WorldWideScience
1

Glomus intraradices improved salt tolerance in Prosopis alba seedlings by improving water use efficiency and shoot water content  

Directory of Open Access Journals (Sweden)

Full Text Available The present work was aimed at testing the hypothesis that mycorrhizal Prosopis alba, an economically important tree species worldwide, presents increased salt-tolerance compared with non-mycorrhizal ones and at gaining insight into the possible mechanisms underlying that improvement. For this purpose, a randomized complete block experiment with two factors: mycorrhizal treatments with or without the arbuscular fungus Glomus intraradices and two salinity levels, 0 and 200 mM NaCl was performed. Plant growth in P. alba plants colonized by G. intraradices was less affected by salinity than that in non-arbuscular mycorrhizal (AM plants, indicating that mycorrhizal colonization turned P. alba more tolerant to salinity. Photosynthesis was reduced by salinity in non-AM plants but not in AM ones. Salini ty caused a significant decrease in mean stomatal conductance and transpiration rate, in mycorrhizal plants, but not in uninoculated ones. In this work, we detected two main mechanisms intervening in the salt tolerance enhancement of P. alba by the inoculation with G. intraradices: a- maintaining the net photosynthesis level and b- control of the transpiration rate. Taken together, the results suggest that inoculation with G. intraradices improves P. alba survival rates during the implantation period and seems to be a promising strategy to improve P. alba cultivation in saline lands.

Agustina A. Scambato

2010-01-01

2

Relation of in situ resistivity to water content in salt rocks  

International Nuclear Information System (INIS)

The investigation of water in salt-rock formations is of particular relevance to underground nuclear waste repositories. In the Asse salt-mine (Germany) a study into the relationship of in situ resistivity to water content has been made. Measurements were carried out in older rock-salt using an electrode array in boreholes, an electrode profile in a drift and small resistivity sensors in and around a drift seal. Further measurements were make on moist zones in a contact area of younger rock-salt and carnallitite and also in older rock-salt with anhydrite bands using electrode profiles in the drifts. The resistivities range from 102 ?m to 106 ?m. Corresponding probes have water contents from 0.01% to 1.3%. A definite relationship between resistivity and water content is revealed which can be described by Archie's law using a cementation factor m of 1.9. Porosities are between 0.08% and 1.4% and the saturations vary considerably. An explicitly influence of saturation on resistivity cannot be discovered using the present data. The results enable us to estimate the in situ water content and the order of the in situ porosity using resistivity surveys at different scales. This increases significantly the safety of a nuclear repository site

3

NaCl stress-induced growth, water and ions contents changes on in vitro selection of salt tolerant and salt sensitive callus of wheat (Triticum durum Desf.  

Directory of Open Access Journals (Sweden)

Full Text Available Callus cultures tolerant to NaCl were developed from eight wheat genotypes using in vitro selection techniques. The accumulation of inorganic (Na+, Cl-and K+ solutes, water content and relative fresh weight were determined in selected (tolerant and sensitive calli after a NaCl shock in order to evaluate their implication in salt tolerance of the selected lines. No growth reduction was observed in salt-tolerant calli compared to control while a significant (P<0.05 decrease about 46.54% was observed in salt sensitive ones when both were cultivated under NaCl stress. Water content is significantly (P<0.05 high in salt-sensitive calli than salt-tolerant ones. Selected calli accumulate less K+as compared with control. However, K+content of salt-tolerant calli is greater than that of salt-sensitive. Accumulation of Na+and Cl- were more important in salt-sensitive calli in comparison with salt-tolerant ones while K+content was lower in salt-sensitive than in salt-tolerant calli when both were exposed to salt. The results indicated Na+and Cl-exclusion combined to less K+accumulation may play a key role in in vitro salt-tolerance in wheat calli lines obtained by in vitro selection and they could contribute mainly to counteract the negative effects of salt stress in wheat tolerant calli. Comparison of K+/Na+ ratio permitted to classify Sebou, Anouar and Tarek which are as most salt-tolerant wheat genotypes and on contrary, Marzak, Ourgh, Massa and Amjad as salt-sensitive wheat genotypes.K+/Na+ ratio can be use as a criterion of wheat genotypes classification.

Ayolié Koutoua 1,2 , El Yacoubi Houda 2 , Atmane Rochdi 2 , Kouakou Kouakou Laurent 1 , Kouakou Tanoh Hilaire 1*

2011-08-01

4

The effect of water and salt stresses on the phosphorus content and acid phosphatase activity in oilseed rape  

OpenAIRE

Oilseed rape plants responded to water and salt stresses (-0.5 MPa, PEG 6000 and NaCI) by reduction of the fresh and dry weights of shoots and roots. When PEG was used, the ratio of dry weights of roots:shoots surpassed that of controls. The leaf protein content increased considerably. The phosphorus content decreased only in the roots, most significantly after three days of stress. Immediately after the stresses were induced, an increase in the acid phosphatase (AP) activity was noted. Water...

Stanis?aw Flasi?ski; Ryszard Zamorski; Urszula Kotowska

1989-01-01

5

The effect of water and salt stresses on the phosphorus content and acid phosphatase activity in oilseed rape  

Directory of Open Access Journals (Sweden)

Full Text Available Oilseed rape plants responded to water and salt stresses (-0.5 MPa, PEG 6000 and NaCI by reduction of the fresh and dry weights of shoots and roots. When PEG was used, the ratio of dry weights of roots:shoots surpassed that of controls. The leaf protein content increased considerably. The phosphorus content decreased only in the roots, most significantly after three days of stress. Immediately after the stresses were induced, an increase in the acid phosphatase (AP activity was noted. Water and salt stresses caused four- and two-fold increases in AP activity in leaves, respectively. Changes in the enzyme activity were negligible in stems and roots. There are nine forms of AP in young leaves of oilseed rape. In the stressed plants, from No. 5 revealed lower activity and forms Nos 8 and 9, higher activities than in the control. The increase in AP activity was directly accompanied by the decrease in the water potential of the tissues. Oilseed rape is considerably less sensitive to salt stress than to water stress, which is manifested as the lower inhibition of plant growth and also by a smaller increase in acid phosphatase activity.

Stanis?aw Flasi?ski

1989-03-01

6

Intracranial infection by Vibrio alginolyticus following injury in salt water.  

OpenAIRE

A 20-year-old man presented with an epidural abscess 3 months after a seawater diving accident. Cultures of the abscess cavity obtained by surgical drainage revealed a pure culture of Vibrio alginolyticus. Marine vibrios may produce serious intracranial infection after head injury in salt water.

Opal, S. M.; Saxon, J. R.

1986-01-01

7

Intracranial infection by Vibrio alginolyticus following injury in salt water.  

Science.gov (United States)

A 20-year-old man presented with an epidural abscess 3 months after a seawater diving accident. Cultures of the abscess cavity obtained by surgical drainage revealed a pure culture of Vibrio alginolyticus. Marine vibrios may produce serious intracranial infection after head injury in salt water. PMID:3700619

Opal, S M; Saxon, J R

1986-01-01

8

NaCl stress-induced growth, water and ions contents changes on in vitro selection of salt tolerant and salt sensitive callus of wheat (Triticum durum Desf.)  

OpenAIRE

Callus cultures tolerant to NaCl were developed from eight wheat genotypes using in vitro selection techniques. The accumulation of inorganic (Na+, Cl-and K+) solutes, water content and relative fresh weight were determined in selected (tolerant and sensitive) calli after a NaCl shock in order to evaluate their implication in salt tolerance of the selected lines. No growth reduction was observed in salt-tolerant calli compared to control while a significant (P

Ayolié Koutoua 1,2 , El Yacoubi Houda 2 , Atmane Rochdi 2 , Kouakou Kouakou Laurent 1 , Kouakou Tanoh Hilaire 1*

2011-01-01

9

Optimizing the salt-induced activation of enzymes in organic solvents: Effects of lyophilization time and water content  

Energy Technology Data Exchange (ETDEWEB)

The addition of simple inorganic salts to aqueous enzyme solutions prior to lyophilization results in a dramatic activation of the dried powder in organic media relative to enzyme with no added salt. Activation of both the serine protease subtilisin Carlsberg and lipase from Mucor javanicus resulting from lyophilization in the presence of KCl was highly sensitive to the lyophilization time and water content of the sample. Specifically, for a preparation containing 98% (w/w) KCl, 1% (w/w) phosphate buffer, and 1% (w/w) enzyme, varying the lyophilization time showed a direct correlation between water content and activity up to an optimum, beyond which the activity decreased with increasing lyophilization time. The catalytic efficiency in hexane varied as much as 13-fold for subtilisin Carlsberg and 11-fold for lipase depending on the lyophilization time. This dependence was apparently a consequence of including the salt, as a similar result was not observed for the enzyme freeze-dried without KCl. In the case of subtilisin Carlsberg, the salt-induced optimum value of k{sub cat}/K{sub m} for transesterification in hexane was over 20,000-fold higher than that for salt-free enzyme, a substantial improvement over the previously reported enhancement of 3750-fold. As was found previously for pure enzyme, the salt-activated enzyme exhibited greatest activity when lyophilized from a solution of pH equal to the pH for optimal activity in water. The active-site content of the lyophilized enzyme samples also depended upon lyophilization time and inclusion of salt, with opposite trends in this dependence observed for the solvents hexane and tetrahydrofuran. Finally, substrate selectivity experiments suggested that mechanism(s) other than selective partitioning of substrate into the enzyme-salt matrix are responsible for salt-induced activation of enzymes in organic solvents.

Ru, M.T.; Reimer, J.A.; Clark, D.S. [Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering; Dordick, J.S. [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Chemical Engineering

1999-04-20

10

Texture, flavor, and sensory quality of buffalo milk Cheddar cheese as influenced by reducing sodium salt content.  

Science.gov (United States)

The adverse health effects of dietary sodium demand the production of cheese with reduced salt content. The study was aimed to assess the effect of reducing the level of sodium chloride on the texture, flavor, and sensory qualities of Cheddar cheese. Cheddar cheese was manufactured from buffalo milk standardized at 4% fat level by adding sodium chloride at 2.5, 2.0, 1.5, 1.0, and 0.5% (wt/wt of the curd obtained). Cheese samples were ripened at 6 to 8 °C for 180 d and analyzed for chemical composition after 1 wk; for texture and proteolysis after 1, 60, 120, and 180 d; and for volatile flavor compounds and sensory quality after 180 d of ripening. Decreasing the salt level significantly reduced the salt-in-moisture and pH and increased the moisture-in-nonfat-substances and water activity. Cheese hardness, toughness, and crumbliness decreased but proteolysis increased considerably on reducing the sodium content and during cheese ripening. Lowering the salt levels appreciably enhanced the concentration of volatile compounds associated with flavor but negatively affected the sensory perception. We concluded that salt level in cheese can be successfully reduced to a great extent if proteolysis and development of off-flavors resulted by the growth of starter and nonstarter bacteria can be controlled. PMID:25151874

Murtaza, M A; Huma, N; Sameen, A; Murtaza, M S; Mahmood, S; Mueen-ud-Din, G; Meraj, A

2014-11-01

11

Alteration of MX-80 by hydrothermal treatment under high salt content conditions  

Energy Technology Data Exchange (ETDEWEB)

If brammalit, i.e. sodium illite, is formed from smectite in Na-rich salt water at high temperature such conversion can also take place in the buffer clay that surrounds the canisters in a KBS-3 repository. The present study comprised two laboratory test series with MX-80 clay, one with compacted clay powder with a dry density of 1200 to 1300 kg/m{sup 3} and saturation with 10% and 20% NaCl solutions followed by heating to 110 deg C under closed conditions for 30 days. In the second series air-dry compacted clay powder in a cell was heated at 110 deg C for the same period of time and connected to vessels with 10% and 20% NaCl solutions. The first series represents the conditions in the buffer clay after saturation with Na-rich salt water while the second one corresponds to the conditions in the course of saturation with such water. All laboratory tests were made after short-term percolation with distilled water for making sure that the hydro-thermally treated samples were fully fluid-saturated. The results from the physical testing showed that the hydraulic conductivity and swelling pressure of the hydrothermally treated clay samples were on the same order of magnitude as for untreated clay. Comparison with illitic clays shows that the latter are at least a hundred times more permeable than the hydrothermally treated salt clays in the present study, which hence indicates that conversion to illite was insignificant. This is obvious also from the fact that while illitic clays have very low swelling pressures the hydrothermally treated clays exhibited swelling pressures on the same order of magnitude as untreated MX-80. XRD analysis showed a clear difference in mineral constitution between the two test series. Thus, while no significant change from the typical mineralogy of untreated MX-80 was found for hydrothermal treatment of clay saturated with 10 and 20% NaCl solution, except for some very slight neoformation of illite-smectite mixed layers or irreversible partially collapsed phases in the 20% NaCl solution, dry clay exposed to 20% NaCl solution showed changes although they were still limited. Here, formation of Na-illite or fully contracted layers took place and Mg was concluded to have migrated from octahedral lattice positions to interlamellar sites, implying partial dissolution. The thickness of the montmorillonite particles were comparable to that of untreated MX-80 montmorillonite for the hydrothermally treated clay saturated with NaCl solutions, while it was significantly larger for the air-dry clay exposed to such solutions at heating to 110 deg C. The larger thickness may be an example of 'Ostwald ripening' or aggregation with simultaneous cementation by precipitated silicious matter. TEM EDX analyses showed that partial replacement of octahedral Mg by Al yielding a drop in interlayer charge had occurred especially in the air-dry clay powder heated to 110 deg C under simultaneous exposure to NaCl solutions. Silicious matter, partly in the form of quartz or cristobalite, may have precipitated. The silica may have originated from tetrahedral positions in the montmorillonite lattice where aluminum can have replaced it, hence forming beidellite, or by dissolution of the smectite component. Since the temperature was higher than in a KBS-3 repository and the salt content appreciably higher than what is normally found at 500 m depth in Swedish crystalline rock, the degrading processes may be less significant in the buffer clay. On the other hand, the hydrothermal conditions in the lab study prevailed only for a month while they will last for much longer time in the repository.

Pusch, R. [Geodevelopment AB, Lund (Sweden); Kasbohm, J. [Greifswald Univ. (Germany). Geological Dep.

2002-02-01

12

Alteration of MX-80 by hydrothermal treatment under high salt content conditions  

International Nuclear Information System (INIS)

If brammalit, i.e. sodium illite, is formed from smectite in Na-rich salt water at high temperature such conversion can also take place in the buffer clay that surrounds the canisters in a KBS-3 repository. The present study comprised two laboratory test series with MX-80 clay, one with compacted clay powder with a dry density of 1200 to 1300 kg/m3 and saturation with 10% and 20% NaCl solutions followed by heating to 110 deg C under closed conditions for 30 days. In the second series air-dry compacted clay powder in a cell was heated at 110 deg C for the same period of time and connected to vessels with 10% and 20% NaCl solutions. The first series represents the conditions in the buffer clay after saturation with Na-rich salt water while the second one corresponds to the conditions in the course of saturation with such water. All laboratory tests were made after short-term percolation with distilled water for making sure that the hydro-thermally treated samples were fully fluid-saturated. The results from the physical testing showed that the hydraulic conductivity and swelling pressure of the hydrothermally treated clay samples were on the same order of magnitude as for untreated clay. Comparison with illitic clays shows that the latter are at least a hundred times more permeable than the hydrothermally treated salt clays in the present study, which hence indicates that conversion to illite was insignificant. This is obvious also from the fact that while illitic clays have very low swelling pressures the hydrothermally treated clays exhibited swelling pressures on the same order of magnitude as untreated MX-80. XRD analysis showed a clear difference in mineral constitution between the two test series. Thus, while no significant change from the typical mineralogy of untreated MX-80 was found for hydrothermal treatment of clay saturated with 10 and 20% NaCl solution, except for some very slight neoformation of illite-smectite mixed layers or irreversible partially collapsed phases in the 20% NaCl solution, dry clay exposed to 20% NaCl solution showed changes although they were still limited. Here, formation of Na-illite or fully contracted layers took place and Mg was concluded to have migrated from octahedral lattice positions to interlamellar sites, implying partial dissolution. The thickness of the montmorillonite particles were comparable to that of untreated MX-80 montmorillonite for the hydrothermally treated clay saturated with NaCl solutions, while it was significantly larger for the air-dry clay exposed to such solutions at heating to 110 deg C. The larger thickness may be an example of 'Ostwald ripening' or aggregation with simultaneous cementation by precipitated silicious matter. TEM EDX analyses showed that partial replacement of octahedral Mg by Al yielding a drop in interlayer charge had occurred especially in the air-dry clay powder heated to 110 deg C under simultaneous exposure to NaCl solutions. Silicious matter, partly in the form of quartz or cristobalite, may have precipitated. The silica may have originated from tetrahedral positions in the montmorillonite lattice where aluminum can have replaced it, hence forming beidellite, or by dissolution of the smectite component. Since the temperature was higher than in a KBS-3 repository and the salt content appreciably higher than what is normally found at 500 m depth in Swedish crystalline rock, the degrading processes may be less significant in the buffer clay. On the other hand, the hydrothermal conditions in the lab study prevailed only for a month while they will last for much longer time in the repository

13

Reducing the content of radioactive substances by water treatment  

International Nuclear Information System (INIS)

The results of laboratory tests proved that modified procedures used in water supply practice are effective for reducing the contents of U and 226Ra and the gross alpha and beta of radionuclides. Uranium is effectively removed by adsorption on ferric hydroxide at pH 6 and FeCl3 doses of 1 to 2 mmol.l-1. 226Ra is effectively adsorbed on ferric hydroxide at pH higher than 7.5 and it coprecipitates with calcium salts. The most effective removal of 226Ra was achieved by coprecipitation with barium sulfate in doses of up to 10 mg.l-1. (B.S.). 4 figs., 3 refs

14

Effect of temperature, water-phase salt and phenolic contents on Listeria monocytogenes growth rates on cold-smoked salmon and evaluation of secondary models  

OpenAIRE

Salting and smoking are ancient processes for fish preservation. The effects of salt and phenolic smoke compounds on the growth rate of L. monocytogenes in cold-smoked salmon were investigated through physico-chemical analyses, challenge tests on surface of cold-smoked salmon at 4 degrees C and 8 degrees C, and a survey of the literature. Estimated growth rates were compared to predictions of existing secondary models, taking into account the effects of temperature, water phase salt content, ...

Cornu, M.; Beaufort, A.; Rudelle, S.; Laloux, L.; Bergis, H.; Miconnet, N.; Serot, T.; Delignette-muller, M. L.

2006-01-01

15

Quantifying Ground-Water Savings Achieved by Salt-Cedar Control Measures: A Demonstration Project  

Science.gov (United States)

Consumption of ground water by phreatophytes in riparian corridors is thought to be one factor responsible for stream-flow reductions in western Kansas and elsewhere. Extensive phreatophyte-control measures, primarily focusing on invasive species such as salt cedar and Russian olive, are being considered in response to concerns about the impact of phreatophytes on surface-and ground-water resources. At present, there is no generally accepted means of quantifying the ground-water savings that might be gained through these control measures. Micrometeorological methods are often not appropriate for this application because their fetch requirements are too large for narrow riparian corridors. Recently, an approach based on diurnal fluctuations in the water table has been shown to have potential for quantifying ground-water consumption by phreatophytes. A demonstration project is underway to examine the utility of this method for assessing ground-water savings achieved through phreatophyte-control measures. This project is being carried out at a research site in a region of salt-cedar infestation along the Cimarron River in southwestern Kansas. The site has been subdivided into four areas of approximately four hectares each in which different salt-cedar control measures will be applied. Control measures will not be used in one area so that data unaffected by those measures can be obtained throughout the project. Wells equipped with submersible pressure sensors have been installed to monitor water-table responses in the vicinity of the most common phreatophyte communities at the site. A neutron access tube has been emplaced adjacent to each well so that water content in the vadose zone can also be monitored. Changes in water-content profiles will be used to estimate specific yield, a critical parameter in the proposed methodology. A weather station has also been installed on site to monitor meteorological conditions and provide reference ET estimates. Water-level data collected prior to any control activities clearly indicate that the magnitude of the water-table fluctuations is highly dependent on the apparent vitality of the phreatophyte community in the vicinity of each well. After the control measures have been applied, water-level data from the treated areas will be compared to data from the untreated area. That comparison should enable quantification of reductions in ground-water consumption produced by those measures.

Butler, J. J.; Kluitenberg, G. J.; Whittemore, D. O.; Healey, J. M.; Zhan, X.

2005-05-01

16

Pearson’s correlations between moisture content, drip loss, expressible fluid and salt-induced water gain of broiler pectoralis major muscle  

Science.gov (United States)

Moisture content, drip loss, expressible fluid, and % salt-induced water gain are widely used to estimate water states and water-holding capacity of raw meat. However, the relationships between these four measurements of broiler pectoralis (p.) major muscle describe are not well described. The objec...

17

Relative water content of Spruce needles determined by the leaf water content index  

Science.gov (United States)

Leaf relative water content (RWC) is defined as the volume of water in a leaf divided by the volume at full turgor. Using reflectance factors of wavelengths 0.83 micron and 1.6 microns, a Leaf Water Content Index (LWCI) was derived from the Lambert-Beer Law such that LWCI should equal RWC; LWCI was equal to RWC for Picea pungens, Picea rubens, Liquidambar styraciflua, and Quercus agrifolia. Algebraic manipulation shows that R(1.6)/R(0.83) termed the Moisture Stress Index (MSI), is near-linearly correlated to RWC and to the Equivalent Water Thickness (EWT). Five species tested so far had the same relationship between MSI and EWT, but EWT is not a measure of plant water status.

Hunt, E. Raymond, Jr.; Wong, Sam K. S.; Rock, Barrett N.

1987-01-01

18

Water Properties in Cream Cheeses with Variations in pH, Fat, and Salt Content and Correlation to Microbial Survival  

DEFF Research Database (Denmark)

Water mobility and distribution in cream cheeses with variations in fat (4, 15, and 26%), added salt (0, 0.625, and 1.25%), and pH (4.2, 4.7, and 5.2) were studied using H-1 NMR relaxometry. The cheese samples were inoculated with a mixture of Listeria innocua, Escherichia coli 0157 and Staphylococcus aureus, and partial least-squares regression revealed that H-1 T-2 relaxation decay data were able to explain a large part of the variation in the survival of E. coli O157 (64-83%). However, the predictions of L. innocua and S. aureus survival were strongly dependent on the fat/water content of the samples. Consequently, the present results indicate that NMR relaxometry is a promising technique for predicting the survival of these bacteria; however, the characteristics of the sample matrix are substantial.

MØller, Sandie M.; Hansen, Tina B.

2012-01-01

19

Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status.  

Science.gov (United States)

In order to investigate the role of Si in alleviating the deleterious effects of salinity on tomato plant growth, the tomato cultivar Moneymaker was grown with 0 or 80mM NaCl combined with 0 and 2.5mM Si. Plant growth parameters, salt accumulation in plant tissues and plant water relations were analysed. Si treatment did not alter salt input into the plant or salt distribution between plant organs. There were non-significant differences in plant water uptake, but plant water content in salinised plants supplied with Si was 40% higher than in salinised plants that were not supplied with Si. Plants treated with NaCl alone showed a reduction in plant dry weight and total plant leaf area of 55% and 58%, respectively, while the reduction in plants treated with NaCl plus Si was only 31% and 22%, respectively. Leaf turgor potential and net photosynthesis rates were 42% and 20% higher in salinised plants supplied with Si than in salinised plants that were not supplied with Si. Water use efficiency calculated from instantaneous gas exchange parameters and as the ratio between plant dry matter and plant water uptake were, respectively, 17% and 16% higher in salinised plants supplied with Si. It can be concluded that Si improves the water storage within plant tissues, which allows a higher growth rate that, in turn, contributes to salt dilution into the plant, mitigating salt toxicity effects. PMID:16777532

Romero-Aranda, Mercedes R; Jurado, Oliva; Cuartero, Jesús

2006-07-01

20

Weakening of rock salt by water during long-term creep  

International Nuclear Information System (INIS)

The weakening of rock salt by water during long-term creep is attributed to the influence of trace amounts of brine. Experiments carried out on dry dilated salt show more or less conventional dislocation creep behaviour, but brine-bearing samples show marked weakening at low strain rates. This is associated with dynamic recrystallization and a change of deformation mechanism to solution transfer creep. Because natural rock salt always contains some brine, these results are relevant to the long-term evolution of salt-based radioactive waste repositories and strategic storage caverns. (U.K.)

21

Determining the water content in concrete by gamma scattering method  

International Nuclear Information System (INIS)

Highlights: • Gamma scattering technique for estimation of water content in concrete is given. • The scattered intensity increases with the volumetric water content. • Attenuation correction is provided to the scattered intensities. • Volumetric water content of 137Cs radioactive source and a high resolution HPGe detector based energy dispersive gamma ray spectrometer. Concrete samples of uniform density ?2.4 g/cm3 are chosen for the study and the scattered intensities found to vary with the amount of water present in the specimen. The scattered intensities are corrected for attenuation effects and the results obtained with reference to a dry sample are compared with those obtained by gravimetrical and gamma transmission methods. A good agreement is seen between gamma scattering results and those obtained by gravimetric and transmission methods within accuracy of 6% and <2% change in water content can be detected

22

The detection of chlorophyll content for salt stress of the wheat seedling by hyperspectral imaging  

Science.gov (United States)

An auto-development pushbroom imaging spectrometer (PIS) with wavelength range of 400-1000 nm was applied to measure the chlorophyll content of wheat seedling. It showed that according to images of spectral imaging for leaves of Chinese Spring (Salt-sensitive), Zhouyuan 9369(common and high-yield) and Changwu 134(salt-tolerant) wheat seedling under salt stress, growth of salt-sensitive Chinese Spring wheat seedling was inhibited and it was feasible to carry out qualitative analysis. Images could intuitively reflect morphological information of growth status of wheat seedling and could show spectral differences of different leaves and different locations of one leave. Also, it was feasible to identify green and yellow locations of leaf and to carry out qualitative analysis. The tested sites of spectrum and the chlorophyll content measured sites were on the same area of single leaf. After measuring the hyperspectral image of leaf, the mean reflectance spectra of each leaf was calculated Totally, 126 samples were collected, which were then divided into a calibration set and a prediction set. Partial least square regression (PLSR) method was used to build the calibration model. Results showed that the extracted hyperspectral spectra had high correlation with chlorophyll content. The correlation coefficient of the calibration model is R=0.8138, the standard error of prediction is SEP=4.75. The results indicated that hyperspectral imaging were suitable for the non-invasive detection of chlorophyll content of wheat seedling.

Wu, Qiong; Zhu, Dazhou; Wang, Cheng; Ma, Zhihong; Zhang, Dongyan; Chen, Kun; Wang, Jihua

2011-08-01

23

Model-based studies into ground water movement, with water density depending on salt content. Case studies and model validation with respect to the long-term safety of radwaste repositories. Final report  

International Nuclear Information System (INIS)

Near-to-reality studies into ground water movement in the environment of planned radwaste repositories have to take into account that the flow conditions are influenced by the water density which in turn depends on the salt content. Based on results from earlier studies, computer programs were established that allow computation and modelling of ground water movement in salt water/fresh water systems, and the programs were tested and improved according to progress of the studies performed under the INTRAVAL international project. The computed models of ground water movement in the region of the Gorlebener Rinne showed for strongly simplified model profiles that the developing salinity distribution varies very sensitively in response to the applied model geometry, initial input data for salinity distribution, time frame of the model, and size of the transversal dispersion length. The WIPP 2 INTRAVAL experiment likewise studied a large-area ground water movement system influenced by salt water. Based on the concept of a hydraulically closed, regional ground water system (basin model), a sectional profile was worked out covering all relevant layers of the cap rock above the salt formation planned to serve as a repository. The model data derived to describe the salt water/fresh water movements in this profile resulted in essential enlargements and modifications of the ROCKFLOW computer program applied, (relating to input data for dispersion modelling, particle-tracker, computer graphics interface), and yielded important information for the modelling of such systems (relating to initial pressure data at the upper margin, network enhancement for important concentration boundary conditions, or treatment of permeability contrasts). (orig.)

24

Biological treatment of waste waters of high salt content; Depuracion biologica de efluentes con alto contenido salino  

Energy Technology Data Exchange (ETDEWEB)

The fish canning industry, a national industrial sector of economical significance, generates high volumes of wastewater containing a high organic load and salt concentration. In addition to other problems presented for the aerobic biological treatment of these effluents, the presence of a high chloride concentration produces an inhibitory effect on the growth of aerobic microorganisms. In this work the inhibitory effect of chloride has been analyzed by means of a biokinetic study carried out using the electrolytic respirometry techniques and tuna boiling water as wastewater. This kind of study is highly appropriated for the search of solutions to specific problems created during the treatment of different industrial sectors wastewater. (Author) 10 refs.

Perez, A.I.; Goytia, M.; Muguruza, I.; Blanco, F. [GAIKER, Zamudio (Spain)

1996-09-01

25

[Simulation of effect of irrigation with reclaimed water on soil water-salt movement by ENVIRO-GRO model].  

Science.gov (United States)

As the conflict between water supply and demand, wastewater reuse has become an important measure, which can relieve the water shortage in Beijing. In order to promote safe irrigation with reclaimed water and prevent soil salinisation, the dynamic transport of salts in urban soils of Beijing, a city of water shortage, under irrigation of reclaimed water was simulated by ENVIRO-GRO model in this research. The accumulation trends of soil salinity were predicted. Simultaneously, it investigated the effects of different irrigation practices on soil water-salt movement and salt accumulation. Results indicated that annual averages of soil salinity (EC(e)) increased 29.5%, 97.2%, 197.8% respectively, with the higher irrigation, normal irrigation, and low irrigation under equilibrium conditions. Irrigation frequency had little effect on soil salt-water movement, and soil salt accumulation was in a downward trend with low frequency of irrigation. Under equilibrium conditions, annual averages of EC(e) increased 23.7%, 97.2%, 208.5% respectively, with irrigation water salinity (EC(w)) 0.6, 1.2, 2.4 dS x m(-1). Soil salinity increased slightly with EC(w) = 0.6 dS x m(-1), while soil salinization did not appear. Totally, the growth of Blue grass was not influenced by soil salinity under equilibrium conditions with the regular irrigation in Beijing, but mild soil salinization appeared. PMID:23379129

Lü, Si-Dan; Chen, Wei-Ping; Wang, Mei-E

2012-12-01

26

Determination of water content of plant leaves by beta attenuation  

International Nuclear Information System (INIS)

The method of determination of absolute water content of a plant leaf, based upon the measured relative intensities and the mass attenuation coefficient of ?-particles from 204T1 through the fresh and dry leaves of the plant, is described. Moisture content of plant leaves of Cotton, Sunflower, Mung and Spinach as estimated by this method agrees with the direct weighing measurements within ±4%. (Author)

27

Nuclear probe for soil water content measurements by Compton scattering  

International Nuclear Information System (INIS)

Two methods for measuring soil moisture were developed. They are based on incoherent and coherent Compton scattering of 60 keV gamma rays. Scattered ? ray rates by small soil samples, less than 4 cm3, were measured using a X-Ray NaI(Tl) detector. Known water amounts were introduced in these samples and count rates were measured and correlated with water contents. Results have shown the viability of using this method to measure soil water content. A second method uses cylindrical soil samples with radius of 10 cm and height of 15 cm. These samples has an axial hole with 1.2 cm of diameter and 9 cm depth where the densimeter is placed. This densimeter consists of a cylinder of five centimeter length where inside a 241Am source, a lead shield and a plastic scintillator is axially placed. This scintillator is coupled to a light guide to light to a photocathode of a photomultiplier tube. The densimeter was tested using soil samples with water contents ranges from 5 to 25%. Linear correlation between count rates and water content has shown correlation coefficient better than 0.99. (author)

28

Treatment of Liquid Radioactive Waste with High Salt Content by Colloidal Adsorbents - 13274  

International Nuclear Information System (INIS)

Treatment processes have been fully developed for most of the liquid radioactive wastes generated during the operation of nuclear power plants. However, a process for radioactive liquid waste with high salt content, such as waste seawater generated from the unexpected accident at nuclear power station, has not been studied extensively. In this study, the adsorption efficiencies of cesium (Cs) and strontium (Sr) in radioactive liquid waste with high salt content were investigated using several types of zeolite with different particle sizes. Synthesized and commercial zeolites were used for the treatment of simulated seawater containing Cs and Sr, and the reaction kinetics and adsorption capacities of colloidal zeolites were compared with those of bulk zeolites. The experimental results demonstrated that the colloidal adsorbents showed fast adsorption kinetic and high binding capacity for Cs and Sr. Also, the colloidal zeolites could be successfully applied to the static adsorption condition, therefore, an economical benefit might be expected in an actual processes where stirring is not achievable. (authors)

29

SEPARATION OF MAGNESIUM CHLORIDE FROM SEA WATER BY PREFERENTIAL SALT SEPARATION (PSS)  

OpenAIRE

Magnesium chloride is typically extracted from sea water on an industrial scale by precipitating it as magnesium hydroxide, then converting it to the chloride by adding hydrochloric acid. This process is known as the Dow process which uses the chemical approach in producing magnesium chloride. Kettani and Abdel-Aal [1], proposed a physical separation procedure known as the Preferential Salt Separation (PSS) to obtain magnesium chloride directly from sea water. In principle, the PSS concept is...

Khaled Zohdy, Maha Abdel Kareem And Hussein Abdel-aal

2013-01-01

30

Analysis of the juice and water losses in salted and unsalted pork samples heated in water bath. Consequences for the prediction of weight loss by transfer models.  

Science.gov (United States)

This study has analyzed the effect of different factors on variation of meat weight due to juice loss, and variation of water content of pork samples heated in a water bath. The weight loss (WL) was influenced by initial water content of raw meat which can be connected to meat pH, muscle type, and by pre-salting. WL was also influenced by sample thickness and by nature of the surrounding fluid. These effects were significant at 50°C and in thinner samples but decreased as meat temperature and sample thickness increased. WL showed no significant difference in response to prior freezing, applying a surface constraint during heating or varying meat salt content from 0.8 to 2.0%. The results were interpreted from literature knowledge on protein denaturation, contraction and, transport phenomena. Reliably predicting WL from water content variation during heating hinges on taking into account the loss of dry matter and the possible effects of meat pH, sample size or surrounding fluid. PMID:25443971

Bombrun, Laure; Gatellier, Philippe; Portanguen, Stéphane; Kondjoyan, Alain

2015-01-01

31

ASU testing of water in salt  

International Nuclear Information System (INIS)

Stable isotope measurements have been used to determine the origin of water leaking into salt mines in the Gulf Coast salt domes. Water ''pockets'' are found around the periphery of the domes and in association with sediment inclusions. Isotopic data indicate that these waters are formation waters that have been mechanically wrapped into the domes during diapiric rise of the salt. Meteoric waters are actively leaking into the Avery Island salt mine. These leaks represent penetration of the salt by external waters. The mechanism of brine movement is unknown. A third water type in domal salt appears to be connate brines evaporated to potash facies. These brines are so concentrated that they turn to a gel at liquid nitrogen temperatures; they will not freeze. Isotopic analyses of fluid inclusions in the bedded salts of the Palo Duro Basin indicate that the trapped water is mainly connate evaporate water dating back to the time of salt deposition. In the Avery Island salt dome, observations include ghost grain boundaries defined by curviplanar arrays of fluid inclusions within coarse halite crystals. These are either former grain boundaries or fracture surfaces. Parallel planes of intracrystalline fluid inclusions clearly indicate natural fracturing of salt with consequent movement of brine. Water appears to have migrated upwards of 50 meters from localized water ''pockets'' via these mechanisms

32

Simulation of water transport in heated rock salt  

International Nuclear Information System (INIS)

This paper summarizes computer simulation studies on water transport in German rock salt. Based on JOCKWERS experimental investigations on water content and water liberation, the object of these studies was to select a water transport model, that matches the water inflow which was measured in some heater experiments in the Asse Salt Mine. The main result is, that an evaporation front model, with Knudsen-type vapor transport combined with fluid transport by thermal expansion of the adsorbed water layers in the non evaporated zone, showed the best agreement with experimental evidence

33

Monitoring soil water content by vertical temperature variations.  

Science.gov (United States)

The availability of high sensitivity temperature sensors (0.001 K sensitivity platinum resistors), which can be positioned at intervals of a few centimeters along a vertical profile in the unsaturated zone, allows short-term in situ determinations-one day or even less-of the thermal diffusivity. The development of high data storage capabilities also makes this possible over long periods and the relative variations in thermal diffusivity allow the monitoring of the variations in water content. The processing of temperature measurements recorded at different depths is achieved by solving the heat equation, using the finite elements method, with both conductive and convective heat transfers. A first set of measurements has allowed this approach to be validated. Water content variations derived from thermal diffusivity values are in excellent agreement with TDR measurements carried out on the experimental site at Boissy-le-Châtel (Seine et Marne, France). PMID:23834312

Bechkit, Mohamed Amine; Flageul, Sébastien; Guerin, Roger; Tabbagh, Alain

2014-01-01

34

Estimations of the rate of penetration of rock-salt by fresh water  

International Nuclear Information System (INIS)

The study was done to assess the safety of the burial of radioactive waste products in naturally occurring rock-salt masses. It is assumed that some catastrophic occurrence has altered the local conditions so that the salt can be attacked by fresh water. The flow velocity of the water will still be governed by the hydrology on a large scale, so it is presumed that the presently occurring pore velocities will be realistic for the new situation. The nature of the failures and faulting are assumed to be unfavorable with regard to location and typical with regard to dimensions, though the mechanism that can control the final rate of solution can vary. Two sets of conditions are considered; damage to the cap-rock, and attack from the side

35

Exceptionally Fast Water Desalination at Complete Salt Rejection by Pristine Graphyne Monolayers  

OpenAIRE

Desalination that produces clean freshwater from seawater holds the promise to solve the global water shortage for drinking, agriculture and industry. However, conventional desalination technologies such as reverse osmosis and thermal distillation involve large amounts of energy consumption, and the semipermeable membranes widely used in reverse osmosis face the challenge to provide a high throughput at high salt rejection. Here we find by comprehensive molecular dynamics si...

Xue, Minmin; Qiu, Hu; Guo, Wanlin

2013-01-01

36

Exceptionally fast water desalination at complete salt rejection by pristine graphyne monolayers  

Science.gov (United States)

Desalination that produces clean freshwater from seawater holds the promise of solving the global water shortage for drinking, agriculture and industry. However, conventional desalination technologies such as reverse osmosis and thermal distillation involve large amounts of energy consumption, and the semipermeable membranes widely used in reverse osmosis face the challenge to provide a high throughput at high salt rejection. Here we find by comprehensive molecular dynamics simulations and first principles modeling that pristine graphyne, one of the graphene-like one-atom-thick carbon allotropes, can achieve 100% rejection of nearly all ions in seawater including Na+, Cl-, Mg2+, K+ and Ca2+, at an exceptionally high water permeability about two orders of magnitude higher than those for commercial state-of-the-art reverse osmosis membranes at a salt rejection of ˜98.5%. This complete ion rejection by graphyne, independent of the salt concentration and the operating pressure, is revealed to be originated from the significantly higher energy barriers for ions than for water. This intrinsic specialty of graphyne should provide a new possibility for the efforts to alleviate the global shortage of freshwater and other environmental problems.

Xue, Minmin; Qiu, Hu; Guo, Wanlin

2013-12-01

37

Salt content in canteen and fast food meals in Denmark  

DEFF Research Database (Denmark)

Background: A high salt (NaCl) intake is associated with high blood pressure, and knowledge of salt content in food and meals is important, if the salt intake has to be decreased in the general population. Objective: To determine the salt content in worksite canteen meals and fast food. Design: For the first part of this study, 180 canteen meals were collected from a total of 15 worksites with in- house catering facilities. Duplicate portions of a lunch meal were collected from 12 randomly selected employees at each canteen on two non-consecutive days. For the second part of the study, a total of 250 fast food samples were collected from 52 retail places representing both city (Aarhus) and provincial towns. The canteen meals and fast food samples were analyzed for chloride by potentiometric titration with silver nitrate solution, and the salt content was estimated. Results: The salt content in lunch meals in worksite canteens were 3.891.8 g per meal and 14.795.1 g per 10 MJ for men (n 109), and 2.891.2 g per meal and 14.496.2 g per 10 MJ for women (n 71). Salt content in fast food ranged from 11.892.5 g per 10 MJ (burgers) to 16.394.4 g per 10 MJ (sausages) with a mean content of 13.893.8 g per 10 MJ. Conclusion: Salt content in both fast food and in worksite canteen meals is high and should be decreased.

Rasmussen, Lone Banke; Lassen, Anne Dahl

2010-01-01

38

Mobility of Pb in salt marshes recorded by total content and stable isotopic signature.  

Science.gov (United States)

Total lead and its stable isotopes were analysed in sediment cores, leaves, stem and roots of Sacorconia fruticosa and Spartina maritima sampled from Tagus (contaminated site) and Guadiana (low anthropogenic pressure) salt marshes. Lead concentration in vegetated sediments from the Tagus marsh largely exceeded the levels in non-vegetated sediments. Depth profiles of (206)Pb/(207)Pb and (206)Pb/(208)Pb showed a decrease towards the surface ((206)Pb/(207)Pb=1.160-1.167) as a result of a higher proportion of pollutant Pb components. In contrast, sediments from Guadiana marsh exhibited low Pb concentrations and an uniform isotopic signature ((206)Pb/(207)Pb=1.172+/-0.003) with depth. This suggests a homogeneous mixing of mine-derived particles and pre-industrial sediments with minor inputs of anthropogenic Pb. Lead concentrations in roots of plants from the two marshes were higher than in leaves and stems, indicating limited transfer of Pb to aerial parts. A similar Pb isotopic signature was found in roots and in vegetated sediments, indicating that Pb uptake by plants reflects the input in sediments as determined by a significant anthropogenic contribution of Pb at Tagus and by mineralogical Pb phases at Guadiana. The accumulation in roots from Tagus marsh (max. 2870 microg g(-1) in S. fruticosa and max. 1755 microg g(-1) in S. maritima) clearly points to the dominant role of belowground biomass in the cycling of anthropogenic Pb. The fraction of anthropogenic Pb in belowground biomass was estimated based on the signature of anthropogenic Pb components in sediments ((206)Pb/(207)Pb=1.154). Since no differences exist between Pb signature in roots and upper sediments, the background and anthropogenic levels of Pb in roots were estimated. Interestingly, both background and anthropogenic Pb in roots exhibited a maximum at the same depth, although the proportion of anthropogenic Pb was relatively constant with depth (83+/-4% for S. fruticosa and 74+/-8% for S. maritima). PMID:17320933

Caetano, Miguel; Fonseca, Nuno; Cesário Carlos Vale, Rute

2007-07-15

39

Water dynamics and salt-activation of enzymes in organic media: Mechanistic implications revealed by NMR spectroscopy  

Science.gov (United States)

Deuterium spin relaxation was used to examine the motion of enzyme-bound water on subtilisin Carlsberg colyophilized with inorganic salts for activation in different organic solvents. Spectral editing was used to ensure that the relaxation times were associated with relatively mobile deuterons, which were contributed almost entirely by D2O rather than hydrogen–deuteron exchange on the protein. The results indicate that the timescale of motion for residual water molecules on the biocatalyst, (?c)D2O, in hexane decreased from 65 ns (salt-free) to 0.58 ns (98% CsF) as (kcat/KM)app of the biocatalyst preparation increased from 0.092 s?1·M?1 (salt-free) to 1,140 s?1·M?1 (98% CsF). A similar effect was apparent in acetone; the timescale decreased from 24 ns (salt-free) to 2.87 ns (98% KF), with a corresponding increase in (kcat/KM)app of 0.140 s?1·M?1 (salt-free) to 12.8 s?1·M?1 (98% KF). Although a global correlation between water mobility and enzyme activity was not evident, linear correlations between ln[(kcat/KM)app] and (?c)D2O were obtained for salt-activated enzyme preparations in both hexane and acetone. Furthermore, a direct correlation was evident between (kcat/KM)app and the total amount of mobile water per mass of enzyme. These results suggest that increases in enzyme-bound water mobility mediated by the presence of salt act as a molecular lubricant and enhance enzyme flexibility in a manner functionally similar to temperature. Greater flexibility may permit a larger degree of local transition-state mobility, reflected by a more positive entropy of activation, for the salt-activated enzyme compared with the salt-free enzyme. This increased mobility may contribute to the dramatic increases in biocatalyst activity. PMID:16585507

Eppler, Ross K.; Komor, Russell S.; Huynh, Joyce; Dordick, Jonathan S.; Reimer, Jeffrey A.; Clark, Douglas S.

2006-01-01

40

Mobility of Pb in salt marshes recorded by total content and stable isotopic signature  

Energy Technology Data Exchange (ETDEWEB)

Total lead and its stable isotopes were analysed in sediment cores, leaves, stem and roots of Sacorconia fruticosa and Spartina maritima sampled from Tagus (contaminated site) and Guadiana (low anthropogenic pressure) salt marshes. Lead concentration in vegetated sediments from the Tagus marsh largely exceeded the levels in non-vegetated sediments. Depth profiles of {sup 206}Pb/{sup 207}Pb and {sup 206}Pb/{sup 208}Pb showed a decrease towards the surface ({sup 206}Pb/{sup 207}Pb = 1.160-1.167) as a result of a higher proportion of pollutant Pb components. In contrast, sediments from Guadiana marsh exhibited low Pb concentrations and an uniform isotopic signature ({sup 206}Pb/{sup 207}Pb = 1.172 {+-} 0.003) with depth. This suggests a homogeneous mixing of mine-derived particles and pre-industrial sediments with minor inputs of anthropogenic Pb. Lead concentrations in roots of plants from the two marshes were higher than in leaves and stems, indicating limited transfer of Pb to aerial parts. A similar Pb isotopic signature was found in roots and in vegetated sediments, indicating that Pb uptake by plants reflects the input in sediments as determined by a significant anthropogenic contribution of Pb at Tagus and by mineralogical Pb phases at Guadiana. The accumulation in roots from Tagus marsh (max. 2870 {mu}g g{sup -1} in S. fruticosa and max. 1755 {mu}g g{sup -1} in S. maritima) clearly points to the dominant role of belowground biomass in the cycling of anthropogenic Pb. The fraction of anthropogenic Pb in belowground biomass was estimated based on the signature of anthropogenic Pb components in sediments ({sup 206}Pb/{sup 207}Pb = 1.154). Since no differences exist between Pb signature in roots and upper sediments, the background and anthropogenic levels of Pb in roots were estimated. Interestingly, both background and anthropogenic Pb in roots exhibited a maximum at the same depth, although the proportion of anthropogenic Pb was relatively constant with depth (83 {+-} 4% for S. fruticosa and 74 {+-} 8% for S. maritima)

Caetano, Miguel [National Institute for Agronomy and Fisheries Research - IPIMAR, Av. Brasilia 1449-006, Lisbon (Portugal); Fonseca, Nuno [National Institute for Agronomy and Fisheries Research - IPIMAR, Av. Brasilia 1449-006, Lisbon (Portugal); Cesario Carlos Vale, Rute [National Institute for Agronomy and Fisheries Research - IPIMAR, Av. Brasilia 1449-006, Lisbon (Portugal)]. E-mail: cvale@ipimar.pt

2007-07-15

41

Mobility of Pb in salt marshes recorded by total content and stable isotopic signature  

International Nuclear Information System (INIS)

Total lead and its stable isotopes were analysed in sediment cores, leaves, stem and roots of Sacorconia fruticosa and Spartina maritima sampled from Tagus (contaminated site) and Guadiana (low anthropogenic pressure) salt marshes. Lead concentration in vegetated sediments from the Tagus marsh largely exceeded the levels in non-vegetated sediments. Depth profiles of 206Pb/207Pb and 206Pb/208Pb showed a decrease towards the surface (206Pb/207Pb = 1.160-1.167) as a result of a higher proportion of pollutant Pb components. In contrast, sediments from Guadiana marsh exhibited low Pb concentrations and an uniform isotopic signature (206Pb/207Pb = 1.172 ± 0.003) with depth. This suggests a homogeneous mixing of mine-derived particles and pre-industrial sediments with minor inputs of anthropogenic Pb. Lead concentrations in roots of plants from the two marshes were higher than in leaves and stems, indicating limited transfer of Pb to aerial parts. A similar Pb isotopic signature was found in roots and in vegetated sediments, indicating that Pb uptake by plants reflects the input in sediments as determined by a significant anthropogenic contribution of Pb at Tagus and by mineralogical Pb phases at Guadiana. The accumulation in roots from Tagus marsh (max. 2870 ?g g-1 in S. fruticosa and max. 1755 ?g g-1 in S. maritima) clearly points to the dominant role of belowgr points to the dominant role of belowground biomass in the cycling of anthropogenic Pb. The fraction of anthropogenic Pb in belowground biomass was estimated based on the signature of anthropogenic Pb components in sediments (206Pb/207Pb = 1.154). Since no differences exist between Pb signature in roots and upper sediments, the background and anthropogenic levels of Pb in roots were estimated. Interestingly, both background and anthropogenic Pb in roots exhibited a maximum at the same depth, although the proportion of anthropogenic Pb was relatively constant with depth (83 ± 4% for S. fruticosa and 74 ± 8% for S. maritima)

42

Simulation of water transport in heated rock salt  

International Nuclear Information System (INIS)

This final report contains the results of computer simulation studies on water transport in German rock salt. Based on Jockwer's experimental investigations on water content and water liberation, the object of this work was to select a water transport model that matches the water inflow which was measured in some heater experiments in the Asse salt mine. The main result is that an evaporation model with Knudsen type vapour transport combined with fluid transport by thermal expansion of the adsorbed water layers in the non-evaporated zone showed the best agreement with experimental evidence. An extrapolatory calculation for a borehole in a high-level waste repository showed that the water vapour inflow during the time of convergence of the initial gap between canister and borehole will not exceed 200 g per meter

43

Hydrochlorothiazide-induced 131I excretion facilitated by salt and water  

International Nuclear Information System (INIS)

Salt intake is restricted under clinical conditions for which thiazide diuretics are customarily used. Dietary iodide intake offsets any effect of thiazide on iodide loss. However, our correlation coefficients relating Na+ to Cl- to I- excretion indicate that as thiazide administration or sodium chloride intake increases renal Na+ and Cl- excretion, I- reabsorption by the nephron coordinately decreases. Increased sodium chloride and water intake by the dog doubled I-excretion rates. Hydrochlorothiazide increased the sodium chloride and water enhanced I-excretion rate as much as eight-fold. Without added NaCl, hydrochlorothiazide increased the excretion rate of 131I by three- to eightfold, acutely. Within five to seven days after 131I oral administration, hydrochlorothiazide (1 or 2 mg/kg twice daily) doubled the rate of 131I disappearance from plasma, reduced the fecal output of 131I, and increased its rate of renal excretion. When hydrochlorothiazide was administered, as much 131I was excreted in the first 24 hours as occurred in 48 hours when sodium chloride and water were given without hydrochlorothiazide. Thiazide administration in customary clinical dosage twice a day with substantial sodium chloride and water for the first two days after exposure to 131I, should therefore facilitate the safe excretion of 131I. This accelerated removal of 131I might be enhanced even more if thyroid uptake of 131I is blocked by administration of potassium iodide, as judged by the ion of potassium iodide, as judged by the greater 131I recovery from thyroidectomized dogs

44

Amount and nature of occluded water in bedded salt, Palo Duro Basin, Texas  

International Nuclear Information System (INIS)

The quantity and types of fluids within bedded salt cores from the Permian San Andres Formation, Palo Duro, Texas, were evaluated at the Texas Bureau of Economic Geology. Bedded halite from the San Andres Formation and other salt-bearing units were selected to represent the variety of salt types present, and were then analyzed. The mean water content of ''pure'' samples (more than 90% halite) is 0.4 weight percent, with none observed greater than 1.0 weight percent. Samples that contain more than 10 weight percent clay or mudstone display a trend of increasing water content with increasing clastic material. Chaotic mudstone-halite samples have as much as 5 weight percent water; halite-cemented mudstone interlayers, common throughout the bedded salts, may have water content values as high as 10 to 15 weight percent based on extrapolation of existing data that range from 0 to about 6%. No significant difference exists between the mean water content values of ''pure salt'' from the upper San Andres, lower San Andres Cycle 5, and lower San Andres Cycle 4 salt units. The fraction of total water present as mobile intergranular water is highly variable and not readily predicted from observed properties of the salt sample. The amount of water that would be affected by a high-level nuclear waste repository can be estimated if the volume of halite, the volume of clastic interlayers, and the amount and type of impurity in halite are known. Appendix contains seven vugraphsn. Appendix contains seven vugraphs

45

DETERMINATION OF SOLUBLE SALTS IN INTERSTITIAL WATER OF FLUVIAL SEDIMENTS BY IE-HPLC  

Scientific Electronic Library Online (English)

Full Text Available SciELO Chile | Language: English Abstract in english An ionic exchange high resolution liquid chromatography (IE-HPLC) method for determination of cations and anions in interstitial water of sediments, affluent and effluent of dams is proposed in this paper. Cations: Na+, Ca2+, K+, and Mg2+ and anions: Cl-, CO3(2-), NO3- and SO4(2-) were analyzing by [...] IE-HPLC method. Optimized analytical conditions were validated in terms of accuracy, recovery and detection limit. The method of flame spray atomic absorption spectrophotometer (AAS) was used as an additional method for the determination of Ca and Mg. It must be indicated that cations may be analyzed by several analytical methods such as AAS, ICP, etc., but there are not enough methods to analyze anions; IE-HPLC methods are good alternative to determine these ions. The aim of this study was to determine ions in interstitial water in the affluent and effluent of the Chilean dams Cogotí, Corrales, La Paloma, Rapel and Recoleta in order to determine if the water is suitable for irrigation or human consumption and estimate the effect of dams on water quality. The results indicate that the highest concentrations observed were for the cations: Ca2+ (mean 43.5 mgL-1), Na+ (mean 16.4 mgL-1), Mg2+ (mean 12.6 mgL-1), and K+ (mean 2.3 mgL-1). The highest concentration of anions was found for CO3(2-) (mean 55.9 mgL-1); the concentrations of SO4(2-), Cl- and NO3- reached 59.3 mgL-1, 12.8 mgL-1 and 27.0 mgL-1, respectively. The results indicate that although the origin of soluble salts is lithogenic, the high concentrations of these salts found in some places indicate anthropogenic effect, either by direct or indirect discharges or by diffuse pollution. These high concentrations may be significant, considering that these waters are used mainly for irrigation, which would affect the quality of agricultural soils irrigated with this moderately saline water.

SYLVIA. V, COPAJA; VESNA, NÚÑEZ S; DAVID, VÉLIZ.

2366-23-01

46

Removal of Oil Spills from Salt Water by Magnesium, Calcium Carbonates and Oxides  

Directory of Open Access Journals (Sweden)

Full Text Available ABSTRACT: Magnesium, calcium carbonates and oxides that are widely used in cement industries were employed in studying sorption of petroleum oil spills from salt water at different condition parameters such as temperature, loading weight, degree of salinity. Treatment of magnesium, calcium carbonates and oxides by dodecyl benzene sulphonic acid alcohol was studied to enhance the sorption efficiency. Results obtained showed that treated MgCO3, CaCO3, MgO and CaO with dodecyl benzene sulphonic can sorb oil by 0.95, 1.25, 78, 0.56 times its weight respectively; untreated materials can sorb oil by 0.49, 0.76, 0.44, 0.32 its weight. Characteristics of crude oil and the used materials were investigated by FTIR, X ? Ray Fluorescence, Inductive Coupled Plasma, Pour Point and Thermostatic Water Bath instruments. Determination of the amount of crude oil in water was done by extracting the crude oil in tricholorotrifluoroethane and measuring absorbance by FTIR spectrometer. @JASEM

Zayed, A M

2004-06-01

47

When do water-insoluble polyion-surfactant ion complex salts "redissolve" by added excess surfactant?  

Science.gov (United States)

The redissolution of water-insoluble polyion-surfactant ion complexes by added excess of surfactant has systematically been investigated in experimental and theoretical phase equilibrium studies. A number of stoichiometric polyion-surfactant ion "complex salts" were synthesized and they consisted of akyltrimethylammonium surfactant ions of two different alkyl chain lengths (C(12)TA(+) and C(16)TA(+)) combined with homopolyions of polyacrylate of two different lengths (PA(-)(25) and PA(-)(6000)) or copolyions of acrylate and the slightly hydrophobic nonionic comonomers N-isopropylacrylamide (PA(-)-co-NIPAM) or N,N-dimethylacrylamide (PA(-)-co-DAM). The complex salts were mixed with water and excess alkyltrimethylammonium surfactant with either bromide or acetate counterions (C(n)TABr or C(n)TAAc). Factors promoting efficient redissolution were (i) very short polyions, (ii) a large fraction of NIPAM or DAM comonomers, and (iii) acetate, rather than bromide, as the surfactant counterion. Added C(12)TAAc gave an efficient redissolution of C(12)TAPA(25) but virtually no redissolution of C(12)TAPA(6000). A very efficient redissolution by added C(12)TAAc was obtained for PA(-)-co-NIPAM with 82 mol % of NIPAM. The C(12)TAPA-co-NIPAM/C(12)TAAc/H(2)O ternary phase diagram closely resembled the corresponding diagram for the much-studied pair cationic hydroxyethyl cellulose-(sodium) dodecyl sulfate. The simple Flory-Huggins theory adopted for polyelectrolyte systems successfully reproduced the main features of the experimental phase diagrams for the homopolyion systems, including the effect of the surfactant counterion. The efficient redissolution found for certain copolyion systems was explained by the formation of soluble polyion-surfactant ion complexes carrying an excess of surfactant ions through an additional hydrophobic attraction. PMID:21166446

dos Santos, Salomé; Gustavsson, Charlotte; Gudmundsson, Christian; Linse, Per; Piculell, Lennart

2011-01-18

48

Altered Specificity of Lactococcal Proteinase PI (Lactocepin I) in Humectant Systems Reflecting the Water Activity and Salt Content of Cheddar Cheese  

OpenAIRE

By using various humectant systems, the specificity of hydrolysis of ?s1-, ?-, and ?-caseins by the cell envelope-associated proteinase (lactocepin; EC 3.4.21.96) with type P1 specificity (i.e., lactocepin I) from Lactococcus lactis subsp. lactis BN1 was investigated at water activities (aw) and salt concentrations reflecting those in cheddar type cheese. In the presence of polyethylene glycol 20000 (PEG 20000)-NaCl (aw = 0.95), hydrolysis of ?-casein resulted in production of the peptide...

Reid, Julian R.; Coolbear, Tim

1998-01-01

49

Capillary and sorbed water content in wood as studied by nuclear magnetic resonance  

International Nuclear Information System (INIS)

Water content in wood has been studied by NMR technique. The spin-spin relaxation time has been measured for distinguish the capillary and sorbed water. The qualitative and quantitative determination have been possible by means of proposed method

50

Titanium for salt water service  

International Nuclear Information System (INIS)

Titanium has potential as major material of construction in desalination plants, in condensers and heat exchangers, in view of its excellent corrosion resistance to salt water upto at least 120deg C. The advantages of titanium in such applications are brought out. The various specific problems such as pitting, crevice and galvanic corrosion and the preventive methods, for adopting titanium have been discussed. The hydriding problem can be overcome by suitably controlling the operating parameters such as temperature and surface preparation. A case has been made to prove the economic viability of titanium in comparison to Al-brass and Cu-Ni alloy. The future of titanium seems to be very promising in view of the negligible tube failures and outages. (auth.)

51

Titanium for salt water service  

Energy Technology Data Exchange (ETDEWEB)

Titanium has potential as major material of construction in desalination plants, in condensers and heat exchangers, in view of its excellent corrosion resistance to salt water up to at least 120/sup 0/C. This paper brings out the advantages of titanium in such applications. The various specific problems such as pitting, crevice and galvanic corrosion and the preventive methods, for adopting titanium have been discussed. The hydriding problem can be overcome by suitably controlling the operating parameters such as temperature and surface preparation. A case has been made to prove the economic viability of titanium in comparison to Al-brass and Cu-Ni alloy. The future of titanium seems to be very promising in view of the negligible tube failures and outages.

Gadiyar, H.S.; Shibad, P.R.

1980-01-01

52

Hydrogen production from salt water by Marine blue green algae and solar radiation  

Science.gov (United States)

Two marine bluegreen algae, Oscillatoria sp. Miami BG 7 and Synechococcus sp Miami 041511 have been selected as the result of over 10 years continuous and intensive effort of isolation, growth examination, and the screening of hydrogen photoproduction capability in this laboratory. Both strains photoproduced hydrogen for several days at high rates and a quantity of hydrogen was accumulated in a closed vessel. Overall hydrogen donor substance of the hydrogen photoproduction was found to be salt water. Using strain Miami BG 7, a two step method of hydrogen photoproduction from salt water was successfully developed and this was recycled several times over a one month period using both free cells and immobilized cells in both indoor and outdoor under natural sunlight. According to these experiments, a prototype floating hydrogen production system was designed for further development of the biosolar hydrogen production system.

Mitsui, A.; Rosner, D.; Kumazawa, S.; Barciela, S.; Phlips, E.

1985-01-01

53

Electrolysis of Salt Water  

Science.gov (United States)

This is a hands-on lab activity about the chemical composition and conductivity of water. Working in groups, learners will: conduct an experiment involving the process of electrolysis, prepare an experiment to better understand the process of ion exchange, discuss and research the "softness" and "hardness" of water, and use the periodic table to identify elements and learn their characteristics. Background information, a glossary and more is included. Materials needed for each student group include a 9-volt battery, two electrodes (e.g. copper strips, or two #2 pencils sharpened at both ends), electrical wire and glass beakers or ceramic saucers. This activity is part of the Aquarius Hands-on Laboratory Activities.

54

A SCREENING ASSESSMENT OF THE RELATIVE VULNERABILITY OF COASTAL WATER SUPPLIES TO SALT WATER INTRUSION CAUSED BY SEA LEVEL RISE  

Science.gov (United States)

Sea levels have risen from four to eight inches in the 20th century, and model projections suggest an additional rise of 8 to 15 inches is possible during the 21st century. Rising sea levels can increase the upstream extent of salt water influence in coastal aquifers. In coasta...

55

Characterization of two-phase mixture (petroleum, salted water or gas) by gamma radiation transmission  

International Nuclear Information System (INIS)

A mathematical description was accomplished to determine the discrimination of a substance in a two-phase mixture, for one beam system, using the five energy lines (13.9, 17.8,26.35 and 59,54 keV) of the 241 Am source. The mathematical description was also accomplished to determine the discrimination of two substances in a three-phase mixture, for a double beam system.. he simulated mixtures for the one beam system were petroleum/salted water or gas. The materials considered in these simulations were: four oils types, denominated as A, B, Bell and Generic, one kind of natural gas and salted water with the following salinities: 35.5, 50, 100, 150, 200, 250 and 300 kg/m3 of Na Cl. The simulation for the one beam system consisted of a box with acrylic walls and other situation with a box of epoxi walls reinforced with fiber of carbon. The epoxi with carbon fiber was used mainly due to the fact that this material offers little attenuation to the fotons and it resists great pressures. With the results of the simulations it was calculated tables of minimum discrimination for each possible two-phase mixture with petroleum, gas and salted water at several salinities. These discrimination tables are the theoretical forecasts for experimental measurements, since they supply the minimum mensurable percentage for each energy line, as well as the ideal energy for the measurement of each mixture, or situation. The simulated discrimination levels were tested emlated discrimination levels were tested employing experimental arrangements with conditions and materials similar to those of the simulations, for the case of box with epoxi wall reinforced with carbon fiber, at the energies of 20.8 and 59.54 keV. It was obtained good results. For example, for the mixture of salted water (35.5 kg/m3) in paraffin (simulating the petroleum), it was obtained an experimental discrimination minimum of 10% of salted water for error statistics of 5% in I and Io, while the theoretical simulation foresaw the same discrimination level for error statistics of 3%. (author)

56

Neutronics study on hybrid reactor cooled by helium, water and molten salt  

International Nuclear Information System (INIS)

There is no serious magnetohydrodynamics (MHD) problem when helium,water or molten salt of Flibe flows in high magnetic field. Thus helium, water and Flibe were proposed as candidate of coolant for fusion-fission hybrid reactor based on magnetic confinement. The effect on neutronics of hybrid reactor due to coolant was investigated. The analyses of neutron spectra and fuel breeding of blanket with different coolants were performed. Variations of tritium breeding ratio (TBR), blanket energy multiplication (M) and keff with operating time were also studied. MCNP code was used for neutron transport simulation. It is shown that spectra change greatly with different coolants. The blanket with helium exhibits very hard spectrum and good tritium breeding ability. And fission reactions are mainly from fast neutron. The blanket with water has soft spectrum and high energy multiplication factor. However, it needs to improve TBR. The blanket with Flibe has hard spectrum and less energy release. (authors)

57

Quantifying Microbial Utilization of Petroleum Hydrocarbons in Salt Marsh Sediments by Using the 13C Content of Bacterial rRNA?  

OpenAIRE

Natural remediation of oil spills is catalyzed by complex microbial consortia. Here we took a whole-community approach to investigate bacterial incorporation of petroleum hydrocarbons from a simulated oil spill. We utilized the natural difference in carbon isotopic abundance between a salt marsh ecosystem supported by the 13C-enriched C4 grass Spartina alterniflora and 13C-depleted petroleum to monitor changes in the 13C content of biomass. Magnetic bead capture methods for selective recovery...

Pearson, Ann; Kraunz, Kimberly S.; Sessions, Alex L.; Dekas, Anne E.; Leavitt, William D.; Edwards, Katrina J.

2007-01-01

58

Stability of iodine content in iodized salt  

International Nuclear Information System (INIS)

Stabilization of iodine in salt have been determined by using Isotope Dilution Analysis. Heating, heating with oxidizing agent, incubation by time was the parameters which have been tried. Over 80% of iodide were lost during the treatment with oxidizing agent in heat. In the case of heating without an oxidation agent, loss of iodine was fewer

59

Simulation of detection of total content of N, P in water using PGNAA by MCNP code  

International Nuclear Information System (INIS)

The total content of N, P is an important index of water quality detection. The content of a special element in a water sample could be determined by prompt ? rays neutron activation analysis (PGNAA) quickly. The process, ? rays were emitted while the water sample was irradiated by neutron beam, was simulated by a model set up MCNP code and a pulse neutron generator as neutron source. The total content of N, P of class ?-? water demanded by the surface water environment quality standard were used as basis. So that detection limit of N, P using PGNAA could be gained. If the total content of N, P in the water sample were small, the detection precision could be improved by increasing the neutron flux or concentrating the water sample. For contaminated water, the total content of N, P can be obtained quickly by PGNAA so that related departments could take measures to deal with polluted water in time when emergency of water pollution takes place. (authors)

60

Determination by gamma-ray spectrometry of the plutonium and americium content of the Pu/Am separation scraps. Application to molten salts  

International Nuclear Information System (INIS)

Within the framework of plutonium recycling operations in CEA Valduc (France), americium is extracted from molten plutonium metal into a molten salt during an electrolysis process. The scraps (spent salt, cathode, and crucible) contain extracted americium and a part of plutonium. Nuclear material management requires a very accurate determination of the plutonium content. Gamma-ray spectroscopy is performed on Molten Salt Extraction (MSE) scraps located inside the glove box, in order to assess the plutonium and americium contents. The measurement accuracy is influenced by the device geometry, nuclear instrumentation, screens located between the sample and the detector, counting statistics and matrix attenuation, self-absorption within the spent salt being very important. The purpose of this study is to validate the 'infinite energy extrapolation' method employed to correct for self-attenuation, and to detect any potential bias. We present a numerical study performed with the MCNP computer code to identify the most influential parameters and some suggestions to improve the measurement accuracy. A final uncertainty of approximately 40% is achieved on the plutonium mass. (authors)

61

Direct arylation of N-heteroarenes with aryldiazonium salts by photoredox catalysis in water.  

Science.gov (United States)

A highly effective visible light-promoted "radical-type" coupling of N-heteroarenes with aryldiazonium salts in water has been developed. The reaction proceeds at room temperature with [Ru(bpy)3 ]Cl2 ?6?H2 O as a photosensitizer and a commercial household light bulb as a light source. Pyridine and a variety of substituted pyridines are effective substrates under these reaction conditions, and only monosubstituted products are formed with different regioselectivities. Using aqueous formic acid as solvent, an array of xanthenes, thiazole, pyrazine, and pyridazine are compatible with this new arylation approach. The broad substrate scope, mild reaction conditions, and use of water as reaction solvent make this procedure a practical and environmentally friendly method for the synthesis of compounds containing aryl-heteroaryl motifs. PMID:24500947

Xue, Dong; Jia, Zhi-Hui; Zhao, Cong-Jun; Zhang, Yan-Yan; Wang, Chao; Xiao, Jianliang

2014-03-01

62

Effects of de-icing salt on ground water characteristics.  

Science.gov (United States)

The effect of "road salt" on the characteristics of Massachusetts drinking water supplies has been significant and cumulative rather than transient or seasonal. De-icing salt is essentially all sodium chloride. Calcium chloride accounted for only three percent of the total salt used. However, hardness content, as well as sodium ion concentration, has increased greatly in ground waters in the past decade. The changing composition of our water supplies has agricultural, economic, and public health implications. This study attempts to quantify the stoichiometry of these changes in concentration, which are in part due to an ion-exchange mechanism in the soil. PMID:238830

O'Brien, J E; Majewski, J C

1975-01-01

63

Performance of neutron scattering relative to Diviner2000 for estimating soil water content in salt affected soils  

International Nuclear Information System (INIS)

A field experiment was conducted on sandy clay and clayey soils at Deir Ezzor to compare the performance of Neutron Scattering (NS) relative to a capacitance probe (CP), Diviner2000, in our local conditions under saline soils. The effect of soil electrical conductivity (ECe) and bulk density (?b) on the precession, accuracy and sensitivity of the tested equipment s were evaluated. Also, the ability to improve the calibration equation for these equipment s, by including ECe and ?b as independent variables in the equation formula, was studied. The study showed that, Diviner2000 was very sensitive to soil bulk density and electrical conductivity of the soil (i.e. soil salinity) compared to the NS. Multiple non-linear regressions improved the fitting when both parameters (?b and ECe) were included in the equation, even though the correlation coefficient (R2) remained low in the case of Diviner2000.(author)

64

Hot water, fresh beer, and salt  

International Nuclear Information System (INIS)

In the ''hot chocolate effect'' the best musical scales (those with the finest tone quality, largest range, and best tempo) are obtained by adding salt to a glass of hot water supersaturated with air. Good scales can also be obtained by adding salt to a glass of freshly opened beer (supersaturated with CO2) provided you first (a) get rid of much of the excess CO2 so as to produce smaller, hence slower, rising bubbles, and (b) get rid of the head of foam, which damps the standing wave and ruins the tone quality. Finally the old question, ''Do ionizing particles produce bubbles in fresh beer?'' is answered experimentally

65

Preconcentration and speciation of chromium in waters by coprecipitation with lead salts and neutron activation-#betta#-spectrometry  

International Nuclear Information System (INIS)

Chromium species are preconcentrated from water samples by coprecipitation with lead salts and measured in situ after neutron activation. Both chromium(III) and chromium(VI) are coprecipitated with lead phosphate. If only chromium(VI) is collected in a separate sample with lead sulfate, the individual species can be quantified. The 320.1 keV #betta#-ray peak of 51Cr (tsub(1/2) = 27.7 d) is used for measurement. The procedure has a detection limit of 0.1 ?g l-1 for chromium in sea water when 800 ml samples are used. (Auth.)

66

Water content and distribution of materials determined by nuclear magnetic resonance: principles, difficulties and prospects  

International Nuclear Information System (INIS)

NMR is used for the determination of total content of water in material and even spatial distribution of water in the sample. After recalling the method and NMR imaging experiments are carried out on plaster, cement and polystyrene. The method should be developed, total water content is obtained by comparative measurements of course other hydrogen atoms than those of water give a signal but generally from solids and lines are wide and have a slight influence. Spatial distribution is more difficult. High sensibility equipment is required and high field gradients are necessary for a good resolution

67

Quantifying water and salt fluxes in a lowland polder catchment dominated by boil seepage: a probabilistic end-member mixing approach  

Directory of Open Access Journals (Sweden)

Full Text Available Upward saline groundwater seepage is leading to surface water salinization of low-lying polders in the Netherlands. Identifying measures to reduce the salt content requires a thorough understanding and quantification of the dominant sources water and salt on a daily basis. However, as in most balance studies, there are large uncertainties about the contribution of groundwater seepage. Taking these into account, we applied a probabilistic (GLUE end-member mixing approach to simulate two years of daily to weekly observations of discharge, salt loads and salt concentrations of water pumped out of an artificially drained polder catchment area. We were then able to assess the contribution of the different sources to the water and salt balance of the polder and the uncertainties in their quantification. Our modelling approach demonstrates the need to distinguish preferential from diffuse seepage. Preferential seepage via boils contributes, on average, 66% to the total salt load and only about 15% to the total water flux into the polder and therefore forms the main salinization pathway. With the model we were able to calculate the effect of future changes on surface water salinity and to assess the uncertainty in our predictions. Furthermore, we analyzed the parameters sensitivity and uncertainty to determine for which parameter the quality of field measurements should be improved to the reduce model input and output uncertainty. High frequency measurements of polder water discharge and weighted concentration at the outlet of the catchment area appear to be essential for obtaining reliable simulations of water and salt fluxes and for allotting these to the different sources.

P. G. B. de Louw

2011-01-01

68

Quantifying water and salt fluxes in a lowland polder catchment dominated by boil seepage: a probabilistic end-member mixing approach  

Directory of Open Access Journals (Sweden)

Full Text Available Upward saline groundwater seepage is leading to surface water salinization of deep lying polders in the Netherlands. Identifying measures to reduce the salt content requires a thorough understanding and quantification of the dominant sources of water and salt on a daily basis. However, as in most balance studies, there are large uncertainties in the contribution from groundwater seepage. Taking these into account, we applied a probabilistic (GLUE end-member mixing approach to simulate two years of daily to weekly observations of discharge, salt loads and salt concentration of water pumped out of an artificially drained polder catchment area. We were then able to assess the contribution from the different sources to the water and salt balance of the polder and uncertainties in their quantification. Our modelling approach demonstrates the need to distinguish preferential from diffuse seepage. Preferential seepage via boils contributes, on average, 66 % to the total salt load and only about 15 % to the total water flux into the polder and therefore forms the main salinization pathway. With the model we were able to calculate the effect of future changes on surface water salinity and to assess the uncertainty in our predictions. Furthermore, we analyzed the parameter sensitivity and uncertainty to determine for which parameter the quality of field measurements should be improved to reduce model input and output uncertainty. High frequency measurements of polder water discharge and weighted concentration at the outlet of the catchment area appear to be essential for obtaining reliable simulations of water and salt fluxes and for allotting these to the different sources.

P. G. B. de Louw

2011-07-01

69

Determination of moisture content and water activity in algae and fish by thermoanalytical techniques  

Energy Technology Data Exchange (ETDEWEB)

The water content in seafoods is very important since it affects their sensorial quality, microbiological stability, physical characteristics and shelf life. In this study, thermoanalytical techniques were employed to develop a simple and accurate method to determine water content (moisture) by thermogravimetry (TG) and water activity from moisture content values and freezing point depression using differential scanning calorimetry (DSC). The precision of the results suggests that TG is a suitable technique to determine moisture content in biological samples. The average water content values for fish samples of Lutjanus synagris and Ocyurus chrysurus species were 76.4 {+-} 5.7% and 63.3 {+-} 3.9%, respectively, while that of Ulva lactuca marine algae species was 76.0 {+-} 4.4%. The method presented here was also successfully applied to determine water activity in two species of fish and six species of marine algae collected in the Atlantic coastal waters of Bahia, in Brazil. Water activity determined in fish samples ranged from 0.946 - 0.960 and was consistent with values reported in the literature, i.e., 0.9 - 1.0. The water activity values determined in marine algae samples lay within the interval of 0.974 - 0.979. (author)

Silva, Vilma Mota da; Silva, Luciana Almeida; Andrade, Jailson B. de [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Inst. de Quimica]. E-mail: jailsong@ufba.br; Veloso, Marcia C. da Cunha [Centro Federal de Educacao Tecnologica da Bahia (CEFET-BA), Salvador, BA (Brazil)); Santos, Gislaine Vieira [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Inst. de Biologia

2008-07-01

70

Determination of moisture content and water activity in algae and fish by thermoanalytical techniques  

International Nuclear Information System (INIS)

The water content in seafoods is very important since it affects their sensorial quality, microbiological stability, physical characteristics and shelf life. In this study, thermoanalytical techniques were employed to develop a simple and accurate method to determine water content (moisture) by thermogravimetry (TG) and water activity from moisture content values and freezing point depression using differential scanning calorimetry (DSC). The precision of the results suggests that TG is a suitable technique to determine moisture content in biological samples. The average water content values for fish samples of Lutjanus synagris and Ocyurus chrysurus species were 76.4 ± 5.7% and 63.3 ± 3.9%, respectively, while that of Ulva lactuca marine algae species was 76.0 ± 4.4%. The method presented here was also successfully applied to determine water activity in two species of fish and six species of marine algae collected in the Atlantic coastal waters of Bahia, in Brazil. Water activity determined in fish samples ranged from 0.946 - 0.960 and was consistent with values reported in the literature, i.e., 0.9 - 1.0. The water activity values determined in marine algae samples lay within the interval of 0.974 - 0.979. (author)

71

Effectiveness of highway-drainage systems in preventing contamination of ground water by road salt, Route 25, southeastern Massachusetts; description of study area, data collection programs, and methodology  

Science.gov (United States)

Four test sites along a 7-mile section of Route 25 in southeastern Massachusetts, each representing a specific highway-drainage system, were instrumented to determine the effectiveness of the drainage systems in preventing contamination of ground water by road salt. One of the systems discharges highway runoff onsite through local drainpipes. The other systems use trunkline drainpipes through which runoff from highway surfaces, shoulders, and median strips is diverted and discharged into either a local stream or a coastal waterway. Route 25 was completed and opened to traffic in the summer of 1987. Road salt was first applied to the highway in the winter of 1987-88. The study area is on a thick outwash plain composed primarily of sand and gravel. Water-table depths range from 15 to 60 feet below land surface at the four test sites. Ground-water flow is in a general southerly direction, approximately perpendicular to the highway. Streamflow in the study area is controlled primarily by ground-water discharge. Background concentrations of dissolved chloride, sodium, and calcium-the primary constituents of road salt-are similar in ground water and surface water and range from 5 to 20, 5 to 10, and 1 to 5 milligrams per liter, respectively. Data-collection programs were developed for monitoring the application of road salt to the highway, the quantity of road-salt water entering the ground water, diverted through the highway-drainage systems, and entering a local stream. The Massachusetts Highway Department monitored road salt applied to the highway and reported these data to the U.S. Geological Survey. The U.S. Geological Survey designed and operated the ground-water, highway- drainage, and surface-water data-collection programs. A road-salt budget will be calculated for each test site so that the effectiveness of the different highway-drainage systems in preventing contamination of ground water by road salt can be determined.

Church, P.E.; Armstrong, D.S.; Granato, G.E.; Stone, V.J.; Smith, K.P.; Provencher, P.L.

1996-01-01

72

Water-in-crude oil emulsion formation and stability for crude oils in fresh, brackish and salt water. Volume 2  

International Nuclear Information System (INIS)

Crude oil spilled at sea is subjected to weathering. The main physical process of weathering are water-in-oil emulsification, evaporation, dispersion, dissolution and oil-sediment interaction. For medium to heavy oils, evaporation and dispersion are less important, and the onset of water-in-oil emulsion formation becomes the most important weathering process for spill response. Emulsification involves the incorporation of water droplets into the continuous oil phase. As such, it has a pronounced effect on the physical properties and characteristics of an oil, affecting its behaviour and ultimate fate. Emulsions formed from heavy oils contain higher proportions of asphaltenes and resins and may persist for long periods or indefinitely. This paper provided a direct comparison of stability for emulsions formed from crude oils with both fresh and salt water containing 20 or 33 per cent sodium chloride. Emulsions from 5 crude oil were compared. It was noted that oils that form emulsions in salt water will also form in fresh water, in the same stability class. Stable fresh water emulsions have lower values of the viscoelastic parameters, indicating decreased stability compared to stable salt water emulsions. The difference between stable and meso-stable emulsions formed from water of 20 and 33 per cent salinity was small, but meso-stable emulsions from fresh water could achieve higher levels of water content and have higher initial values of the viscoelastic parameters thanvalues of the viscoelastic parameters than with salt water. The nature of stabilizer deficiency determines the form of degraded meso-stable emulsions. It was concluded that since entrained water states are created by a different chemical-physical process or mixing mode, there is no difference in emulsions product due to the ionic content of salt water. However, wax content may be a contributor to the stabilization for entrained water states. 14 refs., 5 tabs., 6 figs

73

Water-in-crude oil emulsion formation and stability for crude oils in fresh, brackish and salt water. Volume 2  

Energy Technology Data Exchange (ETDEWEB)

Crude oil spilled at sea is subjected to weathering. The main physical process of weathering are water-in-oil emulsification, evaporation, dispersion, dissolution and oil-sediment interaction. For medium to heavy oils, evaporation and dispersion are less important, and the onset of water-in-oil emulsion formation becomes the most important weathering process for spill response. Emulsification involves the incorporation of water droplets into the continuous oil phase. As such, it has a pronounced effect on the physical properties and characteristics of an oil, affecting its behaviour and ultimate fate. Emulsions formed from heavy oils contain higher proportions of asphaltenes and resins and may persist for long periods or indefinitely. This paper provided a direct comparison of stability for emulsions formed from crude oils with both fresh and salt water containing 20 or 33 per cent sodium chloride. Emulsions from 5 crude oil were compared. It was noted that oils that form emulsions in salt water will also form in fresh water, in the same stability class. Stable fresh water emulsions have lower values of the viscoelastic parameters, indicating decreased stability compared to stable salt water emulsions. The difference between stable and meso-stable emulsions formed from water of 20 and 33 per cent salinity was small, but meso-stable emulsions from fresh water could achieve higher levels of water content and have higher initial values of the viscoelastic parameters than with salt water. The nature of stabilizer deficiency determines the form of degraded meso-stable emulsions. It was concluded that since entrained water states are created by a different chemical-physical process or mixing mode, there is no difference in emulsions product due to the ionic content of salt water. However, wax content may be a contributor to the stabilization for entrained water states. 14 refs., 5 tabs., 6 figs.

Fieldhouse, B. [Environment Canada, Ottawa, ON (Canada).

2007-07-01

74

Water-in-crude oil emulsion formation and stability for crude oils in fresh, brackish and salt water  

Energy Technology Data Exchange (ETDEWEB)

Crude oil spilled at sea is subjected to weathering. The main physical process of weathering are water-in-oil emulsification, evaporation, dispersion, dissolution and oil-sediment interaction. For medium to heavy oils, evaporation and dispersion are less important, and the onset of water-in-oil emulsion formation becomes the most important weathering process for spill response. Emulsification involves the incorporation of water droplets into the continuous oil phase. As such, it has a pronounced effect on the physical properties and characteristics of an oil, affecting its behaviour and ultimate fate. Emulsions formed from heavy oils contain higher proportions of asphaltenes and resins and may persist for long periods or indefinitely. This paper provided a direct comparison of stability for emulsions formed from crude oils with both fresh and salt water containing 20 or 33 per cent sodium chloride. Emulsions from 5 crude oil were compared. It was noted that oils that form emulsions in salt water will also form in fresh water, in the same stability class. Stable fresh water emulsions have lower values of the viscoelastic parameters, indicating decreased stability compared to stable salt water emulsions. The difference between stable and meso-stable emulsions formed from water of 20 and 33 per cent salinity was small, but meso-stable emulsions from fresh water could achieve higher levels of water content and have higher initial values of the viscoelastic parameters than with salt water. The nature of stabilizer deficiency determines the form of degraded meso-stable emulsions. It was concluded that since entrained water states are created by a different chemical-physical process or mixing mode, there is no difference in emulsions product due to the ionic content of salt water. However, wax content may be a contributor to the stabilization for entrained water states. 14 refs., 5 tabs., 6 figs.

Fieldhouse, B. [Environment Canada, Ottawa, ON (Canada).

2007-07-01

75

Effect Of Salt Water On Compressive Strength Of Concrete  

OpenAIRE

In this research work, the effect of salt water on the compressive strength of concrete was investigated. This paper therefore presents the result and findings of an experimental research on the effect of salt water on compressive strength of concrete. For this concrete cubes were cast using fresh wi and salt water for a design mix of M-30 1:1.8:3.31 by weight of concrete, and 0.45 water- cement ratio. Half of concrete cubes were cast and cured with fresh water and remaining ha...

Preeti Tiwari; Rajiv Chandak

2014-01-01

76

Influence of mono- and divalent salts on water loss and properties of dry salted cod fillets  

OpenAIRE

Salted cod is a product highly appreciated by consumers, especially in Southern Europe and Latin America. In recent years there has been increasing consumer demand for products with low sodium content, and this has led the salting industry to seek new salt mixtures to help to reduce Na+ levels without producing alterations in the properties of the final product. In this study, Atlantic cod (Gadus morhua) was initially brined with various mixtures of salts based on NaCl, at various pH levels a...

Marti?nez Alvarez, Oscar; Go?mez Guille?n, M. C.

2013-01-01

77

Monitoring of root zone water content in the lab by 2D geoelectrical tomography  

Science.gov (United States)

Studying the simulation of plant behaviour under water stress conditions becomes more and more important as a consequence of the increasing water shortage in many countries. Therefore monitoring of soil moisture is essential to validate results of hydrological models and for balancing of water flow processes. One of the fundamental processes in this context is the root water uptake. Based on field studies we recognized the importance to observe the water content at different time steps. We present a method for monitoring soil water redistributions due to water uptake by roots. Our aim was to image and monitor diurnal soil water redistribution in a small scale indoor experiment (cm-dm range) using techniques of geoelectrical resistivity tomography of high resolution, and to correlate results of the applied geoelectrical time-lapse imaging techniques with single point TDR-method. The measured time-lapses were inverted in 2D resistivity models, which were transferred in moisture distributions within the root-zone and surrounding soils using a geophysical pedotransfer (pedophysical) function. The distribution of water content was observed over several weeks. We imaged significant heterogeneity of soil moisture in space and time, even whereas no irrigation was applied. We monitored highest moisture variability during the morning hours, whereas nearly no changes accrued during the night. In our presentation we will focus also on the development of a model for root zone media which has been established based on the Archie’s equation. Until now, the Archie equation has been applied successfully for granular media with full or partial water saturation (mixture of three phases: grain, water and air). However if roots are involved we have to consider a media of four phases (mixture of sand grain, water, air and root) The model of the electric resistivity versus water content for root zones has been validated by experimental laboratory data for fine sand with plant roots as well as by data for the same material without roots.

Werban, U.; Al Hagrey, S. A.; Rabbel, W.

2009-12-01

78

[Simulation of effects of soil properties and plants on soil water-salt movement with reclaimed water irrigation by ENVIRO-GRO model].  

Science.gov (United States)

In order to promote safe irrigation with reclaimed water and prevent soil salinisation, the dynamic transport of salts in urban soils of Beijing under irrigation of reclaimed water was simulated by ENVIRO-GRO model in this study. The accumulation trends and profile distribution of soil salinity were predicted. Simultaneously, the effects of different soil properties and plants on soil water-salt movement and salt accumulation were investigated. Results indicated that soil salinity in the profiles reached uniform equilibrium conditions by repeated simulation, with different initial soil salinity. Under the conditions of loam and clay loam soil, salinity in the profiles increased over time until reaching equilibrium conditions, while under the condition of sandy loam soil, salinity in the profiles decreased over time until reaching equilibrium conditions. The saturated soil salinity (EC(e)) under equilibrium conditions followed an order of sandy loam soil salinity were also different in these three types of plants. In addition, the growth of the plants was not influenced by soil salinity (except clay loam), but mild soil salinization occurred under all conditions (except sandy loam). PMID:23379130

Lü, Si-Dan; Chen, Wei-Ping; Wang, Mei-E

2012-12-01

79

The uptake of zinc-65 by oats in relation to soil water content and root growth  

International Nuclear Information System (INIS)

Effects of water content of the topsoil on root growth and 65Zn absorption by oats were measured. Seminal roots of oats grew through a labelled uptake layer that had been initially wetted to various water contents. The uptake layer was separated from adjacent layers of wet sand or soil by a thin layer of wax. When the uptake layer was wetted initially and allowed to dry during the uptake period, water content affected root growth and 65Zn uptake similarly. 65Zn absorption by unbranched seminal roots decreased lineraly as soil water suction increased from 0.3 to 5 bar. Nevertheless significant amounts of 65Zn were absorbed (40% of that from wet soil) even when the soil water suction exceeded 15 bar, with negligible concomitant uptake of water. Provided the roots had access to water in a subjacent layer, rates of 65Zn absorption from dry soil increased with the age of plants. The exudation of mucilage from the root was enhanced locally where the soil was dry. The mucilage may facilitate the transfer of zinc to the root in dry soil. (author)

80

The effects of tree establishment on water and salt dynamics in naturally salt-affected grasslands.  

Science.gov (United States)

Plants, by influencing water fluxes across the ecosystem-vadose zone-aquifer continuum, can leave an imprint on salt accumulation and distribution patterns. We explored how the conversion of native grasslands to oak plantations affected the abundance and distribution of salts on soils and groundwater through changes in the water balance in naturally salt-affected landscapes of Hortobagy (Hungary), a region where artificial drainage performed approximately 150 years ago lowered the water table (from -2 to -5 m) decoupling it from the surface ecosystem. Paired soil sampling and detailed soil conductivity transects revealed consistently different salt distribution patterns between grasslands and plantations, with shallow salinity losses and deep salinity gains accompanying tree establishment. Salts accumulated in the upper soil layers during pre-drainage times have remained in drained grasslands but have been flushed away under tree plantations (65 and 83% loss of chloride and sodium, respectively, in the 0 to -0.5 m depth range) as a result of a five- to 25-fold increase in infiltration rates detected under plantations. At greater depth, closer to the current water table level, the salt balance was reversed, with tree plantations gaining 2.5 kg sodium chloride m(-2) down to 6 m depth, resulting from groundwater uptake and salt exclusion by tree roots in the capillary fringe. Diurnal water table fluctuations, detected in a plantation stand but not in the neighbouring grasslands, together with salt mass balances suggest that trees consumed approximately 380 mm groundwater per year, re-establishing the discharge regime and leading to higher salt accumulation rates than those interrupted by regional drainage practices more than a century ago. The strong influences of vegetation changes on water dynamics can have cascading consequences on salt accumulation and distribution, and a broad ecohydrological perspective that explicitly considers vegetation-groundwater links is needed to anticipate and manage them. PMID:17356808

Nosetto, Marcelo D; Jobbágy, Esteban G; Tóth, Tibor; Di Bella, Carlos M

2007-07-01

81

Dysprosium(III) hydroxide coprecipitation system for the separation and preconcentration of heavy metal contents of table salts and natural waters  

Energy Technology Data Exchange (ETDEWEB)

A procedure for the determination of trace amounts of Pb(II), Cu(II), Ni(II), Co(II), Cd(II) and Mn(II) is described, that combines atomic absorption spectrometry-dysprosium hydroxide coprecipitation. The influences of analytical parameters including amount of dysprosium(III), centrifugation time, sample volume, etc. were investigated on the recoveries of analyte ions. The effects of concomitant ions were also examined. The recoveries of the analyte ions were in the range of 95.00-104.00%. The detection limits corresponding to three times the standard deviation of the blank for the analytes were in the range of 14.1-25.3 {mu}g/L. The method was applied to the determination of lead, copper, nickel, cobalt, cadmium and manganese ions in natural waters and table salts good results were obtained (relative standard deviations <10%, recoveries >95%)

Peker, Dondu Serpil Kacar [Erciyes University, Faculty of Art and Science, Department of Chemistry, 38039 Kayseri (Turkey); Turkoglu, Orhan [Erciyes University, Faculty of Art and Science, Department of Chemistry, 38039 Kayseri (Turkey); Soylak, Mustafa [Erciyes University, Faculty of Art and Science, Department of Chemistry, 38039 Kayseri (Turkey)]. E-mail: soylak@erciyes.edu.tr

2007-05-08

82

Dysprosium(III) hydroxide coprecipitation system for the separation and preconcentration of heavy metal contents of table salts and natural waters  

International Nuclear Information System (INIS)

A procedure for the determination of trace amounts of Pb(II), Cu(II), Ni(II), Co(II), Cd(II) and Mn(II) is described, that combines atomic absorption spectrometry-dysprosium hydroxide coprecipitation. The influences of analytical parameters including amount of dysprosium(III), centrifugation time, sample volume, etc. were investigated on the recoveries of analyte ions. The effects of concomitant ions were also examined. The recoveries of the analyte ions were in the range of 95.00-104.00%. The detection limits corresponding to three times the standard deviation of the blank for the analytes were in the range of 14.1-25.3 ?g/L. The method was applied to the determination of lead, copper, nickel, cobalt, cadmium and manganese ions in natural waters and table salts good results were obtained (relative standard deviations 95%)

83

Study on the water content measurement of tomatoes by near infrared technique  

Science.gov (United States)

Near infrared (NIR) spectroscopy is a promising technique for nondestructive measurement of farm products quality measurement and information acquisition. The objective of this research was to study the potential of NIR diffuse reflectance spectroscopy as a way for nondestructive measurement of the water content of tomato leaves. A total of 120 leaves were collected as experimental materials, 80 of them were used to form a calibration data set. In order to set up a calibration model, NIR spectral data were collected in the spectral region between 800 nm and 2500 nm by NIR spectrometer of Nicolet Corporation, and water content of tomato leaves by a drying chest, four different mathematical treatments were used in spectrums processing: different wavelength range, baseline correction, smoothing, first and second derivative. Depending on data preprocessing and PLS analysis, we can get best prediction model when we select original spectra by baseline correction at full wavelength range (800-2500nm), the best model of water content has a root mean square error of prediction (RMSEP) of 1.91, a root mean square error of calibration (RMSEC) of 0.731 and a calibration correlation coefficient (R) value of 0.96265. It is conclude that the FTNIR method with Smart Near-IR UpDRIFT accessory can accurate estimate the water content in tomato leaves.

Jiang, Huanyu; Ying, Yibin; Bao, Yingshi

2005-11-01

84

The water balance of the urban Salt Lake Valley: a multiple-box model validated by observations  

Science.gov (United States)

A main focus of the recently awarded National Science Foundation (NSF) EPSCoR Track-1 research project "innovative Urban Transitions and Arid-region Hydro-sustainability (iUTAH)" is to quantify the primary components of the water balance for the Wasatch region, and to evaluate their sensitivity to climate change and projected urban development. Building on the multiple-box model that we developed and validated for carbon dioxide (Strong et al 2011), mass balance equations for water in the atmosphere and surface are incorporated into the modeling framework. The model is used to determine how surface fluxes, ground-water transport, biological fluxes, and meteorological processes regulate water cycling within and around the urban Salt Lake Valley. The model is used to evaluate the hypotheses that increased water demand associated with urban growth in Salt Lake Valley will (1) elevate sensitivity to projected climate variability and (2) motivate more attentive management of urban water use and evaporative fluxes.

Stwertka, C.; Strong, C.

2012-12-01

85

Substitution of lead salts for aluminium salts in the determination of sucrose content in molasses  

Directory of Open Access Journals (Sweden)

Full Text Available In the sugar industry analytical practice it is necessary to remove nonsucrose compounds from samples in order to determine sucrose content by polarimetric procedure. These mentioned compounds are removed by sedimentation after adding lead salts. Lead is considered as one of outstandingly strong pollutant of human environment and the living world as a whole. Ways of its environment presence are various. Some industrial branches are very close to this top including on this level even the sugar factories. Toxic effects of lead salts and the intensified concern for protecting the environment imposed the need for finding new sedimentation agents. In this work the influence of molasses quality on nonsucrose compounds sedimentation by aluminium-sulphate was examined. Optimum values of the parameters influencing the sedimentation process were determined. Best results were obtained with aluminium-sulphate at concentration of 0.1227 mol Al/dm3 and pH 6.0.

Gyura Julianna F.

2002-01-01

86

Determination of water content by capillary gas chromatography coupled with thermal conductivity detection.  

Science.gov (United States)

This article presents some experience obtained by applying capillary gas chromatography coupled with thermal conductivity detection (GC/TCD) to the determination of water in substances for pharmaceutical use. This technique represents a useful, orthogonal tool complementary to water determination methods based on volumetric or coulometric titration. It can also represent an alternative technique when such titrations are not applicable. This article presents the preliminary results obtained in a number of case studies where a GC/TCD procedure was applied in comparison with pharmacopoeial methods to substances with different water contents. PMID:22225767

Lodi, A; Bellini, M S; Clavel, A; Pijnenburg, N

2011-11-01

87

Oxidation by metal salts  

International Nuclear Information System (INIS)

Reactions of direct iodination of benzene, halogenated benzenes and n-methoxicarbonyltoluene in CF3CO2H and its aqueous solutions with iodine or alkali metal iodides in the presence of Co(3) and Mn(3) acetates and ammonium cerium (4) sulfate, permitting to prepare the corresponding iodoarenes selectively and with high yields under mild conditions, are studied. In case of toluene the reaction is complicated by the formation of ?-exidation products. It is assumed that trifluoroacetylhypoiodide, formed as a result of iodine oxidation by metal salt of variable valency, is a iodinating agent. The maximum yields of the iodoarenes are obtained when 90% aqueous CF3CO2H is used

88

GmWRKY53, a water- and salt-inducible soybean gene for rapid dissection of regulatory elements in BY-2 cell culture  

OpenAIRE

Drought is the major cause of crop losses worldwide. Water stress-inducible promoters are important for understanding the mechanisms of water stress responses in crop plants. Here we utilized tobacco (Nicotiana tabacum L.) Bright Yellow 2 (BY-2) cell system in presence of polyethylene glycol, salt and phytohormones. Extension of the system to 85 mM NaCl led to inducibility of up to 10-fold with the water stress and salt responsive soybean GmWRKY53 promoter. Upon ABA and JA treatment fold indu...

Tripathi, Prateek; Rabara, Roel C.; Lin, Jun; Rushton, Paul J.

2013-01-01

89

HA/nylon 6,6 porous scaffolds fabricated by salt-leaching/solvent casting technique: effect of nano-sized filler content on scaffold properties  

Directory of Open Access Journals (Sweden)

Full Text Available Mehran Mehrabanian1, Mojtaba Nasr-Esfahani21Member of Young Researchers Club, Najafabad Branch, Islamic Azad University, Isfahan, Iran; 2Department of Materials Science and Engineering, Najafabad Branch, Islamic Azad University, Isfahan, IranAbstract: Nanohydroxyapatite (n-HA/nylon 6,6 composite scaffolds were produced by means of the salt-leaching/solvent casting technique. NaCl with a distinct range size was used with the aim of optimizing the pore network. Composite powders with different n-HA contents (40%, 60% for scaffold fabrication were synthesized and tested. The composite scaffolds thus obtained were characterized for their microstructure, mechanical stability and strength, and bioactivity. The microstructure of the composite scaffolds possessed a well-developed interconnected porosity with approximate optimal pore size ranging from 200 to 500 µm, ideal for bone regeneration and vascularization. The mechanical properties of the composite scaffolds were evaluated by compressive strength and modulus tests, and the results confirmed their similarity to cortical bone. To characterize bioactivity, the composite scaffolds were immersed in simulated body fluid for different lengths of time and results monitored by scanning electron microscopy and energy dispersive X-ray microanalysis to determine formation of an apatite layer on the scaffold surface.Keywords: scaffold, nanohydroxyapatite, nylon 6,6, salt-leaching/solvent casting, bioactivity

Mehrabanian M

2011-08-01

90

Hormonal activity in detached lettuce leaves as affected by leaf water content.  

Science.gov (United States)

The interrelationship between water deficiency and hormonal makeup in plants was investigated in detached leaves of romaine lettuce (Lactuca sativa L. cv. ;Hazera Yellow'). Water stress was imposed by desiccating the leaves for several hours in light or darkness at different air temperatures and relative humidity. In the course of desiccation, a rise in abscisic acid content and a decline in gibberellin and cytokinin activity were observed by gas-liquid chromatography, by both the barley endosperm bioassay and radioimmunoassay and by the soybean callus bioassay. Gibberellin activity began to decline in the stressed leaves before the rise in abscisic acid, the rate of this decline being positively correlated with the rate of increase in leaf water saturation deficit. Recovery from water stress was effected by immersing the leaf petioles in water while exposing the blades to high relative humidity. This resulted in a decrease in leaf water saturation deficit, a reduction in abscisic acid content, and an increase in gibberellin and cytokinin activity.Application of abscisic acid to the leaves caused partial stomatal closure in turgid lettuce leaves, whereas treatment with gibberellic acid and kinetin of such leaves had no effect on the stomatal aperture. In desiccating leaves, however, gibberellic acid and kinetin treatment considerably retarded stomatal closure, thus enhancing the increase in leaf water saturation deficit. These results suggest that the effect of desiccation in changing leaf hormonal make-up, i.e. a rapid increase in abscisic acid and a decrease in both cytokinin and gibberellin activity, is related to a mechanism designed to curtail water loss under conditions inducing water deficiency. PMID:16660015

Aharoni, N; Blumenfeld, A; Richmond, A E

1977-06-01

91

Antioxidant Content and Quality of Fruits as Affected by Nigari, an Effluent of Salt Industries, and Fruit Ages of Sweet Pepper (Capsicum annuum L.  

Directory of Open Access Journals (Sweden)

Full Text Available Nigari, an effluent of salt industries, is less expensive fertilizer. Without testing its effect on bioactive substances, it may not be suitable for fertilizer. Greenhouse trials were conducted over two years to evaluate antioxidant content, fruit quality, yield, and mineral contents in fruits and leaves of sweet pepper ‘Papri new-E-red’ by application of three nigari concentrations at 0, 2 and 4 mL L-1 and additional N P K to equal the standard. Capsaicin, ?-carotene, ascorbic acid, fruit quality attributes, and fruit mineral compositions were evaluated at five different ages of fruits at 25 Days after fruit set (DFS, 35 DFS, 45 DFS, 55 DFS, and 65 DFS. Results revealed that capsaicin, ?-carotene, ascorbic acid, fruit quality, and mineral contents in fruits and leaves of sweet pepper increased with increasing rate of nigari compared to the control. Furthermore, capsaicin, and ?-carotene increased linearly with the advancement of fruit ages, but not ascorbic acid. Exceptionally, ascorbic acid increased until the turning of fruit maturity at 45 DFS and after that decreased drastically. Total soluble solid (oBrix and titratable acidity (TA were higher at 45 DFS, although an increasing trend was found for most of the mineral contents with maturing fruits. We concluded that a higher amount of antioxidant and improved fruit quality with higher yield and moderate mineral contents in fruits could be achieved by application of 2 mL L-1 nigari to sweet pepper in soilless culture. We can also suggest harvesting sweet pepper fruits between 45 to 55 DFS.

M. J. Rahman

2012-08-01

92

Ground water preservation by soil protection: determination of tolerable total Cd contents and Cd breakthrough times  

Energy Technology Data Exchange (ETDEWEB)

Taking Cd as an example we introduce a procedure to estimate tolerable total content of heavy metals in soils with regard to a specific ground water quality criterion. Furthermore, we present a piston-flow approach to estimate breakthrough times of a sorptive solute to the ground water. Both procedures are applied to the sandy soils in the 4300 ha wastewater irrigation area Braunschweig, Germany. Applicability of these procedures is tested by numerical simulations. The calculated breakthrough times of Cd for an input concentration of 3 {mu}g L{sup -1} and a mean water flux density of 570 mm yr{sup -1} varies, as a function of depth of water table and sorption characteristics, between 10 and 805 years (mean = 141 years). The deviation between the piston-flow approach and the numerical simulation is on the average 1.6%. We determined a mean tolerable total Cd content of 0.61 mg kg{sup -1} with regard to a ground water quality criterion of 3 {mu}g L{sup -1}. The limit of the German sewage sludge regulation (AbfKlaerV, 1992) of 1 mg Cd kg{sup -1} exceeds the calculated tolerable total content in 90% of the investigated Ap horizons. Moreover, the results of the numerical simulations show that the limit of 1 mg Cd kg{sup -1} would lead to a concentration in seepage water significantly above 8 {mu}g Cd L{sup -1}. We conclude that in the sandy soils of the wastewater irrigation area the current limit of 1 mg Cd kg{sup -1} is not sufficient to keep the Cd concentration in seepage water below 3 {mu}g L{sup -1} and, thus, to ensure ground water protection in the long run. (orig.)

Ingwersen, J.; Streck, T.; Richter, J. [Technische Univ. Braunschweig (Germany). Inst. fuer Geographie und Geooekologie; Utermann, J. [Bundesanstalt fuer Geowissenschaften und Rohstoffe, Hannover (Germany)

2000-07-01

93

Click chemistry from organic halides, diazonium salts and anilines in water catalysed by copper nanoparticles on activated carbon  

OpenAIRE

An easy-to-prepare, reusable and versatile catalyst consisting of oxidised copper nanoparticles on activated carbon has been fully characterised and found to effectively promote the multicomponent synthesis of 1,2,3-triazoles from organic halides, diazonium salts, and aromatic amines in water at a low copper loading.

Alonso Valde?s, Francisco; Moglie, Yanina; Radivoy, Gabriel; Yus Astiz, Miguel

2011-01-01

94

Does overhead irrigation with salt affect growth, yield, and phenolic content of lentil plants?  

OpenAIRE

Overhead irrigation of lentil plants with salt (100 mM NaCl) did not have any significant impact on plant growth, while chlorophyll content and chlorophyll fluorescence parameter Fv/Fm were affected. Under such poor irrigation water quality, the malondialdehyde content in leaves was increased due to the lipid peroxidation of membranes. In seeds, the total phenolic content (TPC) was correlated to their total antioxidant capacity (TAC). High performance liquid chromatography-mass spectrom...

Giannakoula Anastasia; Ilias I.F.; Dragiši?-Maksimovi? Jelena J.; Maksimovi? V.M.; Živanovi? Branka D.

2012-01-01

95

Effects of Paclobutrazol and Salt Stress on Growth and Ionic Contents in Two Cultivars of Wheat  

OpenAIRE

The effect of paclobutrazol (PBZ) treatment on salinity tolerance of wheat (Triticum aestivum), were investigated for two salt-tolerant and salt-sensitive cultivars. Salinity with PBZ treatment significantly reduced the plant height and length and area of sixth leaf in both cultivars. With increasing salinity, a gradually reduction was observed in roots length, fresh and dry weight of shoot and sixth leaf and relative water content of PBZ-applied plants in both cultivars. The greatest reducti...

Shokoofeh Hajihashemi; Khadijeh Kiarostami

2007-01-01

96

Iron clad wetlands: Soil iron-sulfur buffering determines coastal wetland response to salt water incursion  

Science.gov (United States)

Coastal freshwater wetland chemistry is rapidly changing due to increased frequency of salt water incursion, a consequence of global change. Seasonal salt water incursion introduces sulfate, which microbially reduces to sulfide. Sulfide binds with reduced iron, producing iron sulfide (FeS), recognizable in wetland soils by its characteristic black color. The objective of this study is to document iron and sulfate reduction rates, as well as product formation (acid volatile sulfide (AVS) and chromium reducible sulfide (CRS)) in a coastal freshwater wetland undergoing seasonal salt water incursion. Understanding iron and sulfur cycling, as well as their reduction products, allows us to calculate the degree of sulfidization (DOS), from which we can estimate how long soil iron will buffer against chemical effects of sea level rise. We show that soil chloride, a direct indicator of the degree of incursion, best predicted iron and sulfate reduction rates. Correlations between soil chloride and iron or sulfur reduction rates were strongest in the surface layer (0-3 cm), indicative of surface water incursion, rather than groundwater intrusion at our site. The interaction between soil moisture and extractable chloride was significantly related to increased AVS, whereas increased soil chloride was a stronger predictor of CRS. The current DOS in this coastal plains wetland is very low, resulting from high soil iron content and relatively small degree of salt water incursion. However, with time and continuous salt water exposure, iron will bind with incoming sulfur, creating FeS complexes, and DOS will increase.

Schoepfer, Valerie A.; Bernhardt, Emily S.; Burgin, Amy J.

2014-12-01

97

Non-destructive determination of the biomass and the water content in plants by radiometric methods  

International Nuclear Information System (INIS)

The non-destructive and non-contacting methods described here provide a continuous determination of the biomass, of the water content and derived from this, of the dry matter. The range of application for the absorption of beta- and gamma-rays extends for Tl-204 from 5 to 170 mg/cm2 absorber thickness and for Am-241 from 800 to 2700 mg/cm2. The detection limit of 0.53 mg/cm2 for the absorption of beta-rays and that of 0.4 mg/cm2 for the absorption of microwaves allow the determinaton of the absorber thickness of dry matter up to a relative error of 2%. The detection limits, however, increase according to the biological variation caused by the inhomogeneities in leaf and bulb, but also by slight leaf movements due to variations of the water content in the leaf. (orig.)

98

Separation of ethanol and water by extractive distillation with salt and solvent as entrainer: process simulation  

Scientific Electronic Library Online (English)

Full Text Available SciELO Brazil | Language: English Abstract in english The aim of this work is to simulate and analyze an extractive distillation process for azeotropic ethanol dehydration with ethylene glycol and calcium chloride mixture as entrainer. The work was developed with Aspen Plus® simulator version 11.1. Calculation of the activity coefficients employed to d [...] escribe vapor liquid equilibrium of ethanol - water - ethylene glycol - calcium chloride system was done with the NRTL-E equation and they were validated with experimental data. The dehydration process used two columns: the main extractive column and the recovery column. The solvent to feed molar ratio S/F=0.3, molar reflux ratio RR=0.35, number of theoretical stages Ns=18, feed stage Sf=12, feed solvent stage SS=3, and feed solvent temperature TS=80 ºC, were determined to obtain a distillate with at least 99.5 % mole of ethanol. A substantial reduction in the energy consumption, compared with the conventional processes, was predicted by using ethylene glycol and calcium chloride as entrainer.

I. D., Gil; A. M., Uyazán; J. L., Aguilar; G., Rodríguez; L. A., Caicedo.

2008-03-01

99

Separation of ethanol and water by extractive distillation with salt and solvent as entrainer: process simulation  

Directory of Open Access Journals (Sweden)

Full Text Available The aim of this work is to simulate and analyze an extractive distillation process for azeotropic ethanol dehydration with ethylene glycol and calcium chloride mixture as entrainer. The work was developed with Aspen Plus® simulator version 11.1. Calculation of the activity coefficients employed to describe vapor liquid equilibrium of ethanol - water - ethylene glycol - calcium chloride system was done with the NRTL-E equation and they were validated with experimental data. The dehydration process used two columns: the main extractive column and the recovery column. The solvent to feed molar ratio S/F=0.3, molar reflux ratio RR=0.35, number of theoretical stages Ns=18, feed stage Sf=12, feed solvent stage SS=3, and feed solvent temperature TS=80 ºC, were determined to obtain a distillate with at least 99.5 % mole of ethanol. A substantial reduction in the energy consumption, compared with the conventional processes, was predicted by using ethylene glycol and calcium chloride as entrainer.

I. D. Gil

2008-03-01

100

Rapid assessment of water pollution by airborne measurement of chlorophyll content.  

Science.gov (United States)

Present techniques of airborne chlorophyll measurement are discussed as an approach to water pollution assessment. The differential radiometer, the chlorophyll correlation radiometer, and an infrared radiometer for water temperature measurements are described as the key components of the equipment. Also covered are flight missions carried out to evaluate the capability of the chlorophyll correlation radiometer in measuring the chlorophyll content in water bodies with widely different levels of nutrients, such as fresh-water lakes of high and low eutrophic levels, marine waters of high and low productivity, and an estuary with a high sediment content. The feasibility and usefulness of these techniques are indicated.

Arvesen, J. C.; Weaver, E. C.; Millard, J. P.

1971-01-01

101

Water sorption on silica- and zeolite-supported hygroscopic salts for cooling system applications  

International Nuclear Information System (INIS)

Highlights: ? The silica- and zeolite-supported hygroscopic salts (SHS) were prepared. ? The water uptake was evaluated as function of the pore size and salt content. ? A novel method based on mass spectrometry (MS) was proposed and successfully used. ? The MS was applied to obtain the water sorption isobars on SHS. ? The thermodynamic cooling cycle for SHS–water pair showed a coefficient of performance of 0.83. - Abstract: Silica gel and zeolite 13X were used as supports for the hygroscopic salts LiBr, MgCl2 and CaCl2. The silica- and zeolite-supported hygroscopic salts were characterized by N2 adsorption at ?196 °C and X-ray diffraction. The silica support was mesoporous whereas the zeolite support was microporous. The dispersion of CaCl2 was much lower on the zeolite than on the silica support, and the microporosity of the zeolite was blocked by the salt. CaCl2 supported on silica was a superior water sorbent versus zeolite, and CaCl2 supported on zeolite was an inferior sorbent versus zeolite. Complete water desorption from silica-supported hygroscopic salts can be effectively reached at a relatively low temperature (100–110 °C), making them candidates for efficient cooling or air conditioning applications. The isosteric heat of water desorption was obtained from the isobars and was dependent on the amount of water adsorbed. Finally, the thermodynamic cooling cycle for the SCa33 (sg cycle for the SCa33 (silica gel containing 33 wt.% CaCl2) – water vapour pair showed a coefficient of performance of 0.83.

102

CHARACTERIZATION OF CASEIN FILMS MADE BY PRESSURIZED CARBON DIOXIDE: SALT EFFECT ON WATER SOLUBILITY  

Science.gov (United States)

Films made from casein, precipitated from skim milk using pressurized carbon dioxide (CO2), have been shown to exhibit unique properties such as water resistance in addition to the apparent environmental benefits that the process bears. To gain insights on the dominating molecular forces that give r...

103

Measuring the content by volume of deuterium in heavy water with carbon dioxide dissolved in it  

International Nuclear Information System (INIS)

From data on the density of solutions of CO2-D2O and experimental data on the solubility of CO2 in D2 in a CO-D2O system, the authors calculated the volume content of deuterium in heavy water saturated with carbon dioxide then compared it with the volume content of deuterium in heavy water alone at the same parameters. It is shown that the volume content of deuterium in heavy water with carbon dioxide dissolved in it is markedly lower. This reduction becomes more pronounced with an increase in pressure. At increased pressures, the volume content of deuterium is reduced, both for heavy water and for a saturated solution of carbon dioxide in heavy water

104

Measuring the content by volume of deuterium in heavy water with carbon dioxide dissolved in it  

Energy Technology Data Exchange (ETDEWEB)

From data on the density of solutions of CO/sub 2/-D/sub 2/O and experimental data on the solubility of CO/sub 2/ in D/sub 2/ in a CO-D/sub 2/O system, the authors calculated the volume content of deuterium in heavy water saturated with carbon dioxide then compared it with the volume content of deuterium in heavy water alone at the same parameters. It is shown that the volume content of deuterium in heavy water with carbon dioxide dissolved in it is markedly lower. This reduction becomes more pronounced with an increase in pressure. At increased pressures, the volume content of deuterium is reduced, both for heavy water and for a saturated solution of carbon dioxide in heavy water.

Efimova, T.I.; Kapitanov, V.F.; Leuchenko, G.V.

1986-03-01

105

Isotope geochemistry of water in Gulf Coast salt domes  

Science.gov (United States)

Water found as active leaks and isolated pools in the Weeks Island, Jefferson Island, and Belle Isle salt mines of south Louisiana has ?18O values ranging from -4 to +11.5‰ and ?D values from -2.3 to -53‰. One sample from Weeks Island and one from Jefferson Island are isotopically similar to local surface waters and are clearly of meteoric origin. All other samples are too enriched in 18O to be meteoric waters. In the Weeks Island mine the isotopic data define a linear array given by ?D = 3.0?18O - 40.1. Active leaks define the positive end of this array. Isolated pools are interpreted as inactive leaks with initial ?18O and ?D values of +9.1±0.5‰ and -11‰±7‰, which have subsequently exchanged with water vapor in the mine air to produce the linear array of ? values. The water derived from active leaks in these three mines is too enriched in 18O and too depleted in D to be connate ocean water or evaporite connate water trapped in the salt. The isotopic composition of water derived from the dehydration of gypsum is probably dissimilar to that of the active leaks. It is unlikely that the water has originated from the dehydration of gypsum. It is also unlikely that isotopic exchange with anhydrite is responsible for the observed 18O enrichments. Nonmeteoric water from the active leaks displays the type of 18O enrichments characteristic of saline formation waters, where water exchanges isotopically with calcite and clay minerals. It is concluded that the nonmeteoric waters are formation waters which have become incorporated in the salt. From the observed 18O enrichment it is calculated that the formation waters were incorporated during diapiric rise of the salt at a depth of 3-4 km and have been trapped within the salt for 10-13 m.y. Large volumes of salt within salt domes are not naturally penetrated by meteoric groundwaters but can contain limited amounts of trapped formation water which will have to be contended with in any attempt to store radioactive wastes in salt domes.

Knauth, L. Paul; Kumar, M. B.; Martinez, J. D.

1980-09-01

106

Separation of ethanol and water by extractive distillation with salt and solvent as entrainer: process simulation  

OpenAIRE

The aim of this work is to simulate and analyze an extractive distillation process for azeotropic ethanol dehydration with ethylene glycol and calcium chloride mixture as entrainer. The work was developed with Aspen Plus® simulator version 11.1. Calculation of the activity coefficients employed to describe vapor liquid equilibrium of ethanol - water - ethylene glycol - calcium chloride system was done with the NRTL-E equation and they were validated with experimental data. The dehydration pr...

Gil, I. D.; Uyaza?n, A. M.; Aguilar, J. L.; Rodri?guez, G.; Caicedo, L. A.

2008-01-01

107

Effects of Paclobutrazol and Salt Stress on Growth and Ionic Contents in Two Cultivars of Wheat  

Directory of Open Access Journals (Sweden)

Full Text Available The effect of paclobutrazol (PBZ treatment on salinity tolerance of wheat (Triticum aestivum, were investigated for two salt-tolerant and salt-sensitive cultivars. Salinity with PBZ treatment significantly reduced the plant height and length and area of sixth leaf in both cultivars. With increasing salinity, a gradually reduction was observed in roots length, fresh and dry weight of shoot and sixth leaf and relative water content of PBZ-applied plants in both cultivars. The greatest reduction was observed at 225 mM NaCl with 60 or 90 ppm PBZ. Salinity with PBZ treatment increased Na+ content in the sixth leaf and roots of both cultivars and the greatest increase was observed in salt-sensitive cultivar. In PBZ -treated plants, K+, P and N contents increased in line with elevating salinity in both cultivars, except at 90 ppm PBZ in salt-sensitive cultivar. Very similar effects of NaCl and PBZ treatment were observed for both cultivars regardless of their salinity susceptibility. The results suggest that PBZ treatment may be useful to improve the salt tolerance of wheat via reducing the negative effect of salinity on vegetative growth and the Na+ content and increasing the K+, P and N contents.

Shokoofeh Hajihashemi

2007-01-01

108

[Effect of shifting sand burial on evaporation reduction and salt restraint under saline water irrigation in extremely arid region].  

Science.gov (United States)

The Taklimakan Desert Highway Shelterbelt is drip-irrigated with high saline groundwater (2.58-29.70 g x L(-1)), and shifting sand burial and water-salt stress are most common and serious problems in this region. So it is of great importance to study the effect of shifting sand burial on soil moisture evaporation, salt accumulation and their distribution for water saving, salinity restraint, and suitable utilization of local land and water resources. In this study, Micro-Lysimeters (MLS) were used to investigate dynamics of soil moisture and salt under different thicknesses of sand burial (1, 2, 3, 4, and 5 cm), and field control experiments of drip-irrigation were also carried out to investigate soil moisture and salt distribution under different thicknesses of shifting sand burial (5, 10, 15, 20, 25, 30, 35, and 40 cm). The soil daily and cumulative evaporation decreased with the increase of sand burial thickness in MLS, cumulative evaporation decreased by 2.5%-13.7% compared with control. And evaporative inhibiting efficiency increased with sand burial thickness, evaporative inhibiting efficiency of 1-5 cm sand burial was 16.7%-79.0%. Final soil moisture content beneath the interface of sand burial increased with sand burial thickness, and it increased by 2.5%-13.7% than control. The topsoil EC of shifting sand in MLS decreased by 1.19-6.00 mS x cm(-1) with the increasing sand burial thickness, whereas soil salt content beneath the interface in MLS increased and amplitude of the topsoil salt content was higher than that of the subsoil. Under drip-irrigation with saline groundwater, average soil moisture beneath the interface of shifting sand burial increased by 0.4% -2.0% compare with control, and the highest value of EC was 7.77 mS x cm(-1) when the sand burial thickness was 10 cm. The trend of salt accumulation content at shifting sand surface increased firstly, and then decreased with the increasing sand burial thickness. Soil salt contents beneath the interface of shifting sand burial were much lower than that of shifting sand surface. 35 cm was the critical sand burial thickness for water-saving and salt restraint. In summary, sand burial had obvious inhibition effects on soil evaporation and salt accumulation, so maybe it could be used to save water and reduce salt accumulation in arid shifting desert areas. PMID:25129944

Zhang, Jian-Guo; Zhao, Ying; Xu, Xin-Wen; Lei, Jia-Qiang; Li, Sheng-Yu; Wang, Yong-Dong

2014-05-01

109

Isotope geochemistry of water in Gulf Coast Salt Domes  

International Nuclear Information System (INIS)

Water found as active leaks and isolated pools in the Weeks Island, Jefferson Island, and Belle Isle salt mines of south Louisiana has delta18O values ranging from -4 to +11.5%0 and deltaD values from -2.3 to -53%0. One sample from Weeks Island and one from Jefferson Island are isotopically similar to local surface waters and are clearly of meteoric origin. All other samples are too enriched in 18O to be meteoric waters. In the Weeks Island mine the isotopic data define a linear array given by deltaD=3.0delta18O-40.1. Active leaks define the positive end of this array. Isolated pools are interpreted as inactive leaks with initial delta18O and deltaD values of +9.1 +- 0.5%0 and -11%0 +- 7%0, which have subsequently exchanged with water vapor in the mine air to produce the linear array of delta values. The water derived from active leaks in these three mines is too enriched in 18O and too depleted in D to be connate ocean water or evaporite connate water trapped in the salt. Isotopic composition of water derived from the dehydration of gypsum is probably dissimilar to that of the active leaks. It is unlikely that the water has originated from the dehydration of gypsum. It is also unlikely that isotopic exchange with anhydrite is responsible for observed 18O enrichments. Nonmeteroric water from the active leaks displays the type of 18O enric displays the type of 18O enrichments characteristic of saline formation waters, where water exchanges isotopically with calcite and clay minerals. It is concluded that the nonmeteoric waters are formation waters which have become incorporated in the salt. From the observed 18O enrichment it is calculated that formation waters were incorporated during diapiric rise of the salt at a depth of 3--4 km and have been trapped within the salt for 10--13 m.y. Large volumes of salt within salt domes are not naturally penetrated by meteoric groundwaters but can contain limited amounts of trapped formation water

110

GmWRKY53, a water- and salt-inducible soybean gene for rapid dissection of regulatory elements in BY-2 cell culture.  

Science.gov (United States)

Drought is the major cause of crop losses worldwide. Water stress-inducible promoters are important for understanding the mechanisms of water stress responses in crop plants. Here we utilized tobacco (Nicotiana tabacum L.) Bright Yellow 2 (BY-2) cell system in presence of polyethylene glycol, salt and phytohormones. Extension of the system to 85 mM NaCl led to inducibility of up to 10-fold with the water stress and salt responsive soybean GmWRKY53 promoter. Upon ABA and JA treatment fold inducibility was up to 5-fold and 14-fold, respectively. Thus, we hypothesize that GmWRKY53 could be used as potential model candidate for dissecting drought regulatory elements as well as understanding crosstalk utilizing a rapid heterologous system of BY-2 culture. PMID:23511199

Tripathi, Prateek; Rabara, Roel C; Lin, Jun; Rushton, Paul J

2013-05-01

111

Soil tensile strength as affected by time, water content and bulk density  

OpenAIRE

We investigated the effect of soil water conditions and soil compaction on the age-hardening process of loamy sand and silty loamy sand in relation to the tensile strength. Soil samples from Germany (loamy sand) and Poland (silty loamy sand) were moulded at water contents 10 %, 15 %, 20 % and compacted up to 1.35, 1.45, 1.55g/cm3. The samples were stored at constant water content. At intervals after moulding, the tensile strengths of the moist samples were measured with the indirect tension (...

Pytka, J.; Horn, R.; Ba?…a?‚aa?…a?¼ejczak, D.

1995-01-01

112

Nuclear power for salt water conversion  

International Nuclear Information System (INIS)

Pressure on water resources is resulting in manycountries from population growth, rising living standards, and the increasing demands of industrialization; there is. in consequence, a corresponding interest in the possibilities of large-scale desalting of water. The application of nuclear energy to desalting is being studied by IAEA, with special reference to the needs of developing countries. A number of technical and economic studies have been undertaken by other organizations in several countries. The desalting of salt water by distillation or other processes has long been familiar, but usually only on a small scale and at relatively high cost. The principal question today is whether much more economical results can be obtained by a great increase in the scale of operations, and by enlisting the most modern techniques. The matter is of most immediate interest to the arid regions. It was as a result of a request from Tunisia, following the 1962 General Conference, that the Agency undertook a series of studies. In March 1963 a group of experts met in Vienna under the chairmanship of Mr. J. K. Carr, Under-Secretary, US Department of the Interior, to discuss how the Agency could best help developing countries to use nuclear energy for desalting. This was followed by the visit of an Agency staff member to Tunisia with a UN mission and by the convening of a further expert panel in September 1963. This meeting was under the chairmanship of Mr. Carr and of Mr. J. T. Ramey,anship of Mr. Carr and of Mr. J. T. Ramey, Commissioner, US Atomic Energy Commission. Eleven countries were represented, as well as the United Nations and the Food and Agriculture Organization. The panel examined the technical situation, including conversion methods and reactor systems.

113

Separation and Fixation of Toxic Components in Salt Brines Using a Water-Based Process  

International Nuclear Information System (INIS)

Efforts to implement new water quality standards, increase water reuse and reclamation, and minimize the cost of waste storage motivate the development of new processes for stabilizing waste water residuals that minimize waste volume, water content and the long-term environmental risk from related by products. This work explores the use of an aqueous-based emulsion process to create an epoxy/rubber matrix for separating and encapsulating waste components from salt laden, arsenic contaminated, amorphous iron hydrate sludges. Such sludges are generated from conventional water purification precipitation/adsorption processes, used to convert aqueous brine streams to semi-solid waste streams, such as ion exchange/membrane separation, and from other precipitative heavy metal removal operations. In this study, epoxy and polystyrene butadiene (PSB) rubber emulsions are mixed together and then combined with a surrogate sludge. The surrogate sludge consists of amorphous iron hydrate with 1 part arsenic fixed to the surface of the hydrate per 10 parts iron mixed with sodium nitrate and chloride salts and water. The resulting emulsion is cured and dried at 80 C to remove water. Microstructure characterization by electron microscopy confirms that the epoxy/PSB matrix surrounds and encapsulates the arsenic laden amorphous iron hydrate phase while allowing the salt to migrate to internal and external surfaces of the sample. Salt extraction studies indicate that the porous nature of tudies indicate that the porous nature of the resulting matrix promotes the separation and removal of as much as 90% of the original salt content in only one hours time. Long term leaching studies based on the use of the infinite slab diffusion model reveal no evidence of iron migration or, by inference, arsenic migration, and demonstrate that the diffusion coefficients of the unextracted salt yield leachability indices within regulations for non-hazardous landfill disposal. Because salt is the most mobile species, it is inferred that arsenic leaches from the host material at an even slower rate, making the waste forms amenable to unregulated land disposal options. These result indicate that the environmentally-benign, water-based emulsion processing of epoxy/PSB polymeric hosts show great promise as a separation and fixation technology for treating brine streams from wastewater treatment facilities

114

Indirectly suspended droplet microextraction of water-miscible organic solvents by salting-out effect for the determination of polycyclic aromatic hydrocarbons.  

Science.gov (United States)

A simple and low-cost method that indirectly suspended droplet microextraction of water-miscible organic solvents (ISDME) by salting-out effect before high-performance liquid chromatography and ultraviolet (HPLC-UV) detection was used for the determination of polycyclic aromatic hydrocarbons (PAHs) in different samples. The ISDME is a combination of salting-out extraction of water-miscible organic solvent and directly suspended droplet microextraction (DSDME). Ninety-five microliters water-miscible organic solvent (1-propanol) was added to a 500-µL sample. A homogeneous solution was formed immediately. To produce a steady vortex at the top of the solution, the sample was agitated at 700 rpm using a magnetic stirrer. By the addition of ammonium sulfate (saturated solution) to the homogeneous solution, 1-propanol was separated and collected at the bottom of the steady vortex. Finally, 20?µL 1-propanol was injected into HPLC-UV. The effects of important parameters such as water-miscible organic solvent (type and volume), type of salt, and extraction time were evaluated. Under optimum conditions, the method has a good linear calibration range (0.1 µg/L-300 µg/L), coefficients of determination (R(2) > 0.998), low limits of detection (between 0.02 µg/L and 0.27 µg/L), and acceptable recovery (>85.0%). PMID:25242239

Daneshfar, Ali; Khezeli, Tahere

2014-12-01

115

Salt content of school meals and comparison of perception related to sodium intake in elementary, middle, and high schools  

OpenAIRE

Excessive sodium intake leading to hypertension, stroke, and stomach cancer is mainly caused by excess use of salt in cooking. This study was performed to estimate the salt content in school meals and to compare differences in perceptions related to sodium intake between students and staffs working for school meal service. We collected 382 dishes for food from 24 schools (9 elementary, 7 middle, 8 high schools) in Gyeonggi-do and salt content was calculated from salinity and weight of individ...

Ahn, Sohyun; Park, Seoyun; Kim, Jin Nam; Han, Sung Nim; Jeong, Soo Bin; Kim, Hye-kyeong

2013-01-01

116

Numerical Simulation of Soil Water Content in the Unsaturated Zone Using Constraints Provided by Geophysical Measurements  

Science.gov (United States)

Soil moisture distribution and variation in the vadose zone is important for agricultural, engineering and contaminant studies. Conventional sampling techniques for estimating soil water moisture content are costly, time consuming, invasive, and typically recover information at a single point in space and time only. Geophysical techniques have the potential to provide dense and accurate information about subsurface soil moisture. However, these data still provide information about water content at the time of measurement only, and geophysical data acquisition is sometimes hindered by cultural or site conditions. For example, although both surface and crosshole GPR techniques have been successfully applied for providing soil moisture information over space and time, the penetration distance of the GPR signal is limited in soils having high electrical conductivity, sometimes inhibiting moisture profiling through the entire vadose zone. In this study, we investigate the potential of coupling geophysical measurements with numerical modeling to provide information about soil moisture variations in space and over time. Such an approach was undertaken to permit estimation of soil moisture throughout the root zone even under difficult GPR data acquisition conditions, and also to yield insight into the dynamics of soil water distribution, including both state variables and fluxes. In this study, surface and crosshole geophysical measurements provide initial and boundary soil moisture conditions to a numerical simulator (TOUGH2-EOS9) based on Richard­_s Equation. Simulations were run using information available from various geophysical techniques collected at a naturally heterogeneous agricultural field site, including surface GPR, crosshole GPR, neutron probe, and TDR measurements. Information about soil heterogeneity was obtained using borehole soil textural information, and meteorological water flux boundary conditions were obtained using rain gauges, sap flow meters and also from a nearby CIMIS weather station. Hydraulic conductivity, one of the most difficult field variables to measure, can be satisfactorily estimated using a stochastic inverse modeling approach. Comparison of soil moisture measurements (collected throughout a year at a field site near Napa, CA) with the various simulations suggested that the approach was able to capture the natural evolution of the vadose zone soil moisture profile at several locations throughout the heterogeneous site. These results illustrate that improvement in the understanding of water cycling and its interaction with ecosystems can be obtained by coupling hydrological theory and measurements available from geophysical and meteorological techniques.

Hou, Z.; Rubin, Y.; Hubbard, S. S.

2002-12-01

117

Separation and Fixation of Toxic Components in Salt Brines Using a Water-Based Process  

Energy Technology Data Exchange (ETDEWEB)

Efforts to implement new water quality standards, increase water reuse and reclamation, and minimize the cost of waste storage motivate the development of new processes for stabilizing wastewater residuals that minimize waste volume, water content and the long-term environmental risk from related by-products. This work explores the use of an aqueous-based emulsion process to create an epoxy/rubber matrix for separating and encapsulating waste components from salt laden, arsenic contaminated, amorphous iron hydrate sludges. Such sludges are generated from conventional water purification precipitation/adsorption processes, used to convert aqueous brine streams to semi-solid waste streams, such as ion exchange/membrane separation, and from other precipitative heavy metal removal operations. In this study, epoxy and polystyrene butadiene (PSB) rubber emulsions are mixed together and then combined with a surrogate sludge. The surrogate sludge consists of amorphous iron hydrate with 1 part arsenic fixed to the surface of the hydrate per 10 parts iron mixed with sodium nitrate and chloride salts and water. The resulting emulsion is cured and dried at 80 °C to remove water. Microstructure characterization by electron microscopy confirms that the epoxy/PSB matrix surrounds and encapsulates the arsenic laden amorphous iron hydrate phase while allowing the salt to migrate to internal and external surfaces of the sample. Salt extraction studies indicate that the porous nature of the resulting matrix promotes the separation and removal of as much as 90% of the original salt content in only one hour. Long term leaching studies based on the use of the infinite slab diffusion model reveal no evidence of iron migration or, by inference, arsenic migration, and demonstrate that the diffusion coefficients of the unextracted salt yield leachability indices within regulations for non-hazardous landfill disposal. Because salt is the most mobile species, it is inferred that arsenic leaches from the host material at an even slower rate, making the waste forms amenable to unregulated land disposal options. These results indicate that the environmentally-benign, water-based emulsion processing of epoxy/PSB polymeric hosts show great promise as a separation and fixation technology for treating brine streams from wastewater treatment facilities.

Franks, C.; Quach, A.; Birnie III, D.; Ela, W.; Saez, A.E.; Zelinski, B.; Smith, H.; Smith, G.

2004-01-01

118

Iodine content in bread and salt in Denmark after iodization and the influence on iodine intake  

DEFF Research Database (Denmark)

Objective To measure the iodine content in bread and household salt in Denmark after mandatory iodine fortification was introduced and to estimate the increase in iodine intake due to the fortification. Design The iodine content in rye breads, wheat breads and salt samples was assessed. The increase in iodine intake from fortification of bread and the increase in total iodine intake after fortification were estimated. Subjects Iodine intake before and after fortification was estimated based on dietary intake data from 4,124 randomly selected Danish subjects. Main results Approximately 98% of the rye breads and 90% of the wheat breads were iodized. The median iodine intake from bread increased by 25 ( 13-43) mu g/day and the total median iodine intake increased by 63 (36-104) mu g/day. Conclusions The fortification of bread and salt has resulted in a desirable increase in iodine intake, and the current fortification level of salt ( 13 ppm) seems reasonable.

Rasmussen, Lone Banke; Ovesen, Lars

2007-01-01

119

Free water content and monitoring of healing processes of skin burns studied by microwave dielectric spectroscopy in vivo  

International Nuclear Information System (INIS)

We have investigated the dielectric properties of human skin in vivo at frequencies up to 10 GHz using a time-domain reflectometry method with open-ended coaxial probes. Since ?-dispersion results from the reorientation of free water molecules, the free water content of skin is quantitatively determined by dielectric measurements. The free water content of finger skin increased by about 10% after soaking in 37 0C water for 30 min, and it systematically decreased again through the drying process, as expected. Thus this analytical method has been applied to the study of skin burns. The free water content of burned human cheek skin due to hydrofluoric acid was significantly lower than that of normal skin, and the burned skin recovered through the healing process. In the case of a human hand skin burn due to heat, although the free water content was almost the same as that of normal skin at the beginning, it decreased during the healing process for the first 10 days, then began to increase. Although the number of test subjects was one for each experiment, it was shown that free water content is a good indicator for evaluating skin health and can be well monitored by dielectric spectroscopy

120

A role for nongovernmental organizations in monitoring the iodine content of salt in northern India.  

OpenAIRE

The feasibility of using nongovernmental organizations (NGOs) to monitor the iodine content of salt was studied in Uttar Pradesh, northern India, where iodine-deficiency disorders (IDDs) are endemic. Three NGOs already involved in health and development activities in the Gorakhpur, Varanasi, and Dehradun regions collected salt samples monthly from households and shops in selected villages over a 6-month period. A total of 4001 samples were analysed at regional laboratories by trained personne...

Pandav, C. S.; Pandav, S.; Anand, K.; Wajih, S. A.; Prakash, S.; Singh, J.; Karmarkar, M. G.

1995-01-01

121

Non-invasive quantification of small bowel water content by MRI: a validation study  

Energy Technology Data Exchange (ETDEWEB)

Substantial water fluxes across the small intestine occur during digestion of food, but so far measuring these has required invasive intubation techniques. This paper describes a non-invasive magnetic resonance imaging (MRI) technique for measuring small bowel water content which has been validated using naso-duodenal infusion. Eighteen healthy volunteers were intubated, with the tube position being verified by MRI. After a baseline MRI scan, each volunteer had eight 40 ml boluses of a non-absorbable mannitol and saline solution infused into their proximal small bowel with an MRI scan being acquired after each bolus. The MRI sequence used was an adapted magnetic resonance cholangiopancreatography sequence. The image data were thresholded to allow for intra- and inter-subject signal variations. The MRI measured volumes were then compared to the known infused volumes. This MRI technique gave excellent images of the small bowel, which closely resemble those obtained using conventional radiology with barium contrast. The mean difference between the measured MRI volumes and infused volumes was 2% with a standard deviation of 10%. The maximum 95% limits of agreement between observers were -15% to +17% while measurements by the same operator on separate occasions differed by only 4%. This new technique can now be applied to study alterations in small bowel fluid absorption and secretion due to gastrointestinal disease or drug interventio000.

Hoad, C L [Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD (United Kingdom); Marciani, L [Wolfson Digestive Diseases Centre, QMC, Nottingham University Hospitals, University of Nottingham, Nottingham (United Kingdom); Foley, S [Wolfson Digestive Diseases Centre, QMC, Nottingham University Hospitals, University of Nottingham, Nottingham (United Kingdom); Totman, J J [Brain and Body Centre, University of Nottingham, Nottingham (United Kingdom); Wright, J [Division of GI Surgery, QMC, Nottingham University Hospitals, University of Nottingham, Nottingham (United Kingdom); Bush, D [Division of GI Surgery, QMC, Nottingham University Hospitals, University of Nottingham, Nottingham (United Kingdom); Cox, E F [Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD (United Kingdom); Campbell, E [Wolfson Digestive Diseases Centre, QMC, Nottingham University Hospitals, University of Nottingham, Nottingham (United Kingdom); Spiller, R C [Wolfson Digestive Diseases Centre, QMC, Nottingham University Hospitals, University of Nottingham, Nottingham (United Kingdom); Gowland, P A [Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD (United Kingdom)

2007-12-07

122

HIGH PERMEABILITY MEMBRANES FOR THE DEHYDRATION OF LOW WATER CONTENT ETHANOL BY PERVAPORATION  

Science.gov (United States)

Energy efficient dehydration of low water content ethanol is a challenge for the sustainable production of fuel-grade ethanol. Pervaporative membrane dehydration using a recently developed hydrophilic polymer membrane formulation consisting of a cross-linked mixture of poly(allyl...

123

Study of cladding hull fixation by low water content ceramic cements  

International Nuclear Information System (INIS)

The investigations of the suitability using portland cement free ceramic cements for the fixation of cladding hulls were started with laboratory experiments. The material chosen exhibits the lowest water content by a sufficient compressive strength of the cured product. To produce void free waste forms (hulls + matrix) mixtures with a water content of 12 weight % are suitable. The investigations with radioactive laboratory samples have shown the practicability of the dehydration of Zry-ceramic samples at temperatures of 100 to 1500C. In this case, a maximum of 0.06% of the inital activity - mainly as HTO - will be released. The thermal release in argon carrier gas at different temperatures was in relative good agreement with measurements with hydraulic and naked KWO-hulls. The yearly release rates were found in the range of 10-5 to 10-6 Ci/Ci. year. The leaching of tritium-, actinides- and fission products at 200C and 900C with H20 and carnalit brine have shown no advantages of ceramic matrix compared with portland cement. The drying of the inactive waste form requires a dry air temperature of 2350C. The thermal decomposition of Na-acetate, which is contained in small amounts in the mixture, begins at 1750C. A calorimeter was developed for the determination of the power of nuclear heat sources in radioactive waste and tested in hot cells. Compared to KORIGEN-calculations the measured values are 20 to 30% lower. The experimental facility MEGA was designed to determine the activity of the volatile fission products and hydrogen concentration

124

Organic tank safety project: Effect of water partial pressure on the equilibrium water contents of waste samples from Hanford Tank 241-BY-108  

International Nuclear Information System (INIS)

Water content plays a crucial role in the strategy developed by Webb et al. to prevent propagating or sustainable chemical reactions in the organic-bearing wastes stored in the 20 Organic Tank Watch List tanks at the US Department of Energy's Hanford Site. Because of water's importance in ensuring that the organic-bearing wastes continue to be stored safely, Duke Engineering and Services Hanford commissioned the Pacific Northwest National Laboratory (PNNL) to investigate the effect of water partial pressure (PH2O) on the water content of organic-bearing or representative wastes. Of the various interrelated controlling factors affecting the water content in wastes, PH2O is the most susceptible to being controlled by the and Hanford Site's environmental conditions and, if necessary, could be managed to maintain the water content at an acceptable level or could be used to adjust the water content back to an acceptable level. Of the various waste types resulting from weapons production and waste-management operations at the Hanford Site, Webb et al. determined that saltcake wastes are the most likely to require active management to maintain the wastes in a Conditionally Safe condition. A Conditionally Safe waste is one that satisfies the waste classification criteria based on water content alone or a combination of water content and either total organic carbon (TOC) content or waste energetics. To provide information on the behavior of saltcake wastes, two waste samples taken from Tank 241-BY-108 (BY-108) were selected for study, even though BY-108 is not on the Organic Tanks Watch List because of their ready availability and their similarity to some of the organic-bearing saltcakes

125

PHASE SEPARATION AND SALTING OUT OF OCTYL PENTA (OXYETHYLENE GLYCOL) IN WATER AND HEAVY WATER  

OpenAIRE

Partial miscibility and salting out is studied in the system octyl penta(oxyethylene glycol)/C8E5/-water/heavy water. The temperature induced phase separation is due to increased interactions between small spherical micelles. It is studied how the phase separation temperatures are shifted by adding salts (KCl, CsCl, NaF) and by subtituting D2O for H2O as solvent.

Weckstro?m, K.; Zulauf, M.

1984-01-01

126

Cardiac content of brain natriuretic peptide in DOCA-salt hypertensive rats  

International Nuclear Information System (INIS)

The cardiac content of immunoreactive rat brain natriuretic peptide (ir-rBNP) in deoxycorticosterone acetate (DOCA)-salt hypertensive rats was measured by radioimmunoassay (RIA). The atrial content of ir-rBNP was significantly lower in the DOCA-salt group than in the control group. However, the ventricular content of ir-rBNP was markedly increased in the DOCA-salt group as compared to the other groups. Ir-rBNP level in the atria was negatively correlated with blood pressure, while that in the ventricle was positively correlated with blood pressure. A significant correlation was observed between tissue levels of ir-rBNP and ir-rat atrial natriuretic peptide (rANP) both in atrium and ventricle. These results raise the possibility that rBNP as well as rANP functions as a cardiac hormone, the production of which probably changes in response to increased of body fluid and blood pressure

127

Filling and sealing of shafts in salt mines necessitated by an inrush of water or brine into a shaft  

International Nuclear Information System (INIS)

Within the investigations for the underground disposal of radioactive waste in the Federal Republic of Germany also the possibilities of sealing a flooded shaft have been studied. If it seems not practical to safe the mine by pumping from the shaft sump or by closing the shaft with a large valve, the shaft has to be filled and sealed. For this purpose several layers of different materials are placed in the shaft. Tests have been started to find out the most suitable binder for plugs in rock salt strata. Some results of laboratory tests with three kinds of cement are published

128

Protein, casein, and micellar salts in milk: current content and historical perspectives.  

Science.gov (United States)

The protein and fat content of Dutch bulk milk has been monitored since the 1950s and has increased considerably, by 11 and 20%, respectively, whereas milk yield has more than doubled. The change in protein and fat content of milk is advantageous for the dairy industry, as these are the 2 most economically valuable constituents of milk. Increases in protein and fat content of milk have allowed increases in the yield of various products such as cheese and butter. However, for cheese and other applications where casein micelles play a crucial role in structure and stability, it is not only casein content, but also the properties of the casein micelles that determine processability. Of particular importance herein is the salt partition in milk, but it is unknown whether increased protein content has affected the milk salts and their distribution between casein micelles and milk serum. It was, therefore, the objective of this research to determine the salt composition and protein content for individual cow milk and bulk milk over a period of 1 yr and to compare these data to results obtained during the 1930s, 1950s, and 1960s in the last century. Calcium, magnesium, sodium, potassium, and phosphorus content were determined by inductively coupled plasma atomic emission spectrometry and inorganic phosphate, citrate, chloride, and sulfate content by anion-exchange chromatography in bulk milk and milk ultracentrifugate. In addition, ionic calcium and ionic magnesium concentration were determined by the Donnan membrane technique. We concluded that historical increase in milk yield and protein content in milk have resulted in correlated changes in casein content and the micellar salt fraction of milk. In addition, the essential nutrients, calcium, magnesium, and phosphorus in milk have increased the past 75yr; therefore, the nutritional value of milk has improved. PMID:23849643

Bijl, E; van Valenberg, H J F; Huppertz, T; van Hooijdonk, A C M

2013-09-01

129

Origin of fluid inclusion water in bedded salt deposits, Palo Duro Basin, Texas  

International Nuclear Information System (INIS)

Salt horizons in the Palo Duro Basin being considered for repository sites contain fluid inclusions which may represent connate water retained in the salt from the time of original salt deposition and/or external waters which have somehow penetrated the salt. The exact origin of this water is important to the question of whether or not internal portions of the salt deposit have been, and are likely to be, isolated from the hydrosphere for long periods of time. The 18O/16O and D/H ratios measured for water extracted from solid salt samples show the inclusions to be dissimilar in isotopic composition to meteoric waters and to formation waters above and below the salt. The fluid inclusions cannot be purely external waters which have migrated into the salt. The isotope data are readily explained in terms of mixed meteoric-marine connate evaporite waters which date back to the time of deposition and early diagenesis of the salt (>250 million years). Any later penetration of the salt by meteoric waters has been insufficient to flush out the connate brines

130

Statistical performance analysis of salt water cooled pressurized water reactors  

International Nuclear Information System (INIS)

Pressurized water reactors (PWRs) using salt or brackish cooling water are found to have significant long-term decreases in capacity factors and increases in forced outage rates (FORs) due to equipment failures and maintenance needs. Larger units have significantly lower capacity factors and higher FORs. The significance and magnitude of this correlation increases with unit age. Post-Three Mile Island effects are controlled for

131

Cross-contamination of Escherichia coli O157:H7 is inhibited by electrolyzed water combined with salt under dynamic conditions of increasing organic matter.  

Science.gov (United States)

Water can be a vector for foodborne pathogen cross-contamination during washing of vegetables if an efficient method of water disinfection is not used. Chlorination is the disinfection method most widely used, but it generates disinfection by-products such as trihalomethanes (THMs). Therefore, alternative disinfection methods are sought. In this study, a dynamic system was used to simulate the commercial conditions of a washing tank. Organic matter and the inoculum of Escherichia coli O157:H7 were progressively added to the wash water in the washing tank. We evaluated the effectiveness of the electrolyzed water (EW) when combining with the addition of salt (1, 0.5 and 0.15 g/L NaCl) on the pathogenic inactivation, organic matter depletion and THM generation. Results indicated that electrolysis of vegetable wash water with addition of salt (0.5 g/L NaCl) was able to eliminate E. coli O157:H7 population build-up and decrease COD accumulation while low levels of THMs were produced. PMID:25475317

Gómez-López, Vicente M; Gil, María I; Pupunat, Laurent; Allende, Ana

2015-04-01

132

Neuroendocrine regulation of salt and water metabolism  

Directory of Open Access Journals (Sweden)

Full Text Available Neurons which release atrial natriuretic peptide (ANPergic neurons have their cell bodies in the paraventricular nucleus and in a region extending rostrally and ventrally to the anteroventral third ventricular (AV3V region with axons which project to the median eminence and neural lobe of the pituitary gland. These neurons act to inhibit water and salt intake by blocking the action of angiotensin II. They also act, after their release into hypophyseal portal vessels, to inhibit stress-induced ACTH release, to augment prolactin release, and to inhibit the release of LHRH and growth hormone-releasing hormone. Stimulation of neurons in the AV3V region causes natriuresis and an increase in circulating ANP, whereas lesions in the AV3V region and caudally in the median eminence or neural lobe decrease resting ANP release and the response to blood volume expansion. The ANP neurons play a crucial role in blood volume expansion-induced release of ANP and natriuresis since this response can be blocked by intraventricular (3V injection of antisera directed against the peptide. Blood volume expansion activates baroreceptor input via the carotid, aortic and renal baroreceptors, which provides stimulation of noradrenergic neurons in the locus coeruleus and possibly also serotonergic neurons in the raphe nuclei. These project to the hypothalamus to activate cholinergic neurons which then stimulate the ANPergic neurons. The ANP neurons stimulate the oxytocinergic neurons in the paraventricular and supraoptic nuclei to release oxytocin from the neural lobe which circulates to the atria to stimulate the release of ANP. ANP causes a rapid reduction in effective circulating blood volume by releasing cyclic GMP which dilates peripheral vessels and also acts within the heart to slow its rate and atrial force of contraction. The released ANP circulates to the kidney where it acts through cyclic GMP to produce natriuresis and a return to normal blood volume

S.M. McCann

1997-04-01

133

Validation of spot-testing kits to determine iodine content in salt.  

Science.gov (United States)

Iodine deficiency disorders are a major public health problem, and salt iodization is the most widely practised intervention for their elimination. For the intervention to be successful and sustainable, it is vital to monitor the iodine content of salt regularly. Iodometric titration, the traditional method for measuring iodine content, has problems related to accessibility and cost. The newer spot-testing kits are inexpensive, require minimal training, and provide immediate results. Using data from surveys to assess the availability of iodized salt in two states in India, Madhya Pradesh and the National Capital Territory of Delhi, we tested the suitability of such a kit in field situations. Salt samples from Delhi were collected from 30 schools, chosen using the Expanded Programme on Immunization (EPI) cluster sampling technique. A single observer made the measurement for iodine content using the kit. Salt samples from Madhya Pradesh were from 30 rural and 30 urban clusters, identified by using census data and the EPI cluster sampling technique. In each cluster, salt samples were collected from 10 randomly selected households and all retailers. The 15 investigators performing the survey estimated the iodine content of salt samples in the field using the kit. All the samples were brought to the central laboratory in Delhi, where iodine content was estimated using iodometric titration as a reference method. The agreement between the kit and titration values decreased as the number of observers increased. Although sensitivity was not much affected by the increase in the number of observers (93.3% for a single observer and 93.9% for multiple observers), specificity decreased sharply (90.4% for a single observer and 40.4% for multiple observers). Due to the low specificity and resulting high numbers of false-positives for the kit when used by multiple observers ("real-life situations"), kits were likely to consistently overestimate the availability of iodized salt. This overestimation could result in complacency. Therefore, we conclude that until a valid alternative is available, the titration method should be used for monitoring the iodine content of salt at all levels, from producer to consumer, to ensure effectiveness of the programme. PMID:10994281

Pandav, C S; Arora, N K; Krishnan, A; Sankar, R; Pandav, S; Karmarkar, M G

2000-01-01

134

Receptacle model of salting-in by tetramethylammonium ions.  

Science.gov (United States)

Water is a poor solvent for nonpolar solutes. Water containing ions is an even poorer solvent. According to standard terminology, the tendency of salts to precipitate oils from water is called salting-out. However, interestingly, some salt ions, such as tetramethylammonium (TMA), cause instead the salting-in of hydrophobic solutes. Even more puzzling, there is a systematic dependence on solute size. TMA causes the salting-out of small hydrophobes and the salting-in of larger nonpolar solutes. We study these effects using NPT Monte Carlo simulations of the Mercedes-Benz (MB) + dipole model of water, which was previously shown to account for hydrophobic effects and ion solubilities in water. The present model gives a structural interpretation for the thermodynamics of salting-in. The TMA structure allows deep penetration by a first shell of waters, the dipoles of which interact electrostatically with the ion. This first water shell sets up a second water shell that is shaped to act as a receptacle that binds the nonpolar solute. In this way, a nonpolar solute can actually bind more tightly to the TMA ion than to another hydrophobe, leading to the increased solubility and salting-in. Such structuring may also explain why molecular ions do not follow the same charge density series as atomic ions do. PMID:21028768

Hribar-Lee, Barbara; Dill, Ken A; Vlachy, Vojko

2010-11-25

135

Characterization of water content dynamics and tracer breakthrough by 3-D electrical resistivity tomography (ERT) under transient unsaturated conditions  

Science.gov (United States)

Characterization of preferential flow and transport is still a major challenge but may be improved employing noninvasive, tomographic methods. In this study, 3-D time lapse electrical resistivity tomography (ERT) was employed during infiltration on an undisturbed, unsaturated soil core in a laboratory lysimeter. A tracer breakthrough was conducted during transient conditions by applying a series of short-term infiltrations, simulating natural precipitation events. The electrical response was quantitatively validated using data from a multicompartment suction sampler. Water content probes were also installed for ground-truthing of ERT responses. Water content variations associated with an infiltration front dominated the electrical response observed during individual short-term infiltration events, permitting analysis of water content dynamics from ERT data. We found that, instead of the application of an uncertain petrophysical function, shape measures of the electrical conductivity response might be used for constraining hydrological models. Considering tracer breakthroughs, the ERT observed voxel responses from time lapse tomograms at constant water contents in between infiltration events were used to quantitatively characterize the breakthrough curve. Shape parameters of the breakthrough derived from ERT, such as average velocity, were highly correlated with the shape parameters derived from local tracer breakthrough curves observed in the compartments of the suction plate. The study demonstrates that ERT can provide reliable quantitative information on both, tracer breakthroughs and water content variations under the challenging conditions of variable background electrical conductivity of the pore solution and non steady-state infiltration.

Wehrer, Markus; Slater, Lee D.

2015-01-01

136

Effects of carbon dioxide, water supply, and seasonality on terpene content and emission by Rosmarinus officinalis  

Energy Technology Data Exchange (ETDEWEB)

Rosmarinus officinalis L. plants were grown under carbon dioxide concentrations of 350 and 700 {mu}mol (atmospheric CO{sub 2} and elevated CO{sub 2}) and under two levels of irrigation (high water and low water) from October 1, 1994 to May 31, 1996. Elevated CO{sub 2} led on increasingly larger monthly growth rates than the atmospheric CO{sub 2} treatments. The increase was 9.5% in spring 1995, 23% in summer 1995, and 53% in spring 1996 in the high-water treatments, whereas in low-water treatments the growth response to elevated CO{sub 2} was constrained until the second year spring, when there was a 47% increase. The terpene concentrations was slightly larger in the elevated CO{sub 2} treatments than in atmospheric CO{sub 2} treatments and reached a maximum 37% difference in spring 1996. There was no significant effect of water treatment, likely as a result of a mild low water treatment for a Mediterranean plant. Terpene concentrations increased throughout the period of study, indicating possible age effects. The most abundant terpenes were {alpha}-pinene, cineole, camphor, borneol, and verbenone, which represented about 75% of the total. No significant differences were found in the terpene composition of the plants in the different treatments or seasons. The emission of volatile terpenes was much larger in spring (about 75 {mu}g/dry wt/hr) than in autumn (about 10 {mu}g/dry wt/hr), partly because of higher temperature and partly because of seasonal effect, but no significant differences was found because of CO{sub 2} or water treatment. The main terpene emitted was {alpha}-pinene, which represented about 50% of the total. There was no clear correlation between content and emission, either quantitatively or qualitatively. More volatile terpenes were proportionally more important in the total emission than in total content and in autumn than in spring.

Penuelas, J.; Llusia, J. [Universitat Autonoma, Barcelona (Spain)

1997-04-01

137

Dynamics of Confined Water Molecules in Aqueous Salt Hydrates  

Energy Technology Data Exchange (ETDEWEB)

The unusual properties of water are largely dictated by the dynamics of the H bond network. A single water molecule has more H bonding sites than atoms, hence new experimental and theoretical investigations about this peculiar liquid have not ceased to appear. Confinement of water to nanodroplets or small molecular clusters drastically changes many of the liquid’s properties. Such confined water plays a major role in the solvation of macro molecules such as proteins and can even be essential to their properties. Despite the vast results available on bulk and confined water, discussions about the correlation between spectral and structural properties continue to this day. The fast relaxation of the OH stretching vibration in bulk water, and the variance of sample geometries in the experiments on confined water obfuscate definite interpretation of the spectroscopic results in terms of structural parameters. We present first time-resolved investigations on a new model system that is ideally suited to overcome many of the problems faced in spectroscopical investigation of the H bond network of water. Aqueous hydrates of inorganic salts provide water molecules in a crystal grid, that enables unambiguous correlations of spectroscopic and structural features. Furthermore, the confined water clusters are well isolated from each other in the crystal matrix, so different degrees of confinement can be achieved by selection of the appropriate salt.

Werhahn, Jasper C.; Pandelov, S.; Yoo, Soohaeng; Xantheas, Sotiris S.; Iglev, H.

2011-04-01

138

Measurement of thickness and water content of soybean leaves by beta gauging  

International Nuclear Information System (INIS)

The effect of water stress over a period of seven days on the values of fresh leaf thickness, actual water content and the relative water content was studied using beta gauging technique in the leaves of two soybean varieties, PK-1029 and PK-1053. Measurements of these parameters were carried out using two different beta emitters 204Tl and 90Sr-90Y, and it was observed that even though the beta-particles from these sources had different end point energies, they yielded the same values of the physiological parameters. The variations in these parameters have been understood in terms of the changes in the meteorological factors such as the maximum atmospheric temperature, average relative humidity and the wind velocity. The results indicate that the leaves of variety PK-1053 are thinner as compared to those of PK-1029 and also, that the plants of variety PK-1053 can withstand greater degree of water stress as compared to the plants of variety PK-1029. (author). 16 refs., 1 tab., 3 figs

139

Salt minerals and waters from soils in Konya and Kenya  

OpenAIRE

This study deals with the relation between the mineralogical composition of salt assemblages and the composition of groundwaters from which these salts precipitated. A comparison was made between salts and waters sampled in the Konya Basin in Turkey and waters sampled in three different regions in Kenya.The chemical composition of waters from rivers entering the Konya Basin is different from the composition of those from rivers in Kenya. The initial composition of these rivers determines the ...

Vergouwen, L.

1981-01-01

140

Water, Vapor, and Salt Dynamics in a Hot Repository  

International Nuclear Information System (INIS)

The purpose of this paper is to report the results of a new model study examining the high temperature nuclear waste disposal concept at Yucca Mountain using MULTIFLUX, an integrated in-drift- and mountain-scale thermal-hydrologic model. The results show that a large amount of vapor flow into the drift is expected during the period of above-boiling temperatures. This phenomenon makes the emplacement drift a water/moisture attractor during the above-boiling temperature operation. The evaporation of the percolation water into the drift gives rise to salt accumulation in the rock wall, especially in the crown of the drift for about 1500 years in the example. The deposited salts over the drift footprint, almost entirely present in the fractures, may enter the drift either by rock fall or by water drippage. During the high temperature operation mode, the barometric pressure variation creates fluctuating relative humidity in the emplacement drift with a time period of approximately 10 days. Potentially wet and dry conditions and condensation on salt-laden drift wall sections may adversely affect the storage environment. Salt accumulations during the above-boiling temperature operation must be sufficiently addressed to fully understand the waste package environment during the thermal period. Until the questions are resolved, a below-boiling repository design is favored where the Alloy-22 will be less susceptible to localized corrosion. (authors)n. (authors)

141

Reducing radionuclide contents in drinking water  

International Nuclear Information System (INIS)

The results of a cost-benefit analysis of reducing radiation hazards to the population due to radionuclides in drinking water and to nuclear power plants operation are presented. Two aeration methods are used to reduce the radon content in drinking water -aeration in a shallow layer and aeration towers. The radon content can be reduced more effectively by a two-step arrangement of the aeration facility. A reduction of the content of radium, uranium and their daughter products is possible with the use of a modification of the processes common in water-works practice. The analysis of economic efficiency showed that for reducing radiation hazards to the population, it is much more effective to reduce the radionuclide contents in drinking water sources than, for instance, to reduce the tritium content in liquid effluents from nuclear power plants further below the projected level. (J.J.). 2 figs

142

Brines formed by multi-salt deliquescence  

Energy Technology Data Exchange (ETDEWEB)

The FY05 Waste Package Environment testing program at Lawrence Livermore National Laboratory focused on determining the temperature, relative humidity, and solution compositions of brines formed due to the deliquescence of NaCl-KNO{sub 3}-NaNO{sub 3} and NaCl-KNO{sub 3}-NaNO{sub 3}-Ca(NO{sub 3}){sub 2} salt mixtures. Understanding the physical and chemical behavior of these brines is important because they define conditions under which brines may react with waste canister surfaces. Boiling point experiments show that NaCl-KNO{sub 3}-NaNO{sub 3} and NaCl-KNO{sub 3}-NaNO{sub 3}-Ca(NO{sub 3}){sub 2} salt mixtures form brines that transform to hydrous melts that do not truly 'dry out' until temperatures exceed 300 and 400 C, respectively. Thus a conducting solution is present for these salt assemblages over the thermal history of the repository. The corresponding brines form at lower relative humidity at higher temperatures. The NaCl-KNO{sub 3}-NaNO{sub 3} salt mixture has a mutual deliquescence relative humidity (MDRH) of 25.9% at 120 C and 10.8% at 180 C. Similarly, the KNO{sub 3}-NaNO{sub 3} salt mixture has MDRH of 26.4% at 120 C and 20.0% at 150 C. The KNO{sub 3}-NaNO{sub 3} salt mixture salts also absorb some water (but do not appear to deliquesce) at 180 C and thus may also contribute to the transfer of electrons at interface between dust and the waste package surface. There is no experimental evidence to suggest that these brines will degas and form less deliquescent salt assemblages. Ammonium present in atmospheric and tunnel dust (as the chloride, nitrate, or sulfate) will readily decompose in the initial heating phase of the repository, and will affect subsequent behavior of the remaining salt mixture only through the removal of a stoichiometric equivalent of one or more anions. Although K-Na-NO{sub 3}-Cl brines form at high temperature and low relative humidity, these brines are dominated by nitrate, which is known to inhibit corrosion at lower temperature. Nitrate to chloride ratios of the NaCl-KNO{sub 3}-NaNO{sub 3} salt mixture are about NO{sub 3}:Cl = 19:1. The role of nitrate on corrosion at higher temperatures is addressed in a companion report (Dixit et al., 2005).

Carroll, S; Rard, J; Alai, M; Staggs, K

2005-11-04

143

Measurements of Iodine Contents in Some Iodized Salts (Consumer Level) in (Myanmar)  

International Nuclear Information System (INIS)

The amount of iodine contents in iodized salt (consumer level) of six brands in Myanmar were measured by means of volumetric method (WHO recommended) and vibrational spectroscopic technique. The results optained from both methods were in good agreement within the statistical error

144

Extraction of vanadium from campo Alegre de Lourdes (BA, Brazil) Fe-Ti-V ore by partial reduction/magnetic concentration/salt roasting/hot water leaching  

International Nuclear Information System (INIS)

A process under development at COPPE/UFRJ to rocover vanadium from a titaniferous magnetite type ore from Campo Alegre de Lourdes (Bahia, Brazil), throxgh magnetizing roasting/magnetic concentration/ salt roasting/hot water leaching, is described. The results of the experimental work carried cut up to present are in qualitative agrement with those of othar studies on salt roasting/water leaching of titaniferous magnetites. Is is discussed the existing relationship between the maximum percentags of vanadium extraction in the leaching and the salt roasting conditions. (author)

145

Errors in determination of soil water content using time-domain reflectometry caused by soil compaction around wave guides  

Energy Technology Data Exchange (ETDEWEB)

Application of time domain reflectometry (TDR) in soil hydrology often involves the conversion of TDR-measured dielectric permittivity to water content using universal calibration equations (empirical or physically based). Deviations of soil-specific calibrations from the universal calibrations have been noted and are usually attributed to peculiar composition of soil constituents, such as high content of clay and/or organic matter. Although it is recognized that soil disturbance by TDR waveguides may have impact on measurement errors, to our knowledge, there has not been any quantification of this effect. In this paper, we introduce a method that estimates this error by combining two models: one that describes soil compaction around cylindrical objects and another that translates change in bulk density to evolution of soil water retention characteristics. Our analysis indicates that the compaction pattern depends on the mechanical properties of the soil at the time of installation. The relative error in water content measurement depends on the compaction pattern as well as the water content and water retention properties of the soil. Illustrative calculations based on measured soil mechanical and hydrologic properties from the literature indicate that the measurement errors of using a standard three-prong TDR waveguide could be up to 10%. We also show that the error scales linearly with the ratio of rod radius to the interradius spacing.

Ghezzehei, T.A.

2008-05-29

146

Salt taste inhibition by cathodal current  

OpenAIRE

Effects of cathodal current, which draws cations away from the tongue and drives anions toward the tongue, depend on the ionic content of electrolytes through which the current is passed. To address the role of cations and anions in human salt tastes, cathodal currents of ?40 to ?80 µA were applied to human subjects’ tongues through supra-threshold salt solutions. The salts were sodium chloride, sodium bromide, potassium chloride, ammonium chloride, calcium chloride, sodium nitrate, so...

Hettinger, Thomas P.; Frank, Marion E.

2009-01-01

147

The influence of aqueous content in small scale salt screening--improving hit rate for weakly basic, low solubility drugs.  

Science.gov (United States)

Salt screening and selection is a well established approach for improving the properties of drug candidates, including dissolution rate and bioavailability. Typically during early development only small amounts of compound are available for solid state profiling, including salt screening. In order to probe large areas of experimental space, high-throughput screening is utilized and is often designed in a way to search for suitable crystallization parameters within hundreds or even thousands of conditions. However, the hit rate in these types of screens can be very low. In order to allow for selection of a salt form early within the drug development process whilst using smaller amounts of compounds, a screening procedure taking into account the compounds properties and the driving forces for salt formation is described. Experiments were carried out on the model compounds clotrimazole, cinnarizine itraconazole and atropine. We found an increase in crystalline hit rate for water-insoluble drugs crystallized from solutions that included at least 10% aqueous content. Conversely it was observed that compounds with greater water solubility did not benefit from aqueous content in salt screening, instead organic solvents lead to more crystalline screening hits. Results from four model compounds show that the inclusion of an aqueous component to the salt reaction can enhance the chance of salt formation and significantly improve the crystalline hit rate for low water soluble drugs. PMID:20553863

Tarsa, Peter B; Towler, Christopher S; Woollam, Grahame; Berghausen, Jörg

2010-09-11

148

Salt-assisted liquid-liquid microextraction with water-miscible organic solvents for the determination of carbonyl compounds by high-performance liquid chromatography.  

Science.gov (United States)

A simple and rapid method has been reported for the determination of carbonyl compounds involving reaction with 2,4-dinitrophenylhydrazine and extraction of hydrazones with water-miscible organic solvent acetonitrile when the phase separation occurs by addition of ammonium sulphate, a process called salt-assisted liquid-liquid microextraction. The extract was analyzed by high-performance liquid chromatography with UV detection at 360 nm. The procedure has been optimized with respect to solvent suitable for extraction, salt for phase separation between water and organic solvent, reaction temperature and reaction time. The method has been validated when a linear dynamic range was obtained between the amount of analyte and peak area of hydrazones in the range 7 microg-15 mg L(-1), the correlation coefficient over 0.9964-0.9991, and the limit of detection in the range 0.58-3.2 microg L(-1). Spiked water samples have been analyzed with adequate accuracy, and application of the method has been demonstrated in the analysis of benzaldehyde formed as oxidation product in pharmaceutical preparation where benzyl alcohol is used as preservative, and for a keto drug dexketoprofen. PMID:19836515

Gupta, Manju; Jain, Archana; Verma, Krishna K

2009-12-15

149

Oxidation by metal salts  

International Nuclear Information System (INIS)

Oxidation of toluene and para-substituted toluenes containing electron acceptor groups: p-toluic acid, p-methyltoluylate and p-nitrotoluene by ammonium cerium (4) nitrate and ammonium cerium (4) sulfate in aqueous solutions of trifluoroacetic acid in the presence of chlorides and bromides of alkali metals is studied. The rate and selectivity of oxidative halogenation in side chain and/or aromatic ring under the conditions studied depend both on the nature of substrate and halogenide-ion and on the reaction conditions and ligand surrounding of cerium (4) atom

150

Separation of alcohol-water mixtures using salts  

Energy Technology Data Exchange (ETDEWEB)

Use of a salt (KF or Na/sub 2/SO/sub 4/) to induce phase separation of alcohol-water mixtures was investigated in three process flowsheets to compare operating and capital costs with a conventional distillation process. The process feed was the Clostridia fermentation product, composed of 98 wt % water and 2 wt % solvents (70% 1-butanol, 27% 2-propanol, and 3% ethanol). The design basis was 150 x 10/sup 6/ kg/y of solvents. Phase equilibria and tieline data were obtained from literature and experiments. Three separation-process designs were developed and compared by an incremental economic analysis (+-30%) with the conventional separation technique using distillation alone. The cost of salt recovery for recycle was found to be the critical feature. High capital and operating costs make recovery of salt by precipitation uneconomical; however, a separation scheme using multiple-effect evaporation for salt recovery has comparable incremental capital costs ($1.72 x 10/sup 6/ vs $1.76 x 10/sup 6/) and lower incremental operating costs ($2.14 x 10/sup 6//y vs $4.83 x 10/sup 6//y) than the conventional separation process.

Card, J. C.; Farrell, L. M.

1982-04-01

151

Service (salt) water system life-cycle management evaluation  

International Nuclear Information System (INIS)

This document provides a description of how the Integrated Plant Assessment for Aging required by 10 CFR Part 54 was tailored at Calvert Cliffs Nuclear Power Plant to a system which had known reliability and availability concerns. This customizing of the requirements of the License Renewal Rule allowed many short term benefits to be gained from the implementation of a regulation normally associated only with extended plant operation. The Important to License Renewal Screening of the Salt Water Cooling System at Calvert Cliffs identified four important to license renewal functions performed by the system. The next step in the Integrated Plant Assessment for Aging would normally be to evaluate whether existing practices at the plant were effectively managing the age-related degradation of the components of the system so that these components could continue to perform the important functions through a license renewal term. In the case of the CCNPP Salt Water System, it was recognized early on that portions of the existing system needed to be replaced with an alternate design due to reliability, availability and maintainability concerns. Therefore, instead of evaluating the existing components for aging as part of the IPA process, it made more sense to determine the most beneficial replacement option for these components and design the new system components with aging management programs in mind. This report describes how the Salt Water System Life Cycle Management Evalua Water System Life Cycle Management Evaluation was conducted, from its inception to the planning stages of implementing its results

152

Water Content of Lunar Alkali Fedlspar  

Science.gov (United States)

Detection of indigenous hydrogen in a diversity of lunar materials, including volcanic glass, melt inclusions, apatite, and plagioclase suggests water may have played a role in the chemical differentiation of the Moon. Spectroscopic data from the Moon indicate a positive correlation between water and Th. Modeling of lunar magma ocean crystallization predicts a similar chemical differentiation with the highest levels of water in the K- and Th-rich melt residuum of the magma ocean (i.e. urKREEP). Until now, the only sample-based estimates of water content of KREEP-rich magmas come from measurements of OH, F, and Cl in lunar apatites, which suggest a water concentration of water content of the magma ocean would have water contents of 320 ppm for the bulk Moon and 1.4 wt % for urKREEP from plagioclase in ferroan anorthosites. Results and interpretation: NanoSIMS data from granitic clasts from Apollo sample 15405,78 show that alkali feldspar, a common mineral in K-enriched rocks, can have approx. 20 ppm of water, which implies magmatic water contents of approx. 1 wt % in the high-silica magmas. This estimate is 2 to 3 orders of magnitude higher than that estimated from apatite in similar rocks. However, the Cl and F contents of apatite in chemically similar rocks suggest that these melts also had high Cl/F ratios, which leads to spuriously low water estimates from the apatite. We can only estimate the minimum water content of urKREEP (+ bulk Moon) from our alkali feldspar data because of the unknown amount of degassing that led to the formation of the granites. Assuming a reasonable 10 to 100 times enrichment of water from urKREEP into the granites produces an estimate of 100-1000 ppm of water for the urKREEP reservoir. Using the modeling of and the 100-1000 ppm of water in urKREEP suggests a minimum bulk silicate Moon water content between 2 and 20 ppm. However, hydrogen loss was likely very significant in the evolution of the lunar mantle. Conclusions: Lunar granites crystallized between 4.3-3.8 Ga from relatively wet melts that degassed upon crystallization. The formation of these granites likely removed significant amounts of water from some mantle source regions, e.g. later mare basalts predicting derivation from a mantle with water. However, this would have been a heterogeneous pro-cess based on K distribution. Thus some, if not most of the mantle may not have been devolatilized by this process; as seen by water in volcanic glasses and melt inclusions.

Mills, R. D.; Simon, J. I.; Wang, J.; Alexander, C. M. O'D.; Hauri, E. H.

2016-01-01

153

Molecular dynamics study of salt–solution interface: Solubility and surface charge of salt in water  

International Nuclear Information System (INIS)

The NaCl salt–solution interface often serves as an example of an uncharged surface. However, recent laser-Doppler electrophoresis has shown some evidence that the NaCl crystal is positively charged in its saturated solution. Using molecular dynamics (MD) simulations, we have investigated the NaCl salt–solution interface system, and calculated the solubility of the salt using the direct method and free energy calculations, which are kinetic and thermodynamic approaches, respectively. The direct method calculation uses a salt–solution combined system. When the system is equilibrated, the concentration in the solution area is the solubility. In the free energy calculation, we separately calculate the chemical potential of NaCl in two systems, the solid and the solution, using thermodynamic integration with MD simulations. When the chemical potential of NaCl in the solution phase is equal to the chemical potential of the solid phase, the concentration of the solution system is the solubility. The advantage of using two different methods is that the computational methods can be mutually verified. We found that a relatively good estimate of the solubility of the system can be obtained through comparison of the two methods. Furthermore, we found using microsecond time-scale MD simulations that the positively charged NaCl surface was induced by a combination of a sodium-rich surface and the orientation of the interfacial water molecules

154

Investigation of proline amides and pyridinium salts as catalyst for direct aldol reactions in water  

International Nuclear Information System (INIS)

The catalytic potential of chiral proline amides and pyridinium salts in the aldol condensation in water was investigated. The aldol reactions of acetone with various aromatic aldehydes were carried out in water by using proline amide derivatives and pyridinium salts derived from chiral pyridine derivatives for the first time. The products were obtained in good yields within short reaction times. (author)

155

Projected Impact of Climate Change on the Water and Salt Budgets of the Arctic Ocean by a Global Climate Model  

Science.gov (United States)

The annual flux of freshwater into the Arctic Ocean by the atmosphere and rivers is balanced by the export of sea ice and oceanic freshwater. Two 150-year simulations of a global climate model are used to examine how this balance might change if atmospheric greenhouse gases (GHGs) increase. Relative to the control, the last 50-year period of the GHG experiment indicates that the total inflow of water from the atmosphere and rivers increases by 10% primarily due to an increase in river discharge, the annual sea-ice export decreases by about half, the oceanic liquid water export increases, salinity decreases, sea-ice cover decreases, and the total mass and sea-surface height of the Arctic Ocean increase. The closed, compact, and multi-phased nature of the hydrologic cycle in the Arctic Ocean makes it an ideal test of water budgets that could be included in model intercomparisons.

Miller, James R.; Russell, Gary L.

1996-01-01

156

Improvement in growth and leaf water relation parameters of sunflower and safflower plants with foliar application of nutrient solutions under salt stress  

International Nuclear Information System (INIS)

Effect of nutrient solutions viz., KNO/sub 3/, H/sub 3/BO/sub 3/, Fe EDTA, and their mixture applied through foliar spray on growth and water relation was assessed in sunflower and safflower plants under salt stress. Salt stress impaired growth by reducing fresh weight of both the plants. Imposition of salt stress also had adverse effects on leaf water relation parameters, relative leaf water content (RLWC), water potential (sigma w), osmotic potential (sigma s) and turgor potential (sigma p). All the water relation parameters were improved with the foliar application of nutrient solutions. The ameliorative effect of mineral nutrition on fresh biomass of both the plants under saline conditions was due to the nutrients-induced improvement in plant water status. (author)

157

Ice melting and crystallization in binary water-salt systems  

International Nuclear Information System (INIS)

Paper contains the results of comparison of the published data on physical and chemical properties of the Periodic system I and II group metal chlorides and sulfates (radius of cation, heat of salt solution in water) and position of eutectics point in the appropriate salt-water binary systems. In addition to metal chlorides one investigated, as well, into HCl and NH4Cl aqueous systems. It is shown that there are rather strict relationships between physical and chemical properties of some salts, nature of phase diagrams of the appropriate aqueous-salt systems and peculiarities of ice crystallization and melting there

158

Effects of liquid VOC concentration and salt content on partitioning equilibrium of hydrophilic VOC at air-sweat interface  

Science.gov (United States)

Volatile organic compounds (VOCs) must initially be absorbed by sweat on the surface of skin for human VOC dermal exposure. The partitioning equilibrium at the air-sweat interface is given by p=Cg*/C, where pc is the partitioning coefficient, and Cg* is the gaseous concentration in equilibrium with the aqueous VOC concentration ( CL) at a constant water temperature ( Tw). A series of thermodynamic functions of Cg*(C,T) are presented, as well as the values of pc, and the heat of gaseous-liquid phase transfer (? Htr) for tested VOCs, including iso-propanol (IPA, CL=12-120 mg L -1) and methyl ethyl ketone (MEK, CL=10-80 mg L -1) to determine the effects of liquid VOC concentration and salt contents of sweat on pc of hydrophilic VOCs. Experimental data reveal that the pc values of IPA and MEK drop as the liquid VOC concentrations increasing from 10 to 120 mg L -1. However, sodium salt content in human sweat (sodium chloride and sodium lactate) induces the effect of salt, indicating the increase in pc. Notably, neither urea nor ammonia in human sweat increase pc. Artificial sweat, consisting of sodium chloride 0.47%, urea 0.05%, ammonia 0.004% and sodium lactate 0.6%, was used to evaluate the increase in the pc values of IPA and MEK. The liquid VOC concentration effect simultaneously develops together with the salt effect on the partition at the interface of air-sweat for hydrophilic VOC solutions. The pc values of IPA for artificial sweat decrease as much as 32.5% as CL increases from 12 to 120 mg L -1 at 300 K, and those of MEK drop by as much as 70.9% as CL increases from 10 to 80 mg L -1 at 300 K. This investigation provides a basis for elucidating the assessment of human dermal exposure to hydrophilic VOCs.

Cheng, Wen-Hsi; Chu, Fu-Sui; Su, Tzy-I.

159

Bitumen and salt contents within the Quaternary sediments at Starunia palaeontological site and vicinity (Carpathian region, Ukraine  

Directory of Open Access Journals (Sweden)

Full Text Available Geochemical studies were conducted on bitumen and salts saturating the Pleistocene and Holocene sediments from an abandoned ozokerite mine in Starunia. This location is noted for the discovery of remnants of a mammoth and three woolly rhinoceroses in 1907, and a nearly completely preserved rhinoceros carcass in 1929. The bitumen (oil and brines (chloride ions were preserving agents for the large Pleistocene mammals. The main mass of organic carbon hosted in the Pleistocene muds is related to bitumen originating from oil migrating from deep accumulations within the Boryslav-Pokuttya Unit. The highest analysed bitumen content is 9.26 wt%. The chloride ion content, originating from highly concentrated brines ascending from the salt-bearing Miocene Vorotyshcha beds, vary from 0 to 4.66 wt% but this usually does not exceed 1 wt%. The natural pathways of underground fluids (oil, gas and water migration within the Quaternary sediments were disturbed by intensive ozokerite mining operations run between the last three decades of the 19th century and 1960. Therefore, the present preservation and conservation conditions of large, extinct mammals' remains can be different from those prevailing during the Pleistocene, when the mammals were buried. Taking into consideration the contents of the remaining preservatives: chloride and bitumen, the most favourable zone for fossils conservation and preservation is located close to boreholes Nos 22, 23, 28 and 36N, where the thickness of Pleistocene muds exceeds 2 metres. Generally, the spatial distributions of bitumen and chloride ion contents within the Holocene sediments and salt-bearing Miocene Vorotyshcha beds are very similar to those in the Pleistocene sediments.

Maciej J. KOTARBA

2009-01-01

160

Biomarkers of waterborne copper exposure in the guppy Poecilia vivipara acclimated to salt water  

International Nuclear Information System (INIS)

Highlights: •Acute effects of waterborne copper were evaluated in the estuarine guppy Poecilia vivipara. •Fishes were acutely exposed to waterborne copper in salt water. •Waterborne copper affects the response of several biochemical and genetic endpoints. •Catalase, reactive oxygen species, antioxidant capacity and lipid peroxidation are responsive to copper exposure. •Copper exposure induces DNA damages in fish erythrocytes. -- Abstract: The responses of a large suite of biochemical and genetic parameters were evaluated in tissues (liver, gills, muscle and erythrocytes) of the estuarine guppy Poecilia vivipara exposed to waterborne copper in salt water (salinity 24 ppt). Activities of antioxidant enzymes (superoxide dismutase, catalase, glutathione reductase, and glutathione S-transferase), metallothionein-like protein concentration, reactive oxygen species (ROS) content, antioxidant capacity against peroxyl radicals (ACAP), and lipid peroxidation (LPO) were evaluated in liver, gills, and muscle. Comet assay score and nuclear abnormalities and micronucleated cell frequency were analyzed in peripheral erythrocytes. The responses of these parameters were evaluated in fish exposed (96 h) to environmentally relevant copper concentrations (5, 9 and 20 ?g L?1). In control and copper-exposed fish, no mortality was observed over the experimental period. Almost all biochemical and genetic parameters proved to be affected by waterborne copper exposure. However, the response of catalase activity in liver, ROS, ACAP and LPO in muscle, gills and liver, and DNA damages in erythrocytes clearly showed to be dependent on copper concentration in salt water. Therefore, the use of these parameters could be of relevance in the scope of biomonitoring programs in salt water environments contaminated with copper

161

Biomarkers of waterborne copper exposure in the guppy Poecilia vivipara acclimated to salt water  

Energy Technology Data Exchange (ETDEWEB)

Highlights: •Acute effects of waterborne copper were evaluated in the estuarine guppy Poecilia vivipara. •Fishes were acutely exposed to waterborne copper in salt water. •Waterborne copper affects the response of several biochemical and genetic endpoints. •Catalase, reactive oxygen species, antioxidant capacity and lipid peroxidation are responsive to copper exposure. •Copper exposure induces DNA damages in fish erythrocytes. -- Abstract: The responses of a large suite of biochemical and genetic parameters were evaluated in tissues (liver, gills, muscle and erythrocytes) of the estuarine guppy Poecilia vivipara exposed to waterborne copper in salt water (salinity 24 ppt). Activities of antioxidant enzymes (superoxide dismutase, catalase, glutathione reductase, and glutathione S-transferase), metallothionein-like protein concentration, reactive oxygen species (ROS) content, antioxidant capacity against peroxyl radicals (ACAP), and lipid peroxidation (LPO) were evaluated in liver, gills, and muscle. Comet assay score and nuclear abnormalities and micronucleated cell frequency were analyzed in peripheral erythrocytes. The responses of these parameters were evaluated in fish exposed (96 h) to environmentally relevant copper concentrations (5, 9 and 20 ?g L{sup ?1}). In control and copper-exposed fish, no mortality was observed over the experimental period. Almost all biochemical and genetic parameters proved to be affected by waterborne copper exposure. However, the response of catalase activity in liver, ROS, ACAP and LPO in muscle, gills and liver, and DNA damages in erythrocytes clearly showed to be dependent on copper concentration in salt water. Therefore, the use of these parameters could be of relevance in the scope of biomonitoring programs in salt water environments contaminated with copper.

Machado, Anderson Abel de Souza [Universidade Federal do Rio Grande, Programa de Pós-Graduação em Oceanografia Biológica, Av. Itália km 8, 96201-900 Rio Grande, Rio Grande do Sul (Brazil); Hoff, Mariana Leivas Müller [Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Av. Itália km 8, 96201-900 Rio Grande, Rio Grande do Sul (Brazil); Klein, Roberta Daniele [Universidade Federal do Rio Grande, Programa de Pós-Graduação em Ciências Fisiológicas – Fisiologia Animal Comparada, Av. Itália km 8, 96201-900 Rio Grande, Rio Grande do Sul (Brazil); Cardozo, Janaina Goulart [Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Av. Itália km 8, 96201-900 Rio Grande, Rio Grande do Sul (Brazil); Giacomin, Marina Mussoi [Universidade Federal do Rio Grande, Programa de Pós-Graduação em Ciências Fisiológicas – Fisiologia Animal Comparada, Av. Itália km 8, 96201-900 Rio Grande, Rio Grande do Sul (Brazil); Pinho, Grasiela Lopes Leães [Universidade Federal do Rio Grande, Instituto de Oceanografia, Av. Itália km 8, 96201-900 Rio Grande, Rio Grande do Sul (Brazil); and others

2013-08-15

162

Effect of different levels of water consumptive use of squash under drip irrigation system on salt distribution, yield and water use efficiency  

International Nuclear Information System (INIS)

This study aims to trace the distribution of salts and fertilizers through drip irrigation system and the response of squash (yield and water use efficiency) to irrigation treatments, i.e. T1 (100 % ETc), T2 (75 % ETc) and T3 (50 % ETc). This study was carried out in Inshas sandy soil at the farm of Soil and Water Research Department, Nuclear Research Centre, Atomic Energy Authority, Egypt. Soil samples were taken from three sites (0, 12.5 and 25 cm distance from the emitters between drippers and laterals lines) for evaluating the salt content (horizontal and vertical directions within the soil depths). The obtained data pointed out that salt accumulation was noticed at the surface layer and was affected by the direction of soil water movement (horizontal and vertical motion). The highest salt concentrations were in 75 % and 50 % ETc treatments between emitters and laterals. As for the three sites, salt concentration behaved in the sequence: 25 >12.5 > 0 cm sites. For squash yield, the first treatment produced high yield without significant differences between the second treatment so, 75 % ETc treatment was considered the best one for saving water

163

Biochemical Changes Associated With Giving PALUDAL Salt In The Drinking Water Of Rats  

International Nuclear Information System (INIS)

Three groups of adult male albino rats were given either tap water (control) or saline water (1 % unrefined paludal salt dissolved in tap water or 1 % pure chemically synthesized NaCl in tap water). The experiment was carried out under hot summer conditions. At the end of 28 days of the treatment, blood samples were collected to follow up the biochemical alterations induced by paludal salt intake in kidney, liver and thyroid function tests besides serum electrolytes since unrefined paludal salt is being used extensively nowadays by Egyptian people as a table salt which comprises risks to human health.The results revealed that drinking water containing high level of either pure or unrefined crude salts led to significant elevation of serum urea, creatinine, sodium, potassium, aspartate amino transferase (AST), alanine amino transferase (ALT) and alkaline phosphatase (ALP). Serum triiodothyronine (T3) and thyroxine (T4) were significantly depressed in both groups received high levels of salt in their drinking water. The level of serum total protein was decreased and albumin was negatively affected by salinity of water especially in paludal group while serum globulin was significantly increased in the other two groups. The biochemical alterations observed in rats as a result of drinking water containing paludal salt were more pronounced than those occurred in rats drank tap water plus pure NaCl.

164

Correlation among cirrus ice content, water vapor and temperature in the TTL as observed by CALIPSO and Aura/MLS  

Directory of Open Access Journals (Sweden)

Full Text Available Water vapor in the tropical tropopause layer (TTL has a significant radiative cooling effect on the Earth's climate system. As a source for cirrus clouds, however, it can also indirectly produce infrared heating. The amount of water vapor in the TTL is strongly controlled by temperature (correlation r=0.94 with a seasonal cycle of ~1–2 ppm vmr in amplitude at 100 hPa and minimum values in Northern Hemisphere winter (December–January-February, DJF. Studying the A-Train CALIPSO cirrus and MLS water vapor measurements, we find that the cirrus seasonal cycle is highly (r=?0.9 anticorrelated with the water vapor variation in the TTL, showing higher cloud occurrence during DJF. We further investigate the anticorrelation on a regional scale and find that the high anticorrelation occurs generally in the ITCZ (Intertropical Convergence Zone. The seasonal cycle of the cirrus ice water content is also highly anticorrelated to water vapor (r=?0.91 and our results support the hypothesis that the total water is roughly constant in the TTL at 100 hPa. Temperature acts as a main regulator for balancing the partition between water vapor and cirrus clouds. Thus, to a large extent, the depleting water vapor in the TTL during DJF is a manifestation of cirrus formation.

T. Flury

2011-09-01

165

Effect of chloride content of molten nitrate salt on corrosion of A516 carbon steel.  

Energy Technology Data Exchange (ETDEWEB)

The corrosion behavior of A516 carbon steel was evaluated to determine the effect of the dissolved chloride content in molten binary Solar Salt. Corrosion tests were conducted in a molten salt consisting of a 60-40 weight ratio of NaNO{sub 3} and KNO{sub 3} at 400{sup o}C and 450{sup o}C for up to 800 hours. Chloride concentrations of 0, 0.5 and 1.0 wt.% were investigated to determine the effect on corrosion of this impurity, which can be present in comparable amounts in commercial grades of the constituent salts. Corrosion rates were determined by descaled weight losses, corrosion morphology was examined by metallographic sectioning, and the types of corrosion products were determined by x-ray diffraction. Corrosion proceeded by uniform surface scaling and no pitting or intergranular corrosion was observed. Corrosion rates increased significantly as the concentration of dissolved chloride in the molten salt increased. The adherence of surface scales, and thus their protective properties, was degraded by dissolved chloride, fostering more rapid corrosion. Magnetite was the only corrosion product formed on the carbon steel specimens, regardless of chloride content or temperature.

Bradshaw, Robert W.; Clift, W. Miles

2010-11-01

166

Simulation of Exterior Conditions in Permanently Closed Soil Chambers by Controlling Air Flow, Soil Water Content, and Temperature  

International Nuclear Information System (INIS)

Volatile substances and gases resulting e.g. from degradation processes of chemicals in soils emit into the atmosphere and no chemical mass balance is complete without considering this path. Closed soil chambers allow the evaluation of this transfer to the atmosphere. This study deals with the influence of soil chambers with a glass plate cover on physical soil conditions in the chambers and the possibility to simulate the exterior conditions within the chambers. The water content immediately at the soil surface is an important factor for the microbial activity and the transfer of gaseous compounds to the atmosphere as well. It is monitored by specially designed water content sensors in 1 cm depth in the chamber and as control outside. Funnels with a cross section equal to the soil surface area of the chamber collect the rain water and channel it into the soil chamber. This results in soil water content in the chambers very similar to that outside. For the purpose of analysing 14CO2 and volatile 14C-compounds, air is permanently pumped through the chamber. In order to simulate natural conditions, the wind speed is measured 1 cm above the soil surface outside the chambers. A control circuit adjusts the air flow through the chamber to a value corresponding to the wind speed outside. Temperature measurements in 1 cm depth verify that there is no significant difference between the soil chamber and the control outsidethe control outside

167

Avaliação da salinização de açudes no semi-árido brasileiro por ICP-AES Evaluation of the salt accumulation process in water resources in the Brazilian semi - arid area by ICP-- AES  

OpenAIRE

The salt accumulation process in some reservoirs of regular and irregular use (from 10 to 50 years of constrution), located in the Southeast of Bahia State was evaluated. Inductively coupled plasma atomic emission spectrometry was used to evaluate the concentrations of Na, K, Ca and Mg in water samples from inside and upstream of the reservoirs. The results showed that for reservoirs of irregular use, the salt accumulation, indicated by the tracer Na, increases with the age of the reservoirs,...

José Soares dos Santos; Elisabeth de Oliveira; Sérgio Massaro

2000-01-01

168

Effects of Soil and Water Content on Methyl Bromide Oxidation by the Ammonia-Oxidizing Bacterium Nitrosomonas europaea†  

OpenAIRE

Little information exists on the potential of NH3-oxidizing bacteria to cooxidize halogenated hydrocarbons in soil. A study was conducted to examine the cooxidation of methyl bromide (MeBr) by an NH3-oxidizing bacterium, Nitrosomonas europaea, under soil conditions. Soil and its water content modified the availability of NH4+ and MeBr and influenced the relative rates of substrate (NH3) and cosubstrate (MeBr) oxidations. These observations highlight the complexity associated with characterizi...

Duddleston, Khrystyne N.; Bottomley, Peter J.; Porter, Angela; Arp, Daniel J.

2000-01-01

169

Estimated urinary salt excretion by a self-monitoring device is applicable to education of salt restriction.  

Science.gov (United States)

The objective was to investigate the validity of a self-monitoring device that estimates 24-h urinary salt excretion from overnight urine samples as a tool for education regarding salt restriction. Twenty healthy volunteers consumed test meals for 14 days, with salt content as follows: 10?g (days 1-5); 5?g (days 6-8, 12 and 14); and 13?g (days 9-11 and 13). On days 2-15, urinary salt excretion was estimated from overnight urine samples by a self-monitoring device. Twenty-four-hour urine samples were collected on days 5 and 8 to measure salt excretion directly. Blood pressure was measured in the morning and during sleep on days 1-15. Estimated urinary salt excretion measured by the device showed a correlation with salt intake, and the ratio of estimated urinary salt excretion to salt intake was 0.84±0.10 (days 2-6), 1.27±0.28 (days 7-9), 0.70±0.11 (days 10-12), 1.37±0.22 (day 13), 0.68±0.13 (day 14) and 1.33±0.19 (day 15). The correlation between estimated urinary salt excretion measured by a device and directly measured 24-h urinary salt excretion was significant (r=0.65, Psalt intake, but not during 5?g salt intake. Blood pressure in the morning was not influenced by the change in salt intake, but systolic pressure during sleep showed a significant increase or decrease according to the levels of salt intake. In conclusion, a self-monitoring device, which can estimate 24-h urinary salt excretion from overnight urine samples, is considered to be a practical tool for education regarding salt restriction, although a similar future investigation is needed in older and/or hypertensive subjects. PMID:25339061

Yasutake, Kenichiro; Horita, Noriko; Murata, Yusuke; Koyama, Susumu; Enjoji, Munechika; Tsuchihashi, Takuya

2015-02-01

170

Barley growth and plant mineral content of plant grown from seeds irradiated by low doses of gamma irradiated and cultured on salt media  

International Nuclear Information System (INIS)

Seeds of two barley White Arabi (WA) Pakistani PK30163 (PK) were irradiated with three doses 0,15 and 20 Gy of gamma irradiation. Then they were cultured on (Coic-Lesaint) nutrient media containing several concentrations of NaCl (0, 10, 50, and 100 mmol). The irradiation doses did not affect the shoot growth of plants, whereas the combination between 15 Gy and 50 and 100 mmol NaCl decreased significantly the root growth. Doses of 0 and 20 Gy and 10 mmol NaCl had a positive effect on WA variety wet weight. The 20 Gy and 10 and 50 mmol NaCl significantly reduced the wet weight of PK variety. Dry weight of WA variety was decreased, when the seeds were irradiated by 15 Gy and cultured on media containing 10 and 50 mmol NaCl. WA and PK content of Ca++ increased when weeds were irradiated by 15 Gy (WA) and 20 Gy (PK) and grown on media containing 10 mmol NaCl. The content of Mg++ and K++ of 2 varieties were increased, when seeds were cultured on media containing 10 mmol NaCl. Positive relationship was noticed between Na+ and Cl- contents and NaCl concentrations in the media. The NaCl concentrations correlated with the irradiation, negatively effected the total N % of the WA variety, whereas in the absence of irradiation, 10 and 50 mmol NaCl had a positive effect on the total N % of PK variety. Similar effects were produced for the last variety with the dose of 15 Gy and NaCl concentrations in the media. Concentration of 100 mmol NaCl positively affect PO4-- of unirradiated WA variety, but PO-- of all plants of PK variety was increased with 10 and 50 mmol NaCl. The content of SO4-- of 2 varieties was increased, when the seeds were exposed to the irradiation of 15 and 20 Gy and cultured on a media containing 10 and 50 mmol NaCl. The ratio of Na/Cl, was generally different from 1 and the Cl- content was higher than Na+ content, in seedlings of both barley varieties. (author)

171

On the salt-induced activation of lyophilized enzymes in organic solvents: Effect of salt kosmotropicity on enzyme activity  

Energy Technology Data Exchange (ETDEWEB)

The dramatic activation of enzymes in nonaqueous media upon co-lyophilization with simple inorganic salts has been investigated as a function of the Jones-Dole B coefficient, a thermodynamic parameter for characterizing the salt's affinity for water and its chaotropic (water-structure breaking) or kosmotropic (water-structure making) character. In general, the water content, active-site content, and transesterification activity of freeze-dried subtilisin Carlsberg preparations containing >96% w/w salt increased with increasing kosmotropicity of the activating salt. Degrees of activation relative to the salt-free enzyme ranged from 33-fold for chaotropic sodium iodide to 2,480-fold for kosmotropic sodium acetate. Exceptions to the general trend can be explained by the mechanical properties and freezing characteristics of the salts undergoing lyophilization. The profound activating effect can thus be attributed in part to the stabilizing (salting-out) effect of kosmotropic salts and the phenomenon of preferential hydration.

Ru, M.T.; Hirokane, S.Y.; Lo, A.S.; Dordick, J.S.; Reimer, J.A.; Clark, D.S.

2000-03-01

172

Water Content of Lunar Alkali Fedlspar  

Science.gov (United States)

Detection of indigenous hydrogen in a diversity of lunar materials, including volcanic glass, melt inclusions, apatite, and plagioclase suggests water may have played a role in the chemical differentiation of the Moon. Spectroscopic data from the Moon indicate a positive correlation between water and Th. Modeling of lunar magma ocean crystallization predicts a similar chemical differentiation with the highest levels of water in the K- and Th-rich melt residuum of the magma ocean (i.e. urKREEP). Until now, the only sample-based estimates of water content of KREEP-rich magmas come from measurements of OH, F, and Cl in lunar apatites, which suggest a water concentration of plagioclase in ferroan anorthosites. Results and interpretation: NanoSIMS data from granitic clasts from Apollo sample 15405,78 show that alkali feldspar, a common mineral in K-enriched rocks, can have approx. 20 ppm of water, which implies magmatic water contents of approx. 1 wt % in the high-silica magmas. This estimate is 2 to 3 orders of magnitude higher than that estimated from apatite in similar rocks. However, the Cl and F contents of apatite in chemically similar rocks suggest that these melts also had high Cl/F ratios, which leads to spuriously low water estimates from the apatite. We can only estimate the minimum water content of urKREEP (+ bulk Moon) from our alkali feldspar data because of the unknown amount of degassing that led to the formation of the granites. Assuming a reasonable 10 to 100 times enrichment of water from urKREEP into the granites produces an estimate of 100-1000 ppm of water for the urKREEP reservoir. Using the modeling of and the 100-1000 ppm of water in urKREEP suggests a minimum bulk silicate Moon water content between 2 and 20 ppm. However, hydrogen loss was likely very significant in the evolution of the lunar mantle. Conclusions: Lunar granites crystallized between 4.3-3.8 Ga from relatively wet melts that degassed upon crystallization. The formation of these granites likely removed significant amounts of water from some mantle source regions, e.g. later mare basalts predicting derivation from a mantle with <10 ppm water. However, this would have been a heterogeneous pro-cess based on K distribution. Thus some, if not most of the mantle may not have been devolatilized by this process; as seen by water in volcanic glasses and melt inclusions.

Mills, R. D.; Simon, J. I.; Wang, J.; Alexander, C. M. O'D.; Hauri, E. H.

2016-01-01

173

Determination of D2O contents of water at low levels by mass spectrometry: water-hydrogen isotope equilibration method  

International Nuclear Information System (INIS)

A simple analytical method for the determination of D2O concentration of water at low levels (below 10 mol%) is established. Hydrogen gas is brought into isotope equilibrium with samples of water in the presence of hydrophobic platinum catalyst. Isotope exchange equilibrium is attained within 30 min. Isotopic analysis of the equilibrated hydrogen gas is performed with mass spectrometry. Relative standard deviation is 1 ? 5 % for D2O concentration in the range 0.07 ? 10 mol%. Absolute determination of D2O is possible by making calibration with standard samples of known D2O concentration. (author)

174

Development of spent salt treatment technology by zeolite column system  

International Nuclear Information System (INIS)

In the pyrometallurgical reprocessing of metal fuel, the spent electrorefiner salt containing fission product (FP) elements is purified and reused. For this purpose, a salt treatment process by using selective absorption of FPs on zeolite 4A is under development. For obtaining the basic data of salt treatment process by using 'column type method' in which molten salt flows through columns filled with zeolite, an experimental apparatus equipped with a fraction collector was developed. The relationship between velocity of molten salt passing through the columns filled with zeolite 4A powder and argon gas pressure to push the molten salt through the columns was measured by using columns of 1 cm in inner diameter and 10 cm or 30 cm in length. The average flow velocity increased in proportional to the gas pressure and decreased inversely proportional to the column length. The relationship between velocity and gas pressure was close to that of obtained by using water, whose kinematic viscosity is similar to that of molten LiCl-KCl salt. Additionally, the absorption behaviour of cesium, which was used as a representative of univalent FP elements, on zeolite 4A in the columns was measured by taking the effluent molten salt samples by using the fraction collector. It was revealed that the decontamination factor of cesium was highest at the beginning of the salt flow and the value decreased with the increase of amount of the passed molten salt. From these results, feasibility oen salt. From these results, feasibility of the zeolite column system for purification and recycle of the spent salt was confirmed. (author)

175

Vadose Zone Transport Field Study: Soil Water Content Distributions by Neutron Moderation  

Energy Technology Data Exchange (ETDEWEB)

Contaminant transport through the vadose zone is a complex process controlled largely by interactions between subsurface lithologic features, water flow, and fluid properties. Understanding the processes controlling transport is an important prerequisite to the development and implementation of effective soil and ground water remediation programs. However, difficulties in directly observing and sampling the subsurface can complicate attempts to better describe subsurface transport processes and is mostly responsible for the large amount of uncertainty associated with vadose zone processes. The reduction of the uncertainty has been identified as a site need at Hanford by the STCG and the National Research Council (2000a) and is a key aspect of the site?s science and technology effort.

Ward, Anderson L.; Caldwell, Todd G.; Gee, Glendon W.

2000-10-01

176

Ultrasonic characterization of pork meat salting  

Science.gov (United States)

Salting process plays a key role in the preservation and quality of dry-cured meat products. Therefore, an adequate monitoring of salt content during salting is necessary to reach high quality products. Thus, the main objective of this work was to test the ability of low intensity ultrasound to monitor the salting process of pork meat. Cylindrical samples (diameter 36 mm, height 60±10 mm) of Biceps femoris were salted (brine 20% NaCl, w/w) at 2 °C for 1, 2, 4 and 7 days. During salting and at each experimental time, three cylinders were taken in order to measure the ultrasonic velocity at 2 °C. Afterwards, the cylinders were split in three sections (height 20 mm), measuring again the ultrasonic velocity and determining the salt and the moisture content by AOAC standards. In the whole cylinders, moisture content was reduced from 763 (g/kg sample) in fresh samples to 723 (g/kg sample) in samples salted for 7 days, while the maximum salt gain was 37.3 (g/kg sample). Although, moisture and salt contents up to 673 and 118 (g/kg sample) were reached in the sections of meat cylinders, respectively. During salting, the ultrasonic velocity increased due to salt gain and water loss. Thus, significant (pmeat salting processes carried out in the food industry.

García-Pérez, J. V.; De Prados, M.; Pérez-Muelas, N.; Cárcel, J. A.; Benedito, J.

2012-12-01

177

Evaluation of salt content in school meals / Avaliação do conteúdo de sal em refeições escolares  

Scientific Electronic Library Online (English)

Full Text Available OBJETIVO: Considerando que a pressão arterial elevada constitui um dos maiores fatores de risco para as doenças cardiovasculares e sua associação ao consumo elevado de sal, bem como o fato de as escolas serem considerados ambientes de excelência para fomentar a aquisição de bons hábitos alimentares [...] e promover a saúde, o objetivo deste estudo foi avaliar o conteúdo de sal presente nas refeições escolares e a percepção dos consumidores sobre o sabor salgado. MÉTODOS: Foram recolhidas refeições nas cantinas das escolas, analisando-se todos os seus componentes (pão, sopa e prato principal). A quantificação de sal foi realizada com um medidor de sal portátil. Para a avaliar a percepção dos consumidores foi desenvolvido e aplicado um questionário aos alunos das escolas preparatórias e secundárias. RESULTADOS: Foram analisados 798 componentes de refeições. O pão apresentou o valor mais elevado de sal, com média de 1,35 g/100 g (SD=0.12). O conteúdo de sal nas sopas apresentou média de 0,72 g/100 g a 0,80 g/100 g (p=0,05) e, nos pratos principais, de 0,71 g/100 a 0,97 g/100 g (p=0,05). Em média, as refeições escolares disponibilizaram entre 2,83 e 3,82 g de sal por porção servida, o que representa de duas a cinco vezes mais em relação à dose diária recomendada para crianças e jovens. Para a maioria dos estudantes, o sabor das refeições foi percebido como sendo nem salgado nem insosso, o que parece demonstrar adaptação à intensidade/ quantidade de sal consumida. CONCLUSÃO: Escolhas alimentares saudáveis e adequadas só são possíveis se sustentadas por um ambiente que as facilite. Considerando o impacto que o consumo de sal tem na saúde, em particular nas doenças crônicas, a implementação de estratégias de redução de sal - nas indústrias, serviços de catering e restaurantes -, é imperativa, em particular direcionada para o público mais jovem. Abstract in english OBJECTIVE: High blood pressure is a major rick factor for cardiovascular disease, and it is closely associated with salt intake. Schools are considered ideal environments to promote health and proper eating habits. Therefore the objective of this study was to evaluate the amount of salt in meals se [...] rved in school canteens and consumers' perceptions about salt. METHODS: Meals, including all the components (bread, soup, and main dish) were retrieved from school canteens. Salt was quantified by a portable salt meter. For food perception we constructed a questionnaire that was administered to high school students. RESULTS: A total of 798 food samples were analysed. Bread had the highest salt content with a mean of 1.35 g/100 g (SD=0.12). Salt in soups ranged from 0.72 g/100 g to 0.80 g/100 g (p=0.05) and, in main courses, from 0.71 g/100 to 0.97 g/100g (p=0.05). The salt content of school meals is high with a mean value of 2.83 to 3.82 g of salt per meal. Moreover, a high percentage of students consider meals neither salty nor bland, which shows they are used to the intensity/amount of salt consumed. CONCLUSION: The salt content of school meals is high, ranging from 2 to 5 times more than the Recommended Dietary Allowances for children, clearly exceeding the needs for this population, which may pose a health risk. Healthy choices are only possible in environments where such choices are possible. Therefore, salt reduction strategies aimed at the food industry and catering services should be implemented, with children and young people targeted as a major priority.

Cláudia Alexandra Colaço Lourenço, Viegas; Jorge, Torgal; Pedro, Graça; Maria do Rosário Oliveira, Martins.

2015-04-01

178

Determination of potassium iodide in table salt  

Directory of Open Access Journals (Sweden)

Full Text Available The samples of table salt bought in Belgrade supermarkets are analysed in this paper. The method of indirect iodometry was used in the process of the analysis, and received results were converted into the content of KI in mg/kg of salt. Beside the content of KI, the content of NaCl was also determined, counted to dry meter and water content, and received results were compared with the requests determined by Regulations of Table Salt Quality Meant for Human Diet and by manufacturers' declaration. Received results show that the volumetric method of indirect iodometry, applied in this analysis, is very reliable for determination of potassium iodine in table salt, because of its high precision and reproducibility of the analysis results. All received results show that the samples of table salt which can be bought in supermarkets are according to the demands given by Regulations. Only one sample (evaporated salt has significantly less mass of KI than it is determined by Regulations, but also by manufacturer's declaration. Measured humidity in the samples of table salt received from sea salt (sample 1 is higher than humidity in the samples received from rock salt as the result of magnesium presence in sea salt, which is hygroscopic material. Although samples 5 and 6 also originate from sea salt, their smaller humidity is the result of additional heating and salt processing. .

Rajkovi? Miloš B.

2009-01-01

179

PENENTUAN KADAR IODIDA DAN IODAT DALAM GARAM BERIODIUM DENGAN METODE KROMATOGRAFI CAIR KENERJA TINGGI PASANGAN ION [Determination of Iodate and Iodide Content in Iodized Salt By Ion Pair High Performance Liquid Chromatography Method  

Directory of Open Access Journals (Sweden)

Full Text Available Two species of iodine, i.e. iodide and iodate in commercial iodized salt were determined using ion pair HPLC. From 15 samples analysed, the iodide and iodate content ranged from 24,05 ± 2,51 to 70,25 ± 3,78 ppm and from 31,43 ± 8,10 to 87,59 ± 0,44 ppm, respectively. The method used was found satisfactory in terms of precission, accuracy, sensitivity and selectivity, therefore the method seem acceptable for the determination of iodide and iodate content in iodized salt samples.

Wisnu Cahyadi1

2004-04-01

180

Water content reflectometer calibration and field use  

Science.gov (United States)

Automated soil water content can be used to help determine upward water movement from a shallow water table. Apparent permittivity determined from dielectric probes is related to more than soil water content for soils high in smectite clays. The purpose of this study was to calibrate and use CS616 w...

181

Assessment of drinking water radioactivity content by liquid scintillation counting: Set-up of high sensitivity and emergency procedures  

International Nuclear Information System (INIS)

Full text: Assessment of drinking water radioactivity content is a main topic both in normal and in emergency situations, as those arising from accidental and terroristic events. The evaluation of gross alpha/beta and individual radionuclides concentrations usually requires specific sample treatments, purification and measuring techniques. In our institute a step by step procedure has been developed to measure the radioactivity content of drinking water by a single radiometric technique, namely low level liquid scintillation counting (LSC). LSC was equipped with an alpha-beta discrimination device and has been coupled to quick radiochemical procedures. In emergency situations, a gross activity screening is carried out without any sample treatment by a single and quick liquid scintillation counting. A few becquerel per liter alpha and beta activity can be checked in 24 hours in more than one hundred samples. More sensitive gross alpha and beta measurement can be performed on water samples after preconcentration by evaporation under controlled conditions. This procedure allows the determination of the actual gross alpha and beta activity of most drinking waters. Total and isotopic uranium content is measured by selective extraction followed LSC. This procedure is less cumbersome than the traditional one (chemical separation followed by electrodeposition and alpha spectrometry) and allows evaluation of 234U/238U ratio. Then a quick check of depletedup>U ratio. Then a quick check of depleted uranium contamination in a wide number of samples is also possible. 226Ra and 228Ra can be directly measured in a few mBq/l concentrations after specific concentration and purification steps. The procedure has proven to be quick and highly specific. Our emergency screening procedure has been adopted by all district laboratories of Lombardia Environmental Protection Agency to face both accidental and intentional drinking water contaminations. High sensitivity gross alpha and beta, uranium and radium analytical procedures have been applied to the first extensive monitoring program of natural radioactivity in Lombardia drinking waters, in compliance with the most recent European Council Directives. Reduced equipment requirements and relative readiness of radiochemical procedures make LSC an attractive technique, which can be easily implemented in new laboratories. (author)

182

Salt and fat contents in preparations at commercial restaurants in Goiânia-GO  

Directory of Open Access Journals (Sweden)

Full Text Available Objective: To evaluate the sodium and fat contents added to preparations of commercial restaurants in Goiânia-GO, Brazil. Methods: This was an observational, cross-sectional and descriptive study. It included ‘pay-per-weight’ restaurants with a medium standard menu and having as daily preparations white rice, beans and grilled chicken. Among the establishments with these characteristics, three agreed to participate. The production process of the above-mentioned preparations was accompanied for three non-consecutive days in each establishment. For quantification of sodium and fat added into the preparations, oil and salt were weighed, as well as the finished preparation; the weight of the standard portion and the yield of the preparation expressed in number of portions prepared were settled. From these data, the per capita amount of salt and oil added to cook one portion of each kind of preparation was calculated by dividing the total quantity of salt and oil by the number of prepared portions. Results: The levels of salt (3.0, 2.7, and 4.1 g – restaurant A, B and C, respectively and oil (17.0, 11.3, and 11.2 g – restaurant A, B and C, respectively added in the three preparations are superior to the recommendations. Conclusion: The sodium and fat contents in the analyzed restaurants are higher than it is recommended by the Food Guide for the Brazilian Population. It is essential that commercial restaurants become partners of public policies on health promotion, adopting good nutritional practices, by reducing the sodium and fat contents, to offer healthy meals daily.

Camila Silva Kunert

2013-03-01

183

Mineral sources of water and their influence on the safe disposal of radioactive wastes in bedded salt deposits  

International Nuclear Information System (INIS)

With the increased use of nuclear energy, there will be subsequent increases in high-level radioactive wastes such as Sr90, Cs137, and Pu239. Several agencies have considered the safest possible means to store or dispose of wastes in geologic environments such as underground storage in salt deposits, shale beds, abandoned dry mines, and in clay and shale pits. Salt deposits have received the most favorable attention because they exist in dry environments and because of other desirable properties of halite (its plasticity, gamma-ray shielding, heat dissipation ability, low mining cost, and worldwide abundance). Much work has been done on bedded salt deposits, particularly the Hutchinson Salt Member of the Wellington Formation at Lyons, Kansas. Salt beds heated by the decay of the radioactive wastes may release water by dehydration of hydrous minerals commonly present in evaporite sequences or water present in other forms such as fluid inclusions. More than 80 hydrous minerals are known to occur in evaporite deposits. The occurrences, total water contents (up to 63%) and dehydration temperatures (often less that 1500C) of these minerals are given. Since it is desirable to dispose of radioactive wastes in a dry environment, care must be taken that large quantities of water are not released through the heating of hydrous minerals. Seventy-four samples from four cores taken at Lyons, Kansas, were analyzed by x-ray diffraction. The minerals detected were halite, anhydrite, gypsum, polyhalite, dolomite, magnesite, quartz, feldspar, and the clay minerals illite, chlorite, kaolinite, vermiculite, smectite, mixed-layer clay, and corrensite (interstratified chlorite-vermiculite). Of these, gypsum, polyhalite and the clay minerals are all capable of releasing water when heated

184

Determination of barium content in ground water by nondestructive neutron activation method  

International Nuclear Information System (INIS)

The technique for instrumental neutron activation determination of barium microquantities in ground waters is described. The water sample (0.3-0.5 l) is evaporated in sand bath at approximately 95 deg C, dry residual is packed in silver foil, it is soldered with standards in a quartz ampule and irradiated during 20 hours in 1.1013 n/cm2xs thermal neutron flux and it is hold during 10-15 days for decay of interfering radioisotopes Na24, K42, Cl38. Then the sample is repacked and B133 and Ba131 activities are measured (Tsub(1/2)=10.7 years and 11.5 days respectively) according to 356 and 496 keV gamma-peaks respectively by means of gamma spectrometer with 60-cm3 Ge(Li)-detector. The sensitivity of barium determination is nx10-9 g/ml, relative mean-square error is 10-18%. The efficiency of the method constitutes 20-25 samples per 6-hour working day in calculation for one analyst without account of radiation interval and holding after radiation

185

Water Content of Lunar Alkali Fedlspar  

Science.gov (United States)

Detection of indigenous hydrogen in a diversity of lunar materials, including volcanic glass, melt inclusions, apatite, and plagioclase suggests water may have played a role in the chemical differentiation of the Moon. Spectroscopic data from the Moon indicate a positive correlation between water and Th. Modeling of lunar magma ocean crystallization predicts a similar chemical differentiation with the highest levels of water in the K- and Th-rich melt residuum of the magma ocean (i.e. urKREEP). Until now, the only sample-based estimates of water content of KREEP-rich magmas come from measurements of OH, F, and Cl in lunar apatites, which suggest a water concentration of apatite in similar rocks. However, the Cl and F contents of apatite in chemically similar rocks suggest that these melts also had high Cl/F ratios, which leads to spuriously low water estimates from the apatite. We can only estimate the minimum water content of urKREEP (+ bulk Moon) from our alkali feldspar data because of the unknown amount of degassing that led to the formation of the granites. Assuming a reasonable 10 to 100 times enrichment of water from urKREEP into the granites produces an estimate of 100-1000 ppm of water for the urKREEP reservoir. Using the modeling of and the 100-1000 ppm of water in urKREEP suggests a minimum bulk silicate Moon water content between 2 and 20 ppm. However, hydrogen loss was likely very significant in the evolution of the lunar mantle. Conclusions: Lunar granites crystallized between 4.3-3.8 Ga from relatively wet melts that degassed upon crystallization. The formation of these granites likely removed significant amounts of water from some mantle source regions, e.g. later mare basalts predicting derivation from a mantle with <10 ppm water. However, this would have been a heterogeneous pro-cess based on K distribution. Thus some, if not most of the mantle may not have been devolatilized by this process; as seen by water in volcanic glasses and melt inclusions.

Mills, R. D.; Simon, J. I.; Wang, J.; Alexander, C. M. O'D.; Hauri, E. H.

2016-01-01

186

Water Content of Lunar Alkali Fedlspar  

Science.gov (United States)

Detection of indigenous hydrogen in a diversity of lunar materials, including volcanic glass, melt inclusions, apatite, and plagioclase suggests water may have played a role in the chemical differentiation of the Moon. Spectroscopic data from the Moon indicate a positive correlation between water and Th. Modeling of lunar magma ocean crystallization predicts a similar chemical differentiation with the highest levels of water in the K- and Th-rich melt residuum of the magma ocean (i.e. urKREEP). Until now, the only sample-based estimates of water content of KREEP-rich magmas come from measurements of OH, F, and Cl in lunar apatites, which suggest a water concentration of magma ocean would have silica magmas. This estimate is 2 to 3 orders of magnitude higher than that estimated from apatite in similar rocks. However, the Cl and F contents of apatite in chemically similar rocks suggest that these melts also had high Cl/F ratios, which leads to spuriously low water estimates from the apatite. We can only estimate the minimum water content of urKREEP (+ bulk Moon) from our alkali feldspar data because of the unknown amount of degassing that led to the formation of the granites. Assuming a reasonable 10 to 100 times enrichment of water from urKREEP into the granites produces an estimate of 100-1000 ppm of water for the urKREEP reservoir. Using the modeling of and the 100-1000 ppm of water in urKREEP suggests a minimum bulk silicate Moon water content between 2 and 20 ppm. However, hydrogen loss was likely very significant in the evolution of the lunar mantle. Conclusions: Lunar granites crystallized between 4.3-3.8 Ga from relatively wet melts that degassed upon crystallization. The formation of these granites likely removed significant amounts of water from some mantle source regions, e.g. later mare basalts predicting derivation from a mantle with <10 ppm water. However, this would have been a heterogeneous pro-cess based on K distribution. Thus some, if not most of the mantle may not have been devolatilized by this process; as seen by water in volcanic glasses and melt inclusions.

Mills, R. D.; Simon, J. I.; Wang, J.; Alexander, C. M. O'D.; Hauri, E. H.

2016-01-01

187

Monitoring the water content evolution of dikes  

OpenAIRE

The water content evolution of model dikes is monitored with geophysical methods. Water content changes are successfully quantified using electrical resistivity tomography. Numerical simulation of water flow in a dike model is used to estimate the variability of water content. Modeling of synthetic data sets is used to evaluate the quality of resistivity quantification using ERT. An ensemble approach is proposed to improve the interpretation of ERT inversions.

Rings, Jo?rg

2009-01-01

188

Growth, water relations, proline and ion content of in vitro cultured Atriplex halimus subsp. schweinfurthii as affected by CaCl2  

Directory of Open Access Journals (Sweden)

Full Text Available Atriplex halimus subsp. schweinfurthii, a widely distributed perennial halophyte in the Algerian salt steppes, is of interest because of its tolerance to environmental stresses and its use as a fodder shrub for livestock in low-rainfall Mediterranean areas. This study reports the effects of salinity (0, 4, 8, 12, 16, and 20 g l-1 CaCl2 on the growth, succulence, proline and ion content of the species under in vitro conditions. Fresh and dry weight of plants increased with an increase in salinity. Optimal growth was recorded at 8 g l-1 CaCl2; growth declined with increased levels of salinity. Ca2+, K+, Cl–, and proline contents in plants increased, whereas Na+ content decreased with an increase in salinity. Succulence of shoots and roots was significantly higher at CaCl2 concentrations of 12 to 20 g l-1 than at 8 g l-1 CaCl2. Water potential of plants decreased with an increase in salinity. This plant can be used locally as a fodder for livestock and to stabilise sand dunes and rehabilitate salt soils.

Youcef Daoud

2006-09-01

189

Influence of somatic cell count on mineral content and salt equilibria of milk  

Directory of Open Access Journals (Sweden)

Full Text Available Aim of this research was to study the effect of somatic cell count on mineral content and salt equilibria at the level of quarter milk samples. Ten Italian Friesian cows, in which two homologous quarters (front quarters in 1 cow, rear quarters in 6 cows and both rear and front quarters in 3 cows were characterised by a milk SCC400,000 cells/mL (HC-milk, respectively, were selected. Cows were milked at quarter level during the morning milking and a single sample was collected from each selected quarter, thus, 26 quarter milk samples were collected. Compared to LC-milk, HC-milk was characterised by a lower content of phosphorus and potassium and by a higher content of both sodium and chloride. The equilibrium of calcium, phosphorus and magnesium between the colloidal and soluble phase of milk and the mineralisation degree of the casein micelles, were not different between HC and LC milk.

Primo Mariani

2010-01-01

190

24-Epibrassinolide regulates photosynthesis, antioxidant enzyme activities and proline content of Cucumis sativus under salt and/or copper stress.  

Science.gov (United States)

Brassinosteroids have been extensively used to overcome various abiotic stresses. But its role in combined stress of salt and excess copper remains unexplored. Seeds of two cultivars (Rocket and Jumbo) of Cucumis sativus were grown in sand amended with copper (100 mg kg(-1)), and developed seedlings were exposed to salt stress in the form of NaCl (150 mM) at the 30-day stage of growth for 3 days. These seedlings were subsequently sprayed with 0 or 0.01 ?M of 24-epibrassinolide (EBL) at the 35-day stage. The plants exposed to NaCl and Cu in combination exhibited a significant decline in fresh and dry mass of plant, chlorophyll content, activities of carbonic anhydrase, net photosynthetic rate and maximum quantum yield of the PSII primary photochemistry followed by NaCl and Cu stress alone, more severely in Jumbo than in Rocket. However, the follow-up treatment with EBL to the stressed and nonstressed plant improved growth, chlorophyll content, carbonic anhydrase activity and photosynthetic efficiency, and further enhanced the activity of various antioxidant enzymes viz. catalase, peroxidase and superoxide dismutase and content of proline at the 40-day stage of growth, and the response of the hormone was more effective in Rocket than in Jumbo. The elevated level of antioxidant enzymes as well as proline could have conferred tolerance to the NaCl- and/or Cu-stressed plants resulting in improved growth, water relations and photosynthetic attributes. Furthermore, antioxidant enzyme activity and proline content were more enhanced in Rocket than in Jumbo cultivar. PMID:23443638

Fariduddin, Q; Khalil, Radwan R A E; Mir, Bilal A; Yusuf, M; Ahmad, A

2013-09-01

191

Fitoextração de sais pela Atriplex nummularia lindl. sob estresse hídrico em solo salino sódico Phytoextraction of salts by Atriplex nummularia lindl. under water stress in saline sodic soils  

Directory of Open Access Journals (Sweden)

Full Text Available Objetivou-se avaliar a extração de sais pela Atriplex cultivada em solo salino sódico sob condições de estresse hídrico e comparar propriedades do solo antes e após seu cultivo. O experimento foi desenvolvido em casa de vegetação durante 134 dias, com cultivo em vasos com 20 kg de solo salino sódico em quatro níveis de umidade (35, 55, 75 e 95% da capacidade de campo, com um tratamento controle (sem cultivo, montado em blocos casualizados, com oito repetições. As altas concentrações de Ca2+, Mg2+, K+ e, especialmente Na+ e Cl- nas folhas de Atriplex nummularia, associadas à elevada produção de massa seca, caracterizam esta espécie como planta fitoextratora de sais, chegando a extrair, nas folhas e caule, o equivalente a: 644,25; 757,81; 1.058,55 e 1.182,00 kg ha-1 desses elementos, para 35, 55, 75 e 95% da capacidade de campo, respectivamente. As variáveis do complexo sortivo do solo (Ca2+, Mg2+, K+, soma de bases e o carbono orgânico total, permaneceram estáveis entre o início e o final do experimento, em todos os tratamentos, enquanto o Na+ e a percentagem de sódio trocável diminuíram após o cultivo da planta. A Atriplex respondeu ao incremento de umidade do solo quando se considera a produção de biomassa e a extração de sais.This study aims to evaluate the growth, production and extraction of salts by Atriplex grown on saline-sodic soil under water stress conditions and to compare soil properties before and after their cultivation. The experiment was carried out in a greenhouse during 134 days growing Atriplex nummularia in pots with 20 kg of saline sodic soil with four levels of soil moisture (35, 55, 75 and 95% of field capacity with a control (soil without plant. The experiment was performed in a randomized block with eight replications. The high concentrations of Ca2+, Mg2+, K+, and especially Na+ and Cl- in leaves of Atriplex nummularia, associated with high dry matter production characterizes this species as phytoextraction of salts, extracting through leaf and stem: 644, 758, 1059 and 1182 kg ha-1 at 35, 55, 75 e 95% of field capacity, respectively. The variables of the exchangeable cations (Ca2+, Mg2+, K+, sum of bases and total organic carbon remained stable between the beginning and end of the experiment in all treatments, while Na+ and exchangeable sodium percentage decreased after cultivation of the plant. The Atriplex responded to soil moisture with respect to biomass production and salts extraction.

Edivan R. de Souza

2011-05-01

192

Fitoextração de sais pela Atriplex nummularia lindl. sob estresse hídrico em solo salino sódico / Phytoextraction of salts by Atriplex nummularia lindl. under water stress in saline sodic soils  

Scientific Electronic Library Online (English)

Full Text Available SciELO Brazil | Language: Portuguese Abstract in portuguese Objetivou-se avaliar a extração de sais pela Atriplex cultivada em solo salino sódico sob condições de estresse hídrico e comparar propriedades do solo antes e após seu cultivo. O experimento foi desenvolvido em casa de vegetação durante 134 dias, com cultivo em vasos com 20 kg de solo salino sódico [...] em quatro níveis de umidade (35, 55, 75 e 95% da capacidade de campo), com um tratamento controle (sem cultivo), montado em blocos casualizados, com oito repetições. As altas concentrações de Ca2+, Mg2+, K+ e, especialmente Na+ e Cl- nas folhas de Atriplex nummularia, associadas à elevada produção de massa seca, caracterizam esta espécie como planta fitoextratora de sais, chegando a extrair, nas folhas e caule, o equivalente a: 644,25; 757,81; 1.058,55 e 1.182,00 kg ha-1 desses elementos, para 35, 55, 75 e 95% da capacidade de campo, respectivamente. As variáveis do complexo sortivo do solo (Ca2+, Mg2+, K+, soma de bases) e o carbono orgânico total, permaneceram estáveis entre o início e o final do experimento, em todos os tratamentos, enquanto o Na+ e a percentagem de sódio trocável diminuíram após o cultivo da planta. A Atriplex respondeu ao incremento de umidade do solo quando se considera a produção de biomassa e a extração de sais. Abstract in english This study aims to evaluate the growth, production and extraction of salts by Atriplex grown on saline-sodic soil under water stress conditions and to compare soil properties before and after their cultivation. The experiment was carried out in a greenhouse during 134 days growing Atriplex nummulari [...] a in pots with 20 kg of saline sodic soil with four levels of soil moisture (35, 55, 75 and 95% of field capacity) with a control (soil without plant). The experiment was performed in a randomized block with eight replications. The high concentrations of Ca2+, Mg2+, K+, and especially Na+ and Cl- in leaves of Atriplex nummularia, associated with high dry matter production characterizes this species as phytoextraction of salts, extracting through leaf and stem: 644, 758, 1059 and 1182 kg ha-1 at 35, 55, 75 e 95% of field capacity, respectively. The variables of the exchangeable cations (Ca2+, Mg2+, K+, sum of bases) and total organic carbon remained stable between the beginning and end of the experiment in all treatments, while Na+ and exchangeable sodium percentage decreased after cultivation of the plant. The Atriplex responded to soil moisture with respect to biomass production and salts extraction.

Edivan R. de, Souza; Maria B. G. dos S., Freire; Clístenes W. A. do, Nascimento; Abelardo A. de A., Montenegro; Fernando J., Freire; Hidelblandi F. de, Melo.

2011-05-01

193

Ternary systems of rare earth salt-butylamine salt-water  

International Nuclear Information System (INIS)

Phase equilibrium in ternary systems, containing water, samarium and dysprosium chlorides, neodymium and gadolinium nitrates and hydrochlorides or nitrates of n-, s-, t-butylamines, were studied at 20(25) and 40(50) def C. The system of gadolinium nitrate-t-butylamine nitrate-water is referred to the systems with chemical interaction of salt components; a new solid phase of the composition 1:2 was detected. The rest systems are referred to the simple eutonic type, their solubility isotherms consist of two non-interlinking branches, charcterizing solubility lines of the initial salt components

194

Impact of removing iodised salt on children's goitre status in areas with excessive iodine in drinking-water.  

Science.gov (United States)

The impact of removing iodised salt on children's goitre status in a high-iodine area (HIA) remains unclear. The aim of the present study was to explore the changes in the prevalence of goitre in children after removing iodised salt from their diet. For this purpose, three towns with the median water iodine content of 150-300 ?g/l were selected randomly in Hengshui City, Hebei Province, China. A total of 452 and 459 children were randomly selected from the three towns in order to measure thyroid volume by ultrasound before and after removing iodised salt, respectively. Their goitre status was judged using the criteria of age-specific thyroid volume recommended by the WHO. After removing iodised salt, the overall median urinary iodine content (MUIC) of children decreased from 518 (interquartile range (IQR) 347-735) to 416 (IQR 274-609) ?g/l. The MUIC of children across sex and age group decreased significantly except for the age group of 9 years. The overall prevalence of goitre in the three towns significantly decreased from 24·56 % (n 111/452) to 5·88 % (n 27/459) (Psalt from their diet for about 1·5 years in the HIA in Hebei Province. PMID:25366513

Lv, Shengmin; Xu, Dong; Wang, Yuchun; Jun, Zhao; Jia, Lihui; Du, Yonggui

2014-11-01

195

Process and equipment for the detection of impurities like salted water and sulfur contained in a multiphase fluid by nuclear techniques  

International Nuclear Information System (INIS)

A technique for detecting impurities, like sulfur and salted water, in petroleum refineries is described. The fluid is bombarded with fast neutrons which are showed down and then captured producing gamma spectra. Analysis of the spectra indicates the relative presence of sulfur, hydrogen and chlorine. The gas/liquid ratio of the fluid can also be calculated. An apparatus making use of this technique is also described

196

Development of spent salt treatment technology by zeolite column system  

International Nuclear Information System (INIS)

In the pyrometallurgical reprocessing of metallic fuel, the spent electrorefiner salt containing fission product (FP) elements should be purified and reused. For this purpose, we are developing a salt treatment process by using selective absorption of FPs on zeolite 4A. The absorption behaviors of FP elements in molten LiCl-KCl salt have been studied by batch type absorption tests. However, salt treatment process by using 'Column type method', in which molten salt flows through columns filled with zeolite, is preferable in the practical process in the view points of high decontamination of FPs in a single step and effective treatment of the salt in shorter processing time. For obtaining the basic data of the column system such as flow property and ion-exchange performance while high temperature molten salt is passing through the column, an experimental apparatus equipped with a fraction collector was developed. By using this apparatus, following results were obtained. (1) The relationship between velocity of molten salt passing through the columns filled with zeolite 4A powder and argon gas pressure to push the molten salt go through the columns was measured by using columns of 1cm in inner diameter and 10cm or 30cm in length. As shown, the average flow velocity increased in proportional to the gas pressure and decreased inversely proportional to the column length. Additionally, the relationship between velocity and gas pressure was quite close to that of obtained by re was quite close to that of obtained by using water instead of molten salt, whose kinematic viscosities are quite similar. (2) The absorption behavior of cesium, which was used as a representative of FP elements, on zeolite 4A in the columns was measured by taking the exhausted molten salt samples by using the fraction collector. As shown, it was revealed that the decontamination factor of cesium was highest at the beginning of the salt flow and its value decreased with the increase of amount of the passed molten salt. From these results, feasibility of the zeolite column system for purification and recycle of the spent molten salt was confirmed

197

Validation of spot-testing kits to determine iodine content in salt.  

OpenAIRE

Iodine deficiency disorders are a major public health problem, and salt iodization is the most widely practised intervention for their elimination. For the intervention to be successful and sustainable, it is vital to monitor the iodine content of salt regularly. Iodometric titration, the traditional method for measuring iodine content, has problems related to accessibility and cost. The newer spot-testing kits are inexpensive, require minimal training, and provide immediate results. Using da...

Pandav, C. S.; Arora, N. K.; Krishnan, A.; Sankar, R.; Pandav, S.; Karmarkar, M. G.

2000-01-01

198

Analysis of salt content in meals in kindergarten facilities in Novi Sad  

Directory of Open Access Journals (Sweden)

Full Text Available Introduction. Investigations have brought evidence that salt intake is positively related to systolic blood pressure and that children with higher blood pressure are more susceptible to hypertension in adulthood. In developed countries the main source of salt is processed food. Objective The aim of this paper was to determine total sodium chloride (NaCl in average daily meal (breakfast, snack and dinner and in each of three meals children receive in kindergarten. Methods. From kindergarten, in the meal time, 88 samples of daily meals ( breakfast, snacks and dinner offered to children aged 4-6 years were taken. Standardized laboratory methods were applied to determine proteins, fats, ash and water in order to calculate energy value of meal. The titrimetric method with AgNO3, and K2CrO4 as indicator, was applied in order to determine chloride ion. Content of NaCl was calculated as %NaCl = mlAgNO3 × 0.05844 × 5 × 100/g tested portion. NaCl content in total daily meal and each meal and in 100 kcal of each meal was calculated using descriptive statistical method. Student’s t-test was applied to determine statistical differences of NaCl amount among meals. Results. NaCl content in average daily meal was 5.2±1.7 g (CV 31.7%, in breakfast 1.5±0.6 g (CV 37.5%, in dinner 3.5±1.6 g (CV 46.1% and in snack 0.3±0.4 g (CV 163.3%. NaCl content per 100 kcal of breakfast was 0.4±0.1 g (CV 29.5%, dinner 0.7±0.2 g (CV 27.8% and snack 0.13±0.19 g (CV 145.8%. The difference of NaCl content among meals was statistically significant (p<0.01. Conclusion. Children in kindergarten, through three meals, received NaCl in a quantity that exceeded internationally established population nutrient goal for daily salt intake. The main source of NaCl was dinner, a meal that is cooked at place.

Bijelovi? Sanja

2010-01-01

199

Monitoring and estimation of iodine content of edible salt in urban areas of Meerut district, after four decades of Universal Salt Iodization  

Directory of Open Access Journals (Sweden)

Full Text Available Objective: It is estimated that 200 million people in India are exposed to the risk of iodine deficiency disorders (IDD. To protect future generations, Universal Salt Iodization (USI is the mainstay of the intervention. So, we carried out the study to estimate salt iodine content at the house hold and retail level in urban areas of Meerut district of Uttar Pradesh.Method: A total no of 64 (48 from house hold and 16 from retail samples of salt were estimated by iodometric titration method for the iodine content. Legal requirement for iodine level in India ranges from 30 parts per million (ppm at retail level and 15ppm at consumer level.                                                                                                                                             Results: We found that at retail level the range of concentrations of iodine in salt samples from Shiv Kunj, Krishna Vihar, Yadav colony, Ratan nagar. At retail level the range of concentration of iodine in salt sample was 26.5 to 33.6 ppm, 28.8 to 34.6 ppm, 31.3 to 36.8 ppm, 29.6 to 32.6 ppm respectively, while at house hold level were 12.7 to 34.6 ppm, 15.1 to 33.9 ppm, 15.8 to 38.4 ppm, 15.2 to 29.6 ppm respectively.Conclusion: Our study reveals a positive new momentum that reflects changes in India’s salt industry. These changes include better production, better refining and iodization practices, improvement in salt quality, improvement to packaging, effective monitoring to iodine levels from production to consumption and better consumer awareness in the urban areas.

Dilutpal Sharma

2014-02-01

200

Organic carbon content and potential for formation of disinfection by-products in drinking water of the water distribution system of Tehran, Iran  

Directory of Open Access Journals (Sweden)

Full Text Available Background and Aim: Natural organic matter (NOMs, measured on the basis of organic carbon, produces disinfection by-products precursors (DBPs during the chlorination process. Some DBPs are carcinogenic. NOMs are not completely removed by conventional water treatment. As a result, in addition to forming DBPs, they support bacterial regrowth in the water distribution systems and cause unpleasant odor and taste and other problems. The objective of this study was to determine organic carbon concentration and DBPs formation potential in drinking water of the water distribution system in Tehran, Iran."nMethods and Materials: Water sampling was done by standard methods, monthly between August 2006 and Feb 2007, at four points of the drinking water distribution system in Tehran. Quantitative parameters, including pH, EC, UV254 (UV absorbance at a wavelength of 254nm, dissolved organic carbon (DOC, and specific UV absorbance (SUVA were determined. DOC and UV-254 of the samples were determined using a Total Organic Carbon (TOC analyzer and a Lambda 25 UV/Vis spectrophotometer, respectively. SUVA (L/mg.m was calculated as thea ratio of the UV absorbance at 254 nm (1/m to DOC (mg/ L."nResults: The water content of DOC at the four points of the distribution system was less than 0.7 mg /L. The mean DOC concentration was 0.3±0.14mg/L, ranging between 0.12 and 0.687mg/L, with no monthly variation. The mean SUVA was 1.3±0.7. "nConclusion: It can be concluded that the Tehran water treatment systems cannot eliminate completely natural organic matter. SUVA values show, however, that the system can eliminate the majority of hydrophobic compounds. Therefore, formation of haloacetic acids is more probable than that of trihalomathanes.

2009-08-01

201

Determination of uranium contents in water, blood and toothpastes by the fission track method  

International Nuclear Information System (INIS)

The analysis of uranium in water, blood, urine and toothpaste samples with the fission track method was described. The stability of tracks and the feasibility of the method were discussed. The results were compared with those reported. The method has the advantages of high sensitivity, less sample needed, steadiness and economy. It is also applicable to analysis of plutonium and radon

202

Perchlorate, iodine supplements, iodized salt and breast milk iodine content  

Energy Technology Data Exchange (ETDEWEB)

This study was undertaken to determine if increasing maternal iodine intake through single dose tablets will decrease breast milk concentrations of the iodine-uptake inhibitor, perchlorate, through competitive inhibition. We also sought to determine if the timing of supplementation influences the fraction of iodine excreted in milk versus urine and to compare the effectiveness of iodized salt as a means of providing iodine to breastfed infants. Thirteen women who did not use supplements, seven of whom used iodized salt and six of whom used non-iodized salt, submitted four milk samples and a 24-h urine collection daily for three days. Women repeated the sampling protocol for three more days during which {approx} 150 {mu}g of iodine were taken in the evening and again for three days with morning supplementation. Samples were analyzed using isotope-dilution inductively-coupled plasma-mass spectrometry for iodine and isotope-dilution ion chromatography-tandem mass spectrometry for perchlorate. No statistically significant differences were observed in milk iodine or perchlorate concentrations during the two treatment periods. Estimated perchlorate intake was above the U.S. National Academy of Sciences suggested reference dose for most infants. Single daily dose iodine supplementation was not effective in decreasing milk perchlorate concentrations. Users of iodized salt had significantly higher iodine levels in milk than non-users. Iodized salt may be a more effective means of iodine supplementation than tablets. - Highlights: Black-Right-Pointing-Pointer Estimated infant exposures to perchlorate were, on a {mu}g/kg basis, {approx} 5 Multiplication-Sign higher than those of mothers. Black-Right-Pointing-Pointer Daily supplements are less effective than iodized salt in providing iodine to lactating women. Black-Right-Pointing-Pointer Low iodine and high perchlorate in milk may place infants at risk of iodine deficiency.

Kirk, Andrea B. [Department of Epidemiology, School of Public Health, University of North Texas Health Sciences Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107 (United States); Kroll, Martina; Dyke, Jason V.; Ohira, Shin-Ichi; Dias, Rukshan A.; Dasgupta, Purnendu K. [Department of Chemistry and Biochemistry, 700 Planetarium Place, University of Texas at Arlington, Arlington, TX 76019 (United States)

2012-03-15

203

Perchlorate, iodine supplements, iodized salt and breast milk iodine content  

International Nuclear Information System (INIS)

This study was undertaken to determine if increasing maternal iodine intake through single dose tablets will decrease breast milk concentrations of the iodine-uptake inhibitor, perchlorate, through competitive inhibition. We also sought to determine if the timing of supplementation influences the fraction of iodine excreted in milk versus urine and to compare the effectiveness of iodized salt as a means of providing iodine to breastfed infants. Thirteen women who did not use supplements, seven of whom used iodized salt and six of whom used non-iodized salt, submitted four milk samples and a 24-h urine collection daily for three days. Women repeated the sampling protocol for three more days during which ? 150 ?g of iodine were taken in the evening and again for three days with morning supplementation. Samples were analyzed using isotope-dilution inductively-coupled plasma-mass spectrometry for iodine and isotope-dilution ion chromatography-tandem mass spectrometry for perchlorate. No statistically significant differences were observed in milk iodine or perchlorate concentrations during the two treatment periods. Estimated perchlorate intake was above the U.S. National Academy of Sciences suggested reference dose for most infants. Single daily dose iodine supplementation was not effective in decreasing milk perchlorate concentrations. Users of iodized salt had significantly higher iodine levels in milk than non-users. Iodized salt may be a more effective means of iodlt may be a more effective means of iodine supplementation than tablets. - Highlights: ? Estimated infant exposures to perchlorate were, on a ?g/kg basis, ? 5 × higher than those of mothers. ? Daily supplements are less effective than iodized salt in providing iodine to lactating women. ? Low iodine and high perchlorate in milk may place infants at risk of iodine deficiency.

204

Avaliação da salinização de açudes no semi-árido brasileiro por ICP-AES / Evaluation of the salt accumulation process in water resources in the Brazilian semi - arid area by ICP-- AES  

Scientific Electronic Library Online (English)

Full Text Available SciELO Brazil | Language: Portuguese Abstract in portuguese [...] Abstract in english The salt accumulation process in some reservoirs of regular and irregular use (from 10 to 50 years of constrution), located in the Southeast of Bahia State was evaluated. Inductively coupled plasma atomic emission spectrometry was used to evaluate the concentrations of Na, K, Ca and Mg in water samp [...] les from inside and upstream of the reservoirs. The results showed that for reservoirs of irregular use, the salt accumulation, indicated by the tracer Na, increases with the age of the reservoirs, however for the reservoirs of regular use the hydraulic retention time is the main parameter.

José Soares dos, Santos; Elisabeth de, Oliveira; Sérgio, Massaro.

2000-08-01

205

Foaming, Water Absorption, Emulsification and Gelation Properties of Kersting`s Groundnut (Kerstingiella geocarpa) and Bambara Groundnut (Vigna subterranean) Flours as Influenced by Neutral Salts and Their Concentrations  

OpenAIRE

Foaming capacity and stability, water absorption capacity; emulsion capacity and stability; and least gelation concentration of kersting`s and bambara groundnut flours as influenced by types of salt (NaCl, NaNO3, NaNO2, CH3COONa and Na2SO4) and their concentrations were investigated using standard techniques. The results showed that the highest foaming capacity was recorded for CH3COONa at 15.0% (w/v) salt concentration in kesting`s groundnut while lowest was NaNO2 at 0.5% (w/v) in ba...

Aremu, M. O.; Olaofe, O.; Akintayo, E. T.; Adeyeye, E. I.

2008-01-01

206

Novel wireless health monitor with acupuncture bio-potentials obtained by using a replaceable salt-water-wetted foam-rubber cushions on RFID-tag.  

Science.gov (United States)

This paper proposes a bio-potential measurement apparatus including a wireless device for transmitting acupuncture bio-potential information to a remote control station for health conditions analysis and monitor. The key technology of this system is to make replaceable foam-rubber cushions, double-side conducting tapes, chip and antenna on the radio frequency identification (RFID) tag. The foam-rubber cushions can be wetted with salt-water and contact with the acupuncture points to reduce contact resistance. Besides, the double-side conducting tapes are applied to fix foam-rubber cushions. Thus, one can peel the used cushions or tapes away and supply new ones quickly. Since the tag is a flexible plastic substrate, it is easy to deploy on the skin. Besides, the amplifier made by CMOS technology on RFID chip could amplify the signals to improve S/N ratio and impedance matching. Thus, cloud server can wirelessly monitor the health conditions. An example shows that the proposed system can be used as a wireless health condition monitor, the numerical method and the criteria are given to analyze eleven bio-potentials for the important acupunctures of eleven meridians on a person's hands and legs. Then a professional doctor can know the performance of an individual and the cross-linking effects of the organs. PMID:25227072

Lin, Jium-Ming; Lu, Hung-Han; Lin, Cheng-Hung

2014-01-01

207

Spatial and Temporal Distribution of the Water Content of a Red-Yellow Argissol Cultivated With Beans (Phaseolus vulgaris L. Irrigated by Center Pivot  

Directory of Open Access Journals (Sweden)

Full Text Available This study aimed to identify and assess the spatial and temporal distribution of the water content in a red-yellow argissol cultived with bean, irrigated by central pivot. The samplings were made at a depth of 30 cm, in systematic grid of 10.0 by 10.0 m with 108 and 54 sampling points in conventional tillage (CT and no tillage (NT, respectively, sampled at four stages of crop development: V3 (1st trifoliated leaf, R6 (flowering, R8 (filling of string beans and R9 (physiological maturity. The water content of the soil was determined by the greenhouse standard method and the analysis of spatial dependence was obtained with the GS+ Program. The semivariograms presented dependence spatial in conventional tillage, adjusting to the spherical model with ranges of 68.5, 78.3, 73.3 and 75.4 m, and in no-tillage system with ranges of 172.3, 210.9, 193.7 and 100.0 m for the steps V3, R6, R8 and R9, respectively. The relationship between the nugget effect and sill indicated that the spatial dependence was strong, lower than 25%. Using the graphical representation of the surface, the area studied presented higher water content at the low elevation and lower water content at the part of high elevation. Overall, the soil water content in CT showed a narrower range of spatial dependence on the scale, compared to soil water content in NT. The spatial distribution mapping of water content in the soil showed that there is a stability of the time variability for water content in the two cultivating systems.

Elder Sânzio Aguiar Cerqueira

2014-04-01

208

Response of two genetically diverse wheat cultivars to salt stress at different growth stages: leaf lipid peroxidation and phenolic contents  

International Nuclear Information System (INIS)

The effect of root zone salinity on two hexaploid bread wheat (Triticum aestivum L.) cultivars (S-24, salt-tolerant; MH-97, salt-sensitive) was appraised at different growth stages. Grains of the two cultivars were sown in Petri-plates at two salt levels (0 and 150 mM of NaCl). After 8 days of germination, the seedlings were transplanted into plastic tubs containing either 0 or 150 mM of NaCl in full strength Hoagland's nutrient solution. Changes in growth, lipid peroxidation and phenolic contents were examined in the cultivars at different growth stages (vegetative, booting and reproductive) under salt stress. Higher MDA contents were observed in cv. MH-97 as compared to that in S-24 under saline regimes at different growth stages. Salt-induced effect in terms of lipid peroxidation was more pronounced at the booting and reproductive stages as compared with that at the vegetative stage in both cultivars, however, the accumulation of leaf total phenolics was higher at the booting stage as compared with that at the other stages. A significant variability in salt response was found among different growth stages in both cultivars. Correlations among growth and biochemical parameters showed a significant negative correlation between growth and MDA content but a positive correlation between growth and phenolic contents, which shows that phenolic compounds were involved in the mechanism of salt tolerance of the two cultivars by showing enhanced antioxidant activity which resng enhanced antioxidant activity which resulted in reduced membrane damage and hence improved growth. (author)

209

Water deficit and salt stress diagnosis through LED induced chlorophyll fluorescence analysis in Jatropha curcas L. oil plants for biodiesel  

Science.gov (United States)

Light-emitting-diode induced chlorophyll fluorescence analysis is employed to investigate the effect of water and salt stress upon the growth process of physicnut(jatropha curcas) grain oil plants for biofuel. Red(Fr) and far-red (FFr) chlorophyll fluorescence emission signals around 685 nm and 735 nm, respectively, were observed and examined as a function of the stress intensity(salt concentration and water deficit) for a period of time of 30 days. The chlorophyll fluorescence(ChlF) ratio Fr/FFr which is a valuable nondestructive and nonintrusive indicator of the chlorophyll content of leaves was exploited to monitor the level of stress experienced by the jatropha plants. The ChlF technique data indicated that salinity plays a minor role in the chlorophyll concentration of leaves tissues for NaCl concentrations in the 25 to 200 mM range, and results agreed quite well with those obtained using conventional destructive spectrophotometric methods. Nevertheless, for higher NaCl concentrations a noticeable decrease in the Chl content was observed. The Chl fluorescence ratio analysis also permitted detection of damage caused by water deficit in the early stages of the plants growing process. A significant variation of the Fr/FFr ratio was observed sample in the first 10 days of the experiment when one compared control and nonwatered samples. The results suggest that the technique may potentially be applied as an early-warning indicator of stress caused by water deficit.

Gouveia-Neto, Artur S.; Silva, Elias A., Jr.; Oliveira, Ronaldo A.; Cunha, Patrícia C.; Costa, Ernande B.; Câmara, Terezinha J. R.; Willadino, Lilia G.

2011-02-01

210

Determination of aluminium in water samples by adsorptive cathodic stripping voltammetry in the presence of pyrogallol red and a quaternary ammonium salt.  

Science.gov (United States)

A fast, sensitive and selective method for the determination of aluminium based on the reaction of the metal with pyrogallol red (PR) in the presence of tetrabutylammonium tetrafluoroborate (TBATFB) to form an Al(PR)(3)x9TBATFB complex which is adsorbed on the mercury electrode is presented. Under these conditions complexation of aluminium is rapid and no waiting period or heating of the sample is required. The reduction current of the accumulated complex is measured by scanning the potential in the cathodic direction. The variation of peak current with pH, adsorption time, adsorption potential, ligand and quaternary ammonium salt concentration, and some instrumental parameters, such as stirring rate in the accumulation stage, and step amplitude, pulse amplitude and step duration while obtaining the square wave voltamperograms were optimized. The best experimental parameters were pH 8.5, (NH(4)Ac-NH(3) buffer), C(PR)=25mumolL(-1), C(TBATFB) over 75mumolL(-1), t(ads)=60s, and E(ads)=-0.60V versus Ag/AgCl. A linear response is observed over the 0.0-30.0mugL(-1) concentration range, with a detection limit of 1.0mugL(-1). Reproducibility for 9.0mugL(-1) aluminium solution was 2.3% (n=6). Synthetic sea water and sea water reference material CRM-SW were used for validation measurements. Aluminium in urine samples of a volunteer who ingested 800mg of Al(OH)(3) was analyzed. PMID:19073069

Arancibia, Verónica; Muñoz, Carolina

2007-09-30

211

Geophysical surveys for monitoring coastal salt water intrusion  

Science.gov (United States)

Geophysical surveys have been exploited in a coastal forest reserve, at the mouth of the river Bradano in South Italy (Basilicata, southern Italy, N 40°22', E 16°51'), to investigate the subsurface saltwater contamination. Forest Reserve of Metapontum is a wood of artificial formation planted to protect fruit and vegetable cultivations from salt sea-wind; in particular it is constituted by a back dune pine forest mainly composed of Aleppo Pine trees (Pinus halepensis) and domestic pine trees (Pinus pinea). Two separate geophysical field campaigns, one executed in 2006 and a second executed in 2008, were performed in the forest reserve; in particular, electrical resistivity tomographies, resistivity and ground penetrating radar maps were elaborated and analyzed. In addition, chemical and physical analyses on soil and waters samples were performed in order to confirm and integrate geophysical data. The analyses carried out allowed an accurate characterization of salt intrusion phenomenon: the spatial extension and depth of the saline wedge were estimated. Primary and secondary salinity of the Metapontum forest reserve soil occurred because of high water-table and the evapo-transpiration rate which was much higher than the rainfall rate; these, of course, are linked to natural factors such as climate, natural drainage patterns, topographic features, geological structure and distance to the sea. Naturally, since poor land management, like the construction of river dams, indiscriminate extraction of inert from riverbeds that subtract supplies sedimentary, the alteration of the natural water balance, plays an important role in this process. The obtained results highlighted that integrated geophysical surveys gave a precious contribute for better evaluating marine intrusion wedge in coastal aquifers and providing a rapid, non-invasive and low cost tool for coastal monitoring.

Loperte, A.; Satriani, A.; Simoniello, T.; Imbrenda, V.; Lapenna, V.

2009-04-01

212

Water Content of the Oceanic Lithosphere at Hawaii from FTIR Analysis of Peridotite Xenoliths  

Science.gov (United States)

Although water in the mantle is mostly present as trace H dissolved in minerals, it has a large influence on its melting and rheological properties. The water content of the mantle lithosphere beneath continents is better constrained by abundant mantle xenolith data than beneath oceans where it is mainly inferred from MORB glass analysis. Using Fourier transform infrared (FTIR) spectrometry, we determined the water content of olivine (Ol), clinopyroxene (Cpx) and orthopyroxene (Opx) in spinel peridotite xenoliths from Salt Lake Crater, Oahu, Hawaii, which are thought to represent fragments of the Pacific oceanic lithosphere that was refertilized by alkalic Hawaiian melts. Only Ol exhibits H diffusion profiles, evidence of limited H loss during xenolith transport to the surface. Water concentrations (Ol: 9-28 ppm H2O, Cpx: 246-566 ppm H2O, Opx: 116-224 ppm H2O) are within the range of those from continental settings but higher than those from Gakkel ridge abyssal peridotites. The Opx H2O contents are similar to those of abyssal peridotites from Atlantic ridge Leg 153 (170-230 ppm) but higher than those from Leg 209 (10- 14 ppm). The calculated bulk peridotite water contents (94 to 144 ppm H2O) are in agreement with MORB mantle source water estimates and lower than estimates for the source of Hawaiian rejuvenated volcanism (approx 540 ppm H2O) . The water content of Cpx and most Opx correlates negatively with spinel Cr#, and positively with pyroxene Al and HREE contents. This is qualitatively consistent with the partitioning of H into the melt during partial melting, but the water contents are too high for the degree of melting these peridotites experienced. Melts in equilibrium with xenolith minerals have H2O/Ce ratios similar to those of OIB

Peslier, Anne H.; Bizmis, Michael

2013-01-01

213

Salt water infiltration in two artificial sea inlets in the Belgian dune area  

Science.gov (United States)

SummaryIn the dune area of the Westhoek Nature Reserve, situated in the western Belgian coastal plain, two artificial tidal inlets were made aiming to enhance biodiversity. The infiltration of salt water in these tidal inlets was carefully monitored because a fresh water lens is present in the phreatic dune aquifer. This forms an important source of fresh water which is for instance exploited by a water company. The infiltration was monitored over a period of two years by means of electromagnetic borehole measurements (EM39) and by measurements of fresh water heads and temperature using a large number of observation wells. EM39 observations point to aquifer heterogeneity as a determining factor in the movement of the salt infiltration water. It is shown that part of the infiltration water moves further in the dunes instead of towards the sea. On the long term run, possibility exists that salt water enters the extraction's capture zone. This issue needs further monitoring and study. Fresh water head and temperature data illustrate that the main period of infiltration is confined to spring tide when large amounts of salt water enter the tidal inlets.

Vandenbohede, A.; Lebbe, L.; Gysens, Stefaan; Delecluyse, Kevin; DeWolf, Peter

2008-10-01

214

Ultrasonic characterization of pork meat salting  

International Nuclear Information System (INIS)

Salting process plays a key role in the preservation and quality of dry-cured meat products. Therefore, an adequate monitoring of salt content during salting is necessary to reach high quality products. Thus, the main objective of this work was to test the ability of low intensity ultrasound to monitor the salting process of pork meat. Cylindrical samples (diameter 36 mm, height 60±10 mm) of Biceps femoris were salted (brine 20% NaCl, w/w) at 2 °C for 1, 2, 4 and 7 days. During salting and at each experimental time, three cylinders were taken in order to measure the ultrasonic velocity at 2 °C. Afterwards, the cylinders were split in three sections (height 20 mm), measuring again the ultrasonic velocity and determining the salt and the moisture content by AOAC standards. In the whole cylinders, moisture content was reduced from 763 (g/kg sample) in fresh samples to 723 (g/kg sample) in samples salted for 7 days, while the maximum salt gain was 37.3 (g/kg sample). Although, moisture and salt contents up to 673 and 118 (g/kg sample) were reached in the sections of meat cylinders, respectively. During salting, the ultrasonic velocity increased due to salt gain and water loss. Thus, significant (p2 = 0.975) and moisture (R2 = 0.863) contents. In addition, the change of the ultrasonic velocity with the increase of the salt content showed a good agreement with the ntent showed a good agreement with the Kinsler equation. Therefore, low intensity ultrasound emerges as a potential technique to monitor, in a non destructive way, the meat salting processes carried out in the food industry.

215

Decontamination of metal surfaces by molten salts  

International Nuclear Information System (INIS)

Molten salts which decontaminate non pretreated samples are also very effictive with samples pretreated with a welding seam. The flame spray system is ready to use to decontamination experiments. With respect to KH2PO4 the treating time is about ten minutes. The salt layer thickness is at 0.3 mm at its optimum. With this conditions the flame spray technique reduces the salt bulk by a factor of 0.1 with respect to the quantity which is necessary for dipping technique, as calculations indicate. (orig.)

216

ALUMINUM BIOAVAILABILITY FROM DRINKING WATER IS VERY LOW AND IS NOT APPRECIABLY INFLUENCED BY STOMACH CONTENTS OR WATER HARDNESS. (R825357)  

Science.gov (United States)

The objectives were to estimate aluminum (Al) oral bioavailability under conditions that model its consumption in drinking water, and to test the hypotheses that stomach contents and co-administration of the major components of hard water affect Al absorption. Rats received intra...

217

Dependence of unified activity coefficients of ferrocenium iodide in aqueous and mixed water-isopropanol solvents on the nature of salt background  

International Nuclear Information System (INIS)

Unified activity coefficients (y±) of ferrocenium iodide in aqueous and water-isopropanol solvents of different salt composition have been determined by potentiometric method at 298.2 K. Dependence of y± on the nature of cations (Li+, Na+, K+) and anions (Cl-, Br-, I-, CIO4-) in the salt background and their concentration, as well as on the content of isopropanol in mixed solvent, has been studied. Assumption on ferrocenium cation association with iodide- and perchlorate-ions is made. The association constants have been calculated using different standard states

218

Effect of gamma-ray irradiation on the deoxygenation of salt-containing water using hydrazine  

International Nuclear Information System (INIS)

In spent fuel pools at the Fukushima Daiichi nuclear power plant, hydrazine was added to salt-containing water in order to reduce dissolved oxygen. Hydrazine is known to reduce dissolved oxygen in high-temperature pure water, but its deoxygenation behavior in salt-containing water at ambient temperature in the presence of radiation is unknown. Deoxygenation using hydrazine in salt-containing water was thus investigated using a 60Co gamma-ray source and artificial seawater at room temperature. Water samples containing a small amount of hydrazine were irradiated at dose rates of 100 - 10,000 Gy/h. The concentration of dissolved oxygen in the water samples was measured before and after irradiation. Notably, a decrease in the dissolved oxygen was only observed after irradiation, and the dissolved oxygen concentration decreased with increasing dose rate and irradiation time. The rate of decrease in the amount of dissolved oxygen using hydrazine was slow in the presence of salts. Kinetic considerations suggested that the deoxygenation of the salt-containing water exposed to gamma-ray irradiation using hydrazine was suppressed by chloride ions. (author)

219

Effect of agricultural activity in the salt content in soils of Murcia: comparison with other land uses  

International Nuclear Information System (INIS)

Salinization is one of the main problems of soil degradation in arid and semiarid areas, causing a reduction of soil quality, declining yield and productivity, and even land abandonment. the aim of this study was to evaluate the effect of different land uses, particularly agricultural use in the salt content in soil. The study area is located in the surroundings of Murcia city (SE Spain), with an surface of 100 km2, with high agricultural productivity. In order to determine salt content in soil, E. C. was measured in the 1:5 ratio. The results showed that the study area is saline, being the salinity higher when anthropogenic activity is more severe. Agricultural lands present the widest range of data, probably due to the application of poor quality irrigation water, fertilizers and livestock waste. (Author) 9 refs.

220

Desalination of salt damaged Obernkirchen sandstone by an applied DC field  

DEFF Research Database (Denmark)

Soluble salts are considered as one of the most common causes for decay of building materials. In the present work, an electrokinetic method for desalination of sandstones from a historic warehouse was tested. The sandstones claddings were removed from the warehouse during a renovation action as the outer surface was scaling due to salts.The focus of the work was on the effect of electrokinetic desalination for removal of unevenly distributed mixtures of salts. Previous reported studies were conducted with laboratory contaminated stones with single salts, which were relatively evenly distributed in the stones, i.e. the present investigation faces more challenges relevant to a real desalination action. Experiments were conducted with two Obernkirchen sandstones from the same warehouse, but with different levels of salt concentrations and porosity. The investigation includes removal of the most common salts: chlorides, nitrates, sulphates. In the experimental setup the electrodes were placed in a clay poultice:a mixture of kaolinite, calcite and distilled water. An electric direct current (DC) field was applied to the sandstone.By applying 2mA for 5–11days it was possible to reduce the chloride concentration from up to 420mg/kg to concentration of 140mg/kg, nitrate concentration from 1000mg/kg to concentration of 310mg/kg nearest the cathode and the sulphate concentration from up to 540mg/kg to 30mg/kg nearest the anode in 750–1020g dry matter stone sample.The final concentrations meet the limiting values indicating no risk for salt decay. The placement of the anode related to the original outer surface of the stone showed its importance only in the experiments with the long duration 10–11days. Due to the placement of the anode to the outer surface of the stone segments which was more contaminated, higher concentrations of nitrates and sulphates were measured in the anode clay poultices at the end of experiments. The longer duration might show even more significant role of the electrode placements.The clay poultice successfully neutralized the acid from electrolysis at the anode. During the treatment the water content was very low in the stones, between 1.3% and 2.1%. Electroosmotic water transport was observed in the clay poultices, however, there was no decrease of the water contents in the stones at the end of the experiments, so there was no indication of an electroosmotic effect in the stones themselves under the present conditions.

Matyš?ák, Ond?ej; Ottosen, Lisbeth M.

2014-01-01

221

Comparison of nuclear and capacitance- based soil water measuring techniques in salt- affected soils  

International Nuclear Information System (INIS)

A field calibration experiment was carried out on salt-affected clayey soil in Syria, to compare the sensitivity to soil electrical conductivity (ECe), and bulk density ( ?) of two instruments for estimating soil moisture: the neutron probe (NP) and the Diviner 2000 capacitance probe (CP). The results showed that the values of the correlation coefficient of the calibration were decreased when the ECe and ? values increased; this decrease was more pronounced for the Diviner 2000, indicating that it was more sensitive to ? and ECe than the NP. When only scaled frequency was used in the fitted equation, the Diviner 2000 in wet soil underestimated soil water content significantly at all depths, but especially in the top layer, by up to 0.09 cm3 cm-3 compared with gravimetric determinations. However, in dry soil, the Diviner 2000 overestimated the volumetric water content by up to 0.05 cm3 cm-3 in the top 15 cm, and by 0.03 cm3 cm-3 at 30-45 cm depth. The performance of the neutron probe was better overall, using a factory calibration curve: no significant differences were observed between NP estimates and the gravimetric values. Including both ? and ECe in the calibration equations improved the fits, although the regression coefficient (R2) for the Diviner 2000 remained low. (author)

222

GEOELECTRICAL RESISTIVITY METHOD FOR SALT/BRACKISH WATER MAPPING  

OpenAIRE

A 2D geoelectrical resistivity method was used for detecting and mapping occurrence of salt/brackish water in the subsurface, North Kelantan - Malaysia. The North Kelantan plain is covered with Quaternary sediments overlying granite bedrock. The drainage system is dendritic with the main river flowing into the South China Sea. The geoelectrical resistivity surveys made up of eleven resistivity traverses at four different sites. The zone of brackish water is very clearly seen in the resistivit...

Nur Islami

2011-01-01

223

Electromyogram as a measure of heavy metal toxicity in fresh water and salt water mussels  

Energy Technology Data Exchange (ETDEWEB)

The response of bivalves to heavy metals and other toxins has usually been determined by observing valve position. Since mussels close their valves to avoid noxious stimuli, experimental delivery of chemicals ins uncertain. To obtain constant results plastic spacers can be employed to hold the valves apart. This obviates valve position as an index of response and some other method is required. Electromyography of intact mussels is one such index, giving a simple, effective, and quantitative measurement of activity. Experiments are reported in this article on the effects of added mercury on salt water and fresh water species.

Kidder, G.W. III [Illinois State Univ., Normal, IL (United States)]|[Mt. Desert Island Biological Lab., Salsbury Cove, ME (United States); McCoy, A.A. [Mt. Desert Island Biological Lab., Salsbury Cove, ME (United States)]|[Brown Univ., Providence, RI (United States)

1996-02-01

224

Revised theory of water transport in rock salt  

International Nuclear Information System (INIS)

This paper presents a theoretical treatment of the water loss rate of a heated 1 kg sample of southeastern New Mexico rock salt. The analysis presented represents a refinement of a previously published model in which the water loss was assumed to be the Darcy flow of water vapor from a receding evaporation front. The refinement consists of a more careful and detailed modeling of the vapor region, including the effects of Knudsen diffusion and binary gaseous diffusion of water vapor through air. Results of the analysis are found to provide improved agreement with experiment during the room temperature drying stage

225

Estimation of soil clay content from hygroscopic water content measurements  

OpenAIRE

Soil texture and the soil water characteristic are key properties used to estimate flow and transport parameters. Determination of clay content is therefore critical for understanding of plot-scale soil heterogeneity. With increasing interest in proximal soil sensing, there is the need to relate obtained signals to soil properties of interest. Inference of soil texture, especially clay mineral content, from instrument response from electromagnetic induction and radiometric methods is of subst...

Wuddivira, Mark N.; Robinson, David A.; Lebron, Inma; Brechet, Lae?titia; Atwell, Melissa; Caires, Sunshine; Oatham, Michael; Jones, Scott B.; Abdu, Hiruy; Verma, Aditya K.; Tuller, Markus

2012-01-01

226

Water content in the anodization electrolyte affects the electrochemical and electronic transport properties of TiO2 nanotubes: a study by electrochemical impedance spectroscopy  

International Nuclear Information System (INIS)

The TiO2 nanotube system has attracted much interest for applications in photoelectrochemical water splitting. Optimization of their photoelectrochemical properties may be carried out by modifying the water content of the anodization electrolyte, but a rigorous understanding of the underlying electronic and electrochemical properties responsible for the differences in the photocurrent efficiency remain elusive. In this paper, we used electrochemical impedance methods to determine that while TiO2 nanotubes formed in low (2 vol%) and high (11 vol%) water content electrolytes have similar electrical conductivity and charge transfer resistances, the presence of a lower density of deep level defect states contributes to increase the photoelectrochemical performance of TiO2 nanotubes formed from high water content electrolytes. Passivation of these defect states may lead to an improved photoelectrochemical performance

227

Renal arteriolar injury by salt intake contributes to salt memory for the development of hypertension.  

Science.gov (United States)

The role of salt intake in the development of hypertension is prominent, but its mechanism has not been fully elucidated. Our aim was to examine the effect of transient salt intake during the prehypertensive period in hypertensive model animals. Dahl salt-sensitive rats and spontaneously hypertensive rats were fed from 6 to 14 weeks with low-salt (0.12% NaCl), normal-salt (0.8% NaCl), high-salt (7% NaCl), or high-sodium/normal-chloride diet and returned to normal-salt diet for 3 months. Rats in the high-salt group saw elevations in blood pressure (BP) not only during the treatment period but also for the 3 months after returning to normal-salt diet. We named this phenomenon salt memory. Renal arteriolar injury was found in the high-salt group at the end of experiment. Dahl salt-sensitive rats were fed from 6 to 14 weeks with high-salt diet with angiotensin receptor blocker, vasodilator, calcium channel blocker, and calcium channel blocker+angiotensin receptor blocker and returned to normal-salt diet. Although BP was suppressed to control levels by vasodilator or calcium channel blocker, elevated renal angiotensin II and renal arteriolar injury were observed, and salt memory did not disappear because of sustained renal arteriolar injury. Calcium channel blocker+angiotensin receptor blocker suppressed renal arteriolar injury, resulting in the disappearance of salt memory. Cross-transplantation of kidneys from Dahl salt-sensitive rats on high salt to control rats caused increase of BP, whereas control kidneys caused reduction in BP of hypertensive rats, inducing the central role of the kidney. These results suggest that renal arteriolar injury through BP and renal angiotensin II elevation plays important roles in the development of salt memory for hypertension. PMID:24980670

Oguchi, Hideyo; Sasamura, Hiroyuki; Shinoda, Kazunobu; Morita, Shinya; Kono, Hidaka; Nakagawa, Ken; Ishiguro, Kimiko; Hayashi, Kaori; Nakamura, Mari; Azegami, Tatsuhiko; Oya, Mototsugu; Itoh, Hiroshi

2014-10-01

228

Determination of the protein content in brine from salted herring using near-infrared spectroscopy  

DEFF Research Database (Denmark)

Near-infrared reflectance (NIR) spectroscopy in the spectral range of 1000-2500 nm, was measured directly on brine from barrel salted herring, to investigate the potential of NIR as a fast method to determine the protein content. A principal component analysis performed on the NIR spectra shows two groups, separating the first 100 days of storage from the storage time exceeding 100 days. A partial least-squares regression model between selected regions of the NIR spectra and the protein content yields a correlation coefficient of 0.93 and a prediction error (RMSECV) of 0.25 g/100 g. The results clearly indicate that NIR spectroscopy has a potential as a fast and noninvasive method for assessing the protein content in brine from barrel salted herring, which again may be used as an indicator for the ripening quality of barrel salted herring.

Svensson, V.T.; Nielsen, Henrik Hauch

2004-01-01

229

Iodine Content of Household Salt and Urinary Iodine of Primary School Pupils in Commercial Towns in Nsukka Senatorial Zone, Enugu State, Nigeria  

OpenAIRE

This study was designed to determine the iodine content of household salt and urinary iodine of primary school pupils in commercial towns in Nsukka Senatorial Zone, Enugu State, Nigeria. Two commercial towns (Orba and Ibagwa-aka) in Nsukka senatorial district were purposely selected. Iodine content of salt was measured at household level as well the nutritional iodine status of 200 school aged children (6-12 years) was assessed by measuring their urinary iodine concentration. Validated ...

Maduabuchi, Adimoranma; Ani, Peace N.; Madukwe, Edith U.

2013-01-01

230

Dependence of seismoelectric amplitudes on water content  

OpenAIRE

The expectation behind seismoelectric ?eld measurements is to achieve a combination of the sensitivity of electrical properties to water content and permeability and the high spatial resolution of seismic surveys. A better understanding of the physical processes and a reliable quanti?cation of the conversion between seismic energy and electric energy are necessary and need to take into account the e?ect of water content, especially for shallow subsurface investigations. We performed a ?...

Strahser, Matthias; Jouniaux, Laurence; Sailhac, Pascal; Matthey, Pierre-daniel; Zillmer, Matthias

2011-01-01

231

Increased Cerebral Water Content in Hemodialysis Patients  

Science.gov (United States)

Little information is available on the impact of hemodialysis on cerebral water homeostasis and its distribution in chronic kidney disease. We used a neuropsychological test battery, structural magnetic resonance imaging (MRI) and a novel technique for quantitative measurement of localized water content using 3T MRI to investigate ten hemodialysis patients (HD) on a dialysis-free day and after hemodialysis (2.4±2.2 hours), and a matched healthy control group with the same time interval. Neuropsychological testing revealed mainly attentional and executive cognitive dysfunction in HD. Voxel-based-morphometry showed only marginal alterations in the right inferior medial temporal lobe white matter in HD compared to controls. Marked increases in global brain water content were found in the white matter, specifically in parietal areas, in HD patients compared to controls. Although the global water content in the gray matter did not differ between the two groups, regional increases of brain water content in particular in parieto-temporal gray matter areas were observed in HD patients. No relevant brain hydration changes were revealed before and after hemodialysis. Whereas longer duration of dialysis vintage was associated with increased water content in parieto-temporal-occipital regions, lower intradialytic weight changes were negatively correlated with brain water content in these areas in HD patients. Worse cognitive performance on an attention task correlated with increased hydration in frontal white matter. In conclusion, long-term HD is associated with altered brain tissue water homeostasis mainly in parietal white matter regions, whereas the attentional domain in the cognitive dysfunction profile in HD could be linked to increased frontal white matter water content. PMID:25826269

Costa, Ana Sofia; Gras, Vincent; Tiffin-Richards, Frances; Mirzazade, Shahram; Holschbach, Bernhard; Frank, Rolf Dario; Vassiliadou, Athina; Krüger, Thilo; Eitner, Frank; Gross, Theresa; Schulz, Jörg Bernhard; Floege, Jürgen; Shah, Nadim Jon

2015-01-01

232

Characteristics of SnO2:F Thin Films Deposited by Ultrasonic Spray Pyrolysis: Effect of Water Content in Solution and Substrate Temperature  

Directory of Open Access Journals (Sweden)

Full Text Available Fluorine doped tin oxide, SnO2:F, thin films were deposited by ultrasonic chemical spray starting from tin chloride and hydrofluoric acid. The physical characteristics of the films as a function of both water content in the starting solution and substrate temperature were studied. The film structure was polycrystalline in all cases, showing that the intensity of (200 peak increased with the water content in the starting solution. The electrical resistivity decreased with the water content, reaching a minimum value, in the order of 8 × 10-4 ?cm, for films deposited at 450? from a starting solution with a water content of 10 ml per 100 ml of solution; further increase in water content increased the corresponding resistivity. Optical transmittances of SnO2:F films were high, in the order of 75%, and the band gap values oscillated around 3.9 eV. SEM analysis showed uniform surface morphologies with different geometries depending on the deposition conditions. Composition analysis showed a stoichiometric compound with a [Sn/O] ratio around 1:2 in all samples. The presence of F into the SnO2 lattice was detected, within 2 at % respect to Sn.

Mario A. Sánchez-García

2012-10-01

233

Investigation of iodine concentration in salt, water and soil along the coast of Zhejiang, China*  

OpenAIRE

Objective: We aim to describe the environment iodine concentration in salt, water and soil along Zhejiang Province coast in the China foreland. It will be helpful for us to judge whether this area is insufficient in iodine and universal iodized salt is necessary or not. Methods: We collected iodized salt samples, drinking water samples (tap water in the towns, and well water or spring water in the villages), water samples from different sources (ditches, lakes, rivers) and soil samples throug...

Lu, Ying-li; Wang, Ning-jian; Zhu, Lan; Wang, Guo-xing; Wu, Hui; Kuang, Lin; Zhu, Wen-ming

2005-01-01

234

Evaluation of trace metal content by ICP-MS using closed vessel microwave digestion in fresh water fish.  

Science.gov (United States)

The objective of the present study was to investigate trace metal levels of different varieties of fresh water fish using Inductively Coupled Plasma Mass Spectrophotometer after microwave digestion (MD-ICPMS). Fish samples were collected from the outlets of twin cities of Hyderabad and Secunderabad. The trace metal content in different varieties of analyzed fish were ranged from 0.24 to 1.68?mg/kg for Chromium in Cyprinus carpio and Masto symbollon, 0.20 to 7.52?mg/kg for Manganese in Labeo rohita and Masto symbollon, 0.006 to 0.07?mg/kg for Cobalt in Rastrelliger kanagurta and Pampus argenteus, 0.31 to 2.24?mg/kg for Copper in Labeo rohita and Penaeus monodon, 3.25 to 14.56?mg/kg for Zinc in Cyprinus carpio and Macrobrachium rosenbergii, and 0.01 to 2.05?mg/kg for Selenium in Rastrelliger kanagurta and Pampus argenteus, respectively. Proximate composition data for the different fishes were also tabulated. Since the available data for different trace elements for fish is scanty, here an effort is made to present a precise data for the same as estimated on ICP-MS. Results were in accordance with recommended daily intake allowance by WHO/FAO. PMID:24744789

Jarapala, Sreenivasa Rao; Kandlakunta, Bhaskarachary; Thingnganing, Longvah

2014-01-01

235

High pressure processing alters water distribution enabling the production of reduced-fat and reduced-salt pork sausages.  

Science.gov (United States)

High pressure processing (HPP) was used to explore novel methods for modifying the textural properties of pork sausages with reduced-salt, reduced-fat and no fat replacement additions. A 2×7 factorial design was set up, incorporating two pressure levels (0.1 or 200MPa) and seven fat levels (0, 5, 10, 15, 20, 25 and 30%). Sausages treated at 200MPa exhibited improved tenderness at all fat levels compared with 0.1MPa treated samples, and the shear force of sausages treated at 200MPa with 15 or 20% fat content was similar to the 0.1MPa treated sausages with 30% fat. HPP significantly changed the P2 peak ratio of the four water components in raw sausages, resulting in improved textural properties of emulsion-type sausages with reduced-fat and reduced-salt. Significant correlations were found between pH, color, shear force and water proportions. The scanning and transmission micrographs revealed the formation of smaller fat globules and an improved network structure in the pressure treated sausages. In conclusion, there is potential to manufacture sausages with reduced-fat and reduced-salt by using HPP to maintain textural qualities. PMID:25553411

Yang, Huijuan; Han, Minyi; Bai, Yun; Han, Yanqing; Xu, Xinglian; Zhou, Guanghong

2015-04-01

236

Surface functionalization by molten salt electrolytic processes  

International Nuclear Information System (INIS)

The attention has been paid to surface functionalization by molten salt electrolytic processes. Three topics on the experimental results obtained by the authors are described: the electrochemical formation of zirconium metal film and zirconium alloy film on ceramic, surface nitriding of titanium by electrochemical process and an anodic oxide film formation on nickel. (author)

237

The MODIS Vegetation Canopy Water Content product  

Science.gov (United States)

Vegetation water stress drives wildfire behavior and risk, having important implications for biogeochemical cycling in natural ecosystems, agriculture, and forestry. Water stress limits plant transpiration and carbon gain. The regulation of photosynthesis creates close linkages between the carbon, water, and energy cycles and through metabolism to the nitrogen cycle. We generated systematic weekly CWC estimated for the USA from 2000-2006. MODIS measures the sunlit reflectance of the vegetation in the visible, near-infrared, and shortwave infrared. Radiative transfer models, such as PROSPECT-SAILH, determine how sunlight interacts with plant and soil materials. These models can be applied over a range of scales and ecosystem types. Artificial Neural Networks (ANN) were used to optimize the inversion of these models to determine vegetation water content. We carried out multi-scale validation of the product using field data, airborne and satellite cross-calibration. An Algorithm Theoretical Basis Document (ATBD) of the product is under evaluation by NASA. The CWC product inputs are 1) The MODIS Terra/Aqua surface reflectance product (MOD09A1/MYD09A1) 2) The MODIS land cover map product (MOD12Q1) reclassified to grassland, shrub-land and forest canopies; 3) An ANN trained with PROSPECT-SAILH; 4) A calibration file for each land cover type. The output is an ENVI file with the CWC values. The code is written in Matlab environment and is being adapted to read not only the 8 day MODIS composites, but also daily surface reflectance data. We plan to incorporate the cloud and snow mask and generate as output a geotiff file. Vegetation water content estimates will help predicting linkages between biogeochemical cycles, which will enable further understanding of feedbacks to atmospheric concentrations of greenhouse gases. It will also serve to estimate primary productivity of the biosphere; monitor/assess natural vegetation health related to drought, pollution or diseases; improve irrigation scheduling by reducing over-watering and under-watering. These estimates will also allow researchers to identify wildfire behavior/risk: drives ignition probability and burning efficiency; to be used as an indicator of soil moisture and Leaf Area Index.

Ustin, S. L.; Riano, D.; Trombetti, M.

2008-12-01

238

Oil spill research : salt water and fresh water  

International Nuclear Information System (INIS)

The difference in oil spill response activities between marine and freshwater environments were reviewed. Although containment, recovery and in-situ burning remain the same in both environments, the fate of oil is different due to water density and salinity considerations. The lower energy of lakes and the lack of major currents changes the advection of the oil. Rivers have high currents, and wind speed and direction are highly influenced by topographic effects. Tidal action is not a consideration for the inland situation, but water levels in rivers can change due to sudden rain events or the action of control devices upstream from the spill. Typically, the volume of oil released in freshwater environments is lower than in marine tanker situations, but spills from pipelines or a major train derailment can exceed 1000 m3. Since the use of water for human consumption and irrigation is another important factor in inland spills, it is important to have a means of obtaining information on the dynamics of spills and a system for archiving the response activities, such as the shoreline cleanup assessment technique (SCAT)and resulting cleanup. It was suggested that research studies must be undertaken to improve response strategies for freshwater spills. These include the dynamics of oil in freshwater environments such as rivers, lakes and sloughs; the role of oil-fine interactions in freshwater situations; the process involved in the formation of tar balls; and, thved in the formation of tar balls; and, the dynamics of oil in a freshwater situation. The response techniques that must be developed to improve the response to freshwater spills include techniques to remove oil from the bottom; techniques to filter and remove oil from the water column; and, development and testing of dispersants for freshwater environments

239

Studying on preparation of super water absorbing materials by radiation modification techniques using bentonite and water soluble monomer  

International Nuclear Information System (INIS)

Research on preparing water super absorbent materials using Di Linh bentonite and water soluble acrylic monomer has been carried out by gamma radiation grafting and crosslinking techniques. The research results showed that gel formed depends on the absorbed dose and the concentration of bentonite used, and not affected by the cleanliness of them. In the dose range studied, water swelling content reached 579 g.g-1 with swelling rate of 20 g.g-1.min-1, in salting solution water absorption capacity decreased very much in particular at high concentrations. In salting media, the water absorption capacity of studied product depends on the type of salt in order as follows NaCl43)22)2. Absorption capacity of the polymer also depends on pH, particle size and drying temperature. The effect of water retention in sandy soil, the spectral characteristics XRD, FT-IR were also studied. (author)

240

Potential Antioxidant Activities Improve Salt Tolerance in Ten Varieties of Wheat (Triticum aestivum L.)  

OpenAIRE

The activity of antioxidative enzymes system is affected by salt stress, chlorophyll content (CHL), leaf relative water content (RWC), Na+ and K+ contents, their ratio and some oxidative stress indices were studied in leaves of ten bread wheat cultivarsSehar-06, Lu-26, NARC-09, BARC-09 and Pirsbak-09’(salt-tolerant) and Kaghan-94, Rohtas-90, Soughat-90, Shaheen-94 and Zardana-89’(salt-sensitive), grown under salinity treatments carried out in five levels (1

Aurangzeb Rao; Syed Dilnawaz Ahmad; Syed Mubashar Sabir; Shahid Iqbal Awan; Asad Hussain Shah; Syed Rizwan Abbas; Saima Shafique; Fareed Khan; Atia Chaudhary

2013-01-01

241

Monitoring root zone water content using ERT  

Science.gov (United States)

In vadose zone hydrology as well as in agriculture, one of the most ignored functions is the root water and solute uptake. In this research we investigate the spatial and temporal patterns of root water uptake, and the way these patterns are influenced by environmental conditions. We consider the soil-root system as continuum. Our greenhouse setup includes three different irrigation schemes, differing in the rate at which water is applied (high rate, small rate, and pulses). For each scheme we have two cylindrical growing chambers equipped with 96 ERT electrodes (one with and one without a Bell-peppers plant), similar chambers with TDR probes, continuous weighting of chambers and of drainage, and 12 equal dimensions sacks for bi-weekly mapping of root presence. The geophysical part of this research includes a weekly monitoring of the electrical resistivity for each chamber (at the end of irrigation and at mid-day), and 24 hours continuous monitoring of the electrical resistivity. The later will be used, after conversion to water content, for inversion of Richards' equation to identify hydraulic properties of the system (using the "no-plant" chambers). The rest of the data will be used to calibrate the root uptake function. Preliminary results indicate significant difference in the root development and functionality for the different environmental conditions applied, up to 100 percents difference in uptake.

Furman, A.; Assouline, S.

2008-12-01

242

Sea Water Ageing of GFRP Composites and the Dissolved salts  

Science.gov (United States)

This paper houses the effect of sea water immersion on glass fibre reinforced polymer (GFRP) composites. The major sources of interest are study of sea water absorption, penetration of the dissolved salts, details of chemical and physical bonds at the interface, variations of mechanical properties and study of failure mechanisms as revealed through SEM fractographs. Eighteen ply GFRP composites are immersed in sea water for a period of one year in steps of two months durations. It is revealed that the moisture absorption transforms from a Fickian to non-Fickian behavior with lapse of time. The dissolved salt 'K' shows highest depth of penetration after one year of immersion while 'Na' shows a least depth of penetration, as revealed from the EDS spectra. It is also revealed that 'Ca' seems to have a sudden burst in the rate of penetration even surpassing that of 'K'. This trend can be attributed to the combined effect of ionic mobility of the various dissolved salts and the probable interaction between 'K' and the -OH group of epoxy resin. This interaction between dissolved 'K' and the -OH group in the polymer could have arrested the further advancement of 'K' salts in the polymer, resulting in comparatively high rates of 'Ca' penetration. The mechanical properties such as inter laminar shear stress (ILSS), stress and strain at rupture, glass transition temperature (Tg) and elastic modulus show a decreasing trend with the increased duration of immersion. As revealed from the SEM fractographs pot- holing, fiber pull-out, matrix crack etc. are seen to be the major reason for failure of the immersed samples under load.

Chakraverty, A. P.; Mohanty, U. K.; Mishra, S. C.; Satapathy, A.

2015-02-01

243

Experimental Demonstration of the Stabilization of Colloids by Addition of Salt  

CERN Document Server

We demonstrate a general non--Derjaguin-Landau-Verwey-Overbeek method to stabilize colloids in liquids. By this method, colloidal particles that initially form unstable suspension and sediment from the liquid are stabilized by the addition of salt to the suspending liquid. Yet, the salt is not expected to adsorb or directly interact with the surface of the colloids. For the method to work, the liquid should be a mixture, and the salt needs to be antagonistic such that each ion is preferentially solvated by a different component of the mixture. The stabilization may depend on the salt content, mixture composition, or distance from the mixture's coexistence line.

Samin, Sela; Melamed, Eitan; Gottlieb, Moshe; Tsori, Yoav

2014-01-01

244

Transpiring wall supercritical water oxidation reactor salt deposition studies  

Energy Technology Data Exchange (ETDEWEB)

Sandia National Laboratories has teamed with Foster Wheeler Development Corp. and GenCorp, Aerojet to develop and evaluate a new supercritical water oxidation reactor design using a transpiring wall liner. In the design, pure water is injected through small pores in the liner wall to form a protective boundary layer that inhibits salt deposition and corrosion, effects that interfere with system performance. The concept was tested at Sandia on a laboratory-scale transpiring wall reactor that is a 1/4 scale model of a prototype plant being designed for the Army to destroy colored smoke and dye at Pine Bluff Arsenal in Arkansas. During the tests, a single-phase pressurized solution of sodium sulfate (Na{sub 2}SO{sub 4}) was heated to supercritical conditions, causing the salt to precipitate out as a fine solid. On-line diagnostics and post-test observation allowed us to characterize reactor performance at different flow and temperature conditions. Tests with and without the protective boundary layer demonstrated that wall transpiration provides significant protection against salt deposition. Confirmation tests were run with one of the dyes that will be processed in the Pine Bluff facility. The experimental techniques, results, and conclusions are discussed.

Haroldsen, B.L.; Mills, B.E.; Ariizumi, D.Y.; Brown, B.G. [and others

1996-09-01

245

17O NMR and Raman spectra of water with different calcium salts  

Science.gov (United States)

17O NMR and Raman spectra of water with different calcium salts have been measured. Different water samples were prepared by adding nano-materials, calcium gluconate, calcium citrate and calcium chloride into distilled water. Both 17O NMR and Raman spectra of different water samples were recorded. The effects of temperature and time on 17O NMR line-width of different water samples were analyzed as well. The experimental results showed that Raman spectra of water with these four calcium salts were almost the same as those for distilled water when the temperature increased to 40 °C. The 17O NMR line-width of distilled water decreased from 76.8 Hz to 46.9 Hz and 65.8 Hz after nano-materials and calcium chloride were added, respectively. Besides, the 17O NMR line-width of distilled water increased from 76.8 Hz to 131.6 Hz after calcium citrate was added, while the 17O NMR line-width of distilled water increased from 76.8 Hz to 77.2 Hz after calcium gluconate was added. The 17O NMR line-width of water with calcium chloride increased while the other three water samples were nearly stable as the temperature increased from 30 °C to 85 °C. The 17O NMR line-width of water with nano-materials kept steady while the 17O NMR line-width of the other three water samples all increased in 42 days.

Yan, Ying; Ou, Xiao-xia; Zhang, Hui-ping

2014-09-01

246

Water content and structure in malignant and benign skin tumours  

Science.gov (United States)

Analysis of the low frequency region of Raman spectra enables determination of water structure. It has been previously demonstrated by various techniques that water content and possibly also the water structure is altered in some malignant tumours. To further elucidate possible change in water structure in tumours we performed NIR FT Raman spectroscopy on biopsies from selected benign and malignant skin tumours (benign: seborrheic keratosis, pigmented nevi; malignant: malignant melanoma, basal cell carcinoma). We did not observe any differences in water content between malignant and benign skin tumours with an exception of seborrheic keratosis, in which the water content was decreased. Increase in the tetrahedral (free) water was found in malignant skin tumours and sun-damaged skin relative to normal young skin and benign skin tumours. This finding may add to the understanding of molecular alterations in cancer.

Gniadecka, M.; Nielsen, O. F.; Wulf, H. C.

2003-12-01

247

Temporal Partitioning by Animals Visiting Salt Licks  

Directory of Open Access Journals (Sweden)

Full Text Available Temporal partitioning of resources according to feeding period occurs in situation of food type specialization, such as for the use of salt licks by ecologically similar animal species. Camera traps placed at salt licks can be used to determine animal activity patterns. This study was carried in a logging concession area in central Sarawak, Malaysian Borneo. Sampling was carried from September 2010 to January 2011, and May to September 2011. Activity data at salt lick sites showed that sambar deer Rusa unicolor was mostly nocturnal, with high number of records occurring after dark from 20:00hrs onwards, peaking after midnight before slowly decreasing until early morning at 08:00hrs. Bornean yellow muntjac’s Muntiacus antherodes activity was restricted to during the day, which peaked at 11:00 to 12:00hrs. There was no clear pattern observable in mousedeer Tragulus spp. and bearded pig Sus barbatus activity data. Significant differences between the proportion of daily activity were observed between Bornean yellow muntjac and bearded pig (Mann-Whitney-Wilcoxon test, W=165.5, p=0.004, followed by sambar deer (W=195.5, p=0.053 and mousedeer (W=213, p=0.074. Human presence and hunting pressure may affect the behaviour of some game species, such as the Bornean yellow muntjac which showed peak activity periods during the earlier part of the day, and over a much shorter time span in more human accessible salt lick sites.

Jason Hon

2013-02-01

248

The water cycles of water-soluble organic salts of atmospheric importance  

Science.gov (United States)

In this study, the water cycles of nine water-soluble organic salts of atmospheric interest were studied using an electrodynamic balance (EDB) at 25°C. Sodium formate, sodium acetate, sodium succinate, sodium pyruvate and sodium methanesulfonate (Na-MSA) particles crystallize as the relative humidity (RH) decreases and they deliquesce as the RH increases. Sodium oxalate and ammonium oxalate form supersaturated particles at low RH before crystallization but they do not deliquesce even at RH=90%. Sodium malonate and sodium maleate particles neither crystallize nor deliquesce. These two salts absorb and evaporate water reversibly without hysteresis. In most cases, the solid states of single particles resulting from the crystallization of supersaturated droplets do not form the most thermodynamically stable state found in bulk studies. Sodium formate, sodium oxalate, ammonium oxalate, sodium succinate, sodium pyruvate and Na-MSA form anhydrous particles after crystallization. Sodium acetate forms particles with a water/salt molar ratio of 0.5 after crystallization. In salts with several hydrated states including sodium formate and sodium acetate, the particles deliquesce at the lowest deliquescence relative humidity (DRH) of the hydrates. Except sodium oxalate and ammonium oxalate, all the salts studied here are as hygroscopic as typical inorganic hygroscopic aerosols. The hygroscopic organic salts have a growth factor of 1.76-2.18 from RH=10-90%, comparable to that of typical hygroscopic inorganic salts such as NaCl and (NH 4) 2SO 4. Further study of other atmospheric water-soluble organic compounds and their mixtures with inorganic salts is needed to explain the field observations of the hygroscopic growth of ambient aerosols.

Peng, Changgeng; Chan, Chak K.

249

Modelling unfrozen water content in a silty clay permafrost deposit  

DEFF Research Database (Denmark)

The mechanical properties of both unfrozen soils and permafrost soils are influenced by the amount of unfrozen water in the pore space. When dealing with foundation engineering in permafrost areas it is essential to estimate the unfrozen water content (wu). This paper deals with the establishing of a calibration equation for determining the unfrozen water content of a Greenlandic silty clay permafrost deposit. Calibration experiments have been conducted for water contents in the interval 0 – 10 % at both 5 °C and 22 °C. Calibration equations are verified against permittivity data from a permafrost core of material properties similar to the test soil. The calibration for 5°C is seen to make a good fit to the permafrost core data. Further experiments should be performed in order to extend the range of water contents tested and hence the range of validity of the calibration equation.

Agergaard, Frederik Ancker; Ingeman-Nielsen, Thomas

2011-01-01

250

Investigations into the endogenic abcisinic acid and cytokinin content of soja bean cultures with varying salt sensitivity, as well as into the effect of exogenically applied abcisinic acid to the Cl--translocation  

International Nuclear Information System (INIS)

Two soja bean cultures with different Cl- sensitivity the 'Lee' and 'Jackson' were used for the investigation. Salting of the growth medium with 75 nM NaCl massively increased the obcisinic acid (ABA) concentration in the leaves, not however of the cytokinin content. The high ABA concentrations remained in the 'Jackson' sort even after a 7-day salt treatment. The moderately salt-resistant sort 'Lee' had a remarkable Cl- retention mechanism. The addition of 10-5 and 10-6 M ABA to the growth medium reduced the Cl- concentration in the sprout and simultaneously increased the accumulation in the root. This ABA effect failed at high salt concentration. The order of magnitude in which ABA is taken up from a normal or salted growth medium and its distribution were investigated using 14C. Macroautoradiographic investigations show that after 35 h the whole sprout is radioactively labelled whereby a prefered accumulation is found in youngest part of the sprout. The highest Cl- values were found in the older leaves. The ABA is obviously transported to the stomata with the transpiration flow and inhibits the transpiration by its effect on the stomata. Subjecting the soja beans to a 75 mM NaCl concentration, can lead to a decrease of transpiration due to the strong salt concentration. The addition of ABA as well had an inhibiting effect on the water release of the plants without influencing the Cl- translocation. (MG)

251

Faba Bean (Vicia faba L. Salt Stress Response under Different Soil Organic Matter Content  

Directory of Open Access Journals (Sweden)

Full Text Available Use of saline water for crop irrigation leads to rhizosphere salinization, which affects plant element uptake, as well as trace elements (TEs accumulation in plant tissue. Moreover, imbalance in crop element uptake may reflect on crop productivity. Soil organic matter (SOM plays an important role in soil biogeochemical processes and especially affects trace element mobility and bioavailability. Therefore, it is an important factor for assessment of plant responses under varying ecological conditions, including salinity. A greenhouse pot experiment was set up to study the effects of saline irrigation and increased SOM on faba bean (Vicia faba L. salt stress response. Soil from arable land of Croatian coastal region was used for the trial. One half of the bulk of soil provided for the experiment was mixed with commercial peat (4:1 and two trial variants, unmodified and increased SOM content, were investigated. Two weeks after transplanting faba bean seedlings into pots, treatment with two levels of NaCl salinity (50 and 100 mM NaCl, respectively was applied in a nutrient solution. Control plants were included in the measurements as well. Saline irrigation as well as increased SOM affected certain element accumulation in bean plant (leaf, pod and/or seed, although no significant interaction between rhizosphere salinization and SOM was revealed.

Lana Matijevi?

2014-03-01

252

Geophysical methods to support correct water sampling locations for salt dilution gauging  

Science.gov (United States)

To improve water management design, particularly in irrigation areas, it is important to evaluate the baseline state of the water resources, including canal discharge. Salt dilution gauging is a traditional and well-documented technique in this respect. The complete mixing of salt used for dilution gauging is required; this condition is difficult to test or verify and, if not fulfilled, is the largest source of uncertainty in the discharge calculation. In this paper, a geophysical technique (FERT, fast electrical resistivity tomography) is proposed for imaging the distribution of the salt plume used for dilution gauging at every point along a sampling cross section. With this imaging, complete mixing can be verified. If the mixing is not complete, the image created by FERT can also provide a possible guidance for selecting water-sampling locations in the sampling cross section. A water multi-sampling system prototype aimed to potentially take into account concentration variability is also proposed and tested. The results reported in the paper show that FERT provides a three-dimensional image of the dissolved salt plume and that this can potentially help in the selection of water sampling points.

Comina, C.; Lasagna, M.; De Luca, D. A.; Sambuelli, L.

2014-08-01

253

The changes in contents of Salt Marsh Species and the importance of Edaphic Physiochemical Factors  

International Nuclear Information System (INIS)

The changes in nutrient contents of some halophytic plants which occurred in a salt marsh located in the vicinity of Bafra town, on the north coast of Turkey during the growing seasons were investigated. Contents of So4, Cl, Na, K, Ca and Mg changed during the growing season in most species. High correlation coefficients were obtained between plant ion and soil ion contents. It has been found that the most prevalent ion was Na in the plant and soil samples. It was also shown that species diversity was quite low in the study area, and species diversity was highly correlated with so4/Cl ratio, electrical conductivity and pH. (author)

254

Metasomatic control of water contents in the Kaapvaal cratonic mantle  

Science.gov (United States)

Water and trace element contents were measured by FTIR and laser ablation-ICPMS on minerals from peridotite xenoliths in kimberlites of the Kaapvaal craton from Finsch, Kimberley, Jagersfontein (South Africa), Letseng-La-Terae, and Liqhobong (Lesotho) mines. The peridotites record a wide range of pressure, temperature, oxygen fugacity, and metasomatic events. Correlations between water content or OH vibration bands with major, minor and trace elements in pyroxene and garnet precludes disturbance during xenolith entrainment by the host kimberlite magma and indicate preservation of mantle water contents. Clinopyroxene water contents (150-400 ppm H2O, by weight) correlate with those of orthopyroxene (40-250 ppm). Olivines (Peslier et al., 2008, 2010) and garnets have 0-86 and 0-20 ppm H2O, respectively. Relations in individual xenolith suites between the amount of water and that of incompatible elements Ti, Na, Fe3+ and rare earths in minerals suggests that metasomatism by oxidizing melts controls the water content of olivine, pyroxene and garnet. At pressures ?5.5 GPa, hydrous, alkaline, siliceous fluids or melts metasomatized Liqhobong and Kimberley peridotites, producing high water contents in their olivine, pyroxenes and garnet. At higher pressures, the percolation of ultramafic melts reacting with peridotite resulted in co-variation of Ca, Ti and water at the edge of garnets at Jagersfontein, and the overall crystallization of garnet with lower water contents than those in the original peridotites. The upward migration of these ultramafic melts through the lithospheric mantle also increased the water content of olivines with decreasing pressure at Finsch Mine. H2O/Ce ratios of melts in equilibrium with Kaapvaal peridotites range from 100 to 20,000 and the larger values may indicate metasomatism in subduction zone settings. Metasomatic events in Kaapvaal peridotites are thought to have occurred from the Archean to the Mesozoic. However, circumstantial evidence suggest that the metasomatic events responsible for setting the water contents may date from the Archean at Kimberley and from the Proterozoic at Jagersfontein. Combined water with Lu-Hf and Sm-Nd isotopic data at Finsch (Lazarov et al., in press-a) and with Ar-Ar phlogopite ages at Liqhobong (Hopp et al., 2008) indicates that water addition by metasomatic melts occurred in the Proterozoic. Water contents of mantle minerals in Kaapvaal xenoliths measured here have been preserved since that time and can consequently be used in modelling viscosity and longevity of cratonic roots since at least the mid-Proterozoic.

Peslier, A. H.; Woodland, A. B.; Bell, D. R.; Lazarov, M.; Lapen, T. J.

2012-11-01

255

Enhancing Rice Salt Stress Tolerance by Priming with Validamycin A  

OpenAIRE

A possible survival strategy of plants under saline conditions is to use some compounds that could alleviate salt stress. Application of validamycin A, a potent inhibitor of trehalase as seed soaking prior to sowing in saline soil with salinity level (EC 10.06 dS m-1) to Rice (Oryza sativa L.) cultivars (cv.) salt sensitive Sakha 103 and salt tolerance Agami M5 was investigated. Salinity stress decreased starch and total soluble protein contents concomitantly with increasing total soluble sug...

Hathout, T. A.; El-khallal, S. M.; Abdelgawad, Z. A.; Said, E. M.; Al Mokadem, A. Z.

2014-01-01

256

Isotopic and chemical investigation of ground water salinization in upper part of Chaj Doab  

International Nuclear Information System (INIS)

Environmental isotopes and chemical composition of water have been used to study the origin of groundwater salts in upper part of Chaj Doab. Three important possible processes of salinization i.e. enrichment of salt content of water by evaporation, mixing with connate marine water and dissolution of salts from soil sediments have been investigated. no evidence for mixing with connate marine water could be found. The dissolution of salts from soil sediments appears as the dominant mechanism for increasing the salt content of water in this area. (author)

257

Determination by gamma-ray spectrometry of the plutonium and americium content of the Pu/Am separation scraps. Application to molten salts; Determination par spectrometrie gamma de la teneur en plutonium et en americium de produits issus de separation Pu/Am. Application aux bains de sels  

Energy Technology Data Exchange (ETDEWEB)

Within the framework of plutonium recycling operations in CEA Valduc (France), americium is extracted from molten plutonium metal into a molten salt during an electrolysis process. The scraps (spent salt, cathode, and crucible) contain extracted americium and a part of plutonium. Nuclear material management requires a very accurate determination of the plutonium content. Gamma-ray spectroscopy is performed on Molten Salt Extraction (MSE) scraps located inside the glove box, in order to assess the plutonium and americium contents. The measurement accuracy is influenced by the device geometry, nuclear instrumentation, screens located between the sample and the detector, counting statistics and matrix attenuation, self-absorption within the spent salt being very important. The purpose of this study is to validate the 'infinite energy extrapolation' method employed to correct for self-attenuation, and to detect any potential bias. We present a numerical study performed with the MCNP computer code to identify the most influential parameters and some suggestions to improve the measurement accuracy. A final uncertainty of approximately 40% is achieved on the plutonium mass. (authors)

Godot, A. [CEA Valduc, Dept. de Traitement des Materiaux Nucleaires, 21 - Is-sur-Tille (France); Perot, B. [CEA Cadarache, Dept. de Technologie Nucleaire, Service de Modelisation des Transferts et Mesures Nucleaires, 13 - Saint-Paul-lez-Durance (France)

2005-07-01

258

Salt Tracer and Area-Velocity Water Discharge  

Science.gov (United States)

Students spend a 50-minute class (or longer) measuring water discharge of a local stream. They use two different techniques: the traditional area-velocity method and a salt-tracer method. In the classroom, each student using Excel or Kaleidagraph to calculate discharge from field measurements. They summarize their results in an essay, and assess differences between the two techniques and potential sources of error. Designed for a geomorphology course Designed for an introductory geology course Addresses student fear of quantitative aspect and/or inadequate quantitative skills

Catherine Riihimaki

259

Water content reflectometer calibration, field versus laboratory  

Science.gov (United States)

For soils with large amounts of high-charge clays, site-specific calibrations for the newer permittivity probes that operate at lower frequencies, often have higher permittivity values than factory calibrations. The purpose of this study was to determine site-specific calibration of water content re...

260

Estimation of water turnover rates of captive West Indian manatees (Trichechus manatus) held in fresh and salt water  

Science.gov (United States)

The ability of West Indian manatees (Trichechus manatus) to move between fresh and salt water raises the question of whether manatees drink salt water. Water turnover rates were estimated in captive West Indian manatees using the deuterium oxide dilution technique. Rates were quantified in animals using four experimental treatments: (1) held in fresh water and fed lettuce (N=4), (2) held in salt water and fed lettuce (N=2), (3) acutely exposed to salt water and fed lettuce (N=4), and (4) chronically exposed to salt water with limited access to fresh water and fed sea grass (N=5). Animals held in fresh water had the highest turnover rates (145+/-12 ml kg-1 day-1) (mean +/- s.e.m.). Animals acutely exposed to salt water decreased their turnover rate significantly when moved into salt water (from 124+/-15 to 65+/-15 ml kg-1 day-1) and subsequently increased their turnover rate upon re-entry to fresh water (146+/-19 ml kg-1 day-1). Manatees chronically exposed to salt water had significantly lower turnover rates (21+/-3 ml kg-1 day-1) compared with animals held in salt water and fed lettuce (45+/-3 ml kg-1 day-1). Manatees chronically exposed to salt water and fed sea grass had very low turnover rates compared with manatees held in salt water and fed lettuce, which is consistent with a lack of mariposia. Manatees in fresh water drank large volumes of water, which may make them susceptible to hyponatremia if access to a source of Na+ is not provided.

Ortiz, R. M.; Worthy, G. A.; Byers, F. M.

1999-01-01

261

To cut upkeep on salt-water intake structure consider nickel-coated rebars  

International Nuclear Information System (INIS)

Nickel coating at least 1 mil thick applied to concrete reinforing bars is recommended as protection to concrete structures of utilities and industrial plants taking salt cooling water from the ocean or bays. Reduction of subsurface damage to concrete and reinforcement is indicated by 20 years testing. Seabrook nuclear station will apply the idea to cooling-tower beams as well as to circulating-water inlet heads

262

Reducing the content of alloying elements in high-speed steel during heating in salt baths  

International Nuclear Information System (INIS)

Barium chloride salt baths are primarily used for the high-temperature quench heating of a tool formed from high-speed steels. If the barium chloride melt should have a decarbonizing effect on the surface components that are heated in it, the authors maintain that it may also affect the content of alloying elements in the surface layers of high-speed-steel components that are heated in it. Commercial salt baths with a rectifier -- chemically pure magnesium fluoride -was used for the investigation. Cooling was accomplished in a caustic melt. Analysis of the results of investigation of the molybdenum, tungsten, and cobalt distributions in steel R9M4K8 as well as the tungsten and cobalt distributions in steel R9K5 indicated that the cobalt content does not diminish on heating to 12300C. A decrease in molybdenum content occurs in the surface layers during the quench heating of a tool formed from high-speed tungsten-molybdenum steel in a barium chloride salt bath after the required heating time, while a decrease in the tungsten content takes place with more prolonged hold times. It is shown to be possible to reduce or completely eliminate loss of alloying elements in the surface layers of a high-speedsteel tool during heat treatment when magnesium fluoride in combination with silicon carbide additives is used as a rectifier

263

Mineralogical and Anthropogenic Controls of Stream Water Chemistry in Salted Watersheds  

Science.gov (United States)

Analyses of major cation and anion concentrations in stream water and soil solutions from two salted (regular applications of winter road deicing salt) watersheds located in the northeastern United States indicate that both mineralogical and anthropogenic factors are important in controlling water chemistry. The relatively stable concentrations of calcium and magnesium, as well as their possible weathering paths identified by mass-balance models, indicate that the weathering of feldspars and the dissolution of carbonates are the primary sources for these two cations in the small, salted Centennial Lake Watershed (CLW, 1.95 km 2). However, the relatively stable and lower concentrations of sodium and chloride in soil solutions, and their fluctuating and higher concentrations in stream water from the CLW, indicate that road deicing salt is the primary source for these ions in stream water. Furthermore, positive correlations between calcium and sulfur concentrations and magnesium and sulfur concentrations in soil solutions, as well as positive correlations between sulfur and iron concentrations in soil compositions, indicate that both the dissolution of gypsum and the oxidation of pyrite into hematite are the primary sources of sulfate in the CLW. Analyses of water chemistry from the related and much larger Delaware River Watershed (DRW, 17560 km 2) show that sodium and chloride concentrations have increased steadily due to the regular application of winter deicing salt over the 68 years for which data are available. The more rapid increase of stream water chloride concentrations, relative to the increase in sodium, also results in the steady decline of Na+/Cl-molar ratios in the DRW over that time. In addition, the reduction of sulfate and increase of bicarbonate concentration since 1980 in DRW stream water may be attributed to the decline of sulfate levels in atmospheric deposition resulting from enhanced national and state environmental regulations and a shift in local economic activity away from heavy industry. There also are more periods of low silica stream water concentrations in the DRW than in the past, perhaps as a result of recent increases in summer water temperatures due to global climate change. The combined results of this study illustrate the many changing anthropogenic factors that can control stream water chemistry in salted watersheds and that these factors need to be taken into account when considering future water quality regulations and policy.

Sun, H.; Alexander, J.; Gove, B.; Chakowski, N.; Husch, J.

2013-12-01

264

Quantifying water content using GPR: impact of petrophysical variability  

Science.gov (United States)

Electromagnetic signal velocity measurements are commonly used to quantify liquid water contents of near surface geomaterials. Typically, a single-valued function, such as Topp's equation, is used to convert dielectric permittivity (K) into water content (?). Several factors contribute to error in such water content estimates, including use of incorrect petrophysical relationships, dependence of dielectric permittivity on pore scale geometry, frequency dispersive behavior (for example caused by the presence of swelling clay minerals), and macroscopic heterogeneity that leads to incorrect estimates of dielectric permittivity from field data. We use field and laboratory measurements and synthetic examples to investigate the relative importance of these sources of error. Co-axial cell measurements on clean sand samples suggest that even where the K versus ? relationship is well characterized, heterogeneity in the distribution of water at the pore scale for example caused by wetting-drying hysteresis, can lead to moisture content errors of ±2% volumetric water content, although more typically errors of swelling clay, although the influence of clay is less important at higher frequencies (i.e. >300MHz). Similar sized errors can result from variations in pore-scale geometry. However, experience suggests that the largest errors in water content measurements arise from assumptions concerning radar ray path geometry. GPR estimates of water content in macroscopically layered media made by assuming that the first radar wave arrivals are direct rays, whereas in fact these are critically refracted rays, can result in water content estimates that are inaccurate by up to 20%. Synthetic modeling to investigate the dependence of the magnitude of such errors on the geometric characteristics of heterogeneity will be presented.

West, L. J.; Endres, A. L.

2006-05-01

265

Hygroscopic behavior of atmospherically relevant water-soluble carboxylic salts and their influence on the water uptake of ammonium sulfate  

Directory of Open Access Journals (Sweden)

Full Text Available The hygroscopic behavior of atmospherically relevant water-soluble carboxylic salts and their effects on ammonium sulfate were investigated using a hygroscopicity tandem differential mobility analyzer (H-TDMA. No hygroscopic growth is observed for disodium oxalate, while ammonium oxalate shows slight growth (growth factor = 1.05 at 90%. The growth factors at 90% RH for sodium acetate, disodium malonate, disodium succinate, disodium tartrate, diammonium tartrate, sodium pyruvate, disodium maleate, and humic acid sodium salt are 1.79, 1.78, 1.69, 1.54, 1.29, 1.70, 1.78, and 1.19, respectively. The hygroscopic growth of mixtures of organic salts with ammonium sulfate, which are prepared as surrogates of atmospheric aerosols, was determined. A clear shift in deliquescence relative humidity to lower RH with increasing organic mass fraction was observed for these mixtures. Above 80% RH, the contribution to water uptake by the organic salts was close to that of ammonium sulfate for the majority of investigated compounds. The observed hygroscopic growth of the mixed particles at RH above the deliquescence relative humidity of ammonium sulfate agreed well with that predicted using the Zdanovskii-Stokes-Robinson (ZSR mixing rule. Mixtures of ammonium sulfate with organic salts are more hygroscopic than mixtures with organic acids, indicating that neutralization by gas-phase ammonia and/or association with cations of dicarbonxylic acids may enhance the hygroscopicity of the atmospheric particles.

Z. J. Wu

2011-12-01

266

Productivity Amelioration of Solar Water Distillator Linked with Salt Gradient Pond  

Directory of Open Access Journals (Sweden)

Full Text Available There is a great need for fresh water in many developing countries. Water sources from, e.g., lakes; rivers and groundwater are often brackish or contain harmful bacteria and should therefore not be used for drinking or irrigation.In this work a simple solar double sloped basin type still was connected to a solar salt gradient pond. The salinity-gradient solar pond is constructed in such a manner that the convective circulation in the pond is prohibited by making the bottom water much denser than the surface water. In doing so, the solar radiation absorbed in the deep water can be stored; the hot water from the salt pond was used to heat salt water in the stiller, at daylight and night.The tests were conducted in September and October in autumn season in Baghdad city-Iraq in 2009. The results show development in stiller productivity at daylight and larger productivity increase at night. The stiller productivity increased also with cooling the glass cover from the still outside. 

Miqdam Miqdam Tariq Chaichan

2013-04-01

267

Determination of natural tracer contents (?2H, ?18O, Cl-) in pore water from Tournemire Toarcian argillite by radial diffusion method  

International Nuclear Information System (INIS)

Most of natural tracer distributions, obtained from consolidated argillaceous formations (e.g. Opalinus, Toarcian clays) can be interpreted as diffusion profiles. They represent the result of large-scale and long term natural experiments that complete diffusion experiments carried out at lab or in underground facilities. Thus, natural tracer profiles can bring important information about long-term transport process, required for performance assessment. However, the particular properties of consolidated argillaceous rocks (very low water content, 2 to 5 % by wet weight for Tournemire shales, and small pore size, few nm) make difficult the determination of tracer concentrations in pore water. For instance, extraction of pore water by means of vacuum distillation method could induce a systematic depletion in heavy isotopes with regard to other methods, due to an incomplete - distillation mechanism. The determination of chloride content (also necessary for estimating of ionic strength and osmotic coefficient) requires the knowledge of what Pearson called the geochemical porosity for most of methods, particularly for lixiviation. The value of this parameter is generally derived from an indirect determination, increasing the uncertainty on the chloride content estimates. Unlike the other methods, such as vacuum distillation, vapour phase equilibration, lixiviation, squeezing or core degassing, the determination of natural tracer contents from radial diffusion method is basetents from radial diffusion method is based on liquid diffusive mixing, process identical to that occurring at the field scale. So, it can be thought that this technique actually involves the type(s) of water concerned by diffusion process at the field scale. In addition, this method, unlike the others, permits the determination of both stable isotope (?2H, ?18O) contents and chloride concentrations in the same time. The aim of this contribution is to discuss some results obtained from the radial diffusion method on Tournemire Toarcian argillite samples with regard to other methods. (authors)

268

Changes in water content and distribution in Quercus ilex leaves during progressive drought assessed by in vivo 1H magnetic resonance imaging  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background Drought is a common stressor in many regions of the world and current climatic global circulation models predict further increases in warming and drought in the coming decades in several of these regions, such as the Mediterranean basin. The changes in leaf water content, distribution and dynamics in plant tissues under different soil water availabilities are not well known. In order to fill this gap, in the present report we describe our study withholding the irrigation of the seedlings of Quercus ilex, the dominant tree species in the evergreen forests of many areas of the Mediterranean Basin. We have monitored the gradual changes in water content in the different leaf areas, in vivo and non-invasively, by 1H magnetic resonance imaging (MRI using proton density weighted (?w images and spin-spin relaxation time (T2 maps. Results ?w images showed that the distal leaf area lost water faster than the basal area and that after four weeks of similar losses, the water reduction was greater in leaf veins than in leaf parenchyma areas and also in distal than in basal leaf area. There was a similar tendency in all different areas and tissues, of increasing T2 values during the drought period. This indicates an increase in the dynamics of free water, suggesting a decrease of cell membranes permeability. Conclusions The results indicate a non homogeneous leaf response to stress with a differentiated capacity to mobilize water between its different parts and tissues. This study shows that the MRI technique can be a useful tool to follow non-intrusively the in vivo water content changes in the different parts of the leaves during drought stress. It opens up new possibilities to better characterize the associated physiological changes and provides important information about the different responses of the different leaf areas what should be taken into account when conducting physiological and metabolic drought stress studies in different parts of the leaves during drought stress.

Sardans Jordi

2010-08-01

269

Predicción de los contenidos de agua y sal durante el salado de bagre usando diferentes mezclas salinas / Prediction of moisture and salt contents of catfish slices during salting using different salting mixtures  

Scientific Electronic Library Online (English)

Full Text Available El objetivo de este trabajo fue determinar la aplicabilidad del modelo de Weibull para predecir los contenidos de humedad y sal y sus coeficientes de difusión, durante el salado de trozos de bagre utilizando mezclas de NaCl, KCl, CaCl2 y MgCl2. Los coeficientes efectivos de difusión (De) de agua y s [...] al fueron determinados usando el modelo normalizado de Weibull. Los altos valores de los coeficientes de determinación (R² > 0,99) y los bajos errores relativos medios (MRE Abstract in english The objective of this study was to determine the applicability of the Weibull model to predict the moisture and salt contents and their diffusion coefficients, during the salting of catfish slices using mixtures of NaCl, KCl, CaCl² and MgCl². The effective water and salt diffusion coefficients (De) [...] were determined using the normalized Weibull model. The high coefficients of determination (R² > 0.99) and low mean relative error (MRE

Otoniel, Corzo; Nelson, Bracho; Jaime, Rodríguez.

2014-09-01

270

Titanium metal obtention by fused salts electrolysis  

International Nuclear Information System (INIS)

Potassium fluorotitanate dissolved in fused sodium chloride or potassium chloride may be electrolyzed under an inert gas atmosphere. Solid electrolysis products are formed on the cathode which contains titanium metal, sodium chloride, lower fluorotitanates and small quantities of alkali metal fluorotitanate. The extraction of titanium from the electrolysis products may be carried out by aqueous leaching (removal of chloride salts of alkali metals and a certain amount of fluorotitanates). Titanium metal obtained is relatively pure. (Author)

271

LOCALIZATION AND SECRETION OF SALT BY THE SALT GLANDS OF Tamarix aphylla*  

Science.gov (United States)

Analysis of salt secreted by the salt glands of Tamarix aphylla shows that the composition of the secreted salt is dependent on the salt composition of the root environment. Rubidium ion, if added to culture solutions in which the plants were growing, is also taken up by the plants and subsequently secreted by the glands. Electron micrographs of glands from the ribidium-secreting plants show accumulations of electron-dense material in the microvacuoles of the secretory cells. It is concluded that rubidium is accumulated in the microvacuoles and subsequently secreted by their fusion with the plasmalemma. Images PMID:16591764

Thomson, W. W.; Berry, W. L.; Liu, L. L.

1969-01-01

272

LOCALIZATION AND SECRETION OF SALT BY THE SALT GLANDS OF Tamarix aphylla.  

Science.gov (United States)

Analysis of salt secreted by the salt glands of Tamarix aphylla shows that the composition of the secreted salt is dependent on the salt composition of the root environment. Rubidium ion, if added to culture solutions in which the plants were growing, is also taken up by the plants and subsequently secreted by the glands. Electron micrographs of glands from the ribidium-secreting plants show accumulations of electron-dense material in the microvacuoles of the secretory cells. It is concluded that rubidium is accumulated in the microvacuoles and subsequently secreted by their fusion with the plasmalemma. PMID:16591764

Thomson, W W; Berry, W L; Liu, L L

1969-06-01

273

Ra-Po-Pb isotope systematics in waters of Sambhar Salt Lake, Rajasthan (India): geochemical characterization and particulate reactivity  

International Nuclear Information System (INIS)

The Sambhar Salt Lake hydrological system, including river waters, groundwaters, evaporating pans and sub-surface brines, has been analyzed for the salt content (TDS) and naturally occurring radionuclides (210Po, 210Pb and 226,228Ra). The abundance of these radionuclides and their activity ratios show a wide variation in different hydrological regimes, which helps to geochemically characterize the lake system. A significantly lower Ra to total dissolved solids (TDS) ratio in the brines (by two to three orders of magnitude), when compared to the groundwaters and river waters, suggests removal of dissolved Ra by co-precipitation with Ca-Mg minerals at an early stage of the brine evolution. The concentration of Ra in evaporating lake/pan waters saturates at a value of about 35 Bq L-1 over the salinity range of 100-370 g L-1; attributable to its equilibration with the clay minerals. The two distinct regimes, saline lake system (lake water, evaporating pans and sub-surface brines) and groundwaters have been identified based on their differences in the distribution of 226,228Ra isotopes. This observation points to the conclusion that the groundwaters and the lake brines are not intimately coupled in terms of their origin and evolution. The abundances of 210Po and 210Pb along with their activity ratios (210Po/210Pb) are markedly different among the surface lake waterdly different among the surface lake waters/evaporating pans, sub-surface lake brines and groundwaters. These differences are explained in terms of different geochemical behaviour of these nuclides in presence of algae and organic matter present in these water regimes

274

Salt marsh-atmosphere exchange of energy, water vapor, and CO2: effects of transient flooding  

Science.gov (United States)

Short-duration floods help sustain many wetland systems, yet benchmarks of important wetland-atmosphere interactions are typically derived from non-flooded conditions. Exchanges of energy, water vapor, and CO2 between an intertidal salt marsh and the atmosphere were quantified by eddy covariance, micrometeorology, and other field methods. A flood tide lasting less than three hours completely suppressed marsh-atmosphere CO2 exchange. Compared to non-flooded conditions, the radiation budget and latent heat flux of the salt marsh were larger and the sensible and soil heat fluxes smaller during daytime high tides, with large energy flux into the surface water. Night-time high tides had less pronounced, opposite effects on net radiation, soil heat flux, and surface water energy storage. Longer floods correlated with larger exchange flux perturbation. A suite of seven exchange models was used to diagnose key mechanisms causing the observed changes: different canopy/soil/water resistance to vapor transport, changed Bowen ratio, altered marsh microclimate (air temperature, humidity, wind speed), and surface water heat storage. Analysis of an ensemble of 17 calibrated model parameters revealed a significant wetland-atmosphere exchange regime shift due to tidal flooding: the salt marsh functioned like a heated, sparse crop during non-flooded periods and like well-watered, evaporatively-cooled grass during floods. An analogous wetland-atmosphere exchange regime shift likely occurs in other systems sustained by short-duration flood events between larger hydrologic events.

Moffett, K. B.; Gorelick, S.

2009-12-01

275

Phase diagram of 1,2-dioleoylphosphatidylethanolamine (DOPE):water system at subzero temperatures and at low water contents.  

Science.gov (United States)

The phase behavior of partially hydrated 1, 2-dioleoylphosphatidylethanolamine (DOPE) has been studied using differential scanning calorimetry and X-ray diffraction methods together with water sorption isotherms. DOPE liposomes were dehydrated in the H(II) phase at 29 degrees C and in the L(alpha) phase at 0 degrees C by vapor phase equilibration over saturated salt solutions. Other samples were prepared by hydration of dried DOPE by vapor phase equilibration at 29 degrees C and 0 degrees C. Five lipid phases (lamellar liquid crystalline, L(alpha); lamellar gel, L(beta); inverted hexagonal, H(II); inverted ribbon, P(delta); and lamellar crystalline, L(c)) and the ice phase were observed depending on the water content and temperature. The ice phase did not form in DOPE suspensions containing melted at 5-20 degrees C producing the H(II) phase. The P(delta) phase was observed at water contents of ice and liquid water), has been constructed. The freeze-induced dehydration of DOPE has been described with the aid of the phase diagram. PMID:10407074

Shalaev, E Y; Steponkus, P L

1999-07-15

276

A Grandfather Studies the Power of the Wind; Turning Salt Water into Drinking Water  

Science.gov (United States)

The ATETV project delivers web-based videos to connect students to careers in advanced technology. This episode of ATETV follows a non-traditional adult student as he returns to school to study wind energy technology, and examines water treatment technology for desalination. The video can be viewed whole or in two segments: "A Grandfather Studies the Power of the Wind" and "Turning Salt Water into Drinking Water." The running time for the full episode is 9:59.

277

Biodegradable and biocompatible inorganic-organic hybrid materials: 4. Effect of acid content and water content on the incorporation of aliphatic polyesters into silica by the sol-gel process  

OpenAIRE

The extent of poly -caprolactone (PCL) incorporation into silica networks prepared by the sol-gel process depends on the HCl:tetraethoxysilane (TEOS) molar ratio and the H2O:TEOS molar ratio, as well. The PCL incorporation increases with the concentration of the acid used as the catalyst. Dynamic mechanical analysis (DMA) indicates that increasing the acid concentration or decreasing the water content results in a higher glass transition temperature for the organic component in the hybrid ma...

Tian, Dong; Blacher, Silvia; Je?ro?me, Robert

1999-01-01

278

Effect Of Addition Of LiBr Salt In Iso-Propanol - Water Binary Azeotropic Mixture  

Directory of Open Access Journals (Sweden)

Full Text Available Isopropanol is a very useful solvent for many industries and it requires in pure form for specific applications. It makes an azeotrope with water at 80.3 0C having composition of 87.4 % by weight. It is seen that conventionally methods used are not much effective or large energy consuming. Another alternative is to add salt which is helpful in changing the relative volatility of the mixture and separation gets is much more easier. In this paper the effect of addition of Lithium Bromide salt in isopropanol -water binary azeotropic mixture using extractive distillation is discussed. As LiBr is a high boiling point salt, it will not appear in the distillate and moreover LiBr is hygroscopic and has a characteristic to givehigher boiling point elevation with water which is main cause of its use in this application. Addition of salt (40% of watereliminates azeotrope formation and purity of 99.74% (by wt. is achieved.

Sanket R. Vora

2013-04-01

279

A highly water-soluble disulfonated tetrazolium salt as a chromogenic indicator for NADH as well as cell viability.  

Science.gov (United States)

A highly water soluble disulfonated tetrazolium salt, 4-[3-(2-methoxy-4-nitrophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate sodium salt, was synthesized. The compound is reduced by NADH in good yields at neutral pHs in the presence of 1-methoxy PMS to produce the corresponding formazan dye that absorbs at 460 nm. The formazan is soluble to water at concentrations higher than 0.1 M. The tetrazolium salt thus proved to be useful as a sensitive chromogenic indicator for NADH. It is also applicable to cell proliferation assays as a cell viability indicator. PMID:18966866

Ishiyama, M; Miyazono, Y; Sasamoto, K; Ohkura, Y; Ueno, K

1997-07-01

280

Water Dynamics in Salt Solutions Studied with Ultrafast 2D IR Vibrational Echo Spectroscopy  

OpenAIRE

Water is ubiquitous in nature, but it exists as pure water infrequently. From the ocean to biology, water molecules interact with a wide variety of dissolved species. Many of these species are charged. In the ocean, water interacts with dissolved salts. In biological systems, water interacts with dissolved salts as well as with charged amino acids, the zwitterionic head groups of membranes, and other biological groups that carry charges. Water plays a central role in vast number of chemical p...

Fayer, Michael D.; Moilanen, David E.; Wong, Daryl; Rosenfeld, Daniel E.; Fenn, Emily E.; Park, Sungnam

2009-01-01

281

Investigating New Innovations to Detect Small Salt-Water Fraction Component in Mineral Oil and Small Oil Fraction Component in Salt-Water Projects  

Directory of Open Access Journals (Sweden)

Full Text Available The main purpose of this study is to present the key findings on the effects of small salt-water fraction component, ? expressed in volume % per L on rotation are presented in the temperature range of 19.0 to 24.0ºC. It was found that rotations in oils with low boiling point known as light oils like Final diesel No. 2 were greater than the rotations which occurred in oils with high boiling point called heavy oils such as Esso diesel. Small oil fraction components, ?s expressed in mL/L of salt water down to 10 ppm were detected. The greatest impact on rotation of these oils was found in light oils like Fina No. 2 diesel. At 40 ppm which is the oil content level below which the environment authority considers process water to be free from oil environmental hazards, the observed rotation angles were 23.2º for Esso, 36.7º for Nors Hydro AS, and 71.8º in Fina No. 2 diesel. It was observed that light oils molecules have drastic effect on optical properties of the mixture in which they exist. It was found that for all oils, oil fractions greater than 100 ppm, caused the medium to be optically dense. This technology has shown a very high potential of being used as an environmental monitor to detect oil fractions down to 10 ppm and the technique can use laser beam to control re-injected process water with oil fractions between 100-2000 ppm.

E.R.R. Mucunguzi-Rugwebe

2011-09-01

282

Use spectral derivatives for estimating canopy water content  

OpenAIRE

Hyperspectral remote sensing has demonstrated great potential for accurate retrieval of canopy water content (CWC). This CWC is defined by the product of the leaf equivalent water thickness (EWT) and the leaf area index (LAI). In this paper the spectral information provided by the canopy water absorption feature at 970 nm for estimating and predicting CWC was studied using a modelling approach and in situ spectroradiometric measurements. The relationship of the first derivative at the right s...

Clevers, J. G. P. W.

2010-01-01

283

Estimating canopy water content using hyperspectral remote sensing data  

OpenAIRE

Hyperspectral remote sensing has demonstrated great potential for accurate retrieval of canopy water content (CWC). This CWC is defined by the product of the leaf equivalent water thickness (EWT) and the leaf area index (LAI). In this paper, in particular the spectral information provided by the canopy water absorption feature at 970 nm for estimating and predicting CWC was studied using a modelling approach and in situ spectroradiometric measurements. The relationship of the first derivative...

Clevers, J. G. P. W.; Kooistra, L.; Schaepman, M. E.

2010-01-01

284

Post-salting studies in Spanish cured ham manufacturing. Time reduction by using brine thawing-salting.  

Science.gov (United States)

The use of the simultaneous brine thawing/salting on frozen raw material was compared in a previous work with the traditional pile salting method. The aim of this study was to characterise and compare the post-salting stage in Spanish cured ham production by processing fresh and thawed raw material with the traditional pile salting method (which can be considered as the reference method), with the results obtained using the brine thawing/salting method, with and without applying vacuum impregnation. The obtained results show that the thawed salted hams exhibited a higher NaCl diffusion than the fresh ones, implying a shorter post-salting period. Post-salting stage could be reduced from the 50 days employed in the traditional fresh raw material salting, to 25 days when using frozen hams brine thawed/salted. No influence of the use of vacuum impregnation during the salting stage was observed on the post-salting period. PMID:22062809

Barat, J M; Grau, R; Ibáñez, J B; Fito, P

2005-02-01

285

Correlation among cirrus ice content, water vapor and temperature in the TTL as observed by CALIPSO and Aura/MLS  

OpenAIRE

Water vapor in the tropical tropopause layer (TTL) has a significant radiative cooling effect on the Earth's climate system. As a source for cirrus clouds, however, it can also indirectly produce infrared heating. The amount of water vapor in the TTL is strongly controlled by temperature (correlation r=0.94) with a seasonal cycle of ~1–2 ppm vmr in amplitude at 100 hPa and minimum values in Northern Hemisphere winter (December–January-February, DJF). Studying the...

Flury, T.; Wu, D. L.; Read, W. G.

2011-01-01

286

Influences of Salinity Variations on Pore-water Flow in Salt Marshes  

Science.gov (United States)

Salt marshes are important wetlands at the ocean-land interface with various ecological functions, serving as essential habitats for intertidal fauna, affecting the productivity of coastal waters through nutrient exchange, moderating the greenhouse gas emission and global warming. They are influenced by various physical and biogeochemical processes, among which the pore-water flow and associated solute transport processes play an important role in determining the material exchange between marsh soils and coastal water. Previous studies have examined such processes under the solo or combined effects of tidal fluctuation, evapotranspiration, stratigraphy, inland freshwater input, and topography. However, these investigations have neglected the spatial and temporal salinity variations in surface water and pore-water, which commonly exist in salt marshes due to the impacts of tidal inundation, precipitation and evapotranspiration. The density contrast between the surface water and pore-water may lead to significant modifications of the pore-water flow. Based on results from laboratory experiments and numerical simulations, we will demonstrate that: (1) under upward salinity gradients, flow instabilities in the form of fingers occur once the salinity contrast reaches a certain level, whereas under downward salinity gradients the system is stable; (2) because of the strong tidally-induced advective process occurring near the creek, both the number and size of fingers change gradually from the near-creek zone to the marsh interior; and (3) both upward and downward salinity gradients enhance the exchange between the surface water and pore-water in the marsh sediments. Keywords: Salt marshes; density effect; salinity gradient; pore-water flow; fingers. Instabilities under upward salinity gradient Stable system under downward salinity gradient

Shen, C.; Jin, G.; Xin, P.; Li, L.

2013-12-01

287

Direct solvation of glycoproteins by salts in spider silk glues enhances adhesion and helps to explain the evolution of modern spider orb webs.  

Science.gov (United States)

The evolutionary origin of modern viscid silk orb webs from ancient cribellate silk ancestors is associated with a 95% increase in diversity of orb-weaving spiders, and their dominance as predators of flying insects, yet the transition's mechanistic basis is an evolutionary puzzle. Ancient cribellate silk is a dry adhesive that functions through van der Waals interactions. Viscid threads adhere more effectively than cribellate threads because of the high extensibility of their axial silk fibers, recruitment of multiple glue droplets, and firm adhesion of the viscid glue droplets. Viscid silk's extensibility is permitted by the glue's high water content, so that organic and inorganic salts present in viscid glue droplets play an essential role in contributing to adhesion by sequestering the atmospheric water that plasticizes the axial silk fibers. Here, we provide direct molecular and macro-scale evidence to show that salts also cause adhesion by directly solvating the glycoproteins, regardless of water content, thus imparting viscoelasticity and allowing the glue droplets to establish good contact. This "dual role" of salts, plasticizing the axial silk indirectly through water sequestration and directly solvating the glycoproteins, provides a crucial link to the evolutionary transition from cribellate silk to viscid silk. In addition, salts also provide a simple mechanism for adhering even at the extremes of relative humidity, a feat eluding most synthetic adhesives. PMID:24588057

Sahni, Vasav; Miyoshi, Toshikazu; Chen, Kelley; Jain, Dharamdeep; Blamires, Sean J; Blackledge, Todd A; Dhinojwala, Ali

2014-04-14

288

Reducing the sodium content of high-salt foods : Effect on cardiovascular disease in South Africa  

OpenAIRE

Background. Average salt intake in South African (SA) adults, 8.1 g/day, is higher than the 4 - 6 g/day recommended by the World Health Organization. Much salt consumption arises from non-discretionary intake (the highest proportion from bread, with contributions from margarine, soup mixes and gravies). This contributes to an increasing burden of hypertension and cardiovascular disease (CVD). Objectives. To provide SA-specific information on the number of fatal CVD events (stroke, ischaemic h...

Bertram, Melanie Y.; Steyn, Krisela; Wentzel-viljoen, Edelweiss; Tollman, Stephen; Hofman, Karen J.

2012-01-01

289

Effects of Salinity on Seedling Biomass Production and Relative Water Content of Some Haricot Bean (Phaseolus vulgaris Varieties  

Directory of Open Access Journals (Sweden)

Full Text Available The aim of this research was to study the effects of salinity on fourteen haricot bean (Phaseolus vulgaris varieties at 0, 2, 4, 8 and 16 dS/m. Data analysis was carried out using jmp 5 (version 5.0 and SPSS (version 12 statistical softwares. Seedling Shoot Fresh Weight (SSFW, Seedling Shoot Dry Weight (SSDW, Seedling Root Fresh Weight (SRFW and Seedling Root Dry Weight (SRDW were measured; and seedling Shoot Relative Water Content (SRWC and seedling Root Relative Water Content (RRWC were calculated. The two ways ANOVA for varieties found statistically insignificant with respect to Seedling Root Fresh Weight (SRFW, seedling Shoot Relative Water Content (SRWC and seedling root relative water content (RRWC (p>0.05 but it was significant with respect to Seedling Shoot Fresh Weight (SSFW, Seedling Shoot Dry Weight (SSDW and Seedling Root Dry Weight (SRDW (p0.05 with respect to the entire parameters. Varieties such as Awash-1, Argene, Chore, Mexican 142 and Awash Melka were found to be salt tolerant during seedling biomass production and in Relative Water Content (RWC. On the other hand, varieties Red Kidney (DRK, Dimtu, Gofta, Cranscope and Sinkinesh were found to be salt sensitive during seedling biomass production and in RWC. The rest haricot bean varieties were intermediate in their salt tolerance. The study affirmed the presence of broad intraspecific genetic variation in haricot bean varieties for salt stress with respect to their early biomass production and Relative Water Content (RWC.

Kinfemichael Geressu Asfaw

2011-07-01

290

Salt concentrations during water production resulting from CO2 storage  

DEFF Research Database (Denmark)

Introduction Carbon capture and storage (CCS) in deep geological formations is one possible option to mitigate the greenhouse gas effect by reducing CO2 emissions into the atmosphere. The assessment of the risks related to CO2 storage is an important task. Events such as CO2 leakage and brine displacement and infiltration could result in hazards for human health and the environment and therefore have to be investigated in detail. In this work numerical simulations are performed to estimate the risk related to the displacement of brine. The injected CO2 will displace the brine that is initially present in the saline aquifer. The brine can be displaced over large areas and can reach shallower groundwater resources. High salt concentrations could lead to a degradation of groundwater quality. For water suppliers the most important information is whether and how much salt is produced at a water production well. In this approach the salt concentrations at water production wells depending on different parameters aredetermined for the assumption of a 2D model domain accounting for groundwater flow. Recognized ignorance resulting from grid resolution is qualitatively studied and statistical uncertainty is investigated for three parameters: the well distance, the water production rate, and the permeability of the aquifer. One possible way of estimating statistical uncertainties and providing probabilities is performing numerical Monte Carlo (MC) simulations. The MC approach is computationally very demanding because many simulations runs are needed to get an appropriate statistical accuracy. A possible way to handle the complexity and uncertainties with acceptable computational costs is by running MC simulations with a reduced model using a model reduction technique called arbitrary polynomial chaos expansion (aPC) [1]. The aPC is applied in this work to provide probabilities and risk values for salt concentrations at the water production well. Mixing in the aquifer has a key influence on the salt concentration at the well. Dispersion and diffusion are the relevant processes for mixing. Depending on the applied grid the numerical dispersion strongly influence the results as well. The distance of the well is a key parameter that influences the salt concentration at the well, thus the time that the salt has for mixing until reaching the well is relevant. References [1] Oladyshkin, S. und W. Nowak: Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion. Reliability Engineering & System Safety 106 (2012) 179–190.

Walter, Lena; Class, Holger

2014-01-01

291

Concentration and precipitation of NaCl and KCl from salt cake leach solutions by electrodialysis  

Energy Technology Data Exchange (ETDEWEB)

Electrodialysis was investigated for cost-effective recovery of salt from salt cake leach solutions. (Salt cake is a waste stream generated by the aluminum industry during treatment of aluminum drosses and scrap.) We used a pilot-scale electrodialysis stack of 5 membrane pairs, each with an effective area of 0.02 m{sup 2}. The diluate stream contained synthetic NaCl, KCl,mixtures of NaCl and KCl, and actual salt cake leach solutions (mainly NaCl and KCl, with small amounts of MgCl{sub 2}). We concentrated and precipitated NaCl and KCl salts from the concentrate steam when the initial diluate stream concentration was 21.5 to 28.8 wt% NaCl and KCl. We found that water transferring through the membranes was a significant factor in overall efficiency of salt recovery by electrodialysis.

Sreenivasarao, K; Patsiogiannis, F.; Hryn, J.N.

1997-02-09

292

Potential Antioxidant Activities Improve Salt Tolerance in Ten Varieties of Wheat (Triticum aestivum L.  

Directory of Open Access Journals (Sweden)

Full Text Available The activity of antioxidative enzymes system is affected by salt stress, chlorophyll content (CHL, leaf relative water content (RWC, Na+ and K+ contents, their ratio and some oxidative stress indices were studied in leaves of ten bread wheat cultivarsSehar-06, Lu-26, NARC-09, BARC-09 and Pirsbak-09’(salt-tolerant and Kaghan-94, Rohtas-90, Soughat-90, Shaheen-94 and Zardana-89’(salt-sensitive, grown under salinity treatments carried out in five levels (1 dS·m-1 as control, 2, 4, 8, 16 dS·m-1 via sodium chloride. Under high salt potency significant increase for activities of antioxidant enzymes such as ascorbate peroxidase (APX and guiacol peroxidase (GPX, occured in salt tolerant varieties. Meanwhile, under salinity condition the activities of antioxidant enzymes such as superoxide dismutase (SOD, catalase (CAT and (GPX in sensitive cultivar were lower than control. Regarding (APX activity there was no significant difference between salinity and control situation. Under salt stress membrane stability index (MSI of both cultivars were negatively influenced. Hydrogen peroxide (H2O2 content of salinity sensitive cultivars was higher than control. Salt tolerant varieties had more amounts of K+ content, K+ and Na+ ratio, relative water content, yield and chlorophyll under salt conditions, and sensitive ones recorded higher Na+ content at tillering stage. The mechanism of salt stress might be achieved due to low lipid peroxidation, assumingly lower changes in membrane stability index and evasion of Na+ combination and amplified activity of antioxidant enzymes.

Aurangzeb Rao

2013-06-01

293

Simultaneous measurement of unfrozen water content and ice content in frozen soil using gamma ray attenuation and TDR  

Science.gov (United States)

The freezing temperature of water in soil is not constant but varies over a range determined by soil texture. Consequently, the amounts of unfrozen water and ice change with temperature in frozen soil, which in turn affects hydraulic, thermal, and mechanical properties of frozen soil. In this paper, an Am-241 gamma ray source and time-domain reflectometry (TDR) were combined to measure unfrozen water content and ice content in frozen soil simultaneously. The gamma ray attenuation was used to determine total water content. The TDR was used to determine the dielectric constant of the frozen soil. Based on a four-phase mixing model, the amount of unfrozen water content in the frozen soil could be determined. The ice content was inferred by the difference between total water content and unfrozen water content. The gamma ray attenuation and the TDR were both calibrated by a gravimetric method. Water contents measured by gamma ray attenuation and TDR in an unfrozen silt column under infiltration were compared and showed that the two methods have the same accuracy and response to changes of water content. Unidirectional column freezing experiments were performed to apply the combined method of gamma ray attenuation and TDR for measuring unfrozen water content and ice content. The measurement error of the gamma ray attenuation and TDR was around 0.02 and 0.01 m3/m3, respectively. The overestimation of unfrozen water in frozen soil by TDR alone was quantified and found to depend on the amount of ice content. The higher the ice content, the larger the overestimation. The study confirmed that the combined method could accurately determine unfrozen water content and ice content in frozen soil. The results of soil column freezing experiments indicate that total water content distribution is affected by available pore space and the freezing front advance rate. It was found that there is similarity between the soil water characteristic and the soil freezing characteristic of variably saturated soil. Unfrozen water content is independent of total water content and affected only by temperature when the freezing point is reached.

Zhou, Xiaohai; Zhou, Jian; Kinzelbach, Wolfgang; Stauffer, Fritz

2014-12-01

294

Water deprivation and the double- depletion hypothesis: common neural mechanisms underlie thirst and salt appetite  

Directory of Open Access Journals (Sweden)

Full Text Available Water deprivation-induced thirst is explained by the double-depletion hypothesis, which predicts that dehydration of the two major body fluid compartments, the extracellular and intracellular compartments, activates signals that combine centrally to induce water intake. However, sodium appetite is also elicited by water deprivation. In this brief review, we stress the importance of the water-depletion and partial extracellular fluid-repletion protocol which permits the distinction between sodium appetite and thirst. Consistent enhancement or a de novo production of sodium intake induced by deactivation of inhibitory nuclei (e.g., lateral parabrachial nucleus or hormones (oxytocin, atrial natriuretic peptide, in water-deprived, extracellular-dehydrated or, contrary to tradition, intracellular-dehydrated rats, suggests that sodium appetite and thirst share more mechanisms than previously thought. Water deprivation has physiological and health effects in humans that might be related to the salt craving shown by our species.

L.A. Jr De Luca

2007-05-01

295

Proton relaxation by tunnelling in ammonium salts at low temperature  

International Nuclear Information System (INIS)

Proton spin-lattice relaxation times T1 and Tsub(1rho) have been measured in partially deuterated NH4ClO4,(NH4)2SnCl6, cubic and trigonal (NH4)2SiF6 and (NH4)2Ce(NO3)6 at several frequencies 4 to 30 MHz and from 1.5 to 4.2K. T1 depends upon the deuterium content in all cases, but Tsub(1rho) is very short also in some of the undeuterated salts. The true relaxation is a direct process proportional to T but T1 is diffusion-limited in some of the more deuterated salts. The relaxation rates are discussed in terms of transition probabilities between tunnel-split energy states slightly mixed by the dipolar interaction. First-order mixing gives relaxation of asymmetric NH3D+, but second-order mixing is required for relaxation of symmetric NH4+. The relaxation is rapid where the unperturbed levels cross and T1 varies directly as ?02 is derived for salts with small tunnel frequencies ?sub(t) 0. This behaviour is seen in cubic (NH4)2SiF6. The observed behaviour Tsub(1rho) varies directly as ?-2sub(t) cannot be explained by dipolar mixing and spin-rotational interaction is suggested. (author)

296

[Ethical aspects of the fluoridation of water, salt, and milk].  

Science.gov (United States)

The article discusses two ethical aspects of the fluoridation of water, salt, and milk. First, it considers whether fluoridation contradicts the right of self-determination. Second, it discusses the chances and risks of fluoridation. The answer to the first question depends on whether people can choose other options. Freedom of choice is not simply the right to choose between different options. It is a right which defends the moral integrity of persons. Nobody should be coerced to eat or drink something which he or she rejects morally. In the political sphere, personal rights of persons can be restricted if and only if it is necessary, if there is a public interest, and if the restriction of the right is reasonable. Regarding fluoridation, even in the best risk-chance scenario, some persons have to expect a net harm. Therefore, the reasoning in favor of fluoridation has to have a specific purpose. The proclaimed reasoning is that fluoridation will benefit the worst off and is therefore a demand of justice. But this argument fails as there are other options to benefit the worst off. Even in the best risk-chance scenario, only one option is morally permissible: the fluoridation of salt, which respects the freedom of choice. PMID:19343280

Rippe, K P

2009-05-01

297

Comparison of measured changes in seasonal soil water content by rainfed maize-bean intercrop and component cropping systems in a semi-arid region of southern Africa  

Science.gov (United States)

Seasonal water content fluctuation within the effective root zone was monitored during the growing season for a maize-bean intercrop (IMB), sole maize (SM) and sole bean (SB) in Free State Province, Republic of South Africa. Comparisons were undertaken for progressive depths of extraction 0-300 mm; 300-600 mm and 600-900 mm respectively. These enabled the understanding of water extraction behavior of the cropping systems within the different soil layers including the topsoil surface normally influenced by soil surface evaporation. Additive intercrops have been known to conserve water, largely due to the early high leaf area index and the higher total leaf area. In this study, the combined effect of the intercrop components seemed to lower the total water demand by the intercrop compared to the sole crops. During the two seasons (2000/2001 and 2001/2002) the drained upper limit (DUL) and crop lower limits (CLL) were determined. The maize-bean intercrop, sole maize and sole bean had CLL of 141 mm/m, 149 mm/m and 159 mm/m respectively. The DUL was 262 mm/m for the site and therefore the potential plant extractable soil water for the cropping systems were: 121 mm/m (IMB); 114 mm/m (SM) and 103 mm/m (SB). Overall, the intercrop did not have significantly different total soil water extraction during both seasons, although it was additive, showing that it had higher water to biomass conversion.

Ogindo, H. O.; Walker, S.

298

The plutonium content of Pacific Ocean waters  

International Nuclear Information System (INIS)

The content of plutonium in seawater collected during the cruises of 1968 to 1973 in the entire Pacific Ocean, mainly along the line of 170 degree W and 146 degree W longitude extending from 50 degree N to 68 degree S, not only in the surface layer but also in the deep layer down to 3000m depth was determined. Results obtained in the eastern South Pacific and some of the western North Pacific were also reported. The plutonium content in the North Pacific surface water ranged from 2.2 to 9.4X10-4pCi/l, while it is lower in the South Pacific, ranging from 1.3 to 3.4X10-4pCi/l. Intimate correlation was observed between the plutonium content in surface water and 90Sr deposition rate. The ratio of 238Pu/sup(239,240)Pu in surface water ranged from 0.1 to 0.81 in the North Pacific and 0.35 to 2.4 in the South Pacific. These values are in the same order of magnitude as seen in the land fall-out during the same period. sup(239,240)Pu/137Cs in surface water ranged from 0.0009 to 0.0028 and it is lower than the average ratio of 0.006 in fall-out in Tokyo. In the intermediate or deep layer relatively higher ratios were observed as compared with those in surface water. This suggests a faster downward transport of plutonium in the marine environment than of strontium or caesium. (author)

299

Imbibition, germination and lipid mobilization response by sunflower subjected to salt stress  

International Nuclear Information System (INIS)

Salinity is one of the most important abiotic stresses in arid and semi-arid regions that substantially reduce the germination, growth and average yield of major crops. The study was mainly aimed to select the most salt tolerant cultivar of sunflower. Therefore, a pot culture experiment was conducted to study the effects of four different salinity levels having electrical conductivity viz., 1.19, 9.54, 16.48 and 22.38 mS/cm on the imbibition (water uptake), germination and lipid mobilization of seedlings of 4 varieties of sunflower (Helianthus annuus L.) i.e., DO-728, DO-730, Hysun-33 and Suncross-843. Salinity levels were prepared by dissolving calculated amount of NaCl, Na/sub 2/SO/sub 4/, CaCl/sub 2/ and MgCl/sub 2/ (4:10:5:1) in half strength Hoagland culture solution. Imbibition was studied using plastic glasses at an interval of 12 and 24 hours. While germination studies were separately carried out in plastic pots and noted after every 12 hours till 20 days. Whereas, lipid contents of the salt stress germinating seeds were determined at three time intervals viz., 48, 96 and 144 hours of germination. Results showed that there was a linear decrease in imbibition, germination and lipid mobilization as the level of salinity progressively intensifies. Maximum significant reduction in imbibition (12.88%), germination (31.03%) and lipid mobilization (38.62%) is recorded in highest dose of applied salts (22.38 mS/cm). Results further exhibited that maximum significant reduction in imbibition (17.95%) and germination (43.05%) is recorded for variety Suncross-843. While minimum for the same attributes is recorded for variety DO-728. Therefore, in term of imbibitions and germination, DO-728 could be ranked as salt tolerant. Similarly maximum reduction (14.85%) in mobilized lipids is noted for DO-728 and minimum (40.89%) for DO-730. Therefore, in term of lipid mobilization, variety DO-730 could be ranked as salt tolerant and DO-728 as salt sensitive. While remaining 2 varieties i.e., Hysun-33 and Suncross-843 is rated as salt intermediate in response, respectively. (author)

300

Nuclear-waste repository impaired by effects of sub-surface salt dissolution  

International Nuclear Information System (INIS)

Thirty alkaline lake basins are underlain by Permian salt in West Texas-eastern New Mexico. Early workers thought the basins were created by solution of Permian salt, causing surface collapse. It wasn't until studies by Gustavson and others (1980-85) that salt dissolution beneath several basins was confirmed. Study of alkaline lake basins 240 km south of the main area worked by Gustavson and others (1980-85) shows basins associated and not associated with salt dissolution. Basins associated with salt dissolution are often underlain by Cretaceous formations which are either horizontal or displaced. Thus, evidence indicates many of the large lake basins are antecedent to salt dissolution, that salt dissolution results from infiltration of lake water, and that a certain amount of dissolution occurs before propagation of the cavity to surface. Areas of unusually thick Cretaceous rocks around several lake basins in the central Southern High Plains and unusually thick sections of Tertiary Ogallala in the Northern High Plains indicate regional dissolution of Permian salt beds prior to Cretaceous deposition. Therefore, dissolution of Permian salt in West Texas has been of long-term, regional extent, and formation of sinks, faults and the solute discharge of streams east of the Southern High Plains indicates salt dissolution continues. It therefore follows that the geologic integrity of any high-level nuclear-waste repository site in the Permian salt beds may be seriously impahe Permian salt beds may be seriously impaired, and that the geologic suitability of bedded salts for high-level nuclear-waste storage anywhere by seriously questions

301

UMTRA project water sampling and analysis plan, Salt Lake City, Utah  

International Nuclear Information System (INIS)

Surface remedial action was completed at the Salt Lake City, Utah, Uranium Mill Tailings Remedial Action (UMTRA) Project site in the fall of 1987. Results of water sampling for the years 1992 to 1994 indicate that site-related ground water contamination occurs in the shallow unconfined aquifer (the uppermost aquifer). With respect to background ground water quality, contaminated ground water in the shallow, unconfined aquifer has elevated levels of chloride, sodium, sulfate, total dissolved solids, and uranium. No contamination associated with the former tailings pile occurs in levels exceeding background in ground water in the deeper confined aquifer. This document provides the water sampling and analysis plan for ground water monitoring at the former uranium processing site in Salt Lake City, Utah (otherwise known as the ''Vitro'' site, named after the Vitro Chemical Company that operated the mill). All contaminated materials removed from the processing site were relocated and stabilized in a disposal cell near Clive, Utah, some 85 miles west of the Vitro site (known as the ''Clive'' disposal site). No ground water monitoring is being performed at the Clive disposal site, since concurrence of the remedial action plan by the US Nuclear Regulatory Commission and completion of the disposal cell occurred before the US Environmental Protection Agency issued draft ground water standards in 1987 (52 FR 36000) for cleanup, stabilization, and control of residual radioactive materials at the disposal site. In addition, the likelihood of post-closure impact on the ground water is minimal to nonexistent, due to the naturally poor quality of the ground water. Water sampling activities planned for calendar year 1994 consist of sampling ground water from nine monitor wells to assess the migration of contamination within the shallow unconfined aquifer and sampling ground water from two existing monitor wells to assess ground water quality in the confined aquifer

302

Water Depletion Effects on Water Infiltration Rate, Salt Behavior, and Leaching Requirements in Saline Soil  

OpenAIRE

The field experiment was laid-down in farmers` saline fields near Sindh Agriculture University, Tandojam compus, to determine the effects water depletion on water infiltration rate, salt behavior, and leaching requirements in saline soil. The experiment consisted three soil moisture depletion (SMD) levels of 30, 50 and 80% on available soil moisture. The pre-project soil Physical and Chemical properties were examined which showed that the soil had clay loam texture for 0-90 cm depth. The bulk...

Oad, F. C.; Abro, Z. A.; Siyal, A. G.; Oad, N. L.; Siyal, A. A.

2002-01-01

303

Fragmentation of colliding planetesimals with water content  

CERN Document Server

We investigate the outcome of collisions of Ceres-sized planetesimals composed of a rocky core and a shell of water ice. These collisions are not only relevant for explaining the formation of planetary embryos in early planetary systems, but also provide insight into the formation of asteroid families and possible water transport via colliding small bodies. Earlier studies show characteristic collision velocities exceeding the bodies' mutual escape velocity which - along with the distribution of the impact angles - cover the collision outcome regimes 'partial accretion', 'erosion', and 'hit-and-run' leading to different expected fragmentation scenarios. Existing collision simulations use bodies composed of strengthless material; we study the distribution of fragments and their water contents considering the full elasto-plastic continuum mechanics equations also including brittle failure and fragmentation.

Maindl, Thomas I; Schäfer, Christoph; Speith, Roland

2014-01-01

304

Dissolved VOC concentrations and salt contents affecting air-sweat equilibrium partition of hydrophilic and hydrophobic VOCs.  

Science.gov (United States)

Workers have frequently disregarded long-term dermal exposure to low concentration of gaseous volatile organic compounds (VOCs). To assess dermal exposure risk to gaseous VOCs, equilibrium partitioning coefficients (p(c)) at the air-sweat interface on human skin surface must be examined. This study analyzed the p(c) values of hydrophilic iso-propanol (IPA), methyl ethyl ketone (MEK), and hydrophobic benzene, toluene, ethylbenzene, o-xylene, m-xylene, and p-xylene (BTEXs) at the air-water and air-sweat interfaces at 27-47 degrees C. The hydrophilic VOCs were dissolved in pure water and artificial human sweat liquors at approximately 10-125 mg/L, and hydrophobic VOCs were at approximately 0.55 mg/L. According to experimental results, the dissolved VOC concentration and salt contents simultaneously have a co-effect on p(c) during human dermal exposure to gaseous VOCs. The salt effect resulted in increase of p(c) for hydrophilic and hydrophobic VOCs, and the dissolved VOC concentration effect resulted in a reduction in p(c), which is dominant for hydrophilic compounds of high concentrations of aqueous VOCs. The p(c) data were utilized for further assessment of risk due to dermal exposure to VOCs. PMID:18161563

Cheng, Wen-Hsi

2008-01-01

305

The influence of membrane electrode assembly water content on the performance of a polymer electrolyte membrane fuel cell as investigated by 1H NMR microscopy.  

Science.gov (United States)

The relation between the performance of a self-humidifying H(2)/O(2) polymer electrolyte membrane fuel cell and the amount and distribution of water as observed using (1)H NMR microscopy was investigated. The integrated (1)H NMR image signal intensity (proportional to water content) from the region of the polymer electrolyte membrane between the catalyst layers was found to correlate well with the power output of the fuel cell. Several examples are provided which demonstrate the sensitivity of the (1)H NMR image intensity to the operating conditions of the fuel cell. Changes in the O(2)(g) flow rate cause predictable trends in both the power density and the image intensity. Higher power densities, achieved by decreasing the resistance of the external circuit, were found to increase the water in the PEM. An observed plateau of both the power density and the integrated (1)H NMR image signal intensity from the membrane electrode assembly and subsequent decline of the power density is postulated to result from the accumulation of H(2)O(l) in the gas diffusion layer and cathode flow field. The potential of using (1)H NMR microscopy to obtain the absolute water content of the polymer electrolyte membrane is discussed and several recommendations for future research are provided. PMID:17415498

Feindel, Kirk W; Bergens, Steven H; Wasylishen, Roderick E

2007-04-21

306

Neural network technologies in Raman spectroscopy of water solutions of inorganic salts  

Science.gov (United States)

This paper is devoted to successful application of artificial neural networks (ANN) for more precise analysis of Raman spectra, and for the solution of the inverse problems of laser Raman spectroscopy. The characteristic peculiarities of the valence band shape of Raman scattering by water molecules in the solutions of KBr, KCl, KI, NaCl, NaI electrolytes have been revealed. These peculiarities allow to perform non-contact recognition of salts type and determination of salt concentration in water solutions by means of artificial neural networks. We suppose that the classification algorithms using the artificial neural networks, applied in this study, may be also useful for other problems in Raman spectroscopy and in fluorimetry, and in application of these methods in ecology.

Dolenko, Tatiana A.; Burikov, Sergey A.; Sugonjaev, Alexander V.

2005-06-01

307

Alleviation of salt stress in lemongrass by salicylic acid.  

Science.gov (United States)

Soil salinity is one of the key factors adversely affecting the growth, yield, and quality of crops. A pot study was conducted to find out whether exogenous application of salicylic acid could ameliorate the adverse effect of salinity in lemongrass (Cymbopogon flexuosus Steud. Wats.). Two Cymbopogon varieties, Krishna and Neema, were used in the study. Three salinity levels, viz, 50, 100, and 150 mM of NaCl, were applied to 30-day-old plants. Salicylic acid (SA) was applied as foliar spray at 10(-5) M concentration. Totally, six SA-sprays were carried out at 10-day intervals, following the first spray at 30 days after sowing. The growth parameters were progressively reduced with the increase in salinity level; however, growth inhibition was significantly reduced by the foliar application of SA. With the increase in salt stress, a gradual decrease in the activities of carbonic anhydrase and nitrate reductase was observed in both the varieties. SA-treatment not only ameliorated the adverse effects of NaCl but also showed a significant improvement in the activities of these enzymes compared with the untreated stressed-plants. The plants supplemented with NaCl exhibited a significant increase in electrolyte leakage, proline content, and phosphoenol pyruvate carboxylase activity. Content and yield of essential oil was also significantly decreased in plants that received salinity levels; however, SA overcame the unfavorable effects of salinity stress to a considerable extent. Lemongrass variety Krishna was found to be more adapted to salt stress than Neema, as indicated by the overall performance of the two varieties under salt conditions. PMID:21882051

Idrees, Mohd; Naeem, M; Khan, M Nasir; Aftab, Tariq; Khan, M Masroor A; Moinuddin

2012-07-01

308

[Monitoring of water and salt transport in silt and sandy soil during the leaching process].  

Science.gov (United States)

Water and salt transport in soil and its mechanism is the key point of the saline soil research. The dynamic rule of water and transport in soil during the leaching process is the theoretical basis of formation, flush, drainage and improvement of saline soil. In this study, a vertical infiltration experiment was conducted to monitor the variation in the resistivity of silt and sandy soil during the leaching process by the self-designed automatic monitoring device. The experimental results showed that the peaks in the resistivity of the two soils went down and faded away in the course of leaching. It took about 30 minutes for sandy soil to reach the water-salt balance, whereas the silt took about 70 minutes. With the increasing leaching times, the desalination depth remained basically the same, being 35 cm for sandy soil and 10 cm for the silt from the top to bottom of soil column. Therefore, 3 and 7 leaching processes were required respectively for the complete desalination of the soil column. The temporal and spatial resolution of this monitoring device can be adjusted according to the practical demand. This device can not only achieve the remote, in situ and dynamic monitoring data of water and salt transport, but also provide an effective method in monitoring, assessment and early warning of salinization. PMID:23323426

Fu, Teng-Fei; Jia, Yong-Gang; Guo, Lei; Liu, Xiao-Lei

2012-11-01

309

Using of Hydrogel to Increase Maize Salt Tolerance  

International Nuclear Information System (INIS)

Seeds of two cultivars (Giza 122 and 129) of Zea mays L. were sown in pots. Pots were divided into two sets; soils of one mixed with hydrogel and the other set considered as control. After germination, pots were irrigated by tap water or by 4500 ppm NaCI solution. The results indicated that salt stress reduced growth characters significantly. Addition of hydrogel to the soil improved growth character especially in cultivar 129, hydrogel ameliorates the harmful effect of salt on plant. In the two cultivars, proline contents increased under salt stress but the presence of hydrogel reduced these contents significantly. Also, the presence of hydrogel appeared to reduce phenol content significantly under salt stress in cultivar (129) or insignificantly in cultivar (122).The appearance or disappearance of protein bands and the alterations in peroxidase and esterase pattern could be used as molecular marker for salt stress and hydrogel

310

Photochemical reactions of disulphide radical anions in frozen water-salt matrix  

International Nuclear Information System (INIS)

Photochemical reactions of disulfide radical anions CH3SSCH-3 induced by light with ?=436, 405 and 365 nm in a water-salt matrix of 6M LiCl at 77 K were studied. It was shown that upon excitation disulfide radical anions may enter into electron photodetachment reaction and the S-S bond is cleft. Kinetical nonequivalence of disulfide radical anions in photochemical reactions was shown to manifest itself in different mechanisms of their transformations. (author)

311

Calibrating a Salt Water Intrusion Model with Time-Domain Electromagnetic Data  

DEFF Research Database (Denmark)

Salt water intrusion models are commonly used to support groundwater resource management in coastal aquifers. Concentration data used for model calibration are often sparse and limited in spatial extent. With airborne and ground-based electromagnetic surveys, electrical resistivity models can be obtained to provide high-resolution three-dimensional models of subsurface resistivity variations that can be related to geology and salt concentrations on a regional scale. Several previous studies have calibrated salt water intrusion models with geophysical data, but are typically limited to the use of the inverted electrical resistivity models without considering the measured geophysical data directly. This induces a number of errors related to inconsistent scales between the geophysical and hydrologic models and the applied regularization constraints in the geophysical inversion. To overcome these errors, we perform a coupled hydrogeophysical inversion (CHI) in which we use a salt water intrusion model to interpret the geophysical data and guide the geophysical inversion. We refer to this methodology as a Coupled Hydrogeophysical Inversion-State (CHI-S), in which simulated salt concentrations are transformed to an electrical resistivity model, after which a geophysical forward response is calculated and compared with the measured geophysical data. This approach was applied for a field site in Santa Cruz County, California, where a time-domain electromagnetic (TDEM) dataset was collected. For this location, a simple two-dimensional cross-sectional salt water intrusion model was developed, for which we estimated five uniform aquifer properties, incorporating the porosity that was also part of the employed petrophysical relationship. In addition, one geophysical parameter was estimated. The six parameters could be resolved well by fitting more than 300 apparent resistivities that were comprised by the TDEM dataset. Except for three sounding locations, all the TDEM data could be fitted close to a root-mean-square error of1. Possible explanations for the poor fit of these soundings are the assumption of spatial uniformity, fixed boundary conditions and the neglecting of 3D effects in the groundwater model and the TDEM forward responses. © 2012, The Author(s). Groundwater © 2012, National Ground Water Association.

Herckenrath, Daan; Odlum, Nick

2013-01-01

312

STUDY ON DECANTATION WAYS OF ROCK SALT BRINES AND THEIR EFFECTIVE USE  

Directory of Open Access Journals (Sweden)

Full Text Available Rock salt from Dhrovjani mine (Delvina is characterized by a very high content of insoluble in water matter (around 20%. Nevertheless, it has been used for more than 20 years in some industrial areas, particularly in soda ash production at the Vlora plant. The use of this kind of salt is accompanied by large amount generation of solid waste, and also by limited decantation rate of raw brines prepared, in particular during the wet seasons (when the salt moisture content exceeds 2.5%. The study was undertaken in relation to this rocky salt, as well as to the possibility of decantation rate increasing of the crude brines.

E. Hodo

2010-12-01

313

Thermal Inactivation of Infectious Pancreatic Necrosis Virus in a Peptone-Salt Medium Mimicking the Water-Soluble Phase of Hydrolyzed Fish By-Products  

OpenAIRE

Infectious pancreatic necrosis virus (IPNV) (serotype Sp) was exposed to temperatures between 60 and 90°C in a medium mimicking the water-soluble phase of hydrolyzed fish by-products. D values ranged from 290 to 0.5 min, and the z value was approximately 9.8°C. Addition of formic acid to create a pH 4 medium did not enhance heat inactivation. Predicted inactivation effects at different temperature-time combinations are provided.

Nygaard, Halvor; Modahl, Ingebjørg; Myrmel, Mette

2012-01-01

314

Leaching due to hygroscopic water uptake in cemented waste containing soluble salts  

DEFF Research Database (Denmark)

Considerable amounts of easily soluble salts such as sodium nitrate, sulphate, or carbonate are introduced into certain types of cemented waste. When such materials are stored in atmospheres with high relative humidity or disposed or by shallow land burial under unsaturated, but still humid conditions, condensation of water vapour will result in generation of a certain amount of liquid in the form of a strong salt solution. The volume of liquid may well exceed the storage capacity of the pore system in the cemented material and in the release of a limited amount of free contaminated solution. A model of the quantitative aspects for the equilibrium situation is presented. Experiments with hygroscopic water uptake support the model and give indications about the rate of the process. The release mechanism is only thought to be important for radionuclides which are not fixed in a low-solubility form within the cement matrix.

Brodersen, K.

1992-01-01

315

Improved interpretation of water content reflectometer measurements in soils  

Science.gov (United States)

Water content reflectometers use time domain reflectometry (TDR) to estimate the apparent permittivity of soil, which in turn can be related to the soil water content. The objective of this study is to develop a physical model for water content reflectometers. The length of the sensor rods and the d...

316

[Application study of the thermal infrared emissivity spectra in the estimation of salt content of saline soil].  

Science.gov (United States)

Studying of soil salinization is of great significance for agricultural production in arid area oasis, thermal infrared remote sensing technology provides a new technology and method in this field. Authors used Fourier transform infrared spectrometer to measure the oasis saline soil in field, employed iterative spectrally smooth temperature/emissivity separation algorithm (ISSTES) to separate temperature and emissivity, and acquired the thermal infrared emissivity data of the saline soil. Through researching the emissivity spectral feature of saline soil, and concluded that soil emissivity will reduce with the increasing of salt content from 8 to 13 microm, so emissivity spectra is more sensitive to salt factor from 8 to 9.5 microm. Then, analyzed the correlation between original emissivity spectra and its first derivative, second derivative and normalized ratio with salt content, the result showed that they have a negative correlation relationship between soil emissivity and salt content, and the correlation between emissivity first derivative and salt content is highest, reach to 0.724 2, the corresponding bands are from 8.370 745-8.390 880 microm. Finally, established the quadratic function regression model, its determination coefficient is 0.741 4, and root mean square error is 0.235 5, the result explained that the approach of using thermal infrared emissivity to retrieve the salt content of saline soil is feasible. PMID:23387157

Xia, Jun; Tashpolat, Tiyip; Mamat, Sawut; Zhang, Fei; Han, Gui-Hong

2012-11-01

317

Effect of cooking on the chemical composition of low-salt, low-fat Wakame/olive oil added beef patties with special reference to fatty acid content  

OpenAIRE

Changes in chemical composition, with special reference to fatty acids, as affected by cooking, were studied in low-salt (0.5%)/low-fat patties (10%) with added Wakame (3%) and partial or total replacement of pork backfat with olive oil-in-water emulsion. The addition of Wakame and olive oil-in-water emulsion improved (P

Lo?pez-lo?pez, I.; Cofrades, Susana; Can?eque, V.; Di?az, M. T.; Lo?pez, O.; Jime?nez Colmenero, Francisco

2011-01-01

318

Influence of Irrigation Water Discharge Frequency on Soil Salt Removal and Rice Yield in a Semi-Arid and Saline-Sodic Area  

Directory of Open Access Journals (Sweden)

Full Text Available Irrigation practice for rice culture can be especially challenging in areas with limited water supply and soil salinization. In this study, we carried out a field experiment to assess the effects of different water discharge frequencies on soil salt content, rice yield and water use efficiency on a saline-sodic soil in a semi-arid region of Northeast China. The experiment comprised of three frequency levels of discharge [9-time (I-9-30, 6-time (I-6-30 and 3-time (I-3-30 discharge, all followed with a 30-mm irrigation] in comparison with the traditional irrigation practice of 2-time discharge followed with an 80-mm irrigation (I-2-80. Our initial hypothesis was that increasing discharge frequency would increase both salt reduction and rice yield. Daily precipitation was recorded by a nearby weather station, and evapotranspiration and soil water percolation rates were measured at experimental sites using soil pits. The measurements were used to establish a water balance for each treatment. Our results showed that soil salt reduction increased with the increasing discharge frequency at a 30-mm irrigation water depth. The 9-time discharge reduced a large amount of soil salt (995.0 kg ha?1 after five months of the study. Rice yield also increased with the increasing discharge frequency with a 30-mm irrigation water depth; however, when compared to the traditional 2-time discharge followed with an 80-mm irrigation, rice yield at the sites with more frequent discharge (i.e., I-9-30, I-6-30 and I-3-30 was 11%–18% lower. Because of this, rice yield and irrigation water use efficiency were significantly higher under the traditional practice of high-irrigation with low-frequency discharge (I-2-80 than under I-9-30, I-6-30 and I-3-30. These results indicate a need for a trade-off amongst salt reduction, rice yield and water use when considering selection of irrigation and discharge schedules.

Zhigang Huang

2013-05-01

319

Elasticidade do solo em função da umidade e do teor de carbono orgânico Soil elasticity as affected by water and organic carbon content  

Directory of Open Access Journals (Sweden)

Full Text Available O acúmulo de carbono orgânico (CO observado em solos sob sistema de semeadura direta pode resultar em aumento de sua elasticidade, levando a maior resistência à compactação. Este estudo foi realizado para avaliar o efeito da umidade e do enriquecimento de CO sobre a elasticidade de dois solos, sendo um Nitossolo Vermelho distrófico latossólico e um Argissolo Vermelho-Amarelo distrófico arênico. Amostras superficiais de solo, coletadas no Argissolo e no Nitossolo, com variação significativa do teor de CO, foram equilibradas em quatro diferentes tensões de água e, então, submetidas a carregamentos e descarregamentos em uma prensa de compressão uniaxial, determinando-se o coeficiente de descompressão (Cd, o índice de recuperação do índice de vazios (Ir e a redução da densidade (Re, após remoção das cargas aplicadas. Os resultados demonstram que o Ir variou de 11,4 a 16,4 % no Nitossolo e de 14 a 23,4 % no Argissolo, dependendo da tensão de água e do teor de CO da amostra. O teor de CO das amostras afetou significativamente o Cd e, conseqüentemente, a Re após a retirada das cargas. A Re média observada variou de 0,023 a 0,059 Mg m-3 e de 0,018 a 0,078 Mg m-3, respectivamente para o Argissolo e o Nitossolo. A elasticidade do solo é sensivelmente afetada pela variação no teor de água e de CO.The organic carbon accumulation observed in soils under no-till system can increase the soil elasticity, resulting in a higher resistance to soil compaction. This study was carried out to evaluate the effects of water content and soil organic carbon (SOC enrichment on soil elasticity. Samples of a Hapludalf and a Typic Hapludox in southern Brazil, both with a significant variation in SOC content, were equilibrated at four different water tensions, and then loaded and unloaded on a uniaxial apparatus. The decompression coefficient (Cd, the recovery index (Ir of the void ratio and the density rebound (Re after load removal were determined. Results demonstrate that Ir varied from 11.4 to 16.4 % in the Hapludox and from 14 to 23.4 % in the Hapludalf, depending on the water tension and SOC content. The SOC content affected Cd significantly and, consequently, the rebound after load removal. The observed mean rebound varied from 0.023 to 0.059 Mg m-3 and from 0.018 to 0.078 Mg m-3, respectively, for the Hapludalf and the Hapludox. Soil elasticity is affected by variations in the water and SOC content.

João Alfredo Braida

2008-04-01

320

Cost benefit of reducing radionuclide contents in drinking water  

International Nuclear Information System (INIS)

Protective measures for reducing the content of natural radionuclides in drinking water were evaluated using cost benefit analysis of risk reduction. The risk indicator used was the weighted collective commitment of the effective dose equivalent. An increased radon level in the water represents a health hazard for the population, and mainly for the personnel of the water treatment plant. The justification was contemplated of spending 58,600 Czechoslovak crowns for reducing the collective commitment by 1 manSv. The presence of decay products in drinking water may cause a six-fold increase in radiation hazard. (M.D.). 4 tabs., 4 refs

321

Cementitious Stabilization of Mixed Wastes with High Salt Loadings  

International Nuclear Information System (INIS)

Salt loadings approaching 50 wt % were tolerated in cementitious waste forms that still met leach and strength criteria, addressing a Technology Deficiency of low salt loadings previously identified by the Mixed Waste Focus Area. A statistical design quantified the effect of different stabilizing ingredients and salt loading on performance at lower loadings, allowing selection of the more effective ingredients for studying the higher salt loadings. In general, the final waste form needed to consist of 25 wt % of the dry stabilizing ingredients to meet the criteria used and 25 wt % water to form a workable paste, leaving 50 wt % for waste solids. The salt loading depends on the salt content of the waste solids but could be as high as 50 wt % if all the waste solids are salt

322

Cementitious Stabilization of Mixed Wastes with High Salt Loadings  

Energy Technology Data Exchange (ETDEWEB)

Salt loadings approaching 50 wt % were tolerated in cementitious waste forms that still met leach and strength criteria, addressing a Technology Deficiency of low salt loadings previously identified by the Mixed Waste Focus Area. A statistical design quantified the effect of different stabilizing ingredients and salt loading on performance at lower loadings, allowing selection of the more effective ingredients for studying the higher salt loadings. In general, the final waste form needed to consist of 25 wt % of the dry stabilizing ingredients to meet the criteria used and 25 wt % water to form a workable paste, leaving 50 wt % for waste solids. The salt loading depends on the salt content of the waste solids but could be as high as 50 wt % if all the waste solids are salt.

Spence, R.D.; Burgess, M.W.; Fedorov, V.V.; Downing, D.J.

1999-04-01

323

Parameter sensitivity to climate and landscape variability of a simple, lumped salt and water balance model  

Science.gov (United States)

A salt and water balance model is developed to represent salinity generation following land use changes in Western Australia. The model consists of five interconnecting stores: (i) Dry, Wet and Subsurface unsaturated Stores, (ii) a transient Stream zone Store and (iii) a saturated Groundwater Store. The salinity generation process in Western Australia is highly dependent on annual rainfall, potential energy for evaporation, salt fall and land use history of a catchment. We selected six experimental catchments with different land use histories across a climatic gradient to test the model and assess parameter sensitivity. The model was successful in representing the streamflow and salinity generation processes of all catchments. In the process of application, we classified the model parameters into three sets: (i) "known", (ii) "fixed" and (iii) "variable". The "known" parameter set is calculated a priori from catchment attributes. The "fixed" set comprises regionalised parameters that remain unchanged across all catchments once calibrated in one catchment. The "variable" set of seven physically meaningful parameters were calibrated at one catchment, estimated a priori for other catchments and then subsequently adjusted for best fit. The "variable" set represents: (i) the depth (d), spatial distribution (b, c), relationship of the lateral hydraulic conductivity with moisture content (ia) and vertical conductivity (Kuv) of the top soil, (ii) lateral conductivity (Kll) of the groundwater system, and (iii) salt release (Cu) from top soil. Sensitivity analyses of key model parameters show that the relationship of the top soil lateral hydraulic conductivity with soil moisture content (ia) is the most sensitive parameter. Other sensitive parameters include the depth of the top soil and its spatial distribution (d, b, c).

Bari, M. A.; Smettem, K. R. J.

2005-08-01

324

Rapid myelin water content mapping on clinical MR systems  

Energy Technology Data Exchange (ETDEWEB)

We present an algorithm for the fast mapping of myelin water content using standard multiecho gradient echo acquisitions of the human brain. The method extents a previously published approach for the simultaneous measurement of brain T{sub 1}, T{sup *}{sub 2} and total water content. Employing the multiexponential T{sup *}{sub 2} decay signal of myelinated tissue, myelin water content was measured based on the quantification of two water pools ('myelin water' and 'rest') with different relaxation times. As the existing protocol was focussed on the fast mapping of quantitative MR parameters with whole brain coverage in clinically relevant measurement times, the sampling density of the T{sup *}{sub 2} curve was compromised to 10 echo times with a T {sub Emax} of approx. 40 ms. Therefore, pool amplitudes were determined using a quadratic optimisation approach. The optimisation was constrained by including a priori knowledge about brain water pools. All constraints were optimised in a simulation study to minimise systematic error sources given the incomplete knowledge about the real pool-specific relaxation properties. Based on the simulation results, whole brain in vivo myelin water content maps were acquired in 10 healthy controls and one subject with multiple sclerosis. The in vivo results obtained were consistent with previous reports which demonstrates that a simultaneous whole brain mapping of T{sub 1}, T{sup *}{sub 2}, total and myelin water content is feasible on almost any modern MR scanner in less than 10 minutes. (orig.)

Tonkova, Vyara; Arhelger, Volker [Fachhochschule Koblenz, RheinAhrCampus Remagen (Germany); Schenk, Jochen [Radiologisches Institut, Koblenz (Germany); Neeb, Heiko [Fachhochschule Koblenz, RheinAhrCampus Remagen (Germany); Koblenz Univ. (Germany). Inst. for Medical Engineering and Information Processing - MTI Mittelrhein

2012-07-01

325

Selection of gamma-ray induced salt tolerant rice mutants by in vitro mutagenesis  

International Nuclear Information System (INIS)

The present study had been performed to select the salt tolerant rice mutant lines through an in vivo and in vitro mutagenesis with a gamma-ray. The physiological responses such as MDA and chlorophyll of the selected salt mutant lines were investigated under salt stress. For the selection of the salt tolerant rice mutants by in vitro mutagenesis with gamma-ray, we conducted a second selection procedure with 1,500 mutant lines induced from the original cv. Dongan (wild-type, WT): Ist, selection under a nutrient solution with 171 mM NaCI: 2nd, selection under in vitro conditions. Based on a growth comparison of the entries, out of mutant lines, the putative 2 salt tolerant rice mutant lines, ST-495 and ST-532, were selected. The 2 ST-lines had a lower malonaldehyde (MDA) contents than wild-type (WT) during salt stress. The survival rate of the WT, ST-495 and ST-532 were 36.6%, 70% and 50% in 171 mM NaCI, respectively. The chlorophyll and carotenoid contents were decreased more in a WT plant than the two selected mutant lines. These rice mutant lines will be released for cultivation at the reclaimed land and used as a control plot for genetic research about salt tolerance

326

Role of water content and water state in characterizing vasogenic brain edema  

International Nuclear Information System (INIS)

Characterization of edematous brain tissue with MR imaging requires a knowledge of the water content and of the amount and type of protein present. The authors determined the frequency dependence of the hydration layer's T1 for gelatin solutions of different water concentrations by simultaneously measuring the relaxation rates (at 5, 41, 63, and 100 MHz) and the bound water fractions by differential scanning calorimetry. Similar measurements of different protein concentrations in serum were carried out at 100 MHz. The results indicate the critical role of both water content and protein concentration in the characterization of vasogenic edema and its ultimate resolution

327

Radial transport of salt and water in roots of the common reed (Phragmites australis?Trin. ex Steudel).  

Science.gov (United States)

To understand the root function in salt tolerance, radial salt and water transport were studied using reed plants growing in brackish habitat water with an osmotic pressure (?M ) of 0.63?MPa. Roots bathed in this medium exuded a xylem sap with NaCl as the major osmolyte and did so even at higher salt concentration (?M up to 1.3?MPa). Exudation was stopped after a small increase of ?M (0.26?MPa) using polyethylene glycol 600 as osmolyte. The endodermis of fine lateral roots was found to be the main barrier to radial solute diffusion on an apoplastic path. Apoplastic salt transfer was proven by rapid replacement of stelar Na(+) by Li(+) in an isomolar LiCl medium. Water fluxes did not exert a true solvent drag on NaCl. Xylem sap concentrations of NaCl in basal internodes of transpiring culms were more than five times higher than in medial and upper ones. It was concluded that the radial NaCl flux was mainly diffusion through the apoplast, and radial water transport, because of the resistance of the cell wall matrix to convective mass flow, was confined to the symplast. Radial salt permeation in roots reduced the water stress exerted by the brackish medium. PMID:23488547

Fritz, Michael; Ehwald, Rudolf

2013-10-01

328

Assessment of iodine content in Brazilian duplicate portion diets and in table salt  

International Nuclear Information System (INIS)

Excess dietary intake may increase the risk for the hyperthyroidism in the elderly. This study investigated iodine dietary intake by epithermal neutron activation analysis (ENAA) analyzing duplicate portion diet and fortified table salt samples. Duplicate diet samples were obtained from a group of twenty-five steel mill workers from the city of Sao Paulo, over a 3-day period. The samples were freeze dried, mixed and homogenized. Fortified table salt brands were collected from the market and were analyzed with no pre-treatment. Assays for the iodine concentration in the table salt samples revealed values between 24 to 65 mg/kg. The average iodine daily intake for the worker's diets was 813 ?g/day, ranging from 402 to 1363 ?g/day. In some cases daily intakes were around 10 times higher than the recommended dietary allowance (RDA) value (150 ?g/day). (author)

329

Physiological and molecular characterization of the enhanced salt tolerance induced by low-dose gamma irradiation in Arabidopsis seedlings.  

Science.gov (United States)

It has been established that gamma rays at low doses stimulate the tolerance to salt stress in plants. However, our knowledge regarding the molecular mechanism underlying the enhanced salt tolerance remains limited. In this study, we found that 50-Gy gamma irradiation presented maximal beneficial effects on germination index and root length in response to salt stress in Arabidopsis seedlings. The contents of H2O2 and MDA in irradiated seedlings under salt stress were significantly lower than those of controls. The activities of antioxidant enzymes and proline levels in the irradiated seedlings were markedly increased compared with the controls. Furthermore, transcriptional expression analysis of selected genes revealed that some components of salt stress signaling pathways were stimulated by low-dose gamma irradiation under salt stress. Our results suggest that gamma irradiation at low doses alleviates the salt stress probably by modulating the physiological responses as well as stimulating the stress signal transduction in Arabidopsis seedlings. PMID:24971533

Qi, Wencai; Zhang, Liang; Xu, Hangbo; Wang, Lin; Jiao, Zhen

2014-07-25

330

The reaction kinetics of lithium salt with water vapor  

Energy Technology Data Exchange (ETDEWEB)

The interaction of lithium salt (LiH and/or LiD) with water vapor in the partial pressure range of 10{sup -5}-2657 Pa has been investigated. The reaction probability of water with LiH cleaved in an ultra high vacuum environment was obtained using the modulated molecular beam technique. This probability was 0.11 and independent of LiH surface temperature, suggesting a negligible activation energy for the reaction in agreement with quantum chemical calculations. The value gradually reduced, however, to 0.007 as the surface concentration of oxygen containing product approached full coverage. As the film grew beyond a monolayer, the phase lag of hydrogen product increased from 0 deg. C to 20 deg. C and the reaction probability reduced further until it approached our detection limit ({approx}10{sup -4}). This phase lag was attributed to a diffusion-limited process in this regime. For micrometer thick hydroxide films grown in high moisture concentration environment on LiD and LiH, the reaction probability reduced to {approx}4x10{sup -7} and was independent of exposure time. In this regime of thick hydroxide films (LiOH and/or LiOD), microcracks generated in the films to release stress provided easier pathways for moisture to reach the interface. A modified microscope, capable of both atomic force microscopy and nanoindentation, was also employed to investigate the surface morphology of hydroxide monohydrate (LiOH {center_dot} H{sub 2}O and/or LiOD {center_dot} H{sub 2}O) grown on hydroxide at high water vapor partial pressures and the kinetics of this growth.

Balooch, M.; Dinh, L.N.; Calef, D.F

2002-06-01

331

Characteristic monitoring of groundwater-salt transportation and input-output in inland arid irrigation area.  

Science.gov (United States)

The rules of microscopic water-salt transportation can be revealed and the impact on the macroscopic water and soil resources can be further predicted by selecting a typical study area and carrying out continuous monitoring. In this paper, Jingtaichuan Electrical Lifting Irrigation District in Gansu Province (hereinafter called as JingDian irrigation district (JID)) located at the inland desert region of northwest China was selected as study area. Based on the groundwater-salt transportation data of representative groundwater monitoring wells in different hydrogeological units, the groundwater-salt evolution and transportation tendency in both closed and unclosed hydrogeological units were analyzed and the quantity relative ratio relationship of regional water-salt input-excretion was calculated. The results showed that the salt brought in by artificial irrigation accounts for the highest proportion of about 63.99% and the salt carried off by the discharge of irrigation water accounts for 66.42%, namely, the water-salt evolution and transportation were mainly controlled by artificial irrigation. As the general features of regional water-salt transportation, groundwater salinity and soil salt content variation were mainly decided by the transportation of soil soluble salt which showed an obvious symbiosis gathering regularity, but the differentiation with insoluble salt components was significant in the transportation process. Besides, groundwater salinity of the unclosed hydrogeological unit presented a periodically fluctuating trend, while the groundwater salinity and soil salt content in water and salt accumulation zone of the closed hydrogeological unit showed an increasing tendency, which formed the main occurrence area of soil secondary salinization. PMID:25522523

Xu, Cundong; Zhang, Hongyang; Han, Liwei; Zhai, Luxin

2014-11-01

332

Changes in rock damage parameters due to chemical effects of salt water  

International Nuclear Information System (INIS)

To investigate the effect of the chemical degradation on the mechanical behavior, the rock samples preserved in the 10% salt water and distilled water for 90 days are subjected to the unconfined compression test. The rock samples were obtained from Aespoe HRL in Sweden. The damage parameters were identified from the unconfined compression tests for two types of rock samples. By investigating the change in the damage parameters of the chemically degraded rock, the effect of the chemical degradation was tried to infer. Moreover, the 3-D finite element simulation was carried out using the damage parameters. (author)

333

Geomicrobiology and hopanoid content of sulfidic subsurface vent biofilms, Little Salt Spring, Florida  

Science.gov (United States)

Sulfide-rich, oxygen-poor environments are widespread in the subsurface and were prevalent at the earth's surface during critical intervals in the geologic past. Modern microbial communities in sulfidic niches have the potential to shed light on the biogeochemistry and biosignatures of anoxia and euxinia in earth history. Caves and sinkholes provide rare windows into microbially-dominated, sulfidic subsurface environments that are otherwise difficult and expensive to access. Little Salt Spring (Sarasota County, Florida) is a cover-collapse sinkhole lake with oxic surface water and anoxic, sulfidic bottom water (Alvarez Zarikian 2005). The site is famous for excellent preservation of human and animal archaeological remains (Clausen 1979), and its microbiology has never been investigated. Abundant white biofilms develop seasonally at a warm vent that feeds into the anoxic bottom water at 73 m depth below the water surface. The biofilms are of interest both as potential sources of biomarker compounds and because of their likely role in sulfuric acid production and limestone dissolution (speleogenesis). Biofilm samples were collected by expert science divers and investigated using microscopy, nucleic acid, and lipid analytical methods. Microscopy of the live biofilm revealed clusters of microbial filaments with holdfasts and dendritic, sulfur-rich colonial structures similar to those described in the 1960s for Thiobacterium, a sulfur-oxidizing genus with undetermined phylogeny. A 16S rDNA library constructed from the biofilm was split into three main phylotypes, with multiple clones representing (1) a Betaproteobacterial clade with no cultivated representatives, (2) filamentous Epsilonproteobacteria, and (3) a major bacterial lineage without named isolates (OP11/OD2). A full cycle rRNA approach is currently underway to link 16S rDNA phylotypes with specific populations in the biofilm. We confirmed using fluorescence in situ hybridization (FISH) that abundant filamentous cells with holdfasts are Epsilonproteobacteria. Additional FISH experiments will target the Betaproteobacterial and OP11/OD2 phylotypes retrieved by cloning. Based on HPLC-MS analyses, the biofilm contains at least 5 membrane hopanoid structures distinct from the suite of hopanoids present in sinking organic particles from the photic zone of the sinkhole. Future efforts will be aimed at linking hopanoid structures to specific sulfur-oxidizing populations and to geochemical parameters such as sulfide and oxygen concentrations. References Alvarez Zarikian,C. A., P. K. Swart, J. A. Gifford, P. L. Blackwelder, Palaeogeography, Palaeoclimatology, Palaeoecology 225, 134 (2005). Clausen, C. J., A. D. Cohen, C. Emiliani, J. A. Holman, J. J. Stipp, Science 203, 609 (1979).

Yang, E.; Schaperdoth, I.; Albrecht, H.; Freeman, K. H.; Macalady, J. L.

2008-12-01

334

Biased monitoring of fresh water-salt water mixing zone in coastal aquifers.  

Science.gov (United States)

In coastal aquifers, significant vertical hydraulic gradients are formed where fresh water and underlying salt water discharge together upward to the seafloor. Monitoring boreholes may act as "short circuits" along these vertical gradients, connecting between the higher and the lower hydraulic head zones. When a sea tide is introduced, the fluctuations of both the water table and the depth of the mixing zone are also biased due to this effect. This problem is intensified in places of long-screen monitoring boreholes, which are common in many places in the world. For example, all approximately 500 boreholes of the fresh water-salt water mixing zone in the coastal aquifer of Israel are installed with 10 to 50 m long screens. We present field measurements of these fluctuations, along with a three-dimensional numerical model. We find that the in-well fluctuation magnitude of the mixing zone is an order of magnitude larger than that in the porous media of the actual aquifer. The primary parameters that affect the magnitude of this bias are the anisotropy of the aquifer conductivity and the borehole hydraulic parameters. With no sea tide, borehole interference is higher for the anisotropic case because the vertical hydraulic gradients are high. When tides are introduced, the amplitude of the mixing zone fluctuation is higher for the isotropic case because the overall effective hydraulic conductivity is greater than the conductivity in the anisotropic case. In the aquifer, the fresh water-salt water mixing zone fluctuations are dampened, and tens of meters inland from the shoreline, the fluctuations are on the order of few centimeters. PMID:18823401

Shalev, Eyal; Lazar, Ariel; Wollman, Stuart; Kington, Shushanna; Yechieli, Yoseph; Gvirtzman, Haim

2009-01-01

335

PENGARUH PEMBERIAN GULA MERAH DAN LAMA PENYIMPANAN TERHADAP KADAR GIZI DAN RASA TELUR ITIK ASIN [The Effect of Palm Sugar and Storage on Nutrient Content and Taste of Salted Ducks Egg  

Directory of Open Access Journals (Sweden)

Full Text Available This research used 150 duck eggs age one as subject day. There were two factors analyzed here. The first was the amount of palm sugar which consisted of 25 grams, 50 grams, and 75 grams. The second factor were the storage duration which consisted of 3, 4, and 5 weeks. The nutrient content parameters measured were rates protein, fat and ash content. Sensory quality parameters measured were color and taste. The analysis showed that in processing/making salted duck egg, palm sugar addition influenced protein content significantly (Fc = 7,0 > Ftab = 4,5 fat content ( Fc 67,3 > Ftab= 8,7 and ash content (Fc = 64,6 > F tab = 8,7 very significantly. However, organoleptic test showed that palm sugar addition did not influenced color and taste of salted duck egg significantly. Storage duration influenced protein content significantly (Fc= 6,9 F tab = 8,7 but did not significantly influenced ash content (Fc = 3,5 < Ftab = 4,46. Storage duration also influenced taste of salted duck egg, but did not for its color. The interaction of treatment between palm sugar addition and storage duration just influenced fat content of salted duck egg significantly. The salted duck egg made by addition 75 grams palm sugar and stored 5 weeks (A3B3 the highest content of fat. The salted ducks eeg made by addition of 25 grams palm sugar and stored duration produced the salted ducks egg with high content of fat and ash. Organoleptic test indicated that the panelis preferred the salted taste duck egg made by addition of palm sugar 25 grams and storaged for 3 weeks having reddish yellow color.

Yenni Yusriani

2004-12-01

336

Single-parameter estimates of aerosol water content  

International Nuclear Information System (INIS)

Water can represent a substantial fraction of the mass of tropospheric non-cloud particulate matter, and can also serve as a medium for aqueous-phase reactions in such particles. Aerosol water contents are highly dependent upon aerosol hygroscopicity and ambient relative humidities (RH). In this work we evaluate a recently proposed parameterization of composition-dependent aerosol hygroscopicity that predicts the volume of liquid water associated with a unit volume of dry aerosol. The predictions over the range 10%85%) expected to have the most significant effects on tropospheric chemistry and radiation balance. Water contents for most of the compounds studied are generally represented within experimental uncertainties over the entire range of relative humidity examined, with the exception of marine-type particles dominated by sodium chloride and sodium sulfate

337

Effect of salt on boiling heat transfer of ammonia-water mixture  

Science.gov (United States)

Nucleate pool boiling heat transfer coefficients were determined experimentally for NH3-H2O, NH3-H2O-LiNO3 and NH3-H2O-LiBr mixtures. Both the salts were effective in increasing the heat transfer coefficient of NH3-H2O mixture. A concentration of 10 mass% of the salts in water, produced the greatest enhancement in heat transfer coefficient at all the range of pressure, heat flux and ammonia concentration studied in this investigation. The experiments indicated that ammonia concentration also has the impact on the augmentation of heat transfer coefficient in NH3-H2O binary mixture by the addition of salts. For the solution of ammonia mass fraction 0.30, high concentration of LiBr gives the highest heat transfer coefficient, for ammonia mass fraction of 0.25, high concentration of LiNO3 gives the maximum heat transfer coefficient, for ammonia mass fraction of 0.15, both the salts are equally effective in increasing the heat transfer coefficient.

Sathyabhama, A.

2012-03-01

338

Development of integrated aquaculture : agriculture with brackish and salt water, Egypt  

OpenAIRE

This report describes the development of an integrated saltwater aquaculture – agriculture farming system at Wadi El Natroun, Egypt. During the first two years of the project promising salt-tolerant plant species were identified, the methods for seed germination and growing of three salt-tolerant plant species with potential for human consumption and animal fodder were developed, and the culture of red tilapia in a so-called biofloc system with salt water was tested. Report number CDI-13-004

Heijden, P. G. M.; Blom-zandstra, G.; Sadek, S.; Elsamadony, E.; Eweas, M.; El-dib, H.; Sabry, M.

2013-01-01

339

Liquid Crystals and Phase Equilibria Binary Bile Salt-Water Systems  

OpenAIRE

The phase behavior of several binary sodium bile salt-water systems is investigated over the entire concentration range, with emphasis on concentrated regions beyond the isotropic solution phase. The studied bile acid salts comprise the free salt sodium deoxycholate (SDC), the taurine conjugates sodium taurocholate (STC), sodium taurodeoxycholate (STDC), and sodium taurochenodeoxycholate (STCDC) and the glycine conjugate sodium glycodeoxycholate (SGDC). A combination of classical techniques i...

Marques, Eduardo F.; Edlund, Ha?kan; Mesa, Camillo La; Khan, Ali

2000-01-01

340

Chapter 7. CS616 (CS615) water content reflectometer  

International Nuclear Information System (INIS)

The CS615/616 water content reflectometers are frequency domain reflectometers (FDR) that measure the frequency at which an electronic pulse is reflected back from the ends of the probe rods. Like other electromagnetic sensors, they do not measure water content. Like TDR, they are sensitive to changes in signal propagation velocity along the waveguide of the sensor. Changes in propagation velocity are, in large part, caused by the changes in the soil's dielectric constant that occur due to changing water content. The signal is a very fast rise time pulse. According to CSI, 'The return of the reflection from the ends of the rods triggers a logic state change which initiates propagation of a new wavefront.' This differs from conventional TDR in that it uses a specific voltage level of the signal reflected from the end of the waveguide to trigger the next pulse instead of analysing the entire waveform as in TDR. However, the rise time of the reflected pulse changes with soil bulk electrical conductivity (BEC), clay type and content, soil temperature and organic matter content (Evett et al., 2005; Robinson et al., 2003; Wraith and Or, 1999). The result is that the sensor oscillation frequency is dependent not only upon the average water content of the medium surrounding the rods, but it is also quite dependent on soil bulk electrical conductivity, clay type and content, and temperature. The sensor output is a stepped down frequency that is the internal oscillation frequeny that is the internal oscillation frequency divided by an integer value so as to render a number small enough to be easily datalogged

341

Treatment of plutonium process residues by molten salt oxidation  

Energy Technology Data Exchange (ETDEWEB)

Molten Salt Oxidation (MSO) is a thermal process that can remove more than 99.999% of the organic matrix from combustible {sup 238}Pu material. Plutonium processing residues are injected into a molten salt bed with an excess of air. The salt (sodium carbonate) functions as a catalyst for the conversion of the organic material to carbon dioxide and water. Reactive species such as fluorine, chlorine, bromine, iodine, sulfur, phosphorous and arsenic in the organic waste react with the molten salt to form the corresponding neutralized salts, NaF, NaCl, NaBr, NaI, Na{sub 2}SO{sub 4}, Na{sub 3}PO{sub 4} and NaAsO{sub 2} or Na{sub 3}AsO4. Plutonium and other metals react with the molten salt and air to form metal salts or oxides. Saturated salt will be recycled and aqueous chemical separation will be used to recover the {sup 238}Pu. The Los Alamos National Laboratory system, which is currently in the conceptual design stage, will be scaled down from current systems for use inside a glovebox.

Stimmel, J.; Wishau, R.; Ramsey, K.B.; Montoya, A.; Brock, J. [Los Alamos National Lab., NM (United States); Heslop, M. [Naval Surface Warfare Center (United States). Indian Head Div.; Wernly, K. [Molten Salt Oxidation Corp. (United States)

1999-04-01

342

Treatment of plutonium process residues by molten salt oxidation  

International Nuclear Information System (INIS)

Molten Salt Oxidation (MSO) is a thermal process that can remove more than 99.999% of the organic matrix from combustible 238Pu material. Plutonium processing residues are injected into a molten salt bed with an excess of air. The salt (sodium carbonate) functions as a catalyst for the conversion of the organic material to carbon dioxide and water. Reactive species such as fluorine, chlorine, bromine, iodine, sulfur, phosphorous and arsenic in the organic waste react with the molten salt to form the corresponding neutralized salts, NaF, NaCl, NaBr, NaI, Na2SO4, Na3PO4 and NaAsO2 or Na3AsO4. Plutonium and other metals react with the molten salt and air to form metal salts or oxides. Saturated salt will be recycled and aqueous chemical separation will be used to recover the 238Pu. The Los Alamos National Laboratory system, which is currently in the conceptual design stage, will be scaled down from current systems for use inside a glovebox

343

[Determination of tracer gas contents in sediment pore water of gas hydrate area by two-dimensional gas chromatography].  

Science.gov (United States)

A two-dimensional gas chromatographic instrument was established by the capillary flow technology (Deans Switch) and two columns (PoraPLOT Q and Molsieve 5A) and three detectors (pulsed discharge helium ionization detector, flame photometric detector and thermal conductivity detector). The instrument can be used to measure tracer gases simultaneously including hydrogen, methane, carbon dioxide and hydrogen sulfide. The detection limits of the hydrogen, methane, carbon dioxide and hydrogen sulfide were 0.51, 0.17, 82 and 0.08 micromol/mol, and the calibration curves presented good linear relationships in the range of 2-1030, 0.6-501, 120-10500 and 0.2- 49.1 micromol/mol, respectively. The relative standard deviations were less than 10% for the measurements of ten standard gases. By this method, the tracer gases in the sediment pore water of gas hydrate area in South China Sea had been detected. This method is simple, sensitive, and suitable for on-board detection. Compared with the usual methods for measuring tracer gases, the amount of a sample necessary is reduced greatly. It is useful for the survey of gas hydrate and hydrothermal resources below sea floor and for the research of dissolved gases in the ocean. PMID:21574403

Wang, Hu; Yang, Qunhui; Ji, Fuwu; Zhou, Huaiyang; Xue, Xiang

2011-01-01

344

Tamarisk Water Flux Patterns Before, During and After Episodic Defoliation by the Salt Cedar Leaf Beetle on the Colorado Plateau, USA  

Science.gov (United States)

Tamarisk (Tamarix) species are among the most successful plant invaders in the western United States, and has had significant impacts on watershed hydrology and water resources. Accordingly, local, state and federal agencies have undertaken considerable efforts to eradicate tamarisk and restore riparian habitats to pre-invasion status. A biological control - the saltcedar leaf beetle (Diorhabda elongata) - was released in the summer of 2004 at several locations in eastern Utah, USA to control the spread and impact of tamarisk within the Colorado River watershed. Beginning in April of 2008, sap flux techniques were used to monitor changes in transpiration fluxes in response to canopy defoliation by the beetle. Specifically we installed modified (10 mm length) heat dissipation probes into the main stem of 20 mature tamarisk trees within a single stand on the Colorado Plateau. In July, the saltcedar leaf beetle reduced the total leaf area to near 0% of pre-beetle invasion status. Consequently, sap flux declined by up to 80% compared to pre-beetle invasion fluxes. By mid-August, refoliation of the canopy occurred, and sap flux rates returned to pre- defoliation status. Sap flux rates prior to defoliation were modeled against atmospheric vapor pressure deficit in order to predict the amount of water salvage from defoliation. Sap flux from June 1 through September 1 was on average 36% lower than predicted values. Combined with scaling techniques, the heat dissipation approach shows a high potential for monitoring changes in watershed hydrology in response to tamarisk defoliation by the saltcedar leaf beetle. Nevertheless, tamarisk sap flux studies with heat dissipation probes presents several challenges, including, narrow sapwood depth, low flux rates in response to defoliation, and large thermal gradients that are inevitable in warm climates (particularly after defoliation removes canopy shading). We will present results from ongoing research to address these potential pitfalls.

Hultine, K. R.; Nagler, P. L.; Dennison, P. E.

2008-12-01

345

From water to energy. The virtual water content and water footprint of biofuel consumption in Spain  

International Nuclear Information System (INIS)

Energy diversification and the use of renewable energy sources are key points in the European energy strategy. Biofuels are the most popular renewable resource option for the transport sector, and the European Union has established objectives that the Member States must adopt and implement. However, biofuel production at such a scale requires a considerable amount of water resources, and this water-energy nexus is rarely taken into account. This paper shows the strong nexus between water and energy in biofuel production and estimates the virtual water (VW) content and the water footprint (WF) from the raw material production that will be needed to reach the Spanish targets for biofuel consumption by 2010. The results show how the impact of such targets on the global and local water situation could be reduced through virtual water imports and, at the same time, how these imports could increase Spain's water and energy dependence. Hence, in order to manage water from an integral perspective of the territory, the inclusion of biofuel consumption objectives should go hand in hand with measures to reduce the demand of energy in the transport sector. (author)

346

From water to energy: The virtual water content and water footprint of biofuel consumption in Spain  

International Nuclear Information System (INIS)

Energy diversification and the use of renewable energy sources are key points in the European energy strategy. Biofuels are the most popular renewable resource option for the transport sector, and the European Union has established objectives that the Member States must adopt and implement. However, biofuel production at such a scale requires a considerable amount of water resources, and this water-energy nexus is rarely taken into account. This paper shows the strong nexus between water and energy in biofuel production and estimates the virtual water (VW) content and the water footprint (WF) from the raw material production that will be needed to reach the Spanish targets for biofuel consumption by 2010. The results show how the impact of such targets on the global and local water situation could be reduced through virtual water imports and, at the same time, how these imports could increase Spain's water and energy dependence. Hence, in order to manage water from an integral perspective of the territory, the inclusion of biofuel consumption objectives should go hand in hand with measures to reduce the demand of energy in the transport sector.

347

Elemental composition of platelets. Part II. Water content of normal human platelets and measurements of their concentrations of Cu, Fe, K, and Zn by neutron activation analysis  

International Nuclear Information System (INIS)

We determined the elements Cu, Fe, K, and Zn in normal human platelets by neutron activation analysis. The platelets were obtained from seven donors and treated as described in Part I. The elemental composition is expressed on a wet-weight basis for plasma-free platelets. The following results were obtained (+- values are 1 SD): Pure platelets: trapped plasma = 378 +- 35 mg/g, water content = 715 +- 15 mg/g, mean weight of the single platelet (by two different methods) = 9.9 +- 1.1 pg and 11.2 +- 1.7 pg, K = 4.39 +- 1.06 mg/g, Zn = 49.23 +- 10.97 ?g/g, Fe = 12.28 +- 2.94 ?g/g, and Cu = 1.39 +- 0.25 ?g/g. Impure platelets: trapped plasma = 349 +- 31 mg/g, water content = 736 +- 12 mg/g, K = 3.26 +- 0.78 mg/g, Zn = 35.71 +- 7.99 ?g/g, Fe = 17.11 +- 5.10 ?g/g, and Cu = 1.39 +- 0.21 ?g/g. To our knowledge, no data on Fe and Cu in platelets have hitherto been reported. 7 figures, 4 tables

348

Corrosion of Mullite by Molten Salts  

Science.gov (United States)

The interaction of molten salts of different Na2O activities and mullite is examined with furnace and burner tests. The more-acidic molten salts form small amounts of Al2O3; the more-basic molten salts form various Na2O-Al2O3-SiO2 compounds. The results are interpreted using the Na2O-Al203-SiO2 ternary phase diagram, and some possible diffusion paths are discussed. The generally higher melting points of Na2O-Al2O3-SiO2 compounds lead to better behavior of mullite in molten salts, as compared to SiO2-protected ceramics such as SiC. Mullite-coated SiC is discussed, and the corrosion behavior is evaluated.

Jacobson, Nathan S.; Lee, Kang N.; Yoshio, Tetsuo

1996-01-01

349

The effect of water purification systems on fluoride content of drinking water  

Directory of Open Access Journals (Sweden)

Full Text Available Objective: The purpose of the present study was to determine the effect of different water purification systems on the fluoride content of drinking water and to compare the efficacy of these water purification systems in reducing the fluoride content. Materials and Methods: Five different water purification systems were tested in this study. They were reverse osmosis, distillation, activated carbon, Reviva ® , and candle filter. The water samples in the study were of two types, viz, borewell water and tap water, these being commonly used by the people of Davangere City, Karnataka. The samples were collected before and after purification, and fluoride analysis was done using fluoride ion-specific electrode. Results: The results showed that the systems based on reverse osmosis, viz, reverse osmosis system and Reviva ® showed maximum reduction in fluoride levels, the former proving to be more effective than the latter; followed by distillation and the activated carbon system, with the least reduction being brought about by candle filter. The amount of fluoride removed by the purification system varied between the system and from one source of water to the other. Interpretation and Conclusion: Considering the beneficial effects of fluoride on caries prevention; when drinking water is subjected to water purification systems that reduce fluoride significantly below the optimal level, fluoride supplementation may be necessary. The efficacy of systems based on reverse osmosis in reducing the fluoride content of water indicates their potential for use as defluoridation devices.

Prabhakar A

2008-03-01

350

Exiguobacterium oxidotolerans, a halotolerant plant growth promoting rhizobacteria, improves yield and content of secondary metabolites in Bacopa monnieri (L.) Pennell under primary and secondary salt stress.  

Science.gov (United States)

Brahmi (Bacopa monnieri), an integral component of Indian Ayurvedic medicine system, is facing a threat of extinction owing to the depletion of its natural populations. The present study investigates the prospective of exploitation of halotolerant plant growth promoting rhizobacteria (PGPR) in utilising the salt stressed soils for cultivation of B. monnieri. The effects of two salt tolerant PGPR, Bacillus pumilus (STR2) and Exiguobacterium oxidotolerans (STR36) on the growth and content of bacoside-A, an important pharmaceutical compound in B. monnieri, were investigated under primary and secondary salinity conditions. The herb yields of un-inoculated plants decreased by 48 % under secondary salinization and 60 % under primary salinization than the non salinised plants. Among the rhizobacteria treated plants, E. oxidotolerans recorded 109 and 138 %, higher herb yield than non-inoculated plants subjected to primary and secondary salinity respectively. E. oxidotolerans inoculated plants recorded 36 and 76 % higher bacoside-A content under primary and secondary salinity respectively. Higher levels of proline content and considerably lower levels of lipid peroxidation were noticed when the plants were inoculated with PGPR under all salinity regimes. From the results of this investigation, it can be concluded that, the treatments with salt tolerant PGPR can be a useful strategy in the enhancement of biomass yield and saponin contents in B. monnieri, as besides being an eco-friendly approach; it can also be instrumental in cultivation of B. monnieri in salt stressed environments. PMID:23085953

Bharti, Nidhi; Yadav, Deepti; Barnawal, Deepti; Maji, Deepamala; Kalra, Alok

2013-02-01

351

UMTRA Project water sampling and analysis plan, Salt Lake City, Utah. Revision 1  

International Nuclear Information System (INIS)

This water sampling and analysis plan describes planned, routine ground water sampling activities at the US Department of Energy Uranium Mill Tailings Remedial Action Project site in Salt Lake City, Utah. This plan identifies and justifies sampling locations, analytical parameters, detection limits, and sampling frequencies for routine monitoring of ground water, sediments, and surface waters at monitoring stations on the site

352

Magnesium sulfate salts and historic building materials: experimental simulation of limestone flaking by relative humidity cycling and crystallization of salts  

Directory of Open Access Journals (Sweden)

Full Text Available Magnesium sulfate salts often result from the combination of incompatible construction materials, such as stone or mortar with high magnesium content and sulfates from adjacent mortars or polluted air. When combined with a source of moisture, these materials react to form soluble salts, often leading to significant damage by flaking of the stone, as the magnesium sulfate responds to fluctuating environmental conditions. Several laboratory experiments were performed to reproduce surface flaking on different types of limestone from Spain and the UK to evaluate the effects of humidity cycling on the damage of stone by salt crystallization. The two salt solutions used for the experiments were a single salt of magnesium sulfate and a mixture of magnesium sulfate, calcium sulfate and sodium chloride, a typical salt mixture found in damaged stone at the site of Howden Minster (UK. A climate chamber with precise and programmable temperature and humidity control was used to test the hypothesis that salt damage in the stone can be readily caused by humidity fluctuations. Damage was monitored using Linear Variable Differential Transformer (LVDT, which measure transducers displacement by dimensional change on the order of microns. In addition, Ion Chromatography, Environmental Scanning Electron Microscopy with energy dispersive X-ray spectroscopy (ESEM-EDX and X-ray Diffraction analyses (XRD were also carried out to analyze salt behavior. Damage by flaking took place in two types of magnesian limestone cubes impregnated with the salt mixture, from Cadeby quarry and York Minster, apparently by deliquescent salts of low equilibrium relative humidity (RHeq, while the rest of the samples developed a salt crust over the surface, but no damage was observed in the stone. It is important to verify hypotheses developed from field observations with laboratory experiments. By combining both field and laboratory data, a clearer understanding the different mechanisms of decay and associated weathering types under different environmental conditions can be obtained.Las sales de sulfato magnésico a menudo se producen a partir de la combinación de materiales de construcción incompatibles, tales como piedra o mortero con un alto contenido en magnesio y sulfatos procedentes de morteros adyacentes o del aire contaminado. Cuando estos materiales se combinan con una fuente de humedad, reaccionan para formar sales solubles que con frecuencia dan lugar a un importante deterioro por laminaciones de la piedra, ya que el sulfato magnésico responde a las fluctuaciones de las condiciones ambientales. Varios experimentos de laboratorio se llevaron a cabo para reproducir laminaciones superficiales en diferentes tipos de calizas procedentes de España y Reino Unido, para evaluar los efectos de ciclos de humedad en el deterioro de la piedra por cristalización de sales. Una única sal de sulfato magnésico y una mezcla de sulfato magnésico, sulfato cálcico y cloruro sódico, típica mezcla de sales encontrada en la piedra deteriorada de Howden Minster (UK, fueron las dos soluciones salinas utilizadas para realizar los experimentos. Se utilizó una cámara climática con control preciso de programación de temperatura y humedad para probar la hipótesis de que el deterioro por sales en la piedra puede ser fácilmente causada por fluctuaciones de humedad. El deterioro se monitorizó utilizando un Transformador Diferencial de Variable Lineal (TDVL, que mide el desplazamiento de transductores por cambios dimensionales en el orden de micras. Además, también se realizaron análisis de Cromatografía de Iones, Microscopía Electrónica de Barrido Ambiental con energía dispersiva de rayos-X (MEBA-EDX y Difracción de rayos-X (DRX para analizar el comportamiento de las sales. El deterioro por laminaciones se produjo en dos tipos de calizas magnésicas impregnadas con la mezcla salina, procedentes de las canteras de Cadeby y de York Min

Pinchin, S.

2008-06-01

353

Influence of water and salt solutions on UVB irradiation of normal skin and psoriasis  

International Nuclear Information System (INIS)

The influence of tap-water (TW) and salt solutions on the minimal erythema dose (MED) was investigated for normal human skin and uninvolved skin of psoriasis patients. MED (UVB) determinations on the forearm revealed that: (1) the MED definitely decreases whenever the arm is immersed in TW or NaCl solutions with a low concentration (4%) prior to UVB exposure, whereas almost saturated NaCl solution (26%), as well as locum Dead Sea water (LDSW), do not produce a change in the MED, and (2) the decrease in MED obtained by wetting the skin with TW was no longer present when the skin was allowed to dry for 20 min. A decrease in water uptake by skin (in vivo) and by callus (in vitro) was found as the salt concentration of the external solution increased. It is proposed that water taken up by the skin plays an important role in the sensitivity of the skin to UVB exposure. Bathing in TW or 4% NaCl prior to UVB exposure offered a slight to moderate improvement in psoriasis over UVB irradiation alone. Finally, it was shown that there is no obvious difference in clearance of the psoriatic skin between a bath in TW, 4% NaCl, or LDSW prior to UVB exposure. (orig.)

354

Excreting and non-excreting grasses exhibit different salt resistance strategies  

OpenAIRE

Salt marsh grasses are adapted to thrive under saline conditions by various combinations of traits. Some researchers suggested that salt excreting grasses would differ from non-excreting ones in these traits. However, little is known about the differential responses between these plant types. Here, we compared the growth and physiology of salt excreting and non-excreting grasses. Differences were found between the two grass types in leaf water content, accumulation of organic compounds and Na...

Moinuddin, Muhammad; Gulzar, Salman; Ahmed, Muhammad Zaheer; Gul, Bilquees; Koyro, Hans-werner; Khan, Muhammad Ajmal

2014-01-01

355

Soil water diffusivity as a function of water content and time  

International Nuclear Information System (INIS)

The soil-water diffusivity has been studied as a function of water content and time. From the idea of studying the horizontal movement of water in swelling soils, a simple formulation has been achieved which allows for the diffusivity, water content dependency and time dependency, to be estimated, not only of this kind of soil, but for any other soil as well. It was observed that the internal rearrangement of soil particles is a more important phenomenon than swelling, being responsible for time dependency. The method 2? is utilized, which makes it possible to simultaneously determine the water content and density, point by point, in a soil column. The diffusivity data thus obtained are compared to those obtained when time dependency is not considered. Finally, a new soil parameter, ?, is introduced and the values obtained agrees with the internal rearrangment assumption and time dependency for diffusivity (Author)

356

Water calibration measurements for neutron radiography: Application to water content quantification in porous media  

International Nuclear Information System (INIS)

Using neutron radiography, the measurement of water thickness was performed using aluminum (Al) water calibration cells at the High Flux Isotope Reactor (HFIR) Cold-Guide (CG) 1D neutron imaging facility at Oak Ridge National Laboratory, Oak Ridge, TN, USA. Calibration of water thickness is an important step to accurately measure water contents in samples of interest. Neutron attenuation by water does not vary linearly with thickness mainly due to beam hardening and scattering effects. Transmission measurements for known water thicknesses in water calibration cells allow proper correction of the underestimation of water content due to these effects. As anticipated, strong scattering effects were observed for water thicknesses greater than 0.2 cm when the water calibration cells were positioned close to the face of the detector/scintillator (0 and 2.4 cm away, respectively). The water calibration cells were also positioned 24 cm away from the detector face. These measurements resulted in less scattering and this position (designated as the sample position) was used for the subsequent experimental determination of the neutron attenuation coefficient for water. Neutron radiographic images of moist Flint sand in rectangular and cylindrical containers acquired at the sample position were used to demonstrate the applicability of the water calibration. Cumulative changes in the water volumes within the sand columns during monotonic drainage determined by neutron radiography were compared with those recorded by direct reading from a burette connected to a hanging water column. In general, the neutron radiography data showed very good agreement with those obtained volumetrically using the hanging water-column method. These results allow extension of the calibration equation to the quantification of unknown water contents within other samples of porous media

357

Performance evaluation of TDT soil water content and watermark soil water potential sensors  

Science.gov (United States)

This study evaluated the performance of digitized Time Domain Transmissometry (TDT) soil water content sensors (Acclima, Inc., Meridian, ID) and resistance-based soil water potential sensors (Watermark 200, Irrometer Company, Inc., Riverside, CA) in two soils. The evaluation was performed by compar...

358

Land Use Change Impacts on Water, Salt, and Nutrient Cycles: Case Study Semiarid Southern High Plains, Texas, USA (Invited)  

Science.gov (United States)

Land use change can have large scale impacts on the salt and nutrient cycles by changing partitioning of water at the land surface, applying irrigation and fertilizers to the system, and transporting salts and nutrients to underlying aquifers. The objective of this study was to evaluate impacts of land-use change on salt and nutrient cycles by quantifying water fluxes and salt and nutrient inventories under natural ecosystems (3 boreholes) and rain-fed agroecosystem (19 boreholes) and irrigated agroecosystem (13 boreholes) in the Southern High Plains, Texas. Salt and nutrient inventories were estimated by measuring water-extractable anion concentrations in sampled boreholes and water fluxes were estimated using the chloride mass balance approach. Large salt inventories accumulated under natural ecosystems from bulk precipitation since the Pleistocene (median chloride: 2,200 kg/ha/m; perchlorate: 46 g/ha/m; sulfate: 5,600 kg/ha/m). Conversion of natural ecosystems to rainfed agroecosystems flushed these pre-existing salt reservoirs towards and into the underlying Ogallala aquifer as a result of increased recharge rates (median of 19 profiles: 24 mm/yr). The flushed zone of rain-fed profiles are characterized by extremely low inventories of salts (chloride: 15 kg/ha/m; perchlorate: 6.3 g/ha/m; sulfate, 750 kg/ha/m). Cultivation also resulted in mineralization and nitrification of soil organic nitrogen, creating nitrate reservoirs at the leading edge of the front that represent 74% of profile nitrate-N and that are being mobilized into the aquifer. Irrigation has the greatest impact on nonpoint source contaminants by adding salts and nutrients to the system. Chloride inventories under irrigated agroecosystems (median 1,600 kg/ha/m) are similar to those under natural ecosystems (median 2,200 kg/ha/m) but accumulated over decades rather than millennia typical of natural ecosystems. Peak Cl concentrations in profiles represent evapoconcentration factors of 12-42 relative to inputs, attributed to deficit irrigation and minimal flushing. Perchlorate (ClO4), primarily from irrigation water, behaves similar to chloride (r=0.69-1.0 in profiles). Large nitrate-N inventories below the root zone represent 96% (median) of profile nitrate-N. Salt inventories under irrigated agroecosystems are correlated with salt concentrations in irrigation water (r=0.94 for chloride). Water fluxes under irrigated agroecosystems (18 to 97 mm/yr, median 48 mm/yr) are mobilizing these contaminants into the Ogallala aquifer. Solute hydrographs show large increases in groundwater salinity by factors of ?3 for chloride and factors of ?7 for nitrate-N from the 1970s, attributed to mobilization of salts that accumulated under natural and rainfed ecosystems. Groundwater quality is likely to degrade much more in the future with mobilization of inventories under irrigated agroecosystems with projected increases in total dissolved solids from median values of 1,000 to 6,000 mg/L and nitrate-N from 10 to 110 mg/L. Future water resources management should consider tradeoffs between water, salt, and nutrient balances when promoting various irrigation practices.

Scanlon, B. R.; Reedy, R. C.; Gates, J. B.

2009-12-01

359

Short communication. Suitable growth stage to start irrigation with saline water to increase salt tolerance and decrease ion accumulation of Kochia scoparia (L. Schrad)  

International Nuclear Information System (INIS)

Koch ia scoparia L. Schard (common name: kochia) is a mesohalophyte, C4 plant. It has the potential of being an important fodder crop in arid and semi arid environments. In order to evaluate the effect of saline irrigation water on the seedling growth stage and to select the best growth stage to start using saline water, an experiment was conducted with seven different saline water treatments (1.5, 7, 14, 21, 28, 35 and 42 dS m-1) at four growth stages [after emergence (T1), 5 cm (T2), 10 cm (T3), and 15 cm (T4) of plant height]. Results showed that shoot dry biomass increased slightly up to 7 dS m-1 and after that decreased with increasing salinity. Salt tolerance of kochia increased at the T3 and T4 growth stages. Sodium content of the plant was increased by using high saline water. The adverse effect of salinity on the Na content of the plant was lower at the 10-15 cm growth stage than at earlier growth stages. Potassium content was not greatly affected by salinity. As conclusion, kochia is sensitive to saline irrigation at the earliest stages of growth, and the best plant height to start saline irrigation is between 10 and 15 cm. (Author) 18 refs.

360

Calibration Equations for two Capacitance Water Content Probes in a Lysimeter Field  

OpenAIRE

Soil water research requires accurate water content measurements. Capacitance probes are used for monitoring soil water content but site specific calibration is necessary to obtain accurate results. This paper presents the calibration equations of two capacitance probes for monitoring the soil water content in a lysimeter field. The capacitance probes are the EnviroScan and the Diviner 2000 by Sentek Pty, Ltd (Kent Town, Australia). Capacitance probes provide readings at desired depths and ti...

Paraskevas, C.; ???????????, ?.; Georgiou, P.; Ilias, A.; Panoras, A.; Babajimopoulos, C.; ?????????, ?.; ??????, ?.; ????????, ?.; ??????????????????, ?.

2013-01-01

361

Chapter 1. Direct and surrogate measures of soil water content  

International Nuclear Information System (INIS)

The purpose of this manual is to provide guidance for field scientists who are not instrumentation experts but who wish to determine soil water content as part of their work. This publication is targeted to help those setting up soil water monitoring projects in the developing countries where expertise in many technologies is not readily available. However, it also has value to anyone planning a project involving the determination of field soil water content. Most importantly, it will also give some guidance as to what corroborative measurements are needed to check the performance of water sensing technology being used. A substantial suite of soil water sensors and technologies are available today. Some are well understood as to their technical capability and are both mechanically and electronically reliable. However, some technologies that claim to measure soil water content are quite unsuited to some applications and produce results that have little, if any, relation to soil water content in the field. This manual sets out a decision making process and critical factors for matching various water measurement technologies to project objectives. The first factor is the accuracy required by the user. The second is the degree of water content variability across the field to be measured. The third is the presence of interferences to the measurement process. And the fourth consists of the capabilities of the available devices in light of the spatial variability of water coght of the spatial variability of water content and the interferences that are present. A successful outcome can only be obtained if all four factors are considered. Because this manual is intended to be a practical guide, it cannot be a simple one. Only reliable measurements are practically useful. The techniques involved in obtaining reliable values of soil water content are not simple, nor are the potential problems, pitfalls, and sensor interferences that can prevent good values from being obtained. The manual is divided into chapters that treat classes of measurement systems, or individual sensors/methods if they do not belong to one of the major classes, which include neutron moisture meters, capacitance sensors that work from within a plastic access tube, time domain reflectometry systems that employ waveform capture and analysis, tensiometers, and direct sampling methods. Obviously, not all sensor systems could be included in the studies that led up to this manual. Much of the work supported by the IAEA involves determination of the soil water balance to determine crop water use and water use efficiency. Thus, many of the systems studied were those that work in access tubes so that measures could be made to well below the crop root zone. However, a few other widely used systems employing probes that are inserted into the soil were also studied

362

IMPROVEMENT OF SALT TOLERANCE IN DURUM WHEAT BY ASCORBIC ACID APPLICATION  

Directory of Open Access Journals (Sweden)

Full Text Available The main objective of this study is to examine whether exogenously applied Ascorbic acid (AsA may enhance the salt tolerance in durum wheat (Triticum durum Desf. var. Waha. Two weeks old seedling, grown in plastic pots of 1kg, were subjected to salt stress by adding 25ml of NaCl (150mm, and treated or not with the addition of ascorbic acid (0.7 mM. Two weeks after salt stress, plants were harvested and the various measures were recorded.The effects of salt stress, in the presence and absence of vitamin C, on the leaf growth, leaf area (LA and some physiological and biochemical changes were investigated. It was established that the application of vitamin C mitigate to variable extent the adverse effect of salt stress on plant growth, may be due, in part, to increased leaf area, improved chlorophyll and carotenoid contents, enhanced proline accumulation and decreased H2O2 content.In conclusion, we can say that treatment with ascorbic acid improve salt tolerance in durum wheat through the enhancement of multiple processes.

Fercha Azzedine

2011-03-01

363

Ice crystallization in ultrafine water-salt aerosols: nucleation, ice-solution equilibrium, and internal structure.  

Science.gov (United States)

Atmospheric aerosols have a strong influence on Earth's climate. Elucidating the physical state and internal structure of atmospheric aqueous aerosols is essential to predict their gas and water uptake, and the locus and rate of atmospherically important heterogeneous reactions. Ultrafine aerosols with sizes between 3 and 15 nm have been detected in large numbers in the troposphere and tropopause. Nanoscopic aerosols arising from bubble bursting of natural and artificial seawater have been identified in laboratory and field experiments. The internal structure and phase state of these aerosols, however, cannot yet be determined in experiments. Here we use molecular simulations to investigate the phase behavior and internal structure of liquid, vitrified, and crystallized water-salt ultrafine aerosols with radii from 2.5 to 9.5 nm and with up to 10% moles of ions. We find that both ice crystallization and vitrification of the nanodroplets lead to demixing of pure water from the solutions. Vitrification of aqueous nanodroplets yields nanodomains of pure low-density amorphous ice in coexistence with vitrified solute rich aqueous glass. The melting temperature of ice in the aerosols decreases monotonically with an increase of solute fraction and decrease of radius. The simulations reveal that nucleation of ice occurs homogeneously at the subsurface of the water-salt nanoparticles. Subsequent ice growth yields phase-segregated, internally mixed, aerosols with two phases in equilibrium: a concentrated water-salt amorphous mixture and a spherical cap-like ice nanophase. The surface of the crystallized aerosols is heterogeneous, with ice and solution exposed to the vapor. Free energy calculations indicate that as the concentration of salt in the particles, the advance of the crystallization, or the size of the particles increase, the stability of the spherical cap structure increases with respect to the alternative structure in which a core of ice is fully surrounded by solution. We predict that micrometer-sized particles and nanoparticles have the same equilibrium internal structure. The variation of liquid-vapor surface tension with solute concentration is a key factor in determining whether a solution-embedded ice core or vapor-exposed ice cap is the equilibrium structure of the aerosols. In agreement with experiments, we predict that the structure of mixed-phase HNO3-water particles, representative of polar stratospheric clouds, consists of an ice core surrounded by freeze-concentrated solution. The results of this work are important to determine the phase state and internal structure of sea spray ultrafine aerosols and other mixed-phase particles under atmospherically relevant conditions. PMID:24820354

Hudait, Arpa; Molinero, Valeria

2014-06-01

364

Maxwell-Wagner relaxation in common minerals and a desert soil at low water contents  

Science.gov (United States)

Penetration of 100- to 1000-MHz ground-penetrating radar (GPR) signals is virtually non-existent in arid and desert soils despite their low water content and moderate conductivity, the latter of which cannot explain the loss. Under the hypothesis that strong dielectric relaxation supplements DC conductivity to cause high intrinsic attenuation rates, we compared the complex permittivity of a desert soil sample with that of controlled samples of quartz, feldspars, calcite, coarse and crystallite gypsum, kaolinite and montmorillonite. The soil had 80% quartz, 10% feldspars and 10% gypsum by weight, with the latter composed of crystallites and crustations. All samples had 4-7% volumetric water content. We measured permittivity most accurately from 1.6 MHz to 4 GHz with Fourier Transform time domain reflectometry, and used grain sizes less than 53 ?m. All samples show low-frequency dispersion with the soil, gypsum crystallites and montmorillonite having the strongest below 100 MHz, the highest attenuation rates, and conductivity values unable to account for these rates. The soil rate exceeded 100 dB m- 1 by 1 GHz. Through modeling we find that a broadened relaxation centered from 2 to 16 MHz sufficiently supplements losses caused by conductivity and free water relaxation to account for loss rates in all our samples, and accounts for low-frequency dispersion below 1 GHz. We interpret the relaxation to be of the Maxwell-Wagner (MW) type because of the 2- to 16-MHz values, relaxation broadening, the lack of salt, clay and magnetic minerals, and insufficient surface area to support adsorbed water. The likely MW dipolar soil inclusions within the predominantly quartz matrix were gypsum particles coated with water containing ions dissolved from the gypsum, and the conducting water layers themselves. The inclusions for the monomineralic soils were likely ionized partially or completely water-filled interstices, and partially filled galleries for the montmorillonite. The low water content may be necessary to help isolate these inclusions. For our common, low conductivity minerals, the MW contributions to attenuation rates are significant above 10 MHz, whereas they are significant above about 100 MHz for the more conductive minerals and soil.

Arcone, Steven A.; Boitnott, Ginger E.

2012-06-01

365

A new water···Na+ coordination motif in an unexpected diatrizoic acid disodium salt crystal form.  

Science.gov (United States)

The disodium salt of diatrizoic acid crystallises as a tetragonal channel hydrate structure. One of the incorporated water molecules is coordinated to three individual sodium cations in a unique geometry. PMID:22933041

Fucke, Katharina; Peach, Michael J G; Howard, Judith A K; Steed, Jonathan W

2012-10-11

366

Attenuation of salt-induced hypertension by aqueous calyx extract of Hibiscus sabdariffa.  

Science.gov (United States)

The aqueous calyx extract of Hibiscus sabdariffa (HS) has a folk reputation as an antihypertensive agent. On account of its antioxidant properties and probably high K+ concentration, we hypothesized that HS may attenuate the development of salt-induced hypertension. Sprague-Dawley rats (n=8 each) were treated for 12 weeks as follows: control (normal diet + water), salt-loaded (8% salt diet + water), HS (normal diet + 6 mg/ml HS), salt+HS (8% salt diet + 6 mg/ml HS) and furosemide (normal diet+ 0.25mg/Kg furosemide). Their blood pressure and heart rates were measured and responses to noradrenalin and acetylcholine (0.01 mg/kg respectively) were estimated. The cationic concentration of 6 mg/ml HS was determined. The Na+ and K+ concentrations of 6 mg/ml HS were 3.6 and 840 mmol/l respectively. The mean arterial pressure (MAP±SEM; mmHg) of salt loaded rats (184.6±29.8) was significantly higher than control (113.2±3.0; Psalt+HS (119.4±8.9; Psalt+HS and control rats did not differ significantly and the effect of HS was comparable to furosemide. The pressor response to noradrenalin or vasodilator response to acetylcholine remained similar in all groups. These results suggest that HS attenuated the development of salt-induced hypertension and this attenuation may be associated with its high K+ content or high potassium: sodium ratio and not with altered pressor/depressor response to noradrenalin or acetylcholine. Also the effects of HS and furosemide on blood pressure are comparable. PMID:23652235

Mojiminiyi, F B O; Audu, Z; Etuk, E U; Ajagbonna, O P

2012-01-01

367

Determination of 63Ni contents in water  

International Nuclear Information System (INIS)

A method for determination of trace nickel-63 in water was described. At first nickel-63 concentrated by precipitation of nickel hydroxide from water samples; and then extracted with TOA-Toluene; precipitated as a complex with dimethylglyoxime; finally counted by means of liquid scintillation counting. The results showed, when 1.8 Bq of nickel-63 was added into 10 L of water, the radiochemical and chemical recovery was (88.4 ± 6.6%) and (89.8 ±1.8%), respectively. The lowest detectable limit of this method was 1.1 x 10-2 Bq/L. The decontamination factors of the method were higher than 103 for 60Co, 55Fe, 65Zn, 106Ru, 90Sr-90Y, 137Cs, 95Zr-95Nb respectively

368

Water and sediment chemistry of Sutton Salt Lake, east Otago, New Zealand  

International Nuclear Information System (INIS)

The Sutton Salt Lake is the only saline lake in New Zealand, and has formed in a windy cool-temperate maritime climate. Consequently, the lake is distinctly different from most of the world's saline lakes that form in arid continental settings. Sutton Salt Lake forms annually in a shallow (5 m) bedrock-floored depression c. 50 km from the nearest coast. The site receives c. 500 mm/year rainfall compared with coastal rainfall of near 1000 mm/year because of a minor rain-shadow effect of coastal hills. Surface evaporation rate is high (c. 700 mm/year) because of frequent strong winds. Sediments on the lake floor are derived by rain and wind erosion of the surrounding quartzofeldspathic schist bedrock, with a contribution from organic sources, particularly ostracods, and evaporative halite. The sediments have a higher proportion of phyllosilicates (muscovite, kaolinite, and chlorite) than the source rocks because of differential transport of these minerals into the lake depression. Lake water is entirely derived from rain, rather than groundwater, and the lake waters have had minimal chemical interaction with bedrock. Lake water pH is near 9 and pH of pore waters in drying lake sediments is near 8, compared with a pH near 7 for regional surface and ground waters. When full, the lake has salinity about one quarter to one third of that of sea-water, and ion ratios are similar to sea-water. The lake salinity is derived from marine aerosols in rainwater concentrated by c. 20erosols in rainwater concentrated by c. 20,000 evaporation and refilling cycles in the lake depression. (author). 35 refs., 9 figs.; 2 tabs

369

Gas migration through salt rocks  

International Nuclear Information System (INIS)

Salt as a host rock for a repository for radioactive waste may appear as a layered formation as observed at the WIPP site in the USA or as domed salt, which is abundant in the northern part of central Europe. Planned or actual repository sites like Gorleben, Morsleben or Asse in Germany are located in such salt domes. They have risen up in geological time from Permian salt beds until their upward movement has come to an end. Rock salt exists under geological conditions as an extremely dry material with a residual moisture content well below 1 %. Due to its crystalline nature, its permeability and porosity are very low. In addition, because of its plastic behaviour under stress salt has a high self-healing capacity. In fact, under undisturbed conditions, rock salt is considered as impermeable (permeability less than 10-22 m2). This is demonstrated impressively by brine inclusions which have been included millions of years ago and are kept in place until today. Thus, in considering conditions for two phase flow, undisturbed salt neither offers sufficient water nor appropriate hydraulic properties for scenarios involving normal two-phase flow to occur. Therefore, there is a fundamental difference to other host rock material, in that long term safety analyses for waste repositories in salt have, in general, to assume accident scenarios or some kind of faulted conditions to produce a scenario where gas production and two-phase flow become relevant. Thion and two-phase flow become relevant. The main focus of those safety analyses is on compacted crushed salt as backfill material, possibly on seals and plugs for emplacement rooms or borehole closures and on the engineering disturbed zone (EDZ). (author)

370

Reaction of aluminum with water and salts solution  

Energy Technology Data Exchange (ETDEWEB)

Results of low temperature reactions and the corrosion of flake or powdered aluminum as used in pyrotechnics were studied, using thermal analysis, immersion tests, reactions with water or wetted oxysalts, measurement of the critical pitting potential, and analysis of reaction products. It was found that the reactivity of mixtures of aluminum with water and water-containing compounds depends on the amount of water, the type of oxidizer and the reaction temperature. For example, mixtures of aluminum with water or sulphate such as alum, have DSC onset temperatures below 100 degrees C, combined with high heats of reaction. Consequently, aluminum-containing compositions represent a high energy hazard even if they do not contain an active oxidizer such as chlorate. Corrosion of aluminum plate by wetted oxysalts is affected by humidity, the oxysalt anion and the purity of the aluminum producing bayerite and potassium aluminate. The critical pitting potential of aluminum in pure water was established at -0.48 V compared to the standard hydrogen electrode, whereas in chlorine oxyacids and chloride solutions it was found to be in the order of chloride> chlorite> chlorate. Pitting did not appear to affected by the species of cation in chloride and oxysalts. 3 refs., 8 figs.

Nakamura, H.; Akiyoshi, M.; Yasutake, H. [Kyushu Institute of Technology, Dept. of Applied Chemistry (Japan); Nagaishi, T. [Kyushu Sangyo Univ., Dept. of Industrial Chemistry (Japan)

2000-04-01

371

Resistance to fresh and salt water in intertidal mites (Acari: Oribatida): implications for ecology and hydrochorous dispersal  

OpenAIRE

The resistance to fresh water and seawater in three intertidal oribatid mite species from Bermuda, Alismobates inexpectatus, Fortuynia atlantica and Carinozetes bermudensis, was tested in laboratory experiments. Larvae are more sensitive to fresh and salt water, nymphs and adults showed equal tolerances. Fortuynia atlantica and A. inexpectatus were more resistant to salt water whereas C. bermudensis survived longer in fresh water. Differences in the resistance to fresh and salt water among th...

Pfingstl, Tobias

2013-01-01

372

Bread Water Content Measurement Based on Hyperspectral Imaging  

OpenAIRE

Water content is one of the most important properties of the bread for tasting assesment or store monitoring. Traditional bread water content measurement methods mostly are processed manually, which is destructive and time consuming. This paper proposes an automated water content measurement for bread quality based on near-infrared hyperspectral imaging against the conventional manual loss-in-weight method. For this purpose, the hyperspectral components unmixing technology i...

Liu, Zhi; Møller, Flemming

2011-01-01

373

Remote sensing of canopy water content: scaling from leaf data to MODIS  

Science.gov (United States)

The water in green vegetation is detectable using reflectances in the near infrared and shortwave infrared. Canopy water content is estimated from the product of leaf water content and leaf area index (LAI). The Normalized Difference Infrared Index [NDII = (R850 - R1650)/(R850 + R1650)] was found to be strongly related to canopy water content using various moderate resolution sensors (Landsat TM, ASTER, AWiFS) during the SMEX02, SMEX04, SMEX05, and OTTER experiments. With the high temporal resolution of MODIS, changes in canopy water content may perhaps be used to estimate plant water stress and wild-fire potential. However, the low spatial resolution of MODIS does not allow the relationship between NDII and canopy water content to be determined experimentally. The objective of this study is to validate the expected relationship of canopy water content with NDII by the standard LAI data product from MODIS; the quotient is the expected leaf water content which will vary by land-cover type. Maximum NDII for 2000-2007 was calculated from the MODIS standard surface reflectance data products and compared to maximum MODIS LAI for the same years. Mean leaf water content from MODIS was not significantly different from leaf data for most land cover types. However the large standard deviations indicated that canopy water content from NDII is not currently accurate for monitoring the incipient stages of plant water</