WorldWideScience

Sample records for water injection oil

  1. Effect of capillary number on the oil recovery using oil-water emulsion injection in core flooding experiments

    Guillen Nunez, Victor Raul; Carvalho, Marcio da Silveira [Pontifical Catholic University of Rio de Janeiro (PUC-Rio), RJ (Brazil). Dept. of Mechanical Engineering], E-mail: msn@puc-rio.br; Basante, Vladimir Alvarado [University of Wyoming, Laramie, WY (United States). Dept. of Chemical/Petroleum Engineering], E-mail: valvard@uwyo.edu

    2010-07-01

    The Water injection flooding is a common method to improve reservoir sweep and pressure maintenance. The heavy-oil-recovery efficiency is in part limited by the high water-to-oil mobility ratio. Several enhanced oil recovery methods are being developed as more efficient alternatives to water flooding. Dispersion injection, in particular oil-water emulsion injection, has been tried with relative success as an enhanced oil recovery method, but the technique is not fully developed or understood. If emulsion injection proves to be an effective EOR method, its use would bring the added benefit of disposing produced water with small oil content that could be modified to serve as the injected oil-water emulsion. The use of such methods requires a detailed analysis of the different flow regimes of emulsions through the porous space of a reservoir rock. If the drop size of the disperse phase is of the same order of magnitude as the pore size, the drops may agglomerate and partially block water flow through pores. This flow regime may be used to control the mobility of the injected liquid, leading to higher recovery factor. We have shown in recent experiments of oil displacement in a sandstone core that, the oil recovery factor could be raised from approximately 40 %, obtained with water injection only, up to approximately 75 % by alternating water and emulsion injection. Although these results clearly show the improvement in the recovery factor, the mechanisms responsible for the phenomenon have not been clearly elucidated. In this work, two sandstone cores were used to demonstrate the effect of flow rate (capillary number) on the mobility control by emulsion injection. Figure 1 shows a schematic representation of the experiment set-up. The experiments show that raising the flow rate by a factor of 10 (0.03 ml/min to 0.3 ml/min), the oil recovered factor decreases considerably. (author)

  2. An additive to well injection water for increasing the oil yield

    Absov, M.T.; Abutalybov, M.G.; Aslanov, S.M.; Movruzov, E.N.; Musaev, R.A.; Tairov, N.D.

    1979-03-05

    This invention relates to oil production using flooding. The goal of this invention is to increase the oil yield of a producing formation. This is achieved by using a saponin solution as an additive to the water injected into the formation (with related organic substances which are complex organic nitrogen-free compounds from the glycoside group; these substances yield solution that foam easily with an agitation). The use of saponin facilitates good solubility in fresh, sea and formation (alkaline and hard) waters, as well as the absence of sediment formation during dissolution, low solid adsorption, and a significant decrease in the surface water tension on the oil-water boundary. The aqueous saponin solution makes it possible to decrease the production cost of oil, as well as to decrease the development time of the fields and the volume of water injected into the formation and to significantly increase the oil yield.

  3. Experimental Investigation on Dilation Mechanisms of Land-Facies Karamay Oil Sand Reservoirs under Water Injection

    Lin, Botao; Jin, Yan; Pang, Huiwen; Cerato, Amy B.

    2016-04-01

    The success of steam-assisted gravity drainage (SAGD) is strongly dependent on the formation of a homogeneous and highly permeable zone in the land-facies Karamay oil sand reservoirs. To accomplish this, hydraulic fracturing is applied through controlled water injection to a pair of horizontal wells to create a dilation zone between the dual wells. The mechanical response of the reservoirs during this injection process, however, has remained unclear for the land-facies oil sand that has a loosely packed structure. This research conducted triaxial, permeability and scanning electron microscopy (SEM) tests on the field-collected oil sand samples. The tests evaluated the influences of the field temperature, confining stress and injection pressure on the dilation mechanisms as shear dilation and tensile parting during injection. To account for petrophysical heterogeneity, five reservoir rocks including regular oil sand, mud-rich oil sand, bitumen-rich oil sand, mudstone and sandstone were investigated. It was found that the permeability evolution in the oil sand samples subjected to shear dilation closely followed the porosity and microcrack evolutions in the shear bands. In contrast, the mudstone and sandstone samples developed distinct shear planes, which formed preferred permeation paths. Tensile parting expanded the pore space and increased the permeability of all the samples in various degrees. Based on this analysis, it is concluded that the range of injection propagation in the pay zone determines the overall quality of hydraulic fracturing, while the injection pressure must be carefully controlled. A region in a reservoir has little dilation upon injection if it remains unsaturated. Moreover, a cooling of the injected water can strengthen the dilation potential of a reservoir. Finally, it is suggested that the numerical modeling of water injection in the Karamay oil sand reservoirs must take into account the volumetric plastic strain in hydrostatic loading.

  4. Managing Injected Water Composition To Improve Oil Recovery: A Case Study of North Sea Chalk Reservoirs

    Zahid, Adeel; Shapiro, Alexander; Stenby, Erling Halfdan;

    2012-01-01

    with the following injecting fluids: distilled water, brine with and without sulfate, and brine containing only magnesium ions. The total oil recovery, recovery rate, and interaction mechanisms of ions with rock were studied for different injecting fluids at different temperatures and wettability...... only the injection brine composition but also the formation water composition affected the oil recovery at high temperatures from the Stevns Klint chalk rock.......In recent years, many core displacement experiments of oil by seawater performed on chalk rock samples have reported SO42–, Ca2+, and Mg2+ as potential determining ions for improving oil recovery. Most of these studies were carried out with outcrop chalk core plugs. The objective of this study is...

  5. Modeling Reservoir Formation Damage due to Water Injection for Oil Recovery

    Yuan, Hao

    2010-01-01

    The elliptic equation for non-Fickian transport of suspension in porous media is applied to simulate the reservoir formation damage due to water injection for oil recovery. The deposition release (erosion of reservoir formation) and the suspension deposition (pore plugging) are both taken into...... account. 1-D numerical simulations are carried out to reveal the erosion of reservoir formation due to water injection. 2-D numerical simulations are carried out to obtain the suspension and deposition profiles around the injection wells. These preliminary results indicate the non-Fickian behaviors of...

  6. Clarification of injection water for oil field by using nuclear microfilters

    Suspended solids and sulphate reducing bacteria (SRB) were removed from the injection water of oil fields by using nuclear track microfilters. The grain-size distributions of suspended solids, the effectiveness of SRB elimination and the flow-rate characteristics have been measured. A comparison of the theoretical removal rates with the experimental values is given

  7. Development and testing of the U.S. Coast Guard water injection enhanced viscous oil pumping system (VOPS)

    Loesch, R. [United States Coast Guard Headquarters, Washington, DC (United States). Ocean Engineering Div; Moffatt, C. [PCCI-GPC, Williamsburg, VA (United States); Knutson, S. [United States Thirteenth Coast Guard District, Seattle, WA (United States)

    2000-07-01

    A series of workshops related to marine oil spills were held to find ways to improve the viscous oil pumping capability of the U.S. Coast Guard, U.S. Navy and industry at minimal costs and without increasing existing inventories. A prototype viscous oil pumping/off-loading system which consists of a water injection annulus flange mounted on the discharge end of a Desmi DOP-250 positive displacement screw pump. The annulus sends small amounts of water at high pressure into the oil stream creating a water ring that reduces the friction between the viscous oil and the hose wall. This reduces the high pressure losses found in viscous ship-to-ship or ship-to-shore oil transfer operations. It was determined that water injection significantly increases both the quantity of very viscous product and the distance it can be pumped. Other operational procedures were also developed. This included ensuring that water is injected first through the hose to prelubricate the system before pumping the oil. A method to slowly increase the flow rate of oil discharge so as not to choke the water injection was also developed. 6 refs., 8 figs.

  8. Influence of Steam Injection and Water-in-Oil Emulsions on Diesel Fuel Combustion Performance

    Sung, Meagan

    Water injection can be an effective strategy for reducing NOx because water's high specific heat allows it to absorb heat and lower system temperatures. Introducing water as an emulsion can potentially be more effective at reducing emissions than steam injection due to physical properties (such as microexplosions) that can improve atomization and increase mixing. Unfortunately, the immiscibility of emulsions makes them difficult to work with so they must be mixed properly. In this effort, a method for adequately mixing surfactant-free emulsions was established and verified using high speed cinematography. As the water to fuel mass ratio (W/F) increased, emulsion atomization tests showed little change in droplet size and spray angle, but a shorter overall breakup point. Dual-wavelength planar laser induced fluorescence (D-PLIF) patternation showed an increase in water near the center of the spray. Steam injection flames saw little change in reaction stability, but emulsion flames experienced significant losses in stability that limited reaction operability at higher W/F. Emulsions were more effective at reducing NOx than steam injection, likely because of liquid water's latent heat of vaporization and the strategic injection of water into the flame core. OH* chemiluminescence showed a decrease in heat release for both methods, though the decrease was greater for emulsions. Both methods saw decreases in flame length for W/F 0.15. Lastly, flame imaging showed a shift towards a redder appearance with the addition or more water, as well as a reduction in flame flares.

  9. Enhanced Oil Recovery by CO2 Injection in Fractured Reservoirs. Emphasis on Wettability and Water Saturation

    Steinsbø, Marianne

    2016-01-01

    The work presented in this Thesis is part of ongoing research on Enhanced Oil Recovery (EOR) in fractured reservoirs within the reservoir physics research group at the Department of Physics and Technology, University of Bergen. This research group has previously identified chemical EOR to alter wettability, miscible gas injection and mobility control by foam and polymers to be the most promising methods for applications on the Norwegian Continental Shelf. In this Thesis a series of labor...

  10. An injectable hybrid nanoparticle-in-oil-in-water submicron emulsion for improved delivery of poorly soluble drugs

    Wang, Shuo; Wang, Hua; Liang, Wenquan; Huang, Yongzhuo

    2012-04-01

    Poor drugability problems are commonly seen in a class of chemical entities with poor solubility in water and oil, and moreover, physicochemical instability of these compounds poses extra challenges in design of dosage forms. Such problems contribute a significant high failure rate in new drug development. A hybrid nanoparicle-in-oil-in-water (N/O/W) submicron emulsion was proposed for improved delivery of poorly soluble and unstable drugs (e.g., dihydroartemisinin (DHA)). DHA is known for its potent antimalarial effect and antitumor activity. However, its insolubility and instability impose big challenges for formulations, and so far, no injectable dosage forms are clinically available yet. Therefore, an injectable DHA N/O/W system was developed. Unlike other widely-explored systems (e.g., liposomes, micelles, and emulsions), in which low drug load and only short-term storage are often found, the hybrid submicron emulsion possesses three-fold higher drug-loading capacity than the conventional O/W emulsion. Of note, it can be manufactured into a freeze-drying form and can render its storage up to 6 months even in room temperature. The in vivo studies demonstrated that the PK profiles were significantly improved, and this injectable system was effective in suppressing tumor growth. The strategy provides a useful solution to effective delivery of such a class of drugs.

  11. Pre-injection Comparison of Methods for Sampling Formation Water and Associated Gas from a Monitoring Well at a Carbon Dioxide Injection Site, Citronelle Oil Field, Alabama

    Conaway, C.; Thordsen, J. J.; Manning, M. A.; Cook, P. J.; Abedini, A. A.; Trautz, R. C.; Thomas, B.; Kharaka, Y. K.

    2012-12-01

    The chemical composition of formation water and associated gases from the lower Cretaceous Paluxy Formation was determined using four different sampling methods at a well in the Citronelle Oil Field, Alabama, a site that will be used for a carbon dioxide injection experiment. Prior to each of the two sampling periods, the well was cleaned from the drilling fluids and KCl solutions by producing at least three pore volumes of formation water. Accurate measurements of the chemical composition of groundwater or formation water, including dissolved gasses, and gas samples is essential in understanding subsurface geochemical processes occurring as a result of geologic carbon dioxide injection, which is used for enhanced oil recovery (EOR) and has been proposed as a means of carbon sequestration. In this study, formation water and gas samples for geochemical analyses were obtained from well D-9-8 #2 at Citronelle using nitrogen lift, submersible pump, U-Tube, and a downhole (Kuster) sampler. Field chemical analyses included electrical conductivity, hydrogen sulfide, alkalinity, and pH, and laboratory analyses included major, minor and trace elements by mass spectrometry and ion chromatography, dissolved carbon, organic acid anions, free and dissolved gas species. The formation water obtained from this well is a Na-Ca-Cl brine with a salinity of 160,000 and 200,000 mg/L total dissolved solids (TDS). Differences were evident between sampling methodologies, particularly in pH, Fe and alkalinity measurements. The results of the comparison demonstrate the difficulty and importance of preserving volatile analytes in samples, with the downhole sampler and U-Tube system performing most favorably in this aspect.

  12. Characterization and Alteration of Wettability States of Alaskan Reserviors to Improve Oil Recovery Efficiency (including the within-scope expansion based on Cyclic Water Injection - a pulsed waterflood for Enhanced Oil Recovery)

    Abhijit Dandekar; Shirish Patil; Santanu Khataniar

    2008-12-31

    Numerous early reports on experimental works relating to the role of wettability in various aspects of oil recovery have been published. Early examples of laboratory waterfloods show oil recovery increasing with increasing water-wetness. This result is consistent with the intuitive notion that strong wetting preference of the rock for water and associated strong capillary-imbibition forces gives the most efficient oil displacement. This report examines the effect of wettability on waterflooding and gasflooding processes respectively. Waterflood oil recoveries were examined for the dual cases of uniform and non-uniform wetting conditions. Based on the results of the literature review on effect of wettability and oil recovery, coreflooding experiments were designed to examine the effect of changing water chemistry (salinity) on residual oil saturation. Numerous corefloods were conducted on reservoir rock material from representative formations on the Alaska North Slope (ANS). The corefloods consisted of injecting water (reservoir water and ultra low-salinity ANS lake water) of different salinities in secondary as well as tertiary mode. Additionally, complete reservoir condition corefloods were also conducted using live oil. In all the tests, wettability indices, residual oil saturation, and oil recovery were measured. All results consistently lead to one conclusion; that is, a decrease in injection water salinity causes a reduction in residual oil saturation and a slight increase in water-wetness, both of which are comparable with literature observations. These observations have an intuitive appeal in that water easily imbibes into the core and displaces oil. Therefore, low-salinity waterfloods have the potential for improved oil recovery in the secondary recovery process, and ultra low-salinity ANS lake water is an attractive source of injection water or a source for diluting the high-salinity reservoir water. As part of the within-scope expansion of this project

  13. Fluid injection for salt water disposal and enhanced oil recovery as a potential problem for the WIPP: Proceedings of a June 1995 workshop and analysis

    The Waste Isolation Pilot Plant (WIPP) is a facility of the U.S. Department of Energy (DOE), designed and constructed for the permanent disposal of transuranic (TRU) defense waste. The repository is sited in the New Mexico portion of the Delaware Basin, at a depth of 655 meters, in the salt beds of the Salado Formation. The WIPP is surrounded by reserves and production of potash, crude oil and natural gas. In selecting a repository site, concerns about extensive oil field development eliminated the Mescalero Plains site in Chaves County and concerns about future waterflooding in nearby oil fields helped eliminate the Alternate II site in Lea County. Ultimately, the Los Medanos site in Eddy County was selected, relying in part on the conclusion that there were no oil reserves at the site. For oil field operations, the problem of water migrating from the injection zone, through other formations such as the Salado, and onto adjacent property has long been recognized. In 1980, the DOE intended to prohibit secondary recovery by waterflooding in one mile buffer surrounding the WIPP Site. However, the DOE relinquished the right to restrict waterflooding based on a natural resources report which maintained that there was a minimal amount of crude oil likely to exist at the WIPP site, hence waterflooding adjacent to the WIPP would be unlikely. This document presents the workshop presentations and analyses for the fluid injection for salt water disposal and enhanced oil recovery utilizing fluid injection and their potential effects on the WIPP facility

  14. Fluid injection for salt water disposal and enhanced oil recovery as a potential problem for the WIPP: Proceedings of a June 1995 workshop and analysis

    Silva, M.K.

    1996-08-01

    The Waste Isolation Pilot Plant (WIPP) is a facility of the U.S. Department of Energy (DOE), designed and constructed for the permanent disposal of transuranic (TRU) defense waste. The repository is sited in the New Mexico portion of the Delaware Basin, at a depth of 655 meters, in the salt beds of the Salado Formation. The WIPP is surrounded by reserves and production of potash, crude oil and natural gas. In selecting a repository site, concerns about extensive oil field development eliminated the Mescalero Plains site in Chaves County and concerns about future waterflooding in nearby oil fields helped eliminate the Alternate II site in Lea County. Ultimately, the Los Medanos site in Eddy County was selected, relying in part on the conclusion that there were no oil reserves at the site. For oil field operations, the problem of water migrating from the injection zone, through other formations such as the Salado, and onto adjacent property has long been recognized. In 1980, the DOE intended to prohibit secondary recovery by waterflooding in one mile buffer surrounding the WIPP Site. However, the DOE relinquished the right to restrict waterflooding based on a natural resources report which maintained that there was a minimal amount of crude oil likely to exist at the WIPP site, hence waterflooding adjacent to the WIPP would be unlikely. This document presents the workshop presentations and analyses for the fluid injection for salt water disposal and enhanced oil recovery utilizing fluid injection and their potential effects on the WIPP facility.

  15. Numerical Simulation of Geostress and Pore Pressure Evolution around Oil or Water Well under Different Injection-Production Ratio

    Liu Jian-jun

    2013-01-01

    Full Text Available Geostress evolution in the process of oil field development can directly influence wellbore stability. Therefore, it is significant to strengthen the research of the evolution rule for well drilling and casing protection. Considering the interaction between reservoir seepage and stress fields, a mathematical model to characterize the stress evolution around wellbore was built. Using the FEM Software ABAQUS, through numerical simulation, the authors studied the evolution features of pore pressure and stress changes with time under different injection-production ratio, which disclosed the dynamic change regulation of pore pressure and stress of surrounding rock nearby the injection and production wells. These results may have implications in the treatment of wellbore stability and optimizing the injection and production processes during oil and gas production.

  16. Reactor water injection facility

    A steam turbine and an electric generator are connected by way of a speed convertor. The speed convertor is controlled so that the number of rotation of the electric generator is constant irrespective of the speed change of the steam turbine. A shaft coupler is disposed between the turbine and the electric generator or between the turbine and a water injection pump. With such a constitution, the steam turbine and the electric generator are connected by way of the speed convertor, and since the number of revolution of the electric generator is controlled to be constant, the change of the number of rotation of the turbine can be controlled irrespective of the change of the number of rotation of the electric generator. Accordingly, the flow rate of the injection water from the water injection pump to a reactor pressure vessel can be controlled freely thereby enabling to supply stable electric power. (T.M.)

  17. Electrical Excitation of Water Drops in Oil

    Penne, Torstein Eidsnes

    2015-01-01

    Water drops in oil are excited by the use of electric fields. This thesis looks at the behavior of water drops subjected to different fields. These fields vary in shape and strength. The motivation behind is separation of oil and water after oil extraction with water injection, by using electric fields for electrocoalescence.

  18. Applications of advanced petroleum production technology and water alternating gas injection for enhanced oil recovery - Mattoon Oil Field, Illinois. Final report

    Baroni, M. [American Oil Recovery, Inc., Decatur, IL (United States)

    1995-09-01

    Phase I results of a C0{sub 2}-assisted oil recovery demonstration project in selected Cypress Sandstone reservoirs at Mattoon Field, Illinois are reported. The design and scope of this project included C0{sub 2} injectvity testing in the Pinnell and Sawyer units, well stimulaton treatments with C0{sub 2} in the Strong unit and infill well drilling, completion and oil production. The field activities were supported by extensive C0{sub 2}-oil-water coreflood experiments, CO{sub 2} oil-phase interaction experiments, and integrated geologic modeling and reservoir simulations. The progress of the project was made public through presentations at an industry meeting and a DOEs contractors` symposium, through quarterly reports and one-to-one consultations with interested operators. Phase II of this project was not implemented. It would have been a water-alternating-gas (WAG) project of longer duration.

  19. Aerobic biological treatment of produced water from oil production

    Knutsen, Trine

    2011-01-01

    Produced water is the largest waste stream generated from the oil and gas industry. Water of varying quantities is always produced along with oil and has to be separated from the oil. The amount of produced water generated generally increases as the oil field gets older, because more water has to be injected into the reservoir in order to force the oil out. The produced water can either be injected back into the reservoirs or be treated, typically by floatation units or hydrocy...

  20. Oil injection into the blast furnace

    Dongsheng Liao; Mannila, P.; Haerkki, J.

    1997-12-31

    Fuel injection techniques have been extensively used in the commercial blast furnaces, a number of publications concerning the fuels injection have been reported. This present report only summarizes the study achievements of oil injection due to the research need the of authors, it includes the following parts: First, the background and the reasons reducing coke rate of oil injection are analyzed. Reducing coke rate and decreasing the ironmaking costs are the main deriving forces, the contents of C, H and ash are direct reasons reducing coke rate. It was also found that oil injection had great effects on the state of blast furnace, it made operation stable, center gas flow develop fully, pressure drop increase, descent speed of burden materials decrease and generation of thermal stagnation phenomena, the quality of iron was improved. Based on these effects, as an ideal mean, oil injection was often used to adjust the state of blast furnace. Secondly, combustion behavior of oil in the raceway and tuyere are discussed. The distribution of gas content was greatly changed, the location of CO, H{sub 2} generation was near the tuyere; the temperature peak shifts from near the raceway boundary to the tuyere. Oxygen concentration and blast velocity were two important factors, it was found that increasing excess oxygen ratio 0.9 to 1.3, the combustion time of oil decreases 0.5 msec, an increase of the blast velocity results in increasing the flame length. In addition, the nozzle position and oil rate had large effects on the combustion of oil. Based on these results, the limit of oil injection is also discussed, soot formation is the main reason limiting to further increase oil injection rate, it was viewed that there were three types of soot which were generated under blast furnace operating conditions. The reason generating soot is the incomplete conversion of the fuel. Finally, three methods improving combustion of oil in the raceway are given: Improvement of oil

  1. Economics of water injected air screw compressor systems

    Venu Madhav, K.; Kovačević, A.

    2015-08-01

    There is a growing need for compressed air free of entrained oil to be used in industry. In many cases it can be supplied by oil flooded screw compressors with multi stage filtration systems, or by oil free screw compressors. However, if water injected screw compressors can be made to operate reliably, they could be more efficient and therefore cheaper to operate. Unfortunately, to date, such machines have proved to be insufficiently reliable and not cost effective. This paper describes an investigation carried out to determine the current limitations of water injected screw compressor systems and how these could be overcome in the 15-315 kW power range and delivery pressures of 6-10 bar. Modern rotor profiles and approach to sealing and cooling allow reasonably inexpensive air end design. The prototype of the water injected screw compressor air system was built and tested for performance and reliability. The water injected compressor system was compared with the oil injected and oil free compressor systems of the equivalent size including the economic analysis based on the lifecycle costs. Based on the obtained results, it was concluded that water injected screw compressor systems could be designed to deliver clean air free of oil contamination with a better user value proposition than the oil injected or oil free screw compressor systems over the considered range of operations.

  2. Water issues associated with heavy oil production.

    Veil, J. A.; Quinn, J. J.; Environmental Science Division

    2008-11-28

    Crude oil occurs in many different forms throughout the world. An important characteristic of crude oil that affects the ease with which it can be produced is its density and viscosity. Lighter crude oil typically can be produced more easily and at lower cost than heavier crude oil. Historically, much of the nation's oil supply came from domestic or international light or medium crude oil sources. California's extensive heavy oil production for more than a century is a notable exception. Oil and gas companies are actively looking toward heavier crude oil sources to help meet demands and to take advantage of large heavy oil reserves located in North and South America. Heavy oil includes very viscous oil resources like those found in some fields in California and Venezuela, oil shale, and tar sands (called oil sands in Canada). These are described in more detail in the next chapter. Water is integrally associated with conventional oil production. Produced water is the largest byproduct associated with oil production. The cost of managing large volumes of produced water is an important component of the overall cost of producing oil. Most mature oil fields rely on injected water to maintain formation pressure during production. The processes involved with heavy oil production often require external water supplies for steam generation, washing, and other steps. While some heavy oil processes generate produced water, others generate different types of industrial wastewater. Management and disposition of the wastewater presents challenges and costs for the operators. This report describes water requirements relating to heavy oil production and potential sources for that water. The report also describes how water is used and the resulting water quality impacts associated with heavy oil production.

  3. 油田注汽锅炉用水除氧剂的研究%Researches on the deoxidant for vapor injection boiler water in oil fields

    张林; 朱龙

    2001-01-01

    作者从静态方面测量一些变量对亚硫酸钠除氧效果的影响,来确定适用于油田注汽锅炉除氧的最佳条件和除氧剂。若单独用硫酸钠作除氧剂,则因水中亚硫酸钠的残余量高,产生严重的酸腐蚀,而不适用作油田注汽锅炉除氧剂。根据催化机理,在弱碱条件下加入二价镍离子和二价钴离子能提高水中亚硫酸钠的反应效率,降低水中亚硫酸钠的残余量,对亚硫酸钠的除氧效果具有明显催化作用。若按处理后水样中亚硫酸钠的残余量和吨水处理费用越少越好为衡量标准,硫酸钴催化亚硫酸钠除氧剂是最适合用作油田注汽锅炉用水除氧的除氧剂。%The best deoxiding conditions and the deoxidant which is used for the vapor injection boiler in oil fields will be confirmed by the effects of the variables on sodium sulfite deoxidization. It is not applicable that sodium sulfite is used alone as the deoxidant for the vapor injection boiler in oil fields.because of the high remains of sodium sulfite and the severe acid erosion in the water. On the basis of catalyzing mechanism,it can raise the reaction efficiency of sodium sulfite and reduce the remains of sodium sulfite,and has evident catalyzing action by adding bivalent nickel ions and bivalent cobalt ions into the water under the condition of weak alkali. If the fewer the remains of sodium sulfite in water sample and the lower the water treatment expenditure are,the better the judge criterion is;cabaltous sulfate catalyzing sodium sulfite is the most applicable deoxidant used for the vapor injection boiler water.

  4. Cooling of oil injected screw compressors by oil atomisation

    De Paepe, M.; Bogaert, W.; Mertens, D. [Department of Flow, Heat and Combustion Mechanics, Ghent University-UGent, Sint-Pietersnieuwstraat 41, B 9000 Gent (Belgium)

    2005-12-01

    This paper addresses the effect of oil atomisation in an oil-injected screw compressor. A test rig was built to assess the performance of different types of atomisers. Atomisers varying from fine atomisation to coarse atomisation were tested. Experiments on the test rig show that lowering the oil droplet diameter results in a considerably higher heat transfer. Growing oil flow rate, also gives a better cooling effectiveness. In parallel with the experiments, a thermodynamic model is developed by which the compression process can be calculated for every degree of revolution of the male-rotor. This way the influence of cooling oil temperature, cooling oil mass flow rate and injection point can be analysed. Having a better heat transfer effectiveness does not give a considerable gain in specific work. Lowering oil temperature gives better results, while changing the oil flow rate only gives small gains. Furthermore it is shown that cooling oil coming from the bearings has a negative influence on the performance. This paper shows that trying to reach isothermal compression through oil atomisation is not possible. The importance of the cooling effectiveness in the thermodynamic process is too small to have a significant influence. (author)

  5. Cooling of oil injected screw compressors by oil atomisation

    Paepe, M. de [Department of Flow, Heat and Combustion Mechanics, Ghent University-UGent, Sint-Pietersnieuwstraat 41, B 9000 Gent (Belgium)]. E-mail: michel.depaepe@ugent.be; Bogaert, W. [Department of Flow, Heat and Combustion Mechanics, Ghent University-UGent, Sint-Pietersnieuwstraat 41, B 9000 Gent (Belgium); Mertens, D. [Department of Flow, Heat and Combustion Mechanics, Ghent University-UGent, Sint-Pietersnieuwstraat 41, B 9000 Gent (Belgium)

    2005-12-01

    This paper addresses the effect of oil atomisation in an oil-injected screw compressor. A test rig was built to assess the performance of different types of atomisers. Atomisers varying from fine atomisation to coarse atomisation were tested. Experiments on the test rig show that lowering the oil droplet diameter results in a considerably higher heat transfer. Growing oil flow rate, also gives a better cooling effectiveness. In parallel with the experiments, a thermodynamic model is developed by which the compression process can be calculated for every degree of revolution of the male-rotor. This way the influence of cooling oil temperature, cooling oil mass flow rate and injection point can be analysed. Having a better heat transfer effectiveness does not give a considerable gain in specific work. Lowering oil temperature gives better results, while changing the oil flow rate only gives small gains. Furthermore it is shown that cooling oil coming from the bearings has a negative influence on the performance. This paper shows that trying to reach isothermal compression through oil atomisation is not possible. The importance of the cooling effectiveness in the thermodynamic process is too small to have a significant influence.

  6. Cooling of oil injected screw compressors by oil atomisation

    This paper addresses the effect of oil atomisation in an oil-injected screw compressor. A test rig was built to assess the performance of different types of atomisers. Atomisers varying from fine atomisation to coarse atomisation were tested. Experiments on the test rig show that lowering the oil droplet diameter results in a considerably higher heat transfer. Growing oil flow rate, also gives a better cooling effectiveness. In parallel with the experiments, a thermodynamic model is developed by which the compression process can be calculated for every degree of revolution of the male-rotor. This way the influence of cooling oil temperature, cooling oil mass flow rate and injection point can be analysed. Having a better heat transfer effectiveness does not give a considerable gain in specific work. Lowering oil temperature gives better results, while changing the oil flow rate only gives small gains. Furthermore it is shown that cooling oil coming from the bearings has a negative influence on the performance. This paper shows that trying to reach isothermal compression through oil atomisation is not possible. The importance of the cooling effectiveness in the thermodynamic process is too small to have a significant influence

  7. Water-cooled insulated steam-injection wells

    Back, L. H.; Jaffe, L. D.

    1980-01-01

    Water is used as insulated coolant and heat-transfer medium for steam-injection oil wells. Approach is somewhat analogous to cooling system in liquid-propellant rocket. In addition to trapping and delivering heat to steam-injection point, water will also keep casing cooler, preventing or reducing casing failures caused by thermal stresses.

  8. Gas injection may have triggered earthquakes in the Cogdell oil field, Texas

    Gan, Wei; Frohlich, Cliff

    2013-01-01

    Between 2006 and 2011 a series of earthquakes occurred in the Cogdell oil field near Snyder, TX. A previous series of earthquakes occurring 1975–1982 was attributed to the injection of water into wells to enhance oil production. We evaluated injection and extraction of oil, water, and gas in the Cogdell field. Water injection cannot explain the 2006–2011 earthquakes. However, since 2004 significant volumes of gas including CO2 have been injected into Cogdell wells. If this triggered the 2006–...

  9. Enhanced oil recovery: air injection in a Potiguar basin light oil reservoir

    The feasibility of air injection, at reservoir temperature and pressure, is studied with a view towards enhanced oil recovery from the Potiguar Basin (Brazil). The aim is to inject air in such a way that almost all oxygen is consumed and the residual gas, basically nitrogen, displaces the oil. In this work, the reactivity of crude oil samples is studied at conditions of Low Temperature Oxidation (LTO). As a first step, the kinetic and equilibrium properties are measured using a variable volume PVT glass equilibrium cell, which enabled to simultaneously observe the sample and measure the reaction rates and phase compositions, needed for estimating oxygen consumption. Different strategies are then studied for enhanced recovery by water and air injection, using a commercial reservoir simulator for thermal processes. The results show that it was possible to delineate an optimum strategy for LTO recovery of light crude oils. (author)

  10. Numerical Simulation of Geostress and Pore Pressure Evolution around Oil or Water Well under Different Injection-Production Ratio

    Jian-jun, Liu; Xian-bin, Yu; Jin-zhou, Zhao

    2013-01-01

    Geostress evolution in the process of oil field development can directly influence wellbore stability. Therefore, it is significant to strengthen the research of the evolution rule for well drilling and casing protection. Considering the interaction between reservoir seepage and stress fields, a mathematical model to characterize the stress evolution around wellbore was built. Using the FEM Software ABAQUS, through numerical simulation, the authors studied the evolution features of pore press...

  11. Measuring and Modeling the Displacement of Connate Water in Chalk Core Plugs during Water Injection

    Korsbech, Uffe C C; Aage, Helle Karina; Andersen, Bertel Lohmann;

    2006-01-01

    The movement of connate water spiked with gamma emitting 22Na was studied during laboratory water flooding of oil saturated chalk from a North Sea oil reservoir. Using a one dimensional gamma monitoring technique is was observed that connate water is piled-up at the front of the injection water a...

  12. Analysis of Dynamic Characteristics of Water Injection Pump

    Water injection pump outputs oil with high pressure during this process, seawater is injected into the well to recover the well pressure and maintain high productivity. A water injection pump has high productivity, and herefore, it serves as a key piece of equipment in marine plants. In this light, water injection pumps are being studied widely in industry. In this study, the rotor dynamics is analyzed to determine the natural frequency according to the bearing stiffness and operation speed change. This study aims to establish the pump reliability through critical speed, stability, and unbalance response analysis

  13. 含悬浮颗粒注入水对低渗透油藏岩心伤害预测%CORE DAMAGE PREDICTION OF THE INJECTED WATER WITH SUSPENDED PARTICALS IN LOW-PERMEABILITY OIL RESERVOIRS

    毕艳昌; 孙灵辉; 王宁宁; 萧汉敏; 刘卫东

    2011-01-01

    为了快速、准确描述含悬浮颗粒注入水对低渗透油藏储层伤害的影响,提高注入水的注入能力,有效补充低渗透地层能量,结合恒速压汞数据与室内注水实验结果,并在已有理论的基础上,得到了适用于低渗透油藏的注入水悬浮颗粒堵塞的数学模型.同时,利用榆树林油田注入水悬浮颗粒浓度与粒径的物理模拟实验数据对该模型进行了验证.结果表明,注入能力的倒数与注入时间具有良好的线性关系,可以利用该模型预测含悬浮颗粒注入水对低渗透油藏岩心的伤害程度.%In order to fast and accurately describe the formation damage influences of the injected water with suspended particles in low-permeability oil reservoirs, improve the injection capacity and effectively supply energy into these reservoirs, through integrating constant speed Hg injection data with the results of laboratory water injection experiment, the mathematic model adapted to suspended particle blocking of injected water in low-permeability oil reservoirs has been established on the basis of current theory. At the same time, with the help of the data of physical simulation experiments between the suspended particle concentration and size of the injected water for Yushulin Oilfield, the model has been further verified. The results show that there is much better linear relationship between the reciprocal of injection capacity and injection time and moreover the model can be used to predict the core damage in low-permeability oil reservoirs caused by the injected water with suspended particles.

  14. Production of light oil by injection of hot inert gas

    Ruidas, Bidhan C.; Ganguly, Somenath

    2016-05-01

    Hot inert gas, when injected into an oil reservoir is capable of generating a vaporization-condensation drive and as a consequence, a preferential movement of the lighter components to the production well. This form of displacement is an important unit mechanism in hot flue-gas injection, or in thermal recovery from a watered-out oil reservoir. This article presents the movement of heat front vis-à-vis the changes in the saturation profile, and the gas-phase composition. The plateau in the temperature profile due to the exchange of latent heat, and the formation of water bank at the downstream are elaborated. The broadening of the vaporization-condensation zone with continued progression is discussed. The effect of inert gas temperature on the cumulative production of oil is reviewed. The results provide insight to the vaporization-condensation drive as a stand-alone mechanism. The paper underscores the relative importance of this mechanism, when operated in tandem with other processes in improved oil recovery and CO2 sequestration.

  15. Steam-injection experiments for recovery of heavy crude oil of an Iranian field

    Tabatabaei-Nejad, S.A.R.; Shafiei, S.; Rajabzadeh, S.; Haghlesan, A. [Sahand Univ. of Technology (Iran, Islamic Republic of)

    2005-11-01

    This study evaluated the feasibility of recovering heavy oil by steam injection, a thermal recovery mechanism which involves diffusion of condensed water, evaporation of light components and diffusion of steam. Steam flooding is among the oldest commercial methods for enhanced oil recovery. Experiments of steam injection into a sand pack were conducted to compare the recovery of heavy oil with an API gravity of more than 20, and a lighter oil with an API gravity of less than 20. Two different sand pack porosities were used. The experiments were performed with 4 different types of heavy oil with different API to study their influence on recovery. Steam was injected into the sand pack using different pressures during each experimental run. It was determined that the optimum steam injection pressure must be determined experimentally by saturating the core with oil and then injecting the core with saturated steam. Recovery was found to increase with increased permeability. Although the production rate increases with an increase in injection flow rate, the breakthrough time decreased. It was concluded that the rate of steam injection has a significant influence on recovery and an optimum rate exists for optimum injection flow rate. As oil gets heavier, the recovery decreases and high pressure steam must be applied. Steam injection was found to be more effective for light oil reservoirs, but the risk of fingering exists. 48 refs., 4 tabs., 6 figs.

  16. [Paraffin oil injection in bodybuilders calls for preventive action].

    Henriksen, Trine Foged; Løvenwald, Jette Bisgaard; Matzen, Steen Henrik

    2010-01-18

    Injection of paraffin oil to change physical configuration is an obsolete procedure from 1899, revived by bodybuilders as an alternative to intramuscular injections of steroids. Paraffin oil has destructive consequences: skin inflammation, hard oedema, sterile abscesses, diffuse lymphangitis and paraffinomas. We report a case of a 24-year-old male bodybuilder who self-injected one litre of paraffin oil in each arm. Hazard notice and advice to bodybuilders with potential risk attitude or "reverse anorexia" are warranted. PMID:20089216

  17. Measuring and Modeling the Displacement of Connate Water in Chalk Core Plugs during Water Injection

    Korsbech, Uffe C C; Aage, Helle Karina; Andersen, Bertel Lohmann; Hedegaard, Kathrine; Springer, Niels

    2006-01-01

    The movement of connate water spiked with gamma emitting 22Na was studied during laboratory water flooding of oil saturated chalk from a North Sea oil reservoir. Using a one dimensional gamma monitoring technique is was observed that connate water is piled-up at the front of the injection water and...... forms a mixed water bank with almost 100% connate water in the front behind which a gradual transition to pure injection water occurs. This result underpins log interpretations from waterflooded chalk reservoirs. An ad hoc model was set up by use of the results, and the process was examined...

  18. Investigation of the effect of formation water disposal on ground water in oil fields of Assam, India

    B. N. Sahoo; D. C. Baruah

    2013-01-01

    One of the major waste products of oil industry is formation water which comes with crude oil from underground and this is considered as pollutant because of the presence of several undesirable elements exceeding the permissible limits. The conventional oil field practice is to dispose the formation water by injecting underground. Such underground injection is practiced in many oil fields across the globe. The ground water pollution threat by injected formation water has been a subject matter...

  19. Oil water laboratory

    Usually, the oily water effluent from petroleum processes needs to be treated prior to its environment discard and/or reuse. The synthesis of such water effluent residues in an Oily Water Laboratory - equipped with Water Treatment Pilot Scale Units - is fundamental to the study and effectiveness comparison among the typical industrial water treatment processes. The Oily Water Laboratory will allow the reproduction - in a small scale - of any oily water effluent produced in the industrial PETROBRAS units - such reproduction can be obtained by using the same fluids, oily concentration, salinity, process temperature, particle size distribution etc. Such Laboratory also allows the performance analysis of typical industrial equipment used throughout the water treatment schemes (e.g., hydro-cyclones), resulting in design and/or operational guidelines for these industrial scale schemes. In the particular niche of very small diameter oil droplet removal, more efficient and non-conventional schemes - such as centrifuges and/or membrane filtration - will be also studied in the Laboratory. In addition, the Laboratory shall be used in the certification of in-line oily water analyzers (e.g., TOC - Total Organic Carbon and OWC - Oil Wax Content). This paper describes the characteristics of such Laboratory and its main operational philosophy. (author)

  20. Mysteries behind the Low Salinity Water Injection Technique

    Emad Waleed Al-Shalabi

    2014-01-01

    Full Text Available Low salinity water injection (LSWI is gaining popularity as an improved oil recovery technique in both secondary and tertiary injection modes. The objective of this paper is to investigate the main mechanisms behind the LSWI effect on oil recovery from carbonates through history-matching of a recently published coreflood. This paper includes a description of the seawater cycle match and two proposed methods to history-match the LSWI cycles using the UTCHEM simulator. The sensitivity of residual oil saturation, capillary pressure curve, and relative permeability parameters (endpoints and Corey’s exponents on LSWI is evaluated in this work. Results showed that wettability alteration is still believed to be the main contributor to the LSWI effect on oil recovery in carbonates through successfully history matching both oil recovery and pressure drop data. Moreover, tuning residual oil saturation and relative permeability parameters including endpoints and exponents is essential for a good data match. Also, the incremental oil recovery obtained by LSWI is mainly controlled by oil relative permeability parameters rather than water relative permeability parameters. The findings of this paper help to gain more insight into this uncertain IOR technique and propose a mechanistic model for oil recovery predictions.

  1. The shift of microbial population composition accompanying the injected water flowing in the water-flooding petroleum reservoirs

    P. K. Gao; G. Q. Li; H. M. Tian; Y. S. Wang; Sun, H W; T. Ma

    2014-01-01

    In water-flooding petroleum reservoir, microbial populations in injected water are expected to migrate into oil-bearing strata and reach production wells. To demonstrate this, we firstly investigated microbial compositions in a homogeneous sandstone reservoir. The results indicated that the injected water harbored more microbial cells than produced water, and the shared populations and their abundance accounted for a minor fraction in injected water, while dominated i...

  2. Steam injection for heavy oil recovery: Modeling of wellbore heat efficiency and analysis of steam injection performance

    Highlights: • A comprehensive mathematical model was established to estimate wellbore heat efficiency of steam injection wells. • A simplified approach of predicting steam pressure in wellbores was proposed. • High wellhead injection rate and wellhead steam quality can improve wellbore heat efficiency. • High wellbore heat efficiency does not necessarily mean good performance of heavy oil recovery. • Using excellent insulation materials is a good way to save water and fuels. - Abstract: The aims of this work are to present a comprehensive mathematical model for estimating wellbore heat efficiency and to analyze performance of steam injection for heavy oil recovery. In this paper, we firstly introduce steam injection process briefly. Secondly, a simplified approach of predicting steam pressure in wellbores is presented and a complete expression for steam quality is derived. More importantly, both direct and indirect methods are adopted to determine the wellbore heat efficiency. Then, the mathematical model is solved using an iterative technique. After the model is validated with measured field data, we study the effects of wellhead injection rate and wellhead steam quality on steam injection performance reflected in wellbores. Next, taking cyclic steam stimulation as an example, we analyze steam injection performance reflected in reservoirs with numerical reservoir simulation method. Finally, the significant role of improving wellbore heat efficiency in saving water and fuels is discussed in detail. The results indicate that we can improve the wellbore heat efficiency by enhancing wellhead injection rate or steam quality. However, high wellbore heat efficiency does not necessarily mean satisfactory steam injection performance reflected in reservoirs or good performance of heavy oil recovery. Moreover, the paper shows that using excellent insulation materials is a good way to save water and fuels due to enhancement of wellbore heat efficiency

  3. Produced water management - clean and safe oil and gas production

    The conference contains 22 presentations on topics within pollution sources and abatement, discharge reductions, water analysis and monitoring, water production, treatment and injection, enhanced recovery, condensate water, produced water markets, separation technologies for oil/gas/condensate and water, oil removal from solids, environmental risks of oil and gas production and environmental impacts on ecosystems and fisheries. Some oil field case histories are presented. The main focus is on the northern areas such as the North Sea, the north Atlantic Ocean and the Barents Sea, and technological aspects (tk)

  4. Produced water management - clean and safe oil and gas production

    NONE

    2006-07-01

    The conference contains 22 presentations on topics within pollution sources and abatement, discharge reductions, water analysis and monitoring, water production, treatment and injection, enhanced recovery, condensate water, produced water markets, separation technologies for oil/gas/condensate and water, oil removal from solids, environmental risks of oil and gas production and environmental impacts on ecosystems and fisheries. Some oil field case histories are presented. The main focus is on the northern areas such as the North Sea, the north Atlantic Ocean and the Barents Sea, and technological aspects (tk)

  5. Injection of heavy fuel oil into the blast furnace

    Paloposki, T. [Helsinki Univ. of Technology, Otaniemi (Finland); Hakala, J.; Mannila, P.; Laukkanen, J. [Oulu Univ. (Finland)

    1996-12-31

    This study deals with the injection and combustion of heavy fuel oil in blast furnaces. The injection of the oil was studied experimentally in a small-scale test rig. The combustion of the oil was analysed with a commercial computer program for flow and combustion simulations. Results from computer simulations show that the combustion of the oil can be improved by decreasing the size of the oil drops and by enhancing the mixing between the oil drops and the hot blast. The devolatilization rate of the oil mainly depends on the size of the oil drops. The combustion rate of the volatiles mainly depends on the effectiveness of turbulent mixing with combustion air. Methods to decrease the size of the oil drops were sought in the experimental part of the study. Experimental results show that the size of the oil drops increases with increasing mass flow rate of the oil and decreases with increasing velocity of the hot blast. Methods to improve the mixing between the oil drops and the hot blast are suggested but have not yet been experimentally tested. (author) (4 refs.)

  6. Oil and rising water

    Middle Eastern oil producers have an obligation to future generations to tackle the causes of global warming. In the Middle East, we have a special need to pay attention to these warnings. As many of the countries of the region are low-lying and short of water, we are under threat from rising sea levels and desertification. Earlier this year the Intergovernmental Panel on Climate Change concluded that by the end of this century sea levels could rise by as much as 88 centimetres. This could flood not only coastal areas of the United Arab Emirates (UAE), but also much of the heavily populated Nile Delta in Egypt and the lower reaches of the Tigris and Euphrates river system in Iraq

  7. Removing oil from produced water

    This paper reviews the design, operation, and performance of a new gas-assisted clarifier system which acts to remove oil from waste water. The system has no moving parts and uses no chemical additives. The results show that the system can be successfully used to reduce the oil content of waste water to acceptable effluent limits. The systems are designed for offshore oil and gas production facilities. Test results are provided which show the reduction of oil and grease from 211 mg/L to 3 mg/L

  8. High permeability heavy oil reservoir nitrogen injection EOR research

    Wu, Xiaodong; Wang, Yining; Wang, Ruihe; Han, Guoqing; An, Yongsheng

    2014-05-01

    Nitrogen chemically very unreactive under normal showed great inertia. It is difficult to burn , dry, non-explosive , non-toxic , non-corrosive , and thus the use of safe and reliable. Coefficient of variation of nitrogen increases with increasing pressure , less affected by temperature . Under the same conditions, the ratio of the nitrogen gas formation volume factor carbon dioxide gas is high, about three times the carbon dioxide , the greater the elastic expansion of nitrogen play a beneficial role in flooding . EOR project trends increase the number of oil and gas injection gas injection from the calendar view, carbon dioxide miscible flooding gas injection EOR is the focus of the flue gas project currently has less to carry , nitrogen flooding is still subject to considerable attention. Note the nitrogen requirements of the basic conditions for enhanced oil recovery from major tectonic conditions , reservoir properties of crude nature of the gas injection timing and other aspects to consider , for different reservoir injected in different ways. Oilfield against a thick , high permeability and other characteristics, to improve oil recovery by injecting nitrogen indoor experiments conducted nitrogen injection process factors and supporting technical studies ; and introduced the field of nitrogen injection EOR field test conditions .

  9. Investigation of the effect of formation water disposal on ground water in oil fields of Assam, India

    B. N. Sahoo

    2013-06-01

    Full Text Available One of the major waste products of oil industry is formation water which comes with crude oil from underground and this is considered as pollutant because of the presence of several undesirable elements exceeding the permissible limits. The conventional oil field practice is to dispose the formation water by injecting underground. Such underground injection is practiced in many oil fields across the globe. The ground water pollution threat by injected formation water has been a subject matter of investigation in some oil producing regions. The oil fields in Assam (India, some of which have been operating for about 50 years, also resort to similar disposal practice through some designated wells. The present study concerning underground disposal of formation water in 15 disposal wells of 3 oil fields in Assam analysed water samples collected during three consecutive years and could not detect migration of pollutant formation water to nearby ground water.

  10. Flow improvers for water injection based on surfactants

    Oskarsson, H.; Uneback, I.; Hellsten, M.

    2006-03-15

    In many cases it is desirable to increase the flow of injection water when an oil well deteriorates. It is very costly in offshore operation to lay down an additional water pipe to the injection site. Flow improvers for the injection water will thus be the most cost-effective way to increase the flow rate. During the last years water-soluble polymers have also been applied for this purpose. These drag-reducing polymers are however only slowly biodegraded which has been an incentive for the development of readily biodegradable surfactants as flow improvers for injection water. A combination of a zwitterionic and an anionic surfactant has been tested in a 5.5 inch, 700 m long flow loop containing sulphate brine with salinity similar to sea water. A drag reduction between 75 and 80% was achieved with 119 ppm in solution of the surfactant blend at an average velocity of 1.9 m/s and between 50 and 55% at 2.9 m/s. The surfactants in this formulation were also found to be readily biodegradable in sea water and low bio accumulating which means they have an improved environmental profile compared to the polymers used today. Due to the self-healing properties of the drag-reducing structures formed by surfactants, these may be added before the pump section - contrary to polymers which are permanently destroyed by high shear forces. (Author)

  11. Flow improvers for water injection based on surfactants

    In many cases it is desirable to increase the flow of injection water when an oil well deteriorates. It is very costly in offshore operation to lay down an additional water pipe to the injection site. Flow improvers for the injection water will thus be the most cost-effective way to increase the flow rate. During the last years water-soluble polymers have also been applied for this purpose. These drag-reducing polymers are however only slowly biodegraded which has been an incentive for the development of readily biodegradable surfactants as flow improvers for injection water. A combination of a zwitterionic and an anionic surfactant has been tested in a 5.5 inch, 700 m long flow loop containing sulphate brine with salinity similar to sea water. A drag reduction between 75 and 80% was achieved with 119 ppm in solution of the surfactant blend at an average velocity of 1.9 m/s and between 50 and 55% at 2.9 m/s. The surfactants in this formulation were also found to be readily biodegradable in sea water and low bio accumulating which means they have an improved environmental profile compared to the polymers used today. Due to the self-healing properties of the drag-reducing structures formed by surfactants, these may be added before the pump section - contrary to polymers which are permanently destroyed by high shear forces. (Author)

  12. Steam injection and enhanced bioremediation of heavy fuel oil contamination

    Steam injection has been shown to be successful in remediating sites impacted by heavy fuel oils. Field demonstrations at both pilot and full scale have removed No. 2 diesel fuel and Navy Special Fuel Oil (No. 5 fuel oil) from impacted soils. Removal mechanisms include enhanced volatilization of vapor- and adsorbed-phase contaminants and enhanced mobility due to decreased viscosity and associated residual saturation of separate- and adsorbed-phase contaminants. Laboratory studies have shown that indigenous biologic populations are significantly reduced, but are not eliminated by steam injection operations. Populations were readily reestablished by augmentation with nutrients. This suggests that biodegradation enhanced by warm, moist, oxygenated environments can be expected to further reduce concentrations of contaminants following cessation of steam injection operations

  13. Downhole cuttings injection allows use of oil-base muds

    This paper reports that of the potential methods for handling oily drill cuttings, the most attractive is their injection downhole. This approach, which has been used by BP on its Gyda platform in the North Sea where stringent new environmental regulations are expected, will enable operators to enjoy the economic advantages of using oil-based muds. The discharge of oil-based-mud-contaminated cuttings form offshore drilling operations has a significant, though localized, environmental impact. This is despite the change from diesel-based fluids to less toxic, low aromatic, base oils which occurred in the late 1970s

  14. Bubble scrub : process aims to reduce oil content and dispose of solids in produced water

    The oil and water separation processes used by the petroleum industry typically leave behind between 5000 and 30,000 parts per million of oil in its produced water. The water is then injected back into the ground or disposed of in tailings ponds. This article described a water-oil remediation technology designed to reduce the hydrocarbon content in injected water to less than 5 parts per million. The process used aeration in a tank configuration that injected gas into the produced water. The aeration process created micron-sized gas bubbles that super-saturated the produced water in order to break the oil-water interfaces. A prototype unit has been designed to process 1000 bbls per day of water-oil mixture and is currently being used by an Alberta producer. It was concluded that the new system will help to reduce the massive amounts of water used in oil sands production. 1 fig

  15. Water conservation and allocation guideline for oilfield injection

    This paper was prepared as a guide for regulatory agencies and developers using non-saline water sources in enhanced oil recovery (EOR) schemes. A systems approach was used to achieve specific environmental outcomes that adhered to the Water Conservation and Allocation Policy for Oilfield Injection. The guide was applicable to licence renewal applications for projects operating and licensed to use non-saline water resources, as well as new licence applications for oilfield injection use. The guide provided recommended water conservation practices and application requirements, and outlined regulatory procedures and steps for obtaining a Water Act licence. The guideline was prepared to eliminate the use of non-saline water in EOR projects where feasible alternatives existed, as well as to identify areas with water shortages and reduce the use of non-saline water. The guide included monitoring and reporting requirements to improve the evaluation of water use practices and outlined current initiatives to address water conservation and research. It was concluded that outcomes from the program will include reliable quality water supplies for a sustainable economy, healthy aquatic ecosystems, and safe, secure drinking water supplies for Albertans. 3 tabs., 5 figs

  16. Effects of nitrate injection on microbial enhanced oil recovery and oilfield reservoir souring.

    da Silva, Marcio Luis Busi; Soares, Hugo Moreira; Furigo, Agenor; Schmidell, Willibaldo; Corseuil, Henry Xavier

    2014-11-01

    Column experiments were utilized to investigate the effects of nitrate injection on sulfate-reducing bacteria (SRB) inhibition and microbial enhanced oil recovery (MEOR). An indigenous microbial consortium collected from the produced water of a Brazilian offshore field was used as inoculum. The presence of 150 mg/L volatile fatty acids (VFA´s) in the injection water contributed to a high biological electron acceptors demand and the establishment of anaerobic sulfate-reducing conditions. Continuous injection of nitrate (up to 25 mg/L) for 90 days did not inhibit souring. Contrariwise, in nitrogen-limiting conditions, the addition of nitrate stimulated the proliferation of δ-Proteobacteria (including SRB) and the associated sulfide concentration. Denitrification-specific nirK or nirS genes were not detected. A sharp decrease in water interfacial tension (from 20.8 to 14.5 mN/m) observed concomitantly with nitrate consumption and increased oil recovery (4.3 % v/v) demonstrated the benefits of nitrate injection on MEOR. Overall, the results support the notion that the addition of nitrate, at this particular oil reservoir, can benefit MEOR by stimulating the proliferation of fortuitous biosurfactant-producing bacteria. Higher nitrate concentrations exceeding the stoichiometric volatile fatty acid (VFA) biodegradation demands and/or the use of alternative biogenic souring control strategies may be necessary to warrant effective SRB inhibition down gradient from the injection wells. PMID:25149457

  17. Use of indigenous or injected microorganisms for enhanced oil recovery

    McInerney, M.J.; Knapp, R.M.; Chisholm, J.L.; Bhupathiraju, V.K.; Coates, J.D. [Oklahoma Univ., Norman, OK (United States)

    2000-07-01

    Microbial enhanced oil recovery (MEOR) as an economically attractive alternative to conventional oil recovery methods which rely on thermal or chemical processes. Microbial growth occurs at exponential rates. It is therefore possible to produce large amounts of products quickly from inexpensive and renewable resources. MEOR can be grouped into the following three main categories: (1) well bore clean out process which makes use of hydrocarbon-degrading or scale-removing bacteria to remove deposits from the oil well, (2) well stimulation where an oil well close to its economic limit is treated with a mixture of anaerobic bacteria and a fermentable carbohydrate, and (3) microbially enhanced waterflooding processes which involve the injection of nutrients or microorganisms into the reservoir to stimulate microbial activity. Permeability is a limiting factor in oil production. In this study, laboratory experiments were conducted to show that stimulation of in situ microbial growth by nutrient injection can reduce permeability in sandstone significantly. It was shown that plugging high permeability regions diverts fluid flow to less permeable regions. A field test of this process was conducted at the Southeast Vassar Vertz sandstone reservoir in Oklahoma. The test confirmed that metabolic activity occurred as a consequence of nutrient injection and sulfide production was observed. 18 refs., 1 tab., 1 fig.

  18. Microbially Enhanced Oil Recovery by Sequential Injection of Light Hydrocarbon and Nitrate in Low- And High-Pressure Bioreactors.

    Gassara, Fatma; Suri, Navreet; Stanislav, Paul; Voordouw, Gerrit

    2015-10-20

    Microbially enhanced oil recovery (MEOR) often involves injection of aqueous molasses and nitrate to stimulate resident or introduced bacteria. Use of light oil components like toluene, as electron donor for nitrate-reducing bacteria (NRB), offers advantages but at 1-2 mM toluene is limiting in many heavy oils. Because addition of toluene to the oil increased reduction of nitrate by NRB, we propose an MEOR technology, in which water amended with light hydrocarbon below the solubility limit (5.6 mM for toluene) is injected to improve the nitrate reduction capacity of the oil along the water flow path, followed by injection of nitrate, other nutrients (e.g., phosphate) and a consortium of NRB, if necessary. Hydrocarbon- and nitrate-mediated MEOR was tested in low- and high-pressure, water-wet sandpack bioreactors with 0.5 pore volumes of residual oil in place (ROIP). Compared to control bioreactors, those with 11-12 mM of toluene in the oil (gained by direct addition or by aqueous injection) and 80 mM of nitrate in the aqueous phase produced 16.5 ± 4.4% of additional ROIP (N = 10). Because toluene is a cheap commodity chemical, HN-MEOR has the potential to be a cost-effective method for additional oil production even in the current low oil price environment. PMID:26406569

  19. Gas injection may have triggered earthquakes in the Cogdell oil field, Texas.

    Gan, Wei; Frohlich, Cliff

    2013-11-19

    Between 1957 and 1982, water flooding was conducted to improve petroleum production in the Cogdell oil field north of Snyder, TX, and a contemporary analysis concluded this induced earthquakes that occurred between 1975 and 1982. The National Earthquake Information Center detected no further activity between 1983 and 2005, but between 2006 and 2011 reported 18 earthquakes having magnitudes 3 and greater. To investigate these earthquakes, we analyzed data recorded by six temporary seismograph stations deployed by the USArray program, and identified 93 well-recorded earthquakes occurring between March 2009 and December 2010. Relocation with a double-difference method shows that most earthquakes occurred within several northeast-southwest-trending linear clusters, with trends corresponding to nodal planes of regional focal mechanisms, possibly indicating the presence of previously unidentified faults. We have evaluated data concerning injection and extraction of oil, water, and gas in the Cogdell field. Water injection cannot explain the 2006-2011 earthquakes, especially as net volumes (injection minus extraction) are significantly less than in the 1957-1982 period. However, since 2004 significant volumes of gases including supercritical CO2 have been injected into the Cogdell field. The timing of gas injection suggests it may have contributed to triggering the recent seismic activity. If so, this represents an instance where gas injection has triggered earthquakes having magnitudes 3 and larger. Further modeling studies may help evaluate recent assertions suggesting significant risks accompany large-scale carbon capture and storage as a strategy for managing climate change. PMID:24191019

  20. Optimizing geologic CO2 sequestration by injection in deep saline formations below oil reservoirs

    The purpose of this research is to present a best-case paradigm for geologic CO2 storage: CO2 injection and sequestration in saline formations below oil reservoirs. This includes the saline-only section below the oil-water contact (OWC) in oil reservoirs, a storage target neglected in many current storage capacity assessments. This also includes saline aquifers (high porosity and permeability formations) immediately below oil-bearing formations. While this is a very specific injection target, we contend that most, if not all, oil-bearing basins in the US contain a great volume of such strata, and represent a rather large CO2 storage capacity option. We hypothesize that these are the best storage targets in those basins. The purpose of this research is to evaluate this hypothesis. We quantitatively compared CO2 behavior in oil reservoirs and brine formations by examining the thermophysical properties of CO2, CO2-brine, and CO2-oil in various pressure, temperature, and salinity conditions. In addition, we compared the distribution of gravity number (N), which characterizes a tendency towards buoyancy-driven CO2 migration, and mobility ratio (M), which characterizes the impeded CO2 migration, in oil reservoirs and brine formations. Our research suggests competing advantages and disadvantages of CO2 injection in oil reservoirs vs. brine formations: (1) CO2 solubility in oil is significantly greater than in brine (over 30 times); (2) the tendency of buoyancy-driven CO2 migration is smaller in oil reservoirs because density contrast between oil and CO2 is smaller than it between brine and oil (the approximate density contrast between CO2 and crude oil is ∼100 kg/m3 and between CO2 and brine is ∼350 kg/m3); (3) the increased density of oil and brine due to the CO2 dissolution is not significant (about 7-15 kg/m3); (4) the viscosity reduction of oil due to CO2 dissolution is significant (from 5790 to 98 mPa s). We compared these competing properties and processes by

  1. Optimizing geologic CO2 sequestration by injection in deep saline formations below oil reservoirs

    The purpose of this research is to present a best-case paradigm for geologic CO2 storage: CO2 injection and sequestration in saline formations below oil reservoirs. This includes the saline-only section below the oil-water contact (OWC) in oil reservoirs, a storage target neglected in many current storage capacity assessments. This also includes saline aquifers (high porosity and permeability formations) immediately below oil-bearing formations. While this is a very specific injection target, we contend that most, if not all, oil-bearing basins in the US contain a great volume of such strata, and represent a rather large CO2 storage capacity option. We hypothesize that these are the best storage targets in those basins. The purpose of this research is to evaluate this hypothesis. We quantitatively compared CO2 behavior in oil reservoirs and brine formations by examining the thermophysical properties of CO2, CO2-brine, and CO2-oil in various pressure, temperature, and salinity conditions. In addition, we compared the distribution of gravity number (N), which characterizes a tendency towards buoyancy-driven CO2 migration, and mobility ratio (M), which characterizes the impeded CO2 migration, in oil reservoirs and brine formations. Our research suggests competing advantages and disadvantages of CO2 injection in oil reservoirs vs. brine formations: (1) CO2 solubility in oil is significantly greater than in brine (over 30 times); (2) the tendency of buoyancy-driven CO2 migration is smaller in oil reservoirs because density contrast between oil and CO2 is smaller than it between brine and oil (the approximate density contrast between CO2 and crude oil is ∝100 kg/m3 and between CO2 and brine is ∝350 kg/m3); (3) the increased density of oil and brine due to the CO2 dissolution is not significant (about 7-15 kg/m3); (4) the viscosity reduction of oil due to CO2 dissolution is significant (from 5790 to 98 mPa s). We compared these competing properties and processes by

  2. Particle counting for injection quality water control

    Carageorgos, T. [Universidade Estadual do Norte Fluminense (UENF), Macae, RJ (Brazil). Lab. de Engenharia e Exploracao do Petroleo (LENEP); Ribeiro, L.; Rosario, F. [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    During the injection of sea/produced water, permeability decline occurs, resulting in well impairment. Solid and liquid particles dispersed in the injected water are trapped by the porous medium and may increase significantly the hydraulic resistance to the flow. The pore size exclusion mechanism of particle capture is dominant where the particle sizes have the same order of magnitude as that of pores. A stochastic mathematical model describes the bed filtration particulate suspensions in porous rocks. We developed a laboratory set-up and experimental procedure to verify the mathematical model. The routine core flooding is performed using the model, and the water obtained by mixture of solid particles with the pure water. Particle counter measures particle size distribution at the core inlet and effluent. It allows determining the filtration coefficient for each particle size. It allows tuning the mathematical model with experimentally determined coefficients and predicting the porous space plugging in the reservoir conditions. (author)

  3. Water injection device for reactor container

    A pressure vessel incorporating a reactor core is placed and secured on a pedestal in a dry well of a reactor container. A pedestal water injection line is disposed opened at one end in a pedestal cavity passing through the side wall of the pedestal and led at the other end to the outside of the reactor container. A substitution dry well spray line is connected to a spray header disposed at the upper portion of the dry well. When the pressure vessel should be damaged by a molten reactor core and the molten reactor core should drop to the dry well upon occurrence of an accident, the molten reactor core on the floor of the pedestal is cooled by water injection from the pedestal water injection line. At the same time, the elevation of the pressure and the temperature in the reactor container is suppressed by the water injection of the substitution dry well spray line. This can avoid large scaled release of radioactive materials to the environmental circumference. (I.N.)

  4. Fundamental Investigation of Charge Injection Type of Electrostatic Oil Filter

    Tran, Khanh Duong; Yanada, Hideki

    This paper deals with the effects of mechanical factors on the filtration speed of a charge injection type of electrostatic oil filter. The new filter has been proposed by Yanada and his coworkers and it has been demonstrated that the filtration speed can be increased to a great or some degree by injecting charges into oils, but the experimental condition was limited. In this paper, the effects of the number of the projections, the electrode spacing, the applied voltage and the oil temperature on the filtration speed are examined using a simple filter model and various types of oil. In order to discuss the effects of those mechanical factors on the filtration speed, numerical simulation of electrostatic field between electrodes is done and the oil flow caused between the electrodes due to ion drag phenomenon, called the ion drag flow in the paper, is observed using a charge coupled devise (CCD) camera and is analyzed using a particle image velocimetry (PIV) technique. The experiments and numerical simulation make clear the effects of the mechanical factors on the filtration speed. An optimal electrode configuration and operating condition are found out.

  5. Mitigation of microbial corrosion in Ras Budran water injection plant

    Khattab, N.M. [Suez Oil Co., Cairo (Egypt)

    1995-12-01

    The Oil Company is water flooding Ras Budran field with Gulf of Suez water as a secondary means of oil recovery. Mitigation of microbial corrosion in Ras Budran water treatment plant is achieved by the continuous chlorination and weekly slugging of two types of biocides alternatively. Three years from commissioning, water quality started deteriorating at the offshore platforms in terms of high H{sub 2}S, iron contents, counts and corrosion rates. The main cause was attributed to the adhering property of sessile sulphate reducing bacteria (SRB) that could neither be controlled by corrosion inhibitor nor biocide treatment. In accordance, a cleaning and sterilization program was established for the piggable section of the sub sea injection line. This paper also presents the recent failure experienced in the remaining unpiggable section of the injection line. Diagnosis and analysis revealed that microbial corrosion was the main contributor to the failure due to the lack of pigging facility and the inability of removing the complex biofilms in which sessile bacteria grow, and rendering the applied biocides ineffective. For further confirmation intelligent pigging of the intact pipeline was run. Results showed that the line is in good condition internally with no significant corrosion.

  6. Evaluating oil/water separators

    Four commercially available oil/water separators were tested at an oil refinery test facility. The separators were the Alfa-Laval OFPX 413 disk-stack centrifuge, the Conoco Vortoil hydrocyclone system, International Separation Technology's Intr-Septor 250, and a modified Flo Trend gravity separator. Each machine was tested against mixtures of salt water and crude oil, and mixtures of salt water and a water-in-oil emulsion. The impact on separator performance from simulated sea motion, and from the addition of emulsion breakers and debris to the influent, were also evaluated. The test equipment, instrumentation, analysis facilities, test plans, and procedures to conduct the tests are described, but test results are not reported. Recommendations for improved test procedures are included. The inability to accurately monitor flow rates was found to have the greatest negative impact on test performance and results. Aspects of the test program that worked well included the use of flexible and semi-rigid hoses for customizing the test setups, the use of modular and leased tanks, and the sea motion simulator swing table design. 3 refs., 2 tabs

  7. Radial oil injection applied to main engine bearings: evaluation of injection control rules

    Estupiñan, EA; Santos, Ilmar

    2012-01-01

    The performance of main bearings in a combustion engine affects key functions such as durability, noise and vibration. Thus, with the aim of reducing friction losses and vibrations between the crankshaft and the bearings, the work reported here evaluates different strategies for applying controll...... actively lubricated bearing is compared with the performance of the conventional lubricated bearing, giving some insights into the minimum fluid film thickness, maximum fluid film pressure, friction losses and maximum vibration levels....... controllable radial oil injection to main crankshaft journal bearings. In an actively lubricated bearing, conventional hydrodynamic lubrication is combined with controllable hydrostatic lubrication, where the oil injection pressures can be modified depending on the operational conditions. In this study, the...

  8. Enhanced oil recovery by nanoparticles injection: Modeling and simulation

    El-Amin, Mohamed

    2013-01-01

    In the present paper, a mathematical model and numerical simulation to describe the nanoparticles-water suspension imbibes into a water-oil two-phase flow in a porous medium is introduced. We extend the model to include the negative capillary pressure and mixed relative permeabilities correlations to fit with the mixed-wet system. Also, buoyancy and capillary forces as well as Brownian diffusion are considered. Throughout this investigation, we monitor the changing of the fluids and solid properties due to addition of the nanoparticles and check for possible enhancement of the oil recovery process using numerical experiments.

  9. Optimization of injection timing and injection pressure of a DI diesel engine fueled with preheated rice bran oil

    R. Raghu1, G. Ramadoss

    2011-07-01

    Full Text Available In the present study experiments were carried out in a constant speed, stationary direct injection diesel engine and the performance was investigated. Initially the engine fueled with diesel, rice bran biodiesel (methyl ester, raw rice bran oil and preheated rice bran oil with standard injection timing and injection pressures at different load conditions and the performances were compared. With the help of a heat exchanger and using the exhaust gases, the rice bran oil was preheated. It was found that the pre heated rice bran oil exhibits a closer performance as compared to rice bran biodiesel. Then the injection timing and injection were varied and the performance and emission parameters were investigated using preheated rice bran oil. It was found that the brake thermal efficiency and oxides of nitrogen were found to be higher and BSFC and smoke were found to be lower at 21° CA bTDC of injection timing and 230 bar injection pressure. From the test results the optimum injection timing and injection timing for the engine fueled with preheated rice bran oil were evaluated.

  10. Can Oil Float Completely Submerged in Water?

    Nath, Saurabh; Chatterjee, Souvick

    2013-01-01

    Droplet formation in a system of two or more immiscible fluids is a celebrated topic of research in the fluid mechanics community. In this work, we propose an innovative phenomenon where oil when injected drop-wise into a pool of water moves towards the air-water interface where it floats in a fully submerged condition. The configuration, however, is not stable and a slight perturbation to the system causes the droplet to burst and float in partially submerged condition. The droplet contour is analyzed using edge detection. Temporal variation of a characteristic length of the droplet is analyzed using MATLAB image processing. The constraint of small Bond Number established the assumption of lubrication regime in the thin gap. A brief theoretical formulation also showed the temporal variation of the gap thickness

  11. A fast alternative to core plug tests for optimising injection water salinity for EOR

    Hassenkam, Tue; Andersson, Martin Peter; Hilner, Emelie Kristin Margareta;

    2014-01-01

    Core tests have demonstrated that decreasing the salinity of injection water can increase oil recovery. Although recovery is enhanced by simply decreasing salt content, optimising injection water salinty would offer a clear economic advantage for several reasons. Too low salinity risks swelling o...... and to provide extra data that would be too time consuming or too expensive using traditional methods alone. © 2014, Society of Petroleum Engineers....

  12. Performance of direct-injection off-road diesel engine on rapeseed oil

    Labeckas, Gvidonas; Slavinskas, Stasys [Department of Transport and Power Machinery, Lithuanian University of Agriculture, Student Str. 15, P.O. Box LT-53067, Kaunas Academy (Lithuania)

    2006-05-15

    This article presents the comparative bench testing results of a naturally aspirated, four stroke, four cylinder, water cooled, direct injection Diesel engine operating on Diesel fuel and cold pressed rapeseed oil. The purpose of this research is to study rapeseed oil flow through the fuelling system, the effect of oil as renewable fuel on a high speed Diesel engine performance efficiency and injector coking under various loading conditions. Test results show that when fuelling a fully loaded engine with rapeseed oil, the brake specific fuel consumption at the maximum torque and rated power is correspondingly higher by 12.2 and 12.8% than that for Diesel fuel. However, the brake thermal efficiency of both fuels does not differ greatly and its maximum values remain equal to 0.37-0.38 for Diesel fuel and 0.38-0.39 for rapeseed oil. The smoke opacity at a fully opened throttle for rapeseed oil is lower by about 27-35%, however, at the easy loads its characteristics can be affected by white coloured vapours. Oil heating to the temperature of 60{sup o}C diminishes its viscosity to 19.5mm{sup 2}s{sup -1} ensuring a smooth oil flow through the fuel filter and reducing the brake specific energy consumption at light loads by 11.7-7.4%. Further heating to the temperature of 90{sup o}C offers no advantages in terms of performance. Special tests conducted with modified fuel injection pump revealed that coking of the injector nozzles depends on the engine performance mode. The first and second injector nozzles that operated on pure oil were more coated by carbonaceous deposits than control injector nozzles that operated simultaneously on Diesel fuel. (author)

  13. Extraction of oil from stable oil-water emulsions

    This patent describes a process of extracting oil from oil-water emulsions containing suspended solid particulates. It comprises introducing the emulsion into vessel in an extraction system, pressurizing the vessel with a volatile hydrocarbon whereby the volatile hydrocarbon is in the liquified state and forms a two-phase system with the emulsion, maintaining the pressure for a period of time sufficient to effect the replacement of at least some of the oil in the emulsion phase with the volatile hydrocarbon, the replaced oil being dissolved in the volatile hydrocarbon phase, withdrawing at least a portion of the oil-containing volatile hydrocarbon phase while maintaining the pressure on the two-phase system, reducing the pressure on the two-phase system whereby volatile hydrocarbon dissolved in the emulsion is vaporized, and the emulsion separates into a water phase and an oil phase, and recovering the oil phase from the water phase

  14. Experimental investigation of the effect of steam injection rate on recovery of an Iranian heavy oil reservoir using sand packed and core samples

    Tabatabaei-Nejad, S.A.R. [Sahand University of Technology and Sahand Petroleum Research Center (Iran, Islamic Republic of)

    2011-07-01

    Heavy oils and tar sands reserves worldwide account for more than half of Earth's oil resources and, world-wide, these are primarily located in north and south America, Asia and the Middle East. Enhanced oil recovery techniques are a crucial aspect for these heavy oil reservoirs, the predominant one being the steam injection method. This presentation reports the results of an experimental investigation into the effect of the steam injection rate on oil efficiency recovery at an Iranian heavy oil reservoir. The steam injection method is briefly presented and an efficiency up to 50-60% in oil recovery is mentioned, depending on the operating temperature. Eleven tests were then conducted, with different steam injection rates, oil samples, and saturation pressures. Results show that an increased steam injection rate leads to a reduction of the steam-to-oil ratio and of the overall oil recovery time; it also requires a smaller volume of water for equivalent operation. In short, increase in the steam injection rate leads to better oil recovery efficiency in heavy oil reservoirs.

  15. Produced water from off-shore oil and gas production, a new challenge in marine pollution monitoring

    Produced water consists of water naturally present in the oil and gas reservoir (formation water), flood water previously injected into the formation, and/or, in the case of some gas production, condensed water. Produced water is part of the well stream together with oil and/or gas

  16. Removal of oil from water by bentonite

    Many materials, included activated carbon, peat, coal, fiberglass, polypropylene, organoclay and bentonite have been used for removing oils and grease from water. However, bentonite has been used only rarely for this purpose. In this study Na-bentonite was used to remove oil from oil-in-water emulsions of various kinds such as standard mineral oil, cutting oils, refinery effluent and produced water from production wells at Estevan, Saskatchewan. Removal efficiencies obtained were 85 to 96 per cent for cutting oils, 84 to 86 per cent for produced water and 54 to 87 per cent for refinery effluent. Bentonite proved to be more effective in the removal of oil from oil-in-water emulsions than from actual waste waters; up to 96 percent from oil-in-water emulsions to only 87 per cent from actual waste water. The percentage of oil removed was found to be a function of the amount of bentonite added and the adsorption time up to the equilibrium time. Result also showed that the Langmuir, Freundlich and BET isotherms are well suited to describe the adsorption of oil by bentonite from the various oily waters employed in this study. 15 refs

  17. Distribution of Complex Chemicals in Oil-Water Systems

    Riaz, Muhammad

    correct. In the first phase of this project experimental data on Kow, Koil-water and Khw (hexane-water partition coefficients) are collected and investigations were carried out to develop correlations so that Koil-water can be predicted using Kow and Khw. However, due to scarcity of experimental data and...... order to inhibit gas hydrate formation in subsea pipelines monoethylene glycol (MEG) and methanol are injected in large amounts. It is important to know the distribution of these chemicals in oil and water systems for economical operation of a production facility and to evaluate their impact on marine...... life. Furthermore distribution of chemicals is important information for downstream processing of oil and gas. The purpose of this project is the experimental measurement and the thermodynamic modeling of distribution of these complex chemicals in oil-water systems. Traditionally distribution of...

  18. Treatment of Oil & Gas Produced Water.

    Dwyer, Brian P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-02-01

    Production of oil and gas reserves in the New Mexico Four Corners Region results in large volumes of "produced water". The common method for handling the produced water from well production is re-injection in regulatory permitted salt water disposal wells. This is expensive (%7E $5/bbl.) and does not recycle water, an ever increasingly valuable commodity. Previously, Sandia National Laboratories and several NM small business tested pressure driven membrane-filtration techniques to remove the high TDS (total dissolved solids) from a Four Corners Coal Bed Methane produced water. Treatment effectiveness was less than optimal due to problems with pre-treatment. Inadequate pre-treatment allowed hydrocarbons, wax and biological growth to foul the membranes. Recently, an innovative pre-treatment scheme using ozone and hydrogen peroxide was pilot tested. Results showed complete removal of hydrocarbons and the majority of organic constituents from a gas well production water. ACKNOWLEDGEMENTS This report was made possible through funding from the New Mexico Small Business Administration (NMSBA) Program at Sandia National Laboratories. Special thanks to Juan Martinez and Genaro Montoya for guidance and support from project inception to completion. Also, special thanks to Frank McDonald, the small businesses team POC, for laying the ground work for the entire project; Teresa McCown, the gas well owner and very knowledgeable- fantastic site host; Lea and Tim Phillips for their tremendous knowledge and passion in the oil & gas industry.; and Frank Miller and Steve Addleman for providing a pilot scale version of their proprietary process to facilitate the pilot testing.

  19. New natural injection-moldable composite material from sunflower oil cake.

    Rouilly, A; Orliac, O; Silvestre, F; Rigal, L

    2006-03-01

    Through a twin-screw extrusion process the native structure of sunflower oil cake was completely transformed (globular protein denaturation/texturization and husk fiber defibration) into a simpler matrix-fiber structure, as could be seen on SEM micrographs. Further chemical reduction of protein disulfide bridges greatly reduced the melt viscosity of the moistened composite that it could be injection-molded. The molded specimens were tested and their tensile and flexural properties and water absorption calculated. Their water resistance appeared to be particularly high, and could be enhanced further after a thermal treatment (N2, 200 degrees C). The proteic matrix seemed to behave like a natural thermoset resin. Sunflower oil cake could be used without any additives to make biodegradable, water resistant and exceptionally cheap materials. PMID:15961308

  20. Brine crude oil interactions at the oil-water interface

    Chakravarty, Krishna Hara; Fosbøl, Philip Loldrup; Thomsen, Kaj

    2015-01-01

    mechanisms. The ion specific interaction between fines and polar fractions of crude oil at the oil-water interface has been less explored. In this study the relative affinity between different ions and the oil surface was determined. The experiments prove the importance of Ca2+, SO42-, and HPO42- ions......-, HPO42-, and HCO3- (anions), were studied through gas chromatographic analysis. Crude oil from the North Sea was doped with various fractions of organic acids to mimic different polar behavior. Increased brine concentration showed up to 15% upsurge of polar fractions on the oil-water emulsion formation......The impact of brine salinity and its ionic composition on oil displacement efficiency has been investigated extensively in recent years due to the potential of enhanced oil recovery (EOR). Wettability alterations through relative interactions at the mineral surface have been the basis of proposed...

  1. Experimental study of solvent-based emulsion injection to enhance heavy oil recovery in Alaska North Slope area

    Qiu, F.; Mamora, D. [Texas A and M Univ., College Station, TX (United States)

    2010-07-01

    This study examined the feasibility of using a chemical enhanced oil recovery method to overcome some of the technical challenges associated with thermal recovery in the Alaska North Slope (ANS). This paper described the second stage research of an experimental study on nano-particle and surfactant-stabilized solvent-based emulsions for the ANS area. Four successful core flood experiments were performed using heavy ANS oil. The runs included water flooding followed by emulsion flooding; and pure emulsion injection core flooding. The injection rate and core flooding temperature remained constant and only 1 PV micro-emulsion was injected after breakthrough under water flooding or emulsion flooding. Oil recovery increased by 26.4 percent from 56.2 percent original oil in place (OOIP) with waterflooding to 82.6 percent OOIP with injection of emulsion following water flooding. Oil recovery was slightly higher with pure emulsion flooding, at 85.8 percent OOIP. The study showed that low permeability generally resulted in a higher shear rate, which is favourable for in-situ emulsification and higher displacement efficiency. 11 refs., 4 tabs., 20 figs.

  2. Performance and exhaust emission characteristics of direct-injection diesel engine when operating on shale oil

    Gvidonas Labeckas; Stasys Slavinskas [Lithuanian University of Agriculture, Kaunas Academy (Lithuania). Engineering Faculty

    2005-01-01

    This article presents the comparative bench testing results of a naturally aspirated, four stroke, four cylinder, water cooled, direct injection Diesel engine when running on diesel fuel and shale oil that is produced in Estonia from local oil shale. The purpose of this research is to investigate the possibility of practical usage of the shale oil as the alternative fuel for a high speed Diesel engine as well as to evaluate the combustion efficiency, brake specific fuel consumption, emission composition changes and the smoke opacity of the exhausts. Test results show that when fuelling a fully loaded engine with shale oil, the brake specific fuel consumption at the maximum torque and rated power is correspondingly higher by 12.3% and 20.4%. However, the brake thermal efficiencies do not differ widely and their maximum values remain equal to 0.36-0.37 for Diesel fuel and 0.32-0.33 for shale oil. The total nitrogen oxide emissions from the shale oil at engine partial loads remain considerably lower although when running at the maximum torque and rated power, the NO{sub x} emissions become correspondingly higher by 21.8% and 27.6%. The smoke opacity of the fully loaded engine at a wide range of speeds is lower by 30-35%, whereas the carbon monoxide and unburned hydrocarbon emissions in the exhausts at moderate and full load regimes do not undergo significant changes. (author)

  3. Performance and exhaust emission characteristics of direct-injection Diesel engine when operating on shale oil

    Labeckas, Gvidonas E-mail: gvidonas@info.lzuu.lt; Slavinskas, Stasys E-mail: sslavins@tech.lzuu.lt

    2005-01-01

    This article presents the comparative bench testing results of a naturally aspirated, four stroke, four cylinder, water cooled, direct injection Diesel engine when running on Diesel fuel and shale oil that is produced in Estonia from local oil shale. The purpose of this research is to investigate the possibility of practical usage of the shale oil as the alternative fuel for a high speed Diesel engine as well as to evaluate the combustion efficiency, brake specific fuel consumption, emission composition changes and the smoke opacity of the exhausts. Test results show that when fuelling a fully loaded engine with shale oil, the brake specific fuel consumption at the maximum torque and rated power is correspondingly higher by 12.3% and 20.4%. However, the brake thermal efficiencies do not differ widely and their maximum values remain equal to 0.36-0.37 for Diesel fuel and 0.32-0.33 for shale oil. The total nitrogen oxide emissions from the shale oil at engine partial loads remain considerably lower although when running at the maximum torque and rated power, the NO{sub x} emissions become correspondingly higher by 21.8% and 27.6%. The smoke opacity of the fully loaded engine at a wide range of speeds is lower by 30-35%, whereas the carbon monoxide and unburned hydrocarbon emissions in the exhausts at moderate and full load regimes do not undergo significant changes.

  4. Performance and exhaust emission characteristics of direct-injection Diesel engine when operating on shale oil

    This article presents the comparative bench testing results of a naturally aspirated, four stroke, four cylinder, water cooled, direct injection Diesel engine when running on Diesel fuel and shale oil that is produced in Estonia from local oil shale. The purpose of this research is to investigate the possibility of practical usage of the shale oil as the alternative fuel for a high speed Diesel engine as well as to evaluate the combustion efficiency, brake specific fuel consumption, emission composition changes and the smoke opacity of the exhausts. Test results show that when fuelling a fully loaded engine with shale oil, the brake specific fuel consumption at the maximum torque and rated power is correspondingly higher by 12.3% and 20.4%. However, the brake thermal efficiencies do not differ widely and their maximum values remain equal to 0.36-0.37 for Diesel fuel and 0.32-0.33 for shale oil. The total nitrogen oxide emissions from the shale oil at engine partial loads remain considerably lower although when running at the maximum torque and rated power, the NOx emissions become correspondingly higher by 21.8% and 27.6%. The smoke opacity of the fully loaded engine at a wide range of speeds is lower by 30-35%, whereas the carbon monoxide and unburned hydrocarbon emissions in the exhausts at moderate and full load regimes do not undergo significant changes

  5. Fine Formation During Brine-Crude Oil-Calcite Interaction in Smart Water Enhanced Oil Recovery for Caspian Carbonates

    Chakravarty, Krishna Hara; Fosbøl, Philip Loldrup; Thomsen, Kaj

    2015-01-01

    Modified sea water has been shown to affect the oil recovery fraction considerably during secondary and tertiary waterfloods. Available soluble potential ions (i.e. Ca2+, Mg2+ & SO42-) in the interacting waterflood (ITW) are suggested to play a key role in increasing the displacement efficiency...... of oil. In previous studies, compositions of injected waterfloods (IJW) have been correlated to the observed oil recovery. This study highlights differences between IJW and ITW for different studies reported in literature....

  6. Geomechanics of subsurface water withdrawal and injection

    Gambolati, Giuseppe; Teatini, Pietro

    2015-06-01

    Land subsidence and uplift, ground ruptures, and induced seismicity are the principal geomechanic effects of groundwater withdrawal and injection. The major environmental consequence of groundwater pumping is anthropogenic land subsidence. The first observation concerning land settlement linked to subsurface processes was made in 1926 by the American geologists Pratt and Johnson, who wrote that "the cause of subsidence is to be found in the extensive extraction of fluid from beneath the affected area." Since then, impressive progress has been made in terms of: (a) recognizing the basic hydrologic and geomechanic principles underlying the occurrence; (b) measuring aquifer compaction and ground displacements, both vertical and horizontal; (c) modeling and predicting the past and future event; and (d) mitigating environmental impact through aquifer recharge and/or surface water injection. The first milestone in the theory of pumped aquifer consolidation was reached in 1923 by Terzaghi, who introduced the principle of "effective intergranular stress." In the early 1970s, the emerging computer technology facilitated development of the first mathematical model of the subsidence of Venice, made by Gambolati and Freeze. Since then, the comprehension, measuring, and simulation of the occurrence have improved dramatically. More challenging today are the issues of ground ruptures and induced/triggered seismicity, which call for a shift from the classical continuum approach to discontinuous mechanics. Although well known for decades, anthropogenic land subsidence is still threatening large urban centers and deltaic areas worldwide, such as Bangkok, Jakarta, and Mexico City, at rates in the order of 10 cm/yr.

  7. Separation of oil and water in oil spill recovery operations

    The separation of water from oil that is collected in any oil spill recovery operation is a continuing and necessary requirement during every stage of the effort. Its importance is reflected in the cost of transport and storage of large volumes of oily water, the salvage value of separated oil and the added labor costs associated with long-term recovery operations. This paper addresses the effects of weathering and emulsion generation which increase the problems normally associated with water extraction. Separation theory, practical separation technology and recommendations for the future direction of research and development are presented. (author)

  8. Oil-water separator for pretreating petroleum-contaminated water

    An oil-water separator with inclined corrugated-plate packing was developed. Because of the special passageway formed by the corrugated plates, more opportunities are provided for collisions and coagulation among the oil droplets and for adhesion and coalescence between the oil droplets and the corrugated plates. This separator has, therefore, greatly increased the efficiency of oil removal. Based on the results of the experiments, a mathematical model has been developed for predicting the oil removal efficiency

  9. Microbial diversity in long-term water-flooded oil reservoirs with different in situ temperatures in China

    Fan Zhang; Yue-Hui She; Lu-Jun Chai; Banat, Ibrahim M.; Xiao-Tao Zhang; Fu-Chang Shu; Zheng-Liang Wang; Long-Jiang Yu; Du-Jie Hou

    2012-01-01

    Water-flooded oil reservoirs have specific ecological environments due to continual water injection and oil production and water recycling. Using 16S rRNA gene clone library analysis, the microbial communities present in injected waters and produced waters from four typical water-flooded oil reservoirs with different in situ temperatures of 25°C, 40°C, 55°C and 70°C were examined. The results obtained showed that the higher the in situ temperatures of the oil reservoirs is, the less the effec...

  10. Use of chemical additives with steam injection to increase oil recovery. Final report

    Handy, L.L.

    1984-09-01

    Surfactants and certain inorganic bases have been evaluated as possible chemical additives to improve performance of steamfloods. Special emphasis was given to chemicals which would reduce the residual oil saturation in regions flooded by hot water below the steam zone. Problems considered were the effect of prolonged exposure to steam temperature on the stability of petroleum sulfonates, the effect of temperature on surfactant adsorption and the effect of temperature on interfacial tensions. Methods were developed for measuring quantitatively the thermal stability of the aryl sulfonate class of surfactant. This class includes the petroleum sulfonates. The best of the surfactants evaluated in this study had marginal stability for use with steamfloods. The surfactants in combination with elevated temperatures do reduce residual oil saturations. Data are presented on the temperature effects on interfacial tensions and on adsorption. Certain inorganic chemicals which give high pH are effective and inexpensive but hydroxyl ions react with silica in the reservoir. This reaction is accentuated at higher temperatures. Data show that the pH of the injected hot water with caustic decreases with contact time. The experiments did not permit determining if an equilibrium pH would be obtained which would be high enough to be effective in recovering oil. Core floods showed that pH's in excess of 12 would be required to reduce residual oil saturations if sodium hydroxide was the injected chemical. The addition of surfactants with caustic or the use of sodium carbonate may permit recovery of oil at lower pH's. A reservoir simulator is being developed to predict performance of steamfloods with chemical additives. This has been completed for simple linear floods but is being extended to three dimensions and to more complicated flooding operations. 31 references, 43 figures, 2 tables.

  11. Pollution of an aquifer by produced oil field water

    Brine is produced from reservoirs as a waste material from crude oil and gas after processing. Waste water may be discharged at the surface or reinjected underground. When it is reinjected, it may be mixed with an underground fresh water source for several reasons. From this point of view, forecasting the pollutant concentrations by knowing the historical data at several locations on a field has great importance when planning the necessary precautions for environmental safety. Aquifer-M in Turkey, having the properties of potable water, is contaminated by oil field water that is injected for disposal purposes. A numerical model is used to determine the extent of pollution due to the injection of saline produced water into aquifer-M. Eight observation wells are drilled to take water and core samples in order to identify both rock and fluid properties of aquifer-M. Water samples taken from different intervals of aquifer-M are analyzed to determine the flow paths for the pollutant movement. The results are interpreted with the help of core property data obtained by computerized tomography (CT) analysis and routine core analysis. By using drilling records, log data, and CT analysis results, two subunits in aquifer-M with different lithological properties are identified. All data are used in a ground water pollution model. Aquifer-M has fresh water with salinity of 5-10 ppm, and the chlorine concentration of injected waste water is approximately 3410 pp. Since there is a significant difference between these concentrations, the chlorine ion is selected as the indicative ion for locating the pollution front. The model study indicated that the contaminated water has propagated 18.7 km from the site of injection. (author)

  12. Assessment of gamma-inject logging techniques for the determination of residual oil saturation. Final report. [Natural gamma background is first logged then radioactive fluids are injected into depleted reservoirs and the gamma signal returning to the borehole is measured

    Pecina, R.J.; Walbridge, E.W.; Vandegrift, G.F.; Herzenberg, C.L.; Seitz, M.G.; Heemstra, R.J.

    1983-08-01

    Work, both theoretical and experimental, was done to assess the feasibility of logging oil by injecting radioactive fluids into depleted reservoirs and measuring the gamma signal returning to the borehole. The theoretical work established the relationship between residual oil and detected gamma signal and estimated the error in the determined value of residual oil. Errors of 5 saturation percent or greater can readily occur from inaccurate measurements or from improper accounting of actual borehole conditions. Sources of error must be controlled to give values of residual oil accurate enough (error less than 5 saturation percent) to properly assess the economic feasibility for additional oil production. The experimental work involved relating measured gamma signals from fluids and rock to various conditions expected during oil logging. Seen to affect the measured gamma signal were (1) the residual-oil levels in rock cores, (2) the rock-wetting fluid (oil-wet vs water-wet core), (3) the surfactant concentration of the radioactive solution, and (4) the type of gamma-emitting radionucide. However, the gamma signals were not very sensitive to residual-oil levels probably because the water in the rock was not completely displaced by the injected radioactive fluid under the laboratory conditions employed. This incomplete displacement results in only half the residual oil being detected under otherwise ideal circumstances. This source of error and others discussed in the theoretical and experimental sections severly restricts the utility of logging residual oil using injected radioactive solutions. 34 references, 21 figures, 8 tables.

  13. Characterization of crude oil-water and solid -water interfaces and adsorption / desorption properties of crude oil fractions: The effect of low salinity water and pH

    Farooq, Umer

    2010-09-15

    The reservoirs of conventional oil are rapidly depleting because of increased production and consumption of crude oil in the world. Mature and mostly depleted oil reservoirs require advanced recovery techniques to sustain the production rates. During the past years, a variety of enhanced oil recovery (EOR) methods have been developed and implemented to increase the oil recovery from mature reservoirs. Low Salinity Waterflooding (LSW) is an emerging EOR process of injecting water containing low concentrations (<4000 ppm) of total dissolved solids into the reservoir. This moderate cost process yields relatively higher incremental recoveries than other water based recovery methods. Investigation of mechanisms for increased recovery is quite challenging because this process depends upon complex crude oil/water/rock properties. This work was done to study the surface chemistry of typical reservoir surfaces where LSW can be used for EOR. The oil water and solid-water interfaces were characterised in low salinity aqueous solutions and investigated how the electrolytes and pH of solutions affect the interfacial and surface properties. The influence of low saline aqueous solution on the desorption behaviour of different fractions (acid-free oil and base-free oil) of crude oils was also explored. Reservoir minerals are sensitive to small changes in solution properties and therefore model, outcrop and reservoir particles were characterized in low salinity aqueous solutions. The extent of ionic adsorption on the mineral surfaces was found by various techniques. Particles were also characterized with respect to their elemental compositions. Asphaltene adsorption/desorption on reservoir rock surfaces play an important role in EOR processes. Various injection sequences of low saline aqueous solution of Na +, Ca2+ and sea water were considered to study the desorption of asphaltenes from silica surfaces. Composition of the aqueous phase influenced the interfacial properties of

  14. Small scale model experiments on the injection of heavy fuel oil into blast furnace

    Hakala, J.; Paloposki, T.

    1996-12-31

    This study is a part of the research project High oil injection rates in a blast furnace, which is a part of the National Energy Research Program SULA 2 in Finland. The injection of heavy fuel oil into the blast furnace was studied using a small scale model of the blowpipe-tuyere-raceway assembly of a blast furnace. Mixtures of water, glycerol and ethanol were used to simulate heavy fuel oil. Air at atmospheric pressure and temperature was used to simulate the hot blast. Dimensional analysis was used in the design of the test rig and in the interpretation of the results. It has to be noted, however, that the surface tension of the test liquids was higher than what would have been desirable and that full similarity between model experiments and the actual blast furnace was therefore not achieved. The experiments were recorded on video tapes for visual observation of the injection process. A Malvern Particle Sizer was used for the measurement of the spray drop size distributions. The results show that the mean size of the drops increases with increasing liquid flow rate and with increasing surface tension of the liquid and that the mean size of the drops decreases with increasing velocity of the blast and with increasing diameter of the injection lances. The mean size of the drops was found to be independent of the viscosity of the liquid. A correlation equation was fitted to the experimental data and good fit was obtained. A correlation equation in dimensionless form was also developed. The results were compared with correlation equations presented in the literature. (18 refs.)

  15. Numerical Simulation Characteristics of Logging Response in Water Injection Well by Reproducing Kernel Method

    Ming-Jing Du

    2015-01-01

    Full Text Available Reproducing kernel Hilbert space method (RKHSM is an effective method. This paper, for the first time, uses the traditional RKHSM for solving the temperature field in two phase flows of multilayer water injection well. According to 2D oil-water temperature field mathematical model of two phase flows in cylindrical coordinates, selecting the properly initial and boundary conditions, by the process of Gram-Schmidt orthogonalization, the analytical solution was given by reproducing kernel functions in a series expansion form, and the approximate solution was expressed by n-term summation. The satisfied numerical results were carried out by Mathematica 7.0, showing that the larger the difference between injected water temperature and initial borehole temperature or water injection conditions, the more obvious the indication of water accepting zones. The numerical examples evidence the feasibility and effectiveness of the proposed method of the two phase flows in engineering.

  16. Acute Respiratory Distress following Intravenous Injection of an Oil-Steroid Solution

    Michael Russell; Aric Storck; Martha Ainslie

    2011-01-01

    Several case reports have described acute lung injury and respiratory distress following the intravascular injection of oil. Although biochemical and mechanical theories explaining the pathological mechanism of pulmonary oil embolism have been proposed, the phenomenon is not completely understood. This report describes a case of acute respiratory distress and hypoxemia involving a 21-year-old bodybuilder who self-administered an injection of anabolic steroids suspended in oil. The ensuing bri...

  17. Diffusion as an Oil Recovery Mechanism During CO2 Injection in Fractured Reservoirs

    Lie, Stig Holme

    2013-01-01

    This thesis is part of an ongoing study of enhanced oil recovery by CO2 injection in the Reservoir Physics research group at the Department of Physics and Technology (IFT) at the University of Bergen. This work investigates the feasibility of oil recovery from diffusion during miscible CO2 injection in fractured core plugs by conducting appropriate laboratory tests and numerical simulations. A total of 10 miscible CO2 injection tests were conducted in the laboratory using artificially fractur...

  18. High throughput flow injection bioluminometric method for olive oil antioxidant capacity.

    Minioti, Katerina S; Georgiou, Constantinos A

    2008-07-15

    This paper describes a rapid flow injection automated method for the determination of olive oil total antioxidant capacity. The chemistry involved is the horseradish peroxidase (HRP) catalysed oxidation of luminol by hydrogen peroxide. Oxidation results in light emission (bioluminescence) that is enhanced using p-iodophenol sensitizer. Olive oil (0.7mL) is extracted with two 0.7mL aliquots of 80-20% (v/v) methanol-water solvent. A 17μL aliquot of the extract containing hydrophilic antioxidants is injected in a phosphate buffer channel that subsequently merges with a luminol-HRP-p-iodophenol reagent stream. Bioluminescence resulting after merging the mixture with a hydrogen peroxide stream is suppressed upon increasing antioxidants' concentration resulting in negative peaks due to hydrogen peroxide consumption by antioxidants. The method has been optimized on (a) number of manifold channels, (b) flow rates, (c) coil length and (d) HRP, hydrogen peroxide and p-iodophenol concentrations. Detection limit is calculated at 1.5×10(-7)M gallic acid, linear range is between 1.0×10(-6) and 1×10(-4)M and precision is better than 2.8% RSD (n=4). The fully automated method is achieving a rate of sampling equal 180 probes per hour. The proposed method is applied for the assessment of 50 extra-virgin olive oil samples of different Greek cultivars and regions. PMID:26003372

  19. Median Nerve Injury Due to High-Pressure Water Jet Injection: A Case Report and Review of Literature.

    Emre, Ufuk; Unal, Aysun

    2009-08-01

    High-pressure injuries that occur accidentally are potentially destructive injuries that often affect the nondominant hands of young men. A variety of products such as paint, gasoline, grease, fuel oil, cement, thinner and solvents have been reported as destructive agents. High-pressure water jet injection injuries to soft tissues have rarely been reported. In this study, we present the first case of median nerve injury due to high-pressure water jet injection by a water spray gun. PMID:26815059

  20. Oil, Gas, and Injection Wells in Louisiana, Geographic NAD83, LDNR (2007) [oil_gas_wells_LDNR_2007

    Louisiana Geographic Information Center — This is a point dataset containing the location of over 230,000 oil and gas and injection wells in the state of Louisiana. It was developed from the DNR Office of...

  1. The Influence of CO2 Solubility in Brine on Simulation of CO2 Injection into Water Flooded Reservoir and CO2 WAG

    Yan, Wei; Stenby, Erling Halfdan

    2010-01-01

    factors, including temperature, pressure, salinity, water injection pore volume, WAG ratio and CO2 slug size, on the simulation results was also discussed. In addition, the results for CO2 injection into water flooded reservoirs were also compared with those from the previous study.......Injection of CO2 into depleted oil reservoirs is not only a traditional way to enhance oil recovery but also a relatively cheaper way to sequester CO2 underground since the increased oil production can offset some sequestration cost. CO2 injection process is often applied to water flooded...... reservoirs and in many situations alternating injection of water and CO2 is required to stabilize the injection front. Both scenarios involve a large amount of water, making CO2 solubility in brine, which is around ten times higher than methane solubility, a non-negligible factor in the relevant reservoir...

  2. Application of naturally occurring isotopes and artificial radioactive tracer for monitoring water flooding in oil field

    Water flooding is an important operation to enhance oil recovery. Water is injected in the oil formation under high pressure through an injection well. Movement of the injected water is needed to be traced to test the performance of water flood, investigate unexpected anomalies in flow and verify suspected geological barriers or flow channels, etc. In the present study environmental isotopes and artificial radiotracer (tritium) were used at Fimkassar Oil Field of Oil and Gas Development Company Limited (OGDCL) where water flooding was started in March 1996 in Sakessar formation to maintain its pressure and enhance the oil recovery. Environmental isotopes: /sup 18/O, /sup 2/H and /sup 3/H, and chloride contents were used to determine the breakthrough/transit time and contribution of fresh injected water. Water samples were collected from the injection well, production well and some other fields for reference indices of Sakessar Formation during June 1998 to August 1999. These samples were analyzed for the /sup 18/O, /sup 2/H and /sup 3/H, and chloride contents. Results show that the water of production well is mixture of fresh water and formation water. The fresh water contribution varied from 67% to 80%, while remaining component was the old recharged formation water. This percentage did not change significantly from the time of break-through till the last sampling which indicates good mixing in the reservoir and absence of any quick channel. The initial breakthrough time was 27 months as the fresh water contributed significantly in the first appearance of water in the production well in June 1998. Tritium tracer, which was injected in November 1998, appeared in the production well after 8 months. It show that breakthrough time decreased with the passage of time. /sup 14/C of inorganic carbon in the water in Chorgali and Sakessar Formations was also analyzed which indicates that the water is at least few thousand years old. (author)

  3. Studies of water-in-oil emulsions : formation of water-in-oil states from heavy oils

    The formation of water-in-oil states from heavy oils was examined. Previous studies have demonstrated that viscosity is a significant factor affecting the formation and stability of water-in-oil emulsions. It was suggested that a viscosity window is a necessary requirement for the formation of stable emulsions. Highly viscous oils produce an entrained water state. A stable or meso-stable emulsion is rarely produced by heavy oils. In most cases, heavy oils result in an entrained water-in-oil state that lasts days longer than the entrained water-on-oil state of lighter oils. This can be explained by the lower migration rate of water droplets from a heavy oil compared to that of a light oil. These results were used to conduct an evaluation of the basis for using the stability index. This index provides a quantitative characterization of the stability of an emulsion, under varying formation regimes. The stability factor has been previously defined as the complex modulus of the water-in-oil state after emulsion formation, divided by the starting oil viscosity. It was shown that this stability factor remains a robust indicator, despite being less predictive in the case of heavy oils. The use of the newly developed stability scale produced values that were similar for water-in-oil states of both light and heavy oils. It was concluded that this new stability scale is complex, but the discriminating power over the old stability scale is not better. 6 refs., 6 tabs., 2 figs

  4. Particle retention in porous media: Applications to water injectivity decline

    Wennberg, Kjell Erik

    1998-12-31

    This thesis studies the problem of migration and deposition of colloidal particles within porous media, theoretically and by computerized simulation. Special emphasis is put on the prediction of injectivity decline in water injection wells due to inherent particles in the injection water. The study of particle deposition within porous media requires a correct prediction of the deposition rate or filtration coefficient. A thorough review of the modeling approaches used in the past are combined with new ideas in order to arrive at an improved model for the prediction of the filtration coefficient. A new way of determining the transition time for the dominant deposition mechanism to change from internal deposition to external cake formation is proposed. From this fundamental theory, equations are given for water injectivity decline predictions. A computer program called WID for water injectivity decline predictions was developed. Using water quality, formation properties, injection rate/pressure and completion information as input, WID predicts decline in vertical and horizontal injection wells with openhole, perforated and fractured completions. The calculations agree fairly well with field data; in some cases the agreement is excellent. A poor match in a few cases indicates that more mechanisms may be responsible for injectivity decline than those presently accounted for by the simulator. The second part of the study deals with a theoretical investigation of the multi-dimensional nature of particle deposition in porous media. 112 refs., 100 figs., 9 tabs.

  5. Stability Proxies for Water-in-Oil Emulsions and Implications in Aqueous-based Enhanced Oil Recovery

    Mehrnoosh Moradi; Xiuyu Wang; Vladimir Alvarado

    2011-01-01

    Several researchers have proposed that mobility control mechanisms can positively contribute to oil recovery in the case of emulsions generated in Enhanced-Oil Recovery (EOR) operations. Chemical EOR techniques that use alkaline components or/and surfactants are known to produce undesirable emulsions that create operational problems and are difficult to break. Other water-based methods have been less studied in this sense. EOR processes such as polymer flooding and LoSalTM injection require a...

  6. Modelling of water-in-oil emulsions

    Water-in-oil emulsions are grouped into the following four states: stable, mesostable, unstable and entrained water. Only stable and mesostable states are characterized as emulsions. The states are established by their stability over time, their appearance, and by rheological measurements. This paper described the development of a new modelling scheme in which density, viscosity, saturate, asphaltene and resin contents are used to compute a class index, which predicts an unstable or entrained water-in-oil state of a meso-stable or stable emulsion. A prediction scheme was also presented to estimate the water content and viscosity of the resulting water-in-oil state and the time to formation given a sea wave-height. The study demonstrated that empirical data can be used to predict the formation and characteristics of emulsions. 16 refs., 5 tabs., 2 figs

  7. Dielectric Properties of Flocculated Water-in-Oil Emulsions

    Skodvin, T.

    1995-12-31

    When an offshore oil field is near completion, water occupies a large fraction of the available pore volume. Thus, in collecting the oil and gas reserves, one has to deal with a high co-production of either formation- or injected water. This doctoral thesis focuses on the effect of water-in-oil emulsions on the dielectric properties, in particular the effect of flocculation. Various dielectric models are applied to obtain methods for qualitative and quantitative characterization of the flocculated state. Permittivity and measurement of dielectric properties are discussed as a basis for the interpretation of the dielectric properties of the emulsions. Various flocculation models are presented. It is concluded that the dielectric properties of water-in-oil emulsions are strongly influenced by continuously ongoing processes in the system. Because of flocculation and sedimentation the traditional dielectric mixture models cannot satisfactorily predict the dielectric behaviour. The experimentally obtained permittivities for the emulsions can be reproduced by including flocculation in the models and treating the floc aggregates as spheroids or subsystems with dielectric properties given by the degree of flocculation. The models discussed have difficulties reproducing the complete frequency behaviour found experimentally. This is probably because the dielectric relaxation may be influenced by processes not included in the models, such as the effects of dipolar or multipolar interactions between the droplets. For further research it is recommended that rheological and dielectric measurements be combined. 227 refs., 61 figs., 16 tabs.

  8. Control of water injection into a layered formation

    Silin, Dmitriy B.; Patzek, Tad W.

    2000-02-02

    In previously published work, we have analyzed transient injection of water from a growing vertical hydrofracture into a low-permeability compressible rock of uniform properties, filled with a fluid of identical mobility. Here we extend the prior analysis1 to water injection into a layered rock initially filled with a fluid of different mobility. We then develop a new control model of water injection from a growing hydrofracture into a layered formation. Based on the new model, we design an optimal injection controller that manages the rate of water injection in accordance with the hydrofracture growth and the formation properties. As we have already demonstrated, maintaining the rate of water injection into low-permeability rock above a reasonable minimum inevitably leads to hydrofracture growth if flow in a uniform formation is transient. The same conclusion holds true for transient flow in layered formation. Analysis of field water injection rates and wellhead injection pressures leads us to conclude that direct links between injectors and producers can be established at early stages of waterflood, especially if injection policy is aggressive. On one hand, injection into a low-permeability rock is slow and there is a temptation to increase injection pressure. On the other hand, such an increase may lead to irrecoverable reservoir damage: fracturing of the formation and water channeling from the injectors to the producers. Such channeling may be caused by thin highly permeable reservoir layers, which may conduct a substantial part of injected water. Considering these field observations, we expand our earlier model. Specifically, we consider a vertical hydrofracture in contact with a multilayered reservoir where some layers have high permeability and they, therefore, quickly establish steady state flow from an injector to a neighboring producer. The main part of this paper is devoted to the development of an optimal injection controller for purely transient flow

  9. Measurement of electrical impedance of a Berea sandstone core during the displacement of saturated brine by oil and CO2 injections

    Liu, Yu; Xue, Ziqiu; Park, Hyuck; Kiyama, Tamotsu; Zhang, Yi; Nishizawa, Osamu; Chae, Kwang-seok

    2015-12-01

    Complex electrical impedance measurements were performed on a brine-saturated Berea sandstone core while oil and CO2 were injected at different pressures and temperatures. The saturations of brine, oil, and CO2 in the core were simultaneously estimated using an X-ray computed tomography scanner. The formation factor of this Berea core and the resistivity indexes versus the brine saturations were calculated using Archie's law. The experimental results found different flow patterns of oil under different pressures and temperatures. Fingers were observed for the first experiment at 10 MPa and 40 °C. The fingers were restrained as the viscosity ratio of oil and water changed in the second (10 MPa and 25 °C) and third (5 MPa and 25 °C) experiments. The resistivity index showed an exponential increase with a decrease in brine saturation. The saturation exponent varied from 1.4 to 4.0 at different pressure and temperature conditions. During the oil injection procedure, the electrical impedance increased with oil saturation and was significantly affected by different oil distributions; therefore, the impedance varied whether the finger was remarkable or not, even if the oil saturation remained constant. During the CO2 injection steps, the impedance showed almost no change with CO2 saturation because the brine in the pores became immobile after the oil injection.

  10. Enhanced Oil Recovery (EOR by Miscible CO2 and Water Flooding of Asphaltenic and Non-Asphaltenic Oils

    Edwin A. Chukwudeme

    2009-09-01

    Full Text Available An EOR study has been performed applying miscible CO2 flooding and compared with that for water flooding. Three different oils are used, reference oil (n-decane, model oil (n-C10, SA, toluene and 0.35 wt % asphaltene and crude oil (10 wt % asphaltene obtained from the Middle East. Stearic acid (SA is added representing a natural surfactant in oil. For the non-asphaltenic oil, miscible CO2 flooding is shown to be more favourable than that by water. However, it is interesting to see that for first years after the start of the injection (< 3 years it is shown that there is almost no difference between the recovered oils by water and CO2, after which (> 3 years oil recovery by gas injection showed a significant increase. This may be due to the enhanced performance at the increased reservoir pressure during the first period. Maximum oil recovery is shown by miscible CO2 flooding of asphaltenic oil at combined temperatures and pressures of 50 °C/90 bar and 70 °C/120 bar (no significant difference between the two cases, about 1% compared to 80 °C/140 bar. This may support the positive influence of the high combined temperatures and pressures for the miscible CO2 flooding; however beyond a certain limit the oil recovery declined due to increased asphaltene deposition. Another interesting finding in this work is that for single phase oil, an almost linear relationship is observed between the pressure drop and the asphaltene deposition regardless of the flowing fluid pressure.

  11. Factors influencing time course of pain after depot oil intramuscular injection of testosterone undecanoate

    Sartorius, Gideon; Fennell, Carolyn; Spasevska, Sasa; Turner, Leo; Conway, Ann J.; Handelsman, David J

    2010-01-01

    Pain following depot intramuscular (IM) injection of oil vehicle-based drugs has been little studied. This study aimed to determine prospectively the prevalence, determinants, severity and functional consequences of pain during the week after IM injection of 1 000 mg testosterone undecanoate (TU) in a 4-mL castor oil vehicle. Androgen-deficient men receiving regular T replacement therapy at an academic andrology clinic were recruited to report pain scores using a coloured visual linear analog...

  12. Reduction of Altitude Diffuser Jet Noise Using Water Injection

    Allgood, Daniel C.; Saunders, Grady P.; Langford, Lester A.

    2014-01-01

    A feasibility study on the effects of injecting water into the exhaust plume of an altitude rocket diffuser for the purpose of reducing the far-field acoustic noise has been performed. Water injection design parameters such as axial placement, angle of injection, diameter of injectors, and mass flow rate of water have been systematically varied during the operation of a subscale altitude test facility. The changes in acoustic far-field noise were measured with an array of free-field microphones in order to quantify the effects of the water injection on overall sound pressure level spectra and directivity. The results showed significant reductions in noise levels were possible with optimum conditions corresponding to water injection at or just upstream of the exit plane of the diffuser. Increasing the angle and mass flow rate of water injection also showed improvements in noise reduction. However, a limit on the maximum water flow rate existed as too large of flow rate could result in un-starting the supersonic diffuser.

  13. Organically modified clay removes oil from water

    When bentonite or other clays and zeolites are modified with quaternary amines, they become organophilic. Such modified bentonites are used to remove mechanically emulsified oil and grease, and other sparingly soluble organics. If the organoclay is granulated, it is placed into a liquid phase carbon filter vessel to remove FOG's and chlorinated hydrocarbons. In this application the clay is mixed with anthrazite to prevent early plugging of the filter by oil or grease droplets. In batch systems a powered organoclay is employed. Types of oil found in water can include fats, lubricants, cutting fluids, heavy hydrocarbons such as tars, grease, crude oil, diesel oils; and light hydrocarbons such as kerosene, jet fuel, and gasoline

  14. Near well simulation of heavy oil reservoir with water drive

    Ediriweera, Mahesh Priyankara

    2015-01-01

    The Depletion of oil production and the low recovery rate are major challenges faced in oil production at Norwegian continental self. Several studies have shown that considerable amount of oil still remains after the well shutdown. Heavy oil reservoirs occupy more than two third of globally oil reserves. Therefore, extensive studies are undergone to optimize the oil recovery in heavy oil reservoirs. Water flooding and Enhanced Oil Recovery (EOR) methods are successfully implemente...

  15. Phase Inversion, Stability and Destabilization of Model and Crude Oil Water-in-Oil Emulsions

    Barrabino, Albert

    2014-01-01

    The demand for crude oils has constantly been increasing forcing the industry to exploit heavier crude oils. These oils are more difficult to produce and transport than classical light oils, this leads the oil industry to improve their processes. The production of oil also implies the formation of water-in-crude oil emulsions. The presence of dispersed water causes an increase of the viscosity and corrosion problems in the equipment that induce the production difficulties. This doctoral work ...

  16. Simulation bidimensional of water and gas alternative injection; Simulacao bidimensional de injecao alternada de agua e gas

    Santana, Ana Paula Silva C. de

    1999-07-01

    This dissertation presents a study of the unidimensional of water and gas alternate injection (WAG) using the stream line theory. It is considered incompressible fluid., unit mobility ratio, negligible capillary and gravitational effects, homogeneous and isotropic reservoir, isothermal flow two phases, oil and water, and three components, oil, water and gas. In the stream line theory, the following injection schemes are considered: staggered line five-spot, direct line and seven-spot. It is also considered that there is no flow among the streams. In the WAG calculations it is used the fractional flow theory and the method of characteristics, which consists of shock waves and rarefactions. The composition of these waves is said compatible if it satisfies the entropy condition. The solution goes through a certain path from the left to the right side constrained by the initial and boundary conditions. The gas injection is at a high pressure to ensure miscible displacement. It is considered first injection of a water bank and then, injection of a gas bank. We concluded that the gas injection at a high pressure recoveries all residual oil and the water saturation remains is greater than initial saturation. (author)

  17. Water management in Siri oil field in Iran: A comprehensive case study

    Masoudi, Zahedzadeh M.; Abbasian, Ataei A.; Shokrollahzadeh, S.; Raadmehr, M.

    2006-03-15

    Successful water management and dealing with produced water is a crucial part of any oil and gas production scenarios. This paper investigates the role of comprehensive study in water management and produced water re-injection in an Iranian offshore oil field. Appropriate method can be chosen by taking into account various effective parameters such as reservoir properties, laboratory experiment, and learning from already done projects and etc. In this work, produced water reinjection in Siri oil field in Iran has been investigated by examining the effective parameters including reservoir characterization such as permeability, porosity, petrophysical properties as well as performing relevant laboratory experiments and reservoir parameters like aquifer support and carbonated rock reservoir issues. Finally, it was concluded that comprehensive study together with proper laboratory investigation has a significant effect in success of produced water re-injection process. (author) (tk)

  18. Characterization of water-in-crude oil emulsions in oil spill response

    2003-01-01

    The formation of water-in-crude oil emulsions occurs when crude oils are spilled into sea. The water-in-crude oil emulsionssignificantly change the properties of the spilled crude oils and in turn influence the choices made relating to oil spill countermeasures. Thewater-in-crude oil emulsions were characterized using various techniques in this study. The environmental scanning electron microscopyobservation of water droplets in the emulsions is also presented. It is a powerful tool in emulsion observations.

  19. Combustion of waste oils simulating their injection in blast furnace tuyeres

    Cores, A.; Ferreira, S.; Isidro, A; Muñiz, M

    2009-01-01

    A study has been made of the combustion of different waste oils produced in an iron and steel works. Combustion is achieved by injecting the waste oil at flows of 10-20 kg/h in a combustion chamber that simulates the conditions of the blast furnace tuyere zone. The waste oil is preheated to 65-90 °C in order to achieve conditions of fluidity and is injected by spraying into the combustion chamber. During combustion the temperatures and the CO2, O2...

  20. Enhanced oil recovery by CO{sub 2} injection

    Moctezuma Berthier, Andres E. [Instituto Mexicano del Petroleo, Mexico, D.F. (Mexico)

    2008-07-15

    Firstly are presented some basic concepts on the enhanced oil recovery; then a description is made of where the oil deposits in Mexico are located; comments are made over what has been done in Mexico in terms of enhanced oil recovery, the projects of the Instituto Mexicano del Petroleo that have dealt with the subject of enhanced oil recovery, and finally an approach is presented towards the problem of oil recovery using CO{sub 2}. [Spanish] Primeramente se presentan unos conceptos basicos sobre la recuperacion mejorada de petroleo; luego se hace una descripcion de donde se encuentran los yacimientos de petroleo en Mexico; se comenta sobre que se ha hecho en Mexico en terminos de recuperacion mejorada de petroleo; se mencionan los proyectos del Instituto Mexicano del Petroleo que han abordado el tema de la recuperacion mejorada del petroleo y por ultimo se presenta un enfoque hacia el problema de la recuperacion del petroleo usando CO{sub 2}.

  1. Simulation study to determine the feasibility of injecting hydrogen sulfide, carbon dioxide and nitrogen gas injection to improve gas and oil recovery oil-rim reservoir

    Eid, Mohamed El Gohary

    This study is combining two important and complicated processes; Enhanced Oil Recovery, EOR, from the oil rim and Enhanced Gas Recovery, EGR from the gas cap using nonhydrocarbon injection gases. EOR is proven technology that is continuously evolving to meet increased demand and oil production and desire to augment oil reserves. On the other hand, the rapid growth of the industrial and urban development has generated an unprecedented power demand, particularly during summer months. The required gas supplies to meet this demand are being stretched. To free up gas supply, alternative injectants to hydrocarbon gas are being reviewed to support reservoir pressure and maximize oil and gas recovery in oil rim reservoirs. In this study, a multi layered heterogeneous gas reservoir with an oil rim was selected to identify the most optimized development plan for maximum oil and gas recovery. The integrated reservoir characterization model and the pertinent transformed reservoir simulation history matched model were quality assured and quality checked. The development scheme is identified, in which the pattern and completion of the wells are optimized to best adapt to the heterogeneity of the reservoir. Lateral and maximum block contact holes will be investigated. The non-hydrocarbon gases considered for this study are hydrogen sulphide, carbon dioxide and nitrogen, utilized to investigate miscible and immiscible EOR processes. In November 2010, re-vaporization study, was completed successfully, the first in the UAE, with an ultimate objective is to examine the gas and condensate production in gas reservoir using non hydrocarbon gases. Field development options and proces schemes as well as reservoir management and long term business plans including phases of implementation will be identified and assured. The development option that maximizes the ultimate recovery factor will be evaluated and selected. The study achieved satisfactory results in integrating gas and oil

  2. Investigating New Innovations to Detect Small Salt-Water Fraction Component in Mineral Oil and Small Oil Fraction Component in Salt-Water Projects

    E.R.R. Mucunguzi-Rugwebe

    2011-09-01

    Full Text Available The main purpose of this study is to present the key findings on the effects of small salt-water fraction component, β expressed in volume % per L on rotation are presented in the temperature range of 19.0 to 24.0ºC. It was found that rotations in oils with low boiling point known as light oils like Final diesel No. 2 were greater than the rotations which occurred in oils with high boiling point called heavy oils such as Esso diesel. Small oil fraction components, γs expressed in mL/L of salt water down to 10 ppm were detected. The greatest impact on rotation of these oils was found in light oils like Fina No. 2 diesel. At 40 ppm which is the oil content level below which the environment authority considers process water to be free from oil environmental hazards, the observed rotation angles were 23.2º for Esso, 36.7º for Nors Hydro AS, and 71.8º in Fina No. 2 diesel. It was observed that light oils molecules have drastic effect on optical properties of the mixture in which they exist. It was found that for all oils, oil fractions greater than 100 ppm, caused the medium to be optically dense. This technology has shown a very high potential of being used as an environmental monitor to detect oil fractions down to 10 ppm and the technique can use laser beam to control re-injected process water with oil fractions between 100-2000 ppm.

  3. Modeling and detection of oil in sea water

    Xenaki, Angeliki; Gerstoft, Peter; Mosegaard, Klaus

    2013-01-01

    The challenge of a deep-water oil leak is that a significant quantity of oil remains in the water column and possibly changes properties. There is a need to quantify the oil settled within the water column and determine its physical properties to assist in the oil recovery. There are currently no...... water column but also allow inference of the spatial covariance parameters resulting in a statistical description of the oil field....

  4. Mine Drainage and Oil Sand Water.

    Wei, Xinchao; Wolfe, F Andrew; Li, Yanjun

    2015-10-01

    Mine drainage from the mining of mineral resources (coal, metals, oil sand, or industrial minerals) remains as a persistent environmental problem. This review summarizes the scientific literature published in 2014 on the technical issues related to mine drainage or mine water in active and abandoned coal/hard rock mining sites or waste spoil piles. Also included in this review is the water from oil sand operations. This review is divided into the four sections: 1) mine drainage characterization, 2) prediction and environmental impact, 3) treatment technologies, 4) oil sand water. Many papers presented in this review address more than one aspect and different sections should not be regarded as being mutuallyexclusive or all-inclusive. PMID:26420092

  5. Integrated use of NMR, petrel and modflow in the modeling of SAGD produced water re-injection

    In the oil industry, steam assisted gravity drainage (SAGD) is a method used to enhance oil recovery in which production water disposal is a challenge. During this process, production water is re-injected into the reservoir and operators have to verify that it will not affect the quality of the surrounding fresh groundwater. This research aimed at determining the flow path and the time that produced water would take to reach an adjacent aquifer. This study was carried out on a horizontal well pair at the Axe Lake Area in northwestern Saskatchewan, using existing site data in Petrel to create a static hydrogeological model which was then exported to Modflow to simulate injection scenarios. This innovative method provided flow path of the re-injected water and time to reach the fresh with advantages over conventional hydrogeological modeling. The innovative workflow presented herein successfully provided useful information to assess the feasibility of the SAGD project and could be used for other projects.

  6. Water injected fuel cell system compressor

    Siepierski, James S.; Moore, Barbara S.; Hoch, Martin Monroe

    2001-01-01

    A fuel cell system including a dry compressor for pressurizing air supplied to the cathode side of the fuel cell. An injector sprays a controlled amount of water on to the compressor's rotor(s) to improve the energy efficiency of the compressor. The amount of water sprayed out the rotor(s) is controlled relative to the mass flow rate of air inputted to the compressor.

  7. Injection of Emulsified Vegetable Oil for Long-Term Bioreduction of Uranium

    Brooks, S. C.; Watson, D. B.; Schadt, C. W.; Jardine, P. M.; Gihring, T. M.; Zhang, G.; Mehlhorn, T.; Lowe, K.; Phillips, J.; Earles, J.; Wu, W.; Criddle, C. S.; Kemner, K. M.; Boyanov, M.

    2011-12-01

    degradation. Reduction and removal of U and nitrate from groundwater was observed in all wells in hydraulic connection to the injection wells after 2-4 weeks. U concentrations in groundwater were reduced to below 30 ppb (US EPA drinking water standard) at some well locations and nitrate was reduced to below detectable levels. Rebound of U in groundwater was observed together with the rebound of sulfate concentrations as the EVO was consumed. The flux of U and nitrate contamination from groundwater to the surface water receptor (Bear Creek) was significantly reduced by the EVO injection over a one year period. Uranium (VI) reduction to U(IV) in the field tests was confirmed by X-ray absorption near-edge spectroscopy (XANES) analysis. The reduced U(IV) was determined by X-ray absorption fine structure (XAFS) to be in an Fe-U complex, not uraninite. The activities of major Fe(III)- and sulfate-reducing bacteria with U(VI)-reducing capability as well as methanogens was stimulated after injection of the oil.

  8. Oil spill research : salt water and fresh water

    The difference in oil spill response activities between marine and freshwater environments were reviewed. Although containment, recovery and in-situ burning remain the same in both environments, the fate of oil is different due to water density and salinity considerations. The lower energy of lakes and the lack of major currents changes the advection of the oil. Rivers have high currents, and wind speed and direction are highly influenced by topographic effects. Tidal action is not a consideration for the inland situation, but water levels in rivers can change due to sudden rain events or the action of control devices upstream from the spill. Typically, the volume of oil released in freshwater environments is lower than in marine tanker situations, but spills from pipelines or a major train derailment can exceed 1000 m3. Since the use of water for human consumption and irrigation is another important factor in inland spills, it is important to have a means of obtaining information on the dynamics of spills and a system for archiving the response activities, such as the shoreline cleanup assessment technique (SCAT)and resulting cleanup. It was suggested that research studies must be undertaken to improve response strategies for freshwater spills. These include the dynamics of oil in freshwater environments such as rivers, lakes and sloughs; the role of oil-fine interactions in freshwater situations; the process involved in the formation of tar balls; and, the dynamics of oil in a freshwater situation. The response techniques that must be developed to improve the response to freshwater spills include techniques to remove oil from the bottom; techniques to filter and remove oil from the water column; and, development and testing of dispersants for freshwater environments

  9. Adsorption of diatoms at the oil-water interface

    Fathollahi, Niloofar; Sheng, Jian

    2013-11-01

    Statistically robust experimental observations on 3D trajectory of diatoms approaching an oil-water interface is crucial for understanding sorption mechanisms of active particles, and interfacial rheology with over-arching implications in interfacial dynamics, droplet break and coalescence. Digital Holographic Cinematography is utilized to measure 3-D trajectories of diatoms, Thalassiosira pseudomona and T. weissflogii and simultaneously track the interface. Experiments are conducted in a 300 × 100 × 100 mm chamber containing 32 ppt artificial seawater. A stationary pendant drop is created on the tip of a needle located at the center of the chamber. Three oil samples, Louisiana crude, hexadecane, and mineral oil, are used. Diatoms are injected at a height above the drop with a negligible velocity, where Diatom precipitates freely on its excess weight. Holograms of diatom and drop are recorded at 5 fps with a magnification of 1.3X and are streamed in real time allowing for long-term study of sorption onto a slowly aging interface. A novel autofocus algorithm enables us to determine 3D locations within an uncertainty of 0.05 particle diameter. This allows us to perform super-resolution measurement to determine the effects of location and orientation of diatoms on the adsorption rate at the oil-water interface. Funded by GoMRI.

  10. Muscle enhancement using intramuscular injections of oil in bodybuilding

    Schäfer, Ch. N.; Hvolris, Jørgen Jesper; Karlsmark, Tonny;

    2012-01-01

    by repeated intramuscular injections of anabolic steroids. Conclusions: SEOs cause sclerosing lipogranulomatosis and its progression may lead to lifelong complications. Thorough radiologic evaluation is important to plan surgical revisions in active phases. Also antibiotics, steroids, and compression...

  11. Experimental Studies on Performance and Emission Characteristics of Fish Oil Methyl Ester and its blends at different injection opening pressures in a direct injection CI engine

    Chandrashekar A.M; Dr. Dhananjaya D.A

    2015-01-01

    Biodiesel is one of the most versatile alternative fuel options for direct injection CI engine applications. In the recent research of biodiesel in India receives its attention towards fish oil based biodiesel. The present work aimed at production of biodiesel from the fish oil extracted from marine fish species by transesterification process which is used as fuel in direct injection CI engine to evaluate its performance, and emission characteristics at different injection opening...

  12. Feasibility study on steam injector water injection system for JSBWR

    A feasibility study has been conducted respecting a steam injector driven system (SIS) for low pressure core injection system (SI-LPCI) for a Japanese-type simplified BWR (JSBWR). The steam injector (SI) is a simple, compact passive pump driven by supersonic steam jet condensation. The feasibility and demonstration tests were conducted and water was successfully injected into the simulated injection line. The steam injector could operate under the condition of very low steam pressure, such as near atmospheric pressure (0.3 MPa), and it discharged water at 0.6 MPa by the time the gravity driven core injection system (GDCS) started operation. The system simplified the core depressurization system using large depressurization valves (DPV). 8 refs., 22 figs., 5 tabs

  13. Movement of tritiated water injected into blanket peat

    R.S. Clymo

    2016-04-01

    Full Text Available In 1966, tritiated water was injected at five sites at depths between 25 and 100 cm into blanket bog at Moor House National Nature Reserve. The distribution of tritium activity on a logarithmically spaced grid around these sites was sampled in 1990, 24 years after placement. The proportions of tritium accounted for ranged from 80 % for the injection at 100 cm deep, to 20 % for the injection at 25 cm deep. Both 80 and 20 should be considered as ± 10 %. Results imply that diffusion close to the injection may have played a part in movement of tritium; evapotranspiration is not inconsistent with the losses inversely proportional to depth of placement; but the main process of movement is probably bulk (mass flow of water through the peat.

  14. Laboratory investigation of air injection process for depleted light oil reservoirs

    Air injection into light oil reservoirs is now a proven field technique, because of its unlimited availability and low access cost of the injectant. Laboratory experimental set up was developed to understand air injection process, assess oxygen consumption and to sustain the combustion front for improving oil recovery from depleted light oil reservoirs. Non-Isothermal experiments from 40-500 degree C and a pressure of 300 and 500 psig were conducted. Unconsolidated formation impregnated with light crude oil was used in these experiments. Oxidation of the impregnated formation for sustaining the combustion front through the combustion cell carried out by injecting synthetic air (79% nitrogen and 21% oxygen). The produced combustion gases such as carbon dioxide, carbon monoxide, oxygen and nitrogen were analyzed using Gas Chromatograph with thermal conductivity detector. Higher consumption of oxygen was observed at a temperature immediately after an ignition of oil, generating high temperature oxidation zone. This also resulted more efficient carbon oxides, and created an oil bank ahead of thermal front. (author)

  15. A new Experimental Rig for Oil Burning on Water

    Brogaard, Nicholas L.; Sørensen, Martin X.; Fritt-Rasmussen, Janne; Rangwala, Ali S.; Jomaas, Grunde

    2014-01-01

    A new experimental apparatus, the Crude Oil Flammability Apparatus (COFA), has been developed to study in-situ burning of crude and pure oils spilled on water in a controlled laboratory environment with large water-to-oil ratios. The parameters and phenomena studied for an asphaltic crude oil...

  16. Influence of fat crystals in the oil phase on stability of oil-in-water emulsions

    Boekel, van M.A.J.S.

    1980-01-01

    Coalescence at rest and during flow was studied in emulsions of paraffin oil in water with several surfactants and with crystals of solid paraffin or tristearate in the oil phase. Solid fat in the oil phase was estimated by pulsed nuclear magnetic resonance. Without crystals, oil-in-water emulsions

  17. Seismic Response Analysis of Portal Water Injection Sheet Pile

    WANG Yuanbin; GUO Haiyan; ZHANG Chunhui

    2007-01-01

    To further the study on the newly developed portal water injection sheet pile under static loads, in this paper, by adopting the nonlinear calculation module of FEM software ANSYS, a model for the interaction between the soil and the sheet piles is set up,and the seismic response analysis for this type of space-retaining structure is performed. The effects of the embedded depth and the distance between the front pile and the back pile on the dynamic characteristics of the portal water injection sheet pile are studied.

  18. The effect of hot water injection on sandstone permeability

    Rosenbrand, Esther; Haugwitz, Christian; Jacobsen, Peter Sally Munch;

    2014-01-01

    Seasonal energy storage can be achieved by hot water injection in geothermal sandstone aquifers. We present an analysis of literature data in combination with new short-term flow through permeability experiments in order to address physical and physico-chemical mechanisms that can alter permeabil......Seasonal energy storage can be achieved by hot water injection in geothermal sandstone aquifers. We present an analysis of literature data in combination with new short-term flow through permeability experiments in order to address physical and physico-chemical mechanisms that can alter...

  19. Performance and emissions characteristics of Jatropha oil (preheated and blends) in a direct injection compression ignition engine

    The scarce and rapidly depleting conventional petroleum resources have promoted research for alternative fuels for internal combustion engines. Among various possible options, fuels derived from triglycerides (vegetable oils/animal fats) present promising ''greener'' substitutes for fossil fuels. Vegetable oils, due to their agricultural origin, are able to reduce net CO2 emissions to the atmosphere along with import substitution of petroleum products. However, several operational and durability problems of using straight vegetable oils in diesel engines reported in the literature, which are because of their higher viscosity and low volatility compared to mineral diesel fuel. In the present research, experiments were designed to study the effect of reducing Jatropha oil's viscosity by increasing the fuel temperature (using waste heat of the exhaust gases) and thereby eliminating its effect on combustion and emission characteristics of the engine. Experiments were also conducted using various blends of Jatropha oil with mineral diesel to study the effect of reduced blend viscosity on emissions and performance of diesel engine. A single cylinder, four stroke, constant speed, water cooled, direct injection diesel engine typically used in agricultural sector was used for the experiments. The acquired data were analyzed for various parameters such as thermal efficiency, brake specific fuel consumption (BSFC), smoke opacity, CO2, CO and HC emissions. While operating the engine on Jatropha oil (preheated and blends), performance and emission parameters were found to be very close to mineral diesel for lower blend concentrations. However, for higher blend concentrations, performance and emissions were observed to be marginally inferior. (author)

  20. The Influence of CO2 Solubility in Brine on Simulation of CO2 Injection into Water Flooded Reservoir and CO2 WAG

    Yan, Wei; Stenby, Erling Halfdan

    2010-01-01

    reservoirs and in many situations alternating injection of water and CO2 is required to stabilize the injection front. Both scenarios involve a large amount of water, making CO2 solubility in brine, which is around ten times higher than methane solubility, a non-negligible factor in the relevant reservoir......Injection of CO2 into depleted oil reservoirs is not only a traditional way to enhance oil recovery but also a relatively cheaper way to sequester CO2 underground since the increased oil production can offset some sequestration cost. CO2 injection process is often applied to water flooded...... simulations. In our previous study, a 1-D slimtube simulator, which rigorously accounts for both CO2 solubility in brine and water content in hydrocarbon phases using the Peng-Robinson EoS modified by Soreide and Whitson, has been used to investigate the influence of CO2 solubility on the simulation of...

  1. Development of Improved Oil Field Waste Injection Disposal Techniques

    Terralog Technologies

    2002-11-25

    The goals of this project have was to: (1) assemble and analyze a comprehensive database of past waste injection operations; (2) develop improved diagnostic techniques for monitoring fracture growth and formation changes; (3) develop operating guidelines to optimize daily operations and ultimate storage capacity of the target formation; and (4) to apply these improved models and guidelines in the field.

  2. Study of an Oil Field (Hassi Messaoud) by Injection of Tritiated Methane, Ethane, Propane and Butane

    Gas is injected into a deposit to increase the yield of oil contained in the rock and to maintain the pressure of the fluids at a value sufficient for the wells to remain naturally eruptive. The efficiency of this technique depends mainly on establishing a uniform displacement front in spite of heterogeneities. When the gas is injected simultaneously into several wells, the gas-oil displacement can be checked only if the origin of the gas reaching the producer wells is known with certainty. This is achieved by mixing with the gas from each of the injection wells a radioactive tracer whose path in the oil-bearing rock faithfully reproduces the movement of the gas-oil front. The tracers used are tritiated methane, ethane, propane and butane, which are injected respectively into four wells in amounts of up to 200 Ci. The distance separating each injection well from a producer well is considerable (1-6 km) and the oil volume is great, so that the radioactive tracer undergoes very marked dilution during its displacement. For industrial-scale detection of the arrival of the different tracers at the producers, it is therefore necessary to use very sensitive methods. Samples of oil are taken at the head of the producers at a pressure of approx. 50 kg/cm2. The gas in solution in the oil is separated into four fractions, which are respectively rich in C1, C2, C3 and C4 with a degree of purity better than 90%. The beta radiation of each of the fractions is then measured using a double-envelope proportional counter placed in a lead container and connected to an anti-coincidence counting system. The long-term possibility of isotopic exchange between the different tracers and the hydrocarbons present in the rock were studied experimentally under the conditions of pressure and temperature at the deposit. (author)

  3. In situ generation of steam and alkaline surfactant for enhanced oil recovery using an exothermic water reactant (EWR)

    Robertson, Eric P

    2011-05-24

    A method for oil recovery whereby an exothermic water reactant (EWR) encapsulated in a water soluble coating is placed in water and pumped into one or more oil wells in contact with an oil bearing formation. After the water carries the EWR to the bottom of the injection well, the water soluble coating dissolves and the EWR reacts with the water to produce heat, an alkali solution, and hydrogen. The heat from the EWR reaction generates steam, which is forced into the oil bearing formation where it condenses and transfers heat to the oil, elevating its temperature and decreasing the viscosity of the oil. The aqueous alkali solution mixes with the oil in the oil bearing formation and forms a surfactant that reduces the interfacial tension between the oil and water. The hydrogen may be used to react with the oil at these elevated temperatures to form lighter molecules, thus upgrading to a certain extent the oil in situ. As a result, the oil can flow more efficiently and easily through the oil bearing formation towards and into one or more production wells.

  4. A study of the effect of pumps and desanding cyclones on oil droplets in produced water

    Vikan, Anne Marie Haugnes

    2011-01-01

    The production of petroleum resources includes co-producing water. This water contains oil products and needs to be treated before discharge to sea or re-injection into the reservoir. The amount of produced water increases with the age of a field, as does often the amount of solids. The pressure of the reservoirs will decrease with time. The primary equipment for treating produced water is the hydro cyclone. It’s operated with a lower limit with regards to oil droplet size of ~...

  5. Combination of low salinity water flooding with surfactant injection : a new hybrid EOR process

    Alagic, Edin

    2010-03-15

    This work addresses different aspects related to the hybrid EOR process, low salinity surfactant injection including closely connected topics such as low salinity water injection and physicochemical properties of micro emulsions. In the first part, measurements of self-diffusion, ultrasonic speed, density and viscosity (i.e., shear dependency) are evaluated as methods to detect the structural changes in the micro emulsions imposed with a variation of the brine salinity. The viscosity measurements on Winsor type micro emulsions and adjacent excess phases all show Newtonian behaviour for shear controlled measurements in the interval 1- 1 000 s-1. The microemulsion viscosity reaches a maximum at the phase transition between Winsor I and Winsor III, which is likely to be coupled to structural changes (i.e., clustering of the oil-in-water droplets where attractive interactions between separate aggregates lead to the formation of increasing number of transient clusters) or existence of a percolation threshold. Microemulsion densities seem to be a good indicator for the phase transitions. The results obtained from speed of sound and self-diffusion measurements indicate, however, structural changes of the surfactant aggregates within the Winsor I region. The diffusion coefficient of the surfactant reaches a maximum in the middle of the Winsor III phase, which coincide well with the optimal salinity, SP found in static phase behaviour studies. All investigated parameters indicate changes at the phase transition boundary from Winsor III to Winsor II. In the second part, we sought a better understanding of low salinity water injection method by conducting core displacement experiments using the same COBR ensemble. The results from both secondary and tertiary injections proves that injection of low salinity water (LS) into aged Berea core samples give a moderate increase in oil recovery compared to the results obtained with sea water (SW) as the displacing fluid. This is

  6. Acute Respiratory Distress following Intravenous Injection of an Oil-Steroid Solution

    Michael Russell

    2011-01-01

    Full Text Available A case of acute respiratory distress and hypoxemia following accidental intravenous injection of an oil-steroid solution in a body builder is presented. Chest roentography at the time of presentation showed diffuse bilateral opacities, and computed tomography revealed predominantly peripheral ground-glass opacifications. The patient’s symptoms gradually improved over 48 h and imaging of the chest was unremarkable one week later. The pathophysiology, diagnosis and treatment of this rare but potentially life-threatening complication of intravenous oil injection are discussed.

  7. Irreversible muscle damage in bodybuilding due to long-term intramuscular oil injection.

    Banke, I J; Prodinger, P M; Waldt, S; Weirich, G; Holzapfel, B M; Gradinger, R; Rechl, H

    2012-10-01

    Intramuscular oil injections generating slowly degrading oil-based depots represent a controversial subject in bodybuilding and fitness. However they seem to be commonly reported in a large number of non-medical reports, movies and application protocols for 'site-injections'. Surprisingly the impact of long-term (ab)use on the musculature as well as potential side-effects compromising health and sports ability are lacking in the medical literature. We present the case of a 40 year old male semi-professional bodybuilder with systemic infection and painful reddened swellings of the right upper arm forcing him to discontinue weightlifting. Over the last 8 years he daily self-injected sterilized sesame seed oil at numerous intramuscular locations for the purpose of massive muscle building. Whole body MRI showed more than 100 intramuscular rather than subcutaneous oil cysts and loss of normal muscle anatomy. 2-step septic surgery of the right upper arm revealed pus-filled cystic scar tissue with the near-complete absence of normal muscle. MRI 1 year later revealed the absence of relevant muscle regeneration. Persistent pain and inability to perform normal weight training were evident for at least 3 years post-surgery. This alarming finding indicating irreversible muscle mutilation may hopefully discourage people interested in bodybuilding and fitness from oil-injections. The impact of such chronic tissue stress on other diseases like malignancy remains to be determined. PMID:22592548

  8. Oil recovery from naturally fractured reservoirs by steam injection methods. Final report

    Reis, J.C.; Miller, M.A.

    1995-05-01

    Oil recovery by steam injection is a proven, successful technology for nonfractured reservoirs, but has received only limited study for fractured reservoirs. Preliminary studies suggest recovery efficiencies in fractured reservoirs may be increased by as much as 50% with the application of steam relative to that of low temperature processes. The key mechanisms enhancing oil production at high temperature are the differential thermal expansion between oil and the pore volume, and the generation of gases within matrix blocks. Other mechanisms may also contribute to increased production. These mechanisms are relatively independent of oil gravity, making steam injection into naturally fractured reservoirs equally attractive to light and heavy oil deposits. The objectives of this research program are to quantify the amount of oil expelled by these recovery mechanisms and to develop a numerical model for predicting oil recovery in naturally fractured reservoirs during steam injection. The experimental study consists of constructing and operating several apparatuses to isolate each of these mechanisms. The first measures thermal expansion and capillary imbibition rates at relatively low temperature, but for various lithologies and matrix block shapes. The second apparatus measures the same parameters, but at high temperatures and for only one shape. A third experimental apparatus measures the maximum gas saturations that could build up within a matrix block. A fourth apparatus measures thermal conductivity and diffusivity of porous media. The numerical study consists of developing transfer functions for oil expulsion from matrix blocks to fractures at high temperatures and incorporating them, along with the energy equation, into a dual porosity thermal reservoir simulator. This simulator can be utilized to make predictions for steam injection processes in naturally-fractured reservoirs. Analytical models for capillary imbibition have also been developed.

  9. Stabilization of Oil-Water Emulsions by Hydrophobic Bacteria

    Dorobantu, Loredana S.; Yeung, Anthony K. C.; Foght, Julia M.; Gray, Murray R.

    2004-01-01

    Formation of oil-water emulsions during bacterial growth on hydrocarbons is often attributed to biosurfactants. Here we report the ability of certain intact bacterial cells to stabilize oil-in-water and water-in-oil emulsions without changing the interfacial tension, by inhibition of droplet coalescence as observed in emulsion stabilization by solid particles like silica.

  10. Stability Proxies for Water-in-Oil Emulsions and Implications in Aqueous-based Enhanced Oil Recovery

    Mehrnoosh Moradi

    2011-07-01

    Full Text Available Several researchers have proposed that mobility control mechanisms can positively contribute to oil recovery in the case of emulsions generated in Enhanced-Oil Recovery (EOR operations. Chemical EOR techniques that use alkaline components or/and surfactants are known to produce undesirable emulsions that create operational problems and are difficult to break. Other water-based methods have been less studied in this sense. EOR processes such as polymer flooding and LoSalTM injection require adjustments of water chemistry, mainly by lowering the ionic strength of the solution or by decreasing hardness. The decreased ionic strength of EOR solutions can give rise to more stable water-in-oil emulsions, which are speculated to improve mobility ratio between the injectant and the displaced oil. The first step toward understanding the connection between the emulsions and EOR mechanisms is to show that EOR conditions, such as salinity and hardness requirements, among others, are conducive to stabilizing emulsions. In order to do this, adequate stability proxies are required. This paper reviews commonly used emulsion stability proxies and explains the advantages and disadvantage of methods reviewed. This paper also reviews aqueous-based EOR processes with focus on heavy oil to contextualize in-situ emulsion stabilization conditions. This context sets the basis for comparison of emulsion stability proxies.

  11. Highly efficient 6-stroke engine cycle with water injection

    Szybist, James P; Conklin, James C

    2012-10-23

    A six-stroke engine cycle having improved efficiency. Heat is recovered from the engine combustion gases by using a 6-stroke engine cycle in which combustion gases are partially vented proximate the bottom-dead-center position of the fourth stroke cycle, and water is injected proximate the top-dead-center position of the fourth stroke cycle.

  12. Radiating chemical decomposition of oil hydrocarbons in water environment

    Full text: Water resources purification problems from natural oil and mineral oils has an important value as for extracting additional oil resources from oilcontained waste waters, so for safeguard of water resources from pollution. For the past 150 years there were 250 artificial lakes formed on the territory of Absheron peninsula of Azerbaijan as a result of oil deposits exploitation, concentration of which sometimes exceeds 25 mg/l. Every year enterprises of Azerbaijan oil industry reset more than 4-5 tons of waste waters to an environment during production of 1 ton of oil. Taking into account the fact that the larger danger for environment represents an oil slicks and emulsified mineral oils in it, the possibility of application of ionizing radiation for mineral oils of waste waters becomes the more important circumstance during solving of some ecological problems. The possibilities radiation-chemical technology application while purification of waste waters from oil pollutions had been studied and also it is studied some legitimacies of radiation-chemical molding of oil hydrogens in water sphere. In case of radiation purification of water from oil impurities it is possible the radiation-chemical molding of oil hydrogens during the process and removal of molding products from water. Data given in this article proves that there are happens an effective interaction between active particles of different origin.

  13. Combustion characteristics of a 4-stroke CI engine operated on Honge oil, Neem and Rice Bran oils when directly injected and dual fuelled with producer gas induction

    Banapurmath, N.R.; Tewari, P.G. [Department of Mechanical Engineering, B.V.B. College of Engineering and Technology, Hubli 580031, Karnataka (India); Yaliwal, V.S. [Department of Mechanical Engineering, SDM College of Engineering and Technology, Dharwad Karnataka (India); Kambalimath, Satish [Wipro Technologies (India); Basavarajappa, Y.H. [K.L.E. Society' s Polytechnic, Hubli (India)

    2009-07-15

    Energy is an essential requirement for economic and social development of any country. Sky rocketing of petroleum fuel costs in present day has led to growing interest in alternative fuels like vegetable oils, alcoholic fuels, CNG, LPG, Producer gas, biogas in order to provide a suitable substitute to diesel for a compression ignition (CI) engine. The vegetable oils present a very promising alternative fuel to diesel oil since they are renewable, biodegradable and clean burning fuel having similar properties as that of diesel. They offer almost same power output with slightly lower thermal efficiency due to their lower energy content compared to diesel. Utilization of producer gas in CI engine on dual fuel mode provides an effective approach towards conservation of diesel fuel. Gasification involves conversion of solid biomass into combustible gases which completes combustion in a CI engines. Hence the producer gas can act as promising alternative fuel and it has high octane number (100-105) and calorific value (5-6 MJ/Nm{sup 3}). Because of its simpler structure with low carbon content results in substantial reduction of exhaust emission. Downdraft moving bed gasifier coupled with compression ignition engine are a good choice for moderate quantities of available mass up to 500 kW of electrical power. Hence bio-derived gas and vegetable liquids appear more attractive in view of their friendly environmental nature. Experiments have been conducted on a single cylinder, four-stroke, direct injection, water-cooled CI engine operated in single fuel mode using Honge, Neem and Rice Bran oils. In dual fuel mode combinations of Producer gas and three oils were used at different injection timings and injection pressures. Dual fuel mode of operation resulted in poor performance at all the loads when compared with single fuel mode at all injection timings tested. However, the brake thermal efficiency is improved marginally when the injection timing was advanced. Decreased

  14. Resistivity Variation Mechanism Analysis of the Petro-Rock Injected by Water

    WANGYinghui; TANDehui

    2005-01-01

    Many oil fields have already been coming into exploitation period in the world. Physical property,lithology and oil-bearing property, etc., have been changed after oil-reservoir flooded by water, and responses of risistivity well-logging emerge in multiplicity, various welllogging responses make interpretation of water-floodedzone more difficult. But conventional resistivity welllogging series are economical and dominated tools in many oilflelds at present, it becomes more significant to research and analyse resistivity property g~ mechanism of rock injected by water. Discuss the mechanism of ""U"" type curve,including resistivity variation features of rock, relationship of Rz (mixture liquid resistivity) and Sw (water satura-tion) in water-flooded zone. Analyse various property of the most important index n based experimental curve, and display the relationship of the index n and rn according to experimental equation. At last, discuss electric property ofwater-flooded rock theoretically. All are bases to achieve more efficient interpretation model according to conventional resistivity well-logging.

  15. Study of the effect of Illite and Kaolinite on low salinity water injection

    Sina Rezaei-Gomari

    2015-07-01

    Full Text Available Low salinity water flooding as an Enhanced Oil Recovery (EOR Technique refers to the injection of brine with a lower salt content or ionic strength into an oil reservoir. Although the mechanisms have not yet been verified, the solution and surface chemistry as well as rock/fluid interactions have important roles that can be attributed to reservoir minerals being sensitive to small changes in solution properties. Among the proposed mechanisms, the clay content of rock and type of clay has been of significant interest in shedding light on the low salinity water flooding process. In this paper, two clay types (illite and kaolinite have been selected to investigate the individual contribution of each on the rock surface characterization andlow salinity water flooding performance. The results from contact angle measurement on the oil-wet calcite by low salinity water at room temperature show that the presence of low content of illite in the rock materials, in contrast to the kaolinite, reduces the contact angle significantly. This observation demonstrates that the low salinity water flooding performance depends strongly on the type of clay not on the amount of clay.

  16. Drag Reduction in Oil-water Flows

    Edomwonyi-Otu, L. C.

    2015-01-01

    Liquid-liquid flows occur in many chemical and process industries including the petroleum industry where crude oil and its derivatives are transported over long distances often in mixtures with water. Depending on flow conditions and pipe geometry different flow patterns can appear ranging from fully separated to dispersed ones. The addition of small amounts of some polymeric materials to one of the phases has been found to change the flow patterns and their boundaries and reduce the friction...

  17. Co2 injection into oil reservoir associated with structural deformation

    El-Amin, Mohamed

    2012-01-01

    In this work, the problem of structural deformation with two-phase flow of carbon sequestration is presented. A model to simulate miscible CO2 injection with structural deformation in the aqueous phase is established. In the first part of this paper, we developed analytical solution for the problem under consideration with certain types of boundary conditions, namely, Dirichlet and Neumann boundary conditions. The second part concerns to numerical simulation using IMPDES scheme. A simulator based on cell-centered finite difference method is used to solve this equations system. Distributions of CO2 saturation, and horizontal and vertical displacements have been introduced.

  18. Comparison of water use for hydraulic fracturing for unconventional oil and gas versus conventional oil.

    Scanlon, B R; Reedy, R C; Nicot, J-P

    2014-10-21

    We compared water use for hydraulic fracturing (HF) for oil versus gas production within the Eagle Ford shale. We then compared HF water use for Eagle Ford oil with Bakken oil, both plays accounting for two-thirds of U.S. unconventional oil production in 2013. In the Eagle Ford, we found similar average water use in oil and gas zones per well (4.7-4.9 × 10(6) gallons [gal]/well). However, about twice as much water is used per unit of energy (water-to-oil ratio, WOR, vol water/vol oil) in the oil zone (WOR: 1.4) as in the gas zone (water-to-oil-equivalent-ratio, WOER: 0.6). We also found large differences in water use for oil between the two plays, with mean Bakken water use/well (2.0 × 10(6) gal/well) about half that in the Eagle Ford, and a third per energy unit. We attribute these variations mostly to geological differences. Water-to-oil ratios for these plays (0.6-1.4) will further decrease (0.2-0.4) based on estimated ultimate oil recovery of wells. These unconventional water-to-oil ratios (0.2-1.4) are within the lower range of those for U.S. conventional oil production (WOR: 0.1-5). Therefore, the U.S. is using more water because HF has expanded oil production, not because HF is using more water per unit of oil production. PMID:25233450

  19. Method and apparatus for recovering oil from an oil spill on the surface of a body of water

    This patent describes a method of recovering a hydrophobic hydrocarbon oil from the surface of a body of water, the body of water having a water temperature, the oil having a specific gravity which is less than the specific gravity of the water in the body of water and a viscosity which is greater than approximately 80 centipoise at the water temperature. It comprises continuously withdrawing a feed oil-water mixture from the surface of the body of water; continuously adjusting the viscosity of the oil in the feed oil-water mixture to a level below approximately 80 centipoise to form an adjusted oil-water mixture; and continuously passing the adjusted oil-water mixture through an oil-water coalescer to separate the oil in the adjusted oil-water mixture from the water in the adjusted oil-water mixture

  20. Study of processes involved in oil spill gathering in water

    Separate flow of an oil/water mixture along a tray has been found possible only at very low rates. Higher flowrates cause surges where some oil globules begin running away from the bulk of blocked oil, skipping under the boom used in experiments. It has been found that booms used for gathering oil spills on the water surface will be efficient of water flows below 0.16 m/sec. 2 figs

  1. A new Experimental Rig for Oil Burning on Water

    Brogaard, Nicholas L.; Sørensen, Martin X.; Fritt-Rasmussen, Janne;

    2014-01-01

    A new experimental apparatus, the Crude Oil Flammability Apparatus (COFA), has been developed to study in-situ burning of crude and pure oils spilled on water in a controlled laboratory environment with large water-to-oil ratios. The parameters and phenomena studied for an asphaltic crude oil...... was found to be nearly 100% for n-Octane and of dodecane, whereas the crude oil burning efficiency ranged between 35% and 65%. The main reason for this variation proved to be the onset of an extremely violent boilover, which occurs for oils with relatively high boiling temperatures when the water sub layer...... is superheated. When the initial crude oil layer thickness exceeded 20 mm the oil became solid and no boilover occurred. The heat-loss to the water sub-layer also had an effect on the burning efficiency and the regression rate was found to reach a constant value after increasing continuously as the oil...

  2. Enhanced oil recovery using improved aqueous fluid-injection methods: an annotated bibliography. [328 citations

    Meister, M.J.; Kettenbrink, G.K.; Collins, A.G.

    1976-10-01

    This annotated bibliography contains abstracts, prepared by the authors, of articles published between 1968 and early 1976 on tests of improved aqueous fluid injection methods (i.e., polymer and surfactant floods). The abstracts have been written and organized to facilitate studies of the oil recovery potential of polymer and surfactant floods under known reservoir conditions. 328 citations.

  3. Keratopathy and pachymetric changes after photorefractive keratectomy and vitrectomy with silicone oil injection

    Buch, H; Vesti Nielsen, N

    2000-01-01

    We present a man who, after bilateral excimer laser photorefractive keratectomy (PRK) for high myopia in the right eye, had repeated retinal detachment surgery with lensectomy and injection of silicone oil. Visual acuity fluctuated in accordance with significant central corneal thickness diurnal...

  4. Superheated water drops in hot oil

    Soto, Enrique; Zenit, Roberto; Belmonte, Andrew

    2009-01-01

    Drops of water at room temperature were released in hot oil, which had a temperature higher than that of the boiling point of water. Initially, the drop temperature increases slowly mainly due to heat transfer diffusion; convective heat transfer is small because the motion takes place at a small Reynolds number. Once the drop reaches the bottom of the container, it sticks to the surface with a certain contact angle. Then, a part of the drop vaporizes: the nucleation point may appear at the wa...

  5. Comparison of microbial community compositions of injection and production well samples in a long-term water-flooded petroleum reservoir.

    Hong-Yan Ren

    Full Text Available Water flooding plays an important role in recovering oil from depleted petroleum reservoirs. Exactly how the microbial communities of production wells are affected by microorganisms introduced with injected water has previously not been adequately studied. Using denaturing gradient gel electrophoresis (DGGE approach and 16S rRNA gene clone library analysis, the comparison of microbial communities is carried out between one injection water and two production waters collected from a working block of the water-flooded Gudao petroleum reservoir located in the Yellow River Delta. DGGE fingerprints showed that the similarities of the bacterial communities between the injection water and production waters were lower than between the two production waters. It was also observed that the archaeal composition among these three samples showed no significant difference. Analysis of the 16S rRNA gene clone libraries showed that the dominant groups within the injection water were Betaproteobacteria, Gammaproteobacteria and Methanomicrobia, while the dominant groups in the production waters were Gammaproteobacteria and Methanobacteria. Only 2 out of 54 bacterial operational taxonomic units (OTUs and 5 out of 17 archaeal OTUs in the injection water were detected in the production waters, indicating that most of the microorganisms introduced by the injection water may not survive to be detected in the production waters. Additionally, there were 55.6% and 82.6% unique OTUs in the two production waters respectively, suggesting that each production well has its specific microbial composition, despite both wells being flooded with the same injection water.

  6. Charge of water droplets in non-polar oils

    Schoeler, Andreas M.; Josephides, Dimitris N.; Sajjadi, Shahriar; Lorenz, Christian D.; Mesquida, Patrick

    2013-10-01

    Recent advances in droplet manipulation methods by electric fields and signals require a deeper understanding of water droplet charge. In this paper, we have investigated the electrophoretic motion of individual water microdroplets injected into non-polar silicone and paraffin oil by video optical microscopy on an individual droplet basis to determine droplet charge. It was found that the initial surface charge density of surfactant free droplets directly after injection from a micropipette is positive and of the order of 10-6 C/m2, regardless of pH and ion concentration in the range from pH 4 to pH 10 and from 0.01 mmol/l to 1.5 mol/l, respectively. The experimental results together with molecular dynamics simulations show that the nature and polarity of the charge can be explained by anisotropic orientation of water molecules at the interface rather than selective adsorption of ions. Furthermore, we showed that slip at the liquid-liquid boundary must be taken into account when interpreting electrophoretic measurements of droplets.

  7. Oil flow in deep waters: comparative study between light oils and heavy oils

    Andreolli, Ivanilto [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2009-12-19

    Ultra deeper waters fields are being exploited due to technological development. Under this scenario, the flow design is accomplished through pipelines subjected to low temperature and high pressure. Moreover, these flow lines are usually long causing a fast fluid cooling, which may affect flow assurance in some cases. Problems during topsides production plant's restart might occur if the oil is viscous and even in steady state a significant different behavior can be noticed, if compared to a less viscous oil. A comparison between light and heavy oil through a case study with the objective to show some heavy oil flow particularities is the purpose of this paper. Permanent and transient analyses for a specific geometry are presented. The results showed that thermal and proper viscosity modeling are required for heavy oil flow, differently from that of light oil flow, due to the exponential viscosity dependence to temperature and because the predominant laminar regime. In addition, on heavier and heavier oil flow systems, it is essential to consider exportation system's restart. (author)

  8. An emergency water injection system (EWIS) for future CANDU reactors

    Marques, Andre L.F. [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), SP (Brazil). E-mail: momarques@uol.com.br; Todreas, Neil E.; Driscoll, Michael J. [Massachusetts Inst.of Tech., Cambridge, MA (United States). Nuclear Engineering Dept.

    2000-07-01

    This paper deals with the investigation of the feasibility and effectiveness of water injection into the annulus between the calandria tubes and the pressure tubes of CANDU reactors. The purpose is to provide an efficient decay heat removal process that avoids permanent deformation of pressure tubes severe accident conditions, such as loss of coolant accident (LOCA). The water injection may present the benefit of cost reduction and better actuation of other related safety systems. The experimental work was conducted at the Massachusetts Institute of Technology (MIT), in a setup that simulated, as close as possible, a CANDU bundle annular configuration, with heat fluxes on the order of 90 kW/m{sup 2}: the inner cylinder simulates the pressure tube and the outer tube represents the calandria tube. The experimental matrix had three dimensions: power level, annulus water level and boundary conditions. The results achieved overall heat transfer coefficients (U), which are comparable to those required (for nominal accident progression) to avoid pressure tube permanent deformation, considering current CANDU reactor data. Nonetheless, future work should be carried out to investigate the fluid dynamics such as blowdown behavior, in the peak bundle, and the system lay-out inside the containment to provide fast water injection. (author)

  9. Friction and Surface Temperature of Wet Hair Containing Water, Oil, or Oil-in-Water Emulsion.

    Aita, Yuuki; Nonomura, Yoshimune

    2016-06-01

    The surface properties and the tactile texture of human hair are important in designing hair-care products. In this study, we evaluated the temporal changes of friction and temperature during the drying process of wet human hair containing water, silicone oil, or oil-in-water (O/W) emulsion. The wet human hair including water or O/W emulsion have a moist feel, which was caused by the temperature reduction of approximately 3-4°C. When human hair is treated with silicone oil, more than 60% of the subjects felt their hair to be slippery and smooth like untreated hair. Treating hair with O/W emulsion after drying made the subject perceive a slippery feeling because the surfactant reduced friction on the hair surface. These results indicated that both friction and thermal properties of the hair surface are important to control the tactile texture of the human hair. PMID:27181247

  10. One-step extracapsular cataract extraction and silicone oil-injection in the management of proliferative vitreoretinopathy.

    Peyman, G A; de Corral, L R

    1986-01-01

    A combined technique of extracapsular cataract extraction and silicone oil injection is described. The anterior capsule is preserved to prevent movement of the silicone oil from the vitreous cavity to the anterior chamber. An anterior chamber tap ensures that the vitreous cavity is completely filled with silicone oil, while a peripheral iridectomy prevents postoperative pupillary block glaucoma.

  11. Effect Of Hot Water Injection On Sandstone Permeability

    Rosenbrand, Esther; Fabricius, Ida Lykke

    2012-01-01

    of published results regarding the effect of temperature on sandstone permeability. These tests are performed with mineral oil, nitrogen gas, distilled water and solutions of NaCl, KCl, CaCl2 as well as brines that contain a mixture of salts. Thirteen sandstone formations, ranging from quartz arenites....... Heating causes thermal expansion, which results in porosity reduction if the sandstone is confined. The maximum effect of porosity reduction as a result of thermal expansion on permeability is modelled and compared the change in specific surface that is computed from the reported data. This does...... not account for all the permeability reductions observed. Permeablity reduction occurs both when distilled water is the saturating fluid as well as in tests with NaCl, KCl or CaCl2 solutions, however, this is not the case in tests with mineral oil or nitrogen gas. The formation of a filter cake or influx...

  12. COMBUSTION ANALYSIS OF ALGAL OIL METHYL ESTER IN A DIRECT INJECTION COMPRESSION IGNITION ENGINE

    HARIRAM V.

    2013-02-01

    Full Text Available Algal oil methyl ester was derived from microalgae (Spirulina sp. The microalga was cultivated in BG 11 media composition in a photobioreactor. Upon harvesting, the biomass was filtered and dried. The algal oil was obtained by a two step solvent extraction method using hexane and ether solvent. Cyclohexane was added to biomass to expel the remaining algal oil. By this method 92% of algal oil is obtained. Transesterification process was carried out to produce AOME by adding sodium hydroxide and methanol. The AOME was blended with straight diesel in 5%, 10% and 15% blend ratio. Combustion parameters were analyzed on a Kirloskar single cylinder direct injection compression ignition engine. The cylinder pressure characteristics, the rate of pressure rise, heat release analysis, performance and emissions were studied for straight diesel and the blends of AOME’s. AOME 15% blend exhibits significant variation in cylinder pressure and rate of heat release.

  13. Modelling the effect of gas injections on the stability of asphaltene-containing crude oils

    Zhang, X.; Moorwood, T. [Infochem, Munich (Germany); Merino Garcia, D.; Pena Diez, J.L. [Repsol YPF, Madrid (Spain)

    2008-07-01

    In oil fields where asphaltene deposits occur, they present major remediation problems and can halt production due to flow blockage. Crude oils which precipitate asphaltenes generally contain both asphaltene molecules and lighter resin molecules. Resins are thought to solvate the asphaltene molecules, thus stabilizing the solution, while light gases have the opposite effect. In order to model asphaltene phase behaviour, it is important to understand the impact of adding gas to asphaltene-containing crudes. This study presented several experimental investigations of gas injection into asphaltene-containing crudes. The trends of asphaltene destabilization were discussed. The injection gases ranged from pure gases to a gas condensate. The data were modelled using a conventional equation of state together with an extra term that considered the association between asphaltene molecules and their solvation by resins. Since the model could simultaneously described the gas, oil and asphaltene phases, it was possible to calculate phase stability and phase equilibria. However, a different model had to be used to obtain the gas-oil equilibrium because the use of solubility parameters only allows the stability of the asphaltene phase to be calculated. The model correctly predicted that the gases will promote asphaltene precipitation. In its original form, the model tended to over-predict the trend. The optimal parameter values needed to represent all the available experimental data were determined. The extent to which the effect of gas injection on asphaltenes can be predicted was then discussed.

  14. Analysis of effect of late water injection on RCS repressurization

    Effect of late water injection on RCS repressurization during high pressure severe accident sequence in a typical PWR was analyzed. As the results shown, late water injection could increase RCS pressure when RPV failed without RCS passive depressurization. Especially in the condition of opening one PORV, RCS pressure could reach high pressure limit when RPV failed and the risk of HPME and DCH was dramatically increased. Integrity of containment could be threatened. However, in the condition of RCS passive depressurization induced by pressurizer surge line creep failure, RCS pressure could be decreased to very low level even only one PORV was opened and two trains of emergency core cooling were implemented. The risk of HPME and DCH was eliminated. The more PORVs were opened, the faster accident progression was and the earlier RPV failed. RCS pressure was a little higher when PRV failed if two trains of emergency core cooling was implemented comparing with the condition with only one train of emergency core cooling. However the time of RPV failure was obviously delayed. From the point of delaying RPV failure and preventing containment early failure of view, the optimized late water injection was opening three PORVs and implementing two trains of emergency core cooling. (authors)

  15. Superheated water drops in hot oil

    Soto, Enrique; Belmonte, Andrew

    2009-01-01

    Drops of water at room temperature were released in hot oil, which had a temperature higher than that of the boiling point of water. Initially, the drop temperature increases slowly mainly due to heat transfer diffusion; convective heat transfer is small because the motion takes place at a small Reynolds number. Once the drop reaches the bottom of the container, it sticks to the surface with a certain contact angle. Then, a part of the drop vaporizes: the nucleation point may appear at the wall, the interface or the bulk of the drop. The vapor expands inside the drop and deforms its interface. The way in which the vapor expands, either smooth or violent, depends on the location of the nucleation point and oil temperature. Furthermore, for temperatures close to the boiling point of water, the drops are stable (overheated); the vaporization does not occur spontaneously but it may be triggered with an external perturbation. In this case the growth of the vapor bubble is rather violent. Many visualization for dif...

  16. Direct steam generation using a water injection system

    One way to reduce plant price is by an increase in efficiency. About 3/4 of the energy in the Rankine cycle is used to evaporate water. By allowing the evaporation to take place directly in the collector tube, most of the tube temperature would be around the saturation temperature. Another advantage is the high amount of energy that can be store in the water-to-steam phase change. This reduces the required mass flow (tubing cost, (parasitics) in the solar field. At the moment there are two Direct Steam Generator systems which show promise. Luz developed the once-through boiler, BII developed the injection system

  17. Portable water filtration system for oil well fractionation

    Seibert, D. L.

    1985-08-13

    The invention comprises a portable, multi-stage filtration system utilized in filtering water for an oil and gas stimulation process commonly known as fracking. Three stages are used, the first being a straining operation reducing the size of particulate matter in the water to about three-eighths of an inch. The second stage is a centrifugal separator, reducing the particle size to about 50 microns. The final stage utilizes a cartridge-type filter giving a final particle size in the water of about 5 microns. In this manner, water which is injected into the well head during the fracking process and which is obtained from readily available sources such as ponds, streams and the like is relatively free of particulate matter which can foul the fracking process. The invention, by virtue of being mounted on a trailer, is portable and thus can be easily moved from site to site. Water flow rates obtained using the invention are between 250 and 300 gallons per minute, sufficient for processing a small to medium sized well.

  18. Sustainable water management in Alberta's oil sands

    Byers, Bill; Usher, Robyn; Roach, Andrea [CH2M HILL, Englewood, CO (United States); Lambert, Gord; Kotecha, Prit [Suncor Energy Inc., Calgary (Canada)

    2012-07-01

    The Canadian Association of Petroleum Producers forecast published in 2011 predicts that oil production from oil sands will increase by 50% in the next 3 years and double by 2020. This rate of growth will result in significant pressure on water resources; water use per barrel of oil sands production is comparable to other energy resources - about 2.5 barrels of fresh water per barrel of oil produced are used by mining operations and 0.5 barrels by in-situ operations. Suncor Energy Inc. (Suncor) was the first company to develop the oil sands in northern Alberta and holds one of the largest oil sands positions in Canada. In 2010, Suncor announced plans to increase production to more than 1 million barrels of oil equivalent per day by 2020, which it plans to achieve through oil sands production growth of approximately 10% per year. Because water supply and potential impacts to water quality are critical to its future growth, in 2010-2011 Suncor conducted a risk assessment to identify water-related business risks related to its northern Alberta operations. The assessment identified more than 20 high level business risks in strategic water risk areas including water supply, water reuse, storm water management, groundwater, waste management and river water return. The risk assessment results prompted development of a strategic roadmap to guide water stewardship across Suncor's regional operations. The roadmap describes goals, objectives, and specific activities for each of six key water risk areas, and informs prioritization and selection of prospective water management activities. Suncor is not only exploring water within its own boundaries, but is also collaborating with other oil sands producers to explore ways of integrating its water systems through industry consortia; Suncor is a member of the Oil Sands Leadership Initiative and of the recently formed Canadian Oil Sands Innovation Alliance, among others. (author)

  19. Recovery of oil from water with magnetic liquids

    Kaiser, R.; Miskolczy, G.; Curtis, R.A.; Colton, C.K.

    1971-01-01

    A method of oil-water separation has been developed which utilizes magnetism to separate the 2 phases. In this method, a ferro-fluid miscible with one of the phases, usually the oil phase, is added to the mixture. A ferrofluid is a stable magnetically responsive colloidal dispersion of superparamagnetic particles. Adding a ferrofluid to a miscible liquid renders the mixture magnetically responsive. Thus, when an oil-soluble, water-insoluble ferrofluid is added to an oil-water mixture, magnetic properties are conferred to the oil phase alone. When the mixture is passed through a suitable device in which a magnetic field is generated, a selective magnetic body force is exerted on the oil which is retained within the device while the water passes through. This method has been applied to the problems of removing oil from the surface of the ocean and to the separation of oil-in-water emulsions. The principles of removing oil from water by magnetic means are discussed. Based on these principles, the different types of equipment required to separate an oil-water emulsion and to remove an oil spill from the surface of the ocean are considered. (10 refs.)

  20. Performance evaluation of common rail direct injection (CRDI engine fuelled with Uppage Oil Methyl Ester (UOME

    D.N. Basavarajappa

    2015-02-01

    Full Text Available For economic and social development of any country energy is one of the most essential requirements. Continuously increasing price of crude petroleum fuels in the present days coupled with alarming emissions and stringent emission regulations has led to growing attention towards use of alternative fuels like vegetable oils, alcoholic and gaseous fuels for diesel engine applications. Use of such fuels can ease the burden on the economy by curtailing the fuel imports. Diesel engines are highly efficient and the main problems associated with them is their high smoke and NOx emissions. Hence there is an urgent need to promote the use of alternative fuels in place of high speed diesel (HSD as substitute. India has a large agriculture base that can be used as a feed stock to obtain newer fuel which is renewable and sustainable. Accordingly Uppage oil methyl ester (UOME biodiesel was selected as an alternative fuel. Use of biodiesels in diesel engines fitted with mechanical fuel injection systems has limitation on the injector opening pressure (300 bar. CRDI system can overcome this drawback by injecting fuel at very high pressures (1500-2500 bar and is most suitable for biodiesel fuels which are high viscous. This paper presents the performance and emission characteristics of a CRDI diesel engine fuelled with UOME biodiesel at different injection timings and injection pressures. From the experimental evidence it was revealed that UOME biodiesel yielded overall better performance with reduced emissions at retarded injection timing of -10° BTDC in CRDI mode of engine operation.

  1. Study of disbudding goat kids following injection of clove oil essence in horn bud region.

    Molaei, Mohammad Mahdi; Mostafavi, Ali; Kheirandish, Reza; Azari, Omid; Shaddel, Mohsen

    2015-01-01

    This study was performed to evaluate the efficacy of injection of essential oil of Eugenia caryophyllata in the kid horn buds, as a new chemical technique for disbudding. Five-day-old healthy goat kids from both sexes (n = 16) were divided randomly into 4 equal groups. In groups 1, 2 and 3, 0.2 mL of clove essence and in group 4 (control) 0.2 mL of normal saline was injected into the left horn bud of goat kids. Right horn bud in all kids was considered to ensure that they are horned. During the study, the rate of horn growth were evaluated in determined time intervals between groups 1 and 4. Tissue samples were taken from right and left horn bud in groups 2 and 3, at five and ten days after clove essence injection, for microscopic study. The results of the study showed that the clove essence stopped horn growth, whereas there was no significant difference in horn growth rate between left and right horns after injection of normal saline, in group 4. Histopathological study showed that injection of clove essence caused complete necrosis of epidermis and underlying dermis with collagenolysis in horn bud tissues, 5 days after injection and then progress in healing process was observed after 10 days. According to the results of this study, it can be concluded that the injection of clove essence is an effective method to stop horn growth without any undesirable effects on clinical parameters in goat kids. PMID:25992247

  2. Pressure-transient testing of water-injection wells

    Abbaszadeh, M.; Kamal, M.

    1989-02-01

    This paper presents an interpretation method for injectivity and falloff testing in a single-layer oil reservoir that is under waterflooding and develops analytical solutions for pressure and saturation distributions. The effects of relative permeability, wellbore storage, and skin are considered in these solutions. New field-dependent type curves for falloff tests, which exhibit features that do not appear in the currently available single-phase-flow type curves, are also presented. Matching of field data on these curves yields fluid mobilities in various banks, skin, formation permeability, and flood-front location. Field data interpretation with the new method shows that falloff tests can be used to monitor the progress of waterfloods.

  3. Water injection system for turbine driven BWR type reactor

    The present invention provides a water injection system of a turbine driven nuclear reactor for maintaining the function thereof even upon occurrence of a severe accident in a BWR type nuclear reactor. That is, the system comprises a differential pressure detection means for measuring a pressure difference between the downstream of a the turbine and a reactor container and an interrupting means for stopping the supply of steams to the turbine when the differential pressure exceeds a predetermined value. With such a constitution, when the pressure in the turbine driven water injection system is locally increased, the differential pressure detection means detects the differential pressure, to interrupt the supply of the steams to the turbine. Further, upon occurrence of a severe accident that a pressure in the reactor container is abnormally elevated, differential pressure is not caused between the downstream of the turbine and the reactor container. Accordingly, a protection function is not operated by the differential pressure detection means. Accordingly, injection of coolants to the reactor can be continued even upon loss of AC power source. (I.S.)

  4. Water Injection on Commercial Aircraft to Reduce Airport Nitrogen Oxides

    Daggett, David L.; Hendricks, Robert C.; Fucke, Lars; Eames, David J. H.

    2010-01-01

    The potential nitrogen oxide (NO(x) reductions, cost savings, and performance enhancements identified in these initial studies of waterinjection technology strongly suggest that it be further pursued. The potential for engine maintenance cost savings from this system should make it very attractive to airline operators and assure its implementation. Further system tradeoff studies and engine tests are needed to answer the optimal system design question. Namely, would a low-risk combustor injection system with 70- to 90-percent NO(x) reduction be preferable, or would a low-pressure compressor (LPC) misting system with only 50-percent NO(x) reduction but larger turbine inlet temperature reductions be preferable? The low-pressure compressor injection design and operability issues identified in the report need to be addressed because they might prevent implementation of the LPC type of water-misting system. If water-injection technology challenges are overcome, any of the systems studied would offer dramatic engine NO(x) reductions at the airport. Coupling this technology with future emissions-reduction technologies, such as fuel-cell auxiliary power units will allow the aviation sector to address the serious challenges of environmental stewardship, and NO(x) emissions will no longer be an issue at airports.

  5. Hot gas injection as an artificial lift system through a concentric tubing completion in a heavy oil well, Pilon field, Faja Petrolifera del Orinoco

    Marfissi, S.; Lujan, A. [PDVSA EandP (Venezuela)

    2011-07-01

    The Pilon Field in the Morichal District, Venezuela is producing heavy oil with numerous gas lift wells. Some of these wells are now inactive due to casing damage. The purpose of this paper is to assess the benefits of using hot gas injection as an artificial lift system through a concentric tubing completion in such wells. A pilot test was conducted on a well presenting a low water cut and 12 degree API, an indirect fire heater was installed near the wells. Results showed that heat losses were minimized thanks to the concentric pipe completion. In addition hot gas injection resulted in an oil production increase of 57%. The hot gas injection method used with a concentric tubing completion was proved to be a good alternative to the use of diluent but an economic analysis is nevertheless recommended to determine the costs of installing heating equipment.

  6. Mathematical modeling of the working cycle of oil injected rotary twin screw compressor

    Oil injected twin-screw air and gas compressors are widely used for medium pressure applications in many industries. Low cost air compressors can be adopted for compression of helium and special gases, leading to significant cost saving. Mathematical analysis of oil injected twin-screw compressor is carried out on the basis of the laws of perfect gas and standard thermodynamic relations. Heat transfer coefficient required for computer simulation is experimentally obtained and used in performance prediction, when the working medium being air or helium. A mathematical model has been developed for calculating the compressor performance and for validating the results with experimental data. The flow coefficients required for numerical simulation to calculate leakage flow rates are obtained from efficiency verses clearance curves. Effect of some of the compressor operating and design parameters on power and volumetric efficiencies have been analyzed and presented

  7. New Natural Injection-Moldable Composite Material from Sunflower Oil Cake

    Rouilly, Antoine; Orliac, Olivier; Silvestre, Françoise; Rigal, Luc

    2006-01-01

    Through a twin-screw extrusion process the native structure of sunflower oil cake was completely transformed (globular protein denaturation/texturization and husk fiber defibration) into a simpler matrix-fiber structure, as could be seen on SEM micrographs. Further chemical reduction of protein disulfide bridges greatly reduced the melt viscosity of the moistened composite that it could be injection-molded. The molded specimens were tested and their tensile and flexural propert...

  8. Water-in-crude oil emulsion formation and stability for crude oils in fresh, brackish and salt water. Volume 2

    Crude oil spilled at sea is subjected to weathering. The main physical process of weathering are water-in-oil emulsification, evaporation, dispersion, dissolution and oil-sediment interaction. For medium to heavy oils, evaporation and dispersion are less important, and the onset of water-in-oil emulsion formation becomes the most important weathering process for spill response. Emulsification involves the incorporation of water droplets into the continuous oil phase. As such, it has a pronounced effect on the physical properties and characteristics of an oil, affecting its behaviour and ultimate fate. Emulsions formed from heavy oils contain higher proportions of asphaltenes and resins and may persist for long periods or indefinitely. This paper provided a direct comparison of stability for emulsions formed from crude oils with both fresh and salt water containing 20 or 33 per cent sodium chloride. Emulsions from 5 crude oil were compared. It was noted that oils that form emulsions in salt water will also form in fresh water, in the same stability class. Stable fresh water emulsions have lower values of the viscoelastic parameters, indicating decreased stability compared to stable salt water emulsions. The difference between stable and meso-stable emulsions formed from water of 20 and 33 per cent salinity was small, but meso-stable emulsions from fresh water could achieve higher levels of water content and have higher initial values of the viscoelastic parameters than with salt water. The nature of stabilizer deficiency determines the form of degraded meso-stable emulsions. It was concluded that since entrained water states are created by a different chemical-physical process or mixing mode, there is no difference in emulsions product due to the ionic content of salt water. However, wax content may be a contributor to the stabilization for entrained water states. 14 refs., 5 tabs., 6 figs

  9. Dynamic graphene filters for selective gas-water-oil separation

    Bong, Jihye; Lim, Taekyung; Seo, Keumyoung; Kwon, Cho-Ah; Park, Ju Hyun; Kwak, Sang Kyu; Ju, Sanghyun

    2015-09-01

    Selective filtration of gas, water, and liquid or gaseous oil is essential to prevent possible environmental pollution and machine/facility malfunction in oil-based industries. Novel materials and structures able to selectively and efficiently filter liquid and vapor in various types of solutions are therefore in continuous demand. Here, we investigate selective gas-water-oil filtration using three-dimensional graphene structures. The proposed approach is based on the adjustable wettability of three-dimensional graphene foams. Three such structures are developed in this study; the first allows gas, oil, and water to pass, the second blocks water only, and the third is exclusively permeable to gas. In addition, the ability of three-dimensional graphene structures with a self-assembled monolayer to selectively filter oil is demonstrated. This methodology has numerous potential practical applications as gas, water, and/or oil filtration is an essential component of many industries.

  10. A study on the fuel injection and atomization characteristics of soybean oil methyl ester (SME)

    The spray atomization characteristics of an undiluted biodiesel fuel (soybean oil methyl ester, SME) in a diesel engine were investigated and compared with that of diesel fuel (ultra low sulfur diesel, ULSD). The experimental results were compared with numerical results predicted by the KIVA-3V code. The spray characteristics of the spray tip penetration, spray area, spray centroid and injection delay were analyzed using images obtained from a visualization system. The Sauter mean diameter (SMD) was analyzed using a droplet analyzer system to investigate the atomization characteristics. It was found that the peak injection rate increases and advances when the injection pressure increases due to the increase of the initial injection momentum. The injection rate of the SME, which has a higher density than diesel fuel, is higher than that of diesel fuel despite its low injection velocity. The high ambient pressure induces the shortening of spray tip penetration of the SME. Moreover, the predicted spray tip penetration pattern is similar to the pattern observed experimentally. The SMD of the SME decreases along the axial distance. The predicted local and overall SMD distribution patterns of diesel and SME fuels illustrate similar tendencies when compared with the experimental droplet size distribution patterns

  11. Oil pollution in the surface water of the Aegean Sea

    Öztürk, Bayram; Güven, Kasim C.; Nesimigil, Filiz; Cumali, Selin; Dede, Ayhan

    2006-01-01

    Abstract Oil pollution in the surface water of the Aegean Sea was investigated from the Çanakkale Strait (Dardanelles) to the Marmaris Harbour, during 17-25 April in 2005. The oil pollution of samples was determined by UVF, through various crude oils and also chrysene as references materials. The oil pollution in water was ranged from 6.17 μg/L at Datca to 59.58 μg/L at Kusadasi through Russian crude oil equivalent. The highest polluted areas were Babakale-Kusadasi Bay, West of Giadoros Islan...

  12. Cold water injection into two-phase mixtures

    This report presents the results of a review of the international literature regarding the dynamic loadings associated with the injection of cold water into two-phase mixtures. The review placed emphasis on waterhammer in nuclear power plants. Waterhammmer incidence data were reviewed for information related to thermalhydraulic conditions, underlying causes and consequential damage. Condensation induced waterhammer was found to be the most significant consequence of injecting cold water into a two-phase system. Several severe waterhammer incidents have been attributed to slug formation and steam bubble collapse under conditions of stratified steam and cold water flows. These phenomena are complex and not well understood. The current body of experimental and analytical knowledge is not large enough to establish maps of expected regimes of condensation induced waterhammer. The Electric Power Research Institute, in the United States, has undertaken a major research and development programme to develop the knowledge base for this area. The limited models and data currently available show that mechanical parameters are as important as thermodynamic conditions for the initiation of condensation induced waterhammer. Examples of bounds for avoiding two-phase waterhammer are given. These bounds are system specific and depend upon parameters such as pump capacity, pipe length and pipe orientation

  13. Water-in-oil emulsification and development of model EMU

    Kvočka, Davor

    2013-01-01

    Oil-spill at sea represents one of the greatest threats for the environment. Immediately after occurence of an oil-spill several physical, chemical and biological processes occur, among which the process of emulsification is one of the most important. Emulsified oil is very difficult to clean; therefore, understnding of the emulsification processes is of great importance for successful clean-up. Preconditions for formation of water-in-oil emulsion are adequate chemical conditions ...

  14. Crack Extension in Hydraulic Fracturing of Shale Cores Using Viscous Oil, Water, and Liquid Carbon Dioxide

    Bennour, Ziad; Ishida, Tsuyoshi; Nagaya, Yuya; Chen, Youqing; Nara, Yoshitaka; Chen, Qu; Sekine, Kotaro; Nagano, Yu

    2015-07-01

    We performed hydraulic fracturing experiments on cylindrical cores of anisotropic shale obtained by drilling normal to the sedimentary plane. Experiments were conducted under ambient condition and uniaxial stresses, using three types of fracturing fluid: viscous oil, water, and liquid carbon dioxide (L-CO2). In the experiments using water and oil, cracks extended along the loading direction normal to the sedimentary plane under the uniaxial loading and extended along the sedimentary plane without loading. These results suggest that the direction of crack extension is strongly affected by in situ stress conditions. Fluorescent microscopy revealed that hydraulic fracturing with viscous oil produced linear cracks with few branches, whereas that with water produced cracks with many branches inclining from the loading axis. Statistical analysis of P wave polarity of acoustic emission waveforms showed that viscous oil tended to induce Mode I fracture, whereas both water and L-CO2 tended to induce Mode II fracture. Crack extension upon injection of L-CO2 was independent of loading condition unlike extension for the other two fluids. This result seemed attributable to the low viscosity of L-CO2 and was consistent with previous observations for granite specimens that low-viscosity fluids like CO2 tend to induce widely extending cracks with many branches, with Mode II fractures being dominant. These features are more advantageous for shale gas production than those induced by injection of conventional slick water.

  15. Aging study of boiling water reactor high pressure injection systems

    The purpose of high pressure injection systems is to maintain an adequate coolant level in reactor pressure vessels, so that the fuel cladding temperature does not exceed 1,200 degrees C (2,200 degrees F), and to permit plant shutdown during a variety of design basis loss-of-coolant accidents. This report presents the results of a study on aging performed for high pressure injection systems of boiling water reactor plants in the United States. The purpose of the study was to identify and evaluate the effects of aging and the effectiveness of testing and maintenance in detecting and mitigating aging degradation. Guidelines from the United States Nuclear Regulatory Commission's Nuclear Plant Aging Research Program were used in performing the aging study. Review and analysis of the failures reported in databases such as Nuclear Power Experience, Licensee Event Reports, and the Nuclear Plant Reliability Data System, along with plant-specific maintenance records databases, are included in this report to provide the information required to identify aging stressors, failure modes, and failure causes. Several probabilistic risk assessments were reviewed to identify risk-significant components in high pressure injection systems. Testing, maintenance, specific safety issues, and codes and standards are also discussed

  16. Oxidative Stability and Rheological Properties of Oil-In-Water Emulsions with Walnut Oil

    Kremena Nikovska

    2010-01-01

    The oxidative stability of walnut oil and oil-in-water (O/W) emulsions with walnut oil stabilized bysoy protein isolate (SI) and Whey Protein Isolate (W PI) was evaluated. The food emulsions w ere more stablethan walnut oil, as indicated by measuring the formation of primary and secondary oxidation products. It wasshown that the emulsions with WPI had a better oxidative stability than the emulsions with SI, probably dueto the ability of whey proteins to inactivate peroxil radicals. In additio...

  17. Influence of pumpkin seed oil in continuous phase on droplet size and stability of water-in-oil emulsions

    Nikolovski Branislava G.; Ilić Jelena D.; Sovilj Milan N.; Nikolić Milan P.; Milanović Jadranka L.

    2011-01-01

    The aim of this work was to contribute to the optimized production of water-in-oil emulsions with pumpkin seed oil in the oil phase using a high-speed homogenizer. Pumpkin seed oil is a valuable natural source of essential fatty acids and biologically active micronutrients that contribute to its nutritive value and medical uses, and reduce interfacial tension between water and the oil phases. Therefore, pumpkin seed oil can be considered as a prosperous oil phase whose use can possibly ...

  18. Panorama 2011: Water in fuel production Oil production and refining

    Water plays a vital role in the production of fuels. Against a background of extremely high pressure to do with the need to protect the environment, better manage energy use and operate in a socially responsible manner - as well as the need to protect water as a resource and reduce greenhouse gas emissions, water management has become a major issue for the oil industry. These issues have all more or less been factored into the integrated water management programmes which have been introduced both in oil production and oil refining. These programmes have been designed to keep waste and emissions to a minimum, and to reduce the quantities of water required. (author)

  19. 46 CFR 162.050-27 - Oil content meter: Approval tests.

    2010-10-01

    ... supplied from the oil injection pipe of the test rig and water supplied from the mixture tank of the test rig. However, if the flow of oil through the oil injection pipe becomes intermittent, oil and water... meter with water, an oil content reading is again obtained and recorded, and a calibration curve must...

  20. Dynamic graphene filters for selective gas-water-oil separation

    Jihye Bong; Taekyung Lim; Keumyoung Seo; Cho-Ah Kwon; Ju Hyun Park; Sang Kyu Kwak; Sanghyun Ju

    2015-01-01

    Selective filtration of gas, water, and liquid or gaseous oil is essential to prevent possible environmental pollution and machine/facility malfunction in oil-based industries. Novel materials and structures able to selectively and efficiently filter liquid and vapor in various types of solutions are therefore in continuous demand. Here, we investigate selective gas-water-oil filtration using three-dimensional graphene structures. The proposed approach is based on the adjustable wettability o...

  1. Toluene diisocyanate based phase-selective supramolecular oil gelator for effective removal of oil spills from polluted water.

    Wang, Yongzhen; Wang, Youshan; Yan, Xingru; Wu, Songquan; Shao, Lu; Liu, Yuyan; Guo, Zhanhu

    2016-06-01

    Due to tremendous resource wastes and great harm to ecological environment caused by the accidental oil spills, an alkyl bicarbamate supramolecular oil gelator was synthesized and applied to selectively gelate oils from oil/water mixtures. Interestingly, the oil gelator could be self-assembled in a series of organic solvents, i.e., edible oils and fuel oils to form 3D networks and then turned into thermally reversible organogels, allowing easy separation and removal of oil spills from oil/water mixtures. The possible self-assembly mode for the formation of organogels was proposed. What's more, the optimal conditions for using the oil gelator to recover oils were experimentally determined. Inspiringly, taking gasoline as the co-congealed solvent, a complete gelation of oil phase was achieved within 15 min with high oil removal rate and oil retention rate after convenient salvage and cleanup of oil gels from oil/water mixtures. The oil gelator had some advantages in solidifying oil spills on water surface, exhibiting fast oil gelation, convenient and thorough oil removal and easy recovery. This work illustrates the significant role of oil gelators in the potential cleanup of spilled oils for water purification. PMID:27035386

  2. Hydraulic Systems with Tap Water versus Bio-oils

    Conrad, Finn

    1997-01-01

    Deals with the advantages of using pure tap water hydraulics versus bio-oils for suiteable applications. Focus is in particular on food processing industry.......Deals with the advantages of using pure tap water hydraulics versus bio-oils for suiteable applications. Focus is in particular on food processing industry....

  3. Methodology for surge pressure evaluation in a water injection system

    Meliande, Patricia; Nascimento, Elson A. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Dept. de Engenharia Civil; Mascarenhas, Flavio C.B. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Lab. de Hidraulica Computacional; Dandoulakis, Joao P. [SHELL of Brazil, Rio de Janeiro, RJ (Brazil)

    2009-07-01

    Predicting transient effects, known as surge pressures, is of high importance for offshore industry. It involves detailed computer modeling that attempts to simulate the complex interaction between flow line and fluid in order to ensure efficient system integrity. Platform process operators normally raise concerns whether the water injection system is adequately designed or not to be protected against possible surge pressures during sudden valve closure. This report aims to evaluate the surge pressures in Bijupira and Salema water injection systems due to valve closure, through a computer model simulation. Comparisons among the results from empirical formulations are discussed and supplementary analysis for Salema system were performed in order to define the maximum volumetric flow rate for which the design pressure was able to withstand. Maximum surge pressure values of 287.76 bar and 318.58 bar, obtained in Salema and Bijupira respectively, using empirical formulations have surpassed the operating pressure design, while the computer model results have pointed the greatest surge pressure value of 282 bar in Salema system. (author)

  4. Modeling crude oil droplet-sediment aggregation in nearshore waters.

    Sterling, Michael C; Bonner, James S; Page, Cheryl A; Fuller, Christopher B; Ernest, Andrew N S; Autenrieth, Robin L

    2004-09-01

    This paper describes a modeling approach that simulates changes in particle size distribution and density due to aggregation by extending the Smoluchowski aggregation kinetic model to particles of different density. Batch flocculation studies were conducted for clay, colloidal silica, crude oil, clay-crude oil, and silica-crude oil systems. A parameter estimation algorithm was used to estimate homogeneous collision efficiencies (alphaHOMO) for single-particle-type systems and heterogeneous collision efficiencies (alphaHET) for two-particle-type systems. Homogeneous collision efficiency values (alphaHOMO) were greater for clay (0.7) and for crude oil (0.3) than for silica (0.01). Thus, clay and crude oil were classified as cohesive particles while silica was classified as noncohesive. Heterogeneous collision efficiencies were similar for oil-clay (0.4) and oil-silica (0.3) systems. Thus, crude oil increases the aggregation of noncohesive particles. Data from the calibrated aggregation model were used to estimate apparent first-order flocculation rates (K') for oil, clay, and silica and apparent second-order flocculation rates (K'') for oil and clay in oil-clay systems and for oil and silica in oil-silica systems. For oil or clay systems, aggregation Damköhler numbers ranged from 0.1 to 1.0, suggesting that droplet coalescence and clay aggregation can occur on the same time scales as oil resurfacing and clay settling, respectively. For mixed oil-clay systems, the relative time scales of clay settling and clay-oil aggregation were also within an order of magnitude. Thus, oil-clay aggregation should be considered when modeling crude oil transport in nearshore waters. PMID:15461172

  5. Hot solvent injection for heavy oil-bitumen recovery : an experimental investigation

    Pathak, V.; Babadagli, T. [Alberta Univ., Edmonton, AB (Canada); Edmunds, N.R. [Laricina Energy Ltd., Calgary, AB (Canada)

    2010-07-01

    Steam injection and generation costs can have a significant influence on the overall economics of thermal heavy oil and bitumen recovery processes. The economic feasibility of miscible recovery methods is based on the use of effective solvent retrieval procedures. This study investigated the performance of solvents at higher temperatures. Glass bead packs and Berea sandstone cores were used to represent different types of pore structures in a series of laboratory experiments. The samples were saturated with heavy oil and exposed to paraffinic solvent vapors at temperatures above boiling point at a pressure of 1500 kPa. The solvents were then collected from each sample and analyzed in order to determine composition, viscosity, and asphaltene content. The amounts of oil recovered were also analyzed and the quantity of the asphaltene precipitated with each of the tested solvents was determined. Results of the study were then used to determine optimal conditions for each solvent type and to assess which solvents had the highest recovery rates. Butane diluted the oil more than propane, which resulted in a lower asphaltene content and decreased viscosity in the oil samples. 18 refs., 4 tabs., 11 figs.

  6. Effect of stratification on segregation in carbon dioxide miscible flooding in a water-flooded oil reservoir

    Oil reservoirs are subjected to tertiary recovery by deploying any enhanced oil recovery (EOR) technique for the recovery of left over oil. Amongst many EOR methods one of the widely applied worldwide is CO/sub 2/ flooding through miscible, near miscible or immiscible displacement processes. CO/sub 2/ flooding process responds to a number of reservoir and fluid characteristics. These characteristics have strong effect on overall efficiency of the displacement process. Better understanding of the effect of different characteristics on displacement process is important to plan an efficient displacement process. In this work, the effect of stratification resulting in gravity segregation of the injected fluid is studied in an oil reservoir which is water-flooded during secondary phase of recovery. Sensitivity analysis is performed through successive simulation on Eclipse 300 (compositional) reservoir simulator. Process involves the continuous CO/sub 2/ injection in an oil reservoir with more than 1/3rd of original oil in place left after water flooding. Reservoir model with four different permeability layers is studied. Four patterns by changing the arrangement of the permeabilities of the layers are analysed. The effect of different arrangement or stratification on segregation of CO/sub 2/ and ultimately on the incremental oil recovery, is investigated. It has been observed that out of four arrangements, upward fining pattern relatively overcame the issue of the segregation of CO/sub 2/ and consequently 33% more oil with half injection volume is recovered when compared with the downward fining pattern. (author)

  7. Numerical modeling of oil spills in continental and estuarine waters

    The application of the European Water Framework Directive on water quality for human consumption and industrial activities creates a need for water quality assessment and monitoring systems. The MIGR'HYCAR research project (http://www.migrhycar.com) was initiated to provide decisional tools for risks connected to oil spills in continental waters (rivers, lakes and estuaries), which represent more than 50% of accidental spills in France. Within the framework of this project, a new numerical oil spill model has been developed, as part of the TELEMAC hydro-informatics system (http://www.opentelemac.org), by combining Lagrangian and Eulerian methods. The Lagrangian model describes the transport of an oil spill near the free surface. The oil spill model enables to simulate the main processes driving oil plumes: advection, diffusion, oil beaching, oil re-floating, evaporation, dissolution, spreading and volatilization. Though generally considered as a minor process, dissolution is important from the point of view of toxicity. To model dissolved oil in water, an Eulerian advection-diffusion model is used. The fraction of dissolved oil is represented by a passive tracer. This approach is able to follow dissolved hydrocarbons in the water column. Laboratory experiments were conducted to characterise the numerous kinetics of the processes listed above. In addition, meso-scale dynamic experiments in artificial channels and test cases derived from the literature are used to validate the numerical model. (author)

  8. Performance evaluation of common rail direct injection (CRDI engine fuelled with Uppage Oil Methyl Ester (UOME

    D.N. Basavarajappa

    2015-02-01

    Full Text Available For economic and social development of any country energy is one of the most essential requirements. Continuously increasing price of crude petroleum fuels in the present days coupled with alarming emissions and stringent emission regulations has led to growing attention towards use of alternative fuels like vegetable oils, alcoholic and gaseous fuels for diesel engine applications. Use of such fuels can ease the burden on the economy by curtailing the fuel imports. Diesel engines are highly efficient and the main problems associated with them is their high smoke and NOx emissions.  Hence there is an urgent need to promote the use of alternative fuels in place of high speed diesel (HSD as substitute. India has a large agriculture base that can be used as a feed stock to obtain newer fuel which is renewable and sustainable. Accordingly Uppage oil methyl ester (UOME biodiesel was selected as an alternative fuel. Use of biodiesels in diesel engines fitted with mechanical fuel injection systems has limitation on the injector opening pressure (300 bar. CRDI system can overcome this drawback by injecting fuel at very high pressures (1500-2500 bar and is most suitable for biodiesel fuels which are high viscous. This paper presents the performance and emission characteristics of a CRDI diesel engine fuelled with UOME biodiesel at different injection timings and injection pressures. From the experimental evidence it was revealed that UOME biodiesel yielded overall better performance with reduced emissions at retarded injection timing of -10° BTDC in CRDI mode of engine operation.

  9. Gas/oil/water flow measurement by electrical capacitance tomography

    In the oil industry, it is important to measure gas/oil/water flows produced from oil wells. To determine oil production, it is necessary to measure the water-in-liquid ratio (WLR), liquid fraction and some other parameters, which are related to multiphase flow rates. A research team from the University of Manchester and Schlumberger Gould Research have developed an experimental apparatus for gas/oil/water flow measurement based on a flow-conditioning device and electrical capacitance tomography (ECT) and microwave sensors. This paper presents the ECT part of the developed apparatus, including the re-engineering of an ECT sensor and a model-based image reconstruction algorithm, which is used to derive the WLR and the thickness of the liquid layer in oil-continuous annular flows formed by the flow-conditioning device. The ECT sensor was tested both at Schlumberger and on TUV-NEL's Multiphase Flow Facility. The experimental results are promising. (paper)

  10. Myths and facts on wastewater injection, hydraulic fracturing, enhanced oil recovery, and induced seismicity

    Rubinstein, Justin L.; Mahani, Alireza Babaie

    2015-01-01

    The central United States has undergone a dramatic increase in seismicity over the past 6 years (Fig. 1), rising from an average of 24 M≥3 earthquakes per year in the years 1973–2008 to an average of 193 M≥3 earthquakes in 2009–2014, with 688 occurring in 2014 alone. Multiple damaging earthquakes have occurred during this increase including the 2011 M 5.6 Prague, Oklahoma, earthquake; the 2011 M 5.3 Trinidad, Colorado, earthquake; and the 2011M 4.7 Guy‐Greenbrier, Arkansas, earthquake. The increased seismicity is limited to a few areas and the evidence is mounting that the seismicity in many of these locations is induced by the deep injection of fluids from nearby oil and gas operations. Earthquakes that are caused by human activities are known as induced earthquakes. Most injection operations, though, do not appear to induce earthquakes. Although the message that these earthquakes are induced by fluid injection related to oil and gas production has been communicated clearly, there remains confusion in the popular press beyond this basic level of understanding.

  11. Investigation of the two- and three-phase relative permeability relation in carbon dioxide-oil-water systems for light and heavy oil reservoirs

    Zarivnyy, Ostap

    CO2 flooding has gained increased interest in regard to both light and heavy oil reservoirs, as a means of combining improved oil recovery and geological storage of CO2 in partially depleted oil reservoirs. Distribution and movement of CO2 in oil reservoirs is a function of the relative permeability of three phases of water, oil, and CO2 in oil reservoirs. In general, three-phase relative permeability relations are required with respect to the design of CO2 field projects for accurate predictions via numerical reservoir simulation of CO 2 flood performance and to model production and injection problems. However, a two-phase relative permeability relation is used to generate the three-phase relative permeability relation for use in reservoir simulations. An overview of the available literature indicates few attempts have been made to experimentally determine the three-phase relative permeability relation for CO2-oil-water systems under practical reservoir conditions. This research attempts to investigate the two- and three-phase relative permeability relation of CO2-oil-water systems through a series of carefully designed laboratory experiments. Fourteen experiments in two-phase systems, and four experiments in three-phase systems with heavy and light oils, were conducted in order to study the effect of pressure, temperature, viscosity, and flow rate on the relative permeability relation. It was shown that relative permeability is temperature dependent and increases with an increase in temperature. Pressure and oil viscosity had similar effects, although higher pressure caused a decrease in relative permeability to water in water-oil and water-oil-gas systems. Investigating the effect of flow rate it was found that higher injection flow rate caused increase in relative permeability values. The effect of the injection flow rate on relative permeability behaviour can be explained by the formation of emulsion during the displacement process. A set of new correlations

  12. Influence of ph on corrosion control of carbon steel by peroxide injection in sour water

    Vieira, Martins Magda; Baptista, Walmar; Joia, Carlos Jose Bandeira de Mello [PROTEMP - PETROBRAS/CENPES, Cidade Universitaria, Quadra 7, Rio de Janeiro, CEP 21949-900 (Brazil); Ponciano, Gomes Jose Antonio da Cunha [Departamento de Engenharia Metalurgica e de Materiais-COPPE/UFRJ, Cidade Universitaria, Rio de Janeiro (Brazil)

    2004-07-01

    Sour hydrogen damage is considered the most important corrosive process in the light-ends recovery section of Fluid Catalytic Cracking Units (FCCU). Corrosion in this condition is due to heavy gas oil that originates great amount of contaminants, such as H{sub 2}S, NH{sub 3} and HCN. Hydrogen absorption is promoted by the presence of free cyanides in the environment. The attenuation of this process requires the use of some inhibitors, such as oxygen, hydrogen peroxide (H{sub 2}O{sub 2}) or commercial polysulfides. The effect of these compounds is to neutralize free cyanides (CN{sup -}) into thio-sulfides (SCN{sup -}). When peroxide injection is selected, cyanide concentration in sour water has been used as key parameter to start the peroxide introduction. However, the importance of pH in this system has been pointed out by many authors. The aim of this work is to investigate the influence of pH when peroxide injection is carried out in less alkaline conditions of sour water. Electrochemical techniques - like anodic polarization and hydrogen permeation tests - and weight loss measurements were used to evaluate the effectiveness of corrosion control of carbon steel. It was concluded that at pH 7.5 peroxide injection can drive to an increment of the corrosion rate. Besides that, it was concluded that hydrogen permeation into the metal is promoted. Both detrimental effects were due to elemental sulfur generation in this pH range. The adoption of pH as a key parameter for peroxide injection is then suggested. (authors)

  13. The separation of stable water-in-oil emulsions

    Stable oil-in-water emulsions are a major problem in the recovery of spilled oils. Such emulsions can contain as little as 10% oil and can have properties very different from the original oils, making their storage and disposal difficult. These problems have led to experiments testing the feasibility of a process for separating these stable emulsions into dischargeable water and reusable oil. The technique investigated involves use of a recyclable solvent to remove the oil and subsequent distillation and/or membrane treatment to recover the oil and recycle the solvent. Results of preliminary tests show that stable water-in-oil emulsions can be separated quite readily with a regenerated solvent system. The only products of these systems are oil, which can be sent to a refinery, and dischargeable water. The recycled solvent can be used many times without any significant decrease in separation efficiency. In order to enhance the throughput of the system, a solvent vapor stripping method was invented. This stripping method also improves the quality of the products and the recycled solvent. Membrane methods can be used as a post-treatment for the produced water in order to achieve more adequate compliance with discharge limits. 4 refs., 3 figs., 5 tabs

  14. Advanced Membrane Filtration Technology for Cost Effective Recovery of Fresh Water from Oil & Gas Produced Brine

    David B. Burnett

    2005-09-29

    produced water per year. Internationally, three barrels of water are produced for each barrel of oil. Production in the United States is more mature; the US average is about 7 barrels of water per barrel of oil. Closer to home, in Texas the Permian Basin produces more than 9 barrels of water per barrel of oil and represents more than 400 million gallons of water per day processed and re-injected.

  15. Research on Dispersed Oil Droplets Breakage and Emulsification in the Dynamic Oil and Water Hydrocyclone

    Guangdong Guo

    2013-08-01

    Full Text Available Oil and water dynamic hydrocyclone is one type of facilities that separate two phases or multiple phases applied widely in the fields such as food processing, environmental protection, biological pharmacy, petroleum and chemistry. The dispersed oil droplets in the dynamic oil and water hydrocyclone were often broken into small drops by shear force, which decreased the separation efficiency of dynamic oil-water hydrocyclone greatly. To avoid the breakage of the oil droplets, the turbulence field and the velocity field of the dynamic hydrocyclone were studied by the software of Fluent to analyze the main reason that led to breakage of oil droplets. Results indicated that the deformation of oil droplets was caused by the viscous shear force; the breakage of oil droplets was caused by the Reynolds shear stress and the local pressure fluctuations. The main area that the drops were prone to breakup of the dynamic hydrocyclone is that the rotating grating nearby, the wall boundary layer of the drum and center axis of the drum. Finally, the breakage of oil droplets and emulsification of oil and water in the dynamic hydrocyclone were verified by the experiments.

  16. Comparison of oil removal in surfactant alternating gas with water alternating gas, water flooding and gas flooding in secondary oil recovery process

    Salehi, Mehdi Mohammad; Safarzadeh, Mohammad Amin; Sahraei, Eghbal; Nejad, Seyyed Alireza Tabatabaei

    2014-01-01

    Growing oil prices coupled with large amounts of residual oil after operating common enhanced oil recovery methods has made using methods with higher operational cost economically feasible. Nitrogen is one of the gases used in both miscible and immiscible gas injection process in oil reservoir. In heterogeneous formations gas tends to breakthrough early in production wells due to overriding, fingering and channeling. Surfactant alternating gas (SAG) injection is one of the methods commonly us...

  17. Condensation induced water hammer and steam assisted gravity drainage in the Athabasca oil sands

    Most people will have been exposed to some aspect of the debate about the Athabasca Oil Sands in North-Eastern Alberta and the significant role that the oil sands are expected to play in supplying conventional fossil fuels. Part of the bitumen is recovered from mines and part is recovered from in situ projects utilizing the Steam Assisted Gravity Drainage Process (SAGD). SAGD utilizes a considerable amount of steam, that is injected into geological formations. Hot water, bitumen and some vapour are recovered from the production wells. With significant steam generation, transmission and injection, there is the very real possibility of condensation induced water hammers. There have been a number of catastrophic failures to date. The intent of the paper is to provide interesting background information on the in situ oil sands industry. More importantly, to show some interesting and broader applications of thermalhydraulics developed in the nuclear industry. The expertise developed may have potential markets, with some adaptation, to the oil sands industry. Finally, there has been some discussion about using nuclear power for steam generation in the oil sands. (orig.)

  18. Resolution of oil-in-water emulsions containing uranium

    A method of resolving oil-in-water emulsions resulting from the organic solvent extraction of uranium from aqueous acidic leach liquors which comprises treating the emulsions in accordance with the following steps: (a) adding to the emulsions a water-in-oil emulsion which contains from 2 to 50% by weight of a water-soluble acrylamide copolymer which contains from 5 to 50% by weight of a lower alkyl substituted tertiary aminoethyl methacrylate and quaternary ammonium salts thereof in an amount to provide at least 20 parts per million of the acrylamide copolymer; (b) adjusting the pH of the emulsion being treated with ammonia to at least 9; (c) adding to the ammonia treated emulsion a water-soluble surfactant which is capable of inverting the water-in-oil emulsion which contains the polymer; and then (d) slowly mixing the treated oil-in-water emulsion for at least one-half hour to obtain good resolution thereof

  19. Application of tritiated water as a tracer for quantitative determination of water flow distribution in an oil-field

    In order to study the flow of water in an underground oil reservoir, tritiated water was injected in a well and, subsequently, tritium was determined in the water produced by the surrounding wells. Since the specific radioactivity of the water produced by the more remote wells appeared to be rather low, partly owing to dilution of the tritium water by the water present in the formation, enrichment methods were used, in order to increase counting sensitivity. Three methods of enrichment were examined: exchange with ethanol, conversion to toluene, and electrolysis. The latter method proved to be the most useful. The tritium was determined with a liquid scintillation counter; the scintillator consisted of a toluene-ethanol (2:1) mixture with DPO and POPOP, the water sample being dissolved in this liquid. Some statistical problems in connexion with the minimum detectable specific activity and the reduction of background are discussed briefly. (author)

  20. Microbiological treatment of oil mill waste waters

    Ranalli, A.

    1992-02-01

    Full Text Available Experiments of the biological treatment of the oil mill waste waters, deriving from continuous system, have been carried out with selected mutant ferments, adapted to rather forced toxic conditions. The commercial microbio formulations SNKD, LLMO and PSBIO have been utilized; the last two are liquid suspensions, constituted by living micro-organisms that, in contrast to those frozen or lyophilized, do not need be revitalized before their use and became completely active in short time. The experiments with the SNKD biological preparation were carried out both on filtered oil mill outflows (type A with an initial COD of approximately 43 g/l and on waste water dephenolized by Caro-acid (type B with a COD equal to 30 g/l. The experiments with LLMO and PSBIO complexes were conduced both on oil mill outflows filtered and diluted (ratio 1:0.5 with an initial COD equal to 44 g/l (type C, and on waste water that were filtered and preventatively subjected to a cryogenic treatment (type D, with an initial COD of approximately 22 g/l. The residual COD with the microbio formulation SNKD, was about 15 g/l (type A and 5 g/l (type B; with the PSBIO It was about 7 g/l (type C and 1.5 g/l (type D; with the microbio formulation LLMO it resulted in 6 g/l (type C and 1.3 g/l (type D.

    Han sido efectuadas pruebas de tratamiento biológico de alpechines, provenientes de sistemas continuos, con fermentos seleccionados adaptados a condiciones de toxicidad muy elevadas. Han sido utilizadas las formulaciones microbianas SNKD, LLMO y PSBIO; las dos últimas son suspensiones líquidas, constituidas por microorganismos vivos, los cuales a diferencia de los liofilizados o congelados, no deben ser revitalizados antes del uso; estos tienen una fase «lag» más breve y entran antes en completa actividad. Las pruebas con la preparación biológica SNKD han sido efectuadas en los alpechines filtrados (tipo A con DQO inicial alrededor de 43 g/l, y también con alpech

  1. Infrared Spectroscopy of Bilberry Extract Water-in-Oil Emulsions: Sensing the Water-Oil Interface.

    Kiefer, Johannes; Frank, Kerstin; Zehentbauer, Florian M; Schuchmann, Heike P

    2016-01-01

    Water-in-oil (w/o) emulsions are of great interest in many areas of the life sciences, including food technology, bioprocess engineering, and pharmaceuticals. Such emulsions are complex multi-component systems and the molecular mechanisms which lead to a stable emulsion are yet to be fully understood. In this work, attenuated total reflection (ATR) infrared (IR) spectroscopy is applied to a series of w/o emulsions of an aqueous anthocyanin-rich bilberry extract dispersed in a medium chain triglyceride (MCT) oil phase. The content of the emulsifier polyglycerin-polyricinoleat (PGPR) has been varied systematically in order to investigate whether or not its concentration has an impact on the molecular stabilization mechanisms. The molecular stabilization is accessed by a careful analysis of the IR spectrum, where changes in the vibrational frequencies and signal strengths indicate alterations of the molecular environment at the water/oil interface. The results suggest that adding emulsifier in excess of 1% by weight does not lead to an enhanced stabilization of the emulsion. PMID:27089376

  2. Infrared Spectroscopy of Bilberry Extract Water-in-Oil Emulsions: Sensing the Water-Oil Interface

    Johannes Kiefer

    2016-04-01

    Full Text Available Water-in-oil (w/o emulsions are of great interest in many areas of the life sciences, including food technology, bioprocess engineering, and pharmaceuticals. Such emulsions are complex multi-component systems and the molecular mechanisms which lead to a stable emulsion are yet to be fully understood. In this work, attenuated total reflection (ATR infrared (IR spectroscopy is applied to a series of w/o emulsions of an aqueous anthocyanin-rich bilberry extract dispersed in a medium chain triglyceride (MCT oil phase. The content of the emulsifier polyglycerin-polyricinoleat (PGPR has been varied systematically in order to investigate whether or not its concentration has an impact on the molecular stabilization mechanisms. The molecular stabilization is accessed by a careful analysis of the IR spectrum, where changes in the vibrational frequencies and signal strengths indicate alterations of the molecular environment at the water/oil interface. The results suggest that adding emulsifier in excess of 1% by weight does not lead to an enhanced stabilization of the emulsion.

  3. Mechanisms of immiscible CO/sub 2/ injection in heavy oil reservoirs, Wilmington Field, CA

    Spivak, A.; Chima, C.M.

    1984-04-01

    This paper describes the results of simulation studies made to investigate the mechanisms of immiscible CO/sub 2/ injection in heavy oil reservoirs. The studies were undertaken to assist in the design and monitoring of two projects implemented in the Wilmington Field, Los Angeles County, California. An equation-of-state compositional simulator was used in these studies. The equation-of-state was adjusted to match saturation pressures and swelling data from the laboratory. Simulation runs were then made to investigate the effect of various parameters on the process. The paper relates the various simulator studies to the Long Beach Oil Development Company (LBOD) project in the Tar Zone, Fault Block V and the Xtra Energy project in the Ranger Zone; Fault Block I of the Wilmington Field. Both projects use the same source of gas which is approximately 82% CO/sub 2/ and 18% N/sub 2/.

  4. Water Soluble Fractions of Caraway (Carum carvi L.) Essential Oil

    L. LAGUNEZ RIVERA; G. VILAREM; R. SOLANO GÓMEZ; M. JIMÉNEZ ESTRADA; J.A. VAZQUEZ FEIJOO

    2010-01-01

    Natural essential oils are used extensively in fragrances, flavorants, and in the food and pharmaceutical industries. During hydrodistillation, a part of the essential oil becomes dissolved in the condensate and lost as this water is discarded. In this study, carvone and limonene content recovered from hydrodistillation waste water of caraway fruit were quantified using two methods for recovering dissolved aromatic molecules from condensate water: extraction through distillation and extractio...

  5. Technique for locating injected gas in oil bearing formations behind casing

    A method is described for determining the location of injected gas in an oil well comprising the steps of: obtaining data representing a near count rate from a compensated neutron logging tool; obtaining data representing a far count rate from a compensated neutron logging tool; scaling the near count rate and the far count rate; plotting the scaled near count rate and the scaled far rate; comparing the scaled near count rate plot and the scaled far count rate plot and; determining the location of injected gas whenever the plot of the scaled near count rate and the plot of the scaled far count rate differ by a predetermined factor; obtaining data representing a second near count rate for a compensated neutron logging tool at a second time; obtaining data representing a second far count rate from a compensated neutron logging tool at the second time; scaling the second near count rate and the second far count rate; plotting the scaled second near count rate and the scaled second far count rate; comparing the scaled second near count rate plot and the scaled second far count rate plot; determining a second location of injected gas whenever the plot of the scaled second near count rate and the plot of the scaled second far count rate differ by a predetermined factor; and determining the migration of the injected gas by comparing the location with the second location

  6. Experimental Studies on Performance and Emission Characteristics of Fish Oil Methyl Ester and its blends at different injection opening pressures in a direct injection CI engine

    Chandrashekar A.M

    2015-04-01

    Full Text Available Biodiesel is one of the most versatile alternative fuel options for direct injection CI engine applications. In the recent research of biodiesel in India receives its attention towards fish oil based biodiesel. The present work aimed at production of biodiesel from the fish oil extracted from marine fish species by transesterification process which is used as fuel in direct injection CI engine to evaluate its performance, and emission characteristics at different injection opening pressures of 190bar, 200bar, 210bar. The different blends of fish oil biodiesel with diesel, B10, B20, B30, B40, B50 and B100 were used in the experiments and the results indicate that brake thermal efficiency were higher with B30 blend fuel than that of diesel at 210bar as compared at 190bar and 200bar. The brake specific energy consumption for B30 blend at 210bar shows better results than that of diesel. By considering these two performance parameters B30 blend at 210 bar injection opening pressure is taken as optimum. At full load for B30 fuel at 210bar injection opening pressure the emission results shows that there is increase in NOx and CO2 emission but reduction in CO and HC emissions by 20% and 15.55% respectively with reference to diesel fuel.

  7. Influence of fuel additives on performance of direct-injection diesel engine and exhaust emissions when operating on shale oil

    Labeckas, G.; Slavinskas, S. [Lithuanian University of Agriculture, Kaunas Academy (Lithuania). Dept. of Transport and Power Machinery

    2005-07-01

    The article presents the comparative bench testing results of a naturally aspirated four stroke, four cylinder, water cooled, direct injection Diesel engine when running on shale oil that has been treated with multi-functional fuel additives. The purpose of the research is to evaluate the effectiveness of the fuel additives Marisol FT (Sweden) and SO-2E (Estonia) as well as to verify their ability to increase energy conversion and reduce brake specific fuel consumption, contamination and smoke opacity of the exhausts when fuelling the Diesel engine with shale oil. Test results show that application of these additives could be a very efficient means to improve diesel engine performance on shale oil, especially when operating at the light load range. The brake specific fuel consumption at light loads and speeds of 1400-2000 min{sup -1} reduces by 18.3-11.0% due to the application of the Marisol FT. The additive SO-2E proves to produce nearly the same effect. The total NO{sub x} emission from the fully loaded diesel engine fuelled with the treated shale oil reduces by 29.1% (SO-2E) and 23.0% (Marisol FT). It is important that the lower NO{sub x} is obtained due to reducing both harmful pollutants, NO and NO{sub 2}. The CO emission at rated power increases by 16.3% (SO-2E) and 48.0% (Marisol FT), whereas the smoke opacity of the exhausts increases by 35% and over 2 times, respectively. The effect of the fuel additives on the HC emission seems to be complicated and ambiguous. (author)

  8. Influence of fuel additives on performance of direct-injection Diesel engine and exhaust emissions when operating on shale oil

    The article presents the comparative bench testing results of a naturally aspirated four stroke, four cylinder, water cooled, direct injection Diesel engine when running on shale oil that has been treated with multi-functional fuel additives. The purpose of the research is to evaluate the effectiveness of the fuel additives Marisol FT (Sweden) and SO-2E (Estonia) as well as to verify their ability to increase energy conversion and reduce brake specific fuel consumption, contamination and smoke opacity of the exhausts when fuelling the Diesel engine with shale oil. Test results show that application of these additives could be a very efficient means to improve Diesel engine performance on shale oil, especially when operating at the light load range. The brake specific fuel consumption at light loads and speeds of 1400-2000 min-1 reduces by 18.3-11.0% due to the application of the Marisol FT. The additive SO-2E proves to produce nearly the same effect. The total NO x emission from the fully loaded Diesel engine fuelled with the treated shale oil reduces by 29.1% (SO-2E) and 23.0% (Marisol FT). It is important that the lower NO x is obtained due to reducing both harmful pollutants, NO and NO2. The CO emission at rated power increases by 16.3% (SO-2E) and 48.0% (Marisol FT), whereas the smoke opacity of the exhausts increases by 35% and over 2 times, respectively. The effect of the fuel additives on the HC emission seems to be complicated and ambiguous

  9. Comparative toxicity test of water-accommodated fractions of oils and oil dispersants to marine organisms

    This reference method describes a simple procedure for comparing the toxicity of oil, oil dispersants, and mixtures thereof, to marine animals. It allows the toxicity of different dispersants to be rapidly compared to that of oil, or of a mixture of oil an oil dispersant. It is designed for routine monitoring and screening purposes and is not appropriate as a research method. The physical and chemical properties of oil dispersants create many difficulties in the measurements of their toxicity to marine organisms. Strictly speaking, their toxicity can only be accurately estimated using complex procedures and apparatus. (A relatively simple apparatus for preparing oil/water or oil/water/oil dispersant emulsions is described in Appendix B). Simpler methods can provide useful information, provided their limitations are clearly understood and taken into consideration in the assessment and application of their results. Some of the special considerations relating to the measurement of the toxicity of oil and oil dispersants are described in Appendix A. The Appendix also explains the rationale and limitations of the method described here. 3 refs, 4 figs, 2 tabs

  10. Particle-Stabilized Powdered Water-in-Oil Emulsions.

    Binks, Bernard P; Tyowua, Andrew T

    2016-04-01

    The preparation of powdered water-in-oil (w/o) emulsions by gentle aeration of w/o emulsions stabilized by hydrophobic fumed silica particles in the presence of oleophobic fluorinated clay particles is reported for an alkane and a triglyceride oil. The resultant powders consist of water drops dispersed in oil globules themselves dispersed in air (w/o/a). They contain ∼80 wt % of the precursor w/o emulsion and were stable to phase separation for over 1 year but release oil and water when sheared on a substrate. Above a certain ratio of w/o emulsion:fluorinated clay particles, the powdered emulsions partially invert to an emulsion paste, composed of air bubbles and water droplets dispersed in oil. The tap density and angle of repose of the powdered emulsions were measured and compared with those of the corresponding powdered oils making up the continuous phase of the precursor emulsions. The contact angles of water droplets under oil on glass slides spin coated with silica particles and oil drops and w/o emulsion droplets in air on compressed disks of fluorinated clay particles are consistent with the stabilization of w/o emulsions and powdered emulsions, respectively. PMID:27002604

  11. Diversity of Microbial Communities in Production and Injection Waters of Algerian Oilfields Revealed by 16S rRNA Gene Amplicon 454 Pyrosequencing.

    Nesrine Lenchi

    Full Text Available The microorganisms inhabiting many petroleum reservoirs are multi-extremophiles capable of surviving in environments with high temperature, pressure and salinity. Their activity influences oil quality and they are an important reservoir of enzymes of industrial interest. To study these microbial assemblages and to assess any modifications that may be caused by industrial practices, the bacterial and archaeal communities in waters from four Algerian oilfields were described and compared. Three different types of samples were analyzed: production waters from flooded wells, production waters from non-flooded wells and injection waters used for flooding (water-bearing formations. Microbial communities of production and injection waters appeared to be significantly different. From a quantitative point of view, injection waters harbored roughly ten times more microbial cells than production waters. Bacteria dominated in injection waters, while Archaea dominated in production waters. Statistical analysis based on the relative abundance and bacterial community composition (BCC revealed significant differences between production and injection waters at both OTUs0.03 and phylum level. However, no significant difference was found between production waters from flooded and non-flooded wells, suggesting that most of the microorganisms introduced by the injection waters were unable to survive in the production waters. Furthermore, a Venn diagram generated to compare the BCC of production and injection waters of one flooded well revealed only 4% of shared bacterial OTUs. Phylogenetic analysis of bacterial sequences indicated that Alpha-, Beta- and Gammaproteobacteria were the main classes in most of the water samples. Archaeal sequences were only obtained from production wells and each well had a unique archaeal community composition, mainly belonging to Methanobacteria, Methanomicrobia, Thermoprotei and Halobacteria classes. Many of the bacterial genera

  12. Oil spill dispersants. Risk assessment for Swedish waters

    Lindgren, C.; Lager, H.; Fejes, J.

    2001-12-01

    IVL has compiled a list of the international usage of oil spill dispersants and presents the technical limitations with the use of such agents as well as the biological effects of these chemical products. IVL, has also conducted an analysis of the pros and cons to using dispersants against oil spills in waters and has applied this with a risk assessment of chemical methods to combat oil spills in the Kattegat and Skagerrak and the Baltic Sea.

  13. Oil spill dispersants. Risk assessment for Swedish waters

    IVL has compiled a list of the international usage of oil spill dispersants and presents the technical limitations with the use of such agents as well as the biological effects of these chemical products. IVL, has also conducted an analysis of the pros and cons to using dispersants against oil spills in waters and has applied this with a risk assessment of chemical methods to combat oil spills in the Kattegat and Skagerrak and the Baltic Sea

  14. Stability Investigation of Water-in-Crude Oil Emulsion

    Abdurahman H. Nour; Rosli Mohd. Yunus

    2006-01-01

    The water in-crude oil emulsion has great importance in the oil industry. Experimental data are presented to investigate the stability of water-in-crude oil emulsions in both creaming and coalescence states were measured as a function of sodium chloride concentration. Also the stability of w/o emulsion is investigated over a wide range of parameters. These parameters are salt concentration (0-5.5%), mixing speed (800-1600 rpm), water concentration (10-80%) and temperature. For economic and op...

  15. Poroelastic modeling to assess the effect of water injection for land subsidence mitigation

    Aichi, M.; Tokunaga, T.

    2015-11-01

    The possible effect of water injection to mitigate land subsidence was studied through numerical simulations based on the theory of poroelasticity. The Kujukuri Plain, Japan, was chosen as a study area. The effect of past injection was evaluated by comparing a model with injection and the one without injection. The calculated results suggested that the past injection played a significant role to reduce land subsidence. For achieving more effective mitigation practices in the future, we proposed to install injection wells in shallower formations. The effect of proposed injection method to mitigate land subsidence from 2014 to 2030 was also investigated. The calculated results show that the proposed method can work similarly by lesser water injection than the past method. The results also indicate that the upper limit of injection rate should be carefully determined to control the pore pressure build-up in the formation to be small enough to avoid formation failure.

  16. Assembly of transmembrane proteins on oil-water interfaces

    Yunker, Peter; Landry, Corey; Chong, Shaorong; Weitz, David

    2015-03-01

    Transmembrane proteins are difficult to handle by aqueous solution-based biochemical and biophysical approaches, due to the hydrophobicity of transmembrane helices. Detergents can solubilize transmembrane proteins; however, surfactant coated transmembrane proteins are not always functional, and purifying detergent coated proteins in a micellar solution can be difficult. Motivated by this problem, we study the self-assembly of transmembrane proteins on oil-water interfaces. We found that the large water-oil interface of oil drops prevents nascent transmembrane proteins from forming non-functional aggregates. The oil provides a hydrophobic environment for the transmembrane helix, allowing the ectodomain to fold into its natural structure and orientation. Further, modifying the strength or valency of hydrophobic interactions between transmembrane proteins results in the self-assembly of spatially clustered, active proteins on the oil-water interface. Thus, hydrophobic interactions can facilitate, rather than inhibit, the assembly of transmembrane proteins.

  17. Breaking of Oil -Water Emulsion for the Improvement of Oil Recovery Operations in the Niger Delta Oilfields

    C. Ijogbemeye Oseghale; Akpabio E. J; Udottong, G

    2012-01-01

    Emulsified water is generally present in crude oil as a result of mixing occurring during production operations. The formation of emulsion leads to problems in production and also transportation. Therefore the need to break oil/water emulsions system through demulsification process using chemical surfactants for improved oil recovery operations. Selected cationic surfactants were effective in separating oil-water emulsions expected during a surfactant/polymer (SP) process for improved oil rec...

  18. From oil-based mud to water-based mud

    Maersk Olie og Gas AS has used low toxic oil-based muds extensively since 1982 for drilling development wells and later in the development of horizontal well drilling techniques. However, in view of the strong drive towards a reduction in the amount of oil discharged to the North Sea from the oil industry, Maersk Olie og Gas AS initiated trials with new or improved types of water-based mud, first in deviated wells (1989) and then in horizontal wells (1990). The paper reviews Maersk Olie og Gas As experience with oil-based mud since the drilling of the first horizontal well in 1987, specifically with respect to cuttings washing equipment, oil retention on cuttings, and the procedure for monitoring of this parameter. It describes the circumstances leading to the decision to revert to water-based mud systems. Finally, it reviews the experience gained so far with the new improved types of water-based mud systems, mainly glycol and KCl/polymer mud systems. Comparison of operational data, such as rate of penetration, torque and drag, etc., is made between wells drilled with oil-based mud and water-based mud. The trials with the new improved types of water-based mud systems have been positive, i.e. horizontal wells can be drilled successfully with water-based mud. As a result, Maersk Olie og and Gas AS has decided to discontinue the use of low toxic oil-based muds in the Danish sector of the North Sea

  19. Water-in-oil emulsions : studies on water resolution and rheology over time

    Fingas, M. [Environment Canada, Edmonton, AB (Canada); Fieldhouse, B. [Environment Canada, Ottawa, ON (Canada). Emergencies Science and Technology Division

    2008-07-01

    Water-in-oil emulsions, which often form following oil spills, make cleanup very difficult because the physical properties and characteristics of the oil change significantly after the spill. In this study, water-in-oil mixtures from crude oil and petroleum products were studied in a laboratory for up to one year. The types of mixtures were characterized by resolution of water and rheology measurements at one and seven days, and some after one year. Oil and petroleum products formed 4 clearly-defined water-in-oil types when mixed with water. These were categorized as stable, unstable, mesostable and entrained. The distinct physical properties of each category were described in this paper. The water-in-oil types were characterized using a newly developed numerical stability index which is the product of the ratio of viscosity increase and a ratio of the elasticity increase. The index was also used to correlate stability with oil compositions and properties. The asphaltene and resin content in the starting oil, along with its viscosity and density were the most important factors for water uptake and emulsion formation, as determined by a comparative evaluation of the properties of the starting oils before mixing. The saturate content and asphaltene-to-resin ratio are other important factors. 42 refs., 7 tabs., 8 figs.

  20. Water-in-oil emulsions : studies on water resolution and rheology over time

    Water-in-oil emulsions, which often form following oil spills, make cleanup very difficult because the physical properties and characteristics of the oil change significantly after the spill. In this study, water-in-oil mixtures from crude oil and petroleum products were studied in a laboratory for up to one year. The types of mixtures were characterized by resolution of water and rheology measurements at one and seven days, and some after one year. Oil and petroleum products formed 4 clearly-defined water-in-oil types when mixed with water. These were categorized as stable, unstable, mesostable and entrained. The distinct physical properties of each category were described in this paper. The water-in-oil types were characterized using a newly developed numerical stability index which is the product of the ratio of viscosity increase and a ratio of the elasticity increase. The index was also used to correlate stability with oil compositions and properties. The asphaltene and resin content in the starting oil, along with its viscosity and density were the most important factors for water uptake and emulsion formation, as determined by a comparative evaluation of the properties of the starting oils before mixing. The saturate content and asphaltene-to-resin ratio are other important factors. 42 refs., 7 tabs., 8 figs

  1. Reseach on the reduction of rocket motor jet noise by water injection

    Zou Hao

    2016-01-01

    Full Text Available Injecting water in the mixing layer of rocket motor jets is a means to reduce jet noise. The calculation of the sound pressure signals at the prescribed receivers was performed by FW-H acoustics model under the condition of water injection and without water injection. The calculation results show that the jet noise is with obvious directivity. The total sound pressure levels are obviously much higher in 10° to 30° direction than that in other direction. The sound pressure levels at the condition of water injected are lower than that of without water injection at the all receiver points, which indicates that water injection can reduce jet noise effectively.

  2. Conversion of crude oil to methane by a microbial consortium enriched from oil reservoir production waters

    Berdugo-Clavijo, Carolina; Lisa M. Gieg

    2014-01-01

    The methanogenic biodegradation of crude oil is an important process occurring in petroleum reservoirs and other oil-containing environments such as contaminated aquifers. In this process, syntrophic bacteria degrade hydrocarbon substrates to products such as acetate, and/or H2 and CO2 that are then used by methanogens to produce methane in a thermodynamically dependent manner. We enriched a methanogenic crude oil-degrading consortium from production waters sampled from a low temperature heav...

  3. Oil Spill Adsorption Capacity of Activated Carbon Tablets from Corncobs in Simulated Oil-Water Mixture

    Rhonalyn V. Maulion; Sheila Adarlo Abacan; Gerald Garces Allorde; Ma. Cherrielyne Silda Umali

    2015-01-01

    Oil spill in bodies of water is one of severe environmental problems that is facing all over the country and in the world. Since oil is an integral part of the economy, increasing trend for its demand and transport of has led to a great treat in the surface water. One of the promising techniques in the removal of the oil spills in water bodies is adsorption using activated carbon form waste material such as corn cobs. The purpose of this study is to determine the adsorption capaci...

  4. Prediction of Turbulent Jet Mixing Noise Reduction by Water Injection

    Kandula, Max

    2008-01-01

    A one-dimensional control volume formulation is developed for the determination of jet mixing noise reduction due to water injection. The analysis starts from the conservation of mass, momentum and energy for the confrol volume, and introduces the concept of effective jet parameters (jet temperature, jet velocity and jet Mach number). It is shown that the water to jet mass flow rate ratio is an important parameter characterizing the jet noise reduction on account of gas-to-droplet momentum and heat transfer. Two independent dimensionless invariant groups are postulated, and provide the necessary relations for the droplet size and droplet Reynolds number. Results are presented illustrating the effect of mass flow rate ratio on the jet mixing noise reduction for a range of jet Mach number and jet Reynolds number. Predictions from the model show satisfactory comparison with available test data on perfectly expanded hot supersonic jets. The results suggest that significant noise reductions can be achieved at increased flow rate ratios.

  5. 40 CFR 60.4335 - How do I demonstrate compliance for NOX if I use water or steam injection?

    2010-07-01

    ... if I use water or steam injection? 60.4335 Section 60.4335 Protection of Environment ENVIRONMENTAL... compliance for NOX if I use water or steam injection? (a) If you are using water or steam injection to... when burning a fuel that requires water or steam injection for compliance. (b) Alternatively, you...

  6. Infrared Spectroscopy of Bilberry Extract Water-in-Oil Emulsions: Sensing the Water-Oil Interface

    Johannes Kiefer; Kerstin Frank; Zehentbauer, Florian M.; Heike P. Schuchmann

    2016-01-01

    Water-in-oil (w/o) emulsions are of great interest in many areas of the life sciences, including food technology, bioprocess engineering, and pharmaceuticals. Such emulsions are complex multi-component systems and the molecular mechanisms which lead to a stable emulsion are yet to be fully understood. In this work, attenuated total reflection (ATR) infrared (IR) spectroscopy is applied to a series of w/o emulsions of an aqueous anthocyanin-rich bilberry extract dispersed in a medium chain tri...

  7. Effect of canola oil emulsion injection on processing characteristics and consumer acceptability of three muscles from mature beef.

    Pietrasik, Z; Wang, H; Janz, J A M

    2013-02-01

    The study was undertaken to investigate the impact of the combined effect of blade tenderization and canola oil emulsion injection on processing yield and eating quality-related parameters of selected loin and hip muscles (longissimus lumborum, LL, biceps femoris, BF and semimembranosus, SM) from over thirty month (OTM) cattle. Canola oil emulsion injection significantly reduced shear force, increased sensory scores for juiciness and tenderness, and made connective tissue less perceptible. Targeted levels of omega-3 fatty acids can be achieved by the inclusion of canola oil containing marinades/emulsions at levels sufficient to retain omega-3 fatty acids in cooked product. All consumer acceptability attributes of OTM muscles were improved with the use of canola oil emulsion injection treatments without compromising colour although slightly decreasing oxidative stability of BF muscle. Injection of omega-3 oil emulsions in combination with blade tenderization can be effectively utilized to enrich injected products in essential fatty acids and enhance eating quality of OTM beef. PMID:23089241

  8. Water flooding to displace heavy oil with electromagnetic resistive heating (ERH)

    Oliverira, H.J.M.; Barillas, J.L.M.; Mata, W.; Dutra, T.V.Jr. [Federal Univ. of Rio Grande do Norte, Lagoa Nova (Brazil). Dept. of Petroleum Engineering

    2009-07-01

    The viscosity of heavy oil can be effectively reduced by increasing its temperature, thus providing better mobility in the reservoir. Steam flooding is a commonly used technique to improve oil recovery, but may not be technically possible or economically feasible in situations such as permafrost, deep formations, thin pay zones and low permeability formations. Therefore, alternative methods are needed to produce this heavy oil. This paper proposed the use of electromagnetic resistive heating (ERH), a thermal stimulation technique in which an electrical current passes through a formation to increase the original temperature by Joule effect. The reservoir temperatures increases proportionally as the electrical current intensity increases. This paper demonstrated the results of computational simulations using water injection, with or without ERH in a reservoir of heavy oil with similar characteristics to those found in northeastern Brazilian basins. The paper outlined the reservoir and fluids characteristics used to model the ERH process and waterflooding. It was concluded that using water flooding, without ERH to displace heavy oil can enhance oil recovery. 3 refs., 10 figs.

  9. Analysis of thrust augmentation of turbojet engines by water injection at compressor inlet including charts for calculating compression processes with water injection

    Wilcox, E Clinton; Trout, Arthur M

    1951-01-01

    A psychrometric chart having total pressure (sum of partial pressures of air and water vapor) as a variable, a Mollier diagram for air saturated with water vapor, and charts showing the thermodynamic properties of various air-water vapor and exhaust gas-water vapor mixtures are presented as aids in calculating the thrust augmentation of a turbojet engine resulting from the injection of water at the compressor inlet. Curves are presented that show the theoretical performance of the augmentation method for various amounts of water injected and the effects of varying flight Mach number, altitude, ambient-air temperature, ambient relative humidity, compressor pressure ratio, and inlet-diffuser efficiency. Numerical examples, illustrating the use of the psychrometric chart and the Mollier diagram in calculating both compressor-inlet and compressor-outlet conditions when water is injected at the compressor inlet, are presented.

  10. Water-in-oil emulsions results of formation studies and applicability to oil spill modelling

    This paper summarises studies of water-in-oil emulsions, their stability, and modelling of their formation. Studies show that water-in-oil emulsions might be characterised into three categories (stable, mesostable and unstable). These categories were established by visual appearance, elasticity and viscosity difference. It was also shown that water content was not an important factor. A fourth category of water-in-oil exists, that of water entrainment, which is not an emulsion. Water-in-oil emulsions made from crude oils have different classes of stabilities as a result of the asphaltene and resin contents. The differences in the emulsion types are readily distinguished both by their rheological properties, and simply by appearance. The apparent viscosity of a stable emulsion at a shear rate of one reciprocal second, is at least three orders-of-magnitude greater than the starting oil. An unstable emulsion usually has a viscosity no more than one order-of-magnitude greater than that of the starting oil. A stable emulsion has a significant elasticity, whereas an unstable emulsion does not. Stable emulsions have sufficient asphaltenes (>∼7%) to establish films of these compounds around water droplets. Mesostable emulsions have insufficient asphaltenes to render them completely stable. Stability is achieved by visco-elastic retention of water and secondarily by the presence of asphaltene or resin films. Mesostable emulsions display apparent viscosities of about 80-600 times that of the starting oil and true viscosities of 20-200 times that of the starting oil. Mesostable emulsions have an asphaltene and resin content greater than 3%. Entrained water occurs when a viscous oil retains larger water droplets, but conditions are not suitable for the formation of an emulsion. Entrained water may have a viscosity that is similar or slightly greater (∼ 2-10 times) than the starting oil. It was found that emulsion formation occurs at a threshold energy, however this energy

  11. Injectable polyanhydride granules provide controlled release of water-soluble drugs with a reduced initial burst.

    Tabata, Y; Domb, A; Langer, R

    1994-01-01

    A method for preparing polyanhydride granules of an injectable size was developed. The resulting granules permitted a nearly constant release of low-molecular-weight, water-soluble drugs without an initial burst. The polyanhydrides used were poly(fatty acid dimer), poly(sebacic acid), and their copolymers. The dyes acid orange 63 and p-nitroaniline were used as model compounds for drugs. Polymer degradation and drug release for disks and variously sized granules of copolymers containing drugs, prepared by a water-in-oil (W/O) emulsion method, were compared with those for devices prepared by the usual compression method. In the W/O emulsion method, a mixture of aqueous drug solution and polymer-chloroform solution was emulsified by probe sonication to prepare a very fine W/O emulsion. The powder obtained by freeze-drying of the W/O emulsion was pressed into circular disks. In the compression method, the drug was mechanically mixed with the polymer, and the mixture was compressed into circular disks. The resulting disks were ground to prepare granules of different sizes. The granules encapsulated more than 95% of the drug, irrespective of the preparation method. Both methods were effective in preparing polymer disks capable of controlled drug release without any initial burst. However, as the granule size decreased to an injectable size (diameter, < 150 microns), a large difference in the drug release profile was observed between the two preparation methods. The injectable granules obtained by the W/O emulsion method showed nearly constant drug release without any large initial burst, in contrast to those prepared by the compression method, irrespective of the drug type.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8138910

  12. On spurious water flow during numerical simulation of steam injection into water-saturated soil.

    Gudbjerg, J; Trötschler, O; Färber, A; Sonnenborg, T O; Jensen, K H

    2004-12-01

    Numerical simulation of steam injection into a water-saturated porous medium may be hindered by unphysical behavior causing the model to slow down. We show how spurious water flow may arise on the boundary between a steam zone and a saturated zone, giving rise to dramatic pressure drops. This is caused by the discretization of the temperature gradient coupled with the direct relation between pressure and temperature in the steam zone. The problem may be a severe limitation to numerical modeling. A solution is presented where the spurious water flow is blocked and this widely enhances the performance of the model. This new method is applied to a previously reported example exhibiting numerical problems. Furthermore, it is applied to the simulation of 2-D sandbox experiments where LNAPL is remediated from a smearing zone by steam injection. These experiments would have been difficult to analyze numerically without the adjustment to prevent spurious flow. PMID:15610904

  13. Turbulent flow of oil-water emulsions with polymer additives

    The article outlines direct and reverse oil-water emulsions. Microphotography study of these emulsions was carried out. The effect of water-soluble and oil soluble polymers on the emulsion structure and their turbulent flow velocity in cylindrical channel was investigated. It has been experimentally proven that if the fluid being transported is not homogeneous, but a two-phase oil-water emulsion, only the polymer that is compatible with dispersion medium and capable of dissolving in this medium can reduce the hydrodynamic resistance of the fluid flow. Thus, the resistance in direct emulsions can be reduced by water- soluble polyacrylamide, while oil-soluble polyhexene can be applied for reverse emulsions

  14. Protonated Melamine Sponge for Effective Oil/Water Separation

    Wang, Chih-Feng; Huang, Hsiang-Ching; Chen, Liang-Ting

    2015-09-01

    In this study, we fabricated a superhydrophilic and underwater superoleophobic protonated melamine sponge for effective separation of water-rich immiscible oil/water mixtures with extremely high separation efficiency. This protonated melamine sponge exhibited excellent antifouling properties and could be used to separate oil/water mixtures continuously for up to 12 h without any increase in the oil content in filtrate. Moreover, our compressed protonated melamine sponge could separate both surfactant-free and -stabilized oil-in-water emulsions with high separation efficiencies. The high performance of this protonated melamine sponge and its efficient, energy- and cost-effective preparation suggest that it has great potential for use in practical applications.

  15. Oil field produced water discharges into wetlands in Wyoming

    US Fish and Wildlife Service, Department of the Interior — Approximately 600 oil field produced water discharges are permitted in Wyoming by the State’s Department of Environmental Quality's (WDEQ) National Pollutant...

  16. Nonlinear Dynamic Characteristics of Oil-in-Water Emulsions

    Yin, Zhaoqi; Han, Yunfeng; Ren, Yingyu; Yang, Qiuyi; Jin, Ningde

    2016-08-01

    In this article, the nonlinear dynamic characteristics of oil-in-water emulsions under the addition of surfactant were experimentally investigated. Firstly, based on the vertical upward oil-water two-phase flow experiment in 20 mm inner diameter (ID) testing pipe, dynamic response signals of oil-in-water emulsions were recorded using vertical multiple electrode array (VMEA) sensor. Afterwards, the recurrence plot (RP) algorithm and multi-scale weighted complexity entropy causality plane (MS-WCECP) were employed to analyse the nonlinear characteristics of the signals. The results show that the certainty is decreasing and the randomness is increasing with the increment of surfactant concentration. This article provides a novel method for revealing the nonlinear dynamic characteristics, complexity, and randomness of oil-in-water emulsions with experimental measurement signals.

  17. Flow Rates Measurement and Uncertainty Analysis in Multiple-Zone Water-Injection Wells from Fluid Temperature Profiles

    José E. O. Reges

    2016-07-01

    Full Text Available This work is a contribution to the development of flow sensors in the oil and gas industry. It presents a methodology to measure the flow rates into multiple-zone water-injection wells from fluid temperature profiles and estimate the measurement uncertainty. First, a method to iteratively calculate the zonal flow rates using the Ramey (exponential model was described. Next, this model was linearized to perform an uncertainty analysis. Then, a computer program to calculate the injected flow rates from experimental temperature profiles was developed. In the experimental part, a fluid temperature profile from a dual-zone water-injection well located in the Northeast Brazilian region was collected. Thus, calculated and measured flow rates were compared. The results proved that linearization error is negligible for practical purposes and the relative uncertainty increases as the flow rate decreases. The calculated values from both the Ramey and linear models were very close to the measured flow rates, presenting a difference of only 4.58 m³/d and 2.38 m³/d, respectively. Finally, the measurement uncertainties from the Ramey and linear models were equal to 1.22% and 1.40% (for injection zone 1; 10.47% and 9.88% (for injection zone 2. Therefore, the methodology was successfully validated and all objectives of this work were achieved.

  18. Flow Rates Measurement and Uncertainty Analysis in Multiple-Zone Water-Injection Wells from Fluid Temperature Profiles.

    Reges, José E O; Salazar, A O; Maitelli, Carla W S P; Carvalho, Lucas G; Britto, Ursula J B

    2016-01-01

    This work is a contribution to the development of flow sensors in the oil and gas industry. It presents a methodology to measure the flow rates into multiple-zone water-injection wells from fluid temperature profiles and estimate the measurement uncertainty. First, a method to iteratively calculate the zonal flow rates using the Ramey (exponential) model was described. Next, this model was linearized to perform an uncertainty analysis. Then, a computer program to calculate the injected flow rates from experimental temperature profiles was developed. In the experimental part, a fluid temperature profile from a dual-zone water-injection well located in the Northeast Brazilian region was collected. Thus, calculated and measured flow rates were compared. The results proved that linearization error is negligible for practical purposes and the relative uncertainty increases as the flow rate decreases. The calculated values from both the Ramey and linear models were very close to the measured flow rates, presenting a difference of only 4.58 m³/d and 2.38 m³/d, respectively. Finally, the measurement uncertainties from the Ramey and linear models were equal to 1.22% and 1.40% (for injection zone 1); 10.47% and 9.88% (for injection zone 2). Therefore, the methodology was successfully validated and all objectives of this work were achieved. PMID:27420068

  19. Crude oil desulfurization

    Kalvinskas, J. J.; Hsu, G. C.; Ernest, J. B. (Inventor)

    1982-01-01

    High sulfur crude oil is desulfurized by a low temperature (25-80 C.) chlorinolysis at ambient pressure in the absence of organic solvent or diluent but in the presence of water (water/oil=0.3) followed by a water and caustic wash to remove sulfur and chlorine containing reaction products. The process described can be practiced at a well site for the recovery of desulfurized oil used to generate steam for injection into the well for enhanced oil recovery.

  20. Water in oil microemulsions : transient electric birefringence response

    Guering, P.; Cazabat, A.M.

    1983-01-01

    The structure of water in oil microemulsions has been investigated using transient electric birefringence. At low water concentrations, transient coalescence of droplets is observed. At higher water concentrations, the Kerr signal probes density fluctuations. A fast negative response is attributed to the relaxation of interfacial layers. Further work is under way to make these preliminary results more quantitative.

  1. Water footprints of products of oil palm plantations and palm oil mills in Thailand.

    Suttayakul, Phetrada; H-Kittikun, Aran; Suksaroj, Chaisri; Mungkalasiri, Jitti; Wisansuwannakorn, Ruthairat; Musikavong, Charongpun

    2016-01-15

    The water footprint (WF) of fresh fruit bunches (FFBs) from oil palm plantations and crude palm oil (CPO) from palm oil mills in southern and eastern Thailand were determined over 25 years. Climatic conditions, soil characteristics, and the characteristics of oil palm growth were considered. The WF of FFBs was 1063 m(3)/ton (t) on average. Green, blue, and grey waters comprised of 68, 18, and 14% of total WF, respectively. The oil palm plantations in Thailand required smaller amounts of indirect blue water. The average WF for producing a ton of CPO of seven mills was 5083 m(3). Most of the waters used in the mills originated from indirect green, blue and grey waters from the plantations. The direct blue water used in the mills had less impact on the total WF, lower than 1% of the total WF. Average percentages of green, blue, and grey waters of 69, 16, and 15% of total WF were determined for the mills, respectively. The water deprivation of the FFBs and CPO ranged from 0.73-12.9 and 3.44-58.3 m(3)H2Oeq/t, respectively. In 2013, the CPO production in Thailand including green, blue, and grey waters from plantation and blue water from mills required 11,343 million m(3) water. If the oil palm variety Suratthani 7 is used in the plantation, it would increase the yield from 15.2 to 22.8 t FFBs/ha-year and decrease the WF to 888 m(3)/t FFBs. The average value of the oil extraction rate (OER) of mills was 18.1%. With an increase in the OER of 1%, a reduction of the WF of 250 m(3)/t CPO or 5.1% of total WF could be obtained. PMID:26520275

  2. Oil/water separation in a novel cyclone separator

    Stone, Andrew Colin

    2007-01-01

    Conventional bulk oil-water separation is performed in large gravity separators that take up large areas and potentially contain large volumes of hazardous material. An intensified bulk separator has the potential to provide significant benefit in saving space, especially where this is at a premium, and in improving safety. The I-SEP, a novel geometry of Axial-Flow Cyclone (also known as Uniflow or straight-through) separator, has been tested as an intensified bulk oil-water se...

  3. Ellipsoidal Janus Nanoparticles Assembled at Spherical Oil/Water Interfaces

    Luu, X-C; Striolo, A.

    2014-01-01

    The equilibrium behavior of ellipsoidal Janus nanoparticles adsorbed at spherical oil/water interfaces was investigated using dissipative particle dynamics simulations. Several phenomena were documented that were not observed on similar simulations for planar oil/water interfaces. The nanoparticles were found to yield isotropic, radial nematic phases, and axial nematic domains, depending on the nanoparticle characteristics (aspect ratio and surface chemistry), particle density at the interfac...

  4. Hydrodynamic characteristics of water-jet pump for removing oils

    The hydrodynamic characteristics of a bend-type of water-jet pump for removing oils and solid materials with water are discussed theoretically and experimentally. This type of water-jet pump is composed of a bend and a water-jet nozzle. The water-jet nozzle is connected directly to the bend at the outside of bend. The transportation characteristics are derived theoretically using the continuity, momentum and energy equations. The experiments for 45o bend-type of water-jet pump are carried out. The solid spheres with the specific gravity about 1.00 were used. The theoretically-predicted characteristics for removing solid materials agree well with the experimental results. The experimental results for transporting various heavy oils are discussed comparing with the theoretical results. The flows for transporting various heavy oils are visualized. (author)

  5. Water production in extra heavy oil environment : controlling the risks, optimizing the production

    Cermeno, E.; Draoui, E.; Gamez, Y.; Inizan, M.; Alves, Y. [Petrocedeno, Caracas (Venezuela)

    2008-07-01

    This paper reviewed reservoir completion technologies and strategies used at Orinoco Belt in Venezuela. The reservoir in the belt are fluvio-deltaic with higher permeability sand and a large regional aquifer that has contributed to the region's wide-ranging oil viscosities. Oilfields in the belt are typically produced using directional drilling techniques. Monitoring programs in the region have identified that water production from the aquifer is determined by water entry points. Wells accumulate large volumes of extra heavy oil (EHO) after water breakthrough. However, the risk of water interference between wells is high. Results of the monitoring programs were used to develop a water production policy that relies on weekly production follow-ups; analyses of structural, geological, and dynamic data in order to understand water production; and water invasion control techniques. The completion technique was adapted to high water cut wells and was designed to consider the use of electro-submersible pumps (ESP). Methods of producing water directly from the aquifer for subsequent re-injection are also being considered. Weekly production tests are currently being conducted on all producer wells. Water cut developments are identified, monitored and registered. Data is then integrated with static analysis from geologists in order to improve water production techniques. 3 refs., 10 figs.

  6. The radioactive elements of oil and of derrick water in several oil mines of Apsheron peninsula

    It is known that oil extracted from deep strata of the ground directly contacts with minerals and ores and it is a carrier of several radioactive elements. Radio-ecological investigations conducted in several oil mines of Apsheron peninsula, show that there are radioactive elements, such as uranium, radium, thorium and radon in the structures of oil and derrick water. Amount of these radioactive elements is changeable depending on the chemical structures of oil and derrick water. So, amount of uranium in the structure of naften (aromatic oil) is more, than in the structure of oil with paraffin. Besides, migration of uranium from strata water to oil leads to increasing the amount of uranium. Radio spectro metrical analysis of oil and derrick water extracted from the territories of Surahany, Sabunchi, Balahany, Qaradah, Bayil and Romana located in the Apsheron peninsula was conducted by us. Amount of the radioactive elements in specimens of oil are distributed in the following way: Uranium - 2.3 - 13.6 ·10-7 g/kg; Radium - 1.2 - 3.5 ·10-12 g/kg; Thorium - 8.2 - 17.0 ·10-7 g/kg. Amount of the radioactive elements in derrick water are: Uranium - 1.2 - 4.5 ·10-6 g/l; Radium - 2.5 - 3.2· 10-11 g/l; Thorium - 1.1 - 3.1 ·10-7 g/l.. There are ponds around the derricks, which are source of radioactive pollution in most of the oil mines. It was found that level of radiation is about 150-500 micro R/h in these ponds and near of the derricks

  7. Behavior of Malondialdehyde in Oil-in-Water Emulsions.

    Vandemoortele, Angelique; De Meulenaer, Bruno

    2015-06-17

    The impact of temperature, emulsifier, and protein type on the reactivity of malondialdehyde in oil-in-water emulsions was elucidated. Malondialdehyde recoveries in aqueous buffer, protein solutions, saturated oil, and fully hydrogenated coconut oil-in-water emulsions stabilized by whey proteins or Tween 20 at 4 or 40 °C were compared. At both temperatures, the reactivity of malondialdehyde in aqueous buffer was the same. In protein solutions, malondialdehyde concentrations were reduced further and its decrease was protein-dependent. Similar trends were found for emulsions. Surprisingly, malondialdehyde was very reactive in saturated oil because only 15% was recovered at 40 °C. However, the degradation in oil proved to be strongly temperature-dependent; at 4 °C, losses amounted to only 8%. This study revealed that malondialdehyde is a very reactive molecule, both in the presence and absence of proteins. Its use as a general oxidation marker should therefore be considered with care. PMID:26016781

  8. Formation of water-in-oil emulsions and application to oil spill modelling.

    Fingas, Merv; Fieldhouse, Ben

    2004-02-27

    Water-in-oil mixtures were grouped into four states or classes: stable, mesostable, unstable, and entrained water. Of these, only stable and mesostable states can be characterized as emulsions. These states were established according to lifetime, visual appearance, complex modulus, and differences in viscosity. Water content at formation was not an important factor. Water-in-oil emulsions made from crude oils have different classes of stability as a result of the asphaltene and resin contents, as well as differences in the viscosity of the starting oil. The different types of water-in-oil classes are readily distinguished simply by appearance, as well as by rheological properties. A review of past modelling efforts to predict emulsion formation showed that these older schemes were based on first-order rate equations that were developed before extensive work on emulsion physics took place. These results do not correspond to either laboratory or field results. The present authors suggest that both the formation and characteristics of emulsions could be predicted using empirical data. If the same oil type as already studied is to be modelled, the laboratory data on the state and properties can be used directly. In this paper, a new numerical modelling scheme is proposed and is based on empirical data and the corresponding physical knowledge of emulsion formation. The density, viscosity, saturate, asphaltene and resin contents are used to compute a class index which yields either an unstable or entrained water-in-oil state or a mesostable or stable emulsion. A prediction scheme is given to estimate the water content and viscosity of the resulting water-in-oil state and the time to formation with input of wave height. PMID:15036641

  9. Effect of methanol extracts of rosemary and olive vegetable water on the stability of olive oil and sunflower oil

    Gamel, T. H.; Kiritsakis, A.

    1999-01-01

    Effect of methanol extracts of rosemary and olive vegetable water on the stability of olive oil and sunflower oil. Methanol phenolic extracts of dry rosemary leaves and olive vegetable water filtrate, in combination with BHA, were added to olive oil (blend of refined and virgin olive oil, 3 to 1) and to sunflower oil and their antioxidant effects under accelerated conditions were evaluated. Accelerated conditions included the oven test (at 63 °C) and the conductivity method (Rancimat at 120 °...

  10. Subacute fat-embolism-like syndrome following high-volume intramuscular and accidental intravascular injection of mineral oil

    Hjort, Mathias; Hoegberg, Lotte Christine Groth; Jansen, Tejs;

    2015-01-01

    infiltrations. Suspecting pneumonia, the patient was discharged with antibiotics. Unkown to the clinicians, the patient had self-administered a mineral oil with added anabolic steroids by intramuscular injections for cosmetic purposes. The patient had observed blood on aspiration, and then relocated the needle......Objective. We present a rare case of subacute fat-embolism-like syndrome (FES-like) following intravascular injection of mineral oil-steroid solution with delayed diagnosis, acute onset of pulmonary distress, and transient clinical deterioration. Case report. A 40-year-old man was admitted...

  11. A review of knowledge on water-in-oil emulsions

    Fingas, M.; Fieldhouse, B. [Environment Canada, Ottawa, ON (Canada). Emergencies Science and Technology Division, Environmental Technology Centre, Science and Technology Branch

    2006-07-01

    This paper outlined the basics of water-in-oil emulsification which is often considered to be the second most important behavioural characteristic of oil after evaporation. In the event of oil spills on water, water in-oil emulsions are formed by the emulsification process which changes the physical properties and characteristics of the oil. Stable emulsions contain from 60 to 80 per cent water, thereby expanding the spilled material from 2 to 5 times the original volume. The density of the resulting emulsion is also greater than the starting density and the viscosity of the oil generally increases. The liquid product is thus transformed into a heavy, semi-solid material. As a result of emulsification, evaporation of oil spills slows by orders-of-magnitude, spreading slows and the oil rides lower in the water column. Emulsification also affects cleanup response because emulsions are hard to treat, burn or recover mechanically. This paper also reviewed dielectric and rheological methods that study the formation mechanisms and stability of emulsions made from different types of oils. Other standard chemical techniques such as nuclear magnetic resonance (NMR), chemical analysis techniques, near-infrared spectroscopy, microscopy, interfacial pressure and interfacial tension have also been applied to emulsions. After 15 years of studies, data on water-in-oil emulsions have shown good correlation between laboratory, test tank and field scale studies. Reported test results on about 400 oils and petroleum products have shown that emulsions can be grouped into 3 categories, each with distinct physical properties. These include stable, unstable and meso-stable emulsions. An examination of the asphaltene and resin content has shown that the stability of emulsions can be predicted by the asphaltene content and its viscosity. Emulsion formation was found to occur at a threshold energy, defined in terms of relative sea state. A recently proposed numerical modeling scheme based

  12. A review of knowledge on water-in-oil emulsions

    This paper outlined the basics of water-in-oil emulsification which is often considered to be the second most important behavioural characteristic of oil after evaporation. In the event of oil spills on water, water in-oil emulsions are formed by the emulsification process which changes the physical properties and characteristics of the oil. Stable emulsions contain from 60 to 80 per cent water, thereby expanding the spilled material from 2 to 5 times the original volume. The density of the resulting emulsion is also greater than the starting density and the viscosity of the oil generally increases. The liquid product is thus transformed into a heavy, semi-solid material. As a result of emulsification, evaporation of oil spills slows by orders-of-magnitude, spreading slows and the oil rides lower in the water column. Emulsification also affects cleanup response because emulsions are hard to treat, burn or recover mechanically. This paper also reviewed dielectric and rheological methods that study the formation mechanisms and stability of emulsions made from different types of oils. Other standard chemical techniques such as nuclear magnetic resonance (NMR), chemical analysis techniques, near-infrared spectroscopy, microscopy, interfacial pressure and interfacial tension have also been applied to emulsions. After 15 years of studies, data on water-in-oil emulsions have shown good correlation between laboratory, test tank and field scale studies. Reported test results on about 400 oils and petroleum products have shown that emulsions can be grouped into 3 categories, each with distinct physical properties. These include stable, unstable and meso-stable emulsions. An examination of the asphaltene and resin content has shown that the stability of emulsions can be predicted by the asphaltene content and its viscosity. Emulsion formation was found to occur at a threshold energy, defined in terms of relative sea state. A recently proposed numerical modeling scheme based

  13. Determination of oil/water and octanol/water distribution coefficients from aqueous solutions from four fossil fuels. [MS thesis; in oil-water and octanol-water

    Thomas, B.L.

    1984-07-01

    Liquid fossil fuels, both petroleum and synthetically derived oils, are exceedingly complex mixtures of thousands of components. The effect of many of these energy-related components on the environment is largely unknown. Octanol/water distribution coefficients relate both to toxicity and to the bioaccumulation potential of chemical components. Use of these partition data in conjunction with component concentrations in the oils in environmental models provides important information on the fate of fossil fuel components when released to the environment. Octanol/water distribution data are not available for many energy-related organic compounds, and those data that are available have been determined for individual components in simple, one-component octanol/water equilibrium mixtures. In this study, methods for determining many octanol/water distribution coefficients from aqueous extracts of oil products were developed. Sample aqueous mixtures were made by equilibrating liquid fossil fuels with distilled water. This approach has the advantage of detecting interactions between components of interest and other sample components. Compound types studied included phenols, nitrogen bases, hydrocarbons, sulfur heterocyclic compounds, and carboxylic acids. Octanol/water distribution coefficients that were determined in this study ranged from 9.12 for aniline to 67,600 for 1,2-dimethylnaphthalene. Within a compound type, distribution coefficients increased logarithmically with increasing alkyl substitution and molecular weight. Additionally, oil/water distribution data were determined for oil components. These data are useful in predicting maximum environmental concentrations in water columns. 96 references, 26 figures, and 40 tables.

  14. In-situ burning of water-in-oil emulsions

    The report describes an experimental program on the in-situ burning of emulsions. This study is the third in a series of experimental studies on the in-situ burning of water-in-oil emulsions. The main objective of this study was to improve the capabilities and reduce the limitations of existing systems for igniting water-in-oil emulsions. A secondary objective was to study the feasibility of ferrocene as a soot reducing agent for oils and emulsions, and was incorporated into the experimental program. The experimental work for this research project was accomplished by conducting small-scale laboratory burns and heat transfer experiments, and by conducting meso-scale field experiments under Arctic springtime conditions. Experiments conducted to study emulsion burning processes revealed that: in order to ignite and burn the emulsion, water is first removed from the emulsion and released mainly through evaporation and that the temperature of the water-in-oil emulsions does not exceed approximately 100oC. Improvements were made to an existing igniter technology. It was found that the addition of emulsion breakers to gelled crude oil can increase the effectiveness of this igniter when dealing with emulsions with water contents greater than 50%. Experiments with ferrocene show this compound to be an effective soot inhibitor when mixed with oil or emulsions at concentrations as low as 0.13 wt%. Ferrocene may have some effect on the burning process but further testing is required to conform this. 38 refs., 86 figs., 27 tabs

  15. Surfactant controlled switching of water-in-oil wetting behaviour of porous silica films grown at oil-water interfaces

    Manish M Kulkarni; Rajdip Bandyopadhyaya; Ashutosh Sharma

    2008-11-01

    Selective permeation of oil and water across a porous medium, as in oil recovery operations, depends on the preferential wetting properties of the porous medium. We show a profound influence of surfactants in wetting of porous media and thus demonstrate a new route for the control of water-in-oil wetting of porous substrates by changing the concentration of surfactants in an aqueous sub-phase below the substrate. This strategy is employed to engineer partial reversible wetting transitions on a porous silica film. The film itself is grown and stabilized on a flat, macroscopic interface between an oil phase and an aqueous sub-phase. On increasing the surfactant (CTAB) concentration in the sub-phase, contact angle of a water drop (placed on the oil side of the film) changes from 140° to 16° in 25 min by diffusion of the surfactant across the porous film. On further replacement of the sub-phase with pure water, diffusion of the surfactant from the water drop back to the sub-phase was slower, increasing the contact angle in the process from 16° to 90° in 2 h. Wettability control by a cationic surfactant (CTAB) was found to be much faster (6 deg/min) than that offered by an anionic surfactant, SDS (0.05 deg/min). Switching of the surface wettability due to the surfactant diffusion may have implications in oil-water separation, chemical bed reactors and microfluidic devices.

  16. Removal of oil products from fitters in water treatment plants

    Gasoline and oil spills cause aromatic hydrocarbon pollution of ground water. Benzene, toluene and naphtalene can be found in water wells. The purpose of the experiment was to investigate the filtering of water and biological degradation of aromatics on water treatment filters. These filters were proved to reduce benzene, toluene and naphtalene concentration from 5-12 μg/l to 0,3-0,6 μg/l (86-98 % removal). (EG)

  17. Policy Analysis of Water Availability and Use Issues for Domestic Oil Shale and Oil Sands Development

    Ruple, John; Keiter, Robert

    2010-12-31

    Oil shale and oil sands resources located within the intermountain west represent a vast, and as of yet, commercially untapped source of energy. Development will require water, and demand for scarce water resources stands at the front of a long list of barriers to commercialization. Water requirements and the consequences of commercial development will depend on the number, size, and location of facilities, as well as the technologies employed to develop these unconventional fuels. While the details remain unclear, the implication is not – unconventional fuel development will increase demand for water in an arid region where demand for water often exceeds supply. Water demands in excess of supplies have long been the norm in the west, and for more than a century water has been apportioned on a first-come, first-served basis. Unconventional fuel developers who have not already secured water rights stand at the back of a long line and will need to obtain water from willing water purveyors. However, uncertainty regarding the nature and extent of some senior water claims combine with indeterminate interstate river management to cast a cloud over water resource allocation and management. Quantitative and qualitative water requirements associated with Endangered Species protection also stand as barriers to significant water development, and complex water quality regulations will apply to unconventional fuel development. Legal and political decisions can give shape to an indeterminate landscape. Settlement of Northern Ute reserved rights claims would help clarify the worth of existing water rights and viability of alternative sources of supply. Interstate apportionment of the White River would go a long way towards resolving water availability in downstream Utah. And energy policy clarification will help determine the role oil shale and oil sands will play in our nation’s future.

  18. Oil capture from a water surface by a falling sphere

    Smolka, Linda; McLaughlin, Clare; Witelski, Thomas

    2015-11-01

    When a spherical particle is dropped from rest into an oil lens that floats on top of a water surface, a portion of the oil adheres to the sphere. Once the sphere comes to rest at the subsurface, the oil forms a pendant drop that remains attached in equilibrium to the sphere effectively removing oil from the water surface. Best fit solutions of the Laplace equation to experimental profiles are used to investigate the parameter dependence of the radius of curvature and the filling and contact angles at the three-phase contact line of the pendant drop for spheres with different wetting properties, densities and radii. The volume of oil captured by a sphere increases with a sphere's mass and diameter. However, lighter and smaller spheres capture more oil relative to their own volume than do heavier and larger spheres (scaling with the sphere mass ~M - 0 . 544) and are thus more efficient at removing oil from a water surface. The authors wish to acknowledge the support of the National Science Foundation Grant Nos. DMS-0707755 and DMS-0968252.

  19. Rotor clearance design and evaluation for an oil injected twin screw compressor

    Buckney, D.; Kovacevic, A.; Stosic, N.

    2015-08-01

    Designing twin screw compressors to safely operate at higher than normal temperatures poses a challenge as the compressor must accommodate larger peak thermal distortions while ideally maintaining efficiency at nominal operating conditions. This paper will present a case study of an oil injected compressor tested at elevated discharge temperatures with original and revised clearances. The local thermal distortions occurring within the compressor during operation were estimated using a procedure developed by the authors - thermodynamic results from a chamber model were used to approximate component temperature distributions that are then used to predict possible thermal distortions and the resulting affect on clearance gaps. The original and revised clearance designs are evaluated and performance penalties incurred due to the modifications are discussed.

  20. The Use of Demulsifiers for Separating Water from Anthracene Oil

    Zečević, N.

    2008-03-01

    increasing aromaticity. It is also used for determination of the Bureau of Mines Correlation Index (BMCI,2 which is obtained either from density and midboiling point, or from density andviscosity for those feedstocks which cannot be distilled completely. This index is used by the carbon black industry as an important criteria for feedstock evaluation.The sulphur fraction in feedstocks should not exceed w = 2.5 ·10–2, because a higher content greatly affects the quality of carbon black, pollutes the atmosphere, and accelerates corrosion of the facility. The maximum sulphur content in the typical hydrocarbon feedstock is w = 1.2 · 10–2.3. A very important factor of hydrocarbon feedstock is the fraction of alkaline earth metals, especially sodium and potassium. The maximum sodium fraction may be w = 20·10–6, while the maximum potassium fraction is w = 2·10 –6.The maximum fraction of asphalthenes is w = 15 ·10–2. Asphalthenes, determined as pentane-insoluble matter, provide indications concerning the possibility of grit formation. Another very important factor is the temperature range of distillation, which should be low enough, because the hydrocarbon feedstock must evaporize before entering the hot region of the reactor. The viscosity, the pour point, and for safety reasons, the flash point determines the handling properties and storage conditions of the feedstock.In addition, the water fraction in the hydrocarbon feedstock is one of the most important factors. The water fraction in hydrocarbon feedstock influences the handling properties of the same. The maximum water fraction in hydrocarbon feedstock may be w = 2.0·10–2, and desirably below w = 1.0·10–2. A higher water fraction represent a considerable impact on the financial construction. Also, it is very difficult to manipulate such feedstock, especially unloading, and in the production of oil-furnace carbon black. Namely, every water fraction higher than w = 2.0·10–2 in the hydrocarbon feedstock

  1. Oil palm plantation effects on water quality in Kalimantan, Indonesia

    Carlson, K. M.; Curran, L. M.

    2011-12-01

    Global demand for palm oil has stimulated a 7-fold increase in oil palm (Elaeis guineensis) plantation area in Indonesia since 1990. Expansion will continue as Indonesia plans to double current production by 2020. Oil palm fertilizers, effluent from oil palm mills, and erosion from land clearing and roads threaten river water quality near plantations. These rivers provide essential ecosystem services including water for drinking, cooking, and washing. Robust empirical measurements of plantation expansion impacts on water resources are necessary to discern the effects of agribusiness on local livelihoods and ecosystems. In Ketapang District, West Kalimantan, Indonesian Borneo, we evaluated the effects of land cover change on water quality by assessing water chemistry in streams draining four end-member watersheds ( ~600-1900 ha watershed-1): Logged forest, mixed agro-forest dominated by rubber and upland rice fallows, young oil palm forest (0-5 years), and old oil palm forest (10-15 years). To assess land cover change, we used CLASLite software to derive fractional cover from a time series (1989-2008) of Landsat data. Nearest neighbor classification and post-classification change detection yielded classes including primary forest, logged forest, secondary forest regrowth, smallholder agriculture, and oil palm. Stream water quality (temperature, dissolved oxygen, turbidity, optical chlorphyll, and pH) and quantity (discharge) were quantified with the YSI 6600-V2 sonde. The sonde was deployed in each stream for month-long intervals 2-3 times from 2009-2010. Such extended deployment captures episodic events such as intense storms and allows examination of interdiel dynamics by sampling continuously and at high frequency, every 10 minutes. We find that across the Ketapang District study region (~12,000 km2), oil palm has cleared mostly forests (49%) and agroforests (39%). What are the impacts of such land cover changes on water quality? Compared to forests and

  2. Selection of potential cold water marine species for testing of oil dispersants, and chemically dispersed oil

    A study regarding marine species for toxicity testing for Alaska conditions was presented and the potential adverse impacts of a large marine oil spill in cold water were discussed with the objective to determine if the spill should be treated by the use of oil dispersants. Without dispersion, the oil can pollute marine epifauna and can deposit on beaches. The decision to apply dispersants to a marine oil spill requires knowledge of the toxicity of the undispersed oil to pelagic marine life occurring via natural dispersion as opposed to the toxicity of the oil-dispersant mixture. Most standard toxicity tests apply to warm water species. This paper discussed the need to have a standard test species relevant to Alaska waters for toxicity testing. In this study, toxicity testing was done according to the methods of the Chemical Response to Oil Spills : Ecological Effects Research Forum (CROSERF). The testing included capturing adult species in the winter and holding them until larval hatching. Toxicity testing was completed in a narrow time frame before hatching ceased. Many chemical samples were tested. Topsmelt, urchins, shellfish, mysids, copepods, pink salmon fry, and tidepool sculpin were considered by the author to be the most useful for certain types of toxicity testing. 29 refs

  3. An environmentally safe water-based alternative to oil muds

    In this paper, a mechanism describing the onset of bit balling is given. On the basis of this mechanism, a new copolymer/polypropylene glycol (COP/PPG) water-based drilling fluid was developed. The properties of this fluid are described, and field test comparisons are made with water- and oil-based fluids

  4. Effect of water injection on hydrogen generation during severe accident in PWR

    TAO Jun; CAO Xuewu

    2009-01-01

    Effect of water injection on hydrogen generation during severe accident in a 1000 MWe pressurized water reactor was studied.The analyses were carried out with different water injection rates at different core damage stages.The core can be quenched and accident progression can be terminated by water injection at the time before cohesive core debris is formed at lower core region.Hydrogen generation rate decreases with water injection into the core at the peak core temperature of 1700 K,because the core is quenched and reflooded quickly.The water injection at the peak core temperature of 1900 K,the hydrogen generation rate increases at low injection rates of the water,as the core is quenched slowly and the core remains in uncovered condition at high temperatures for a longer time than the situation of high injection rate.At peak core temperature of 2100-2300 K,the Hydrogen generation rate increases by water injection because of the steam serving to the high temperature steam-starved core.Hydrogen generation rate increases significantly after water injection into the core at peak core temperature of 2500 K because of the steam serving to the relocating Zr-U-O mixture.Almost no hydrogen generation can be seen in base case after formation of the molten pool at the lower core region.However,hydrogen is generated if water is injected into the molten pool,because steam serves to the crust supporting the molten pool.Reactor coolant system (RCS) depressurization by opening power operated relief valves has important effect on hydrogen generation.Special attention should be paid to hydrogen generation enhancement caused by RCS depressurization.

  5. Subcritical Water Extraction of Monosaccharides from Oil Palm Fronds Hemicelluloses

    Oil palm plantations in Malaysia generate more than 36 million tones of pruned and felled oil palm fronds (OPF) and are generally considered as waste. The composition of monosaccharide in oil palm frond can be extracted using hydrothermal treatment for useful applications. The objectives of this study were to quantify the yield of monosaccharides at various reaction conditions; temperature 170 to 200 degree Celsius, pressure from 500 psi to 800 psi, reaction time from 5 to 15 min using subcritical water extraction and to determine the composition of oil palm frond hemicelluloses at optimum condition. The monosaccharides composition of oil palm frond hemicelluloses were analysed using High Performance Liquid Chromatography (HPLC). The highest yield of monosaccharides can be extracted from OPF at temperature of 190 degree Celsius, pressure of 600 psi and 10 min of contact time which is xylose the most abundant composition (11.79 %) followed with arabinose (2.82 %), glucose (0.61 %) and mannose (0.66 %). (author)

  6. Application of flexible slurries: an alternative for oil wells subject to cyclic steam injection

    Suzart, J. Walter P.; Paiva, Maria D.M.; Cunha, Marcelo C.S. [Halliburton Energy Services (HES), Duncan, OK (United States); Farias, Antonio Carlos [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    Oil wells that receive cyclic steam injection are subject to high temperature variations during their life cycle. This causes volumetric expansion of the metallic casing which leads to cracks and channels in the formation of the cement. Studies show that volumetric expansion caused by temperature variation may cause wells to rise up to 20-in. at the surface. This paper presents alternative materials that improve the elastic properties of set cement slurries, focusing on maintaining sufficient resilience to maximize the life of the cement. We compare a set of fourteen formulations, some currently in use, selecting those with high flexibility. Analysis was based on the mechanical properties of the set slurries as well as tests according to standards from ABNT and from API Spec 10B. This work contributes new formulations for wells that under-go cyclic steam injection. These new formulations are presented as alternatives to current flexible slurry technology. We can obtain high-quality, more resilient slurries using materials that are more economical, have better cost-benefit, and are easily available in the market. (author)

  7. Comparative toxicity of water-accommodated fractions of oil and dispersed oil to marine fish larvae

    Couillard, C.M.; Legare, B.; St-Pierre, S. [Department of Fisheries and Oceans, Mont-Joli, PQ (Canada). Maurice Lamontagne Inst.; Lee, K. [Department of Fisheries and Oceans, Dartmouth, NS (Canada). Bedford Inst. of Oceanography

    2003-07-01

    The use of chemical dispersants to clean oil spills on water can increase the risk of toxic effects to early life stages of fish by increasing their exposure to polycyclic aromatic hydrocarbons (PAHs). In this study, water-accommodated fractions of dispersed crude oil were prepared with weathered Mesa light crude oil and filtered seawater with and without Corexit 9500. Newly hatched larvae of mummichog, Fundulus heteroclitus, were exposed to the mixtures to examine the biological effects on the larvae. For an oil loading of 0.2 g/L, the addition of dispersant caused a 2-fold and 7-fold increase in total PAH and high molecular weight PAH with 3 or more benzene rings. A 5-fold increase in ethoxyresorufin-O-deethylase (EROD) activity was observed in larvae exposed to dispersed crude oil water accommodated fractions at a loading of 0.05 g/L. A 4-fold increase was noted when the crude oil water accommodated fractions were loaded at 1 g/L. Both mixtures resulted in reduced body length. The study confirmed that dispersants increase the risk of toxic effects for the early life stage of fish.

  8. Injection-water salinity, formation pretreatment, and well-operations fluid-selection guidelines

    Scheuerman, R.F.; Bergersen, B.M. (Shell Development Co., Houston, TX (USA))

    1990-07-01

    This paper reports on injection-water/formation-clay compatibility criteria that are based on water and formation-clay analyses which were developed to determine whether an injection water has sufficient total cations and/or divalent cations to prevent formation-clay dispersion and permeability impairment and to determine when formation pretreatment is required to prevent impairment during the transition to injection water. These criteria also were incorporated into a scheme to determine the type of brine to be used for completion, stimulation, and work-over operations to prevent formation-clay deflocculation or to eliminate formation pretreatment.

  9. Stability of additive-free water-in-oil emulsions

    We calculate ion distributions near a planar oil-water interface within nonlinear Poisson-Boltzmann theory, taking into account the Born self-energy of the ions in the two media. For unequal self-energies of cations and anions a spontaneous charge separation is found, such that the water and oil phases become oppositely charged in slabs with a typical thickness of the Debye screening length in the two media. From the analytical solutions, the corresponding interfacial charge density and the contribution to the interfacial tension is derived, together with an estimate for the Yukawa potential between two spherical water droplets in oil. The parameter regime is explored where the plasma coupling parameter exceeds the crystallization threshold, i.e. where the droplets are expected to form crystalline structures due to a strong Yukawa repulsion, as recently observed experimentally. Extensions of the theory that we discuss briefly, include numerical calculations on spherical water droplets in oil, and analytical calculations of the linear PB-equation for a finite oil-water interfacial width.

  10. Finding Balance Between Biological Groundwater Treatment and Treated Injection Water

    Carlson, Mark A.; Nielsen, Kellin R.; Byrnes, Mark E.; Simmons, Sally A.; Morse, John J.; Geiger, James B.; Watkins, Louis E.; McFee, Phillip M.; Martins, K.

    2015-01-14

    At the U.S. Department of Energy’s Hanford Site, CH2M HILL Plateau Remediation Company operates the 200 West Pump and Treat which was engineered to treat radiological and chemical contaminants in groundwater as a result of the site’s former plutonium production years. Fluidized bed bioreactors (FBRs) are used to remove nitrate, metals, and volatile organic compounds. Increasing nitrate concentrations in the treatment plant effluent and the presence of a slimy biomass (a typical microorganism response to stress) in the FBRs triggered an investigation of nutrient levels in the system. Little, if any, micronutrient feed was coming into the bioreactors. Additionally, carbon substrate (used to promote biological growth) was passing through to the injection wells, causing biological fouling of the wells and reduced specific injectivity. Adjustments to the micronutrient feed improved microorganism health, but the micronutrients were being overfed (particularly manganese) plugging the injection wells further. Injection well rehabilitation to restore specific injectivity required repeated treatments to remove the biological fouling and precipitated metal oxides. A combination of sulfamic and citric acids worked well to dissolve metal oxides and sodium hypochlorite effectively removed the biological growth. Intensive surging and development techniques successfully removed clogging material from the injection wells. Ultimately, the investigation and nutrient adjustments took months to restore proper balance to the microbial system and over a year to stabilize injection well capacities. Carefully tracking and managing the FBRs and well performance monitoring are critical to balancing the needs of the treatment system while reducing fouling mechanisms in the injection wells.

  11. Performance of floating oil booms in unsheltered waters

    Iglesias, Gregorio; Castro, Alberte

    2013-04-01

    Oil booms are a fundamental tool to diminish the impact of an oil spill. They tend to perform reasonably well in sheltered waters, e.g. within a harbour. However, their performance is often inadequate in open water conditions, under waves, winds and currents. And it is precisely in those conditions that they are needed if oil slicks are to be prevented from reaching certain particularly sensitive areas, such as estuaries, rias, etc. (Castro et al., 2010; Iglesias et al., 2010). In this work the performance of floating oil booms under waves and currents is assessed on the basis of laboratory experiments carried out in a state-of-the-art wave-current flume. Different oil boom models are used, representative of booms with long and short skirts and with different weights. The results show that different booms behave very differently under waves and currents, hence the importance of selecting the boom design that is appropriate for the actual conditions under which it will have to contain the oil slick. Thus, different oil booms should be used for different areas. References A. Castro, G. Iglesias, R. Carballo, J.A. Fraguela, 2010. Floating boom performance under waves and currents, Journal of Hazardous Materials 174, 226-235 G. Iglesias, A.Castro, J.A.Fraguela, 2010. Artificial intelligence applied to floating boom behavior under waves and currents, Ocean Engineering 37, 1513-1521.

  12. Effect of Ultrasonication on Stability of Oil in Water Emulsions

    Kiran A Ramisetty; R. Shyamsunder

    2011-01-01

    Effect of ultrasonic waves on stability of oil in water system of light liquid paraffin oil (HLB = 12) as internal phase and tween20 (HLB = 16.7), span20 (HLB = 8.6) as emulsifying agents was studied. A comparison was made to determine the stability of emulsions prepared by mechanical agitation method and ultrasonication technique. Droplet size measurement method was used to determine the stability of emulsions. Physico-chemical parameters like concentration of emulsifying agent, volume fract...

  13. IVER2 improvement for oil in-water sampling

    Molina, Juan Carlos; López Castejón, Francisco; Gilabert, Javier; Guerrero, Antonio

    2015-01-01

    The IVER2 AUV is a small man-portable AUV manufactured by Ocean Server Technology, Inc. The design of the vehicle allows the user to add new features and capabilities. The one acquired by the UPCT for the Underwater vehicle ready for oil spill (URready4OS) need several improvement in order to be used for oil in water sampling, listed: add an oil probe, equipped a second CPU enable to communicate with the main CPU and the probe, and an underwater modem. New software has been ...

  14. Using Oil and Gas Well Log Records to Understand Possible Connections Between Wastewater Injection Zones and Usable Groundwater Aquifers in California

    Shimabukuro, D.; Haugen, E. A.; Battistella, C.; Treguboff, E. W.; Kale, J. M.

    2015-12-01

    Although the disposal of produced water in wastewater injection wells has been occurring in California for decades, it is not clear whether injected fluids may be migrating into usable groundwater aquifers. One problem is the poor characterization of federally-protected (water in the state. Another is the lack of publically-accessible information about the hydrological properties of confining strata adjacent to injection zones. In effort to better understand these two problems, we have begun studying the archived oil and gas well records collected by the California Division of Oil, Gas, and Geothermal Resources (DOGGR). These scanned records contain two useful sources of information. First, geophysical well logs, such those measuring resistivity and porosity, can be used to determine aquifer salinity. This allows a three-dimensional understanding of the distribution of protected groundwater. Second, driller's logs contain lithological descriptions at depth. These lithologies can be used to construct a three-dimensional texture model, which can then be used in a groundwater flow model. A large number of undergraduate researchers at CSU Sacramento and CSU Long Beach have been collecting information on well records in the Ventura Basin and the Southern San Joaquin Valley. Each well record is examined with basic metadata entered into an online database in an effort to identify appropriate geophysical well logs and driller's logs. High-quality driller's logs are coded and used to create three-dimensional framework models for each well field. The geophysical logs are digitized and will be used to determine aquifer salinity. In addition, we are using information from the DOGGR well records to investigate wellbore integrity, waste disposal and waterflood injection volumes, and the possibility of induced seismicity. This project is part of the broader effort of the California State Water Resources Control Board to implement Senate Bill 4.

  15. Theoretical and experimental studies of water injection scroll compressor in automotive fuel cell systems

    Yuanyang Zhao; Liansheng Li; Huagen Wu; Pengcheng Shu [Xian Jiaotong University (China). School of Energy and Power Engineering

    2005-06-01

    A water injection scroll compressor to supply clean compressed air to an automotive fuel cell system is researched. The water is used as both the lubricant and coolant in the compressor. A thermodynamic model of the water injection scroll compressor considering leakage and heat exchange for use with an automotive fuel cell system was developed using the conservation of energy and mass equations and the equation of state. The results show that the scroll compressor has nearly isothermal compression when injecting water in it. Increasing the compressor rotation speed increases the discharge loss and the volumetric efficiency of the scroll compressor. The difference between the calculated power and the isothermal power increases as the compressor rotation speed rises, which means the efficiency of the compressor decreases. Increasing the flow rate of water injected increases the indicated isothermal efficiency and decreases the discharge temperature. Under the condition studied, the mass flow rate of water has the greatest effect on the discharge temperature. (author)

  16. Formation and Stability of an Oil in Water Emulsion Containing Lecithin, Xanthan Gum and Sunflower Oil

    Traynor, Mark; Burke, Roisin; Frias, Jesus Maria; Gaston, Edurne; Barry-Ryan, Catherine

    2013-01-01

    The optimisation of the formation and stability of an oil in water emulsion containing lecithin, xanthan gum and sunflower oil was evaluated using Response Surface Methodology (RSM) and nonlinear regression. The main and combined effects of three independent variables; concentration of sunflower oil (10-20% v/v), soy lecithin (1-5% w/v) and xanthan gum (0.01-3% w/v) on the responses were examined. The main objectives of the study were to model and optimise maximum emulsion storage stability a...

  17. Soil water repellency at old crude oil spill sites

    This thesis presents the current state of knowledge regarding the cause of soil water repellency and characterizes disaggregated nonwettable surface soils found at old crude oil spill sites. Pollution-induced water repellency generally develops following prolonged exposures of soil to liquid- or vapour-phase petroleum hydrocarbons. The condition varies significantly in terms of severity and persistence. Soil water repellency retards plant growth and disturbs the hydrological balance of ecosystems. Disaggregated water-repellent soils are also very susceptible to dispersal by erosion, posing a threat to the productivity of surrounding soils. The author described the probable causes of soil water repellency under the following three main themes: (1) accumulation of hydrophobic organic material in soil, (2) redistribution and re-organisation of this material in soil, and (3) stabilisation of the hydrophobic organic material. This final process is necessary to ensure persistence of induced water repellency symptoms. Petroleum residues as water-repellent substances in weathered nonwettable oil-contaminated soils were also discussed and a hypothesis about soil water repellency was presented which deals with flexible conformation in organic matter coatings. Processes leading to the development of soil water repellency following crude oil contamination were also described. It was determined that soil water repellency is a function of the packing density and the chain conformation of amphiphilic organic molecules in the outermost layer of soil organic matter coatings. This research suggests that the fractional coverage of alkyl chains on soil particle surfaces determines the degree of water repellency that is displayed by soil. It was shown that prompt remediation of some oil-contaminated plots can effectively prevent the development of soil water repellency. 4 refs., 32 tabs., 22 figs., 5 appendices

  18. Using bio-impedance for rapid screening of water injection into chicken filets

    Simeone, F.C.; Brouwer, S.E.; Ruth, van, S.M.

    2015-01-01

    Injecting chicken products with water has emerged as a considerably spread method for increasing the weights of the product in order to increase profits. Due to the huge number of products that are retailed daily, it is out of reach to test them with conventional methods for water injection. Here we present results for rapid screening of water amount in chicken filets done by electrical bio-impedance, a technique that is easy to implement, rapid, portable. Electrical impedance depends on stru...

  19. Optimal waste heat recovery in micro gas turbine cycles through liquid water injection

    Water injection in the compressor exhaust, to recuperate waste heat, is considered a possible route to improve the electric efficiency and overall performance of the micro Gas Turbine turbine (mGT). Many research exists on water injection in mGTs, however a generic study to determine the optimal route for waste heat recovery is still missing. To determine the optimal cycle settings for waste heat recovery through water injection, we have performed simulations using a two-step method. In a first step, the thermodynamic limit for water injection is sought using a black box method. In a second step, the cycle layout is designed by means of composite curve theory. This paper summarizes the results of two scenarios. In the first scenario, the black box is considered as adiabatic and no fixed stack temperature is imposed (thus allowing condensation of the exhaust gasses). One of the major concerns when injecting water is the water consumption, which can be compensated in some cases through condensation and recycling the condensate. Therefore, in the second scenario, the cycle is made self-sufficient with water. In this case, the black box is no longer considered adiabatic and heat exchange with the environment is allowed for condensation of the flue gasses. Black box simulations showed that lowering the stack temperature to 53 °C results in an injection of 17 %wt of water and an increase in electric efficiency of 9% absolute. To keep the mGT cycle layout simple, low cost and not too complex, a maximum of two heat exchangers was imposed for the heat exchanger network design. Although black box analysis indicated a large potential for water introduction, this potential could not be achieved with the considered networks in this paper. Finally, injection of preheated water was identified as the optimal water injection scheme for waste heat recovery resulting in 4.6% absolute electric efficiency increase and a final stack temperature of 62 °C. Results of simulations of

  20. Theoretical analysis of the effect of water and ethanol injection on axial compressor instabilities

    Two types of instabilities that occur in compression systems rotating stall and surge have an adverse effect on the compressor performance. Several techniques have been explored to minimize the effect of these instabilities. It has been observed that injection of a liquid into the compressor not only improves thermodynamic efficiencies but also results in stabilizing the system. Therefore, water and ethanol injection has been investigated as an effective tool for controlling these compressor instabilities. In the present paper a modified Moore-Greitzer model has been proposed for wet compression-based system using water and ethanol. Under this work the effect of injection of water (1) at various stages of compressor, (2) at different altitudes and (3) by varying amounts has also been presented. The effect of various parameters on wet compression such as (a) Optimum stage for liquid injection (b) Optimum amount of liquid injection and (c) Effect of altitude on liquid injection is also examined in the present work which shows that the liquid injection helps in improving the performance of compression systems in terms of increase in the stall margin and pressure rise coefficient. - Highlights: → We model the effect of liquid injection on the performance of axial flow compressors. → The basic Moore-Grietzer's model has been appropriately modified. → Injection of liquid in the later stages of the compressor resulted in improved stall margin and pressure rise. → Use of ethanol was found to give better performance than water.

  1. EFFECT OF WATER CONTENT, TEMPERATURE AND AVERAGE DROPLET SIZE ON THE SETTLING VELOCITY OF WATER-IN-OIL EMULSIONS

    W. J. Souza; K. M. C. Santos; Cruz, A A; E. Franceschi; C. Dariva; Santos, A. F.; Santana, C C

    2015-01-01

    AbstractWater-in-oil (W/O) emulsions are complex mixtures generally found in crude oil production in reservoirs and processing equipment. Sedimentation studies of water-oil emulsions enable the analysis of the fluid dynamic behavior concerning separation of this system composed of two immiscible liquids. Gravitational settling was evaluated in this article for a model emulsion system consisting of water and a Brazilian crude oil diluted in a clear mineral oil as organic phase. The effects of ...

  2. Ultrasonic splitting of oil-in-water emulsions

    Hald, Jens; König, Ralf; Benes, Ewald;

    1999-01-01

    Standing resonant ultrasonic wave fields can be utilized for liquid–liquid separation of the dispersed particles and the fluid caused by the acoustic radiation pressure and the induced particle agglomeration or coagulation/coalescence process. For the splitting of oil-in-water emulsions, the...... up to 24 W/cm2 into the sonication volume. The chosen resonance frequency is kept stable by automatic frequency control utilizing the maximum true power criterion. Physically and chemically well-defined low and high density pure laboratory and also industrially used cooling-lubricating oil......-in-water emulsion samples have been investigated. The quality of the ultrasonic-induced particle separation/coagulation process is characterized by physical–chemical analysis of the separated oil- and water phase and by determining the change of the particle size distribution of the initial emulsion due to the...

  3. Strontium isotopes test long-term zonal isolation of injected and Marcellus formation water after hydraulic fracturing.

    Kohl, Courtney A Kolesar; Capo, Rosemary C; Stewart, Brian W; Wall, Andrew J; Schroeder, Karl T; Hammack, Richard W; Guthrie, George D

    2014-08-19

    One concern regarding unconventional hydrocarbon production from organic-rich shale is that hydraulic fracture stimulation could create pathways that allow injected fluids and deep brines from the target formation or adjacent units to migrate upward into shallow drinking water aquifers. This study presents Sr isotope and geochemical data from a well-constrained site in Greene County, Pennsylvania, in which samples were collected before and after hydraulic fracturing of the Middle Devonian Marcellus Shale. Results spanning a 15-month period indicated no significant migration of Marcellus-derived fluids into Upper Devonian/Lower Mississippian units located 900-1200 m above the lateral Marcellus boreholes or into groundwater sampled at a spring near the site. Monitoring the Sr isotope ratio of water from legacy oil and gas wells or drinking water wells can provide a sensitive early warning of upward brine migration for many years after well stimulation. PMID:25024106

  4. [Mineral oil drinking water pollution accident in Slavonski Brod, Croatia].

    Medverec Knežević, Zvonimira; Nadih, Martina; Josipović, Renata; Grgić, Ivanka; Cvitković, Ante

    2011-12-01

    On 21 September 2008, heavy oil penetrated the drinking water supply in Slavonski Brod, Croatia. The accident was caused by the damage of heat exchange units in hot water supply. The system was polluted until the beginning of November, when the pipeline was treated with BIS O 2700 detergent and rinsed with water. Meanwhile, water samples were taken for chemical analysis using spectrometric and titrimetric methods and for microbiological analysis using membrane filtration and total plate count. Mineral oils were determined with infrared spectroscopy. Of the 192 samples taken for mineral oil analysis, 55 were above the maximally allowed concentration (MAC). Five samples were taken for polycyclic aromatic hydrocarbon (PAH), benzene, toluene, ethylbenzene, and xylene analysis (BTEX), but none was above MAC. Epidemiologists conducted a survey about health symptoms among the residents affected by the accident. Thirty-six complained of symptoms such as diarrhoea, stomach cramps, vomiting, rash, eye burning, chills, and gastric disorders.This is the first reported case of drinking water pollution with mineral oil in Slavonski Brod and the accident has raised a number of issues, starting from poor water supply maintenance to glitches in the management of emergencies such as this. PMID:22202469

  5. A pulse radiolysis study of oil/water microemulsions

    The spectrum and yield of eaq- in quaternary benzene/water and dodecane/water microemulsions were found to be identical with those in pure water. This indicates probably the scavenging of excess electrons produced in the oil by water. To the contrary, the yield of OH radicals, determined after scavenging and conversion into (SCN)2-·, was proportional to water content of the microemulsion. The eaq- decay and the total yield of peroxides in aerated microemulsion were determined and the characteristics of oxidation in microemulsion was discussed. (author)

  6. An Experimental Study of Oil-Water Flow in Pipes

    Kumara, W. Amaranath Sena

    2011-01-01

    The study reported in this thesis aims at improving the understanding of oil-water flows in horizontal and slightly inclined pipes.The experimental activities are carried out in the multiphase flow facility at Telemark University College in Porsgrunn, Norway. The experiments are performed using Exxsol D60 oil (density 790 kg/m3 and viscosity 1.64 mPa s) and water (996 kg/m3 and viscosity 1.00 mPa s) as test fluids at room temperature and atmospheric outlet pressure. The test section is a 15 m...

  7. Optical imaging of air and water bubbles flowing through oil

    Dutra, Guilherme; Martelli, Cicero; Patyk, Rodolfo L.; da Silva, Marco J.; Vendruscolo, Tiago P.; Morales, Rigoberto E. M.

    2015-07-01

    The feasibility of optically detecting air and water bubbles flowing through the oil is presented. By scanning wavelengths it is possible to add functionalities by implementing a spectroscopy based chemical detection that can directly lead to chemical detection and imaging and/or chemical species tomography of flowing fluids. In this article, a halogen lamp (175 - 1000 W and centered at 1.2 mm) and an IR-array camera (8-12 μm, 31 x 32 pixels and 10 fps) is used to observe the three-phase flow involving oil, air and water.

  8. Study on the New Grinding Fluids of Oils on Water

    魏源迁; 钱怡; 中村隆; 松原十三生

    2003-01-01

    To fulfill a zero-emission in the process of grinding and thoroughly eliminate the influences of the conventional grinding fluids on the eco-environment as well as save up electric energy and reduce in production costs, the new grinding fluids of botanic oils on water were developed, in which a lot of tiny water droplets attached with micro oil films were blown to the machining area by a compressing air-jet so good as to produce lubricating and cooling roles.In this study, grinding performances of the new fluids were investigated by comparison to the conventional ones such as emulsion on the plane NC grinder.

  9. Oil pollution in and around the waters of Belgium

    Schallier, R.; Van Roy, W

    2016-01-01

    Although the waters of Belgium only form a minor part of the North Sea, they contain some of the busiest shipping routes in the world with the Dover Strait and some of the biggest European ports in the immediate vicinity. It is therefore recognized as a key maritime risk area, also in terms of ship-source oil pollution. This chapter first discusses the significant, stepwise decrease of illegal oil discharges from ships in and around the waters of Belgium based on national aerial surveillance ...

  10. Studies of water-in-oil emulsions : stability and oil properties

    The stability of water-in-oil emulsions were studied by examining the asphaltene and resin content of oils. The visco-elastic properties of 82 oils from Environment Canada's Emergencies Science Division were also examined to determine which factors are responsible for the stability regimes. The stability of emulsions were grouped into three categories: (1) stable, (2) unstable, and (3) meso-stable. It was shown that there is a range of compositions and viscosities in which each type of water-in-oil state exists. It was also shown that the viscosity of a stable emulsion at a shear rate of one reciprocal second is about three times greater than that of the starting oil. An unstable emulsion typically had a viscosity of 20 times greater than that of the starting oil. A stable emulsion had pronounced elasticity, but an unstable emulsion did not. A meso-stable emulsion had properties between stable and unstable, but broke down after a few days of standing. It was concluded that the formation of both stable and meso-stable emulsions is due to the combination of surface-active forces from resins and asphaltenes from viscous forces. Only a small difference was detected between stable and meso-stable emulsions. Stable emulsions were found to have more asphaltenes and less resins and a narrow viscosity window. Instability results when the oil has either a high viscosity or a very low viscosity and when the resins and asphaltenes are less than about 3 per cent. In highly viscous oils, the migration of asphaltenes and resins is too low to permit droplet stabilization, therefore the formation of stable or meso-stable emulsions does not occur in highly viscous oils. 18 refs., 8 tabs., 8 figs

  11. Conversion of Crude Oil to Methane by a Microbial Consortium Enriched From Oil Reservoir Production Waters

    LisaGieg

    2014-05-01

    Full Text Available The methanogenic biodegradation of crude oil is an important process occurring in petroleum reservoirs and other oil-containing environments such as contaminated aquifers. In this process, syntrophic bacteria degrade hydrocarbon substrates to products such as acetate, and/or H2 and CO2 that are then used by methanogens to produce methane in a thermodynamically dependent manner. We enriched a methanogenic crude oil-degrading consortium from production waters sampled from a low temperature heavy oil reservoir. Alkylsuccinates indicative of fumarate addition to C5 and C6 n-alkanes were identified in the culture (above levels found in controls, corresponding to the detection of an alkyl succinate synthase gene (assA in the culture. In addition, the enrichment culture was tested for its ability to produce methane from residual oil in a sandstone-packed column system simulating a mature field. Methane production rates of up 5.8 μmol CH4/g of oil/day were measured in the column system. Amounts of produced methane were in relatively good agreement with hydrocarbon loss showing depletion of more than 50% of saturate and aromatic hydrocarbons. Microbial community analysis revealed that the enrichment culture was dominated by members of the genus Smithella, Methanosaeta, and Methanoculleus. However, a shift in microbial community occurred following incubation of the enrichment in the sandstone columns. Here, Methanobacterium sp. were most abundant, as were bacterial members of the genus Pseudomonas and other known biofilm forming organisms. Our findings show that microorganisms enriched from petroleum reservoir waters can bioconvert crude oil components to methane both planktonically and in sandstone-packed columns as test systems. Further, the results suggest that different organisms may contribute to oil biodegradation within different phases (e.g., planktonic versus sessile within a subsurface crude oil reservoir.

  12. A new nano-engineered hierarchical membrane for concurrent removal of surfactant and oil from oil-in-water nanoemulsion

    Detao Qin; Zhaoyang Liu; Hongwei Bai; Darren Delai Sun; Xiaoxiao Song

    2016-01-01

    Surfactant stabilized oil-in-water nanoemulsions pose a severe threat to both the environment and human health. Recent development of membrane filtration technology has enabled efficient oil removal from oil/water nanoemulsion, however, the concurrent removal of surfactant and oil remains unsolved because the existing filtration membranes still suffer from low surfactant removal rate and serious surfactant-induced fouling issue. In this study, to realize the concurrent removal of surfactant a...

  13. Bioinspired materials for water supply and management: water collection, water purification and separation of water from oil.

    Brown, Philip S; Bhushan, Bharat

    2016-08-01

    Access to a safe supply of water is a human right. However, with growing populations, global warming and contamination due to human activity, it is one that is increasingly under threat. It is hoped that nature can inspire the creation of materials to aid in the supply and management of water, from water collection and purification to water source clean-up and rehabilitation from oil contamination. Many species thrive in even the driest places, with some surviving on water harvested from fog. By studying these species, new materials can be developed to provide a source of fresh water from fog for communities across the globe. The vast majority of water on the Earth is in the oceans. However, current desalination processes are energy-intensive. Systems in our own bodies have evolved to transport water efficiently while blocking other molecules and ions. Inspiration can be taken from such to improve the efficiency of desalination and help purify water containing other contaminants. Finally, oil contamination of water from spills or the fracking technique can be a devastating environmental disaster. By studying how natural surfaces interact with liquids, new techniques can be developed to clean up oil spills and further protect our most precious resource.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'. PMID:27354732

  14. Gray Comprehensive Evaluation Method on Coal Seam Water Injection in Order of Difficulty

    Liu Xiao Li

    2016-01-01

    Full Text Available In order to evaluate the coal mine water injection accurately, the gray comprehensive evaluation is applied in this paper, the depth of coal seam, the development degree of coal seam crack, porosity, gas pressure in coal seam, wetting edge of coal, firmness coefficient of coal are chosen as the main index to evaluate the method of water injection into coal mine. The results show that the gray comprehensive evaluation model has a relatively high reliability and accuracy, which can be used to predict the difficulty degree of water injection.

  15. Determination of Zinc-Based Additives in Lubricating Oils by Flow-Injection Analysis with Flame-AAS Detection Exploiting Injection with a Computer-Controlled Syringe

    Gustavo Pignalosa

    2005-01-01

    Full Text Available A flow-injection system is proposed for the determination of metal-based additives in lubricating oils. The system, operating under computer control uses a motorised syringe for measuring and injecting the oil sample (200 μL in a kerosene stream, where it is dispersed by means of a packed mixing reactor and carried to an atomic absorption spectrometer which is used as detector. Zinc was used as model analyte. Two different systems were evaluated, one for low concentrations (range 0–10 ppm and the second capable of providing higher dilution rates for high concentrations (range 0.02%–0.2% w/w. The sampling frequency was about 30 samples/h. Calibration curves fitted a second-degree regression model (r2 = 0.996. Commercial samples with high and low zinc levels were analysed by the proposed method and the results were compared with those obtained with the standard ASTM method. The t test for mean values showed no significant differences at the 95% confidence level. Precision (RSD% was better than 5% (2% typical for the high concentrations system. The carryover between successive injections was found to be negligible.

  16. Paclitaxel Injection

    Paclitaxel injection manufactured with human albumin is used to treat breast cancer that has not improved or ... has come back after treatment with other medications. Paclitaxel injection manufactured with polyoxyethylated castor oil is used ...

  17. Persistence of crude oil spills on open water

    A survey of reports on oil spill incidents around the world was conducted. A Microsoft access database was then compiled in which spill information parameters were identified. These include general information about when and where the spill occurred, weather, sea conditions, oil properties and cleanup methods. The available information was assessed to determine statistically significant relationships between spill persistence, spill size and spill persistence factors. The objective was to identify links between dissipation times for spills and spill size. Another objective was to determine quantitative relationships between on-water spill persistence and associated environmental factors; physical and chemical properties of the spilled oil; and, response effort parameters. A mathematical description of the persistence of crude oil spills at sea was developed using historical spill data. The results are used by the Minerals Management Services (MMS) to estimate probable durations for spill trajectories in the MMS Oil Spill Risk Analysis for Alaska Outer Continental Shelf (OCS) waters. This study also refined the spill-size/spill-persistence correlation in terms of other variables such as oil type, weather and sea conditions and spill type. Correlation analyses were conducted on 3 data sets, indicating the importance of different variables and their dependencies. 3 refs., 8 tabs., 15 figs

  18. Direct numerical simulation of water droplet coalescence in the oil

    Highlights: ► VOF computational technique has been used to simulate coalescence of two water droplets in oil. ► The model was validated with the experimental data for binary droplet coalescence. ► Based on the CFD simulation results a correlation has been proposed to predict the coalescence time. - Abstract: Coalescence of two water droplets in the oil was simulated using Computational Fluid Dynamics (CFD) techniques. The finite volume numerical method was applied to solve the Navier–Stokes equations in conjunction with the Volume of Fluid (VOF) approach for interface tracking. The effects of some parameters consisting of the collision velocity, off-center collision parameter, oil viscosity and water–oil interfacial tension on the coalescence time were investigated. The simulation results were validated against the experimental data available in the literature. The results revealed that quicker coalescence could be achieved if the head-on collisions occur or the droplets approach each other with a high velocity. In addition, low oil viscosities or large water–oil interfacial tensions cause less coalescence time. Moreover, a correlation was developed to predict coalescence efficiency as a function of the mentioned parameters.

  19. Scale formation at various locations in a geothermal operation due to injection of imported waters

    Vetter, O.J.; Kandarpa, V.

    1982-06-22

    The injection of waters that are not native to a geothermal formation generates various physical and chemical problems. The major chemical problem resulting from such injections is the formation of sulfate scales (particularly CaSO4, BaSO4 and SrSO4) at various locations starting from the injection well through the production well to the surface facilities of any geothermal operation. One of the ways to prevent this type of scale formation is by reducing the sulfate concentration of the injection waters. The effect of sulfate deionization on scale formation at various locations of the geothermal operations is studied. Some experimental results on the CaSO4 scale formation in porous media upon heating an injection water with and without addition of scale inhibitors are also given.

  20. Endocrine disrupting activities of surface water associated with a West Virginia oil and gas industry wastewater disposal site

    Kassotis, Christopher D.; Iwanowicz, Luke; Akob, Denise M.; Cozzarelli, Isabelle M.; Mumford, Adam; Orem, William H.; Nagel, Susan C.

    2016-01-01

    Currently, >95% of end disposal of hydraulic fracturing wastewater from unconventional oil and gas operations in the US occurs via injection wells. Key data gaps exist in understanding the potential impact of underground injection on surface water quality and environmental health. The goal of this study was to assess endocrine disrupting activity in surface water at a West Virginia injection well disposal site. Water samples were collected from a background site in the area and upstream, on, and downstream of the disposal facility. Samples were solid-phase extracted, and extracts assessed for agonist and antagonist hormonal activities for five hormone receptors in mammalian and yeast reporter gene assays. Compared to reference water extracts upstream and distal to the disposal well, samples collected adjacent and downstream exhibited considerably higher antagonist activity for the estrogen, androgen, progesterone, glucocorticoid and thyroid hormone receptors. In contrast, low levels of agonist activity were measured in upstream/distal sites, and were inhibited or absent at downstream sites with significant antagonism. Concurrent analyses by partner laboratories (published separately) describe the analytical and geochemical profiling of the water; elevated conductivity as well as high sodium, chloride, strontium, and barium concentrations indicate impacts due to handling of unconventional oil and gas wastewater. Notably, antagonist activities in downstream samples were at equivalent authentic standard concentrations known to disrupt reproduction and/or development in aquatic animals. Given the widespread use of injection wells for end-disposal of hydraulic fracturing wastewater, these data raise concerns for human and animal health nearby.

  1. Endocrine disrupting activities of surface water associated with a West Virginia oil and gas industry wastewater disposal site.

    Kassotis, Christopher D; Iwanowicz, Luke R; Akob, Denise M; Cozzarelli, Isabelle M; Mumford, Adam C; Orem, William H; Nagel, Susan C

    2016-07-01

    Currently, >95% of end disposal of hydraulic fracturing wastewater from unconventional oil and gas operations in the US occurs via injection wells. Key data gaps exist in understanding the potential impact of underground injection on surface water quality and environmental health. The goal of this study was to assess endocrine disrupting activity in surface water at a West Virginia injection well disposal site. Water samples were collected from a background site in the area and upstream, on, and downstream of the disposal facility. Samples were solid-phase extracted, and extracts assessed for agonist and antagonist hormonal activities for five hormone receptors in mammalian and yeast reporter gene assays. Compared to reference water extracts upstream and distal to the disposal well, samples collected adjacent and downstream exhibited considerably higher antagonist activity for the estrogen, androgen, progesterone, glucocorticoid and thyroid hormone receptors. In contrast, low levels of agonist activity were measured in upstream/distal sites, and were inhibited or absent at downstream sites with significant antagonism. Concurrent analyses by partner laboratories (published separately) describe the analytical and geochemical profiling of the water; elevated conductivity as well as high sodium, chloride, strontium, and barium concentrations indicate impacts due to handling of unconventional oil and gas wastewater. Notably, antagonist activities in downstream samples were at equivalent authentic standard concentrations known to disrupt reproduction and/or development in aquatic animals. Given the widespread use of injection wells for end-disposal of hydraulic fracturing wastewater, these data raise concerns for human and animal health nearby. PMID:27073166

  2. Effects of Interactions Among Surfactants,Water and Oil on Equilibrium Configuration of Surfactant-Water-Oil Systems

    YUAN Yin-quan; SUN Zhi-bo; XIE Yun; ZOU Xian-wu

    2004-01-01

    The distribution and configuration of surfactants at interface in surfactant-water-oil systems have been investigated using discontinuous molecular dynamic simulations. There exists a certain equilibrium concentration of surfactants at interface for the systems with certain interactions among surfactant, water and oil. The interface length and equilibrium morphology of the systems are dependent on the equilibrium concentration of surfactants at interface and the total amount of surfactants. The interaction strengths among surfactant, water and oil determine the equilibrium concentration of surfactants at interface. Three typical configurations of surfactants at interface have been observed: ① surfactant molecules are perpendicular to the interface and arranged closely; ② perpendicular to the interface and arranged at interval of two particles; ③ lie down in the interface partly.

  3. Water-in-Crude Oil Emulsions: Its Stabilization and Demulsification

    Nour, Abdurahman H.; Mohd. Yunus, R.; Anwaruddin, H.

    Traditional ways of breaking emulsions using heat and chemicals are disadvantageous from both economic and environmental perspectives. In this research, the potentials of microwave technology in demulsification of water-in-crude oil emulsions are investigated. The study began with some characterization studies to provide understandings of fundamental issues such as formation, formulation and breaking of emulsions by both chemical and microwave approaches. The aim was to obtain optimized operating conditions as well as fundamental understanding of water-in-oil emulsion stability upon which further developments on demulsification processes could be developed. It was found that emulsion stability was related to some parameters such as, the surfactant concentration, water content, temperature and agitation speed. Experimental results found that microwave radiation method can enhance the demulsification of water-in-oil emulsions in a very short time compared to the conventional heating methods. The results obtained in this study have exposed the capability of microwave technology in demulsification of water-in-oil emulsion. Further works are nevertheless required to provide deeper understanding of the mechanisms involved to facilitate the development of an optimum system applicable to the industry.

  4. Oil sand process-affected water treatment using coke adsorption

    Gamal El-Din, M.; Pourrezaei, P.; Chelme-Ayala, P.; Zubot, W. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering

    2010-07-01

    Oil sands operations generate an array of oil sands process-affected water (OSPW) that will eventually be released to the environment. This water must be evaluated within conventional and advanced water treatment technologies. Water management strategies propose options for increased reuse and recycling of water from settling ponds, as well as safe discharge. This presentation outlined the typical composition of OSPW. Constituents of concern in OSPW include suspended solids, hydrocarbons, salts, ammonia, trace metals, and dissolved organics such as naphthenic acids (NAs). Petroleum coke is one of the by-products generated from bitumen extraction in the oil sands industry and can be used as one of the possible treatment processes for the removal of organic compounds found in OSPW. Activated carbon adsorption is an effective process, able to adsorb organic substances such as oils, radioactive compounds, petroleum hydrocarbons, poly aromatic hydrocarbons and various halogenated compounds. The objectives of this study were to evaluate the production of activated carbon from petroleum coke using steam as the activation media; to determine the factors affecting the absorption of NAs; and to evaluate the activated coke adsorption capacity for the reduction of NAs and dissolved organic carbons present in OSPW. It was concluded that petroleum non-activated coke has the ability to decrease COD, alkalinity, and NA concentration. tabs., figs.

  5. GROUND WATER ISSUE: STEAM INJECTION FOR SOIL AND AQUIFER REMEDIATION

    The purpose of this Issue Paper is to provide to those involved in assessing remediation technologies for specific sites basic technical information on the use of steam injection for the remediation of soils and aquifers that are contaminated by volatile or semivolatile organic c...

  6. Efficient demulsification of oil-in-water emulsions using a zeolitic imidazolate framework: Adsorptive removal of oil droplets from water.

    Lin, Kun-Yi Andrew; Chen, Yu-Chien; Phattarapattamawong, Songkeart

    2016-09-15

    To demulsify oil-in-water (O/W) emulsions, a zinc-based zeolitic imidazolate framework (ZIF-8) was employed for the first time to remove oil droplets from water. ZIF-8 exhibits a high surface area and positive surface charges, making it a suitable adsorbent to adsorb negatively-charged oil droplets. Adsorption behaviors of oil droplets to ZIF-8 were studied by analyzing the adsorption kinetics and isotherm with theoretical models. The activation energy of adsorption of oil droplets to ZIF-8 was determined as 24.1kJmol(-1). The Langmuir-Freundlich (L-F) model was found to be most applicable to interpret the isotherm data and the predicated maximum adsorption capacity of ZIF-8 can reach 6633mgg(-1), revealing a promising capability of ZIF-8 for demulsification. Factors influencing the adsorption of oil droplets to ZIF-8 were investigated including temperature, pH, salt and surfactants. The adsorption capacity of ZIF-8 for oil was improved at elevated temperatures, whereas alkaline condition was unfavorable for the adsorption of oil droplets due to the electrostatic repulsion at high pH. The adsorption capacity of ZIF-8 remained similar in the presence of NaCl but it was reduced in the presence of surfactants. ZIF-8 was regenerated by a simple ethanol-washing method; the regenerated ZIF-8 exhibited more than 85% of regeneration efficiency over six cycles. Its crystalline structure also remained intact after the regeneration. These characteristics indicate that ZIF-8 can be a promising and effective adsorbent to remove oil droplets for demulsification of O/W emulsions. PMID:27288575

  7. Pars Plana Vitrectomy and Silicone Oil Injection in Phakic and Pseudophakic Eyes; Corneal Endothelial Changes

    Fereydoun Farrahi

    2014-01-01

    Full Text Available Purpose: To evaluate the effect of silicone oil (SO on the corneal endothelium in SO filled phakic and pseudophakic vitrectomizied eyes. Methods: This prospective comparative consecutive case-control study evaluated the corneal endothelial characteristics of 64 SO filled vitrectomizied eyes (case group as compared to 46 vitrectomizied eyes without SO injection (control group. Endothelial cell densities (ECD, coefficient of variation (CV, and percentage of hexagonal cells (hexagonality at the corneal center were evaluated preoperatively, 1 month and 6 months after surgery using noncontact specular microscopy and were compared between the two groups. Exclusion criteria were previous vitreoretinal surgery, aphakia, any degree of anterior chamber inflammation, SO bubbles in the anterior chamber and increased intraocular pressure in the postoperative period. Results: Six months after SO injection, mean ECD was 2,438.2±327.6 cell/mm 2 in the case group and 2,462.6±361.7 cell/mm 2 in the control group (P = 0.714 and mean hexagonality was 49.6 ± 6.8 and 54.6 ± 8.9, in the case and control groups, respectively (P = 0.004. Six months after operation, CV in the case group was 39.3 ± 5.6 and that in the control group was 35.7 ± 6.4 (P = 0.003. Conclusion: Although the presence of SO in the vitreous cavity of phakic and pseudophakic eyes causes slight reduction in the number of endothelial cells, however it leads to significant changes in endothelial cell morphology. Thus, removal of SO after reaching the desired tamponade effect is recommended.

  8. Prokaryotic community structure and activity of sulfate reducers in production water from high-temperature oil reservoirs with and without nitrate treatment

    Gittel, Antje; Sørensen, Ketil; Skovhus, Torben L.;

    2009-01-01

    Sulfate-reducing prokaryotes (SRP) cause severe problems like microbial corrosion and reservoir souring in seawater-injected oil production systems. One strategy to control SRP activity is the addition of nitrate to the injection water. Production waters from two adjacent, hot (80°C) oil reservoirs......, one with and one without nitrate treatment, were compared for prokaryotic community structure and activity of SRP. Bacterial and archaeal 16S rRNA gene analyses revealed higher prokaryotic abundance but lower diversity for the nitrate-treated field. The 16S rRNA gene clone libraries from both fields...

  9. Analysis of nitrogen injection as alternative fluid to steam in heavy oil reservoir; Analise da injecao de nitrogenio como fluido alternativo ao vapor em reservatorio de oleo pesado

    Rodrigues, Marcos Allyson Felipe; Galvao, Edney Rafael Viana Pinheiro; Barillas, Jennys Lourdes; Mata, Wilson da; Dutra Junior, Tarcilio Viana [Universidade Federal do Rio Grande do Norte (UFRN), RN (Brazil)

    2012-07-01

    Many of hydrocarbon reserves existing in the world are formed by heavy oils (deg API between 10 and 20). Moreover, several heavy oil fields are mature and, thus, offer great challenges for oil industry. Among the thermal methods used to recover these resources, steam flooding has been the main economically viable alternative. Latent heat carried by steam heats the reservoir, reducing oil viscosity and facilitating the production. This method has many variations and has been studied both theoretically and experimentally (in pilot projects and in full field applications). In order to increase oil recovery and reduce steam injection costs, the injection of alternative fluid has been used on three main ways: alternately, co-injected with steam and after steam injection interruption. The main objective of these injection systems is to reduce the amount of heat supplied to the reservoir, using cheaper fluids and maintaining the same oil production levels. In this paper, the use of N{sub 2} as an alternative fluid to the steam was investigated. The analyzed parameters were oil recoveries and net cumulative oil productions. The reservoir simulation model corresponds to an oil reservoir of 100 m x 100 m x 28 m size, on a Cartesian coordinates system (x, y and z directions). It is a semi synthetic model with some reservoir data similar to those found in Potiguar Basin, Brazil. All studied cases were done using the simulator STARS from CMG (Computer Modelling Group, version 2009.10). It was found that N{sub 2} injection after steam injection interruption achieved the highest net cumulative oil compared to others injection system. Moreover, it was observed that N2 as alternative fluid to steam did not present increase on oil recovery. (author)

  10. Streaming Potential In Rocks Saturated With Water And Oil

    Tarvin, J. A.; Caston, A.

    2011-12-01

    Fluids flowing through porous media generate electrical currents. These currents cause electric potentials, called "streaming potentials." Streaming potential amplitude depends on the applied pressure gradient, on rock and fluid properties, and on the interaction between rock and fluid. Streaming potential has been measured for rocks saturated with water (1) and with water-gas mixtures. (2) Few measurements (3) have been reported for rocks saturated with water-oil mixtures. We measured streaming potential for sandstone and limestone saturated with a mixture of brine and laboratory oil. Cylindrical samples were initially saturated with brine and submerged in oil. Saturation was changed by pumping oil from one end of a sample to the other and then through the sample in the opposite direction. Saturation was estimated from sample resistivity. The final saturation of each sample was determined by heating the sample in a closed container and measuring the pressure. Measurements were made by modulating the pressure difference (of oil) between the ends of a sample at multiple frequencies below 20 Hz. The observed streaming potential is a weak function of the saturation. Since sample conductivity decreases with increasing oil saturation, the electro-kinetic coupling coefficient (Pride's L (4)) decreases with increasing oil saturation. (1) David B. Pengra and Po-zen Wong, Colloids and Surfaces, vol., p. 159 283-292 (1999). (2) Eve S. Sprunt, Tony B. Mercer, and Nizar F. Djabbarah, Geophysics, vol. 59, p. 707-711 (1994). (3) Vinogradov, J., Jackson, M.D., Geophysical Res. L., Vol. 38, Article L01301 (2011). (4) Steve Pride, Phys. Rev. B, vol. 50, pp. 15678-15696 (1994).

  11. Chitosan microspheres applied for removal of oil from produced water in the oil industry

    Izabel Cristina da Silva Grem

    2013-01-01

    Full Text Available The discharge of oily wastewaters in the environment is steadily increasing, causing serious damages. Among various treatment methods, adsorption is generally considered the most appropriate, since it can remove both organic and inorganic pollutants. Adsorption using low-cost alternative biopolymers for removal of contaminants from wastewater has been widely investigated. In this context, chitosan has been drawing particular attention because, among its many applications, it can be used in the treatment of aqueous effluents. In this study, microspheres were prepared by reticulation of chitosan with sodium triphosphate (STP and studied for the treatment of water containing crude oil. The microspheres were regular and had surface pores. These microspheres were packed in treatment columns and their ability to remove oil was measured with a fluorometer, by the difference in the oil concentration before and after passing through the column. The microspheres that presented porosity about 80 % were highly efficient in oil removal, with rates above 90%.

  12. Evaluation of anterior segment parameters using pentacam in silicone oil-injected patients after pars plana vitrectomy

    Burcu Çalik

    2013-01-01

    Full Text Available Background: The aim of this study is to evaluate anterior segment changes with Pentacam Scheimpflug camera after pars plana vitrectomy (PPV and silicone oil injection. Materials and Methods: In all, 44 eyes of 44 patients who underwent PPV by one surgeon were evaluated with Pentacam preoperatively, first week, and first month after surgery. The patients were divided into two groups, eyes with silicone injection after PPV and eyes with PPV and no endotamponade. Main outcome measures were preoperative and postoperative anterior chamber volume (ACV, anterior chamber depth (ACD, anterior chamber angle (ACA, and central corneal thickness (CCT obtained with pentacam. Results: Each group consisted of 22 patients. In both groups no significant difference was detected among preop and postop changes in ACV and ACA values ( p > 0.05. The increase in ACD in silicone oil-injected group and the decrease in ACD in PPV group at postop 1 week were statistically significant ( p < 0.05. The increase in CCT in silicone oil-injected group at postop 1 week and then decrease in postop 1 month were also significant ( p < 0.05. Surgically induced astigmatism (SIA was 3.7 Dioptry (D in silicone oil-injected group and 2.4 D in PPV group at postop 1 week. SIA decreased to 1.7 D and 1.5 D, respectively, at postop 1 month. Changes in SIA were significant ( p < 0.05. Conclusion: PPV effects cornea and anterior segment. Changes in cornea and anterior segment after PPV seem to return to preoperative values among 1 month after surgery.

  13. Water quality changes at three reclaimed mine sites related to the injection of coal combustion residues

    Surface and groundwater pollution is a common problem associated with post-surface mining operations. The US Bureau of Mines (BOM) participated in the testing of subsurface injections of coal combustion residues (CCR) at three reclaimed surface mine sites. The addition of alkaline CCR to the subsurface environment can raise the pH, limit propagation of pyrite oxidizing bacteria and reduce the rate of acid generation. Many CCR's can also form cement-like grout, which when injected into buried spoil may decrease its permeability and porosity, diverting water away from the pyritic material. The objective of this work was to develop an effective, economical and permanent method to abate or reduce post-mining water pollution. The effectiveness of CCR injection as an acid mine drainage abatement technique was evaluated by the BOM by monitoring water quality at three sites in: Upshur County, WV, Clinton County, PA and Greene County, PA. Geophysical techniques were used at all sites to locate monitoring and injection wells that were subsequently drilled into the spoil. Grout injection work was completed between 1990 and 1994 at the three sites. Baseline water quality data were collected at all three sites for a minimum of one year. Post-grouting water quality at the discharge of the three sites showed a slight, long-term improvement and no apparent degradation in water quality resulting from the injection of the coal combustion residues. Notable and long-term improvements in water quality at various monitoring wells (on all sites) were also observed

  14. Effects of crossflow velocity and transmembrane pressure on microfiltration of oil-in-water emulsions

    Darvishzadeh, Tohid; Priezjev, Nikolai V.

    2012-01-01

    This study addresses the issue of oil removal from water using hydrophilic porous membranes. The effective separation of oil-in-water dispersions involves high flux of water through the membrane and, at the same time, high rejection rate of the oil phase. The effects of transmembrane pressure and crossflow velocity on rejection of oil droplets and thin oil films by pores of different cross-section are investigated numerically by solving the Navier-Stokes equation. We found that in the absence...

  15. Assessment of the biodegradability of xanthan in offshore injection water

    Hovland, Beate

    2015-01-01

    The application of biopolymers in EOR operations is considered environmental friendly compared to synthetic polymers. However, microbial degradation of the biopolymers may lead to a deterioration of effect in EOR applications. This thesis is part of an industrial project conducted by UNI Research CIPR for Statoil ASA, were the aim is to assess biodegradation of xanthan at specific oil field conditions. Investigation of the biodegradation of xanthan was perform...

  16. Electrospraying of water in oil emulsions for thin film coating

    Khan, M.K.I.; Maan, A.A.; Schutyser, M.A.I.; Schroën, C.G.P.H.; Boom, R.M.

    2013-01-01

    Electrospraying of water-in-oil emulsions was investigated to produce thin edible barriers. A reproducible model surface was used, namely cellulose membranes of which permeability is well-established. PGPR-based emulsions were stable during electrospraying and produced a fine stable jet spray; emuls

  17. Synthesis of Hydroxytyrosyl Alkyl Ethers from Olive Oil Waste Waters

    Juan Fernández-Bolaños

    2009-05-01

    Full Text Available The preparation of a new type of derivatives of the naturally occurring antioxidant hydroxytyrosol is reported. Hydroxytyrosyl alkyl ethers were obtained in high yield by a three-step procedure starting from hydroxytyrosol isolated from olive oil waste waters. Preliminary results obtained by the Rancimat method have shown that these derivatives retain the high protective capacity of free hydroxytyrosol.

  18. Synthesis of Hydroxytyrosyl Alkyl Ethers from Olive Oil Waste Waters

    2009-01-01

    The preparation of a new type of derivatives of the naturally occurring antioxidant hydroxytyrosol is reported. Hydroxytyrosyl alkyl ethers were obtained in high yield by a three-step procedure starting from hydroxytyrosol isolated from olive oil waste waters. Preliminary results obtained by the Rancimat method have shown that these derivatives retain the high protective capacity of free hydroxytyrosol.

  19. Factors governing partial coalescence in oil-in-water emulsions

    Fredrick, E.; Walstra, P.; Dewettinck, K.

    2010-01-01

    The consequences of the instability mechanism partial coalescence in oil-in-water food emulsions show a discrepancy. On the one hand, it needs to be avoided in order to achieve an extended shelf life in food products like sauces, creams and several milk products. On the other hand, during the manufa

  20. Experimental and Numerical Studies on Mudstone's Creep Behavior During Water Injection and Its Effect on Casing Damage

    Huang, X. L.; Yang, C. H.; Liu, J. J.; He, X.; Xiong, J.

    2008-07-01

    During the process of water injection production in oilfield, when water cuts into the mudstone, as a result, large numbers of casings are damaged because of mudstone's creep characteristic. In order to analyze this phenomenon, the uniaxial compression experiments and creep experiments of mudstone from Daqing Oil Field under different saturation conditions were done, it was studied that how the mudstone's mechanical parameters and creep characteristic would change with the increment of water contents. The results indicate that the rock strength and elastic modulus are decreased rapidly with the increment of water contents, on the other hand, the creep strain and steady state creep strain rate are increased with the increment of water contents, and also the steady state creep strain rate is enhanced with the increment of deviatoric stress. Through the creep characteristic curves, a nonlinear creeping constitutive equation of mudstone considering the changes of water contents was established. In the deep stratum of the oilfield, the calculation model of casing-cement sheath-mudstone was built, based on the experiment results of mudstone and its creep constitutive equation, mudstone's creep pressure with time under different water contents was simulated. The simulation results show that the increasing water content accelerates the incremental rate of the creep pressure of mudstone, so the time of reaching yield state of casing will descend greatly, which means service time of casing becomes much shorter.

  1. Condensation of steam bubbles injected into sub-cooled water

    Bubble condensation plays an important role e.g. in sub-cooled boiling or steam injection into pools. Since the condensation rate is proportional to the interfacial area density, bubble size distributions have to be considered in an adequate modeling of the condensation process. The effect of bubble sizes was clearly shown in experimental investigations done previously at the TOPFLOW facility of FZD. Steam bubbles were injected into a sub-cooled upward pipe flow via orifices in the pipe wall located at different distances from measuring plane. 1 mm and 4 mm injection orifices were used to vary the initial bubble size distribution. Measurements were done using a wire-mesh sensor. Condensation is clearly faster in case of the injection via the smaller orifices, i.e. in case of smaller bubble sizes. In a previous work a simplified test solver, developed especially to test models for vertical pipe flow was used to simulate these effects. Now the results will be transferred to the CFD code CFX from ANSYS. Recently the Inhomogeneous MUSIG model was implemented into the code enabling the simulation of poly-dispersed flows including the effects of separation of small and large bubbles due to bubble size dependent lift force inversion. It allows to divide the dispersed phase into size classes regarding the mass as well as regarding the momentum balance. Up to now transfers between the classes in the mass balance can be considered only by bubble coalescence and breakup (population balance). Now an extension of the model is proposed to include the effects due to phase transfer. The paper focuses on the derivation of equations for the extension of the Inhomogeneous MUSIG model and presents a new experimental setup for the investigation on steam bubble condensation. (author)

  2. Engineering Behavior and Characteristics of Water-Soluble Polymers: Implication on Soil Remediation and Enhanced Oil Recovery

    Shuang Cindy Cao

    2016-02-01

    Full Text Available Biopolymers have shown a great effect in enhanced oil recovery because of the improvement of water-flood performance by mobility control, as well as having been considered for oil contaminated-soil remediation thanks to their mobility control and water-flood performance. This study focused on the wettability analysis of biopolymers such as chitosan (85% deacetylated power, PEO (polyethylene oxide, Xanthan (xanthan gum, SA (Alginic Acid Sodium Salt, and PAA (polyacrylic acid, including the measurements of contact angles, interfacial tension, and viscosity. Furthermore, a micromodel study was conducted to explore pore-scale displacement phenomena during biopolymer injection into the pores. The contact angles of biopolymer solutions are higher on silica surfaces submerged in decane than at atmospheric conditions. While interfacial tensions of the biopolymer solutions have a relatively small range of 25 to 39 mN/m, the viscosities of biopolymer solutions have a wide range, 0.002 to 0.4 Pa·s, that dramatically affect both the capillary number and viscosity number. Both contact angles and interfacial tension have effects on the capillary entry pressure that increases along with an applied effective stress by overburden pressure in sediments. Additionally, a high injection rate of biopolymer solutions into the pores illustrates a high level of displacement ratio. Thus, oil-contaminated soil remediation and enhanced oil recovery should be operated in cost-efficient ways considering the injection rates and capillary entry pressure.

  3. Approaching viscosity control: electrical heating of extra heavy oil as alternative to diluent injection in down hole in Cerro Negro Field, Faja Petrolifera del Orinoco

    Salazar, Manuel [Petroleos de Venezuela SA, PDVSA (Venezuela)

    2011-07-01

    Electrical heating is a method used to enhance oil recovery in extra heavy oil reservoirs. This method can be used when diluent injection or other methods are not able to reduce oil viscosity sufficiently or when problems of product quality or quantity arise. The aim of this paper is to evaluate the performance of electrical heating, individually and simultaneously with injection of diluents. For this purpose, simulations were undertaken in one well with integrated electrical heating and diluent injection in Cerro Negro Field in the Orinoco oil belt, Venezuela. Results have shown that the application of both methods together is more profitable than the application of electrical heating alone. This paper demonstrated that the use of electrical heating and diluent injection combined is a valid alternative to diluent injection alone, reducing production loss.

  4. Jet mixing of water in crude oil pipelines

    Fernando, L. M.

    1990-01-01

    The jet mixing of water in crude oil pipelines by single nozzle and multi-nozzle mixers was studied by dividing the mixing domain into to three regions. the penetration. near field and farfield regions. At the penetration region the quantitative experimental data were aided by a flow visualisation study in an attempt to to form fundamental semi-empirical correlations to estimate the entrainment rate of stratified water from the bottom and the Sauter mean diameter of the e...

  5. Method of purifying oil and bed water from hydrogen sulfide

    Dyadechko, V.N.; Kuzovatkin, R.I.; Nesterov, I.N.; Stavitskiy, B.P.

    1982-01-01

    A method is proposed for purifying oil and bed water of hydrogen sulfide by treatment with a chemical reagent. It is distinguished by the fact that in order to prevent the formation of corrosion-aggressive side products and sulfate-reducing bacteria, in the bed water the chemical reagent complex compounds of copper-hexaamine copper (II) hydroxide or tetraamine copper (II) hydroxide are used in the form of 0.05% aqueous solution.

  6. Evaluation of the effects of Citrus sinensis seed oil on blood glucose, lipid profile and liver enzymes in rats injected with alloxan monohydrate

    Chilaka K.C; Ifediba E.C; Ogamba J.O

    2015-01-01

    Objective: To evaluate the effects of Citrus sinensis seed oil on blood glucose, lipid profile and some liver enzymes activities in alloxan induced diabetic rats.Methods:About 120 mg/kg body weight alloxan monohydrate was injected intraperitoneally into 18 adult male albino rats weighing 180-200 g, which has been acclimatized in our laboratory for two weeks. Approximately 72 h after the alloxan injection, the rat became hyperglycaemic with blood glucose above 200 mg/dL. The diabetic rats were randomly assigned into three diabetic and one control groups of six rats each: normal control, diabetic treated with 1000 mg/kg body weight of emulsified seed oil; diabetic control, diabetic treated with 150 mg/kg body weight of metformin hydrochloride. Both controls received weight-checked solution of 4.8% v/v Tween-80 in distilled water. All injections in all groups were done intraperitoneally once daily for 28 d. The blood glucose estimation was done every week, with one touch glucometer as well as the weight checked with animal weighing balance. Lipid profiles and some liver enzymes activities (AST, ALT and ALP) were analysed using test kits and spectrophotometer. Data obtained were analyzed using One way ANOVA and post hoc test done using graph pad prism-version 6. Results: The results of this study indicated that Citrus sinensis seed oil was able to reduce blood glucose significantly (P<0.001) in the early weeks of the study when compared with both the diabetic control group and the metformin-treated group. The seed oil significantly lowered serum triglyceride, the serum LDL-cholesterol, total cholesterol and VLDL-cholesterol; the activities of all the liver enzymes assayed (P<0.05) but significantly increased the HDL-cholesterol in the diabetic oil-treated rats as compared to diabetic control (P<0.05). Conclusions: However, further studies need to be carried out to show its mechanism of action and to isolate the active ingredient in the Citrus sinensis seed oil that is

  7. Flash Atomization: A New Concept to Control Combustion Instability in Water-Injected Gas Turbines

    Vishwas Iyengar; Harold Simmons; David Ransom

    2012-01-01

    The objective of this work is to explore methods to reduce combustor rumble in a water-injected gas turbine. Attempts to use water injection as a means to reduce NOX emissions in gas turbines have been largely unsuccessful because of increased combustion instability levels. This pulsation causes chronic fretting, wear, and fatigue that damages combustor components. Of greater concern is that liberated fragments could cause extensive damage to the turbine section. Combustion instability can be...

  8. Gray Comprehensive Evaluation Method on Coal Seam Water Injection in Order of Difficulty

    Liu Xiao Li; Zhang Zhi Ye; Li Meng Qian

    2016-01-01

    In order to evaluate the coal mine water injection accurately, the gray comprehensive evaluation is applied in this paper, the depth of coal seam, the development degree of coal seam crack, porosity, gas pressure in coal seam, wetting edge of coal, firmness coefficient of coal are chosen as the main index to evaluate the method of water injection into coal mine. The results show that the gray comprehensive evaluation model has a relatively high reliability and accuracy, which can be used to p...

  9. Oil-based formulation as a sustained-released injection for a novel synthetic peptide.

    Zhang, Guiying; Li, Jinglai; Wang, Tao; Gao, Lijun; Quan, Dongqin

    2015-01-01

    In this study, sustained-release of GnRH antagonist peptide LXT-101 was realized through oil formulation, and their releasing characteristics in vitro and in vivo were investigated. In this formulation, the static interaction between cationic charged peptide LXT-101 and the negative charged phospholipid led to the formation of the phospholipid-peptide complex, by which LXT-101 was completely dissolved in oils. This formulation was prepared by mixing an aqueous solution of LXT-101 and empty SUV (small unilamellar liposomes) containing EPC (phosphatidylcholine) and DPPG (1, 2-dipalmitog-sn-glycero-3- phosphoglycerol) at an appropriate ratio, the mixture was subsequently lyophilized, and the resultant was dissolved in the oil to form a clear oily solution containing solubilized peptide LXT-101. With atomic force microscopy combined with Langmuir-Blodgett technology, the morphology of the particles in the oily solution were examined to be oval-shaped and the mean particle size was 150 nm in diameter. In pure water at 37°C, about 70~90 % of LXT-101 was released slowly from the oily formulation over 7 days. An effective sustained suppression of testosterone in beagle dogs could be achieved over a period of seven days with this LXT-101 oily formulation, by i.m. at a dose of 0.2 mg/kg (2 mg/ml). This formulation dramatically improved the bioactivity of LXT-101 compared to its aqueous solution. It was also found that when the concentration of peptide LXT-101 was up to or over 10 mg/ml in aqueous solution, there was no significant difference between the oily formulation and aqueous solution. This fact meant that LXT-101 itself could conduct sustained release in vivo by self-assembly of nanofibers. PMID:25391244

  10. Kinetic Stability and Rheology of Water-in-Crude Oil Emulsion Stabilized by Cocamide at Different Water Volume Fractions

    Rasha Mohammed Abd; Abdurhman Hamid Nour; Ahmad Ziad Sulaiman

    2014-01-01

    The formation of water-in-crude oil encountered in many stages such drilling, transporting, and processing of crude oil. To enhance and control these processes, it is necessary to understand the emulsion mechanisms. The present study aims to investigate the stability and the rheology of the crude oil emulsion stabilized by Cocamide DEA. Two types of Malaysian crude oil namely; heavy crude oil, and light-heavy blended crude oil (40-60) vol. % were Physio-chemically characterized, and fractiona...

  11. Hydrogeochemistry of surface and spring waters in the surroundings of the CO2 injection site at Hontomín–Huermeces (Burgos, Spain)

    Nisi, Bárbara; Vaselli, Orlando; Tassi, Franco; Elio Medina, Javier de; Delgado Huertas, Antonio; Mazadiego Martínez, Luis Felipe; Ortega Romero, Marcelo

    2013-01-01

    In this paper the very first geochemical and isotopic data related to surface and spring waters and dissolved gases in the area of Hontomín–Huermeces (Burgos, Spain) are presented and discussed. Hontomín–Huermeces has been selected as a pilot site for the injection of pure (>99%) CO2. Injection and monitoring wells are planned to be drilled close to 6 oil wells completed in the 1980s for which detailed stratigraphical logs are available, indicating the presence of a confined saline aquifer at...

  12. Environmental contaminants in oil field produced waters discharged into wetlands

    The 866-acre Loch Katrine wetland complex in Park County, Wyoming provides habitat for many species of aquatic birds. The complex is sustained primarily by oil field produced waters. This study was designed to determine if constituents in oil field produced waters discharged into Custer Lake and to Loch Katrine pose a risk to aquatic birds inhabiting the wetlands. Trace elements, hydrocarbons and radium-226 concentrations were analyzed in water, sediment and biota collected from the complex during 1992. Arsenic, boron, radium-226 and zinc were elevated in some matrices. The presence of radium-226 in aquatic vegetation suggests that this radionuclide is available to aquatic birds. Oil and grease concentrations in water from the produced water discharge exceeded the maximum 10 mg/l permitted by the WDEQ (1990). Total aliphatic and aromatic hydrocarbon concentrations in sediments were highest at the produced water discharge, 6.376 μg/g, followed by Custer Lake, 1.104 μg/g. The higher levels of hydrocarbons found at Custer Lake, compared to Loch Katrine, may be explained by Custer Lake's closer proximity to the discharge. Benzo(a)pyrene was not detected in bile from gadwalls collected at Loch Katrine but was detected in bile from northern shovelers collected at Custer Lake. Benzo(a)pyrene concentrations in northern shoveler bile ranged from 500 to 960 ng/g (ppb) wet weight. The presence of benzo(a)pyrene in the shovelers indicates exposure to petroleum hydrocarbons

  13. Influence of ethanol-amine injection on flow accelerated corrosion rate in pressurized water reactor

    Some pressurized water reactor (PWR) plants have introduced ethanol-amine (ETA) injection for the purpose of decreasing iron transfer in steam generator (SG). The ETA injection is supposed to decrease flow accelerated corrosion (FAC) rate, because of secondary system pH increase. But the water chemistry in the secondary system is very complicated. So water chemistry following ETA injection and the effect of ETA injection on FAC rate have not been studied systematically. To assess the influence of ETA injection on FAC rate, it is assumed that the model of FAC rate is proportional to the concentration gradient of magnetite. Then chemical concentration and magnetite solubility of the secondary system are calculated and the change of FAC rate is evaluated in the outline. It has been clarified that the effect of ETA injection reduces the FAC rate to about 1/3-1/22 of that of ammonia. In some portions of the secondary system, the effects of ETA injection have been measured experimentally by rotary disk test. The FAC rate of ETA injection is larger than that of ammonia at high temperature. And the FAC rate peaks at about 180degC in the case of ammonia, but the peak seems to shift to higher temperatures in the case of ETA. (author)

  14. Influence of ethanol-amine injection on flow accelerated corrosion rate in pressurized water reactor

    Some pressurized water reactor (PWR) plants have introduced ethanol-amine (ETA) injection for the purpose of decreasing iron transfer in the steam generator (SG). The ETA injection is supposed to decrease the rate of flow accelerated corrosion (FAC) by increasing the pH of the secondary system. However, the water chemistry in the secondary system is very complicated and so water chemistry following ETA injection and the effect of ETA injection on FAC rate have not been studied systematically. To assess the influence of ETA injection on FAC rate, we use a model that assumes the FAC rate is proportional to the concentration gradient of magnetite. We then calculate the chemical concentration and magnetite solubility of the secondary system and approximately evaluate the change of FAC rate. It is shown that ETA injection reduces the FAC rate to about 1/3 - 1/22 of that of ammonia. In some portions of the secondary system, we also measured the effects of ETA injection experimentally by rotating disk test, and found that the FAC rate decreases under ETA conditions. The peak FAC rate shifted to a higher temperature after ETA injection. At 274degC, the FAC rates are nearly the same under the conditions of high pH of ETA and low pH of ammonia. (author)

  15. Enhancement of Biogenic Coalbed Methane Production and Back Injection of Coalbed Methane Co-Produced Water

    Song Jin

    2007-05-31

    Biogenic methane is a common constituent in deep subsurface environments such as coalbeds and oil shale beds. Coalbed methane (CBM) makes significant contributions to world natural gas industry and CBM production continues to increase. With increasing CBM production, the production of CBM co-produced water increases, which is an environmental concern. This study investigated the feasibility in re-using CBM co-produced water and other high sodic/saline water to enhance biogenic methane production from coal and other unconventional sources, such as oil shale. Microcosms were established with the selected carbon sources which included coal, oil shale, lignite, peat, and diesel-contaminated soil. Each microcosm contained either CBM coproduced water or groundwater with various enhancement and inhibitor combinations. Results indicated that the addition of nutrients and nutrients with additional carbon can enhance biogenic methane production from coal and oil shale. Methane production from oil shale was much greater than that from coal, which is possibly due to the greater amount of available Dissolved Organic Carbon (DOC) from oil shale. Inconclusive results were observed from the other sources since the incubation period was too low. WRI is continuing studies with biogenic methane production from oil shale.

  16. Oil spill clean-up system using hot water

    The process of hot water extraction of tar sand was modified and adapted for removal of heavy oil from bottom tank petroleum sludges, and was submitted to a laboratory feasibility study. This process can also be utilized to clean beach sands contaminated by accidental heavy oil spills. The process mainly consists of a hot-water extraction (digestion), extruding the oil particles from their support of sand or clay. In the case of oil contaminated sands, a single stage extraction yielded a total recovery of hydrocarbons of 99% and a clean sand (hardly containing 0.1% of hydrocarbons), thus safe to be returned to the environment. In the case of heavy oil from bottom tank petroleum sludges, it was necessary to proceed with a double stage extraction with the addition of wetting agents: the utilization of Na2SiO3 aqueous solution of 1% in weight was proven efficient, allowing a 82% recovery of hydrocarbons, with only 0.5% hydrocarbons in the solid residues. 21 refs., 8 figs., 4 tabs

  17. A study of water-in-oil emulsification

    The basic mechanisms by which asphaltenes, resins, and waxes stabilize water-in-oil emulsions are examined. Experiments were conducted on the emulsification behavior of model oils which consisted of an alkane component, an aromatic component, and the emulsifying agents. Results from this study clearly demonstrate the importance that the physical state of an emulsifying agent has upon its ability to stabilize emulsions. It was found that to be effective emulsifiers, asphaltenes, resins, and waxes must be in the form of sub-micron particles. In addition, it was shown that the solvency strength of an oil, which is determined by its alkane and aromatic components, controls the solubility/precipitation behavior of these emulsifiers. The chemical composition of the oil determines not only the amount and size of precipitated particles, but also the composition and wetting properties of the particles. All these factors were found to have an influence upon emulsification. The potential application of a solubility model, using the Hildebrand-Scatchard equation, to predict the physicochemical conditions which favor water-in-oil emulsification, is discussed. Theories on various emulsification processes are also discussed in terms of mousse formation at sea. 52 refs., 46 figs., 1 tab

  18. Process and device for cleaning of water-containing machine oil from nuclear power plants

    The radioactive contaminants produced in water-containing machine oil in plants operated with nuclear power are removed from the contaminated machine oil by adsorption on water-adsorbing material. This document discusses this process. 3 figs., 1 tab

  19. Water Pollution, and Treatments Part III: Biodegradation of Oil in Refineries Waste Water and Oils Adsorbed in Agricultural Wastes by Selected Strains of Cyanobacteria

    The main objective of this study is to determine the biological degradation of oil hydrocarbons and sulfur compounds of Marine Balayim crude oil and its refined products by selected indigenous Cyanobacteria strains. The oils used were Marine Balayim crude oil, skimmed oil and some refined products such as gasoline, kerosene, gas oil, fuel oil and petroleum coke. The selected organisms in the current study are the Blue-Green Algae Cyanobacteria, Oscillatoria limentica. This organism was collected from the hyper saline environment of the solar lake in Taba, Sinai, Egypt. The results obtained revealed that the utilization of such strains can be used for the bioremediation of oily waste water.

  20. The visibility and detectability of oil slicks and oil discharges on water

    Literature on the visibility of oil slicks and oil discharges on water are reviewed. Except for some work done recently, the literature on oil slick visibility is very old, dating back to the early part of this century. Considerable differences were found between recent experiments and some of the older thickness-visibility relationship tables. This finding was attributed to the the fact that evaporation and inhomogeneity of the slick were ignored in the early studies. Literature on the visibility of oil discharges was also reviewed and compared to slick visibility results. Some correlation was achieved in converting discharge to approximate slick thickness. A new correlation table relating wind speed and vessel discharge speed wth the visibility threshold is also presented. Overall, the data indicated that the minimum visible threshold for discharge is about 100 ppm oil in water, except for a calm situation at two knots where it may be as little as 50 ppm. Data collected on remote sensing thresholds showed that the thresholds could be lowered somewhat by both video and traditional photography. 33 refs., 6 tabs

  1. Influence of pumpkin seed oil in continuous phase on droplet size and stability of water-in-oil emulsions

    Nikolovski Branislava G.

    2011-01-01

    Full Text Available The aim of this work was to contribute to the optimized production of water-in-oil emulsions with pumpkin seed oil in the oil phase using a high-speed homogenizer. Pumpkin seed oil is a valuable natural source of essential fatty acids and biologically active micronutrients that contribute to its nutritive value and medical uses, and reduce interfacial tension between water and the oil phases. Therefore, pumpkin seed oil can be considered as a prosperous oil phase whose use can possibly decrease the amount of some emulsifier that is normally involved in every emulsification process. A central composite rotatable experimental design was implemented to analyze the impact of the contents of polyglycerol polyricinoleate and pumpkin seed oil in the continuous phase, as well as water phase content in the emulsion on droplet size distribution and the response surface methodology was used to obtain optimal conditions for water-in-oil emulsion preparation. Mean size diameter of water droplets was in a range from 400 to 850 nm, with mean peak width of 100 to 220 nm, respectively. The influence of all three investigated factors on the emulsification was determined. Additionally, the emulsions prepared with pumpkin seed oil showed a higher stability during the storage time compared to the emulsions with sunflower oil.

  2. Spill sorbents: A comparison of water and oil sorbency

    Sorbents for oil spills come in three general classes: organic, such as peat moss, sawdust, and paper fibre; inorganic, such as clay, vermiculite, and diatomaceous earth; and synthetic, including a variety of materials made from polymers such as polyethylene and polypropylene. The water and oil sorptive properties of various sorbents are listed and their characteristics are described. In spill remediation, most synthetic adsorbents are oleophilic with some degree of hydrophobic properties to prevent them from taking up water as they clean up the oil. In some situations, such as maintenance spills where aqueous liquids are also encountered, universal sorbents which have both oleophilic and hydrophilic properties are used. Sorbents are sold in a variety of product configurations, including powders, beads, rolls, ropes, and booms. Melt blown polypropylene is widely used since it is inexpensive, easy to apply, a good insulator, relatively inert, non-hazardous, and available in a wide variety of configurations. Its approximate oil sorbency is 20-30 times its own weight while its water sorbency is 0.0-0.1 times its own weight. In the Canadian market, sorbent products are available from importers, packagers, and manufacturers. The market is dominated by a few large companies that provide a range of high- and low-tech products in addition to ancillary products such as drums and skimmers. 2 tabs

  3. Radiolytic reduction of sodium tetrachloroaurate (III) in water and water-in oil microemulsion

    Pulse radiolysis technique has been employed to investigate the reduction of NaAuCl4 in water and water-in-oil micro emulsion. The bimolecular rate constant for the reaction of hydrated electrons with Au3+ was determined in water-in-oil micro emulsion. Gold colloid formation has been formed when water is being used as the medium and gelatin as stabilizer. In micro emulsion gold colloid has not been observed up to a dose of 3.6 kGy. (author)

  4. Treatment methods for breaking certain oil and water emulsions

    Sealock, Jr., L. John; Baker, Eddie G.; Elliott, Douglas C.

    1992-01-01

    Disclosed are treatment methods for breaking emulsions of petroleum oil and salt water, fatty oil and water, and those resulting from liquefication of organic material. The emulsions are broken by heating to a predetermined temperature at or above about 200.degree. C. and pressurizing to a predetermined pressure above the vapor pressure of water at the predetermined temperature to produce a heated and pressurized fluid. The heated and pressurized fluid is contained in a single vessel at the predetermined temperature and pressure for a predetermined period of time to effectively separate the emulsion into substantially distinct first and second phases, the first phase comprising primarily the petroleum oil, the second phase comprising primarily the water. The first and second phases are separately withdrawn from the vessel at a withdraw temperature between about 200.degree. C. and 374.degree. C. and a withdraw pressure above the vapor pressure of water at the withdraw temperature. Where solids are present in the certain emulsions, the above described treatment may also effectively separate the certain emulsion into a substantially distinct third phase comprising primarily the solids.

  5. Heat pump system utilizing produced water in oil fields

    As the alternative to the heating furnace for crude oil heating, a heat pump system utilizing produced water, a main byproduct, in oil fields was proposed and the thermodynamic model of the system was established. A particular compression process with inner evaporative spray water cooling was applied in the screw compressor and an analysis method for the variable-mass compression process was introduced. The simulation results showed that the efficiency of the screw compressor, the temperature of produced water and the temperature difference in flash process are key parameters affecting the system performance. The energy cost of the heat pump system was compared to that of the heating furnace, revealing that the heat pump system with EER, 4.67, would save over 20% energy cost as compared with the heating furnace. Thus, the heat pump system was energy saving, money saving and environmentally benign

  6. Functionalized Cellulose Networks for Efficient Oil Removal from Oil–Water Emulsions

    Paul, Uttam C.; Despina Fragouli; Ilker S. Bayer; Athanassia Athanassiou

    2016-01-01

    The separation of oil from water in emulsions is a great environmental challenge, since oily wastewater is industrially produced. Here, we demonstrate a highly efficient method to separate oil from water in non-stabilized emulsions, using functionalized cellulose fiber networks. This is achieved by the modification of the wetting properties of the fibers, transforming them from oil- and water-absorbing to water-absorbing and oil-proof. In particular, two diverse layers of polymeric coatings, ...

  7. Oil Spill Adsorption Capacity of Activated Carbon Tablets from Corncobs in Simulated Oil-Water Mixture

    Rhonalyn V. Maulion

    2015-12-01

    Full Text Available Oil spill in bodies of water is one of severe environmental problems that is facing all over the country and in the world. Since oil is an integral part of the economy, increasing trend for its demand and transport of has led to a great treat in the surface water. One of the promising techniques in the removal of the oil spills in water bodies is adsorption using activated carbon form waste material such as corn cobs. The purpose of this study is to determine the adsorption capacity of activated carbon tablets derived from corncobs in the removal of oil. The properties of activated carbon produced have a pH of 7.0, bulk density of 0.26 g//cm3 , average pore size of 45nm, particle size of 18% at 60 mesh and 39% at 80 mesh, iodine number of 1370 mg/g and surface area of 1205 g/m2. The amount of bentonite clay as binder (15%,20%,30%, number of ACT (1,2,3 and time of contact(30,60,90 mins has been varied to determine the optimum condition where the activated carbon will have the best adsorption capacity in the removal of oil. Results showed that at 15% binder, 60 mins contact time and 3 tablets of activated carbon is the optimum condition which give a percentage adsorption of 22.82% of oil. Experimental data also showed that a Langmuir isotherm was the best fit isotherm for adsorption of ACT.

  8. Cooling Effect of Water Injection on a High-Temperature Supersonic Jet

    Jing Li

    2015-11-01

    Full Text Available The high temperature and high pressure supersonic jet is one of the key problems in the design of solid rocket motors. To reduce the jet temperature and noise, cooling water is typically injected into the exhaust plume. Numerical simulations for the gas-liquid multiphase flow field with mixture multiphase model were developed and a series of experiments were carried out. By introducing the energy source terms caused by the vaporization of liquid water into the energy equation, a coupling solution was developed to calculate the multiphase flow field. The temperature data predictions agreed well with the experimental results. When water was injected into the plume, the high temperature core region area was reduced, and the temperature on the head face was much lower than that without water. The relationship between the reduction of temperature on the bottom plate and the momentum ratio is developed, which can be used to predict the cooling effect of water injection in many cases.

  9. Membrane technology to improve water management in oil sands operations

    This paper presents the results of a bench-scale experiment designed to improve water management in oil sands processing using a membrane technology. The study addressed the following two aspects of water management: (1) reducing the hardness of water used in technological processes, and (2) reducing the toxicity in effluent streams caused by the presence of naphthenic acids. Both issues were also addressed through the evaluation of a membrane separation process called nanofiltration. The primary focus of this study was to choose an appropriate membrane and to determine its subsequent ability to reduce the hardness from groundwater and remove naphthenic acids from discharge water. The study revealed that nanofiltration technology is a good water management tool in oil sands operations. Membrane filtration managed to reduce water hardness significantly. A high napthenic acid removal efficiency (up to 94 per cent) was noted for both synthetic solutions and actual water samples. Permeate flux was also maintained at a high level of 15 litres per square metre per hour or more. A 90 per cent water recovery was obtained by reducing the feed volume by 10 fold. 14 refs., 6 tabs., 7 figs

  10. A high efficiency oxyfuel internal combustion engine cycle with water direct injection for waste heat recovery

    This paper presents a novel concept of combining water injection process with an oxyfuel internal combustion engine cycle to enhance thermal efficiency. Since the emission of NOx is eliminated by using oxygen instead of air as oxidant, the exhaust gas is CO2–water vapor mixture, and CO2 is recovered through condensation of the exhaust gas at low cost. In this way, an ultra-low emission working cycle is achieved. The evaporation of injected water not only moderates the peak in-cylinder temperature, but also increases the mass of working gas inside the cylinder, therefore improves the thermal efficiency of the cycle. An ideal thermodynamic model combining an oxyfuel Otto cycle with water injection process was established to investigate the potential of the cycle thermal efficiency. Calculation results show that thermal efficiency reaches 53% when water injection temperature is 120 °C and 67% when water injection temperature reaches 200 °C. Moreover, bench tests were carried out on prototype engine based on this working cycle. Experimental results show that the thermal efficiency improves with the increase of both engine load and water injection mass, and indicated thermal efficiency increases from 32.1% to 41.5% under appropriate test condition. - Highlights: • We present an oxy-fuel combustion cycle coupled with water injection for IC engines. • High thermo efficiency can be realized with the potential of CO2 capture. • Steam is employed as working gas of an reciprocating engine cycle. • An efficiency increase of 33% is achievable based on thermodynamic analysis. • Thermo efficiency increases from 32.1% to 41.5% through engine tests

  11. Efficiency of recycled wool-based nonwoven material for the removal of oils from water

    Radetic, M.; Ilic, V.; Radojevic, D.; Miladinovic, R.; Jocic, D.; Javancic, P.

    2008-01-01

    The aim of this study was to highlight the potential use of recycled wool-based nonwoven material for the removal of diesel fuel, crude, base, vegetable and motor oil from water. Sorption capacity of the material in water and in oil without water, oil retention, sorbent reusability and buoyancy in s

  12. Analysis of method of polarization surveying of water surface oil pollution

    Zhukov, B. S.

    1979-01-01

    A method of polarization surveying of oil films on the water surface is analyzed. Model calculations of contrasted oil and water obtained with different orientations of the analyzer are discussed. The model depends on the spectral range, water transparency and oil film, and the selection of observational direction.

  13. Water-in-oil emulsions: formation and prediction

    Fingas, Merv F. [Spill Science (Canada)], email: fingasmerv@shaw.ca; Fieldhouse, Ben [Emergency Science and Technology Division, Environment Canada (Canada)], email: ben.fieldhouse@ec.gc.ca

    2011-07-01

    The formation process of water-in-oil emulsion was discussed in this work. A number of numerical models that describe this process were presented, and a new scheme was developed. The objective of this study is to generate an emulsion stability index, based on oil properties, to be used in optimizing a new scheme for emulsion formation. Tests and numerical modeling of previous efforts were presented, and the effects of oil properties such as viscosity, asphaltene content, and resin content, were discussed. Based on experimental data and previous modeling schemes, a set of new empirical equations were generated and recommended for modeling emulsion formation. In general, emulsion stability exhibited four different behaviors: stable, meso-stable, entrained, and unstable. Moreover, it was shown that emulsion formation mainly depends on viscosity and asphaltene and resin fractions. Based on these three properties, the regression equation for the stability index was generated, thereby making mixture formation and prediction more accurate.

  14. A guide to contingency planning for oil spills on water

    An oil spill contingency plan should comprise: a strategy section, which should describe the scope of the plan, including the geographical coverage, perceived risks, division of responsibilities and role of authorities and the proposed response strategy; an action and operations section, which should set out the emergency procedures that will allow rapid mobilization of resources and an early response to the situation; and a data directory, which should contain all relevant maps, lists and data sheets required to assess an oil spill situation and conduct the response according to an agreed strategy. This guide aims to assist industry and governments in the preparation of such plans. It focuses on oil spills on water, primarily from ships or during transfer operations, but also contains information relevant to spills from exploration and production activities. It sets out an industry consensus and highlights the elements that together make up a comprehensive plan. It is not exhaustive in detail. (author)

  15. Computational study of effect of water finger on ion transport through water-oil interface

    Kikkawa, Nobuaki; Wang, Lingjian; Morita, Akihiro

    2016-07-01

    When an ion transports from water to oil through water-oil interface, it accompanies hydrated water molecules and transiently forms a chain of water, called "water finger." We thoroughly investigated the role of the water finger in chloride ion transport through water-dichloromethane interface by using molecular dynamics technique. We developed a proper coordinate w to describe the water finger structure and calculated the free energy landscape and the friction for the ion transport as a function of ion position z and the water finger coordinate w. It is clearly shown that the formation and break of water finger accompanies an activation barrier for the ion transport, which has been overlooked in the conventional free energy curve along the ion position z. The present analysis of the friction does not support the hypothesis of augmented local friction (reduced local diffusion coefficient) at the interface. These results mean that the experimentally observed rate constants of interfacial ion transfer are reduced from the diffusion-limited one because of the activation barrier associated to the water finger, not the anomalous local diffusion. We also found that the nascent ion just after the break of water finger has excessive hydration water than that in the oil phase.

  16. Carbon Dioxide-Water Emulsions for Enhanced Oil Recovery and Permanent Sequestration of Carbon Dioxide

    Ryan, David; Golomb, Dan; Shi, Guang; Shih, Cherry; Lewczuk, Rob; Miksch, Joshua; Manmode, Rahul; Mulagapati, Srihariraju; Malepati, Chetankurmar

    2011-09-30

    This project involves the use of an innovative new invention Particle Stabilized Emulsions (PSEs) of Carbon Dioxide-in-Water and Water-in-Carbon Dioxide for Enhanced Oil Recovery (EOR) and Permanent Sequestration of Carbon Dioxide. The EOR emulsion would be injected into a semi-depleted oil reservoir such as Dover 33 in Otsego County, Michigan. It is expected that the emulsion would dislocate the stranded heavy crude oil from the rock granule surfaces, reduce its viscosity, and increase its mobility. The advancing emulsion front should provide viscosity control which drives the reduced-viscosity oil toward the production wells. The make-up of the emulsion would be subsequently changed so it interacts with the surrounding rock minerals in order to enhance mineralization, thereby providing permanent sequestration of the injected CO{sub 2}. In Phase 1 of the project, the following tasks were accomplished: 1. Perform laboratory scale (mL/min) refinements on existing procedures for producing liquid carbon dioxide-in-water (C/W) and water-in-liquid carbon dioxide (W/C) emulsion stabilized by hydrophilic and hydrophobic fine particles, respectively, using a Kenics-type static mixer. 2. Design and cost evaluate scaled up (gal/min) C/W and W/C emulsification systems to be deployed in Phase 2 at the Otsego County semi-depleted oil field. 3. Design the modifications necessary to the present CO{sub 2} flooding system at Otsego County for emulsion injection. 4. Design monitoring and verification systems to be deployed in Phase 2 for measuring potential leakage of CO{sub 2} after emulsion injection. 5. Design production protocol to assess enhanced oil recovery with emulsion injection compared to present recovery with neat CO{sub 2} flooding. 6. Obtain Federal and State permits for emulsion injection. Initial research focused on creating particle stabilized emulsions with the smallest possible globule size so that the emulsion can penetrate even low-permeability crude

  17. Water-oil Janus emulsions: microfluidic synthesis and morphology design.

    Ge, Xue-Hui; Huang, Jin-Pei; Xu, Jian-Hong; Chen, Jian; Luo, Guang-Sheng

    2016-04-14

    In this work we developed a facile method to prepare water-oil Janus emulsions in situ with tunable morphologies by using a double-bore capillary microfluidic device. In addition, by combining the theory model and our liquids' properties, we propose a method to design the morphology of water-oil Janus emulsions. To systematically research Janus morphologies we combined the theory model and the fluids' properties. Under the model guidance, we carefully selected the liquids system where only the interfacial tension between the water phase and the continuous phase changed while keeping the other two interfacial tensions unchanged. Thus we could adjust the Janus morphology by changing the surfactant mass fraction in the continuous phase. In addition, with the double-bore capillary, we prepared water-oil Janus emulsions with a large flow ratio range. By adjusting the flow ratio and the surfactant mass fraction, we successfully prepared Janus emulsions with gradual morphology changes, which would be meaningful in fields that have a high demand for morphology designing of amphiphilic Janus particles. PMID:26947622

  18. Recovery of Palm Oil and Valuable Material from Oil Palm Empty Fruit Bunch by Sub-critical Water.

    Ahmad Kurnin, Nor Azrin; Shah Ismail, Mohd Halim; Yoshida, Hiroyuki; Izhar, Shamsul

    2016-01-01

    Oil palm empty fruit bunch (EFB) is one of the solid wastes produced in huge volume by palm oil mill. Whilst it still contains valuable oil, approximately 22.6 million tons is generated annually and treated as solid waste. In this work, sub-critical water (sub-cw) was used to extract oil, sugar and tar from spikelet of EFB. The spikelet was treated with sub-cw between 180-280°C and a reaction time of 2 and 5 minutes. The highest yield of oil was 0.075 g-oil/g-dry EFB, obtained at 240°C and reaction time of 5 minutes. Astonishingly, oil that was extracted through this method was 84.5% of that obtained through Soxhlet method using hexane. Yield of oil extracted was strongly affected by the reaction temperature and time. Higher reaction temperature induces the dielectric constant of water towards the non-polar properties of solvent; thus increases the oil extraction capability. Meanwhile, the highest yield of sugar was 0.20 g-sugar/g-dry EFB obtained at 220°C. At this temperature, the ion product of water is high enough to enable maximum sub-critical water hydrolysis reaction. This study showed that oil and other valuable material can be recovered using water at sub-critical condition, and most attractive without the use of harmful organic solvent. PMID:27041513

  19. Purification of trona ores by conditioning with an oil-in-water emulsion

    Miller, J. D.; Wang, Xuming; Li, Minhua

    2009-04-14

    The present invention is a trona concentrate and a process for floating gangue material from trona ore that comprises forming an emulsion, conditioning the trona ore at a high solids content in a saturated trona suspension, and then floating and removing the gangue material. The process for separating trona from gangue materials in trona ore can include emulsifying an oil in an aqueous solution to form an oil-in-water emulsion. A saturated trona suspension having a high solids content can also be formed having trona of a desired particle size. The undissolved trona in the saturated suspension can be conditioned by mixing the saturated suspension and the oil-in-water emulsion to form a conditioning solid suspension of trona and gangue material. A gas can be injected through the conditioning solid suspension to float the gangue material. Thus, the floated gangue material can be readily separated from the trona to form a purified trona concentrate without requirements of additional heat or other expensive processing steps.

  20. A water-in-oil emulsion containing Kelex-100 for the speciation analysis of trace heavy metals in water

    A water-in-oil (w/o) emulsion containing Kelex-100 (7-dodecenyl-8-quinolinol) and Span-80 (sorbitan monooleate, non-ionic surfactant) was ultrasonically prepared from 1.0 mol l-1 hydrochloric acid and a (1 + 3) mixture of toluene and n-heptane. The resulting emulsion was gradually injected into water sample and dispersed as numerous tiny globules (0.01-0.1 mm in diameter). Dissolved inorganic species (free metal species) of heavy metals (e.g., Fe, Co, Cu, Cd, and Pb) were selectively transported through the oil layer into the internal aqueous phase of the emulsion, leaving other species, such as humic complexes and suspended particles (larger than 1 μm), in the sample solution. After collecting the dispersed emulsion globules, they were demulsified and the heavy metals in the segregated aqueous phase were determined by graphite-furnace atomic absorption spectrometry. The emulsion-based separation method allowed the selective collection of free metal species with a high concentration factor of 100, whereas the conventional solvent extraction did not offer such discrimination. This unique property of the emulsion method was successfully applied to the selective determination of free species of heavy metals in fresh water samples

  1. Effects of Three Types of Oil Dispersants on Biodegradation of Dispersed Crude Oil in Water Surrounding Two Persian Gulf Provinces

    Azadeh Zolfaghari-Baghbaderani; Mozhgan Emtyazjoo; Parinaz Poursafa; Sedigheh Mehrabian; Samira Bijani; Daryoush Farkhani; Parisa Mirmoghtadaee

    2012-01-01

    Objective. To determine the most effective and biodegradable dispersant of spilled oil in water surrounding two Persian Gulf provinces. Methods. This study compared the effects of three dispersants, Pars 1, Pars 2, and Gamlen OD4000 on removal of oil in two Persian Gulf provinces' water. Overall, 16 stations were selected. Using the Well method, the growth rate of isolated bacteria and fungi was identified. To specify the growth rate of microorganisms and their usage of oil in the presence of...

  2. Large probe arrays for measuring mean and time dependent local oil volume fraction and local oil velocity component distributions in inclined oil-in-water flows

    Lucas, Gary; Zhao, X.

    2013-01-01

    Arrays of dual-sensor and four-sensor needle conductance probes have been used to measure the mean and time dependent local properties of upward inclined, bubbly oil-in-water flows (also known as dispersed oil-in-water flows) in a 153mm diameter pipe. The flow properties that were measured were (i) the local in-situ oil volume fraction ; (ii) the local oil velocity in the axial direction of the pipe (the direction); and (iii) the local oil velocity in the direction from the lower side ...

  3. The Research On The Performance Of Oil-gas Cyclone Separators In Oil Injected Compressor Systems With Considering The Collision And Breakup Of Oil Droplets

    Gao, Xiang; Zhao, Yaopeng; Yang, Xin; Chang, YunFeng; Peng, Xueyuan

    2012-01-01

    The high-speed swirling flow field in the cyclone oil-gas separator will cause the breakup of oil droplets, thus reducing the separation efficiency. In this paper, the performance of an oil-gas cyclone separator was investigated through both numerical simulations and experiments with considering the breakup of oil droplets in oil-gas cyclone separators. The gas flow field was simulated using the RSM turbulence model and the trajectory of the oil droplets was calculated by the Discrete Phase M...

  4. Stabilization Mechanisms of Water-in-Crude Oil Emulsions

    Nour, Abdurahman H.; Suliman, A.; Hadow, Mahmmoud M.

    During the lifting and production of crude oil, water/oil emulsions are created. They are stabilized by asphaltenes and resins which are colloidally dispersed in the crude oil. Asphaltenes consist mainly of polar heterocompounds. It is known that they decrease the interfacial tension between oil and water and form stable interfacial films. Both effects favour the formation and stabilization of emulsions. Resins are complex high-molecular-weight compounds that are not soluble in ethylacetate, but are soluble in n-heptane. Their interfacial activity is less than that of asphaltenes. The role of resins in stabilizing emulsions has also been debated in literature. This study reports the results of experimental investigation of various factors affecting the stability of emulsions which are considered to be undesirable for a number of reasons, including both up-stream and down-stream operation in the petroleum industry. It was found that, the (R/A) ratio affects the emulsion and dispersion stabilities. High resin/asphaltene ratios decrease the emulsion stability.

  5. Three Dimensional Visualization for the Steam Injection into Water Pool using Electrical Resistance Tomography

    The direct injection of steam into a water pool is a method of heat transfer used in many process industries. The amount of research in this area however is limited to the nuclear industry, with applications relating to reactor cooling systems. Electrical resistance tomography (ERT), a low cost, non-invasive and which has high temporal resolution characteristics, can be used as a visualization tool for the resistivity distribution for the steam injection into water pool such as IRWST. In this paper, three dimensional resistivity distribution of the process is obtained through ERT using iterative Gauss-Newton method. Numerical experiments are performed by assuming different resistive objects in the water pool. Numerical results show that ERT is successful in estimating the resistivity distribution for the injection of steam in the water pool

  6. Research on the performance of water-injection twin screw compressor

    Due to the development of the automotive fuel cell systems, the study on water-injection twin screw compressor has been aroused again. Twin screw compressors with water injection can be used to supply the clean compressed air for the Proton Exchange Membrane (PEM) fuel cell systems. In this research, a thermodynamic model of the working process of water-injection twin screw compressor was established based on the equations of conservation of mass and energy. The effects of internal leakage and air-water heat transfer were taken into account simultaneously in the present mathematical model. The experiments of the performance of a prototype compressor operating under various conditions were conducted to verify the model. The results show that the predictions of the model are in reasonable agreement with the experimental data.

  7. Effects of caffeic acid and bovine serum albumin in reducing the rate of development of rancidity in oil-in-water and water-in-oil emulsions

    Conde, Enma; Gordon, Micheal H.; Moure, Andres; Dominguez, Herminia

    2011-01-01

    The antioxidant properties of caffeic acid and bovine serum albumin in oil-in-water and water-in-oil emulsions were studied. Caffeic acid (5 mmol/kg emulsion) showed good antioxidant properties in both 30% sunflower oil-in-water (OW) and 20% water-in-sunflower oil emulsions (WO), pH 5.4, during storage at 50 ºC. Although bovine serum albumin (BSA) (0.2%) had a slight antioxidant effect, the combination of caffeic acid and BSA showed a synergistic reduction in the rate of development of rancid...

  8. Rapid and Efficient Separation of Oil from Oil-in-Water Emulsions Using a Janus Cotton Fabric.

    Wang, Zijie; Wang, Yu; Liu, Guojun

    2016-01-01

    A novel bi-functional Janus cotton fabric is used to separate oil from oil-in-water emulsions. This fabric is superhydrophobic on one surface and polyamine-bearing on the other. When used as a filter, the polyamine-bearing side causes the micrometer-sized oil droplets to coalesce. The coalesced oil then fills fabric pores on the superhydrophobic side and selectively permeates it. Oil separation using this method is rapid and the separated oil is pure. Furthermore, the content of the model oil hexadecane (HD) in water after a separation can be reduced to less than 0.03±0.03 vol %. These features demonstrate the practical potential of this technology. PMID:26667967

  9. Flash Atomization: A New Concept to Control Combustion Instability in Water-Injected Gas Turbines

    Vishwas Iyengar

    2012-01-01

    Full Text Available The objective of this work is to explore methods to reduce combustor rumble in a water-injected gas turbine. Attempts to use water injection as a means to reduce NOX emissions in gas turbines have been largely unsuccessful because of increased combustion instability levels. This pulsation causes chronic fretting, wear, and fatigue that damages combustor components. Of greater concern is that liberated fragments could cause extensive damage to the turbine section. Combustion instability can be tied to the insufficient atomization of injected water; large water droplets evaporate non-uniformly that lead to energy absorption in chaotic pulses. Added pulsation is amplified by the combustion process and acoustic resonance. Effervescent atomization, where gas bubbles are injected, is beneficial by producing finely atomized droplets; the gas bubbles burst as they exit the nozzles creating additional energy to disperse the liquid. A new concept for effervescent atomization dubbed “flash atomization” is presented where water is heated to just below its boiling point in the supply line so that some of it will flash to steam as it leaves the nozzle. An advantage of flash atomization is that available heat energy can be used rather than mechanical energy to compress injection gas for conventional effervescent atomization.

  10. Water-in-Crude Oil Emulsions: Its Stabilization and Demulsification

    Abdurahman H. Nour; R. Mohd. Yunus; H. Anwaruddin

    2007-01-01

    Traditional ways of breaking emulsions using heat and chemicals are disadvantageous from both economic and environmental perspectives. In this research, the potentials of microwave technology in demulsification of water-in-crude oil emulsions are investigated. The study began with some characterization studies to provide understandings of fundamental issues such as formation, formulation and breaking of emulsions by both chemical and microwave approaches. The aim was to obtain optimized opera...

  11. Ultrasonic splitting of oil-in-water emulsions

    Hald, Jens; König, Ralf; Benes, Ewald; Gröschl, Martin

    1999-01-01

    Standing resonant ultrasonic wave fields can be utilized for liquid–liquid separation of the dispersed particles and the fluid caused by the acoustic radiation pressure and the induced particle agglomeration or coagulation/coalescence process. For the splitting of oil-in-water emulsions, the available piezoelectric composite transducer technology was improved and a dedicated resonator with crossed plane wave sonication geometry has been developed. The resonator chamber is entirely made of alu...

  12. Numerical modeling of water injection into vapor-dominated geothermal reservoirs

    Pruess, Karsten

    2008-01-01

    Water injection has been recognized as a powerful technique for enhancing energy recovery from vapor-dominated geothermal systems such as The Geysers. In addition to increasing reservoir pressures, production well flow rates, and long-term sustainability of steam production, injection has also been shown to reduce concentrations of non-condensible gases (NCGs) in produced steam. The latter effect improves energy conversion efficiency and reduces corrosion problems in wellbores and surfac...

  13. Development of a Fully Automated Flow Injection Analyzer Implementing Bioluminescent Biosensors for Water Toxicity Assessment

    Constantinos Georgiou; Georgakopoulos, Dimitrios G.; Gerasimos Kremmydas; Efstathios Vasiliou; Efstratios Komaitis

    2010-01-01

    This paper describes the development of an automated Flow Injection analyzer for water toxicity assessment. The analyzer is validated by assessing the toxicity of heavy metal (Pb2+, Hg2+ and Cu2+) solutions. One hundred μL of a Vibrio fischeri suspension are injected in a carrier solution containing different heavy metal concentrations. Biosensor cells are mixed with the toxic carrier solution in the mixing coil on the way to the detector. Response registered is % inhibition of biosensor biol...

  14. An X-ray Scattering Study of Water-Conditioned Injection- Molded Starch during Isothermal Heating

    Cagiao, M.E.; Bayer, R. K.; Rueda, D. R.; Baltá Calleja, F. J.

    2003-01-01

    The in situ structure variation of injection molded starch (as processed and after water conditioning)during heat treatment was investigated by means of wideangle X-ray scattering using synchrotron radiation. Results confirm that the crystal structure of potato starch is destroyed after injection molding, while as-processed corn starch preserves some degree of crystallinity. This residual crystallinity in corn starch is related to the crystalline Vh form,made of complexes of amylose with l...

  15. Stability of Water-in-Crude Oil Emulsion Using Cocamide Surfactant

    Rasha Mohammed Abd; Abdurhman H. Nour; Ahmad Ziad Sulaiman

    2014-01-01

    The formation of water-in-crude oil emulsion can be encountered in many stages such as drilling, transporting and processing of crude oil. To enhance and control these processes, it is necessary to understand the emulsion mechanisms. In this study, two types of Malaysian crude oil namely; heavy crude oil and light-heavy blended crude oil (40-60 vol%) were characterized physically to use as the oil phase. Cocaamide DEA was used as a natural surfactant. The stability of water-in-crude oil emuls...

  16. Experimental investigation of the effects of direct water injection parameters on engine performance in a six-stroke engine

    Highlights: • Exhaust gas temperature and specific fuel consumption decreased with six stroke engine. • Thermal efficiency increased with water injection. • NO emissions decreased with water injection as the temperature decreased at the end of cycle. • Injection timing should be advanced with the increase of engine speed. • HC and CO emissions decrease until 3000 rpm engine speed. - Abstract: In this study, the effects of water injection quantity and injection timing were investigated on engine performance and exhaust emissions in a six-stroke engine. For this purpose, a single cylinder, four-stroke gasoline engine was converted to six-stroke engine modifying a new cam mechanism and adapting the water injection system. The experiments were conducted at stoichometric air/fuel ratio (λ = 1) between 2250 and 3500 rpm engine speed at full load with liquid petroleum gas. Water injection was performed at three different stages as before top dead center, top dead center and after top dead center at constant injection duration and four different injection pressure 25, 50, 75 and 100 bar. The test results showed that exhaust gas temperature and specific fuel consumption decreased by about 7% and 9% respectively. In contrast, fuel consumption and power output increased 2% and 10% respectively with water injection. Thermal efficiency increased by about 8.72% with water injection. CO and HC emissions decreased 21.97% and 18.23% until 3000 rpm respectively. NO emissions decreased with water injection as the temperature decreased at the end of cycle. As a result, it was seen that engine performance improved when suitable injection timing and injected water quantity were selected due to effect of exhaust heat recovery with water injection

  17. Mechanisms behind injecting the combination of nano-clay particles and polymer solution for enhanced oil recovery

    Khalili Nezhad, Seyyed Shahram; Cheraghian, Goshtasp

    2016-08-01

    Laboratory investigations and field applications have proved injection of polymer solution to be an effective means to improve oil recovery for reservoirs of medium oil viscosity. The incremental oil produced in this case is the result of an increase in areal and vertical sweep efficiencies. Biopolymers and synthetic polymers are the major categories used in the petroleum industry for specific reasons. Biopolymers like xanthan are limited in their application as they are more susceptible to biodegradation. Synthetic polymers like Hydrolyzed PolyAcrylaMide (HPAM) have a much wider application as they are less susceptible to biodegradation. Furthermore, development of nanotechnology has successfully provided technical and economical viable alternatives for present materials. The objective of this study is to investigate the effect of combining clay nanoparticles with polymer solution on oil recovery. This paper includes a history match of both one-dimensional and two-dimensional polymer floods using a three-dimensional numerical model for fluid flow and mass transport. Results indicated that the amount of polymer adsorption decreased when clay nanoparticles were added to the PolyAcrylaMide solution; however, mobility ratio improvement is believed to be the main contributor for the proposed method in order to enhance much oil recovery compared to xanthan flood and HPAM flood.

  18. Mechanisms behind injecting the combination of nano-clay particles and polymer solution for enhanced oil recovery

    Khalili Nezhad, Seyyed Shahram; Cheraghian, Goshtasp

    2015-09-01

    Laboratory investigations and field applications have proved injection of polymer solution to be an effective means to improve oil recovery for reservoirs of medium oil viscosity. The incremental oil produced in this case is the result of an increase in areal and vertical sweep efficiencies. Biopolymers and synthetic polymers are the major categories used in the petroleum industry for specific reasons. Biopolymers like xanthan are limited in their application as they are more susceptible to biodegradation. Synthetic polymers like Hydrolyzed PolyAcrylaMide (HPAM) have a much wider application as they are less susceptible to biodegradation. Furthermore, development of nanotechnology has successfully provided technical and economical viable alternatives for present materials. The objective of this study is to investigate the effect of combining clay nanoparticles with polymer solution on oil recovery. This paper includes a history match of both one-dimensional and two-dimensional polymer floods using a three-dimensional numerical model for fluid flow and mass transport. Results indicated that the amount of polymer adsorption decreased when clay nanoparticles were added to the PolyAcrylaMide solution; however, mobility ratio improvement is believed to be the main contributor for the proposed method in order to enhance much oil recovery compared to xanthan flood and HPAM flood.

  19. Construction of a Direct Water-Injected Two-Stroke Engine for Phased Direct Fuel Injection-High Pressure Charging Investigations

    Somsel, James P.

    1998-01-01

    The development of a water injected Orbital Combustion Process (OCP) engine was conducted to assess the viability of using the powerplant for high altitude NASA aircraft and General Aviation (GA) applications. An OCP direct fuel injected, 1.2 liter, three cylinder, two-stroke engine has been enhanced to independently inject water directly into the combustion chamber. The engine currently demonstrates low brake specific fuel consumption capability and an excellent power to weight ratio. With direct water injection, significant improvements can be made to engine power, to knock limits/ignition advance timing, and to engine NO(x) emissions. The principal aim of the testing was to validate a cyclic model developed by the Systems Analysis Branch at NASA Ames Research Center. The work is a continuation of Ames' investigations into a Phased Direct Fuel Injection Engine with High Pressure Charging (PDFI-ITPC).

  20. Clear well physical water treatment technology for the oil field

    Troncoso y Troncoso, Joao Ricardo [Weatherford Brazil, Rio de Janeiro, RJ (Brazil); Rzeznik, Lawrence; Parker, Wiley L. [Weatherford International, Houston, TX (United States)

    2008-07-01

    Deposits of various types are common problems associated with oil and gas production. Deposits of scale, paraffin can block tubing, cause pumps to stick and clog valves and chokes. The expense and widespread occurrence of deposition problems have resulted in the development of a variety of treatment options which have been marginally successful at best. This paper discusses a new and novel approach for controlling scale, paraffin using an electronic physical water treating device and results that have been achieved. This physical water treatment technology has been applied to oil and gas production wells which incorporate all forms of product lift. Units are now also being installed in several South American locations. This paper will discuss the results obtained from the use of these physical water treatment devices and discuss the criteria which are used to ascertain whether a particular well site's problems can be eased by use of these devices. These criteria will be discussed for both land based and offshore oil wells. (author)

  1. Radiation-thermal purification of waste water from oil pollution

    Full text: During the extraction, preparation, transportation and refining of oil the sewages containing oil contaminations are produced. The concentration of oil content in the water depends on used technology and may vary from a thousandths parts up to tens percents. There is a necessity of cleaning this pollution up to a permissible level. There are numerous methods (adsorption, mechanical, chemical and etc) of treating of waster water from oil contaminations. Radiation-chemical method is one of the effective among the above mentioned methods. The results of radiation-thermal decomposition of n-heptane micro-admixtures in water medium are adduced. The main parameters of radiolysis change within the intervals: temperature 20-400oC, absorbed dose - 0†10.8 kGy at dose rate 3.6 kGy/h. The correlation of n-heptane concentration and water steam changed within [C5H12]/[H2O] (1-100) 10-5. Total concentration of steam was about 1020 molec/ml. As a product of decomposition are observed H2, CO, CH4, C2H4, C2H6, C3H8, C3H6, C4H8, hydrocarbons C5, and C6. The changes of n-heptane concentration in the reactor also were established. The chain regime of n-heptane decomposition at high temperatures in the irradiated mixture is observed. The critical value of temperature and mixture ratio of components, under which the break of chain process of normal n-heptane occurs are defined. The mechanisms of proceeding radiation thermal processes in hydrocarbons-water system are discussed. At the temperatures higher than 300oC the radiation-thermal decompositions of hydrocarbon micro-impurities in water into gas products occurs according a chain mechanism and the radiation-chemical yield of the decomposition exceeds 100 molec/100eV. This method can be used for purification of sewages from oil contaminations

  2. Performance Characteristics and Analysis of 4-Stroke Single Cylinder Diesel Engine Blend With 50% of Honne Oil at Various Fuel Injection Pressures

    R. Bhaskar Reddy

    2014-08-01

    Full Text Available In future demand for fossil fuels and environmental effects, a number of renewable sources of energy have been studied in worldwide. An attempt is made to apt of vegetable oil for diesel engine operation, without any change in its old construction. One of the important factors which influence the performance and emission characteristics of D.I diesel engine is fuel injection pressure. In this project honne oil has to be investigated in a constant speed, on D.I diesel engine with different fuel injection pressures. The scope of the project is to investigate the effect of injection pressures on a blend of 50% honne oil with 50% diesel and compare with pure diesel on performance and emission characteristics of the diesel engine. Two tested fuels were used during experiments like 100 % diesel and a blend of 50% honne oil mixing in the diesel. The performance tests were conducted at constant speed with variable loads. From experiment results it was found that with honne oil- diesel blend the performance of the engine is better compared with diesel. The break thermal efficiency and mechanical efficiencies were found to be maximum at 200 bar injection pressure with both honne oil- diesel blend, compared with 180 bar and 220 bar. The brake specific fuel consumption was to be minimum at 220bar compared with 180 bar and 200 bar. Hydro carbon emissions of honne oil-diesel operation were less than the diesel fuel mode at all fuel injection pressures.

  3. Monitoring, characterization and comparison. Operation-project of oil and oil water systems in platforms

    During the process of petroleum production, water are also commonly produced. Usually, a standard oil-water separation process will not lead to water phase ready to be discharged - the present legislation requires oily contents (oil and/or greases) bellow 20 mg/L concentration level value. Thus, secondary treatment is required to bring such oily concentration to the allowed level or lower, prior to the water discard in the environment. This paper describes the adopted systematic work in the Campos Basin Petroleum Production Platforms, which has allowed to evaluate and optimize the water treatment performed in there. Such description includes the typical water treatment systems installed, the typical physical-chemistry of the effluents and also presents comparisons between the basic designs that guided such systems construction and their present operational conditions and set-ups. The analysis of such results has allowed the introduction of minor modifications leading to the process optimization. The common use of Pilot Plants in such optimization process is also described and their contribution reported. (author)

  4. Robust polymer grafted Fe3O4 nanospheres for benign removal of oil from water

    Madhusudhana Reddy, P.; Chang, Chi-Jung; Chen, Jem-Kun; Wu, Meng-Ting; Wang, Chih-Feng

    2016-04-01

    Removal of oil from the oil-water mixture (O-W mixture) or oil-in-water emulsions (O/W emulsion) is highly imperative. We have fabricated two series of polymer grafted iron oxide (Fe3O4) nanospheres. The oil removal efficiency of the nanospheres was found to be dependent on the grafted amount of polymers. The polystyrene grafted Fe3O4 nanospheres have shown better oil removal efficiency than the corresponding poly(butyl acrylate) grafted Fe3O4 nanospheres. The higher amount of grafted polystyrene can provide more hydrophobic character to FS series nanospheres. The FS series nanospheres exhibited higher oil-absorption capability than FB series nanospheres. Both the series of nanospheres can be recycled by simple washing method. The present results can pave the way to fabricate the robust materials for efficient absorption of various oils or organic solvents from both the oil-water mixture and oil-water emulsion.

  5. Antioxidant Activity of Potato Peel Extracts in a Fish-RapeseedOil Mixture and in Oil-in-Water Emulsions

    Farvin, Sabeena; Nielsen, Nina Skall; Jacobsen, Charlotte

    2010-01-01

    oil mixture and oil-in-water emulsions. Multiple antioxidant activity of the potato peel extracts was evident from in-vitro systems as they showed strong reducing power, radical scavenging ability, ferrous ion chelating activity and prevented oxidation in a liposome model system. The Sava variety......, which showed strong antioxidant activity in in-vitro systems, was tested in oil and oil-in- water emulsions. Ethanolic extracts of Sava (C1,600 mg/kg) prevented lipid oxidation in emulsions and in oil. Water extracts showed no antioxidant activity in oil whereas it showed pro-oxidant activity in......The objectives of the present work were (a) to extract the phenolic fraction from the peels of two Danish varieties of potatoes, viz. Sava and Bintje, and examine their antioxidant capacity in in-vitro systems (b) to evaluate the effect of these extracts on the storage stability of a fish- rapeseed...

  6. Tracers in China oil field

    China has rich oil resources and integrated petroleum industry. The oil industry offers a large market for tracer applications. Nowadays the main stream-most frequently used tracer technologies are introduced. These technologies include tracer 'plating' method for water intake profile measurement on the injection well, inter well tracer test and inter well tracer test for residual oil evaluation. (author)

  7. Direct μ-flow injection isotope dilution ICP-MS for the determination of heavy metals in oil samples

    The determination of trace elements in oil samples and their products is of high interest as their presence significantly affects refinery processes and the environment by possible impact of their combustion products. In this context, inductively coupled plasma mass spectrometry (ICP-MS) plays an important role due to its outstanding analytical properties in the quantification of trace elements. In this work, we present the accurate and precise determination of selected heavy metals in oil samples by making use of the combination of μ-flow direct injection and isotope dilution ICP-MS (ICP-IDMS). Spike solutions of 62Ni, 97Mo, 117Sn and 206Pb were prepared in an organic solvent, mixed directly with the diluted oil samples and tested to be fit for purpose for the intended ID approach. The analysis of real samples revealed strong matrix effects affecting the ICP-MS sensitivity, but not the isotope ratio measurements, so that accurate results are obtained by ICP-IDMS. Typical relative standard deviations were about 15% for peak area and peak height measurements, whereas the isotope ratios were not significantly affected (RSD < 2%). The developed method was validated by the analysis of a metallo-organic multi-element standard (SCP-21, typically applied as a calibration standard) and the standard reference material SRM1084a (wear metals in lubricating oil). The obtained results were in excellent agreement with the certified values (recoveries between 98% and 102%), so the proposed methodology of combining μ-flow direct injection and ICP-IDMS can be regarded as a new tool for the matrix-independent, multi-element and reliable determination of trace elements in oil and related organic liquids. (orig.)

  8. Oilfield solids and water-in-oil emulsion stability.

    Sztukowski, Danuta M; Yarranton, Harvey W

    2005-05-15

    Model water-in-hydrocarbon emulsions consisting of toluene, heptane, water, asphaltenes, and native solids were used to investigate the role of native solids in the stability of oilfield emulsions. The solids were recovered from an oil-sands bitumen, a wellhead emulsion, and a refinery slop oil. The solids were clay platelets and fell into two size categories: (1) fine solids 50 to 500 nm in diameter and (2) coarse solids 1 to 10 microm in diameter. Emulsions stabilized by fine solids and asphaltenes were most stable at a 2:1 fractional area ratio of asphaltenes to solids. It appears that when the asphaltene surface coverage is high, insufficient solids remain to make an effective barrier. When the solids coverage is high, insufficient asphaltenes remain on the interface to immobilize the solids. Treatments that weaken the interface, such as toluene dilution, are recommended for emulsions stabilized by fine solids. Emulsions stabilized by coarse solids were unstable at low solids concentrations but became very stable at solids concentrations greater than 10 kg/m(3). At low concentrations, these solids may act as bridges between water droplets and promote coalescence. At high concentrations, layers of coarse solids may become trapped between water droplets and prevent coalescence. Treatments that flocculate the solids, such as heptane dilution, are recommended for emulsions stabilized by high concentrations of coarse solids. It is possible that emulsions containing both types of solids may require more than one treatment, or even process step, for effective water resolution. PMID:15837502

  9. Preserving drinking water quality in geotechnical operations: predicting the feedback between fluid injection, fluid flow, and contamination

    Schilling, Frank R.

    2014-05-01

    Not only in densely populated areas the preservation of drinking water quality is of vital interest. On the other side, our modern economies request for a sustained energy supply and a secure storage of waste materials. As energy sources with a high security of supply, oil, natural gas, and geothermal energy cover ca. 60% of Europe's energy demand; together with coal more than 75% (IEA 2011). Besides geothermal energy, all of the resources have a high greenhouse gas footprint. All these production activities are related to fluid injection and/or fluid production. The same holds true for gas storage operations in porous reservoirs, to store natural gases, oil, or greenhouse gases. Different concerns are discussed in the public and geoscientific community to influence the drinking water quality: - wastewater discharges from field exploration, drilling, production, well treatment and completion - wastewater sequestration - gas storage - tight gas and tight oil production (including hydraulic fracturing) - Shale gas production (including hydraulic fracturing) - mine drainage This overview contribution focusses on strategies to systematically reduce the risk of water pollution in geotechnical operations of deep reservoirs. The principals will be exemplarily revealed for different geotechnical operations. - How to control hydraulic fracturing operations to reduce the risk of enhanced seismic activity and avoiding the connection of originally separated aquifers. The presented approach to quantitatively predict the impact of stimulation activities is based on petrophysical models taking the feedback of geomechanical processes and fluid flow in porous media, fissures and faults into account. The specific flow patterns in various rock types lead to distinguished differences in operational risk. - How can a proper planning of geotechnical operations reduce the involved risks. A systematic risk reduction strategy will be discussed. On selected samples the role of exploration

  10. Assessment of ground water quality in a fractured aquifer under continue wastewater injection

    Experimental studies have been carried out in a fractured coastal aquifer of the Salento Region (Nardo' (Le) Italy), subject since 1991 to injection of 12000 m3/d of treated municipal wastewater in a natural sink. The analytical parameters of ground water sampled in monitoring wells, have been compared before and after the injection started. The mound of water table (1.5 m), the reduction of seawater extent of 2 km and the spreading of pollutants injected were evaluated by means of mathematical model results. After ten years operation, the volume of the available resource for agricultural and drinking use has been increased, without notable decrease of the pre existent ground water quality. Moreover for preserving such resource from pollution, the mathematical model allowed the standards of wastewater quality for recharge to be identified. Around the sink, a restricted area was also defined with prohibition of withdrawals, to avoid infection and other risks on human health

  11. SATCAP-C : a program for thermal hydraulic design of pressurized water injection type capsule

    There are capsules called 'Pressure Water Injection Type Capsule' as a kind of irradiation devices at the Japan Materials Testing Reactor (JMTR). A type of the capsules is a 'Boiling Water Capsule' (usually named BOCA). The other type is a 'Saturated Temperature Capsule' (named SATCAP). When the water is kept at a constant pressure, the water temperature does not become higher than the saturated temperature so far as the water does not fully change to steam. These type capsules are designed on the basis of the conception of applying the water characteristic to the control of irradiation temperature of specimens in the capsules. In designing of the capsules in which the pressurized water is injected, thermal performances have to be understood as exactly as possible. It is not easy however to predict thermal performances such as axially temperature distribution of water injected in the capsule, because there are heat-sinks at both side of inner and outer of capsule casing as the result that the water is fluid. Then, a program (named SATCAP-C) for the BOCA and SATCAP was compiled to grasp the thermal performances in the capsules and has been used the design of the capsules and analysis of the data obtained from some actual irradiation capsules. It was confirmed that the program was effective in thermal analysis for the capsules. The analysis found out the values for heat transfer coefficients at various surfaces of capsule components and some thermal characteristics of capsules. (author)

  12. Experimental studies on in-bundle ECCS injection for Advanced Heavy Water Reactor

    The Advanced Heavy Water Reactor (AHWR) being designed at BARC is an innovative reactor with Thorium utilization as its major objective. It has many advanced passive safety features. One such feature is passive injection of emergency coolant after postulated Loss of Coolant Accident (LOCA). A novel feature of this injection scheme is that the injection does not take place in the header/plenum as in other reactors, but directly in to the bundle. For this purpose, the fuel cluster incorporates a central water rod which communicates with the ECCS header. The water rod extends along full length of the fuel cluster. In event of LOCA in the Main Heat Transport (MHT) system, ECC water flows from the accumulator to the water rod through ECCS header. The water flows into the bundle through holes in the water rod. The AHWR fuel cluster has fuel pins arranged in three concentric rings (of 12, 18 and 24 pins) around the central rod. While it is ensured that water does reach the fuel cluster, whether it reaches the outer ring of pins is needs investigation as the pins are closely spaced (1-3 mm gap between adjacent rods). The objective of the present experiments is to determine under what conditions (ECC flow and decay heat), the ECC water is able to rewet and cool all the fuel pins. The experiments have been done in a short, instrumented fuel bundle simulating the geometry of the AHWR fuel cluster

  13. Performance and emission study of Mahua oil (madhuca indica oil) ethyl ester in a 4-stroke natural aspirated direct injection diesel engine

    Puhan, S.; Vedaraman, N.; Bharat Ram, B.V. [Central Leather Research Inst., Chennai (India). Chemical Engineering Division; Sankaranarayanan, G. [Central Leather Research Inst., Chennai (India). Chemical Engineering Division; Anna Univ., Chennai (India). Mechanical Engineering Division

    2005-07-01

    In this investigation, Mahua Oil Ethyl Ester was prepared by transesterification using sulfuric acid (H{sub 2}SO{sub 4}) as catalyst and tested in a 4-stroke direct injection natural aspirated diesel engine. Tests were carried out at constant speed of 1500 rev/min at different brake mean effective pressures. Results showed that brake thermal efficiency of Mahua Oil Ethyl Ester (MOEE) was comparable with diesel and it was observed that 26.36% for diesel whereas 26.42% for MOEE. Emissions of carbon monoxide, hydrocarbons, oxides of nitrogen and Bosch smoke number were reduced around 58, 63, 12 and 70%, respectively, in case of MOEE compared to diesel. Based on this study, MOEE can be used a substitute for diesel in diesel engine. (Author)

  14. Comparative performance of direct injection diesel engine operating on ethanol, petrol and rapeseed oil blends

    Labeckas, Gvidonas; Slavinskas, Stasys [Department of Transport and Power Machinery, Lithuanian University of Agriculture, Student Street 15, P.O. Box LT-53361, Kaunas Academy (Lithuania)

    2009-03-15

    This article presents the bench testing results of a four stroke, four cylinder, direct injection, unmodified, diesel engine operating on pure rapeseed oil (RO) and its 2.5 vol%, 5 vol%, 7.5 vol% and 10 vol% blends with ethanol (ERO), petrol (PRO) and both improving agents applied in equal proportions as 50:50 vol% (EPRO). The purpose of the research is to examine the effect of ethanol and petrol addition into RO on the biofuel kinematical viscosity, brake mean effective pressure (bmep), brake specific fuel consumption (bsfc) of a diesel engine and its brake thermal efficiency (bte). Addition into RO from 2.5 to 7.5 vol% of ethanol and petrol its viscosity at ambient temperature of 20 C diminishes by 9.2-28.3% and 14.1-31.7%, respectively. Heating up to the temperature of 60 C the viscosity of pure RO, blends ERO2.5-7.5 and PRO2.5-10 further diminishes 4.2, 3.9-3.8 and 3.9-3.6 times. At 1800 min{sup -1} speed, the maximum brake mean effective pressure (bmep) higher up to 1.6% comparing with that of pure RO (0.77 MPa) ensure three agent blends EPRO5-7.5, whereas at rated 2200 min{sup -1} speed, the bmep higher by 5.6% can be obtained when fuelling the engine with blend PRO2.5. Brake specific fuel consumption (bsfc) at maximum torque (240.2 g/kWh) and rated power (234.0 g/kWh) is correspondingly lower by 3.4% and 5.5% in comparison with pure RO when biofuel blends EPRO5 and PRO2.5 are used. The biggest brake thermal efficiency at maximum torque (0.40-0.41) and rated power (0.42-0.43) relative to that of RO (0.39) suggest blends PRO2.5 and EPRO5-7.5, respectively. (author)

  15. Water injection into vapor- and liquid-dominated reservoirs: Modeling of heat transfer and mass transport

    Pruess, K.; Oldenburg, C.; Moridis, G.; Finsterle, S. [Lawrence Berkeley National Lab., CA (United States)

    1997-12-31

    This paper summarizes recent advances in methods for simulating water and tracer injection, and presents illustrative applications to liquid- and vapor-dominated geothermal reservoirs. High-resolution simulations of water injection into heterogeneous, vertical fractures in superheated vapor zones were performed. Injected water was found to move in dendritic patterns, and to experience stronger lateral flow effects than predicted from homogeneous medium models. Higher-order differencing methods were applied to modeling water and tracer injection into liquid-dominated systems. Conventional upstream weighting techniques were shown to be adequate for predicting the migration of thermal fronts, while higher-order methods give far better accuracy for tracer transport. A new fluid property module for the TOUGH2 simulator is described which allows a more accurate description of geofluids, and includes mineral dissolution and precipitation effects with associated porosity and permeability change. Comparisons between numerical simulation predictions and data for laboratory and field injection experiments are summarized. Enhanced simulation capabilities include a new linear solver package for TOUGH2, and inverse modeling techniques for automatic history matching and optimization.

  16. Phase behavior of ternary mannosylerythritol lipid/water/oil systems.

    Worakitkanchanakul, Wannasiri; Imura, Tomohiro; Fukuoka, Tokuma; Morita, Tomotake; Sakai, Hideki; Abe, Masahiko; Rujiravanit, Ratana; Chavadej, Sumaeth; Minamikawa, Hiroyuki; Kitamoto, Dai

    2009-02-01

    Mannosylerythritol lipids (MELs) are glycolipid biosurfactants (BS) abundantly produced from renewable resources by yeast strains of the genus Pseudozyma. In this study, the ternary phase behaviors of two types of MELs, i.e. MEL-A and MEL-B, mixed with water and oil were investigated at 25 degrees C based on polarized optical microscopy and small-angle X-ray scattering (SAXS). When n-decane was used as an oil phase, diacetylated MEL-A formed single-phase water-in-oil (W/O) microemulsion in a remarkably large region. MEL-A, with a negative spontaneous curvature, also formed sponge (L(3)), reverse bicontinuous cubic (V(2)), and lamellar (L(alpha)) phases. Meanwhile, monoacetylated MEL-B, with the opposite configuration of the erythritol moiety, gave single-phase bicontinuous microemulsion and showed a triangular phase diagram dominated by the L(alpha) phase, suggesting that MEL-B has an almost zero spontaneous curvature. Moreover, we succeeded in preparation of oil-in-liquid crystal (O/LC) emulsion in the biphasic L(alpha)+O region of the MEL-B/water/n-decane system. The obtained gel-like emulsion was stable for at least 1 month. These results clearly demonstrated that the difference in the number of acetyl group on the headgroup and/or the chirality of the erythritol moiety drastically changed the phase behavior of MELs. Accordingly, these MELs would be quite distinctive from conventional BS hitherto reported, and would have great potential for the preparation of microemulsion and LC-based emulsion. PMID:19070997

  17. Perspectives on Severe Accident Management by Depressurization and External Water Injection under Extended SBO Conditions

    Three major issues of severe accident management guideline (SAMG) after this sort of extended SBO would be depressurization of the primary system, external water injection and hydrogen management inside a containment. Under this situation, typical SAM actions would be depressurization and external water delivery into the core. However, limited amount of external water would necessitate optimization between core cooling, containment integrity and fission product removal. In this paper, effects of SAM actions such as depressurization and external water injection on the reactor and containment conditions after extended SBO are analyzed using MAAP4 code. Positive and negative aspects are discussed with respect to core cooling and fission product retention inside a primary system. Conclusions are made as following: Firstly, early depressurization action itself has two-faces: positive with respect to delay of the reactor vessel failure but negative with respect to the containment failure and fission product retention inside the primary system. Secondly, in order to prevent containment overpressure failure after external water injection, re-closing of PORV later should be considered in SAM, which has never been considered in the previous SAMG. Finally, in case of external water injection, the flow rate should be optimized considering not only the cooling effect but also the long term fission product retention inside the primary system

  18. A new nano-engineered hierarchical membrane for concurrent removal of surfactant and oil from oil-in-water nanoemulsion

    Qin, Detao; Liu, Zhaoyang; Bai, Hongwei; Sun, Darren Delai; Song, Xiaoxiao

    2016-04-01

    Surfactant stabilized oil-in-water nanoemulsions pose a severe threat to both the environment and human health. Recent development of membrane filtration technology has enabled efficient oil removal from oil/water nanoemulsion, however, the concurrent removal of surfactant and oil remains unsolved because the existing filtration membranes still suffer from low surfactant removal rate and serious surfactant-induced fouling issue. In this study, to realize the concurrent removal of surfactant and oil from nanoemulsion, a novel hierarchically-structured membrane is designed with a nanostructured selective layer on top of a microstructured support layer. The physical and chemical properties of the overall membrane, including wettability, surface roughness, electric charge, thickness and structures, are delicately tailored through a nano-engineered fabrication process, that is, graphene oxide (GO) nanosheet assisted phase inversion coupled with surface functionalization. Compared with the membrane fabricated by conventional phase inversion, this novel membrane has four times higher water flux, significantly higher rejections of both oil (~99.9%) and surfactant (as high as 93.5%), and two thirds lower fouling ratio when treating surfactant stabilized oil-in-water nanoemulsion. Due to its excellent performances and facile fabrication process, this nano-engineered membrane is expected to have wide practical applications in the oil/water separation fields of environmental protection and water purification.

  19. A study of gas lift on oil/water flow in vertical risers

    Brini Ahmed, Salem Kalifa

    2014-01-01

    Gas lift is a means of enhancing oil recovery from hydrocarbon reservoirs. Gas injected at the production riser base reduces the gravity component of the pressure drop and thereby, increases the supply of oil from the reservoir. Also, gas injection at the base of a riser helps to mitigate slugging and thus, improving the performance of the topside facility. In order to improve the efficiency of the gas lifting technique, a good understanding of the characteristics of gas-liq...

  20. Oil/water droplet formation by temperature change in the water/c(16)e(6)/mineral oil system.

    Morales, D; Solans, C; Gutiérrez, J M; Garcia-Celma, M J; Olsson, U

    2006-03-28

    Droplet sizes of oil/water (O/W) nanoemulsions prepared by the phase inversion temperature (PIT) method, in the water/C16E6/mineral oil system, have been compared with those given by a theoretical droplet model, which predicts a minimum droplet size. The results show that, when the phase inversion was started from either a single-phase microemulsion (D) or a two-phase W+D equilibrium, the resulting droplet sizes were close to those predicted by the model, whereas, when emulsification was started from W+D+O or from W+D+Lalpha (Lalpha = lamellar liquid crystal) equilibria, the difference between the measured and predicted values was much higher. The structural changes produced during the phase inversion process have been investigated by the 1H-PFGSE-NMR technique, monitoring the self-diffusion coefficients for each component as a function of temperature. The results have confirmed the transition from a bicontinuous D microemulsion at the hydrophile-lipophile balance (HLB) temperature to oil nanodroplet dispersion in water when it is cooled to lower temperatures. PMID:16548551

  1. Toxicity of water-soluble fractions of biodiesel fuels derived from castor oil, palm oil, and waste cooking oil.

    Leite, Maria Bernadete Neiva Lemos; de Araújo, Milena Maria Sampaio; Nascimento, Iracema Andrade; da Cruz, Andrea Cristina Santos; Pereira, Solange Andrade; do Nascimento, Núbia Costa

    2011-04-01

    Concerns over the sustained availability of fossil fuels and their impact on global warming and pollution have led to the search for fuels from renewable sources to address worldwide rising energy demands. Biodiesel is emerging as one of the possible solutions for the transport sector. It shows comparable engine performance to that of conventional diesel fuel, while reducing greenhouse gas emissions. However, the toxicity of products and effluents from the biodiesel industry has not yet been sufficiently investigated. Brazil has a very high potential as a biodiesel producer, in view of its climatic conditions and vast areas for cropland, with consequent environmental risks because of possible accidental biodiesel spillages into water bodies and runoff to coastal areas. This research determined the toxicity to two marine organisms of the water-soluble fractions (WSF) of three different biodiesel fuels obtained by methanol transesterification of castor oil (CO), palm oil (PO), and waste cooking oil (WCO). Microalgae and sea urchins were used as the test organisms, respectively, for culture-growth-inhibition and early-life-stage-toxicity tests. The toxicity levels of the analyzed biodiesel WSF showed the highest toxicity for the CO, followed by WCO and the PO. Methanol was the most prominent contaminant; concentrations increased over time in WSF samples stored up to 120 d. PMID:21184529

  2. Oil in Water: An Experimental Study of Splashing and Entrainment from Droplets and Jets

    Mittal, Raina; Halper, Kristen; Mittal, Rajat

    2015-11-01

    This study is motivated by the interaction between oil and water that is associated with events such as oil spills, oil slicks and underwater oil leaks. For instance, the impact of rain drops on a floating oil slick can lead to the formation of satellite droplets and oil entrainment into the water, that could subsequently lead to further dispersion of the oil slick. Furthermore, the dynamics of high speed jets of oil in water is relevant to underwater oil leaks, but the motion of such oil jets is not well studied. In the current study, we use high-speed videography with various types of commonly available oils to study the impact of water droplets on oil slicks of varying thicknesses. Results show that an oil slick with intermediate thickness leads to the most significant formation of satellite droplets. This behavior seems to be related to the competing effect of oil viscosity and surface tension on the dynamics of splashing. We also use high-speed videography to study the motion and dispersion of underwater oil jets and correlate the breakup of the jet with the inclination of the jet.

  3. Study of the feasibility of chemical dispersion of viscous oils and water-in-oil emulsions

    The possibility of chemically dispersing high viscosity-oils and water-in-oil emulsions with recently developed modern dispersants is discussed. Laboratory dispersibility tests were performed using the Warren Spring Laboratory (WSL) method and the Institut Francais du Petrole (IFP) dilution method. Larger scale tests were done in the Polludrome. The laboratory methods produced high efficiency results for oils with viscosities of up to 10,000 to 20,000 cSt, depending on dispersant used. For emulsified oils the efficiency was much lower, less than 15 per cent for similar viscosities. In the Polludrome, it was necessary to adopt special strategies such as double dispersant applications to get significant dispersions of emulsions. Results led to the conclusion that laboratory tests do not accurately simulate the dispersion process at sea. Efficiencies are generally overestimated and the test protocol must be adapted to the viscosity range. In addition, emulsions prepared in the laboratory are poorly dispersible, even when subjected to strong mixing. Polludrome tests produce more reliable results and also allow the assessment of alternative treatment strategies. 6 refs., 11 figs

  4. Water injection test and finite element calculations of water percolation through fissured granite

    Within the framework of the German/Swiss Cooperation agreed in 1983 it is intended to test and further develop engineering geological rock-mechanical investigative methods for use in crystalline rock. Partners involved are the Nationale Genossenschaft fuer die Lagerung radioaktiver Abfaelle (NAGRA), the Institut fuer Tieflagerung der Gesellschaft fuer Strahlen- und Umweltforschung (GSF) and the Bundesanstalt fuer Geowissenschaften und Rohstoffe (Federal Institute for Geosciences and Natural Resources - BGR). The NAGRA Rock Laboratory at Grimsel is situated in the Aare and Gotthardt massiv in the Swiss Alps, in the vicinity of the Grimsel Pass. The main access tunnel to the control centre of Grimsel II, of the Kraftwerke Oberhasli AG (Electricity Generating Company), was investigated by NAGRA and an area below the Juchlistock at a depth of approximately 450 - 500 m was chosen for the rock laboratory. The laboratory tunnel and the test sites were cut in 1983/84. This report describes the planning of the modified water injection test and the accompanying investigations proposed of the BGR. 9 refs.; 16 figs

  5. Low-head air stripper treats oil tanker ballast water

    Prototype tests conducted during the winter of 1989/90 have successfully demonstrated an economical design for air stripping volatile hydrocarbons from oily tanker ballast water. The prototype air stripper, developed for Alyeska's Ballast Water Treatment (BWT) facility in Valdez, Alaska, ran continuously for three months with an average removal of 88% of the incoming volatile organics. Initially designed to remove oil and grease compounds from tanker ballast water, the BWT system has been upgraded to a three-step process to comply with new, stringent regulations. The BWT biological oxidation process enhances the growth of bacteria present in the incoming ballast water through nutrient addition, aeration, and recirculation within a complete-mixed bioreactor. The average removal of BETX is over 95%, however, occassional upsets required the placement of a polishing air stripper downstream of the aeration tanks. Packed-tower air stripping was investigated but deemed economically unfeasible for a facility that would only occasionally be used. Twelve feet of excess gravity head in the existing BWT hydraulic gradeline were employed to drive the air stripper feed. This limited the stripper packing depth to 8 feet and imposed constraints on the design of the inlet water and air distributors. Water distribution, air flow, temperature effects, and fouling from constituents in the ballast water were investigated. The prototype was operated under water and air flow conditions similar to those specified for the full-scale unit, and at a range of test conditions above and below the normal design conditions

  6. An oil spill-food chain interaction model for coastal waters

    An oil spill-food chain interaction model, composed of a multiphase oil spill model (MOSM) and a food chain model, has been developed to assess the probable impacts of oil spills on several key marine organisms (phytoplankton, zooplankton, small fish, large fish and benthic invertebrates). The MOSM predicts oil slick thickness on the water surface; dissolved, emulsified and particulate oil concentrations in the water column; and dissolved and particulate oil concentrations in bed sediments. This model is used to predict the fate of oil spills and transport with respect to specific organic compounds, while the food chain model addresses the uptake of toxicant by marine organisms. The oil spill-food chain interaction model can be used to assess the environmental impacts of oil spills in marine ecosystems. The model is applied to the recent Evoikos-Orapin Global oil spill that occurred in the Singapore Strait. (author)

  7. Highly recyclable superhydrophobic sponge suitable for the selective sorption of high viscosity oil from water.

    Wang, Jintao; Geng, Guihong

    2015-08-15

    Inspired by the adhesion of marine mussels, a kind of superhydrophobic oil sorbent was successfully fabricated by robustly immobilizing the micro/nanostructure layer onto the sponge skeleton. The as-prepared sponges possess excellent hydrophobicity with the water contact angle of 154°, which enables the sponge to selectively absorb various oils floating on water surface. The oil sorption capacities of as-prepared sponge for a series of oils can reach 18.3-46.8g/g. The absorbed oil can be recovered by mechanical squeezing and the resulting sponge can be recycled more than 70 cycles while still keeping high oil sorption capability. More importantly, the obtained sponge has excellent affinity to the high viscosity oils. Therefore, the as-prepared sponge might find practical applications in the large-scale removal of oils especially high viscosity oils from water surface. PMID:26092604

  8. Superoleophillic electrospun polystrene/exofoliated graphite fibre for selective removal of crude oil from water

    Alayande, S. Oluwagbemiga; Dare, Enock O.; Olorundare, F. O. Grace; Nkosi, D.; Msagati, Titus A. M.; Mamba, B. B.

    2016-04-01

    During oil spills, the aquatic environment is greatly endangered because oil floats on water making the penetration of sunlight difficult therefore primary productivity is compromised, birds and aquatic organisms are totally eliminated within a short period. It is therefore essential to remove the oil from the water bodies after the spillage. This work reports on the fabrication of oil loving electrospun polystyrene-exofoliated graphite fibre with hydrophobic and oleophillic surface properties. The fibre was applied for the selective adsorption of crude oil from simulated crude oil spillage on water. The maximum oil adsorption capacity of the EPS/EG was 1.15 kg/g in 20 min while the lowest oil adsorption capacity was 0.81 kg/g in 10 min. Cheap oil adsorbent was developed with superoleophillic and superhydrophobic properties.

  9. Laboratory effectiveness testing of water-in-oil emulsion breakers

    The physics and chemistry of water-in-oil emulsions dominate the development of effectiveness tests. Emulsions are variable in stability--this variability is largely dependent on oil type and degree of weathering. These factors complicate the development of a test. Emulsions which have low stability will apparently break easily with chemical emulsion breakers. Broken emulsions will form a foam-like material, called rag, which retains water which is not part of the stable emulsions. Analytical methods used to determine the final stability of the broken or unbroken emulsion were evaluated. Measurements of water content and viscosity measurements show correlation to emulsion stability. Viscosity provides a more reliable measure of emulsion stability but water content measurements are more convenient and are largely used in this study. Twelve tests were developed in the past. Two testing methods have been developed to a usable stage. These tests are described and data using them provided. The effects of mixing time, agent amount, settling time and mixing energy on effectiveness results are presented

  10. Transit time of mixed high pressure injection water and primary loop water in pressurized water reactor cold legs

    During an overcooling transient in a pressurized water reactor, cold water from the high pressure injection (HPI) mixes with the hot primary coolant in the cold leg. The transit time is a gauge for the assessment of the time and the velocity of the mixed flow that passes through the cold leg to the downcomer. Existing data from mixing tests at the Electric Power Research Institute (EPRI)/CREARE and EPRI/SAI facilities are analyzed. By means of models for HPI jet entrainment as well as the propagation of a gravity current, dimensionless correlations have been developed for the transit time and cold water front velocity at stagnant loop flow conditions. Based on this transit time correlation for stagnant loop flow and the limiting condition for large loop flow, a general correlation has been developed to account for the loop flow effect on transit time. These correlations unify a wide range of data obtained from five geometrically different test sections with two fluids (pure water and saline solution). In addition to the geometric factors, the governing dimensionless parameters for the transit time are the HPI jet Froude number, the Froude number for the cold-leg channel, and the ratio of loop flow to HPI flow

  11. Dynamic paraffin deposition experiments for oil-water dispersions created with South Pelto Oil and Garden Banks Condensate

    Bruno, A.; Sarica, C.; Chen, H.; Volk, M. [Tulsa Univ., OK (United States)

    2008-07-01

    This study examined the paraffin deposition for dispersed flows of oil and water and proposed a flow assurance tool for the analysis of production systems. First, paraffin deposition was investigated under two-phase oil-water flow conditions to determine the effect that water concentration has on the deposition process. A newly modified model was then proposed to better predict paraffin deposition compared to currently available models. Two different crude oils with very different physical properties, notably South Pelto Crude Oil and Garden Banks Condensate, were studied in a small-scale flow loop at the Tulsa University Paraffin Deposition Project. A total of 8 oil-water deposition tests, 2 single-phase deposition tests, and 2 inversion point tests were conducted. Four different water cuts were selected for each fluid. The deposit thickness showed a decreasing trend with increasing water cuts for both the South Pelto oil and Garden Banks condensate tests. There was no deposit in South Pelto's water, but the Garden Banks condensate test with 85 per cent water cut generated a very thin and hard deposit film, indicating that there must be a different deposition mechanism other than the ones based on conventional diffusion theory. A reduction in Reynolds number also resulted in a lower paraffin content of the deposits. The volume fraction of water in the deposit was lower than the initial water cut of the mixture for both fluids. Garden Banks had less water fraction in the deposit compared to South Pelto. The preliminary oil-water paraffin deposition model developed by Couto was validated against experimental data. Several modifications were proposed in order to consider water concentration in the deposit and changes in the diffusion coefficient for water dominated flows. Model predictions were in fairly good agreement with experimental results. 1 ref.

  12. Oil eating bacteria

    NONE

    2002-07-01

    The article discusses the unusual technology of using oil-eating bacteria to increase oil recovery. The background for the discovery that bacteria injection into the reservoirs may increase the oil recovery is the study of microbial action in breaking down oil pollution. About 20 per cent of the organisms living naturally in the sea can eat oil. But they need water to grow. In the absence of water, the bacteria produce enzymes to make the oil water soluble and allow them to extract nutrients from them. Oil does not vanish upon being eaten, but enzymes from the digestive process act as effective detergents to wash away the oil, which is then easier to recover.

  13. Numerical Study of Water Control with Downhole Oil-Water Separation Technology

    Yin Khor Yin

    2014-07-01

    Full Text Available The maturing oil fields with increasing water production can pose a challenging produced water handling and disposal issues. This paper presents a numerical study of a motorless hydrocyclone to enhance understanding of the downhole oil-water separation. The turbulence of fluid flow is obtained using K-ε Realizable Turbulence model for complex swirl dominated flow, while the interface between hydrocarbon and water is described using the Discrete Phase model. In this approach, factors which contribute to the hydrocyclone separation instability were discussed. Discussion is then extended to the relationship of residence time with pressure difference between overflow and underflow. These pressure differences are able to relate to pressure condition for high water cut well which require downhole separation.

  14. Metabolism and transfer pattern of tritium in mice after single injection of tritiated water

    Metabolism and transfer pattern of tritium from pregnant mice into fetuses after intra peritoneal injection of tritiated water was investigated. The pregnant mice were divided into three experimental groups: group 1 was injected with tritiated water on the first day of gestation to obtain the transfer coefficient of tritium from pregnant mice into fetuses through placenta; group 2 was injected with tritiated water on the first day of parturition to study the transfer coefficient of tritium from pregnant mice into their babies through milk: group 3 was injected with tritiated water in different periods of gestation. The results show that in group 1, tritiated water was almost uniformly distributed in the whole body, including placenta, foetal membrane and amniotic fluid; placenta did not affect tritium transfer from pregnant mouse into foetus. In groups 2 and 3, concentrations of tritium in the baby's tissues were evidently higher than those in the pregnant mouse, and the transfer coefficients in groups 2 and 3 were higher than that in group 1

  15. An Experimental Study of Oil / Water Flow in Horizontal Pipes

    Elseth, Geir

    2001-07-01

    The purpose of this thesis is to study the behaviour of the simultaneous flow of oil and water in horizontal pipes. In this connection, two test facilities are used. Both facilities have horizontal test sections with inner pipe diameters equal to 2 inches. The largest facility, called the model oil facility, has reservoirs of 1 m{sub 3} of each medium enabling flow rates as high as 30 m{sub 3}/h, which corresponds to mixture velocities as high as 3.35 m/s. The flow rates of oil and water can be varied individually producing different flow patterns according to variations in mixture velocity and input water cut. Two main classes of flows are seen, stratified and dispersed. In this facility, the main focus has been on stratified flows. Pressure drops and local phase fractions are measured for a large number of flow conditions. Among the instruments used are differential pressure transmitters and a traversing gamma densitometer, respectively. The flow patterns that appear are classified in flow pattern maps as functions of either mixture velocity and water cut or superficial velocities. From these experiments a smaller number of stratified flows are selected for studies of velocity and turbulence. A laser Doppler anemometer (LDA) is applied for these measurements in a transparent part of the test section. To be able to produce accurate measurements a partial refractive index matching procedure is used. The other facility, called the matched refractive index facility, has a 0.2 m{sub 3} reservoir enabling mainly dispersed flows. Mixture velocities range from 0.75 m/s to 3 m/s. The fluids in this facility are carefully selected to match the refractive index of the transparent part of the test section. A full refractive index matching procedure is carried out producing excellent optical conditions for velocity and turbulence studies by LDA. In addition, pressure drops and local phase fractions are measured. (author)

  16. Determination of synthetic phenolic antioxidants in edible oils using microvial insert large volume injection gas-chromatography.

    Cacho, Juan Ignacio; Campillo, Natalia; Viñas, Pilar; Hernández-Córdoba, Manuel

    2016-06-01

    Three synthetic phenolic antioxidants, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT) and tert-butyl hydroquinone (TBHQ), were determined in different edible vegetable oil samples. The analyses were carried out by gas chromatography-mass spectrometry (GC-MS) using microvial insert large volume injection (LVI). Several parameters affecting this sample introduction step, such as temperatures, times and gas flows, were optimised. Quantification was carried out by the matrix-matched calibration method using carvacrol as internal standard, providing quantification limits between 0.08 and 0.10 ng g(-1), depending on the compound. The three phenolic compounds were detected in several of the samples, BHT being the most frequently found. Recovery assays for oil samples spiked at two concentration levels, 2.5 and 10 ng g(-1), provided recoveries in the 86-115% range. PMID:26830586

  17. Versatile fabrication of magnetic carbon fiber aerogel applied for bidirectional oil-water separation

    Li, Yong; Zhu, Xiaotao; Ge, Bo; Men, Xuehu; Li, Peilong; Zhang, Zhaozhu

    2015-09-01

    Fabricating functional materials that can solve environmental problems resulting from oil or organic solvent pollution is highly desired. However, expensive materials or complicated procedures and unidirectional oil-water separation hamper their applications. Herein, a magnetic superhydrophobic carbon fiber aerogel with high absorption capacity was developed by one-step pyrolysis of Fe(NO3)3-coated cotton in an argon atmosphere. The obtained aerogel can selectively collect oils from oil-polluted region by a magnet bar owing to its magnetic properties and achieves fast oil-water separation for its superhydrophobicity and superoleophilicity. Furthermore, the aerogel performs recyclable oil absorption capacity even after ten cycles of oil-water separation and bears organic solvent immersion. Importantly, the obtained aerogel turns to superhydrophilic and underwater superoleophobic after thermal treatment, allowing it as a promising and efficient material for bidirectional oil-water separation and organic contaminants removal.

  18. A Review of Laboratory-Scale Research on Upgrading Heavy Oil in Supercritical Water

    Ning Li; Bo Yan; Xian-Ming Xiao

    2015-01-01

    With the growing demand for energy and the depletion of conventional crude oil, heavy oil in huge reserve has attracted extensive attention. However, heavy oil cannot be directly refined by existing processes unless they are upgraded due to its complex composition and high concentration of heteroatoms (N, S, Ni, V, etc.). Of the variety of techniques for heavy oil upgrading, supercritical water (SCW) is gaining popularity because of its excellent ability to convert heavy oil into valued, clea...

  19. The possible influences of dietary oil supplementation in ameliorating metabolic disturbances and oxidative stress in Alloxan injected rats

    Diabetes mellitus (DM) is a multifactor disease that is associated with a number of different metabolic abnormalities. Clinical research has confirmed the efficacy of several plant extracts in the modulation of oxidative stress associated with DM. The present work was conducted to examine the protective or treating effects of two different dietary oils rich in medium chain fatty acids (MCFA) as coconut oil (CO) or omega-3-polyunsaturated fatty acids (ω-3-PUFAs)as flaxseed oil (FO) on the severity of DM induced experimentally by alloxan injection. Wistar strain albino rats (17 Og) were fed commercial rat chow diet supplemented with either CO or FO for four weeks. A single dose of alloxan (150 mg/kg) resulted in hyperglycemia, decreases in serum insulin, thyroxine (T4), and high density lipoprotein-cholesterol levels, elevated triglycerides, total cholesterol and low density lipoprotein-cholesterol concentrations. Concurrent with those changes, an increased liver malonaldehyde (MDA) level was observed. This oxidative stress was related to decreases in superoxide dismutase (SOD) activity and glutathione (GSH) content in the liver of alloxan diabetic rats. Oils supplementation after diabetes induction ameliorated hyperglycemia, increased insulin and thyroxine hormone levels, improved lipid profiles, blunted the increase in MDA, modulated the levels of hepatic SOD activity and GSH content of alloxan treated rats. It could be suggested that each of CO or FO could be used as antidiabetic complement in case of DM. This may be related to their anti oxidative properties

  20. Experimental Investigations of CI Engine by using Different Blends of Neat Karanja Oil and Diesel at Different Injection Pressures

    Dr. A. G. Matani

    2014-06-01

    Full Text Available In the present Investigation experimental work has been carried out to analyze the performance characteristics of single cylinder compression ignition direct ignition fuelled with blends of neat Karanja oil and diesel at different injection pressure. As the blending with diesel increases the viscosity decreases. Brake thermal efficiency of diesel fuel is nearly equal to the brake thermal efficiency of blends10B and 20B. Brake specific fuel consumption increases as the blending proportion increases due to low calorific value of blends.

  1. Investigating the factors influencing recovery of asphaltenic oil by water and miscible CO{sub 2} flooding

    Chukwudeme, Edwin Andrew

    2009-09-15

    Conclusions that may be drawn from this work on the influence of CO{sub 2}, temperature, pressure and water composition on the recovery of asphaltenic oil by water and CO{sub 2} flooding are as follows: Asphaltene is found to alter outcrop chalk wettability from water-wet to more oil wet, which influence oil recovery by miscible CO{sub 2} and water flooding. Modification of Hirschberg solubility model for predicting asphaltene deposition has been done to account for the effect of CO{sub 2} fraction in the liquid phase during miscible flooding. This is done based on data from this work and literature. This model made it possible to isolate the effect of CO{sub 2} fraction in liquid phase on asphaltene deposition during miscible flooding. Hence, determine the critical fraction of CO{sub 2} that initiate the asphaltene deposition. The critical fraction of CO{sub 2} is estimated to be between 17 to 42 mol percent (mol%), with 33 mol% as average value. A ternary diagram is developed and is based on solubility parameter ratio (S.P.R) and molar volume ratio (V{sub CO2}/V{sub L}) and their relation to asphaltene deposition using data from this work and literature. From this data, it may be suggested that S.P.R is a determining factor for asphaltene deposition during CO{sub 2} flooding, which is not unreasonable since it is influenced by the molar volume ratio, hence temperature, pressure and composition. It is interesting to see a linear relationship between asphaltene precipitation and pressure drop regardless of the flowing pressure at isothermal condition. This is tested for under-saturated fluids. Oil recovery by miscible CO{sub 2} flooding shows low ultimate oil recovery with increasing temperature and pressure for asphaltenic oil compared to non-asphaltenic. CO{sub 2} flooding is found to be plausible for asphaltenic reservoir at lower temperature (< 70 C). From simulation studies, EOR by CO{sub 2} initiated after at least three years of water injection show the

  2. Heavy oil reservoir evaluation : performing an injection test using DST tools in the marine region of Mexico

    Loaiza, J.; Ruiz, P. [Halliburton, Mexico City (Mexico); Barrera, D.; Gutierrez, F. [Pemex, Mexico City (Mexico)

    2010-07-01

    This paper described an injection test conducted to evaluate heavy oil reserves in an offshore area of Mexico. The drill-stem testing (DST) evaluation used a fluid injection technique in order to eliminate the need for artificial lift and coiled tubing. A pressure transient analysis method was used to determine the static pressure of the reservoir, effective hydrocarbon permeability, and formation damage. Boundary effects were also characterized. The total volume of the fluid injection was determined by analyzing various reservoir parameters. The timing of the shut-in procedure was determined by characterizing rock characteristics and fluids within the reservoir. The mobility and diffusivity relationships between the zones with the injection fluids and reservoir fluids were used to defined sweep fluids. A productivity analysis was used to predict various production scenarios. DST tools were then used to conduct a pressure-production assessment. Case histories were used to demonstrate the method. The studies showed that the method provides a cost-effective means of providing high quality data for productivity analyses. 4 refs., 2 tabs., 15 figs.

  3. Effects of preheating of crude palm oil (CPO) on injection system, performance and emission of a diesel engine

    Crude palm oil (CPO) is one of the vegetable oils that have potential for use as fuels for diesel engines. CPO is renewable, and is safe and easy to handle. However, at room temperature (30-32 deg C) CPO has a viscosity about 10 times higher than that of diesel. To lower CPO's viscosity to the level of diesel's viscosity, a heating temperature of at least 92 deg C is needed. At this temperature, there is a concern that the close-fitting parts of the injection system might be affected. This study focused on finding out the effects of preheating of fuel on the injection system utilising a modified method of friction test, which involves injecting fuel outside the combustion chamber during motoring. Results show that preheating of CPO lowered CPO's viscosity and provided smooth fuel flow, but did not affect the injection system, even heating up to 100 deg C. Nevertheless, heating up to such a high temperature offered no benefits in terms of engine performance. However, heating is necessary for smooth flow and to avoid fuel filter clogging. Both can be achieved by heating CPO to 60 deg C. Combustion analyses comparisons between CPO and diesel found that CPO produced a higher peak pressure of 6%, a shorter ignition delay of 2.6 deg, a lower maximum heat release rate and a longer combustion period. Over the entire load range, CPO combustion produced average CO and NO emissions that were 9.2 and 29.3% higher, respectively, compared with those from diesel combustion. (Author)

  4. Effect of Water Stress on Physiological Parameters of oil Seed Rape (Brassica napus)

    Ali akbar Kamgar Haghighi; Ali Shabani; alireza Spaskhah; Yahya Emami; Toraj Honar

    2009-01-01

    Oil seed rape (Brasica napus) is an important crop, which is cultivated in Iran for oil production. As a management practice deficit irrigation strategy is applied to cope with water shortages, especially during drought periods. This research was conducted to study the effect of water stress on physiological parameter of oil seed rape in the experimental research field of Collage of Agriculture (of shiraz university) during 2004- 2005 and 2005- 2006. Licord cultivar of oil seed rape was plant...

  5. An effective method to predict oil recovery in high water cut stage

    刘志斌; 刘浩翰

    2015-01-01

    The water flooding characteristic curve method based on the traditional regression equation between the oil and water phase permeability ratio and the water saturation is inappropriate to predict the oil recovery in the high water cut stage. Hence, a new water flooding characteristic curve equation adapted to the high water cut stage is proposed to predict the oil recovery. The water drive phase permeability experiments show that the curve of the oil and water phase permeability ratio vs. the water saturation, in the semi-logarithmic coordinates, has a significantly lower bend after entering the high water cut stage, so the water flooding characteristic curve method based on the traditional regression equation between the oil and water phase permeability ratio and the water saturation is inappropriate to predict the oil recovery in the high water cut stage; therefore, a new water flooding characteristic curve equation based on a better relationship betweenln(kro/krw)andwS is urgently desirable to be established to effectively and reliably predict the oil recovery of a water drive reservoir adapted to a high water cut stage. In this paper, by carrying out the water drive phase permeability experiments, a new mathematical model between the oil and water phase permeability ratio and the water saturation is established,with the regression analysis method and an integration of the established model, the water flooding characteristic curve equation adapted to a high water cut stage is obtained. Using the new water flooding characteristic curve to predict the oil recovery of the GD3-block of the SL oilfield and the J09-block of the DG oilfield in China, results with high predicted accuracy are obtained.

  6. Flow velocity effect on the corrosion/erosion in water injection systems

    The main causes of fails at water injection lines on the secondary petroleum recovery systems are related with corrosion/erosion problems which are influenced by the flow velocity, the presence of dissolved oxygen, solids in the medium and the microorganisms proliferation. So too, this corrosion process promotes the suspended solids generation which affects the water quality injected, causing wells tamponage and loss of injectivity, with the consequent decrease in the crude production. This situation has been impacted in meaning order at the production processes of an exploration enterprise which utilizes the Maracaibo lake as water resource for their injection by pattern projects. Stating that, it was developed a study for determining in experimental order the effect of flow velocity on the corrosion/erosion process joined to the presence of dissolved oxygen which allows to determine the optimum range of the said working velocity for the water injection systems. This range is defined by critical velocities of bio layers deposition and erosion. They were realized simulation pilot tests of the corrosion standard variables, concentration of dissolved oxygen and fluid velocity in the injection systems with filtered and non filtered water. For the development of these tests it was constructed a device which allows to install and expose cylindrical manometers of carbon steel according to predetermined conditions which was obtained the necessary information to make correlations the results of these variables. Additionally, they were determined the mathematical models that adjusts to dynamical behavior of the corrosion/erosion process, finding the optimum range of the flow velocity for the control of this process, being necessary to utilize the following techniques: Scanning Electron Microscopy (SEM), X-ray dispersion analysis (EDX) for encourage the surface studies. They were effected morphological analysis of the surfaces studies and the values were determined of

  7. Effect of water-extractable carboxylic acids in crude oil on wettability in carbonates

    Fathi, Seyed Jafar; Austad, Tor; Strand, Skule

    2011-01-01

    The acidic components of the crude oil have a profound effect on the initial wetting conditions and possible wettability alteration by seawater in carbonates. In this work, three types of crude oils with different concentrations of water-extractable acidic components were prepared from a base oil: (1) a reference oil, RES-40 [acid number (AN) = 1.90 mg of KOH/g and base number (BN) = 0.51 mg of KOH/g], (2) a treated oil depleted in water-extractable acidic components, termed treated oil (TO) ...

  8. Development of Polymer Gel Systems to Improve Volumetric Sweep and Reduce Producing Water/Oil Ratios

    G. Paul Willhite; Stan McCool; Don W. Green; Min Cheng; Feiyan Chen

    2005-12-31

    Gelled polymer treatments are applied to oil reservoirs to increase oil production and to reduce water production by altering the fluid movement within the reservoir. This report describes the results of a 42-month research program that focused on the understanding of gelation chemistry and the fundamental mechanisms that alter the flows of oil and water in reservoir rocks after a gel treatment. Work was conducted on a widely applied system in the field, the partially hydrolyzed polyacrylamide-chromium acetate gel. Gelation occurs by network formation through the crosslinking of polyacrylamide molecules as a result of reaction with chromium acetate. Pre-gel aggregates form and grow as reactions between chromium acetate and polyacrylamide proceed. A rate equation that describes the reaction between chromium acetate and polymer molecules was regressed from experimental data. A mathematical model that describes the crosslinking reaction between two polymer molecules as a function of time was derived. The model was based on probability concepts and provides molecular-weight averages and molecular-weight distributions of the pre-gel aggregates as a function of time and initial system conditions. Average molecular weights of pre-gel aggregates were measured as a function of time and were comparable to model simulations. Experimental methods to determine molecular weight distributions of pre-gel aggregates were unsuccessful. Dissolution of carbonate minerals during the injection of gelants causes the pH of the gelant to increase. Chromium precipitates from solution at the higher pH values robbing the gelant of crosslinker. Experimental data on the transport of chromium acetate solutions through dolomite cores were obtained. A mathematical model that describes the transport of brine and chromium acetate solutions through rocks containing carbonate minerals was used to simulate the experimental results and data from literature. Gel treatments usually reduce the permeability

  9. The Use of Demulsifiers for Separating Water from Anthracene Oil

    Zečević, N.

    2008-01-01

    The main feedstocks for the production of oil-furnace carbon black are different kinds of liquid hydrocarbons. The quality and utilization of oil-furnace carbon black mainly depends on the type of liquid hydrocarbons contained in the oil feedstocks.In practice, both carbochemical and petrochemical oils are used as feedstock sources. Carbochemical oils are fractions obtained during coal tar distillation. Anthracene oil is one of these oils. Depending on the conditions of distillation, coal tar...

  10. Conducting SAGD in shoreface oil sands with associated basal water

    Peterson, J.A.; Riva, D.T.; Connelly, M.E.; Solanki, S.C.; Edmunds, N.R. [Laricina Energy Ltd., Calgary, AB (Canada)

    2009-07-01

    The use of steam assisted gravity drainage (SAGD) processes has been concentrated around the McMurray Formation in the eastern Athabasca deposit. This paper discussed a SAGD scheme configured to maximize bitumen recovery from shoreface oil sands in the Grand Rapids formation in the Wabasca area. The region features clean sand with a homogenous and continuous reservoir pay. Producer wells were placed within the basal water zone at the base of the porosity region. A scaled 2-D physical model with an active aquifer system was used to examine well configurations in relation to oil-water content and their impacts on resource recovery. Simulations were conducted to compare the well placements. Results of the study showed that fluids flowed towards the producer in a radial pattern. Bitumen was drawn down towards the bottom water leg regardless of whether the chamber pressure was above that of the aquifer. Thirty-eight per cent more bitumen was produced as a result of increased reservoir sweep. It was concluded that placement of the producer well at the base of the porous interval improved the overall economics of the project. 2 refs., 3 tabs., 10 figs.

  11. And now for something completely different: condensation induced water hammer and steam assisted gravity drainage in the Athabasca Oil Sands

    Most people will have been exposed to some aspect of the debate about the Athabasca Oil Sands in North-Eastern Alberta and the significant role that the oil sands are expected to play in supplying conventional fossil fuels. Part of the bitumen is recovered from mines and part is recovered from in situ projects utilizing the Steam Assisted Gravity Drainage Process (SAGD). SAGD utilizes a considerable amount of steam, that is injected into geological formations. Hot water, bitumen and some vapour are recovered from the production wells. With significant steam generation, transmission and injection, there is the very real possibility of condensation induced water hammers. There have been a number of catastrophic failures to date. Two major failures will be highlighted: MEG Energy had a steam distribution line fail at the Christina Lake project. Large parts of the pipe, weighing some 2500 kg, were thrown some 800 meters into the bush during the failure; and, Total had a steam release (blowout) at their Joslyn property due to a loss of caprock containment. A number of causes have been postulated. While it is agreed that there was sufficient downhole pressure to hydraulically fracture the formation, questions have been raised about the contribution that condensation induced water hammer made. The situations that have occurred will be outlined, along with some preliminary thermal hydraulic work. The intent of the paper is to provide interesting background information on the in situ oil sands industry. More importantly, to show some interesting and broader applications of thermalhydraulics developed in the nuclear industry. The expertise developed may have potential markets, with some adaptation, to the oil sands industry. Finally, there has been some discussion about using nuclear power for steam generation in the oil sands. (author)

  12. Analysis of Primary External Cooling Water Injection Mass during Extended SBO in Wolsong No.1

    The targets of severe accident management are to remove continuous core heat, to maintain containment integrity, and to minimize fission product (FP) release into the environment. The strategy for ceaseless removal of core heat is a key method, because severe accident progression can be mitigated and FP released outside fuels can be scrubbed due to cover fuels with water. One of government requirements according to inspected results of all nuclear power plants in Korea following Fukushima accident is to install external cooling water injection paths for core cooling. The purpose of this paper is to analyze mass of primary external cooling water injection which is going to be installed in Wolsong No.1. The purpose of the analysis is to identify necessary cooling water mass during seven days. Six injections for the analysis period need to remove primary core heat, and total mass for six injections is about 1370 tones. ECWIL is useful for severe accident mitigation except containment failure. Methods for decrease in containment pressure with ECWIL are needed for preventing from containment failure

  13. Characteristics of remaining oil viscosity in water-and polymer-flooding reservoirs in Daqing Oilfield

    2010-01-01

    The experimental analysis of 21 crude oil samples shows a good correlation between high molecular-weight hydrocarbon components (C 40+) and viscosity.Forty-four remaining oil samples extracted from oil sands of oilfield development coring wells were analyzed by high-temperature gas chromatography (HTGC),for the relative abundance of C 21-,C 21-C 40 and C 40+ hydrocarbons.The relationship between viscosity of crude oil and C 40+ (%) hydrocarbons abundance is used to expect the viscosity of remaining oil.The mobility characteristics of remaining oil,the properties of remaining oil,and the next displacement methods in reservoirs either water-flooded or polymer-flooded are studied with rock permeability,oil saturation of coring wells,etc.The experimental results show that the hydrocarbons composition,viscosity,and mobility of remaining oil from both polymer-flooding and water-flooding reservoirs are heterogeneous,especially the former.Relative abundance of C 21- and C 21-C 40 hydrocarbons in polymer-flooding reservoirs is lower than that of water-flooding,but with more abundance of C 40+ hydrocarbons.It is then suggested that polymer flooding must have driven more C 40- hydrocarbons out of reservoir,which resulted in relatively enriched C 40+,more viscous oils,and poorer mobility.Remaining oil in water-flooding reservoirs is dominated by moderate viscosity oil with some low viscosity oil,while polymer-flooding mainly contained moderate viscosity oil with some high viscosity oil.In each oilfield and reservoir,displacement methods of remaining oil,viscosity,and concentration by polymer-solution can be adjusted by current viscosity of remaining oil and mobility ratio in a favorable range.A new basis and methods are suggested for the further development and enhanced oil recovery of remaining oil.

  14. Cooling Effect of Water Injection on a High-Temperature Supersonic Jet

    Jing Li; Yi Jiang; Shaozhen Yu; Fan Zhou

    2015-01-01

    The high temperature and high pressure supersonic jet is one of the key problems in the design of solid rocket motors. To reduce the jet temperature and noise, cooling water is typically injected into the exhaust plume. Numerical simulations for the gas-liquid multiphase flow field with mixture multiphase model were developed and a series of experiments were carried out. By introducing the energy source terms caused by the vaporization of liquid water into the energy equation, a coupling solu...

  15. Oil and Water Don't Mix: The Gulf Coast Oil Disaster as a Preschool Social Studies Lesson

    Kruse, Tricia

    2010-01-01

    On April 20, 2010, an offshore oil-drilling platform exploded, spilling millions of gallons of oil into the gulf. From Louisiana to the Gulf Coast of Florida the effects are being felt by fisherman, shrimpers, dive charters, and other hardworking folks who depend on the water for their livelihood. But there is another population in these coastal…

  16. Effect of Addition of Cosurfactant on the Phase Behaviour of Oil-in-water Aminosilicone Oil Microemulsion

    Zheng Hong LUO; Xiao Li ZHAN; Peng Yong YU

    2004-01-01

    Stable and transparent aminosilicone oil microemulsion of the average particle size below 0.05 micron was prepared. The interaction of the aminosilicone oil, water, complex surfactants and cosurfactant was studied by part pseudoternary phase diagram. The effect of cosurfactants (such as alcohol) and the mechanism of its effect on the phase behaviour of the pseudoternary system were investigated.

  17. Ignition and combustion behaviour of vegetable oils after injection in a constant volume combustion chamber

    The ignition and combustion behaviour of vegetable oils to be used as fuel in combustion engines was researched using a constant volume combustion chamber. The chosen vegetable oils were characterised using the two structure indices average number of carbon atoms AC and average number of double bonds ADB. The structure indices were derived from the composition of the analysed fatty acids. The performance of these two structure indices in estimating differences in fuel properties, such as density, net calorific value, elementary composition and surface tension, was shown. The structure indices were also used to explain ignition and combustion behaviour. Differences in ignition and combustion behaviour were primarily recognised in the ignition delay and the first phase of combustion (premixed combustion). No differences were observed between the vegetable oils in subsequent phases of combustion. The longer the ignition delay, the higher the share was of premixed combustion. Models for the prediction of the ignition delay were developed using ADB. The ignition delay rises with increasing ADB. Differences in AC had no significant impact on the ignition delay. Hence, vegetable oils with a high ignition quality are characterised by a low amount of double bonds. The developed models can be used for estimation of the ignition quality and combustion behaviour of unknown vegetable oils. - Highlights: • Ten vegetable oils and two vegetable oil mixtures were tested. • Two suitable structure indices were developed from the fatty acid composition to predict fuel properties. • Differences were detected in the ignition behaviour and in the first combustion phase. • Vegetable oils with short ignition delay are characterised by a low number of double bonds

  18. Janus particles at the planar water-oil interface

    Chen, Qian; Jiang, Shan; Granick, Steve

    2008-03-01

    Amphiphilic Janus particles (hydrophobic on one side, hydrophilic on the other) were placed at the planar water-oil interface at various surface coverage and found to self-assemble into two-dimensional crystals with long-range hexagonal order, which we studied by fluorescence and phase contrast microscopy. Surprising dependence is observed not only on the surface chemical makeup of the hydrophilic side but also on the Janus balance (i.e. the relative sizes of hydrophobic and hydrophilic portions), which is analogous to the HLB balance that characterizes molecular surfactants.

  19. Orange oil/water nanoemulsions prepared by high pressure homogenizer

    The objective of this work was to use the high-pressure homogenizer (HPH) to prepare stable oil/water nanoemulsions presenting narrow particle size distribution. The dispersions were prepared using nonionic surfactants based on ethoxylated ether. The size and distribution of the droplets formed, along with their stability, were determined in a Zetasizer Nano ZS particle size analyzer. The stability and the droplet size distribution in these systems do not present the significant differences with the increase of the processing pressure in the HPH). The processing time can promote the biggest dispersion in the size of particles, thus reducing its stability. (author)

  20. Gasification of diesel oil in supercritical water for fuel cells

    Pinkwart, Karsten; Bayha, Thomas; Lutter, Wolfgang; Krausa, Michael

    Experiments have demonstrated the reforming of hydrocarbons in supercritical water. The hydrocarbons were reformed in a continuously operated tubular V4A reactor. The influences of four different commercial steam reforming catalysts were analysed. The experimental results showed that n-decane can be converted to a hydrogen-rich gas. Furthermore, experiments with diesel oil showed the possibility of fuel conversion at low temperature with commercial steam reforming catalysts. Low temperatures and the use of catalysts lead to inhibition of coke formation during the process. The supercritical reforming offers the possibility of a new low temperature hydrocarbon conversion process to hydrogen for fuel cell applications.

  1. Modern high pressure gas injection centrifugal compressor for enhanced oil recovery

    Almasi, Amin [Worley Parsons Services Pty Ltd, Brisbane, NSW (Australia). Mechanical Dept.

    2011-12-15

    This article covers different design, manufacturing, performance and reliability aspects of modern high pressure gas re-injection centrifugal compressor units. Advances and recent technologies on critical areas such as rotor dynamics, anti-surge system, rotating stall prevention, auxiliary systems, material selection, shop performance tests and gas sealing are studied. Three different case studies for modern re-injection machines including 12 MW, 15 MW and 32 MW trains are presented. (orig.)

  2. USANS of concentrated oil-in-water emulsions

    Full text: USANS spectra were measured on various oil-in-water (D2O) emulsions stabilised with SDS at oil concentrations from 2 to 50 vol% with the perfect crystal diffractometer at the thermal neutron beam port, BT-5, at NIST. The systems proved to be extremely strong scatterers and excellent signal:noise was obtained with short counting times. Preliminary analysis of the data yielded results consistent with expectations. The Porod limit behaves as expected with volume fraction; spectra are superimposable at wide angles (10 -3 -1) -2 ) when scaled by volume fraction, and fits to the USANS spectra in this range are broadly in agreement with average droplet sizes derived from electroacoustic measurements. The droplet size depends only weakly on preparation conditions. Some systematic effects of sample history are however readily discerned from the spectra. For example, spectra of emulsions prepared at volume fraction 0.10 differ from those prepared at 0.50 and subsequently diluted at low angles (q(1/Angstroms) -3 ). The individual spectra are consistent with either (i) a small population of large droplets coexisting with the main droplet population, or (ii) large aggregates formed by attractions between the droplets. Both lead to a high scattered intensity at the lowest angles, and to an unphysical polydispersity if fitted to a unimodal log-normal distribution. This is consistent with the behaviour of the scattering invariant, q*, which yields low oil volume fractions, i.e. The contribution to q* from very large structures is not detected

  3. Rheology of Sodium Caseinate Stabilized Oil-in-Water Emulsions

    Dickinson; Golding

    1997-07-01

    We report on shear rheological measurements at 30°C of fine oil-in-water emulsions (volume-surface average diameter tetradecane as the dispersed phase (10, 35, or 45 vol%). Strong sensitivity of rheological behavior to total protein concentration was indicated by both steady-state viscometry and small-deformation oscillatory experiments. The behavior can be classified into three types, depending on the protein/oil ratio. (1) Emulsions containing insufficient protein for (near-) saturation protein surface coverage develop a time-dependent increase in low-stress apparent viscosity and associated shear-thinning behavior; this can be attributed to bridging flocculation. (2) Emulsions having full protein surface coverage but relatively little excess unadsorbed protein in the continuous phase are stable Newtonian liquids. (3) Emulsions containing a substantial excess of unadsorbed sodium caseinate exhibit considerable pseudoplasticity which can be attributed to depletion flocculation. Taken as a whole, the time-dependent rheological properties for this set of emulsions as a function of protein content and oil volume fraction are largely consistent with our previous results on the creaming stability and the particle gel microstructure for these same emulsion systems. In particular, the reversible flocculation of emulsion samples of high protein content is readily explicable in terms of depletion flocculation of droplets by unadsorbed protein existing in the form of approximately spherical caseinate submicelles. PMID:9241217

  4. Asphaltene and solids-stabilized water-in-oil emulsions

    Sztukowski, Danuta M.

    Water-in-crude oil emulsions are a problem in crude oil production, transportation, and processing. Many of these emulsions are stabilized by asphaltenes and native oilfield solids adsorbed at the oil-water interface. Design of effective emulsion treatments is hampered because there is a lack of understanding of the role asphaltenes and solids play in stabilizing these emulsions. In this work, the structural, compositional and rheological properties of water/hydrocarbon interfaces were determined for model emulsions consisting of water, toluene, heptane, asphaltenes and native oilfield solids. The characteristics of the interface were related to the properties of asphaltenes and native solids. Emulsion stability was correlated to interfacial rheology. A combination of vapour pressure osmometry, interfacial tension and emulsion gravimetric studies indicated that asphaltenes initially adsorb at the interface as a monolayer of self-associated molecular aggregates. It was demonstrated why it is necessary to account for asphaltene self-association when interpreting interfacial measurements. The interfacial area of Athabasca asphaltenes was found to be approximately 1.5 nm2 and did not vary with concentration or asphaltene self-association. Hence, more self-associated asphaltenes simply formed a thicker monolayer. The interfacial monolayer observed in this work varied from 2 to 9 nm in thickness. The asphaltene monolayer was shown to adsorb reversibly only at short interface aging times. The film gradually reorganizes at the interface to form a rigid, irreversibly adsorbed network. The elastic and viscous moduli can be modeled using the Lucassen-van den Tempel (LVDT) model when the aging time is less than 10 minutes. An increase in film rigidity can be detected with an increase in the total elastic modulus. Increased film rigidity was shown to reduce the rate of coalescence in an emulsion and increase overall emulsion stability (reduce free water resolution). The rate of

  5. Countermeasures for oil spills in cold water - In the case of Japan

    The need for Japan to develop an adequate system for dealing with large-scale oil spills on the open seas was made clear when a Russian tanker Nakhodka caused large-scale oil pollution along the coastline of Japan in early 1997. The event involved 6,000 m3 of spilled oil. It was emphasized that the much needed system to combat oil spills on the open sea should include countermeasures for dealing with oil spills in cold water. This sub-system should be part of Japan's overall system for dealing with oil spills at sea. Several recommendations were made, including the need to evaluate the effects of oil spills on the marine environment and to prepare a set of environmental sensitivity index (ESI) maps for shorelines bordering on cold water. Methods must also be developed to predict the spreading rate of spilled oil. The process of emulsification and sedimentation of spilled oil must also be studied. 5 refs

  6. CFD analysis of effects of cross flow on water injection of DVI+

    Highlights: • CFD analysis addressing the flow distribution in downcomer with ECBD was carried out. • Effect of water jet velocity on ECBD bypass fraction was predicted. • Effect of cross flow velocity on ECBD bypass fraction was discussed. - Abstract: Recently constructed and proposed nuclear power plants have increasingly adopted the direct vessel injection (DVI) type emergency core cooling system (ECCS) instead of the conventional cold leg injection (CLI) type one. For such a design, concern has been raised that the ECC water injected through the DVI nozzle is more easily bypassed out to the broken cold leg by a cross flow of high-speed steam in the downcomer than that of CLI during the reflood phase in the event of a large break loss-of-coolant accident (LBLOCA). Thus, an emergency core barrel duct (ECBD) has been introduced to reduce the ECC bypass in an advanced DVI (DVI+) system for the new APR+ design. The present study numerically investigated the effects of the cross flow on the DVI+ water injection by computational fluid dynamics (CFD) analysis of a simple air–water system with the ECBD. The performance of ECBD, i.e., bypass fraction of the injected water due to the cross flow with variation of Reynolds number of the cross flow was calculated. It was found that the inflow rate into the ECBD is strongly dependent on the cross flow. To consider the effect of the ECBD in a system thermal–hydraulic code calculation, the loss coefficient at the junction of the ECBD inlet was determined as a function of Reynolds number of the cross flow using the CFD results

  7. An experimental study on tissue damage following subcutaneous injection of water soluble contrast media

    The water soluble contrast media cause tissue necrosis infrequently by extravasation during intravenous injection in various radiological examinations. However, it has not been well documented that what kind and what concentration of contrast media can cause tissue necrosis. And also, the mechanism of tissue necrosis by extravasated contrast media has not been well known. The purpose of this experimental study was to evaluate the frequency and severity of tissue damage following subcutaneous injection of various water soluble contrast media to investigate the characteristics of the contrast media acting on the tissue damage, and to provide the basic data for the clinical application. Meglumine ioxithalamate,sodium and meglumine ioxithalamate, iopromide, iopamidol, ioxaglate,meglumine diatrizoate and sodium diatrizoate of various iodine content and osmolality were injected into subcutaneous tissue of the dorsum of 970 feet of 485 rats. The tissue reaction of injection sites were grossly examined with period from 1 day to 8 weeks after the injection. Representative gross changes were correlated with histologic findings. The results were as follows; 1. The basic tissue damage by extravasated contrast media was acute and chronic inflammatory reaction of the soft tissue with subsequent progress into the hemorrhagic and necrotizing lesion. 2. Lager volume of contrast media caused more severe tissue damage. 3. Contrast media of higher osmolality caused more severe tissue damage. 4. At same osmolality, contrast media of higher iodine content caused more severe tissue damage

  8. Studies of water-in-oil emulsions : long-term stability, oil properties, and emulsions formed at sea

    The stability of water-in-oil emulsions of more than 100 oils, including a sample from the ERIKA spill, were determined. An emulsion must be characterized as stable, meso-stable or unstable before its unique properties can be characterized. The samples from this study were analysed after one year of storage to study the change in properties over time. The samples were made in a rotary agitator and then their rheometric, viscosity and water content characteristics were studied. Observations were made on the appearance of the emulsions and were used to classify them. A summary of the property changes for the different types of emulsions over three time periods was tabulated. It was confirmed that water can occur in oil as entrained water where large droplets are suspended temporarily by viscous forces. Results also showed that the viscosity of a stable emulsion at a shear rate of one reciprocal second is about three times greater than that of the starting oil, and is highly elastic. An unstable emulsion generally has a viscosity of up to 20 time greater than that of the starting oil and is not elastic. A meso-stable emulsion has properties between stable and unstable and breaks down within a few days. It was concluded that asphaltene and resin content plus the viscosity of the starting oil are the most important property factors in determining what type of water-in-oil state is produced. 4 refs., 6 tabs

  9. Use of oil-in-water emulsions to control fungal deterioration of strawberry jams.

    Ribes, Susana; Fuentes, Ana; Talens, Pau; Barat, José M

    2016-11-15

    This work aimed to control the fungal deterioration of strawberry jams. The antifungal activity of the clove, cinnamon leaf, lemon and mandarin essential oils and their effectiveness in oil-in-water emulsions were evaluated. According to the results obtained, only clove and cinnamon leaf oils were selected to prepare emulsions. All the tested emulsions were stable, independently the amount of polymer and essential oil used. Essential oil loss was affected by the amount of polymer employed to prepare the emulsions. The oil-in-water emulsions with 5.0mg/g xanthan gum, and with 0.55mg/g clove or 0.65mg/g cinnamon leaf essential oil, were used for the in vivo tests. The jams prepared with the oil-in-water emulsions showed a lower fungal decay compared with jams without emulsion. The present work demonstrated that emulsions can be employed to prevent strawberry jam mould spoilage. PMID:27283611

  10. Performance of single cylinder, direct injection Diesel engine using water fuel emulsions

    A single cylinder Diesel engine study of water-in-Diesel emulsions was conducted to investigate the effect of water emulsification on the engine performance and gases exhaust temperature. Emulsified Diesel fuels of 0, 5, 10, 15 and 20 water/Diesel ratios by volume, were used in a single cylinder, direct injection Diesel engine, operating at 1200-3300 rpm. The results indicate that the addition of water in the form of emulsion improves combustion efficiency. The engine torque, power and brake thermal efficiency increase as the water percentage in the emulsion increases. The average increase in the brake thermal efficiency for 20% water emulsion is approximately 3.5% over the use of Diesel for the engine speed range studied. The proper brake specific fuel consumption and gases exhaust temperature decrease as the percentage of water in the emulsion increases

  11. Titanium Dioxide Nanoparticles Produced in Water-in-oil Emulsion

    Titanium dioxide (titania) particles were prepared by a water-in-oil emulsion system, and studied for the photodecomposition property of methylene blue. Microemulsion (ME) consisted of water, cyclohexane or octane, and surfactant, such as polyoxyethylene (10) octylphenyl ether (TX-100), polyoxyethylene lauryl ether, or bis (2-ethylhexyl) sodium sulfosuccinate. Titanium tetraisopropoxide (TTIP) was dropped into the ME solution and then titania particles were formed by the hydrolysis reaction between TTIP in the organic solvent and the water in the core of ME. It was found that ME could be classified to the reversed micelle (RM) region and the swelling reversed micelle (SM) region according to the water content. The water droplets in RM were almost monodispersed, where the water content was small. On the other hand, the water droplets in SM had a size distribution, although most of the water molecules associated with surfactant molecules. The size of the particles prepared in the RM region was smaller than the ME size. In contrast, the size of the particles formed in the SM region was larger than the ME size, and coagulation of the particles was observed within a few hours. The smallest diameter of the particles was 2 nm in the system of cyclohexane with TX-100 surfactant when the molar ratio of water to surfactant was 2. Titania particles prepared in this condition were collected as amorphous powder, and converted to anatase phase at less than 500 K, which is lower than the ordinal phase transition temperature. These anatase phase titania particles only showed a significant photodecomposition of methylene blue by illumination with a Xenon lamp

  12. Significance of oil droplets in chemically enhanced water-accommodated fraction

    Ramachandran, S. [Queen' s Univ., Kingston, ON (Canada). School of Environmental Studies; Hodson, P.V.; Lee, K. [Department of Fisheries and Oceans, Dartmouth, NS (Canada). Bedford Inst. of Oceanography

    2003-07-01

    This presentation described the controversial use of chemical dispersions to treat oil spills on water. Dispersants break up the spill in order to reduce shoreline impacts, but the dispersant drives the oil into the water column in the form of droplets, thereby temporarily increasing hydrocarbon concentrations and causing negative impacts on aquatic organisms. Exposure experiments have been conducted on rainbow trout exposed to Mesa and Scotian Light Crude Oil, with and without oil droplets. The studies showed that the levels of polycyclic aromatic hydrocarbons (PAH) was higher in the trout exposed to Corexit water-accommodated fractions, compared to water-accommodated fractions. The results suggest that dispersing crude oil sustains hydrocarbon concentrations in a larger volume of water than if it were not dispersed. The oil droplets increase the partitioning of PAH into the water solution. They adhere to the gills of the fish, thereby facilitating direct uptake.

  13. Capillary-driven spontaneous oil/water separation by superwettable twines

    Xu, Li-Ping; Dai, Bing; Fan, Junbing; Wen, Yongqiang; Zhang, Xueji; Wang, Shutao

    2015-07-01

    A superwettable twine showing excellent absorption and self-removal capacity of oil and water from oil/water mixtures is reported. Superwettable materials are fabricated by simple modification of commercial twines with plasma and hydrophobic silica nanoparticles, respectively. We show that the absorption and self-transportation of oil and water are driven by the capillary force resulting from the microgaps and microgrooves on twines.A superwettable twine showing excellent absorption and self-removal capacity of oil and water from oil/water mixtures is reported. Superwettable materials are fabricated by simple modification of commercial twines with plasma and hydrophobic silica nanoparticles, respectively. We show that the absorption and self-transportation of oil and water are driven by the capillary force resulting from the microgaps and microgrooves on twines. Electronic supplementary information (ESI) available: Experimental details, characterization and XPS. See DOI: 10.1039/c5nr03670d

  14. Essentials of water systems design in the oil, gas, and chemical processing industries

    Bahadori, Alireza; Boyd, Bill

    2013-01-01

    Essentials of Water Systems Design in the Oil, Gas and Chemical Processing Industries provides valuable insight for decision makers by outlining key technical considerations and requirements of four critical systems in industrial processing plants—water treatment systems, raw water and plant water systems, cooling water distribution and return systems, and fire water distribution and storage facilities. The authors identify the key technical issues and minimum requirements related to the process design and selection of various water supply systems used in the oil, gas, and chemical processing industries. This book is an ideal, multidisciplinary work for mechanical engineers, environmental scientists, and oil and gas process engineers.

  15. Assessment of nitrification potential in ground water using short term, single-well injection experiments

    Smith, R.L.; Baumgartner, L.K.; Miller, D.N.; Repert, D.A.; Böhlke, J.K.

    2006-01-01

    Nitrification was measured within a sand and gravel aquifer on Cape Cod, MA, using a series of single-well injection tests. The aquifer contained a wastewater-derived contaminant plume, the core of which was anoxic and contained ammonium. The study was conducted near the downgradient end of the ammonium zone, which was characterized by inversely trending vertical gradients of oxygen (270 to 0 ??M) and ammonium (19 to 625 ??M) and appeared to be a potentially active zone for nitrification. The tests were conducted by injecting a tracer solution (ambient ground water + added constituents) into selected locations within the gradients using multilevel samplers. After injection, the tracers moved by natural ground water flow and were sampled with time from the injection port. Rates of nitrification were determined from changes in nitrate and nitrite concentration relative to bromide. Initial tests were conducted with 15N-enriched ammonium; subsequent tests examined the effect of adding ammonium, nitrite, or oxygen above background concentrations and of adding difluoromethane, a nitrification inhibitor. In situ net nitrate production exceeded net nitrite production by 3- to 6- fold and production rates of both decreased in the presence of difluoromethane. Nitrification rates were 0.02-0.28 ??mol (L aquifer)-1 h-1 with in situ oxygen concentrations and up to 0.81 ??mol (L aquifer)-1 h-1 with non-limiting substrate concentrations. Geochemical considerations indicate that the rates derived from single-well injection tests yielded overestimates of in situ rates, possibly because the injections promoted small-scale mixing within a transport-limited reaction zone. Nonetheless, these tests were useful for characterizing ground water nitrification in situ and for comparing potential rates of activity when the tracer cloud included non-limiting ammonium and oxygen concentrations. ?? Springer Science+Business Media, Inc. 2005.

  16. 21 CFR 522.2005 - Propofol injection.

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Propofol injection. 522.2005 Section 522.2005 Food... Propofol injection. (a) Specifications. The drug is a sterile, nonpyrogenic, oil-in-water emulsion containing 10 milligrams of propofol per milliliter. (b) Sponsor. See No. 000061 in § 510.600(c) of...

  17. Remote sensing of water-in-oil emulsions : initial laser fluorosensor studies

    This paper presents the results of a study in which laser-induced fluorescence spectra were collected in a controlled environment for fresh oils, water-in-oil emulsions of the same oils and of the emulsions in water. Water-in-oil emulsions and other neutrally buoyant oils can be difficult or impossible to detect using commercial sensors, but preliminary airborne field experiments have shown that laser fluorosensors can detect and properly classify oils. Laser fluorosensors provide their own source of illumination and can be used during the night or day. They detect the fluorescence spectral signature and intensity of specific oils. This study analyzed Point Arguello Light, Mississippi Canyon and Bunker C oils. The fluorescence spectra of the water-in-oil emulsions were found to be identical to the spectra of the fresh oils, both in spectral shape and signal intensity, confirming that laser-induced fluorescence can be used to detect and classify fresh and water-in-oil emulsified forms of hydrocarbons. It was concluded that laser fluorosensor are promising sensors for airborne detection, classification and mapping of oil and related petroleum products in both marine and terrestrial environments. 4 refs., 1 tab., 14 figs

  18. Remote sensing of water-in-oil emulsions : initial laser fluorosensor studies

    Brown, C.E.; Fingas, M.F.; Marois, R.; Fieldhouse, B.; Gamble, R.L. [Environment Canada, Ottawa, ON (Canada). Emergencies Science and Technology Div]|[Environment Canada, Ottawa, ON (Canada). River Road Environmental Technology Centre

    2004-07-01

    This paper presents the results of a study in which laser-induced fluorescence spectra were collected in a controlled environment for fresh oils, water-in-oil emulsions of the same oils and of the emulsions in water. Water-in-oil emulsions and other neutrally buoyant oils can be difficult or impossible to detect using commercial sensors, but preliminary airborne field experiments have shown that laser fluorosensors can detect and properly classify oils. Laser fluorosensors provide their own source of illumination and can be used during the night or day. They detect the fluorescence spectral signature and intensity of specific oils. This study analyzed Point Arguello Light, Mississippi Canyon and Bunker C oils. The fluorescence spectra of the water-in-oil emulsions were found to be identical to the spectra of the fresh oils, both in spectral shape and signal intensity, confirming that laser-induced fluorescence can be used to detect and classify fresh and water-in-oil emulsified forms of hydrocarbons. It was concluded that laser fluorosensor are promising sensors for airborne detection, classification and mapping of oil and related petroleum products in both marine and terrestrial environments. 4 refs., 1 tab., 14 figs.

  19. A new generation of models for water-in-oil emulsion formation

    Water-in-oil emulsions form after oil or petroleum products are spilled, and can make the cleanup of oil spills difficult. This paper discussed new modelling schemes designed for the formation of water-in-oil emulsions. Density, viscosity, asphaltene and resin contents were used to compute a class index for unstable, entrained water-in-oil states, meso-stable, or stable emulsions. Prediction schemes were used to estimate the water content and viscosity of the water-in-oil states and the time to formation with wave height inputs. A numerical values was used for each type of water-in-oil type. The properties of the starting oil were correlated with the numerical scheme. New regressions were then performed using a Gaussian-style regression expansion technique. Data obtained from the models suggested that water-in-oil types are stabilized by both asphaltenes and resins. The optimized model was then compared with earlier models. The study showed that the new model has the capacity to accurately predict oil-in-water types approximately 90 per cent of the time using only resin, saturate, asphaltene, viscosity, and density data. 17 refs., 8 tabs., 8 figs

  20. Preparation and Characterization of Salbutamol Sulphate Loaded Ethyl Cellulose Microspheres using Water-in-Oil-Oil Emulsion Technique

    Nath, Bipul; Kanta Nath, Lila; Mazumder, Bhaskar; Kumar, Pradeep; Sharma, Niraj; Pratap Sahu, Bhanu

    2010-01-01

    The aim of this study was to formulate and evaluate microencapsulated controlled release preparations of a highly water/soluble drug, salbutamol sulphate by (water in oil) in oil emulsion technique using ethyl cellulose as the retardant material. Various processing and formulation parameters such as drug/polymer ratio, stirring speed, volume of processing medium were optimized to maximize the entrapment. The release of salbutamol sulphate from ethyl cellulose microsphere was compared and poss...

  1. Novel Application of the Flotation Technique To Measure the Wettability Changes by Ionically Modified Water for Improved Oil Recovery in Carbonates

    Sohal, Muhammad Adeel Nassar; Thyne, Geoffrey; Søgaard, Erik Gydesen

    2016-01-01

    wettability, we need to understand the initial wetting conditions and design an ionically modified water (advanced water) to alter wettability and improve oil recovery. If a reservoir has already been reached to the optimum wetting conditions by injecting formation water or any other fluid, then there is no...... imbibition tests take months, and chromatographic separation is feasible only for core flooding in sulfate free carbonates at low temperature. A novel application of the well-established technique known as flotation was used in this study to measure the oil-wet and water-wet percent of pure biogenic chalk (Dan...... equipment. Using this technique we were able to quantify the wettability alteration caused by low salinity and potential determining anions (PDAs) such as SO42−, BO33−, and PO43−. The wettability data show maximum oil recovery by dilution is coincident with maximum wettability alteration. The experiments...

  2. Partitioning of semi-soluble organic compounds between the water phase and oil droplets in produced water.

    Faksness, Liv-Guri; Grini, Per Gerhard; Daling, Per S

    2004-04-01

    When selecting produced water treatment technologies, one should focus on reducing the major contributors to the total environmental impact. These are dispersed oil and semi-soluble hydrocarbons, alkylated phenols, and added chemicals. Experiments with produced water have been performed offshore on the Statoil operated platforms Gullfaks C and Statfjord B. These experiments were designed to find how much of the environmentally relevant compounds were dissolved in the water phase and not associated to the dispersed oil in the produced water. Results show that the distribution between the dispersed oil and the water phase varies highly for the different components groups. For example the concentration of PAHs and the C6-C9 alkylated phenols is strongly correlated to the content of dispersed oil. Therefore, the technologies enhancing the removal of dispersed oil have a higher potential for reducing the environmental impact of the produced water than previously considered. PMID:15041429

  3. Partitioning of semi-soluble organic compounds between the water phase and oil droplets in produced water

    When selecting produced water treatment technologies, one should focus on reducing the major contributors to the total environmental impact. These are dispersed oil and semi-soluble hydrocarbons, alkylated phenols, and added chemicals. Experiments with produced water have been performed offshore on the Statoil operated platforms Gullfaks C and Statfjord B. These experiments were designed to find how much of the environmentally relevant compounds were dissolved in the water phase and not associated to the dispersed oil in the produced water. Results show that the distribution between the dispersed oil and the water phase varies highly for the different components groups. For example the concentration of PAHs and the C6-C9 alkylated phenols is strongly correlated to the content of dispersed oil. Therefore, the technologies enhancing the removal of dispersed oil have a higher potential for reducing the environmental impact of the produced water than previously considered

  4. Effect of small amounts of surfactants on oil-water dispersion

    Fateev, Gleb

    2014-01-01

    The present work reports the study of oil-water dispersions in static conditions. All experiments were carried out with a mineral oil and tap water in glass beakers with mixing of the phases. Small amounts of non-ionic surfactants were used to stabilize the emulsion systems. This simple system gives a good formation of oil-water emulsions. The objective of the present work is better understanding of emulsion behavior. The study was conducted with increasing agitation speed of impeller and ...

  5. Polyphenolic Content In Olive Oil Waste Waters And Related Olive Samples.

    Mulinacci, N; Romani, A; C. Galardi; P. Pinelli; C. GIACCHERINI; F. F. VINCIERI

    2001-01-01

    The production of olive oil yields a considerable amount of waste water, which is a powerful pollutant and is currently discarded. Polyphenols and other natural antioxidants, extracted from olives during oil extraction process, partially end up in the waste waters. Experimental and commercial olive oil waste waters from four Mediterranean countries were analyzed for a possible recovering of these biologically interesting constituents. Identification and quantitation of the main po...

  6. Factors governing partial coalescence in oil-in-water emulsions.

    Fredrick, Eveline; Walstra, Pieter; Dewettinck, Koen

    2010-01-15

    The consequences of the instability mechanism partial coalescence in oil-in-water food emulsions show a discrepancy. On the one hand, it needs to be avoided in order to achieve an extended shelf life in food products like sauces, creams and several milk products. On the other hand, during the manufacturing of products like ice cream, butter and whipped toppings partial coalescence is required to achieve the desired product properties. It contributes to the structure formation, the physicochemical properties (stability, firmness,...) and the sensory perception, like fattiness and creaminess of the final food products. This review critically summarises the findings of partial coalescence in oil-in-water emulsions in order to provide insight in how to enhance and retard it. Next to the pioneering work, a large set of experimental results of more recent work is discussed. First, the general mechanism of partial coalescence is considered and a distinction is made between partial and 'true' coalescence. The main differences are: the required solid particles in the dispersed oil phase, the formation of irregular clusters and the increased aggregation rate. Second, the kinetics of partial coalescence is discussed. In more detail, potential parameters affecting the rate of partial coalescence are considered by means of the encounter frequency and capture efficiency of the fat globules. The flow conditions, the fat volume fraction and the physicochemical properties of continuous aqueous phase affect both the encounter frequency and capture efficiency while the actual temperature, temperature history and the composition and formulation of the emulsion mainly affect the capture efficiency. PMID:19913777

  7. The Geopolitics of Water and Oil in Turkey

    Throughout history, few nations have been as successful in leveraging their geographic location as Turkey. As the center of two of the most powerful civilizations of all time, the Byzantine and Ottoman Empires, Turkey was the bridge between East and West, a bustling center of trade and a strategic economic and political nexus between regions of the world. In addition to its geographic power, Turkey has historically possessed substantial water resources. Unlike many water parched areas of the Middle East, Turkey's water capacity has allowed it to grow large populations and build elaborate cities. In the modern era, Turkey once again has an opportunity to regain its historical role, as the state where today's geopolitics of energy coincides with Turkey's traditional geopolitics of water. Turkey's central location, this time not between East and West, but between producers and consumers of energy, gives it a central, geopolitical role in world affairs, both in oil and gas. Moreover, Turkey's water resources can be utilized to reinforce Turkey's strategic energy role in the region, by building a strategy of cooperation with water-poor countries from the Levant to the Arabian Peninsula. Throughout history, water and energy have been among the most fundamental resources of civilization, at the very base of Maslow's hierarchy of needs essential to fostering human growth and development for thousands of years. It is seldom appreciated how linked water and energy truly are. Producing, transferring, and supplying energy requires a significant amount of water, just as the extraction, purification, and even desalination of water requires a significant amount of energy. As both energy and water grow scarcer throughout the future, nations such as Turkey can gain considerable influence as a result of their geographic locations and natural endowments. Turkey can benefit from pipeline diplomacy, taking advantage of its geographical location to make it a crossroads of multiple

  8. The Geopolitics of Water and Oil in Turkey

    NONE

    2009-07-01

    Throughout history, few nations have been as successful in leveraging their geographic location as Turkey. As the center of two of the most powerful civilizations of all time, the Byzantine and Ottoman Empires, Turkey was the bridge between East and West, a bustling center of trade and a strategic economic and political nexus between regions of the world. In addition to its geographic power, Turkey has historically possessed substantial water resources. Unlike many water parched areas of the Middle East, Turkey's water capacity has allowed it to grow large populations and build elaborate cities. In the modern era, Turkey once again has an opportunity to regain its historical role, as the state where today's geopolitics of energy coincides with Turkey's traditional geopolitics of water. Turkey's central location, this time not between East and West, but between producers and consumers of energy, gives it a central, geopolitical role in world affairs, both in oil and gas. Moreover, Turkey's water resources can be utilized to reinforce Turkey's strategic energy role in the region, by building a strategy of cooperation with water-poor countries from the Levant to the Arabian Peninsula. Throughout history, water and energy have been among the most fundamental resources of civilization, at the very base of Maslow's hierarchy of needs essential to fostering human growth and development for thousands of years. It is seldom appreciated how linked water and energy truly are. Producing, transferring, and supplying energy requires a significant amount of water, just as the extraction, purification, and even desalination of water requires a significant amount of energy. As both energy and water grow scarcer throughout the future, nations such as Turkey can gain considerable influence as a result of their geographic locations and natural endowments. Turkey can benefit from pipeline diplomacy, taking advantage of its geographical location to

  9. A cost-benefit analysis of produced water management opportunities in selected unconventional oil and gas plays

    Marsters, P.; Macknick, J.; Bazilian, M.; Newmark, R. L.

    2013-12-01

    Unconventional oil and gas production in North America has grown enormously over the past decade. The combination of horizontal drilling and hydraulic fracturing has made production from shale and other unconventional resources economically attractive for oil and gas operators, but has also resulted in concerns over potential water use and pollution issues. Hydraulic fracturing operations must manage large volumes of water on both the front end as well as the back end of operations, as significant amounts of water are coproduced with hydrocarbons. This water--often called flowback or produced water--can contain chemicals from the hydraulic fracturing fluid, salts dissolved from the source rock, various minerals, volatile organic chemicals, and radioactive constituents, all of which pose potential management, safety, and public health issues. While the long-term effects of hydraulic fracturing on aquifers, drinking water supplies, and surface water resources are still being assessed, the immediate impacts of produced water on local infrastructure and water supplies are readily evident. Produced water management options are often limited to underground injection, disposal at centralized treatment facilities, or recycling for future hydraulic fracturing operations. The costs of treatment, transport, and recycling are heavily dependent on local regulations, existing infrastructure, and technologies utilized. Produced water treatment costs also change over time during energy production as the quality of the produced water often changes. To date there is no publicly available model that evaluates the cost tradeoffs associated with different produced water management techniques in different regions. This study addresses that gap by characterizing the volume, qualities, and temporal dynamics of produced water in several unconventional oil and gas plays; evaluating potential produced water management options, including reuse and recycling; and assessing how hydraulic

  10. Matrix injection of relative permeability modifier for water control applied in Brazil basins; Injecao matricial de modificadores de permeabilidade relativa para controle de producao de agua aplicado nas bacias petroliferas brasileiras

    Marchi, Flavio; Stefan, Rodolfo; Mendonca, Paulo; Ferreira, Antonio; Silva, Charles; Fonseca, Ana Isoila [BJ Services do Brasil Ltda., Macae, Rio de Janeiro, RJ (Brazil); Melo, Ricardo C.B. [BJ Services Company Africa Ltd., Angola (Angola)

    2008-07-01

    One of the biggest challenges for the oil industry, even at the beginning of well's production, and principally when the well is producing, is how to reduce and handling the produced water on this process. A conservative estimation says for each barrel of produced oil you have 5 or 6 barrels of formation's water. Some factors must be considerable to establish and maintain a carefully management of this effluent, for example the volume of produced water, which is always growing due to the reservoir maturation and for the secondary recovery process; salt content; residual oil and chemical products presence. Water production is the cause of several problems on wells, like scales, organic deposits or starting the process of formation's sand production induced by fines migration. As a consequence, a cost increment of production is observed due to hydrocarbon/water separation and destination of produced water. The same way, is extremely expensive to manage the even bigger volume, which demands efforts to re-inject the water, treatment which avoid or minimize possible environment impacts, development of new equipment and materials which helps and resists to the effects of produced water. Not inherent reservoir's cause can be several, like bad isolated water zones by cement fail, wrong determination of perforated interval, which is easier to use aid methods. When the water production is directly associated to reservoir, by conning, channeling and/or fingering, generally associated to mobility difference between water and oil, the nowadays most efficient treatment is the injection of relative permeability modifier. This paper will present techniques and results obtained with matrix injection in some fields by the use of the last generation of RPM (relative permeability modifier). (author)

  11. Dynamic investigation of nutrient consumption and injection strategy in microbial enhanced oil recovery (MEOR) by means of large-scale experiments.

    Song, Zhiyong; Zhu, Weiyao; Sun, Gangzheng; Blanckaert, Koen

    2015-08-01

    Microbial enhanced oil recovery (MEOR) depends on the in situ microbial activity to release trapped oil in reservoirs. In practice, undesired consumption is a universal phenomenon but cannot be observed effectively in small-scale physical simulations due to the scale effect. The present paper investigates the dynamics of oil recovery, biomass and nutrient consumption in a series of flooding experiments in a dedicated large-scale sand-pack column. First, control experiments of nutrient transportation with and without microbial consumption were conducted, which characterized the nutrient loss during transportation. Then, a standard microbial flooding experiment was performed recovering additional oil (4.9 % Original Oil in Place, OOIP), during which microbial activity mostly occurred upstream, where oil saturation declined earlier and steeper than downstream in the column. Subsequently, more oil remained downstream due to nutrient shortage. Finally, further research was conducted to enhance the ultimate recovery by optimizing the injection strategy. An extra 3.5 % OOIP was recovered when the nutrients were injected in the middle of the column, and another additional 11.9 % OOIP were recovered by altering the timing of nutrient injection. PMID:25895095

  12. Transporting of a Cell-Sized Phospholipid Vesicle Across Water/Oil Interface

    Hase, Masahiko; Yamada, Ayako; Hamada, Tsutomu; Yoshikawa, Kenichi

    2006-01-01

    When a cell-sized water droplet, with a diameter of several tens of micro meter, is placed in oil containing phospholipids, a stable cell-sized vesicle is spontaneously formed as a water-in-oil phospholipid emulsion (W/O CE) with a phospholipid monolayer. We transferred the lipid vesicle thus formed in the oil phase to the water phase across the water/oil interface by micromanipulation, which suggests that the vesicle is transformed from a phospholipid monolayer as W/O CE into a bilayer. The ...

  13. Modeling and Optimization of a Subsea Oil-Water Separation System

    Tyvold, Preben Fürst

    2015-01-01

    Compact oil-water separators are essential for treatment of the production streams of oil fields at deep waters. The aim of this work has been to develop a model for a compact oil-water separation system for optimization and control purposes. For these regards, the model is required to be relatively simple in order to achieve low computational costs. We have studied a system containing a gravity separator for the bulk separation of water and oil, and two inline swirl separators that are c...

  14. An experimental study of tracers for labelling of injection gas in oil reservoirs

    This work demonstrates the feasibility of the PMCP and PMCH as tracers in field experiments. These compounds have properties which make them as well suited for well to well studies as the more common tracers CH3T and 85Kr. In an injection project carried out at the Gullfaks field in the North Sea the two PFCs verified communication between wells. This implies communication between different geological layers in the reservoir and also communication across faults within the same layers. Laboratory studies carried out have focused on the retention of the tracers in dynamic flooding experiments under conditions comparable with those in the petroleum reservoirs. Simultaneous injection of a variety of tracers has shown individual variations in tracer retention which are caused by important reservoir parameters as fluid saturation and rock properties. By proper design of field injection programs the tracers response may therefore be used to estimate fluid saturation if actual rock properties are known. 45 refs., 20 figs., 13 tabs

  15. Development of Polymer Gel Systems to Improve Volumetric Sweep and Reduce Producing Water/Oil Ratios

    G. Paul Willhite; Stan McCool; Don W. Green; Min Cheng; Feiyan Chen

    2005-04-03

    Gelled polymer treatments are applied to oil reservoirs to increase oil production and to reduce water production by altering the fluid movement within the reservoir. This report describes the results of the third year of a 42 month research program that is aimed at an understanding of gelation chemistry and the fundamental mechanisms that alter the flows of oil and water in reservoir rocks after a gel treatment. Work focused on a widely applied system in the field, the partially hydrolyzed polyacrylamide-chromium acetate gel. Gelation occurs by network formation through the crosslinking of polyacrylamide molecules as a result of reaction with chromium acetate. Pre-gel aggregates form and grow as reactions between chromium acetate and polyacrylamide proceed. A mathematical model that describes uptake and crosslinking reactions as a function of time was derived. The model was probability based and provides molecular-weight averages and molecular-weight distributions of the pre-gel aggregates as a function of time and initial system conditions. A liquid chromatography apparatus to experimentally measure the size and molecular weight distributions of polymer samples was developed. The method worked well for polymer samples without the chromium crosslinker. Sample retention observed during measurements of gelant samples during the gelation process compromised the results. Other methods will be tested to measure size distributions of the pre-gel aggregates. Dissolution of carbonate minerals during the injection of gelants causes the pH of the gelant to increase. Chromium precipitates from solution at the higher pH values robbing the gelant of crosslinker. Experimental data on the transport of chromium acetate solutions through dolomite cores were obtained. A mathematical model that describes the transport of brine and chromium acetate solutions through rocks containing carbonate minerals was used to simulate the experimental results.

  16. Studies of the formation process of water-in-oil emulsions.

    Fingas, Merv; Fieldhouse, Ben

    2003-01-01

    This paper summarizes studies to determine the formation process of water-in-oil emulsions and the stability of such emulsions formed in the laboratory and in a large test tank. These studies have confirmed that water-in-oil mixtures can be grouped into four states: stable emulsions, unstable water-in-oil mixtures, mesostable emulsions, and entrained water. These states are differentiated by rheological properties as well as by differences in visual appearance. The viscosity of a stable emulsion at a shear rate of one reciprocal second is about three orders of magnitude greater than that of the starting oil. An unstable emulsion usually has a viscosity no more than about 20 times greater than that of the starting oil. A stable emulsion has a significant elasticity, whereas an unstable emulsion does not. A mesostable emulsion has properties between stable and unstable, but breaks down within a few days of standing. The usual situation is that emulsions are either obviously stable, mesostable, or unstable. Entrained water, water suspended in oil by viscous forces alone, is also evident. Very few emulsions have questionable stability. Analytical techniques were developed to test these observations. The type of emulsion produced is determined primarily by the properties of the starting oil. The most important of these properties are the asphaltene and resin content and the viscosity of the oil. The composition and property ranges of the starting oil that would be required to form each of the water-in-oil states are discussed in this paper. PMID:12899884

  17. Analysis of the influence of well spacing on the injection rate behaviour for water injection under fracturing conditions; Analise da influencia do espacamento de pocos na determinacao da vazao de injecao para o processo de injecao com pressao cima da pressao de fratura

    Munoz Mazo, Eduin Orlando [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Centro de Estudo do Petroleo. Lab. de Simulacao de Fluxo em Meios Porosos (UNISIM); Costa, Odair Jose; Schiozer, Denis Jose [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Engenharia de Petroleo

    2008-07-01

    Water injection under fracturing conditions is a proved manner of overcoming injectivity loss in reservoirs affected by formation damage. Nevertheless, as shown by Munoz Mazo et al. (2006), there is the possibility of the generated and propagated fractures intercept the producer wells making that the injected water shall be re-circulated into the reservoir instead of its main function which is to drive the oil contained in the reservoir pore space. The objective of this work is to determine the influence of well spacing on the determination of the water injection rate under fracturing conditions, aiming to study its effects on the production performance and the sweep efficiency. To accomplish the work, an analytical model for representing the absolute permeability reduction near the wellbore and a model which reproduces the fracture propagation in a coupled manner are used. In this way the model sensitivity to several well spacing and the injection rate effects are analyzed using the Net Present Value and the sweep efficiency is evaluated as a function of the Recovery Factor. The results show that the water injection under fracturing conditions is an effective way of overcoming the injectivity loss problem and evidence its sensitivity to different spacing between the injector and the producer wells. (author)

  18. Study on MELCOR Modeling for Emergency External Water Injection Scenario of SBO in APR1400

    In the present study, a MELCOR model for APR1400 was developed and applied to analyze a SBO scenario selected to confirm the effectiveness of the means. In this analysis, the primary and secondary emergency cooling water injection were considered. Leakage from the Reactor Coolant Pump (RCP) seal and opening of the Atmosphere Dump Valve (ADV) were modeled as well to simulate the external pump injection strategy. In this study, the analysis results showed that the external injection strategy with an ADV manual opening could successfully cool down the reactor for a station blackout accident through its effective implementation. It was found that the RCP seal leakage rate is a sensitive parameter for depressurization of the RCS. In this regard, further study is needed to develop a realistic RCP seal leakage model, referring to detailed technical data

  19. Pressure drop, flow pattern and local water volume fraction measurements of oil-water flow in pipes

    Kumara, W.A.S.; Halvorsen, Britt; Melaaen, Morten Christian

    2009-01-01

    Oil-water flow in horizontal and slightly inclined pipes was investigated. The experimental activities were performed using the multiphase flow loop at Telemark University College, Porsgrunn, Norway. The two-fluid model was able to predict the pressure drop and water hold-up for stratified flow. The homogeneous model was not able to predict the pressure profile of dispersed oil-water flow at higher water cuts. The two-fluid model and homogeneous model over-predicts the pre...

  20. Natural oil slicks fuel surface water microbial activities in the northern Gulf of Mexico

    Kai eZiervogel

    2014-05-01

    Full Text Available We conducted a series of roller tank incubations with surface seawater from the Green Canyon oil reservoir, northern Gulf of Mexico, amended with either a natural oil slick (GCS-oil or pristine oil. The goal was to test whether bacterial activities of natural surface water communities facilitate the formation of oil-rich marine snow (oil snow. Although oil snow did not form during any of our experiments, we found specific bacterial metabolic responses to the addition of GCS-oil that profoundly affected carbon cycling within our 4-days incubations. Peptidase and -glucosidase activities indicative of bacterial enzymatic hydrolysis of peptides and carbohydrates, respectively, were suppressed upon the addition of GCS-oil relative to the non-oil treatment, suggesting that ascending oil and gas initially inhibits bacterial metabolism in surface water. Biodegradation of physically dispersed GCS-oil components indicated by the degradation of lower molecular weight n-alkanes as well as the rapid transformation of particulate oil-carbon (C: N >40 into the DOC pool, led to the production of carbohydrate- and peptide-rich degradation byproducts and bacterial metabolites such as transparent exopolymer particles (TEP. TEP formation was highest at day 4 in the presence of GCS-oil; in contrast, TEP levels in the non-oil treatment already peaked at day 2. Cell-specific enzymatic activities closely followed TEP concentrations in the presence and absence of GCS-oil. These results demonstrate that the formation of oil slicks and activities of oil-degrading bacteria result in a temporal offset of microbial cycling of organic matter, affecting food web interactions and carbon cycling in surface waters over cold seeps.