydrogen sulfide by treatment with a chemical reagent. It is distinguished by the fact that in order to prevent the formation of corrosion-aggressive side products and sulfate-reducing bacteria, in the bed water the chemical reagent complex compounds of copper-hexaamine copper (II) hydroxide or tetraamine copper (II) hydroxide are used in the form of 0.05% aqueous solution.

  1. Viscosity of water-in-oil emulsions. Variation with temperature and water volume fraction

    Energy Technology Data Exchange (ETDEWEB)

    Farah, Marco A.; Caldas, Jorge Navaes [Petroleo Brasileiro S.A., Rua General Canabarro, 500, Maracana, Rio, CEP 2057-900 (Brazil); Oliveira, Roberto C. [Petroleo Brasileiro S.A., Cenpes, Cidade Universitaria (Brazil); Rajagopal, Krishnaswamy [LATCA-Laboratorio de Termodinamica e Cinetica Aplicada-Escola de Quimica, Departamento de Engenharia Quimica, Universidade Federal do Rio de Janeiro, UFRJ, Cidade Universitaria, C.P. 68452, CEP 21949-900, Rio de Janeiro (Brazil)

    2005-09-15

    Water-in-oil emulsions are important in the petroleum industry in production operations, where the water content of the emulsion can be as high as 60% in volume, also in petroleum refining operations where generally the water content is low. The effective viscosity of water-in-oil emulsions depends mainly on the volume fraction of dispersed phase and temperature, along with several minor effects, such as shear rate, average droplet size, droplet size distribution, viscosity and density of oil. Using six different crude oils, the effective viscosities of several synthetic water-in-oil emulsions are measured at atmospheric pressure using a dynamic viscosimeter for different shear rates, temperatures and volume fractions of the dispersed phase. The ASTM equation, method D-341, for describing viscosity as a function of temperature is extended to include the variation of dispersed phase volume fraction. The proposed equation gives good correlation between the measured viscosities of water-in-oil emulsions as a function of temperature and the volume fraction of water.

  2. Condensation of steam bubbles injected into sub-cooled water

    International Nuclear Information System (INIS)

    Bubble condensation plays an important role e.g. in sub-cooled boiling or steam injection into pools. Since the condensation rate is proportional to the interfacial area density, bubble size distributions have to be considered in an adequate modeling of the condensation process. The effect of bubble sizes was clearly shown in experimental investigations done previously at the TOPFLOW facility of FZD. Steam bubbles were injected into a sub-cooled upward pipe flow via orifices in the pipe wall located at different distances from measuring plane. 1 mm and 4 mm injection orifices were used to vary the initial bubble size distribution. Measurements were done using a wire-mesh sensor. Condensation is clearly faster in case of the injection via the smaller orifices, i.e. in case of smaller bubble sizes. In a previous work a simplified test solver, developed especially to test models for vertical pipe flow was used to simulate these effects. Now the results will be transferred to the CFD code CFX from ANSYS. Recently the Inhomogeneous MUSIG model was implemented into the code enabling the simulation of poly-dispersed flows including the effects of separation of small and large bubbles due to bubble size dependent lift force inversion. It allows to divide the dispersed phase into size classes regarding the mass as well as regarding the momentum balance. Up to now transfers between the classes in the mass balance can be considered only by bubble coalescence and breakup (population balance). Now an extension of the model is proposed to include the effects due to phase transfer. The paper focuses on the derivation of equations for the extension of the Inhomogeneous MUSIG model and presents a new experimental setup for the investigation on steam bubble condensation. (author)

  3. Fault Diagnosis Of A Water For Injection System Using Enhanced Structural Isolation

    DEFF Research Database (Denmark)

    Laursen, Morten; Blanke, Mogens; Düstegör, Dilek

    2008-01-01

    A water for injection system supplies chilled sterile water as solvent to pharmaceutical products. There are ultimate requirements to the quality of the sterile water, and the consequence of a fault in temperature or in flow control within the process may cause loss of one or more batches of the...

  4. Engineering Behavior and Characteristics of Water-Soluble Polymers: Implication on Soil Remediation and Enhanced Oil Recovery

    Directory of Open Access Journals (Sweden)

    Shuang Cindy Cao

    2016-02-01

    Full Text Available Biopolymers have shown a great effect in enhanced oil recovery because of the improvement of water-flood performance by mobility control, as well as having been considered for oil contaminated-soil remediation thanks to their mobility control and water-flood performance. This study focused on the wettability analysis of biopolymers such as chitosan (85% deacetylated power, PEO (polyethylene oxide, Xanthan (xanthan gum, SA (Alginic Acid Sodium Salt, and PAA (polyacrylic acid, including the measurements of contact angles, interfacial tension, and viscosity. Furthermore, a micromodel study was conducted to explore pore-scale displacement phenomena during biopolymer injection into the pores. The contact angles of biopolymer solutions are higher on silica surfaces submerged in decane than at atmospheric conditions. While interfacial tensions of the biopolymer solutions have a relatively small range of 25 to 39 mN/m, the viscosities of biopolymer solutions have a wide range, 0.002 to 0.4 Pa·s, that dramatically affect both the capillary number and viscosity number. Both contact angles and interfacial tension have effects on the capillary entry pressure that increases along with an applied effective stress by overburden pressure in sediments. Additionally, a high injection rate of biopolymer solutions into the pores illustrates a high level of displacement ratio. Thus, oil-contaminated soil remediation and enhanced oil recovery should be operated in cost-efficient ways considering the injection rates and capillary entry pressure.

  5. Kinetic Stability and Rheology of Water-in-Crude Oil Emulsion Stabilized by Cocamide at Different Water Volume Fractions

    OpenAIRE

    Rasha Mohammed Abd; Abdurhman Hamid Nour; Ahmad Ziad Sulaiman

    2014-01-01

    The formation of water-in-crude oil encountered in many stages such drilling, transporting, and processing of crude oil. To enhance and control these processes, it is necessary to understand the emulsion mechanisms. The present study aims to investigate the stability and the rheology of the crude oil emulsion stabilized by Cocamide DEA. Two types of Malaysian crude oil namely; heavy crude oil, and light-heavy blended crude oil (40-60) vol. % were Physio-chemically characterized, and fractiona...

  6. Environmental contaminants in oil field produced waters discharged into wetlands

    International Nuclear Information System (INIS)

    The 866-acre Loch Katrine wetland complex in Park County, Wyoming provides habitat for many species of aquatic birds. The complex is sustained primarily by oil field produced waters. This study was designed to determine if constituents in oil field produced waters discharged into Custer Lake and to Loch Katrine pose a risk to aquatic birds inhabiting the wetlands. Trace elements, hydrocarbons and radium-226 concentrations were analyzed in water, sediment and biota collected from the complex during 1992. Arsenic, boron, radium-226 and zinc were elevated in some matrices. The presence of radium-226 in aquatic vegetation suggests that this radionuclide is available to aquatic birds. Oil and grease concentrations in water from the produced water discharge exceeded the maximum 10 mg/l permitted by the WDEQ (1990). Total aliphatic and aromatic hydrocarbon concentrations in sediments were highest at the produced water discharge, 6.376 μg/g, followed by Custer Lake, 1.104 μg/g. The higher levels of hydrocarbons found at Custer Lake, compared to Loch Katrine, may be explained by Custer Lake's closer proximity to the discharge. Benzo(a)pyrene was not detected in bile from gadwalls collected at Loch Katrine but was detected in bile from northern shovelers collected at Custer Lake. Benzo(a)pyrene concentrations in northern shoveler bile ranged from 500 to 960 ng/g (ppb) wet weight. The presence of benzo(a)pyrene in the shovelers indicates exposure to petroleum hydrocarbons

  7. Experimental and Numerical Studies on Mudstone's Creep Behavior During Water Injection and Its Effect on Casing Damage

    Science.gov (United States)

    Huang, X. L.; Yang, C. H.; Liu, J. J.; He, X.; Xiong, J.

    2008-07-01

    During the process of water injection production in oilfield, when water cuts into the mudstone, as a result, large numbers of casings are damaged because of mudstone's creep characteristic. In order to analyze this phenomenon, the uniaxial compression experiments and creep experiments of mudstone from Daqing Oil Field under different saturation conditions were done, it was studied that how the mudstone's mechanical parameters and creep characteristic would change with the increment of water contents. The results indicate that the rock strength and elastic modulus are decreased rapidly with the increment of water contents, on the other hand, the creep strain and steady state creep strain rate are increased with the increment of water contents, and also the steady state creep strain rate is enhanced with the increment of deviatoric stress. Through the creep characteristic curves, a nonlinear creeping constitutive equation of mudstone considering the changes of water contents was established. In the deep stratum of the oilfield, the calculation model of casing-cement sheath-mudstone was built, based on the experiment results of mudstone and its creep constitutive equation, mudstone's creep pressure with time under different water contents was simulated. The simulation results show that the increasing water content accelerates the incremental rate of the creep pressure of mudstone, so the time of reaching yield state of casing will descend greatly, which means service time of casing becomes much shorter.

  8. Air-water mixing experiments for direct vessel injection of KNGR

    International Nuclear Information System (INIS)

    Two air-water mixing experiments are conducted to understand the flow behavior in the downcomer for Direct Vessel Injection (DVI) of Korean Next Generation Reactor (KNGR). In the first experiment which is an air-water experiment in the rectangular channel with the gap size of 1cm, the width of water film is proportional to the water and air velocities and the inclined angle is proportional to the water velocity only, regardless of the water velocity injected in the rectangular channel. It is observed that the amount of entrained water is negligible. In the second experiment which is a full-scaled water jetting experiment without air flow, the width of water film is proportional to the flow rate injected from the pipe exit and the film thickness of water varies from 1.0mm to 5.0mm, and the maximum thickness does not exceed 5.0mm. The amount of water separated from the liquid film after striking of water jetting on the wall is measured. The amount of separation water is proportional to the flow rate, but the separation ratio in the full-scaled water jetting is not over 15%. A simplified physical model, which is designed to predict the trajectories of the width of water film, is validated through the comparison with experiment results. The 13 .deg. upward water droplet of the water injected from the pipe constitutes the outermost boundary at 1.7m below from pipe level, after the water impinges against the wall. In the model, the parameter, η which represents the relationship between the jetting velocity and the initial spreading velocity, is inversely proportional to the water velocity when it impinges against the wall. The error of the predictions by the model is decreased within 14% to the experimental data through use of exponential fitting of η for the jetting water velocity

  9. A study of water-in-oil emulsification

    International Nuclear Information System (INIS)

    The basic mechanisms by which asphaltenes, resins, and waxes stabilize water-in-oil emulsions are examined. Experiments were conducted on the emulsification behavior of model oils which consisted of an alkane component, an aromatic component, and the emulsifying agents. Results from this study clearly demonstrate the importance that the physical state of an emulsifying agent has upon its ability to stabilize emulsions. It was found that to be effective emulsifiers, asphaltenes, resins, and waxes must be in the form of sub-micron particles. In addition, it was shown that the solvency strength of an oil, which is determined by its alkane and aromatic components, controls the solubility/precipitation behavior of these emulsifiers. The chemical composition of the oil determines not only the amount and size of precipitated particles, but also the composition and wetting properties of the particles. All these factors were found to have an influence upon emulsification. The potential application of a solubility model, using the Hildebrand-Scatchard equation, to predict the physicochemical conditions which favor water-in-oil emulsification, is discussed. Theories on various emulsification processes are also discussed in terms of mousse formation at sea. 52 refs., 46 figs., 1 tab

  10. Flash Atomization: A New Concept to Control Combustion Instability in Water-Injected Gas Turbines

    OpenAIRE

    Vishwas Iyengar; Harold Simmons; David Ransom

    2012-01-01

    The objective of this work is to explore methods to reduce combustor rumble in a water-injected gas turbine. Attempts to use water injection as a means to reduce NOX emissions in gas turbines have been largely unsuccessful because of increased combustion instability levels. This pulsation causes chronic fretting, wear, and fatigue that damages combustor components. Of greater concern is that liberated fragments could cause extensive damage to the turbine section. Combustion instability can be...

  11. Gray Comprehensive Evaluation Method on Coal Seam Water Injection in Order of Difficulty

    OpenAIRE

    Liu Xiao Li; Zhang Zhi Ye; Li Meng Qian

    2016-01-01

    In order to evaluate the coal mine water injection accurately, the gray comprehensive evaluation is applied in this paper, the depth of coal seam, the development degree of coal seam crack, porosity, gas pressure in coal seam, wetting edge of coal, firmness coefficient of coal are chosen as the main index to evaluate the method of water injection into coal mine. The results show that the gray comprehensive evaluation model has a relatively high reliability and accuracy, which can be used to p...

  12. Measuring resistivity changes from within a first cased well to monitor fluids injected into oil bearing geological formations from a second cased well while passing electrical current between the two cased wells

    Science.gov (United States)

    Vail, III, William B. (Bothell, WA)

    1993-01-01

    A.C. current is conducted through geological formations separating two cased wells in an oil field undergoing enhanced oil recovery operations such as water flooding operations. Methods and apparatus are disclosed to measure the current leakage conducted into a geological formation from within a first cased well that is responsive to fluids injected into formation from a second cased well during the enhanced oil production activities. The current leakage and apparent resistivity measured within the first cased well are responsive to fluids injected into formation from the second cased well provided the distance of separation between the two cased wells is less than, or on the order of, a Characteristic Length appropriate for the problem.

  13. Influence of ethanol-amine injection on flow accelerated corrosion rate in pressurized water reactor

    International Nuclear Information System (INIS)

    Some pressurized water reactor (PWR) plants have introduced ethanol-amine (ETA) injection for the purpose of decreasing iron transfer in steam generator (SG). The ETA injection is supposed to decrease flow accelerated corrosion (FAC) rate, because of secondary system pH increase. But the water chemistry in the secondary system is very complicated. So water chemistry following ETA injection and the effect of ETA injection on FAC rate have not been studied systematically. To assess the influence of ETA injection on FAC rate, it is assumed that the model of FAC rate is proportional to the concentration gradient of magnetite. Then chemical concentration and magnetite solubility of the secondary system are calculated and the change of FAC rate is evaluated in the outline. It has been clarified that the effect of ETA injection reduces the FAC rate to about 1/3-1/22 of that of ammonia. In some portions of the secondary system, the effects of ETA injection have been measured experimentally by rotary disk test. The FAC rate of ETA injection is larger than that of ammonia at high temperature. And the FAC rate peaks at about 180degC in the case of ammonia, but the peak seems to shift to higher temperatures in the case of ETA. (author)

  14. The visibility and detectability of oil slicks and oil discharges on water

    International Nuclear Information System (INIS)

    Literature on the visibility of oil slicks and oil discharges on water are reviewed. Except for some work done recently, the literature on oil slick visibility is very old, dating back to the early part of this century. Considerable differences were found between recent experiments and some of the older thickness-visibility relationship tables. This finding was attributed to the the fact that evaporation and inhomogeneity of the slick were ignored in the early studies. Literature on the visibility of oil discharges was also reviewed and compared to slick visibility results. Some correlation was achieved in converting discharge to approximate slick thickness. A new correlation table relating wind speed and vessel discharge speed wth the visibility threshold is also presented. Overall, the data indicated that the minimum visible threshold for discharge is about 100 ppm oil in water, except for a calm situation at two knots where it may be as little as 50 ppm. Data collected on remote sensing thresholds showed that the thresholds could be lowered somewhat by both video and traditional photography. 33 refs., 6 tabs

  15. Influence of pumpkin seed oil in continuous phase on droplet size and stability of water-in-oil emulsions

    Directory of Open Access Journals (Sweden)

    Nikolovski Branislava G.

    2011-01-01

    Full Text Available The aim of this work was to contribute to the optimized production of water-in-oil emulsions with pumpkin seed oil in the oil phase using a high-speed homogenizer. Pumpkin seed oil is a valuable natural source of essential fatty acids and biologically active micronutrients that contribute to its nutritive value and medical uses, and reduce interfacial tension between water and the oil phases. Therefore, pumpkin seed oil can be considered as a prosperous oil phase whose use can possibly decrease the amount of some emulsifier that is normally involved in every emulsification process. A central composite rotatable experimental design was implemented to analyze the impact of the contents of polyglycerol polyricinoleate and pumpkin seed oil in the continuous phase, as well as water phase content in the emulsion on droplet size distribution and the response surface methodology was used to obtain optimal conditions for water-in-oil emulsion preparation. Mean size diameter of water droplets was in a range from 400 to 850 nm, with mean peak width of 100 to 220 nm, respectively. The influence of all three investigated factors on the emulsification was determined. Additionally, the emulsions prepared with pumpkin seed oil showed a higher stability during the storage time compared to the emulsions with sunflower oil.

  16. Water Pollution, and Treatments Part III: Biodegradation of Oil in Refineries Waste Water and Oils Adsorbed in Agricultural Wastes by Selected Strains of Cyanobacteria

    International Nuclear Information System (INIS)

    The main objective of this study is to determine the biological degradation of oil hydrocarbons and sulfur compounds of Marine Balayim crude oil and its refined products by selected indigenous Cyanobacteria strains. The oils used were Marine Balayim crude oil, skimmed oil and some refined products such as gasoline, kerosene, gas oil, fuel oil and petroleum coke. The selected organisms in the current study are the Blue-Green Algae Cyanobacteria, Oscillatoria limentica. This organism was collected from the hyper saline environment of the solar lake in Taba, Sinai, Egypt. The results obtained revealed that the utilization of such strains can be used for the bioremediation of oily waste water.

  17. Comparison of residual oil cluster size distribution, morphology and saturation in oil-wet and water-wet sandstone

    OpenAIRE

    Iglauer, Stefan; Fernø, Martin; Shearing, Paul; Blunt, Martin

    2012-01-01

    We imaged an oil-wet sandstone at residual oil saturation (Sor) conditions using X-ray micro-tomography with a nominal voxel size of (9 μm)3 and monochromatic light from a synchrotron source. The sandstone was rendered oil-wet by ageing with a North Sea crude oil to represent a typical wettability encountered in hydrocarbon reservoirs. We measured a significantly lower Sor for the oil-wet core (18.8%) than for an analogue water-wet core (35%). We analysed the residual oil cluster size distrib...

  18. Prediction of the extent of formation damage caused by water injection

    Energy Technology Data Exchange (ETDEWEB)

    Al-Homadhi, Emad S. [King Saud Univ., Riyadh (Saudi Arabia). Petroleum Engineering Dept.

    2013-06-15

    As a general practice water is injected along the O/W contact to maintain reservoir pressure during production. Down hole analysis of the injected water shows that, even after surface treatment, it still can contain a considerable amount of solid particles. These particles can bridge formation pores and cause a considerable reduction in the injectivity. To ensure good injectivity over a longer term, the concentration and size of these solids should not exceed certain limits. In this article core flood tests were carried out to simulate high rate injectors. The injected brine contained solid particles in different concentrations and sizes. Particle concentration was between 5 and 20 ppm and the particle mean size was between 2 and 9 {mu}m. The results were presented as damaging ratio versus pore volume injected. Contrarily to previous studies instead of using experimental results in calibrating or evaluating certain theoretical models, the results in this study were directly fitted to produce equations which can predict the extent of damage caused by injected water by knowing the mean size and concentration of the solid particles contained in that water. (orig.)

  19. Bacterial Swimming at Air/Water and Oil/Water Interfaces

    Science.gov (United States)

    Morse, Michael; Huang, Athena; Li, Guanglai; Tang, Jay

    2012-02-01

    The microbes inhabiting the planet over billions of years have adapted to diverse physical environments of water, soil, and interfaces between water and either solid or air. Following recent studies on bacterial swimming and accumulation near solid surfaces, we turn our attention to the behavior of Caulobacter crescentus, a singly flagellated bacterium, at water/air and water/oil interfaces. The latter is motivated by relevance to microbial degradation of crude oil in light of the recent oil spill in the Gulf of Mexico. Our ongoing study suggests that Caulobacter swarmer cells tend to get physically trapped at both water/air and water/oil interfaces, accumulating at the surface to a greater degree than boundary confinement properties like that of solid surfaces would predict. At the water/air interface, swimmers move in tight circles at half the speed of swimmers in the bulk fluid. At the water/oil interface, swimming circles are even tighter with further reduced swimming speed. We report experimental data and present preliminary analysis of the findings based on low Reynolds number hydrodynamics, the known surface tension, and surface viscosity at the interface. The analysis will help determine properties of the bacterium such as their surface charge and hydrophobicity.

  20. Oil Spill Adsorption Capacity of Activated Carbon Tablets from Corncobs in Simulated Oil-Water Mixture

    Directory of Open Access Journals (Sweden)

    Rhonalyn V. Maulion

    2015-12-01

    Full Text Available Oil spill in bodies of water is one of severe environmental problems that is facing all over the country and in the world. Since oil is an integral part of the economy, increasing trend for its demand and transport of has led to a great treat in the surface water. One of the promising techniques in the removal of the oil spills in water bodies is adsorption using activated carbon form waste material such as corn cobs. The purpose of this study is to determine the adsorption capacity of activated carbon tablets derived from corncobs in the removal of oil. The properties of activated carbon produced have a pH of 7.0, bulk density of 0.26 g//cm3 , average pore size of 45nm, particle size of 18% at 60 mesh and 39% at 80 mesh, iodine number of 1370 mg/g and surface area of 1205 g/m2. The amount of bentonite clay as binder (15%,20%,30%, number of ACT (1,2,3 and time of contact(30,60,90 mins has been varied to determine the optimum condition where the activated carbon will have the best adsorption capacity in the removal of oil. Results showed that at 15% binder, 60 mins contact time and 3 tablets of activated carbon is the optimum condition which give a percentage adsorption of 22.82% of oil. Experimental data also showed that a Langmuir isotherm was the best fit isotherm for adsorption of ACT.

  1. Heat pump system utilizing produced water in oil fields

    International Nuclear Information System (INIS)

    As the alternative to the heating furnace for crude oil heating, a heat pump system utilizing produced water, a main byproduct, in oil fields was proposed and the thermodynamic model of the system was established. A particular compression process with inner evaporative spray water cooling was applied in the screw compressor and an analysis method for the variable-mass compression process was introduced. The simulation results showed that the efficiency of the screw compressor, the temperature of produced water and the temperature difference in flash process are key parameters affecting the system performance. The energy cost of the heat pump system was compared to that of the heating furnace, revealing that the heat pump system with EER, 4.67, would save over 20% energy cost as compared with the heating furnace. Thus, the heat pump system was energy saving, money saving and environmentally benign

  2. Treatment methods for breaking certain oil and water emulsions

    Science.gov (United States)

    Sealock, Jr., L. John; Baker, Eddie G.; Elliott, Douglas C.

    1992-01-01

    Disclosed are treatment methods for breaking emulsions of petroleum oil and salt water, fatty oil and water, and those resulting from liquefication of organic material. The emulsions are broken by heating to a predetermined temperature at or above about 200.degree. C. and pressurizing to a predetermined pressure above the vapor pressure of water at the predetermined temperature to produce a heated and pressurized fluid. The heated and pressurized fluid is contained in a single vessel at the predetermined temperature and pressure for a predetermined period of time to effectively separate the emulsion into substantially distinct first and second phases, the first phase comprising primarily the petroleum oil, the second phase comprising primarily the water. The first and second phases are separately withdrawn from the vessel at a withdraw temperature between about 200.degree. C. and 374.degree. C. and a withdraw pressure above the vapor pressure of water at the withdraw temperature. Where solids are present in the certain emulsions, the above described treatment may also effectively separate the certain emulsion into a substantially distinct third phase comprising primarily the solids.

  3. Hebei Spirit oil spill monitored on site by fluorometric detection of residual oil in coastal waters off Taean, Korea.

    Science.gov (United States)

    Kim, Moonkoo; Yim, Un Hyuk; Hong, Sang Hee; Jung, Jee-Hyun; Choi, Hyun-Woo; An, Joongeon; Won, Jongho; Shim, Won Joon

    2010-03-01

    The spatiotemporal distributions of dissolved and/or dispersed oil in seawater and pore water were monitored on site by fluorometric detection method after the Hebei Spirit oil spill. The oil concentrations in intertidal seawater, 15 days after the spill, were as high as 16,600 microg/L and appeared to decrease below the Korean marine water quality standard of 10 microg/L at most sites 10 months after the spill. Fluorometric detection of oil in pore water was introduced to eliminate the effects of grain size for the quantification of oil in sediments and to better explain spatial and temporal distribution of oil pollution at sandy beaches. The fluorescence detection method was compared with the conventional laboratory technique of total petroleum hydrocarbon analysis using gas chromatography. The method of fluorescence detection of oil was capable of generating results much faster and more cost-effectively than the traditional GC technique. PMID:19942234

  4. Functionalized Cellulose Networks for Efficient Oil Removal from Oil–Water Emulsions

    OpenAIRE

    Uttam C. Paul; Despina Fragouli; Ilker S. Bayer; Athanassia Athanassiou

    2016-01-01

    The separation of oil from water in emulsions is a great environmental challenge, since oily wastewater is industrially produced. Here, we demonstrate a highly efficient method to separate oil from water in non-stabilized emulsions, using functionalized cellulose fiber networks. This is achieved by the modification of the wetting properties of the fibers, transforming them from oil- and water-absorbing to water-absorbing and oil-proof. In particular, two diverse layers of polymeric coatings, ...

  5. Radiolytic reduction of sodium tetrachloroaurate (III) in water and water-in oil microemulsion

    International Nuclear Information System (INIS)

    Pulse radiolysis technique has been employed to investigate the reduction of NaAuCl4 in water and water-in-oil micro emulsion. The bimolecular rate constant for the reaction of hydrated electrons with Au3+ was determined in water-in-oil micro emulsion. Gold colloid formation has been formed when water is being used as the medium and gelatin as stabilizer. In micro emulsion gold colloid has not been observed up to a dose of 3.6 kGy. (author)

  6. Oil spills: Environmental effects. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The bibliography contains citations concerning environmental impacts of oil spills primarily resulting from ship wrecks and oil drilling or exploration. Oil spills in temperate, tropic and arctic zones which affect fresh water, estuarine, and marine environments are included. Cleanup operations and priorities, computer modeling and simulation of oil spills, oil spill investigations, and prediction of oil slick movement in high traffic shipping lanes are among the topics discussed. Microbial degradation of oils, and toxicity studies of oils and oil dispersants affecting aquatic plant and animal life are considered. (Contains 250 citations and includes a subject term index and title list.)

  7. Oil spills: Environmental effects. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    The bibliography contains citations concerning environmental impacts of oil spills primarily resulting from ship wrecks and oil drilling or exploration. Oil spills in temperate, tropic and arctic zones which affect fresh water, estuarine, and marine environments are included. Cleanup operations and priorities, computer modeling and simulation of oil spills, oil spill investigations, and prediction of oil slick movement in high traffic shipping lanes are among the topics discussed. Microbial degradation of oils, and toxicity studies of oils and oil dispersants affecting aquatic plant and animal life are considered. (Contains 250 citations and includes a subject term index and title list.)

  8. Membrane technology to improve water management in oil sands operations

    International Nuclear Information System (INIS)

    This paper presents the results of a bench-scale experiment designed to improve water management in oil sands processing using a membrane technology. The study addressed the following two aspects of water management: (1) reducing the hardness of water used in technological processes, and (2) reducing the toxicity in effluent streams caused by the presence of naphthenic acids. Both issues were also addressed through the evaluation of a membrane separation process called nanofiltration. The primary focus of this study was to choose an appropriate membrane and to determine its subsequent ability to reduce the hardness from groundwater and remove naphthenic acids from discharge water. The study revealed that nanofiltration technology is a good water management tool in oil sands operations. Membrane filtration managed to reduce water hardness significantly. A high napthenic acid removal efficiency (up to 94 per cent) was noted for both synthetic solutions and actual water samples. Permeate flux was also maintained at a high level of 15 litres per square metre per hour or more. A 90 per cent water recovery was obtained by reducing the feed volume by 10 fold. 14 refs., 6 tabs., 7 figs

  9. The effect of biodiesel fuel obtained from waste frying oil on direct injection diesel engine performance and exhaust emissions

    Energy Technology Data Exchange (ETDEWEB)

    Utlu, Zafer [Education-Teaching Department, Guelhane Military Academy, TR-34668 Istanbul (Turkey); Kocak, Mevluet Suereyya [Automotive Sciences Department, Turkish Land Forces NCO Vocational College, 10110 Balikesir (Turkey)

    2008-08-15

    In this study, usage of methyl ester obtained from waste frying oil (WFO) is examined as an experimental material. A reactor was designed and installed for production of methyl ester from this kind of oil. Physical and chemical properties of methyl ester were determined in the laboratory. The methyl ester was tested in a diesel engine with turbocharged, four cylinders and direct injection. Gathered results were compared with No. 2 diesel fuel. Engine tests results obtained with the aim of comparison from the measures of torque, power; specific fuel consumptions are nearly the same. In addition, amount of emission such as CO, CO{sub 2}, NO{sub x}, and smoke darkness of waste frying oils are less than No. 2 diesel fuel. (author)

  10. Cooling Effect of Water Injection on a High-Temperature Supersonic Jet

    Directory of Open Access Journals (Sweden)

    Jing Li

    2015-11-01

    Full Text Available The high temperature and high pressure supersonic jet is one of the key problems in the design of solid rocket motors. To reduce the jet temperature and noise, cooling water is typically injected into the exhaust plume. Numerical simulations for the gas-liquid multiphase flow field with mixture multiphase model were developed and a series of experiments were carried out. By introducing the energy source terms caused by the vaporization of liquid water into the energy equation, a coupling solution was developed to calculate the multiphase flow field. The temperature data predictions agreed well with the experimental results. When water was injected into the plume, the high temperature core region area was reduced, and the temperature on the head face was much lower than that without water. The relationship between the reduction of temperature on the bottom plate and the momentum ratio is developed, which can be used to predict the cooling effect of water injection in many cases.

  11. A guide to contingency planning for oil spills on water

    International Nuclear Information System (INIS)

    An oil spill contingency plan should comprise: a strategy section, which should describe the scope of the plan, including the geographical coverage, perceived risks, division of responsibilities and role of authorities and the proposed response strategy; an action and operations section, which should set out the emergency procedures that will allow rapid mobilization of resources and an early response to the situation; and a data directory, which should contain all relevant maps, lists and data sheets required to assess an oil spill situation and conduct the response according to an agreed strategy. This guide aims to assist industry and governments in the preparation of such plans. It focuses on oil spills on water, primarily from ships or during transfer operations, but also contains information relevant to spills from exploration and production activities. It sets out an industry consensus and highlights the elements that together make up a comprehensive plan. It is not exhaustive in detail. (author)

  12. Analysis of method of polarization surveying of water surface oil pollution

    Science.gov (United States)

    Zhukov, B. S.

    1979-01-01

    A method of polarization surveying of oil films on the water surface is analyzed. Model calculations of contrasted oil and water obtained with different orientations of the analyzer are discussed. The model depends on the spectral range, water transparency and oil film, and the selection of observational direction.

  13. A high efficiency oxyfuel internal combustion engine cycle with water direct injection for waste heat recovery

    International Nuclear Information System (INIS)

    This paper presents a novel concept of combining water injection process with an oxyfuel internal combustion engine cycle to enhance thermal efficiency. Since the emission of NOx is eliminated by using oxygen instead of air as oxidant, the exhaust gas is CO2–water vapor mixture, and CO2 is recovered through condensation of the exhaust gas at low cost. In this way, an ultra-low emission working cycle is achieved. The evaporation of injected water not only moderates the peak in-cylinder temperature, but also increases the mass of working gas inside the cylinder, therefore improves the thermal efficiency of the cycle. An ideal thermodynamic model combining an oxyfuel Otto cycle with water injection process was established to investigate the potential of the cycle thermal efficiency. Calculation results show that thermal efficiency reaches 53% when water injection temperature is 120 °C and 67% when water injection temperature reaches 200 °C. Moreover, bench tests were carried out on prototype engine based on this working cycle. Experimental results show that the thermal efficiency improves with the increase of both engine load and water injection mass, and indicated thermal efficiency increases from 32.1% to 41.5% under appropriate test condition. - Highlights: • We present an oxy-fuel combustion cycle coupled with water injection for IC engines. • High thermo efficiency can be realized with the potential of CO2 capture. • Steam is employed as working gas of an reciprocating engine cycle. • An efficiency increase of 33% is achievable based on thermodynamic analysis. • Thermo efficiency increases from 32.1% to 41.5% through engine tests

  14. Highly porous oil sorbent based on hollow fibers as the interceptor for oil on static and running water.

    Science.gov (United States)

    Dong, Ting; Cao, Shengbin; Xu, Guangbiao

    2016-03-15

    Highly porous fibrous assembly made by kapok and hollow PET fibers was prepared by the air-laying-bonding method, and used as the interceptor for oils on static and running water. SEM showed that the vast majority of kapok and PET fibers in the assembly was intact and retained their hollow lumens, with the assembly's porosity high to 98.03%. Oil sorption tests exhibited that kapok/PET assembly could absorb 63.00g/g of vegetable oil and 58.50g/g of used motor oil, with high oil retention after 24h dripping. In static condition of oil interception, the two oils started to leak at around 20min for 10-mm thick kapok/PET wall. The time for that was prolonged with increasing the thickness of kapok/PET wall. After oil breakthrough, continuous oil leaking took place. The typical leakage was divided into three stages in which oils leaked separately in sharply increased rate, reduced rate and finally gently. In running condition, oils leaked in markedly quicker way than that in static condition, with initial leakage of oils shortened to less 6min when the water ran at 60.35ml/s. The leakage of oils was considerably accelerated with increasing running rates. PMID:26642440

  15. Carbon Dioxide-Water Emulsions for Enhanced Oil Recovery and Permanent Sequestration of Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, David; Golomb, Dan; Shi, Guang; Shih, Cherry; Lewczuk, Rob; Miksch, Joshua; Manmode, Rahul; Mulagapati, Srihariraju; Malepati, Chetankurmar

    2011-09-30

    This project involves the use of an innovative new invention � Particle Stabilized Emulsions (PSEs) of Carbon Dioxide-in-Water and Water-in-Carbon Dioxide for Enhanced Oil Recovery (EOR) and Permanent Sequestration of Carbon Dioxide. The EOR emulsion would be injected into a semi-depleted oil reservoir such as Dover 33 in Otsego County, Michigan. It is expected that the emulsion would dislocate the stranded heavy crude oil from the rock granule surfaces, reduce its viscosity, and increase its mobility. The advancing emulsion front should provide viscosity control which drives the reduced-viscosity oil toward the production wells. The make-up of the emulsion would be subsequently changed so it interacts with the surrounding rock minerals in order to enhance mineralization, thereby providing permanent sequestration of the injected CO{sub 2}. In Phase 1 of the project, the following tasks were accomplished: 1. Perform laboratory scale (mL/min) refinements on existing procedures for producing liquid carbon dioxide-in-water (C/W) and water-in-liquid carbon dioxide (W/C) emulsion stabilized by hydrophilic and hydrophobic fine particles, respectively, using a Kenics-type static mixer. 2. Design and cost evaluate scaled up (gal/min) C/W and W/C emulsification systems to be deployed in Phase 2 at the Otsego County semi-depleted oil field. 3. Design the modifications necessary to the present CO{sub 2} flooding system at Otsego County for emulsion injection. 4. Design monitoring and verification systems to be deployed in Phase 2 for measuring potential leakage of CO{sub 2} after emulsion injection. 5. Design production protocol to assess enhanced oil recovery with emulsion injection compared to present recovery with neat CO{sub 2} flooding. 6. Obtain Federal and State permits for emulsion injection. Initial research focused on creating particle stabilized emulsions with the smallest possible globule size so that the emulsion can penetrate even low-permeability crude oilcontaining formations or saline aquifers. The term �globule� refers to the water or liquid carbon dioxide droplets sheathed with ultrafine particles dispersed in the continuous external medium, liquid CO{sub 2} or H{sub 2}O, respectively. The key to obtaining very small globules is the shear force acting on the two intermixing fluids, and the use of ultrafine stabilizing particles or nanoparticles. We found that using Kenics-type static mixers with a shear rate in the range of 2700 to 9800 s{sup -1} and nanoparticles between 100-300 nm produced globule sizes in the 10 to 20 μm range. Particle stabilized emulsions with that kind of globule size should easily penetrate oil-bearing formations or saline aquifers where the pore and throat size can be on the order of 50 μm or larger. Subsequent research focused on creating particle stabilized emulsions that are deemed particularly suitable for Permanent Sequestration of Carbon Dioxide. Based on a survey of the literature an emulsion consisting of 70% by volume of water, 30% by volume of liquid or supercritical carbon dioxide, and 2% by weight of finely pulverized limestone (CaCO{sub 3}) was selected as the most promising agent for permanent sequestration of CO{sub 2}. In order to assure penetration of the emulsion into tight formations of sandstone or other silicate rocks and carbonate or dolomite rock, it is necessary to use an emulsion consisting of the smallest possible globule size. In previous reports we described a high shear static mixer that can create such small globules. In addition to the high shear mixer, it is also necessary that the emulsion stabilizing particles be in the submicron size, preferably in the range of 0.1 to 0.2 μm (100 to 200 nm) size. We found a commercial source of such pulverized limestone particles, in addition we purchased under this DOE Project a particle grinding apparatus that can provide particles in the desired size range. Additional work focused on attempts to generate particle stabilized emulsions with a flow through, static mixer based apparatus under a variety of conditions that are suitable for permanent sequestration of carbon dioxide. A variety of mixtures of water, CO{sub 2} and particles may also provide suitable emulsions capable of PS. In addition, it is necessary to test the robustness of PSE formation as composition changes to be certain that emulsions of appropriate size and stability form under conditions that might vary during actual large scale EOR and sequestration operations. The goal was to lay the groundwork for an apparatus and formulation that would produce homogenous microemulsions of CO{sub 2}-in-water capable of readily mixing with the waters of deep saline aquifers and allow a safer and more permanent sequestration of carbon dioxide. In addition, as a beneficial use, we hoped to produce homogenous microemulsions of water-in-CO{sub 2} capable of readily mixing with pure liquid or supercritical CO{sub 2} for use in Enhanced Oil Recovery (EOR). However, true homogeneous microemulsions have proven very difficult to produce and efforts have not yielded either a formulation or a mixing strategy that gives emulsions that do not settle out or that can be diluted with the continuous phase in varying proportions. Other mixtures of water, CO{sub 2} and particles, that are not technically homogeneous microemulsions, may also provide suitable emulsions capable of PS and EOR. For example, a homogeneous emulsion that is not a microemulsion might also provide all of the necessary characteristics desired. These characteristics would include easy formation, stability over time, appropriate size and the potential for mineralization under conditions that would be encountered under actual large scale sequestration operations. This report also describes work with surrogate systems in order to test conditions.

  16. Recovery of Palm Oil and Valuable Material from Oil Palm Empty Fruit Bunch by Sub-critical Water.

    Science.gov (United States)

    Ahmad Kurnin, Nor Azrin; Shah Ismail, Mohd Halim; Yoshida, Hiroyuki; Izhar, Shamsul

    2016-01-01

    Oil palm empty fruit bunch (EFB) is one of the solid wastes produced in huge volume by palm oil mill. Whilst it still contains valuable oil, approximately 22.6 million tons is generated annually and treated as solid waste. In this work, sub-critical water (sub-cw) was used to extract oil, sugar and tar from spikelet of EFB. The spikelet was treated with sub-cw between 180-280°C and a reaction time of 2 and 5 minutes. The highest yield of oil was 0.075 g-oil/g-dry EFB, obtained at 240°C and reaction time of 5 minutes. Astonishingly, oil that was extracted through this method was 84.5% of that obtained through Soxhlet method using hexane. Yield of oil extracted was strongly affected by the reaction temperature and time. Higher reaction temperature induces the dielectric constant of water towards the non-polar properties of solvent; thus increases the oil extraction capability. Meanwhile, the highest yield of sugar was 0.20 g-sugar/g-dry EFB obtained at 220°C. At this temperature, the ion product of water is high enough to enable maximum sub-critical water hydrolysis reaction. This study showed that oil and other valuable material can be recovered using water at sub-critical condition, and most attractive without the use of harmful organic solvent. PMID:27041513

  17. Water-oil Janus emulsions: microfluidic synthesis and morphology design.

    Science.gov (United States)

    Ge, Xue-Hui; Huang, Jin-Pei; Xu, Jian-Hong; Chen, Jian; Luo, Guang-Sheng

    2016-04-14

    In this work we developed a facile method to prepare water-oil Janus emulsions in situ with tunable morphologies by using a double-bore capillary microfluidic device. In addition, by combining the theory model and our liquids' properties, we propose a method to design the morphology of water-oil Janus emulsions. To systematically research Janus morphologies we combined the theory model and the fluids' properties. Under the model guidance, we carefully selected the liquids system where only the interfacial tension between the water phase and the continuous phase changed while keeping the other two interfacial tensions unchanged. Thus we could adjust the Janus morphology by changing the surfactant mass fraction in the continuous phase. In addition, with the double-bore capillary, we prepared water-oil Janus emulsions with a large flow ratio range. By adjusting the flow ratio and the surfactant mass fraction, we successfully prepared Janus emulsions with gradual morphology changes, which would be meaningful in fields that have a high demand for morphology designing of amphiphilic Janus particles. PMID:26947622

  18. Hydrodynamics of Particles at an Oil-Water Interface.

    Science.gov (United States)

    Dani, Archit; Keiser, Geoff; Yeganeh, Mohsen; Maldarelli, Charles

    2015-12-15

    This study is a theoretical and experimental investigation of the hydrodynamics of the mutual approach of two floating spherical particles moving along an oil-water interface. An analytical expression is obtained for the (inertialess) Stokes drag for an isolated particle translating on a flat interface as a function of the immersion depth into the water phase for the case in which the viscosity of the oil is much larger than that of the water. An approximation for the viscous drag due to the mutual approach of identical spheres is formulated as the product of the isolated drag multiplied by the resistance of approaching spheres in an infinite medium. Experiments are undertaken on the capillary attraction of large, millimeter-sized Teflon spheres floating at the interface between a very viscous oil and water. With the use of image visualization and particle tracking, the separation distance as a function of time [[Formula: see text](t)] is measured along with the immersion depth and predicted by setting the capillary attraction force equal to the viscous drag resistance. The excellent agreement validates the approximating formula. PMID:26488685

  19. Large probe arrays for measuring mean and time dependent local oil volume fraction and local oil velocity component distributions in inclined oil-in-water flows

    OpenAIRE

    Lucas, Gary; Zhao, X.

    2013-01-01

    Arrays of dual-sensor and four-sensor needle conductance probes have been used to measure the mean and time dependent local properties of upward inclined, bubbly oil-in-water flows (also known as dispersed oil-in-water flows) in a 153mm diameter pipe. The flow properties that were measured were (i) the local in-situ oil volume fraction ; (ii) the local oil velocity in the axial direction of the pipe (the direction); and (iii) the local oil velocity in the direction from the lower side ...

  20. Management of Water for Unconventional Oil and Gas Operations Enhanced with the Expanded U.S.Geological Survey Produced Waters Geochemical Database

    Science.gov (United States)

    Gans, K. D.; Blondes, M. S.; Thordsen, J. J.; Thomas, B.; Reidy, M. E.; Engle, M.; Kharaka, Y. K.; Rowan, E. L.

    2014-12-01

    Increases in hydraulic fracturing practices for shale gas and tight oil reservoirs have dramatically increased petroleum production in the USA, but have also made the issue of water management from these operations a high priority. Hydraulic fracturing requires ~ 10,000 to 50,000 m3 of water per well for injection in addition to water used to drill the well. Initially much of the water used for hydraulic fracturing was fresh water, but attitudes and operations are changing in response to costs and concerns. Concerns about groundwater depletion and contamination have prompted operators to increase the amount of produced water that can be recycled for hydraulic fracturing and to find suitable locations for salt-water injection. Knowledge of the geochemistry of produced waters is valuable in determining the feasibility of produced water recycling. Water with low salinity can be reclaimed for use outside of the petroleum industry (e.g. irrigation, municipal uses, and industrial operations). The updated and expanded USGS Produced Waters Database available at http://eerscmap.usgs.gov/pwapp/ will facilitate and enhance studies on management of water, including produced water, for unconventional oil and gas drilling and production. The USGS database contains > 160,000 samples. Expanding on the 2002 database, we have filled in state and regional gaps with information from conventional and unconventional wells and have increased the number of constituents to include minor and trace chemicals, isotopes, and time series data. We currently have produced water data from 5,200 tight gas wells, 4,500 coal-bed methane (CBM) wells, 3,500 shale gas wells, and 700 tight oil wells. These numbers will increase as we continue to receive positive responses from oil companies, state oil and gas commissions, and scientists wanting to contribute their data. This database is an important resource for a wide range of interested parties. Scientists from universities, government agencies, public municipalities and citizens can determine the geochemical nature of deep groundwater supplies, contamination sources, and impacts of hydraulic fracturing. Energy companies can utilize the database for determining the suitability of water reuse and for identifying regions where non-potable hydraulic fracturing water may be obtainable.

  1. Purification of trona ores by conditioning with an oil-in-water emulsion

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J. D. (Salt Lake City, UT); Wang, Xuming (Salt Lake City, UT); Li, Minhua (Salt Lake City, UT)

    2009-04-14

    The present invention is a trona concentrate and a process for floating gangue material from trona ore that comprises forming an emulsion, conditioning the trona ore at a high solids content in a saturated trona suspension, and then floating and removing the gangue material. The process for separating trona from gangue materials in trona ore can include emulsifying an oil in an aqueous solution to form an oil-in-water emulsion. A saturated trona suspension having a high solids content can also be formed having trona of a desired particle size. The undissolved trona in the saturated suspension can be conditioned by mixing the saturated suspension and the oil-in-water emulsion to form a conditioning solid suspension of trona and gangue material. A gas can be injected through the conditioning solid suspension to float the gangue material. Thus, the floated gangue material can be readily separated from the trona to form a purified trona concentrate without requirements of additional heat or other expensive processing steps.

  2. Recovery of oil from oil-in-water emulsion using biopolymers by adsorptive method.

    Science.gov (United States)

    Elanchezhiyan, S Sd; Sivasurian, N; Meenakshi, Sankaran

    2014-09-01

    In the present study, it is aimed to identify, a low cost sorbent for the recovery of oil from oil-in-water emulsion using biopolymers such as chitin and chitosan. Chitin has the greater adsorption capacity than chitosan due to its hydrophobic nature. The characterizations of chitin and chitosan were done using FTIR, SEM, EDAX, XRD, TGA and DSC techniques. Under batch equilibrium mode, a systematic study was performed to optimize the various equilibrium parameters viz., contact time, pH, dosage, initial concentration of oil, and temperature. The adsorption process reached equilibrium at 40 min of contact time and the percentage removal of oil was found to be higher (90%) in the acidic medium. The Freundlich and Langmuir models were applied to describe the equilibrium isotherms and the isotherm constants were calculated. Thermodynamic parameters such as ?G, ?H and ?S were calculated to find out the nature of the sorption mechanism. The kinetic studies were investigated with reaction-based and diffusion-based models. The suitable mechanism for the removal of oil has been established. PMID:25017179

  3. A water-in-oil emulsion containing Kelex-100 for the speciation analysis of trace heavy metals in water

    Energy Technology Data Exchange (ETDEWEB)

    Matsumiya, Hiroaki [Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)]. E-mail: h-matsu@numse.nagoya-u.ac.jp; Ohkouchi, Ryohei [Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Hiraide, Masataka [Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2006-01-25

    A water-in-oil (w/o) emulsion containing Kelex-100 (7-dodecenyl-8-quinolinol) and Span-80 (sorbitan monooleate, non-ionic surfactant) was ultrasonically prepared from 1.0 mol l{sup -1} hydrochloric acid and a (1 + 3) mixture of toluene and n-heptane. The resulting emulsion was gradually injected into water sample and dispersed as numerous tiny globules (0.01-0.1 mm in diameter). Dissolved inorganic species (free metal species) of heavy metals (e.g., Fe, Co, Cu, Cd, and Pb) were selectively transported through the oil layer into the internal aqueous phase of the emulsion, leaving other species, such as humic complexes and suspended particles (larger than 1 {mu}m), in the sample solution. After collecting the dispersed emulsion globules, they were demulsified and the heavy metals in the segregated aqueous phase were determined by graphite-furnace atomic absorption spectrometry. The emulsion-based separation method allowed the selective collection of free metal species with a high concentration factor of 100, whereas the conventional solvent extraction did not offer such discrimination. This unique property of the emulsion method was successfully applied to the selective determination of free species of heavy metals in fresh water samples.

  4. A water-in-oil emulsion containing Kelex-100 for the speciation analysis of trace heavy metals in water

    International Nuclear Information System (INIS)

    A water-in-oil (w/o) emulsion containing Kelex-100 (7-dodecenyl-8-quinolinol) and Span-80 (sorbitan monooleate, non-ionic surfactant) was ultrasonically prepared from 1.0 mol l-1 hydrochloric acid and a (1 + 3) mixture of toluene and n-heptane. The resulting emulsion was gradually injected into water sample and dispersed as numerous tiny globules (0.01-0.1 mm in diameter). Dissolved inorganic species (free metal species) of heavy metals (e.g., Fe, Co, Cu, Cd, and Pb) were selectively transported through the oil layer into the internal aqueous phase of the emulsion, leaving other species, such as humic complexes and suspended particles (larger than 1 μm), in the sample solution. After collecting the dispersed emulsion globules, they were demulsified and the heavy metals in the segregated aqueous phase were determined by graphite-furnace atomic absorption spectrometry. The emulsion-based separation method allowed the selective collection of free metal species with a high concentration factor of 100, whereas the conventional solvent extraction did not offer such discrimination. This unique property of the emulsion method was successfully applied to the selective determination of free species of heavy metals in fresh water samples

  5. Effects of caffeic acid and bovine serum albumin in reducing the rate of development of rancidity in oil-in-water and water-in-oil emulsions

    OpenAIRE

    Conde, Enma; Gordon, Micheal H.; Moure, Andres; Dominguez, Herminia

    2011-01-01

    The antioxidant properties of caffeic acid and bovine serum albumin in oil-in-water and water-in-oil emulsions were studied. Caffeic acid (5 mmol/kg emulsion) showed good antioxidant properties in both 30% sunflower oil-in-water (OW) and 20% water-in-sunflower oil emulsions (WO), pH 5.4, during storage at 50 ºC. Although bovine serum albumin (BSA) (0.2%) had a slight antioxidant effect, the combination of caffeic acid and BSA showed a synergistic reduction in the rate of development of rancid...

  6. Determination of colloid silver in drinking water by flow injection analysis with TLS spectrometric UV detection

    International Nuclear Information System (INIS)

    In this work flow injection analysis coupled to collinear dual beam thermal lens spectrometric UV detection was used for determination of silver in water. The detection is based on the increase in absorbance resulting from the formation of colloidal elemental silver due to reduction of Ag+ after reaction with BH4-. The optimal performance of the experimental setup was achieved with 500 μL sample injection loops or larger and the flow rate of 0.6 mL/min. The estimated limit of detection (LOD) for silver in water was 0.01 mg/L what compares favorably with the maximum contaminant level (MCL) for silver in drinking water.

  7. Measurement of fluid velocities during water injection into natural porous rocks

    International Nuclear Information System (INIS)

    This paper reports that magnetic resonance imaging (MRI) is used to measure flow velocities in Casper sandstone and San Andres dolomite. The cores are initially saturated with water, and the flow velocities are monitored during water injection. Such results are useful in determining how much of a core is contracted during a coreflood experiment

  8. Research on the performance of water-injection twin screw compressor

    International Nuclear Information System (INIS)

    Due to the development of the automotive fuel cell systems, the study on water-injection twin screw compressor has been aroused again. Twin screw compressors with water injection can be used to supply the clean compressed air for the Proton Exchange Membrane (PEM) fuel cell systems. In this research, a thermodynamic model of the working process of water-injection twin screw compressor was established based on the equations of conservation of mass and energy. The effects of internal leakage and air-water heat transfer were taken into account simultaneously in the present mathematical model. The experiments of the performance of a prototype compressor operating under various conditions were conducted to verify the model. The results show that the predictions of the model are in reasonable agreement with the experimental data.

  9. Mechanisms behind injecting the combination of nano-clay particles and polymer solution for enhanced oil recovery

    Science.gov (United States)

    Khalili Nezhad, Seyyed Shahram; Cheraghian, Goshtasp

    2015-09-01

    Laboratory investigations and field applications have proved injection of polymer solution to be an effective means to improve oil recovery for reservoirs of medium oil viscosity. The incremental oil produced in this case is the result of an increase in areal and vertical sweep efficiencies. Biopolymers and synthetic polymers are the major categories used in the petroleum industry for specific reasons. Biopolymers like xanthan are limited in their application as they are more susceptible to biodegradation. Synthetic polymers like Hydrolyzed PolyAcrylaMide (HPAM) have a much wider application as they are less susceptible to biodegradation. Furthermore, development of nanotechnology has successfully provided technical and economical viable alternatives for present materials. The objective of this study is to investigate the effect of combining clay nanoparticles with polymer solution on oil recovery. This paper includes a history match of both one-dimensional and two-dimensional polymer floods using a three-dimensional numerical model for fluid flow and mass transport. Results indicated that the amount of polymer adsorption decreased when clay nanoparticles were added to the PolyAcrylaMide solution; however, mobility ratio improvement is believed to be the main contributor for the proposed method in order to enhance much oil recovery compared to xanthan flood and HPAM flood.

  10. Rapid and Efficient Separation of Oil from Oil-in-Water Emulsions Using a Janus Cotton Fabric.

    Science.gov (United States)

    Wang, Zijie; Wang, Yu; Liu, Guojun

    2016-01-01

    A novel bi-functional Janus cotton fabric is used to separate oil from oil-in-water emulsions. This fabric is superhydrophobic on one surface and polyamine-bearing on the other. When used as a filter, the polyamine-bearing side causes the micrometer-sized oil droplets to coalesce. The coalesced oil then fills fabric pores on the superhydrophobic side and selectively permeates it. Oil separation using this method is rapid and the separated oil is pure. Furthermore, the content of the model oil hexadecane (HD) in water after a separation can be reduced to less than 0.03±0.03 vol %. These features demonstrate the practical potential of this technology. PMID:26667967

  11. Determination of nitrate in water by flow-injection analysis

    Czech Academy of Sciences Publication Activity Database

    Mikuška, Pavel; Večeřa, Zbyněk

    2001-01-01

    Roč. 8, č. 1 (2001), s. 115-120. ISSN 1231-7098 R&D Projects: GA ČR GA203/98/0943 Grant ostatní: COPERNICUS(BE) SUB-AERO EVK2-1999-000327 Institutional research plan: CEZ:AV0Z4031919 Keywords : nitrate * chemiluminescence * water Subject RIV: CB - Analytical Chemistry, Separation

  12. Water-in-Crude Oil Emulsions: Its Stabilization and Demulsification

    OpenAIRE

    Abdurahman H. Nour; R. Mohd. Yunus; H. Anwaruddin

    2007-01-01

    Traditional ways of breaking emulsions using heat and chemicals are disadvantageous from both economic and environmental perspectives. In this research, the potentials of microwave technology in demulsification of water-in-crude oil emulsions are investigated. The study began with some characterization studies to provide understandings of fundamental issues such as formation, formulation and breaking of emulsions by both chemical and microwave approaches. The aim was to obtain optimized opera...

  13. Performance Characteristics and Analysis of 4-Stroke Single Cylinder Diesel Engine Blend With 50% of Honne Oil at Various Fuel Injection Pressures

    Directory of Open Access Journals (Sweden)

    R. Bhaskar Reddy

    2014-08-01

    Full Text Available In future demand for fossil fuels and environmental effects, a number of renewable sources of energy have been studied in worldwide. An attempt is made to apt of vegetable oil for diesel engine operation, without any change in its old construction. One of the important factors which influence the performance and emission characteristics of D.I diesel engine is fuel injection pressure. In this project honne oil has to be investigated in a constant speed, on D.I diesel engine with different fuel injection pressures. The scope of the project is to investigate the effect of injection pressures on a blend of 50% honne oil with 50% diesel and compare with pure diesel on performance and emission characteristics of the diesel engine. Two tested fuels were used during experiments like 100 % diesel and a blend of 50% honne oil mixing in the diesel. The performance tests were conducted at constant speed with variable loads. From experiment results it was found that with honne oil- diesel blend the performance of the engine is better compared with diesel. The break thermal efficiency and mechanical efficiencies were found to be maximum at 200 bar injection pressure with both honne oil- diesel blend, compared with 180 bar and 220 bar. The brake specific fuel consumption was to be minimum at 220bar compared with 180 bar and 200 bar. Hydro carbon emissions of honne oil-diesel operation were less than the diesel fuel mode at all fuel injection pressures.

  14. Stability of Water-in-Crude Oil Emulsion Using Cocamide Surfactant

    OpenAIRE

    Rasha Mohammed Abd; Abdurhman H. Nour; Ahmad Ziad Sulaiman

    2014-01-01

    The formation of water-in-crude oil emulsion can be encountered in many stages such as drilling, transporting and processing of crude oil. To enhance and control these processes, it is necessary to understand the emulsion mechanisms. In this study, two types of Malaysian crude oil namely; heavy crude oil and light-heavy blended crude oil (40-60 vol%) were characterized physically to use as the oil phase. Cocaamide DEA was used as a natural surfactant. The stability of water-in-crude oil emuls...

  15. Direct {mu}-flow injection isotope dilution ICP-MS for the determination of heavy metals in oil samples

    Energy Technology Data Exchange (ETDEWEB)

    Bettmer, Joerg; Kutscher, Daniel J.; Sanz-Medel, Alfredo [University of Oviedo, Department of Physical and Analytical Chemistry, Faculty of Chemistry, Oviedo (Spain); Heilmann, Jens; Heumann, Klaus G. [Institute for Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg-University Mainz, Mainz (Germany)

    2012-01-15

    The determination of trace elements in oil samples and their products is of high interest as their presence significantly affects refinery processes and the environment by possible impact of their combustion products. In this context, inductively coupled plasma mass spectrometry (ICP-MS) plays an important role due to its outstanding analytical properties in the quantification of trace elements. In this work, we present the accurate and precise determination of selected heavy metals in oil samples by making use of the combination of {mu}-flow direct injection and isotope dilution ICP-MS (ICP-IDMS). Spike solutions of {sup 62}Ni, {sup 97}Mo, {sup 117}Sn and {sup 206}Pb were prepared in an organic solvent, mixed directly with the diluted oil samples and tested to be fit for purpose for the intended ID approach. The analysis of real samples revealed strong matrix effects affecting the ICP-MS sensitivity, but not the isotope ratio measurements, so that accurate results are obtained by ICP-IDMS. Typical relative standard deviations were about 15% for peak area and peak height measurements, whereas the isotope ratios were not significantly affected (RSD < 2%). The developed method was validated by the analysis of a metallo-organic multi-element standard (SCP-21, typically applied as a calibration standard) and the standard reference material SRM1084a (wear metals in lubricating oil). The obtained results were in excellent agreement with the certified values (recoveries between 98% and 102%), so the proposed methodology of combining {mu}-flow direct injection and ICP-IDMS can be regarded as a new tool for the matrix-independent, multi-element and reliable determination of trace elements in oil and related organic liquids. (orig.)

  16. Direct μ-flow injection isotope dilution ICP-MS for the determination of heavy metals in oil samples

    International Nuclear Information System (INIS)

    The determination of trace elements in oil samples and their products is of high interest as their presence significantly affects refinery processes and the environment by possible impact of their combustion products. In this context, inductively coupled plasma mass spectrometry (ICP-MS) plays an important role due to its outstanding analytical properties in the quantification of trace elements. In this work, we present the accurate and precise determination of selected heavy metals in oil samples by making use of the combination of μ-flow direct injection and isotope dilution ICP-MS (ICP-IDMS). Spike solutions of 62Ni, 97Mo, 117Sn and 206Pb were prepared in an organic solvent, mixed directly with the diluted oil samples and tested to be fit for purpose for the intended ID approach. The analysis of real samples revealed strong matrix effects affecting the ICP-MS sensitivity, but not the isotope ratio measurements, so that accurate results are obtained by ICP-IDMS. Typical relative standard deviations were about 15% for peak area and peak height measurements, whereas the isotope ratios were not significantly affected (RSD < 2%). The developed method was validated by the analysis of a metallo-organic multi-element standard (SCP-21, typically applied as a calibration standard) and the standard reference material SRM1084a (wear metals in lubricating oil). The obtained results were in excellent agreement with the certified values (recoveries between 98% and 102%), so the proposed methodology of combining μ-flow direct injection and ICP-IDMS can be regarded as a new tool for the matrix-independent, multi-element and reliable determination of trace elements in oil and related organic liquids. (orig.)

  17. Antioxidant Activity of Potato Peel Extracts in a Fish-RapeseedOil Mixture and in Oil-in-Water Emulsions

    DEFF Research Database (Denmark)

    Farvin, Sabeena; Nielsen, Nina Skall; Jacobsen, Charlotte

    2010-01-01

    oil mixture and oil-in-water emulsions. Multiple antioxidant activity of the potato peel extracts was evident from in-vitro systems as they showed strong reducing power, radical scavenging ability, ferrous ion chelating activity and prevented oxidation in a liposome model system. The Sava variety......, which showed strong antioxidant activity in in-vitro systems, was tested in oil and oil-in- water emulsions. Ethanolic extracts of Sava (C1,600 mg/kg) prevented lipid oxidation in emulsions and in oil. Water extracts showed no antioxidant activity in oil whereas it showed pro-oxidant activity in...... emulsions. Thus, the results of the present study show the possibility of utilizing waste potato peel as a promising source of natural antioxidants for retarding lipid oxidation....

  18. Monitoring, characterization and comparison. Operation-project of oil and oil water systems in platforms

    International Nuclear Information System (INIS)

    During the process of petroleum production, water are also commonly produced. Usually, a standard oil-water separation process will not lead to water phase ready to be discharged - the present legislation requires oily contents (oil and/or greases) bellow 20 mg/L concentration level value. Thus, secondary treatment is required to bring such oily concentration to the allowed level or lower, prior to the water discard in the environment. This paper describes the adopted systematic work in the Campos Basin Petroleum Production Platforms, which has allowed to evaluate and optimize the water treatment performed in there. Such description includes the typical water treatment systems installed, the typical physical-chemistry of the effluents and also presents comparisons between the basic designs that guided such systems construction and their present operational conditions and set-ups. The analysis of such results has allowed the introduction of minor modifications leading to the process optimization. The common use of Pilot Plants in such optimization process is also described and their contribution reported. (author)

  19. Radiation-thermal purification of waste water from oil pollution

    International Nuclear Information System (INIS)

    Full text: During the extraction, preparation, transportation and refining of oil the sewages containing oil contaminations are produced. The concentration of oil content in the water depends on used technology and may vary from a thousandths parts up to tens percents. There is a necessity of cleaning this pollution up to a permissible level. There are numerous methods (adsorption, mechanical, chemical and etc) of treating of waster water from oil contaminations. Radiation-chemical method is one of the effective among the above mentioned methods. The results of radiation-thermal decomposition of n-heptane micro-admixtures in water medium are adduced. The main parameters of radiolysis change within the intervals: temperature 20-400oC, absorbed dose - 0†10.8 kGy at dose rate 3.6 kGy/h. The correlation of n-heptane concentration and water steam changed within [C5H12]/[H2O] (1-100) 10-5. Total concentration of steam was about 1020 molec/ml. As a product of decomposition are observed H2, CO, CH4, C2H4, C2H6, C3H8, C3H6, C4H8, hydrocarbons C5, and C6. The changes of n-heptane concentration in the reactor also were established. The chain regime of n-heptane decomposition at high temperatures in the irradiated mixture is observed. The critical value of temperature and mixture ratio of components, under which the break of chain process of normal n-heptane occurs are defined. The mechanisms of proceeding radiation thermal processes in hydrocarbons-water system are discussed. At the temperatures higher than 300oC the radiation-thermal decompositions of hydrocarbon micro-impurities in water into gas products occurs according a chain mechanism and the radiation-chemical yield of the decomposition exceeds 100 molec/100eV. This method can be used for purification of sewages from oil contaminations

  20. Geochemical Differentiation of Injected Freshwater Vertical and Horizontal Flow Through Deep Saline Water Karst Aquifers

    Science.gov (United States)

    Virginia, W.; Price, R.

    2008-05-01

    Geochemical data at two deep well injection sites of freshwater into deep saline karst aquifers in south Florida indicate chemically distinct vertical and horizontal flow pathways once the freshwater is introduced into the aquifers. Ammonium contained in the injected water is higher than native aquifer water background levels, and exhibits a high seasonal variability in response to the wet and dry climatic conditions in south Florida. Geochemical data indicate that the injected ammonium behaves conservatively when mixed with native water, and thus can be used to distinguish flowpaths of injected water. Ammonium data in conjunction with major ion chemistry and stable isotope data were used to identify source and pathways of the freshwater injectate. Data indicate multiple pathways that are distinct depending on their pathway to the aquifer, and suggest vertical migration a result of either natural or well construction-induced fractures. Once introduced into the overlying aquifer, horizontal migration appears to be the result of natural advection/diffusion through a highly heterogeneous carbonate aquifer with little mixing of native waters.

  1. Robust polymer grafted Fe3O4 nanospheres for benign removal of oil from water

    Science.gov (United States)

    Madhusudhana Reddy, P.; Chang, Chi-Jung; Chen, Jem-Kun; Wu, Meng-Ting; Wang, Chih-Feng

    2016-04-01

    Removal of oil from the oil-water mixture (O-W mixture) or oil-in-water emulsions (O/W emulsion) is highly imperative. We have fabricated two series of polymer grafted iron oxide (Fe3O4) nanospheres. The oil removal efficiency of the nanospheres was found to be dependent on the grafted amount of polymers. The polystyrene grafted Fe3O4 nanospheres have shown better oil removal efficiency than the corresponding poly(butyl acrylate) grafted Fe3O4 nanospheres. The higher amount of grafted polystyrene can provide more hydrophobic character to FS series nanospheres. The FS series nanospheres exhibited higher oil-absorption capability than FB series nanospheres. Both the series of nanospheres can be recycled by simple washing method. The present results can pave the way to fabricate the robust materials for efficient absorption of various oils or organic solvents from both the oil-water mixture and oil-water emulsion.

  2. Water-oil drainage dynamics in oil-wet random microfluidic porous media analogs

    OpenAIRE

    Xu, Wei(School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China); Ok, Jeong Tae; Neeves, Keith; Yin, Xiaolong

    2012-01-01

    Displacement experiments carried out in microfluidic porous media analogs show that reduced surface tension leads to a more stable displacement, opposite to the process in Hele-Shaw cells where surface tension stabilizes the displacement of a more viscous fluid by a less viscous fluid. In addition, geometry of porous media is observed to play an important role. Three random microfluidic porous media analogs were made to study water-oil drainage dynamics, featuring a pattern of randomly connec...

  3. Construction of a Direct Water-Injected Two-Stroke Engine for Phased Direct Fuel Injection-High Pressure Charging Investigations

    Science.gov (United States)

    Somsel, James P.

    1998-01-01

    The development of a water injected Orbital Combustion Process (OCP) engine was conducted to assess the viability of using the powerplant for high altitude NASA aircraft and General Aviation (GA) applications. An OCP direct fuel injected, 1.2 liter, three cylinder, two-stroke engine has been enhanced to independently inject water directly into the combustion chamber. The engine currently demonstrates low brake specific fuel consumption capability and an excellent power to weight ratio. With direct water injection, significant improvements can be made to engine power, to knock limits/ignition advance timing, and to engine NO(x) emissions. The principal aim of the testing was to validate a cyclic model developed by the Systems Analysis Branch at NASA Ames Research Center. The work is a continuation of Ames' investigations into a Phased Direct Fuel Injection Engine with High Pressure Charging (PDFI-ITPC).

  4. Comparative performance of direct injection diesel engine operating on ethanol, petrol and rapeseed oil blends

    International Nuclear Information System (INIS)

    This article presents the bench testing results of a four stroke, four cylinder, direct injection, unmodified, diesel engine operating on pure rapeseed oil (RO) and its 2.5 vol%, 5 vol%, 7.5 vol% and 10 vol% blends with ethanol (ERO), petrol (PRO) and both improving agents applied in equal proportions as 50:50 vol% (EPRO). The purpose of the research is to examine the effect of ethanol and petrol addition into RO on the biofuel kinematical viscosity, brake mean effective pressure (bmep), brake specific fuel consumption (bsfc) of a diesel engine and its brake thermal efficiency (bte). Addition into RO from 2.5 to 7.5 vol% of ethanol and petrol its viscosity at ambient temperature of 20 deg. C diminishes by 9.2-28.3% and 14.1-31.7%, respectively. Heating up to the temperature of 60 deg. C the viscosity of pure RO, blends ERO2.5-7.5 and PRO2.5-10 further diminishes 4.2, 3.9-3.8 and 3.9-3.6 times. At 1800 min-1 speed, the maximum brake mean effective pressure (bmep) higher up to 1.6% comparing with that of pure RO (0.77 MPa) ensure three agent blends EPRO5-7.5, whereas at rated 2200 min-1 speed, the bmep higher by 5.6% can be obtained when fuelling the engine with blend PRO2.5. Brake specific fuel consumption (bsfc) at maximum torque (240.2 g/kWh) and rated power (234.0 g/kWh) is correspondingly lower by 3.4% and 5.5% in comparison with pure RO when biofuel blends EPRO5 and PRO2.5 are used. The biggest brake thermal efficiency at maximum torque (0.40-0.41) and rated power (0.42-0.43) relative to that of RO (0.39) suggest blends PRO2.5 and EPRO5-7.5, respectively

  5. Tracers in China oil field

    International Nuclear Information System (INIS)

    China has rich oil resources and integrated petroleum industry. The oil industry offers a large market for tracer applications. Nowadays the main stream-most frequently used tracer technologies are introduced. These technologies include tracer 'plating' method for water intake profile measurement on the injection well, inter well tracer test and inter well tracer test for residual oil evaluation. (author)

  6. Experimental investigation of the effects of direct water injection parameters on engine performance in a six-stroke engine

    International Nuclear Information System (INIS)

    Highlights: • Exhaust gas temperature and specific fuel consumption decreased with six stroke engine. • Thermal efficiency increased with water injection. • NO emissions decreased with water injection as the temperature decreased at the end of cycle. • Injection timing should be advanced with the increase of engine speed. • HC and CO emissions decrease until 3000 rpm engine speed. - Abstract: In this study, the effects of water injection quantity and injection timing were investigated on engine performance and exhaust emissions in a six-stroke engine. For this purpose, a single cylinder, four-stroke gasoline engine was converted to six-stroke engine modifying a new cam mechanism and adapting the water injection system. The experiments were conducted at stoichometric air/fuel ratio (λ = 1) between 2250 and 3500 rpm engine speed at full load with liquid petroleum gas. Water injection was performed at three different stages as before top dead center, top dead center and after top dead center at constant injection duration and four different injection pressure 25, 50, 75 and 100 bar. The test results showed that exhaust gas temperature and specific fuel consumption decreased by about 7% and 9% respectively. In contrast, fuel consumption and power output increased 2% and 10% respectively with water injection. Thermal efficiency increased by about 8.72% with water injection. CO and HC emissions decreased 21.97% and 18.23% until 3000 rpm respectively. NO emissions decreased with water injection as the temperature decreased at the end of cycle. As a result, it was seen that engine performance improved when suitable injection timing and injected water quantity were selected due to effect of exhaust heat recovery with water injection

  7. The effect of long-term nitrate treatment on SRB activity, corrosion rate and bacterial community composition in offshore water injection systems.

    Science.gov (United States)

    Bødtker, Gunhild; Thorstenson, Tore; Lillebø, Bente-Lise P; Thorbjørnsen, Bente E; Ulvøen, Rikke Helen; Sunde, Egil; Torsvik, Terje

    2008-12-01

    Biogenic production of hydrogen sulphide (H(2)S) is a problem for the oil industry as it leads to corrosion and reservoir souring. Continuous injection of a low nitrate concentration (0.25-0.33 mM) replaced glutaraldehyde as corrosion and souring control at the Veslefrikk and Gullfaks oil field (North Sea) in 1999. The response to nitrate treatment was a rapid reduction in number and activity of sulphate-reducing bacteria (SRB) in the water injection system biofilm at both fields. The present long-term study shows that SRB activity has remained low at deaerator the presence of Sulfurimonas like bacteria was less pronounced, and were no longer observed 40 months into the treatment period. The biofilm community during nitrate treatment was highly diverse and relative stable for long periods of time. At the Gullfaks field, a reduction in corrosion of up to 40% was observed after switch to nitrate treatment. The present study show that nitrate injection may provide a stable long-term inhibition of SRB in sea water injection systems, and that corrosion may be significantly reduced when compared to traditional biocide treatment. PMID:18752014

  8. In situ water and gas injection experiments performed in the Hades Underground Research Facility

    International Nuclear Information System (INIS)

    The movement of water and gas through plastic clay is an important subject in the research at SCK-CEN on the possible disposal of high level radioactive waste in the Boom clay layer at Mol. Since the construction of the Hades underground research facility in 1983, SCK-CEN has developed and installed numerous piezometers for the geohydrologic characterization and for in situ radionuclide migration experiments. In situ gas and water injection experiments have been performed at two different locations in the underground laboratory. The first location is a multi filter piezometer installed vertically at the bottom of the shaft in 1986. The second location is a three dimensional configuration of four horizontal multi piezometers installed from the gallery. This piezometer configuration was designed for the MEGAS (Modelling and Experiments on GAS migration through argillaceous rocks) project and installed in 1992. It contains 29 filters at distances between 10 m and 15 m from the gallery in the clay. Gas injection experiments show that gas breakthrough occurs at a gas overpressure of about 0.6 MPa. The breakthrough occurs by the creation of gas pathways along the direction of lowest resistance i.e. the zone of low effective stress resulting from the drilling of the borehole. The water injections performed in a filter -- not used for gas injection -- show that the flow of water is also influenced by the mechanical stress conditions. Low effective stress leads to higher hydraulic conductivity. However, water overpressures up to 1.3 MPa did not cause hydrofracturing. Water injections performed in a filter previously used for gas injections, show that the occluded gas hinders the water flow and reduces the hydraulic conductivity by a factor two

  9. Water in soybean oil microemulsions as medium for electrochemical measurements

    Directory of Open Access Journals (Sweden)

    Mendonça Carla R. B.

    2003-01-01

    Full Text Available Microemulsions of water in soybean oil (w/o ME were prepared with sodium dodecyl sulfate (SDS as surfactant and amyl or isoamyl alcohol, as co-surfactants. Microemulsions containing 40.0% oil, 43.2% alcohol, 10.8% SDS and 6.0% water in weight, in the ratio 1:4 [SDS]:[alcohol] showed the highest thermodynamic stability. The aqueous droplet size and its diffusion coefficient Dw/o in the ME were determined through dynamic light scattering (DLS. Voltammetric measurements in the ME at a Pt disk ultramicroelectrode (ume evidenced the oxidation of both water and ferrocene (Fc, and the reduction of oleic acid. The Dw/o values calculated from the limiting current being lower than the ones obtained from DLS indicate that water oxidation probably requires diffusion towards the electrode of both the droplets and the water molecules from inside the droplets. The results show that electroanalytical determinations can be carried out in w/o ME.

  10. Characterization of Emulsions of Fish Oil and Water by Cryo Scanning Electron Microscopy

    DEFF Research Database (Denmark)

    Jensen, Louise Helene Søgaard; Horn, Anna Frisenfeldt; Jacobsen, Charlotte; Nielsen, Nina Skall; Horsewell, Andy

    many double bonds. Emulsions of fish oil in water are potential candidates for a delivery system of fish oil to food products. It has been suggested that oxidation of oil-in-water emulsions is initiated at the interface between oil and water. It has also been proposed that oxidation is to some extent...... dependent on the ultra structure of the emulsion; including the size of oil droplets, their distribution and the thickness of the interface between oil and water. This interface is stabilized by macromolecules such as proteins, phospholipids and hydrocolloids. The main objective of this study is to...... characterize fish oil in water emulsions with respect to oil droplet size, distribution, and ultimately to view the structure and thickness of the interface layer. A freeze-fractured surface viewed at low temperatures under the scanning electron microscope is a promising strategy to reveal variations in the...

  11. A new nano-engineered hierarchical membrane for concurrent removal of surfactant and oil from oil-in-water nanoemulsion

    Science.gov (United States)

    Qin, Detao; Liu, Zhaoyang; Bai, Hongwei; Sun, Darren Delai; Song, Xiaoxiao

    2016-04-01

    Surfactant stabilized oil-in-water nanoemulsions pose a severe threat to both the environment and human health. Recent development of membrane filtration technology has enabled efficient oil removal from oil/water nanoemulsion, however, the concurrent removal of surfactant and oil remains unsolved because the existing filtration membranes still suffer from low surfactant removal rate and serious surfactant-induced fouling issue. In this study, to realize the concurrent removal of surfactant and oil from nanoemulsion, a novel hierarchically-structured membrane is designed with a nanostructured selective layer on top of a microstructured support layer. The physical and chemical properties of the overall membrane, including wettability, surface roughness, electric charge, thickness and structures, are delicately tailored through a nano-engineered fabrication process, that is, graphene oxide (GO) nanosheet assisted phase inversion coupled with surface functionalization. Compared with the membrane fabricated by conventional phase inversion, this novel membrane has four times higher water flux, significantly higher rejections of both oil (~99.9%) and surfactant (as high as 93.5%), and two thirds lower fouling ratio when treating surfactant stabilized oil-in-water nanoemulsion. Due to its excellent performances and facile fabrication process, this nano-engineered membrane is expected to have wide practical applications in the oil/water separation fields of environmental protection and water purification.

  12. A new nano-engineered hierarchical membrane for concurrent removal of surfactant and oil from oil-in-water nanoemulsion

    Science.gov (United States)

    Qin, Detao; Liu, Zhaoyang; Bai, Hongwei; Sun, Darren Delai; Song, Xiaoxiao

    2016-01-01

    Surfactant stabilized oil-in-water nanoemulsions pose a severe threat to both the environment and human health. Recent development of membrane filtration technology has enabled efficient oil removal from oil/water nanoemulsion, however, the concurrent removal of surfactant and oil remains unsolved because the existing filtration membranes still suffer from low surfactant removal rate and serious surfactant-induced fouling issue. In this study, to realize the concurrent removal of surfactant and oil from nanoemulsion, a novel hierarchically-structured membrane is designed with a nanostructured selective layer on top of a microstructured support layer. The physical and chemical properties of the overall membrane, including wettability, surface roughness, electric charge, thickness and structures, are delicately tailored through a nano-engineered fabrication process, that is, graphene oxide (GO) nanosheet assisted phase inversion coupled with surface functionalization. Compared with the membrane fabricated by conventional phase inversion, this novel membrane has four times higher water flux, significantly higher rejections of both oil (~99.9%) and surfactant (as high as 93.5%), and two thirds lower fouling ratio when treating surfactant stabilized oil-in-water nanoemulsion. Due to its excellent performances and facile fabrication process, this nano-engineered membrane is expected to have wide practical applications in the oil/water separation fields of environmental protection and water purification. PMID:27087362

  13. The effect of seasonal changes on the selection of biocide inhibitors for Arabian Gulf seawater for water injection purposes

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hashem, A.; Salman, M.; Al-Muhanna, K.; Al-Bazzaz, W. [Kuwait Inst. for Scientific Research, Safat (Kuwait)

    1997-08-01

    This investigation was carried out to determine the most effective biocide inhibitor for Northern Arabian Gulf Seawater. This seawater will be used for water injection purposes for some oil fields in Kuwait. Arabian Gulf Seawater is known to be very saline during the summer months and less saline during the rainy season of spring. The biocide inhibitors were tested in a rig with six side streams biofouling monitoring tubes (SBMT). Bacterial nutrients were added to the system and carbon steel studs were placed along the tubes of the biocide evaluation test rig (BETR). After a month, a thin, slimy, and black deposit was formed on the carbon steel studs. The deposit contained 107 general aerobic bacteria (GAB), 107 general anaerobic bacteria (GAnB) and 105 sulfate reducing bacteria (SRB). The most effective biocide inhibitor was found to be a fatty amine aryl quaternary inhibitor at 50% dosage.

  14. Microbial diversity in methanogenic hydrocarbon-degrading enrichment cultures isolated from a water-flooded oil reservoir (Dagang oil field, China)

    Science.gov (United States)

    Jimnez, Nria; Cai, Minmin; Straaten, Nontje; Yao, Jun; Richnow, Hans H.; Krger, Martin

    2015-04-01

    Microbial transformation of oil to methane is one of the main degradation processes taking place in oil reservoirs, and it has important consequences as it negatively affects the quality and economic value of the oil. Nevertheless, methane could constitute a recovery method of carbon from exhausted reservoirs. Previous studies combining geochemical and isotopic analysis with molecular methods showed evidence for in situ methanogenic oil degradation in the Dagang oil field, China (Jimnez et al., 2012). However, the main key microbial players and the underlying mechanisms are still relatively unknown. In order to better characterize these processes and identify the main microorganisms involved, laboratory biodegradation experiments under methanogenic conditions were performed. Microcosms were inoculated with production and injection waters from the reservoir, and oil or 13C-labelled single hydrocarbons (e.g. n-hexadecane or 2-methylnaphthalene) were added as sole substrates. Indigenous microbiota were able to extensively degrade oil within months, depleting most of the n-alkanes in 200 days, and producing methane at a rate of 76 6 mol day-1 g-1 oil added. They could also produce heavy methane from 13C-labeled 2-methylnaphthalene, suggesting that further methanogenesis may occur from the aromatic and polyaromatic fractions of Dagang reservoir fluids. Microbial communities from oil and 2-methyl-naphthalene enrichment cultures were slightly different. Although, in both cases Deltaproteobacteria, mainly belonging to Syntrophobacterales (e.g. Syntrophobacter, Smithella or Syntrophus) and Clostridia, mostly Clostridiales, were among the most represented taxa, Gammaproteobacteria could be only identified in oil-degrading cultures. The proportion of Chloroflexi, exclusively belonging to Anaerolineales (e.g. Leptolinea, Bellilinea) was considerably higher in 2-methyl-naphthalene degrading cultures. Archaeal communities consisted almost exclusively of representatives of Methanomicrobia (mainly belonging to genera Methanosaeta and Methanoculleus). As both syntrophic Bacteria and methanogenic Archaea are abundant in Dagang, the studied areas of this oil field may have a significant potential to test the in situ conversion of oil into methane as a possible way to increase total hydrocarbon recovery.

  15. Coupled Flow and Geomechanical Modeling of Fluid Production and Injection in the Cavone Oil Field, Northern Italy: an Assessment of the Potential for Induced Seismicity

    Science.gov (United States)

    Jha, B.; Plesch, A.; Shaw, J. H.; Hager, B. H.; Juanes, R.

    2014-12-01

    There has been a recent increase in the number of earthquakes reported in proximity of active oil and gas fields. In particular, the occurrence of a sequence of damaging earthquakes in May 2012 near the Cavone oil field, in Northern Italy, raised the question of whether these earthquakes might have been triggered, or, if not, if future activities might trigger other damaging events. Production and injection of fluids in the underground reservoirs are known to be capable of triggering seismicity by inducing slip on seismogenic faults. However, the effects of injection and production on fault stability in real fields are not always intuitively obvious, and require the development of new-generation coupled flow-geomechanical models that capture the effect of multiphase poromechanics on faults. We study, by way of numerical modeling and simulation, the potential for induced seismicity at the Cavone field. Using a coupled flow and geomechanics model of the field that honors reservoir geology and historical well schedule, we simulate oil production and water injection in the field for a period of three decades leading up to the earthquake sequence. We calculate the change in Coulomb stress on the bounding Mirandola fault, which sourced the May 29, 2012 M 5.8 earthquake. This quantity varies in space and evolves in time with changing pore pressure and total stress in the reservoir. A novel and important aspect of our work is the identification of a potential instability mechanism for a bounding fault at the edge of a reservoir experiencing pressure depletion. The discontinuity in pore pressure across the fault means that there is a discontinuity in effective normal stress and that, therefore, the Coulomb failure criterion must be evaluated locally on both sides of the fault. We track the evolution of the Coulomb stress at the earthquake hypocenter and compare it with the regional tectonic stressing rate to conclude in favor of tectonic origin of the earthquake. In addition, analysis of the locations of aftershocks of the May 2012 sequence shows a lack of seismicity in the area where the stressing rates from contraction of the reservoir are largest. This observed lack of seismic activity within 1-2 km from the reservoir suggests that fluid production and injection from the Cavone field was not an important driver for the observed seismicity.

  16. Preserving drinking water quality in geotechnical operations: predicting the feedback between fluid injection, fluid flow, and contamination

    Science.gov (United States)

    Schilling, Frank R.

    2014-05-01

    Not only in densely populated areas the preservation of drinking water quality is of vital interest. On the other side, our modern economies request for a sustained energy supply and a secure storage of waste materials. As energy sources with a high security of supply, oil, natural gas, and geothermal energy cover ca. 60% of Europe's energy demand; together with coal more than 75% (IEA 2011). Besides geothermal energy, all of the resources have a high greenhouse gas footprint. All these production activities are related to fluid injection and/or fluid production. The same holds true for gas storage operations in porous reservoirs, to store natural gases, oil, or greenhouse gases. Different concerns are discussed in the public and geoscientific community to influence the drinking water quality: - wastewater discharges from field exploration, drilling, production, well treatment and completion - wastewater sequestration - gas storage - tight gas and tight oil production (including hydraulic fracturing) - Shale gas production (including hydraulic fracturing) - mine drainage This overview contribution focusses on strategies to systematically reduce the risk of water pollution in geotechnical operations of deep reservoirs. The principals will be exemplarily revealed for different geotechnical operations. - How to control hydraulic fracturing operations to reduce the risk of enhanced seismic activity and avoiding the connection of originally separated aquifers. The presented approach to quantitatively predict the impact of stimulation activities is based on petrophysical models taking the feedback of geomechanical processes and fluid flow in porous media, fissures and faults into account. The specific flow patterns in various rock types lead to distinguished differences in operational risk. - How can a proper planning of geotechnical operations reduce the involved risks. A systematic risk reduction strategy will be discussed. On selected samples the role of exploration, operation, monitoring, and proper abandonment will be presented. - Which critical parameters can be monitored? The chances and limitation of different monitoring technologies will be discoursed for a storage site. - How can public involvement reduce risks? This will be shown for hydraulic fracturing operations. - How can geotechnical operation reduce the risk for the groundwater and environment? Some examples will be given to show, that geotechnical operations have the inherent capability to enhance the security of our drinking water. The presentation will discuss how the use of underlying physical and chemical principles can significantly reduce geotechnical risks during fluid injection.

  17. Toxicity of water-soluble fractions of biodiesel fuels derived from castor oil, palm oil, and waste cooking oil.

    Science.gov (United States)

    Leite, Maria Bernadete Neiva Lemos; de Araújo, Milena Maria Sampaio; Nascimento, Iracema Andrade; da Cruz, Andrea Cristina Santos; Pereira, Solange Andrade; do Nascimento, Núbia Costa

    2011-04-01

    Concerns over the sustained availability of fossil fuels and their impact on global warming and pollution have led to the search for fuels from renewable sources to address worldwide rising energy demands. Biodiesel is emerging as one of the possible solutions for the transport sector. It shows comparable engine performance to that of conventional diesel fuel, while reducing greenhouse gas emissions. However, the toxicity of products and effluents from the biodiesel industry has not yet been sufficiently investigated. Brazil has a very high potential as a biodiesel producer, in view of its climatic conditions and vast areas for cropland, with consequent environmental risks because of possible accidental biodiesel spillages into water bodies and runoff to coastal areas. This research determined the toxicity to two marine organisms of the water-soluble fractions (WSF) of three different biodiesel fuels obtained by methanol transesterification of castor oil (CO), palm oil (PO), and waste cooking oil (WCO). Microalgae and sea urchins were used as the test organisms, respectively, for culture-growth-inhibition and early-life-stage-toxicity tests. The toxicity levels of the analyzed biodiesel WSF showed the highest toxicity for the CO, followed by WCO and the PO. Methanol was the most prominent contaminant; concentrations increased over time in WSF samples stored up to 120 d. PMID:21184529

  18. Assessment of ground water quality in a fractured aquifer under continue wastewater injection

    International Nuclear Information System (INIS)

    Experimental studies have been carried out in a fractured coastal aquifer of the Salento Region (Nardo' (Le) Italy), subject since 1991 to injection of 12000 m3/d of treated municipal wastewater in a natural sink. The analytical parameters of ground water sampled in monitoring wells, have been compared before and after the injection started. The mound of water table (1.5 m), the reduction of seawater extent of 2 km and the spreading of pollutants injected were evaluated by means of mathematical model results. After ten years operation, the volume of the available resource for agricultural and drinking use has been increased, without notable decrease of the pre existent ground water quality. Moreover for preserving such resource from pollution, the mathematical model allowed the standards of wastewater quality for recharge to be identified. Around the sink, a restricted area was also defined with prohibition of withdrawals, to avoid infection and other risks on human health

  19. Flow in a discrete slotted nozzle with massive injection. [water table tests

    Science.gov (United States)

    Perkins, H. C.

    1974-01-01

    An experimental investigation has been conducted to determine the effect of massive wall injection on the flow characteristics in a slotted nozzle. Some of the experiments were performed on a water table with a slotted-nozzle test section. This has 45 deg and 15 deg half angles of convergence and divergence, respectively, throat radius of 2.5 inches, and throat width of 3 inches. The hydraulic analogy was employed to qualitatively extend the results to a compressible gas flow through the nozzle. Experimental results from the water table include contours of constant Froude and Mach number with and without injection. Photographic results are also presented for the injection through slots of CO2 and Freon-12 into a main-stream air flow in a convergent-divergent nozzle in a wind tunnel. Schlieren photographs were used to visualize the flow, and qualititative agreement between the results from the gas tunnel and water table is good.

  20. SATCAP-C : a program for thermal hydraulic design of pressurized water injection type capsule

    International Nuclear Information System (INIS)

    There are capsules called 'Pressure Water Injection Type Capsule' as a kind of irradiation devices at the Japan Materials Testing Reactor (JMTR). A type of the capsules is a 'Boiling Water Capsule' (usually named BOCA). The other type is a 'Saturated Temperature Capsule' (named SATCAP). When the water is kept at a constant pressure, the water temperature does not become higher than the saturated temperature so far as the water does not fully change to steam. These type capsules are designed on the basis of the conception of applying the water characteristic to the control of irradiation temperature of specimens in the capsules. In designing of the capsules in which the pressurized water is injected, thermal performances have to be understood as exactly as possible. It is not easy however to predict thermal performances such as axially temperature distribution of water injected in the capsule, because there are heat-sinks at both side of inner and outer of capsule casing as the result that the water is fluid. Then, a program (named SATCAP-C) for the BOCA and SATCAP was compiled to grasp the thermal performances in the capsules and has been used the design of the capsules and analysis of the data obtained from some actual irradiation capsules. It was confirmed that the program was effective in thermal analysis for the capsules. The analysis found out the values for heat transfer coefficients at various surfaces of capsule components and some thermal characteristics of capsules. (author)

  1. The Results of the Emergency Water Core Injection Flow Rate Test in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yong-Chul; Lee, Yong-Sub; Choi, Young-San; Jung, Hoang-Sung; Lim, In-Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2007-10-15

    When the water level of a reactor pool descends to an extremely low level due to a loss of reactor pool water accident in HANARO, a multi-purpose research reactor of a 30 MWth, the emergency water stored in the emergency cooling water storage tank should be injected to the core of HANARO by a gravity force. It is impossible to periodically measure an injection flow rate under an emergency condition because the reactor pool maintains a normal water level for a cooling of the core during a reactor operation. Last year, the reactor pool water was temporarily transferred to the storage tank. And the water level descended to EL 77.5 m, 0.4 m above the extremely low level to install the in-pile section of a Fuel Test Loop project in the reactor core. When the water was retransferred into the reactor pool, an emergency water injection test was conducted. This paper describes the results of the test including the test methods, results and conclusions.

  2. Oil/water droplet formation by temperature change in the water/c(16)e(6)/mineral oil system.

    Science.gov (United States)

    Morales, D; Solans, C; Gutiérrez, J M; Garcia-Celma, M J; Olsson, U

    2006-03-28

    Droplet sizes of oil/water (O/W) nanoemulsions prepared by the phase inversion temperature (PIT) method, in the water/C16E6/mineral oil system, have been compared with those given by a theoretical droplet model, which predicts a minimum droplet size. The results show that, when the phase inversion was started from either a single-phase microemulsion (D) or a two-phase W+D equilibrium, the resulting droplet sizes were close to those predicted by the model, whereas, when emulsification was started from W+D+O or from W+D+Lalpha (Lalpha = lamellar liquid crystal) equilibria, the difference between the measured and predicted values was much higher. The structural changes produced during the phase inversion process have been investigated by the 1H-PFGSE-NMR technique, monitoring the self-diffusion coefficients for each component as a function of temperature. The results have confirmed the transition from a bicontinuous D microemulsion at the hydrophile-lipophile balance (HLB) temperature to oil nanodroplet dispersion in water when it is cooled to lower temperatures. PMID:16548551

  3. Interaction Mechanism of Oil-in-Water Emulsions with Asphaltenes Determined Using Droplet Probe AFM.

    Science.gov (United States)

    Shi, Chen; Zhang, Ling; Xie, Lei; Lu, Xi; Liu, Qingxia; Mantilla, Cesar A; van den Berg, Frans G A; Zeng, Hongbo

    2016-03-15

    Emulsions with interface-active components at the oil/water interface have long been of fundamental and practical interest in many fields. In this work, the interaction forces between two oil droplets in water in the absence/presence of asphaltenes were directly measured using droplet probe atomic force microscopy (AFM) and analyzed using a theoretical model based on Reynolds lubrication theory and the augmented Young-Laplace equation by including the effects of disjoining pressure. It was revealed that the interaction forces measured between two pristine oil droplets (i.e., toluene) could be well described by the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, while an additional steric interaction should be included in the presence of asphaltenes in the oil. The surface interaction and the stability of oil droplets in aqueous solution were demonstrated to be significantly influenced by the asphaltenes concentration in oil, salt concentration, pH, and presence of divalent ions (Ca(2+)) in water. Adsorbed asphaltenes at the oil/water interface led to more negative surface potential of the oil/water interface and also induced steric repulsion between oil droplets, inhibiting the drop coalescence and stabilizing the oil-in-water emulsion. Lower pH of aqueous solution could lead to less negative surface potential and weaken the repulsion between oil droplets. Addition of divalent ions (Ca(2+)) was found to disrupt the protecting effects of adsorbed asphaltenes at oil/water interface and induce coalescence of oil droplets. Our results provide a useful methodology for quantifying the interaction forces and investigating the properties of asphaltenes at the oil/water interfaces and provide insights into the stabilization mechanism of oil-in-water emulsions due to asphaltenes in oil production and water treatment. PMID:26901396

  4. Water injection into vapor- and liquid-dominated reservoirs: Modeling of heat transfer and mass transport

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, K.; Oldenburg, C.; Moridis, G.; Finsterle, S. [Lawrence Berkeley National Lab., CA (United States)

    1997-12-31

    This paper summarizes recent advances in methods for simulating water and tracer injection, and presents illustrative applications to liquid- and vapor-dominated geothermal reservoirs. High-resolution simulations of water injection into heterogeneous, vertical fractures in superheated vapor zones were performed. Injected water was found to move in dendritic patterns, and to experience stronger lateral flow effects than predicted from homogeneous medium models. Higher-order differencing methods were applied to modeling water and tracer injection into liquid-dominated systems. Conventional upstream weighting techniques were shown to be adequate for predicting the migration of thermal fronts, while higher-order methods give far better accuracy for tracer transport. A new fluid property module for the TOUGH2 simulator is described which allows a more accurate description of geofluids, and includes mineral dissolution and precipitation effects with associated porosity and permeability change. Comparisons between numerical simulation predictions and data for laboratory and field injection experiments are summarized. Enhanced simulation capabilities include a new linear solver package for TOUGH2, and inverse modeling techniques for automatic history matching and optimization.

  5. Laboratory investigations of compatibility of the Kuwait Group aquifer, Kuwait, with possible injection waters

    Science.gov (United States)

    Mukhopadhyay, A.; Al-Awadi, E.; Oskui, R.; Hadi, K.; Al-Ruwaih, F.; Turner, M.; Akber, A.

    2004-01-01

    A laboratory investigation of the compatibility of the Kuwait Group aquifer of Kuwait with desalinated seawater and reverse osmosis processed treated wastewater was carried out in anticipation of the artificial recharge of the aquifer in future. Even with the use of wax coating and freezing with liquid nitrogen, no core plugs could be extracted from the unconsolidated sections, and only the consolidated to semi-consolidated sections could be studied. The aquifer consists of silty and gravelly sand, and is often highly calcareous. The clay minerals present in the aquifer mostly belong to the montmorillonite and illite groups, with some palygorskite. Mercury injection porosimetry experiments on core plugs from the more cemented parts of the aquifer suggest that, to avoid significant clogging from suspended solids, particles down to a diameter of 8 ?m should be filtered out of the injection water. Core flow experiments suggest that, for the samples examined, loss of permeability due to clay swelling is not very important. The blocking of pore throats by moving fines may be a more serious problem during injection. The geochemical simulation indicates that the possibility of scale formation when the injection waters come in contact with the Kuwait Group formation water is remote. Rather, there is a possibility of dissolution of carbonate minerals in the aquifer in contact with the injection waters.

  6. A study of gas lift on oil/water flow in vertical risers

    OpenAIRE

    Brini Ahmed, Salem Kalifa

    2014-01-01

    Gas lift is a means of enhancing oil recovery from hydrocarbon reservoirs. Gas injected at the production riser base reduces the gravity component of the pressure drop and thereby, increases the supply of oil from the reservoir. Also, gas injection at the base of a riser helps to mitigate slugging and thus, improving the performance of the topside facility. In order to improve the efficiency of the gas lifting technique, a good understanding of the characteristics of gas-liq...

  7. Perspectives on Severe Accident Management by Depressurization and External Water Injection under Extended SBO Conditions

    International Nuclear Information System (INIS)

    Three major issues of severe accident management guideline (SAMG) after this sort of extended SBO would be depressurization of the primary system, external water injection and hydrogen management inside a containment. Under this situation, typical SAM actions would be depressurization and external water delivery into the core. However, limited amount of external water would necessitate optimization between core cooling, containment integrity and fission product removal. In this paper, effects of SAM actions such as depressurization and external water injection on the reactor and containment conditions after extended SBO are analyzed using MAAP4 code. Positive and negative aspects are discussed with respect to core cooling and fission product retention inside a primary system. Conclusions are made as following: Firstly, early depressurization action itself has two-faces: positive with respect to delay of the reactor vessel failure but negative with respect to the containment failure and fission product retention inside the primary system. Secondly, in order to prevent containment overpressure failure after external water injection, re-closing of PORV later should be considered in SAM, which has never been considered in the previous SAMG. Finally, in case of external water injection, the flow rate should be optimized considering not only the cooling effect but also the long term fission product retention inside the primary system

  8. Study of the feasibility of chemical dispersion of viscous oils and water-in-oil emulsions

    International Nuclear Information System (INIS)

    The possibility of chemically dispersing high viscosity-oils and water-in-oil emulsions with recently developed modern dispersants is discussed. Laboratory dispersibility tests were performed using the Warren Spring Laboratory (WSL) method and the Institut Francais du Petrole (IFP) dilution method. Larger scale tests were done in the Polludrome. The laboratory methods produced high efficiency results for oils with viscosities of up to 10,000 to 20,000 cSt, depending on dispersant used. For emulsified oils the efficiency was much lower, less than 15 per cent for similar viscosities. In the Polludrome, it was necessary to adopt special strategies such as double dispersant applications to get significant dispersions of emulsions. Results led to the conclusion that laboratory tests do not accurately simulate the dispersion process at sea. Efficiencies are generally overestimated and the test protocol must be adapted to the viscosity range. In addition, emulsions prepared in the laboratory are poorly dispersible, even when subjected to strong mixing. Polludrome tests produce more reliable results and also allow the assessment of alternative treatment strategies. 6 refs., 11 figs

  9. Viscous-Gravity Spreading of Oil on Water: Modeling and Challenges

    Directory of Open Access Journals (Sweden)

    R. Chebbi

    2014-04-01

    Full Text Available Oil spreading is one of the major factors affecting the fate of oil spills on water. Modeling spreading is required to study the impact of oil slicks on the environment and plants using sea water including desalination units. Spreading of oil on water undergoes three stages. In the second stage, gravity acts as the main driving force against the viscous force, which is the main resisting force in stages 2 and 3. The paper presents the state of the art in modeling the second stage of spreading. Challenges in analyzing viscous-gravity spreading of continuously discharged oil on water are also presented

  10. Determination of synthetic phenolic antioxidants in edible oils using microvial insert large volume injection gas-chromatography.

    Science.gov (United States)

    Cacho, Juan Ignacio; Campillo, Natalia; Viñas, Pilar; Hernández-Córdoba, Manuel

    2016-06-01

    Three synthetic phenolic antioxidants, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT) and tert-butyl hydroquinone (TBHQ), were determined in different edible vegetable oil samples. The analyses were carried out by gas chromatography-mass spectrometry (GC-MS) using microvial insert large volume injection (LVI). Several parameters affecting this sample introduction step, such as temperatures, times and gas flows, were optimised. Quantification was carried out by the matrix-matched calibration method using carvacrol as internal standard, providing quantification limits between 0.08 and 0.10ngg(-1), depending on the compound. The three phenolic compounds were detected in several of the samples, BHT being the most frequently found. Recovery assays for oil samples spiked at two concentration levels, 2.5 and 10ngg(-1), provided recoveries in the 86-115% range. PMID:26830586

  11. Purification of water polluted with oil and sulfurous closed-ring and aromatic compounds contained in oil and oil products using bacteria relating to thiosphaera

    International Nuclear Information System (INIS)

    The intensity of natural purification (self-purification) of reservoirs polluted with oil and oil products is determined by microorganisms. Hydrocarbon-oxidizing microorganisms are constant natural constituent of biocenose in reservoirs. However, as a result of outflows, the oil and oil products concentration exceeds maximum values allowing normal vital functions of microorganisms resulting in breaking micro-biocenose suppression of vital functions of bacteria. In this regard, elective anaerobic microorganisms of Thiosphaera are worthy of notice. We found out that bacteria belonging to Thiosphaera pantotropha decomposed oil at high oil concentrations in water (at oil concentration like 1 liter of oil in 1 liter of water). And this is when aerobic microorganisms lose their vital functions at maximum concentration of 20 g of oil in 1 liter of water. To intensify the process of oil decomposition we emulsified oil with aqueous solutions of salts. Thiosphaera pantotropha are found out to decompose oil in a wide range of ratio between oil and aqueous solutions of salts: from 1:10 to 10:1. The water solutions salinity made from 20 g/l to 80 g/l. It must be noticed that, since the Thiosphaera pantotropha are elective anaerobes and decompose oil both in presence and in absence of oxygen, it is not necessary anymore to conduct the process under strictly anaerobic conditions and to supply additional oxygen. This makes it possible to simplify the process of biodegradation of oil and to make this process practically more feasible and economically more profitable being compared to the processes based on the use of other species of bacteria. We found out that Thiosphaera decompose sulfurous closed-ring and aromatic compounds in oil which are chemically and thermally stable and can be hardly decomposed, and possess extremely poisonous properties, as well. The use of microorganisms of Thiosphaera pantotropha allows to purify waters polluted with oil and oil products both during planned purification of old impurities and in cases of emergency, in cases of oil outflows. (authors)

  12. Self-assembly behavior of lipids at an oil-water interface

    Science.gov (United States)

    Pautot, Sophie

    The hydrophilic and hydrophobic properties of lipid molecules enable them to organize into large structures when dissolved in water or in oil. Under certain conditions and with the right they can organize into micellar or into lamellar phases under certain conditions and with the right system composition. The equilibrium phase of lipids have been well studied. In this work we observe the behavior of lipids at an oil-water interface, and we investigate the molecular assembly that can result in the presence of lipids at an oil-water interface. We have established that lipids can be used as a surfactant to stabilize water droplets in oil, and we have developed a new method, a reverse emulsion technique, that allows us to use these emulsions to assemble unilamellar vesicles with a high encapsulation yield. The vesicle bilayer is formed from the assembly of two monolayers formed independently and we have proven that this technique offers the possibility to directly assemble asymmetric bilayer. Because the encapsulated phase remains contained at all time by a surfactant layer the reactivity of the molecules initially encapsulated can be preserved. We have demonstrated using fluorescence measurement that the vesicles formed can be used as micro-reactor where reactive molecules can be encapsulated and their activity remotely triggered. This technique is not limited to lipids and we have demonstrated that the process can also be applied to other amphiphilic molecules such as polymers or synthetic surfactants. In addition, we have used dynamic light scattering to study the size of the inverted emulsion stabilized with lipids as a function of the shear applied to the suspension. We have established that a water drop injected in an alkane solution such as dodecane lead to the spontaneous formation of emulsion droplet. Moreover we have demonstrated that the spontaneous emulsification is due to the swelling of a lyotropic semi-crystalline phase which forms at the dodecane-water interface. We have observed by optical microscopy that large droplet composed of lipid and water grow at the interface and lead to the formation of onion like assembly in dodecane.

  13. An oil spill-food chain interaction model for coastal waters

    International Nuclear Information System (INIS)

    An oil spill-food chain interaction model, composed of a multiphase oil spill model (MOSM) and a food chain model, has been developed to assess the probable impacts of oil spills on several key marine organisms (phytoplankton, zooplankton, small fish, large fish and benthic invertebrates). The MOSM predicts oil slick thickness on the water surface; dissolved, emulsified and particulate oil concentrations in the water column; and dissolved and particulate oil concentrations in bed sediments. This model is used to predict the fate of oil spills and transport with respect to specific organic compounds, while the food chain model addresses the uptake of toxicant by marine organisms. The oil spill-food chain interaction model can be used to assess the environmental impacts of oil spills in marine ecosystems. The model is applied to the recent Evoikos-Orapin Global oil spill that occurred in the Singapore Strait. (author)

  14. Low-head air stripper treats oil tanker ballast water

    International Nuclear Information System (INIS)

    Prototype tests conducted during the winter of 1989/90 have successfully demonstrated an economical design for air stripping volatile hydrocarbons from oily tanker ballast water. The prototype air stripper, developed for Alyeska's Ballast Water Treatment (BWT) facility in Valdez, Alaska, ran continuously for three months with an average removal of 88% of the incoming volatile organics. Initially designed to remove oil and grease compounds from tanker ballast water, the BWT system has been upgraded to a three-step process to comply with new, stringent regulations. The BWT biological oxidation process enhances the growth of bacteria present in the incoming ballast water through nutrient addition, aeration, and recirculation within a complete-mixed bioreactor. The average removal of BETX is over 95%, however, occassional upsets required the placement of a polishing air stripper downstream of the aeration tanks. Packed-tower air stripping was investigated but deemed economically unfeasible for a facility that would only occasionally be used. Twelve feet of excess gravity head in the existing BWT hydraulic gradeline were employed to drive the air stripper feed. This limited the stripper packing depth to 8 feet and imposed constraints on the design of the inlet water and air distributors. Water distribution, air flow, temperature effects, and fouling from constituents in the ballast water were investigated. The prototype was operated under water and air flow conditions similar to those specified for the full-scale unit, and at a range of test conditions above and below the normal design conditions

  15. Laboratory effectiveness testing of water-in-oil emulsion breakers

    International Nuclear Information System (INIS)

    The physics and chemistry of water-in-oil emulsions dominate the development of effectiveness tests. Emulsions are variable in stability--this variability is largely dependent on oil type and degree of weathering. These factors complicate the development of a test. Emulsions which have low stability will apparently break easily with chemical emulsion breakers. Broken emulsions will form a foam-like material, called rag, which retains water which is not part of the stable emulsions. Analytical methods used to determine the final stability of the broken or unbroken emulsion were evaluated. Measurements of water content and viscosity measurements show correlation to emulsion stability. Viscosity provides a more reliable measure of emulsion stability but water content measurements are more convenient and are largely used in this study. Twelve tests were developed in the past. Two testing methods have been developed to a usable stage. These tests are described and data using them provided. The effects of mixing time, agent amount, settling time and mixing energy on effectiveness results are presented

  16. Oil eating bacteria

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    The article discusses the unusual technology of using oil-eating bacteria to increase oil recovery. The background for the discovery that bacteria injection into the reservoirs may increase the oil recovery is the study of microbial action in breaking down oil pollution. About 20 per cent of the organisms living naturally in the sea can eat oil. But they need water to grow. In the absence of water, the bacteria produce enzymes to make the oil water soluble and allow them to extract nutrients from them. Oil does not vanish upon being eaten, but enzymes from the digestive process act as effective detergents to wash away the oil, which is then easier to recover.

  17. Effects of fresh lubricant oils on particle emissions emitted by a modern gasoline direct injection passenger car.

    Science.gov (United States)

    Pirjola, Liisa; Karjalainen, Panu; Heikkil, Juha; Saari, Sampo; Tzamkiozis, Theodoros; Ntziachristos, Leonidas; Kulmala, Kari; Keskinen, Jorma; Rnkk, Topi

    2015-03-17

    Particle emissions from a modern turbocharged gasoline direct injection passenger car equipped with a three-way catalyst and an exhaust gas recirculation system were studied while the vehicle was running on low-sulfur gasoline and, consecutively, with five different lubrication oils. Exhaust particle number concentration, size distribution, and volatility were determined both at laboratory and on-road conditions. The results indicated that the choice of lubricant affected particle emissions both during the cold start and warm driving cycles. However, the contribution of engine oil depended on driving conditions being higher during acceleration and steady state driving than during deceleration. The highest emission factors were found with two oils that had the highest metal content. The results indicate that a 10% decrease in the Zn content of engine oils is linked with an 11-13% decrease to the nonvolatile particle number emissions in steady driving conditions and a 5% decrease over the New European Driving Cycle. The effect of lubricant on volatile particles was even higher, on the order of 20%. PMID:25679531

  18. The possible influences of dietary oil supplementation in ameliorating metabolic disturbances and oxidative stress in Alloxan injected rats

    International Nuclear Information System (INIS)

    Diabetes mellitus (DM) is a multifactor disease that is associated with a number of different metabolic abnormalities. Clinical research has confirmed the efficacy of several plant extracts in the modulation of oxidative stress associated with DM. The present work was conducted to examine the protective or treating effects of two different dietary oils rich in medium chain fatty acids (MCFA) as coconut oil (CO) or omega-3-polyunsaturated fatty acids (ω-3-PUFAs)as flaxseed oil (FO) on the severity of DM induced experimentally by alloxan injection. Wistar strain albino rats (17 Og) were fed commercial rat chow diet supplemented with either CO or FO for four weeks. A single dose of alloxan (150 mg/kg) resulted in hyperglycemia, decreases in serum insulin, thyroxine (T4), and high density lipoprotein-cholesterol levels, elevated triglycerides, total cholesterol and low density lipoprotein-cholesterol concentrations. Concurrent with those changes, an increased liver malonaldehyde (MDA) level was observed. This oxidative stress was related to decreases in superoxide dismutase (SOD) activity and glutathione (GSH) content in the liver of alloxan diabetic rats. Oils supplementation after diabetes induction ameliorated hyperglycemia, increased insulin and thyroxine hormone levels, improved lipid profiles, blunted the increase in MDA, modulated the levels of hepatic SOD activity and GSH content of alloxan treated rats. It could be suggested that each of CO or FO could be used as antidiabetic complement in case of DM. This may be related to their anti oxidative properties

  19. Experimental Investigations of CI Engine by using Different Blends of Neat Karanja Oil and Diesel at Different Injection Pressures

    Directory of Open Access Journals (Sweden)

    Dr. A. G. Matani

    2014-06-01

    Full Text Available In the present Investigation experimental work has been carried out to analyze the performance characteristics of single cylinder compression ignition direct ignition fuelled with blends of neat Karanja oil and diesel at different injection pressure. As the blending with diesel increases the viscosity decreases. Brake thermal efficiency of diesel fuel is nearly equal to the brake thermal efficiency of blends10B and 20B. Brake specific fuel consumption increases as the blending proportion increases due to low calorific value of blends.

  20. Lube-oil dilution of gasoline direct-injection engines with ethanol fuels; Schmieroelverduennung von direkteinspritzenden Ottomotoren unter Kaltstartrandbedingungen

    Energy Technology Data Exchange (ETDEWEB)

    Kuepper, Carsten; Pischinger, Stefan [RWTH Aachen Univ. (Germany). Lehrstuhl fuer Verbrennungskraftmaschinen (VKA); Artmann, Chrsitina; Rabl, Hans-Peter [Hochschule Regensburg (Germany). Labor fuer Verbrennungsmotoren und Abgasnachbehandlung

    2013-09-15

    Ethanol fuel mixtures account for the majority of biofuels used worldwide. However, their properties make these fuels more difficult to use in cold conditions and especially when starting a cold engine. As part of the FVV research project 'Lubricant Dilution with Ethanol Fuels under Cold Start Conditions', the Institute for Combustion Engines (VKA) at RWTH Aachen University and the Combustion Engines and Emission Control Laboratory at Regensburg University of Applied Sciences have investigated the influence of the ethanol content in fuels on the dilution of the lubricating oil in modern direct-injection gasoline engines. (orig.)

  1. Water-oil drainage dynamics in oil-wet random microfluidic porous media analogs

    CERN Document Server

    Xu, Wei; Neeves, Keith; Yin, Xiaolong

    2012-01-01

    Displacement experiments carried out in microfluidic porous media analogs show that reduced surface tension leads to a more stable displacement, opposite to the process in Hele-Shaw cells where surface tension stabilizes the displacement of a more viscous fluid by a less viscous fluid. In addition, geometry of porous media is observed to play an important role. Three random microfluidic porous media analogs were made to study water-oil drainage dynamics, featuring a pattern of randomly connected channels with a uniform width, a pattern with Gaussian channel width distribution, and a pattern with large isolated pores. The microfluidic chips fabricated using Polydimenthylsiloxane with glass covers have the internal surface treated by Trichlorosilane to achieve a uniform oil-wet condition. The aqueous phase displaces the oil phase, with a viscosity ratio of about 1:40 and a density ratio of 1:0.85. Videos 1-3 show water flooding processes. It is observed that both channel size distribution (Video 2) and heteroge...

  2. A Study of the Test Results for an Emergency Water Core Injection Flow Rate in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yong Chul; Lee, Yong Sub; Jung, Hoan Sung; Lim, In Cheol; Choi, Young San [KAERI, Daejeon (Korea, Republic of)

    2007-07-01

    When the water level of the reactor pool descends to an extremely low level due to a loss of reactor pool water accident in HANARO, a multi-purpose research reactor of a 30 MWth, the emergency water stored in the tank should be fed to the core by a gravity force. Last year, the reactor pool water was temporarily transferred to the emergency cooling water storage tank. And the water level came down to EL 77.5 m, 0.4 m above the extremely low level to install the in-pile section of a Fuel Test Loop in the reactor core. When the water was re-transferred into the reactor pool, an emergency water injection test was performed. This paper describes the test results and a consideration of the results. It was confirmed through the test that the injection flow rate was maintained above the design injection flow rate by setting the flow control valve at 3.5 turns to a partially open position.

  3. Ultrasonic splitting of oil-in-water emulsions

    DEFF Research Database (Denmark)

    Hald, Jens; König, Ralf; Benes, Ewald; Gröschl, Martin

    1999-01-01

    Standing resonant ultrasonic wave fields can be utilized for liquid–liquid separation of the dispersed particles and the fluid caused by the acoustic radiation pressure and the induced particle agglomeration or coagulation/coalescence process. For the splitting of oil-in-water emulsions, the...... available piezoelectric composite transducer technology was improved and a dedicated resonator with crossed plane wave sonication geometry has been developed. The resonator chamber is entirely made of aluminium or tempax glass and the PZT piezoceramic transducer delivers an acoustic energy flow density of...... up to 24 W/cm2 into the sonication volume. The chosen resonance frequency is kept stable by automatic frequency control utilizing the maximum true power criterion. Physically and chemically well-defined low and high density pure laboratory and also industrially used cooling-lubricating oil...

  4. An Experimental Study of Oil / Water Flow in Horizontal Pipes

    Energy Technology Data Exchange (ETDEWEB)

    Elseth, Geir

    2001-07-01

    The purpose of this thesis is to study the behaviour of the simultaneous flow of oil and water in horizontal pipes. In this connection, two test facilities are used. Both facilities have horizontal test sections with inner pipe diameters equal to 2 inches. The largest facility, called the model oil facility, has reservoirs of 1 m{sub 3} of each medium enabling flow rates as high as 30 m{sub 3}/h, which corresponds to mixture velocities as high as 3.35 m/s. The flow rates of oil and water can be varied individually producing different flow patterns according to variations in mixture velocity and input water cut. Two main classes of flows are seen, stratified and dispersed. In this facility, the main focus has been on stratified flows. Pressure drops and local phase fractions are measured for a large number of flow conditions. Among the instruments used are differential pressure transmitters and a traversing gamma densitometer, respectively. The flow patterns that appear are classified in flow pattern maps as functions of either mixture velocity and water cut or superficial velocities. From these experiments a smaller number of stratified flows are selected for studies of velocity and turbulence. A laser Doppler anemometer (LDA) is applied for these measurements in a transparent part of the test section. To be able to produce accurate measurements a partial refractive index matching procedure is used. The other facility, called the matched refractive index facility, has a 0.2 m{sub 3} reservoir enabling mainly dispersed flows. Mixture velocities range from 0.75 m/s to 3 m/s. The fluids in this facility are carefully selected to match the refractive index of the transparent part of the test section. A full refractive index matching procedure is carried out producing excellent optical conditions for velocity and turbulence studies by LDA. In addition, pressure drops and local phase fractions are measured. (author)

  5. Water injection test and finite element calculations of water percolation through fissured granite

    International Nuclear Information System (INIS)

    Within the framework of the German/Swiss Cooperation agreed in 1983 it is intended to test and further develop engineering geological rock-mechanical investigative methods for use in crystalline rock. Partners involved are the Nationale Genossenschaft fuer die Lagerung radioaktiver Abfaelle (NAGRA), the Institut fuer Tieflagerung der Gesellschaft fuer Strahlen- und Umweltforschung (GSF) and the Bundesanstalt fuer Geowissenschaften und Rohstoffe (Federal Institute for Geosciences and Natural Resources - BGR). The NAGRA Rock Laboratory at Grimsel is situated in the Aare and Gotthardt massiv in the Swiss Alps, in the vicinity of the Grimsel Pass. The main access tunnel to the control centre of Grimsel II, of the Kraftwerke Oberhasli AG (Electricity Generating Company), was investigated by NAGRA and an area below the Juchlistock at a depth of approximately 450 - 500 m was chosen for the rock laboratory. The laboratory tunnel and the test sites were cut in 1983/84. This report describes the planning of the modified water injection test and the accompanying investigations proposed of the BGR. 9 refs.; 16 figs

  6. Numerical Study of Water Control with Downhole Oil-Water Separation Technology

    Directory of Open Access Journals (Sweden)

    Yin Khor Yin

    2014-07-01

    Full Text Available The maturing oil fields with increasing water production can pose a challenging produced water handling and disposal issues. This paper presents a numerical study of a motorless hydrocyclone to enhance understanding of the downhole oil-water separation. The turbulence of fluid flow is obtained using K-ε Realizable Turbulence model for complex swirl dominated flow, while the interface between hydrocarbon and water is described using the Discrete Phase model. In this approach, factors which contribute to the hydrocyclone separation instability were discussed. Discussion is then extended to the relationship of residence time with pressure difference between overflow and underflow. These pressure differences are able to relate to pressure condition for high water cut well which require downhole separation.

  7. Effects of preheating of crude palm oil (CPO) on injection system, performance and emission of a diesel engine

    International Nuclear Information System (INIS)

    Crude palm oil (CPO) is one of the vegetable oils that have potential for use as fuels for diesel engines. CPO is renewable, and is safe and easy to handle. However, at room temperature (30-32 deg C) CPO has a viscosity about 10 times higher than that of diesel. To lower CPO's viscosity to the level of diesel's viscosity, a heating temperature of at least 92 deg C is needed. At this temperature, there is a concern that the close-fitting parts of the injection system might be affected. This study focused on finding out the effects of preheating of fuel on the injection system utilising a modified method of friction test, which involves injecting fuel outside the combustion chamber during motoring. Results show that preheating of CPO lowered CPO's viscosity and provided smooth fuel flow, but did not affect the injection system, even heating up to 100 deg C. Nevertheless, heating up to such a high temperature offered no benefits in terms of engine performance. However, heating is necessary for smooth flow and to avoid fuel filter clogging. Both can be achieved by heating CPO to 60 deg C. Combustion analyses comparisons between CPO and diesel found that CPO produced a higher peak pressure of 6%, a shorter ignition delay of 2.6 deg, a lower maximum heat release rate and a longer combustion period. Over the entire load range, CPO combustion produced average CO and NO emissions that were 9.2 and 29.3% higher, respectively, compared with those from diesel combustion. (Author)

  8. Preliminary examination of oil bonding at sand surfaces and its influence on hot water separation

    Energy Technology Data Exchange (ETDEWEB)

    Hupka, J.; Budzich, M.; Miller, J.D.

    1991-12-31

    The efficiency of water-based separation of oil from sand particles is dependent on the nature of the oil-sand association and a preliminary examination of this bonding has been completed. The degree of hydration of the sand surface at the time of contact with oil was related to the subsequent efficiency of the oil-sand separation process. Variables which influence hot water separation were correlated by multiple linear regression, and a second order experimental model was obtained. The processing temperature appeared to be the most significant variable, followed by digestion time and pH. Oil-coated sand particles which had intrinsic water left on their surface during sample preparation were easily processed in hot water separation experiments, and 64 to 90% of the oil was removed. On the other hand, only 1 to 23% separation and oil recovery was possible when a calcinated sand-oil mixture was used.

  9. Preliminary examination of oil bonding at sand surfaces and its influence on hot water separation

    Energy Technology Data Exchange (ETDEWEB)

    Hupka, J.; Budzich, M.; Miller, J.D.

    1991-01-01

    The efficiency of water-based separation of oil from sand particles is dependent on the nature of the oil-sand association and a preliminary examination of this bonding has been completed. The degree of hydration of the sand surface at the time of contact with oil was related to the subsequent efficiency of the oil-sand separation process. Variables which influence hot water separation were correlated by multiple linear regression, and a second order experimental model was obtained. The processing temperature appeared to be the most significant variable, followed by digestion time and pH. Oil-coated sand particles which had intrinsic water left on their surface during sample preparation were easily processed in hot water separation experiments, and 64 to 90% of the oil was removed. On the other hand, only 1 to 23% separation and oil recovery was possible when a calcinated sand-oil mixture was used.

  10. Versatile fabrication of magnetic carbon fiber aerogel applied for bidirectional oil-water separation

    Science.gov (United States)

    Li, Yong; Zhu, Xiaotao; Ge, Bo; Men, Xuehu; Li, Peilong; Zhang, Zhaozhu

    2015-09-01

    Fabricating functional materials that can solve environmental problems resulting from oil or organic solvent pollution is highly desired. However, expensive materials or complicated procedures and unidirectional oil-water separation hamper their applications. Herein, a magnetic superhydrophobic carbon fiber aerogel with high absorption capacity was developed by one-step pyrolysis of Fe(NO3)3-coated cotton in an argon atmosphere. The obtained aerogel can selectively collect oils from oil-polluted region by a magnet bar owing to its magnetic properties and achieves fast oil-water separation for its superhydrophobicity and superoleophilicity. Furthermore, the aerogel performs recyclable oil absorption capacity even after ten cycles of oil-water separation and bears organic solvent immersion. Importantly, the obtained aerogel turns to superhydrophilic and underwater superoleophobic after thermal treatment, allowing it as a promising and efficient material for bidirectional oil-water separation and organic contaminants removal.

  11. Can Water-Injected Turbomachines Provide Cost-Effective Emissions and Maintenance Reductions?

    Science.gov (United States)

    Hendricks, Robert C.; Daggett, David L.; Shouse, Dale T.; Roquemore, William M.; Brankovic, Andreja; Ryder, Robert C., Jr.

    2011-01-01

    An investigation has been performed to evaluate the effect of water injection on the performance of the Air Force Research Laboratory (AFRL, Wright-Patterson Air Force Base (WPAFB)) experimental trapped vortex combustor (TVC) over a range of fuel-to-air and water-to-fuel ratios. Performance is characterized by combustor exit quantities: temperature and emissions measurements using rakes, and overall pressure drop, from upstream plenum to combustor exit. Combustor visualization is performed using gray-scale and color still photographs and high-frame-rate videos. A parallel investigation evaluated the performance of a computational fluid dynamics (CFD) tool for the prediction of the reacting flow in a liquid fueled combustor (e.g., TVC) that uses water injection for control of pollutant emissions and turbine inlet temperature. Generally, reasonable agreement is found between data and NO(x) computations. Based on a study assessing the feasibility and performance impact of using water injection on a Boeing 747-400 aircraft to reduce NO(x) emissions during takeoff, retrofitting does not appear to be cost effective; however, an operator of a newly designed engine and airframe might be able to save up to 1.0 percent in operating costs. Other challenges of water injection will be discussed.

  12. Techniques for Determining Small Fractions of Oil Components in the Sea Water Flow by Rotation of Vibration Plane

    Directory of Open Access Journals (Sweden)

    Eric Mucunguzi-Rugwebe

    2013-09-01

    Full Text Available In this study, the results of the effect of water-flow rate and air fraction component on intensity, I, are presented and discussed. The study which was carried out at Bergen University in Norway, presents the impact of monochromatic defects on polarization and measurements of small oil fractions of various crude oils are presented. When there was refraction, it was observed that in static sea-water &mustatic = 0.38 and in running water &muflow = 0.42 When refraction was eliminated by grafting windows in the pipe, &mustatic = 0, &muflow = 0.11 and in both cases &muflow was independent of the flow rate. Air fraction component, &alpha> = 0.12 reduced light intensity. With rate flow Q = 13.6m3/h and Q = 27.2 m3/h critical air fraction was found at &alphac = 0.18 and &alphac = 0.12 respectively. For &alphac = 0.18 up to &alpha 0.87 at Q = 13.6m3/h and &alphac = 0.12 up to &alpha = 0.78 at Q = 27.2 m3/h light intensity was found independent of &alpha. The highest rotation was found in Gullfaks crude oil, followed by Heidrun, the rotation is Statfjord crude oil was less than one in Heidrun and the least rotation was observed in 0A sg 0a rd crude oil. At 40ppm, the rotation was as follows: Gullfaks &empty = 27.0±0.20, Heidrun &empty = 23.9±0.20, Statfjord &empty = 20.0±0.20 and 0Asg 0ard &empty = 10.0±0.10. This method studys very well when small oil fractions from 5.0-70 ppm are in sea-water flow. This technique can be deployed to monitor the environment and to control the re-injected process water.

  13. Monitoring of fluid-rock interaction and CO2 storage through produced fluid sampling at the Weyburn CO2-injection enhanced oil recovery site, Saskatchewan, Canada

    International Nuclear Information System (INIS)

    The Weyburn Oil Field is a carbonate reservoir in south central Saskatchewan, Canada and is the site of a large CO2 injection project for purposes of enhanced oil recovery. The Weyburn Field, in the Mississippian Midale Formation, was discovered in 1954 and was under primary production until secondary recovery by water flood began in 1964. The reservoir comprises two units, the Vuggy and the Marly, and primary and secondary recovery are thought to only have significantly depleted the Vuggy zone, leaving the Marly with higher oil saturations. In 2000, PanCanadian Resources (now EnCana), the operator of the field, began tertiary recovery by injection of CO2 and water, primarily into the Marly. The advent of this project was an opportunity to study the potential for geological storage of CO2. Using 43 Baseline samples collected in August 2000, before CO2 injection at Weyburn, and 44 monitoring samples collected in March 2001, changes in the fluid chemistry and isotope composition have been tracked. The initial fluid distribution showed water from discovery through water flood in the Midale Formation with Cl ranging from 25,000 to 60,000 mg/L, from the NW to the SE across the Phase 1A area. By the time of Baseline sampling the produced water had been diluted to Cl of 25,000-50,000 mg/L as a result of the addition of make up water from the low TDS Blairmore Formation, but the pattern of distribution was still present. The Cl distribution is mimicked by the distribution of other dissolved ions and variables, with Ca (1250-1500 mg/L) and NH3(aq) increasing from NW to SE, and alkalinity (700-300 mg/L), resistivity, and H2S (300-100 mg/L) decreasing. Based on chemical and isotopic data, the H2S is interpreted to result from bacterial SO4 reduction. After 6 months of injection of CO2, the general patterns are changed very little, except that the pH has decreased by 0.5 units and alkalinity has increased, with values over 1400 mg/L in the NW, decreasing to 500 mg/L in the SE. Calcium has increased to range from 1250 to 1750 mg/L, but the pattern of NW-SE distribution is altered. Chemical and isotopic data suggest this change in distribution is caused by the dissolution of calcite due to water-rock reactions driven by CO2. The Baseline samples varied from -22 to -12%o ? 13C (V-PDB) for CO2 gas. The injected CO2 has an isotope ratio of -20%o. The Monitor-1 samples of produced CO2 ranged from -18 to -13%o, requiring a heavy source of C, most easily attributed to dissolution of carbonate minerals. Field measured pH had increased and alkalinity had decreased by the second monitoring trip (July 2001) to near Baseline values, suggesting continued reaction with reservoir minerals. Addition of CO2 to water-rock mixtures comprising carbonate minerals causes dissolution of carbonates and production of alkalinity. Geochemical modeling suggests dissolution is taking place, however more detail on water-oil-gas ratios needs to be gathered to obtain more accurate estimates of pH at the formation level. Geological storage of CO2 relies on the potential that, over the longer term, silicate minerals will buffer the pH, causing any added CO2 to be precipitated as calcite. Some initial modeling of water-rock reactions suggests that silica sources are available to the water resident in the Midale Formation, and that clay minerals may well be capable of acting as pH buffers, allowing injected CO2 to be stored as carbonate minerals. Further work is underway to document the mineralogy of the Midale Formation and associated units so as to define more accurately the potential for geological storage

  14. Effect of Water Stress on Physiological Parameters of oil Seed Rape (Brassica napus)

    OpenAIRE

    Ali akbar Kamgar Haghighi; Ali Shabani; alireza Spaskhah; Yahya Emami; Toraj Honar

    2009-01-01

    Oil seed rape (Brasica napus) is an important crop, which is cultivated in Iran for oil production. As a management practice deficit irrigation strategy is applied to cope with water shortages, especially during drought periods. This research was conducted to study the effect of water stress on physiological parameter of oil seed rape in the experimental research field of Collage of Agriculture (of shiraz university) during 2004- 2005 and 2005- 2006. Licord cultivar of oil seed rape was plant...

  15. Ignition and combustion behaviour of vegetable oils after injection in a constant volume combustion chamber

    International Nuclear Information System (INIS)

    The ignition and combustion behaviour of vegetable oils to be used as fuel in combustion engines was researched using a constant volume combustion chamber. The chosen vegetable oils were characterised using the two structure indices average number of carbon atoms AC and average number of double bonds ADB. The structure indices were derived from the composition of the analysed fatty acids. The performance of these two structure indices in estimating differences in fuel properties, such as density, net calorific value, elementary composition and surface tension, was shown. The structure indices were also used to explain ignition and combustion behaviour. Differences in ignition and combustion behaviour were primarily recognised in the ignition delay and the first phase of combustion (premixed combustion). No differences were observed between the vegetable oils in subsequent phases of combustion. The longer the ignition delay, the higher the share was of premixed combustion. Models for the prediction of the ignition delay were developed using ADB. The ignition delay rises with increasing ADB. Differences in AC had no significant impact on the ignition delay. Hence, vegetable oils with a high ignition quality are characterised by a low amount of double bonds. The developed models can be used for estimation of the ignition quality and combustion behaviour of unknown vegetable oils. - Highlights: • Ten vegetable oils and two vegetable oil mixtures were tested. • Two suitable structure indices were developed from the fatty acid composition to predict fuel properties. • Differences were detected in the ignition behaviour and in the first combustion phase. • Vegetable oils with short ignition delay are characterised by a low number of double bonds

  16. Comparison of residual oil cluster size distribution, morphology and saturation in oil-wet and water-wet sandstone.

    Science.gov (United States)

    Iglauer, S; Fernø, M A; Shearing, P; Blunt, M J

    2012-06-01

    We imaged an oil-wet sandstone at residual oil saturation (S(or)) conditions using X-ray micro-tomography with a nominal voxel size of (9 μm)(3) and monochromatic light from a synchrotron source. The sandstone was rendered oil-wet by ageing with a North Sea crude oil to represent a typical wettability encountered in hydrocarbon reservoirs. We measured a significantly lower S(or) for the oil-wet core (18.8%) than for an analogue water-wet core (35%). We analysed the residual oil cluster size distribution and find consistency with percolation theory that predicts a power-law cluster size distribution. We measure a power-law exponent τ=2.12 for the oil-wet core which is higher than τ for the water-wet system (τ=2.05), indicating fewer large clusters in the oil-wet case. The clusters are rough and sheet-like consistent with connectivity established through layers in the pore space and occupancy of the smaller pores; in contrast the clusters for water-wet media occupy the centres of the larger pores. These results imply less trapping of oil, but with a greater surface area for dissolution. In carbon storage applications, this suggests that in CO(2)-wet systems, capillary trapping is less significant, but that there is a large surface area for dissolution and reaction. PMID:22440726

  17. ANAIS experiment : consequences of water injection on a molten corium pool in the lower head

    International Nuclear Information System (INIS)

    The context of this work is In Vessel Corium Retention. In the situation that is considered here, a corium pool is formed in the lower head. A metal layer is supposed to be located on top of an oxidic pool. The lower head is externally cooled by water under natural circulation. When water is absent from the primary circuit, the surface of the metal layer is molten. Due to the elevated heat flux that is delivered by the corium pool to the vessel, the thickness of the steel in the lower head is reduced to some centimetres. Therefore, the lower head is no more able to withstand elevated pressures in the primary circuit. The ANAIS experiment is dedicated to the study of the corium-water interaction in the case of reflooding over a stratified metal-oxide pool. In the ANAIS experiment, water is injected on an overheated (?1800 .deg. C) molten steel layer, under controlled conditions. Heating in the metal is maintained under water injection while the extracted heat flux under steady state is about 1 MW/m2 (similar to the reactor situation in case of reflooding). The results of the tests that are presented in the paper show that the steel-water interaction leads to very different final situations depending on the injection mode and water velocity. It should be noted that no steam explosion was observed in any case

  18. Development of Polymer Gel Systems to Improve Volumetric Sweep and Reduce Producing Water/Oil Ratios

    Energy Technology Data Exchange (ETDEWEB)

    G. Paul Willhite; Stan McCool; Don W. Green; Min Cheng; Feiyan Chen

    2005-12-31

    Gelled polymer treatments are applied to oil reservoirs to increase oil production and to reduce water production by altering the fluid movement within the reservoir. This report describes the results of a 42-month research program that focused on the understanding of gelation chemistry and the fundamental mechanisms that alter the flows of oil and water in reservoir rocks after a gel treatment. Work was conducted on a widely applied system in the field, the partially hydrolyzed polyacrylamide-chromium acetate gel. Gelation occurs by network formation through the crosslinking of polyacrylamide molecules as a result of reaction with chromium acetate. Pre-gel aggregates form and grow as reactions between chromium acetate and polyacrylamide proceed. A rate equation that describes the reaction between chromium acetate and polymer molecules was regressed from experimental data. A mathematical model that describes the crosslinking reaction between two polymer molecules as a function of time was derived. The model was based on probability concepts and provides molecular-weight averages and molecular-weight distributions of the pre-gel aggregates as a function of time and initial system conditions. Average molecular weights of pre-gel aggregates were measured as a function of time and were comparable to model simulations. Experimental methods to determine molecular weight distributions of pre-gel aggregates were unsuccessful. Dissolution of carbonate minerals during the injection of gelants causes the pH of the gelant to increase. Chromium precipitates from solution at the higher pH values robbing the gelant of crosslinker. Experimental data on the transport of chromium acetate solutions through dolomite cores were obtained. A mathematical model that describes the transport of brine and chromium acetate solutions through rocks containing carbonate minerals was used to simulate the experimental results and data from literature. Gel treatments usually reduce the permeability to water to a greater extent than the permeability to oil is reduced. This phenomenon is referred to as disproportionate permeability reduction (DPR). Flow experiments were conducted in sandpacks to determine the effect of polymer and chromium concentrations on DPR. All gels studied reduced the permeability to water by a greater factor than the factor by which the oil permeability was reduced. Greater DPR was observed as the concentrations of polymer and chromium were increased. A conceptual model of the mechanisms responsible for DPR is presented. Primary features of the model are (1) the development of flow channels through the gel by dehydration and displacement of the gel and by re-connection of pre-treatment, residual oil volume and (2) high flow resistance in the channels during water flow is caused by significant saturations of oil remaining in the channels. A similar study of DPR was conducted in Berea sandstone cores. Both oil and water permeabilities were reduced by much smaller factors in Berea sandstone cores than in similar treatments in sandpacks. Poor maturation of the gelant in the Berea rock was thought to be caused by fluid-rock interactions that interfered with the gelation process.

  19. Flow velocity effect on the corrosion/erosion in water injection systems

    International Nuclear Information System (INIS)

    The main causes of fails at water injection lines on the secondary petroleum recovery systems are related with corrosion/erosion problems which are influenced by the flow velocity, the presence of dissolved oxygen, solids in the medium and the microorganisms proliferation. So too, this corrosion process promotes the suspended solids generation which affects the water quality injected, causing wells tamponage and loss of injectivity, with the consequent decrease in the crude production. This situation has been impacted in meaning order at the production processes of an exploration enterprise which utilizes the Maracaibo lake as water resource for their injection by pattern projects. Stating that, it was developed a study for determining in experimental order the effect of flow velocity on the corrosion/erosion process joined to the presence of dissolved oxygen which allows to determine the optimum range of the said working velocity for the water injection systems. This range is defined by critical velocities of bio layers deposition and erosion. They were realized simulation pilot tests of the corrosion standard variables, concentration of dissolved oxygen and fluid velocity in the injection systems with filtered and non filtered water. For the development of these tests it was constructed a device which allows to install and expose cylindrical manometers of carbon steel according to predetermined conditions which was obtained the necessary information to make correlations the results of these variables. Additionally, they were determined the mathematical models that adjusts to dynamical behavior of the corrosion/erosion process, finding the optimum range of the flow velocity for the control of this process, being necessary to utilize the following techniques: Scanning Electron Microscopy (SEM), X-ray dispersion analysis (EDX) for encourage the surface studies. They were effected morphological analysis of the surfaces studies and the values were determined of corrosion standards for different conditions essayed (filtered and non filtered water). With the basis of the obtained results, it was concluded that for water injection systems with oxygen concentrations greater than 1.0 ppm the optimum operation range of the flow velocity is between 2 and 4 ft/sec, however for oxygen concentrations less than 0.05 ppm the upper limit can extend until 8.0 ft/sec. It is important to emphasize that the bio layers morphology generated during the tests to be similar so much for the filtered as non filtered water, however it was determined that the standard corrosion is directly proportional to flow velocity, even as the process is leading by the dissolved oxygen concentration. (Author)

  20. Oil and Water Don't Mix: The Gulf Coast Oil Disaster as a Preschool Social Studies Lesson

    Science.gov (United States)

    Kruse, Tricia

    2010-01-01

    On April 20, 2010, an offshore oil-drilling platform exploded, spilling millions of gallons of oil into the gulf. From Louisiana to the Gulf Coast of Florida the effects are being felt by fisherman, shrimpers, dive charters, and other hardworking folks who depend on the water for their livelihood. But there is another population in these coastal…

  1. Solubilizing excipients in oral and injectable formulations.

    Science.gov (United States)

    Strickley, Robert G

    2004-02-01

    A review of commercially available oral and injectable solution formulations reveals that the solubilizing excipients include water-soluble organic solvents (polyethylene glycol 300, polyethylene glycol 400, ethanol, propylene glycol, glycerin, N-methyl-2-pyrrolidone, dimethylacetamide, and dimethylsulfoxide), non-ionic surfactants (Cremophor EL, Cremophor RH 40, Cremophor RH 60, d-alpha-tocopherol polyethylene glycol 1000 succinate, polysorbate 20, polysorbate 80, Solutol HS 15, sorbitan monooleate, poloxamer 407, Labrafil M-1944CS, Labrafil M-2125CS, Labrasol, Gellucire 44/14, Softigen 767, and mono- and di-fatty acid esters of PEG 300, 400, or 1750), water-insoluble lipids (castor oil, corn oil, cottonseed oil, olive oil, peanut oil, peppermint oil, safflower oil, sesame oil, soybean oil, hydrogenated vegetable oils, hydrogenated soybean oil, and medium-chain triglycerides of coconut oil and palm seed oil), organic liquids/semi-solids (beeswax, d-alpha-tocopherol, oleic acid, medium-chain mono- and diglycerides), various cyclodextrins (alpha-cyclodextrin, beta-cyclodextrin, hydroxypropyl-beta-cyclodextrin, and sulfobutylether-beta-cyclodextrin), and phospholipids (hydrogenated soy phosphatidylcholine, distearoylphosphatidylglycerol, L-alpha-dimyristoylphosphatidylcholine, L-alpha-dimyristoylphosphatidylglycerol). The chemical techniques to solubilize water-insoluble drugs for oral and injection administration include pH adjustment, cosolvents, complexation, microemulsions, self-emulsifying drug delivery systems, micelles, liposomes, and emulsions. PMID:15032302

  2. Investigating New Innovations to Detect Small Salt-Water Fraction Component in Mineral Oil and Small Oil Fraction Component in Salt-Water Projects

    OpenAIRE

    E.R.R. Mucunguzi-Rugwebe; E.A. Hammer; Y. Kaahwa

    2011-01-01

    The main purpose of this study is to present the key findings on the effects of small salt-water fraction component, β expressed in volume % per L on rotation are presented in the temperature range of 19.0 to 24.0ºC. It was found that rotations in oils with low boiling point known as light oils like Final diesel No. 2 were greater than the rotations which occurred in oils with high boiling point called heavy oils such as Esso diesel. Small oil fraction components, γs expressed in mL/L of salt...

  3. Consequences of water injection into high-temperature lithium-lead alloy breeder material

    International Nuclear Information System (INIS)

    A fusion safety experiment was conducted to determine the consequences of water injection into high-temperature lithium-lead alloy under postulated reactor accident conditions. The temperature and pressure response, fraction of water reacted, quantity of hydrogen produced, and behavior of radioactive species associated with the use of this alloy as a breeder material were determined. The reaction products were identified and the aerosol was characterized for particle size, chemical composition, and deposition rate. The water injection was shown to be self limiting for a blanket module designed to withstand the pressure of the water coolant. Radioactive doses associated with the aerosol release from a high-temperature alloy breeder module were determined to be several orders of magnitude below the dose limit for acute health effects. The results were compared to previous experiments and recommendations were made. 5 refs., 7 figs., 6 tabs

  4. Janus particles at the planar water-oil interface

    Science.gov (United States)

    Chen, Qian; Jiang, Shan; Granick, Steve

    2008-03-01

    Amphiphilic Janus particles (hydrophobic on one side, hydrophilic on the other) were placed at the planar water-oil interface at various surface coverage and found to self-assemble into two-dimensional crystals with long-range hexagonal order, which we studied by fluorescence and phase contrast microscopy. Surprising dependence is observed not only on the surface chemical makeup of the hydrophilic side but also on the Janus balance (i.e. the relative sizes of hydrophobic and hydrophilic portions), which is analogous to the HLB balance that characterizes molecular surfactants.

  5. Gasification of diesel oil in supercritical water for fuel cells

    Science.gov (United States)

    Pinkwart, Karsten; Bayha, Thomas; Lutter, Wolfgang; Krausa, Michael

    Experiments have demonstrated the reforming of hydrocarbons in supercritical water. The hydrocarbons were reformed in a continuously operated tubular V4A reactor. The influences of four different commercial steam reforming catalysts were analysed. The experimental results showed that n-decane can be converted to a hydrogen-rich gas. Furthermore, experiments with diesel oil showed the possibility of fuel conversion at low temperature with commercial steam reforming catalysts. Low temperatures and the use of catalysts lead to inhibition of coke formation during the process. The supercritical reforming offers the possibility of a new low temperature hydrocarbon conversion process to hydrogen for fuel cell applications.

  6. Orange oil/water nanoemulsions prepared by high pressure homogenizer

    International Nuclear Information System (INIS)

    The objective of this work was to use the high-pressure homogenizer (HPH) to prepare stable oil/water nanoemulsions presenting narrow particle size distribution. The dispersions were prepared using nonionic surfactants based on ethoxylated ether. The size and distribution of the droplets formed, along with their stability, were determined in a Zetasizer Nano ZS particle size analyzer. The stability and the droplet size distribution in these systems do not present the significant differences with the increase of the processing pressure in the HPH). The processing time can promote the biggest dispersion in the size of particles, thus reducing its stability. (author)

  7. A facile method to fabricate functionally integrated devices for oil/water separation

    Science.gov (United States)

    An, Qi; Zhang, Yihe; Lv, Kaikai; Luan, Xinglong; Zhang, Qian; Shi, Feng

    2015-02-01

    In this paper, we present a facile method for the fabrication of a functionally integrated device, which has the multi-functions of the oil-containment boom, oil-sorption material, and water/oil-separating film, through a single immersion step in an ethanol solution of stearic acid. During the simple immersion process, the two dominant factors of superhydrophobicity, surface roughness and low-surface-energy coatings, could be accomplished simultaneously. The as-prepared functionally integrated device with superhydrophobicity/superoleophilicity displayed a lower density than that of water, such that it could float on water and act as an oil-containment boom; an efficient oil-absorbing property, which was attributed to the capillary effect caused by micrometer-sized pore structures and could be used as oil-sorption materials; a high oil/water separating efficiency which was suitable for water/oil-separating film. In this way, the functions of oil collection, absorption, and water/oil separation are integrated into a single device, and these functions could work independently, reducing the cost in terms of energy consumption and being versatile for a wide range of applications.In this paper, we present a facile method for the fabrication of a functionally integrated device, which has the multi-functions of the oil-containment boom, oil-sorption material, and water/oil-separating film, through a single immersion step in an ethanol solution of stearic acid. During the simple immersion process, the two dominant factors of superhydrophobicity, surface roughness and low-surface-energy coatings, could be accomplished simultaneously. The as-prepared functionally integrated device with superhydrophobicity/superoleophilicity displayed a lower density than that of water, such that it could float on water and act as an oil-containment boom; an efficient oil-absorbing property, which was attributed to the capillary effect caused by micrometer-sized pore structures and could be used as oil-sorption materials; a high oil/water separating efficiency which was suitable for water/oil-separating film. In this way, the functions of oil collection, absorption, and water/oil separation are integrated into a single device, and these functions could work independently, reducing the cost in terms of energy consumption and being versatile for a wide range of applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00026b

  8. Assessment of electrical conductivity as a surrogate measurement for water samples in a tracer injection experiment

    Science.gov (United States)

    The transport behavior of solutes in streams depends on chemical, physical, biological, and hydrodynamic processes. Although it is a very complex system, it is known that this behavior is greatly influenced by surface and subsurface flows. For this reason, tracer injection in the water flows is one ...

  9. Analysis of Primary External Cooling Water Injection Mass during Extended SBO in Wolsong No.1

    International Nuclear Information System (INIS)

    The targets of severe accident management are to remove continuous core heat, to maintain containment integrity, and to minimize fission product (FP) release into the environment. The strategy for ceaseless removal of core heat is a key method, because severe accident progression can be mitigated and FP released outside fuels can be scrubbed due to cover fuels with water. One of government requirements according to inspected results of all nuclear power plants in Korea following Fukushima accident is to install external cooling water injection paths for core cooling. The purpose of this paper is to analyze mass of primary external cooling water injection which is going to be installed in Wolsong No.1. The purpose of the analysis is to identify necessary cooling water mass during seven days. Six injections for the analysis period need to remove primary core heat, and total mass for six injections is about 1370 tones. ECWIL is useful for severe accident mitigation except containment failure. Methods for decrease in containment pressure with ECWIL are needed for preventing from containment failure

  10. Injection and Combustion of RME with Water Emulsions in a Diesel Engine

    Directory of Open Access Journals (Sweden)

    J. Cisek

    2010-01-01

    Full Text Available This paper presents ways of using the fully-digitised triggerable AVL VideoScope 513D video system for analysing the injection and combustion inside a diesel engine cylinder fuelled by RME with water emulsions.The research objects were: standard diesel fuel, rapeseed methyl ester (RME and RME water emulsions. With the aid of a helical flow reactor, stable emulsions with the water fraction up to 30 % weight were obtained, using an additive to prevent the water from separating out of the emulsion.An investigation was made of the effect of the emulsions on exhaust gas emissions (NOX, CO and HC, particulate matter emissions, smoke and the fuel consumption of a one-cylinder HD diesel engine with direct injection. Additionally, the maximum cylinder pressure rise was calculated from the indicator diagram. The test engine was operated at a constant speed of 1 600