WorldWideScience

Sample records for water by salt content

  1. Glomus intraradices improved salt tolerance in Prosopis alba seedlings by improving water use efficiency and shoot water content

    Scientific Electronic Library Online (English)

    Agustina A., Scambato; Mariela, Echeverria; Pedro, Sansberro; Oscar A., Ruiz; Ana Bernardina, Menéndez.

    Full Text Available The present work was aimed at testing the hypothesis that mycorrhizal Prosopis alba, an economically important tree species worldwide, presents increased salt-tolerance compared with non-mycorrhizal ones and at gaining insight into the possible mechanisms underlying that improvement. For this purpos [...] e, a randomized complete block experiment with two factors: mycorrhizal treatments with or without the arbuscular fungus Glomus intraradices and two salinity levels, 0 and 200 mM NaCl was performed. Plant growth in P. alba plants colonized by G. intraradices was less affected by salinity than that in non-arbuscular mycorrhizal (AM) plants, indicating that mycorrhizal colonization turned P. alba more tolerant to salinity. Photosynthesis was reduced by salinity in non-AM plants but not in AM ones. Salini ty caused a significant decrease in mean stomatal conductance and transpiration rate, in mycorrhizal plants, but not in uninoculated ones. In this work, we detected two main mechanisms intervening in the salt tolerance enhancement of P. alba by the inoculation with G. intraradices: a- maintaining the net photosynthesis level and b- control of the transpiration rate. Taken together, the results suggest that inoculation with G. intraradices improves P. alba survival rates during the implantation period and seems to be a promising strategy to improve P. alba cultivation in saline lands.

  2. NaCl stress-induced growth, water and ions contents changes on in vitro selection of salt tolerant and salt sensitive callus of wheat (Triticum durum Desf.

    Directory of Open Access Journals (Sweden)

    Ayolié Koutoua 1,2 , El Yacoubi Houda 2 , Atmane Rochdi 2 , Kouakou Kouakou Laurent 1 , Kouakou Tanoh Hilaire 1*

    2011-08-01

    Full Text Available Callus cultures tolerant to NaCl were developed from eight wheat genotypes using in vitro selection techniques. The accumulation of inorganic (Na+, Cl-and K+ solutes, water content and relative fresh weight were determined in selected (tolerant and sensitive calli after a NaCl shock in order to evaluate their implication in salt tolerance of the selected lines. No growth reduction was observed in salt-tolerant calli compared to control while a significant (P<0.05 decrease about 46.54% was observed in salt sensitive ones when both were cultivated under NaCl stress. Water content is significantly (P<0.05 high in salt-sensitive calli than salt-tolerant ones. Selected calli accumulate less K+as compared with control. However, K+content of salt-tolerant calli is greater than that of salt-sensitive. Accumulation of Na+and Cl- were more important in salt-sensitive calli in comparison with salt-tolerant ones while K+content was lower in salt-sensitive than in salt-tolerant calli when both were exposed to salt. The results indicated Na+and Cl-exclusion combined to less K+accumulation may play a key role in in vitro salt-tolerance in wheat calli lines obtained by in vitro selection and they could contribute mainly to counteract the negative effects of salt stress in wheat tolerant calli. Comparison of K+/Na+ ratio permitted to classify Sebou, Anouar and Tarek which are as most salt-tolerant wheat genotypes and on contrary, Marzak, Ourgh, Massa and Amjad as salt-sensitive wheat genotypes.K+/Na+ ratio can be use as a criterion of wheat genotypes classification.

  3. Salt content in ready-to-eat food and bottled spring and mineral water retailed in Novi Sad

    Directory of Open Access Journals (Sweden)

    Trajkovi?-Pavlovi? Ljiljana B.

    2015-01-01

    Full Text Available Introduction. Salt intake above 5 g/person/day is a strong independent risk factor for hypertension, stroke and cardiovascular diseases. Published studies indicate that the main source of salt in human diet is processed ready-to-eat food, contributing with 65-85% to daily salt intake. Objective. The aim of this paper was to present data on salt content of ready-to-eat food retailed in Novi Sad, Serbia, and contribution of the salt contained in 100 g of food to the recommended daily intake of salt for healthy and persons with cardiovascular disease (CVD risk. Methods. In 1,069 samples of ready-to-eat food, salt (sodium chloride content was calculated based on chloride ion determined by titrimetric method, while in 54 samples of bottled water sodium content was determined using flame-photometry. Food items in each food group were categorized as low, medium or high salt. Average salt content of each food group was expressed as a percentage of recommended daily intake for healthy and for persons with CVD risk. Results. Average salt content (g/100 g ranged from 0.36±0.48 (breakfast cereals to 2.32±1.02 (grilled meat. The vast majority of the samples of sandwiches (91.7%, pizza (80.7%, salami (73.9%, sausages (72.9%, grilled meat (70.0% and hard cheese (69.6% had a high salt profile. Average amount of salt contained in 100 g of food participated with levels ranging from 7.2% (breakfast cereals to 46.4% (grilled meat and from 9.6% to 61.8% in the recommended daily intake for healthy adult and person with CVD risk, respectively. Average sodium content in 100 ml of bottled spring and mineral water was 0.33±0.30 mg and 33±44 mg, respectively. Conclusion. Ready-to-eat food retailed in Novi Sad has high hidden salt content, which could be considered as an important contributor to relatively high salt consumption of its inhabitants.

  4. Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yuanyuan; Xiang, Feng; Wang, Hong, E-mail: hwang@mail.xjtu.edu.cn, E-mail: suo@seas.harvard.edu [Electronic Materials Research Laboratory, School of Electronics and Information Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Chen, Baohong; Zhou, Jinxiong [State Key Laboratory for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics and School of Aerospace, Xi' an Jiaotong University, Xi' an 710049 (China); Suo, Zhigang, E-mail: hwang@mail.xjtu.edu.cn, E-mail: suo@seas.harvard.edu [School of Engineering and Applied Sciences, Kavli Institute of Bionano Science and Technology, Harvard University, Cambridge, Massachusetts 02138 (United States)

    2014-10-13

    Polyacrylamide hydrogels containing salt as electrolyte have been used as highly stretchable transparent electrodes in flexible electronics, but those hydrogels are easy to dry out due to water evaporation. Targeted, we try to enhance water retention capacity of polyacrylamide hydrogel by introducing highly hydratable salts into the hydrogel. These hydrogels show enhanced water retention capacity in different level. Specially, polyacrylamide hydrogel containing high content of lithium chloride can retain over 70% of its initial water even in environment with relative humidity of only 10% RH. The excellent water retention capacities of these hydrogels will make more applications of hydrogels become possible.

  5. The effects of pre-salting methods on salt and water distribution of heavily salted cod, as analyzed by 1H and 23Na MRI, 23Na NMR, low-field NMR and physicochemical analysis

    DEFF Research Database (Denmark)

    Guðjónsdóttir, María; Traoré, Amidou; Jónsson, Ásbjörn; Karlsdóttir, Magnea Gudrún; Arason, Sigurjón

    2015-01-01

    The effect of different pre-salting methods (brine injection with salt with/without polyphosphates, brining and pickling) on the water and salt distribution in dry salted Atlantic cod (Gadus morhua) fillets was studied with proton and sodium NMR and MRI methods, supported by physicochemical analysis of salt and water content as well as water holding capacity. The study indicated that double head brine injection with salt and phosphates lead to the least heterogeneous water distribution, while pi...

  6. The effect of water and salt stresses on the phosphorus content and acid phosphatase activity in oilseed rape

    Directory of Open Access Journals (Sweden)

    Stanis?aw Flasi?ski

    2014-02-01

    Full Text Available Oilseed rape plants responded to water and salt stresses (-0.5 MPa, PEG 6000 and NaCI by reduction of the fresh and dry weights of shoots and roots. When PEG was used, the ratio of dry weights of roots:shoots surpassed that of controls. The leaf protein content increased considerably. The phosphorus content decreased only in the roots, most significantly after three days of stress. Immediately after the stresses were induced, an increase in the acid phosphatase (AP activity was noted. Water and salt stresses caused four- and two-fold increases in AP activity in leaves, respectively. Changes in the enzyme activity were negligible in stems and roots. There are nine forms of AP in young leaves of oilseed rape. In the stressed plants, from No. 5 revealed lower activity and forms Nos 8 and 9, higher activities than in the control. The increase in AP activity was directly accompanied by the decrease in the water potential of the tissues. Oilseed rape is considerably less sensitive to salt stress than to water stress, which is manifested as the lower inhibition of plant growth and also by a smaller increase in acid phosphatase activity.

  7. NaCl stress-induced growth, water and ions contents changes on in vitro selection of salt tolerant and salt sensitive callus of wheat (Triticum durum Desf.)

    OpenAIRE

    Ayolié Koutoua 1,2 , El Yacoubi Houda 2 , Atmane Rochdi 2 , Kouakou Kouakou Laurent 1 , Kouakou Tanoh Hilaire 1*

    2011-01-01

    Callus cultures tolerant to NaCl were developed from eight wheat genotypes using in vitro selection techniques. The accumulation of inorganic (Na+, Cl-and K+) solutes, water content and relative fresh weight were determined in selected (tolerant and sensitive) calli after a NaCl shock in order to evaluate their implication in salt tolerance of the selected lines. No growth reduction was observed in salt-tolerant calli compared to control while a significant (P

  8. The effects of pre-salting methods on salt and water distribution of heavily salted cod, as analyzed by 1H and 23Na MRI, 23Na NMR, low-field NMR and physicochemical analysis

    DEFF Research Database (Denmark)

    Guðjónsdóttir, María; Traoré, Amidou

    2015-01-01

    The effect of different pre-salting methods (brine injection with salt with/without polyphosphates, brining and pickling) on the water and salt distribution in dry salted Atlantic cod (Gadus morhua) fillets was studied with proton and sodium NMR and MRI methods, supported by physicochemical analysis of salt and water content as well as water holding capacity. The study indicated that double head brine injection with salt and phosphates lead to the least heterogeneous water distribution, while pickle salting had the least heterogeneous salt distribution. Fillets from all treatments contained spots with unsaturated brine, increasing the risk of microbial denaturation of the fillets during storage. Since a homogeneous water and salt distribution was not achieved with the studied pre-salting methods, further optimizations of the salting process, including the pre-salting and dry salting steps, must be made in the future.

  9. Alteration of MX-80 by hydrothermal treatment under high salt content conditions

    International Nuclear Information System (INIS)

    If brammalit, i.e. sodium illite, is formed from smectite in Na-rich salt water at high temperature such conversion can also take place in the buffer clay that surrounds the canisters in a KBS-3 repository. The present study comprised two laboratory test series with MX-80 clay, one with compacted clay powder with a dry density of 1200 to 1300 kg/m3 and saturation with 10% and 20% NaCl solutions followed by heating to 110 deg C under closed conditions for 30 days. In the second series air-dry compacted clay powder in a cell was heated at 110 deg C for the same period of time and connected to vessels with 10% and 20% NaCl solutions. The first series represents the conditions in the buffer clay after saturation with Na-rich salt water while the second one corresponds to the conditions in the course of saturation with such water. All laboratory tests were made after short-term percolation with distilled water for making sure that the hydro-thermally treated samples were fully fluid-saturated. The results from the physical testing showed that the hydraulic conductivity and swelling pressure of the hydrothermally treated clay samples were on the same order of magnitude as for untreated clay. Comparison with illitic clays shows that the latter are at least a hundred times more permeable than the hydrothermally treated salt clays in the present study, which hence indicates that conversion to illite was insignificant. This is obvious also from the fact that while illitic clays have very low swelling pressures the hydrothermally treated clays exhibited swelling pressures on the same order of magnitude as untreated MX-80. XRD analysis showed a clear difference in mineral constitution between the two test series. Thus, while no significant change from the typical mineralogy of untreated MX-80 was found for hydrothermal treatment of clay saturated with 10 and 20% NaCl solution, except for some very slight neoformation of illite-smectite mixed layers or irreversible partially collapsed phases in the 20% NaCl solution, dry clay exposed to 20% NaCl solution showed changes although they were still limited. Here, formation of Na-illite or fully contracted layers took place and Mg was concluded to have migrated from octahedral lattice positions to interlamellar sites, implying partial dissolution. The thickness of the montmorillonite particles were comparable to that of untreated MX-80 montmorillonite for the hydrothermally treated clay saturated with NaCl solutions, while it was significantly larger for the air-dry clay exposed to such solutions at heating to 110 deg C. The larger thickness may be an example of 'Ostwald ripening' or aggregation with simultaneous cementation by precipitated silicious matter. TEM EDX analyses showed that partial replacement of octahedral Mg by Al yielding a drop in interlayer charge had occurred especially in the air-dry clay powder heated to 110 deg C under simultaneous exposure to NaCl solutions. Silicious matter, partly in the form of quartz or cristobalite, may have precipitated. The silica may have originated from tetrahedral positions in the montmorillonite lattice where aluminum can have replaced it, hence forming beidellite, or by dissolution of the smectite component. Since the temperature was higher than in a KBS-3 repository and the salt content appreciably higher than what is normally found at 500 m depth in Swedish crystalline rock, the degrading processes may be less significant in the buffer clay. On the other hand, the hydrothermal conditions in the lab study prevailed only for a month while they will last for much longer time in the repository

  10. Determination of salt content in various depth of pork chop by electrical impedance spectroscopy

    International Nuclear Information System (INIS)

    The salt concentration was determined inside of pork chop both by electrical impedance spectroscopy and by a conventional chemical method (according to Mohr). The pork chop in various depths (4 mm, 10 mm, 20 mm and 25 mm) was punctured with two stainless steel electrodes. The length of electrodes was 60 mm, and they were insulated along the length except 1 cm section on the end, so the measurement of impedance was realized in various depths. The magnitude and phase angle of impedance were measured with a HP 4284A and a HP 4285A LCR meters from 30 Hz up to 1 MHz and from 75 kHz up to 30 MHz frequency range, respectively at 1 V voltage. The distance between the electrodes was 1 cm. The impedance magnitude decreased as the salt concentration increased. The magnitude of open-short corrected impedance values at various frequencies (10 kHz, 100 kHz, 125 kHz, 1.1 MHz and 8 MHz) showed a good correlation with salt content determined by chemical procedure. The electrical impedance spectroscopy seems a prospective method for determination the salt concentration inside the meat in various depths during the curing procedure.

  11. Silicon enhanced salt tolerance by improving the root water uptake and decreasing the ion toxicity in cucumber

    Science.gov (United States)

    Wang, Shiwen; Liu, Peng; Chen, Daoqian; Yin, Lina; Li, Hongbing; Deng, Xiping

    2015-01-01

    Although the effects of silicon application on enhancing plant salt tolerance have been widely investigated, the underlying mechanism has remained unclear. In this study, seedlings of cucumber, a medium silicon accumulator plant, grown in 0.83 mM silicon solution for 2 weeks were exposed to 65 mM NaCl solution for another 1 week. The dry weight and shoot/root ratio were reduced by salt stress, but silicon application significantly alleviated these decreases. The chlorophyll concentration, net photosynthetic rate, transpiration rate and leaf water content were higher in plants treated with silicon than in untreated plants under salt stress conditions. Further investigation showed that salt stress decreased root hydraulic conductance (Lp), but that silicon application moderated this salt-induced decrease in Lp. The higher Lp in silicon-treated plants may account for the superior plant water balance. Moreover, silicon application significantly decreased Na+ concentration in the leaves while increasing K+ concentration. Simultaneously, both free and conjugated types of polyamines were maintained at high levels in silicon-treated plants, suggesting that polyamines may be involved in the ion toxicity. Our results indicate that silicon enhances the salt tolerance of cucumber through improving plant water balance by increasing the Lp and reducing Na+ content by increasing polyamine accumulation. PMID:26442072

  12. Water properties in cream cheeses with variations in pH, fat, and salt content and correlation to microbial survival.

    Science.gov (United States)

    Møller, Sandie M; Hansen, Tina B; Andersen, Ulf; Lillevang, Søren K; Rasmussen, Anitha; Bertram, Hanne C

    2012-02-22

    Water mobility and distribution in cream cheeses with variations in fat (4, 15, and 26%), added salt (0, 0.625, and 1.25%), and pH (4.2, 4.7, and 5.2) were studied using (1)H NMR relaxometry. The cheese samples were inoculated with a mixture of Listeria innocua, Escherichia coli O157 and Staphylococcus aureus, and partial least-squares regression revealed that (1)H T(2) relaxation decay data were able to explain a large part of the variation in the survival of E. coli O157 (64-83%). However, the predictions of L. innocua and S. aureus survival were strongly dependent on the fat/water content of the samples. Consequently, the present results indicate that NMR relaxometry is a promising technique for predicting the survival of these bacteria; however, the characteristics of the sample matrix are substantial. PMID:22276613

  13. Water Properties in Cream Cheeses with Variations in pH, Fat, and Salt Content and Correlation to Microbial Survival

    DEFF Research Database (Denmark)

    MØller, Sandie M.; Hansen, Tina B.

    2012-01-01

    Water mobility and distribution in cream cheeses with variations in fat (4, 15, and 26%), added salt (0, 0.625, and 1.25%), and pH (4.2, 4.7, and 5.2) were studied using H-1 NMR relaxometry. The cheese samples were inoculated with a mixture of Listeria innocua, Escherichia coli 0157 and Staphylococcus aureus, and partial least-squares regression revealed that H-1 T-2 relaxation decay data were able to explain a large part of the variation in the survival of E. coli O157 (64-83%). However, the predictions of L. innocua and S. aureus survival were strongly dependent on the fat/water content of the samples. Consequently, the present results indicate that NMR relaxometry is a promising technique for predicting the survival of these bacteria; however, the characteristics of the sample matrix are substantial.

  14. Water purification using organic salts

    Science.gov (United States)

    Currier, Robert P.

    2004-11-23

    Water purification using organic salts. Feed water is mixed with at least one organic salt at a temperature sufficiently low to form organic salt hydrate crystals and brine. The crystals are separated from the brine, rinsed, and melted to form an aqueous solution of organic salt. Some of the water is removed from the aqueous organic salt solution. The purified water is collected, and the remaining more concentrated aqueous organic salt solution is reused.

  15. Model-based studies into ground water movement, with water density depending on salt content. Case studies and model validation with respect to the long-term safety of radwaste repositories. Final report

    International Nuclear Information System (INIS)

    Near-to-reality studies into ground water movement in the environment of planned radwaste repositories have to take into account that the flow conditions are influenced by the water density which in turn depends on the salt content. Based on results from earlier studies, computer programs were established that allow computation and modelling of ground water movement in salt water/fresh water systems, and the programs were tested and improved according to progress of the studies performed under the INTRAVAL international project. The computed models of ground water movement in the region of the Gorlebener Rinne showed for strongly simplified model profiles that the developing salinity distribution varies very sensitively in response to the applied model geometry, initial input data for salinity distribution, time frame of the model, and size of the transversal dispersion length. The WIPP 2 INTRAVAL experiment likewise studied a large-area ground water movement system influenced by salt water. Based on the concept of a hydraulically closed, regional ground water system (basin model), a sectional profile was worked out covering all relevant layers of the cap rock above the salt formation planned to serve as a repository. The model data derived to describe the salt water/fresh water movements in this profile resulted in essential enlargements and modifications of the ROCKFLOW computer program applied, (relating to input data for dispersion modelling, particle-tracker, computer graphics interface), and yielded important information for the modelling of such systems (relating to initial pressure data at the upper margin, network enhancement for important concentration boundary conditions, or treatment of permeability contrasts). (orig.)

  16. Nuclear probe for soil water content measurements by Compton scattering

    International Nuclear Information System (INIS)

    There are few types of nuclear probes that measure the soil water content. The aim of this study is to develop a new nuclear probe, optimise its geometry using the code MCNP4C and calibrate it. This nuclear probe is constituted by a 60 keV gamma radiation source, a soil sample and a plastic scintillator. A beam of radiation coming from the source reaches the sample and is scattered by Compton effect. The scintillator then detects this scattered radiation. Its optimization is made using the MCNP4C adjusting the three parameters: distance between the source and the scintillator, dimensions of soil sample and source's energy. After choosing the optimized system, small amount of water is progressively added into the soil sample until its saturation, what permits correlate counts with water content. The results showed the viability of using this method to measure soil water content. (author)

  17. Deuterium, oxygen-18 and salt content of drinking water sources in Cairo

    International Nuclear Information System (INIS)

    The continuous increase of population in Cairo exceeding 10 millions inhabitants lead to the search for supplementary potable water resources in addition to the Nile River which is the principle drinking water source. Groundwater represents the main supplementary source. Evaluation of the groundwater feeding the so-called El-Ameria Water Treatment Station which is one of the biggest potable water supplies at the northern of Cairo was carried out. Chemical and isotopic techniques were applied to estimate the suitability of this groundwater for drinking purposes. The chemical analysis includes the determination of sodium, potasium, calcium and magnesium concentrations in additon to those of chlorides, sulphates, bicarbonates and silicates, while the isotopic analysis includes oxygen-18 and deuterium. The overall chemical- and isotopic investigations determined the conditions at which the examined groundwater is suitable for drinking purposes. (orig.)

  18. Extraction of uranyl nitrate by di-isoamylmethylphosphonate from concentrated water-salt solutions

    International Nuclear Information System (INIS)

    Isotherm of uranyl nitrate extraction by 100 % di-isoamylmethylphosphonate (dampa) from concentrated water-salt solutions is described with allowance made for formation of uranyl nitrate di- and trisolvates in organic phase. Values of constants of phase extraction equilibrium are determined. Values of excess functions of mixing of dampa and uranyl nitrate disolvate solutions at 298 K are given. 9 refs.; 2 tabs

  19. SEPARATION OF MAGNESIUM CHLORIDE FROM SEA WATER BY PREFERENTIAL SALT SEPARATION (PSS)

    OpenAIRE

    Khaled Zohdy, Maha Abdel Kareem and Hussein Abdel-Aal*

    2013-01-01

    Magnesium chloride is typically extracted from sea water on an industrial scale by precipitating it as magnesium hydroxide, then converting it to the chloride by adding hydrochloric acid. This process is known as the Dow process which uses the chemical approach in producing magnesium chloride. Kettani and Abdel-Aal [1], proposed a physical separation procedure known as the Preferential Salt Separation (PSS) to obtain magnesium chloride directly from sea water. In principle, the PSS concept is...

  20. ASU testing of water in salt

    International Nuclear Information System (INIS)

    Stable isotope measurements have been used to determine the origin of water leaking into salt mines in the Gulf Coast salt domes. Water ''pockets'' are found around the periphery of the domes and in association with sediment inclusions. Isotopic data indicate that these waters are formation waters that have been mechanically wrapped into the domes during diapiric rise of the salt. Meteoric waters are actively leaking into the Avery Island salt mine. These leaks represent penetration of the salt by external waters. The mechanism of brine movement is unknown. A third water type in domal salt appears to be connate brines evaporated to potash facies. These brines are so concentrated that they turn to a gel at liquid nitrogen temperatures; they will not freeze. Isotopic analyses of fluid inclusions in the bedded salts of the Palo Duro Basin indicate that the trapped water is mainly connate evaporate water dating back to the time of salt deposition. In the Avery Island salt dome, observations include ghost grain boundaries defined by curviplanar arrays of fluid inclusions within coarse halite crystals. These are either former grain boundaries or fracture surfaces. Parallel planes of intracrystalline fluid inclusions clearly indicate natural fracturing of salt with consequent movement of brine. Water appears to have migrated upwards of 50 meters from localized water ''pockets'' via these mechanisms

  1. Nuclear probe for soil water content measurements by Compton scattering

    International Nuclear Information System (INIS)

    Two methods for measuring soil moisture were developed. They are based on incoherent and coherent Compton scattering of 60 keV gamma rays. Scattered ? ray rates by small soil samples, less than 4 cm3, were measured using a X-Ray NaI(Tl) detector. Known water amounts were introduced in these samples and count rates were measured and correlated with water contents. Results have shown the viability of using this method to measure soil water content. A second method uses cylindrical soil samples with radius of 10 cm and height of 15 cm. These samples has an axial hole with 1.2 cm of diameter and 9 cm depth where the densimeter is placed. This densimeter consists of a cylinder of five centimeter length where inside a 241Am source, a lead shield and a plastic scintillator is axially placed. This scintillator is coupled to a light guide to light to a photocathode of a photomultiplier tube. The densimeter was tested using soil samples with water contents ranges from 5 to 25%. Linear correlation between count rates and water content has shown correlation coefficient better than 0.99. (author)

  2. SEPARATION OF MAGNESIUM CHLORIDE FROM SEA WATER BY PREFERENTIAL SALT SEPARATION (PSS

    Directory of Open Access Journals (Sweden)

    Khaled Zohdy, Maha Abdel Kareem and Hussein Abdel-Aal*

    2013-02-01

    Full Text Available Magnesium chloride is typically extracted from sea water on an industrial scale by precipitating it as magnesium hydroxide, then converting it to the chloride by adding hydrochloric acid. This process is known as the Dow process which uses the chemical approach in producing magnesium chloride. Kettani and Abdel-Aal [1], proposed a physical separation procedure known as the Preferential Salt Separation (PSS to obtain magnesium chloride directly from sea water. In principle, the PSS concept is based on the selective separation of salts during the evaporation. In this paper, analysis of the PSS concept is carried out for two proposed distinctive designs: the dynamic (continuous flow model and the static (batch flow model. Separation of magnesium chloride is anticipated using solar energy for evaporating sea water. Preliminary experimental results for simulated systems are reported for each case.

  3. SEPARATION OF MAGNESIUM CHLORIDE FROM SEA WATER BY PREFERENTIAL SALT SEPARATION (PSS

    Directory of Open Access Journals (Sweden)

    Khaled Zohdy, Maha Abdel Kareem and Hussein Abdel-Aal*

    2013-01-01

    Full Text Available Magnesium chloride is typically extracted from sea water on an industrial scale by precipitating it as magnesium hydroxide, then converting it to the chloride by adding hydrochloric acid. This process is known as the Dow process which uses the chemical approach in producing magnesium chloride. Kettani and Abdel-Aal [1], proposed a physical separation procedure known as the Preferential Salt Separation (PSS to obtain magnesium chloride directly from sea water. In principle, the PSS concept is based on the selective separation of salts during the evaporation. In this paper, analysis of the PSS concept is carried out for two proposed distinctive designs: the dynamic (continuous flow model and the static (batch flow model. Separation of magnesium chloride is anticipated using solar energy for evaporating sea water. Preliminary experimental results for simulated systems are reported for each case.

  4. Electromotive Force Generation with Hydrogen Release by Salt Water Flow under a Transverse Magnetic Field

    OpenAIRE

    Roberto De Luca

    2011-01-01

    By considering an electrolyte solution in motion in a duct under a transverse magnetic field, we notice that a so called Faraday voltage arises because of the Lorentz force acting on anions and cations in the fluid. When salt water is considered, hydrogen production takes place at one of the electrodes if an electric current, generated by Faraday voltage, flows in an external circuit. The maximum amount of hydrogen production rate is calculated by basic electrochemical concepts.

  5. Cloud-point measurement for (sulphate salts + polyethylene glycol 15000 + water) systems by the particle counting method

    International Nuclear Information System (INIS)

    The phase separation of (water + salt + polyethylene glycol 15000) systems was studied by cloud-point measurements using the particle counting method. The effect of three kinds of sulphate salt (Na2SO4, K2SO4, (NH4)2SO4) concentration, polyethylene glycol 15000 concentration, mass ratio of polymer to salt on the cloud-point temperature of these systems have been investigated. The results obtained indicate that the cloud-point temperatures decrease linearly with increase in polyethylene glycol concentrations for different salts. Also, the cloud points decrease with an increase in mass ratio of salt to polymer.

  6. Exceptionally Fast Water Desalination at Complete Salt Rejection by Pristine Graphyne Monolayers

    OpenAIRE

    Xue, Minmin; Qiu, Hu; Guo, Wanlin

    2013-01-01

    Desalination that produces clean freshwater from seawater holds the promise to solve the global water shortage for drinking, agriculture and industry. However, conventional desalination technologies such as reverse osmosis and thermal distillation involve large amounts of energy consumption, and the semipermeable membranes widely used in reverse osmosis face the challenge to provide a high throughput at high salt rejection. Here we find by comprehensive molecular dynamics si...

  7. Salt, Water, and Athletes.

    Science.gov (United States)

    Smith, Nathan J.

    Good nutrition for athletes demands plenty of water, since water is essential to such vital functions as muscle reactions. Dehydration can result from jet travel as well as from exercise and heat, making it a danger to traveling athletic teams. To avoid dehydration, water needs should be monitored by frequent weighing, and a clean water supply…

  8. Salt content in canteen and fast food meals in Denmark

    DEFF Research Database (Denmark)

    Rasmussen, Lone Banke; Lassen, Anne Dahl

    2010-01-01

    Background: A high salt (NaCl) intake is associated with high blood pressure, and knowledge of salt content in food and meals is important, if the salt intake has to be decreased in the general population. Objective: To determine the salt content in worksite canteen meals and fast food. Design: For the first part of this study, 180 canteen meals were collected from a total of 15 worksites with in- house catering facilities. Duplicate portions of a lunch meal were collected from 12 randomly selected employees at each canteen on two non-consecutive days. For the second part of the study, a total of 250 fast food samples were collected from 52 retail places representing both city (Aarhus) and provincial towns. The canteen meals and fast food samples were analyzed for chloride by potentiometric titration with silver nitrate solution, and the salt content was estimated. Results: The salt content in lunch meals in worksite canteens were 3.891.8 g per meal and 14.795.1 g per 10 MJ for men (n 109), and 2.891.2 g per meal and 14.496.2 g per 10 MJ for women (n 71). Salt content in fast food ranged from 11.892.5 g per 10 MJ (burgers) to 16.394.4 g per 10 MJ (sausages) with a mean content of 13.893.8 g per 10 MJ. Conclusion: Salt content in both fast food and in worksite canteen meals is high and should be decreased.

  9. Simulation of water transport in heated rock salt

    International Nuclear Information System (INIS)

    This final report contains the results of computer simulation studies on water transport in German rock salt. Based on Jockwer's experimental investigations on water content and water liberation, the object of this work was to select a water transport model that matches the water inflow which was measured in some heater experiments in the Asse salt mine. The main result is that an evaporation model with Knudsen type vapour transport combined with fluid transport by thermal expansion of the adsorbed water layers in the non-evaporated zone showed the best agreement with experimental evidence. An extrapolatory calculation for a borehole in a high-level waste repository showed that the water vapour inflow during the time of convergence of the initial gap between canister and borehole will not exceed 200 g per meter

  10. Effect of salt and urban water samples on bacterivory by the ciliate, Tetrahymena thermophila

    Energy Technology Data Exchange (ETDEWEB)

    St Denis, C.H.; Pinheiro, M.D.O.; Power, M.E. [Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1 (Canada); Bols, Niels C., E-mail: ncbols@uwaterloo.c [Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1 (Canada)

    2010-02-15

    The effect of road salt on the eating of bacteria or bacterivory by the ciliate, Tetrahymena thermophila, was followed in non-nutrient Osterhout's solution with Escherichia coli expressing green fluorescent protein. Bacterivory was impaired at between 0.025 and 0.050% w/v but the ciliates appeared to have normal morphologies and motilities, whereas at above 0.1%, bacterivory was blocked and many ciliates died. By contrast, E. coli remained viable, suggesting salt could alter predator-prey relationships in microbial communities. In nutrient medium, salt was not toxic and the ciliates grew. After growth in salt, ciliates consumed bacteria in 0.2% salt, indicating the salt acclimation of bacterivory. Bacteria and ciliates were added to urban creek samples to compare their capacity to support exogenous bacterivory. Even though samples were collected weekly for a year and be expected to have fluctuating salt levels as a result of deicing, all creek samples supported a similar level of bacterivory. - Road salt at some concentrations inhibits bacterivory by ciliates, and thus potentially could alter the microbial food web.

  11. Water Uptake by Mars Salt Analogs: An Investigation of Stable Aqueous Solutions Using Raman Microscopy

    Science.gov (United States)

    Nuding, Danielle L.

    Liquid water processes that may occur on the surface and near-subsurface of Mars have important implications for the present-day water cycle, habitability, and planetary protection policies. The presence of salts on Mars plays a role in surface-atmosphere interactions as salts enhance the soil's ability to retain water. This thesis explores the phase transitions of water upon interaction with Mars relevant salt analogs. Water uptake and loss properties of a single and complex Mars analog are examined using a Raman microscope equipped with an environmental cell. The effect of the hygroscopic salts on bacterial spores was evaluated with a focus on potential terrestrial contamination on outbound spacecraft and its influence on planetary protection concerns. Calcium perchlorate (Ca(ClO4)2) is a highly deliquescent salt that may exist on the surface of present-day Mars. Here, we quantify the deliquescent relative humidity (DRH) and efflorescent relative humidity (ERH) of Ca(ClO4)2 as a function of temperature (223 K to 273 K) to elucidate its behavior on the surface of Mars. Mars relevant temperature and relative humidity (RH) conditions were simulated and deliquescence (solid to aqueous) and efflorescence (aqueous to solid) phase transitions of Ca(ClO4)2 were characterized. Experimental DRH values were compared to a thermodynamic model for three hydration states of Ca(ClO 4)2. Calcium perchlorate was found to supersaturate, with lower ERH values than DRH values. Additionally, we conducted a 17-hour experiment to simulate a subsurface relative humidity and temperature diurnal cycle. This demonstrated that aqueous Ca(ClO4)2 solutions can persist without efflorescing for the majority of a martian sol, up to 17 hours under Mars temperature heating rates and RH conditions. Applying these experimental results to martian surface and subsurface heat and mass transfer models, we find that aqueous Ca(ClO4)2 solutions could persist for most of the martian sol under present-day conditions. To investigate complex brine mixtures, a salt analog, deemed 'Instant Mars,' was developed to closely match the individual cation and anion concentrations as reported by the Wet Chemistry Laboratory instrument at the Phoenix landing site. 'Instant Mars' was developed to fully encompass and closely replicate correct concentrations of magnesium, calcium, potassium, sodium, perchlorate, chloride, and sulfate ions. Here we use two separate techniques, Raman microscopy and particle levitation, to study the water uptake and loss properties of individual Instant Mars analog particles. Raman microscope experiments reveal that Instant Mars particles can form stable, aqueous solutions at 56 +/- 5% RH at 243 K and persist as a metastable, aqueous solution down to 13 +/- 5% RH. The results presented in this thesis demonstrate that a salt analog that closely replicates in-situ measurements from the Phoenix landing site can take up water vapor from the surrounding environment and transition into a stable, aqueous solution. Furthermore, this aqueous Instant Mars solution can persist as a metastable, supersaturated solution in RH conditions much lower than the deliquescent RH. Finally, laboratory experiments presented here examine the interaction of B. subtilis spores (B-168) with liquid water in Mars relevant temperatures and RH conditions. In addition, Ca(ClO4)2 was mixed with the B. subtilis spores and exposed to the same diurnal cycle conditions to quantify the effects of Ca(ClO4)2 on the spores. A combination of Raman microscopy and an environmental cell allows us to visually and spectrally analyze the changes of the individual B. subtilis spores and Ca(ClO4)2 mixtures as they experience present-day martian diurnal cycle conditions. Results suggest that B-168 spores can survive the arid conditions and martian temperatures, even when exposed to Ca(ClO 4)2 in the crystalline or aqueous phase. The extreme hygroscopic nature of Ca(ClO4)2 allows for direct interaction of B. subtilis spores with liquid water. The results impact the understanding of planetary protectio

  12. DETERMINATION OF SOLUBLE SALTS IN INTERSTITIAL WATER OF FLUVIAL SEDIMENTS BY IE-HPLC

    Scientific Electronic Library Online (English)

    SYLVIA. V, COPAJA; VESNA, NÚÑEZ S; DAVID, VÉLIZ.

    2014-03-01

    Full Text Available An ionic exchange high resolution liquid chromatography (IE-HPLC) method for determination of cations and anions in interstitial water of sediments, affluent and effluent of dams is proposed in this paper. Cations: Na+, Ca2+, K+, and Mg2+ and anions: Cl-, CO3(2-), NO3- and SO4(2-) were analyzing by [...] IE-HPLC method. Optimized analytical conditions were validated in terms of accuracy, recovery and detection limit. The method of flame spray atomic absorption spectrophotometer (AAS) was used as an additional method for the determination of Ca and Mg. It must be indicated that cations may be analyzed by several analytical methods such as AAS, ICP, etc., but there are not enough methods to analyze anions; IE-HPLC methods are good alternative to determine these ions. The aim of this study was to determine ions in interstitial water in the affluent and effluent of the Chilean dams Cogotí, Corrales, La Paloma, Rapel and Recoleta in order to determine if the water is suitable for irrigation or human consumption and estimate the effect of dams on water quality. The results indicate that the highest concentrations observed were for the cations: Ca2+ (mean 43.5 mgL-1), Na+ (mean 16.4 mgL-1), Mg2+ (mean 12.6 mgL-1), and K+ (mean 2.3 mgL-1). The highest concentration of anions was found for CO3(2-) (mean 55.9 mgL-1); the concentrations of SO4(2-), Cl- and NO3- reached 59.3 mgL-1, 12.8 mgL-1 and 27.0 mgL-1, respectively. The results indicate that although the origin of soluble salts is lithogenic, the high concentrations of these salts found in some places indicate anthropogenic effect, either by direct or indirect discharges or by diffuse pollution. These high concentrations may be significant, considering that these waters are used mainly for irrigation, which would affect the quality of agricultural soils irrigated with this moderately saline water.

  13. Amount and nature of occluded water in bedded salt, Palo Duro Basin, Texas

    International Nuclear Information System (INIS)

    The quantity and types of fluids within bedded salt cores from the Permian San Andres Formation, Palo Duro, Texas, were evaluated at the Texas Bureau of Economic Geology. Bedded halite from the San Andres Formation and other salt-bearing units were selected to represent the variety of salt types present, and were then analyzed. The mean water content of ''pure'' samples (more than 90% halite) is 0.4 weight percent, with none observed greater than 1.0 weight percent. Samples that contain more than 10 weight percent clay or mudstone display a trend of increasing water content with increasing clastic material. Chaotic mudstone-halite samples have as much as 5 weight percent water; halite-cemented mudstone interlayers, common throughout the bedded salts, may have water content values as high as 10 to 15 weight percent based on extrapolation of existing data that range from 0 to about 6%. No significant difference exists between the mean water content values of ''pure salt'' from the upper San Andres, lower San Andres Cycle 5, and lower San Andres Cycle 4 salt units. The fraction of total water present as mobile intergranular water is highly variable and not readily predicted from observed properties of the salt sample. The amount of water that would be affected by a high-level nuclear waste repository can be estimated if the volume of halite, the volume of clastic interlayers, and the amount and type of impurity in halite are known. Appendix contains seven vugraphs

  14. Salt content in canteen and fast food meals in Denmark

    Directory of Open Access Journals (Sweden)

    Sisse Fagt

    2010-03-01

    Full Text Available Background: A high salt (=NaCl intake is associated with high blood pressure, and knowledge of salt content in food and meals is important, if the salt intake has to be decreased in the general population. Objective: To determine the salt content in worksite canteen meals and fast food. Design: For the first part of this study, 180 canteen meals were collected from a total of 15 worksites with in-house catering facilities. Duplicate portions of a lunch meal were collected from 12 randomly selected employees at each canteen on two non-consecutive days. For the second part of the study, a total of 250 fast food samples were collected from 52 retail places representing both city (Aarhus and provincial towns. The canteen meals and fast food samples were analyzed for chloride by potentiometric titration with silver nitrate solution, and the salt content was estimated. Results: The salt content in lunch meals in worksite canteens were 3.8±1.8 g per meal and 14.7±5.1 g per 10 MJ for men (n=109, and 2.8±1.2 g per meal and 14.4±6.2 g per 10 MJ for women (n=71. Salt content in fast food ranged from 11.8±2.5 g per 10 MJ (burgers to 16.3±4.4 g per 10 MJ (sausages with a mean content of 13.8±3.8 g per 10 MJ. Conclusion: Salt content in both fast food and in worksite canteen meals is high and should be decreased.

  15. Amelioration of cardio-renal injury with aging in dahl salt-sensitive rats by H2-enriched electrolyzed water

    Science.gov (United States)

    2013-01-01

    Abstract Recent studies have revealed the biological effects of H2 in suppressing organ injuries due to acute inflammation and oxidative stress. Dahl salt-sensitive (SS) rats naturally develop elevated blood pressure (BP) and kidney injury with aging. The present study examined the effect of long-term supplementation of H2 in drinking water on age-related changes. Four-week-old male Dahl SS rats were fed 3 types of water (n?=?30 each) for up to 48 weeks: filtered water (FW), water with a high H2 content (492.5 ppb) obtained with water electrolysis (EW), or dehydrogenated EW (DW). Animals were subjected to histological analysis at 16, 24, and 48 weeks. The FW group showed progressive BP elevation and increases in albuminuria and cardiac remodeling during the course of treatment. Histologically, there were significant changes as a function of aging, i.e., glomerular sclerosis with tubulointerstitial fibrosis in the kidney, and increased cardiomyocyte diameter with interstitial fibrosis in the heart at 48 weeks. These changes were related to the enhanced inflammation and oxidative stress in the respective organs. However, there were no striking differences in BP among the groups, despite histological alterations in the EW group being significantly decreased when compared to FW and DW in both organs, with concurrently lower oxidative stress and inflammatory markers at 48 weeks. Conclusion Long-term ad libitum consumption of H2-enriched electrolyzed water can ameliorate the processes of kidney injury and cardiac remodeling with aging in Dahl SS rats by suppressing, at least partly, elevated inflammation and oxidative stress. PMID:24289332

  16. Titanium for salt water service

    International Nuclear Information System (INIS)

    Titanium has potential as major material of construction in desalination plants, in condensers and heat exchangers, in view of its excellent corrosion resistance to salt water upto at least 120deg C. The advantages of titanium in such applications are brought out. The various specific problems such as pitting, crevice and galvanic corrosion and the preventive methods, for adopting titanium have been discussed. The hydriding problem can be overcome by suitably controlling the operating parameters such as temperature and surface preparation. A case has been made to prove the economic viability of titanium in comparison to Al-brass and Cu-Ni alloy. The future of titanium seems to be very promising in view of the negligible tube failures and outages. (auth.)

  17. Characterization of two-phase mixture (petroleum, salted water or gas) by gamma radiation transmission

    International Nuclear Information System (INIS)

    A mathematical description was accomplished to determine the discrimination of a substance in a two-phase mixture, for one beam system, using the five energy lines (13.9, 17.8,26.35 and 59,54 keV) of the 241 Am source. The mathematical description was also accomplished to determine the discrimination of two substances in a three-phase mixture, for a double beam system.. he simulated mixtures for the one beam system were petroleum/salted water or gas. The materials considered in these simulations were: four oils types, denominated as A, B, Bell and Generic, one kind of natural gas and salted water with the following salinities: 35.5, 50, 100, 150, 200, 250 and 300 kg/m3 of Na Cl. The simulation for the one beam system consisted of a box with acrylic walls and other situation with a box of epoxi walls reinforced with fiber of carbon. The epoxi with carbon fiber was used mainly due to the fact that this material offers little attenuation to the fotons and it resists great pressures. With the results of the simulations it was calculated tables of minimum discrimination for each possible two-phase mixture with petroleum, gas and salted water at several salinities. These discrimination tables are the theoretical forecasts for experimental measurements, since they supply the minimum mensurable percentage for each energy line, as well as the ideal energy for the measurement of each mixture, or situation. The simulated discrimination levels were tested employing experimental arrangements with conditions and materials similar to those of the simulations, for the case of box with epoxi wall reinforced with carbon fiber, at the energies of 20.8 and 59.54 keV. It was obtained good results. For example, for the mixture of salted water (35.5 kg/m3) in paraffin (simulating the petroleum), it was obtained an experimental discrimination minimum of 10% of salted water for error statistics of 5% in I and Io, while the theoretical simulation foresaw the same discrimination level for error statistics of 3%. (author)

  18. Measurement of soil density and water content by attenuation of Bi-energy ? rays

    International Nuclear Information System (INIS)

    Soil density and water content can be determined concurrently by measuring the attenuation of two different energy ? rays. A dual source containing 241Am and 137Cs are shown to be suitable for these measurements. Multichannel pulse-height analyzers is used to determine their accuracy under experimental conditions for simultaneous measurements of soil density and water content

  19. Determination by gamma-ray spectrometry of the plutonium and americium content of the Pu/Am separation scraps. Application to molten salts

    International Nuclear Information System (INIS)

    Within the framework of plutonium recycling operations in CEA Valduc (France), americium is extracted from molten plutonium metal into a molten salt during an electrolysis process. The scraps (spent salt, cathode, and crucible) contain extracted americium and a part of plutonium. Nuclear material management requires a very accurate determination of the plutonium content. Gamma-ray spectroscopy is performed on Molten Salt Extraction (MSE) scraps located inside the glove box, in order to assess the plutonium and americium contents. The measurement accuracy is influenced by the device geometry, nuclear instrumentation, screens located between the sample and the detector, counting statistics and matrix attenuation, self-absorption within the spent salt being very important. The purpose of this study is to validate the 'infinite energy extrapolation' method employed to correct for self-attenuation, and to detect any potential bias. We present a numerical study performed with the MCNP computer code to identify the most influential parameters and some suggestions to improve the measurement accuracy. A final uncertainty of approximately 40% is achieved on the plutonium mass. (authors)

  20. Performance of neutron scattering relative to Diviner2000 for estimating soil water content in salt affected soils

    International Nuclear Information System (INIS)

    A field experiment was conducted on sandy clay and clayey soils at Deir Ezzor to compare the performance of Neutron Scattering (NS) relative to a capacitance probe (CP), Diviner2000, in our local conditions under saline soils. The effect of soil electrical conductivity (ECe) and bulk density (?b) on the precession, accuracy and sensitivity of the tested equipment s were evaluated. Also, the ability to improve the calibration equation for these equipment s, by including ECe and ?b as independent variables in the equation formula, was studied. The study showed that, Diviner2000 was very sensitive to soil bulk density and electrical conductivity of the soil (i.e. soil salinity) compared to the NS. Multiple non-linear regressions improved the fitting when both parameters (?b and ECe) were included in the equation, even though the correlation coefficient (R2) remained low in the case of Diviner2000.(author)

  1. Determination of moisture content and water activity in algae and fish by thermoanalytical techniques

    International Nuclear Information System (INIS)

    The water content in seafoods is very important since it affects their sensorial quality, microbiological stability, physical characteristics and shelf life. In this study, thermoanalytical techniques were employed to develop a simple and accurate method to determine water content (moisture) by thermogravimetry (TG) and water activity from moisture content values and freezing point depression using differential scanning calorimetry (DSC). The precision of the results suggests that TG is a suitable technique to determine moisture content in biological samples. The average water content values for fish samples of Lutjanus synagris and Ocyurus chrysurus species were 76.4 ± 5.7% and 63.3 ± 3.9%, respectively, while that of Ulva lactuca marine algae species was 76.0 ± 4.4%. The method presented here was also successfully applied to determine water activity in two species of fish and six species of marine algae collected in the Atlantic coastal waters of Bahia, in Brazil. Water activity determined in fish samples ranged from 0.946 - 0.960 and was consistent with values reported in the literature, i.e., 0.9 - 1.0. The water activity values determined in marine algae samples lay within the interval of 0.974 - 0.979. (author)

  2. Determination of moisture content and water activity in algae and fish by thermoanalytical techniques

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Vilma Mota da; Silva, Luciana Almeida; Andrade, Jailson B. de [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Inst. de Quimica]. E-mail: jailsong@ufba.br; Veloso, Marcia C. da Cunha [Centro Federal de Educacao Tecnologica da Bahia (CEFET-BA), Salvador, BA (Brazil)); Santos, Gislaine Vieira [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Inst. de Biologia

    2008-07-01

    The water content in seafoods is very important since it affects their sensorial quality, microbiological stability, physical characteristics and shelf life. In this study, thermoanalytical techniques were employed to develop a simple and accurate method to determine water content (moisture) by thermogravimetry (TG) and water activity from moisture content values and freezing point depression using differential scanning calorimetry (DSC). The precision of the results suggests that TG is a suitable technique to determine moisture content in biological samples. The average water content values for fish samples of Lutjanus synagris and Ocyurus chrysurus species were 76.4 {+-} 5.7% and 63.3 {+-} 3.9%, respectively, while that of Ulva lactuca marine algae species was 76.0 {+-} 4.4%. The method presented here was also successfully applied to determine water activity in two species of fish and six species of marine algae collected in the Atlantic coastal waters of Bahia, in Brazil. Water activity determined in fish samples ranged from 0.946 - 0.960 and was consistent with values reported in the literature, i.e., 0.9 - 1.0. The water activity values determined in marine algae samples lay within the interval of 0.974 - 0.979. (author)

  3. Determination of moisture content and water activity in algae and fish by thermoanalytical techniques

    Scientific Electronic Library Online (English)

    Vilma Mota da, Silva; Luciana Almeida, Silva; Jailson B. de, Andrade; Márcia C. da Cunha, Veloso; Gislaine Vieira, Santos.

    Full Text Available The water content in seafoods is very important since it affects their sensorial quality, microbiological stability, physical characteristics and shelf life. In this study, thermoanalytical techniques were employed to develop a simple and accurate method to determine water content (moisture) by ther [...] mogravimetry (TG) and water activity from moisture content values and freezing point depression using differential scanning calorimetry (DSC). The precision of the results suggests that TG is a suitable technique to determine moisture content in biological samples. The average water content values for fish samples of Lutjanus synagris and Ocyurus chrysurus species were 76.4 ± 5.7% and 63.3 ± 3.9%, respectively, while that of Ulva lactuca marine algae species was 76.0 ± 4.4%. The method presented here was also successfully applied to determine water activity in two species of fish and six species of marine algae collected in the Atlantic coastal waters of Bahia, in Brazil. Water activity determined in fish samples ranged from 0.946 - 0.960 and was consistent with values reported in the literature, i.e., 0.9 - 1.0. The water activity values determined in marine algae samples lay within the interval of 0.974 - 0.979.

  4. Determination of moisture content and water activity in algae and fish by thermoanalytical techniques

    Directory of Open Access Journals (Sweden)

    Vilma Mota da Silva

    2008-01-01

    Full Text Available The water content in seafoods is very important since it affects their sensorial quality, microbiological stability, physical characteristics and shelf life. In this study, thermoanalytical techniques were employed to develop a simple and accurate method to determine water content (moisture by thermogravimetry (TG and water activity from moisture content values and freezing point depression using differential scanning calorimetry (DSC. The precision of the results suggests that TG is a suitable technique to determine moisture content in biological samples. The average water content values for fish samples of Lutjanus synagris and Ocyurus chrysurus species were 76.4 ± 5.7% and 63.3 ± 3.9%, respectively, while that of Ulva lactuca marine algae species was 76.0 ± 4.4%. The method presented here was also successfully applied to determine water activity in two species of fish and six species of marine algae collected in the Atlantic coastal waters of Bahia, in Brazil. Water activity determined in fish samples ranged from 0.946 - 0.960 and was consistent with values reported in the literature, i.e., 0.9 - 1.0. The water activity values determined in marine algae samples lay within the interval of 0.974 - 0.979.

  5. Sulfur-poisoned Ni-based solid oxide fuel cell anode characterization by varying water content

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ting Shuai; Wang, Wei Guo [Division of Fuel Cell and Energy Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, 519 Zhuangshi Road, Ningbo 315201 (China)

    2011-02-15

    The 0.2% hydrogen sulfide (H{sub 2}S) poisoning of Ni/YSZ anode-supported solid oxide fuel cells (SOFCs) is investigated by varying water content in fuel. The degradation extent of the cell voltage decreases with increasing water content (from 0% to 10%). Water can be generated at the anode side through an electrochemical reaction, and the content of water product augments upon the addition of fuel. However, our results indicate that an increase in fuel utilization significantly aggravates H{sub 2}S poisoning behavior. The results of X-ray analysis suggest that the presence of water in fuel cannot affect the final forms of nickel sulfides, but microstructural inspection reveals different attack modes upon the injection of vapor (from 0 to 10%) into fuel containing 0.2% H{sub 2}S. (author)

  6. Water content determination of superdisintegrants by means of ATR-FTIR spectroscopy.

    Science.gov (United States)

    Szakonyi, G; Zelkó, R

    2012-04-01

    Water contents of superdisintegrant pharmaceutical excipients were determined by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy using simple linear regression. Water contents of the investigated three common superdisintegrants (crospovidone, croscarmellose sodium, sodium starch glycolate) varied over a wide range (0-24%, w/w). In the case of crospovidone three different samples from two manufacturers were examined in order to study the effects of different grades on the calibration curves. Water content determinations were based on strong absorption of water between 3700 and 2800 cm?¹, other spectral changes associated with the different compaction of samples on the ATR crystal using the same pressure were followed by the infrared region between 1510 and 1050 cm?¹. The calibration curves were constructed using the ratio of absorbance intensities in the two investigated regions. Using appropriate baseline correction the linearity of the calibration curves was maintained over the entire investigated water content regions and the effect of particle size on the calibration was not significant in the case of crospovidones from the same manufacturer. The described method enables the water content determination of powdered hygroscopic materials containing homogeneously distributed water. PMID:22361662

  7. Protoplast water content of bacterial spores determined by buoyant density sedimentation.

    OpenAIRE

    Lindsay, J.A.; Beaman, T C; Gerhardt, P.

    1985-01-01

    Protoplast wet densities (1.315 to 1.400 g/ml), determined by buoyant density sedimentation in Metrizamide gradients, were correlated inversely with the protoplast water contents (26.4 to 55.0 g of water/100 g of wet protoplast) of nine diverse types of pure lysozyme-sensitive dormant bacterial spores. The correlation equation provided a precise method for obtaining the protoplast water contents of other spore types with small impure samples and indicated that the average protoplast dry densi...

  8. Salt content in canteen and fast food meals in Denmark

    DEFF Research Database (Denmark)

    Rasmussen, Lone Banke; Lassen, Anne Dahl; Hansen, Kirsten; Knuthsen, Pia; Saxholt, Erling; Fagt, Sisse

    2010-01-01

    Background: A high salt (NaCl) intake is associated with high blood pressure, and knowledge of salt content in food and meals is important, if the salt intake has to be decreased in the general population. Objective: To determine the salt content in worksite canteen meals and fast food. Design: For the first part of this study, 180 canteen meals were collected from a total of 15 worksites with in- house catering facilities. Duplicate portions of a lunch meal were collected from 12 randomly selec...

  9. Measuring vegetation water content by looking at trees blowing in the wind

    Science.gov (United States)

    Kooreman, Bouke; Hut, Rolf; van de Giesen, Nick; Selker, John; Steele-Dunne, Susan

    2013-04-01

    Satellite-based soil moisture measurements have shown a diurnal variation in soil water content in Ghana. Most likely this diurnal variation is due to variation of moisture content in vegetation, as was measured by Friesen et al. Understanding the specifics of this cycle and it's relation with radar backscatter would help improve the estimation of soil moisture from satellites as well as provide a new source of information: vegetation water content (ie. plant water stress) from satellites. To this end, a non-intrusive method is needed to measure the change in time of the water content of vegetation. In this research, we have measured the Eigen-frequency of trees using an accelerometer bolted in the tree trunk. The change in Eigen-frequency over time is related to the change in mass and stiffness which are depended on the water content of the tree. We looked at two driving forces for the tree-mass-spring system. Firstly, trees were pulled back and suddenly released. Eigen-frequencies were easily identified from the oscillation observed. Secondly, the wind was used as a driving force and Eigen-frequencies were estimated in the frequency domain.

  10. Sobre os efeitos vasomotôres exercidos pela agua distilada e pelas soluções anisotonicas de clorêto de sodio / Vaso-motricity induced by distilled water and anisotonic salt solutions

    Scientific Electronic Library Online (English)

    Antonio Augusto, Xavier.

    Full Text Available [...] Abstract in english The writer reports experiments done with distilled water and hypotonic and hypertonic salt solutions of definite osmotic concentrations. The experiments were performed according to the Laewen-Trendelenburg technic using the vascular system of the frog's hind legs, and according to the Pissemski-Kraw [...] kow method using the capillaries of the rabbit's ear. Both preparations react to distilled water by marked vaso-constriction, the same phenomenon taking place in the case of the hypotonic salt solutions. The lower the concentration pf the hypotonic salt solution the stronger the vaso-constriction obtained. With hypertonic salt solutions was observed a strong but rather transient vaso-dilatation followed by secondary vaso-constriction. The later results were found only in the experiments with the frog's hind legs.

  11. Sobre os efeitos vasomotôres exercidos pela agua distilada e pelas soluções anisotonicas de clorêto de sodio Vaso-motricity induced by distilled water and anisotonic salt solutions

    Directory of Open Access Journals (Sweden)

    Antonio Augusto Xavier

    1939-01-01

    Full Text Available The writer reports experiments done with distilled water and hypotonic and hypertonic salt solutions of definite osmotic concentrations. The experiments were performed according to the Laewen-Trendelenburg technic using the vascular system of the frog's hind legs, and according to the Pissemski-Krawkow method using the capillaries of the rabbit's ear. Both preparations react to distilled water by marked vaso-constriction, the same phenomenon taking place in the case of the hypotonic salt solutions. The lower the concentration pf the hypotonic salt solution the stronger the vaso-constriction obtained. With hypertonic salt solutions was observed a strong but rather transient vaso-dilatation followed by secondary vaso-constriction. The later results were found only in the experiments with the frog's hind legs.

  12. The uptake of zinc-65 by oats in relation to soil water content and root growth

    International Nuclear Information System (INIS)

    Effects of water content of the topsoil on root growth and 65Zn absorption by oats were measured. Seminal roots of oats grew through a labelled uptake layer that had been initially wetted to various water contents. The uptake layer was separated from adjacent layers of wet sand or soil by a thin layer of wax. When the uptake layer was wetted initially and allowed to dry during the uptake period, water content affected root growth and 65Zn uptake similarly. 65Zn absorption by unbranched seminal roots decreased lineraly as soil water suction increased from 0.3 to 5 bar. Nevertheless significant amounts of 65Zn were absorbed (40% of that from wet soil) even when the soil water suction exceeded 15 bar, with negligible concomitant uptake of water. Provided the roots had access to water in a subjacent layer, rates of 65Zn absorption from dry soil increased with the age of plants. The exudation of mucilage from the root was enhanced locally where the soil was dry. The mucilage may facilitate the transfer of zinc to the root in dry soil. (author)

  13. Rheological behaviour of wormlike micelles : effect of salt content

    OpenAIRE

    Candau, S.; Khatory, A.; Lequeux, F.; Kern, F.

    1993-01-01

    We study the effect of salt content on the rheological properties of wormlike micelles formed from hexadecyltrimethylammonium bromide (CTAB) in presence of potassium bromide (KBr) and of cetylpyridinium chlorate (CPClO3) in presence of sodium chlorate (ClO3Na). Upon increasing the salt concentration, at fixed surfactant concentration, we observe for both systems a maximum of the zero-shear viscosity ?0. For salt concentrations less than that corresponding to the maximum of [MATH], the variati...

  14. The use of a photodiode for measuring soil-water content by ?-ray attenuation

    International Nuclear Information System (INIS)

    A commercial PIN silicon photodiode was tested as detector for soil water-content measurements by the ?-ray attenuation method. The results indicate that the portable photodiode is adequate for this application and can replace the more complicated and expensive method of NaI(Ti) scintillation detection. (Author)

  15. Click chemistry from organic halides, diazonium salts and anilines in water catalysed by copper nanoparticles on activated carbon

    OpenAIRE

    Alonso Valdés, Francisco; Moglie, Yanina; Radivoy, Gabriel; Yus Astiz, Miguel

    2011-01-01

    An easy-to-prepare, reusable and versatile catalyst consisting of oxidised copper nanoparticles on activated carbon has been fully characterised and found to effectively promote the multicomponent synthesis of 1,2,3-triazoles from organic halides, diazonium salts, and aromatic amines in water at a low copper loading.

  16. Study on the water content measurement of tomatoes by near infrared technique

    Science.gov (United States)

    Jiang, Huanyu; Ying, Yibin; Bao, Yingshi

    2005-11-01

    Near infrared (NIR) spectroscopy is a promising technique for nondestructive measurement of farm products quality measurement and information acquisition. The objective of this research was to study the potential of NIR diffuse reflectance spectroscopy as a way for nondestructive measurement of the water content of tomato leaves. A total of 120 leaves were collected as experimental materials, 80 of them were used to form a calibration data set. In order to set up a calibration model, NIR spectral data were collected in the spectral region between 800 nm and 2500 nm by NIR spectrometer of Nicolet Corporation, and water content of tomato leaves by a drying chest, four different mathematical treatments were used in spectrums processing: different wavelength range, baseline correction, smoothing, first and second derivative. Depending on data preprocessing and PLS analysis, we can get best prediction model when we select original spectra by baseline correction at full wavelength range (800-2500nm), the best model of water content has a root mean square error of prediction (RMSEP) of 1.91, a root mean square error of calibration (RMSEC) of 0.731 and a calibration correlation coefficient (R) value of 0.96265. It is conclude that the FTNIR method with Smart Near-IR UpDRIFT accessory can accurate estimate the water content in tomato leaves.

  17. Domestic Material Content in Molten-Salt Concentrating Solar Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, Craig [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kurup, Parthiv [National Renewable Energy Lab. (NREL), Golden, CO (United States); Akar, Sertac [National Renewable Energy Lab. (NREL), Golden, CO (United States); Flores, Francisco [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-08-26

    This study lists material composition data for two concentrating solar power (CSP) plant designs: a molten-salt power tower and a hypothetical parabolic trough plant, both of which employ a molten salt for the heat transfer fluid (HTF) and thermal storage media. The two designs have equivalent generating and thermal energy storage capacities. The material content of the saltHTF trough plant was approximately 25% lower than a comparably sized conventional oil-HTF parabolic trough plant. The significant reduction in oil, salt, metal, and insulation mass by switching to a salt-HTF design is expected to reduce the capital cost and LCOE for the parabolic trough system.

  18. HA/nylon 6,6 porous scaffolds fabricated by salt-leaching/solvent casting technique: effect of nano-sized filler content on scaffold properties

    Directory of Open Access Journals (Sweden)

    Mehrabanian M

    2011-08-01

    Full Text Available Mehran Mehrabanian1, Mojtaba Nasr-Esfahani21Member of Young Researchers Club, Najafabad Branch, Islamic Azad University, Isfahan, Iran; 2Department of Materials Science and Engineering, Najafabad Branch, Islamic Azad University, Isfahan, IranAbstract: Nanohydroxyapatite (n-HA/nylon 6,6 composite scaffolds were produced by means of the salt-leaching/solvent casting technique. NaCl with a distinct range size was used with the aim of optimizing the pore network. Composite powders with different n-HA contents (40%, 60% for scaffold fabrication were synthesized and tested. The composite scaffolds thus obtained were characterized for their microstructure, mechanical stability and strength, and bioactivity. The microstructure of the composite scaffolds possessed a well-developed interconnected porosity with approximate optimal pore size ranging from 200 to 500 µm, ideal for bone regeneration and vascularization. The mechanical properties of the composite scaffolds were evaluated by compressive strength and modulus tests, and the results confirmed their similarity to cortical bone. To characterize bioactivity, the composite scaffolds were immersed in simulated body fluid for different lengths of time and results monitored by scanning electron microscopy and energy dispersive X-ray microanalysis to determine formation of an apatite layer on the scaffold surface.Keywords: scaffold, nanohydroxyapatite, nylon 6,6, salt-leaching/solvent casting, bioactivity

  19. Graphite and pyrocarbon corrosion in water and salt brines

    International Nuclear Information System (INIS)

    The proposed solution for HTR spent fuel management is their storage in deep geological repository, for example salt domes. The long term safety of repository depends on the integrity of fuel element consisting of coated particles embedded into a graphite matrix. As an accident scenario the water ingress into repository, accompanied with the highly concentrated salt brines formation, and its interaction with the protective barriers graphite and the pyrocarbon coatings should be taken into account. In this scope, the behaviour of graphite and pyrocarbon in repository relevant conditions is important. The objective of this work was to determine the corrosion rates and investigate the behaviour of graphite and pyrocarbon in different aquatic phases. In the present work the graphite powder from graphite pebbles without fuel and pyrocarbon coatings from unirradiated BISO coated particles were used for investigations. As aqueous media deionised water, MgCl2-rich (brine-2) and NaCl-rich (brine-3) solutions were used. All experiments were performed in sealed glass tubes under argon or oxygen atmosphere at 90 C. Some experiments were performed under ?-irradiation in AVR cooling pool to investigate the influence of water radiolysis process on carbonaceous material corrosion. The integral ?-dose over the period of 2 months amounts to approximately 2.2 MGy. Gas phase of vessels was analysed by gas chromatography. The CO2 content measured was used for the corrosion rate calculation. All experiments were corrected to blanks. (orig.)

  20. Salicylic acid improves acclimation to salt stress by stimulating abscisic aldehyde oxidase activity and abscisic acid accumulation, and increases Na+ content in leaves without toxicity symptoms in Solanum lycopersicum L.

    Science.gov (United States)

    Szepesi, Agnes; Csiszár, Jolán; Gémes, Katalin; Horváth, Edit; Horváth, Ferenc; Simon, Mária L; Tari, Irma

    2009-06-01

    Pre-treatment with 10(-4)M salicylic acid (SA) in hydroponic culture medium provided protection against salinity stress in tomato plants (Solanum lycopersicum L. cv. Rio Fuego). The effect of 10(-7) or 10(-4)M SA on the water status of plants was examined in relation to the biosynthesis and accumulation of abscisic acid (ABA) in order to reveal the role of SA in the subsequent response to salt stress. Both pre-treatments inhibited the K+(86Rb+) uptake of plants, reduced the K+ content of leaves, and caused a decrease in leaf water potential (psi(w)). Due to the changes in the cellular water status, SA triggered the accumulation of ABA. Since the decrease in psi(w) proved to be transient, the effect of SA on ABA synthesis may also develop via other mechanisms. In spite of osmotic adaptation, the application of 10(-4)M, but not 10(-7)M SA, led to prolonged ABA accumulation and to enhanced activity of aldehyde oxidase (AO1, EC.1.2.3.1.), an enzyme responsible for the conversion of ABA-aldehyde to ABA, both in root and leaf tissues. AO2-AO4 isoforms from the root extracts also exhibited increased activities. The fact that the activities of AO are significantly enhanced both in the leaves and roots of plants exposed to 10(-4)M SA, may indicate a positive feedback regulation of ABA synthesis by ABA in this system. Moreover, during a 100mM NaCl treatment, higher levels of free putrescine or spermine were found in these leaves or roots, respectively, than in the salt-stressed controls, suggesting that polyamines may be implicated in the protection response of the cells. As a result, Na+ could be transported to the leaf mesophyll cells without known symptoms of salt toxicity. PMID:19185387

  1. Role of the central opioid system in the inhibition of water and salt intake induced by central administration of IL-1beta in rats.

    Science.gov (United States)

    De Castro E Silva, E; Luz, P A; Magrani, J; Andrade, L; Miranda, N; Pereira, V; Fregoneze, J B

    2006-02-01

    In the present study we investigated, the effect of third ventricle injections of IL-1beta on water and salt intake in fluid-deprived and sodium-depleted rats. Central administration of IL-1beta significantly reduced water and salt intake in fluid-deprived animals and decreased salt intake in sodium-depleted rats. The antidipsogenic and antinatriorexic effects elicited by the central administration of IL-1beta were suppressed by pretreatment with central injections of the non-selective opioid antagonist naloxone (10 mug) in the two different experimental protocols used here (water deprivation and sodium depletion). In addition, central administration of IL-1beta failed to modify the intake of a 0.1% saccharin solution when the animals were submitted to a "dessert test" or to induce any significant locomotor deficit in the open-field test. The present results suggest that the activation of the central interleukinergic component by IL-1beta impairs the increase in water and salt intake induced by water deprivation and the enhancement in sodium appetite that follows sodium depletion. The data also support the conclusion that the antidipsogenic and antinatriorexic effects resulting from the activation of the central interleukinergic component rely on an opioid-dependent, naloxone-blockable system. PMID:16554088

  2. Separation of ethanol and water by extractive distillation with salt and solvent as entrainer: process simulation

    Scientific Electronic Library Online (English)

    I. D., Gil; A. M., Uyazán; J. L., Aguilar; G., Rodríguez; L. A., Caicedo.

    2008-03-01

    Full Text Available The aim of this work is to simulate and analyze an extractive distillation process for azeotropic ethanol dehydration with ethylene glycol and calcium chloride mixture as entrainer. The work was developed with Aspen Plus® simulator version 11.1. Calculation of the activity coefficients employed to d [...] escribe vapor liquid equilibrium of ethanol - water - ethylene glycol - calcium chloride system was done with the NRTL-E equation and they were validated with experimental data. The dehydration process used two columns: the main extractive column and the recovery column. The solvent to feed molar ratio S/F=0.3, molar reflux ratio RR=0.35, number of theoretical stages Ns=18, feed stage Sf=12, feed solvent stage SS=3, and feed solvent temperature TS=80 ºC, were determined to obtain a distillate with at least 99.5 % mole of ethanol. A substantial reduction in the energy consumption, compared with the conventional processes, was predicted by using ethylene glycol and calcium chloride as entrainer.

  3. Separation of ethanol and water by extractive distillation with salt and solvent as entrainer: process simulation

    Directory of Open Access Journals (Sweden)

    I. D. Gil

    2008-03-01

    Full Text Available The aim of this work is to simulate and analyze an extractive distillation process for azeotropic ethanol dehydration with ethylene glycol and calcium chloride mixture as entrainer. The work was developed with Aspen Plus® simulator version 11.1. Calculation of the activity coefficients employed to describe vapor liquid equilibrium of ethanol - water - ethylene glycol - calcium chloride system was done with the NRTL-E equation and they were validated with experimental data. The dehydration process used two columns: the main extractive column and the recovery column. The solvent to feed molar ratio S/F=0.3, molar reflux ratio RR=0.35, number of theoretical stages Ns=18, feed stage Sf=12, feed solvent stage SS=3, and feed solvent temperature TS=80 ºC, were determined to obtain a distillate with at least 99.5 % mole of ethanol. A substantial reduction in the energy consumption, compared with the conventional processes, was predicted by using ethylene glycol and calcium chloride as entrainer.

  4. Laboratory experiments of salt water intrusion

    Science.gov (United States)

    Crestani, Elena; Camporese, Matteo; Salandin, Paolo

    2015-04-01

    The problem of saltwater intrusion in coastal aquifers is dealt with by the proper setup of a sand-box device to develop laboratory experiments in a controlled environment. Saline intrusion is a problem of fundamental importance and affects the quality of both surface water and groundwater in coastal areas. In both cases the phenomenon may be linked to anthropogenic (construction of reservoirs, withdrawals, etc.) and/or natural (sea-level excursions, variability of river flows, etc.) changes. In recent years, the escalation of this problem has led to the development of specific projects and studies to identify possible countermeasures, typically consisting of underground barriers. Physical models are fundamental to study the saltwater intrusion problem, since they provide benchmarks for numerical model calibrations and for the evaluation of the effectiveness of solutions to contain the salt wedge. In order to study and describe the evolution of the salt wedge, the effectiveness of underground barriers, and the distance from the coast of a withdrawal that guarantees a continuous supply of fresh water, a physical model has been realized at the University of Padova to represent the terminal part of a coastal aquifer. It consists of a laboratory flume 500 cm long, 30 cm wide and 60 cm high, filled for an height of 45 cm with glass beads with a d50 of 0.6 mm and a uniformity coefficient d60/d10~= 1.5. The material is homogeneous and characterized by a porosity of about 0.37 and by an hydraulic conductivity of about 1.8×10-3 m/s. Upstream from the sand-box, a tank, continuously supplied by a pump, provides fresh water to recharge the aquifer, while the downstream tank, filled with salt water, simulates the sea. The volume of the downstream tank (~= 2 m3) is about five times the upstream one, so that density variations due to the incoming fresh water flow are negligible. The water level in the two tanks is continuously monitored by means of two level probes and is controlled by a couple of spillways placed in both the upstream and downstream tanks, ensuring a constant gradient during the tests. The flow rate spilled from the downstream tank is continuously measured so that it is possible to control the fulfillment of the stationary condition in the system. While we use food dye to mark saltwater to give an easy visual evidence of the salt wedge, the spatio-temporal evolution of the concentration is monitored during the experiment by using electrical resistivity tomography (ERT). An electrode system specifically realized to be effective in the flume is used during the experiments to achieve electrical resistance measurements, later converted in concentrations through the calibration of a petrophysical law. The presentation describes the laboratory setup and the data achieved from the developed experiments compared with numerical simulations obtained by the SUTRA software.

  5. Resolving precipitation induced water content profiles by inversion of dispersive GPR data: A numerical study

    Science.gov (United States)

    Mangel, Adam R.; Moysey, Stephen M. J.; van der Kruk, Jan

    2015-06-01

    Surface-based ground-penetrating radar (GPR) measurements have significant potential for monitoring dynamic hydrologic processes at multiple scales in time and space. At early times during infiltration into a soil, the zone above the wetting front may act as a low-velocity waveguide that traps GPR waves, thereby causing dispersion and making interpretation of the data using standard methods difficult. In this work, we show that the dispersion is dependent upon the distribution of water within the waveguide, which is controlled by soil hydrologic properties. Simulations of infiltration were performed by varying the n-parameter of the Mualem-van Genuchten equation using HYDRUS-1D; the associated GPR data were simulated to evaluate the influence of dispersion. We observed a notable decrease in wave dispersion as the sharpness of the wetting front profile decreased. Given the sensitivity of the dispersion effect to the wetting front profile, we also evaluated whether the water content distribution can be determined through inversion of the dispersive GPR data. We found that a global grid search combined with the simplex algorithm was able to estimate the average water content when the wetted zone is divided into 2 layers. This approach was incapable, however, of representing the gradational nature of the water content distribution behind the wetting front. In contrast, the shuffled complex evolution algorithm was able to constrain a piece-wise linear function to closely match the shallow gradational water content profile. In both the layered and piece-wise linear case, the sensitivity of the dispersive data dropped sharply below the wetting front, which in this case was around 20 cm, i.e., twice the average wavelength, for a 900 MHz GPR survey. This study demonstrates that dispersive GPR data has significant potential for capturing the early-time dynamics of infiltration that cannot be obtained with standard GPR analysis approaches.

  6. Non-destructive determination of the biomass and the water content in plants by radiometric methods

    International Nuclear Information System (INIS)

    The non-destructive and non-contacting methods described here provide a continuous determination of the biomass, of the water content and derived from this, of the dry matter. The range of application for the absorption of beta- and gamma-rays extends for Tl-204 from 5 to 170 mg/cm2 absorber thickness and for Am-241 from 800 to 2700 mg/cm2. The detection limit of 0.53 mg/cm2 for the absorption of beta-rays and that of 0.4 mg/cm2 for the absorption of microwaves allow the determinaton of the absorber thickness of dry matter up to a relative error of 2%. The detection limits, however, increase according to the biological variation caused by the inhomogeneities in leaf and bulb, but also by slight leaf movements due to variations of the water content in the leaf. (orig.)

  7. Synthesis of a-aminonitriles catalyzed by montmorillonite K10 in the presence of dicationic phosphonium salt in water under ultrasonic effect

    OpenAIRE

    YILDIRIM, Çi?dem; YOLAÇAN, Çi?dem; AYDO?AN, Feray

    2012-01-01

    The synthesis of a-aminonitriles was successfully accomplished by the 1-pot 3-component reaction of several aldehydes with (S)-a-phenylethylamine and sodium cyanide in water in the presence of montmorillonite K10 and dicationic phosphonium salt under ultrasonic effect with good yields and moderate diastereoselectivities.

  8. Household Salt Iodine Content Estimation with the Use of Rapid Test Kits and Iodometric Titration Methods

    Science.gov (United States)

    Nepal, Ashwini Kumar; Raj Shakya, Prem; Gelal, Basanta; Lamsal, Madhab; Brodie, David A; Baral, Nirmal

    2013-01-01

    Background: Universal salt iodization remains the best strategy for controlling iodine deficiency disorders in Nepal. Aims: This study was designed to study the salt types and the household salt iodine content of school aged children in the hilly and the plain districts of eastern Nepal. Material and Methods: This cross-sectional study was carried out on school children of seven randomly chosen schools from four districts, namely, Sunsari, Dhankuta, Sankhuwasabha and Tehrathum of eastern Nepal. The school children were requested to bring two teaspoonfuls (approx. 12-15 g) of the salt which was consumed in their households, in a tightly sealed plastic pouch. The salt types were categorized, and the salt iodine content was estimated by using rapid test kits and iodometric titrations. The association of the salt iodine content of the different districts were tested by using the Chi-square test. The sensitivity, specificity, positive predictive values, and negative predictive values of the rapid test kits were compared with the iodometric titrations. Results: Our study showed that mean±SD values of the salt iodine content in the four districts, namely, Sunsari, Dhankuta, Sankhuwasabha and Tehrathum were 34.2±17.9, 33.2±14.5, 27.4±15.1 and 48.4±15.6 parts per million (ppm). There were 270 (38.2%) households which consumed crystal salt and 437(61.8%) of the households consumed packet salts. Conclusions: Our study recommends a regular monitoring of the salt iodization programs in these regions. More families should be made aware of the need to ensure that each individual consumes iodized salt. PMID:23814736

  9. Separation of ethanol and water by extractive distillation with salt and solvent as entrainer: process simulation

    OpenAIRE

    I. D. Gil; A. M. Uyazán; J.L. Aguilar; G Rodríguez; L. A. Caicedo

    2008-01-01

    The aim of this work is to simulate and analyze an extractive distillation process for azeotropic ethanol dehydration with ethylene glycol and calcium chloride mixture as entrainer. The work was developed with Aspen Plus® simulator version 11.1. Calculation of the activity coefficients employed to describe vapor liquid equilibrium of ethanol - water - ethylene glycol - calcium chloride system was done with the NRTL-E equation and they were validated with experimental data. The dehydration pro...

  10. Water sorption on silica- and zeolite-supported hygroscopic salts for cooling system applications

    International Nuclear Information System (INIS)

    Highlights: ? The silica- and zeolite-supported hygroscopic salts (SHS) were prepared. ? The water uptake was evaluated as function of the pore size and salt content. ? A novel method based on mass spectrometry (MS) was proposed and successfully used. ? The MS was applied to obtain the water sorption isobars on SHS. ? The thermodynamic cooling cycle for SHS–water pair showed a coefficient of performance of 0.83. - Abstract: Silica gel and zeolite 13X were used as supports for the hygroscopic salts LiBr, MgCl2 and CaCl2. The silica- and zeolite-supported hygroscopic salts were characterized by N2 adsorption at ?196 °C and X-ray diffraction. The silica support was mesoporous whereas the zeolite support was microporous. The dispersion of CaCl2 was much lower on the zeolite than on the silica support, and the microporosity of the zeolite was blocked by the salt. CaCl2 supported on silica was a superior water sorbent versus zeolite, and CaCl2 supported on zeolite was an inferior sorbent versus zeolite. Complete water desorption from silica-supported hygroscopic salts can be effectively reached at a relatively low temperature (100–110 °C), making them candidates for efficient cooling or air conditioning applications. The isosteric heat of water desorption was obtained from the isobars and was dependent on the amount of water adsorbed. Finally, the thermodynamic cooling cycle for the SCa33 (silica gel containing 33 wt.% CaCl2) – water vapour pair showed a coefficient of performance of 0.83.

  11. Caffeine dimerization: effects of sugar, salts, and water structure.

    Science.gov (United States)

    Shimizu, Seishi

    2015-10-01

    Sugars and salts strongly affect the dimerization of caffeine in water. Such a change of dimerization, considered to be crucial for bitter taste suppression, has long been rationalized by the change of "water structure" induced by the additives; "kosmotropic" (water structure enhancing) salts and sugars promote dimerization, whereas "chaotropic" (water structure breaking) salts suppress dimerization. Based on statistical thermodynamics, here we challenge this consensus; we combine the rigorous Kirkwood-Buff theory of solution with the classical isodesmic model of caffeine association. Instead of the change of water structure, we show that the enhancement of caffeine dimerization is due to the exclusion of additives from caffeine, and that the weakening of dimerization is due to the binding of additives on caffeine. PMID:26222923

  12. Exploring the use of Low-intensity Ultrasonics as a Tool for Assessing the Salt Content in Pork Meat Products

    Science.gov (United States)

    García-Pérez, J. V.; de Prados, M.; Martínez-Escrivá, G.; González, R.; Mulet, A.; Benedito, J.

    Meat industry demands non-destructive techniques for the control of the salting process to achieve a homogeneous final salt content in salted meat products. The feasibility of using low-intensity ultrasound for characterizing the salting process of pork meat products was evaluated. The ultrasonic velocity (V) and time of flight (TF) were measured by through-transmission and pulse-echo methods, respectively, in salted meat products. Salting involved an increase of the V in meat muscles and a decrease of the time of flight in whole hams. Measuring the V before and after salting, the salt content could be estimated. Moreover, online monitoring of the salting process by computing the TF could be considered a reliable tool for quality control purposes.

  13. Vitamin (B1, B2, B3 and B6) content and oxidative stability of Gastrocnemius muscle from dry-cured hams elaborated with different nitrifying salt contents and by two ageing times.

    Science.gov (United States)

    Gratacós-Cubarsí, M; Sárraga, C; Castellari, M; Guàrdia, M D; Regueiro, J A García; Arnau, J

    2013-11-01

    The effect of the amount of added nitrate and nitrate plus nitrite to dry-cured hams on the vitamin (B1, B2, B3, B6) content, the antioxidant enzyme superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSHPx) activities and the thiobarbituric acid reactive substances (TBARS) was assessed in Gastrocnemius muscle at the end of two ripening processes. Five different curing mixtures (Hi-N: 600 KNO3; Lo-N: 150 KNO3; Hi-Mix: 600 KNO3+600 NaNO2; Lo-Mix: 150 KNO3+150 NaNO2; Hi-Mix/Asc: 600 KNO3+600 NaNO2+500 sodium ascorbate, expressed as mg of salts added on surface per kg of fresh ham) were evaluated in dry-cured hams aged for 11.5months (standard process, SP) and 22months (long process, LP). Minor differences in target parameters between the hams due to the process were found. The amount of nitrate when it was added alone or as a mixture of nitrate and nitrite, as well as the ascorbate addition to dry-cured hams did not affect vitamin B1, B2 and B3 contents. The level of vitamin B6 was affected by both the amount and the mixture of salts; the addition of nitrite reduced around 40% the content of vitamin B6, but it was not affected by nitrate or ascorbate. The activity of SOD and CAT decreased with the amount of nitrate and nitrite, while GSHPx and TBARS resulted unaffected. PMID:23811105

  14. Rapid assessment of water pollution by airborne measurement of chlorophyll content.

    Science.gov (United States)

    Arvesen, J. C.; Weaver, E. C.; Millard, J. P.

    1971-01-01

    Present techniques of airborne chlorophyll measurement are discussed as an approach to water pollution assessment. The differential radiometer, the chlorophyll correlation radiometer, and an infrared radiometer for water temperature measurements are described as the key components of the equipment. Also covered are flight missions carried out to evaluate the capability of the chlorophyll correlation radiometer in measuring the chlorophyll content in water bodies with widely different levels of nutrients, such as fresh-water lakes of high and low eutrophic levels, marine waters of high and low productivity, and an estuary with a high sediment content. The feasibility and usefulness of these techniques are indicated.

  15. Soil tensile strength as affected by time, water content and bulk density

    Directory of Open Access Journals (Sweden)

    J. Pytka

    1995-09-01

    Full Text Available We investigated the effect of soil water conditions and soil compaction on the age-hardening process of loamy sand and silty loamy sand in relation to the tensile strength. Soil samples from Germany (loamy sand and Poland (silty loamy sand were moulded at water contents 10 %, 15 %, 20 % and compacted up to 1.35, 1.45, 1.55g/cm3. The samples were stored at constant water content. At intervals after moulding, the tensile strengths of the moist samples were measured with the indirect tension (Brazilian test. The maximum aging time was 10 days. With increasing time the soils became stronger at the same water content. The higher the initial water content the less pronounced was the strength increase with time. Furthermore, increase in bulk density resulted in higher values of tensile strength. Two different mechanisms of age-hardening could be identified.

  16. Mineralogical and geochemical characteristics of drinking water salt deposits

    Science.gov (United States)

    Soktoev, B. R.; Rikhvanov, L. P.; Matveenko, I. A.

    2015-11-01

    The article presents the research results on the features of element and mineral composition of salt deposits (limescale) formed in household conditions in heat exchanging equipment. The major part of limescale is represented by two species of calcium carbonate - calcite and aragonite. We have shown that high concentrations of chemical elements in the limescale promote the formation of their own mineral forms (sulphates, silicates, native forms) in salt deposits. Detecting such mineral formations suggests the salt deposits of drinking water to be a long-term storage media which can be used in the course of eco-geochemical and metallogenic studies.

  17. Continuous and nondestructive determination of the water content in plants by absorption of microwaves

    International Nuclear Information System (INIS)

    A nondestructive method to determine watermass in plants or parts of plants is described. The attenuation of microwaves with a frequency of 26.5 GHz is measured. They are generated with high stability by a semiconductor device (gunn diode) and detected by a crystal diode. The continuous measurements give information on the dynamics of water content, and derived from thus, of stomate states. Transmitter and receiver can be installed distant from the test object, far enough to avoid shadow effects. Plexiglass or glass do not contribute to the attenuation of microwave radiation. It is possible to measure through climatic chambers constructed of these materials

  18. Isotope geochemistry of water in Gulf Coast Salt Domes

    International Nuclear Information System (INIS)

    Water found as active leaks and isolated pools in the Weeks Island, Jefferson Island, and Belle Isle salt mines of south Louisiana has delta18O values ranging from -4 to +11.5%0 and deltaD values from -2.3 to -53%0. One sample from Weeks Island and one from Jefferson Island are isotopically similar to local surface waters and are clearly of meteoric origin. All other samples are too enriched in 18O to be meteoric waters. In the Weeks Island mine the isotopic data define a linear array given by deltaD=3.0delta18O-40.1. Active leaks define the positive end of this array. Isolated pools are interpreted as inactive leaks with initial delta18O and deltaD values of +9.1 +- 0.5%0 and -11%0 +- 7%0, which have subsequently exchanged with water vapor in the mine air to produce the linear array of delta values. The water derived from active leaks in these three mines is too enriched in 18O and too depleted in D to be connate ocean water or evaporite connate water trapped in the salt. Isotopic composition of water derived from the dehydration of gypsum is probably dissimilar to that of the active leaks. It is unlikely that the water has originated from the dehydration of gypsum. It is also unlikely that isotopic exchange with anhydrite is responsible for observed 18O enrichments. Nonmeteroric water from the active leaks displays the type of 18O enrichments characteristic of saline formation waters, where water exchanges isotopically with calcite and clay minerals. It is concluded that the nonmeteoric waters are formation waters which have become incorporated in the salt. From the observed 18O enrichment it is calculated that formation waters were incorporated during diapiric rise of the salt at a depth of 3--4 km and have been trapped within the salt for 10--13 m.y. Large volumes of salt within salt domes are not naturally penetrated by meteoric groundwaters but can contain limited amounts of trapped formation water

  19. Effects of Paclobutrazol and Salt Stress on Growth and Ionic Contents in Two Cultivars of Wheat

    Directory of Open Access Journals (Sweden)

    Shokoofeh Hajihashemi

    2007-01-01

    Full Text Available The effect of paclobutrazol (PBZ treatment on salinity tolerance of wheat (Triticum aestivum, were investigated for two salt-tolerant and salt-sensitive cultivars. Salinity with PBZ treatment significantly reduced the plant height and length and area of sixth leaf in both cultivars. With increasing salinity, a gradually reduction was observed in roots length, fresh and dry weight of shoot and sixth leaf and relative water content of PBZ-applied plants in both cultivars. The greatest reduction was observed at 225 mM NaCl with 60 or 90 ppm PBZ. Salinity with PBZ treatment increased Na+ content in the sixth leaf and roots of both cultivars and the greatest increase was observed in salt-sensitive cultivar. In PBZ -treated plants, K+, P and N contents increased in line with elevating salinity in both cultivars, except at 90 ppm PBZ in salt-sensitive cultivar. Very similar effects of NaCl and PBZ treatment were observed for both cultivars regardless of their salinity susceptibility. The results suggest that PBZ treatment may be useful to improve the salt tolerance of wheat via reducing the negative effect of salinity on vegetative growth and the Na+ content and increasing the K+, P and N contents.

  20. Mobilization of arsenic, lead, and mercury under conditions of sea water intrusion and road deicing salt application.

    Science.gov (United States)

    Sun, Hongbing; Alexander, John; Gove, Brita; Koch, Manfred

    2015-09-01

    Water geochemistry data from complexly designed salt-solution injection experiments in the laboratory, coastal aquifers of Bangladesh and Italy, taken from the literature, and two salted watersheds of New Jersey, US were collected and analyzed to study the geochemical mechanisms that mobilize As, Pb, and Hg under varied salting conditions. Overall, increased NaCl-concentrations in aquifers and soil are found to increase the release of Pb and Hg into the water. Reducing environments and possible soil dispersion by hydrated Na(+) are found to lead to an increase of As-concentration in water. However, the application of a pure NaCl salt solution in the column injection experiment was found to release less As, Pb, and Hg initially from the soil and delay their concentration increase, when compared to the application of CaCl2 and NaCl mixed salts (at 6:4 weight ratio). The concentration correlation dendrogram statistical analyses of the experimental and field data suggest that the release of As, Hg, and Pb into groundwater and the soil solution depends not only on the salt level and content, but also on the redox condition, dissolved organic matter contents, competitiveness of other ions for exchange sites, and source minerals. With the ongoing over-exploration of coastal aquifers from increased pumping, continued sea-level rise, and increased winter deicing salt applications in salted watersheds of many inland regions, the results of this study will help understand the complex relation between the concentrations of As, Pb, and Hg and increased salt level in a coastal aquifer and in soils of a salted watershed. PMID:26210297

  1. Correction of resistance to penetration by pedofunctions and a reference soil water content

    Directory of Open Access Journals (Sweden)

    Moacir Tuzzin de Moraes

    2012-12-01

    Full Text Available The soil penetration resistance is an important indicator of soil compaction and is strongly influenced by soil water content. The objective of this study was to develop mathematical models to normalize soil penetration resistance (SPR, using a reference value of gravimetric soil water content (U. For this purpose, SPR was determined with an impact penetrometer, in an experiment on a Dystroferric Red Latossol (Rhodic Eutrudox, at six levels of soil compaction, induced by mechanical chiseling and additional compaction by the traffic of a harvester (four, eight, 10, and 20 passes; in addition to a control treatment under no-tillage, without chiseling or additional compaction. To broaden the range of U values, SPR was evaluated in different periods. Undisturbed soil cores were sampled to quantify the soil bulk density (BD. Pedotransfer functions were generated correlating the values of U and BD to the SPR values. By these functions, the SPR was adequately corrected for all U and BD data ranges. The method requires only SPR and U as input variables in the models. However, different pedofunctions are needed according to the soil layer evaluated. After adjusting the pedotransfer functions, the differences in the soil compaction levels among the treatments, previously masked by variations of U, became detectable.

  2. Separation and Fixation of Toxic Components in Salt Brines Using a Water-Based Process

    International Nuclear Information System (INIS)

    Efforts to implement new water quality standards, increase water reuse and reclamation, and minimize the cost of waste storage motivate the development of new processes for stabilizing waste water residuals that minimize waste volume, water content and the long-term environmental risk from related by products. This work explores the use of an aqueous-based emulsion process to create an epoxy/rubber matrix for separating and encapsulating waste components from salt laden, arsenic contaminated, amorphous iron hydrate sludges. Such sludges are generated from conventional water purification precipitation/adsorption processes, used to convert aqueous brine streams to semi-solid waste streams, such as ion exchange/membrane separation, and from other precipitative heavy metal removal operations. In this study, epoxy and polystyrene butadiene (PSB) rubber emulsions are mixed together and then combined with a surrogate sludge. The surrogate sludge consists of amorphous iron hydrate with 1 part arsenic fixed to the surface of the hydrate per 10 parts iron mixed with sodium nitrate and chloride salts and water. The resulting emulsion is cured and dried at 80 C to remove water. Microstructure characterization by electron microscopy confirms that the epoxy/PSB matrix surrounds and encapsulates the arsenic laden amorphous iron hydrate phase while allowing the salt to migrate to internal and external surfaces of the sample. Salt extraction studies indicate that the porous nature of the resulting matrix promotes the separation and removal of as much as 90% of the original salt content in only one hours time. Long term leaching studies based on the use of the infinite slab diffusion model reveal no evidence of iron migration or, by inference, arsenic migration, and demonstrate that the diffusion coefficients of the unextracted salt yield leachability indices within regulations for non-hazardous landfill disposal. Because salt is the most mobile species, it is inferred that arsenic leaches from the host material at an even slower rate, making the waste forms amenable to unregulated land disposal options. These result indicate that the environmentally-benign, water-based emulsion processing of epoxy/PSB polymeric hosts show great promise as a separation and fixation technology for treating brine streams from wastewater treatment facilities

  3. Salt content of school meals and comparison of perception related to sodium intake in elementary, middle, and high schools

    OpenAIRE

    Ahn, Sohyun; Park, Seoyun; Kim, Jin Nam; Han, Sung Nim; Jeong, Soo Bin; Kim, Hye-Kyeong

    2013-01-01

    Excessive sodium intake leading to hypertension, stroke, and stomach cancer is mainly caused by excess use of salt in cooking. This study was performed to estimate the salt content in school meals and to compare differences in perceptions related to sodium intake between students and staffs working for school meal service. We collected 382 dishes for food from 24 schools (9 elementary, 7 middle, 8 high schools) in Gyeonggi-do and salt content was calculated from salinity and weight of individ...

  4. Monitoring of water quality around tailing pond at PPGN by chemical and radioactivity content

    International Nuclear Information System (INIS)

    This research purpose is to monitor the water quality of soil around the waste pond through measurement of chemical constituents (Ca, Mg, Fe, Ni, Zn, Cu, Pb, Mn and U) and water radioactivity. The water quality around tailing pond can be identified by analyzed the water sample from 4 control wells as deep as 20 m located on the fourth side of the pool and 2 comparison wells with a distance of 50 m and 100 m from the tailing pond. The measurement of chemical constituents of control well water and comparison well water was done by using Atomic Absorption Spectrophotometer (AAS). The measurement of Uranium content was done by using UV - VIS Spectrophotometer, whereas measurement of radioactivity was measured by Eberline SPA-1 ? detector associated with a counter scalers Ludlum model 1000. Determination of the quality of well water was used Storet method. Measurement result obtained in 2010 : the chemical content water in the control wells; Ca (2.31 - 2.91) mg/l, Mg (0.22 - 0.34) mg/l, Fe (0.024 - 0.033) mg/l, Ni (0.0028 - 0.030) mg/l, Zn (0.0019 - 0.025) mg/l, Cu (0.038 - 0.060) mg/l, Pb (0.003 - 0.041) mg/l, Mn (0.004 - 0.005) mg/l, U (0.051 - 0.298) mg/l, Ni (0.003 - 0.004) mg/l, Zn (0.03 - 0.04) mg/l, Cu (0.004 - 0.004) mg/l, Pb (0.003 - 0.003), Mn (0.005 - 0.021) mg/l, and radioactivity of Uranium was (0.025. 10-3 - 0.028.10-3) Bq/l. The radioactivity of control wells in the first quarter (2.321 - 2.635).10-2 Bq/l, second quarter (2.162 - 2.823).10-2 Bq/l, third quarter (2.424 - 2.931 ).10-2 Bq/l, fourth quarter (2.283 - 2.643).10-2 Bq/l. The radioactivity of comparison well water in the firs quarter was (2.931 - 2.931).10-2 Bq/l., second quarter (2.162 - 2.550).10-2 Bq/l, third quarter (2.931- 2.931 ).10-2, fourth quarter (2.450 - 2.632).10-2 Bq/l. This result showed that there are no pollutant release into the environment. Based on the evaluation result using Storet and US-EP A (Environmental Protection Agency) method, the water quality around tailing pond of PPGN - BATAN is expressed as A in class classification (best). (author)

  5. Alleviation of adverse impact of salt in Phaseolus vulgaris L. by arbuscular mycorrhizal fungi

    International Nuclear Information System (INIS)

    The present study was undertaken to evaluate the possible role of arbuscular mycorrhizal fungi (AMF) in enhancing the salt (0, 0.15; 0.25 M NaCl) tolerance in Phaselous vulgaris. The impact of AMF in presence and absence of salt stress was studied on growth, nodulation, and attributes of systemic acquired resistance in P. vulgaris. The results suggested that salinity caused significant decrease in growth performance, nodulation, pigment system, tissue water content, and membrane stability index. Also, salt stress caused significant decrease in phytohormones , polyamines, membrane stability index and tissue water content of P. vulgaris. On the other hand, lipid peroxidation (malondialdehyde), total phenol content and antioxidant enzymes (catalase, peroxidase, superoxide dismutase, ascorbate peroxidase, glutathione reductase) increases as salt concentration increases. The accumulations of sodium, chlorine were significantly increased by salt stress, however the concentration of potassium, phosphorous and calcium decreased. Overall, the results indicate that AMF alleviate the adverse impact of salinity on the plant growth, anabolic physiological attributes and nutrient uptake by reducing the oxidative damage of salt through strengthening and modulation the systemic acquired resistance. (author)

  6. Iodine in drinking water varies by more than 100-fold in Denmark. Importance for iodine content of infant formulas.

    DEFF Research Database (Denmark)

    Pedersen, K M; Laurberg, P

    1999-01-01

    The iodine intake level of the population is of major importance for the occurrence of thyroid disorders in an area. The aim of the present study was to evaluate the importance of drinking water iodine content for the known regional differences in iodine intake in Denmark and for the iodine content of infant formulas. Iodine in tap water obtained from 55 different locations in Denmark varied from <1.0 to 139 microg/l. In general the iodine content was low in Jutland (median 4.1 microg/l) with higher values on Sealand (23 microg/l) and other islands. Preparation of coffee or tea did not reduce the iodine content of tap water with a high initial iodine concentration. A statistically significant correlation was found between tap water iodine content today and the urinary iodine excretion measured in 41 towns in 1967 (r=0.68, P<0.001). The correlation corresponded to a basic urinary iodine excretion in Denmark of 43 microg/24h excluding iodine in water and a daily water intake of 1.7 l. The iodine content of infant formulas prepared by addition of demineralized water varied from 37 to 138 microg/l (median 57 microg/l, n=18). Hence the final iodine content would depend heavily on the source of water used for preparation. We found that iodine in tap water was a major determinant of regional differences in iodine intake in Denmark. Changes in water supply and possibly water purification methods may influence the population iodine intake level and the occurrence of thyroid disorders. Udgivelsesdato: 1999-May

  7. Iodine content in bread and salt in Denmark after iodization and the influence on iodine intake

    DEFF Research Database (Denmark)

    Rasmussen, Lone Banke; Ovesen, Lars

    2007-01-01

    Objective To measure the iodine content in bread and household salt in Denmark after mandatory iodine fortification was introduced and to estimate the increase in iodine intake due to the fortification. Design The iodine content in rye breads, wheat breads and salt samples was assessed. The increase in iodine intake from fortification of bread and the increase in total iodine intake after fortification were estimated. Subjects Iodine intake before and after fortification was estimated based on dietary intake data from 4,124 randomly selected Danish subjects. Main results Approximately 98% of the rye breads and 90% of the wheat breads were iodized. The median iodine intake from bread increased by 25 ( 13-43) mu g/day and the total median iodine intake increased by 63 (36-104) mu g/day. Conclusions The fortification of bread and salt has resulted in a desirable increase in iodine intake, and the current fortification level of salt ( 13 ppm) seems reasonable.

  8. Surfactant enhanced wetting and salt leaching of soil contaminated by crude oil and brine

    Energy Technology Data Exchange (ETDEWEB)

    Guo, I.; McNabb, D.H.; Johnson, R.L. [Soil Remediation Research, Vegreville, Alberta (Canada)

    1995-12-31

    As a pre-treatment of bioremediation, leaching of salts from an agriculture top soil contaminated with crude oil and brine was inhibited by severe water repellency resulting from the large difference in surface tension between water and soil aggregates coated by crude oil. Surfactant solutions were found effective in reducing soil water repellency and improving salt leaching. An intermittent leaching procedure further improved leaching efficiency by allowing diffusion of salt from soil interpores to aggregate surface. As a result, electric conductivity (EC) of the contaminated soil was reduced from 11.8 dS cm{sup -1} to 2.6 dS cm{sup -1} when the soil was leached with a non-ionic surfactant (0.05 N, SN-70, Witco Inc.) using 1.6 L kg{sup -1} water. Dissolved hydrocarbons into the leachate was 106 mg L{sup -1} counting for 3.5% of total oil content.

  9. A role for nongovernmental organizations in monitoring the iodine content of salt in northern India.

    OpenAIRE

    Pandav, C.S.; Pandav, S.; ANAND, K; Wajih, S. A.; Prakash, S.; SINGH, J; Karmarkar, M. G.

    1995-01-01

    The feasibility of using nongovernmental organizations (NGOs) to monitor the iodine content of salt was studied in Uttar Pradesh, northern India, where iodine-deficiency disorders (IDDs) are endemic. Three NGOs already involved in health and development activities in the Gorakhpur, Varanasi, and Dehradun regions collected salt samples monthly from households and shops in selected villages over a 6-month period. A total of 4001 samples were analysed at regional laboratories by trained personne...

  10. Free water content and monitoring of healing processes of skin burns studied by microwave dielectric spectroscopy in vivo

    International Nuclear Information System (INIS)

    We have investigated the dielectric properties of human skin in vivo at frequencies up to 10 GHz using a time-domain reflectometry method with open-ended coaxial probes. Since ?-dispersion results from the reorientation of free water molecules, the free water content of skin is quantitatively determined by dielectric measurements. The free water content of finger skin increased by about 10% after soaking in 37 0C water for 30 min, and it systematically decreased again through the drying process, as expected. Thus this analytical method has been applied to the study of skin burns. The free water content of burned human cheek skin due to hydrofluoric acid was significantly lower than that of normal skin, and the burned skin recovered through the healing process. In the case of a human hand skin burn due to heat, although the free water content was almost the same as that of normal skin at the beginning, it decreased during the healing process for the first 10 days, then began to increase. Although the number of test subjects was one for each experiment, it was shown that free water content is a good indicator for evaluating skin health and can be well monitored by dielectric spectroscopy

  11. Organic tank safety project: Effect of water partial pressure on the equilibrium water contents of waste samples from Hanford Tank 241-BY-108

    International Nuclear Information System (INIS)

    Water content plays a crucial role in the strategy developed by Webb et al. to prevent propagating or sustainable chemical reactions in the organic-bearing wastes stored in the 20 Organic Tank Watch List tanks at the US Department of Energy's Hanford Site. Because of water's importance in ensuring that the organic-bearing wastes continue to be stored safely, Duke Engineering and Services Hanford commissioned the Pacific Northwest National Laboratory (PNNL) to investigate the effect of water partial pressure (PH2O) on the water content of organic-bearing or representative wastes. Of the various interrelated controlling factors affecting the water content in wastes, PH2O is the most susceptible to being controlled by the and Hanford Site's environmental conditions and, if necessary, could be managed to maintain the water content at an acceptable level or could be used to adjust the water content back to an acceptable level. Of the various waste types resulting from weapons production and waste-management operations at the Hanford Site, Webb et al. determined that saltcake wastes are the most likely to require active management to maintain the wastes in a Conditionally Safe condition. A Conditionally Safe waste is one that satisfies the waste classification criteria based on water content alone or a combination of water content and either total organic carbon (TOC) content or waste energetics. To provide information on the behavior of saltcake wastes, two waste samples taken from Tank 241-BY-108 (BY-108) were selected for study, even though BY-108 is not on the Organic Tanks Watch List because of their ready availability and their similarity to some of the organic-bearing saltcakes

  12. Origin of fluid inclusion water in bedded salt deposits, Palo Duro Basin, Texas

    International Nuclear Information System (INIS)

    Salt horizons in the Palo Duro Basin being considered for repository sites contain fluid inclusions which may represent connate water retained in the salt from the time of original salt deposition and/or external waters which have somehow penetrated the salt. The exact origin of this water is important to the question of whether or not internal portions of the salt deposit have been, and are likely to be, isolated from the hydrosphere for long periods of time. The 18O/16O and D/H ratios measured for water extracted from solid salt samples show the inclusions to be dissimilar in isotopic composition to meteoric waters and to formation waters above and below the salt. The fluid inclusions cannot be purely external waters which have migrated into the salt. The isotope data are readily explained in terms of mixed meteoric-marine connate evaporite waters which date back to the time of deposition and early diagenesis of the salt (>250 million years). Any later penetration of the salt by meteoric waters has been insufficient to flush out the connate brines

  13. Effects of salt stress on the growth, physiological responses, and glycoside contents of Stevia rebaudiana Bertoni.

    Science.gov (United States)

    Zeng, Jianwei; Chen, Aimeng; Li, Dandan; Yi, Bin; Wu, Wei

    2013-06-19

    This study examined the effects of three different NaCl concentrations (60, 90, and 120 mM) on the growth, physiological responses, and steviol glycoside composition of Stevia rebaudiana Bertoni for 4 weeks. The results showed that the total dry weight decreased by 40% at 120 mM NaCl but remained the same at 60 and 90 mM NaCl. As salt concentration increased, chlorophyll contents decreased markedly by 10-70%, whereas the increments of the antioxidant enzyme activities were 1.0-1.6, 1.2-1.3, and 2.0-4.0 times, respectively, for superoxide dismutase, peroxidase, and catalase. The proline contents in salt-treated plants were 17-42 times higher than that in control. Moreover, leaf possessed significantly higher K? content and K?/Na? ratio than stem and root for all salt treatments. In addition, 90-120 mM NaCl treatment notably decreased the content of rebaudioside A (RA) and stevioside (ST) by 16.2-38.2%, whereas the increment of the ratio of RA/ST of salt-treated plants was 1.1-1.4 times. These results indicate that S. rebaudiana is moderately tolerant to salt stress. Hypohaline soil can be utilized in the plantation of S. rebaudiana and may be profitable for optimizing the steviol glycoside composition. PMID:23711229

  14. Evaluation of a method to measure water content in porous media by employing ultrasound

    Directory of Open Access Journals (Sweden)

    Luis Leonardo Sáenz Cruz

    2010-06-01

    Full Text Available A method to measure water content in porous media, such as solis and grains, was developed as a real time nondestructive test. The method was based on piezoelectric ultrasonic transducers as a sensor system. Transmiters and receivers was developed to administrate the sensors system and ultrasonic signal. Transmiters and receivers are placed facing each other and located inside the porous media 10 cm apart. The method was evaluated in two porous meda, namely a column 30 cm coarse sand and a paddy rice variety Fedearroz 50, in order to evaluate the sensors system performance in two different porous media with different water holder capacity. Tools were developed for data acquisition, capacity of 16 analog signal, 12 bits resolution. Electronic circuits, C++ OPP programming and Matlab were used. The results showed a monotonically increment of millivolts as a response of the transducer as the water content was decreasing

  15. Does overhead irrigation with salt affect growth, yield, and phenolic content of lentil plants?

    Directory of Open Access Journals (Sweden)

    Giannakoula Anastasia

    2012-01-01

    Full Text Available Overhead irrigation of lentil plants with salt (100 mM NaCl did not have any significant impact on plant growth, while chlorophyll content and chlorophyll fluorescence parameter Fv/Fm were affected. Under such poor irrigation water quality, the malondialdehyde content in leaves was increased due to the lipid peroxidation of membranes. In seeds, the total phenolic content (TPC was correlated to their total antioxidant capacity (TAC. High performance liquid chromatography-mass spectrometry (HPLC-MS detection showed that flavonoids (catechin, epicatechin, rutin, p-coumaric acid, quercetin, kaempferol, gallic acid and resveratrol appear to be the compounds with the greatest influence on the TAC values. Catechin is the most abundant phenolic compound in lentil seeds. Overhead irrigation with salt reduced the concentration of almost all phenolic compounds analyzed from lentil seed extracts.

  16. Neuroendocrine regulation of salt and water metabolism

    Directory of Open Access Journals (Sweden)

    S.M. McCann

    1997-04-01

    Full Text Available Neurons which release atrial natriuretic peptide (ANPergic neurons have their cell bodies in the paraventricular nucleus and in a region extending rostrally and ventrally to the anteroventral third ventricular (AV3V region with axons which project to the median eminence and neural lobe of the pituitary gland. These neurons act to inhibit water and salt intake by blocking the action of angiotensin II. They also act, after their release into hypophyseal portal vessels, to inhibit stress-induced ACTH release, to augment prolactin release, and to inhibit the release of LHRH and growth hormone-releasing hormone. Stimulation of neurons in the AV3V region causes natriuresis and an increase in circulating ANP, whereas lesions in the AV3V region and caudally in the median eminence or neural lobe decrease resting ANP release and the response to blood volume expansion. The ANP neurons play a crucial role in blood volume expansion-induced release of ANP and natriuresis since this response can be blocked by intraventricular (3V injection of antisera directed against the peptide. Blood volume expansion activates baroreceptor input via the carotid, aortic and renal baroreceptors, which provides stimulation of noradrenergic neurons in the locus coeruleus and possibly also serotonergic neurons in the raphe nuclei. These project to the hypothalamus to activate cholinergic neurons which then stimulate the ANPergic neurons. The ANP neurons stimulate the oxytocinergic neurons in the paraventricular and supraoptic nuclei to release oxytocin from the neural lobe which circulates to the atria to stimulate the release of ANP. ANP causes a rapid reduction in effective circulating blood volume by releasing cyclic GMP which dilates peripheral vessels and also acts within the heart to slow its rate and atrial force of contraction. The released ANP circulates to the kidney where it acts through cyclic GMP to produce natriuresis and a return to normal blood volume

  17. HA/nylon 6,6 porous scaffolds fabricated by salt-leaching/solvent casting technique: effect of nano-sized filler content on scaffold properties

    OpenAIRE

    Mehrabanian M; Nasr-Esfahani M

    2011-01-01

    Mehran Mehrabanian1, Mojtaba Nasr-Esfahani21Member of Young Researchers Club, Najafabad Branch, Islamic Azad University, Isfahan, Iran; 2Department of Materials Science and Engineering, Najafabad Branch, Islamic Azad University, Isfahan, IranAbstract: Nanohydroxyapatite (n-HA)/nylon 6,6 composite scaffolds were produced by means of the salt-leaching/solvent casting technique. NaCl with a distinct range size was used with the aim of optimizing the pore network. Composite powders with different...

  18. Water, Vapor, and Salt Dynamics in a Hot Repository

    International Nuclear Information System (INIS)

    The purpose of this paper is to report the results of a new model study examining the high temperature nuclear waste disposal concept at Yucca Mountain using MULTIFLUX, an integrated in-drift- and mountain-scale thermal-hydrologic model. The results show that a large amount of vapor flow into the drift is expected during the period of above-boiling temperatures. This phenomenon makes the emplacement drift a water/moisture attractor during the above-boiling temperature operation. The evaporation of the percolation water into the drift gives rise to salt accumulation in the rock wall, especially in the crown of the drift for about 1500 years in the example. The deposited salts over the drift footprint, almost entirely present in the fractures, may enter the drift either by rock fall or by water drippage. During the high temperature operation mode, the barometric pressure variation creates fluctuating relative humidity in the emplacement drift with a time period of approximately 10 days. Potentially wet and dry conditions and condensation on salt-laden drift wall sections may adversely affect the storage environment. Salt accumulations during the above-boiling temperature operation must be sufficiently addressed to fully understand the waste package environment during the thermal period. Until the questions are resolved, a below-boiling repository design is favored where the Alloy-22 will be less susceptible to localized corrosion. (authors)

  19. On the determination of strontium-90 content in natural waters using liquid scintillation spectrometers by Vavilov-Cherenkov radiation

    International Nuclear Information System (INIS)

    The problem of direct determinations of strontium-90 content in natural waters by yttrium-90 radiation using liquid scintillation spectrometer for recording was considered. In contrast to classical method of application of liquid scintillation spectrometers for recording beta-particles emitted by a water sample, not liquid scintillator luminescence, but the Vavilov-Cherenkov radiation, excited in the sample as it is, was used. The method was tested using samples of fresh water from reservoirs of the near Chernobyl NPP area. A good coincidence of results for strontium-90 concentrations in water exceeding 50 pCi/l was observed

  20. Characterization of water content dynamics and tracer breakthrough by 3-D electrical resistivity tomography (ERT) under transient unsaturated conditions

    Science.gov (United States)

    Wehrer, Markus; Slater, Lee D.

    2015-01-01

    Characterization of preferential flow and transport is still a major challenge but may be improved employing noninvasive, tomographic methods. In this study, 3-D time lapse electrical resistivity tomography (ERT) was employed during infiltration on an undisturbed, unsaturated soil core in a laboratory lysimeter. A tracer breakthrough was conducted during transient conditions by applying a series of short-term infiltrations, simulating natural precipitation events. The electrical response was quantitatively validated using data from a multicompartment suction sampler. Water content probes were also installed for ground-truthing of ERT responses. Water content variations associated with an infiltration front dominated the electrical response observed during individual short-term infiltration events, permitting analysis of water content dynamics from ERT data. We found that, instead of the application of an uncertain petrophysical function, shape measures of the electrical conductivity response might be used for constraining hydrological models. Considering tracer breakthroughs, the ERT observed voxel responses from time lapse tomograms at constant water contents in between infiltration events were used to quantitatively characterize the breakthrough curve. Shape parameters of the breakthrough derived from ERT, such as average velocity, were highly correlated with the shape parameters derived from local tracer breakthrough curves observed in the compartments of the suction plate. The study demonstrates that ERT can provide reliable quantitative information on both, tracer breakthroughs and water content variations under the challenging conditions of variable background electrical conductivity of the pore solution and non steady-state infiltration.

  1. Modeling of Soil Water and Salt Dynamics and Its Effects on Root Water Uptake in Heihe Arid Wetland, Gansu, China

    Directory of Open Access Journals (Sweden)

    Huijie Li

    2015-05-01

    Full Text Available In the Heihe River basin, China, increased salinity and water shortages present serious threats to the sustainability of arid wetlands. It is critical to understand the interactions between soil water and salts (from saline shallow groundwater and the river and their effects on plant growth under the influence of shallow groundwater and irrigation. In this study, the Hydrus-1D model was used in an arid wetland of the Middle Heihe River to investigate the effects of the dynamics of soil water, soil salinization, and depth to water table (DWT as well as groundwater salinity on Chinese tamarisk root water uptake. The modeled soil water and electrical conductivity of soil solution (ECsw are in good agreement with the observations, as indicated by RMSE values (0.031 and 0.046 cm3·cm?3 for soil water content, 0.037 and 0.035 dS·m?1 for ECsw, during the model calibration and validation periods, respectively. The calibrated model was used in scenario analyses considering different DWTs, salinity levels and the introduction of preseason irrigation. The results showed that (I Chinese tamarisk root distribution was greatly affected by soil water and salt distribution in the soil profile, with about 73.8% of the roots being distributed in the 20–60 cm layer; (II root water uptake accounted for 91.0% of the potential maximal value when water stress was considered, and for 41.6% when both water and salt stress were considered; (III root water uptake was very sensitive to fluctuations of the water table, and was greatly reduced when the DWT was either dropped or raised 60% of the 2012 reference depth; (IV arid wetland vegetation exhibited a high level of groundwater dependence even though shallow groundwater resulted in increased soil salinization and (V preseason irrigation could effectively increase root water uptake by leaching salts from the root zone. We concluded that a suitable water table and groundwater salinity coupled with proper irrigation are key factors to sustainable development of arid wetlands.

  2. The effect of insoluble salts in bituminized waste products leached in pure water

    International Nuclear Information System (INIS)

    Our aim is to refine the current description of the leaching phenomenology with cross-linked characterizations of Bituminized Waste Products (BWP) in contact with water, at the early stages of the leaching as well as the longer ones. For that sake, three model BWP have been synthesised, varying the chemical content of salts and the grain size distribution. Water sorption, 1H CPMG NMR techniques are the main techniques used for this study. They have been compared to the kinetics of water uptake in leaching experiments. These results put into evidence the effect of insoluble salts in the water uptake kinetics. This effect may be attributed to a percolation mechanism enhanced with the presence of small hydrophobic salts. This is really new but has to be deeper evaluated before updating long term predictive modeling of BWP leaching, since we have not at that time correlated this effect with the salts release kinetics

  3. Potentials and problems of sustainable irrigation with water high in salts

    Science.gov (United States)

    Ben-Gal, Alon

    2015-04-01

    Water scarcity and need to expand agricultural productivity have led to ever growing utilization of poor quality water for irrigation of crops. Almost in all cases, marginal or alternative water sources for irrigation contain relatively high concentrations of dissolved salts. When salts are present, irrigation water management, especially in the dry regions where water requirements are highest, must consider leaching in addition to crop evapotranspiration requirements. Leaching requirements for agronomic success are calculable and functions of climate, soil, and very critically, of crop sensitivity and the actual salinity of the irrigation water. The more sensitive the crop and more saline the water, the higher the agronomic cost and the greater the quantitative need for leaching. Israel is a forerunner in large-scale utilization of poor quality water for irrigation and can be used as a case study looking at long term repercussions of policy alternatively encouraging irrigation with recycled water or brackish groundwater. In cases studied in desert conditions of Israel, as much of half of the water applied to crops including bell peppers in greenhouses and date palms is actually used to leach salts from the root zone. The excess water used to leach salts and maintain agronomic and economic success when irrigating with water containing salts can become an environmental hazard, especially in dry areas where natural drainage is non-existent. The leachate often contains not only salts but also agrochemicals including nutrients, and natural contaminants can be picked up and transported as well. This leachate passes beyond the root zone and eventually reaches ground or surface water resources. This, together with evidence of ongoing increases in sodium content of fresh produce and increased SAR levels of soils, suggest that the current policy and practice in Israel of utilization of high amounts of low quality irrigation water is inherently non- sustainable. Current trends and technologies allowing economically feasible desalination at large scales present a sustainable alternative where salts are removed from water prior to irrigation.

  4. Identification and Control of Pollution from Salt Water Intrusion.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC. Office of Water Programs.

    This document contains informational guidelines for identifying and evaluating the nature and extent of pollution from salt water intrusion. The intent of these guidelines is to provide a basic framework for assessing salt water intrusion problems and their relationship to the total hydrologic system, and to provide assistance in developing…

  5. Reducing radionuclide contents in drinking water

    International Nuclear Information System (INIS)

    The results of a cost-benefit analysis of reducing radiation hazards to the population due to radionuclides in drinking water and to nuclear power plants operation are presented. Two aeration methods are used to reduce the radon content in drinking water -aeration in a shallow layer and aeration towers. The radon content can be reduced more effectively by a two-step arrangement of the aeration facility. A reduction of the content of radium, uranium and their daughter products is possible with the use of a modification of the processes common in water-works practice. The analysis of economic efficiency showed that for reducing radiation hazards to the population, it is much more effective to reduce the radionuclide contents in drinking water sources than, for instance, to reduce the tritium content in liquid effluents from nuclear power plants further below the projected level. (J.J.). 2 figs

  6. The estimation of total petroleum hydrocarbons content in waste water by IR spectrometry with multivariate calibrations.

    Science.gov (United States)

    Vershinin, Viacheslav I; Petrov, Sergey V

    2016-02-01

    Alkanes, cycloalkanes and arenes have rather different sensitivities to IR-spectrometric determination, leading to high relative uncertainty (?c) for the total petroleum hydrocarbon index (TPH) in natural and waste waters. Another source of TPH uncertainty is the mismatch of group composition of the hydrocarbon mixture in the sample and in the standard substance used for one-dimensional calibration. Increasing the number of wavelengths and using of multivariate calibrations permit the reduction of ?c to IR-spectra and findings of extracts from aqueous solutions with known content of hydrocarbons. The method takes into account the losses of hydrocarbons during sample preparation. The accuracy of TPH estimations for this method is much better than for standard methods based on one-dimensional calibration with Simard mixture. This new method is useful in produced waste water analysis. PMID:26653437

  7. Iodine nutrition: iodine content of iodized salt in the United States.

    Science.gov (United States)

    Dasgupta, Purnendu K; Liu, Yining; Dyke, Jason V

    2008-02-15

    Adequacy of iodine nutrition in the United States has lately been of concern. A major source of dietary iodine for the U.S. population is iodized salt. The U.S. Food and Drug Administration (USFDA) recommends 60-100 mg Kl/kg salt, equivalent to 46-76 mg l/kg salt. All U.S. iodized salt contains 45 mg l/kg according to labels. We collected samples of table salt from freshly opened containers from U.S. volunteers. A sample was sent to us when the can was first purchased. Subsets of volunteers sent further samples when the salt container became half-empty through normal use and a further final sample when the container was nearly finished. We also looked at iodine distribution homogeneity within individual containers, loss of iodine from salt upon exposure to humidity and sunlight, and upon short-term heating (dry and in solution) as may be encountered in cooking. Measurements were made in 0.01% w/v salt solutions by induction coupled plasma-mass spectrometry with 72Ge as an internal standard. The median and mean (+/-sd) I content in freshly opened top-of-the-can salt samples was 44.1 and 47.5 +/- 18.5 mg/kg (n=88, range 12.7-129 mg l/kg) and geometric mean and standard deviation of 44.70 and 1.41. Forty-seven of 88 samples fell below the USFDA recommended I content while 6 exceeded it. The homogeneity in a single can of salt varied greatly: in 5 samples taken from the same container from different depths, the iodine content varied by as little as 1.2x (8.3% coefficient of variance (CV)) to as much as 3.3x (49.3% CV) from one container/brand to another. Iodine is significantly lost upon high humidity storage but light or dry heat has little effect. There is much recent literature on iodine sufficiency and uptake inhibitors; there is also much misinformation and disinformation. We review the relevant literature and discuss our results with reference to the United States. PMID:18351111

  8. Improvement in growth and leaf water relation parameters of sunflower and safflower plants with foliar application of nutrient solutions under salt stress

    International Nuclear Information System (INIS)

    Effect of nutrient solutions viz., KNO/sub 3/, H/sub 3/BO/sub 3/, Fe EDTA, and their mixture applied through foliar spray on growth and water relation was assessed in sunflower and safflower plants under salt stress. Salt stress impaired growth by reducing fresh weight of both the plants. Imposition of salt stress also had adverse effects on leaf water relation parameters, relative leaf water content (RLWC), water potential (sigma w), osmotic potential (sigma s) and turgor potential (sigma p). All the water relation parameters were improved with the foliar application of nutrient solutions. The ameliorative effect of mineral nutrition on fresh biomass of both the plants under saline conditions was due to the nutrients-induced improvement in plant water status. (author)

  9. Determining the water cut and water salinity in an oil-water flowstream by measuring the sulfur content of the produced oil

    International Nuclear Information System (INIS)

    A technique for detecting water cut and water salinity in an oil/water flowstream in petroleum refining and producing operations is described. The fluid is bombarded with fast neutrons which are slowed down and then captured producing gamma spectra characteristic of the fluid material. Analysis of the spectra indicates the relative presence of the elements sulfur, hydrogen and chlorine and from the sulfur measurement, the oil cut (fractional oil content) of the fluid is determined, enabling the water cut to be found. From the water cut, water salinity can also be determined. (U.K.)

  10. A model of brine migration and water transport in rock salt supporting a temperature gradient

    International Nuclear Information System (INIS)

    A procedure for calculating the loss of water as vapor or as brine in a borehole containing nuclear waste has been developed. The method accounts for vapor transport of water by Knudsen and bulk diffusion in the open porosity of the salt and brine movement by inclusion migration in the salt crystals and by extrusion from the interconnected porosity. Aside from the temperature distribution, the parameters that have the most profound effect on the water loss are the salt permeability, the closure of interconnected porosity by thermal expansion or stress, and the fraction of the grain boundary porosity, whether originally in the salt or created by trapped intragranular inclusions, which is interconnected and provides a fluid pathway to the drillhole. Reasonable estimates of the parameters of the model produce water release predictions that are consistent with field tests in rock salt

  11. Nutrients’ content and accumulation by net melon plant cultivated with potassium and CO2 in the irrigation water

    Directory of Open Access Journals (Sweden)

    Cristiaini Kano

    2013-09-01

    Full Text Available This paper aimed to evaluate the influence of carbonated water use and potassium doses on the nutrients’ content and accumulation by net melon plant. The experiment was conducted at the experimental area of the Department of Agricultural Engineering of ESALQ/USP, in Piracicaba, Sao Paulo, Brazil. Two greenhouses were used, where one applied four potassium doses (50; 150; 300; and 600 kg.ha-1 of K2O through drip irrigation water. Only in one of the greenhouses 301.8 kg.ha-1 of CO2 were applied through irrigation water, however, in a separate way from the potassium application. The experimental design adopted was that of randomized blocks in a factorial scheme with 4 replications, totaling 32 plots, each of them consisting of 13 plants. Data on the nutrients’ content at each time and the nutrients’ accumulation at the cycle end underwent variance analysis and, in case of a significant effect, the regression analysis was used to check the effect of potassium doses and Tukey’s test for comparing the effect of using CO2. One found out that CO2 application decreased the potassium and magnesium accumulation and, in general, caused an increase in the plants’ macronutrient content. Regarding the micronutrients, there was an increase in zinc accumulation at the melon plant’s shoot and the manganese and zinc content was higher in all the plant parts which received CO2 in the irrigation water.

  12. Hydrostatic creep consolidation of crushed salt with added water

    International Nuclear Information System (INIS)

    Adding small amounts of water to the as-mined salt results in a consolidation rate such that times required for the salt to form an effective barrier to fluid flow are of the order of 1 year, at stresses in the 1 MPa range. Two different extrapolations were used, one biased towards a high estimate and the other towards a low estimate. Down to the lowest level of added water, .5% by mass, no threshold was observed for the effect. Rates are significantly higher than for the as-mined dry salt, although there are very few long-term dry tests to compare with. A sample was consolidated to a state where the permeability was comparable to the formation permeability, under conditions representative of the WIPP. Consolidation is sufficiently rapid that the rate determining process is the drift closure which will be required to close enough to take up the roughly 30% void space in the reemplaced backfill. The mechanism of consolidation and why it is so sensitive to water are not known, although it is clear that some form of pressure solution is a possibility. 14 refs., 82 figs., 2 tabs

  13. Effect of different levels of water consumptive use of squash under drip irrigation system on salt distribution, yield and water use efficiency

    International Nuclear Information System (INIS)

    This study aims to trace the distribution of salts and fertilizers through drip irrigation system and the response of squash (yield and water use efficiency) to irrigation treatments, i.e. T1 (100 % ETc), T2 (75 % ETc) and T3 (50 % ETc). This study was carried out in Inshas sandy soil at the farm of Soil and Water Research Department, Nuclear Research Centre, Atomic Energy Authority, Egypt. Soil samples were taken from three sites (0, 12.5 and 25 cm distance from the emitters between drippers and laterals lines) for evaluating the salt content (horizontal and vertical directions within the soil depths). The obtained data pointed out that salt accumulation was noticed at the surface layer and was affected by the direction of soil water movement (horizontal and vertical motion). The highest salt concentrations were in 75 % and 50 % ETc treatments between emitters and laterals. As for the three sites, salt concentration behaved in the sequence: 25 >12.5 > 0 cm sites. For squash yield, the first treatment produced high yield without significant differences between the second treatment so, 75 % ETc treatment was considered the best one for saving water

  14. Biomarkers of waterborne copper exposure in the guppy Poecilia vivipara acclimated to salt water

    International Nuclear Information System (INIS)

    Highlights: •Acute effects of waterborne copper were evaluated in the estuarine guppy Poecilia vivipara. •Fishes were acutely exposed to waterborne copper in salt water. •Waterborne copper affects the response of several biochemical and genetic endpoints. •Catalase, reactive oxygen species, antioxidant capacity and lipid peroxidation are responsive to copper exposure. •Copper exposure induces DNA damages in fish erythrocytes. -- Abstract: The responses of a large suite of biochemical and genetic parameters were evaluated in tissues (liver, gills, muscle and erythrocytes) of the estuarine guppy Poecilia vivipara exposed to waterborne copper in salt water (salinity 24 ppt). Activities of antioxidant enzymes (superoxide dismutase, catalase, glutathione reductase, and glutathione S-transferase), metallothionein-like protein concentration, reactive oxygen species (ROS) content, antioxidant capacity against peroxyl radicals (ACAP), and lipid peroxidation (LPO) were evaluated in liver, gills, and muscle. Comet assay score and nuclear abnormalities and micronucleated cell frequency were analyzed in peripheral erythrocytes. The responses of these parameters were evaluated in fish exposed (96 h) to environmentally relevant copper concentrations (5, 9 and 20 ?g L?1). In control and copper-exposed fish, no mortality was observed over the experimental period. Almost all biochemical and genetic parameters proved to be affected by waterborne copper exposure. However, the response of catalase activity in liver, ROS, ACAP and LPO in muscle, gills and liver, and DNA damages in erythrocytes clearly showed to be dependent on copper concentration in salt water. Therefore, the use of these parameters could be of relevance in the scope of biomonitoring programs in salt water environments contaminated with copper

  15. Biomarkers of waterborne copper exposure in the guppy Poecilia vivipara acclimated to salt water

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Anderson Abel de Souza [Universidade Federal do Rio Grande, Programa de Pós-Graduação em Oceanografia Biológica, Av. Itália km 8, 96201-900 Rio Grande, Rio Grande do Sul (Brazil); Hoff, Mariana Leivas Müller [Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Av. Itália km 8, 96201-900 Rio Grande, Rio Grande do Sul (Brazil); Klein, Roberta Daniele [Universidade Federal do Rio Grande, Programa de Pós-Graduação em Ciências Fisiológicas – Fisiologia Animal Comparada, Av. Itália km 8, 96201-900 Rio Grande, Rio Grande do Sul (Brazil); Cardozo, Janaina Goulart [Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Av. Itália km 8, 96201-900 Rio Grande, Rio Grande do Sul (Brazil); Giacomin, Marina Mussoi [Universidade Federal do Rio Grande, Programa de Pós-Graduação em Ciências Fisiológicas – Fisiologia Animal Comparada, Av. Itália km 8, 96201-900 Rio Grande, Rio Grande do Sul (Brazil); Pinho, Grasiela Lopes Leães [Universidade Federal do Rio Grande, Instituto de Oceanografia, Av. Itália km 8, 96201-900 Rio Grande, Rio Grande do Sul (Brazil); and others

    2013-08-15

    Highlights: •Acute effects of waterborne copper were evaluated in the estuarine guppy Poecilia vivipara. •Fishes were acutely exposed to waterborne copper in salt water. •Waterborne copper affects the response of several biochemical and genetic endpoints. •Catalase, reactive oxygen species, antioxidant capacity and lipid peroxidation are responsive to copper exposure. •Copper exposure induces DNA damages in fish erythrocytes. -- Abstract: The responses of a large suite of biochemical and genetic parameters were evaluated in tissues (liver, gills, muscle and erythrocytes) of the estuarine guppy Poecilia vivipara exposed to waterborne copper in salt water (salinity 24 ppt). Activities of antioxidant enzymes (superoxide dismutase, catalase, glutathione reductase, and glutathione S-transferase), metallothionein-like protein concentration, reactive oxygen species (ROS) content, antioxidant capacity against peroxyl radicals (ACAP), and lipid peroxidation (LPO) were evaluated in liver, gills, and muscle. Comet assay score and nuclear abnormalities and micronucleated cell frequency were analyzed in peripheral erythrocytes. The responses of these parameters were evaluated in fish exposed (96 h) to environmentally relevant copper concentrations (5, 9 and 20 ?g L{sup ?1}). In control and copper-exposed fish, no mortality was observed over the experimental period. Almost all biochemical and genetic parameters proved to be affected by waterborne copper exposure. However, the response of catalase activity in liver, ROS, ACAP and LPO in muscle, gills and liver, and DNA damages in erythrocytes clearly showed to be dependent on copper concentration in salt water. Therefore, the use of these parameters could be of relevance in the scope of biomonitoring programs in salt water environments contaminated with copper.

  16. Biochemical Changes Associated With Giving PALUDAL Salt In The Drinking Water Of Rats

    International Nuclear Information System (INIS)

    Three groups of adult male albino rats were given either tap water (control) or saline water (1 % unrefined paludal salt dissolved in tap water or 1 % pure chemically synthesized NaCl in tap water). The experiment was carried out under hot summer conditions. At the end of 28 days of the treatment, blood samples were collected to follow up the biochemical alterations induced by paludal salt intake in kidney, liver and thyroid function tests besides serum electrolytes since unrefined paludal salt is being used extensively nowadays by Egyptian people as a table salt which comprises risks to human health.The results revealed that drinking water containing high level of either pure or unrefined crude salts led to significant elevation of serum urea, creatinine, sodium, potassium, aspartate amino transferase (AST), alanine amino transferase (ALT) and alkaline phosphatase (ALP). Serum triiodothyronine (T3) and thyroxine (T4) were significantly depressed in both groups received high levels of salt in their drinking water. The level of serum total protein was decreased and albumin was negatively affected by salinity of water especially in paludal group while serum globulin was significantly increased in the other two groups. The biochemical alterations observed in rats as a result of drinking water containing paludal salt were more pronounced than those occurred in rats drank tap water plus pure NaCl.

  17. Sewage sludge sanitization by ionizing radiation. Part 2. Water content influence on sludge hygienization process

    International Nuclear Information System (INIS)

    Decrease of specific filter resistance of anaerobically digested sludge (5% dry matter) is independent up to the dose 3 kGy at dose rate in the range 0.2-2.2 kGy/h when irradiated by 60Co. Irradiation by 4.5 MeV electrons has almost the same effect. Costs analysis shows that the sludge dewatering by either organic or inorganic flocculants is less expensive than by irradiation. Lowering of microbial concentration remains the main purpose of sludge irradiation. A combination of belt filter press and electron accelerator seems to be technically and economically very promising. The dose dependence of the concentrations of 8 types of bacteria was estimated up to the dose of 12 kGy in sludge with 5.24 and 95% content of dry matter. No distinct differences in the dose dependences by dry matter content were found. (author)

  18. Measurement of water lost from heated geologic salt

    International Nuclear Information System (INIS)

    This report describes three methods used to measure the rate at which water is lost from heated geologic salt. The three methods were employed in each of a series of proof tests which were performed to evaluate instrumentation designed to measure the water-loss rate. It was found that the water lost from heated, 1-kg salt specimens which were measured according to these three methods was consistent to within an average 9 percent

  19. Water Content of Lunar Alkali Fedlspar

    Science.gov (United States)

    Mills, R. D.; Simon, J. I.; Wang, J.; Alexander, C. M. O'D.; Hauri, E. H.

    2016-01-01

    Detection of indigenous hydrogen in a diversity of lunar materials, including volcanic glass, melt inclusions, apatite, and plagioclase suggests water may have played a role in the chemical differentiation of the Moon. Spectroscopic data from the Moon indicate a positive correlation between water and Th. Modeling of lunar magma ocean crystallization predicts a similar chemical differentiation with the highest levels of water in the K- and Th-rich melt residuum of the magma ocean (i.e. urKREEP). Until now, the only sample-based estimates of water content of KREEP-rich magmas come from measurements of OH, F, and Cl in lunar apatites, which suggest a water concentration of water content of the magma ocean would have water contents of 320 ppm for the bulk Moon and 1.4 wt % for urKREEP from plagioclase in ferroan anorthosites. Results and interpretation: NanoSIMS data from granitic clasts from Apollo sample 15405,78 show that alkali feldspar, a common mineral in K-enriched rocks, can have approx. 20 ppm of water, which implies magmatic water contents of approx. 1 wt % in the high-silica magmas. This estimate is 2 to 3 orders of magnitude higher than that estimated from apatite in similar rocks. However, the Cl and F contents of apatite in chemically similar rocks suggest that these melts also had high Cl/F ratios, which leads to spuriously low water estimates from the apatite. We can only estimate the minimum water content of urKREEP (+ bulk Moon) from our alkali feldspar data because of the unknown amount of degassing that led to the formation of the granites. Assuming a reasonable 10 to 100 times enrichment of water from urKREEP into the granites produces an estimate of 100-1000 ppm of water for the urKREEP reservoir. Using the modeling of and the 100-1000 ppm of water in urKREEP suggests a minimum bulk silicate Moon water content between 2 and 20 ppm. However, hydrogen loss was likely very significant in the evolution of the lunar mantle. Conclusions: Lunar granites crystallized between 4.3-3.8 Ga from relatively wet melts that degassed upon crystallization. The formation of these granites likely removed significant amounts of water from some mantle source regions, e.g. later mare basalts predicting derivation from a mantle with water. However, this would have been a heterogeneous pro-cess based on K distribution. Thus some, if not most of the mantle may not have been devolatilized by this process; as seen by water in volcanic glasses and melt inclusions.

  20. Bitumen and salt contents within the Quaternary sediments at Starunia palaeontological site and vicinity (Carpathian region, Ukraine

    Directory of Open Access Journals (Sweden)

    Maciej J. KOTARBA

    2009-01-01

    Full Text Available Geochemical studies were conducted on bitumen and salts saturating the Pleistocene and Holocene sediments from an abandoned ozokerite mine in Starunia. This location is noted for the discovery of remnants of a mammoth and three woolly rhinoceroses in 1907, and a nearly completely preserved rhinoceros carcass in 1929. The bitumen (oil and brines (chloride ions were preserving agents for the large Pleistocene mammals. The main mass of organic carbon hosted in the Pleistocene muds is related to bitumen originating from oil migrating from deep accumulations within the Boryslav-Pokuttya Unit. The highest analysed bitumen content is 9.26 wt%. The chloride ion content, originating from highly concentrated brines ascending from the salt-bearing Miocene Vorotyshcha beds, vary from 0 to 4.66 wt% but this usually does not exceed 1 wt%. The natural pathways of underground fluids (oil, gas and water migration within the Quaternary sediments were disturbed by intensive ozokerite mining operations run between the last three decades of the 19th century and 1960. Therefore, the present preservation and conservation conditions of large, extinct mammals' remains can be different from those prevailing during the Pleistocene, when the mammals were buried. Taking into consideration the contents of the remaining preservatives: chloride and bitumen, the most favourable zone for fossils conservation and preservation is located close to boreholes Nos 22, 23, 28 and 36N, where the thickness of Pleistocene muds exceeds 2 metres. Generally, the spatial distributions of bitumen and chloride ion contents within the Holocene sediments and salt-bearing Miocene Vorotyshcha beds are very similar to those in the Pleistocene sediments.

  1. Combined Theoretical and Experimental Study of Refractive Indices of Water-Acetonitrile-Salt Systems.

    Science.gov (United States)

    An, Ni; Zhuang, Bilin; Li, Minglun; Lu, Yuyuan; Wang, Zhen-Gang

    2015-08-20

    We propose a simple theoretical formula for describing the refractive indices in binary liquid mixtures containing salt ions. Our theory is based on the Clausius-Mossotti equation; it gives the refractive index of the mixture in terms of the refractive indices of the pure liquids and the polarizability of the ionic species, by properly accounting for the volume change upon mixing. The theoretical predictions are tested by extensive experimental measurements of the refractive indices for water-acetonitrile-salt systems for several liquid compositions, different salt species, and a range of salt concentrations. Excellent agreement is obtained in all cases, especially at low salt concentrations, with no fitting parameters. A simplified expression of the refractive index for low salt concentration is also given, which can be the theoretical basis for determination of salt concentration using refractive index measurements. PMID:26203663

  2. Alleviation of Salt Stress in Seedlings of Black Glutinous Rice by Seed Priming with Spermidine and Gibberellic Acid

    Directory of Open Access Journals (Sweden)

    Sumitahnun CHUNTHABUREE

    2014-12-01

    Full Text Available This study was carried out to elucidate the spermidine (Spd and gibberellic acid (GA3 priming-induced physiological and biochemical changes responsible for induction of salinity tolerance in two rice (Oryza sativa L. cultivars, namely ‘Niewdam Gs. no. 00621’ (salt tolerant and ‘KKU-LLR-039’ (salt sensitive. The seeds of the two cultivars were primed separately with distilled water, 1 mM Spd or 0.43 mM GA3. Primed seeds were germinated and the resultant seedlings were hydroponically grown for 14 days before being exposed to salinity stress (150 mM NaCl for 10 days. Seed priming with Spd or GA3 slightly improved salt-induced reductions in growth, anthocyanin and chlorophyll contents of the seedlings. Salt stress induced pronounced increases in Na+/K+ ratio, proline and H2O2 contents, particularly in the sensitive cultivar. The levels of these salt-sensitivity physiological indicators tended to be mitigated by priming with Spd and GA3. Salt-stressed seedlings grown from seeds primed with these growth regulators also possessed higher phenolic contents and greater antioxidant capacity than the control seedlings. Based on all growth and physiological data, Spd tended to be more effective than A3 in improving salt tolerance in both rice cultivars.

  3. Simulation of Exterior Conditions in Permanently Closed Soil Chambers by Controlling Air Flow, Soil Water Content, and Temperature

    International Nuclear Information System (INIS)

    Volatile substances and gases resulting e.g. from degradation processes of chemicals in soils emit into the atmosphere and no chemical mass balance is complete without considering this path. Closed soil chambers allow the evaluation of this transfer to the atmosphere. This study deals with the influence of soil chambers with a glass plate cover on physical soil conditions in the chambers and the possibility to simulate the exterior conditions within the chambers. The water content immediately at the soil surface is an important factor for the microbial activity and the transfer of gaseous compounds to the atmosphere as well. It is monitored by specially designed water content sensors in 1 cm depth in the chamber and as control outside. Funnels with a cross section equal to the soil surface area of the chamber collect the rain water and channel it into the soil chamber. This results in soil water content in the chambers very similar to that outside. For the purpose of analysing 14CO2 and volatile 14C-compounds, air is permanently pumped through the chamber. In order to simulate natural conditions, the wind speed is measured 1 cm above the soil surface outside the chambers. A control circuit adjusts the air flow through the chamber to a value corresponding to the wind speed outside. Temperature measurements in 1 cm depth verify that there is no significant difference between the soil chamber and the control outside

  4. Response of two genetically diverse wheat cultivars to salt stress at different growth stages: leaf lipid peroxidation and phenolic contents

    International Nuclear Information System (INIS)

    The effect of root zone salinity on two hexaploid bread wheat (Triticum aestivum L.) cultivars (S-24, salt-tolerant; MH-97, salt-sensitive) was appraised at different growth stages. Grains of the two cultivars were sown in Petri-plates at two salt levels (0 and 150 mM of NaCl). After 8 days of germination, the seedlings were transplanted into plastic tubs containing either 0 or 150 mM of NaCl in full strength Hoagland's nutrient solution. Changes in growth, lipid peroxidation and phenolic contents were examined in the cultivars at different growth stages (vegetative, booting and reproductive) under salt stress. Higher MDA contents were observed in cv. MH-97 as compared to that in S-24 under saline regimes at different growth stages. Salt-induced effect in terms of lipid peroxidation was more pronounced at the booting and reproductive stages as compared with that at the vegetative stage in both cultivars, however, the accumulation of leaf total phenolics was higher at the booting stage as compared with that at the other stages. A significant variability in salt response was found among different growth stages in both cultivars. Correlations among growth and biochemical parameters showed a significant negative correlation between growth and MDA content but a positive correlation between growth and phenolic contents, which shows that phenolic compounds were involved in the mechanism of salt tolerance of the two cultivars by showing enhanced antioxidant activity which resulted in reduced membrane damage and hence improved growth. (author)

  5. Effect of Inorganic Salts on Ternary Equilibrium Data of Propionic Acid-Water-Solvents Systems

    OpenAIRE

    Bhupesh C. Roy; M.R. Awual; Goto, M.

    2007-01-01

    Liquid-Liquid Equilibrium (LLE) data were obtained for the pseudo-ternary systems of propionic acid (PA) + water + solvents (methyl isopropyl ketone and methyl isobutyl ketone) + salts (NaCl and KCl) at 25-26°C in order to study the effect of salts on extraction equilibrium of these systems by comparing with the same systems without salt. Mutual solubility curves, tie-line data, distribution coefficient, selectivity diagrams and separation factor data were determined for these systems. ...

  6. SURVEY ON IODINE CONTENT OF SALT CONSUMED IN TEHRAN AND THE EFFECT OF HEAT, LIGHT AND MOISTURE ON ITS CONTENT

    Directory of Open Access Journals (Sweden)

    M. Kimiagar

    1998-03-01

    Full Text Available Iodine deficiency disorders are among the most important health problems in Iran. Use of iodized salt is one of the oldest, most convenient and cheapest ways of IDD control, although not very easy to implement. Factors such as the chemical form of iodine, heat moisture, light and storage affect its stability. In this survey, salt iodine content at production site and the effect of heat, moisture and light on salt produced in 6 factories in Tehran were measured in May 1994. The results showed that salt iodized with potassium iodated at 40 ppm and stored for 15 days in favorable conditions, kept over 90% of its iodine content. Keeping the salt in solution form for 3.5 h resulted in 5% reduction of the iodine (P<0.0l. Storage at 50% relative humidity, sunlight and low ordinary lamp for 15 days did not affect the salt content appreciably. Boiling in uncovered pot for 3.5 h caused a 10% reduction of iodine. Only 61% of the surveyed families (84% in the north and 42% in the south consumed iodized salt which pointed to the need for further education of the public. The iodine content of the factories was between 29 to 50 ug/kg. In view of negligible loss of iodine during cooking, it seems the recommendation of adding salt at the end of cooking process is unnecessary and may cause hesitation on the part of the housewives to use iodized salt.

  7. Barley growth and plant mineral content of plant grown from seeds irradiated by low doses of gamma irradiated and cultured on salt media

    International Nuclear Information System (INIS)

    Seeds of two barley White Arabi (WA) Pakistani PK30163 (PK) were irradiated with three doses 0,15 and 20 Gy of gamma irradiation. Then they were cultured on (Coic-Lesaint) nutrient media containing several concentrations of NaCl (0, 10, 50, and 100 mmol). The irradiation doses did not affect the shoot growth of plants, whereas the combination between 15 Gy and 50 and 100 mmol NaCl decreased significantly the root growth. Doses of 0 and 20 Gy and 10 mmol NaCl had a positive effect on WA variety wet weight. The 20 Gy and 10 and 50 mmol NaCl significantly reduced the wet weight of PK variety. Dry weight of WA variety was decreased, when the seeds were irradiated by 15 Gy and cultured on media containing 10 and 50 mmol NaCl. WA and PK content of Ca++ increased when weeds were irradiated by 15 Gy (WA) and 20 Gy (PK) and grown on media containing 10 mmol NaCl. The content of Mg++ and K++ of 2 varieties were increased, when seeds were cultured on media containing 10 mmol NaCl. Positive relationship was noticed between Na+ and Cl- contents and NaCl concentrations in the media. The NaCl concentrations correlated with the irradiation, negatively effected the total N % of the WA variety, whereas in the absence of irradiation, 10 and 50 mmol NaCl had a positive effect on the total N % of PK variety. Similar effects were produced for the last variety with the dose of 15 Gy and NaCl concentrations in the media. Concentration of 100 mmol NaCl positively affect PO4-- of unirradiated WA variety, but PO-- of all plants of PK variety was increased with 10 and 50 mmol NaCl. The content of SO4-- of 2 varieties was increased, when the seeds were exposed to the irradiation of 15 and 20 Gy and cultured on a media containing 10 and 50 mmol NaCl. The ratio of Na/Cl, was generally different from 1 and the Cl- content was higher than Na+ content, in seedlings of both barley varieties. (author)

  8. Effect of nitrogen, salt, and iron content in the growth medium and light intensity on lipid production by microalgae isolated from freshwater sources in Thailand.

    Science.gov (United States)

    Yeesang, Chittra; Cheirsilp, Benjamas

    2011-02-01

    Four green microalgae (TRG, KB, SK, and PSU) identified as Botryococcus spp. by morphological criteria were isolated from lakes and freshwater ponds in southern Thailand. In nitrogen-rich medium the strains achieved a lipid content of 25.8%, 17.8%, 15.8% and 5.7%, respectively. A combination of nitrogen deficiency, moderately high light intensity (82.5 ?E m(-2) s(-1)) and high level of iron (0.74 mM) improved lipid accumulation in TRG, KB, SK, and PSU strains up to 35.9%, 30.2%, 28.4% and 14.7%, respectively. The lipid contents and plant oil-like fatty acid composition of the microalgae suggested their potential as biodiesel feedstock. PMID:20980142

  9. Determination of potassium iodide in table salt

    Directory of Open Access Journals (Sweden)

    Rajkovi? Miloš B.

    2009-01-01

    Full Text Available The samples of table salt bought in Belgrade supermarkets are analysed in this paper. The method of indirect iodometry was used in the process of the analysis, and received results were converted into the content of KI in mg/kg of salt. Beside the content of KI, the content of NaCl was also determined, counted to dry meter and water content, and received results were compared with the requests determined by Regulations of Table Salt Quality Meant for Human Diet and by manufacturers' declaration. Received results show that the volumetric method of indirect iodometry, applied in this analysis, is very reliable for determination of potassium iodine in table salt, because of its high precision and reproducibility of the analysis results. All received results show that the samples of table salt which can be bought in supermarkets are according to the demands given by Regulations. Only one sample (evaporated salt has significantly less mass of KI than it is determined by Regulations, but also by manufacturer's declaration. Measured humidity in the samples of table salt received from sea salt (sample 1 is higher than humidity in the samples received from rock salt as the result of magnesium presence in sea salt, which is hygroscopic material. Although samples 5 and 6 also originate from sea salt, their smaller humidity is the result of additional heating and salt processing. .

  10. PENENTUAN KADAR IODIDA DAN IODAT DALAM GARAM BERIODIUM DENGAN METODE KROMATOGRAFI CAIR KENERJA TINGGI PASANGAN ION [Determination of Iodate and Iodide Content in Iodized Salt By Ion Pair High Performance Liquid Chromatography Method

    Directory of Open Access Journals (Sweden)

    Wisnu Cahyadi1

    2004-04-01

    Full Text Available Two species of iodine, i.e. iodide and iodate in commercial iodized salt were determined using ion pair HPLC. From 15 samples analysed, the iodide and iodate content ranged from 24,05 ± 2,51 to 70,25 ± 3,78 ppm and from 31,43 ± 8,10 to 87,59 ± 0,44 ppm, respectively. The method used was found satisfactory in terms of precission, accuracy, sensitivity and selectivity, therefore the method seem acceptable for the determination of iodide and iodate content in iodized salt samples.

  11. Evaluation of salt content in school meals / Avaliação do conteúdo de sal em refeições escolares

    Scientific Electronic Library Online (English)

    Cláudia Alexandra Colaço Lourenço, Viegas; Jorge, Torgal; Pedro, Graça; Maria do Rosário Oliveira, Martins.

    2015-04-01

    Full Text Available OBJETIVO: Considerando que a pressão arterial elevada constitui um dos maiores fatores de risco para as doenças cardiovasculares e sua associação ao consumo elevado de sal, bem como o fato de as escolas serem considerados ambientes de excelência para fomentar a aquisição de bons hábitos alimentares [...] e promover a saúde, o objetivo deste estudo foi avaliar o conteúdo de sal presente nas refeições escolares e a percepção dos consumidores sobre o sabor salgado. MÉTODOS: Foram recolhidas refeições nas cantinas das escolas, analisando-se todos os seus componentes (pão, sopa e prato principal). A quantificação de sal foi realizada com um medidor de sal portátil. Para a avaliar a percepção dos consumidores foi desenvolvido e aplicado um questionário aos alunos das escolas preparatórias e secundárias. RESULTADOS: Foram analisados 798 componentes de refeições. O pão apresentou o valor mais elevado de sal, com média de 1,35 g/100 g (SD=0.12). O conteúdo de sal nas sopas apresentou média de 0,72 g/100 g a 0,80 g/100 g (p=0,05) e, nos pratos principais, de 0,71 g/100 a 0,97 g/100 g (p=0,05). Em média, as refeições escolares disponibilizaram entre 2,83 e 3,82 g de sal por porção servida, o que representa de duas a cinco vezes mais em relação à dose diária recomendada para crianças e jovens. Para a maioria dos estudantes, o sabor das refeições foi percebido como sendo nem salgado nem insosso, o que parece demonstrar adaptação à intensidade/ quantidade de sal consumida. CONCLUSÃO: Escolhas alimentares saudáveis e adequadas só são possíveis se sustentadas por um ambiente que as facilite. Considerando o impacto que o consumo de sal tem na saúde, em particular nas doenças crônicas, a implementação de estratégias de redução de sal - nas indústrias, serviços de catering e restaurantes -, é imperativa, em particular direcionada para o público mais jovem. Abstract in english OBJECTIVE: High blood pressure is a major rick factor for cardiovascular disease, and it is closely associated with salt intake. Schools are considered ideal environments to promote health and proper eating habits. Therefore the objective of this study was to evaluate the amount of salt in meals se [...] rved in school canteens and consumers' perceptions about salt. METHODS: Meals, including all the components (bread, soup, and main dish) were retrieved from school canteens. Salt was quantified by a portable salt meter. For food perception we constructed a questionnaire that was administered to high school students. RESULTS: A total of 798 food samples were analysed. Bread had the highest salt content with a mean of 1.35 g/100 g (SD=0.12). Salt in soups ranged from 0.72 g/100 g to 0.80 g/100 g (p=0.05) and, in main courses, from 0.71 g/100 to 0.97 g/100g (p=0.05). The salt content of school meals is high with a mean value of 2.83 to 3.82 g of salt per meal. Moreover, a high percentage of students consider meals neither salty nor bland, which shows they are used to the intensity/amount of salt consumed. CONCLUSION: The salt content of school meals is high, ranging from 2 to 5 times more than the Recommended Dietary Allowances for children, clearly exceeding the needs for this population, which may pose a health risk. Healthy choices are only possible in environments where such choices are possible. Therefore, salt reduction strategies aimed at the food industry and catering services should be implemented, with children and young people targeted as a major priority.

  12. Temporal Variation of Water and Salt Exchange at Xiaoqinghe River Mouth, North of China

    Science.gov (United States)

    Zou, T.; Zhang, H.

    2014-12-01

    Estuaries are important components of coastal ecosystem and function as dominant pathways of material exchange at the land-sea interface. The transport of terrestrial input through river inflow is controlled by physical process including tides, waves, and fresh water discharge. This study investigates net water and salt flux within Xiaoqinghe River mouth, a mesotidal shallow estuarine system (water depth role in salt transports. The vertical shear flux tended to very small. There is a distinguishable difference between the transport of salinity and water for all three surveys, and also obvious separation character of salinity and water's long-term transport during all three surveys. An imbalance of the salt budget across the river mouth is also observed. Overall, tidal pumping is the underlying process of salt transport while river discharge dominates its temporal variation. This study will make addition to scientific foundation for management hazardous contamination and best time to release of environmental flows during difference seasons.

  13. Mineral sources of water and their influence on the safe disposal of radioactive wastes in bedded salt deposits

    International Nuclear Information System (INIS)

    With the increased use of nuclear energy, there will be subsequent increases in high-level radioactive wastes such as Sr90, Cs137, and Pu239. Several agencies have considered the safest possible means to store or dispose of wastes in geologic environments such as underground storage in salt deposits, shale beds, abandoned dry mines, and in clay and shale pits. Salt deposits have received the most favorable attention because they exist in dry environments and because of other desirable properties of halite (its plasticity, gamma-ray shielding, heat dissipation ability, low mining cost, and worldwide abundance). Much work has been done on bedded salt deposits, particularly the Hutchinson Salt Member of the Wellington Formation at Lyons, Kansas. Salt beds heated by the decay of the radioactive wastes may release water by dehydration of hydrous minerals commonly present in evaporite sequences or water present in other forms such as fluid inclusions. More than 80 hydrous minerals are known to occur in evaporite deposits. The occurrences, total water contents (up to 63%) and dehydration temperatures (often less that 1500C) of these minerals are given. Since it is desirable to dispose of radioactive wastes in a dry environment, care must be taken that large quantities of water are not released through the heating of hydrous minerals. Seventy-four samples from four cores taken at Lyons, Kansas, were analyzed by x-ray diffraction. The minerals detected were halite, anhydrite, gypsum, polyhalite, dolomite, magnesite, quartz, feldspar, and the clay minerals illite, chlorite, kaolinite, vermiculite, smectite, mixed-layer clay, and corrensite (interstratified chlorite-vermiculite). Of these, gypsum, polyhalite and the clay minerals are all capable of releasing water when heated

  14. Salt stress increases content and size of glutenin macropolymers in wheat grain.

    Science.gov (United States)

    Zhang, Xiaxiang; Shi, Zhiqiang; Tian, Youjia; Zhou, Qin; Cai, Jian; Dai, Tingbo; Cao, Weixing; Pu, Hanchun; Jiang, Dong

    2016-04-15

    Addition of salt solution in making wheat dough improves viscoelasticity. However, the effect of native salt fortification on dough quality is unclear. Here, wheat plants were subjected to post-anthesis salt stress to modify salt ion content in grains. The contents of Na(+) and K(+), high-molecular-weight glutenin subunits (HMW-GS), glutenin macropolyers (GMP) and amino acids in mature grains were measured. As NaCl concentration in soil increased, grain yield decreased while Na(+) and K(+) contents increased. The contents of amino acids, HMW-GS and GMP in grains also increased, especially when NaCl concentration exceeded 0.45%. Fraction of GMP larger than 10?m was also increased. Na(+) and K(+) contents were significantly positively correlated to GMP and total HMW-GS contents, and to large GMP fraction. PMID:26616983

  15. Process and equipment for the detection of impurities like salted water and sulfur contained in a multiphase fluid by nuclear techniques

    International Nuclear Information System (INIS)

    A technique for detecting impurities, like sulfur and salted water, in petroleum refineries is described. The fluid is bombarded with fast neutrons which are showed down and then captured producing gamma spectra. Analysis of the spectra indicates the relative presence of sulfur, hydrogen and chlorine. The gas/liquid ratio of the fluid can also be calculated. An apparatus making use of this technique is also described

  16. Salt and fat contents in preparations at commercial restaurants in Goiânia-GO

    Directory of Open Access Journals (Sweden)

    Camila Silva Kunert

    2013-03-01

    Full Text Available Objective: To evaluate the sodium and fat contents added to preparations of commercial restaurants in Goiânia-GO, Brazil. Methods: This was an observational, cross-sectional and descriptive study. It included ‘pay-per-weight’ restaurants with a medium standard menu and having as daily preparations white rice, beans and grilled chicken. Among the establishments with these characteristics, three agreed to participate. The production process of the above-mentioned preparations was accompanied for three non-consecutive days in each establishment. For quantification of sodium and fat added into the preparations, oil and salt were weighed, as well as the finished preparation; the weight of the standard portion and the yield of the preparation expressed in number of portions prepared were settled. From these data, the per capita amount of salt and oil added to cook one portion of each kind of preparation was calculated by dividing the total quantity of salt and oil by the number of prepared portions. Results: The levels of salt (3.0, 2.7, and 4.1 g – restaurant A, B and C, respectively and oil (17.0, 11.3, and 11.2 g – restaurant A, B and C, respectively added in the three preparations are superior to the recommendations. Conclusion: The sodium and fat contents in the analyzed restaurants are higher than it is recommended by the Food Guide for the Brazilian Population. It is essential that commercial restaurants become partners of public policies on health promotion, adopting good nutritional practices, by reducing the sodium and fat contents, to offer healthy meals daily.

  17. Surface tension measurements show that chaotropic salting-in denaturants are not just water-structure breakers.

    OpenAIRE

    Breslow, R.; Guo, T

    1990-01-01

    Since the salting-in agents guanidinium chloride, urea, and lithium perchlorate increase the surface tension of water, the salting-in phenomenon does not reflect easier cavity formation in water. Therefore, these salting-in agents must be directly contributing to the solvation of a solute such as benzene in water, probably by a direct solvation interaction. The increased surface-tension effects do not overbalance these solvation effects since they are smaller than the large surface-tension in...

  18. Ultrasonic characterization of pork meat salting

    Science.gov (United States)

    García-Pérez, J. V.; De Prados, M.; Pérez-Muelas, N.; Cárcel, J. A.; Benedito, J.

    2012-12-01

    Salting process plays a key role in the preservation and quality of dry-cured meat products. Therefore, an adequate monitoring of salt content during salting is necessary to reach high quality products. Thus, the main objective of this work was to test the ability of low intensity ultrasound to monitor the salting process of pork meat. Cylindrical samples (diameter 36 mm, height 60±10 mm) of Biceps femoris were salted (brine 20% NaCl, w/w) at 2 °C for 1, 2, 4 and 7 days. During salting and at each experimental time, three cylinders were taken in order to measure the ultrasonic velocity at 2 °C. Afterwards, the cylinders were split in three sections (height 20 mm), measuring again the ultrasonic velocity and determining the salt and the moisture content by AOAC standards. In the whole cylinders, moisture content was reduced from 763 (g/kg sample) in fresh samples to 723 (g/kg sample) in samples salted for 7 days, while the maximum salt gain was 37.3 (g/kg sample). Although, moisture and salt contents up to 673 and 118 (g/kg sample) were reached in the sections of meat cylinders, respectively. During salting, the ultrasonic velocity increased due to salt gain and water loss. Thus, significant (p<0.05) linear relationships were found between the ultrasonic velocity and the salt (R2 = 0.975) and moisture (R2 = 0.863) contents. In addition, the change of the ultrasonic velocity with the increase of the salt content showed a good agreement with the Kinsler equation. Therefore, low intensity ultrasound emerges as a potential technique to monitor, in a non destructive way, the meat salting processes carried out in the food industry.

  19. [Effects of salting, cut type, and initial simmering temperature on protein and fat contents of meat broths: I. Beef].

    Science.gov (United States)

    Gotera-Prado, Z; Quintero, J B; Huerta-Leidenz, N; Prado Gotera, Z

    1997-12-01

    A 2 x 2 x 4 factorial design was used to study variation of protein and fat contents in beef broths as affected by cut type (flank, shank), salt treatments (addition of salt to the medium, no salt), and initial temperatures of simmering (25, 70, 75, and 100 degrees C). Flank portions yielded slightly more protein (0.29 g/100 mL) and had three-fold less fat (0.39 g/mL) than those of shank (0.25 and 1.12 g/mL, respectively) (P boiling point (P boiling point. PMID:9673698

  20. Reducing the sodium content of high-salt foods: effect on cardiovascular disease in South Africa

    Scientific Electronic Library Online (English)

    Y, Bertram; Krisela, Steyn; Edelweiss, Wentze-Viljoen; Stephen, Tollman; J, Hofman.

    2012-09-01

    Full Text Available BACKGROUND: Average salt intake in South African (SA) adults, 8.1 g/day, is higher than the 4 - 6 g/day recommended by the World Health Organization. Much salt consumption arises from non-discretionary intake (the highest proportion from bread, with contributions from margarine, soup mixes and gravi [...] es). This contributes to an increasing burden of hypertension and cardiovascular disease (CVD). OBJECTIVES: To provide SA-specific information on the number of fatal CVD events (stroke, ischaemic heart disease and hypertensive heart disease) and non-fatal strokes that would be prevented each year following a reduction in the sodium content of bread, soup mix, seasoning and margarine. METHODS: Based on the potential sodium reduction in selected products, we calculated the expected change in population-level systolic blood pressure (SBP) and mortality due to CVD and stroke. RESULTS: Proposed reductions would decrease the average salt intake by 0.85 g/person/day. This would result in 7 400 fewer CVD deaths and 4 300 less non-fatal strokes per year compared with 2008. Cost savings of up to R300 million would also occur. CONCLUSION: Population-wide strategies have great potential to achieve public health gains as they do not rely on individual behaviour or a well-functioning health system. This is the first study to show the potential effect of a salt reduction policy on health in SA.

  1. Water content reflectometer calibration and field use

    Science.gov (United States)

    Automated soil water content can be used to help determine upward water movement from a shallow water table. Apparent permittivity determined from dielectric probes is related to more than soil water content for soils high in smectite clays. The purpose of this study was to calibrate and use CS616 w...

  2. NMR investigation into water content of foodstuffs

    International Nuclear Information System (INIS)

    The applications are briefly discussed of NMR methods in measuring water content in food and food products. The NMR methods allow measuring water content in different fractions; physical (energy) water mobility from relaxation characteristics and mechanical water mobility from the self-diffusion coefficient; correlation time and coordination number pertaining to one molecule for each fraction. (B.S.)

  3. Iodine in drinking water varies by more than 100-fold in Denmark. Importance for iodine content of infant formulas

    DEFF Research Database (Denmark)

    Pedersen, K M; Laurberg, P; Nøhr, S; Jorgensen, A; Andersen, S

    1999-01-01

    The iodine intake level of the population is of major importance for the occurrence of thyroid disorders in an area. The aim of the present study was to evaluate the importance of drinking water iodine content for the known regional differences in iodine intake in Denmark and for the iodine content of infant formulas. Iodine in tap water obtained from 55 different locations in Denmark varied from <1.0 to 139 microg/l. In general the iodine content was low in Jutland (median 4.1 microg/l) with hi...

  4. Soil water content and evaporation determined by thermal parameters obtained from ground-based and remote measurements

    Science.gov (United States)

    Reginato, R. J.; Idso, S. B.; Jackson, R. D.; Vedder, J. F.; Blanchard, M. B.; Goettelman, R.

    1976-01-01

    Soil water contents from both smooth and rough bare soil were estimated from remotely sensed surface soil and air temperatures. An inverse relationship between two thermal parameters and gravimetric soil water content was found for Avondale loam when its water content was between air-dry and field capacity. These parameters, daily maximum minus minimum surface soil temperature and daily maximum soil minus air temperature, appear to describe the relationship reasonably well. These two parameters also describe relative soil water evaporation (actual/potential). Surface soil temperatures showed good agreement among three measurement techniques: in situ thermocouples, a ground-based infrared radiation thermometer, and the thermal infrared band of an airborne multispectral scanner.

  5. Monitoring and estimation of iodine content of edible salt in urban areas of Meerut district, after four decades of Universal Salt Iodization

    Directory of Open Access Journals (Sweden)

    Dilutpal Sharma

    2014-02-01

    Full Text Available Objective: It is estimated that 200 million people in India are exposed to the risk of iodine deficiency disorders (IDD. To protect future generations, Universal Salt Iodization (USI is the mainstay of the intervention. So, we carried out the study to estimate salt iodine content at the house hold and retail level in urban areas of Meerut district of Uttar Pradesh.Method: A total no of 64 (48 from house hold and 16 from retail samples of salt were estimated by iodometric titration method for the iodine content. Legal requirement for iodine level in India ranges from 30 parts per million (ppm at retail level and 15ppm at consumer level.                                                                                                                                             Results: We found that at retail level the range of concentrations of iodine in salt samples from Shiv Kunj, Krishna Vihar, Yadav colony, Ratan nagar. At retail level the range of concentration of iodine in salt sample was 26.5 to 33.6 ppm, 28.8 to 34.6 ppm, 31.3 to 36.8 ppm, 29.6 to 32.6 ppm respectively, while at house hold level were 12.7 to 34.6 ppm, 15.1 to 33.9 ppm, 15.8 to 38.4 ppm, 15.2 to 29.6 ppm respectively.Conclusion: Our study reveals a positive new momentum that reflects changes in India’s salt industry. These changes include better production, better refining and iodization practices, improvement in salt quality, improvement to packaging, effective monitoring to iodine levels from production to consumption and better consumer awareness in the urban areas.

  6. Validation of spot-testing kits to determine iodine content in salt.

    OpenAIRE

    Pandav, C.S.; Arora, N.K.; Krishnan, A.; Sankar, R.; Pandav, S.; Karmarkar, M. G.

    2000-01-01

    Iodine deficiency disorders are a major public health problem, and salt iodization is the most widely practised intervention for their elimination. For the intervention to be successful and sustainable, it is vital to monitor the iodine content of salt regularly. Iodometric titration, the traditional method for measuring iodine content, has problems related to accessibility and cost. The newer spot-testing kits are inexpensive, require minimal training, and provide immediate results. Using da...

  7. Effect of Short Term Salt Stress on Chlorophyll Content, Protein and Activities of Catalase and Ascorbate Peroxidase Enzymes in Pearl Millet

    Directory of Open Access Journals (Sweden)

    Sonam Sneha

    2014-01-01

    Full Text Available In this study the 21 days old seedlings of Pennisetum glaucum were subjected to short term salt stress in order to observe the effect on chlorophyll content, protein and antioxidative enzyme activity (CAT and APX responses. The aim of the experiment was to evaluate the changes in chlorophyll content and antioxidant enzymes (Catalase and Ascorbate peroxidase. The 21 days old seedlings were subjected to salt stress by supplementing Hoagland’s solution with different concentrations of Sodium chloride (50, 100, 150 and 200 mM. Measurement of chlorophyll content and antioxidant enzyme activity were taken at different time intervals of salt treatment (12, 24, 48, 72, 96 and 120 h. The results showed statistically significant differences in traits for the salt treatment. A significant increase in Catalase activity was observed under all the salt concentrations while no significant activity of Ascorbate peroxidase activity was observed. The protein content and chlorophyll content decreased with increasing salt concentration. This result shows salt stress affects the photosynthesis rate by decreasing chlorophyll content. Catalase enzyme plays an important role in scavenging reactive oxygen species generated due to salt stress in the plant cell.

  8. Water deficit and salt stress diagnosis through LED induced chlorophyll fluorescence analysis in Jatropha curcas L. oil plants for biodiesel

    Science.gov (United States)

    Gouveia-Neto, Artur S.; Silva, Elias A., Jr.; Oliveira, Ronaldo A.; Cunha, Patrícia C.; Costa, Ernande B.; Câmara, Terezinha J. R.; Willadino, Lilia G.

    2011-02-01

    Light-emitting-diode induced chlorophyll fluorescence analysis is employed to investigate the effect of water and salt stress upon the growth process of physicnut(jatropha curcas) grain oil plants for biofuel. Red(Fr) and far-red (FFr) chlorophyll fluorescence emission signals around 685 nm and 735 nm, respectively, were observed and examined as a function of the stress intensity(salt concentration and water deficit) for a period of time of 30 days. The chlorophyll fluorescence(ChlF) ratio Fr/FFr which is a valuable nondestructive and nonintrusive indicator of the chlorophyll content of leaves was exploited to monitor the level of stress experienced by the jatropha plants. The ChlF technique data indicated that salinity plays a minor role in the chlorophyll concentration of leaves tissues for NaCl concentrations in the 25 to 200 mM range, and results agreed quite well with those obtained using conventional destructive spectrophotometric methods. Nevertheless, for higher NaCl concentrations a noticeable decrease in the Chl content was observed. The Chl fluorescence ratio analysis also permitted detection of damage caused by water deficit in the early stages of the plants growing process. A significant variation of the Fr/FFr ratio was observed sample in the first 10 days of the experiment when one compared control and nonwatered samples. The results suggest that the technique may potentially be applied as an early-warning indicator of stress caused by water deficit.

  9. Analysis of salt content in meals in kindergarten facilities in Novi Sad

    Directory of Open Access Journals (Sweden)

    Bijelovi? Sanja

    2010-01-01

    Full Text Available Introduction. Investigations have brought evidence that salt intake is positively related to systolic blood pressure and that children with higher blood pressure are more susceptible to hypertension in adulthood. In developed countries the main source of salt is processed food. Objective The aim of this paper was to determine total sodium chloride (NaCl in average daily meal (breakfast, snack and dinner and in each of three meals children receive in kindergarten. Methods. From kindergarten, in the meal time, 88 samples of daily meals ( breakfast, snacks and dinner offered to children aged 4-6 years were taken. Standardized laboratory methods were applied to determine proteins, fats, ash and water in order to calculate energy value of meal. The titrimetric method with AgNO3, and K2CrO4 as indicator, was applied in order to determine chloride ion. Content of NaCl was calculated as %NaCl = mlAgNO3 × 0.05844 × 5 × 100/g tested portion. NaCl content in total daily meal and each meal and in 100 kcal of each meal was calculated using descriptive statistical method. Student’s t-test was applied to determine statistical differences of NaCl amount among meals. Results. NaCl content in average daily meal was 5.2±1.7 g (CV 31.7%, in breakfast 1.5±0.6 g (CV 37.5%, in dinner 3.5±1.6 g (CV 46.1% and in snack 0.3±0.4 g (CV 163.3%. NaCl content per 100 kcal of breakfast was 0.4±0.1 g (CV 29.5%, dinner 0.7±0.2 g (CV 27.8% and snack 0.13±0.19 g (CV 145.8%. The difference of NaCl content among meals was statistically significant (p<0.01. Conclusion. Children in kindergarten, through three meals, received NaCl in a quantity that exceeded internationally established population nutrient goal for daily salt intake. The main source of NaCl was dinner, a meal that is cooked at place.

  10. Ultrasonic characterization of pork meat salting

    International Nuclear Information System (INIS)

    Salting process plays a key role in the preservation and quality of dry-cured meat products. Therefore, an adequate monitoring of salt content during salting is necessary to reach high quality products. Thus, the main objective of this work was to test the ability of low intensity ultrasound to monitor the salting process of pork meat. Cylindrical samples (diameter 36 mm, height 60±10 mm) of Biceps femoris were salted (brine 20% NaCl, w/w) at 2 °C for 1, 2, 4 and 7 days. During salting and at each experimental time, three cylinders were taken in order to measure the ultrasonic velocity at 2 °C. Afterwards, the cylinders were split in three sections (height 20 mm), measuring again the ultrasonic velocity and determining the salt and the moisture content by AOAC standards. In the whole cylinders, moisture content was reduced from 763 (g/kg sample) in fresh samples to 723 (g/kg sample) in samples salted for 7 days, while the maximum salt gain was 37.3 (g/kg sample). Although, moisture and salt contents up to 673 and 118 (g/kg sample) were reached in the sections of meat cylinders, respectively. During salting, the ultrasonic velocity increased due to salt gain and water loss. Thus, significant (p2 = 0.975) and moisture (R2 = 0.863) contents. In addition, the change of the ultrasonic velocity with the increase of the salt content showed a good agreement with the Kinsler equation. Therefore, low intensity ultrasound emerges as a potential technique to monitor, in a non destructive way, the meat salting processes carried out in the food industry.

  11. Organic carbon content and potential for formation of disinfection by-products in drinking water of the water distribution system of Tehran, Iran

    Directory of Open Access Journals (Sweden)

    2009-08-01

    Full Text Available Background and Aim: Natural organic matter (NOMs, measured on the basis of organic carbon, produces disinfection by-products precursors (DBPs during the chlorination process. Some DBPs are carcinogenic. NOMs are not completely removed by conventional water treatment. As a result, in addition to forming DBPs, they support bacterial regrowth in the water distribution systems and cause unpleasant odor and taste and other problems. The objective of this study was to determine organic carbon concentration and DBPs formation potential in drinking water of the water distribution system in Tehran, Iran."nMethods and Materials: Water sampling was done by standard methods, monthly between August 2006 and Feb 2007, at four points of the drinking water distribution system in Tehran. Quantitative parameters, including pH, EC, UV254 (UV absorbance at a wavelength of 254nm, dissolved organic carbon (DOC, and specific UV absorbance (SUVA were determined. DOC and UV-254 of the samples were determined using a Total Organic Carbon (TOC analyzer and a Lambda 25 UV/Vis spectrophotometer, respectively. SUVA (L/mg.m was calculated as thea ratio of the UV absorbance at 254 nm (1/m to DOC (mg/ L."nResults: The water content of DOC at the four points of the distribution system was less than 0.7 mg /L. The mean DOC concentration was 0.3±0.14mg/L, ranging between 0.12 and 0.687mg/L, with no monthly variation. The mean SUVA was 1.3±0.7. "nConclusion: It can be concluded that the Tehran water treatment systems cannot eliminate completely natural organic matter. SUVA values show, however, that the system can eliminate the majority of hydrophobic compounds. Therefore, formation of haloacetic acids is more probable than that of trihalomathanes.

  12. A non-destructive method for determining the distribution of soil water content by measuring fast neutron transmission using an NE-213 organic scintillator

    International Nuclear Information System (INIS)

    A method of measuring the water content distribution in a soil layer packed in a column, using fast neutron transmission, has been developed. The calibration curve of the water content was obtained from the rate of decrease of fast neutrons per unit of water content. An NE-213 organic scintillator (2'' in diameter x 2'' in length) and Cf-252(273 ? Ci) were used as the fast neutron detector and neutron source respectively. The distribution curve of soil water content obtained by the present method was consistent with that obtained by the destructive drying method. The NE-213 scintillator was superior to other conventional detectors (3He, BF3 counter) in measurement accuracy, spatial resolution and measurement sensitivity. The relative error and sensitivity of the present method are discussed in detail in this report. (author)

  13. Baric dependence of solubility of salts in water

    International Nuclear Information System (INIS)

    Experimental material on baric dependence of solubility of salts (CdCl2xH2O; CdSO4xH2O; CdBi2x4H2O; CdCl2x2.5H2O; CdCl2x4H2O; CdBr2) in water up to 1000 MPa was collected and systematized. Four types of solubility polybars were marked out. Using available experimental data, as well as thermodynamic calculations baric factors of solubility (BFS) were determined for more than 40 water-salt systems at different pressures. It is shown, that BFS and its change with pressure have different signs in solutions of low concentrations and in water melts or highly concentrated solutions. BFS differences of salts were interpreted using the structural model of water solution composition. The sign of BFS change with pressure in different structural, concentration regions of solutions was predicted. Classification of salt BFS in water on molecular base is given

  14. High Salt Diets, Bone Strength and Mineral Content of Mature Femur After Skeletal Unloading

    Science.gov (United States)

    Liang, Michael T. C.

    1998-01-01

    It is known that high salt diets increase urinary calcium (Ca) loss, but it is not known whether this effect weakens bone during space flight. The Bone Hormone Lab has studied the effect of high salt diets on Ca balance and whole body Ca in a space flight model (2,8). Neither the strength nor mineral content of the femurs from these studies has been evaluated. The purpose of this study was to determine the effect of high salt diets (HiNa) and skeletal unloading on femoral bone strength and bone mineral content (BMC) in mature rats.

  15. Determination of uranium contents in water, blood and toothpastes by the fission track method

    International Nuclear Information System (INIS)

    The analysis of uranium in water, blood, urine and toothpaste samples with the fission track method was described. The stability of tracks and the feasibility of the method were discussed. The results were compared with those reported. The method has the advantages of high sensitivity, less sample needed, steadiness and economy. It is also applicable to analysis of plutonium and radon

  16. Desalination of salt damaged Obernkirchen sandstone by an applied DC field

    DEFF Research Database (Denmark)

    Matyš?ák, Ond?ej; Ottosen, Lisbeth M.

    2014-01-01

    Soluble salts are considered as one of the most common causes for decay of building materials. In the present work, an electrokinetic method for desalination of sandstones from a historic warehouse was tested. The sandstones claddings were removed from the warehouse during a renovation action as the outer surface was scaling due to salts.The focus of the work was on the effect of electrokinetic desalination for removal of unevenly distributed mixtures of salts. Previous reported studies were conducted with laboratory contaminated stones with single salts, which were relatively evenly distributed in the stones, i.e. the present investigation faces more challenges relevant to a real desalination action. Experiments were conducted with two Obernkirchen sandstones from the same warehouse, but with different levels of salt concentrations and porosity. The investigation includes removal of the most common salts: chlorides, nitrates, sulphates. In the experimental setup the electrodes were placed in a clay poultice:a mixture of kaolinite, calcite and distilled water. An electric direct current (DC) field was applied to the sandstone.By applying 2mA for 5–11days it was possible to reduce the chloride concentration from up to 420mg/kg to concentration of 140mg/kg, nitrate concentration from 1000mg/kg to concentration of 310mg/kg nearest the cathode and the sulphate concentration from up to 540mg/kg to 30mg/kg nearest the anode in 750–1020g dry matter stone sample.The final concentrations meet the limiting values indicating no risk for salt decay. The placement of the anode related to the original outer surface of the stone showed its importance only in the experiments with the long duration 10–11days. Due to the placement of the anode to the outer surface of the stone segments which was more contaminated, higher concentrations of nitrates and sulphates were measured in the anode clay poultices at the end of experiments. The longer duration might show even more significant role of the electrode placements.The clay poultice successfully neutralized the acid from electrolysis at the anode. During the treatment the water content was very low in the stones, between 1.3% and 2.1%. Electroosmotic water transport was observed in the clay poultices, however, there was no decrease of the water contents in the stones at the end of the experiments, so there was no indication of an electroosmotic effect in the stones themselves under the present conditions.

  17. Effect of Inorganic Salts on Ternary Equilibrium Data of Propionic Acid-Water-Solvents Systems

    Directory of Open Access Journals (Sweden)

    Bhupesh C. Roy

    2007-01-01

    Full Text Available Liquid-Liquid Equilibrium (LLE data were obtained for the pseudo-ternary systems of propionic acid (PA + water + solvents (methyl isopropyl ketone and methyl isobutyl ketone + salts (NaCl and KCl at 25-26°C in order to study the effect of salts on extraction equilibrium of these systems by comparing with the same systems without salt. Mutual solubility curves, tie-line data, distribution coefficient, selectivity diagrams and separation factor data were determined for these systems. The salting-out effect was investigated by using inorganic salts NaCl or KCl at two concentrations of each salt within their solubility limits. The results obtained in these experiments showed that the salts NaCl and KCl significantly affect the solubility of PA in the organic solvents, as well as the distribution coefficients and separation factors for PA by changing their equilibrium composition and the selectivity of the solvents while the region of heterogeneity increases as compared to the same system of without salt. The thermodynamic consistency of the equilibrium tie-line data was ascertained by Othmer-Tobias plots as well as by Hand plots.

  18. Solubility estimation of inorganic salts in supercritical water

    International Nuclear Information System (INIS)

    Highlights: • A pragmatic approach to estimate solubility of inorganic salts in SCW is employed. • R-HKF, Density and SAA models are used to evaluate chemical equilibrium constant. • Models predictability in estimating solubility of inorganic salts is evaluated. • A simplified SAA model competes well with a complex R-HKF in solubility estimation. - Abstract: Presence of minute amount of inorganic salts in supercritical water (SCW) can cause equipment scaling, erosion and corrosion, reaction disturbance and process malfunctions. Thermodynamic modeling reduces experimental measurements; hence, solubility of several inorganic salts with available empirical solubility data (NaH2PO4, Na2HPO4, NaCl, CaCl2, MgCl2 and MgSO4) within temperature and pressure ranges of (623–823) K and (9.0–25.0) MPa, respectively, is estimated following determination of the dissociation constant, K, in SCW using three known models, namely, R-HKF, Sue–Adschiri–Arai (SAA) and Density model. Results obtained are compared with the experimental data to assess the suitability of the models in predicting the solubility of these inorganic salts in SCW, which indicate that R-HKF model is satisfactorily capable of correlating solubility for these salts. In almost every case except NaCl, SAA has provided similar estimation to R-HKF model. The Density model however, has offered the least accurate estimation in all cases

  19. WATER LEVEL AND OXYGEN DELIVERY/UTILIZATION IN POROUS SALT MARSH SEDIMENTS

    Science.gov (United States)

    Increasing terrestrial nutrient inputs to coastal waters is a global water quality issue worldwide, and salt marshes may provide a valuable nutrient buffer, either by direct removal or by smoothing out pulse inputs between sources and sensitive estuarine habitats. A major challen...

  20. Spatial and Temporal Distribution of the Water Content of a Red-Yellow Argissol Cultivated With Beans (Phaseolus vulgaris L. Irrigated by Center Pivot

    Directory of Open Access Journals (Sweden)

    Elder Sânzio Aguiar Cerqueira

    2014-04-01

    Full Text Available This study aimed to identify and assess the spatial and temporal distribution of the water content in a red-yellow argissol cultived with bean, irrigated by central pivot. The samplings were made at a depth of 30 cm, in systematic grid of 10.0 by 10.0 m with 108 and 54 sampling points in conventional tillage (CT and no tillage (NT, respectively, sampled at four stages of crop development: V3 (1st trifoliated leaf, R6 (flowering, R8 (filling of string beans and R9 (physiological maturity. The water content of the soil was determined by the greenhouse standard method and the analysis of spatial dependence was obtained with the GS+ Program. The semivariograms presented dependence spatial in conventional tillage, adjusting to the spherical model with ranges of 68.5, 78.3, 73.3 and 75.4 m, and in no-tillage system with ranges of 172.3, 210.9, 193.7 and 100.0 m for the steps V3, R6, R8 and R9, respectively. The relationship between the nugget effect and sill indicated that the spatial dependence was strong, lower than 25%. Using the graphical representation of the surface, the area studied presented higher water content at the low elevation and lower water content at the part of high elevation. Overall, the soil water content in CT showed a narrower range of spatial dependence on the scale, compared to soil water content in NT. The spatial distribution mapping of water content in the soil showed that there is a stability of the time variability for water content in the two cultivating systems.

  1. Perchlorate, iodine supplements, iodized salt and breast milk iodine content

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, Andrea B. [Department of Epidemiology, School of Public Health, University of North Texas Health Sciences Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107 (United States); Kroll, Martina; Dyke, Jason V.; Ohira, Shin-Ichi; Dias, Rukshan A.; Dasgupta, Purnendu K. [Department of Chemistry and Biochemistry, 700 Planetarium Place, University of Texas at Arlington, Arlington, TX 76019 (United States)

    2012-03-15

    This study was undertaken to determine if increasing maternal iodine intake through single dose tablets will decrease breast milk concentrations of the iodine-uptake inhibitor, perchlorate, through competitive inhibition. We also sought to determine if the timing of supplementation influences the fraction of iodine excreted in milk versus urine and to compare the effectiveness of iodized salt as a means of providing iodine to breastfed infants. Thirteen women who did not use supplements, seven of whom used iodized salt and six of whom used non-iodized salt, submitted four milk samples and a 24-h urine collection daily for three days. Women repeated the sampling protocol for three more days during which {approx} 150 {mu}g of iodine were taken in the evening and again for three days with morning supplementation. Samples were analyzed using isotope-dilution inductively-coupled plasma-mass spectrometry for iodine and isotope-dilution ion chromatography-tandem mass spectrometry for perchlorate. No statistically significant differences were observed in milk iodine or perchlorate concentrations during the two treatment periods. Estimated perchlorate intake was above the U.S. National Academy of Sciences suggested reference dose for most infants. Single daily dose iodine supplementation was not effective in decreasing milk perchlorate concentrations. Users of iodized salt had significantly higher iodine levels in milk than non-users. Iodized salt may be a more effective means of iodine supplementation than tablets. - Highlights: Black-Right-Pointing-Pointer Estimated infant exposures to perchlorate were, on a {mu}g/kg basis, {approx} 5 Multiplication-Sign higher than those of mothers. Black-Right-Pointing-Pointer Daily supplements are less effective than iodized salt in providing iodine to lactating women. Black-Right-Pointing-Pointer Low iodine and high perchlorate in milk may place infants at risk of iodine deficiency.

  2. Perchlorate, iodine supplements, iodized salt and breast milk iodine content

    International Nuclear Information System (INIS)

    This study was undertaken to determine if increasing maternal iodine intake through single dose tablets will decrease breast milk concentrations of the iodine-uptake inhibitor, perchlorate, through competitive inhibition. We also sought to determine if the timing of supplementation influences the fraction of iodine excreted in milk versus urine and to compare the effectiveness of iodized salt as a means of providing iodine to breastfed infants. Thirteen women who did not use supplements, seven of whom used iodized salt and six of whom used non-iodized salt, submitted four milk samples and a 24-h urine collection daily for three days. Women repeated the sampling protocol for three more days during which ? 150 ?g of iodine were taken in the evening and again for three days with morning supplementation. Samples were analyzed using isotope-dilution inductively-coupled plasma-mass spectrometry for iodine and isotope-dilution ion chromatography-tandem mass spectrometry for perchlorate. No statistically significant differences were observed in milk iodine or perchlorate concentrations during the two treatment periods. Estimated perchlorate intake was above the U.S. National Academy of Sciences suggested reference dose for most infants. Single daily dose iodine supplementation was not effective in decreasing milk perchlorate concentrations. Users of iodized salt had significantly higher iodine levels in milk than non-users. Iodized salt may be a more effective means of iodine supplementation than tablets. - Highlights: ? Estimated infant exposures to perchlorate were, on a ?g/kg basis, ? 5 × higher than those of mothers. ? Daily supplements are less effective than iodized salt in providing iodine to lactating women. ? Low iodine and high perchlorate in milk may place infants at risk of iodine deficiency.

  3. Effect of gamma-ray irradiation on the deoxygenation of salt-containing water using hydrazine

    International Nuclear Information System (INIS)

    In spent fuel pools at the Fukushima Daiichi nuclear power plant, hydrazine was added to salt-containing water in order to reduce dissolved oxygen. Hydrazine is known to reduce dissolved oxygen in high-temperature pure water, but its deoxygenation behavior in salt-containing water at ambient temperature in the presence of radiation is unknown. Deoxygenation using hydrazine in salt-containing water was thus investigated using a 60Co gamma-ray source and artificial seawater at room temperature. Water samples containing a small amount of hydrazine were irradiated at dose rates of 100 - 10,000 Gy/h. The concentration of dissolved oxygen in the water samples was measured before and after irradiation. Notably, a decrease in the dissolved oxygen was only observed after irradiation, and the dissolved oxygen concentration decreased with increasing dose rate and irradiation time. The rate of decrease in the amount of dissolved oxygen using hydrazine was slow in the presence of salts. Kinetic considerations suggested that the deoxygenation of the salt-containing water exposed to gamma-ray irradiation using hydrazine was suppressed by chloride ions. (author)

  4. PulsArt : IT, Salt and Water for Family Awareness

    DEFF Research Database (Denmark)

    Fritsch, Jonas; Fogtmann, Maiken Hillerup

    2005-01-01

    Recent years have seen a growing interest in considering the domestic household as a new and important domain for interaction design. In this paper we present pulsArt - a physical and digital installation designed for the home to represent different family members’ level of activity by water running down blocks of salt based on a real-time reading of the individual family member’s pulse. We describe how pulsArt explores novel ways of looking at the interaction between the physical, the social and the technological and how it acts as a context-aware artefact, amplifying the domestic setting to provide a new kind of awareness in the family. In doing so, we seek to develop new perspectives on designing interactive and context-aware systems for the home and what values they might support.

  5. Manipulating cattle distribution with salt and water in large arid-land pastures: a GPS/GIS assessment.

    Science.gov (United States)

    Ganskopp, D

    2001-08-27

    Several of the problems associated with grazing animals in extensive settings are related to their uneven patterns of use across the landscape. After fencing, water and salt are two of the most frequently used tools for affecting cattle distribution in extensive settings. Cattle are attracted to water in arid regions, but mixed results have been obtained with salt and mineral supplements. The goal of this study was to evaluate the efficacies of salt and water manipulations for affecting cattle distribution in large (>825ha) pastures. This was accomplished by fitting cattle with global positioning system (GPS) collars and monitoring their travels and activities in a three pasture, Latin-square design where water and salt shared a common location and water or salt were moved individually to distant areas. Mean distance of cattle from water (&xmacr;=1.16km) was unaffected by treatments (P=0.79) suggesting that cattle followed movements of water tanks. Distance traveled daily (&xmacr;=5.78km), time devoted to grazing (11.0h per day), time devoted to resting (10.1h per day), and the area (&xmacr;=325ha) of minimum convex polygons were also unaffected by treatment implying that cattle did not compensate for separated water and salting areas with increased travels or disruptions of habitual grazing and resting activities. Centers of activity for cattle shifted further (P=0.02) when water (&xmacr;=1.49km) was moved than when salt (&xmacr;=1.00km) was relocated. Mean distance of cattle from salt increased from 1.03km, when salt and water were together, to 1.73km (P=0.08) when salt and water were separated. This implied that cattle made less effort to remain near salt. Also, when water and salt were separated, cattle were found within 250m of water 354 times and close to salt only 38 times. Movement of drinking water to distant points in pastures was the most effective tool for altering cattle distribution. When cattle and salt were introduced to a new portion of a pasture, cattle used the new area for about 2 days, and then began drifting back toward previously used portions of the pasture. Manipulations of salting stations will not significantly rectify serious livestock distribution problems in extensive arid-land pastures. PMID:11434959

  6. [Estimation of vegetation water content from Landsat 8 OLI data].

    Science.gov (United States)

    Zheng, Xing-ming; Ding, Yan-ling; Zhao, Kai; Jiang, Tao; Li, Xiao-feng; Zhang, Shi-yi; Li, Yang-yang; Wu, Li-li; Sun, Jian; Ren, Jian-hua; Zhang, Xuan-xuan

    2014-12-01

    The present paper aims to analyze the capabilities and limitations for retrieving vegetation water content from Landsat8 OLI (Operational Land Imager) sensor-new generation of earth observation program. First, the effect of soil background on canopy reflectance and the sensitive band to vegetation water content were analyzed based on simulated dataset from ProSail model. Then, based on vegetation water indices from Landsat8 OLI and field vegetation water content during June 1 2013 to August 14 2013, the best vegetation water index for estimating vegetation water content was found through comparing 12 different indices. The results show that: (1) red, near infrared and two shortwave infrared bands of OLI sensor are sensitive to the change in vegetation water content, and near infrared band is the most sensitive one; (2) At low vegetation coverage, solar radiation reflected by soil background will reach to spectral sensor and influence the relationship between vegetation water index and vegetation water content, and simulation results from ProSail model also show that soil background reflectance has a significant impact on vegetation canopy reflectance in both wet and dry soil conditions, so the optimized soil adjusted vegetation index (OSAVI) was used in this paper to remove the effect of soil background on vegetation water index and improve its relationship with vegetation water content; (3) for the 12 vegetation water indices, the relationship between MSI2 and vegetation water content is the best with the R-square of 0.948 and the average error of vegetation water content is 0.52 kg · m(-2); (4) it is difficult to estimate vegetation water content from vegetation water indices when vegetation water content is larger than 2 kg · m(-2) due to spectral saturation of these indices. PMID:25881444

  7. NITRATE RELEASE BY SALT MARSH PLANTS: AN OVERLOOKED NUTRIENT FLUX MECHANISM

    Science.gov (United States)

    Salt marshes provide water purification as an important ecosystem service in part by storing, transforming and releasing nutrients. This service can be quantified by measuring nutrient fluxes between marshes and surface waters. Many processes drive these fluxes, including photosy...

  8. Effect of photons collimation of 241 Am source in soil water content measurement by gamma radiation transmission system

    International Nuclear Information System (INIS)

    Experiments to study the effect of collimators of 1,2,3,4 and 5 mm of diameter on the water attenuation mass coefficient gamma were carried out to improve the performance of a ? transmission system using a 241 Am source and a proportional gas filled detector. A simulated soil core, built in aluminium and water, has permitted to simulate water content from 0.17 to 0.50. A linear correlation between the logarithm of the attenuation factor (I/Io) and the simulated soil moisture shown in all systems (5 collimators and peaks of 30,60 and total spectra) a good correlation coefficient, R2, near the unity. Then, it is recommended to use the collimator of 5 cm and total spectra, because this system drastically increase the rate of counting and improves the precision on water content measurements. (author)

  9. WATER AND SALT METABOLISM IN THE GERIATRIC SYNDROMES

    OpenAIRE

    Musso, Carlos G.; Jauregui, José R.

    2010-01-01

    Geriatrics has already described four syndromes of its own: confusional syndrome, incontinence (fecal and/or urinary), and gait disorders and immobility syndrome, naming them geriatric giants. This name reflects their prevalence and great importance in the elderly. Ageing process induces many changes in renal physiology such as a reduction in glomerular filtration rate (senile hyponatremia), and water and sodium reabsorbtion capability. Besides, there are particular water and salt metabolism ...

  10. Sorption and permeation of solutions of chloride salts, water and methanol in a Nafion membrane

    OpenAIRE

    García Villaluenga, Juan Pedro; Barragán García, Vicenta María; Seoane Rodríguez, Benjamin; Ruiz Bauzá, Carlos

    2006-01-01

    The sorption of water-methanol mixtures containing a dissolved chloride salt in a Nafion 117 membrane, and their transport through the membrane under the driving force of a pressure gradient, have been studied. Both type of experiments was performed by using five different salts: lithium chloride, sodium chloride, cesium chloride, magnesium chloride and calcium chloride. It was observed that both the permeation flow through the membrane and the membrane swelling increase significantly with th...

  11. Diclofenac Salts. V. Examples of Polymorphism among Diclofenac Salts with Alkyl-hydroxy Amines Studied by DSC and HSM

    OpenAIRE

    Adamo Fini; Cristina Cavallari; Francesca Ospitali

    2010-01-01

    Nine diclofenac salts prepared with alkyl-hydroxy amines were analyzed for their properties to form polymorphs by DSC and HSM techniques. Thermograms of the forms prepared from water or acetone are different in most cases, suggesting frequent examples of polymorphism among these salts. Polymorph transition can be better highlighted when analysis is carried out by thermo-microscopy, which in most cases made it possible to observe the processes of melting of the metastable form and re-crystalli...

  12. Effect of agricultural activity in the salt content in soils of Murcia: comparison with other land uses

    International Nuclear Information System (INIS)

    Salinization is one of the main problems of soil degradation in arid and semiarid areas, causing a reduction of soil quality, declining yield and productivity, and even land abandonment. the aim of this study was to evaluate the effect of different land uses, particularly agricultural use in the salt content in soil. The study area is located in the surroundings of Murcia city (SE Spain), with an surface of 100 km2, with high agricultural productivity. In order to determine salt content in soil, E. C. was measured in the 1:5 ratio. The results showed that the study area is saline, being the salinity higher when anthropogenic activity is more severe. Agricultural lands present the widest range of data, probably due to the application of poor quality irrigation water, fertilizers and livestock waste. (Author) 9 refs.

  13. ASIAN SALTED NOODLE QUALITY: IMPACT OF AMYLOSE CONTENT ADJUSTMENTS USING WAXY WHEAT FLOUR

    Science.gov (United States)

    Fourteen (14) flour blends of two natural wild type wheat (Triticum aestivum L.) flours, `Nuplains¿ and `Centura¿, blended with one waxy flour sample were characterized and processed to Asian salted noodles. The flour amylose content ranged from <1% to 29%. Damaged starch contents were 10.4%, 7.0%, ...

  14. How Do Changes to the Railroad Causeway in Utah’s Great Salt Lake Affect Water and Salt Flow?

    Science.gov (United States)

    White, James S.; Null, Sarah E.; Tarboton, David G.

    2015-01-01

    Managing terminal lake elevation and salinity are emerging problems worldwide. We contribute to terminal lake management research by quantitatively assessing water and salt flow for Utah’s Great Salt Lake. In 1959, Union Pacific Railroad constructed a rock-filled causeway across the Great Salt Lake, separating the lake into a north and south arm. Flow between the two arms was limited to two 4.6 meter wide rectangular culverts installed during construction, an 88 meter opening (referred to locally as a breach) installed in 1984, and the semi porous material of the causeway. A salinity gradient developed between the two arms of the lake over time because the south arm receives approximately 95% of the incoming streamflow entering Great Salt Lake. The north arm is often at, or near, salinity saturation, averaging 317 g/L since 1966, while the south is considerably less saline, averaging 142 g/L since 1966. Ecological and industrial uses of the lake are dependent on long-term salinity remaining within physiological and economic thresholds, although optimal salinity varies for the ecosystem and between diverse stakeholders. In 2013, Union Pacific Railroad closed causeway culverts amid structural safety concerns and proposed to replace them with a bridge, offering four different bridge designs. As of summer 2015, no bridge design has been decided upon. We investigated the effect that each of the proposed bridge designs would have on north and south arm Great Salt Lake elevation and salinity by updating and applying US Geological Survey’s Great Salt Lake Fortran Model. Overall, we found that salinity is sensitive to bridge size and depth, with larger designs increasing salinity in the south arm and decreasing salinity in the north arm. This research illustrates that flow modifications within terminal lakes cannot be separated from lake salinity, ecology, management, and economic uses. PMID:26641101

  15. Experimental Evaluation of Water Content In Transformer Oil

    OpenAIRE

    PANKAJSHUKLA; Y.R Sood; R.K.JARIAL

    2013-01-01

    This paper presents experimental research on temperature dependency of water content in mineral transformer oils. Moisture sensor measurements (online measurement) and absolute water content determination by Karl Fisher titration method(off-line method) were performed in the laboratory to investigate solubility of different types of mineral transformer oils. Results of experiments explain that preset moisture solubility model of moisture sensor affects the accuracy of water content determinat...

  16. Soil volumetric water content measurements using TDR technique

    OpenAIRE

    Vincenzi, S.; Santangelo, R; S. Pugnaghi; M. R. Rivasi; M. Menziani

    1996-01-01

    A physical model to measure some hydrological and thermal parameters in soils will to be set up. The vertical profiles of: volumetric water content, matric potential and temperature will be monitored in different soils. The volumetric soil water content is measured by means of the Time Domain Reflectometry (TDR) technique. The result of a test to determine experimentally the reproducibility of the volumetric water content measurements is reported together with the methodology and the results ...

  17. Reduction of Sulfur Dioxide on Carbons Catalyzed by Salts

    OpenAIRE

    Wido Schreiner; Regina F. P. M. Moreira; Maria da Gloria B. Peruch; Eduardo Humeres

    2005-01-01

    Abstract. The reduction of SO2 on different carbons in the presence of the nitrates and sulfides of sodium, potassium and calcium and potassium polysulfides was studied. The presence of salts increased the initial rate 2-5 fold for all of them and did not change the product distribution. The catalysis was not determined by the cation and there was no difference in the catalytic reactivity between nitrates and sulfides. The sulfur content of the activated carbon increased during the reaction o...

  18. GEOELECTRICAL RESISTIVITY METHOD FOR SALT/BRACKISH WATER MAPPING

    Directory of Open Access Journals (Sweden)

    Nur Islami

    2011-02-01

    Full Text Available A 2D geoelectrical resistivity method was used for detecting and mapping occurrence of salt/brackish water in the subsurface, North Kelantan - Malaysia. The North Kelantan plain is covered with Quaternary sediments overlying granite bedrock. The drainage system is dendritic with the main river flowing into the South China Sea. The geoelectrical resistivity surveys made up of eleven resistivity traverses at four different sites. The zone of brackish water is very clearly seen in the resistivity inverse model with position around 20-30 m depth. This aquifer is referred to second aquifer. As the final result, a map with the possibility of salt/brackish and fresh water interface can be generated

  19. CLASIC07 Vegetation Water Content Map V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The Vegetation Water Content (VWC) map for the Cloud and Land Surface Interaction Campaign 2007 (CLASIC07) was derived by calculating Normalized Difference Water...

  20. SMAPVEX12 Vegetation Water Content Map V001

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains the vegetation water content map derived by calculating Normalized Difference Water Index (NDWI) from SPOT and RapidEye satellite imagery as...

  1. Inflation Performance Study of Polymer Modified Bentonite in Salt Water

    Directory of Open Access Journals (Sweden)

    Zhiqiang Hu1,

    2015-01-01

    Full Text Available Every year, irrigated agriculture in the north in China requires lots of water. The current irrigation method, Channel irrigation, wasted nearly half of agricultural water each year due to the channel seepage. Bentonite is an excellent waterproof material, with the characteristics of good expansion properties and low permeability, which has been widely used in all kinds of anti-seepage engineering. However, it was found that saline conditions could significantly reduce the ability of bentonite seepage. What’s more, northern areas were mostly salted seriously. Studies found that the salt tolerance of bentonite would be effectively improved when mixed with some kinds of high molecular polymer. The results showed that, when mixed with absorbent organic acid resin and TSPP or absorbent organic acid resin and absorbent fiber resin at the best proportion, the inflation index of bentonite could reach to 15mL/2g in 1% of the salt water, which completely met the requirements of bentonite waterproof material, and could be used for seepage-proofing in complicated or unknown water. In conclusion, this study solved the leakage problem in the process of agricultural irrigation and realized the water-saving irrigation, which improved the production and development of the agriculture.

  2. Landfill CH4 oxidation by mineralized refuse: Effects of NH4+-N incubation, water content and temperature

    International Nuclear Information System (INIS)

    Mineralized refuse, excavated from a municipal solid waste (MSW) landfill that had been closed for more than 10 years, was incubated in livestock wastewater for 150 d to accumulate ammonia-oxidizing bacteria and also co-oxidize methane (CH4). The extent of CH4 oxidation and carbon dioxide (CO2) emissions from the incubated mineralized refuse (IMR) were investigated to assess its applicability as a bio-cover material at landfill sites for minimizing total greenhouse gas emission equivalents. From the initial 200 mg nitrogen (N) kg?1 incubated for 120 h, the nitrate-N content produced in the IMR was twice (P 4 concentration of approximately 10% by volume in the headspace, CH4 consumption and net emission of CO2 from the soil, IMR and OMR all agreed well with first-order and zero-order kinetics models for a 120-h incubation (R2 = 0.667 and R2 = 0.995, respectively). Similar to N turnover, the rate of consumption of CH4 by the mineralized refuse was some 50.0% higher than for soil (P 2 generation, the CH4 oxidation rate by IMR was 14.2% (P > 0.05) greater than for OMR and 56.1% (P > 0.05) higher than for soil. Variation of water content and temperature produced substantially higher CH4 consumption rates by IMR than by either OMR or soil. After treatment by livestock wastewater, the CH4 oxidation capacity of mineralized refuse was moderately improved, due to the enhancement of CH4 adsorption by retained suspended solids and the subsequent co-oxidation by the accumulated ammonia-oxidizing bacteria. By correlation analysis for the three experimental materials, CH4 oxidation rate was significantly correlated with specific surface area and organic matter content (P 2 generation, NH4+-N nitrification and NO3–-N generation rate (P > 0.05). - Highlights: ? Mineralized refuse was improved through NH4+-N incubation. ? Ammonia oxidizing bacteria were accumulated for methane oxidation. ? Mineralized refuse was very tolerated to extreme climatic conditions.

  3. Freezing avoidance by supercooling in Olea europaea cultivars: the role of apoplastic water, solute content and cell wall rigidity.

    Science.gov (United States)

    Arias, Nadia S; Bucci, Sandra J; Scholz, Fabian G; Goldstein, Guillermo

    2015-10-01

    Plants can avoid freezing damage by preventing extracellular ice formation below the equilibrium freezing temperature (supercooling). We used Olea europaea cultivars to assess which traits contribute to avoid ice nucleation at sub-zero temperatures. Seasonal leaf water relations, non-structural carbohydrates, nitrogen and tissue damage and ice nucleation temperatures in different plant parts were determined in five cultivars growing in the Patagonian cold desert. Ice seeding in roots occurred at higher temperatures than in stems and leaves. Leaves of cold acclimated cultivars supercooled down to -13?°C, substantially lower than the minimum air temperatures observed in the study site. During winter, leaf ice nucleation and leaf freezing damage (LT50 ) occurred at similar temperatures, typical of plant tissues that supercool. Higher leaf density and cell wall rigidity were observed during winter, consistent with a substantial acclimation to sub-zero temperatures. Larger supercooling capacity and lower LT50 were observed in cold-acclimated cultivars with higher osmotically active solute content, higher tissue elastic adjustments and lower apoplastic water. Irreversible leaf damage was only observed in laboratory experiments at very low temperatures, but not in the field. A comparative analysis of closely related plants avoids phylogenetic independence bias in a comparative study of adaptations to survive low temperatures. PMID:25737264

  4. Surface functionalization by molten salt electrolytic processes

    International Nuclear Information System (INIS)

    The attention has been paid to surface functionalization by molten salt electrolytic processes. Three topics on the experimental results obtained by the authors are described: the electrochemical formation of zirconium metal film and zirconium alloy film on ceramic, surface nitriding of titanium by electrochemical process and an anodic oxide film formation on nickel. (author)

  5. Salts and Co-crystals of Theobromine and their phase transformations in water

    Indian Academy of Sciences (India)

    Palash Sanphui; Ashwini Nangia

    2014-09-01

    Theobromine, a xanthine derivative analogous to caffeine and theophylline, is an effective central nervous system stimulant. It has lower aqueous solubility than caffeine and theophylline. Salts of theobromine with hydrochloric acid, phosphoric acid, methanesulfonic acid, benzenesulfonic acid and -toluenesulfonic acid were prepared using liquid-assisted grinding (LAG). Proton transfer from the strong acid to the weak base imidazole N resulted in N+-H…O? hydrogen-bonded supramolecular assemblies of theobromine salts. The mesylate salt is polymorphic with amide N-H…O dimer and catemer synthons for the theobromine cations. A variable stoichiometry for phosphate salts (1:3 and 1:2.5) were observed with the latter being more stable. All new salts were characterized by FT-IR, PXRD, DSC and finally single crystal X-ray diffraction. In terms of stability, these salts transformed to theobromine within 1 h of dissolution in water. Remarkably, the besylate and tosylate salts are 88 and 58 times more soluble than theobromine, but they dissociated within 1 h. In contrast, theobromine co-crystals with gallic acid, anthranilic acid and 5-chlorosalicylic acid were found to be stable for more than 24 h in the aqueous slurry conditions, except malonic co-crystal which transformed to theobrominewithin 1 h.Water mediated phase transformation of theobromine salts and co-crystalmay be due to the incongruency (high solubility difference) between the components. These results suggest that even though traditional salts are highly soluble compared to co-crystals, co-crystals can be superior in terms of stability.

  6. Effect of Short Term Salt Stress on Chlorophyll Content, Protein and Activities of Catalase and Ascorbate Peroxidase Enzymes in Pearl Millet

    OpenAIRE

    Sonam Sneha; Anirudha Rishi; Subhash Chandra

    2014-01-01

    In this study the 21 days old seedlings of Pennisetum glaucum were subjected to short term salt stress in order to observe the effect on chlorophyll content, protein and antioxidative enzyme activity (CAT and APX) responses. The aim of the experiment was to evaluate the changes in chlorophyll content and antioxidant enzymes (Catalase and Ascorbate peroxidase). The 21 days old seedlings were subjected to salt stress by supplementing Hoagland’s solution with differ...

  7. Simultaneous measurement of salinity and temperature of salt water-solution for solar pond by means of C.E.T. sensor; C.E.T. sensor ni yoru solar pond ensui yoeki no nodo, ondo no doji sokutei

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.; Kanayama, K.; Baba, H.; Endo, N. [Kitami Inst. of Tech., Hokkaido (Japan)

    1998-07-31

    In order to measure the salinity and temperature of working fluid for a solar pond, on the basis of electroconductivity-temperature measurement method, a salt concentration measurement technique was developed, by which the salinity and temperature of salt-water solution could be measured quickly at any experimental site. The concentric cylindrical electrode adapted to a C.E.T. (Cylindrical-Electroconductivity-Temperature) sensor with a shield plate on the top makes the influence on the measurement due to a side wall effect and the other effects to be minimum. Using V/I data obtained by simultaneous measurement of voltage V and current I when detecting the signal as a parameter, error of the measurement caused by variation of electric potential on the signal source could be cancelled. Some correlation equations were derived from the data of concentration C, temperature T and the V/I. By means of this method, the concentration and the temperature were measured in the range of 0-25W% and 20-80degC of standard salt water solution. Consequently, the reliability of the measurement method would be verified. 12 refs., 9 figs.

  8. Determination of the protein content in brine from salted herring using near-infrared spectroscopy

    DEFF Research Database (Denmark)

    Svensson, V.T.; Nielsen, Henrik Hauch

    2004-01-01

    Near-infrared reflectance (NIR) spectroscopy in the spectral range of 1000-2500 nm, was measured directly on brine from barrel salted herring, to investigate the potential of NIR as a fast method to determine the protein content. A principal component analysis performed on the NIR spectra shows two groups, separating the first 100 days of storage from the storage time exceeding 100 days. A partial least-squares regression model between selected regions of the NIR spectra and the protein content yields a correlation coefficient of 0.93 and a prediction error (RMSECV) of 0.25 g/100 g. The results clearly indicate that NIR spectroscopy has a potential as a fast and noninvasive method for assessing the protein content in brine from barrel salted herring, which again may be used as an indicator for the ripening quality of barrel salted herring.

  9. High pressure processing alters water distribution enabling the production of reduced-fat and reduced-salt pork sausages.

    Science.gov (United States)

    Yang, Huijuan; Han, Minyi; Bai, Yun; Han, Yanqing; Xu, Xinglian; Zhou, Guanghong

    2015-04-01

    High pressure processing (HPP) was used to explore novel methods for modifying the textural properties of pork sausages with reduced-salt, reduced-fat and no fat replacement additions. A 2×7 factorial design was set up, incorporating two pressure levels (0.1 or 200 MPa) and seven fat levels (0, 5, 10, 15, 20, 25 and 30%). Sausages treated at 200 MPa exhibited improved tenderness at all fat levels compared with 0.1 MPa treated samples, and the shear force of sausages treated at 200 MPa with 15 or 20% fat content was similar to the 0.1 MPa treated sausages with 30% fat. HPP significantly changed the P? peak ratio of the four water components in raw sausages, resulting in improved textural properties of emulsion-type sausages with reduced-fat and reduced-salt. Significant correlations were found between pH, color, shear force and water proportions. The scanning and transmission micrographs revealed the formation of smaller fat globules and an improved network structure in the pressure treated sausages. In conclusion, there is potential to manufacture sausages with reduced-fat and reduced-salt by using HPP to maintain textural qualities. PMID:25553411

  10. Formulation and make-up of simulated concentrated water, high ionic content aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Gdowski, G.

    1997-04-04

    This procedure describes the formulation and make-up of Simulated Concentrated Water (SCW), a high-ionic-content water to be used for Activity E-20-50 Long-Term Corrosion Studies. This water has an ionic content which is nominally a factor of a thousand higher than that of representative waters at or near Yucca Mountain. Representative waters were chosen as J-13 well water [Harrar, 1990] and perched water at Yucca Mountain [Glassley, 1996]. J-13 well water is obtained from ground water that is in contact with the Topopah Spring tuff, which is the repository horizon rock. The perched water is located in the Topopah Spring tuff, but below the repository horizon and above the water table. A nominal thousand times higher ionic content was chosen to simulate the water that would result from the wetting of salts which have been previously deposited on a container surface.

  11. Experimental Demonstration of the Stabilization of Colloids by Addition of Salt

    Science.gov (United States)

    Samin, Sela; Hod, Manuela; Melamed, Eitan; Gottlieb, Moshe; Tsori, Yoav

    2014-08-01

    We demonstrate a general non-Derjaguin-Landau-Verwey-Overbeek method to stabilize colloids in liquids. By this method, colloidal particles that initially form unstable suspension and sediment from the liquid are stabilized by the addition of salt to the suspending liquid. Yet, the salt is not expected to adsorb or directly interact with the surface of the colloids. For the method to work, the liquid should be a mixture, and the salt needs to be antagonistic such that each ion is preferentially solvated by a different component of the mixture. The stabilization may depend on the salt content, mixture composition, or distance from the mixture's coexistence line.

  12. Experimental Demonstration of the Stabilization of Colloids by Addition of Salt

    CERN Document Server

    Samin, Sela; Melamed, Eitan; Gottlieb, Moshe; Tsori, Yoav

    2014-01-01

    We demonstrate a general non--Derjaguin-Landau-Verwey-Overbeek method to stabilize colloids in liquids. By this method, colloidal particles that initially form unstable suspension and sediment from the liquid are stabilized by the addition of salt to the suspending liquid. Yet, the salt is not expected to adsorb or directly interact with the surface of the colloids. For the method to work, the liquid should be a mixture, and the salt needs to be antagonistic such that each ion is preferentially solvated by a different component of the mixture. The stabilization may depend on the salt content, mixture composition, or distance from the mixture's coexistence line.

  13. A Tolerant Behavior in Salt-Sensitive Tomato Plants can be Mimicked by Chemical Stimuli

    OpenAIRE

    Flors, Víctor; Paradís, Mercedes; García-Andrade, Javier; Cerezo, Miguel; González-Bosch, Carmen; García-Agustín, Pilar

    2007-01-01

    Lycopersicon esculentum plants exhibit increased salt stress tolerance following treatment with adipic acid monoethylester and 1,3-diaminepropane (DAAME), known as an inducer of resistance against biotic stress in tomato and pepper. For an efficient water and nutrient uptake, plants should adapt their water potential to compensate a decrease in water soil potential produced by salt stress. DAAME-treated plants showed a faster and stronger water potential reduction and an enhanced proline accu...

  14. Automated image analysis for experimental investigations of salt water intrusion in coastal aquifers

    Science.gov (United States)

    Robinson, G.; Hamill, G. A.; Ahmed, Ashraf A.

    2015-11-01

    A novel methodology has been developed to quantify important salt water intrusion parameters in a sandbox experiment using image analysis. Existing methods found in the literature are based mainly on visual observations, which are subjective, labour intensive and limit the temporal and spatial resolutions that can be analysed. A robust error analysis was undertaken to determine the optimum methodology to convert image light intensity to concentration. Results showed that defining a relationship on a pixel-wise basis provided the most accurate image to concentration conversion and allowed quantification of the width of the mixing zone between salt water and freshwater. A high image sample rate was used to investigate the transient dynamics of salt water intrusion, which rendered analysis by visual observation unsuitable. This paper presents the methodologies developed to minimise human input, promote autonomy, provide high resolution image to concentration conversion, and allow the quantification of intrusion parameters under transient conditions.

  15. Soil surface water content estimation by full-waveform GPR signal inversion in the presence of thin layers

    OpenAIRE

    Minet, Julien; Lambot, Sébastien; Slob, Evert C.; Vanclooster, Marnik

    2010-01-01

    We analyzed the effect of shallow thin layers on the estimation of soil surface water content using full-waveform inversion of off-ground ground penetrating radar (GPR) data. Strong dielectric contrasts are expected to occur under fast wetting or drying weather conditions, thereby leading to constructive and destructive interferences with respect to the surface reflection. First, synthetic GPR data were generated and subsequently inverted considering different thin-layer model configurations....

  16. Offstream water and trace mineral salt as management strategies for improved cattle distribution.

    Science.gov (United States)

    Porath, M L; Momont, P A; DelCurto, T; Rimbey, N R; Tanaka, J A; McInnis, M

    2002-02-01

    The objective of this study was to test the combined effect of offstream water and trace mineral salt on cattle distribution in a riparian meadow and its adjacent uplands. From July 15 to August 26, 1996 and 1997, three treatments were each randomly assigned to one pasture in each of three blocks. Sixty cow/calf pairs were then randomly allotted to the grazed pastures. The treatments included 1) stream access and access to offstream water and trace-mineral salt (off-stream), 2) stream access and no access to offstream water or trace-mineral salt (no-offstream), and 3) ungrazed control. The response of cattle was measured through visual observations of cattle distribution, grazing activity and travel distance, cow/calf performance, and fecal deposit distribution. Distribution patterns of the cattle, measured as the distance of cattle from the stream, was characterized by a time of day x treatment x time in grazing period x year interaction (P cattle began the day further from the stream than offstream cattle but consistently moved closer to the stream after the morning grazing period (0600 to 0900). Differences in distribution patterns between the two treatments were more pronounced early in the grazing period than late in the grazing period. Grazing activity, fecal deposit distribution, and travel distance of cattle were not affected by the presence of offstream water and trace-mineral salt. Cows and calves with offstream water and trace-mineral salt gained 11.5 kg and 0.14 kg/d more, respectively, than no-offstream cows and calves averaged across years (P cattle distribution patterns and cow/calf performance were influenced by the presence of offstream water and trace-mineral salt. Changes in distribution were most pronounced early in the grazing season. PMID:11881924

  17. Estimation of soil clay content from hygroscopic water content measurements

    OpenAIRE

    Wuddivira, Mark N.; Robinson, David A; Lebron, Inma; Brechet, Laëtitia; Atwell, Melissa; De Caires, Sunshine; Oatham, Michael; Jones, Scott B.; Abdu, Hiruy; Verma, Aditya K.; Tuller, Markus

    2012-01-01

    Soil texture and the soil water characteristic are key properties used to estimate flow and transport parameters. Determination of clay content is therefore critical for understanding of plot-scale soil heterogeneity. With increasing interest in proximal soil sensing, there is the need to relate obtained signals to soil properties of interest. Inference of soil texture, especially clay mineral content, from instrument response from electromagnetic induction and radiometric methods is of subst...

  18. The Effect of Sodium Chloride Salinity on the Growth, Water Status and Ion Content of Phragmites communis Trin

    Directory of Open Access Journals (Sweden)

    Mustapha Gorai

    2007-01-01

    Full Text Available The present study deal with the physiological behavior of Phragmites communis under salt stress. The effects of salinity on growth, dry weight partitioning, water status and ion content were studied on seedlings of P. communis fed with nutrient solutions containing 0 to 600 mM NaCl. The plants grew best when irrigated with distilled water; biomass production and Relative Growth Rate (RGR decreased with increasing salinity. Nevertheless, plants were able to produce and allocate dried matter to all their organs even at the highest salt level (600 mM NaCl. The leaves showed the lowest growth activity. Increasing salinity was accompanied by a decrease in seedling water content; aerial parts were more dehydrated than roots. Examination of the K+/Na+ selectivity revealed that salt tolerance of reed plants may be due to its capacity to limit Na+ transport and to enhance K+ transport into aerial parts resulting in a high K/Na ratio. Our results suggest an exclusive behavior towards Na+ as shown by the decreasing Na+ gradients from leaves to roots. It is concluded that Na+ exclusion mechanism appeared to be operative and contributes to salt tolerance of Phragmites.

  19. Oil spill research : salt water and fresh water

    International Nuclear Information System (INIS)

    The difference in oil spill response activities between marine and freshwater environments were reviewed. Although containment, recovery and in-situ burning remain the same in both environments, the fate of oil is different due to water density and salinity considerations. The lower energy of lakes and the lack of major currents changes the advection of the oil. Rivers have high currents, and wind speed and direction are highly influenced by topographic effects. Tidal action is not a consideration for the inland situation, but water levels in rivers can change due to sudden rain events or the action of control devices upstream from the spill. Typically, the volume of oil released in freshwater environments is lower than in marine tanker situations, but spills from pipelines or a major train derailment can exceed 1000 m3. Since the use of water for human consumption and irrigation is another important factor in inland spills, it is important to have a means of obtaining information on the dynamics of spills and a system for archiving the response activities, such as the shoreline cleanup assessment technique (SCAT)and resulting cleanup. It was suggested that research studies must be undertaken to improve response strategies for freshwater spills. These include the dynamics of oil in freshwater environments such as rivers, lakes and sloughs; the role of oil-fine interactions in freshwater situations; the process involved in the formation of tar balls; and, the dynamics of oil in a freshwater situation. The response techniques that must be developed to improve the response to freshwater spills include techniques to remove oil from the bottom; techniques to filter and remove oil from the water column; and, development and testing of dispersants for freshwater environments

  20. Design of Thermally Responsive Polymeric Hydrogels for Brackish Water Desalination: Effect of Architecture on Swelling, Deswelling, and Salt Rejection.

    Science.gov (United States)

    Ali, Wael; Gebert, Beate; Hennecke, Tobias; Graf, Karlheinz; Ulbricht, Mathias; Gutmann, Jochen S

    2015-07-29

    In this work, we explore the ability of utilizing hydrogels synthesized from a temperature-sensitive polymer and a polyelectrolyte to desalinate salt water by means of reversible thermally induced absorption and desorption. Thus, the influence of the macromolecular architecture on the swelling/deswelling behavior for such hydrogels was investigated by tailor-made network structures. To this end, a series of chemically cross-linked polymeric hydrogels were synthesized via free radical-initiated copolymerization of sodium acrylate (SA) with the thermoresponsive comonomer N-isopropylacrylamide (NIPAAm) by realizing different structural types. In particular, two different polyNIPAAm macromonomers, either with one acrylate function at the chain end or with additional acrylate functions as side groups were synthesized by controlled polymerization and subsequent polymer-analogous reaction and then used as building blocks. The rheological behaviors of hydrogels and their estimated mesh sizes are discussed. The performance of the hydrogels in terms of swelling and deswelling in both deionized water (DI) and brackish water (2 g/L NaCl) was measured as a function of cross-linking degree and particle size. The salt content could be reduced by 23% in one cycle by using the best performing material. PMID:26090770

  1. Water Availability as a Measure of Cellulose Hydrolysis Efficiency : Studies of water-substrate interactions at low and high dry matter content

    DEFF Research Database (Denmark)

    Hsieh, Chia-Wen

    2014-01-01

    Enzymatic hydrolysis involves the use of cellulases to break down cellulose in the presence of water. Therefore, not only are enzyme and substrate properties important for efficient hydrolysis, but also the hydrolysis medium, i.e. the liquid phase. The LF-NMR technique is used in this work to measure properties of the liquid phase, where water protons are characterized based on their mobility in the system as measured by their relaxation time. Studies of cellulose hydrolysis at low dry matter show that the contents of the liquid phase influence the final hydrolysis yield, as the presence of sugars, salts, and surfactants impact the water relaxation time. Systems with high concentrations of sugars and salts tend to have low water availability, as these form strong interactions with water to keep their solubility, leaving less water available for hydrolysis. Thus, cellulase performance decreases. However, the addition of surfactants such as polyethylene glycol (PEG) increases the water mobility, leading to higher water availability, and ultimately higher glucose production. More specifically, the higher water availability boosts the activity of processive cellulases. Thus, water availability is vital for efficient hydrolysis, especially at high dry matter content where water availability is low. At high dry matter content, cellulase activity changes water interactions with biomass, affecting the water mobility. While swelling and fiber loosening also take place during hydrolysis, the cellulase hydrolytic activity changes the substrate to give a unique relaxation time profile. In extreme conditions where water is only present as bound water, cellulases are still able to utilize bound water for hydrolysis.

  2. MR-visible brain water content in human acute stroke

    DEFF Research Database (Denmark)

    Gideon, P; Rosenbaum, S; Sperling, B; Petersen, P

    1999-01-01

    Quantification of metabolite concentrations by proton magnetic resonance spectroscopy (1H-MRS) in the human brain using water as an internal standard is based on the assumption that water content does not change significantly in pathologic brain tissue. To test this, we used 1H-MRS to estimate brain water content during the course of cerebral infarction. Measurements were performed serially in the acute, subacute, and chronic phase of infarction. Fourteen patients with acute cerebral infarction ...

  3. Determination of ice content in hardened concrete by low-temperature calorimetry : Influence of baseline calculation and heat of fusion of confined water

    DEFF Research Database (Denmark)

    Wu, Min; Johannesson, Björn

    2014-01-01

    Low-temperature calorimetry has been used to determine the ice content in concrete at different temperatures when exposed to low-temperature environments. However, the analysis of the ice content from the measured data of heat flow is not straightforward. In this study, two important factors influencing the ice content calculation are discussed. The importance of the baseline determination for the calculation of the ice content is realized. Two different methods of generating the baseline are discussed. First, the ‘J-baseline’ is discussed which is a recently proposed extrapolation method based on the accumulated heat curves measured in the freezing and the melting process. Second, the ‘C-baseline’ is discussed in which a calculated baseline is used where the heat capacity of both water and ice and the phase changing behaviour under different testing temperatures are considered. It turns out that both the ‘J-baseline’ method and the ‘C-baseline’ method can be used to calculate the approximate baseline. The heat of fusion of the water confined in small pores is another important parameter to be considered in ice content calculation. This property must be carefully analyzed in order to accurately calculate the ice contents at different temperatures in the freezing and melting process. It should be noted that there is no general agreement on how to obtain the important temperature dependence of the heat of fusion of water confined in small pores. By performing comparison studies, the present study shows the influence of the different values of the heat of fusion commonly adopted on the calculated ice content for the studied concrete samples. The importance and necessity to use an accurate value of the heat of fusion is emphasized. Based on the calculation of the baseline proposed in this work and by carefully selecting the values for the heat of fusion, the ice content in a hardened concrete sample is expected to be estimated with an acceptable accuracy.

  4. Isotopic and chemical investigation of ground water salinization in upper part of Chaj Doab

    International Nuclear Information System (INIS)

    Environmental isotopes and chemical composition of water have been used to study the origin of groundwater salts in upper part of Chaj Doab. Three important possible processes of salinization i.e. enrichment of salt content of water by evaporation, mixing with connate marine water and dissolution of salts from soil sediments have been investigated. no evidence for mixing with connate marine water could be found. The dissolution of salts from soil sediments appears as the dominant mechanism for increasing the salt content of water in this area. (author)

  5. Titanium metal obtention by fused salts electrolysis

    International Nuclear Information System (INIS)

    Potassium fluorotitanate dissolved in fused sodium chloride or potassium chloride may be electrolyzed under an inert gas atmosphere. Solid electrolysis products are formed on the cathode which contains titanium metal, sodium chloride, lower fluorotitanates and small quantities of alkali metal fluorotitanate. The extraction of titanium from the electrolysis products may be carried out by aqueous leaching (removal of chloride salts of alkali metals and a certain amount of fluorotitanates). Titanium metal obtained is relatively pure. (Author)

  6. Investigations into the endogenic abcisinic acid and cytokinin content of soja bean cultures with varying salt sensitivity, as well as into the effect of exogenically applied abcisinic acid to the Cl--translocation

    International Nuclear Information System (INIS)

    Two soja bean cultures with different Cl- sensitivity the 'Lee' and 'Jackson' were used for the investigation. Salting of the growth medium with 75 nM NaCl massively increased the obcisinic acid (ABA) concentration in the leaves, not however of the cytokinin content. The high ABA concentrations remained in the 'Jackson' sort even after a 7-day salt treatment. The moderately salt-resistant sort 'Lee' had a remarkable Cl- retention mechanism. The addition of 10-5 and 10-6 M ABA to the growth medium reduced the Cl- concentration in the sprout and simultaneously increased the accumulation in the root. This ABA effect failed at high salt concentration. The order of magnitude in which ABA is taken up from a normal or salted growth medium and its distribution were investigated using 14C. Macroautoradiographic investigations show that after 35 h the whole sprout is radioactively labelled whereby a prefered accumulation is found in youngest part of the sprout. The highest Cl- values were found in the older leaves. The ABA is obviously transported to the stomata with the transpiration flow and inhibits the transpiration by its effect on the stomata. Subjecting the soja beans to a 75 mM NaCl concentration, can lead to a decrease of transpiration due to the strong salt concentration. The addition of ABA as well had an inhibiting effect on the water release of the plants without influencing the Cl- translocation. (MG)

  7. Estimation of water turnover rates of captive West Indian manatees (Trichechus manatus) held in fresh and salt water

    Science.gov (United States)

    Ortiz, R. M.; Worthy, G. A.; Byers, F. M.

    1999-01-01

    The ability of West Indian manatees (Trichechus manatus) to move between fresh and salt water raises the question of whether manatees drink salt water. Water turnover rates were estimated in captive West Indian manatees using the deuterium oxide dilution technique. Rates were quantified in animals using four experimental treatments: (1) held in fresh water and fed lettuce (N=4), (2) held in salt water and fed lettuce (N=2), (3) acutely exposed to salt water and fed lettuce (N=4), and (4) chronically exposed to salt water with limited access to fresh water and fed sea grass (N=5). Animals held in fresh water had the highest turnover rates (145+/-12 ml kg-1 day-1) (mean +/- s.e.m.). Animals acutely exposed to salt water decreased their turnover rate significantly when moved into salt water (from 124+/-15 to 65+/-15 ml kg-1 day-1) and subsequently increased their turnover rate upon re-entry to fresh water (146+/-19 ml kg-1 day-1). Manatees chronically exposed to salt water had significantly lower turnover rates (21+/-3 ml kg-1 day-1) compared with animals held in salt water and fed lettuce (45+/-3 ml kg-1 day-1). Manatees chronically exposed to salt water and fed sea grass had very low turnover rates compared with manatees held in salt water and fed lettuce, which is consistent with a lack of mariposia. Manatees in fresh water drank large volumes of water, which may make them susceptible to hyponatremia if access to a source of Na+ is not provided.

  8. Determination by gamma-ray spectrometry of the plutonium and americium content of the Pu/Am separation scraps. Application to molten salts; Determination par spectrometrie gamma de la teneur en plutonium et en americium de produits issus de separation Pu/Am. Application aux bains de sels

    Energy Technology Data Exchange (ETDEWEB)

    Godot, A. [CEA Valduc, Dept. de Traitement des Materiaux Nucleaires, 21 - Is-sur-Tille (France); Perot, B. [CEA Cadarache, Dept. de Technologie Nucleaire, Service de Modelisation des Transferts et Mesures Nucleaires, 13 - Saint-Paul-lez-Durance (France)

    2005-07-01

    Within the framework of plutonium recycling operations in CEA Valduc (France), americium is extracted from molten plutonium metal into a molten salt during an electrolysis process. The scraps (spent salt, cathode, and crucible) contain extracted americium and a part of plutonium. Nuclear material management requires a very accurate determination of the plutonium content. Gamma-ray spectroscopy is performed on Molten Salt Extraction (MSE) scraps located inside the glove box, in order to assess the plutonium and americium contents. The measurement accuracy is influenced by the device geometry, nuclear instrumentation, screens located between the sample and the detector, counting statistics and matrix attenuation, self-absorption within the spent salt being very important. The purpose of this study is to validate the 'infinite energy extrapolation' method employed to correct for self-attenuation, and to detect any potential bias. We present a numerical study performed with the MCNP computer code to identify the most influential parameters and some suggestions to improve the measurement accuracy. A final uncertainty of approximately 40% is achieved on the plutonium mass. (authors)

  9. Hygroscopic behavior of atmospherically relevant water-soluble carboxylic salts and their influence on the water uptake of ammonium sulfate

    Directory of Open Access Journals (Sweden)

    Z. J. Wu

    2011-12-01

    Full Text Available The hygroscopic behavior of atmospherically relevant water-soluble carboxylic salts and their effects on ammonium sulfate were investigated using a hygroscopicity tandem differential mobility analyzer (H-TDMA. No hygroscopic growth is observed for disodium oxalate, while ammonium oxalate shows slight growth (growth factor = 1.05 at 90%. The growth factors at 90% RH for sodium acetate, disodium malonate, disodium succinate, disodium tartrate, diammonium tartrate, sodium pyruvate, disodium maleate, and humic acid sodium salt are 1.79, 1.78, 1.69, 1.54, 1.29, 1.70, 1.78, and 1.19, respectively. The hygroscopic growth of mixtures of organic salts with ammonium sulfate, which are prepared as surrogates of atmospheric aerosols, was determined. A clear shift in deliquescence relative humidity to lower RH with increasing organic mass fraction was observed for these mixtures. Above 80% RH, the contribution to water uptake by the organic salts was close to that of ammonium sulfate for the majority of investigated compounds. The observed hygroscopic growth of the mixed particles at RH above the deliquescence relative humidity of ammonium sulfate agreed well with that predicted using the Zdanovskii-Stokes-Robinson (ZSR mixing rule. Mixtures of ammonium sulfate with organic salts are more hygroscopic than mixtures with organic acids, indicating that neutralization by gas-phase ammonia and/or association with cations of dicarbonxylic acids may enhance the hygroscopicity of the atmospheric particles.

  10. Faba Bean (Vicia faba L. Salt Stress Response under Different Soil Organic Matter Content

    Directory of Open Access Journals (Sweden)

    Lana Matijevi?

    2014-03-01

    Full Text Available Use of saline water for crop irrigation leads to rhizosphere salinization, which affects plant element uptake, as well as trace elements (TEs accumulation in plant tissue. Moreover, imbalance in crop element uptake may reflect on crop productivity. Soil organic matter (SOM plays an important role in soil biogeochemical processes and especially affects trace element mobility and bioavailability. Therefore, it is an important factor for assessment of plant responses under varying ecological conditions, including salinity. A greenhouse pot experiment was set up to study the effects of saline irrigation and increased SOM on faba bean (Vicia faba L. salt stress response. Soil from arable land of Croatian coastal region was used for the trial. One half of the bulk of soil provided for the experiment was mixed with commercial peat (4:1 and two trial variants, unmodified and increased SOM content, were investigated. Two weeks after transplanting faba bean seedlings into pots, treatment with two levels of NaCl salinity (50 and 100 mM NaCl, respectively was applied in a nutrient solution. Control plants were included in the measurements as well. Saline irrigation as well as increased SOM affected certain element accumulation in bean plant (leaf, pod and/or seed, although no significant interaction between rhizosphere salinization and SOM was revealed.

  11. Mitochondrial membranes with mono- and divalent salt: changes induced by salt ions on structure and dynamics

    DEFF Research Database (Denmark)

    Pöyry, Sanja; Róg, Tomasz; Karttunen, Mikko; Vattulainen, Ilpo

    2009-01-01

    We employ atomistic simulations to consider how mono- (NaCl) and divalent (CaCl(2)) salt affects properties of inner and outer membranes of mitochondria. We find that the influence of salt on structural properties is rather minute, only weakly affecting lipid packing, conformational ordering, and membrane electrostatic potential. The changes induced by salt are more prominent in dynamical properties related to ion binding and formation of ion-lipid complexes and lipid aggregates, as rotational d...

  12. Aldicarb and carbofuran transport in a Hapludalf influenced by differential antecedent soil water content and irrigation delay.

    Science.gov (United States)

    Kazemi, H V; Anderson, S H; Goyne, K W; Gantzer, C J

    2009-01-01

    Pesticide use in agroecosystems can adversely impact groundwater quality via chemical leaching through soils. Few studies have investigated the effects of antecedent soil water content (SWC) and timing of initial irrigation (TII) after chemical application on pesticide transport and degradation. The objectives of this study were to investigate the effects of antecedent soil water content (wet vs dry) and timing of initial irrigation (0h Delay vs 24h Delay) on aldicarb [(EZ)-2-methyl-2-(methylthio)propionaldehyde O-methylcarbamoyloxime] and carbofuran [2,3-dihydro-2,2-dimethylbenzofuran-7-yl methylcarbamate] transport and degradation parameters at a field site with Menfro silt loam (fine-silty, mixed, superactive, mesic Typic Hapludalf) soils. Aldicarb and carbofuran were applied to plots near field capacity (wet) or near permanent wilting point (dry). Half of the dry and wet plots received irrigation water immediately after chemical application and the remaining plots were irrigated after a 24h Delay. The transport and degradation parameters were estimated using the method of moments. Statistical significance determined for SWC included averages across TII levels, and significance determined for TII included averages across SWC levels. For the dry treatment, aldicarb was detected 0.10 m deeper (Pwater velocity was found to be higher (P<0.10) in the dry vs wet treatments on three of four dates for aldicarb and two of four dates for carbofuran. Retardation coefficients for both pesticides showed similar evidence of reduced values for the dry vs wet treatments. These results indicate deeper pesticide movement in the initially dry treatment. For aldicarb and carbofuran, estimated values of the degradation rate were approximately 40-49% lower in the initially dry plots compared to the initially wet plots, respectively. When the initial irrigation was delayed for 24h, irrespective of antecedent moisture conditions, a 30% reduction in aldicarb degradation occurred. This study illustrates the deeper transport of pesticides and their increased persistence when applied to initially dry soils. PMID:18926555

  13. Modelling unfrozen water content in a silty clay permafrost deposit

    DEFF Research Database (Denmark)

    Agergaard, Frederik Ancker; Ingeman-Nielsen, Thomas

    2011-01-01

    The mechanical properties of both unfrozen soils and permafrost soils are influenced by the amount of unfrozen water in the pore space. When dealing with foundation engineering in permafrost areas it is essential to estimate the unfrozen water content (wu). This paper deals with the establishing of a calibration equation for determining the unfrozen water content of a Greenlandic silty clay permafrost deposit. Calibration experiments have been conducted for water contents in the interval 0 – 10 % at both 5 °C and 22 °C. Calibration equations are verified against permittivity data from a permafrost core of material properties similar to the test soil. The calibration for 5°C is seen to make a good fit to the permafrost core data. Further experiments should be performed in order to extend the range of water contents tested and hence the range of validity of the calibration equation.

  14. Soil volumetric water content measurements using TDR technique

    Directory of Open Access Journals (Sweden)

    S. Vincenzi

    1996-06-01

    Full Text Available A physical model to measure some hydrological and thermal parameters in soils will to be set up. The vertical profiles of: volumetric water content, matric potential and temperature will be monitored in different soils. The volumetric soil water content is measured by means of the Time Domain Reflectometry (TDR technique. The result of a test to determine experimentally the reproducibility of the volumetric water content measurements is reported together with the methodology and the results of the analysis of the TDR wave forms. The analysis is based on the calculation of the travel time of the TDR signal in the wave guide embedded in the soil.

  15. Effect Of Addition Of LiBr Salt In Iso-Propanol - Water Binary Azeotropic Mixture

    OpenAIRE

    Sanket R. Vora; Prof. Suchen B. Thakore; Prof. Nitin Padhiyar; Ameerkhan Pathan

    2013-01-01

    Isopropanol is a very useful solvent for many industries and it requires in pure form for specific applications. It makes an azeotrope with water at 80.3 0C having composition of 87.4 % by weight. It is seen that conventionally methods used are not much effective or large energy consuming. Another alternative is to add salt which is helpful in changing the relative volatility of the mixture and separation gets is much more easier. In this paper the effect of addition of Lithium Bromide salt i...

  16. Physiological and molecular characterization of the enhanced salt tolerance induced by low-dose gamma irradiation in Arabidopsis seedlings

    International Nuclear Information System (INIS)

    Highlights: • 50-Gy gamma irradiation markedly promotes the seedling growth under salt stress in Arabidopsis. • The contents of H2O2 and MDA are obviously reduced by low-dose gamma irradiation under salt stress. • Low-dose gamma irradiation stimulates the activities of antioxidant enzymes under salt stress. • Proline accumulation is required for the low-gamma-ray-induced salt tolerance. • Low gamma rays differentially regulate the expression of genes related to salt stress. - Abstract: It has been established that gamma rays at low doses stimulate the tolerance to salt stress in plants. However, our knowledge regarding the molecular mechanism underlying the enhanced salt tolerance remains limited. In this study, we found that 50-Gy gamma irradiation presented maximal beneficial effects on germination index and root length in response to salt stress in Arabidopsis seedlings. The contents of H2O2 and MDA in irradiated seedlings under salt stress were significantly lower than those of controls. The activities of antioxidant enzymes and proline levels in the irradiated seedlings were markedly increased compared with the controls. Furthermore, transcriptional expression analysis of selected genes revealed that some components of salt stress signaling pathways were stimulated by low-dose gamma irradiation under salt stress. Our results suggest that gamma irradiation at low doses alleviates the salt stress probably by modulating the physiological responses as well as stimulating the stress signal transduction in Arabidopsis seedlings

  17. Predicción de los contenidos de agua y sal durante el salado de bagre usando diferentes mezclas salinas / Prediction of moisture and salt contents of catfish slices during salting using different salting mixtures

    Scientific Electronic Library Online (English)

    Otoniel, Corzo; Nelson, Bracho; Jaime, Rodríguez.

    2014-09-01

    Full Text Available El objetivo de este trabajo fue determinar la aplicabilidad del modelo de Weibull para predecir los contenidos de humedad y sal y sus coeficientes de difusión, durante el salado de trozos de bagre utilizando mezclas de NaCl, KCl, CaCl2 y MgCl2. Los coeficientes efectivos de difusión (De) de agua y s [...] al fueron determinados usando el modelo normalizado de Weibull. Los altos valores de los coeficientes de determinación (R² > 0,99) y los bajos errores relativos medios (MRE Abstract in english The objective of this study was to determine the applicability of the Weibull model to predict the moisture and salt contents and their diffusion coefficients, during the salting of catfish slices using mixtures of NaCl, KCl, CaCl² and MgCl². The effective water and salt diffusion coefficients (De) [...] were determined using the normalized Weibull model. The high coefficients of determination (R² > 0.99) and low mean relative error (MRE

  18. WATER AND SALT METABOLISM IN THE GERIATRIC SYNDROMES

    Directory of Open Access Journals (Sweden)

    Carlos G. Musso

    2010-01-01

    Full Text Available Geriatrics has already described four syndromes of its own: confusional syndrome, incontinence (fecal and/or urinary, and gait disorders and immobility syndrome, naming them geriatric giants. This name reflects their prevalence and great importance in the elderly. Ageing process induces many changes in renal physiology such as a reduction in glomerular filtration rate (senile hyponatremia, and water and sodium reabsorbtion capability. Besides, there are particular water and salt metabolism alteration characteristics of the geriatric syndromes, such as dehydration and hypernatremia in psychiatric disturbances as well as hyponatremia in patients suffering from immobility syndrome. The geriatric giants and nephrogeriatric physiology changes, are a good example of feed-back between geriatric syndromes, clinical entities characteristics in the elderly that predispose and potentiate each other, leading to catastrophic clinical events.

  19. Effect Of Addition Of LiBr Salt In Iso-Propanol - Water Binary Azeotropic Mixture

    Directory of Open Access Journals (Sweden)

    Sanket R. Vora

    2013-04-01

    Full Text Available Isopropanol is a very useful solvent for many industries and it requires in pure form for specific applications. It makes an azeotrope with water at 80.3 0C having composition of 87.4 % by weight. It is seen that conventionally methods used are not much effective or large energy consuming. Another alternative is to add salt which is helpful in changing the relative volatility of the mixture and separation gets is much more easier. In this paper the effect of addition of Lithium Bromide salt in isopropanol -water binary azeotropic mixture using extractive distillation is discussed. As LiBr is a high boiling point salt, it will not appear in the distillate and moreover LiBr is hygroscopic and has a characteristic to givehigher boiling point elevation with water which is main cause of its use in this application. Addition of salt (40% of watereliminates azeotrope formation and purity of 99.74% (by wt. is achieved.

  20. Determination by combustion of the total organochlorine content of tissue, soil, water, waste streams, and oil sludges

    Energy Technology Data Exchange (ETDEWEB)

    Morton, M.; Pollak, J.K.

    1987-01-01

    The distribution and concentration of organochlorine pesticides have been intensively investigated, but there is much less information on the total organochlorine overburden either in the environment or in man. The reason for this paucity of information seems to be that while there were many methods available for the determination of individual organochlorines, there was no simple method which permitted the determination of the total organochlorine content of biological and environmental samples. In this communication a method is described which is suitable for measuring gram quantities of total lipid-soluble organochlorine. Chloride in tissues, tissue fluids, water, soil, liquid industrial wastes and oil sludges. The method is simple and consists of three steps. The first step is a small volume extraction procedure, which extracts organic compounds containing chlorine, but excludes inorganic chlorides. The other two steps involve the degradation of organically bound chlorine to inorganic chlorides and a colorimetric assay of these chlorides.

  1. Direct solvation of glycoproteins by salts in spider silk glues enhances adhesion and helps to explain the evolution of modern spider orb webs.

    Science.gov (United States)

    Sahni, Vasav; Miyoshi, Toshikazu; Chen, Kelley; Jain, Dharamdeep; Blamires, Sean J; Blackledge, Todd A; Dhinojwala, Ali

    2014-04-14

    The evolutionary origin of modern viscid silk orb webs from ancient cribellate silk ancestors is associated with a 95% increase in diversity of orb-weaving spiders, and their dominance as predators of flying insects, yet the transition's mechanistic basis is an evolutionary puzzle. Ancient cribellate silk is a dry adhesive that functions through van der Waals interactions. Viscid threads adhere more effectively than cribellate threads because of the high extensibility of their axial silk fibers, recruitment of multiple glue droplets, and firm adhesion of the viscid glue droplets. Viscid silk's extensibility is permitted by the glue's high water content, so that organic and inorganic salts present in viscid glue droplets play an essential role in contributing to adhesion by sequestering the atmospheric water that plasticizes the axial silk fibers. Here, we provide direct molecular and macro-scale evidence to show that salts also cause adhesion by directly solvating the glycoproteins, regardless of water content, thus imparting viscoelasticity and allowing the glue droplets to establish good contact. This "dual role" of salts, plasticizing the axial silk indirectly through water sequestration and directly solvating the glycoproteins, provides a crucial link to the evolutionary transition from cribellate silk to viscid silk. In addition, salts also provide a simple mechanism for adhering even at the extremes of relative humidity, a feat eluding most synthetic adhesives. PMID:24588057

  2. Effect of a counterion on the glass transition temperature (T(g)') during lyophilization of ganciclovir salt forms.

    Science.gov (United States)

    Kumar, Lokesh; Baheti, Ankit; Bansal, Arvind K

    2011-02-01

    This manuscript deals with the effect of a counterion on the glass transition temperature for lyophilization of ganciclovir salts. Salt forms of ganciclovir, namely, sodium, potassium, rubidium, and cesium salts, were prepared by an in situ technique and analyzed by modulated differential scanning calorimetry (MDSC) for the determination of the critical process parameter for lyophilization. Nonionized ganciclovir and its salt forms showed a glass transition (T(g)') in the reversing MDSC signal, confirming their amorphous nature. T(g)' of the nonionized ganciclovir and ganciclovir sodium, potassium, rubidium, and cesium salts followed the order: sodium salt (-34.94°C) > nonionized ganciclovir (-40.15°C) > potassium salt (-46.23°C) > rubidium salt (-49.95°C) > cesium salt (-53.62°C). The analysis of the freezable water content for ganciclovir and its salts showed the trend: pure water > nonionized ganciclovir > potassium salt ? sodium salt > rubidium salt > cesium salt. This showed that a majority of water in the salts is present as an unfrozen fraction, thus leading to a lowering of T(g)' because of the plasticizing effect of unfrozen water. Density functional theory (DFT) further suggested a positive contribution of the strength of intra- and intermolecular force of interactions to the T(g)' value, with a higher intramolecular and intermolecular force of interaction leading to a higher T(g)'. PMID:21133416

  3. Water Dynamics in Salt Solutions Studied with Ultrafast 2D IR Vibrational Echo Spectroscopy

    OpenAIRE

    Fayer, Michael D.; Moilanen, David E.; Wong, Daryl; Rosenfeld, Daniel E; Fenn, Emily E.; Park, Sungnam

    2009-01-01

    Water is ubiquitous in nature, but it exists as pure water infrequently. From the ocean to biology, water molecules interact with a wide variety of dissolved species. Many of these species are charged. In the ocean, water interacts with dissolved salts. In biological systems, water interacts with dissolved salts as well as with charged amino acids, the zwitterionic head groups of membranes, and other biological groups that carry charges. Water plays a central role in vast number of chemical p...

  4. Investigating New Innovations to Detect Small Salt-Water Fraction Component in Mineral Oil and Small Oil Fraction Component in Salt-Water Projects

    Directory of Open Access Journals (Sweden)

    E.R.R. Mucunguzi-Rugwebe

    2011-09-01

    Full Text Available The main purpose of this study is to present the key findings on the effects of small salt-water fraction component, ? expressed in volume % per L on rotation are presented in the temperature range of 19.0 to 24.0ºC. It was found that rotations in oils with low boiling point known as light oils like Final diesel No. 2 were greater than the rotations which occurred in oils with high boiling point called heavy oils such as Esso diesel. Small oil fraction components, ?s expressed in mL/L of salt water down to 10 ppm were detected. The greatest impact on rotation of these oils was found in light oils like Fina No. 2 diesel. At 40 ppm which is the oil content level below which the environment authority considers process water to be free from oil environmental hazards, the observed rotation angles were 23.2º for Esso, 36.7º for Nors Hydro AS, and 71.8º in Fina No. 2 diesel. It was observed that light oils molecules have drastic effect on optical properties of the mixture in which they exist. It was found that for all oils, oil fractions greater than 100 ppm, caused the medium to be optically dense. This technology has shown a very high potential of being used as an environmental monitor to detect oil fractions down to 10 ppm and the technique can use laser beam to control re-injected process water with oil fractions between 100-2000 ppm.

  5. In vitro Responses of Date Palm Cell Suspensions under Osmotic Stress Induced by Sodium, Potassium and Calcium Salts at Different Exposure Durations

    Directory of Open Access Journals (Sweden)

    Abdulaziz M. Al-Bahrany

    2012-01-01

    Full Text Available In vitro cultures subjected to salt-stress have been shown to exhibit unique characteristics that are useful for identifying stress status. The objective of this study was to investigate the physiological responses of date palm, Phoenix dactylifera L. cv. Barhee, callus to salinity stress. Callus were cultured on MS medium supplemented with NaCl, KCl, or CaCl2 at 0.8 MPa (-8 bars equivalent osmotic potential concentrations. The exposure to salt stress resulted in reduction in callus dry weight as compared to the control. Sodium chloride caused the highest reduction in dry weight followed by KCl then CaCl2. In general, callus water content decreased in response to extending exposure durations regardless of the salt type used. Increasing the exposure duration up to 6 days caused increase in proline content compared to the control. Extending the exposure duration of KCl and CaCl2 to 9 days caused reduction in proline content, due to cell death as indicated by culture browning. Exposure to NaCl initially caused increase in Na+ content but at the ninth day, significant reduction in Na+ content was observed. Increasing salt exposure duration caused significant increase in K+ content as compared to the control, up to 3 days of exposure after which the content decreased but remained higher than the control cultures. The Na+/K+ ratio was also significantly affected by the salt type and the exposure duration. This study has enhanced the understanding of the influence of salinity on physiological aspects of date palm cell cultures.

  6. Imbibition, germination and lipid mobilization response by sunflower subjected to salt stress

    International Nuclear Information System (INIS)

    Salinity is one of the most important abiotic stresses in arid and semi-arid regions that substantially reduce the germination, growth and average yield of major crops. The study was mainly aimed to select the most salt tolerant cultivar of sunflower. Therefore, a pot culture experiment was conducted to study the effects of four different salinity levels having electrical conductivity viz., 1.19, 9.54, 16.48 and 22.38 mS/cm on the imbibition (water uptake), germination and lipid mobilization of seedlings of 4 varieties of sunflower (Helianthus annuus L.) i.e., DO-728, DO-730, Hysun-33 and Suncross-843. Salinity levels were prepared by dissolving calculated amount of NaCl, Na/sub 2/SO/sub 4/, CaCl/sub 2/ and MgCl/sub 2/ (4:10:5:1) in half strength Hoagland culture solution. Imbibition was studied using plastic glasses at an interval of 12 and 24 hours. While germination studies were separately carried out in plastic pots and noted after every 12 hours till 20 days. Whereas, lipid contents of the salt stress germinating seeds were determined at three time intervals viz., 48, 96 and 144 hours of germination. Results showed that there was a linear decrease in imbibition, germination and lipid mobilization as the level of salinity progressively intensifies. Maximum significant reduction in imbibition (12.88%), germination (31.03%) and lipid mobilization (38.62%) is recorded in highest dose of applied salts (22.38 mS/cm). Results further exhibited that maximum significant reduction in imbibition (17.95%) and germination (43.05%) is recorded for variety Suncross-843. While minimum for the same attributes is recorded for variety DO-728. Therefore, in term of imbibitions and germination, DO-728 could be ranked as salt tolerant. Similarly maximum reduction (14.85%) in mobilized lipids is noted for DO-728 and minimum (40.89%) for DO-730. Therefore, in term of lipid mobilization, variety DO-730 could be ranked as salt tolerant and DO-728 as salt sensitive. While remaining 2 varieties i.e., Hysun-33 and Suncross-843 is rated as salt intermediate in response, respectively. (author)

  7. Salt stress effect on epinasty in relation to ethylene production and water relations in tomato

    OpenAIRE

    El-Iklil, Youssef; Karrou, Mohammed; Benichou, Mohamed

    2000-01-01

    A pool of genetic variability is a prerequisite for any practical approach to improving crop salt tolerance. The objective of this study was to determine how epinasty, a morphological response of tomato to salt stress, can be used as a measure of salt tolerance and how it is related to ethylene production and water relations in tomato. Three Lycopersicon esculentum cultivars (Edkawy, Ramy, and Vemar) and one Lycopersicon sheesmanii accession were subjected to four levels of salt stress at the...

  8. Electrodialysis-based separation process for salt recovery and recycling from waste water

    Science.gov (United States)

    Tsai, Shih-Perng (Naperville, IL)

    1997-01-01

    A method for recovering salt from a process stream containing organic contaminants is provided, comprising directing the waste stream to a desalting electrodialysis unit so as to create a concentrated and purified salt permeate and an organic contaminants containing stream, and contacting said concentrated salt permeate to a water-splitting electrodialysis unit so as to convert the salt to its corresponding base and acid.

  9. Dry matter accumulation and foliar K, Ca and Na contents in salt-stressed cape gooseberry (Physalis peruviana L. plants

    Directory of Open Access Journals (Sweden)

    Miranda Diego

    2010-08-01

    Full Text Available A pot experiment aimed at determining the effect of five NaCl
    concentrations (namely 0, 30, 60, 90 and 120 mM, determining
    respective EC values of 0.8, 3.0, 6.0, 9.0 and 12.2 dS m-1 on cape
    gooseberry plants was set up at Humboldt University’s greenhouse
    in Berlin, Germany. Dry weight (DW of roots, stems
    and leaves, as well as foliar content of ions K+, Ca2+ and Na+ and
    the relationship they hold with one another, were determined
    over a 75-day period. DW of all plant organs was observed
    to decrease with increasing salinity. The lowest values of this
    variable, which were recorded from the 120 mM NaCl plants,
    were found to be significantly smaller than those recorded at
    60 mM and lower salt concentrations. Salt stress effects on dry
    matter (DM accumulat ion were observed to increase with
    plant age. Leaf K+ content increased with salinity and peaked
    at 90 mM NaCl, where the value was significantly higher than
    that observed at 120 mM. Foliar Ca2+ content remained unchanged
    at the different salt concentrations, whilst Na+ content
    increased together with salt stress. The relationship among ion
    concentrations was significantly influenced only by 90 mM or
    higher NaCl concentrations, which determined a progressive
    increase of the Na+/Ca2+ ratio and a similar decrease of the K+/
    Na+ ratio. According to the results, cape gooseberry can be
    considered as moderately tolerant to salt, as shown by the 30
    mM NaCl treatment, which did not affect DM accumulation in
    plant organs. This tolerance is also supported by steady leaf Ca2+
    contents at all levels of salinity, indicating that cape gooseberry
    uses K+ as an osmoprotectant, at least up to 90 mM NaCl.

  10. Increased Cerebral Water Content in Hemodialysis Patients

    OpenAIRE

    Reetz, Kathrin; Abbas, Zaheer; Costa, Ana Sofia; Gras, Vincent; Tiffin-Richards, Frances; Mirzazade, Shahram; Holschbach, Bernhard; Frank, Rolf Dario; Vassiliadou, Athina; Krüger, Thilo; Eitner, Frank; Gross, Theresa; Schulz, Jörg Bernhard; Floege, Jürgen; Shah, Nadim Jon

    2015-01-01

    Little information is available on the impact of hemodialysis on cerebral water homeostasis and its distribution in chronic kidney disease. We used a neuropsychological test battery, structural magnetic resonance imaging (MRI) and a novel technique for quantitative measurement of localized water content using 3T MRI to investigate ten hemodialysis patients (HD) on a dialysis-free day and after hemodialysis (2.4±2.2 hours), and a matched healthy control group with the same time interval. Neuro...

  11. Anion exchange extraction of molybdenum (6) by higher quaternary ammonium salts from peroxide media

    International Nuclear Information System (INIS)

    Anion exchange extraction of molybdenum (6) by chloride of trinonyloctadecylammonium from peroxide media is studied. It is established that quaternary ammonium salt extract molybdenum (6) from peroxide media in form of unicharge anion. Arbitrary constants of anion exchange are determined. Affinity of molybdenum peroxoanions to quaternary ammonium salt reaches its maximum value by application as toluene-decane mixture solvent with their equal volumetric content. The arbitrary constant of anion exchange is constant within the pH 3-8 range

  12. Salt concentrations during water production resulting from CO2 storage

    DEFF Research Database (Denmark)

    Walter, Lena; Class, Holger

    2014-01-01

    Introduction Carbon capture and storage (CCS) in deep geological formations is one possible option to mitigate the greenhouse gas effect by reducing CO2 emissions into the atmosphere. The assessment of the risks related to CO2 storage is an important task. Events such as CO2 leakage and brine displacement and infiltration could result in hazards for human health and the environment and therefore have to be investigated in detail. In this work numerical simulations are performed to estimate the risk related to the displacement of brine. The injected CO2 will displace the brine that is initially present in the saline aquifer. The brine can be displaced over large areas and can reach shallower groundwater resources. High salt concentrations could lead to a degradation of groundwater quality. For water suppliers the most important information is whether and how much salt is produced at a water production well. In this approach the salt concentrations at water production wells depending on different parameters aredetermined for the assumption of a 2D model domain accounting for groundwater flow. Recognized ignorance resulting from grid resolution is qualitatively studied and statistical uncertainty is investigated for three parameters: the well distance, the water production rate, and the permeability of the aquifer. One possible way of estimating statistical uncertainties and providing probabilities is performing numerical Monte Carlo (MC) simulations. The MC approach is computationally very demanding because many simulations runs are needed to get an appropriate statistical accuracy. A possible way to handle the complexity and uncertainties with acceptable computational costs is by running MC simulations with a reduced model using a model reduction technique called arbitrary polynomial chaos expansion (aPC) [1]. The aPC is applied in this work to provide probabilities and risk values for salt concentrations at the water production well. Mixing in the aquifer has a key influence on the salt concentration at the well. Dispersion and diffusion are the relevant processes for mixing. Depending on the applied grid the numerical dispersion strongly influence the results as well. The distance of the well is a key parameter that influences the salt concentration at the well, thus the time that the salt has for mixing until reaching the well is relevant. References [1] Oladyshkin, S. und W. Nowak: Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion. Reliability Engineering & System Safety 106 (2012) 179–190.

  13. Effect of moisture content of concrete on water uptake

    International Nuclear Information System (INIS)

    The penetration of water and non-polar hexane in Portland cement mortar prisms with different initial moisture contents was investigated using nuclear magnetic resonance (1H NMR). The amount of water in gel pores strongly affects the penetration of water in much larger capillary pores. Water penetration is reduced by the self-sealing effect as characterized by non-?t dependence of capillary uptake and penetration depth. This is explained by the ongoing redistribution of water from capillaries into gel pores which results in internal swelling and loss of continuity of the capillary pore system; a correlation was observed between the amount of redistributed water and departure from ?t behaviour. A descriptive model is used to explain the dependence of water uptake and penetration on moisture content. For increasing initial moisture contents up to a critical value equivalent to equilibrium with a relative humidity between 65 and 80%, less penetrating water is able to redistribute. Thus more penetrating water is in larger capillaries with less viscous resistance; uptake and penetration depth increase. Above the critical initial moisture content, uptake and penetration depth decrease towards zero. This is explained by (a) an overall reduction in capillary pressure because transport takes places in fewer and larger pores and (b) an increase in viscous resistance due to the connection of penetrating capillary water with pores already containing water. Less capillary pore space is available for transport. The surface region of concrete placed in contact with water is not instantaneously saturated. Water content increases with time depending on the degree of surface saturation. A new transition coefficient for capillary suction ? is defined for the calculation of surface flux.

  14. Water deprivation and the double- depletion hypothesis: common neural mechanisms underlie thirst and salt appetite

    Scientific Electronic Library Online (English)

    L.A. Jr, De Luca; R.C., Vendramini; D.T.B., Pereira; D.A.S., Colombari; R.B., David; P.M., Paula; J.V., Menani.

    2007-05-01

    Full Text Available Water deprivation-induced thirst is explained by the double-depletion hypothesis, which predicts that dehydration of the two major body fluid compartments, the extracellular and intracellular compartments, activates signals that combine centrally to induce water intake. However, sodium appetite is a [...] lso elicited by water deprivation. In this brief review, we stress the importance of the water-depletion and partial extracellular fluid-repletion protocol which permits the distinction between sodium appetite and thirst. Consistent enhancement or a de novo production of sodium intake induced by deactivation of inhibitory nuclei (e.g., lateral parabrachial nucleus) or hormones (oxytocin, atrial natriuretic peptide), in water-deprived, extracellular-dehydrated or, contrary to tradition, intracellular-dehydrated rats, suggests that sodium appetite and thirst share more mechanisms than previously thought. Water deprivation has physiological and health effects in humans that might be related to the salt craving shown by our species.

  15. Attenuation of salt-induced hypertension by aqueous calyx extract of Hibiscus sabdariffa.

    Science.gov (United States)

    Mojiminiyi, F B O; Audu, Z; Etuk, E U; Ajagbonna, O P

    2012-01-01

    The aqueous calyx extract of Hibiscus sabdariffa (HS) has a folk reputation as an antihypertensive agent. On account of its antioxidant properties and probably high K+ concentration, we hypothesized that HS may attenuate the development of salt-induced hypertension. Sprague-Dawley rats (n=8 each) were treated for 12 weeks as follows: control (normal diet + water), salt-loaded (8% salt diet + water), HS (normal diet + 6 mg/ml HS), salt+HS (8% salt diet + 6 mg/ml HS) and furosemide (normal diet+ 0.25mg/Kg furosemide). Their blood pressure and heart rates were measured and responses to noradrenalin and acetylcholine (0.01 mg/kg respectively) were estimated. The cationic concentration of 6 mg/ml HS was determined. The Na+ and K+ concentrations of 6 mg/ml HS were 3.6 and 840 mmol/l respectively. The mean arterial pressure (MAP±SEM; mmHg) of salt loaded rats (184.6±29.8) was significantly higher than control (113.2±3.0; P<0.05), HS (90.0±7.4; P<0.001) salt+HS (119.4±8.9; P<0.05) and furosemide (94.9±11.5; P<0.01). The MAP of salt+HS and control rats did not differ significantly and the effect of HS was comparable to furosemide. The pressor response to noradrenalin or vasodilator response to acetylcholine remained similar in all groups. These results suggest that HS attenuated the development of salt-induced hypertension and this attenuation may be associated with its high K+ content or high potassium: sodium ratio and not with altered pressor/depressor response to noradrenalin or acetylcholine. Also the effects of HS and furosemide on blood pressure are comparable. PMID:23652235

  16. UMTRA project water sampling and analysis plan, Salt Lake City, Utah

    International Nuclear Information System (INIS)

    Surface remedial action was completed at the Salt Lake City, Utah, Uranium Mill Tailings Remedial Action (UMTRA) Project site in the fall of 1987. Results of water sampling for the years 1992 to 1994 indicate that site-related ground water contamination occurs in the shallow unconfined aquifer (the uppermost aquifer). With respect to background ground water quality, contaminated ground water in the shallow, unconfined aquifer has elevated levels of chloride, sodium, sulfate, total dissolved solids, and uranium. No contamination associated with the former tailings pile occurs in levels exceeding background in ground water in the deeper confined aquifer. This document provides the water sampling and analysis plan for ground water monitoring at the former uranium processing site in Salt Lake City, Utah (otherwise known as the ''Vitro'' site, named after the Vitro Chemical Company that operated the mill). All contaminated materials removed from the processing site were relocated and stabilized in a disposal cell near Clive, Utah, some 85 miles west of the Vitro site (known as the ''Clive'' disposal site). No ground water monitoring is being performed at the Clive disposal site, since concurrence of the remedial action plan by the US Nuclear Regulatory Commission and completion of the disposal cell occurred before the US Environmental Protection Agency issued draft ground water standards in 1987 (52 FR 36000) for cleanup, stabilization, and control of residual radioactive materials at the disposal site. In addition, the likelihood of post-closure impact on the ground water is minimal to nonexistent, due to the naturally poor quality of the ground water. Water sampling activities planned for calendar year 1994 consist of sampling ground water from nine monitor wells to assess the migration of contamination within the shallow unconfined aquifer and sampling ground water from two existing monitor wells to assess ground water quality in the confined aquifer

  17. Rapid myelin water content mapping on clinical MR systems

    International Nuclear Information System (INIS)

    We present an algorithm for the fast mapping of myelin water content using standard multiecho gradient echo acquisitions of the human brain. The method extents a previously published approach for the simultaneous measurement of brain T1, T*2 and total water content. Employing the multiexponential T*2 decay signal of myelinated tissue, myelin water content was measured based on the quantification of two water pools ('myelin water' and 'rest') with different relaxation times. As the existing protocol was focussed on the fast mapping of quantitative MR parameters with whole brain coverage in clinically relevant measurement times, the sampling density of the T*2 curve was compromised to 10 echo times with a T Emax of approx. 40 ms. Therefore, pool amplitudes were determined using a quadratic optimisation approach. The optimisation was constrained by including a priori knowledge about brain water pools. All constraints were optimised in a simulation study to minimise systematic error sources given the incomplete knowledge about the real pool-specific relaxation properties. Based on the simulation results, whole brain in vivo myelin water content maps were acquired in 10 healthy controls and one subject with multiple sclerosis. The in vivo results obtained were consistent with previous reports which demonstrates that a simultaneous whole brain mapping of T1, T*2, total and myelin water content is feasible on almost any modern MR scanner in less than 10 minutes. (orig.)

  18. Varietal differences in growth vigor, water relations, protein and nucleic acids content of two wheat varieties grown under seawater stress

    Directory of Open Access Journals (Sweden)

    Heshmat S. Aldesuquy

    2012-04-01

    Full Text Available Effect of seawater salinity (10% and 25% on growth vigor of root and shoot, water relations and protein as well as nucleic acids in flag leaves of two wheat cultivars (Salt sensitive var., Gemmieza-9 and salt resistant var., Sids-1 during grain-filling was investigated. In general, seawater at 10% and 25% caused noticeable reduction in almost all growth criteria of root, shoot and flag leaf which was consistent with the progressive alteration in water relations (RWC & SWD , protein and nucleic acids (DNA and RNA content of both varieties during grain filling. Furthermore, degree of leaf succulence and degree of leaf sclerophylly were severely affected by seawater stress in both wheat cultivars. The magnitude of reduction was more obvious at higher salinity levels than the lower one particularly in Gemmieza-9.

  19. Design of Phosphonium-Type Zwitterion as an Additive to Improve Saturated Water Content of Phase-Separated Ionic Liquid from Aqueous Phase toward Reversible Extraction of Proteins

    Directory of Open Access Journals (Sweden)

    Hiroyuki Ohno

    2013-09-01

    Full Text Available We designed phosphonium-type zwitterion (ZI to control the saturated water content of separated ionic liquid (IL phase in the hydrophobic IL/water biphasic systems. The saturated water content of separated IL phase, 1-butyl-3-methyimidazolium bis(trifluoromethanesulfonylimide, was considerably improved from 0.4 wt% to 62.8 wt% by adding N,N,N-tripentyl-4-sulfonyl-1-butanephosphonium-type ZI (P555C4S. In addition, the maximum water content decreased from 62.8 wt% to 34.1 wt% by increasing KH2PO4/K2HPO4 salt content in upper aqueous phosphate buffer phase. Horse heart cytochrome c (cyt.c was dissolved selectively in IL phase by improving the water content of IL phase, and spectroscopic analysis revealed that the dissolved cyt.c retained its higher ordered structure. Furthermore, cyt. c dissolved in IL phase was re-extracted again from IL phase to aqueous phase by increasing the concentration of inorganic salts of the buffer solution.

  20. Uncertainties in the measurement of soil water content caused by abrupt soil layer changes, when using a neutron probe

    International Nuclear Information System (INIS)

    Multigroup diffusion code calculations have been made to model the changes in the thermal flux distribution as a fast neutron source passes through an interface between two soil systems. By integrating this flux over the volume of a detector attached to the source, a relative count rate can be determined for different source positions with respect to the interface. Water densities determined from these count rates and calibration curves can be seriously in error near the interface. The magnitude of these errors depends upon the soil parameters, the detector geometry, and the proximity of the soil strata to the neutron source and detector. Unless the soil structure is well known, it would be unwise to rely on water measurements closer than about 25 cm to a soil discontinuity. It two soils merge over 30-40 cm, it is likely that the measured water density will not deviate far from the real value

  1. Rebar corrosion monitoring in concrete structure under salt water enviroment using fiber Bragg grating

    Science.gov (United States)

    Pan, Yuheng; Liu, Tiegen; Jiang, Junfeng; Liu, Kun; Wang, Shuang; He, Pan; Yan, Jinlin

    2015-08-01

    Monitoring corrosion of steel reinforcing bars is critical for the durability and safety of reinforced concrete structures. Corrosion sensors based on fiber optic have proved to exhibit meaningful benefits compared with the conventional electric ones. In recent years, Fiber Bragg Grating (FBG) has been used as a new kind of sensing element in an attempt to directly monitor the corrosion in concrete structure due to its remarkable advantages. In this paper, we present a novel kind of FBG based rebar corrosion monitoring sensor. The rebar corrosion is detected by volume expansion of the corroded rebar by transferring it to the axial strain of FBG when concrete structure is soaked in salt water. An accelerated salt water corrosion test was performed. The experiment results showed the corrosion can be monitored effectively and the corrosion rate is obtained by volume loss rate of rebar.

  2. Reducing the sodium content of high-salt foods : Effect on cardiovascular disease in South Africa

    OpenAIRE

    Bertram, Melanie Y.; Steyn, Krisela; Wentzel-Viljoen, Edelweiss; Tollman, Stephen; Hofman, Karen J

    2012-01-01

    Background. Average salt intake in South African (SA) adults, 8.1 g/day, is higher than the 4 - 6 g/day recommended by the World Health Organization. Much salt consumption arises from non-discretionary intake (the highest proportion from bread, with contributions from margarine, soup mixes and gravies). This contributes to an increasing burden of hypertension and cardiovascular disease (CVD). Objectives. To provide SA-specific information on the number of fatal CVD events (stroke, ischaemic h...

  3. Nuclear-waste repository impaired by effects of sub-surface salt dissolution

    International Nuclear Information System (INIS)

    Thirty alkaline lake basins are underlain by Permian salt in West Texas-eastern New Mexico. Early workers thought the basins were created by solution of Permian salt, causing surface collapse. It wasn't until studies by Gustavson and others (1980-85) that salt dissolution beneath several basins was confirmed. Study of alkaline lake basins 240 km south of the main area worked by Gustavson and others (1980-85) shows basins associated and not associated with salt dissolution. Basins associated with salt dissolution are often underlain by Cretaceous formations which are either horizontal or displaced. Thus, evidence indicates many of the large lake basins are antecedent to salt dissolution, that salt dissolution results from infiltration of lake water, and that a certain amount of dissolution occurs before propagation of the cavity to surface. Areas of unusually thick Cretaceous rocks around several lake basins in the central Southern High Plains and unusually thick sections of Tertiary Ogallala in the Northern High Plains indicate regional dissolution of Permian salt beds prior to Cretaceous deposition. Therefore, dissolution of Permian salt in West Texas has been of long-term, regional extent, and formation of sinks, faults and the solute discharge of streams east of the Southern High Plains indicates salt dissolution continues. It therefore follows that the geologic integrity of any high-level nuclear-waste repository site in the Permian salt beds may be seriously impaired, and that the geologic suitability of bedded salts for high-level nuclear-waste storage anywhere by seriously questions

  4. Using of Hydrogel to Increase Maize Salt Tolerance

    International Nuclear Information System (INIS)

    Seeds of two cultivars (Giza 122 and 129) of Zea mays L. were sown in pots. Pots were divided into two sets; soils of one mixed with hydrogel and the other set considered as control. After germination, pots were irrigated by tap water or by 4500 ppm NaCI solution. The results indicated that salt stress reduced growth characters significantly. Addition of hydrogel to the soil improved growth character especially in cultivar 129, hydrogel ameliorates the harmful effect of salt on plant. In the two cultivars, proline contents increased under salt stress but the presence of hydrogel reduced these contents significantly. Also, the presence of hydrogel appeared to reduce phenol content significantly under salt stress in cultivar (129) or insignificantly in cultivar (122).The appearance or disappearance of protein bands and the alterations in peroxidase and esterase pattern could be used as molecular marker for salt stress and hydrogel

  5. Use spectral derivatives for estimating canopy water content

    OpenAIRE

    Clevers, J. G. P. W.

    2010-01-01

    Hyperspectral remote sensing has demonstrated great potential for accurate retrieval of canopy water content (CWC). This CWC is defined by the product of the leaf equivalent water thickness (EWT) and the leaf area index (LAI). In this paper the spectral information provided by the canopy water absorption feature at 970 nm for estimating and predicting CWC was studied using a modelling approach and in situ spectroradiometric measurements. The relationship of the first derivative at the right s...

  6. Design and Implementation of a Low-Cost Non-Destructive System for Measurements of Water and Salt Levels in Food Products Using Impedance Spectroscopy

    Science.gov (United States)

    Masot, Rafael; Alcañiz, Miguel; Fuentes, Ana; Campos, Franciny; Barat, José M.; Gil, Luis; Labrador, Roberto H.; Soto, Juan; Martínez-Máñez, Ramón

    2009-05-01

    The IQMA and the DTA have developed a low-cost system to determinate the contents of water and salt in food products as cured ham or pork loin using non-destructive methods. The system includes an electronic equipment that allows the implementation of impedance spectroscopy and an electrode. The electrode is a concentric needle which allows carrying out tests in a non-destructive way. Preliminary results indicate that there is a correlation between the water and salt contents and the module and phase of the impedance of the food sample in the range of 1 Hz to 1 MHz.

  7. Residual fluxes of water, salt and suspended sediment in the Beypore Estuary

    Digital Repository Service at National Institute of Oceanography (India)

    AnilKumar, N.; Revichandran, C.; Sankaranarayanan, V.N.; Josanto, V.

    The monthly trends of the residual fluxes of salt and water and the transportation of suspended sediments in the Beypore estuarine system, Kerala, India were examined. At the river mouth the water flux was directed seaward during the postmonsoon...

  8. Physiological Changes in Grapevines Induced by Osmotic Stress Originated from Salt and Their Role in Salt Resistance

    OpenAIRE

    S?VR?TEPE, Nuray

    1999-01-01

    Rooted cuttings of Çavu? (salt-resistant), Mü?küle (salt-sensitive) and Sultani Çekirdeksiz (moderately salt-sensitive) grapevine cultivars, grown in perlite medium, were subjected to salt stress by irrigating them with 1/2 Hoagland nutrient solution including different NaCl concentrations (0.00, 0.50 and 0.75%). It was determined that stomatal conductance and transpiration were strongly inhibited in Mü?küle and Sultani Çekirdeksiz with salt treatments, while these physiological activities we...

  9. Calibrating a Salt Water Intrusion Model with Time-Domain Electromagnetic Data

    DEFF Research Database (Denmark)

    Herckenrath, Daan; Odlum, Nick

    2013-01-01

    Salt water intrusion models are commonly used to support groundwater resource management in coastal aquifers. Concentration data used for model calibration are often sparse and limited in spatial extent. With airborne and ground-based electromagnetic surveys, electrical resistivity models can be obtained to provide high-resolution three-dimensional models of subsurface resistivity variations that can be related to geology and salt concentrations on a regional scale. Several previous studies have calibrated salt water intrusion models with geophysical data, but are typically limited to the use of the inverted electrical resistivity models without considering the measured geophysical data directly. This induces a number of errors related to inconsistent scales between the geophysical and hydrologic models and the applied regularization constraints in the geophysical inversion. To overcome these errors, we perform a coupled hydrogeophysical inversion (CHI) in which we use a salt water intrusion model to interpret the geophysical data and guide the geophysical inversion. We refer to this methodology as a Coupled Hydrogeophysical Inversion-State (CHI-S), in which simulated salt concentrations are transformed to an electrical resistivity model, after which a geophysical forward response is calculated and compared with the measured geophysical data. This approach was applied for a field site in Santa Cruz County, California, where a time-domain electromagnetic (TDEM) dataset was collected. For this location, a simple two-dimensional cross-sectional salt water intrusion model was developed, for which we estimated five uniform aquifer properties, incorporating the porosity that was also part of the employed petrophysical relationship. In addition, one geophysical parameter was estimated. The six parameters could be resolved well by fitting more than 300 apparent resistivities that were comprised by the TDEM dataset. Except for three sounding locations, all the TDEM data could be fitted close to a root-mean-square error of1. Possible explanations for the poor fit of these soundings are the assumption of spatial uniformity, fixed boundary conditions and the neglecting of 3D effects in the groundwater model and the TDEM forward responses. © 2012, The Author(s). Groundwater © 2012, National Ground Water Association.

  10. Renal Effects and Underlying Molecular Mechanisms of Long-Term Salt Content Diets in Spontaneously Hypertensive Rats

    Science.gov (United States)

    Berger, Rebeca Caldeira Machado; Vassallo, Paula Frizera; Crajoinas, Renato de Oliveira; Oliveira, Marilene Luzia; Martins, Flávia Letícia; Nogueira, Breno Valentim; Motta-Santos, Daisy; Araújo, Isabella Binotti; Forechi, Ludimila; Girardi, Adriana Castello Costa; Santos, Robson Augusto Souza; Mill, José Geraldo

    2015-01-01

    Several evidences have shown that salt excess is an important determinant of cardiovascular and renal derangement in hypertension. The present study aimed to investigate the renal effects of chronic high or low salt intake in the context of hypertension and to elucidate the molecular mechanisms underlying such effects. To this end, newly weaned male SHR were fed with diets only differing in NaCl content: normal salt (NS: 0.3%), low salt (LS: 0.03%), and high salt diet (HS: 3%) until 7 months of age. Analysis of renal function, morphology, and evaluation of the expression of the main molecular components involved in the renal handling of albumin, including podocyte slit-diaphragm proteins and proximal tubule endocytic receptors were performed. The relationship between diets and the balance of the renal angiotensin-converting enzyme (ACE) and ACE2 enzymes was also examined. HS produced glomerular hypertrophy and decreased ACE2 and nephrin expressions, loss of morphological integrity of the podocyte processes, and increased proteinuria, characterized by loss of albumin and high molecular weight proteins. Conversely, severe hypertension was attenuated and renal dysfunction was prevented by LS since proteinuria was much lower than in the NS SHRs. This was associated with a decrease in kidney ACE/ACE2 protein and activity ratio and increased cubilin renal expression. Taken together, these results suggest that LS attenuates hypertension progression in SHRs and preserves renal function. The mechanisms partially explaining these findings include modulation of the intrarenal ACE/ACE2 balance and the increased cubilin expression. Importantly, HS worsens hypertensive kidney injury and decreases the expression nephrin, a key component of the slit diaphragm. PMID:26495970

  11. Leaching due to hygroscopic water uptake in cemented waste containing soluble salts

    DEFF Research Database (Denmark)

    Brodersen, K.

    1992-01-01

    Considerable amounts of easily soluble salts such as sodium nitrate, sulphate, or carbonate are introduced into certain types of cemented waste. When such materials are stored in atmospheres with high relative humidity or disposed or by shallow land burial under unsaturated, but still humid conditions, condensation of water vapour will result in generation of a certain amount of liquid in the form of a strong salt solution. The volume of liquid may well exceed the storage capacity of the pore system in the cemented material and in the release of a limited amount of free contaminated solution. A model of the quantitative aspects for the equilibrium situation is presented. Experiments with hygroscopic water uptake support the model and give indications about the rate of the process. The release mechanism is only thought to be important for radionuclides which are not fixed in a low-solubility form within the cement matrix.

  12. Water in urban planning, Salt Creek Basin, Illinois water management as related to alternative land-use practices

    Science.gov (United States)

    Spieker, Andrew Maute

    1970-01-01

    Water management can be an integral part of urban comprehensive planning in a large metropolitan area. Water both imposes constraints on land use and offers opportunities for coordinated land and water management. Salt Creek basin in Cook and Du Page Counties of the Chicago metropolitan area is typical of rapidly developing suburban areas and has been selected to illustrate some of these constraints and opportunities and to suggest the effects of alternative solutions. The present study concentrates on the related problems of ground-water recharge, water quality, management of flood plains, and flood-control measures. Salt Creek basin has a drainage area of 150 square miles. It is in flat to. gently rolling terrain, underlain by glacial drift as much as 200 feet thick which covers a dolomite aquifer. In 1964, the population of the basin was about 400,000, and 40 percent of the land was in urban development. The population is expected to number 550,000 to 650,000 by 1990, and most of the land will be taken by urban development. Salt Creek is a sluggish stream, typical of small drainage channels in the headwaters area of northeastern Illinois. Low flows of 15 to 25 cubic feet per second in the lower part of the basin consist largely of sewage effluent. Nearly all the public water supplies in the basin depend on ground water. Of the total pumpage of 27.5 million gallons per day, 17.5 million gallons per day is pumped from the deep (Cambrian-Ordovician) aquifers and 10 million gallons per day is pumped from the shallow (Silurian dolomite and glacial drift) aquifers. The potential yield of the shallow aquifers, particularly glacial drift in the northern part of the basin, far exceeds present use. The largest concentration of pumpage from the shallow ,aquifers is in the Hinsdale-La Grange area. Salt Creek serves as an important source of recharge to these supplies, particularly just east of Hinsdale. The entire reach of Salt Creek south and east of Elmhurst can be regarded as an area of potential recharge to the shallow aquifers. Preservation of the effectiveness of these potential recharge areas should be considered in land-use planning. Salt Creek is polluted in times of both low and high flow. Most communities in the basin in Du Page County discharge their treated sewage into the creek, whereas those in Cook County transfer their sewage to plants of the Metropolitan Sanitary District outside the basin. During periods of high runoff, combined storm runoff and overflow from sanitary sewers enter the creek. Such polluted water detracts from the stream's esthetic and recreational potential and poses a threat to ground-water supplies owing to induced recharge of polluted water to shallow aquifers. Alternative approaches .to the pollution problem include improvement of the degree of sewage treatment, detention and treatment of storm runoff, dilution of sewage through flow augmentation, or transfer of sewage from the basin to a central treatment plant. To result in an enhanced environment, the streambed would have to be cleansed of accumulated sludge deposits. The overbank flooding in Salt Creek basin every 2 to 3 years presents problems because of encroachments and developments on the flood plains. Flood plains in an urban area can be managed by identifying them, by recognizing that either their natural storage capacity or equivalent artificial capacity is needed to accommodate floods, and by planning land use accordingly. Examples of effective floodplain management include (1) preservation of greenbelts or regional parks along stream courses, (2) use of flood plains for recreation, parking lots. or other low-intensity uses, (3) use of flood-proofed commercial buildings, and (4) provision for compensatory storage to replace natural storage capacity. Results of poor flood-plain management include uncontrolled residential development and encroachment by fill into natural storage areas where no compensatory storage has been

  13. Cementitious Stabilization of Mixed Wastes with High Salt Loadings

    Energy Technology Data Exchange (ETDEWEB)

    Spence, R.D.; Burgess, M.W.; Fedorov, V.V.; Downing, D.J.

    1999-04-01

    Salt loadings approaching 50 wt % were tolerated in cementitious waste forms that still met leach and strength criteria, addressing a Technology Deficiency of low salt loadings previously identified by the Mixed Waste Focus Area. A statistical design quantified the effect of different stabilizing ingredients and salt loading on performance at lower loadings, allowing selection of the more effective ingredients for studying the higher salt loadings. In general, the final waste form needed to consist of 25 wt % of the dry stabilizing ingredients to meet the criteria used and 25 wt % water to form a workable paste, leaving 50 wt % for waste solids. The salt loading depends on the salt content of the waste solids but could be as high as 50 wt % if all the waste solids are salt.

  14. Water Content as a New Tool for Discrimination between some Shellfishes

    Directory of Open Access Journals (Sweden)

    Samya Hussein Mohammad

    2015-01-01

    Full Text Available The quality requisites of shellfishes are primarily dependent on the water quality, assuring a healthy product and a safe consumption. Water (moisture content of five species from two different environments was conducted for a period of one year (July, 2010-June, 2011 for this purpose. Among the most exploitable and economically important Egyptian species, three brackish (the bivalves Cerastoderma glaucum, Fulvia fragilis and the gastropod Thais carinifera and two salt water (the bivalves Donax semistriatus and Donax trunculus shellfishes were chosen. Estimation on monthly basis revealed the incompatibility of moisture content with spawning period. Present results proved that water content varied according to the environmental factors rather than spawning seasons. Marine species had lower demand of water than brackish species. The differences in the average of the body water content between genera [Donax sp. (0.13, C. glaucum (0.75, F. fragilis (2.35 and T. carinifera (3.68] was greater than that within the same genus [D. semistriatus (0.10 and D. trunculus (0.16]. The gastropod T. carinifera had higher water content than the bivalves. Hierarchical clusters analysis was a good tool to differentiate moisture content between genera, as well as between species from different environments. The present study put in the perception of the probability of use water content in discrimination and classification between species.

  15. Chapter 1. Direct and surrogate measures of soil water content

    International Nuclear Information System (INIS)

    The purpose of this manual is to provide guidance for field scientists who are not instrumentation experts but who wish to determine soil water content as part of their work. This publication is targeted to help those setting up soil water monitoring projects in the developing countries where expertise in many technologies is not readily available. However, it also has value to anyone planning a project involving the determination of field soil water content. Most importantly, it will also give some guidance as to what corroborative measurements are needed to check the performance of water sensing technology being used. A substantial suite of soil water sensors and technologies are available today. Some are well understood as to their technical capability and are both mechanically and electronically reliable. However, some technologies that claim to measure soil water content are quite unsuited to some applications and produce results that have little, if any, relation to soil water content in the field. This manual sets out a decision making process and critical factors for matching various water measurement technologies to project objectives. The first factor is the accuracy required by the user. The second is the degree of water content variability across the field to be measured. The third is the presence of interferences to the measurement process. And the fourth consists of the capabilities of the available devices in light of the spatial variability of water content and the interferences that are present. A successful outcome can only be obtained if all four factors are considered. Because this manual is intended to be a practical guide, it cannot be a simple one. Only reliable measurements are practically useful. The techniques involved in obtaining reliable values of soil water content are not simple, nor are the potential problems, pitfalls, and sensor interferences that can prevent good values from being obtained. The manual is divided into chapters that treat classes of measurement systems, or individual sensors/methods if they do not belong to one of the major classes, which include neutron moisture meters, capacitance sensors that work from within a plastic access tube, time domain reflectometry systems that employ waveform capture and analysis, tensiometers, and direct sampling methods. Obviously, not all sensor systems could be included in the studies that led up to this manual. Much of the work supported by the IAEA involves determination of the soil water balance to determine crop water use and water use efficiency. Thus, many of the systems studied were those that work in access tubes so that measures could be made to well below the crop root zone. However, a few other widely used systems employing probes that are inserted into the soil were also studied

  16. Treatment of plutonium process residues by molten salt oxidation

    International Nuclear Information System (INIS)

    Molten Salt Oxidation (MSO) is a thermal process that can remove more than 99.999% of the organic matrix from combustible 238Pu material. Plutonium processing residues are injected into a molten salt bed with an excess of air. The salt (sodium carbonate) functions as a catalyst for the conversion of the organic material to carbon dioxide and water. Reactive species such as fluorine, chlorine, bromine, iodine, sulfur, phosphorous and arsenic in the organic waste react with the molten salt to form the corresponding neutralized salts, NaF, NaCl, NaBr, NaI, Na2SO4, Na3PO4 and NaAsO2 or Na3AsO4. Plutonium and other metals react with the molten salt and air to form metal salts or oxides. Saturated salt will be recycled and aqueous chemical separation will be used to recover the 238Pu. The Los Alamos National Laboratory system, which is currently in the conceptual design stage, will be scaled down from current systems for use inside a glovebox

  17. Comparative Study of Cadmiumand Arsenic Accumulation in Toothed Carp (Aphanius sophiaein Fresh and Salt Water

    Directory of Open Access Journals (Sweden)

    Masoumeh Ariyaee

    2015-09-01

    Full Text Available Background: Anthropogenic activities release high concentrations of heavy metals into the aquatic ecosystems, which can be absorbed by the aquatic organisms. In this study, the accu-mulation of cadmium (Cd and arsenic (As was compared in liver, gill and muscle tissues of toothed carp (Aphanius sophiae in fresh and salt water. Methods: A total of 175 fish samples were collected from the Shoor River, Iran during the spring and summer of 2011. Samples were divided into two groups for salt and freshwater ex-periments. The individuals of each group were also divided into seven groups, a control group and the other six exposed to the concentrations of 5, 10 and 20 mg/L of arsenic and 5, 10 and 20 mg/L of cadmium. The liver, gills and muscle tissues of the specimens were dissected. The tissues were wet digested in acid and the concentrations of metals were measured using an ICP-OES instrument. Results: The concentrations of both metals were significantly different in various organs in both fresh and salt water and it were in order of liver > gill > muscle (P <0.001. Based on t-test results, no significant difference was observed between the concentrations of As in related tis-sues of fish cultivated in fresh and salt water. However, Cd accumulation was significantly higher in the tissues of fish specimens cultivated in freshwater (P <0.001. Conclusion: The bioaccumulation of Cd and As depends on organs, metals, and water condi-tion.

  18. Reduction of Sulfur Dioxide on Carbons Catalyzed by Salts

    Directory of Open Access Journals (Sweden)

    Wido Schreiner

    2005-01-01

    Full Text Available Abstract. The reduction of SO2 on different carbons in the presence of the nitrates and sulfides of sodium, potassium and calcium and potassium polysulfides was studied. The presence of salts increased the initial rate 2-5 fold for all of them and did not change the product distribution. The catalysis was not determined by the cation and there was no difference in the catalytic reactivity between nitrates and sulfides. The sulfur content of the activated carbon increased during the reaction on account of the stable reactive intermediates in the reduction of SO2. In the presence of NaNO3 or Na2S, the amount of sulfur incorporated was in the molar ratio Na:S = 3 ± 0.3, and the XPS spectra of the residual carbon showed an increase of ca. 9% of the non-oxidized form of sulfur in the intermediates. In the absence of salt, it is proposed that after the adsorption of SO2 on the carbon, a 1,3,2-dioxathiolane or 1,2-oxathietene 2-oxide are formed and that decompose to produce CO2 and atomic sulfur. The non-oxidized sulfur intermediate would be an episulfide 3, formed from the reaction of the atomic sulfur with the nearest double bond and followed by consecutive reactions of insertion of atomic sulfur to form a trisulfide. Extrusion of S2 from the trisulfide would regenerate the episulfide, establishing a sulfidedisulfide-trisulfide equilibrium that worked as a capture-release cycle of sulfur. In the presence of salt, the results are consistent with the assumption that the episulfide 3 reacts with the corresponding sulfide anion to form a disulfide anion, which upon reaction with atomic sulfur forms a trisulfide anion that decomposes releasing diatomic sulfur S2, transporting the sulfur and generating a thiolate that is part of the catalytic cycle.

  19. Effect of cooking on the chemical composition of low-salt, low-fat Wakame/olive oil added beef patties with special reference to fatty acid content

    OpenAIRE

    López-López, I.; Cofrades, Susana; Cañeque, V.; M.T Díaz; O. López; Jiménez Colmenero, Francisco

    2011-01-01

    Changes in chemical composition, with special reference to fatty acids, as affected by cooking, were studied in low-salt (0.5%)/low-fat patties (10%) with added Wakame (3%) and partial or total replacement of pork backfat with olive oil-in-water emulsion. The addition of Wakame and olive oil-in-water emulsion improved (P

  20. A Raman spectral study of stream waters and efflorescent salts in Rio Tinto, Spain

    Science.gov (United States)

    Sobron, Pablo; Sanz, Aurelio; Acosta, Tayro; Rull, Fernando

    2009-01-01

    Acidic waters and sulfate-rich precipitates are found in mine tailings such as Rio Tinto (Huelva, SW, Spain). In this work we have characterized the chemical constituents of stream water and have identified some efflorescent salts and precipitates by means of Raman spectroscopy. Variable amounts of sulfate and bisulfate are found in the aqueous samples, suggesting changes in the acidity of the solutions. An estimation of the sulfate/water relative abundance is also given. Solid samples are readily identified as gypsum and as mixtures of hydrated hydroxysulfates belonging to the copiapite group. These results are consistent with previous works reporting the mineralogy and water composition of acid mine drainage-related sites, and proves the importance of Raman spectroscopy as a tool for accurate and noninvasive analyses of acid waters and associated geochemistry.

  1. Fragmentation of colliding planetesimals with water content

    CERN Document Server

    Maindl, Thomas I; Schäfer, Christoph; Speith, Roland

    2014-01-01

    We investigate the outcome of collisions of Ceres-sized planetesimals composed of a rocky core and a shell of water ice. These collisions are not only relevant for explaining the formation of planetary embryos in early planetary systems, but also provide insight into the formation of asteroid families and possible water transport via colliding small bodies. Earlier studies show characteristic collision velocities exceeding the bodies' mutual escape velocity which - along with the distribution of the impact angles - cover the collision outcome regimes 'partial accretion', 'erosion', and 'hit-and-run' leading to different expected fragmentation scenarios. Existing collision simulations use bodies composed of strengthless material; we study the distribution of fragments and their water contents considering the full elasto-plastic continuum mechanics equations also including brittle failure and fragmentation.

  2. Model studies on salt and water balances at Konanki pilot area, Andhra Pradesh, India

    OpenAIRE

    Srinivasulu, A.; Sujani Rao, C.; Lakshmi, G.V.; Satyanarayana, T.V.; Boonstra, J

    2004-01-01

    The salt and water balances at Konanki pilot area in Nagarjunasagar project right canal command in Andhra Pradesh State of India were analysed using SALTMOD. The model was calibrated by using two-year data collected in the pilot area. From the calibration, the leaching efficiencies of the root and transition zone were estimated as 65% and the out going natural sub-surface drainage was determined as 50 mm per year. The model predicts that the root zone soil water salinity will be reduced to 4,...

  3. Enhanced salt tolerance in maize plants induced by H2O2 leaf spraying is associated with improved gas exchange rather than with non-enzymatic antioxidant system

    Scientific Electronic Library Online (English)

    Franklin Aragão, Gondim; Rafael de Souza, Miranda; Enéas, Gomes-Filho; José Tarquinio, Prisco.

    2013-12-01

    Full Text Available Hydrogen peroxide (H2O2) is an essential signaling molecule that mediates plant responses against several biotic and abiotic stresses. H2O2 pretreatment has emerged as a signaling way, inducing salt stress acclimation in plants. Here, we analyzed the effects of H2O2 leaf pretreatment on the non-enzy [...] matic defense system (ascorbate and glutathione), plant growth, relative water content (RWC), relative chlorophyll content, H2O2 content, and gas exchange in maize plants under NaCl stress. The results showed that salinity reduced the leaf area and shoot and root dry mass as compared to control, and the leaf spraying with H2O2 significantly improved the growth of salt stressed plants. Photosynthesis and transpiration, stomatal conductance and intercellular CO2 concentration were strongly decreased by salinity after 7 and 14 days of salt exposure; however, the decrease was lower in plants sprayed with H2O2. The improved gas exchange in H2O2-sprayed stressed plants correlated positively with higher RWC and relative chlorophyll content and lower leaf H2O2 accumulation under NaCl stress conditions. Ascorbate and glutathione did not play any obvious effects as non-enzymatic antioxidants in the ROS scavenging. In conclusion, the salt tolerance induced by H2O2 leaf pretreatment is attributed to a reduction in the H2O2 content and maintenance of RWC and chlorophyll in maize leaves. These characteristics allow maize plants to maintain high rates of photosynthesis under salt stress and improve the growth.

  4. Elasticidade do solo em função da umidade e do teor de carbono orgânico Soil elasticity as affected by water and organic carbon content

    Directory of Open Access Journals (Sweden)

    João Alfredo Braida

    2008-04-01

    Full Text Available O acúmulo de carbono orgânico (CO observado em solos sob sistema de semeadura direta pode resultar em aumento de sua elasticidade, levando a maior resistência à compactação. Este estudo foi realizado para avaliar o efeito da umidade e do enriquecimento de CO sobre a elasticidade de dois solos, sendo um Nitossolo Vermelho distrófico latossólico e um Argissolo Vermelho-Amarelo distrófico arênico. Amostras superficiais de solo, coletadas no Argissolo e no Nitossolo, com variação significativa do teor de CO, foram equilibradas em quatro diferentes tensões de água e, então, submetidas a carregamentos e descarregamentos em uma prensa de compressão uniaxial, determinando-se o coeficiente de descompressão (Cd, o índice de recuperação do índice de vazios (Ir e a redução da densidade (Re, após remoção das cargas aplicadas. Os resultados demonstram que o Ir variou de 11,4 a 16,4 % no Nitossolo e de 14 a 23,4 % no Argissolo, dependendo da tensão de água e do teor de CO da amostra. O teor de CO das amostras afetou significativamente o Cd e, conseqüentemente, a Re após a retirada das cargas. A Re média observada variou de 0,023 a 0,059 Mg m-3 e de 0,018 a 0,078 Mg m-3, respectivamente para o Argissolo e o Nitossolo. A elasticidade do solo é sensivelmente afetada pela variação no teor de água e de CO.The organic carbon accumulation observed in soils under no-till system can increase the soil elasticity, resulting in a higher resistance to soil compaction. This study was carried out to evaluate the effects of water content and soil organic carbon (SOC enrichment on soil elasticity. Samples of a Hapludalf and a Typic Hapludox in southern Brazil, both with a significant variation in SOC content, were equilibrated at four different water tensions, and then loaded and unloaded on a uniaxial apparatus. The decompression coefficient (Cd, the recovery index (Ir of the void ratio and the density rebound (Re after load removal were determined. Results demonstrate that Ir varied from 11.4 to 16.4 % in the Hapludox and from 14 to 23.4 % in the Hapludalf, depending on the water tension and SOC content. The SOC content affected Cd significantly and, consequently, the rebound after load removal. The observed mean rebound varied from 0.023 to 0.059 Mg m-3 and from 0.018 to 0.078 Mg m-3, respectively, for the Hapludalf and the Hapludox. Soil elasticity is affected by variations in the water and SOC content.

  5. Simultaneous measurement of bulk density and water content in soil columns by use of 169Yb and 137Cs as source materials for gamma-rays

    International Nuclear Information System (INIS)

    The study is intended to demonstrate the use of 169Yb and 137Cs gamma sources for rapid and non-destructive simultaneous measurement of bulk density and water content in both swelling and non-swelling soils

  6. Salt clean-up for recycling by electrolysis with a cathode-perforated ceramic container assembly

    International Nuclear Information System (INIS)

    Pyroprocessing is a promising way for the recovery of actinide elements from the used nuclear fuel. Electro-refining is a key technology of pyroprocessing and the electro-refining is generally composed of two recovery steps-deposit of uranium onto a solid cathode and the recovery of actinide elements by a liquid cathode. After the electro-refining process, it is necessary to remove the solutes from the molten salt for the salt regeneration. In this study, it was attempted to clean up a molten salt with a solid cathode- perforated ceramic container assembly and a glassy carbon anode. LiCl-KCl eutectic salt was used as a medium of the electrolytic bath. Uranium and cerium were used as solutes, where uranium was used as a surrogate for the actinide elements. The initial contents of uranium and cerium in the salt were varied in the range of 0-5 wt%. Electrolysis experiments were carried out by passing a constant current between the anode and cathode at 500 deg C. The solute contents were measured using ICP-AES spectroscopy. The initial cathode potential was about -1.6 V. This value decreased with increasing time in the salt. The solutes in the saline phase were successfully recovered onto the cathode. (author)

  7. The mechanism of sulforaphene degradation to different water contents.

    Science.gov (United States)

    Tian, Guifang; Li, Yuan; Cheng, Li; Yuan, Qipeng; Tang, Pingwah; Kuang, Pengqun; Hu, Jing

    2016-03-01

    Sulforaphene extracted from radish seeds was strongly associated with cancer prevention. However, sulforaphene was unstable in aqueous medium and at high temperature. This instability impairs many useful applications of sulforaphene. In this paper, the stability of sulforaphene (purity above 95%) during storage at -20°C, 4°C and 26°C was studied. The degradation product was purified by preparative HPLC and identified by ESI/MS, NMR ((1)H and (13)C NMR) and FTIR spectroscopy. The degradation pathway of sulforaphene was presented. Furthermore, we found that the degradation rate of sulforaphene was closely related to the water content of sulforaphene sample. The higher the water content was, the faster the sulforaphene sample degraded. A mathematical model was developed to predict the degradation constant at various water contents. It provided a guideline for industry to improve the stability of sulforaphene during preparation, application and storage. PMID:26471648

  8. PENGARUH PEMBERIAN GULA MERAH DAN LAMA PENYIMPANAN TERHADAP KADAR GIZI DAN RASA TELUR ITIK ASIN [The Effect of Palm Sugar and Storage on Nutrient Content and Taste of Salted Ducks Egg

    Directory of Open Access Journals (Sweden)

    Yenni Yusriani

    2004-12-01

    Full Text Available This research used 150 duck eggs age one as subject day. There were two factors analyzed here. The first was the amount of palm sugar which consisted of 25 grams, 50 grams, and 75 grams. The second factor were the storage duration which consisted of 3, 4, and 5 weeks. The nutrient content parameters measured were rates protein, fat and ash content. Sensory quality parameters measured were color and taste. The analysis showed that in processing/making salted duck egg, palm sugar addition influenced protein content significantly (Fc = 7,0 > Ftab = 4,5 fat content ( Fc 67,3 > Ftab= 8,7 and ash content (Fc = 64,6 > F tab = 8,7 very significantly. However, organoleptic test showed that palm sugar addition did not influenced color and taste of salted duck egg significantly. Storage duration influenced protein content significantly (Fc= 6,9 F tab = 8,7 but did not significantly influenced ash content (Fc = 3,5 < Ftab = 4,46. Storage duration also influenced taste of salted duck egg, but did not for its color. The interaction of treatment between palm sugar addition and storage duration just influenced fat content of salted duck egg significantly. The salted duck egg made by addition 75 grams palm sugar and stored 5 weeks (A3B3 the highest content of fat. The salted ducks eeg made by addition of 25 grams palm sugar and stored duration produced the salted ducks egg with high content of fat and ash. Organoleptic test indicated that the panelis preferred the salted taste duck egg made by addition of palm sugar 25 grams and storaged for 3 weeks having reddish yellow color.

  9. Assessment of iodine content in Brazilian duplicate portion diets and in table salt

    International Nuclear Information System (INIS)

    Excess dietary intake may increase the risk for the hyperthyroidism in the elderly. This study investigated iodine dietary intake by epithermal neutron activation analysis (ENAA) analyzing duplicate portion diet and fortified table salt samples. Duplicate diet samples were obtained from a group of twenty-five steel mill workers from the city of Sao Paulo, over a 3-day period. The samples were freeze dried, mixed and homogenized. Fortified table salt brands were collected from the market and were analyzed with no pre-treatment. Assays for the iodine concentration in the table salt samples revealed values between 24 to 65 mg/kg. The average iodine daily intake for the worker's diets was 813 ?g/day, ranging from 402 to 1363 ?g/day. In some cases daily intakes were around 10 times higher than the recommended dietary allowance (RDA) value (150 ?g/day). (author)

  10. IMPROVEMENT OF SALT TOLERANCE IN DURUM WHEAT BY ASCORBIC ACID APPLICATION

    Directory of Open Access Journals (Sweden)

    Fercha Azzedine

    2011-03-01

    Full Text Available The main objective of this study is to examine whether exogenously applied Ascorbic acid (AsA may enhance the salt tolerance in durum wheat (Triticum durum Desf. var. Waha. Two weeks old seedling, grown in plastic pots of 1kg, were subjected to salt stress by adding 25ml of NaCl (150mm, and treated or not with the addition of ascorbic acid (0.7 mM. Two weeks after salt stress, plants were harvested and the various measures were recorded.The effects of salt stress, in the presence and absence of vitamin C, on the leaf growth, leaf area (LA and some physiological and biochemical changes were investigated. It was established that the application of vitamin C mitigate to variable extent the adverse effect of salt stress on plant growth, may be due, in part, to increased leaf area, improved chlorophyll and carotenoid contents, enhanced proline accumulation and decreased H2O2 content.In conclusion, we can say that treatment with ascorbic acid improve salt tolerance in durum wheat through the enhancement of multiple processes.

  11. UMTRA Project water sampling and analysis plan, Salt Lake City, Utah. Revision 1

    International Nuclear Information System (INIS)

    This water sampling and analysis plan describes planned, routine ground water sampling activities at the US Department of Energy Uranium Mill Tailings Remedial Action Project site in Salt Lake City, Utah. This plan identifies and justifies sampling locations, analytical parameters, detection limits, and sampling frequencies for routine monitoring of ground water, sediments, and surface waters at monitoring stations on the site

  12. Can PAHs influence Cu accumulation by salt marsh plants?

    Science.gov (United States)

    Almeida, C Marisa R; Mucha, Ana P; Delgado, Marta F C; Caçador, M Isabel; Bordalo, A A; Vasconcelos, M Teresa S D

    2008-09-01

    The presence of polycyclic aromatic hydrocarbons (PAHs) may change the mechanisms of metal uptake, thus influencing kinetics and extent of metal phytoextraction. Studies on the subject are scarce, particularly for salt marsh plants. The aim of this work was to investigate the effect of PAHs on the uptake of Cu by Halimione portulacoides, a plant commonly found in salt marshes. Experiments were carried out in the laboratory, either in hydroponics (sediment elutriate) or in sediment soaked in elutriate, which were prepared with sediment and water from a salt marsh of the Cavado river estuary (NW Portugal). Groups of H. portulacoides (grown in a greenhouse) were exposed to those media during six days. Cu2+ (as Cu(NO3)2), 10(2) and 10(4) microg l(-1), was added to the media as well as 1.6 microg l(-1) of the sixteen EPA priority PAHs (0.1 microg l(-1) of each PAHs). Cu was assayed in solutions, sediments and different plant tissues before and after experiments. After exposure, photosynthetic efficiency and levels of chlorophylls were also measured, indicating that plant stress indicators were identical in all plants independently of the media to which the plants were exposed. PAHs influenced both the soluble Cu fraction and Cu uptake by plants. The amounts of metal accumulated in both roots and stems were significantly higher when the 10(4) microg l(-1) of Cu enriched elutriate was amended with PAHs. Thus, results suggest that PAHs may modify Cu solubility, the Cu sorption by plants and/or the passive penetration of Cu into the root cells. Therefore, the combined effects of different types of pollutants should be taken in consideration when studying the remediation potential of plants, namely in terms of phytoextraction. PMID:18539325

  13. Influence of water and salt solutions on UVB irradiation of normal skin and psoriasis

    International Nuclear Information System (INIS)

    The influence of tap-water (TW) and salt solutions on the minimal erythema dose (MED) was investigated for normal human skin and uninvolved skin of psoriasis patients. MED (UVB) determinations on the forearm revealed that: (1) the MED definitely decreases whenever the arm is immersed in TW or NaCl solutions with a low concentration (4%) prior to UVB exposure, whereas almost saturated NaCl solution (26%), as well as locum Dead Sea water (LDSW), do not produce a change in the MED, and (2) the decrease in MED obtained by wetting the skin with TW was no longer present when the skin was allowed to dry for 20 min. A decrease in water uptake by skin (in vivo) and by callus (in vitro) was found as the salt concentration of the external solution increased. It is proposed that water taken up by the skin plays an important role in the sensitivity of the skin to UVB exposure. Bathing in TW or 4% NaCl prior to UVB exposure offered a slight to moderate improvement in psoriasis over UVB irradiation alone. Finally, it was shown that there is no obvious difference in clearance of the psoriatic skin between a bath in TW, 4% NaCl, or LDSW prior to UVB exposure. (orig.)

  14. Growth, water relations, proline and ion content of in vitro cultured Atriplex halimus subsp. schweinfurthii as affected by CaCl2

    OpenAIRE

    Youcef Daoud; Bouzid Nedjimi; Mustapha Touati

    2006-01-01

    Atriplex halimus subsp. schweinfurthii, a widely distributed perennial halophyte in the Algerian salt steppes, is of interest because of its tolerance to environmental stresses and its use as a fodder shrub for livestock in low-rainfall Mediterranean areas. This study reports the effects of salinity (0, 4, 8, 12, 16, and 20 g l-1 CaCl2) on the growth, succulence, proline and ion content of the species under in vitro conditions. Fresh and dry weight of plants increased with an increase in sali...

  15. Cost benefit of reducing radionuclide contents in drinking water

    International Nuclear Information System (INIS)

    Protective measures for reducing the content of natural radionuclides in drinking water were evaluated using cost benefit analysis of risk reduction. The risk indicator used was the weighted collective commitment of the effective dose equivalent. An increased radon level in the water represents a health hazard for the population, and mainly for the personnel of the water treatment plant. The justification was contemplated of spending 58,600 Czechoslovak crowns for reducing the collective commitment by 1 manSv. The presence of decay products in drinking water may cause a six-fold increase in radiation hazard. (M.D.). 4 tabs., 4 refs

  16. Geomicrobiology and hopanoid content of sulfidic subsurface vent biofilms, Little Salt Spring, Florida

    Science.gov (United States)

    Yang, E.; Schaperdoth, I.; Albrecht, H.; Freeman, K. H.; Macalady, J. L.

    2008-12-01

    Sulfide-rich, oxygen-poor environments are widespread in the subsurface and were prevalent at the earth's surface during critical intervals in the geologic past. Modern microbial communities in sulfidic niches have the potential to shed light on the biogeochemistry and biosignatures of anoxia and euxinia in earth history. Caves and sinkholes provide rare windows into microbially-dominated, sulfidic subsurface environments that are otherwise difficult and expensive to access. Little Salt Spring (Sarasota County, Florida) is a cover-collapse sinkhole lake with oxic surface water and anoxic, sulfidic bottom water (Alvarez Zarikian 2005). The site is famous for excellent preservation of human and animal archaeological remains (Clausen 1979), and its microbiology has never been investigated. Abundant white biofilms develop seasonally at a warm vent that feeds into the anoxic bottom water at 73 m depth below the water surface. The biofilms are of interest both as potential sources of biomarker compounds and because of their likely role in sulfuric acid production and limestone dissolution (speleogenesis). Biofilm samples were collected by expert science divers and investigated using microscopy, nucleic acid, and lipid analytical methods. Microscopy of the live biofilm revealed clusters of microbial filaments with holdfasts and dendritic, sulfur-rich colonial structures similar to those described in the 1960s for Thiobacterium, a sulfur-oxidizing genus with undetermined phylogeny. A 16S rDNA library constructed from the biofilm was split into three main phylotypes, with multiple clones representing (1) a Betaproteobacterial clade with no cultivated representatives, (2) filamentous Epsilonproteobacteria, and (3) a major bacterial lineage without named isolates (OP11/OD2). A full cycle rRNA approach is currently underway to link 16S rDNA phylotypes with specific populations in the biofilm. We confirmed using fluorescence in situ hybridization (FISH) that abundant filamentous cells with holdfasts are Epsilonproteobacteria. Additional FISH experiments will target the Betaproteobacterial and OP11/OD2 phylotypes retrieved by cloning. Based on HPLC-MS analyses, the biofilm contains at least 5 membrane hopanoid structures distinct from the suite of hopanoids present in sinking organic particles from the photic zone of the sinkhole. Future efforts will be aimed at linking hopanoid structures to specific sulfur-oxidizing populations and to geochemical parameters such as sulfide and oxygen concentrations. References Alvarez Zarikian,C. A., P. K. Swart, J. A. Gifford, P. L. Blackwelder, Palaeogeography, Palaeoclimatology, Palaeoecology 225, 134 (2005). Clausen, C. J., A. D. Cohen, C. Emiliani, J. A. Holman, J. J. Stipp, Science 203, 609 (1979).

  17. Rapid myelin water content mapping on clinical MR systems

    Energy Technology Data Exchange (ETDEWEB)

    Tonkova, Vyara; Arhelger, Volker [Fachhochschule Koblenz, RheinAhrCampus Remagen (Germany); Schenk, Jochen [Radiologisches Institut, Koblenz (Germany); Neeb, Heiko [Fachhochschule Koblenz, RheinAhrCampus Remagen (Germany); Koblenz Univ. (Germany). Inst. for Medical Engineering and Information Processing - MTI Mittelrhein

    2012-07-01

    We present an algorithm for the fast mapping of myelin water content using standard multiecho gradient echo acquisitions of the human brain. The method extents a previously published approach for the simultaneous measurement of brain T{sub 1}, T{sup *}{sub 2} and total water content. Employing the multiexponential T{sup *}{sub 2} decay signal of myelinated tissue, myelin water content was measured based on the quantification of two water pools ('myelin water' and 'rest') with different relaxation times. As the existing protocol was focussed on the fast mapping of quantitative MR parameters with whole brain coverage in clinically relevant measurement times, the sampling density of the T{sup *}{sub 2} curve was compromised to 10 echo times with a T {sub Emax} of approx. 40 ms. Therefore, pool amplitudes were determined using a quadratic optimisation approach. The optimisation was constrained by including a priori knowledge about brain water pools. All constraints were optimised in a simulation study to minimise systematic error sources given the incomplete knowledge about the real pool-specific relaxation properties. Based on the simulation results, whole brain in vivo myelin water content maps were acquired in 10 healthy controls and one subject with multiple sclerosis. The in vivo results obtained were consistent with previous reports which demonstrates that a simultaneous whole brain mapping of T{sub 1}, T{sup *}{sub 2}, total and myelin water content is feasible on almost any modern MR scanner in less than 10 minutes. (orig.)

  18. Exiguobacterium oxidotolerans, a halotolerant plant growth promoting rhizobacteria, improves yield and content of secondary metabolites in Bacopa monnieri (L.) Pennell under primary and secondary salt stress.

    Science.gov (United States)

    Bharti, Nidhi; Yadav, Deepti; Barnawal, Deepti; Maji, Deepamala; Kalra, Alok

    2013-02-01

    Brahmi (Bacopa monnieri), an integral component of Indian Ayurvedic medicine system, is facing a threat of extinction owing to the depletion of its natural populations. The present study investigates the prospective of exploitation of halotolerant plant growth promoting rhizobacteria (PGPR) in utilising the salt stressed soils for cultivation of B. monnieri. The effects of two salt tolerant PGPR, Bacillus pumilus (STR2) and Exiguobacterium oxidotolerans (STR36) on the growth and content of bacoside-A, an important pharmaceutical compound in B. monnieri, were investigated under primary and secondary salinity conditions. The herb yields of un-inoculated plants decreased by 48 % under secondary salinization and 60 % under primary salinization than the non salinised plants. Among the rhizobacteria treated plants, E. oxidotolerans recorded 109 and 138 %, higher herb yield than non-inoculated plants subjected to primary and secondary salinity respectively. E. oxidotolerans inoculated plants recorded 36 and 76 % higher bacoside-A content under primary and secondary salinity respectively. Higher levels of proline content and considerably lower levels of lipid peroxidation were noticed when the plants were inoculated with PGPR under all salinity regimes. From the results of this investigation, it can be concluded that, the treatments with salt tolerant PGPR can be a useful strategy in the enhancement of biomass yield and saponin contents in B. monnieri, as besides being an eco-friendly approach; it can also be instrumental in cultivation of B. monnieri in salt stressed environments. PMID:23085953

  19. Short communication. Suitable growth stage to start irrigation with saline water to increase salt tolerance and decrease ion accumulation of Kochia scoparia (L. Schrad)

    International Nuclear Information System (INIS)

    Koch ia scoparia L. Schard (common name: kochia) is a mesohalophyte, C4 plant. It has the potential of being an important fodder crop in arid and semi arid environments. In order to evaluate the effect of saline irrigation water on the seedling growth stage and to select the best growth stage to start using saline water, an experiment was conducted with seven different saline water treatments (1.5, 7, 14, 21, 28, 35 and 42 dS m-1) at four growth stages [after emergence (T1), 5 cm (T2), 10 cm (T3), and 15 cm (T4) of plant height]. Results showed that shoot dry biomass increased slightly up to 7 dS m-1 and after that decreased with increasing salinity. Salt tolerance of kochia increased at the T3 and T4 growth stages. Sodium content of the plant was increased by using high saline water. The adverse effect of salinity on the Na content of the plant was lower at the 10-15 cm growth stage than at earlier growth stages. Potassium content was not greatly affected by salinity. As conclusion, kochia is sensitive to saline irrigation at the earliest stages of growth, and the best plant height to start saline irrigation is between 10 and 15 cm. (Author) 18 refs.

  20. Monitoring of soil water content and quality inside and outside the water curtain cultivation facility

    Science.gov (United States)

    Ha, K.; Kim, Y.

    2014-12-01

    Water curtain cultivation system is an energy saving technique for winter season by splashing groundwater on the inner roof of green house. Artificial groundwater recharge application to the water curtain cultivation facilities was adopted and tested to use groundwater sustainably in a rural region of Korea. The groundwater level in the test site shows natural trend corresponding rainfall pattern except during mid-November to early April when groundwater levels decline sharply due to groundwater abstraction for water curtain cultivation. Groundwater levels are also affected by surface water such as stream, small dams in the stream and agricultural ditches. Infiltration data were collected from lysimeter installation and monitoring inside and outside water cultivation facility and compared with each other. The infiltration data were well correlated with rainfall outside the facility, but the data in the facility showed very different from the other. The missing infiltration data were attributed to groundwater level rise and level sensor location below water table. Soil water contents in the unsaturated zone indicated rainfall infiltration propagation at depth and with time outside the facility. According to rainfall amount and water condition at the initial stage of a rainfall event, the variation of soil water content was shown differently. Soil water contents and electrical conductivities were closely correlated with each other, and they reflected rainfall infiltration through the soil and water quality changes. The monitoring results are useful to reveal the hydrological processes from the infiltration to groundwater recharge, and water management planning in the water cultivation areas.

  1. Elemental composition of platelets. Part II. Water content of normal human platelets and measurements of their concentrations of Cu, Fe, K, and Zn by neutron activation analysis

    International Nuclear Information System (INIS)

    We determined the elements Cu, Fe, K, and Zn in normal human platelets by neutron activation analysis. The platelets were obtained from seven donors and treated as described in Part I. The elemental composition is expressed on a wet-weight basis for plasma-free platelets. The following results were obtained (+- values are 1 SD): Pure platelets: trapped plasma = 378 +- 35 mg/g, water content = 715 +- 15 mg/g, mean weight of the single platelet (by two different methods) = 9.9 +- 1.1 pg and 11.2 +- 1.7 pg, K = 4.39 +- 1.06 mg/g, Zn = 49.23 +- 10.97 ?g/g, Fe = 12.28 +- 2.94 ?g/g, and Cu = 1.39 +- 0.25 ?g/g. Impure platelets: trapped plasma = 349 +- 31 mg/g, water content = 736 +- 12 mg/g, K = 3.26 +- 0.78 mg/g, Zn = 35.71 +- 7.99 ?g/g, Fe = 17.11 +- 5.10 ?g/g, and Cu = 1.39 +- 0.21 ?g/g. To our knowledge, no data on Fe and Cu in platelets have hitherto been reported. 7 figures, 4 tables

  2. Ecosystem-groundwater interactions under changing land uses: Linking water, salts, and carbon across central Argentina

    Science.gov (United States)

    Jobbagy, E. G.; Nosetto, M. D.; Santoni, C. S.; Jackson, R. B.

    2007-05-01

    Although most ecosystems display a one-way connection with groundwater based on the regulation of deep water drainage (recharge), this link can become reciprocal when the saturated zone is shallow and plants take up groundwater (discharge). In what context is the reciprocal link most likely? How is it affected by land use changes? Has it consequences on salt and carbon cycling? We examine these questions across a precipitation gradient in the Pampas and Espinal of Argentina focusing on three vegetation change situations (mean annual rainfall): afforestation of humid (900-1300 mm) and subhumid grassland (700-900 mm/yr of rainfall), annual cultivation of subhumid grasslands (700-800 mm/yr), and annual cultivation of semiarid forests (500-700 mm). Humid and subhumid grasslands have shallow (plantations compared to grasslands as suggested by aboveground biomass measurements and satellite vegetation indexes from sites with and without access to groundwater. Where rainfall is forests groundwater is not accessible (> 15 m deep) and recharge under natural conditions is null. The establishment of crops, however, triggers the onset of recharge, as evidenced by vadose zones getting wetter and leached of atmospheric chloride. Cropping may cause water table raises leading to a two-way coupling of ecosystems and groundwater in the future, as it has been documented for similar settings in Australia and the Sahel. In the Pampas land use change interacts with groundwater consumption leading to higher carbon uptake (humid and subhumid grasslands) and salt accumulation (subhumid grasslands). In the Espinal (semiarid forest) land use change currently involves a one-way effect on groundwater recharge that may switch to a reciprocal connection if regional water table raises occur. Neglecting the role of groundwater in flat sedimentary plains can obscure our understanding of carbon and salt cycling and curtail our attempts to sustain soil and water resources under changing land uses.

  3. Ice crystallization in ultrafine water-salt aerosols: nucleation, ice-solution equilibrium, and internal structure.

    Science.gov (United States)

    Hudait, Arpa; Molinero, Valeria

    2014-06-01

    Atmospheric aerosols have a strong influence on Earth's climate. Elucidating the physical state and internal structure of atmospheric aqueous aerosols is essential to predict their gas and water uptake, and the locus and rate of atmospherically important heterogeneous reactions. Ultrafine aerosols with sizes between 3 and 15 nm have been detected in large numbers in the troposphere and tropopause. Nanoscopic aerosols arising from bubble bursting of natural and artificial seawater have been identified in laboratory and field experiments. The internal structure and phase state of these aerosols, however, cannot yet be determined in experiments. Here we use molecular simulations to investigate the phase behavior and internal structure of liquid, vitrified, and crystallized water-salt ultrafine aerosols with radii from 2.5 to 9.5 nm and with up to 10% moles of ions. We find that both ice crystallization and vitrification of the nanodroplets lead to demixing of pure water from the solutions. Vitrification of aqueous nanodroplets yields nanodomains of pure low-density amorphous ice in coexistence with vitrified solute rich aqueous glass. The melting temperature of ice in the aerosols decreases monotonically with an increase of solute fraction and decrease of radius. The simulations reveal that nucleation of ice occurs homogeneously at the subsurface of the water-salt nanoparticles. Subsequent ice growth yields phase-segregated, internally mixed, aerosols with two phases in equilibrium: a concentrated water-salt amorphous mixture and a spherical cap-like ice nanophase. The surface of the crystallized aerosols is heterogeneous, with ice and solution exposed to the vapor. Free energy calculations indicate that as the concentration of salt in the particles, the advance of the crystallization, or the size of the particles increase, the stability of the spherical cap structure increases with respect to the alternative structure in which a core of ice is fully surrounded by solution. We predict that micrometer-sized particles and nanoparticles have the same equilibrium internal structure. The variation of liquid-vapor surface tension with solute concentration is a key factor in determining whether a solution-embedded ice core or vapor-exposed ice cap is the equilibrium structure of the aerosols. In agreement with experiments, we predict that the structure of mixed-phase HNO3-water particles, representative of polar stratospheric clouds, consists of an ice core surrounded by freeze-concentrated solution. The results of this work are important to determine the phase state and internal structure of sea spray ultrafine aerosols and other mixed-phase particles under atmospherically relevant conditions. PMID:24820354

  4. Hydrocarbons in the Hauptsalz formation of the Gorleben salt dome. Content, distribution and origin

    International Nuclear Information System (INIS)

    In the frame of the geological exploration of the Gorleben salt dome (November 2010 to November 2012) concentrations and compositions of hydrocarbons occuring in the main rock salt (Hauptsalz, Stassfurt series, z2) have been investigated. These exploration works followed former investigations of Gerling et al. (2002) and Bornemann et al. (2008). In order to get fresh, unaltered and representative samples beyond the EDZ (excavation damaged zone) for mineralogical and geochemical analyses, about 45 boreholes have been drilled at the 840 m level of the Gorleben exploration mine. These boreholes have been arranged in equal distances (depending on the mine structure) alongside crosscut 1 west (each 6 m long) and crosscut 1 east (each 9 m long). In addition 20 packer boreholes (10 packer boreholes per crosscut) for pressure build-up recording and hydrocarbon sampling have also been established. Immediately after drilling, core samples from the Hauptsalz for organic geochemical analyses have been retrieved and were dissolved in deionised and degased water. The results of analyses of about 210 samples scattered over all 45 boreholes reveal a total background concentration of hydrocarbons (C1 to C40) of 0,24 mg/kg. 70 samples have concentrations between 1 mg/kg and 50 mg/kg (average 2,66 mg/kg) with 5 outliers up to 442 mg/kg in crosscut 1 west (Hammer et al. 2012, 2013). The drill cores have been investigated and documented by using ultraviolet light (l = 254 nm) in respect of visible indications of the existence of fluorescing aromatic hydrocarbons. Analyses revealed a high level of heterogeneous hydrocarbon distribution in the shape of isolated, irregular streaks, clusters, clouds and occasionally layers mainly located in recrystallized zones of the Hauptsalz. Thin sections and thick sections showed that hydrocarbons in z2HS1 (Knaeuelsalz) and z2HS2 (Streifensalz) samples are either located as black to brownish dendritical fluid inclusions alongside the grain boundaries of halite crystals, on the surfaces and knuckles or inside of micro capillary tubes of anhydrite crystals and anhydrite clusters, in newly formed micro cracks due to drilling respectively preparational works or rarely in micro-porous parts of the Hauptsalz. In order to get additional information about the origin of hydrocarbons detected in the Gorleben Hauptsalz organic geochemical analyses of potential source rocks in the vicinity like the Stassfurt Carbonate (z2SK) have been provided. These analyses revealed that the level of maturity of hydrocarbons in the Gorleben Hauptsalz correspond to 0,8 to 1,2% vitrinite-reflection-equivalent for the oil, similar to the organic-petrographical data of Stassfurt Carbonate and Copper schist in the periphery of the Gorleben salt dome (Gerling et al. 2002; Senglaub 2001; Cramer 2005). The analyses of biomarkers (esp. triterpenoid biomarkers) detected in the hydrocarbon mixtures from the Hauptsalz point to the Stassfurt Carbonate as source rocks of most of the hydrocarbons.

  5. Fluoride removal from water by nano filtration

    International Nuclear Information System (INIS)

    As any oligo element, fluoride is necessary and beneficial for human health to low concentrations, but an excess amount of fluoride ions in drinking water has been known to cause undesirable effects, especially tooth and bones fluoro sis. The maximum acceptable concentration of fluoride in drinking water was fixed by the World Health Organization according to the climate in the range of 1 mg.L-1 to 1,2 mg.L-1. Many methods have been used to remove fluoride from water such as precipitation, adsorption, electrocoagulation and membrane processes. Technologies using membrane processes are being used in many applications, particularly for brackish water desalination. Nano filtration seems to be the best process for a good selective defluorination of fluorinated waters. The main objective of this work was to investigate the retention of fluoride anions by nano filtration. The first part of this study deals with the characterisation of the NF HL2514TF membrane. The influence of various experimental parameters such as initial fluoride content, feed pressure, permeate flux, ionic strength, type of cation associated to fluoride and pH were studied in the second part. Results show that the retention order for the salts tested was TR(Na2SO4) > TR(CaCl2) > TR(NaCl), showing a retention sequence inversely proportional to the salt diffusion coefficients in water. It was also shown that charge effects could not be neglected, and a titration experiments confirmed that the NF membrane carry a surplus of negatively charged groups. Fluoride retention exceeds 60 pour cent, and increases with increasing concentration, where the rejection mechanism is related to the dielectric effects. Speigler-Kedem model was applied to experimental results in the aim to determine phenomenological parameters?and Ps respectively, the reflexion coefficient of the membrane and the solute permeability of ions. The convective and diffusive parts of the mass transfer were quantified with predominance of the diffusive contribution.

  6. From water to energy: The virtual water content and water footprint of biofuel consumption in Spain

    International Nuclear Information System (INIS)

    Energy diversification and the use of renewable energy sources are key points in the European energy strategy. Biofuels are the most popular renewable resource option for the transport sector, and the European Union has established objectives that the Member States must adopt and implement. However, biofuel production at such a scale requires a considerable amount of water resources, and this water-energy nexus is rarely taken into account. This paper shows the strong nexus between water and energy in biofuel production and estimates the virtual water (VW) content and the water footprint (WF) from the raw material production that will be needed to reach the Spanish targets for biofuel consumption by 2010. The results show how the impact of such targets on the global and local water situation could be reduced through virtual water imports and, at the same time, how these imports could increase Spain's water and energy dependence. Hence, in order to manage water from an integral perspective of the territory, the inclusion of biofuel consumption objectives should go hand in hand with measures to reduce the demand of energy in the transport sector.

  7. From water to energy. The virtual water content and water footprint of biofuel consumption in Spain

    International Nuclear Information System (INIS)

    Energy diversification and the use of renewable energy sources are key points in the European energy strategy. Biofuels are the most popular renewable resource option for the transport sector, and the European Union has established objectives that the Member States must adopt and implement. However, biofuel production at such a scale requires a considerable amount of water resources, and this water-energy nexus is rarely taken into account. This paper shows the strong nexus between water and energy in biofuel production and estimates the virtual water (VW) content and the water footprint (WF) from the raw material production that will be needed to reach the Spanish targets for biofuel consumption by 2010. The results show how the impact of such targets on the global and local water situation could be reduced through virtual water imports and, at the same time, how these imports could increase Spain's water and energy dependence. Hence, in order to manage water from an integral perspective of the territory, the inclusion of biofuel consumption objectives should go hand in hand with measures to reduce the demand of energy in the transport sector. (author)

  8. Water and Salt Stress in the Germination of Anadenanthera colubrina (Veloso Brenan Seeds

    Directory of Open Access Journals (Sweden)

    Gilvano Ebling Brondani

    2011-01-01

    Full Text Available The objective of this work was to verify levels of tolerance in Anadenanthera colubrina seeds to water and saltstress simulated for polyethyleneglycol 6000 (PEG 6000, manitol and KCl. The seeds was collected from nine treesand stored in cold chamber at 5 ºC. For the evaluation of the germination under it water stress was used PEG 6000solutions and manitol, and under salt stress solutions of KCl in different osmotic potentials: 0.0 Mpa (control, -0.6MPa, -0.8 MPa, -1.0 MPa, -1.2 MPa and -1.4 Mpa. The seeds were made use in gerbox and placed in germinationchambers, under constant light to the temperature of 25 ºC. The percentage and the germination speed index (GSIwere evaluated. The seeds of Anadenanthera colubrina showed moderate tolerance to the water stress simulated byPEG 6000. The percentage of germination was affected from -1.0 MPa, and the GSI from -0.6 Mpa. Manitol did notreveal efficient in the simulation of water stress, therefore it did not reduce the percentage of germination. Under itsalt stress, simulated for KCl, the germination percentage was affected from the potential -1.2 MPa, characterizinga high limit of tolerance to this salt.

  9. The effect of water purification systems on fluoride content of drinking water

    Directory of Open Access Journals (Sweden)

    Prabhakar A

    2008-03-01

    Full Text Available Objective: The purpose of the present study was to determine the effect of different water purification systems on the fluoride content of drinking water and to compare the efficacy of these water purification systems in reducing the fluoride content. Materials and Methods: Five different water purification systems were tested in this study. They were reverse osmosis, distillation, activated carbon, Reviva ® , and candle filter. The water samples in the study were of two types, viz, borewell water and tap water, these being commonly used by the people of Davangere City, Karnataka. The samples were collected before and after purification, and fluoride analysis was done using fluoride ion-specific electrode. Results: The results showed that the systems based on reverse osmosis, viz, reverse osmosis system and Reviva ® showed maximum reduction in fluoride levels, the former proving to be more effective than the latter; followed by distillation and the activated carbon system, with the least reduction being brought about by candle filter. The amount of fluoride removed by the purification system varied between the system and from one source of water to the other. Interpretation and Conclusion: Considering the beneficial effects of fluoride on caries prevention; when drinking water is subjected to water purification systems that reduce fluoride significantly below the optimal level, fluoride supplementation may be necessary. The efficacy of systems based on reverse osmosis in reducing the fluoride content of water indicates their potential for use as defluoridation devices.

  10. Water and sediment chemistry of Sutton Salt Lake, east Otago, New Zealand

    International Nuclear Information System (INIS)

    The Sutton Salt Lake is the only saline lake in New Zealand, and has formed in a windy cool-temperate maritime climate. Consequently, the lake is distinctly different from most of the world's saline lakes that form in arid continental settings. Sutton Salt Lake forms annually in a shallow (5 m) bedrock-floored depression c. 50 km from the nearest coast. The site receives c. 500 mm/year rainfall compared with coastal rainfall of near 1000 mm/year because of a minor rain-shadow effect of coastal hills. Surface evaporation rate is high (c. 700 mm/year) because of frequent strong winds. Sediments on the lake floor are derived by rain and wind erosion of the surrounding quartzofeldspathic schist bedrock, with a contribution from organic sources, particularly ostracods, and evaporative halite. The sediments have a higher proportion of phyllosilicates (muscovite, kaolinite, and chlorite) than the source rocks because of differential transport of these minerals into the lake depression. Lake water is entirely derived from rain, rather than groundwater, and the lake waters have had minimal chemical interaction with bedrock. Lake water pH is near 9 and pH of pore waters in drying lake sediments is near 8, compared with a pH near 7 for regional surface and ground waters. When full, the lake has salinity about one quarter to one third of that of sea-water, and ion ratios are similar to sea-water. The lake salinity is derived from marine aerosols in rainwater concentrated by c. 20,000 evaporation and refilling cycles in the lake depression. (author). 35 refs., 9 figs.; 2 tabs

  11. Calidad del agua de riego y afectación de los suelos por sales en la península de Paraguaná, Venezuela / Water quality and its affect soils by salts in the Paraguaná peninsula, Venezuela

    Scientific Electronic Library Online (English)

    Ana, Fernández; Roberto, Villafañe; Ruperto, Hernández.

    2011-12-01

    Full Text Available Se realizó una investigación diagnóstica en doce unidades de producción de la península de Paraguaná, estado Falcon, Venezuela, con el objetivo de relacionar la afectación de los suelos por sales con la condición de uso del suelo, la profundidad de muestreo, el porcentaje de humedad de la pasta (%H) [...] y la calidad del agua de riego. Se colectaron muestras de agua y de suelo en tres condiciones de uso: vegetación nativa (VN), cultivo (C) y en descanso (D), a 20, 40 y 60 cm de profundidad. Con los datos de conductividad eléctrica del extracto de la pasta del suelo a 25 °C (CEe) se analizó el efecto de la condición de uso y la profundidad de muestreo, colocando en un cuadro de doble entrada el número de muestras con valores de salinidad igual o superior a 2 dS m-1 en cada combinación de estas variables categóricas, encontrando en los suelos bajo cultivo el mayor número de muestras con salinidad igual o superior al valor preestablecido. El efecto del %H sobre la CEe se evaluó en un análisis de correlación, obteniéndose un valor bajo (r = 0,426 P = 0,0000). El efecto de la calidad del agua sobre la afectación de los suelos por sales se llevó a cabo con dos calificaciones predictivas: Ayers y Westcot (1985) y Villafañe (2011). Las aguas de riego califican con restricciones fuertes por salinidad. Las predicciones fueron acertadas, aunque los suelos mostraron valores de CEe y relación de adsorción de sodio, inferiores a los esperados; quizás por la textura, en su mayoría arenosa. Abstract in english A diagnostic research was done to assess the relationship between the affectation of soils by salts and soil use, sample depth, saturated pasta percentage (H), and irrigation water quality. Samples of water and soil were collected from twelve farms in the Paraguaná Peninsula, north of Falcón state, [...] Venezuela. Soil samples were taken under three soil use conditions: under native vegetation (VN), under cultivation (C) and fallow (D). Each of those samples were taken at three different depths: 0-20, 20-40 and 40-60 cm. Using data from the soil electrical conductivity of a saturation extract at 25 °C (ECe) the effects of soil use and sample depth were analized by placing in a table of double entrance the number of samples with ECe ? 2 dS m-1 in each combination of these categorical variables, finding that soils under cultivation (C) had the highest number of samples with ECe ? 2 dS m m-1. The effect of the saturation percentage (H) was evaluated through a correlation between H and the ECe, obtaining low correlation (r=0.426 P= 0.0000). Ayers and Westcot (1985) and Villafañe (2011) procedures for assessing the effect of salts of irrigation water on soils (irrigation water quality) were used. Results indicated strong restrictions that may limit irrigation water utilization due the effect of NaCl of irrigation water on soil. Nevertheless, the sampled soils showed lower values of the ECe and sodium adsorption ratio which may be due to the sandy texture in most of sampled soils.

  12. Using Saline Water in Salt Affected Soils to Enhance Food Productivity and Farmer Incomes in Bangladesh

    International Nuclear Information System (INIS)

    Bangladesh is a deltaic country with a total area of 147,570 km2, agriculture accounting for a major sector of the national economy. The coastal regions that occupy about 20% of the country's land area are very fertile and are used primarily to grow rice. During the rice season from April to the harvest in August river water as well as monsoon rainwater, harvested in large ponds and natural depressions, is used to flood the rice. During the subsequent months of dry season the intrusion of tidal water from the coast causes the soil and water salinity to increase from around 1 ppt (parts of salt per thousand grams of soil or water) in August to 8 ppt or more in April. This natural salinization is a major threat to crop production, so that about 90% of these potentially arable lands remain unused during the dry season. Key challenges to increasing the cropping intensity of these fertile lands are to use the collected pond water, consisting during the dry season of a mixture of rainwater and saline ground- and tidal waters, for crop irrigation without aggravating the natural soil and groundwater salinity, and to identify crops that will thrive in these saline conditions. In order to meet these challenges, irrigation must be applied at the right time and in the optimal amount for each type of crop so as to minimise the use of groundwater that would otherwise cause a further ingress of saline seawater and a resultant increase in soil salinity. Through an IAEA technical cooperation project, the Bangladesh Institute of Nuclear Agriculture identified and assessed crop varieties for their tolerance to salinity and evaluated the use of water from ponds and natural depressions for drip irrigation during the fallow period from August to April at pilot sites in the Noakhali and Satkhira coastal regions. Saline-tolerant varieties of wheat, mung bean, mustard, sesame, chickpea, tomato and groundnuts were identified using the carbon isotope discrimination methodology and made available to participating farmers. Yields obtained by farmers with these varieties at both Noakhali and Satkhira ranged from 1 to 3 tons per hectare. Such a harvested yield, compared with nothing if land were left fallow, would provide a substantial increase in food crop production and a significant economic benefit to resource-poor farmers. The soil moisture neutron probe (SMNP) was used to measure the soil content in order to ensure optimal irrigation scheduling. The soil salinity observed after the harvest of the crops in March/April averaged 1.5 ppt with drip irrigation, compared to 6.9 ppt on fallow land, hence showing that there is no adverse effect on soil salinity associated with the sustainable and productive use of these fallow lands for additional food production and income generation.

  13. Soil water diffusivity as a function of water content and time

    International Nuclear Information System (INIS)

    The soil-water diffusivity has been studied as a function of water content and time. From the idea of studying the horizontal movement of water in swelling soils, a simple formulation has been achieved which allows for the diffusivity, water content dependency and time dependency, to be estimated, not only of this kind of soil, but for any other soil as well. It was observed that the internal rearrangement of soil particles is a more important phenomenon than swelling, being responsible for time dependency. The method 2? is utilized, which makes it possible to simultaneously determine the water content and density, point by point, in a soil column. The diffusivity data thus obtained are compared to those obtained when time dependency is not considered. Finally, a new soil parameter, ?, is introduced and the values obtained agrees with the internal rearrangment assumption and time dependency for diffusivity (Author)

  14. Effect of water in salt repositories. Final report

    International Nuclear Information System (INIS)

    Additional results confirm that during most of the consolidation of polycrystalline salt in brine, the previously proposed rate expression applies. The final consolidation, however, proceeds at a lower rate than predicted. The presence of clay hastens the consolidation process but does not greatly affect the previously observed relationship between permeability and void fraction. Studies of the migration of brine within polycrystalline salt specimens under stress indicate that the principal effect is the exclusion of brine as a result of consolidation, a process that evidently can proceed to completion. No clear effect of a temperature gradient could be identified. A previously reported linear increase with time of the reciprocal permeability of salt-crystal interfaces to brine was confirmed, though the rate of increase appears more nearly proportional to the product of sigma ?P rather than sigma ?P2 (sigma is the uniaxial stress normal to the interface and ?P is the hydraulic pressure drop). The new results suggest that a limiting permeability may be reached. A model for the permeability of salt-crystal interfaces to brine is developed that is reasonably consistent with the present results and may be used to predict the permeability of bedded salt. More measurements are needed, however, to choose between two limiting forms of the model

  15. Effect of water in salt repositories. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Baes, C.F. Jr.; Gilpatrick, L.O.; Kitts, F.G.; Bronstein, H.R.; Shor, A.J.

    1983-09-01

    Additional results confirm that during most of the consolidation of polycrystalline salt in brine, the previously proposed rate expression applies. The final consolidation, however, proceeds at a lower rate than predicted. The presence of clay hastens the consolidation process but does not greatly affect the previously observed relationship between permeability and void fraction. Studies of the migration of brine within polycrystalline salt specimens under stress indicate that the principal effect is the exclusion of brine as a result of consolidation, a process that evidently can proceed to completion. No clear effect of a temperature gradient could be identified. A previously reported linear increase with time of the reciprocal permeability of salt-crystal interfaces to brine was confirmed, though the rate of increase appears more nearly proportional to the product of sigma ..delta..P rather than sigma ..delta..P/sup 2/ (sigma is the uniaxial stress normal to the interface and ..delta..P is the hydraulic pressure drop). The new results suggest that a limiting permeability may be reached. A model for the permeability of salt-crystal interfaces to brine is developed that is reasonably consistent with the present results and may be used to predict the permeability of bedded salt. More measurements are needed, however, to choose between two limiting forms of the model.

  16. Water calibration measurements for neutron radiography: Application to water content quantification in porous media

    Science.gov (United States)

    Kang, M.; Bilheux, H. Z.; Voisin, S.; Cheng, C. L.; Perfect, E.; Horita, J.; Warren, J. M.

    2013-04-01

    Using neutron radiography, the measurement of water thickness was performed using aluminum (Al) water calibration cells at the High Flux Isotope Reactor (HFIR) Cold-Guide (CG) 1D neutron imaging facility at Oak Ridge National Laboratory, Oak Ridge, TN, USA. Calibration of water thickness is an important step to accurately measure water contents in samples of interest. Neutron attenuation by water does not vary linearly with thickness mainly due to beam hardening and scattering effects. Transmission measurements for known water thicknesses in water calibration cells allow proper correction of the underestimation of water content due to these effects. As anticipated, strong scattering effects were observed for water thicknesses greater than 0.2 cm when the water calibration cells were positioned close to the face of the detector/scintillator (0 and 2.4 cm away, respectively). The water calibration cells were also positioned 24 cm away from the detector face. These measurements resulted in less scattering and this position (designated as the sample position) was used for the subsequent experimental determination of the neutron attenuation coefficient for water. Neutron radiographic images of moist Flint sand in rectangular and cylindrical containers acquired at the sample position were used to demonstrate the applicability of the water calibration. Cumulative changes in the water volumes within the sand columns during monotonic drainage determined by neutron radiography were compared with those recorded by direct reading from a burette connected to a hanging water column. In general, the neutron radiography data showed very good agreement with those obtained volumetrically using the hanging water-column method. These results allow extension of the calibration equation to the quantification of unknown water contents within other samples of porous media.

  17. Physical Deterioration of Egyptian Limestone Affected by Saline Water

    Directory of Open Access Journals (Sweden)

    Mohammed EL-GOHARY

    2013-12-01

    Full Text Available This study is the second in a series of experiments that describe the chemical, physical and thermal properties of archaeological limestone affected by salt and saline water in Egypt. This research aims to study the aggressive physical effects of different types of salts dominated in saline water and their different mechanisms on the acceleration of weathering processes that affect Egyptian limestone. It presents a multidisciplinary approach to characterize, at both micro/macro scales, the behavior of a limestone widely used as a construction material in most of Egyptian monuments when interacting with some types of salt solutions of various concentrations. A systematic optical, morphological, physical and mechanical analysis of the fresh and weathered stone samples were used to evaluate different characteristics through using scientific some techniques such as optical microscope (OP and scanning electron microscope (SEM. In addition to the using of some special computer programs that were used to define different physical and mechanical properties such as weight changes, bulk density, total porosity, water uptake, water content, thermal dilatation and abrasion resistant. The results proved that all investigated samples were gradually affected by the types of salinity paths and salt concentrations. These results will serve as a database for the future comparison of long term behavior of stones before and after the planned conservation of the entire area. So, it is pertinent to device some scientific methods and interventions to reduce all factors of salt effects and removing their harmful aspects from historic fabric of the archaeological buildings through some scientific recommendations

  18. Salt tolerance underlies the cryptic invasion of North American salt marshes by an introduced haplotype of the common reed Phragmites australis (Poaceae)

    Science.gov (United States)

    Vasquez, E.A.; Glenn, E.P.; Brown, J.J.; Guntenspergen, G.R.; Nelson, S.G.

    2005-01-01

    A distinct, non-native haplotype of the common reed Phragmites australis has become invasive in Atlantic coastal Spartina marshes. We compared the salt tolerance and other growth characteristics of the invasive M haplotype with 2 native haplotypes (F and AC) in greenhouse experiments. The M haplotype retained 50% of its growth potential up to 0.4 M NaCl, whereas the F and AC haplotypes did not grow above 0.1 M NaCl. The M haplotype produced more shoots per gram of rhizome tissue and had higher relative growth rates than the native haplotypes on both freshwater and saline water treatments. The M haplotype also differed from the native haplotypes in shoot water content and the biometrics of shoots and rhizomes. The results offer an explanation for how the M haplotype is able to spread in coastal salt marshes and support the conclusion of DNA analyses that the M haplotype is a distinct ecotype of P. australis.

  19. Effect Of Addition Of LiBr Salt In Iso-Propanol - Water Binary Azeotropic Mixture

    OpenAIRE

    Sanket R. Vora, Prof. Suchen B. Thakore, Prof. Nitin Padhiyar, Ameerkhan Pathan

    2013-01-01

    Isopropanol is a very useful solvent for many industries and it requires in pure form for specific applications. It makes an azeotrope with water at 80.3 0C having composition of 87.4 % by weight. It is seen that conventionally methods used are not much effective or large energy consuming. Another alternative is to add salt which is helpful in changing the relative volatility of the mixture and separation gets is much more easier. In this paper the effect of ad...

  20. Further Studies, About New Elements Production, by Electrolysis of Cathodic Pd Thin–Long Wires, in Alcohol-Water Solutions (H, D) and Th-Hg Salts. New Procedures to Produce Pd Nano-Structures

    CERN Document Server

    Celani, F; Righi, E; Trenta, G; Catena, C; D’Agostaro, G; Quercia, P; Andreassi, V; Marini, P; Di Stefano, V; Nakamura, M; Mancini, A; Sona, P G; Fontana, F; Gamberale, L; Garbelli, D; Celia, E; Falcioni, F; Marchesini, M; Novaro, E; Mastromatteo, U

    2005-01-01

    Abstract They were continued, at National Institute of Nuclear Physics, Frascati National Laboratories-Italy, the systematic studies about detection of new elements, some even with isotopic composition different from natural one, after prolonged electrolysis of Pd wires. The electrolytic solution adopted is the, unusual, used from our experimental group since 1999. In short, it was a mixture of both heavy ethyl alcohol (C2H5OD at 90-95%) and water (D2O, at 10-5%), with Th salts at micromolar concentration and Hg at even lower concentration (both of spectroscopic purity). The liquid solutions, before use, were carefully vacuum distilled (and on line 100nm filtered) at low temperatures (30-40°C) and analysed by ICP-MS. The pH was kept quite mild (acidic at about 3-4). The cathode is Pd (99.9% purity) in the shape of long (60cm) and thin wires (diameter only 0.05mm). Before use, it is carefully cleaned and oxidised by Joule heating in air following a (complex) procedure from us continuously improved (since 1995...

  1. Replacement of salt by a novel potassium- and magnesium-enriched salt alternative improves the cardiovascular effects of ramipril.

    OpenAIRE

    Mervaala, E. M.; Paakkari, I.; Laakso, J; Nevala, R.; Teräväinen, T. M.; Fyhrquist, F.; Vapaatalo, H; Karppanen, H.

    1994-01-01

    1. The influence of salt (sodium chloride; NaCl) (an additional 6% in the diet) and that of a novel sodium-reduced, potassium-, magnesium-, and L-lysine-enriched salt alternative on the cardiovascular effects of ramipril was studied in stroke-prone spontaneously hypertensive rats in a 6-week study. The intake of sodium chloride was adjusted to the same level by adding the salt alternative at a 1.75 times higher amount than regular salt. 2. Salt produced a marked rise in blood pressure and ind...

  2. Salt tolerant plants increase nitrogen removal from biofiltration systems affected by saline stormwater.

    Science.gov (United States)

    Szota, Christopher; Farrell, Claire; Livesley, Stephen J; Fletcher, Tim D

    2015-10-15

    Biofiltration systems are used in urban areas to reduce the concentration and load of nutrient pollutants and heavy metals entering waterways through stormwater runoff. Biofilters can, however be exposed to salt water, through intrusion of seawater in coastal areas which could decrease their ability to intercept and retain pollutants. We measured the effect of adding saline stormwater on pollutant removal by six monocotyledonous species with different levels of salt-tolerance. Carex appressa, Carex bichenoviana, Ficinia nodosa, Gahnia filum, Juncus kraussii and Juncus usitatus were exposed to six concentrations of saline stormwater, equivalent to electrical conductivity readings of: 0.09, 2.3, 5.5, 10.4, 20.0 and 37.6 mS cm(-1). Salt-sensitive species: C. appressa, C. bichenoviana and J. usitatus did not survive ?10.4 mS cm(-1), removing their ability to take up nitrogen (N). Salt-tolerant species, such as F. nodosa and J. kraussii, maintained N-removal even at the highest salt concentration. However, their levels of water stress and stomatal conductance suggest that N-removal would not be sustained at concentrations ?10.4 mS cm(-1). Increasing salt concentration indirectly increased phosphorus (P) removal, by converting dissolved forms of P to particulate forms which were retained by filter media. Salt concentrations ?10 mS cm(-1) also reduced removal efficiency of zinc, manganese and cadmium, but increased removal of iron and lead, regardless of plant species. Our results suggest that biofiltration systems exposed to saline stormwater ?10 mS cm(-1) can only maintain N-removal when planted with salt-tolerant species, while P removal and immobilisation of heavy metals is less affected by species selection. PMID:26150068

  3. Lorentz Force on Sodium and Chlorine Ions in a Salt Water Solution Flow under a Transverse Magnetic Field

    Science.gov (United States)

    De Luca, R.

    2009-01-01

    It is shown that, by applying elementary concepts in electromagnetism and electrochemistry to a system consisting of salt water flowing in a thin rectangular pipe at an average velocity v[subscript A] under the influence of a transverse magnetic field B[subscript 0], an electromotive force generator can be conceived. In fact, the Lorentz force…

  4. Maxwell-Wagner relaxation in common minerals and a desert soil at low water contents

    Science.gov (United States)

    Arcone, Steven A.; Boitnott, Ginger E.

    2012-06-01

    Penetration of 100- to 1000-MHz ground-penetrating radar (GPR) signals is virtually non-existent in arid and desert soils despite their low water content and moderate conductivity, the latter of which cannot explain the loss. Under the hypothesis that strong dielectric relaxation supplements DC conductivity to cause high intrinsic attenuation rates, we compared the complex permittivity of a desert soil sample with that of controlled samples of quartz, feldspars, calcite, coarse and crystallite gypsum, kaolinite and montmorillonite. The soil had 80% quartz, 10% feldspars and 10% gypsum by weight, with the latter composed of crystallites and crustations. All samples had 4-7% volumetric water content. We measured permittivity most accurately from 1.6 MHz to 4 GHz with Fourier Transform time domain reflectometry, and used grain sizes less than 53 ?m. All samples show low-frequency dispersion with the soil, gypsum crystallites and montmorillonite having the strongest below 100 MHz, the highest attenuation rates, and conductivity values unable to account for these rates. The soil rate exceeded 100 dB m- 1 by 1 GHz. Through modeling we find that a broadened relaxation centered from 2 to 16 MHz sufficiently supplements losses caused by conductivity and free water relaxation to account for loss rates in all our samples, and accounts for low-frequency dispersion below 1 GHz. We interpret the relaxation to be of the Maxwell-Wagner (MW) type because of the 2- to 16-MHz values, relaxation broadening, the lack of salt, clay and magnetic minerals, and insufficient surface area to support adsorbed water. The likely MW dipolar soil inclusions within the predominantly quartz matrix were gypsum particles coated with water containing ions dissolved from the gypsum, and the conducting water layers themselves. The inclusions for the monomineralic soils were likely ionized partially or completely water-filled interstices, and partially filled galleries for the montmorillonite. The low water content may be necessary to help isolate these inclusions. For our common, low conductivity minerals, the MW contributions to attenuation rates are significant above 10 MHz, whereas they are significant above about 100 MHz for the more conductive minerals and soil.

  5. Variability in salt flux and water circulation in Ota River Estuary, Japan

    Directory of Open Access Journals (Sweden)

    Mohammad SOLTANIASL

    2013-07-01

    Full Text Available In this study the sub-tidal and intra-tidal variations of salt fluxes in the upstream section of a shallow estuary (with a water depth of less than 3 m were investigated. The salt fluxes were estimated based on the cross-sectional average salinity and velocity measured by the fluvial acoustic tomography system (FATS. The results indicate that the magnitude of seaward fluxes is approximately two times greater than that of landward fluxes under normal conditions. The results of short-term observation in the study area indicate that there is a phase lag of the bottom and surface salinities between the regions with the largest and smallest depths. The vertical shear flux with a peak value of ?0.7 m2/s during the ebb tide indicated an important contribution to the total salt flux compared with the advective flux. A phase lag occurred between the vertical shear terms in the regions with the largest and smallest depths, which resulted from the correlation between the vertical variations of the salinity and velocity and the existence of transversal velocity circulations.

  6. Cyclization of lapachol induced by thallium salts

    International Nuclear Information System (INIS)

    This work describes the cyclization of lapachol (1) induced by thallium triacetate (TTA) and thallium trinitrate (TTN) in several solvents using magnetic stirring and under microwave irradiation. ?-Xyloidone (2) - dehydro-a-lapachone - was obtained as the main product in these reactions in 20 - 75% yield. However, rhinacanthin-A (4) was isolated as main product in a 40% yield, using TTA and acetic anhydride:water (1:1) as solvent, and dehydroiso- a-lapachone (3) in 21% yield, using TTA and dichloromethane as solvent. The reaction time decreased drastically under microwave conditions, but the yields of these reactions were not the expected. (author)

  7. A salt-water reservoir as the source of a compositionally stratified plume on Enceladus.

    Science.gov (United States)

    Postberg, F; Schmidt, J; Hillier, J; Kempf, S; Srama, R

    2011-06-30

    The discovery of a plume of water vapour and ice particles emerging from warm fractures ('tiger stripes') in Saturn's small, icy moon Enceladus raised the question of whether the plume emerges from a subsurface liquid source or from the decomposition of ice. Previous compositional analyses of particles injected by the plume into Saturn's diffuse E ring have already indicated the presence of liquid water, but the mechanisms driving the plume emission are still debated. Here we report an analysis of the composition of freshly ejected particles close to the sources. Salt-rich ice particles are found to dominate the total mass flux of ejected solids (more than 99 per cent) but they are depleted in the population escaping into Saturn's E ring. Ice grains containing organic compounds are found to be more abundant in dense parts of the plume. Whereas previous Cassini observations were compatible with a variety of plume formation mechanisms, these data eliminate or severely constrain non-liquid models and strongly imply that a salt-water reservoir with a large evaporating surface provides nearly all of the matter in the plume. PMID:21697830

  8. The effect of salt stress on growth, chlorophyll content, proline and nutrient accumulation, and k/na ratio in walnut

    International Nuclear Information System (INIS)

    The effects of irrigation water salinity on growth, chlorophyll contents, proline and nutrients accumulation and K/Na ratio in three walnut cultivars was investigated. Three irrigation water salinity levels with electrical conductivities of 1,5, 3, and 5.0 dS/m and tap water as a control treatment were used in a randomized design with four replications. Irrigation practices were realized by considering the weight of each pot. Sodium, clor, proline, K/Na and Ca/Na ratio of leaf were increased under salinity conditions. But growth of plant and chlorophyll a, chlorophyll b content were decreased under saline condition. There were significant differences between in irrigation water salinity levels in proline and chlorophyll a, chlorophyll b, Na content. But there were not any significant differences in LRWC (%). Results showed that, regarding fresh shoot weight, dry shoot and root weight, there were significant differences between cultivars, but chlorophyll a, chlorophyll b, total chlorophyll, proline accumulation and leaf relative water content (LRWC) there weren't any significant differences between cultivars. Kaman 1 and Bilecik walnut cultivars showed higher accumulation of proline than Kaman 5 but was not observed significant difference between them. (author)

  9. Characterizing the dynamics of Orimulsion spills in salt, fresh, and brackish water

    International Nuclear Information System (INIS)

    The objective of this study was to characterize the behaviour of Orimulsion spills under dynamic conditions in salt, fresh, and brackish water. The effect of surface or subsurface release of Orimulsion was also examined. A 600 litre tank filled with 400 litres of water was used for the experiments. A motorized hoop oscillated vertically beneath the surface of the water. A bitumen-to-water ratio of 1:1000 was used for all experiments. Water samples were withdrawn from the top and the bottom of the tank at different time intervals to analyze particle size distribution and concentration. Results showed that in brackish water, the coalescence of bitumen droplets was rapid. In fresh water, no increase in median particle size was detected. In all water types, bitumen concentration decreased significantly within 48 hours. There was also a significant difference in bitumen concentrations between the top and bottom addition runs with salt water. 2 refs., 7 tabs., 13 figs

  10. Salt distribution in dry-cured ham measured by computed tomography and image analysis

    DEFF Research Database (Denmark)

    Vestergaard, Christian Sylvest; Erbou, Søren G.; Thauland, T.; Berg, P.; Adler-Nissen, Jens

    2005-01-01

    Forty-seven hams were scanned four times by computed tomography (CT) while being manufactured into dry-cured hams. An image-processing algorithm measured CT values in the lean part of the hams and provided line profiles reflecting the magnitude and spatial location of salt gradients. At the end of manufacturing, seven entire hams were dissected and the salt content of the lean part determined. Likewise, in the remaining 40 hams, the lean meat of the slices corresponding to the CT images was diss...

  11. Effect of post treatments on the corrosion resistance of plasma sprayed duplex stainless steel coating in salt water

    International Nuclear Information System (INIS)

    The uniform composition of a thermally sprayed duplex stainless steel coating is essential to ensure its good corrosion resistance in salt water. Stainless steel coatings made by atmospheric plasma spraying (APS) always contain pores and oxides accompanied with chromium-depleted zones which destroy the corrosion resistance of such coatings. To reduce porosity and oxidation of the coatings, several post treatments for the coatings sprayed by APS and by APS with gas shielding around the plasma jet (APS/S) were studied including resin impregnation, hot isostatic pressing (HIP), shot peening and vacuum annealing. Electrochemical corrosion tests revealed that the corrosion resistance of the APS coatings could not be improved by any post treatments because oxidation during spraying caused chromium-depleted zones in the coating. The best corrosion resistance was obtained by using the shielding gas shroud with APS. Such coatings had a very low oxide content and primarily ferritic structure. The corrosion resistance of these APS/S coatings can be further improved by shot peening to densify the coating or by post annealing, which balances the austenite/ferrite ratio of the coating as well as reduce porosity

  12. Progress In Methods Of Measuring The Free Water Content Of Snow

    Science.gov (United States)

    Fisk, David J.

    1983-09-01

    Providing ground truth for the backscatter and absorption effects of a snow cover on electromagnetic waves has long been a problem. One characteristic of the snow cover which has been particularly difficult to measure is its free, or liquid, water content - the fraction of the snow's volume which exists in the liquid state. Five methods which have been used for measuring this parameter are described and their merits and deficiencies discussed. Two of the methods are calorimetric, measuring the free water content as a function of the heat added to or removed from a snow sample while completely melting or freezing it. The third uses the freezing point depression observed on adding a salt solution to a snow sample to calculate the snow's free water content. In the fourth procedure, a snow sample is completely dissolved in ethyl or methyl alcohol. The corresponding decrease in temperature is inversely related to the free water content of the snow. The final technique is electronic: above a certain frequency, the electrical capacitance of snow is related to its density and free water content. With accurate calibration, devices which measure snow capacitance are likely to be the simplest and fastest means of providing free water measurements.

  13. Molecular dynamics simulations of freezing of water and salt solutions.

    Czech Academy of Sciences Publication Activity Database

    Vrbka, Luboš; Jungwirth, Pavel

    2007-01-01

    Ro?. 134, ?. 1 (2007), s. 64-70. ISSN 0167-7322 R&D Projects: GA MŠk LC512; GA ?R(CZ) GD203/05/H001 Institutional research plan: CEZ:AV0Z40550506 Keywords : ice freezing * salt ions * molecular dynamics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.982, year: 2007

  14. The influence of the hydrophobic agent, catalyst, solvent and water content on the wetting properties of the silica films prepared by one-step sol-gel method

    Science.gov (United States)

    Ramezani, Maedeh; Vaezi, Mohammad Reza; Kazemzadeh, Asghar

    2015-01-01

    In this paper, we used one-step sol-gel process to prepare the hydrophobic silica films on the glass substrate from the ethyltriethoxysilane (ETES) as a precursor and iso-octyltrimethoxysilane (Iso-OTMS) as a hydrophobic agent. In order to study the effect of the hydrophobic agent on the water repellent properties of the silica films, the alcosol was prepared by keeping constant the molar ratio of ETES:EtOH:H2O at 1:36.2:6.3, with 6 M ammonium hydroxide and Iso-OTMS/ETES molar ratio varied from 0.2 to 1.4. Also, we investigated the influence of the other sol-gel reaction parameters, such as catalyst, solvent and water content and their effect on the morphology and hydrophobic properties of the silica films. The results revealed that by altering the molar ratio of NH4OH, EtOH and H2O, different sizes of silica nanoparticles from 41.24 to 86.16 nm were obtained. The silica films were characterized by atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM) images, contact angle measurement (CA) and percentage of optical transmission.

  15. Bread Water Content Measurement Based on Hyperspectral Imaging

    OpenAIRE

    Liu, Zhi; Møller, Flemming

    2011-01-01

    Water content is one of the most important properties of the bread for tasting assesment or store monitoring. Traditional bread water content measurement methods mostly are processed manually, which is destructive and time consuming. This paper proposes an automated water content measurement for bread quality based on near-infrared hyperspectral imaging against the conventional manual loss-in-weight method. For this purpose, the hyperspectral components unmixing technology i...

  16. Bread Water Content Measurement Based on Hyperspectral Imaging

    DEFF Research Database (Denmark)

    Liu, Zhi; Møller, Flemming

    2011-01-01

    Water content is one of the most important properties of the bread for tasting assesment or store monitoring. Traditional bread water content measurement methods mostly are processed manually, which is destructive and time consuming. This paper proposes an automated water content measurement for bread quality based on near-infrared hyperspectral imaging against the conventional manual loss-in-weight method. For this purpose, the hyperspectral components unmixing technology is used for measuring ...

  17. Estimation of Areal Soil Water Content through Microwave Remote Sensing

    OpenAIRE

    Oevelen, P.J., van

    2000-01-01

    In this thesis the use of microwave remote sensing to estimate soil water content is investigated. A general framework is described which is applicable to both passive and active microwave remote sensing of soil water content. The various steps necessary to estimate areal soil water content are discussed through literature review, laboratory experimental results and results of extensive field experimental work. Even with the large amount of field data being available, no experiment provided a...

  18. Elementary Analyses and Heavy Metal Contents of Tap Waters in Konuralp District: Comparison of Mains Water, Spring Water and Zamzam

    Directory of Open Access Journals (Sweden)

    Muammer Y?lmaz 1

    2014-09-01

    Full Text Available Objective: We meet our water needs such as city water supply, natural spring water, Zamzam water was aimed to compare in terms of chemical ion concentration and heavy metal content. Methods: City water from the four regions with different source, Zamzam water and bottled natural spring water in samples, ions and heavy metal values measured. Results have been assessed according to the criteria specified in the United States environmental protection agency (EPA and the World Health Organization (WHO. Results: In the sample of tap water taken from Konuralp, Al and Fe values were found over the EPA-WHO limit value. In the sample of bottled natural spring water, heavy metals are within the limits established. In the sample of Zamzam water Ca+2, Mg+2 values were higher than other samples but not exceeding the limits. In the sample of Zamzam water nitrate (NO3-, and vanadium (V values is very high from samples taken of the city water. Conclusion: Water content may be different with the water supply and environmental effects. More extensive analysis should be done by municipalities to drinking water that contains ions and heavy metal and citizens to know the measurements of the water they drink should be informed periodically of local authority’s websites.

  19. Long term salinity stress in relation to lipid peroxidation, super oxide dismutase activity and proline content of salt-sensitive and salt-tolerant wheat cultivars Estrés salino a largo plazo en relación con peroxidación lipídica, actividad superóxido dismutasa y contenido de prolina de cultivares de trigo sensibles y tolerantes a la salinidad

    OpenAIRE

    Azam Borzouei; Mohammad Kafi; Elahe Akbari-Ghogdi; MirAhmad Mousavi-Shalmani

    2012-01-01

    Salinity is a widespread root medium problem limiting productivity of cereal crops worldwide. The ability of plants to tolerate salt is determined by multiple biochemical pathways that facilitate retention and/or acquisition of water, protect chloroplast functions, and maintain ion homeostasis. Therefore, the ability of salt-sensitive ('Tajan') and salt-tolerant cultivar ('Bam') of Triticum aestivum L. to adapt to a saline environment were evaluated in a set of greenhouse experiments under sa...

  20. Polydipsia induced by intermittent delivery of salted liquid foods

    Science.gov (United States)

    Poling, Alan; Krafft, Kathy; Chapman, Linda; Lyon, David

    1980-01-01

    Food-deprived rats given constant access to water were exposed to fixed-time presentations of soybean milk and diluted sweetened condensed cows' milk. In some conditions these liquid foods were adulterated with varying amounts of sodium chloride. Under a fixed-time 30-sec schedule of food delivery, little water was consumed when the food was soybean milk alone, or soybean milk with sodium chloride added in concentrations of .9, 1.8, or 3.6%. However, schedule-induced polydipsia appeared when soybean milk adulterated with 7.2 or 14.4% sodium chloride was delivered under this schedule. When soybean milk containing 7.2% sodium chloride was presented under fixed-time 15-, 30-, 60-, 120-, and 240-sec schedules, schedule-induced drinking increased with the fixed-time value from 15 to 120 seconds, and decreased at 240 seconds. Like soybean milk, diluted sweetened condensed milk delivered under fixed-time schedules of 30, 60, and 120 seconds failed to evoke schedule-induced polydipsia, but did so when adulterated with 7.2% sodium chloride. Drinking induced by salted liquid foods resembled the polydipsia engendered by spaced dry-food presentations in several ways, including temporal relation to food delivery, persistence within and across sections, sensitivity to interfood interval, and magnitude relative to intake evoked by bulk-food presentation. PMID:7381361

  1. Viscosities of oxalic acid and its salts in water and binary aqueous mixtures of tetrahydrofuran at different temperatures

    Indian Academy of Sciences (India)

    M L Parmar; M K Guleria

    2005-07-01

    Relative viscosities for the solutions of oxalic acid and its salts, viz. ammonium oxalate, sodium oxalate and potassium oxalate, at different concentrations have been determined in water and in binary aqueous mixtures of tetrahydrofuran (THF) [5, 10, 15 and 20% by weight of THF] at 298.15 K, and in water and in 5% (w/w) THF + water at five different temperatures. The data have been evaluated using the Jones-Dole equation and the obtained parameters have been interpreted in terms of solute-solute and solute-solvent interactions. The activation parameters of viscous flow have been obtained which depicts the mechanism of viscous flow. The oxalic acid and its salts behave as structure breakers in water and in binary aqueous mixtures of THF.

  2. Calculating salt loads to Great Salt Lake and the associated uncertainties for water year 2013; updating a 48year old standard.

    Science.gov (United States)

    Shope, Christopher L; Angeroth, Cory E

    2015-12-01

    Effective management of surface waters requires a robust understanding of spatiotemporal constituent loadings from upstream sources and the uncertainty associated with these estimates. We compared the total dissolved solids loading into the Great Salt Lake (GSL) for water year 2013 with estimates of previously sampled periods in the early 1960s. We also provide updated results on GSL loading, quantitatively bounded by sampling uncertainties, which are useful for current and future management efforts. Our statistical loading results were more accurate than those from simple regression models. Our results indicate that TDS loading to the GSL in water year 2013 was 14.6millionmetrictons with uncertainty ranging from 2.8 to 46.3millionmetrictons, which varies greatly from previous regression estimates for water year 1964 of 2.7millionmetrictons. Results also indicate that locations with increased sampling frequency are correlated with decreasing confidence intervals. Because time is incorporated into the LOADEST models, discrepancies are largely expected to be a function of temporally lagged salt storage delivery to the GSL associated with terrestrial and in-stream processes. By incorporating temporally variable estimates and statistically derived uncertainty of these estimates, we have provided quantifiable variability in the annual estimates of dissolved solids loading into the GSL. Further, our results support the need for increased monitoring of dissolved solids loading into saline lakes like the GSL by demonstrating the uncertainty associated with different levels of sampling frequency. PMID:26231769

  3. Salt water intrusion in the aquifers in the south oriental coastal zones of Sicily

    International Nuclear Information System (INIS)

    Along the oriental south coast Sicily are present a plurality of phenomenons of interest concomitant hydrogeological, they had focused the attention both of the Authorities of the control of the water resources and those of the researchers interested to the study of the environmental problems. The progressive salting up of the aquifers coastal it is becoming, in Sicily, one of the maximum problems. The causes of such phenomenon are well noted and resume in two terms: ground water mining and irrationality of the wells use. Every lack of control in the distribution of the wells and the wrong and having opposite effect modalities with which water is extracted, are to the origin of the instant lowering phenomenons and, finally, progressive of the piezometric level of the underground aquifer coastal. By now, in different coast lines, also to different kilometers from the shore- line, depression zones are found in which the dynamic level also reaches negative values some times superior to the 150 meters under the sea level and the static level also superior to the 60 meters always under the sea level. This situation determines, within the coastal aquifers, a rapids salt water intrusion with consequent progressive salting up of the sweet aquifers. Such pollution manifests it in very persistent way and alone slow the native conditions could also be recovered after the elimination of the phenomenon causes. The salinity increase in the underground aquifer it happens with greater rapidity and with so much greater gravity when aquifer is carbonatic type, as that of the study areas, that is interested from karst phenomenons and from tectonic fractures. The thematic that, under these conditions, attracted the attention of the researchers were: The underground runs of the submarine springs feeding, to be able to value possibility of earth intercept. The relationships established along the coastal lines, in the coastal aquifers, among sweet water and sea water and the preferential streets followed by intrusion. The pollutants diffusion, organic and chemical, particularly hydrocarbons and heavy metals, in the round waters and their dispersion in the sea water. The induced variations to the phenomenons above- mentioned, from the antropic interventions realized in the hinterland: obstruction dams, springs intercept, wells distribution and exploitation modality. A project, on purpose compiled, financed by UNESCO and IAEA, and finalized to the phenomenons study of which above, it has as object the possibility to experiment the methodologies applicability of isotopic analysis in the wells and springs study, with particular reference to those submarine, observing and attentively valuing the complexes relationships that coexist between underground waters and sea waters along the Sicily coastal regions. To such purpose has been formulated a research program based on the samplings and analysis of the springs waters individualized to inland and to sea and some wells on purpose selected present along the coast line from North Syracuse to South-West Donnalucata. We had retained opportune to effect, in coincidence with the seasonal variations, 4 series of annual drawing of water samples to be submitted to analysis chemical-physics; the study program had beginning with the first series of samplings in the individualized zones in the March's month 2002 and they still continues in the year 2004. Shown are the water points of which the periodic sampling is foreseen. The sampled points are 31, it are divided in the 5 zones: Zone A. - Ciane: n. 4 inland springs and n.5 wells; Zone B - Ognina: n. 1 submarine springs n. 2 wells; Zone C - Cassibile: n. 5 wells and 2 submarine springs; Zone D - Avola: n. 2 inland springs and n. 2 submarine springs; Zone E - Donnalucata: n. 5 wells and n. 2 submarine springs and n. 1 inland springs. The analyses are conducted by different groups of search of three Italian Universities and precisely: 1. Palermo University will effect the analyses inherent: Heavy metal (Pb, Cu, Co, Zn, Cd, Ni, As, Hg); Microcontaminants (NO2-, NO

  4. Tailoring of poly(vinyl alcohol cryogels properties by salts addition

    Directory of Open Access Journals (Sweden)

    2009-05-01

    Full Text Available The present paper aims to study the possibility to modify the properties of poly(vinyl alcohol (PVA hydrogels prepared in the presence of different salt types (Na2SO4, NaCl and NaNO3 in order to extend the nature of the salts already used in obtaining films or gels, to expand their concentration domains and to explain the increase of film strain, concomitantly with the increase of their crystallinity. The morphology of the PVA based hydrogels has been studied by Scanning Electronic Microscopy (SEM, the interaction between the PVA macromolecular chains and salts has been determined by Fourier Transform Infrared Spectroscopy (FTIR, while the mechanical properties of the cryogels have been investigated by oscillatory dynamic mechanical measurements. The gels swelling in water have been monitored by gravimetric method in order to evidence the alteration of the PVA cryogel properties such as crystallinity and porosity determined by the salt addition to the initial PVA aqueous solution. The data reported show that the ions present in the PVA solution influence the interaction between PVA-water and PVA-PVA chains; their influence on the salt-based PVA hydrogels follow the Hofmeister lyotropic series.

  5. Consumer control of salt marshes driven by human disturbance.

    Science.gov (United States)

    Bertness, Mark D; Silliman, Brian R

    2008-06-01

    Salt marsh ecosystems are widely considered to be controlled exclusively by bottom-up forces, but there is mounting evidence that human disturbances are triggering consumer control in western Atlantic salt marshes, often with catastrophic consequences. In other marine ecosystems, human disturbances routinely dampen (e.g., coral reefs, sea grass beds) and strengthen (e.g., kelps) consumer control, but current marsh theory predicts little potential interaction between humans and marsh consumers. Thus, human modification of top-down control in salt marshes was not anticipated and was even discounted in current marsh theory, despite loud warnings about the potential for cascading human impacts from work in other marine ecosystems. In spite of recent experiments that have challenged established marsh dogma and demonstrated consumer-driven die-off of salt marsh ecosystems, government agencies and nongovernmental organizations continue to manage marsh die-offs under the old theoretical framework and only consider bottom-up forces as causal agents. This intellectual dependency of many coastal ecologists and managers on system-specific theory (i.e., marsh bottom-up theory) has the potential to have grave repercussions for coastal ecosystem management and conservation in the face of increasing human threats. We stress that marine vascular plant communities (salt marshes, sea grass beds, mangroves) are likely more vulnerable to runaway grazing and consumer-driven collapse than is currently recognized by theory, particularly in low-diversity ecosystems like Atlantic salt marshes. PMID:18577090

  6. Calibrating a Salt Water Intrusion Model with Time-Domain Electromagnetic Data

    DEFF Research Database (Denmark)

    Herckenrath, Daan; Odlum, Nick; Nenna, Vanessa; Knight, Rosemary; Auken, Esben; Bauer-Gottwein, Peter

    2013-01-01

    Salt water intrusion models are commonly used to support groundwater resource management in coastal aquifers. Concentration data used for model calibration are often sparse and limited in spatial extent. With airborne and ground-based electromagnetic surveys, electrical resistivity models can be obtained to provide high-resolution three-dimensional models of subsurface resistivity variations that can be related to geology and salt concentrations on a regional scale. Several previous studies have...

  7. Tomato salt tolerance: Impact of grafting and water composition on yield and ion relations

    Science.gov (United States)

    We evaluated the salt tolerance of tomato cv Big Dena under both non-grafted 2 conditions and when grafted on Maxifort rootstock, under a series of 5 salinity levels and two irrigation water composition types. The salinity levels of the irrigation water were -0.03, -0.15, -0.30, -0.45, and -0.60 MPa...

  8. NAMMA CVI CLOUD CONDENSED WATER CONTENT V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The counterflow virtual impactor (CVI) was used to measure condensed water content (liquid water or ice in particles about 8 microns in diameter and up) and cloud...

  9. CAMEX-4 CVI CLOUD CONDENSED WATER CONTENT V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The counterflow virtual impactor (CVI) was used to measure condensed water content (liquid water or ice in particles about 8 microns in diameter and up) and cloud...

  10. Accuracy of bottled drinking water label content.

    Science.gov (United States)

    Khan, Nazeer B; Chohan, Arham N

    2010-07-01

    The purpose of the study was to compare the accuracy of the concentration of fluoride (F), calcium (Ca), pH, and total dissolved solids (TDS) levels mentioned on the labels of the various brands of bottled drinking water available in Riyadh, Saudi Arabia. Twenty-one different brands of locally produced non-carbonated (still water) bottled drinking water were collected from the supermarkets of Riyadh. The concentration of F, Ca, TDS, and pH values were noted from the labels of the bottles. The samples were analyzed for concentrations in the laboratory using the atomic absorption spectrophotometer. The mean level of F, Ca, and pH were found as 0.86 ppm, 38.47 ppm, and 7.5, respectively, which were significantly higher than the mean concentration of these elements reported in the labels. Whereas, the mean TDS concentration was found 118.87 ppm, which was significantly lower than the mean reported on the labels. In tropical countries like Saudi Arabia, the appropriate level of F concentration in drinking water as recommended by World Health Organization (WHO) should be 0.6-0.7 ppm. Since the level of F was found to be significantly higher than the WHO recommended level, the children exposed to this level could develop objectionable fluorosis. The other findings, like pH value, concentrations of Ca, and TDS, were in the range recommended by the WHO and Saudi standard limits and therefore should have no obvious significant health implications. PMID:19475483

  11. Clay modified crushed salt for shaft sealing elements. Material optimization and evaluation in field tests

    International Nuclear Information System (INIS)

    Salt-based materials are intended to use for backfill and sealing systems in geotechnical barriers in underground HLW-repositories. Due to the creep of the saliniferous host rock, the salt backfill will be compacted during several hundreds or thousands years of operation to a minimum of porosity resp. permeability. To raise the sealing potential of a salt-based backfill, the porosity after construction should be minimized by optimal material performance and compaction performance. A procedure to optimize the grain size distribution of crushed salt and its water and clay content is described. The optimized salt fraction gets a better compaction behavior than straight mine-run salt. The addition of a filler-like material (e.g. Friedland Clay Powder) reduces the total porosity and permeability. Backfill columns made from crushed salt and clay probably include an instant sealing function.

  12. Structure Development in Amorphous Starch as Revealed by X-ray Scattering: Influence of the Network Structure and Water Content

    OpenAIRE

    Bayer, R. K.; Cagiao, M, E.; Baltá Calleja, F. J.

    2006-01-01

    The evolution of the amorphous structure of starch was characterized during the drying process by real time X-ray wide-angle scattering. The X-ray diffractograms of injection-molded starch show two superposed, rather broad, scattering maxima indicative of noncrystalline structures. The location of the two peaks has been associated to disordered starch single helices. A third maximum that arises upon drying the material in vacuum is associated to the scattering emerging from regions ...

  13. Water Content of Basalt Erupted on the ocean floor

    Science.gov (United States)

    Moore, J.G.

    1970-01-01

    Deep sea pillow basalts dredged from the ocean floor show that vesicularity changes with composition as well as with depth. Alkalic basalts are more vesicular than tholeiitic basalts erupted at the same depth. The vesicularity data, when related to experimentally determined solubility of water in basalt, indicate that K-poor oceanic tholeiites originally contained about 0.25 percent water, Hawaiian tholeiites of intermediate K-content, about 0.5 percent water, and alkali-rich basalts, about 0.9 percent water. Analyses of fresh basalt pillows show a systematic increase of H2O+ as the rocks become more alkalic. K-poor oceanic tholeiites contain 0.06-0.42 percent H2O+, Hawaiian tholeiites, 0.31-0.60 percent H2O+, and alkali rich basalts 0.49-0.98 percent H2O+. The contents of K2O, P2O5, F, and Cl increase directly with an increase in H2O+ content such that at 1.0 weight percent H2O+, K2O is 1.58 percent, P2O5 is 0.55 percent, F is 0.07 percent, and Cl is 0.1 percent. The measured weight percent of deuterium on the rim of one Hawaiian pillow is -6.0 (relative to SMOW); this value, which is similar to other indications of magmatic water, suggests that no appreciable sea water was absorbed by the pillow during or subsequent to eruption on the ocean floor. Concentrations of volatile constituents in the alkali basalt melts relative to tholeiitic melts can be explained by varying degrees of partial melting of mantle material or by fractional crystallization of a magma batch. ?? 1970 Springer-Verlag.

  14. Fractionation, solubility and functional properties of wheat bran proteins as influenced by pH and/or salt concentration.

    Science.gov (United States)

    Idris, Wisal H; Babiker, Elfadil E; El Tinay, Abdullahi H

    2003-12-01

    The content, fractionation, solubility and functional properties of wheat bran proteins as well as the effects of pH and/or NaCl concentration on some of these functional properties were investigated. The protein content of the bran was found to be 16.80%. Albumin and glutelin are the major fractions of wheat bran proteins. The minimal protein solubility was observed at pH 5.5, the maximum at pH 11.5. The emulsifying capacity, activity and emulsion stability as well as foaming capacity and foam stability were greatly affected by pH and salt concentrations. Lower values were observed at acidic pH and high salt concentration. The least gelation concentration of wheat bran proteins was found to be 16% when the proteins were dissolved in 1.0 M NaCl. The total protein was highly viscous and dispersable with water-holding capacity of 4.20 mL H2O/g protein, oil-holding capacity of 1.70 mL oil/g protein and bulk density of 0.29 g/mL while dispensability was found to be 77.30%. PMID:14727772

  15. The activity-composition relationship of oxygen and hydrogen isotopes in aqueous salt solutions: I. vapor-liquid water equilibration of single salt solutions from 50 to 100 degrees C

    International Nuclear Information System (INIS)

    The differences between oxygen and hydrogen isotope activity and composition ratios of water in single salt solutions (NaCl, KCl, MgCl2, CaCl2, Na2SO4, and MgSO4) were determined by means of a vapor-liquid water equilibration method over the temperature range of 50 to 100 degrees C. A parallel equilibration technique of pure water and salt solutions with the same isotopic composition at the same experimental conditions enabled the precise determination of the isotope salt effects. Hydrogen isotope activity ratios of all of the salt solutions studied were appreciably higher than composition ratios. That is, D/H ratio of water vapor in isotope equilibrium with a solution increases as salt is added to the solution. Magnitudes of the hydrogen isotope effects are in the order CaCl2 ? MgCl2 > MgSO4 > KCl ? NaCl > Na2SO4 at the same molality. Except for KCl solutions at 50 degrees C, oxygen isotope activity ratios in the solutions were lower than, or very close to, the composition ratios. The isotope effects observed are all linear with the molalities of the salt solutions, and either decrease with temperature or are almost constant over the temperature range. Salt solutions of divalent cations (Ca and Mg) exhibited oxygen isotope effects much larger than those of monovalent cations (Na and K). Magnitudes of the oxygen isotope effects in NaCl solutions, and of the hydrogen isotope effects in Na2SO4 and MgSO4 solutions, may increase from 50 to 100 degrees C. Our results agree with most of those from the literature near room temperature, but are at notable variance with those by Truesdell (1974) around 100 degrees C. The results in this study and the literature data near room temperature were satisfactorily fitted to simple equations as a function of concentration of the salt solutions and temperature

  16. A Study of Salt (Sodium Chloride Content in Different Bread Consumed in Shiraz City in Spring/Summer 2009

    Directory of Open Access Journals (Sweden)

    MJ Zibaeenezhad

    2010-03-01

    Full Text Available Background: Randomized controlled studies over the last 4 decades demonstrated that controlling blood pressure could reduce the risks of cardiovascular disease. The relationship between diet ingredient (particularly the salt and blood pressure has been well established and since bread is the main element in population diet, especially in our country, the determination of sodium content of bread is of high priority and warrants further investigation.Method: A total of 204 bakeries were selected for this study and the amount of salt in different bread was measured once during spring and summer, using the method of Iran’s Organization for Standards and Industrial Investigation. The study was performed on 6 different kinds of bread baked in different districts of Shiraz city.Results: This study demonstrated that 17.9% of bread’s salt level in Shiraz exceeds the standard level and the remaining 82.1% is within the standard range. Mean percentage of bread’s salt was reported as 1.31 gram% . Conclusion: Compared to the previous reports, the results of present study fortunately showed a reduction of salt in bread during the last two decades. However, 17.9% of bread’s salt is yet more than the standard level.

  17. Images of Water in School Textbooks: A Content Analysis --- ???? ???? ?? ?? ???????? ???? ?????

    Directory of Open Access Journals (Sweden)

    Hossein Afkhami, hafkhami48@yahoo.co.uk - ???? ?????

    2008-12-01

    Full Text Available Education as a social process is under the influence of the society, its institutions and the environment that it operates in. Schools as a part of the social structure shape students both attitudes and behavior and reflect the society's values. Students’ socialization is heavily influenced by their family, neighborhoods, and schools including teachers and textbooks. School textbooks are an important source for socialization in the process of learning during the course of schooling for children aged between 6 to 18 years old. This age group is including population of over 15 million boys and girls in Iran. These are a reflection of the culture, knowledge and values considered important by authorities in society. Iran, like other Middle Eastern societies, is facing higher population and water resources shortage in the future. Therefore, the impact of environmental images or knowledge about the resources and predicted risk would worth to be studied. The purpose of this paper is to show the way school textbooks shape Iranian kids attitudes towards the word or concept of water in terms of natural resources or water consumption. This study analyzed the presentation of concept of water in Iranian school textbooks. Some 82 school textbooks were investigated by utilizing content analysis method. Content analyses of the 11 different subjects showed that there were significant differences among science, humanities and social science books in terms of structure and social values. The study examined school textbooks used in grades 1 through 11 published 1984 by the Ministry of Education. The study revealed an interesting finding that about two percent of total content devoted to water related issues under 20 different categories, but less than 0.05 percent related to the way of consumptions or quality of healthy water. The images of water portrayed here, show the richness of natural resources including sea, rivers and the level of rain or snow for different parts of the country or the world. In contrast, data from WRI indicate that in the next two decades sanitation, healthy water and drought would be the major challenge for the people who are living in some part of the world including the Middle East and Central Asian regions. Results implied important directions for educational administrators and policy makers in the preparation and use of right educational content to support the environmental cause. ??? ????? ????? ????? ?????? ????? ??? ?? ??? 82 ????? ???? ???? ?? ?? ?? ???? ?????? ????? ???? ????? ?? ???. ??? ?? ??? ??????? ????? ??????? ??? ??????-??????? ????? ?? ??? ???? ? ????? ??????? ???? ?? ????? ????? ?????? ?? ???? ???? ???? ?? ???? ?? ???. ????? ????? ??????? ???? ???? ?????? ????? ? ????? ??? ??????? ???? ? ????? ??? ? ????? ?????? ? ?????? ???? ???. ??????? ?? ???? ?????? ????? ? ??????? ?????? ???????? ????? ???????? ??????? ?????? ? ??????????? ????? ????? ????? ?? ????. ?? ???? ???? ??? ? ?? ??? ???????? ????? ?? ???? ??? ?? ?????? ????? ????? ????? ?? ???. ??????? ??? ???? ?? ??? ???? ????? ???? ?? ???? ?????? ?? ?????? ??? ???? ?????? ?? ????. ?????? ??? ???? ? ????? ???? ?????? ???? ?? ???? ? ????? ?? ? ????? ?? ?? ????? ?? ???????? ?? ????? ???? ????? ? ?? ?? ????? ?????? ???? ?? ????? ?? ????? ??????? ??? ?? ??? ????? ??? ? ?????? ????? ?? ?? ??????? ?? ???? ???? ???. ??????

  18. Evidence on dynamic effects in the water contentwater potential relation of building materials

    DEFF Research Database (Denmark)

    Scheffler, Gregor Albrecht; Plagge, Rudolf

    2008-01-01

    Hygrothermal simulation has become a widely applied tool for the design and assessment of building structures under possible indoor and outdoor climatic conditions. One of the most important prerequisites of such simulations is reliable material data. Different approaches exist here to derive the required material functions, i.e. the moisture storage characteristic and the liquid water conductivity, from measured basic properties. The current state of the art in material modelling as well as the corresponding transport theory implies that the moisture transport function is unique and that the moisture storage characteristic is process dependent with varying significance for the numerical simulation. On the basis of different building materials, a comprehensive instantaneous profile measurement study has been accomplished. Profiles of water content and relative humidity were obtained during a series of adsorption and desorption processes. The data provides clear evidence that the water contentwater potential relationship is not only dependent on the process history, but also on the process dynamics. The higher moisture potential gradients were induced, the larger was the deviation between static and dynamic moisture storage data and the more pronounced was the corresponding dynamic hysteresis. The paper thus provides clear experimental evidence on dynamic effects in the water contentwater potential relation of building materials. By that, data published by previous authors as Topp et al. (1967), Smiles et al. (1971) and Plagge et al. (1999) is confirmed. Moreover, it is shown that moisture transport processes are well susceptible to dynamic effects already within the hygroscopic moisture content range.

  19. The influence of the hydrophobic agent, catalyst, solvent and water content on the wetting properties of the silica films prepared by one-step sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Ramezani, Maedeh, E-mail: m.ramezani@merc.ac.ir [Division of Nanotechnology and Advanced Materials, Materials and Energy Research Center, P.O. Box 31787-316, Karaj (Iran, Islamic Republic of); Vaezi, Mohammad Reza [Division of Nanotechnology and Advanced Materials, Materials and Energy Research Center, P.O. Box 31787-316, Karaj (Iran, Islamic Republic of); Kazemzadeh, Asghar [Division of Semiconductors, Materials and Energy Research Center, P.O. Box 31787-316, Karaj (Iran, Islamic Republic of)

    2015-01-30

    Graphical abstract: - Highlights: • Transparent, hydrophobic, uniform silica film by sol–gel co-precursor process. • Preparation of silica coatings from ETES and Iso-OTMS in different molar ratios. • Decreasing in hydrophobicity of the films with increasing in Iso-TMS molar ratio. • By changing the molar ratio of component, different size of particles was obtained. - Abstract: In this paper, we used one-step sol–gel process to prepare the hydrophobic silica films on the glass substrate from the ethyltriethoxysilane (ETES) as a precursor and iso-octyltrimethoxysilane (Iso-OTMS) as a hydrophobic agent. In order to study the effect of the hydrophobic agent on the water repellent properties of the silica films, the alcosol was prepared by keeping constant the molar ratio of ETES:EtOH:H{sub 2}O at 1:36.2:6.3, with 6 M ammonium hydroxide and Iso-OTMS/ETES molar ratio varied from 0.2 to 1.4. Also, we investigated the influence of the other sol–gel reaction parameters, such as catalyst, solvent and water content and their effect on the morphology and hydrophobic properties of the silica films. The results revealed that by altering the molar ratio of NH{sub 4}OH, EtOH and H{sub 2}O, different sizes of silica nanoparticles from 41.24 to 86.16 nm were obtained. The silica films were characterized by atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM) images, contact angle measurement (CA) and percentage of optical transmission.

  20. Partitioning of Total Dissolved Salts, Boron and Selenium in Pariette Wetland Water, Sediments and Benthic Organisms

    Science.gov (United States)

    Jacobson, A. R.; Jones, C. P.; Vasudeva, P.; Powelson, D.; Grossl, P.

    2014-12-01

    The Pariette Wetlands located in the Uinta Basin, UT, were developed by the BLM in part to mitigate salinity associated with irrigation drainage and runoff from flowing to the Green River, a tributary of the Colorado River. The wetlands are fed by runoff from upstream agricultural irrigation, and natural subsurface and overland flow through the Uintah formation, which is seleniferous, and saline. Concentrations of Total Dissolved Salts (TDS), boron (B) and selenium (Se) in the wetlands exceed the total maximum daily loads developed to meet the US EPA's water quality planning and management regulations (40CFR 130). This is of concern because the wetlands are home to populations of migratory birds, waterfowl, raptors, and numerous small mammals. A mass balance of the Se concentrations of water flowing into and out of the wetlands indicates that 80% of the Se is stored or lost within the system. Additional data suggest that the majority of the Se is associated with the sediments. Little information is available regarding the TDS and B. Therefore we will determine the whether B and other salts are accumulating in the wetland systems, and if so where. We sampled water, sediment, benthic organisms, and wetland plants, in 4 of the 23 ponds from the flood control inlet to water flowing out to the Green River. Sediments were collected at 3 depths (0-2 cm, 2-7 cm, and 7+ cm) at 3-4 locations within each pond including the inlet, outlet and at least one site near a major wetland plant community. Benthic organisms were sampled from the 0-2 cm and 2-7 cm sediment layers. Sediment and organism samples were digested with HNO3 and HClO4 prior to analysis of total Se by HGAAS. Hot water extractable B and DPTA extractable B were analyzed by ICP-AES. TDS was estimated from EC in the sediment and organisms extracts and direct analysis in the water. Preliminary results found that Se in the sediments decreases with depth. Se concentrations in the benthic organisms is approximately 4 times higher than in the associated sediments. Data from this study will contribute to a water quality risk assessment to the wetland fish and birds.

  1. Iodine content in drinking water and other beverages in Denmark

    DEFF Research Database (Denmark)

    Rasmussen, Lone Banke; Larsen, Erik Huusfeldt; Ovesen, L.

    2000-01-01

    Objective: To investigate the variation in iodine content in drinking water in Denmark and to determine the difference in iodine content between organic and non-organic milk. Further, to analyse the iodine content in other beverages. Design and setting: Tap water samples were collected from 41 evenly distributed localities in Denmark. Organic and non-organic milli was collected at the same time (twice summer and twice winter). Soft drinks, beers and juice were collected from different Danish pro...

  2. Computational and experimental platform for understanding and optimizing water flux and salt rejection in nanoporous membranes.

    Energy Technology Data Exchange (ETDEWEB)

    Rempe, Susan B.

    2010-09-01

    Affordable clean water is both a global and a national security issue as lack of it can cause death, disease, and international tension. Furthermore, efficient water filtration reduces the demand for energy, another national issue. The best current solution to clean water lies in reverse osmosis (RO) membranes that remove salts from water with applied pressure, but widely used polymeric membrane technology is energy intensive and produces water depleted in useful electrolytes. Furthermore incremental improvements, based on engineering solutions rather than new materials, have yielded only modest gains in performance over the last 25 years. We have pursued a creative and innovative new approach to membrane design and development for cheap desalination membranes by approaching the problem at the molecular level of pore design. Our inspiration comes from natural biological channels, which permit faster water transport than current reverse osmosis membranes and selectively pass healthy ions. Aiming for an order-of-magnitude improvement over mature polymer technology carries significant inherent risks. The success of our fundamental research effort lies in our exploiting, extending, and integrating recent advances by our team in theory, modeling, nano-fabrication and platform development. A combined theoretical and experimental platform has been developed to understand the interplay between water flux and ion rejection in precisely-defined nano-channels. Our innovative functionalization of solid state nanoporous membranes with organic protein-mimetic polymers achieves 3-fold improvement in water flux over commercial RO membranes and has yielded a pending patent and industrial interest. Our success has generated useful contributions to energy storage, nanoscience, and membrane technology research and development important for national health and prosperity.

  3. Effect of some soil physical properties on water holding capacity, neutron probe calibration and salt movement

    International Nuclear Information System (INIS)

    This study was conducted in tow areas representing in silty soil in Southern Syria (Draa), loamy and sandy soil in Eastern Syria (Deir Al zour) to compare the soil effect on the calibration of the neutron probe, correlation coefficient, soil characteristics curve, soil solution content of nitrates, potassium and sodium for the estimation of the optimum sampling time of soil solution by porous ceramic cups. Regression analysis results showed that the three soils curves, in which the soil contained the lowest content of clay had a high correlation coefficient and decreased with increasing the clay content. Whereas, the correlation coefficient in sandy soil was 0.96 while decreased to 0.79 in silty soil. The hydraulic head increased with decreasing the water content, which was obvious in the three soils characteristic curves. The NO-3 content decreased due to the plants roots absorption and leaching to deeper layers, while the NO-3 content in the surfaces layer significantly decreased in the sandy soil. Results showed that equilibrium between the soil solution and the NO-3 content in the solution in porous cups occurred within 8 days. (author)

  4. Geoelectrical and hydrochemical investigations for characterizing the salt water intrusion in the Khanasser valley, northern Syria

    Science.gov (United States)

    Asfahani, Jamal; Abou Zakhem, Boulos

    2013-04-01

    An integrated approach of geoelectrical and hydrochemical investigation surveys was proposed for indicating contact regions between saline and fresh groundwater in the Khanasser valley region, northern Syria. The qualitative and quantitative interpretations of 34 vertical electrical soundings (VES) enable to characterize the salt water intrusion laterally and vertically. The established iso-apparent resistivity maps for different AB/2 spacings obviously indicate the presence of a lowresistivity (less than 4 Ohm·m) zone related to the salt water intrusion in the Quaternary and Paleogene deposits. The different hydrochemical and geophysical parameters, such as electrical resistivity, total dissolved solids (TDS) and major ions concentrations used to characterize the salt water intrusion gave almost similar results in locating and mapping the different boundaries of the groundwater salinity. The proposed approach is useful for mapping the interface between different groundwater qualities, and can be therefore used to successfully characterize the salt water intrusion phenomenon in other semi-arid regions. The application of such an approach is a powerful tool and can be used for water resource management in the water scarce areas.

  5. Water repellency and critical soil water content in a dune sand

    OpenAIRE

    Dekker, L.W.; Doerr, S.H.; Oostindie, K.; Ziogas, A.K.; Ritsema, C.J.

    2001-01-01

    Assessments of water repellency of soils are commonly made on air-dried or oven-dried samples, without considering the soil water content. The objectives of this study were to examine the spatial and temporal variability of soil water content, actual water repellency over short distances, and the variations in critical soil water contents. Between 22 April and 23 November 1999, numerous samples were collected from a grass-covered dune sand (typic Psammaquent), at six depths, eight times in tr...

  6. Mineralogical study of stream waters and efflorescent salts in Sierra Minera, SE Spain

    Science.gov (United States)

    Pérez-Sirvent, Carmen; Garcia-Lorenzo, Maria luz; Martinez-Sanchez, Maria Jose; Hernandez, Carmen; Hernandez-Cordoba, Manuel

    2015-04-01

    Trace elements contained in the residues from mining and metallurgical operations are often dispersed by wind and/or water after their disposal. These areas have severe erosion problems caused by water run-off in which soil and mine spoil texture, landscape topography and regional and microclimate play an important role. Water pollution by dissolved metals in mining areas has mainly been associated with the oxidation of sulphide-bearing minerals exposed to weathering conditions, resulting in low quality effluents of acidic pH and containing a high level of dissolved metals. The studied area, Sierra Minera, is close to the mining region of La Unión (Murcia, SE Spain). This area constituted an important mining centre for more than 2500 years, ceasing activity in 1991. The ore deposits of this zone have iron, lead and zinc as the main metal components. Studied area showed a lot of contaminations sources, formed by mining steriles, waste piles and foundry residues. As a consequence of the long period of mining activity, large volumes of wastes were generated during the mineral concentration and smelting processes. Historically, these wastes were dumped into watercourses, filling riverbeds and contaminating their surroundings. 40 sediment samples were collected from the area affected by mining exploitations, and at increasing distances from the contamination sources in 4 zones In addition, 36 surficial water samples were collected after a rain episode The Zn and Fe content was determined by flame atomic absorption spectrometry (FAAS). The Pb and Cd content was determined by electrothermal atomization atomic absorption spectrometry (ETAAS). The As content was measured by atomic fluorescence spectrometry using an automated continuous flow hydride generation spectrometer and Al content was determined by ICP-MS. Mineralogical composition of the samples was made by X Ray Diffraction (XRD) analysis using Cu-K? radiation with a PW3040 Philips Diffractometer. Zone A: Water sample collected in A5 is strongly influenced by a tailing dump, and showed high trace element contents. In addition, is influenced by the sea water and then showed high bromide, chloride, sodium and magnesium content, together with a basic pH.The DRX results of evaporate water showed that halite, hexahydrite and gypsum are present: halite corroborates the sea influence and gypsum and hexahydrite the importance of soluble sulphates. A9 water showed acid pH and high trace elements content; is influenced by the tailing dump and also by waters from El Beal gully watercourse, transporting materials from Sierra Minera Waters affected by secondary contamination are influenced by mining wastes, the sea water and also are affected by agricultural activities (nitrate content). These waters have been mixed with carbonate materials, present in the zone increasing the pH. Some elements have precipitated, such as Cu and Pb, while Cd, Zn and As are soluble. The DRX analysis in the evaporate if A14 showed that halite and gypsum are present: halite confirms the seawater influence and gypsum the relationship between calcium and sulphates A2 and A6 waters are affected by tertiary contamination and showed basic pH, soluble carbonates and lower trace element content. Only Zn, Cd and Al are present. Zone B: All waters are strongly affected by mining activities and showed: acid pH, high trace element content and high content of soluble sulphates. The evaporate of B8 and B12 showed the presence of soluble sulphates: gypsum, halite, bianchite, paracoquimbite, halotrichite and siderotil in B8; gypsum, bianchite, paracoquimbite and coquimbite in B12; gypsum, hexahydrite, carnalite, bianchite, copiapite and sideroti in B10 and polihalite, gypsum, bianchite, coquimbite and paracoquimbite in B14. All the sampling points collected in Zone C are affected by primary contamination, because there are a lot of tailing dumps and sampling points are located close to them. C1 showed high trace element content because is a reception point of a lot of tailing dumps. Water samples from C3 to C8 also had

  7. Mitigation of Humic Acid Inhibition in Anaerobic Digestion of Cellulose by Addition of Various Salts

    Directory of Open Access Journals (Sweden)

    Samet Azman

    2015-03-01

    Full Text Available Humic compounds are inhibitory to the anaerobic hydrolysis of cellulosic biomass. In this study, the impact of salt addition to mitigate the inhibitory effects of humic compounds was investigated. The experiment was conducted using batch tests to monitor the anaerobic hydrolysis of cellulose in the presence of humic acid. Sodium, potassium, calcium, magnesium and iron salts were tested separately for their efficiency to mitigate humic acid inhibition. All experiments were done under mesophilic conditions (30 °C and at pH 7. Methane production was monitored online, using the Automatic Methane Potential Test System. Methane production, soluble chemical oxygen demand and volatile fatty acid content of the samples were measured to calculate the hydrolysis efficiencies. Addition of magnesium, calcium and iron salts clearly mitigated the inhibitory effects of humic acid and hydrolysis efficiencies reached up to 75%, 65% and 72%, respectively, which were similar to control experiments. Conversely, potassium and sodium salts addition did not mitigate the inhibition and hydrolysis efficiencies were found to be less than 40%. Mitigation of humic acid inhibition via salt addition was also validated by inductively coupled plasma atomic emission spectroscopy analyses, which showed the binding capacity of different cations to humic acid.

  8. Salt distribution in dry-cured ham measured by computed tomography and image analysis

    DEFF Research Database (Denmark)

    Vestergaard, Christian Sylvest; Erbou, SØren G.

    2005-01-01

    Forty-seven hams were scanned four times by computed tomography (CT) while being manufactured into dry-cured hams. An image-processing algorithm measured CT values in the lean part of the hams and provided line profiles reflecting the magnitude and spatial location of salt gradients. At the end of manufacturing, seven entire hams were dissected and the salt content of the lean part determined. Likewise, in the remaining 40 hams, the lean meat of the slices corresponding to the CT images was dissected, analyzed chemically for NaCl and compared to the CT value. The salt content of entire dry-cured hams correlated well (r2=0.94) to the CT value of a 10 mm section located at the center of femur bone, perpendicular to the length axis of the hams. In the same position, significant correlations between the CT values before (r2=0.71) and after (r2=0.80) the ageing period and actual chemical analysis of the same section were demonstrated. Line profiles illustrating the combined salt tribution and dehydration within a ham related to the physical characteristics of the ham as well as to the manufacturing process. These findings reveal that the effects of altered manufacturing practices can be followed non-invasively, while hams are still in production. Computed tomography combined with appropriate image analysis offers advantages as a non-invasive tool in both research and product development.

  9. Geochemical records of salt-water inflows into the deep basins of the Baltic Sea

    DEFF Research Database (Denmark)

    Neumann, T.; Christiansen, C.

    1997-01-01

    The estuarine circulation system of the Baltic Sea promotes stable stratification and bottom water anoxia in sedimentary basins of the Baltic proper. Ingressions of saline, oxygen-rich waters from the North Sea replace the oxygen depleted deep water. Timing and extent of the ingressions vary on time-scales of years to decades, and are largely determined by wind-strength and storm frequency over the North Atlantic Ocean and Europe. Mn/Fe-ratios in sediments from a dated sediment core of the Gotland Deep (250 m water depth) record variations in redox conditions that can be linked to historical observations of salt-water ingressions. The sediment record of the dated core is marked by seven Mn/Fe-excursions and suggests that major inflows terminating longer stagnation periods have occurred more frequently during the last 250 years. This in turn suggests the more frequent generation of low-pressure areas over the North Atlantic in more recent times. The last three events have also been observed by hydrographic measurements. During the long time stagnation periods, Fe and Mn will be segregated into a particulate phase (iron sulfide) which accumulates at the seafloor and a dissolved phase (Mn2+) accumulating in the deep, anoxic water body. Inflow of oxygenated water causes oxidation of Mn2+ to Mn4+ and precipitation of MnO2, which accumulates in Mn-rich layers at the sediment surface. When the bottom water becomes anoxic again, MnO2 degradation release Mn2+ into the pore water, and alkalinity increases as well during organic matter mineralization. Subsequently, Ca-rich rhodochrosite forms close to the sediment-water interface where pore waters are supersaturated with respect to rhodochrosite. This mineral is stable under anoxic conditions and indirectly records redox Variations in the deep water body. Mn/Fe-ratios in longer sediment cores thus have a potential to reconstruct chemical regimes of the deep water of the Baltic Sea in the past and indirectly trace variability in the strength and frequency of storms over the North Sea and the North Atlantic during the Holocene. Copyright (C) 1996 Elsevier Science Ltd

  10. 4.2.1. Water content: nuclear radiation methods

    International Nuclear Information System (INIS)

    The radiometric methods of measuring the soil water distribution are presented. The neutron method consists of measuring the thermal neutron density around a fast neutron source. Since the moisture in the soil is usually the principle hydrogen compound the thermal neutron density is a function of the water content. The neutron gauge may be of the subsurface type, placed in a vertical access tube, or of the surface type, resting on the soil surface. Cf 252 is a useful neutron source, having low mean energy and being cheap. Tritium-target deuterium bombarded neutron generators may be used in large volume single or dual tube measurements. The hydrogen content of the dry soil matrix and the dry density profile should be determined. Epithermal measurements eliminate the effect of thermal neutron absorbers. The ideal access tube is of thin-walled aluminium, but this in many cases lacks the required strength and durability, and iron or stainless steel may be used. The measured volume ranges from 20cm to 110cm radius, and the resolution is limited to 30cm layers, with measurement intervals of 15cm. Gamma ray sources may also be used, both in single-well density gauges in conjunction with a neutron gauge, and in a dual-tube arrangement, measuring the water content by attenuation, using a Cs 137 source. This can give a resolution of down to 0.5cm, and an accuracy of 0.0015g/cm3. Finally radiation dose calculations are briefly discussed. (JIW)

  11. Control of dermestes Maculatus DeGeer (Coleoptera: Dermestidae) Through Combination Treatment of Salt Contents and Gamma Radiation on Dried Swordfish, Lepturacanthus Savala

    International Nuclear Information System (INIS)

    The effects of combination treatment of salt content and radiation against D. maculatus for the reduction of damage to dried swordfish were investigated. The developmental period of first instar larvae was prolonged with increasing salt content in fish sample. No adults were emerged from the first instar larvae in dried swordfish containing 14.48% salt. Maximum mortality of first and last instar larvae was found in 9.90 to 14.48% salt containing dried fish sample at treated with 1 kGy radiation dose within the two days after treatment.(author)

  12. SEQUESTERING AGENTS FOR METAL IMMOBILIZATION APPLICATION TO THE DEVELOPMENT OF ACTIVE CAPS IN FRESH AND SALT WATER SEDIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Knox, A; Michael Paller, M

    2006-11-17

    This research evaluated the removal of inorganic contaminants by a variety of amendments and mixtures of amendments in fresh and salt water. A series of removal and retention batch experiments was conducted to identify the best treatment for metal removal. Metal removal by the amendments was evaluated by calculating the partition coefficient and percent removal. Retention of metals by the amendments was evaluated in retention (desorption) studies in which residue from the removal studies was extracted with 1 M MgCl{sub 2} solution. The results indicated that phosphate amendments, some organoclays (e.g., OCB-750), and the biopolymer, chitosan, are very effective in removal and retention of metals in both fresh and salt water. These amendments are being evaluated further as components in the development of active caps for sediment remediation.

  13. Water transfer in soil at low water content. Is the local equilibrium assumption still appropriate?

    Science.gov (United States)

    Ouedraogo, F.; Cherblanc, F.; Naon, B.; Bénet, J.-C.

    2013-06-01

    The dynamics of water content in the superficial layers of soils is critical in the modelling of land-surface processes. In arid regions, vapour flux contributes significantly to the global water mass balance. To account for it in theoretical descriptions, most of the models proposed in the literature rely on the local equilibrium assumption that constrains the vapour pressure to remain at its equilibrium value. It implicitly amounts to consider an instantaneous phase change. Recent works underlined a retardation time and a decrease in phase change rate as the water content gets lower. Therefore, the objective is to revisit water transport modelling by rejecting the local equilibrium assumption. This requires developing a non-equilibrium model by taking into account the phase change kinetics. To assess the interest of this approach, a natural soil of Burkina-Faso has been experimentally characterized from independent tests and soil column experiments have been carried out. The comparison of experimental drying kinetics and water content profiles with computational predictions confirms the reliability of this description. Liquid/gas non-equilibrium is significant in a limited subsurface zone which defines explicitly the transition from liquid transport in lower layers to vapour transport in upper layers, i.e., the evaporation front. The overall moisture dynamics is governed by the coupling between water transport mechanisms (liquid filtration, vapour diffusion, phase change) that mainly occurs in this transition zone.

  14. Ion motion in salt water flowing under a transverse magnetic field

    Directory of Open Access Journals (Sweden)

    De Luca R.

    2012-10-01

    Full Text Available The problem of ion motion in an electrolyte solution flowing in a thin rectangular duct with velocity VE in the presence of a transverse magnetic field B0 is studied by means of classical mechanics and electrodynamics. Because of Lorentz force on the ions in the electrolyte solution, a so called Faraday voltage appears at the electrodes orthogonal to both the field B0 and the velocity VE. The dynamics of positive and negative ions (cations and anions, respectively in this classical system is studied by taking into account the viscosity of the fluid and the process of charge accumulation on the opposite walls of the duct. Hydrogen production is seen to take place at one of the electrodes when salt water is taken as the flowing electrolyte.

  15. Effect of exogenously applied nitric oxide on water relations and ionic composition of rice (oryza sativa l.) plants under salt stress

    International Nuclear Information System (INIS)

    The aim of present experiment was to assess the effect of exogenously applied nitric oxide on water relation attributes and pattern of uptake of inorganic ions in rice plants under salt stress. The experiment comprised four rice cultivars, two coarse (KS-282 and IRRI-6) and two fine (Shaheen Basmati and Basmati PB-95) rice cultivars, two NaCl levels (0 and 80 mM), and three levels (0, 0.1, and 0.2 mM) of nitric oxide. Salt stress caused a significant increase in leaf water and osmotic potentials while decreased leaf turgor potential and relative water content in all four rice cultivars. Of inorganic ions, shoot and root Cl- and Na+ concentrations increased significantly, while in contrast, K+ and Ca/sup 2+/ concentrations and K+/Na+ ratio decreased markedly. Pre-sowing seed treatment with nitric oxide significantly decreased leaf osmotic and water potentials and shoot and root Cl- and Na+ concentrations, while it increased leaf relative water content, leaf turgor potential, K+ and Ca/sup 2+/ concentrations and K+/Na+ ratio in both shoots and roots of salt stressed rice plants. Of nitric oxide levels, 0.1 mM was more effective, while of the four rice cultivars, Shaheen basmati and IRRI-6 performed better as compared to the other two cultivars. (author)

  16. Stalagmite water content as a proxy for drip water supply in tropical and subtropical areas

    Directory of Open Access Journals (Sweden)

    N. Vogel

    2013-01-01

    Full Text Available In this pilot study water was extracted from samples of two Holocene stalagmites from Socotra Island, Yemen, and one Eemian stalagmite from southern continental Yemen. The amount of water extracted per unit mass of stalagmite rock, termed "water yield" hereafter, serves as a measure of its total water content. Based on direct correlation plots of water yields and ?18Ocalcite and on regime shift analyses, we demonstrate that for the studied stalagmites the water yield records vary systematically with the corresponding oxygen isotopic compositions of the calcite (?18Ocalcite. Within each stalagmite lower ?18Ocalcite values are accompanied by lower water yields and vice versa. The ?18Ocalcite records of the studied stalagmites have previously been interpreted to predominantly reflect the amount of rainfall in the area; thus, water yields can be linked to drip water supply. Higher, and therefore more continuous drip water supply caused by higher rainfall rates, supports homogeneous deposition of calcite with low porosity and therefore a small fraction of water-filled inclusions, resulting in low water yields of the respective samples. A reduction of drip water supply fosters irregular growth of calcite with higher porosity, leading to an increase of the fraction of water-filled inclusions and thus higher water yields. The results are consistent with the literature on stalagmite growth and supported by optical inspection of thin sections of our samples. We propose that for a stalagmite from a dry tropical or subtropical area, its water yield record represents a novel paleo-climate proxy recording changes in drip water supply, which can in turn be interpreted in terms of associated rainfall rates.

  17. [A Contrastive Study on Salt-alkaline Resistance and Removal Efficiency of Nitrogen and Phosphorus by Phragmites australis and Typha angustifolia in Coastal Estuary Area].

    Science.gov (United States)

    Chen, You-yuan; Sun, Ping; Chen, Guang-lin; Wang, Ning-ning

    2015-04-01

    The salt and alkali contents were so high that the ecological landscape was depressed in water body of a coastal estuary area. Screening some plants which could not only tolerate saline-alkaline but also effectively remove nitrogen and phosphorus was therefore in urgent need. The tolerance range and removal rate of nitrogen and phosphorus by Phragmites australis and Typha angustifolia under salt and pH stress were investigated by hydroponic experiments. The results showed that Phragmites australis could tolerate at least 10 per thousand salinity and pH 8.5, while Typha angustifolia tolerated 7.5 per thousand salinity and pH 8.0. Combined with the change of the growth and physiological indexes (relative conductivity, proline, chlorophyll and root activity), the salt resistance of Phragmites australis was stronger than that of Typha angustifolia. Under salt stress, the removal rate of ammonia nitrogen of Phragmites australis was higher. The removal rates of nitrate nitrogen and phosphorus of Typha angustifolia were 2.5% and 7.3% higher than those of Phragmites australis in average, respectively, because of the high biomass of Typha angustifolias. The total nitrogen removal rate was equivalent. Under pH stress, the removal rate of ammonia nitrogen and total phosphorus of Phragmites australis was a little higher than that of Typha angustifolia. However, Typha angustifolia had a higher removal rate of total nitrogen, which was 8.2% higher than that of Phragmites australis. All the analysis showed that both Phragmites australis and Typha angustifolia could be used as alternative plants to grow and remove nitrogen and phosphorus in the high salt-alkaline water body in coastal estuary area. PMID:26164931

  18. Temperature and salt addition effects on the solubility behaviour of some phenolic compounds in water

    International Nuclear Information System (INIS)

    Solubility-temperature dependence data for six phenolic compounds (PhC), contained in olive mill wastewater (OMWW), in water and in some chloride salts (KCl, NaCl, and LiCl) aqueous solutions have been presented and solution standard molar enthalpies (?sol H 0) were determined using Van't Hoff plots. The temperature was varied from 293.15 K to 318.15 K. Solubility data were estimated using a thermostated reactor and HPLC analysis. It has been observed that solubility, in pure water and in aqueous chloride solutions, increases with increasing temperature. The salting-out LiCl > NaCl > KCl order obtained at 298.15 K is confirmed. Results were interpreted in terms of the salt hydration shells and the ability of the solute to form hydrogen-bond with water. The standard molar Gibbs free energies of transfer of PhC (?tr G 0) from pure water to aqueous solutions of the chloride salts have been calculated from the solubility data. In order to estimate the contribution of enthalpic and entropic terms, standard molar enthalpies (?tr H 0) and entropies (?tr S 0) of transfer have also been calculated. The decrease in solubility is correlated to the positive ?tr G 0 value which is mainly of enthalpic origin

  19. A Study of Salt (Sodium Chloride) Content in Different Bread Consumed in Shiraz City in Spring/Summer 2009

    OpenAIRE

    MJ ZibaeeNezhad; F Abtahi; M Hooshangi; ST Heydari

    2010-01-01

    Background: Randomized controlled studies over the last 4 decades demonstrated that controlling blood pressure could reduce the risks of cardiovascular disease. The relationship between diet ingredient (particularly the salt) and blood pressure has been well established and since bread is the main element in population diet, especially in our country, the determination of sodium content of bread is of high priority and warrants further investigation.Method: A total of 204 bakeries were select...

  20. Molecular adaptation and salt stress response of Halobacterium salinarum cells revealed by neutron spectroscopy.

    Science.gov (United States)

    Vauclare, Pierre; Marty, Vincent; Fabiani, Elisa; Martinez, Nicolas; Jasnin, Marion; Gabel, Frank; Peters, Judith; Zaccai, Giuseppe; Franzetti, Bruno

    2015-11-01

    Halobacterium salinarum is an extreme halophile archaeon with an absolute requirement for a multimolar salt environment. It accumulates molar concentrations of KCl in the cytosol to counterbalance the external osmotic pressure imposed by the molar NaCl. As a consequence, cytosolic proteins are permanently exposed to low water activity and highly ionic conditions. In non-adapted systems, such conditions would promote protein aggregation, precipitation, and denaturation. In contrast, in vitro studies showed that proteins from extreme halophilic cells are themselves obligate halophiles. In this paper, adaptation via dynamics to low-salt stress in H. salinarum cells was measured by neutron scattering experiments coupled with microbiological characterization. The molecular dynamic properties of a proteome represent a good indicator for environmental adaptation and the neutron/microbiology approach has been shown to be well tailored to characterize these modifications. In their natural setting, halophilic organisms often have to face important variations in environmental salt concentration. The results showed deleterious effects already occur in the H. salinarum proteome, even when the external salt concentration is still relatively high, suggesting the onset of survival mechanisms quite early when the environmental salt concentration decreases. PMID:26376634

  1. Effect of water content on partial ternary phase diagram water-in-diesel microemulsion fuel

    Science.gov (United States)

    Mukayat, Hastinatun; Badri, Khairiah Haji; Raman, Ismail Ab.; Ramli, Suria

    2014-09-01

    Introduction of water in the fuel gave a significant effect to the reduction of pollutant such as NOx emission. In this work, water/diesel microemulsion fuels were prepared using compositional method by mixing water and diesel in the presence of non-ionic surfactant and co-surfactant. The effects of water composition on the partial ternary phase diagram were studied at 5%, 10%, 15% and 20% (w/w). The physical stability of the microemulsion was investigated at 45°C over a period of one month. The optimum formulae obtained were diesel/T80/1-penthanol/water 60:20:15:5 wt% (System 1), 55:20:15:10 wt% (System 2), 50:20:15:15 wt% (System 3) and 45:20:15:20 wt% (System 4). Physicochemical characterizations of optimum formulae were studied. The results showed that water content has a significant effect to the formation of microemulsion, its stability, droplet size and viscosity.

  2. Boron content of the Freetown drinking water

    International Nuclear Information System (INIS)

    A method is described for the analyses of water samples in the Freetown area of Sierra Leone for their boron concentrations. The method involves alpha counting during thermal neutron irradiation of the samples utilising the 10Ba(n,?)7Li reaction. The alpha counting is via a liquid scintillator which also incorporates the water samples. A detailed outline of the experimental setup is given and the results obtained from measurement on water samples presented. (author)

  3. IMPACT OF INORGANIC SALT SOLUTIONS ON ANTIOXIDATIVE ENZYMES ACTIVITY AND PHOTOSYNTHETIC PIGMENTS CONTENT IN TRIGONELLA FOENUM-GRAECUM SEEDLINGS

    Directory of Open Access Journals (Sweden)

    Lacramioara Oprica

    2014-07-01

    Full Text Available Fenugreek (Trigonella foenum-graecum is known to have several pharmacological effects such ashypoglycemia, hypocholesterolemia, gastroprotective, chemopreventive, antioxidant, antiinflammatory, antipyretic andappetite stimulation attributes. This plant is known to contain many secondary metabolites like alkaloids, flavonoids,salicylate, and nicotinic acid. Present investigation was undertaken to study the effect of salinity on fenugreekantioxidative defense mechanism. The response of the superoxide dismutase (SOD, catalase (CAT and peroxidase(POD activities as well as the pigment content in fenugreek seedlings was investigated after 24 days of treatment withinorganic salt solutions. It was used for treatment different concentration of NaCl alone and in combination with CaCl 2 aswell as MgCl 2 . The fenugreek treatment was effected to elucidate the adverse effect of NaCl salinity and its possibleamelioration by CaCl 2 or MgCl 2 . Generally, all treatments diminished the activity of antioxidant enzymes take in thestudy with one exception (150mM NaCl+10mM CaCl 2 in case of SOD. Only a few concentrations (50mM NaCl,100mM NaCl, 50mM NaCl+10mM CaCl 2 , 150mM NaCl+10mM CaCl 2 , 100mM NaCl+20 MgCl 2 increased thefenugreek soluble protein content. Both CaCl 2 and MgCl 2 treatments applied alone and in combination determined anincrease of photosynthetic pigments (Chl a, Chl b and carotenoids contents compared with control

  4. Assessment of soil electromagnetic parameters and their variation with soil water, salts: a comparison among EMI and TDR measuring methods

    Science.gov (United States)

    Chaali, Nesrine; Coppola, Antonio; Comegna, Alessandro; Dragonetti, Giovanna

    2015-04-01

    Numerous studies have analyzed the possibility of the extension of Electromagnetic Induction EMI calibration coefficients determined at field scale, to predict the depth distribution of bulk electrical conductivity ECb within unmonitored sites and/or times, in order to appraise the effect of salts dynamics on soils and plants. However, in the literature, it has been determined that the extension of those EMI calibration coefficients can be awkward since the calibration parameters are highly site-specific because of changes in water content, temperature, root development, soil physical properties, etc... So they can only be used in sites having similar characteristics in terms of EMI. Furthermore there is a difference in the observation windows of EMI sensors and of sensors (Time Domain Reflectometry TDR, Electrical Resistance Tomography ERT, ect...) used for measuring the ECb to be then used for the calibration and validation of the EMI. By consequence the actual variability of the soil salinity will be hidden due to the fact that data coming from EMI and other sensors have different variability patterns and structure, and are then influenced by different noises. The main objectives of this work were: 1) develop a practical and cost-effective technique that uses TDR data as ground-truth data for calibrating and validating of the EMI larger scale sensor, 2) using a Fourier transform FT analysis by applying a specific noise filter to the original data, to find the correlations between the TDR and the EMI data. An experiment was designed by irrigating three transects of green beans, 30 m long each, with three irrigation salinity inputs (1dSm-1, 3dSm-1, 6dSm-1). The irrigation volumes were estimated by measuring soil water content at different depths by using a Diviner 2000. During the experiment, the EM in both the vertical (EMV) and horizontal (EMH) configurations were regularly measured by a Geonics EM38 device. TDR probes were inserted vertically at the soil surface in 24 sites, each corresponding to the central point of an EM38 reading. EM38 and TDR probes were used to measure ECb along 24 m in the central line of each transect during the whole growth season. Soil samples were taken at 1 m distance along each transect for laboratory analyses. The FT analyses allowed separating the original EMI and TDR data signals from noise at different salinity levels, and thus finding better information about the existing correlation.

  5. Potassium consumption by rice plant from different sources under salt stress

    International Nuclear Information System (INIS)

    The study on usage of K+ by two rice cultivars (Cv. Shaheen and KS-282) from KNO/sub 3/, KH/sub 2/PO/sub 4/ and K/sub 2/SO/sub 4/ (5 mM each), with 60 mM NaCI under hydroponics conditions, showed that fresh mass of shoot (FMS), fresh mass of root (FMR), root/ shoot ratio of fresh and dry mass, relative water contents (RWC) and relative growth rate (RGR) were affected significantly (P=0.01) inconsistent relating to K+ sources under salt stress. The intake of K+ was the highest with application of KH/sub 2/PO/sub 4/ than KNO) and K/sub 2/SO/sub 4/ application. The transport of K+ was the highest with KH/sub 2/PO. than KNO) and K/sub 2/SO/sub 4/ application in Shaheen, whereas in var. KS-282 with K/sub 2/SO/sub 4/. transport of K+ was higher than the other two sources. The utilisation of K+ was higher with KNO) than KH/sub 2/PO/sub 4/ and K/sub 2/SO/sub 4/ application in Shaheen, whereas in KS-282, K+ utilisation with KH/sub 2/PO/sub 4/. was higher than the other two sources. It was inferred that K+ consumption in shoot and root system of rice was dependent physio-genetically on potassium sources. (author)

  6. Application of plant biotechnology to address water and salt stress in developing countries (abstract)

    International Nuclear Information System (INIS)

    Drought and salinity are major constraints on crop production and food security, and have adverse impact especially on socio-economic aspect in the Middle East and North Africa region. Studies of the physiological response of wheat to salt stress indicate that sequestering sodium that enters the leaf away from the cell cytosol, and enhancing osmotic adjustment capability, can ameliorate the negative impact of soil water salinity on plant growth. Sodium at high millimolar levels in the cytoplasm is toxic to plant and yeast cells, Sequestration of Na/sup +/ ions into the vacuole through the action of tonoplast proton pumps (an H/sup +/-ATPase in the case of yeast, and either an H/sup +/-pyrophosphatase (H/sup +/-PPase) or H/sup +/-ATPase in the case of plants) and an Na/sup +//H/sup +/ anti porter is one mechanism that confers salt tolerance to these organisms. The cloning and characterization of genes encoding these tonoplast transport proteins from crop plants may contribute to our understanding of how to enhance crop plant response to saline stress. We cloned wheat ortho logs of the Arabidopsis genes AtNHXI and AVP I using a wheat cDNA library, The full length sequence for the wheat Na/sup +//H/sup +/ anti porter (TNHX3) and the vacuolar H/sup +/-pyrophosphatase (TVP I) were deposited in Genbank database under the accession number AY296910 and AY296911, respectively. The deduced amino acid sequence of TNHXj is l homologous to the sequences of other NHX gene products cloned from wheat as well as barley and Arabidopsis. The vacuolar H/sup +/-PPase pump we cloned, TVP I is the first member of this gene family cloned from wheat. Function of TNHXj as a cation/proton antiporter was demonstrated using the nhxl yeast mutant. TNHXj was capable of suppressing the hygromycin sensitivity of nhxl. Functional characterization of the wheat H/sup +/-PPase TVP I was demonstrated using the yeast enal (plasma membrane Na/sup +/-efflux transporter) mutant. Expression of TVP I in enal suppressed Na/sup +/ hypersensitivity of enal growth. Expression analysis of salt stressed wheat plants showed substantial up-regulation of TNHX transcript levels as compared to control plants, while transcript accumulation for TVP I was not greatly affected by exposure of plants to salt stress. Transgenic Arabidopsis plants over expressing the wheat vacuolar Na/sup +//H/sup +/ antiporter or H/sup +/-PPase are much more resistant to high concentrations of NaCl and to water deprivation than the isogenic wild-type strains. These transgenic plants accumulate more Na/sup +/ and K/sup +/ in their leaf tissue than the wild type. Transgenic wheat plants over-expressing these two ion transporters genes are being produced. Genetically engineered drought- and salt-tolerant plants could provide an avenue to the reclamation of farmlands lost to agriculture because of salinity and a lack of rainfall. The introduction of GMOs would benefit agriculture by developing transgenic crops which could be perceived by the public as benefiting citizens, rather than just the biotechnology companies which sell proprietary seed and agrochemicals. (author)

  7. Correction of resistance to penetration by pedofunctions and a reference soil water content Correção da resistência à penetração usando uma umidade do solo de referência e pedofunções

    Directory of Open Access Journals (Sweden)

    Moacir Tuzzin de Moraes

    2012-12-01

    Full Text Available The soil penetration resistance is an important indicator of soil compaction and is strongly influenced by soil water content. The objective of this study was to develop mathematical models to normalize soil penetration resistance (SPR, using a reference value of gravimetric soil water content (U. For this purpose, SPR was determined with an impact penetrometer, in an experiment on a Dystroferric Red Latossol (Rhodic Eutrudox, at six levels of soil compaction, induced by mechanical chiseling and additional compaction by the traffic of a harvester (four, eight, 10, and 20 passes; in addition to a control treatment under no-tillage, without chiseling or additional compaction. To broaden the range of U values, SPR was evaluated in different periods. Undisturbed soil cores were sampled to quantify the soil bulk density (BD. Pedotransfer functions were generated correlating the values of U and BD to the SPR values. By these functions, the SPR was adequately corrected for all U and BD data ranges. The method requires only SPR and U as input variables in the models. However, different pedofunctions are needed according to the soil layer evaluated. After adjusting the pedotransfer functions, the differences in the soil compaction levels among the treatments, previously masked by variations of U, became detectable.A resistência do solo à penetração (SPR é um dos principais indicadores do estado de compactação do solo; contudo, a SPR é altamente influenciada pelo conteúdo de água no solo. O objetivo deste trabalho foi desenvolver modelos matemáticos para a correção da SPR para um valor de umidade gravimétrica (U de referência. Para isso, a SPR foi determinada, por meio de um penetrômetro de impacto, em um experimento instalado sobre um Latossolo Vermelho distroférrico, usando seis níveis de compactação do solo, obtidos por meio da escarificação mecânica e da compactação adicional, pelo tráfego de uma colhedora de grãos autopropelida (quatro, oito, 10 e 20 passadas, além de uma testemunha, a qual foi mantida sob sistema plantio direto sem escarificação ou compactação adicional. A fim de obter ampla variação nos valores de U, as avaliações da SPR foram realizadas em diferentes épocas. Amostras de solo com estrutura preservada foram coletadas para determinar a densidade do solo (BD. Foram geradas funções de pedotransferência relacionando os valores de SPR, de U e de BD. Usando essas funções, a correção da SPR foi satisfatória para todas as amplitudes de U e BD. O método requer apenas SPR e U como variáveis de entrada dos modelos. No entanto, são necessárias diferentes equações, em função da camada de solo avaliada. A aplicação das funções de pedotransferência, obtidas neste trabalho, permite observar diferenças no estado de compactação do solo entre os tratamentos, que antes não eram detectadas, em função de variações na U.

  8. Correction of resistance to penetration by pedofunctions and a reference soil water content / Correção da resistência à penetração usando uma umidade do solo de referência e pedofunções

    Scientific Electronic Library Online (English)

    Moacir Tuzzin de, Moraes; Henrique, Debiasi; Julio Cezar, Franchini; Vanderlei Rodrigues da, Silva.

    2012-12-01

    Full Text Available A resistência do solo à penetração (SPR) é um dos principais indicadores do estado de compactação do solo; contudo, a SPR é altamente influenciada pelo conteúdo de água no solo. O objetivo deste trabalho foi desenvolver modelos matemáticos para a correção da SPR para um valor de umidade gravimétrica [...] (U) de referência. Para isso, a SPR foi determinada, por meio de um penetrômetro de impacto, em um experimento instalado sobre um Latossolo Vermelho distroférrico, usando seis níveis de compactação do solo, obtidos por meio da escarificação mecânica e da compactação adicional, pelo tráfego de uma colhedora de grãos autopropelida (quatro, oito, 10 e 20 passadas), além de uma testemunha, a qual foi mantida sob sistema plantio direto sem escarificação ou compactação adicional. A fim de obter ampla variação nos valores de U, as avaliações da SPR foram realizadas em diferentes épocas. Amostras de solo com estrutura preservada foram coletadas para determinar a densidade do solo (BD). Foram geradas funções de pedotransferência relacionando os valores de SPR, de U e de BD. Usando essas funções, a correção da SPR foi satisfatória para todas as amplitudes de U e BD. O método requer apenas SPR e U como variáveis de entrada dos modelos. No entanto, são necessárias diferentes equações, em função da camada de solo avaliada. A aplicação das funções de pedotransferência, obtidas neste trabalho, permite observar diferenças no estado de compactação do solo entre os tratamentos, que antes não eram detectadas, em função de variações na U. Abstract in english The soil penetration resistance is an important indicator of soil compaction and is strongly influenced by soil water content. The objective of this study was to develop mathematical models to normalize soil penetration resistance (SPR), using a reference value of gravimetric soil water content (U). [...] For this purpose, SPR was determined with an impact penetrometer, in an experiment on a Dystroferric Red Latossol (Rhodic Eutrudox), at six levels of soil compaction, induced by mechanical chiseling and additional compaction by the traffic of a harvester (four, eight, 10, and 20 passes); in addition to a control treatment under no-tillage, without chiseling or additional compaction. To broaden the range of U values, SPR was evaluated in different periods. Undisturbed soil cores were sampled to quantify the soil bulk density (BD). Pedotransfer functions were generated correlating the values of U and BD to the SPR values. By these functions, the SPR was adequately corrected for all U and BD data ranges. The method requires only SPR and U as input variables in the models. However, different pedofunctions are needed according to the soil layer evaluated. After adjusting the pedotransfer functions, the differences in the soil compaction levels among the treatments, previously masked by variations of U, became detectable.

  9. Sedimentary characteristics and depositional model of a Paleocene-Eocene salt lake in the Jiangling Depression, China

    Science.gov (United States)

    Yu, Xiaocan; Wang, Chunlian; Liu, Chenglin; Zhang, Zhaochong; Xu, Haiming; Huang, Hua; Xie, Tengxiao; Li, Haonan; Liu, Jinlei

    2015-11-01

    We studied the sedimentary characteristics of a Paleocene-Eocene salt lake in the Jiangling Depression through field core observation, thin section identification, scanning electron microscopy, and X-ray diffraction analysis. On the basis of sedimentary characteristics we have summarized the petrological and mineralogical characteristics of the salt lake and proposed 9 types of grade IV salt rhythms. The deposition shows a desalting to salting order of halite-argillaceous-mudstone-mud dolostonemud anhydrock-glauberite-halite. The relationship among grade IV rhythms, water salinity and climate fluctuations was analyzed. Based on the analysis of the relationship between boron content and mudstone color and by combining the mineralogy and sedimentary environment characteristics, we propose that the early and late Paleocene Shashi Formation in the Jiangling Depression was a paleolacustrine depositional environment with a high salt content, which is a representation of the shallow water salt lake depositional model. The middle Paleocene Shashi Formation and the early Eocene Xingouzui Formation were salt and brackish sedimentary environments with low salt content in a deep paleolake, which represents a deep salt lake depositional model.

  10. An index for plant water deficit based on root-weighted soil water content

    Science.gov (United States)

    Shi, Jianchu; Li, Sen; Zuo, Qiang; Ben-Gal, Alon

    2015-03-01

    Governed by atmospheric demand, soil water conditions and plant characteristics, plant water status is dynamic, complex, and fundamental to efficient agricultural water management. To explore a centralized signal for the evaluation of plant water status based on soil water status, two greenhouse experiments investigating the effect of the relative distribution between soil water and roots on wheat and rice were conducted. Due to the significant offset between the distributions of soil water and roots, wheat receiving subsurface irrigation suffered more from drought than wheat under surface irrigation, even when the arithmetic averaged soil water content (SWC) in the root zone was higher. A significant relationship was found between the plant water deficit index (PWDI) and the root-weighted (rather than the arithmetic) average SWC over root zone. The traditional soil-based approach for the estimation of PWDI was improved by replacing the arithmetic averaged SWC with the root-weighted SWC to take the effect of the relative distribution between soil water and roots into consideration. These results should be beneficial for scheduling irrigation, as well as for evaluating plant water consumption and root density profile.

  11. Evaluating the influence of road salt on water quality of Ohio rivers over time

    International Nuclear Information System (INIS)

    Highlights: • Road salt impact on central Ohio rivers was investigated via Cl? and Na+ data. • Rivers with consistent past data displayed increasing trends in concentration. • Cl? and Na+ showed increased concentration and flux downstream near urban areas. • Cl?/Br? mass ratios in waters suggest the origin of Cl? is in part from road salt. • 36Cl/Cl ratios indicate a substantial dissolved halite component in the rivers. - Abstract: Anthropogenic inputs have largely contributed to the increasing salinization of surface waters in central Ohio, USA. Major anthropogenic contributions to surface waters are chloride (Cl?) and sodium (Na+), derived primarily from inputs such as road salt. In 2012–2013, central Ohio rivers were sampled and waters analyzed for comparison with historical data. Higher Cl? and Na+ concentrations and fluxes were observed in late winter as a result of increased road salt application during winter months. Increases in both chloride/bromide (Cl?/Br?) ratios and nitrate (N-NO3?) concentrations and fluxes were observed in March 2013 relative to June 2012, suggesting a mixture of road salt and fertilizer runoff influencing the rivers in late winter. For some rivers, increased Cl? and Na+ concentrations and fluxes were observed at downstream sites near more urban areas of influence. Concentrations of Na+ were slightly lower than respective Cl? concentrations (in equivalents). High Cl?/Br? mass ratios in the Ohio surface waters indicated the source of Cl? was likely halite, or road salt. In addition, analysis of 36Cl/Cl ratios revealed low values suggestive of a substantial dissolved halite component, implying the addition of “old” Cl? into the water system. Temporal trend analysis via the Mann–Kendall test identified increasing trends in Cl? and Na+ concentration beginning in the 1960s at river locations with more complete historical datasets. An increasing trend in Cl? flux through the 1960s was also identified in the Hocking River at Athens, Ohio. Our results were similar to other studies that examined road salt impacts in the northern US, but a lack of consistent long-term data hindered historical analysis for some rivers

  12. Salt Affected Soils Their Identification and Reclamation

    Directory of Open Access Journals (Sweden)

    A.A. Siyal

    2002-01-01

    Full Text Available Salt affected soils are found throughout the world especially in arid and semi arid regions. Soil salinization is mainly due to the use of saline water for irrigation, seepage from the canals, an arid climate evaporation of salty soil waters from the soil surface over shallow water tables and poor drainage. Salt effected soils are grouped into saline, alkali and saline-alkali soils. Three different ways viz. scrapping, surface flushing and leaching are normally used for reclamation of these soils. Reclamation of salt affected soils by leaching is the best way of reclamation. Continuous and intermittent leaching are two techniques of water application during the leaching process. Continuous leaching is quicker but it consumes more water than intermittent leaching. Soil amendments (gypsum, sulphur or sulphuric acid are usually needed for the reclamation of soils with high sodium content. By planting trees in soils with high water table and no drainage, soil reclamation process can be accomplished. Soil salinization can be prevented by using good quality water and by managing water table below root zone by providing surface of subsurface drainage.

  13. Low-Power, Lightweight Cloud Water Content Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The water content of clouds, whether in liquid or ice form, is a key variable to be measured when either calibrating remote sensing systems or when calculating the...

  14. Droplet-Sizing Liquid Water Content Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Icing is one of the most significant hazards to aircraft. A sizing supercooled liquid water content (SSLWC) sonde is being developed to meet a directly related need...

  15. Low-Power, Lightweight Cloud Water Content Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The measurement of cloud water content is of great importance in understanding the formation of clouds, their structure, and their radiative properties which in...

  16. Effect of higher water vapor content on TBC performance

    Energy Technology Data Exchange (ETDEWEB)

    Pint, Bruce A [ORNL; Haynes, James A [ORNL

    2012-01-01

    Coal gasification, or IGCC (integrated gasification combined cycle), is one pathway toward cleaner use of coal for power generation with lower emissions. However, when coal-derived synthesis gas (i.e., syngas) is burned in turbines designed for natural gas, turbine manufacturers recommend 'derating,' or lowering the maximum temperature, which lowers the efficiency of the turbine, making electricity from IGCC more expensive. One possible reason for the derating is the higher water vapor contents in the exhaust gas. Water vapor has a detrimental effect on many oxidation-resistant high-temperature materials. In a turbine hot section, Ni-base superalloys are coated with a thermal barrier coating (TBC) allowing the gas temperature to be higher than the superalloy solidus temperature. TBCs have a low thermal conductivity ceramic top coating (typically Y{sub 2}O{sub 3}-stabilized ZrO{sub 2}, or YSZ) and an oxidation-resistant metallic bond coating. For land-based gas turbines, the industry standard is air plasma sprayed (APS) YSZ and high velocity oxygen fuel (HVOF) sprayed NiCoCrAlY bond coatings. To investigate the role of higher water vapor content on TBC performance and possible mitigation strategies, furnace cycling experiments were conducted in dry O{sub 2} and air with 10% (typical with natural gas or jet fuel) or 50 vol% water vapor. Cycle frequency and temperature were accelerated to one hour at 1100 C (with 10 minute cooling to {approx}30 C between each thermal cycle) to induce early failures in coatings that are expected to operate for several years with a metal temperature of {approx}900 C. Coupons (16 mm diameter x 2 mm thick) of commercial second-generation single crystal superalloy CMSX4 were HVOF coated on both sides with {approx}125 {micro}m of Ni-22wt%Co-17Cr-12Al either with 0.7Y or 0.7Y-0.3Hf-0.4Si. One side was then coated with 190-240 {micro}m of APS YSZ. Coatings were cycled until the YSZ top coating spalled. Figure 2 shows the results of the initial phase of experiments. Compared to dry O{sub 2}, the addition of 10% water vapor decreased the lifetime of MCrAlY by {approx}30% for the conventional CMSX4 substrates. Higher average lifetimes were observed with Hf in the bond coating, but a similar decrease in lifetime was observed when water vapor was added. The addition of Y and La to the superalloy substrate did not change the YSZ lifetime with 10% water vapor. However, increasing water vapor content from 10 to 50% did not further decrease the lifetime of either bond coating with the doped superalloy substrate. Thus, these results suggest that higher water vapor contents cannot explain the derating of syngas-fired turbines, and other factors such as sulfur and ash from imperfect syngas cleanup (or upset conditions) need to be explored. Researchers continue to study effects of water vapor on thermally grown alumina scale adhesion and growth rate, and are looking for bond coating compositions more resistant to oxidation in the presence of water vapor.

  17. The characterisation, improvement and modelling aspects of Frost Salt Scaling of Cement-Based Materials with a High Slag Content:

    OpenAIRE

    Copuroglu, O.

    2006-01-01

    Blast furnace slag cement concrete is used extensively in a number of countries. In comparison with OPC, it is particularly well known for its excellent performance in marine environments. One dis-advantage of slag cement is its vulnerability to scaling under the combined load of freezing-thawing and de-icing salts. The current investigation was triggered by positive observations regard-ing certain grinding agents used in slag cement production to improve frost salt scaling resistance. The in...

  18. Modelling Ontogenetic Changes of Nitrogen and Water Content in Lettuce

    OpenAIRE

    SEGINER, IDO; BLEYAERT, PETER; BREUGELMANS, MAAIKE

    2004-01-01

    • Background and Aims It is well established that the nitrogen content of plants, including lettuce, decreases with time. It has also been observed that water content of lettuce increases between planting and harvest. This paper is an attempt at modelling these observations.

  19. Measurement of Soil Water Content Using Ground Penetrating Radar.

    OpenAIRE

    ZHANG, DI

    2012-01-01

    Ground Penetrating Radar (GPR) is an effective tool to measure the geological properties. A lot of information can be interpreted from the GPR data, such as soil water content. One of the common approaches is to determine the apparent electrical permittivity from the transmission velocity of the impulse electromagnetic wave, and to use empirical relationships to estimate the soil water content. For example, Ferre equation & Topp equation are all expressing the relationship between soil wa...

  20. Pesticide Removal from Aqueous Solutions by Adding Salting Out Agents

    Directory of Open Access Journals (Sweden)

    Fátima Moscoso

    2013-10-01

    Full Text Available Phase segregation in aqueous biphasic systems (ABS composed of four hydrophilic ionic liquids (ILs: 1-butyl-3-methylimidazolium methylsulfate and 1-ethyl-3-methylimidazolium methylsulfate (CnC1im C1SO4, n = 2 and 4, tributylmethyl phosphonium methylsulfate (P4441 C1SO4 and methylpyridinium methylsulfate (C1Py C1SO4 and two high charge density potassium inorganic salts (K2CO3 and K2HPO4 were determined by the cloud point method at 298.15 K. The influence of the addition of the selected inorganic salts to aqueous mixtures of ILs was discussed in the light of the Hofmeister series and in terms of molar Gibbs free energy of hydration. The effect of the alkyl chain length of the cation on the methylsulfate-based ILs has been investigated. All the solubility data were satisfactorily correlated to several empirical equations. A pesticide (pentachlorophenol, PCP extraction process based on the inorganic salt providing a greater salting out effect was tackled. The viability of the proposed process was analyzed in terms of partition coefficients and extraction efficiencies.

  1. Consolidating and water repellent treatments applied to wet and salt contaminated granite

    Directory of Open Access Journals (Sweden)

    Silva, B.

    2000-03-01

    Full Text Available A comparison was made of the efficacy of two consolidants and two water repellents applied to samples of granite under optimum conditions, with the efficacy of the same products applied to the granite in the presence of soluble salts or water. The amount of product absorbed and the amount of dry polymer remaining after treatment were compared. The results show that the presence of water and soluble salts in the stone significantly modifies the consumption of the products (in particular the water repellents and also the level of dry polymer retained. The water repellents were found to be much less effective when the substrate contained salts, whereas the presence of water did not appear to influence their efficacy. The lack of correlation between uptake, active dry polymer, and efficacy led to the conclusion that the presence of salts or water markedly changes the kinetics of the polymerization of the products.

    Se analiza la eficacia de dos consolidantes y dos hidrofugantes aplicados a rocas graníticas en condiciones óptimas comparativamente a la eficacia de los mismos productos aplicados sobre los mismos sustratos conteniendo cierta cantidad de sales solubles o de agua. Se compara la cantidad de producto absorbido y la cantidad de materia seca presente tras el curado. Los resultados indican que la presencia de agua y de sales solubles en la piedra modifica significativamente el consumo de los productos, sobre todo el de los hidrofugantes, así como la cantidad de materia seca. Se observa, asimismo, un fuerte detrimento en la eficacia de los hidrofugantes cuando el sustrato contiene sales mientras que, al contrario, la presencia de agua no parece infiuir en dicha eficacia. La falta de correlación entre el consumo, materia seca activa y eficacia lleva a concluir que la presencia de sales o agua modifica sensiblemente la cinética de la polimeración de los productos.

  2. Evaluation of a gamma-attenuation soil water meter and a neutron-scattering meter for measuring topsoil water content

    International Nuclear Information System (INIS)

    The soil water content in a maize field was measured by means of gamma-attenuation meter as well as a neutron-scattering meter over a period of eight weeks. Comparison of the results with values obtained by means of the sampling, weighing and drying method shows that the water content of the topsoil layer can be obtained with slightly better accuracy and with far less calibration by using the gamma meter than by using the neutron meter

  3. Pb and Cd accumulation and phyto-excretion by salt cedar (Tamarix smyrnensis Bunge).

    Science.gov (United States)

    Kadukova, Jana; Manousaki, Eleni; Kalogerakis, Nicolas

    2008-01-01

    The accumulation and excretion of lead (Pb) and cadmium (Cd) by salt cedar (Tamarix smyrnensis Bunge) were investigated in this study. Tamarix smyrnensis plants were exposed to the mixtures of Pb and Cd and high salinity for 10 wk. Subsequently, Pb and Cd uptake was quantified in the shoots and roots of the plants by ICP-AES. In addition, physiological parameters such as biomass production, shoot length, plant appearance, and chlorophyll content were examined. The roots accumulated the highest amount of Pb. Salinity was found to not have an important effect on Pb translocation to the leaves. Cd was translocated into the aerial part in a higher portion than Pb. Cd content in leaves of T. smyrnensis increased with the increasing salinity. The visible toxicity symptoms, if present, were connected only to the high salinity. The excretion of Pb and Cd by salt glands was observed and quantified. T. smyrnensis excreted a significant amount of metals on the leaf surface. This characteristic of salt cedar plants can be viewed as a novel phytoremediation process for the remediation of sites contaminated with heavy metals that we have termed "phyto-excretion." PMID:18709930

  4. The effect of water purification systems on fluoride content of drinking water

    OpenAIRE

    Prabhakar A; Raju O; Kurthukoti A; Vishwas T

    2008-01-01

    Objective: The purpose of the present study was to determine the effect of different water purification systems on the fluoride content of drinking water and to compare the efficacy of these water purification systems in reducing the fluoride content. Materials and Methods: Five different water purification systems were tested in this study. They were reverse osmosis, distillation, activated carbon, Reviva ® , and candle filter. The water samples in the study were of two types, viz, bo...

  5. A Simple Beta-Function Model for Soil-Water Repellency as a Function of Water and Organic Carbon Contents

    DEFF Research Database (Denmark)

    Karunarathna, Anurudda Kumara; Kawamoto, Ken

    2010-01-01

    Soil-water content (?) and soil organic carbon (SOC) are key factors controlling the occurrence and magnitude of soil-water repellency (WR). Although expressions have recently been proposed to describe the nonlinear variation of WR with ?, the inclusion of easily measurable parameters in predictive WR(?) models is still lacking. In this study, a simple empirical beta function was suggested to describe the effect of changing soil-water content on the change of WR given as apparent contact angle (?) measured by the molarity of ethanol droplet (MED) method. The beta function for predicting ?(?) is based on measurement of WR on air-dry soil and three additional model parameters: the water contents at which the maximum WR (highest ?) occurs and where WR ceases (? = 90 degrees), and the maximum ? value. The MED data for three data sets from literature comprising WR measurements across moisture conditions for 19 soils were used to test the model. The beta function successfully reproduced all the measured soil-water repellency characteristic, ?(?), curves. Significant correlations were found between model parameters and SOC content (1%-14%). The model was independently tested against data for further three soils and performed accurately for all three. Consequently, we suggest that the ?(?) model represents a useful strategy to predict the entire soil-water repellency characteristic curve, and thus potential risks for enhanced runoff and preferential (fingered) soil-water flow at given initial soil-water contents, from measurements of only air-dry soil-water repellency and SOC content.

  6. Inland dissolved salt chemistry: statistical evaluation of bivariate and ternary diagram models for surface and subsurface waters

    Directory of Open Access Journals (Sweden)

    Stephen T. THRELKELD

    2000-08-01

    Full Text Available We compared the use of ternary and bivariate diagrams to distinguish the effects of atmospheric precipitation, rock weathering, and evaporation on inland surface and subsurface water chemistry. The three processes could not be statistically differentiated using bivariate models even if large water bodies were evaluated separate from small water bodies. Atmospheric precipitation effects were identified using ternary diagrams in water with total dissolved salts (TDS 1000 mg l-1. A principal components analysis showed that the variability in the relative proportions of the major ions was related to atmospheric precipitation, weathering, and evaporation. About half of the variation in the distribution of inorganic ions was related to rock weathering. By considering most of the important inorganic ions, ternary diagrams are able to distinguish the contributions of atmospheric precipitation, rock weathering, and evaporation to inland water chemistry.

  7. Water-quality data for aquifers, streams, and lakes in the vicinity of Keechi, Mount Sylvan, Oakwood, and Palestine salt domes, northeast Texas salt-dome basin

    International Nuclear Information System (INIS)

    This report contains water-quality data for aquifers, streams, and lakes in the vicinity of Keechi, Mount Sylvan, Oakwood, and Palestine Salt Domes in the northeast Texas salt-dome basin. Water-quality data were compiled for aquifers in the Wilcox Group, the Carrizo Sand, and the Queen City Sand. The data include analyses for dissolved solids, pH, temperature, hardness, calcium, magnesium, sodium, bicarbonate, chloride, and sulfate. Water-quality and streamflow data were obtained from 63 surface-water sites in the vicinity of the domes. These data include water discharge, specific conductance, pH, water temperature, and dissolved oxygen. Samples were collected at selected sites for analysis of principal and selected minor dissolved constituents

  8. Grouped actinide recycling by molten salt electrorefining

    International Nuclear Information System (INIS)

    Nuclear energy systems of the future are supposed to provide a sustainable energy generation including a substantial waste minimization. It is evident that the corresponding fuel cycles will play a central role in trying to achieve these goals. A new concept based on a grouped separation of actinides is widely discussed in this context. Achieving this type of separation is of course a real challenge since technologies available today have been developed to separate actinides from each other. Pyro-chemical separation processes for the recovery of uranium and to some extent for plutonium have been investigated since decades. The feasibility to include minor actinides in the separation scheme are studied in the projects PYROREP and EUROPART. In the frame of these projects, reprocessing of EBRII type metallic alloy fuel with 2% of Am and 5% of lanthanides (U60Pu20-Zr10Am2Nd3.5Y0.5Ce0.5Gd0.5) is being carried out by electrorefining at ITU. An excellent grouped separation of actinides from lanthanides (An/Ln mass ratio = 2400) had been obtained. These results represent the first demonstration of an efficient grouped actinide recovery from realistic metallic fuels and are therefore an important step in achieving the sustainability of future reactor systems

  9. Response of Tomato (Lycopersicon esculentum Mill. Cultivars to MS, Water Agar and Salt Stress in in vitro Culture

    Directory of Open Access Journals (Sweden)

    F. Amini

    2006-01-01

    Full Text Available The effect of MS and water agar medium, containing NaCl and sucrose on germination percentage, seedling growth, chlorophyll content, acid phosphates activity and soluble proteins were studied in different cultivars of Lycopersicon esculentum Mill. (Cv. Isfahani, Shirazy, Khozestani and Khorasani. Seeds were germinated under various mediums, MS with and without sucrose, water agar with and without sucrose with different concentration of NaCl (0, 40, 80, 120 and 160 mM. Increasing of salinity decreased the germination percentage and seedling dry weight. The highest germination percentage was found in Cv. Isfahani and the lowest in Cv. Shirazy. Chlorophyll content (Chl a, Chl b and total Chl were decreased with increasing of salinity in both Cv. Isfahani and Shirazy. In Cv. Shirazy. Acid phosphates (Apase activity was decreased in stem-leaf while it was increased in roots. Soluble protein was changed in different salt concentration. Enzyme activity was decreased in stem-leaf in Cv. Shirazy but was increased in Cv. Isfahani. Soluble proteins in roots of both Cv. showed variation. Finally, Water Agar (WA medium in comparison with MS medium resulted in higher tomato seed germination in different NaCl concentration.

  10. Salt repository project site study plan for water resources: Revision 1

    International Nuclear Information System (INIS)

    The Site Study Plan for Water Resources describes a field program consisting of surface-water and ground-water characterization. The surface-water studies will determine the drainage basin characteristics (i.e., topography, soils, land use), hydrometeorology, runoff to streams and playas, and surface-water quality (i.e., offsite pollution sources in playa lakes and in streams). The environmental ground-water studies will focus on ground-water quality characterization. The site study plan describes for each study the need for the study, study design, data management and use, schedule of proposed activities, and quality assurance. These studies will provide data needed to satisfy requirements contained in, or derived from, the Salt Repository Projects Requirements Document. 78 refs., 8 figs., 5 tabs

  11. California State Waters Map Series: offshore of Salt Point, California

    Science.gov (United States)

    Johnson, Samuel Y.; Dartnell, Peter; Golden, Nadine E.; Hartwell, Stephen R.; Erdey, Mercedes D.; Greene, H. Gary; Cochrane, Guy R.; Kvitek, Rikk G.; Manson, Michael W.; Endris, Charles A.; Dieter, Bryan E.; Watt, Janet T.; Krigsman, Lisa M.; Sliter, Ray W.; Lowe, Erik N.; Chinn, John L.

    2015-01-01

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology.

  12. A computational assessment of the permeability and salt rejection of carbon nanotube membranes and their application to water desalination.

    Science.gov (United States)

    Thomas, Michael; Corry, Ben

    2016-02-13

    Membranes made from nanomaterials such as nanotubes and graphene have been suggested to have a range of applications in water filtration and desalination, but determining their suitability for these purposes requires an accurate assessment of the properties of these novel materials. In this study, we use molecular dynamics simulations to determine the permeability and salt rejection capabilities for membranes incorporating carbon nanotubes (CNTs) at a range of pore sizes, pressures and concentrations. We include the influence of osmotic gradients and concentration build up and simulate at realistic pressures to improve the reliability of estimated membrane transport properties. We find that salt rejection is highly dependent on the applied hydrostatic pressure, meaning high rejection can be achieved with wider tubes than previously thought; while membrane permeability depends on salt concentration. The ideal size of the CNTs for desalination applications yielding high permeability and high salt rejection is found to be around 1.1?nm diameter. While there are limited energy gains to be achieved in using ultra-permeable CNT membranes in desalination by reverse osmosis, such membranes may allow for smaller plants to be built as is required when size or weight must be minimized. There are diminishing returns in further increasing membrane permeability, so efforts should focus on the fabrication of membranes containing narrow or functionalized CNTs that yield the desired rejection or selection properties rather than trying to optimize pore densities. PMID:26712639

  13. Polymer capture by ?-hemolysin pore upon salt concentration gradient

    OpenAIRE

    Jeon, Byoung-jin; Muthukumar, Murugappan

    2014-01-01

    We have measured the rate of capture of single molecules of sodium poly(styrene sulfonate) by ?-hemolysin protein pore by varying applied voltage, pH, and the salt concentration asymmetry across the pore. We show that electrostatic interaction between the polyelectrolyte and the protein pore significantly affects the polymer capture rate in addition to the enhancement of drift arising from electrolyte concentration gradient. At higher pH values where the electrostatic interaction between the ...

  14. Measuring water content in soil using TDR: A state-of-the-art in 1998

    International Nuclear Information System (INIS)

    Over the past decade or so, the development and continuing refinement of the time-domain reflectometry (TDR) technique for in-situ, nondestructive measurement of water content has revolutionized the study and management of the transfer and storage of water within the soil profile. The principles for the application of TDR to water content are now well accepted and straight forward. For many mineral soils, the calibration for water content has a linear relationship with the square root of the relative permittivity measured by TDR. This allows a two-point calibration. TDR-measured water content has been applied successfully to water balance studies ranging from the km scale of small watersheds to the nun scale of the root-soil interface. Soil probes can be designed to meet many and varied requirements. The performance of a number of probe geometries is presented, including some of their strengths and weaknesses. Although coated soil probes allow measurement in more conductive soils, the probe coatings alter the water-content calibration both in sensitivity and linearity. Three general options are available for determining profiles of soil water content from the soil surface to a depth of 1 m. Soil probes of differing total depths extending to the surface are the most accessible. Soil probes buried at selected depths provide easily repeatable values. The vertically installed single probe, Aith depth segments separated by diodes, allows repeated measurement in a single vertical slice. The portability of TDR instrumentation coupled with the simplicity and flexibility of probes has allowed the mapping of spatial patterns of water content and field-based spatial and temporal soil water content distributions. The usefulness and power of the TDR technique for characterizing soil water content is increasing rapidly through continuing improvements in instrument operating range, probe design, multiplexing and automated data collection. (author)

  15. Identification of sources and mechanisms of salt-water pollution ground-water quality

    International Nuclear Information System (INIS)

    This book reports on salinization of soils and ground water that is widespread in the Concho River watershed and other semiarid areas in Texas and the United States. Using more than 1,200 chemical analyses of water samples, the authors were able to differentiate various salinization mechanisms by mapping salinity patterns and hydrochemical facies and by analyzing isotopic compositions and ionic ratios. Results revealed that in Runnels County evaporation of irrigation water and ground water is a major salinization mechanism, whereas to the west, in Irion and Tom Green Counties, saline water appears to be a natural mixture of subsurface brine and shallowly circulating meteoric water recharged in the Concho River watershed. The authors concluded that the occurrence of poor-quality ground water is not a recent or single-source phenomenon; it has been affected by terracing of farmland, by disposal of oil-field brines into surface pits, and by upward flow of brine from the Coleman Junction Formation via insufficiently plugged abandoned boreholes

  16. Postharvest peach weight loss, water content, and outer layer firmness

    Directory of Open Access Journals (Sweden)

    C. Puchalski

    1996-06-01

    Full Text Available Harvesting of a fruit is the beginning of loss in weight and firmness. Measuring changes in weight require maintaining identity of the fruit and current methods used to measure firmness are usually destructive. Alternative methods are needed which can rapidly and nondestructively sense fruit quality. Three cultivars of peaches were measured during 9 days of storage to obtain fruit having varying weight loss and firmness. The average daily whole fruit weight losses were 1.72, 2.19, and 2.22% for 'Garnet', 'Red Haven', and 'Sentinal', respectively. After 9 days of storage, the water content of the outer layers of a peach were less than at the center. Firmness, slope of the force-deformation curve obtained during 1 mm compression, decreased significantly during the first 3 days of storage and continued to decrease but by a smaller amount thereafter. By eliminating the time variable, firmness exponentially decreased with weight loss with an r of 0.79-0.88. Changes in water content and firmness of the outer layers appear to be good predictors of subsequent changes in the whole fruit.

  17. Ion aggregation in high salt solutions. IV. Graph-theoretical analyses of ion aggregate structure and water hydrogen bonding network

    Science.gov (United States)

    Choi, Jun-Ho; Cho, Minhaeng

    2015-09-01

    Ions in high salt solutions form a variety of ion aggregates, from ion pairs to clusters and networks. Their influences on water hydrogen bonding (H-bonding) network structures have long been of great interest. Recently, we have shown that the morphological structures of ion aggregates can be analyzed by using a spectral graph analysis theory, where each ion cluster or ion network is represented by a properly defined graph with edges and vertices. Here, to further examine the network properties of ion aggregates and water H-bonding networks in high salt solutions, we consider a few representative graph-theoretical descriptors: clustering coefficient, minimum path length, global efficiency, and degree distribution of ion aggregates. From the molecular dynamics trajectories, these graph theoretical properties of ion aggregates and water structures in NaCl and kosmotropic solutions are calculated and shown to be strongly dependent on the two types of ion aggregate structures, i.e., ion cluster and ion network. Ion clusters in high NaCl solutions exhibit typical behaviors of scale free network. The corresponding graph theoretical properties of ion networks in high KSCN solutions are notably different from those of NaCl ion clusters and furthermore they are very similar to those of water hydrogen-bonding network. The present graph-theoretical analysis results indicate that the high solubility limits of KSCN and other ion-network-forming salts might originate from their ability to form a large scale morphological network that can be intertwined with co-existing water H-bonding network. Furthermore, it is shown that the graph-theoretical properties of water H-bonding network structures do not strongly depend on the nature of dissolved ions nor on the morphological structures of ion aggregates, indicating that water's H-bonding interaction and network-forming capability are highly robust. We anticipate that the present graph-theoretical analysis results of high salt solutions would provide important information on the Hofmeister ion effects on water structure.

  18. Soil water content measured through the use of neutron probes

    International Nuclear Information System (INIS)

    With the objective of evaluating and discussing the problem of soil water content measurement through neutron probe, this study initiates the revision of the methodology with the discussion of the sphere of influence in water and in the soil. The problem of soil water content measurement close soil surface is also analysed with respect to spatial variability and thermal neutron escape to the atmosphere.Several probe calibrations are made and discussed for two tropical latosol, one of them being newly introduced in the literature through this work. It involves the correction of the number of thermal neutrons lost to the atmosphere, for measurements performed close to soil. (author)

  19. Effects of Salt-Drought Stress on Growth and Physiobiochemical Characteristics of Tamarix chinensis Seedlings

    OpenAIRE

    Junhua Liu; Jiangbao Xia; Yanming Fang; Tian Li; Jingtao Liu

    2014-01-01

    The present study was designed to clarify the effects of salinity and water intercross stresses on the growth and physiobiochemical characteristics of Tamarix chinensis seedlings by pots culture under the artificial simulated conditions. The growth, activities of SOD, POD, and contents of MDA and osmotic adjusting substances of three years old seedlings of T. chinensis were studied under different salt-drought intercross stress. Results showed that the influence of salt stress on growth was g...

  20. PENENTUAN KONSTANTA LAJU PENURUNAN KADAR IODAT DALAM GARAM BERIODIUM [Determination of the Rate Constant on the Decrease of Iodate Content in Iodized Salt

    Directory of Open Access Journals (Sweden)

    Wisnu Cahyadi

    2006-04-01

    Full Text Available Potassium iodate used as the source of iodine can be decomposed to become the other species i.e. iodide and iodine during processing and storage. The objective of this research was determination of the rate constant on the decrease of iodate content in iodized salt. The method was used to determine the temperature and the length of storage effects on iodate stability in iodized salt. The research was obtained the rate constant on the decrease of iodate content in iodized salt (K 2.55 x 10-8 ppm day-1 and energy of activation (Ea 12.002 kcal mol-1 K-1.

  1. An unprecedented constraint on water content in the sunlit lunar exosphere seen by Lunar-based Ultraviolet Telescope of Chang'e-3 mission

    Science.gov (United States)

    Wang, J.; Wu, C.; Qiu, Y. L.; Meng, X. M.; Cai, H. B.; Cao, L.; Deng, J. S.; Han, X. H.; Wei, J. Y.

    2015-05-01

    The content of OH/H2O molecules in the tenuous exosphere of the Moon is still an open issue at present. We here report an unprecedented upper limit of the content of the OH radicals, which is obtained from the in situ measurements carried out by the Lunar-based Ultraviolet Telescope, a payload of Chinese Chang'e-3 mission. By analyzing the diffuse background in the images taken by the telescope, the column density and surface concentration of the OH radicals are inferred to be <1011cm-2 and <104cm-3 (by assuming a hydrostatic equilibrium with a scale height of 100 km), respectively, by assuming that the recorded background is fully contributed by their resonance fluorescence emission. The resulted concentration is lower than the previously reported value by about two orders of magnitude, and is close to the prediction of the sputtering model. In addition, the same measurements and method allow us to derive a surface concentration of <102cm-3 for the neutral magnesium, which is lower than the previously reported upper limit by about two orders of magnitude. These results are the best known of the OH (MgI) content in the lunar exosphere to date.

  2. Preservation of salted and smoked rainbow trout by irradiation

    International Nuclear Information System (INIS)

    The benefits of radiation treatment of ready-to-eat rainbow trout fillets manifest through the extention of lag period of bacterial regrowth during storage. The shelf-life of the fillets, which is declared by the producer as 14 days, may be doubled. No significant decrease in eating quality due to the treatment was found. The dose of 2 kGy combined with the smoking, salting, vacuum packaging and storage in 2 -3 C is satisfactory to achieve the goal. (orig.)

  3. Mercury mobility in a salt marsh colonised by Halimione portulacoides

    OpenAIRE

    Válega, M.; Lillebø, A. I.; Caçador, I.; Pereira, M. E.; Duarte, A.C.; Pardal, M.A.

    2008-01-01

    The present study intends to increase the knowledge on the mobility of mercury in a salt marsh colonised by Halimione portulacoides. Mercury distribution in the sediment layers and its incorporation into the plant biomass were assessed, as well as the potential export of mercury from the contaminated area to the adjacent environment. Mercury pools in the sediments ranged from 560 to 943 mg m-2 and are largely associated with the solid fraction, with just a small amount being associated with t...

  4. Improvement of cardiovascular effects of metoprolol by replacement of common salt with a potassium- and magnesium-enriched salt alternative.

    OpenAIRE

    Mervaala, E. M.; Laakso, J; Vapaatalo, H; Karppanen, H.

    1994-01-01

    1. The influence of sodium chloride (NaCl)-enrichment of the diet (6% of the dry weight) and that of a novel sodium-reduced, potassium-, magnesium-, and L-lysine-enriched salt alternative on the cardiovascular effects of the beta 1-adrenoceptor blocking drug, metoprolol, was studied in stroke-prone spontaneously hypertensive rats. 2. Increased dietary sodium chloride intake produced a marked rise in blood pressure and induced left ventricular and renal hypertrophy. By contrast, the salt alter...

  5. Nuclear magnetic resonance imaging of water content in the subsurface

    Energy Technology Data Exchange (ETDEWEB)

    J. Hendricks; T. Yao; A. Kearns

    1999-01-21

    Previous theoretical and experimental studies indicated that surface nuclear magnetic resonance (NMR) has the potential to provide cost-effective water content measurements in the subsurface and is a technology ripe for exploitation in practice. The objectives of this investigation are (a) to test the technique under a wide range of hydrogeological conditions and (b) to generalize existing NMR theories in order to correctly model NMR response from conductive ground and to assess properties of the inverse problem. Twenty-four sites with different hydrogeologic settings were selected in New Mexico and Colorado for testing. The greatest limitation of surface NMR technology appears to be the lack of understanding in which manner the NMR signal is influenced by soil-water factors such as pore size distribution, surface-to-volume ratio, paramagnetic ions dissolved in the ground water, and the presence of ferromagnetic minerals. Although the theoretical basis is found to be sound, several advances need to be made to make surface NMR a viable technology for hydrological investigations. There is a research need to investigate, under controlled laboratory conditions, how the complex factors of soil-water systems affect NMR relaxation times.

  6. Neutron diffraction structures of water in crystalline hydrates of metal salts.

    Science.gov (United States)

    Chandler, Graham S; Wajrak, Magdalena; Khan, R Nazim

    2015-06-01

    Neutron diffraction structures of water molecules in crystalline hydrates of metal salts have been collected from the literature up to December 2011. Statistical methods were used to investigate the influence on the water structures of the position and nature of hydrogen bond acceptors and cations coordinated to the water oxygen. For statistical modelling the data were pruned so that only structures with oxygen as hydrogen acceptors, single hydrogen bonds, and no more than two metals or hydrogens coordinated to the water oxygen were included. Multiple linear regression models were fitted with the water OH bond length and bond angle as response variables. Other variables describing the position and nature of the acceptors and ions coordinated to the waters were taken as explanatory variables. These variables were sufficient to give good models for the bond lengths and angles. There were sufficient structures involving coordinated Mg(2+) or Cu(2+) for a separate statistical modelling to be done for these cases. PMID:26027003

  7. The role of prolactin in disorders of water-salt metabolism in hypertensive patients

    International Nuclear Information System (INIS)

    The relationship between water-salt balance and blood prolactin (Prl) level were examined in 22 male patients with essential hypertension, stages 1B-2A. Blood Prl and urinary potassium and sodium excretion were measured initially. Water-salt status was found to be different in patients with baseline hyperprolactinemia who made 2/3 of the sample. Following parlodel administration, Prl level declined in all patients, with daily electrolyte excretion also decreasing in originally-hyperprolactinemic patients. The rise in electrolyte excretion following lasix administration was accompanied with a fall in Prl in hyperprolactinemic test, all patients showed a tendency to Prl rise while the hyper prolactinemic patients also exhibited sodium retention. Therefore, blood Prl decrease leads to sodium retention in hyperprolactinemic hypertensive patients that may have an adverse pathogenetic significance

  8. Comparative study of nano and RO membrane for sodium sulphate recovery from industrial waste water

    OpenAIRE

    R. S. Gawaad; Sharma, S. K.; S. S. Sambi

    2011-01-01

    A large amount of non-biodegradable inorganic salts having low to high potential of hazards is discharged every year in water bodies by various industrial activities. The salts hazardous depend on nature and their concentration in water. Sodium sulfate is one of them. Although the sulfate’s health effect is relatively short-term, it is acute (diarrhea) and a substantial decrease of sulfate content in drinking water is recommendable. It is mainly discharged in to water bodies via commodity pro...

  9. Lipid components and water soluble metabolites in salted and dried tuna (Thunnus thynnus L.) roes.

    Science.gov (United States)

    Scano, P; Rosa, A; Pisano, M B; Piras, C; Cosentino, S; Dessi', M A

    2013-06-15

    The salted and dried product of tuna roe (bottarga) is a seafood characteristic of the Mediterranean area and exported all over the world. Samples of bottarga from bluefin tunas (Thunnus thynnus, L.) caught in the southwest Mediterranean sea were analysed. The samples were characterised by high content of marine wax esters (55-67 mol% of lipid classes), of docosahexaenoic (22:6 n-3, 25 w%) and oleic (18:1 n-9, 19 w%) fatty acids. Cholesterol was detected as 7-9 w% of lipids. Free fatty acids, index of lipid hydrolysis, represented 32-39 mol% over total fatty acids. Among metabolites, nutrients as taurine, nicotinamide and ?-alanine, were found. The microflora comprised staphylococci, enterococci (2.2 log(10)CFU/g) and lactic acid bacteria (3 log(10) CFU/g). The food-borne pathogens Staphylococcus aureus, Listeria monocytogenes and Salmonella spp. were not detected. These findings indicate tuna bottarga as valuable source of nutrients. PMID:23497865

  10. Quantification of Water Content Across a Cement-clay Interface Using High Resolution Neutron Radiography

    Science.gov (United States)

    Shafizadeh, A.; Gimmi, T.; Van Loon, L.; Kaestner, A.; Lehmann, E.; Maeder, U. K.; Churakov, S. V.

    In many designs for radioactive waste repositories, cement and clay will come into direct contact. The geochemical contrast between cement and clay will lead to mass fluxes across the interface, which consequently results in alteration of structural and transport properties of both materials that may affect the performance of the multi-barrier system. We present an experimental approach to study cement-clay interactions with a cell to accommodate small samples of cement and clay. The cell design allows both in situ measurement of water content across the sample using neutron radiography and measurement of transport parameters using through-diffusion tracer experiments. The aim of the high-resolution neutron radiography experiments was to monitor changes in water content (porosity) and their spatial extent. Neutron radiographs of several evolving cement-clay interfaces delivered quantitative data which allow resolving local water contents within the sample domain. In the present work we explored the uncertainties of the derived water contents with regard to various input parameters and with regard to the applied image correction procedures. Temporal variation of measurement conditions created absolute uncertainty of the water content in the order of ±0.1 (m3/m3), which could not be fully accounted for by correction procedures. Smaller relative changes in water content between two images can be derived by specific calibrations to two sample regions with different, invariant water contents.

  11. Impact of diurnal variation in vegetation water content on radar backscatter of maize during water stress

    Science.gov (United States)

    van Emmerik, Tim; Steele-Dunne, Susan; Judge, Jasmeet; van de Giesen, Nick

    2014-05-01

    Microwave emission and backscatter of vegetated surfaces are influenced by vegetation water content (VWC), which varies in response to availability of soil moisture in the root zone. Understanding the influence of diurnal VWC dynamics on radar backscatter will improve soil moisture retrievals using microwave remote sensing, and will provide insight into the potential use for radar to directly monitor vegetation water status. The goal of this research is to investigate the effect of diurnal variation in VWC of an agricultural canopy on backscatter for different radar configurations. Water stress was induced in a corn (Zea mays) canopy near Citra, Florida, between September 1 and October 20, 2013. Diurnal destructive samples from the canopy were collected to determine leaf, stalk and total VWC. Water stress was quantified by calculating the evaporation deficit and measuring the soil water tension. The water-cloud model was used to model the influence of VWC and soil moisture variations on backscatter for a range of frequencies, polarizations and incidence angles. Furthermore, radar backscatter time series was simulated to show the effect of water stress on the diurnal variation in backscatter due to VWC. Results of this study show the very significant effects that VWC dynamics have on radar backscatter. We also highlight the potential for vegetation and soil water status monitoring using microwave remote sensing.

  12. Salt diffusion through cation-exchange membranes in alcohol-water solutions

    OpenAIRE

    Izquierdo Gil, María Amparo; Barragán García, Vicenta María; Godino Gómez, Mari Paz; García Villaluenga, Juan Pedro; Ruiz Bauzá, Carlos; Seoane Rodríguez, Benjamin

    2009-01-01

    The salt flow through several commercial cation-exchange membranes separating two NaCl alcohol-water solutions with the same alcohol concentration, but different NaCl concentration was investigated. Homogeneous (Nafion-115) and heterogeneous (MK-40 and CR65-AZL-412) membranes were used in this work. The integral permeability coefficient was determined from the temporal evolution of the concentration in the dilute solution. The results showed that the integral permeability coefficient depends ...

  13. Baseline risk assessment of ground water contamination at the uranium mill tailings site Salt Lake City, Utah

    International Nuclear Information System (INIS)

    This baseline risk assessment of groundwater contamination at the uranium mill tailings site near Salt Lake City, Utah, evaluates potential public health or environmental impacts resulting from ground water contamination at the former uranium ore processing site. The tailings and other contaminated material at this site were placed in a disposal cell located at Clive, Utah, in 1987 by the US Department of Energy's Uranium Mill Tailings Remedial Action (UMTRA) Project. The second phase of the UMTRA Project is to evaluate residual ground water contamination at the former uranium processing site, known as the Vitro processing site. This risk assessment is the first site-specific document under the Ground Water Project. It will help determine the appropriate remedial action for contaminated ground water at the site

  14. Investigating salt and naphthenic acids interactions in the toxicity of oil sands process water to freshwater invertebrates

    Energy Technology Data Exchange (ETDEWEB)

    Turcotte, D.; Kautzman, M.; Wojnarowicz, P.; Cutter, J.; Bird, E.; Liber, K. [Saskatchewan Univ., Regina, SK (Canada)

    2010-07-01

    The hot water extraction process used to produce bitumens from oil sands produces a large volume of oil sands process water (OSPW) that contain elevated concentrations of naphthenic acids (NA) and salts. Many oil sands reclamation projects are proposing the use of OSPW as part of reconstructed wetlands projects. This study investigated the toxicity of OSPW to freshwater invertebrates. The toxic interactions between NA and salinity on freshwater invertebrates were assessed. Bioassays with laboratory-cultured Ceriodaphnia dubia were conducted to determine the toxicity of OSPW from selected water bodies. The study showed that while the concentrations of NAs and salinity were elevated in OSPW waters that caused toxic responses, the concentrations of salinity ions varied greatly among the OSPW samples. Results of the study suggested that ion composition may be a factor in toxicity. Interactions between NAs and salinity were then assessed by performing bioassays with mixtures representing major ion combinations in OSPW.

  15. Investigating salt and naphthenic acids interactions in the toxicity of oil sands process water to freshwater invertebrates

    International Nuclear Information System (INIS)

    The hot water extraction process used to produce bitumens from oil sands produces a large volume of oil sands process water (OSPW) that contain elevated concentrations of naphthenic acids (NA) and salts. Many oil sands reclamation projects are proposing the use of OSPW as part of reconstructed wetlands projects. This study investigated the toxicity of OSPW to freshwater invertebrates. The toxic interactions between NA and salinity on freshwater invertebrates were assessed. Bioassays with laboratory-cultured Ceriodaphnia dubia were conducted to determine the toxicity of OSPW from selected water bodies. The study showed that while the concentrations of NAs and salinity were elevated in OSPW waters that caused toxic responses, the concentrations of salinity ions varied greatly among the OSPW samples. Results of the study suggested that ion composition may be a factor in toxicity. Interactions between NAs and salinity were then assessed by performing bioassays with mixtures representing major ion combinations in OSPW.

  16. Baseline risk assessment of ground water contamination at the uranium mill tailings site Salt Lake City, Utah

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This baseline risk assessment of groundwater contamination at the uranium mill tailings site near Salt Lake City, Utah, evaluates potential public health or environmental impacts resulting from ground water contamination at the former uranium ore processing site. The tailings and other contaminated material at this site were placed in a disposal cell located at Clive, Utah, in 1987 by the US Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The second phase of the UMTRA Project is to evaluate residual ground water contamination at the former uranium processing site, known as the Vitro processing site. This risk assessment is the first site-specific document under the Ground Water Project. It will help determine the appropriate remedial action for contaminated ground water at the site.

  17. Hygroscopic behavior of atmospherically relevant water-soluble carboxylic salts and their influence on the water uptake of ammonium sulfate

    OpenAIRE

    Z.J Wu; Nowak, A.; Poulain, L.; Herrmann, H; Wiedensohler, A

    2011-01-01

    The hygroscopic behavior of atmospherically relevant water-soluble carboxylic salts and their effects on ammonium sulfate was investigated using a hygroscopicity tandem differential mobility analyzer (H-TDMA). No hygroscopic growth is observed for sodium oxalate, while ammonium oxalate shows slight growth (growth factor = 1.05 at 90%). The growth factors at 90% RH for sodium acetate, sodium malonate, sodium succinate, sodium tartrate, ammonium tartrate, sodium pyruvate, sodium maleate, and hu...

  18. Temporal stability of soil water content and soil water flux patterns across agricultural fields

    Science.gov (United States)

    When an agricultural field is repeatedly surveyed for soil water content, sites often can be spotted where soil is consistently wetter or consistently dryer than average across the study area. Temporal stability presents significant interest for upscaling observed soil water content, improving soil ...

  19. Collimated neutron probe for soil water content measurements

    Science.gov (United States)

    Klenke, J.M.; Flint, A.L.

    1991-01-01

    A collimated neutron probe was designed to enable mesurements in specific directions from the access tube. To determine the size and shape of soil volume affecting the neutron counts, experiments were conducted to evaluate: 1) the vertical distance of soil above and below the probe that influences neutron counts; 2) the horizontal distance away from the probe into the soil that influences neutron counts; 3) the angle of soil viewed by the probe from the collimator; and 4) the three-dimensional thermal-neutron density field. The vertical distance was ~0.5m, the horizontal distance was ~0.2m, and the angle of soil viewed by the probe from the collimator was ~120??. Thermal neutrons detected from distances or angles larger than these values influence the determination of relative water content by 5% or less. -from Authors

  20. Remote sensing of atmospheric water content from Bhaskara SAMIR data. [using statistical linear regression analysis

    Science.gov (United States)

    Gohil, B. S.; Hariharan, T. A.; Sharma, A. K.; Pandey, P. C.

    1982-01-01

    The 19.35 GHz and 22.235 GHz passive microwave radiometers (SAMIR) on board the Indian satellite Bhaskara have provided very useful data. From these data has been demonstrated the feasibility of deriving atmospheric and ocean surface parameters such as water vapor content, liquid water content, rainfall rate and ocean surface winds. Different approaches have been tried for deriving the atmospheric water content. The statistical and empirical methods have been used by others for the analysis of the Nimbus data. A simulation technique has been attempted for the first time for 19.35 GHz and 22.235 GHz radiometer data. The results obtained from three different methods are compared with radiosonde data. A case study of a tropical depression has been undertaken to demonstrate the capability of Bhaskara SAMIR data to show the variation of total water vapor and liquid water contents.

  1. Quality of salted cod (Gadus morhua L.) as influenced by raw material and salt composition

    OpenAIRE

    Lauritzsen, Kristin

    2004-01-01

    Hva påvirker kvaliteten på saltfisk? Saltfiskens lukt, farge, konsistens og smak bestemmer kvaliteten. Dersom torsken blir dødsstiv samtidig med at saltet strømmer inn i fiskekjøttet, oppnår man et lavere vektutbytte, vann- og saltinnhold på sluttproduktet. Fisken bør derfor saltes etter dødsstivheten for å oppnå et høyt vektutbytte. Ønsker man å minimere proteintapet fra salteprosessen og få en høy lyshet på sluttproduktet, bør fisken derimot saltes før dødsstivheten inntrer. Økt kalsium- og...

  2. Hygroscopic behavior of atmospherically relevant water-soluble carboxylic salts and their influence on the water uptake of ammonium sulfate

    Directory of Open Access Journals (Sweden)

    Z. J. Wu

    2011-03-01

    Full Text Available The hygroscopic behavior of atmospherically relevant water-soluble carboxylic salts and their effects on ammonium sulfate was investigated using a hygroscopicity tandem differential mobility analyzer (H-TDMA. No hygroscopic growth is observed for sodium oxalate, while ammonium oxalate shows slight growth (growth factor = 1.05 at 90%. The growth factors at 90% RH for sodium acetate, sodium malonate, sodium succinate, sodium tartrate, ammonium tartrate, sodium pyruvate, sodium maleate, and humic acid sodium salt are 1.79, 1.78, 1.69, 1.54, 1.29, 1.70, 1.78, and 1.19, respectively. The mixtures of organic salts with ammonium sulfate, which are prepared simulating the atmospheric aerosols, are determined. A clear shift in DRH of mixture to lower RH is observed with increasing organic mass fraction. Above RH = 80%, the humidograms of the different mixtures are quite close to that of pure ammonium sulfate. Köhler theory is used to predict the effective hygroscopicity parameter, ?, for mixtures at 90% RH. The results show that Köhler theory underestimated ? for mixtures without considering the water solubility of ammonium oxalate. However, if the water solubility of ammonium oxalate is taken into account, the results show a much better agreement with those derived from H-TDMA measurements.

  3. Rational Utilization of Salt Affected Soils and Saline Waters for Crop Production and the Protection of Soil and Water in Agricultural Catchments

    International Nuclear Information System (INIS)

    Sustainable management of land and water resources in arid and semi-arid regions is of concern as a result of increased population pressure and the need for more food and fibre. Soil and water salinity is widespread across the arid and semiarid regions of Australia, the Arabian Peninsula, Central Asia, North Africa, North America and South Asia, where it is a major constraint for agricultural productivity and the livelihoods of the rural population. Globally, salinity spreads across at least 75 countries and about 20% of irrigated land is affected by salinity. Recent estimates suggest that up to 50% of irrigated land has become saline in some of these regions. While both natural processes (primary) and anthropogenic activities (secondary) cause soil and water salinity, the latter contributes more to loss of agricultural productivity in these regions. In addition to anthropogenic activities global climate change also accelerates soil and water salinity through the following processes: - Unpredictable evaporation and transpiration: Climate change alters the evapotranspiration and water balance at the land surface, and changes the groundwater recharge. In shallow aquifers, the groundwater responds to these changes quickly and moves towards the surface bringing salt with it and accelerating soil salinization (Yu et al., 2002). - Reduction in rainfall: Current best estimates suggest that in arid and semi-arid catchments, a reduction in rainfall due to climate change will result in up to double the reduction in run-off from catchments and river flow. Under such conditions, river salinity will increase as a result of reduced river dilution (CSIRO, 2008). - Influence of tidal waves: In coastal areas, the risk of soil and water salinization under climate change is even higher because the increased sea level and frequency of tidal waves brings salt water into inland freshwaters and is lost then to groundwater, making it saline. In low-lying areas, salty river water moves to the land surface causing soil salinization (Nicolls et al., 2007). - Disconnection between floodplains and rivers: Continuous drought in some arid and semi-arid regions accumulates salt in floodplains. At the end of the drought cycle the accumulated salt is mobilized and released to the river making the water saline. This process may continue for years and affect environmental assets downstream of irrigated landscapes (Junk and Wantzen, 2003)

  4. Soil water content measured by FDR probes and thresholds for drip irrigation management in peach trees / Contenido de agua en el suelo medido con sondas FDR y umbrales para manejo de riego por goteo en durazno

    Scientific Electronic Library Online (English)

    Oussama, Hussein-Mounzer; José Rodolfo, Mendoza-Hernández; Isabel, Abrisqueta-Villena; Luis Mario, Tapia-Vargas; José María, Abrisqueta-García; Juan, Vera-Muñoz; Mari Carmen, Ruiz-Sánchez.

    2008-09-01

    Full Text Available El contenido de agua en el suelo fue monitoreado en tiempo real con un multisensor de capacitancia, basado en la técnica de reflectometría en el dominio de la frecuencia (FDR), en una huerta joven de durazno (Prunus persica L. Batsch cv. Flordastar) con riego por goteo. El objetivo de este trabajo f [...] ue estudiar efecto de dos tratamientos de riego en el contenido volumétrico de agua del suelo y establecer los umbrales de manejo del agua de almacenamiento del suelo (SWS), bajo monitoreo con sensores FDR durante 2004. Los tratamientos consistieron en restaurar el contenido de agua del suelo a 100% (T1) y 50% (T2) de la evapotranspiración del cultivo (ETc) aplicando diferentes dosis de riego a igual frecuencia. Las medidas continuas del SWS registradas por los sensores FDR refl ejaron el impacto de los diferentes eventos de riego en el contenido de agua del suelo, proporcionaron información del avance del frente de humedad, de la profundidad activa del sistema radicular y del destino del agua de riego. A través del continuo suelo-planta-atmósfera, las variaciones del SWS, fueron usadas para determinar in situ el "nivel superior (fullpoint)" (142 mm 0.5 m-1), la "capacidad de campo" (132 mm 0.5 m-1) y el "nivel inferior (refillpoint)" (124 mm 0.5 m-1) como umbrales prácticos para manejo de riego y ajuste de la dosis y frecuencia de riego con los requerimiento reales de agua de la planta. La determinación gráfica de los umbrales de riego minimizó la importancia de pequeñas fluctuaciones del contenido de agua del suelo. Para el cultivar de durazno "Flordastar" la reducción de aplicación de agua hasta 50% de ETc condujo a una reducción progresiva del contenido de agua del suelo sin producir efecto significativo en el rendimiento de fruto y un incremento de la eficiencia de uso de agua de 2.7 kg m-³ en T1 a 5.0 kg m-3 en T2. Abstract in english Soil water content was monitored continuously with multisensor capacitance probes, based on the frequency domain reflectometry (FDR) technique, in drip irrigated young peach trees (Prunus persica (L.) Batsch) cv. Flordastar in a semiarid region of Murcia, Spain during 2004. The aim of this work was [...] to study the effect of two irrigation treatments on volumetric soil water content and to determine the irrigation management thresholds of the soil water store (SWS) as monitored by FDR probes. The treatments consisted in restoring the soil water content to 100% (T1) and 50% (T2) of the crop evapotranspiration (Etc) by applying different irrigation doses with similar frequency. The continuous measurements of soil water content by the capacitance sensors reflected properly the impact of different irrigation events on the soil water stored and provide useful information upon the advance of the wetted front, the depth of the root system activity and the fate of the applied water. Through the continuum soil-plant-atmosphere, the variations of the soil water content were used to determine the in situ: "fullpoint" (142 mm 0.5 m-1), field capacity (132 mm 0.5 m-1), and "refillpoint" (124 mm 0.5 m-1) as practical thresholds for irrigation management to match the irrigation doses and frequency with the actual plant water requirements. Graphical determination of irrigation thresholds minimized the importance of small fluctuations in soil water content. For the early ripening "Flordastar" peach cultivar the reduction of water application down to 50% ETc has lead to a progressive depletion of the soil water storage without a significant effect on final fruit yield and increased water use efficiency from 2.7 kg m-3 in T1 to 5.0 kg m-3 in T2.

  5. HIGH PURITY ALUMINIUM-LITHIUM MASTER ALLOY BY MOLTEN SALT ELECTROLYSIS

    OpenAIRE

    Watanabe, Y; Toyoshima, M.; Itoh, K.(Department of Physics, University of Tokyo, 113-0033, Tokyo, Japan)

    1987-01-01

    The aim of this work is to develop the economical production process of the Al-Li master alloy free from metallic sodium, calcium and potassium. This master alloy can be used for aluminium-lithium alloys for structual materials of aircrafts, automobiles and robots. Moreover the Al-Li master alloy with lithium content of 18-20wt. % is applicable to the blanket of fusion reactors and the active mass of batteries. This Al-Li master alloy can be produced by means of LiCl-KCl molten salt electroly...

  6. ESKIMO1 is a key gene involved in water economy as well as cold acclimation and salt tolerance

    DEFF Research Database (Denmark)

    Bouchabke-Coussa, O.; Quashie, M.L.

    2008-01-01

    Background: Drought is a major social and economic problem resulting in huge yield reduction in the field. Today's challenge is to develop plants with reduced water requirements and stable yields in fluctuating environmental conditions. Arabidopsis thaliana is an excellent model for identifying potential targets for plant breeding. Drought tolerance in the field was successfully conferred to crops by transferring genes from this model species. While involved in a plant genomics programme, which aims to identify new genes responsible for plant response to abiotic stress, we identified ESKIMO1 as a key gene involved in plant water economy as well as cold acclimation and salt tolerance. Results: All esk1 mutants were more tolerant to freezing, after acclimation, than their wild type counterpart. esk1 mutants also showed increased tolerance to mild water deficit for all traits measured. The mutant's improved tolerance to reduced water supply may be explained by its lower transpiration rate and better water use efficiency (WUE), which was assessed by carbon isotope discrimination and gas exchange measurements. esk1 alleles were also shown to be more tolerant to salt stress. Transcriptomic analysis of one mutant line and its wild-type background was carried out. Under control watering conditions a number of genes were differentially expressed between the mutant and the wild type whereas under mild drought stress this list of genes was reduced. Among the genes that were differentially expressed between the wild type and mutant, two functional categories related to the response to stress or biotic and abiotic stimulus were over-represented. Under salt stress conditions, all gene functional categories were represented equally in both the mutant and wild type. Based on this transcriptome analysis we hypothesise that in control conditions the esk1 mutant behaves as if it was exposed to drought stress. Conclusion: Overall our findings suggest that the ESKIMO1 gene plays a major role in plant response to water shortage and inwhole plant water economy. Further experiments are being undertaken to elucidate the function of the ESKIMO1 protein and the way it modulates plant water uptake.

  7. ESKIMO1 is a key gene involved in water economy as well as cold acclimation and salt tolerance

    Directory of Open Access Journals (Sweden)

    Yu Agnes

    2008-12-01

    Full Text Available Abstract Background Drought is a major social and economic problem resulting in huge yield reduction in the field. Today's challenge is to develop plants with reduced water requirements and stable yields in fluctuating environmental conditions. Arabidopsis thaliana is an excellent model for identifying potential targets for plant breeding. Drought tolerance in the field was successfully conferred to crops by transferring genes from this model species. While involved in a plant genomics programme, which aims to identify new genes responsible for plant response to abiotic stress, we identified ESKIMO1 as a key gene involved in plant water economy as well as cold acclimation and salt tolerance. Results All esk1 mutants were more tolerant to freezing, after acclimation, than their wild type counterpart. esk1 mutants also showed increased tolerance to mild water deficit for all traits measured. The mutant's improved tolerance to reduced water supply may be explained by its lower transpiration rate and better water use efficiency (WUE, which was assessed by carbon isotope discrimination and gas exchange measurements. esk1 alleles were also shown to be more tolerant to salt stress. Transcriptomic analysis of one mutant line and its wild-type background was carried out. Under control watering conditions a number of genes were differentially expressed between the mutant and the wild type whereas under mild drought stress this list of genes was reduced. Among the genes that were differentially expressed between the wild type and mutant, two functional categories related to the response to stress or biotic and abiotic stimulus were over-represented. Under salt stress conditions, all gene functional categories were represented equally in both the mutant and wild type. Based on this transcriptome analysis we hypothesise that in control conditions the esk1 mutant behaves as if it was exposed to drought stress. Conclusion Overall our findings suggest that the ESKIMO1 gene plays a major role in plant response to water shortage and in whole plant water economy. Further experiments are being undertaken to elucidate the function of the ESKIMO1 protein and the way it modulates plant water uptake.

  8. [Desmopressin effect on water-salt homeostasis and orthostatic tolerance during head-down tilting].

    Science.gov (United States)

    Larina, I M; Noskov, V B; Nichiporuk, I A; Pastushkova, L Kh; Vasil'eva, G Iu

    2009-01-01

    Effects of desmopressin, a synthetic analog of antidiuretic hormone (ADH), on water-salt metabolism and orthostatic tolerance were evaluated in human subjects during 24-hr HDT (-15 degrees). Consumption of the preparation was found to dampen losses in total body and extracellular liquids and to slow down diuresis as well as establishment of a positive water balance as compared with control series without ADH. In addition, tolerance of the standard standing test improved noticeably. To conclude, desmopressin precluded hypohydration of the tilted subjects and, consequently, prevented loss of orthostatic tolerance. PMID:19462786

  9. Measuring water content of soil columns in the laboratory

    International Nuclear Information System (INIS)

    Volumetric water content was measured by time domain reflectometry (TDR) and by a single-beam ?-ray attenuation at eight positions on each of three soil columns. Both methods measured equally well at single locations and both showed some position dependence, which was greater for ?-ray attenuation than for TDR. An error analysis showed the major contributor to variance in the ?-ray measurement was the unknown variability of bulk density which gave rise to uncertainty of +-0.05 cmsup(3.)cmsup(-3) for three soils. For the TDR technique all sources of variance resulted in a total uncertainty of +-0.02 cmsup(3.)cmsup(+3). The greater sampling volume of the TDR as used in this experiment was advantageous with the naturally structured heterogeneous soils

  10. Pulse radiolysis study on solvated electrons in ionic liquid with controlling water content

    International Nuclear Information System (INIS)

    Room-temperature ionic liquids, which are nonvolatile and nonflammable, have been proposed as 'green solvents' for new applications in chemical synthesis, separation chemistry, electrochemistry and other areas. In the separation chemistry, the hydrophobic ionic liquids have been practically expected to be alternative to traditional organic solvents for solvent extraction of 4f and 5f elements from the viewpoints of the immiscibility in water, especially in the spent nuclear fuel reprocessing. However, the chemical reaction or kinetics studies are important to apply the ionic liquids for various processes. To understand the effects of ionic liquids on chemical reactions, pulse radiolysis studies of ionic liquid have been carried out on nanosecond scale by using a 27 MeV electron beam and an analyzing light source of xenon lamp. In the experiment, a hydrophobic ionic liquid of diethylmethyl(2-methoxy)ammonium-bis(trifluoromethanesulfonyl)imide (DEMMA-TFSI) salt was used. The ionic liquid of DEMMA-TFSI was prepared by reacting equimolar amounts of diethylmethyl(2-methoxy)ammonium chloride (C10H20F6N2O5S2Cl, >98%, Nisshinbo) with lithium bis(trifluoromethanesulfonyl)imide (LiN(SO2CF3)2, SynQuest Labs., Inc.) in aqueous solutions at room temperature. The ionic liquid was separated from the aqueous phase, purified by repeated extractions with water to LiCl and excess reagent, and finally dried at 110 degree C under vacuum. The transient absorptions of the ionic liquid were measured at wavelengths from 350 to 1400 nm, in which two photodiodes of silicon (1000 nm) were used. The spectrum of solvated electrons in the ionic liquid of DEMMA-TFSI was obtained with an absorption peak of 1060 nm and a wide bandwidth of about 600 nm (FWHM). The decay constant of the solvated electrons in the ionic liquid was 1.54 x 107 s-1, which is independent on the wavelength. The absorption peak of the spectrum was blue-shifted from 1060 to 780 nm with increasing water content of 0 to 1.4 wt% in ionic liquid, i.e., changing the ionic liquid from the dehydrated state to the water-saturated state. It indicates that the solvation structure of electrons solvated with DEMMA cations was changed to be that hydrated with water molecules, as shown in Fig. 1. In the experiment, several solutes, including acetone, trivalent ion of europium (III), pyrene, and biphenyl, were used to study the reactions of the solvated electrons in ionic liquid. (authors)

  11. Effect of different assumptions for brain water content on absolute measures of cerebral oxygenation determined by frequency-domain near-infrared spectroscopy in preterm infants: an observational study

    OpenAIRE

    Demel, Anja; Wolf, Martin; Poets, Christian F; Franz, Axel R.

    2014-01-01

    BACKGROUND Brain-water content (BWC) decreases with maturation of the brain and potentially affects parameters of cerebral oxygenation determined by near-infrared spectroscopy (NIRS). Most commercially available devices do not take these maturational changes into account. The aim of this study was to determine the effect of different assumptions for BWC on parameters of cerebral oxygenation in preterm infants. METHODS Concentrations of oxy-, deoxy- and total hemoglobin and regional cerebra...

  12. Characterization of hydraulic connections between mine shaft and caprock based on time series analysis of water level changes for the flooded Asse I salt mine in northern Germany

    International Nuclear Information System (INIS)

    In the context of safe enclosure of nuclear waste in salt formations, one of the main challenges is potential water inflow into the excavations. In this context, the hydraulic relationship between the abandoned Asse I salt mine and the salt dissolution network at the base of the caprock of the Asse salt structure in northern Germany is characterized by utilizing time series analysis of water level changes. The data base comprises a time series of water level measurements over eight years with a temporal resolution of 15 minutes (in general) and up to 2 minutes for specific intervals. The water level measurements were collected in the shaft of the flooded mine, which is filled with ground rock salt until a depth of 140 m, and a deep well, which is screened in 240 m depth at the salt dissolution zone at the base of the caprock. The distance between the well and the shaft is several hundred meters. Since the beginning of the continuous observations in the 1970s, the shaft has shown periodically abrupt declines of the water level of several meters occurring in intervals of approx. 8 to 10 years. The time series analysis consists of trend, Fourier-, autocorrelation and cross-correlation analysis. The analysis showed that during times with small water level changes the measured water level in the well and the shaft are positively correlated whereas during the abrupt water level drops in the shaft, the measured water levels between the shaft and the well are negatively correlated. A potential explanation for this behavior is that during times with small changes, the measured water levels in the well and in the shaft are influenced by the same external events with similar response times. In contrast, during the abrupt water level decline events in the shaft, a negatively correlated pressure signal is induced in the well, which supports the assumption of a direct hydraulic connection between the shaft and the well via flooded excavations and the salt dissolution network along the base of the caprock.

  13. Health Gain by Salt Reduction in Europe: A Modelling Study

    OpenAIRE

    Hendriksen, Marieke A. H.; van Raaij, Joop M.A.; Geleijnse, Johanna M.; Breda, Joao; Hendriek C. Boshuizen

    2015-01-01

    Excessive salt intake is associated with hypertension and cardiovascular diseases. Salt intake exceeds the World Health Organization population nutrition goal of 5 grams per day in the European region. We assessed the health impact of salt reduction in nine European countries (Finland, France, Ireland, Italy, Netherlands, Poland, Spain, Sweden and United Kingdom). Through literature research we obtained current salt intake and systolic blood pressure levels of the nine countries. The populati...

  14. Density and water content measurement with two dual detector probes

    International Nuclear Information System (INIS)

    The ''Laboratoires des Ponts et Chaussees'' have developed an electronic device for geological prospections. This system includes gamma-gamma and neutron-neutron probes for continuous measurement in borehole down to one hundred meters. It is used, as well to measure the density and the water content in the field of soil mechanic engineering. When the diameter is not constant all along the borehole the two probes have to use a dual detector procedure. When constant, a simple detector procedure is sufficient to obtain density and water content. Two examples show the possibilities of this apparatus, particularly to control the borehole diameter and the soil chemical composition

  15. Microwave measurements of the water content of bentonite

    International Nuclear Information System (INIS)

    The theory of operation of microwave coaxial resonators is described. Sample preparation and the application of resonator techniques to the measurement of the permittivity (dielectric constant) of bentonite is discussed. The results indicate a fairly linear change in resonant frequency for saturation levels at 10, 30, 50, 70, and 90%. The results clearly demonstrate that this microwave technique is a viable method for measuring water content of soils. A discussion of additional applications of microwave methods for determining water content in materials is presented. 3 refs., 5 figs

  16. Modeling Soil Water Retention Curves in the Dry Range Using the Hygroscopic Water Content

    DEFF Research Database (Denmark)

    Chen, Chong; Hu, Kelin

    2014-01-01

    Accurate information on the dry end (matric potential less than ?1500 kPa) of soil water retention curves (SWRCs) is crucial for studying water vapor transport and evaporation in soils. The objectives of this study were to assess the potential of the Oswin model for describing the water adsorption curves of soils and to predict SWRCs at the dry end using the hygroscopic water content at a relative humidity of 50% (?RH50). The Oswin model yielded satisfactory fits to dry-end SWRCs for soils dominated by both 2:1 and 1:1 clay minerals. Compared with the Oswin model, the Campbell and Shiozawa model combined with the Kelvin equation (CS-K) produced better fits to dry-end SWRCs of soils dominated by 2:1 clays but provided poor fits for soils dominated by 1:1 clays. The shape parameter ? of the Oswin model was dependent on clay mineral type, and approximate values of 0.29 and 0.57 were obtained for soils dominated by 2:1 and 1:1 clays, respectively. Comparison of the Oswin model combined with the Kelvin equation, with water potential estimated from ?RH50 (Oswin-KRH50), CS model combined with the Arthur equation (CS-A), and CS-K model, with water potential obtained from ?RH50 (CS-KRH50) indicated that for soils dominated by 2:1 clay minerals, the predictive ability of the Oswin-KRH50 model was comparable to the CS-KRH50 model in which ?RH50 was the input parameter but performed better than the CS-A model where clay content was the input parameter. The Oswin-KRH50 model also has the potential for predicting dry-end SWRCs of soils dominated by 1:1 clays.

  17. An Unprecedented Constraint on Water Content in the Sunlit Lunar Exosphere Seen by Lunar-Based Ultraviolet Telescope of Chang'e-3 Mission

    CERN Document Server

    Wang, J; Qiu, Y L; Meng, X M; Cai, H B; Cao, L; Deng, J S; Han, X H; Wei, J Y

    2015-01-01

    The content of $\\mathrm{OH/H_2O}$ molecules in the tenuous exosphere of the Moon is still an open issue at present. We here report an unprecedented upper limit of the content of the OH radicals, which is obtained from the in-situ measurements carried out \\rm by the Lunar-based Ultraviolet Telescope, a payload of Chinese Chang'e-3 mission. By analyzing the diffuse background in the images taken by the telescope, the column density and surface concentration of the OH radicals are inferred to be $<10^{11}\\ \\mathrm{cm^{-2}}$ and $<10^{4}\\ \\mathrm{cm^{-3}}$ (by assuming a hydrostatic equilibrium with a scale height of 100km), respectively, by assuming that the recorded background is fully contributed by their resonance fluorescence emission. The resulted concentration is lower than the previously reported value by about two orders of magnitude, and is close to the prediction of the sputtering model. In addition, the same measurements and method allow us to derive a surface concentration of $<10^{2}\\ \\math...

  18. Reflectance spectroscopy for the assessment of soil salt content in soils of the yellow river delta of China

    Science.gov (United States)

    Weng, Yongling; Gong, P.; Zhu, Z.

    2008-01-01

    There has been growing interest in the use of reflectance spectroscopy as a rapid and inexpensive tool for soil characterization. In this study, we collected 95 soil samples from the Yellow River Delta of China to investigate the level of soil salinity in relation to soil spectra. Sample plots were selected based on a field investigation and the corresponding soil salinity classification map to maximize variations of saline characteristics in the soil. Spectral reflectances of air-dried soil samples were measured using an Analytical Spectral Device (ASD) spectrometer (350-2500 nm) with an artificial light source. In the Yellow River Delta, the dominant chemical in the saline soil was NaCl and MgCl2. Soil spectra were analysed using two-thirds of the available samples, with the remaining one-third withheld for validation purposes. The analysis indicated that with some preprocessing, the reflectance at 1931-2123 nm and 2153-2254 nm was highly correlated with soil salt content (SSC). In the spectral region of 1931-2123 nm, the correlation R ranged from -0.80 to -0.87. In the region of 2153-2254 nm, the SSC was positively correlated with preprocessed reflectance (0.79-0.88). The preprocessing was done by fitting a convex hull to the reflectance curve and dividing the spectral reflectance by the value of the corresponding convex hull band by band. This process is called continuum removal, and the resulting ratio is called continuum removed reflectance (CR reflectance). However, the SSC did not have a high correlation with the unprocessed reflectance, and the correlation was always negative in the entire spectrum (350-2500 nm) with the strongest negative correlation at 1981 nm (R = -0.63). Moreover, we found a strong correlation (R=0.91) between a soil salinity index (SSI: Constructed using CR reflectance at 2052 nm and 2203 nm) and SSC. We estimated SSC as a function of SSI and SSI' (SSI': Constructed using unprocessed reflectance at 2052 nm and 2203 nm) using univariate regression. Validation of the estimation of SSC was conducted by comparing the estimated SSC with the holdout sample points. The comparison produced an estimated root mean squared error (RMSE) of 0.986 (SSC ranging from 0.06 to 12.30 g kg-1) and R2 of 0.873 for SSC with SSI as independent variable and RMSE of 1.248 and R2 of 0.8 for SSC with SSI' as independent variable. This study showed that a soil salinity index developed for CR reflectance at 2052 nm and 2203 nm on the basis of spectral absorption features of saline soil can be used as a quick and inexpensive method for soil salt-content estimation.

  19. Oxidation rates of SO 2 in sea-water and sea-salt aerosols

    Science.gov (United States)

    Clarke, A. G.; Radojevic, M.

    The oxidation rates of sodium sulphite in bulk sea water solutions have been measured and found to be second order in [S(IV) ]. The reaction is much faster than in pure water due to chloride ion catalysis. The rate of absorption of SO 2 into sea-salt aerosols at various relative humidities has also been studied using a radioactive tracing technique. The reaction was found to be zero order in gas phase SO 2 concentration over the range 0.1-2 ppm. The reaction rate in the aerosols is several orders of magnitude faster than in sea water presumably due to the higher concentrations of Cl - and other ions. The reaction rates both in the bulk solutions and in the aerosols were found to be faster for artificially prepared 'sea water' than for natural sea water, probably due to the absence of organic inhibitors. The conversion rates of SO 2 in marine or coastal atmospheres due to this reaction are estimated for various salt concentrations and relative humidities. In favourable circumstances it could be competitive with other mechanisms. A possible effect of this reaction on the deposition rate of SO 2 to the sea is noted.

  20. Long term salinity stress in relation to lipid peroxidation, super oxide dismutase activity and proline content of salt-sensitive and salt-tolerant wheat cultivars / Estrés salino a largo plazo en relación con peroxidación lipídica, actividad superóxido dismutasa y contenido de prolina de cultivares de trigo sensibles y tolerantes a la salinidad

    Scientific Electronic Library Online (English)

    Azam, Borzouei; Mohammad, Kafi; Elahe, Akbari-Ghogdi; MirAhmad, Mousavi-Shalmani.

    2012-12-01

    Full Text Available La salinidad es un problema del medio radical ampliamente distribuido que limita la productividad de los cultivos de cereal en todo el mundo. La capacidad de las plantas para tolerar la sal está determinada por multiples vías bioquímicas que facilitan la retención y/o adquisición de agua, protegen l [...] as funciones del cloroplasto, y mantienen la homeostasis iónica. Por lo tanto, se evaluó la capacidad de dos cultivares de trigo (Triticum aestivum L.), sensible a sal ('Tajan') y tolerante a sal ('Bam'), para adaptarse a un ambiente salino en un grupo de experimentos en invernadero bajo estrés salino durante tres estaciones de crecimiento (encanado, 50% antesis, y 10 d después de antesis). Las plantas se regaron con diferentes aguas salinas con conductividades eléctricas de 1,3; 6; 8; 10; y 12 dS m-1, que se obtuvieron agregando NaCl:CaCl2 en relación molar 10:1 con agua fresca. Las diferencias en parámetros de crecimiento, peroxidación de lípidos, actividad superóxido dismutasa (SOD), y acumulación de prolina fueron evaluadas a fin de determinar la tolerancia o sensibilidad relativas de los cultivares. Los resultados indicaron que ambos parámetros difieren de acuerdo a la capacidad del cultivar para enfrentar el estrés oxidativo causado por la salinidad. Observamos una mayor declinación en los parámetros de crecimiento y producción de grano bajo estrés salino en 'Tajan' que en 'Bam'. El contenido de malondialdehído también fue mayor en 'Tajan'. El mejorado rendimiento de 'Bam' bajo alta salinidad se acompanó por un aumento en actividad SOD (EC 1.15.1.1) y contenido de prolina en todos los estados de crecimiento. Los resultados de los parámetros de crecimiento, peroxidación de lípidos y acumulación de prolina también se correlacionan bien apoyando que este cultivar es relativamente tolerante. Abstract in english Salinity is a widespread root medium problem limiting productivity of cereal crops worldwide. The ability of plants to tolerate salt is determined by multiple biochemical pathways that facilitate retention and/or acquisition of water, protect chloroplast functions, and maintain ion homeostasis. Ther [...] efore, the ability of salt-sensitive ('Tajan') and salt-tolerant cultivar ('Bam') of Triticum aestivum L. to adapt to a saline environment were evaluated in a set of greenhouse experiments under salt stress during three growth stages (tillering, 50% anthesis, and 10 d after anthesis). Plants were irrigated by different saline waters with electrical conductivities of 1.3, 6, 8, 10, and 12 dS m-1, which were obtained by adding NaCl:CaCl2 in 10:1 molar ratio to fresh water. Differences in growth parameters, lipid peroxidation, superoxide dismutase (SOD) activity, and proline accumulation were tested in order to put forward the relative tolerance or sensitivity of cultivars. Results indicated that both parameters differ according to the cultivar's ability in coping oxidative stress caused by salinity. We observed a greater decline in the growth parameters and grain yield under salt stress in 'Tajan' than in 'Bam'. Malondialdehyde content was also higher in 'Tajan'. The improved performance of the 'Bam' under high salinity was accompanied by an increase in SOD (EC 1.15.1.1) activity and proline content at all growth stages. Growth parameters, lipid peroxidation and proline accumulation results are also in good correlation with supporting this cultivar is being relatively tolerant.

  1. Physical Deterioration of Egyptian Limestone Affected by Saline Water

    OpenAIRE

    Mohammed EL-GOHARY

    2013-01-01

    This study is the second in a series of experiments that describe the chemical, physical and thermal properties of archaeological limestone affected by salt and saline water in Egypt. This research aims to study the aggressive physical effects of different types of salts dominated in saline water and their different mechanisms on the acceleration of weathering processes that affect Egyptian limestone. It presents a multidisciplinary approach to characterize, at both micro/macro scales, the be...

  2. Stable isotope content of South African river water

    International Nuclear Information System (INIS)

    Variations of the isotopic ratios 18O/16O and D/H in natural waters reflect the variety of processes to which the water was subjected within the hydrological cycle. Time series of the 18O content of the major South African rivers over a few years have been obtained in order to characterise the main features of these variations in both time and space. Regionally the average '18O content of river water reflects that of the prevailing rains within the catchment. 18O variations with time are mainly correlated with river flow rates. Impoundments upstream and management of river flows reduce this correlation. Isotope variations along the course of a river show the effects of inflow from smaller streams and evaporation in the river or its impoundments. These observations indicate the use of isotopic methods to study the evaporation and mixing of river water and its interaction with the surrounding environment

  3. Coulometric Karl Fischer titration simplifies water content testing

    Energy Technology Data Exchange (ETDEWEB)

    Poynter, W.G. (Kam Controls Inc., Houston, TX (United States)); Barrios, R.J. (Louisiana Offshore Oil Port Inc., New Orleans, LA (United States))

    1994-04-11

    The well-known Karl Fischer method for analyzing water content of nonaqueous samples has been modified to facilitate field use. The conventional, visual-endpoint filtration has been altered to produce a coulometric, or electrochemical, procedure. The coulometric method has all the advantages of the original karl Fischer laboratory method, but can be packaged in a small, convenient module. The analysis takes little time and can be used in the field as well as the laboratory. The relatively new coulometric method is described in API Manual of Petroleum Measurement Standards (MPMS) Chapter 10.9 and in ASTM D 4928. The titration is gaining increasing acceptance in the petroleum industry, where it is used by production engineers, transporters, and processors. The paper describes this method.

  4. Evaluation by Geological Survey of Denmark of salt deposit investigations accomplished by ELKRAFT and ELSAM. Pt. 1

    International Nuclear Information System (INIS)

    A large area of pure sodium chloride with scattered anhydrite (CaSO4) traces and water concentration between 0 and 0.1% is localized by means of two deep drillings at Mors (Denmark). The Geological Survey of Denmark was requested to reevaluate the results of exploration undertaken by the Danish electric utilities concerning usefulness of salt deposits as final radioactive waste disposal site. The Geological Survey of Denmark has reservations about possible aquifers and water flow in the Mors salt deposits and indicates consequences of possible radioactive effluents for biosphere. Volumes II and III comprehend detailed argumentation for the viewpoint of the Geological Survey of Denmark, based on hydro- and geological conditions at Mors. (EG)

  5. SMEX05 Vegetation Water Content Data: Iowa

    Data.gov (United States)

    National Aeronautics and Space Administration — Notice to Data Users: The documentation for this data set was provided solely by the Principal Investigator(s) and was not further developed, thoroughly reviewed,...

  6. SMEX03 Vegetation Water Content: Oklahoma

    Data.gov (United States)

    National Aeronautics and Space Administration — Notice to Data Users: The documentation for this data set was provided solely by the Principal Investigator(s) and was not further developed, thoroughly reviewed,...

  7. SMEX04 Vegetation Water Content Data, Arizona

    Data.gov (United States)

    National Aeronautics and Space Administration — Notice to Data Users: The documentation for this data set was provided solely by the Principal Investigator(s) and was not further developed, thoroughly reviewed,...

  8. Adaptive changes in cardiolipin content of Staphylococcus aureus grown in different salt concentrations

    Directory of Open Access Journals (Sweden)

    Takatsu,Tieko

    1975-12-01

    Full Text Available Adaptive changes in cardiolipin content were examined in Staphylococcus aureus 209P using the 32P pulse-labelling method. Cardiolipin synthesis showed increased adaptation when cells grown in normal medium were transferred into high NaCl containing medium. When S. aureus cultured in 10% NaCl medium was transferred back to normal medium, cardiolipin concentration decreased to the normal level within 3 hours. The catabolic rate of cardiolipin in the cells was much slower in the 5% NaCl medium than in normal medium. The cardiolipin synthetase activity was examined by isolated membrane fraction from S. aureus grown both in normal and 10% NaCl medium. The activity was higher by two-fold in membrane fractions from cells cultured in 10% NaCl-containing medium than in membranes from cells cultured in normal medium.

  9. Water content and wind acceleration in the envelope around the oxygen-rich AGB star IK Tau as seen by Herschel/HIFI

    CERN Document Server

    Decin, L; De Beck, E; Lombaert, R; de Koter, A; Waters, L B F M

    2010-01-01

    During their asymptotic giant branch, evolution low-mass stars lose a significant fraction of their mass through an intense wind, enriching the interstellar medium with products of nucleosynthesis. We observed the nearby oxygen-rich asymptotic giant branch star IK Tau using the high-resolution HIFI spectrometer onboard Herschel. We report on the first detection of H_2^{16}O and the rarer isotopologues H_2^{17}O and H_2^{18}O in both the ortho and para states. We deduce a total water content (relative to molecular hydrogen) of 6.6x10^{-5}, and an ortho-to-para ratio of 3:1. These results are consistent with the formation of H_2O in thermodynamical chemical equilibrium at photospheric temperatures, and does not require pulsationally induced non-equilibrium chemistry, vaporization of icy bodies or grain surface reactions. High-excitation lines of 12CO, 13CO, 28SiO, 29SiO, 30SiO, HCN, and SO have also been detected. From the observed line widths, the acceleration region in the inner wind zone can be characterized...

  10. Relationship between diffusion coefficient of Cl- in soil and water content as well as temperature

    International Nuclear Information System (INIS)

    Diffusion coefficient of chloride ion in four type textural soils at various water content under different temperature were measured by the diffusion-cell method using 36Cl labelled NaCl solution. The results showed that the diffusion coefficient (D) in the soil increased but the activation energy decreased with increasing soil water content, which indicated that the force to be overcome during the diffusion was lower at higher soil water content. The D value decreased with increasing soil water tension (S). The relation could be described by the power equation in the form of D = aS-b. The D value increased with increasing temperature, and increasing temperature 10 degree C from 5 to 45 degree C caused the D value increased by 10%?30% with average of nearly 20%. The relationship between D value and soil water content as well as temperature could be described by the nonlinear regression equation. Moreover, it was found that the D value increased with increasing clay content of soil under same water tension, in general, the correlation between D and clay content was significantly positive

  11. Prediction of clay content from water vapour sorption isotherms considering hysteresis and soil organic matter content

    DEFF Research Database (Denmark)

    Arthur, E.; Tuller, M.; Møldrup, Per; Karup Jensen, Dan; De Jonge, L. W.

    2015-01-01

    Soil texture, in particular the clay fraction, governs numerous environmental, agricultural and engineering soil processes. Traditional measurement methods for clay content are laborious and impractical for large-scale soil surveys. Consequently, clay prediction models that are based on water vapour sorption, which can be measured within a shorter period of time, have recently been developed. Such models are often based on single-point measurements of water adsorption and do not account for sorp...

  12. Purification of contaminated water by filtration through porous glass

    Science.gov (United States)

    Wydeven, T.; Leban, M. I.

    1972-01-01

    Method for purifying water that is contaminated with mineral salts and soluble organic compounds is described. Method consists of high pressure filtration of contaminated water through stabilized porous glass membranes. Procedure for conducting filtration is described. Types of materials by percentage amounts removed from the water are identified.

  13. The effect of cations on NO2 production from the photolysis of aqueous thin water films of nitrate salts.

    Science.gov (United States)

    Richards-Henderson, Nicole K; Anderson, Crisand; Anastasio, Cort; Finlayson-Pitts, Barbara J

    2015-12-28

    The photochemistry of nitrate ions in bulk aqueous solution is well known, yet recent evidence suggests that the photolysis of nitrate may be more efficient at the air-water interface. Whether and how this surface enhancement is altered by the presence of different cations is not known. In the present studies, thin aqueous films of nitrate salts with different cations were deposited on the walls of a Teflon chamber and irradiated with 311 nm light at 298 K. The films were generated by nebulizing aqueous 0.5 M solutions of the nitrate salts and the generation of gas-phase NO2 was monitored with time. The nitrate salts fall into three groups based on their observed rate of NO2 formation (RNO2): (1) RbNO3 and KNO3, which readily produce NO2 (RNO2 > 3 ppb min(-1)), (2) Ca(NO3)2, which produces NO2 more slowly (RNO2 effective quantum yields for nitrate ions. PMID:26577172

  14. Effects of salts on oxidative stability of lipids in Tween-20 stabilized oil-in-water emulsions.

    Science.gov (United States)

    Cui, Leqi; Cho, Hyung Taek; McClements, D Julian; Decker, Eric A; Park, Yeonhwa

    2016-04-15

    Lipid oxidation in oil-in-water (O/W) emulsions is an important factor determining the shelf life of food products. Salts are often present in many types of emulsion based food products. However, there is limited information on influence of salts on lipid oxidation in O/W emulsions. Thus, the purpose of this study was to examine the effects of sodium and potassium chloride on lipid oxidation in O/W emulsions. Tween 20 stabilized corn O/W emulsions at pH 7.0 were prepared with different concentrations of sodium chloride with or without the metal chelators. NaCl did not cause any changes in emulsion droplet size. NaCl dose-dependently promoted lipid oxidation as measured by the lipid oxidation product, hexanal. Both deferoxamine (DFO) and ethylenediaminetetraacetic acid (EDTA) reduced lipid oxidation in emulsions with NaCl, with EDTA being more effective. Potassium chloride showed similar impact on lipid oxidation as sodium chloride. These results suggest that salts are able to promote lipid oxidation in emulsions and this effect can be controlled by metal chelators. PMID:26675849

  15. Water/AOT/IPM/alcohol reverse microemulsions: Influence of salts and nonionic surfactants on structure and percolation behavior

    International Nuclear Information System (INIS)

    Highlights: • Hydrogen bond interactions cause NaSal assist the percolation. • Brij-56 (TX-100) makes Peff decrease and droplets diameter increase, promoting the percolation. • Spans have little effect on percolation due mainly to their small headgroup. • Alcohol can decrease evidently the activation energy by enhancing the interfacial flexibility. - Abstract: Influence of salts (sodium chloride, sodium salicylate and sodium cholate) and nonionic surfactants (Brij-56, TX-100, Span-20, Span-40 and Span-60) on structure and percolation behavior of water/AOT/IPM/propanol (butanol) systems were systematically investigated using conductivity and dynamic light scattering. Percolation behavior had a distinct change with different types of salts and nonionic surfactants. Addition of sodium chloride delayed the conductivity percolation, while sodium salicylate and sodium cholate assisted the percolation. Addition of Brij-56 and TX-100 promoted evidently the conductivity percolation, whereas Spans had little effect. Conductivity behavior was further discussed from the structural properties of nonionic surfactants and salts, and the surfactant packing parameter (P). Droplets sizes were measured using dynamic light scattering to underline the effect of nonionic surfactants on P. Furthermore, ln ? had a linear correlation with temperature in the range of (278.15 to 313.15) K. No percolation threshold induced by temperature was detected among all the studied systems. Moreover, the activation energy for conductivity was also estimated and discussed according to the Arrhenius-type equation

  16. Anthropogenic impacts on the water and salt budgets of St Lucia estuarine lake in South Africa

    Science.gov (United States)

    Lawrie, Robynne A.; Stretch, Derek D.

    2011-05-01

    Lake St Lucia in South Africa is part of a UNESCO World Heritage site and a Ramsar wetland of international importance. Like many coastal wetlands worldwide, anthropogenic activities including catchment land-use changes, water diversions/abstractions, and manipulation of the mouth state have significantly affected its functioning over the past century. Questions concerning its sustainability have motivated a re-evaluation of management decisions made in the past and of options for the future. A model for the water and salt budgets has therefore been used to investigate "what if" scenarios in terms of past anthropogenic interventions. In particular, simulations allow us to evaluate the effects of diverting the Mfolozi river from St Lucia on the functioning of the system and on the occurrence of various water level/salinity states that drive the biological functioning of the ecosystem. In the past, when the St Lucia estuary and the Mfolozi river had a combined inlet, the mouth was predominantly open. The lake had relatively stable water levels but variable salinities that increased during dry conditions due to evaporative losses and saltwater inflows from the sea. If the mouth closed, the Mfolozi flow was diverted into the lake which reduced salinities and maintained or increased water levels. Simulations indicate that without a link to the Mfolozi the lake system would naturally have a mainly closed inlet with lower average salinities but more variable water levels. During dry conditions water levels would reduce and result in desiccation of large areas of the lake as has recently occurred. We conclude that the artificial separation of the St Lucia and Mfolozi inlets underpins the most significant impacts on the water & salt budget of the lake and that its reversal is key to the sustainability of the system.

  17. Salts Production from Dead Sea by using Different Technological Methods: Prospective Outlook

    Directory of Open Access Journals (Sweden)

    Adnan M. Al-Harahsheh

    2005-01-01

    Full Text Available This study presents alternative methods for the utilizing of Dead Sea resources. These include crystallization through cooling by passing the Dead Sea water across cooled surfaces, or by direct contact between a cooling agent and the water solution. The cooling process of the Dead Sea water leads to the saturation state, after which precipitation of the main salts occurs. However, more work is required to study the effect of freezing on the crystallization process and to obtain the equilibrium data for the Dead Sea solution under cooling conditions. Another alternative method for crystallization of the Dead Sea salts is the adiabatic vacuum crystallization, which depends on the evaporation of water at low temperature as a result of the presence of vacuum. Here the rate of decreasing the Dead Sea level due to evaporation in solar evaporation ponds can be reduced to a minimum by condensing the obtained vapor and recycling it back to the Dead Sea or reuse it for the industrial processes.

  18. Extraction of rare earth metal(3) nitrates by triisoamylphosphate from concentrated aqua-salt solutions

    International Nuclear Information System (INIS)

    Equations for describing isotherms of rare earth metals(3) nitrate extraction by 100% triisoamylphosphate from concentrated aqua-salt solutions with an account of changes of component activity coefficients in organic phase by wide-range variations of its composition are proposed. Constants values of phase extraction equilibria standardized by hypothetical monomolar solution of rare earth metal nitrate in water and by the pure components state in the organic phase with mole fraction equal to 1.0 are determined. 9 refs.; 2 figs

  19. Quantification of salt concentrations in cured pork by computed tomography

    DEFF Research Database (Denmark)

    Vestergaard, Christian Sylvest; Risum, JØrgen

    2004-01-01

    Eight pork loin samples were mounted in Plexiglas cylinders and cured for five days. Samples were scanned by computed tomography (CT) once every 24 h. At the end of the experiment, the cylinders were cut in 1 cm sections and analyzed for chloride. From image analysis of the CT images, concentration profiles were extracted and fitted to a diffusion model which included a term to account for a non-negligible mass transfer coefficient. It was found that CT provides accurate estimates of salt gradients in meat and it was suggested that this analytical method could be valuable in scientific research and product development.

  20. Radon content in various types of ground water in south-eastern Sweden. A preliminary report

    International Nuclear Information System (INIS)

    The purpose of investigation has been to study the radon content and its seasonal fluctuations in different types of ground water. The investigation was carried out in an area where the hydrogeological conditions are fairly well known. The geology is dominated by granitic bedrock and till. Water samples were collected from drilled wells in different rocks and from dug wells and springs in till and gravel. The seasonal fluctuations were studied in a small area. All radon measurements were made in the laboratory. The main results are following.(1) The highest radon content (max. 40 nCi/l) was observed in water from wells drilled granite. (2) The radon content in ground water from till never exceeds 8 nCi/l; the highest amount is normally found in springs situated in drumlin terrain with basel till and gravel lenses and beds (3-5 nCi/l) the contents in dug wells are 0.5-3.5 nCi/l.(3) Waters from gravel deposits have constantly low radon contents (0.1-3 nCi/l), and surface water has no radon.(4) The seasonal fluctuations in radon content are rather high and show a similar pattern to that of the fluctuations of the ground-water levels in till in the same area. (author)

  1. Treatment of waste by the Molten Salt Oxidation process at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    The Molten Salt Oxidation (MSO) process has been under development by the Energy Technology Engineering Center (ETEC) to treat hazardous, radioactive, and mixed waste. Testing of the system was done on a number of wastes to demonstrate the technical feasibility of the process. This testing included simulated intermediate level waste (ILW) from the Oak Ridge National Laboratory. The intermediate level waste stream consisted of a slurry of concentrated aqueous solutions of sodium hydroxide and sodium nitrate, with a small amount of miscellaneous combustible components (PVC, TBP, kerosene, and ion exchange resins). The purpose of these tests was to evaluate the destruction of the organics, evaporation of the water, and conversion of the hazardous salts (hydroxide and nitrate) to non-hazardous sodium carbonate. Results of the tests are discussed and analyzed, and the possibilities of applying the MSO process to different waste streams at ORNL in the future are explored

  2. Treatment of waste by the Molten Salt Oxidation process at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    The Molten Salt Oxidation (MSO) process has been under development by Rockwell International to treat hazardous, radioactive, and mixed waste. Testing of the system was done on a number of wastes to demonstrate the technical feasibility of the process. This testing included simulated intermediate level waste (ILW) from the Oak Ridge National Laboratory. The intermediate level waste stream consisted of a slurry of concentrated aqueous solutions of sodium hydroxide and sodium nitrate, with a small amount of miscellaneous combustible components (PVC, TBP, kerosene, and ion exchange resins). The purpose of these tests was to evaluate the destruction of the organics, evaporation of the water, and conversion of the hazardous salts (hydroxide and nitrate) to non-hazardous sodium carbonate. Results of the tests are discussed and analyzed, and the possibilities of applying the MSO process to different waste streams at ORNL in the future are explored

  3. Results and Conclusions from the NASA Isokinetic Total Water Content Probe 2009 IRT Test

    Science.gov (United States)

    Reehorst, Andrew; Brinker, David

    2010-01-01

    The NASA Glenn Research Center has developed and tested a Total Water Content Isokinetic Sampling Probe. Since, by its nature, it is not sensitive to cloud water particle phase nor size, it is particularly attractive to support super-cooled large droplet and high ice water content aircraft icing studies. The instrument comprises the Sampling Probe, Sample Flow Control, and Water Vapor Measurement subsystems. Results and conclusions are presented from probe tests in the NASA Glenn Icing Research Tunnel (IRT) during January and February 2009. The use of reference probe heat and the control of air pressure in the water vapor measurement subsystem are discussed. Several run-time error sources were found to produce identifiable signatures that are presented and discussed. Some of the differences between measured Isokinetic Total Water Content Probe and IRT calibration seems to be caused by tunnel humidification and moisture/ice crystal blow around. Droplet size, airspeed, and liquid water content effects also appear to be present in the IRT calibration. Based upon test results, the authors provide recommendations for future Isokinetic Total Water Content Probe development.

  4. Antimicrobial activities of pomegranate rind extracts: enhancement by addition of metal salts and vitamin C

    Directory of Open Access Journals (Sweden)

    Kelly Alison F

    2008-12-01

    Full Text Available Abstract Background Punica granatum L. or pomegranates, have been reported to have antimicrobial activity against a range of Gram positive and negative bacteria. Pomegranate formulations containing ferrous salts have enhanced although short-term, antibacteriophage activities which are rapidly diminished owing to instability of the ferrous combination. The aim of this study was to determine the antimicrobial activities of combinations of pomegranate rind extracts (PRE with a range of metals salts with the added stabiliser vitamin C. Methods PRE solutions, prepared by blending rind sections with distilled water prior to sterilisation by autoclaving or filtration, were screened with a disc diffusion assay using penicillin G as a control. Suspension assays were used to determine the antimicrobial activities of PRE alone and in combination with salts of the following metals; Fe (II, Cu (II, Mn (II or Zn (II, and vitamin C, against a panel of microbes following exposure for 30 mins. The test organisms included Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa and Proteus mirabilis. Results The screening assay demonstrated that PRE exhibited activity against the Gram positive organisms at 24 h with no observable effect on any of the Gram negative bacteria. However, after 12 h, zones of inhibition were only observed for Ps. aeruginosa. In contrast, using the suspension assay, addition of Cu (II salts to PRE solutions extended the activities resulting in no detectable growth being observed for the PRE/Cu (II combination against E. coli, Ps. aeruginosa and P. mirabilis. Minimal antimicrobial activity was observed following incubation with Fe (II, Mn (II or Zn (II salts alone or in combination with PRE against any of the organisms in the test panel. The addition of vitamin C markedly enhanced the activities of both PRE/Fe (II and PRE/Cu (II combinations against S. aureus. Conclusion This is the first report demonstrating the enhanced efficacy of PRE/metal salt combinations in the presence of the stabilising agent vitamin C, to which all isolates were sensitive with the exception of B. subtilis. This study has validated the exploration of PRE along with additives such as metal salts and vitamin C as novel antimicrobial combinations.

  5. Perturabation of nodular operation under salt and water deficit stress in rhizobium common bean symbiosis

    International Nuclear Information System (INIS)

    This work aims at the search for markers of tolerance to the osmotic stress and nodular efficiency of symbiosis Haricot Rhizobium. Thus, after having fixed the best period of hydroponic culture, we showed that a severe salt treatment generated an inhibition of the parameters of growth and nodulation. These inhibitions are accompanied by an inhibition of the enzymatic activities: ascorbate peroxidase (APX) and catalase (CAT), but an activation of peroxidase (POX) and superoxide dismutase (SOD), suggesting that these two antioxydants can be biochemical markers of the tolerance to salinity. To check the validity of these markers and to see the participation of the vegetable genotype in the response to the stress, we compared the effect of two concentrations salt 25 and 50 mM NaCe at two contrasting genotypes BAT477 tolerant and sensitive COCOT. This study illustrates the role of the vegetable genotype in the tolerance and efficiency and emphasize a significant result that SOD and POX constitute biochemical markers of tolerance to salinity. In order to ensure itself of the validity of this assumption in the event of water deficit stress, a treatment of 50 mM mannitol is applied to 16 symbioses formed by four genotypes of bean BAT477, COCOT, Flamingo and BRB17 inoculated by four strains of rhizobium CIAT899, 12 to 3, 1 to 6 and 8 to 3. This study permits us to make a screening of these symbioses according to their efficiency and their tolerance based on parameters of growth, of fixing and extent of the antioxydant enzymatic activities. It gets clear that the response of enzymatic antioxydants is in relation to the intrinsic potentialities of the partners of symbioses and appears to act as of the first stages of recognition plants bacterium. It will be retained that activities POX and SOD are markers of nodular tolerance. The CAT is the enzyme most connected to each partner of symbiosis and the APX would play a rather functional role. The heterogeneity of found answer indicates the great importance of the interaction of the two partners of symbiosis and of their contribution in great variability. The whole of results permits us to choose contrasting symbioses for better elucidating the mechanisms of nodular operation in response to the osmotic stress. (author). 282 refs

  6. Effects of soil type and water saturation on growth, nutrient and mineral content of the perennial forage shrub Sesbania sesban

    DEFF Research Database (Denmark)

    Dan, Truong Hoang; Brix, Hans

    2015-01-01

    Sesbania sesban (L.) Merr is a perennial N2-fixing tree with high potential for use in agricultural production systems as a green manure and livestock forage. We studied the interactive effects of soil type and water level on the growth, biomass allocation, nutrient and mineral content of S. sesban. Four-week old seedlings of S. sesban were grown for 49 days (n=5) in a factorial mesocosm set-up with six soil types (sediment, sand, alluvial, acid-sulfate, saline and clay) and three water levels (drained, water-saturated and flooded). The soils tested represent the predominant alluvial soil types of the Mekong delta, Vietnam. Sesbania sesban grew well with relative growth rates (RGR) around 0.08 g g-1 d-1 in all studied soil types, except the saline soil where plants died. In the low-pH (3.9) acid sulfate soil, that constitute more than 40% of the Mekong delta, the RGR of the plants was slightly lower (0.07 g g-1 d-1), foliar concentration of calcium was 3-6 times lower, and concentrations of iron and sodium up to five times higher, than in other soils. The nutrient and mineral contents of the plant tissues differed between the soils and were also affected by the flooding levels. Foliar concentrations of nitrogen (50-74 mg N g-1 dry mass) and phosphorus (5-9 mg P g-1 dry mass) were, however, generally high and only slightly affected by water level. The results show that S. sesban can grow well and with high growth rates on most wet soils in the Mekong delta, except saline soils where the high salt content prevents establishment and growth. The nutrient and mineral contents of the plants, and hence the nutritional value of the plants as e.g. fodder or compost crops, is high. However, soil type and water level interactively affect growth and tissue composition. Hence, optimal growth conditions for S. sesban differ in the different regions of the Mekong delta.

  7. Effects of tissue water content on the propagation of laser light during low-level laser therapy.

    Science.gov (United States)

    Kim, Soogeun; Shin, Sungho; Jeong, Sungho

    2015-05-01

    This work reports that the laser fluence rate inside porcine skin varied notably with the change of tissue water content under the same laser irradiation conditions. The laser fluence rate inside skin tissue samples with varying water content was measured using an optical fiber sensor, while the target was irradiated either by a low-level 635 or 830 nm laser (50 mW/cm2). It was demonstrated that the distribution of laser fluence rate inside the target is strongly affected by tissue water content and its profile is determined by the water content dependency of optical properties at the laser wavelength. PMID:25611979

  8. Prediction of clay content from water vapour sorption isotherms considering hysteresis and soil organic matter content

    DEFF Research Database (Denmark)

    Arthur, E.; Tuller, M.

    2015-01-01

    Soil texture, in particular the clay fraction, governs numerous environmental, agricultural and engineering soil processes. Traditional measurement methods for clay content are laborious and impractical for large-scale soil surveys. Consequently, clay prediction models that are based on water vapour sorption, which can be measured within a shorter period of time, have recently been developed. Such models are often based on single-point measurements of water adsorption and do not account for sorption hysteresis or organic matter content. The present study introduces regression relationships for estimating clay content from hygroscopic water at different relative humidity (RH) levels while considering hysteresis and organic matter content. Continuous adsorption/desorption vapour sorption isotherm loops were measured for 150 differently textured soils with a state-of-the-art vapour sorption analyser within a RH range from 3 to 93%. The clay contents, which ranged between 1 and 56%, were measured with a combination of sieving and sedimentation methods. Two regression models were developed for both adsorption and desorption at 10 RH levels (5, 10, 20, 30, 40, 50, 60, 70, 80 and 90%). While the first model encompasses all 150 soils regardless of organic carbon (OC) content, the second model considers only soils with OC<2.4%. Independent validation of the proposed regression models at 50, 60 and 90% RH using literature data for water vapour adsorption showed reasonably accurate (average RMSE = 5.0%, ME = 2.4%) prediction of clay contents. However, the model for soils with small OC contents showed only minor improvement when compared with recently published models. Three main sources of prediction errors, namely large OC and silt contents, and a prevalence of 1:1 clay minerals were identified for both the proposed and published models. To compensate for large OC content, an OC-corrected model was developed and compared with the other models. The corrected model markedly improved clay prediction accuracy for OC-rich soils when compared with all other models considered. © 2014 British Society of Soil Science.

  9. Alfalfa root role in osmotic adjustment under salt stress (abstract)

    International Nuclear Information System (INIS)

    The aim of this work was to evaluate the effect of the sodium chloride on the morpho physiological characteristics of Alfalfa (Medicago sativa L.). The characteristics taken into consideration dry matter production of shoot and root (DMS, DMR), root volume (RV), proline content (PS, PR), included total soluble sugar (SSS; SSR) and chlorophyll a, band (a+b). Salt tolerance of the six genotypes was characterised by capacity to growth in salt environment, buildup of osmoregulating compounds (proline and solubles sugar) and a less inhibition of photosynthesis process (decrease of chlorophyll pigment content). Important genotypes differences were observed for each parameter, which make possible a better understanding of the Alfalfa adaptation mechanisms. The results show that the salt stress has a significant influence on the growth of this plants by decreasing the production of dry matter and :)f the root volume. The most important decreases were clear at the 12 g/l concentration mainly upon the Australian variety (Siriver).Thus the most tolerant to salt stress was the Demnate genotype (Dem04) which presented the lowest decrease percentage. The salt effect upon the plant physiological characteristics causes a decrease of the relative water content and chlorophyll a, b and (a+b) content. It also causes an increase of the relative loss of water, the total soluble sugars (SSS; SSR) and the proline contents (PS, PR). Thus, we found a high correlation between the proline and sugar contents of shoot and root and also between these substances and shoot and root dry matter production. (author)

  10. Modelling salt accumulation in a closed system : a tool for management with irrigation water of poor quality

    OpenAIRE

    Kempkes, F.; Stanghellini, C.

    2003-01-01

    The most obvious way to save water under scarcity is to re-collect and re-use drain water, in what are called ¿closed growing systems¿. In practice, accumulation of salts in the cycle requires such systems to be flushed from time to time, with consequent waste of water and fertilisers, often ending up in polluting percolation. The rate of salt accumulation depends on many factors, the most obvious being the quality of the water used to re-fill the system. Other relevant factors are the uptake...

  11. Physical and Quality Attributes of Salted cod (Gadus morhua L.) as Affected by the State of Rigor and Freezing Prior to Salting

    OpenAIRE

    Lauritzsen, Kristin; Olsen, Ragnar L.; Akse, Leif; Johansen, Arvid; Joensen, Sjurður; Sørensen, Nils Kristian

    2004-01-01

    The effects of the rigor state and freezing of cod prior to salting on the mass transfer during production and the quality of heavily cured cod have been investigated. Pre-rigor salting lead to a larger reduction in weight, a higher water loss and a lower uptake of NaCl than in fish salted post-rigor and in fish salted after frozen storage. The cause of this is believed to be the simultaneous influx of NaCl and rigor contractions in the fish muscle. In order to reduce the loss of proteins fro...

  12. Interaction of aerosol particles composed of protein and salts with water vapor: hygroscopic growth and microstructural rearrangement

    Science.gov (United States)

    Mikhailov, E.; Vlasenko, S.; Niessner, R.; Pöschl, U.

    2003-09-01

    The interaction of aerosol particles in the 100-200 nm size range composed of the protein bovine serum albumin (BSA) and the inorganic salts sodium chloride and ammonium nitrate with water vapor at ambient temperature and pressure (25°C, 1 atm) has been investigated by hygroscopicity tandem differential mobility analyzer (H-TDMA) experiments complemented by transmission electron microscopy (TEM) and Köhler theory calculations. BSA was chosen as a well-defined model substance for proteins and other macromolecular compounds, which constitute a large fraction of the water-soluble organic component of air particulate matter. Pure BSA particles exhibited deliquescence and efflorescence transitions at ~35% relative humidity (RH) and a hygroscopic diameter increase by up to ~10% at 95% RH in good agreement with model calculations based on a simple parameterisation of the osmotic coefficient. Pure NaCl particles were converted from near-cubic to near-spherical or polyhedral shape upon interaction with water vapor at relative humidities below the deliquescence threshold (partial surface dissolution and recrystallisation), and the diameters of pure NH4NO3 particles decreased by up to 10% due to chemical decomposition and evaporation. Mixed NaCl-BSA and NH4NO3-BSA particles interacting with water vapor exhibited mobility equivalent diameter reductions of up to 20%, depending on particle generation, conditioning, size, and chemical composition (BSA dry mass fraction 10-90%). These observations can be explained by formation of porous agglomerates (envelope void fractions up to 50%) due to ion-protein interactions and electric charge effects on the one hand, and by compaction of the agglomerate structure due to capillary condensation effects on the other. The size of NH4NO3-BSA particles was apparently also influenced by volatilisation of NH4NO3, but not as much as for pure salt particles, i.e. the protein inhibited the decomposition of NH4NO3 or the evaporation of the decomposition products NH3 and HNO3. The efflorescence threshold of NaCl-BSA particles decreased with increasing BSA dry mass fraction, i.e. the protein inhibited the formation of salt crystals and enhanced the stability of supersaturated solution droplets. The H-TDMA and TEM results indicate that the protein was enriched at the surface of the mixed particles and formed an envelope, which inhibits the access of water vapor to the particle core and leads to kinetic limitations of hygroscopic growth, phase transitions, and microstructural rearrangement processes. Besides these surface and kinetic effects, proteins and comparable organic macromolecules may also influence the thermodynamic properties of the aqueous bulk solution (solubilities, vapor pressures, and chemical equilibria, e.g. for the decomposition and evaporation of NH4NO3. The observed effects should be taken into account in the analysis of data from laboratory experiments and field measurements and in the modelling of aerosol processes involving water vapor and particles with complex composition. They can strongly influence experimental results, and depending on ambient conditions they may also play a significant role in the atmosphere (deliquescence, efflorescence, and CCN activation of particles). In fact, irregular hygroscopic growth curves similar to the ones observed in this study have recently been reported from H-TDMA experiments with water-soluble organics extracted from real air particulate matter and with humic-like substances. The Köhler theory calculations performed with different models demonstrate that the hygroscopic growth of particles composed of inorganic salts and proteins can be efficiently described with a simple volume additivity approach, provided that the correct dry solute mass equivalent diameter and composition are known. A simple parameterisation of the osmotic coefficient has been derived from an osmotic pressure virial equation and appears to be well-suited for proteins and comparable substances. It is fully compatible with traditional volume additivity models for salt mixtur

  13. Method and apparatus for the determination of the water cut and water salinity in an oil-water flow stream by measuring the sulfur content of the produced oil

    International Nuclear Information System (INIS)

    Fluid in a pipeline or container at a refinery or at any of various petroleum producing operations is bombarded with neutrons, and high energy gamma rays resulting from capture of thermal neutrons are detected. The spectra of the detected gamma rays are then analyzed to determine the relative presence of the elements sulfur, hydrogen and chlorine. From the sulfur measurement, the oil cut of the fluid is determined, enabling the water cut to be determined. From the determined water cut, water salinity can also be determined. (Auth.)

  14. Total Water Content Measurements with an Isokinetic Sampling Probe

    Science.gov (United States)

    Reehorst, Andrew L.; Miller, Dean R.; Bidwell, Colin S.

    2010-01-01

    The NASA Glenn Research Center has developed a Total Water Content (TWC) Isokinetic Sampling Probe. Since it is not sensitive to cloud water particle phase nor size, it is particularly attractive to support super-cooled large droplet and high ice water content aircraft icing studies. The instrument is comprised of the Sampling Probe, Sample Flow Control, and Water Vapor Measurement subsystems. Analysis and testing have been conducted on the subsystems to ensure their proper function and accuracy. End-to-end bench testing has also been conducted to ensure the reliability of the entire instrument system. A Stokes Number based collection efficiency correction was developed to correct for probe thickness effects. The authors further discuss the need to ensure that no condensation occurs within the instrument plumbing. Instrument measurements compared to facility calibrations from testing in the NASA Glenn Icing Research Tunnel are presented and discussed. There appears to be liquid water content and droplet size effects in the differences between the two measurement techniques.

  15. The correlation of metal content in medicinal plants and their water extracts

    Directory of Open Access Journals (Sweden)

    Ran?elovi? Saša S.

    2013-01-01

    Full Text Available The quality of some medicinal plants and their water extracts from South East Serbia is determined on the basis of metal content using atomic absorption spectrometry. The two methods were used for the preparation of water extracts, to examine the impact of the preparation on the content of metals in them. Content of investigated metals in both water extracts is markedly lower then in medicinal plants, but were higher in water extract prepared by method (I, with exception of lead content. The coefficients of extraction for the observed metal can be represented in the following order: Zn > Mn > Pb > Cu > Fe. Correlation coefficients between the metal concentration in the extract and total metal content in plant material vary in the range from 0.6369 to 0.9956. This indicates need the plants to be collected and grown in the unpolluted area and to examine the metal content. The content of heavy metals in the investigated medicinal plants and their water extracts is below the maximum allowable values, so they are safe to use.

  16. The Soil Characteristic Curve at Low Water Contents: Relations to Specific Surface Area and Texture

    DEFF Research Database (Denmark)

    Resurreccion, Augustus; Møldrup, Per; Schjønning, Per; Tuller, Markus; Ferre, Ty; Kawamoto, Ken; Komatsu, Toshiko; de Jonge, Lis Wollesen

    2010-01-01

    Accurate description of the soil-water retention curve (SWRC) at low water contents is important for simulating water dynamics, plant-water relations, and microbial processes in surface soil. Soil-water retention at soil-water matric potential of less than -10 MPa, where adsorptive forces dominate over capillary forces, has also been used to estimate the soil specific surface area (SA, m2 kg-1). In the present study, the dry part of the SWRC was measured by dewpoint potentiameter on 41 Danish so...

  17. Bubble scrub : process aims to reduce oil content and dispose of solids in produced water

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, L.

    2008-03-15

    The oil and water separation processes used by the petroleum industry typically leave behind between 5000 and 30,000 parts per million of oil in its produced water. The water is then injected back into the ground or disposed of in tailings ponds. This article described a water-oil remediation technology designed to reduce the hydrocarbon content in injected water to less than 5 parts per million. The process used aeration in a tank configuration that injected gas into the produced water. The aeration process created micron-sized gas bubbles that super-saturated the produced water in order to break the oil-water interfaces. A prototype unit has been designed to process 1000 bbls per day of water-oil mixture and is currently being used by an Alberta producer. It was concluded that the new system will help to reduce the massive amounts of