Choe, Jee-Hwan; Choi, Mi-Hee; Rhee, Min-Suk; Kim, Byoung-Chul
2015-01-01
This study investigated the degree to which instrumental measurements explain the variation in pork loin tenderness as assessed by the sensory evaluation of trained panelists. Warner-Bratzler shear force (WBS) had a significant relationship with the sensory tenderness variables, such as softness, initial tenderness, chewiness, and rate of breakdown. In a regression analysis, WBS could account variations in these sensory variables, though only to a limited proportion of variation. On the other...
Pork tenderness estimation by taste panel, Warner-Bratzler shear force and on-line methods.
Van Oeckel, M J; Warnants, N; Boucqué, C V
1999-12-01
The extent to which modification of Warner-Bratzler shear force (WBSF) determinations, relating to storage and preparation of the meat, aperture of the V-shaped cutting blade and shearing velocity, improve the relationship with sensory tenderness perception of pork was studied. Additionally four on-line methods: pH1, FOP1 (light scattering), PQM1 (conductivity) and DDLT (Double Density Light Transmission), were evaluated for their ability to predict tenderness. Sensory tenderness evaluation was conducted on 120 frozen (at -18°C for several months) samples of m. longissimus thoracis et lumborum. After overnight thawing, the meat was grilled to an internal temperature of 74°C and scored on an eight-point scale, from extremely tough to extremely tender. The standard WBSF procedure (protocol A) consisted of heating fresh meat samples (stored for 48 h at 4°C post slaughter) at 75°C for 50 min, cooling in cold tap water for 40 min, taking cylindrical cores parallel to the fibre direction, and shearing at a velocity of 200 mm/min with a blade aperture of 60°. For the prediction of sensory tenderness, the WBSF standard procedure (protocol A) showed the lowest variance (R(2)=15%) and the highest standard error of the estimate (SEE=0.97 N) compared to the other WBSF protocols. A decrease in shearing velocity, from 200 to 100 mm/min and, a replacement of the cutting blade with an aperture of 60° by one with an aperture of 30° led to improvements of R(2) (respectively, 19% vs. 13% and 47% vs. 23%) and SEE (respectively, 0.93 N vs. 0.97 N and 0.80 N vs. 0.97 N) and thus were better predictors of tenderness. A blade aperture of 30° instead of 60° also led to considerably lower WBSF values (22.1 N vs. 30.0 N). Freezing, frozen storage and thawing of the meat, prior to WBSF measurement, resulted in higher shear force values (32.7 N vs. 28.7 N) and a better prediction of tenderness, R(2) (25% vs. 15%) and SEE (0.94 N vs. 1.00 N). Furthermore, preparing the frozen stored
Choe, Jee-Hwan; Choi, Mi-Hee; Rhee, Min-Suk; Kim, Byoung-Chul
2016-07-01
This study investigated the degree to which instrumental measurements explain the variation in pork loin tenderness as assessed by the sensory evaluation of trained panelists. Warner-Bratzler shear force (WBS) had a significant relationship with the sensory tenderness variables, such as softness, initial tenderness, chewiness, and rate of breakdown. In a regression analysis, WBS could account variations in these sensory variables, though only to a limited proportion of variation. On the other hand, three parameters from texture profile analysis (TPA)-hardness, gumminess, and chewiness-were significantly correlated with all sensory evaluation variables. In particular, from the result of stepwise regression analysis, TPA hardness alone explained over 15% of variation in all sensory evaluation variables, with the exception of perceptible residue. Based on these results, TPA analysis was found to be better than WBS measurement, with the TPA parameter hardness likely to prove particularly useful, in terms of predicting pork loin tenderness as rated by trained panelists. However, sensory evaluation should be conducted to investigate practical pork tenderness perceived by consumer, because both instrumental measurements could explain only a small portion (less than 20%) of the variability in sensory evaluation. PMID:26954174
Jerez-Timaure, N; Huerta-Leidenz, N; Ortega, J; Rodas-González, A
2013-03-01
A database consisting of 331 beef animals (Brahman-crossbred) was used to determine the multivariate relationships between carcass and beef palatability traits of Venezuelan cattle and to develop prediction equations for Warner-Bratzler shear force (WBSF). The first three principal components (PC) explained 77.53% of the standardized variance. Equations were obtained for each sex class and the total variability observed in WBSF could be explained by its orthogonal regression with carcass weight (CW), fat cover (FC), fat thickness (FT), and skeletal maturity (SM). Prediction equations were: WBSF(steers)=3.566+0.003(CW)-0.033(FC)-0.015(FT)+0.0004(SM); WBSF(heifers)=4.824+0.002(CW)-0.229(FC)+0.096(FT)-0.064(SM); WBSF(bulls)=3.516+0.009(CW)+0.154(FC)-0.129(FT)-0.006(SM). A higher proportion of the variation was explained by the PC when variables of greater weight were selected to define each PC. The equation set presented herein could become an important tool to improve the Venezuelan carcass grading system. PMID:23261538
Marta Madruga
2013-08-01
Full Text Available Sun-dried beef is a frequently consumed and valued product in Brazil, however, there have been no scientific studies on its texture. To assess the tenderness of sun-dried beef, an instrumental analysis (Warner-Bratzler Shear Force; WBSF, a sensory analysis (Quantitative Descriptive Analysis; QDA and the sarcomere length (SL were used as indicators. Significant differences were observed among the sun-dried beef samples. Sample 3 (composed of sun-dried meat purchased at three fairs from Region 3 in the city of João Pessoa-PB was considered the most tender by the assessors, with a score of 6.7, and its WBSF analysis revealed a maximum value of 2.70 kgf. Additionally, this sample exhibited the highest SL value (1.89 µm. Samples 1 and 2 (composed of sun-dried meat purchased at three fairs from Regions 1 and 2, respectively, in the city of João Pessoa exhibited very similar tenderness values (WBSF and QDA but differed in their SL values, which suggested that sample 2 was the least tender. In conclusion, these results demonstrate that the studied parameters are complementary and can be used as tenderness indicators for sun-dried beef. However, although the difference was beyond the detection limit of the assessors and the texturometer, the SL analysis appears to have been the most effective.
Yancey, E J; Dikeman, M E; Addist, P B; Katsanidis, E; Pullen, M
2002-07-01
Three groups of 12 high percentage Charolais steers were slaughtered on three dates. Steers (n = 27) were infused immediately after exsanguination at 10% of BW with a solution containing saccharides, NaCl, and phosphates (MPSC solution; MPSC, Inc., St. Paul, MN) plus either 500 ppm vitamin C (MPSC+C), 500 ppm vitamin E (MPSC+E), or 500 ppm vitamin C plus 500 ppm vitamin E (MPSC+C+E). Noninfused controls (CON) were 9 steers. The longissimus thoracis (LT), semitendinosus (ST), and quadriceps femoris muscles were removed at 48-h postmortem, vacuum-packaged, and aged until 14-d postmortem. Steaks 2.54-cm thick were cut from the LT and ST. The quadriceps was utilized for ground-beef production. Infused steers had higher dressing percentages and heavier heart and liver weights (P 0.05) on USDA yield and quality-grade traits, LT and ST Warner-Bratzler shear force, descriptive-attribute traits, and freshly cooked steak flavor-profile traits. Vascular infusion had little effect on the flavor-profile traits of warmed-over steaks. Therefore, the results of our study indicate that vascular infusion with vitamins C, E, or C plus E can increase dressing percentage and organ weights, but have minimal effects on descriptive-attribute and flavor-profile sensory panel ratings. PMID:12162658
Dikeman, M E; Pollak, E J; Zhang, Z; Moser, D W; Gill, C A; Dressler, E A
2005-10-01
Carcass and Warner-Bratzler shear force (WBSF) data from strip loin steaks were obtained from 7,179 progeny of Angus, Brahman, Brangus, Charolais, Gelbvieh, Hereford, Limousin, Maine-Anjou, Red Angus, Salers, Shorthorn, Simbrah, Simmental, and South Devon sires. Trained sensory panel (TSP) evaluations were obtained on 2,320 steaks sampled from contemporary groups of progeny from one to five sires of each breed. Expected progeny differences for marbling and WBSF were developed for 103 Simmental sires from 1,295 progeny, 23 Shorthorn sires from 310 progeny, and 69 Hereford sires from 1,457 progeny. Pooled phenotypic residual correlations, including all progeny, showed that marbling was lowly correlated with WBSF (-0.21) and with TSP overall tenderness (0.18). The residual correlation between WBSF and TSP tenderness was -0.68, whereas residual correlations for progeny sired by the three Bos indicus breeds were only slightly different than for progeny sired by Bos taurus breeds. The phenotypic range of mean WBSF among sires across breeds was 6.27 kg, and the phenotypic range among breed means was 3.93 kg. Heritability estimates for fat thickness, marbling score, WBSF, and TSP tenderness, juiciness, and flavor were 0.19, 0.68, 0.40, 0.37, 0.46, and 0.07, respectively. Ranges in EPD for WBSF and marbling were -0.41 to +0.26 kg and +0.48 to -0.22, respectively, for Simmentals; -0.41 to +0.36 kg and 0.00 to -0.32, respectively, for Shorthorns; and -0.48 to +0.22 kg and +0.40 to -0.24, respectively, for Herefords. More than 20% of steaks were unacceptable in tenderness. Results of this study demonstrated that 1) selection for marbling would result in little improvement in meat tenderness; 2) heritability of marbling, tenderness, and juiciness are high; and 3) sufficient variation exists in WBSF EPD among widely used Simmental, Shorthorn, and Hereford sires to allow for genetic improvement in LM tenderness. PMID:16160060
Yancey, E J; Dikeman, M E; Addis, P B; Katsanidis, E; Pullen, M
2002-04-01
Two groups of 18 grain-finished steers were utilized. Nine from one group were infused via the carotid artery immediately after jugular vein exsanguination with an aqueous solution containing saccharides, NaCl, and phosphates (MPSC; MPSC, Inc., Eden Prairie, MN, USA). Nine steers served as non-infused controls (CON). An additional 18 steers were infused with either MPSC (n=9) or MPSC plus 1000 ppm vitamin C (MPSC+C, n=9) solutions. Steers infused with MPSC had higher dressing percentages and organ weights than CON steers. Vascular infusion with MPSC had no effects on USDA yield or quality grade traits, descriptive-attribute sensory panel evaluations, or Warner-Bratzler shear force of longissimus lumborum and semitendinosus muscles. Vascular infusion with MPSC resulted in some significant, but inconsistent effects on flavor-profile characteristics of cooked beef. The addition of vitamin C to the MPSC solution did not provide any benefit. PMID:22063636
Measurements of texture properties related to tenderness at different locations within deboned broiler breast fillets have been used to validate techniques for texture analysis and establish correlations between different texture evaluation methods. However, it has been demonstrated that meat text...
McClure, M C; Ramey, H R; Rolf, M M; McKay, S D; Decker, J E; Chapple, R H; Kim, J W; Taxis, T M; Weaber, R L; Schnabel, R D; Taylor, J F
2012-01-01
Summary We performed a genome-wide association study for Warner–Bratzler shear force (WBSF), a measure of meat tenderness, by genotyping 3360 animals from five breeds with 54 790 BovineSNP50 and 96 putative single-nucleotide polymorphisms (SNPs) within μ-calpain [HUGO nomenclature calpain 1, (mu/I) large subunit; CAPN1] and calpastatin (CAST). Within- and across-breed analyses estimated SNP allele substitution effects (ASEs) by genomic best linear unbiased prediction (GBLUP) and variance components by restricted maximum likelihood under an animal model incorporating a genomic relationship matrix. GBLUP estimates of ASEs from the across-breed analysis were moderately correlated (0.31–0.66) with those from the individual within-breed analyses, indicating that prediction equations for molecular estimates of breeding value developed from across-breed analyses should be effective for genomic selection within breeds. We identified 79 genomic regions associated with WBSF in at least three breeds, but only eight were detected in all five breeds, suggesting that the within-breed analyses were underpowered, that different quantitative trait loci (QTL) underlie variation between breeds or that the BovineSNP50 SNP density is insufficient to detect common QTL among breeds. In the across-breed analysis, CAPN1 was followed by CAST as the most strongly associated WBSF QTL genome-wide, and associations with both were detected in all five breeds. We show that none of the four commercialized CAST and CAPN1SNP diagnostics are causal for associations with WBSF, and we putatively fine-map the CAPN1 causal mutation to a 4581-bp region. We estimate that variation in CAST and CAPN1 explains 1.02 and 1.85% of the phenotypic variation in WBSF respectively. PMID:22497286
Establishing standards for meat tenderness based on Warner-Bratzler shear force (WBSF) is complicated by the lack of methods for certifying WBSF testing among texture systems or laboratories. The objective of this study was to determine the suitability of using gelatin gels as a reference material ...
Lean, Ian J.; Thompson, John M.; Dunshea, Frank R.
2014-01-01
This study is a meta-analysis of the effects of the beta-agonists zilpaterol hydrochloride (ZH) and ractopamine hydrochloride (RAC) on feedlot performance, carcase characteristics of cattle and Warner Bratzler shear force (WBSF) of muscles. It was conducted to evaluate the effect of the use of these agents on beef production and meat quality and to provide data that would be useful in considerations on the effect of these agents on meat quality in Meat Standards Australia evaluations. We cond...
SOUTH WARNER WILDERNESS, CALIFORNIA.
Duffield, Wendell A.; Weldin, Robert E.
1984-01-01
A mineral appraisal utilized geologic, geochemical, and geophysical data and an examination of mining claims in the South Warner Wilderness, California. Results of this study indicate that little promise for the occurrence of mineral resources exists within the area. Small veins of optical quality calcite occur on the east side of the area but, are not considered a resource.
2004-01-01
It is with great sadness that we learned that our friend and former colleague, David Warner, passed away on Christmas Eve. The funeral was held the following Monday. David was a "linac man". His career centred around linacs, but with a multitude of different subjects. He began at CERN by building the 3 MeV linac in the extension of the South Hall. He did pioneering work on this machine, which paved the way towards the design of the Alvarez cavities for the CERN Linac 2, for which he was responsible. After this challenge was successfully finished, David was the first member of the small but growing team, that was in charge of building the LEP Injector Linacs (LIL). After having been recognised as a proton linac expert, he quickly converted to electron linacs where he soon became the respected key expert for the design, parameters and ultimate performance of LIL. His predilection for precise and detailed documentation, and his vision that the know-how acquired with LIL should be preserved a...
2010-11-23
... published in the Federal Register on November 17, 2009 (74 FR 59254). At the request of a company official... Employment and Training Administration Warner Brothers Entertainment, Inc., Warner Brothers Theatrical... Brothers Distributing, Inc., Warner Brothers Home Entertainment, Inc., Warner Brothers Studio...
In-home consumer and shear force evaluation of steaks from the M. serratus ventralis thoracis.
Bagley, J L; Nicholson, K L; Pfeiffer, K D; Savell, J W
2010-05-01
The M. serratus ventralis thoracis was obtained from US Select arm chucks (n=87) to investigate if this underutilized muscle can be used as a steak alternative. Muscles were assigned randomly into three treatment groups: (1) control; (2) blade tenderization; and (3) injection, containing salt, phosphate, and papain. Steaks were cut from each muscle for in-home consumer evaluation (n=136) and Warner-Bratzler shear (WBS) force determination. The WBS values for injected steaks (13.1N) were lower (Ptenderized (18.4N) and control (19.9N) steaks. Tenderness ratings for the injected steaks were higher (Ptenderized and injected steaks resulted in increased palatability ratings, whereas increased doneness for control steaks generally resulted in lowered palatability ratings. Consumer ratings and WBS values for the M. serratus ventralis thoracis indicate that merchandising steaks from this muscle may be a viable option in the marketplace, especially if blade tenderization or injection processes are used for further enhancement. PMID:20374872
Collaboration: A Reply to Bowern & Warner's Reply
Robinson, Laura; Crippen, James
2015-01-01
Although Laura Robinson and James Crippen disagree strongly with a number of Bowern and Warner's [see EJ1075309] characterizations of their own paper ["In Defense of the Lone Wolf: Collaboration in Language Documentation" v7 p123-135 2013], Robinson and Crippen do agree with most of Bowern and Warner's assertions. In this reply, Robinson…
Are shear force methods adequately reported?
Holman, Benjamin W B; Fowler, Stephanie M; Hopkins, David L
2016-09-01
This study aimed to determine the detail to which shear force (SF) protocols and methods have been reported in the scientific literature between 2009 and 2015. Articles (n=734) published in peer-reviewed animal and food science journals and limited to only those testing the SF of unprocessed and non-fabricated mammal meats were evaluated. It was found that most of these SF articles originated in Europe (35.3%), investigated bovine species (49.0%), measured m. longissimus samples (55.2%), used tenderometers manufactured by Instron (31.2%), and equipped with Warner-Bratzler blades (68.8%). SF samples were also predominantly thawed prior to cooking (37.1%) and cooked sous vide, using a water bath (50.5%). Information pertaining to blade crosshead speed (47.5%), recorded SF resistance (56.7%), muscle fibre orientation when tested (49.2%), sub-section or core dimension (21.8%), end-point temperature (29.3%), and other factors contributing to SF variation were often omitted. This base failure diminishes repeatability and accurate SF interpretation, and must therefore be rectified. PMID:27107727
High-angular Resolution Laser Threat Warner
Sushil Kumar
2007-07-01
Full Text Available In this paper, the design and development aspects of a high-angular resolution laser-threat Warner developed at the Laser Science & Technology Centre (LASTEC, Delhi are presented. It describes a high-angular resolution laser-threat warner capable of giving warning with a resolution of i 3" when it is exposed to laser radiation from visible and near-IR pulsed solid-state laser source. It has a field of view of 90' in the azimuth direction, whereas the elevation coverage is between -5" and + 25". It is capable of handling multiple types of laser threats covering wavelength from 400 nm to 1100 nm and has an operational range of 4 km for a Q-switched laser source energy (10 ns of 10 mJ/pulse and output beam divergence of 1 mrad. The paper also describes its simulated evaluation process and field-testing which it has undergone. The result of field-testing confirms that it meets all its performance specifications mentioned above.
C. Gomes
2013-04-01
Full Text Available Avaliaram-se as características sensoriais e determinou-se a força de cisalhamento de cortes de carne de paca (Agouti paca. As análises foram realizadas nos cortes desossados de paleta, lombo e pernil de nove pacas, preparados por cocção até a temperatura interna de 70ºC. A avaliação de aspecto, cor, sabor, odor e maciez foi realizada pela aplicação de teste afetivo a 146 provadores, utilizando-se escala hedônica, e a força de cisalhamento foi determinada pela técnica Warner Bratzler. Na avaliação sensorial, os cortes de paleta, lombo e pernil de paca mostraram diferença significativa (p0,05 entre os cortes, que se mostraram igualmente macios. A carne de paca apresentou-se sensorialmente semelhante à carne suína e com boa aceitação pelos consumidores. O estudo evidenciou o potencial da paca como uma espécie silvestre para a produção comercial de carne para o mercado de carnes vermelhas ou exóticas.Sensory characteristics and shear force of paca meat (Agouti paca were assessed in this study. Analyses were performed in the bonelessshoulder,loin andhamobtained from nine paca carcassesprepared by cookinguntil reaching the internal temperatureof 70°C. The evaluation of flavor, aroma, color, appearance and tenderness was carried out by the application of an affective test using the hedonic scaleand a 146 consumer panel. Shear force was determined by the Warner-Bratzler technique. Shoulder, loin and ham had significant differences (p 0.05 among the cuts, which were similarly tender. Paca meat was found to resemble pork meat in sensory evaluation and had good acceptance by consumers. This study showed the potential of paca (Agouti paca asa wild species for meat production in the red or exotic meat market.
Brooks, J C; Mehaffey, J M; Collins, J A; Rogers, H R; Legako, J; Johnson, B J; Lawrence, T; Allen, D M; Streeter, M N; Nichols, W T; Hutcheson, J P; Yates, D A; Miller, M F
2010-05-01
Two trials investigated zilpaterol hydrochloride (ZH) feeding duration, enhancement, blade tenderization, and postmortem aging effect on Warner-Bratzler shear force (WBSF; trial 1) and consumer sensory ratings (trial 2). For trial 1, USDA Select beef strip loins were obtained from carcasses of beef steers fed ZH (6.8 g/t on 90% DM) the last 0, 20, 30, or 40 d of the feeding period. One-half of each strip loin was enhanced (110%) with a brine solution, whereas the remaining portion was not enhanced. Both pieces were portioned into steaks, which were aged 7, 14, or 21 d for WBSF analysis. For trial 2, paired USDA Select beef strip loins were obtained from carcasses of beef steers fed ZH the last 0 or 20 d of feeding. Paired strip loins were fabricated into 4 pieces and assigned to control, moisture enhanced, blade tenderized, and blade tenderized + moisture enhanced treatments. Strip loin pieces were then portioned into steaks that were aged 14 or 21 d postmortem. Consumers panelists (n = 458) indicated their like or dislike of tenderness, juiciness, flavor, and overall like of each sample using 8-point, verbally anchored scales, as well as tenderness and overall acceptability. With exception of 20 d ZH-treated steaks, results from trial 1 indicate WBSF values decreased (P tenderness scores (P tenderness, juiciness, and overall like scores and tended (P tenderness and tenderness acceptability scores when compared with controls. PMID:20081069
Knobel-Graves, S M; Brooks, J C; Johnson, B J; Starkey, J D; Beckett, J L; Hodgen, J M; Hutcheson, J P; Streeter, M N; Thomas, C L; Rathmann, R J; Garmyn, A J; Miller, M F
2016-06-01
Vitamin D (D3) supplementation may be used to increase tenderness in beef from cattle fed zilpaterol hydrochloride (ZH). The study was arranged as a 2 × 2 factorial with fixed effects of ZH (no ZH or ZH fed at 8.3 mg/kg DM for 20 d with a 3-d withdrawal) and D3 (no D3 or 500,000 IU D3·steer·d for 10 d prior to harvest). Cattle ( = 466) were harvested in 2 blocks on the basis of BW with subsequent collection of carcass data. Full loins and inside rounds ( = 144 of each subprimal) were collected for fabrication of 5 steaks from the longissimus lumborum (LL), gluteus medius (GM), and semimembranosus (SM), which were aged for 7, 14, 21, 28, or 35 d. Warner-Bratzler shear force (WBSF) was used to evaluate mechanical tenderness of LL, GM, and SM steaks at all aging periods. Slice shear force (SSF) analysis was conducted on only 14- and 21-d LL steaks. No interactions ( > 0.05) between ZH and D3 occurred throughout the entire study. Supplementing ZH resulted in increased HCW ( marbling scores ( = 0.05). Supplementation with D3 increased calculated yield grade ( effect ( > 0.05) on WBSF or SSF of LL steaks. Like for WBSF, ZH supplementation increased SSF values at 14 and 21 d postmortem ( 0.05) on WBSF values of GM steaks. Feeding ZH did not alter WBSF of SM steaks, but at 28 d D3 increased ( = 0.04) WBSF values. Shear force in ZH steaks was not effectively reduced by feeding D3 for 10 d to steers prior to harvest. Aging, however, was an effective method of reducing initially greater shear force values in LL steaks and, to a lesser degree, GM steaks from ZH-fed cattle. PMID:27285939
2013-10-31
... FE is a chewable oral contraceptive tablet that contains progestin and estrogen. Warner Chilcott... product. Loestrin 24 FE is a low-dose progestin/estrogen combination oral contraceptive product. Warner... combination oral contraceptive product. Warner Chilcott manufactures and markets the branded version of...
Garmyn, A J; Brooks, J C; Hodgen, J M; Nichols, W T; Hutcheson, J P; Rathmann, R J; Miller, M F
2014-08-01
Beef steers (n = 1,914) were assigned to 1 of 3 β-adrenergic agonist (βAA) supplementation treatments-zilpaterol hydrochloride (ZH; 8.3 mg/kg of DM for 20 d with 3-d withdrawal), ractopamine hydrochloride (RH; 308 mg·head(-1)·d(-1) for 28 d), or no βAA (CON)-to determine the effects on consumer eating quality. Strip loins (n = 1,101; CON = 400, RH = 355, and ZH = 346) were obtained and fabricated into 2.5-cm-thick steaks for proximate, Warner-Bratzler shear force (WBSF), slice shear force (SSF), and consumer analyses; steaks were aged until 14 or 21 d postmortem. Fat and moisture contents were not affected by βAA supplementation (P > 0.05), but strip steaks from steers fed ZH had more protein (P 0.05). In steaks aged 21 d, feeding βAA influenced (P 0.05) acceptability. Quality grade impacted (P < 0.01) all traits and acceptability in steaks aged 14 and 21 d. In 14-d steaks, Premium Choice typically was scored higher than Low Choice or Select; however, consumers rated 21-d Low Choice and Premium Choice similarly-both receiving greater scores than Select. Consumers detected several differences in eating quality at 14 d because of βAA supplementation. Increasing aging from 14 to 21 d mitigated differences in shear force and tenderness scores because of feeding ZH, so that tenderness and overall acceptability were similar between ZH, RH, and CON. PMID:24879757
Morfología de Neochetina eichhorniae (Warner) (Coleoptera: Curculionidae)
Oscar MART\\u00CDNEZ-MORALES; Edith G. Estrada-Venegas; Armando EQUIHUA-MART\\u00CDNEZ; Valdez-Carrasco, Jorge
2014-01-01
En este trabajo se describen e ilustran características morfológicas de Neochetina eichhor- niae (Warner, 1970). Esta especie se ha utilizado para el control biológico del lirio acuático ( Eichhornia crassipes (Mart.) Solms-Laubach, 1883). En el huevo, el aspecto cambiante del corion es dado por el desarrollo embrionario. En la larva se realizó una descripción de la quetotaxia de la cápsula cefálica y se identificaron tres ínstares larvales con la medición de su anchura; también se revisó la ...
Lean, Ian J.; Thompson, John M.; Dunshea, Frank R.
2014-01-01
This study is a meta-analysis of the effects of the beta-agonists zilpaterol hydrochloride (ZH) and ractopamine hydrochloride (RAC) on feedlot performance, carcase characteristics of cattle and Warner Bratzler shear force (WBSF) of muscles. It was conducted to evaluate the effect of the use of these agents on beef production and meat quality and to provide data that would be useful in considerations on the effect of these agents on meat quality in Meat Standards Australia evaluations. We conducted a comprehensive literature search and study assessment using PubMed, Google Scholar, ScienceDirect, Scirus, and CAB and identification of other studies from reference lists in papers and searches. Searches were based on the key words: zilpaterol, zilmax, ractopamine, optaflexx, cattle and beef. Studies from theses obtained were included. Data were extracted from more than 50 comparisons for both agents and analysed using meta-analysis and meta-regression. Both agents markedly increased weight gain, hot carcase weight and longissimus muscle area and increased the efficiency of gain:feed. These effects were particularly large for ZH, however, fat thickness was decreased by ZH, but not RAC. Zilpaterol also markedly increased WBSF by 1.2 standard deviations and more than 0.8 kg, while RAC increased WBSF by 0.43 standard deviations and 0.2 kg. There is evidence in the ZH studies, in particular, of profound re-partitioning of nutrients from fat to protein depots. This work has provided critically needed information on the effects of ZH and RAC on production, efficiency and meat quality. PMID:25548908
Ian J Lean
Full Text Available This study is a meta-analysis of the effects of the beta-agonists zilpaterol hydrochloride (ZH and ractopamine hydrochloride (RAC on feedlot performance, carcase characteristics of cattle and Warner Bratzler shear force (WBSF of muscles. It was conducted to evaluate the effect of the use of these agents on beef production and meat quality and to provide data that would be useful in considerations on the effect of these agents on meat quality in Meat Standards Australia evaluations. We conducted a comprehensive literature search and study assessment using PubMed, Google Scholar, ScienceDirect, Scirus, and CAB and identification of other studies from reference lists in papers and searches. Searches were based on the key words: zilpaterol, zilmax, ractopamine, optaflexx, cattle and beef. Studies from theses obtained were included. Data were extracted from more than 50 comparisons for both agents and analysed using meta-analysis and meta-regression. Both agents markedly increased weight gain, hot carcase weight and longissimus muscle area and increased the efficiency of gain:feed. These effects were particularly large for ZH, however, fat thickness was decreased by ZH, but not RAC. Zilpaterol also markedly increased WBSF by 1.2 standard deviations and more than 0.8 kg, while RAC increased WBSF by 0.43 standard deviations and 0.2 kg. There is evidence in the ZH studies, in particular, of profound re-partitioning of nutrients from fat to protein depots. This work has provided critically needed information on the effects of ZH and RAC on production, efficiency and meat quality.
Time Warner veab aktsionäriga vägikaigast / Peeter Teder
Teder, Peeter
2005-01-01
Meediafirma Time Warner juhid tõrjuvad aktsionär Carl Icahni süüdistusi firma juhtkonna tegevusetuses ja halvas majandamises. Diagramm: Time Warneri aktsia. Vt. samas: Kes on miljardär Carl Icahn
Holman, Debra Kaye
2013-01-01
The purpose of this mixed methods study was to conduct a participatory program evaluation of student engagement assessment in Colorado State University's (CSU) Warner College of Natural Resources (WCNR). The college requested the evaluation after completing two pilot studies of undergraduate engagement which led them to consider establishing the…
Felker, Susan B.
2003-01-01
Virginia Governor Mark Warner praised the collaborative effort that created the new Institute for Advanced Learning and Research (IALR) in Danville, calling the effort an inspired new direction in building a new economy for Southside, which has been particularly hard hit by plant closings and the decline of the tobacco industry. The governor's remarks came during a Partners' Pre-opening Preview for the institute.
Mergers and acquisitions : the case of Comcast and Time Warner Cable
Chissamba, Victor Chia
2014-01-01
Comcast and Time Warner Cable (TWC) merger has been a daily headline in the US business press since the merger announcement in last February 13th of 2014. Meanwhile many questions are raised about the transaction, either in terms of legal issues or in terms related to the strategy fit and financial accretive. These questions are motivated due to the size of both companies in industry where they operate, that leads to witness the largest merger in such industry and the emergence of a potential...
Non-abelian T-duality of Pilch-Warner background
Dimov, H; Rashkov, R C; Vetsov, T
2015-01-01
In this work we obtain the non-abelian T-dual geometry of the well-known Pilch-Warner supergravity solution. We derive the dual metric and the NS two-form by gauging the isometry group of the initial theory and integrating out the introduced auxiliary gauge fields. Then we use the Fourier-Mukai transform from algebraic geometry to find the transformation rules of the R-R fields. Finally, we argue that the dual theory inherit the supersymmetry of the original one by considering the general dependence of the Killing spinor on the spacetime coordinates.
Myers, Phillip E.; Smith, Marie F.
2008-01-01
Research administrators can be assisted in resolving issues with awareness of the critical period of policy formation divulged in the Joseph Warner Papers. He and his colleagues on the Subcommittee on Grants and Contracts Provisions of COGR adopted the philosophy that research administrators needed flexibility and reduced paperwork and costs.…
Zuckerman, H; Bowker, B C; Eastridge, J S; Solomon, M B
2013-11-01
Scanning electron microscopy (SEM) was utilized to evaluate microstructural changes in intramuscular connective tissue of beef semimembranosus muscle subjected to hydrodynamic pressure processing (HDP). Samples were HDP treated in a plastic container (HDP-PC) or a steel commercial unit (HDP-CU). Control and HDP samples were obtained immediately post-treatment and after 14days of aging for SEM and Warner-Bratzler shear force (WBSF) analysis. Immediately post-treatment, HDP treated samples exhibited lower (Ptenderization of HDP. PMID:23803280
Tenderness and taste qualification of red brangus beef in Mexico
Gaspar Manuel Parra-Bracamonte; Ana María Sifuentes-Rincón; Williams Arellano-Vera; Juan Gabriel Magaña-Monforte; José Alberto Ramírez-De León; Gonzalo Velázquez
2014-01-01
Beef tenderness is an important trait in consumer satisfaction and has been considered as the main trait for palatability, for which reason it is important to evaluate its variability in different cattle breeds. An experiment was designed to evaluate the Warner Bratzler Shear Force (WBSF) of Red Brangus cattle rib eye steaks and consumer acceptance. The tenderness of beef rib eye steaks was evaluated by the WBSF. A consumer preference evaluation test was carried out to quantitatively estimate...
A reescrita de mitos femininos na obra de Marina Warner : metamorfose, género e identidade
Santos, Lucília Ramos dos
2011-01-01
Dissertação de mestrado em Estudos Ingleses O trabalho de Marina Warner é marcado pelo imperativo pós-moderno do “eternal return”, associado ao processo de recontar e de reescrita, por forma a criar um universo narrativo aberto à renovação e instabilidade ilimitadas. A linguagem mítica, com a sua fluidez e flexibilidade, mais a sua relevância na construção e desconstrução da realidade, pode ser considerada um recurso eficaz no processo de reescrita, na metamorfose de um mund...
Bronstein, Carolyn
2008-04-01
In the mid-1970s, Women Against Violence Against Women (WAVAW), the first national feminist organization to protest mediated sexual violence against women, pressured the music industry to cease using images of violence against women in its advertising. This article presents a case study of WAVAW's national boycott of Warner Communications, Inc. and documents the activists' successful consumer campaign. The study reveals that media violence was central to feminist organizing efforts, and that WAVAW and related organizations helped establish a climate of concern about violence that motivated scientific research on the relationship between exposure to media violence and subsequent aggression. PMID:18359878
M. Ern
2006-06-01
Full Text Available In order to incorporate the effect of gravity waves (GWs on the atmospheric circulation most global circulation models (GCMs employ gravity wave parameterization schemes. To date, GW parameterization schemes in GCMs are used without experimental validation of the set of global parameters assumed for the GW launch spectrum. This paper focuses on the Warner and McIntyre GW parameterization scheme. Ranges of parameters compatible with absolute values of gravity wave momentum flux (GW-MF derived from CRISTA-1 and CRISTA-2 satellite measurements are deduced for several of the parameters and the limitations of both model and measurements are discussed. The findings presented in this paper show that the initial guess of spectral parameters provided by Warner and McIntyre (2001 are some kind of compromise with respect to agreement of absolute values and agreement of the horizontal structures found in both measurements and model results. Better agreement can be achieved by using a vertical wavenumber launch spectrum with a wider saturated spectral range and reduced spectral power in the unsaturated part. Still, even global features of the measurements remain unmatched, and it is inevitable to provide a globally varying source distribution in future.
Application of exogenous enzymes to beef muscle of high and low-connective tissue.
Sullivan, G A; Calkins, C R
2010-08-01
Exogenous enzymes tenderize meat through proteolysis. Triceps brachii and Supraspinatus were randomly assigned to the seven enzyme treatments, papain, ficin, bromelain, homogenized fresh ginger, Bacillus subtilis protease, and two Aspergillus oryzae proteases or control to determine the extent of tenderization (Warner-Bratzler shear and sensory evaluation) and mode of action (myofibrillar or collagen degradation). Sensory evaluation showed improvement (Ptenderness and connective tissue component and all except ginger had a lower shear force than the control (Ptenderness via myofibrillar and collagenous protein degradation with no difference among high and low-connective tissue muscles. PMID:20416788
María C. Miquel; Edgardo Villarreal; Carlos Mezzadra; Lilia Melucci; Liliana Soria; Pablo Corva; Alejandro Schor
2009-01-01
The objective of this paper was to determine the association of a SNP in the μ-calpain gene at position 316 with growth and quality of meat traits of steers grown on pasture. Fifty-nine Brangus and 20 Angus steers were genotyped for CAPN1 316. Warner Bratzler shear force was measured in l. lumborum samples after a 7-day aging period. A multivariate analysis of variance was performed, including shear force (WBSF), final weight (FW), average daily gain (ADG), backfat thickness (BFT), average mo...
Dodelson, Scott; /Fermilab /Chicago U., Astron. Astrophys. Ctr. /Northwestern U.; Shapiro, Charles; /Chicago U. /KICP, Chicago; White, Martin J.; /UC, Berkeley, Astron.
2005-08-01
Measurements of ellipticities of background galaxies are sensitive to the reduced shear, the cosmic shear divided by (1-{kappa}) where {kappa} is the projected density field. They compute the difference between shear and reduced shear both analytically and with simulations. The difference becomes more important an smaller scales, and will impact cosmological parameter estimation from upcoming experiments. A simple recipe is presented to carry out the required correction.
Barrón Torres, Júlia
2014-01-01
Walt Disney i Warner Bros van ser durant el període de la Segona Guerra Mundial (1939-1945), les productores nord-americanes més importants en el sector cinematogràfic de l'animació. A través de l'anàlisi de continguts que van realitzar aquestes productores, s'intenta esclarir la possible manipulació que es va exercir en l'elaboració dels continguts per generar un discurs persuasiu per a la ciutadania nord-americana d'aquells anys. “Victory Through Air Power”; “Education for death” de Walt Di...
Detection of quantitative trait loci for growth and carcass composition in cattle.
Casas, E; Shackelford, S D; Keele, J W; Koohmaraie, M; Smith, T P L; Stone, R T
2003-12-01
The objective of the present study was to detect quantitative trait loci for economically important traits in a family from a Bos indicus x Bos taurus sire. A Brahman x Hereford sire was used to develop a half-sib family (n = 547). The sire was mated to Bos taurus cows. Traits analyzed were birth (kg) and weaning weights (kg); hot carcass weight (kg); marbling score; longissimus area (cm2); USDA yield grade; estimated kidney, pelvic, and heart fat (%); fat thickness (cm); fat yield (%); and retail product yield (%). Meat tenderness was measured as Warner-Bratzler shear force (kg) at 3 and 14 d postmortem. Two hundred and thirty-eight markers were genotyped in 185 offspring. One hundred and thirty markers were used to genotype the remaining 362 offspring. A total of 312 markers were used in the final analysis. Seventy-four markers were common to both groups. Significant QTL (expected number of false-positives yield on chromosome 9, for birth weight on chromosome 21, and for marbling score on chromosome 23. Evidence suggesting (expected number of false-positives yield grade were identified on chromosomes 2, 11, 14, and 19. Three QTL for fat thickness were detected on chromosomes 2, 3, 7, and 14. For marbling score, QTL were identified on chromosomes 3, 10, 14, and 27. Four QTL were identified for retail product yield on chromosomes 12, 18, 19, and 29. A QTL for estimated kidney, pelvic, and heart fat was detected on chromosome 15, and a QTL for meat tenderness measured as Warner-Bratzler shear force at 3 d postmortem was identified on chromosome 20. Two QTL were detected for meat tenderness measured as Warner-Bratzler shear force at 14 d postmortem on chromosomes 20 and 29. These results present a complete scan in all available progeny in this family. Regions underlying QTL need to be assessed in other populations. PMID:14677852
Hillary Clinton / Judith Warner
Warner, Judith
1994-01-01
Kõige mõjuvõimsam naine maailmas - algus EA 22. veebruar 1994. May/4,11,18,25 lk. 22;22;22;21; Jun/1,8,15,22,29 lk. 21; Jul/6,13,20,27 21; Aug/3,10,17,24,31 lk. 21; Sep/7,14,21,28 lk. 21; Oct/5,12,19 lk. 21
Effect of Ginger Extract and Citric Acid on the Tenderness of Duck Breast Muscles
He, Fu-Yi; Kim, Hyun-Wook; Hwang, Ko-Eun; Song, Dong-Heon; Kim, Yong-Jae; Ham, Youn-Kyung; Kim, Si-Young; Yeo, In-Jun; Jung, Tae-Jun; Kim, Cheon-Jei
2015-01-01
The objective of this study was to examine the effect of ginger extract (GE) combined with citric acid on the tenderness of duck breast muscles. Total six marinades were prepared with the combination of citric acid (0 and 0.3 M citric acid) and GE (0, 15, and 30%). Each marinade was sprayed on the surface of duck breasts (15 mL/100 g), and the samples were marinated for 72 h at 4℃. The pH and proteolytic activity of marinades were determined. After 72 h of marination, Warner Bratzler shear fo...
High Pressure Hydrodynamic Shock Wave Effects on Tenderness of Early Deboned Broiler Breasts
Schilling, Jennifer K.
2000-01-01
Breast muscles that are deboned prior to 4 to 6 h postmortem are highly variable and lacking in tenderness. The poultry industry currently provides costly storage space for intact broiler breasts during this 4 to 6 h period. This thesis evaluates tenderization techniques that if effective could eliminate the need for this additional 4 to 6 h storage time. The first objective of this study was to determine a relationship between Warner-Bratzler shear values (WBS) (1 cm by 1cm, variable leng...
Use of near infrared spectroscopy for assessment of beef quality traits
L. Gallo
2010-04-01
Full Text Available Chemical and physical traits and fatty acid composition of meat samples from 148 Piemontese beef samples were predicted by near infrared spectroscopy. Coefficients of determination in calibration (R2 ranged between 0.44 and 0.99 for chemical composition and between 0.02 and 0.98 for fatty acid (FA profile, being in general more accurate for the major FA. The calibration results gave inaccurate prediction for cholesterol and collagen content and for most physical traits, such as Warner-Bratzler shear force, cooking loss, drip loss, colour (L, a, b and pH.
Bainy, Eduarda Molardi; Bertan, Larissa Canhadas; Corazza, Marcos Lucio; Lenzi, Marcelo Kaminski
2015-08-01
The influence of two common cooking methods, grilling and baking, on chemical composition, water retention, fat retention, cooking yield, diameter reduction, expressible water, color and mechanical texture of tilapia (Oreochromis niloticus) fish burgers was investigated. Texture analyses were performed using a Warner-Bratzler test. The fish burger had a softer texture with a lower shear force than other meat products reported in the literature. There were no significant differences in proximate composition, diameter reduction, fat retention and expressible water between the grilled and oven-baked fish burgers. Cooking methods did not affect the cooking times and cooking rates. Warner-Bratzler parameters and color were significantly influenced by the cooking method. Grilling contributed to a shear force and work of shearing increase due to the lower cooking yield and water retention. Raw burgers had the highest L* (69.13 ± 0.96) and lowest b* (17.50 ± 0.75) values. Results indicated that baking yielded a product with better cooking characteristics, such as a desired softer texture with lower shear values (4.01 ± 0.54) and increased water retention (95.82 ± 0.77). Additionally, the baked fish burgers were lighter (higher L*) and less red (lower a*) than the grilled ones. PMID:26243932
Bay, Niels; Bjerregaard, Henrik; Petersen, Søren. B;
1994-01-01
The present paper describes an investigation of roll bonding an AlZn alloy to mild steel. Application of cross shear roll bonding, where the two equal sized rolls run with different peripheral speed, is shown to give better bond strength than conventional roll bonding. Improvements of up to 20......-23% in bond strength are found and full bond strength is obtained at a reduction of 50% whereas 65% is required in case of conventional roll bonding. Pseudo cross shear roll bonding, where the cross shear effect is obtained by running two equal sized rolls with different speed, gives the same results....
Shear-Resistant Behavior Analysis of Light Composite Shear Walls
李升才; 江见鲸; 于庆荣
2002-01-01
Shear test results for a composite wall panel in a light composite structure system are compared with test results for shear walls in Japan in this paper. The analysis results show that this kind of composite wall panel works very well, and can be regarded as a solid panel. The composite wall panel with a hidden frame is essential for bringing its effect on shear resistance into full play. Comprehensive analysis of the shear-resistant behavior of the composite wall panel suggests that the shear of the composite shear wall panel can be controlled by the cracking strength of the web shearing diagonal crack.
Shear-resistant behavior of light composite shear wall
李升才; 董毓利
2015-01-01
Shear test results for a composite wall panel in a light composite structure system are compared with test results for shear walls in Japan. The analysis results show that this kind of composite wall panel works very well, and can be regarded as a solid panel. The composite wall panel with a hidden frame is essential for bringing its effect on shear resistance into full play. Comprehensive analysis of the shear-resistant behavior of the composite wall panel suggests that the shear of the composite shear wall panel can be controlled by the cracking strength of the web shearing diagonal crack.
Transport apparatus for location of shear pack in shear machine
An apparatus for moving a shear pack of a shear machine between operative and inoperative position is described. It comprises a trolley to support the shear pack, the trolley being mounted on a bogie movable on rails between the inoperative position, at which the shear pack is loaded on to the trolley, and the operative position at which the shear pack is located at the shear machine. The trolley is mounted on inclined runners on the bogie and is releasably connected to the bogie by latching means. This permits the displacement of the trolley relative to the bogie to effect vertical displacement of the shear pack when the shear pack is at the shear machine. (author)
Akira Onuki; Akira Furukawa; Akihiko Minami
2005-05-01
We present a time-dependent Ginzburg–Landau model of nonlinear elasticity in solid materials. We assume that the elastic energy density is a periodic function of the shear and tetragonal strains owing to the underlying lattice structure. With this new ingredient, solving the equations yields formation of dislocation dipoles or slips. In plastic flow high-density dislocations emerge at large strains to accumulate and grow into shear bands where the strains are localized. In addition to the elastic displacement, we also introduce the local free volume . For very small the defect structures are metastable and long-lived where the dislocations are pinned by the Peierls potential barrier. However, if the shear modulus decreases with increasing , accumulation of around dislocation cores eventually breaks the Peierls potential leading to slow relaxations in the stress and the free energy (aging). As another application of our scheme, we also study dislocation formation in two-phase alloys (coherency loss) under shear strains, where dislocations glide preferentially in the softer regions and are trapped at the interfaces.
Hansen, Klaus
This report gives a summary of the present information on the behaviour of vertical keyed shear joints in large panel structures. An attemp is made to outline the implications which this information might have on the analysis and design of a complete wall. The publications also gives a short...
Wesley Oliveira de Sousa
2012-09-01
Full Text Available The plastron theory was tested in adults of Neochetina eichhorniae Warner, 1970, through the analysis of the structure that coats these insects' integument and also through submersion laboratorial experiments. The tegument processes were recognized in three types: agglutinated scales with large perforations, plumose scales of varied sizes and shapes, and hairs. The experiments were carried out on 264 adult individuals which were kept submerged at different time intervals (n = 11 and in two types of treatment, natural non-aerated water and previously boiled water, with four repetitions for each treatment. The tests showed a maximum mortality after 24 hours of immersion in the previously boiled water treatment. The survival of the adults was negative and significantly correlated with the types of treatment employed and within the different time intervals. The values of oxygen dissolved in water (mg/l differed significantly within the types of treatment employed. They were positively correlated with the survival of the adults in the two types of treatment, although more markedly in the treatment with previously boiled water. The mortality of adults after 24 hours of submersion in the treatment with previously boiled water may be associated with the physical-chemical conditions of the non-tested water in this study, such as low surface tension and concentration of solutes. These results suggest plastron functionality in the adults of this species.
Plasticity Approach to Shear Design
Hoang, Cao Linh; Nielsen, Mogens Peter
1998-01-01
The paper presents some plastic models for shear design of reinforced concrete beams. Distinction is made between two shear failure modes, namely web crushing and crack sliding. The first mentioned mode is met in beams with large shear reinforcement degrees. The mode of crack sliding is met in non...... uncracked concrete. Good agree between theory and tests has been found.Keywords: dsign, plasticity, reinforced concrete, reinforcement, shear, web crushing....
Shear Behavior of Concrete Beams Reinforced with GFRP Shear Reinforcement
Heecheul Kim; Min Sook Kim; Myung Joon Ko; Young Hak Lee
2015-01-01
This paper presents the shear capacities of concrete beams reinforced with glass fiber reinforced polymer (GFRP) plates as shear reinforcement. To examine the shear performance, we manufactured and tested a total of eight specimens. Test variables included the GFRP strip-width-to-spacing ratio and type of opening array. The specimen with a GFRP plate with a 3×2 opening array showed the highest shear strength. From the test results, the shear strength increased as the strip-width-to-strip-spac...
McWilliams, James C
2011-01-01
A quasi-linear theory is presented for how randomly forced, barotropic velocity fluctuations cause an exponentially-growing, large-scale (mean) magnetic dynamo in the presence of a uniform shear flow, $\\vec{U} = S x \\vec{e}_y$. It is a "kinematic" theory for the growth of the mean magnetic energy from a small initial seed, neglecting the saturation effects of the Lorentz force. The quasi-linear approximation is most broadly justifiable by its correspondence with computational solutions of nonlinear magneto-hydrodynamics, and it is rigorously derived in the limit of large resistivity, $\\eta \\rightarrow \\infty$. Dynamo action occurs even without mean helicity in the forcing or flow, but random helicity variance is then essential. In a sufficiently large domain and with small wavenumber $k_z$ in the direction perpendicular to the mean shearing plane, a positive exponential growth rate $\\gamma$ can occur for arbitrary values of $\\eta$, the viscosity $\
Butler, B.D.; Hanley, H.J.M.; Straty, G.C. [National Institute of Standards and Technology, Boulder, CO (United States); Muzny, C.D. [Univ. of Colorado, Boulder, CO (United States)
1995-12-31
An experimental small angle neutron scattering (SANS) study of dense silica gels, prepared from suspensions of 24 nm colloidal silica particles at several volume fractions {theta} is discussed. Provided that {theta}{approx_lt}0.18, the scattered intensity at small wave vectors q increases as the gelation proceeds, and the structure factor S(q, t {yields} {infinity}) of the gel exhibits apparent power law behavior. Power law behavior is also observed, even for samples with {theta}>0.18, when the gel is formed under an applied shear. Shear also enhances the diffraction maximum corresponding to the inter-particle contact distance of the gel. Difficulties encountered when trying to interpret SANS data from these dense systems are outlined. Results of computer simulations intended to mimic gel formation, including computations of S(q, t), are discussed. Comments on a method to extract a fractal dimension characterizing the gel are included.
Shear Behavior of Concrete Beams Reinforced with GFRP Shear Reinforcement
Heecheul Kim
2015-01-01
Full Text Available This paper presents the shear capacities of concrete beams reinforced with glass fiber reinforced polymer (GFRP plates as shear reinforcement. To examine the shear performance, we manufactured and tested a total of eight specimens. Test variables included the GFRP strip-width-to-spacing ratio and type of opening array. The specimen with a GFRP plate with a 3×2 opening array showed the highest shear strength. From the test results, the shear strength increased as the strip-width-to-strip-spacing ratio increased. Also, we used the experimental results to evaluate whether the shear strength equations of ACI 318-14 and ACI 440.1R can be applied to the design of GFRP shear reinforcement. In the results, the ACI 440 equation underestimated the experimental results more than that of ACI 318.
Front tracking for shear bands in an antiplane shear model
In this paper we describe a numerical algorithm for the study of shear band, formation and growth in two-dimensional antiplane shear. The constitutive model uses a non-associative flow rule. The numerical scheme is based on a Godunov method for updating the velocity, while the stress is updated via integration along particle paths. The scheme is coupled with a front tracking algorithm for careful evolution of the shear bands. The main challenges are the non-hyperbolicity of the shear band formation and growth (front tracking avoids the catastrophic effects of the loss of hyperbolicity in the Godunov-type numerical scheme), the existence of endpoints for the shear band (the tracked front does not separate the computational domain into disconnected regions), and the non-hyperbolic rate of growth of the shear band. We give examples of the success of the algorithm and show convergence tests. 69 refs., 13 figs
Mcwilliams, James C.
2011-01-01
A quasi-linear theory is presented for how randomly forced, barotropic velocity fluctuations cause an exponentially-growing, large-scale (mean) magnetic dynamo in the presence of a uniform shear flow, $\\vec{U} = S x \\vec{e}_y$. It is a "kinematic" theory for the growth of the mean magnetic energy from a small initial seed, neglecting the saturation effects of the Lorentz force. The quasi-linear approximation is most broadly justifiable by its correspondence with computational solutions of non...
Plasticity Approach to Shear Design
Hoang, Cao Linh; Nielsen, Mogens Peter
1998-01-01
The paper presents some plastic models for shear design of reinforced concrete beams. Distinction is made between two shear failure modes, namely web crushing and crack sliding. The first mentioned mode is met in beams with large shear reinforcement degrees. The mode of crack sliding is met in no...... uncracked concrete. Good agree between theory and tests has been found.Keywords: dsign, plasticity, reinforced concrete, reinforcement, shear, web crushing.......The paper presents some plastic models for shear design of reinforced concrete beams. Distinction is made between two shear failure modes, namely web crushing and crack sliding. The first mentioned mode is met in beams with large shear reinforcement degrees. The mode of crack sliding is met in non......-shear reinforced beams as well as in lightly shear reinforced beams. For such beams the shear strength is determined by the recently developed crack sliding model. This model is based upon the hypothesis that cracks can be transformed into yield lines, which have lower sliding resistance than yield lines formed in...
Inductive shearing of drilling pipe
Ludtka, Gerard M.; Wilgen, John; Kisner, Roger; Mcintyre, Timothy
2016-04-19
Induction shearing may be used to cut a drillpipe at an undersea well. Electromagnetic rings may be built into a blow-out preventer (BOP) at the seafloor. The electromagnetic rings create a magnetic field through the drillpipe and may transfer sufficient energy to change the state of the metal drillpipe to shear the drillpipe. After shearing the drillpipe, the drillpipe may be sealed to prevent further leakage of well contents.
Shear viscosity of nuclear matter
This paper reports my recent study[1] on the shear viscosity of neutron-rich nuclear matter from a relaxation time approach. An isospin- and momentum-dependent interaction is used in the study. Dependence of density, temperature, and isospin asymmetry of nuclear matter on its shear viscosity have been discussed. Similar to the symmetry energy, the symmetry shear viscosity is defined and its density and temperature dependence are studied. (authors)
Szymczak, P.; Cieplak, Marek
2007-01-01
The conformational dynamics of a single protein molecule in a shear flow is investigated using Brownian dynamics simulations. A structure-based coarse grained model of a protein is used. We consider two proteins, ubiquitin and integrin, and find that at moderate shear rates they unfold through a sequence of metastable states - a pattern which is distinct from a smooth unraveling found in homopolymers. Full unfolding occurs only at very large shear rates. Furthermore, the hydrodynamic interact...
2009-07-17
This final rule implements section 701 of the John Warner National Defense Authorization Act for FY 2007, Public Law 109-364. Section 701 amends Title 10 of the United States Code (U.S.C.), Chapter 55, Section 1079(a) by authorizing coverage for forensic examinations following a sexual assault or domestic violence for eligible beneficiaries. This authorizes forensic examinations provided in civilian health care facilities (e.g., civilian rape crisis facilities) following sexual assault or domestic violence, which is consistent with the services that are authorized in Military Medical Treatment Facilities for all beneficiaries who are victims of sexual assault or domestic violence. PMID:19634253
Shear strength of non-shear reinforced concrete elements
Hoang, Cao linh
1997-01-01
The paper deals with the shear strength of prestressed hollow-core slabs determined by the theory of plasticity. Two failure mechanisms are considered in order to derive the solutions.In the case of sliding failure in a diagonal crack, the shear strength is determined by means of the crack sliding...
Biological aerosol warner and analyser
Schlemmer, Harry; Kürbitz, Gunther; Miethe, Peter; Spieweck, Michael
2006-05-01
The development of an integrated sensor device BiSAM (Biological Sampling and Analysing Module) is presented which is designed for rapid detection of aerosol or dust particles potentially loaded with biological warfare agents. All functional steps from aerosol collection via immuno analysis to display of results are fully automated. The core component of the sensor device is an ultra sensitive rapid analyser PBA (Portable Benchtop Analyser) based on a 3 dimensional immuno filtration column of large internal area, Poly HRP marker technology and kinetic optical detection. High sensitivity despite of the short measuring time, high chemical stability of the micro column and robustness against interferents make the PBA an ideal tool for fielded sensor devices. It is especially favourable to combine the PBA with a bio collector because virtually no sample preparation is necessary. Overall, the BiSAM device is capable to detect and identify living micro organisms (bacteria, spores, viruses) as well as toxins in a measuring cycle of typically half an hour duration. In each batch up to 12 different tests can be run in parallel together with positive and negative controls to keep the false alarm rate low.
A Piezoelectric Shear Stress Sensor
Kim, Taeyang; Saini, Aditya; Kim, Jinwook; Gopalarathnam, Ashok; Zhu, Yong; Palmieri, Frank L.; Wohl, Christopher J.; Jiang, Xiaoning
2016-01-01
In this paper, a piezoelectric sensor with a floating element was developed for shear stress measurement. The piezoelectric sensor was designed to detect the pure shear stress suppressing effects of normal stress generated from the vortex lift-up by applying opposite poling vectors to the: piezoelectric elements. The sensor was first calibrated in the lab by applying shear forces and it showed high sensitivity to shear stress (=91.3 +/- 2.1 pC/Pa) due to the high piezoelectric coefficients of PMN-33%PT (d31=-1330 pC/N). The sensor also showed almost no sensitivity to normal stress (less than 1.2 pC/Pa) because of the electromechanical symmetry of the device. The usable frequency range of the sensor is 0-800 Hz. Keywords: Piezoelectric sensor, shear stress, floating element, electromechanical symmetry
Wesley Oliveira de Sousa
2012-09-01
Full Text Available The plastron theory was tested in adults of Neochetina eichhorniae Warner, 1970, through the analysis of the structure that coats these insects' integument and also through submersion laboratorial experiments. The tegument processes were recognized in three types: agglutinated scales with large perforations, plumose scales of varied sizes and shapes, and hairs. The experiments were carried out on 264 adult individuals which were kept submerged at different time intervals (n = 11 and in two types of treatment, natural non-aerated water and previously boiled water, with four repetitions for each treatment. The tests showed a maximum mortality after 24 hours of immersion in the previously boiled water treatment. The survival of the adults was negative and significantly correlated with the types of treatment employed and within the different time intervals. The values of oxygen dissolved in water (mg/l differed significantly within the types of treatment employed. They were positively correlated with the survival of the adults in the two types of treatment, although more markedly in the treatment with previously boiled water. The mortality of adults after 24 hours of submersion in the treatment with previously boiled water may be associated with the physical-chemical conditions of the non-tested water in this study, such as low surface tension and concentration of solutes. These results suggest plastron functionality in the adults of this species.A teoria plastrão foi testada em adultos de Neochetina eichhorniae Warner, 1970, por meio da análise da estrutura que reveste o tegumento destes insetos e em experimentos laboratoriais de submersão. Os processos tegumentares foram reconhecidos em três tipos: escamas aglutinadas e com perfurações largas; escamas plumosas de tamanhos e formas variadas; e pêlos. Os experimentos realizados com 264 indivíduos adultos os quais permaneciam submersos por diferentes intervalos de tempo (n = 11 e em dois
Shear amorphization of boron suboxide
We report for the first time the shear-induced local amorphization of boron suboxide subjected to nanoindentation. The amorphous bands have a width of ∼1–3 nm and a length of 200–300 nm along the (01¯11) crystal plane. We show direct experimental evidence that the amorphous shear bands of boron suboxide are driven from the coalescence of dislocation loops under high shear stresses. These observations provide insights into the microscopic deformation and failure of high-strength and lightweight ceramics
Shear Banding of Complex Fluids
Divoux, Thibaut; Fardin, Marc A.; Manneville, Sebastien; Lerouge, Sandra
2016-01-01
Even in simple geometries, many complex fluids display nontrivial flow fields, with regions where shear is concentrated. The possibility for such shear banding has been known for several decades, but in recent years, we have seen an upsurge in studies offering an ever-more precise understanding of the phenomenon. The development of new techniques to probe the flow on multiple scales with increasing spatial and temporal resolution has opened the possibility for a synthesis of the many phenomena that could only have been thought of separately before. In this review, we bring together recent research on shear banding in polymeric and soft glassy materials and highlight their similarities and disparities.
Grafted polymer under shear flow
Kumar, Sanjiv; Foster, Damien P.; Giri, Debaprasad; Kumar, Sanjay
2016-04-01
A self-attracting-self-avoiding walk model of polymer chain on a square lattice has been used to gain an insight into the behaviour of a polymer chain under shear flow in a slit of width L. Using exact enumeration technique, we show that at high temperature, the polymer acquires the extended state continuously increasing with shear stress. However, at low temperature the polymer exhibits two transitions: a transition from the coiled to the globule state and a transition to a stem-flower like state. For a chain of finite length, we obtained the exact monomer density distributions across the layers at different temperatures. The change in density profile with shear stress suggests that the polymer under shear flow can be used as a molecular gate with potential application as a sensor.
Shear instabilities in granular flows.
Goldfarb, David J; Glasser, Benjamin J; Shinbrot, Troy
2002-01-17
Unstable waves have been long studied in fluid shear layers. These waves affect transport in the atmosphere and oceans, in addition to slipstream stability behind ships, aeroplanes and heat-transfer devices. Corresponding instabilities in granular flows have not been previously documented, despite the importance of these flows in geophysical and industrial systems. Here we report that breaking waves can form at the interface between two streams of identical grains flowing on an inclined plane downstream of a splitter plate. Changes in either the shear rate or the angle of incline cause such waves to appear abruptly. We analyse a granular flow model that agrees qualitatively with our experimental data; the model suggests that the waves result from competition between shear and extensional strains in the flowing granular bed. We propose a dimensionless shear number that governs the transition between steady and wavy flows. PMID:11797003
SEDflume - High Shear Stress Flume
Federal Laboratory Consortium — The U.S. Army Corps of Engineers High Shear Stress flume (SEDflume) is designed for estimating erosion rates of fine-grained and mixed fine/coarse grained sediments...
Szymczak, P.; Cieplak, Marek
2007-10-01
The conformational dynamics of a single protein molecule in a shear flow is investigated using Brownian dynamics simulations. A structure-based coarse grained model of a protein is used. We consider two proteins, ubiquitin and integrin, and find that at moderate shear rates they unfold through a sequence of metastable states—a pattern which is distinct from a smooth unraveling found in homopolymers. Full unfolding occurs only at very large shear rates. Furthermore, the hydrodynamic interactions between the amino acids are shown to hinder the shear flow unfolding. The characteristics of the unfolding process depend on whether a protein is anchored or not, and if it is, on the choice of an anchoring point.
Shear Banding of Complex Fluids
Divoux, Thibaut; Fardin, Marc-Antoine; Manneville, Sebastien; Lerouge, Sandra
2015-01-01
Even in simple geometries many complex fluids display non-trivial flow fields, with regions where shear is concentrated. The possibility for such shear banding has been known since several decades, but the recent years have seen an upsurge of studies offering an ever more precise understanding of the phenomenon. The development of new techniques to probe the flow on multiple scales and with increasing spatial and temporal resolution has opened the possibility for a synthesis of the many pheno...
Shear Alfven waves in tokamaks
Shear Alfven waves in an axisymmetric tokamak are examined within the framework of the linearized ideal MHD equations. Properties of the shear Alfven continuous spectrum are studied both analytically and numerically. Implications of these results in regards to low frequency rf heating of toroidally confined plasmas are discussed. The structure of the spatial singularities associated with these waves is determined. A reduced set of ideal MHD equations is derived to describe these waves in a very low beta plasma
Ibrahim, R M; Goll, D E; Marchello, J A; Duff, G C; Thompson, V F; Mares, S W; Ahmad, H A
2008-06-01
The objective of this study was to compare carcass characteristics of a newly introduced breed, the Waguli (Wagyu x Tuli), with the carcass characteristics of the Brahman breed. Brahman cattle are used extensively in the Southwest of the United States because of their tolerance to adverse environmental conditions. However, Brahman carcasses are discounted according to the height of their humps because of meat tenderness issues. The Waguli was developed in an attempt to obtain a breed that retained the heat tolerance of the Brahman but had meat quality attributes similar to the Wagyu. Twenty-four animals were used. Six steers from each breed were fed a 94% concentrate diet and 6 steers from each breed were fed an 86% concentrate diet. Eight steers, 2 from each group, were harvested after 128 d, after 142 d, and after 156 d on feed. Waguli steers had larger LM, greater backfat thickness, greater marbling scores, and greater quality grades than the Brahman steers (P meat, and these traits are also present in the Waguli. The Waguli had significantly lower Warner-Bratzler shear force values than the Brahman steers after 7 and 10 d of postmortem aging (P Brahman had increased to acceptable levels. Toughness of the Brahman has been associated with high levels of calpastatin in Brahman muscle, and the Waguli LM had significantly less calpastatin activity (P = 0.02) at 0 h postmortem than the Brahman LM. At 0-h postmortem, the total LM calpain activity did not differ between the Brahman and Waguli (P = 0.57). Neither diet nor days on feed had any significant effect on the 0-h postmortem calpain or at 0-h postmortem calpastatin activity, nor an effect on Warner-Bratzler shear-force values. In conclusion, LM muscle from the Waguli steers had a high degree of marbling, lower shear force values, and low calpastatin activity, all of which are related to more tender meat. PMID:18310491
Experimental observation of shear thickening oscillation
Nagahiro, Shin-ichiro; Nakanishi, Hiizu; Mitarai, Namiko
2013-01-01
We report experimental observations of the shear thickening oscillation, i.e. the spontaneous macroscopic oscillation in the shear flow of severe shear thickening fluid. Using a density-matched starch-water mixture, in the cylindrical shear flow of a few centimeters flow width, we observed that w...
Yield shear stress and disaggregating shear stress of human blood
Jung, Jinmu; Lee, Byoung-Kwon; Shin, Sehyun
2014-05-01
This review presents two distinct rheological parameters of blood that have the potential to indicate blood circulation adequacy: yield shear stress (YSS) and disaggregating shear stress (DSS). YSS and DSS reflect the strength of red blood cell (RBC) aggregation in suspension under static and dynamic conditions, respectively. YSS, defined as the critical stress to disperse RBC aggregates under static conditions, was found to be dependent upon hematocrit, fibrinogen, and red cell deformability, but not temperature. DSS, defined as the minimum shear stress to disperse RBC aggregates under dynamic conditions, is dependent upon fibrinogen, red cell deformability, and temperature but not hematocrit. Owing to recent advances in measurement technology, these two parameters can be easily measured, and thus, their clinical significance in blood circulation can be verified.
Bicontinuous Microemulsions under Steady Shear Flow
Kodama, Hiroya; Komura, Shigeyuki
1997-01-01
Dynamic response of microemulsions to shear deformation on the basis of two-order-parameter time dependent Ginzburg-Landau model is investigated by means of cell dynamical system approach. Time evolution of anisotropic factor and excess shear stress under steady shear flow is studied by changing shear rate and total amount of surfactant. As the surfactant concentration is increased, overshoot peak height of the anisotropic factor increases whereas that of the excess shear stress is almost unc...
Shear strength of non-shear reinforced concrete elements
Hoang, Cao linh
1997-01-01
The report deals with the shear strength of statically indeterminate reinforced concrete beams without shear reinforcement. Solutions for a number of beams with different load and support conditions have been derived by means of the crack sliding model developed by Jin- Ping Zhang.This model is...... based upon the hypothesis that cracks can be transformed into yield lines, which have lower sliding resistance than yield lines formed in uncracked concrete.Proposals have been made on how the derived standard solutions may be applied to more complicated cases, such as continuous beams, beams with...... combined loading, prestressed beams and beams with different reinforcement area at top and bottom....
Shear Brillouin light scattering microscope.
Kim, Moonseok; Besner, Sebastien; Ramier, Antoine; Kwok, Sheldon J J; An, Jeesoo; Scarcelli, Giuliano; Yun, Seok Hyun
2016-01-11
Brillouin spectroscopy has been used to characterize shear acoustic phonons in materials. However, conventional instruments had slow acquisition times over 10 min per 1 mW of input optical power, and they required two objective lenses to form a 90° scattering geometry necessary for polarization coupling by shear phonons. Here, we demonstrate a confocal Brillouin microscope capable of detecting both shear and longitudinal phonons with improved speeds and with a single objective lens. Brillouin scattering spectra were measured from polycarbonate, fused quartz, and borosilicate in 1-10 s at an optical power level of 10 mW. The elastic constants, phonon mean free path and the ratio of the Pockels coefficients were determined at microscopic resolution. PMID:26832263
Shear loading of costal cartilage
Subit, Damien
2014-01-01
A series of tests were performed on a single post-mortem human subject at various length scales. First, tabletop tests were performed. Next, the ribs and intercostal muscles were tested with the view to characterize the load transfer between the ribs. Finally, the costal cartilage was tested under shear loading, as it plays an important in the transfer of the load between the ribs and the sternum. This paper reports the results of dynamic shear loading tests performed on three samples of costal cartilage harvested from a single post-mortem human subject, as well as the quantification of the effective Young's modulus estimated from the amount of cartilage calcification.
Cosmic Shear Bias and Calibration in Cosmic Shear Studies
Taylor, A N
2016-01-01
With the advent of large-scale weak lensing surveys there is a need to understand how realistic, scale-dependent systematics bias cosmic shear and dark energy measurements, and how they can be removed. Here we describe how spatial variations in the amplitude and orientation of realistic image distortions convolve with the measured shear field, mixing the even-parity convergence and odd-parity modes, and bias the shear power spectrum. Many of these biases can be removed by calibration to external data, the survey itself, or by modelling in simulations. The uncertainty in the calibration must be marginalised over and we calculate how this propagates into parameter estimation, degrading the dark energy Figure-of-Merit. We find that noise-like biases affect dark energy measurements the most, while spikes in the bias power have the least impact, reflecting their correlation with the effect of cosmological parameters. We argue that in order to remove systematic biases in cosmic shear surveys and maintain statistica...
Shear strength of non-shear reinforced concrete elements
Hoang, Cao linh
1997-01-01
. The position of the crack in which sliding takes place is determined by the crack sliding model developed by Jin-Ping Zhang. The theoretical calculations are compared with test results reported in the literature. A good agreement has been found.A simplified method to calculate the shear capacity of T...
Active Control of Shear Thickening in Suspensions
Lin, Neil Y C; Cates, Michael E; Sun, Jin; Cohen, Itai
2016-01-01
Shear thickening, an increase of viscosity with shear rate, is a ubiquitous phenomena in suspended materials that has implications for broad technological applications. Controlling this thickening behavior remains a major challenge and has led to empirical strategies ranging from altering the particle surfaces and shape to modifying the solvent properties. However, none of these methods allow for active control of flow properties during shear itself. Here, we demonstrate that by strategic imposition of a high-frequency and low-amplitude shear perturbation orthogonal to the primary shearing flow, we can largely eradicate shear thickening. The orthogonal shear effectively becomes a regulator for controlling thickening in the suspension, allowing the viscosity to be reduced by up to two decades on demand. In a separate setup, we show that such effects can be induced by simply agitating the sample transversely to the primary shear direction. Overall, the ability of in situ manipulation of shear thickening paves a...
Orange peel flour effect on physicochemical, textural and sensory properties of cooked sausages
Sonia Hernandez Garcia
2010-06-01
Full Text Available Orange peel flours as a source of fiber, protein, and flavonoids as antioxidants was added to meat batters in order to improve nutritional quality and physicochemical, textural and sensory properties. Orange peel flour in meat batters improved yield and reduced expressible moisture. Hardness in orange peel flour samples was higher, but less resilient and cohesive. Warner-Bratzler shear force was not different between control (no orange peel flour and samples with this functional ingredient. A no trained panel determinate that there was no difference between control and orange peel flour added sausages at a 5% (w/w level. In this view, orange peel flour can be employed to improve yield and texture of cooked meat products.
Strydom, P E; Frylinck, L; Smith, M F
2011-03-01
Cattle breeds indigenous to Africa (Sanga) compare favourably to Bos indicus breeds with regard to adaptation to harsh environments. This study compared the meat quality of three Sanga breeds (Nguni, Tuli and Drakensberger), a Sanga-related breed (Bonsmara) and a B. indicus breed (Brahman) and supported these results with biochemical and histological measurements on the M. longissimus lumborum. Twelve young grain-fed steers of each breed were slaughtered and carcasses were electrically stimulated. All Sanga (and related) breeds, with the exception of the Tuli, had lower Warner-Bratzler shear force (SF) values at 2 and 21 days post mortem compared with the BR (P meat than BR, mainly due to favourable calpain-to-calpastatin ratios. Small differences in colour, drip loss and cooking properties were found among breeds (P < 0.05). PMID:22445415
Asimwe, L.; Kimambo, A E; Laswai, G;
2016-01-01
This study was conducted to evaluate the effects of feeding molasses or maize grain with agro-processing by-products on yield and quality of meat from Tanzania shorthorn zebu (TSZ) cattle. Forty five steers aged 2.5 to 3.0 years with 200 +/- 5.4 kg body weight were allocated into five dietary......) and Warner Bratzler shear force (WBSF) values were determined on M. longissimus thoracis et lumborum aged for 3, 6, 9 and 12 days. Steers fed on HFMO diet had higher (P < 0.05) nutrient intake (86.39 MJ/d energy; 867 g/d CP), weight gain (919 g/d) and half carcass weight (75.8 kg) than those fed other...
Bolumar, Tomas; Enneking, Mathias; Toepfl, Stefan; Heinz, Volker
2013-12-01
Meat tenderness is an important quality parameter determining consumer acceptance and price. Meat tenderness is difficult to ensure in the global meat chain because the production systems are not always aiming at this purpose (ex.: cattle derived from milk production) and by the existence within the carcass of "tough" primals. Different methods can be used by the meat industry to improve meat tenderness each with its advantages and drawbacks. The application of hydrodynamic pressure or shockwaves has showed outstanding improvements by reducing the Warner Bratzler Shear Force by 25% or more. However, the technology has not penetrated into the market as first systems were based on the use of explosives and further developments seemed to lack the robustness to fulfill industrial requirements. The present paper describes the main challenges to construct a prototype for the continuous treatment of meat by shockwaves based on electrical discharges under water. Finally, improvements on the tenderness of meat by using the novel prototype are presented. PMID:23660173
Pietrasik, Z; Shand, P J
2011-05-01
The individual and combined effects of moisture enhancement with a salt/phosphate solution (ME), blade tenderization (BT), and enzyme injection with proteinases derived from Aspergillus oryzae or Bacillus subtilis on cooking properties, Warner-Bratzler shear force (WBSF), and sensory characteristics of beef semimembranosus were investigated. ME significantly (P tenderness. BT increased (P tenderness scores and made connective tissue less perceptible. BT combined with ME resulted in the highest initial and overall tenderness scores, however, combining ME with either proteinase was as effective for reducing WBSF and increasing tenderness, particularly at 20 (vs. 10) ppm enzyme inclusion. Tenderness of enzyme-injected steaks was increased without compromising other palatability attributes. All treatments increased the frequency of steaks rated slightly tender or higher, with the ME+BT combination, or ME with inclusion of 20 ppm of either proteinase, being most effective. PMID:21194850
Pietrasik, Z; Aalhus, J L; Gibson, L L; Shand, P J
2010-03-01
The combined effect of blade tenderization (BT), moisture enhancement and enzymatic tenderization on drip loss, cook loss, Warner-Bratzler shear force (WBSF) and sensory characteristics of beef semitendinosus (ST) steaks from cattle under 30 months of age was investigated. Injection with phosphate/chloride solution improved tenderness and juiciness of ST muscles (Ptenderness was observed with incorporation of a pancreatin enzyme preparation into the moisture enhancement solution (P>0.1). Injection of pancreatin alone tended to improve overall tenderness (P=0.09) and did not adversely affect other palatability attributes. Blade tenderization of ST muscles improved tenderness, as indicated by lower WBSF and increased sensory tenderness scores than for control samples, without decreasing flavour and juiciness. The results suggest that moisture enhancement and blade tenderization can be effectively utilized to reduce the variability in and improve both tenderness and palatability of ST muscles. Pancreatin was not particularly effective at the 0.02% level used. PMID:20374818
Tizioto, Polyana Cristine; Gromboni, Caio Fernando; Nogueira, Ana Rita de Araujo; de Souza, Marcela Maria; Mudadu, Maurício de Alvarenga; Tholon, Patricia; Rosa, Antônio do Nascimento; Tullio, Rymer Ramiz; Medeiros, Sérgio Raposo; Nassu, Renata Tieko; Regitano, Luciana Correia de Almeida
2014-01-01
Calcium (Ca) and potassium (K) are essential nutrients in animal nutrition. Furthermore, the Ca content can influence meat tenderness because it is needed by the proteolytic system of calpains and calpastatins, major factors in postmortem tenderization of skeletal muscles. K content, which is needed for muscle contraction, can also affect meat tenderness. This study showed that K positively affects the Warner-Bratzler shear force (WBSF), measured at 14days of meat aging, which means that higher levels of K are related to lower meat tenderness. Additionally, a significant effect (P≤0.015) of a SNP in the calcium-activated neutral protease 1 (CAPN1) gene on Ca content was observed. Metal content in beef can affect not only nutritional values but also meat quality traits. Part of this effect may be related to variation in specific genes. PMID:23995697
Frylinck, L; Strydom, P E; Webb, E C; du Toit, E
2013-04-01
Post-slaughter muscle energy metabolism meat colour of South African production systems were compared; steers (n=182) of Nguni, Simmental Brahman crossbreds were reared on pasture until A-, AB-, or B-age, in feedlot until A-AB-age. After exsanguination carcasses were electrically stimulated (400 V for 15 s). M. longissimus dorsi muscle energy samples were taken at 1, 2, 4 and 20 h. Post-mortem samples for meat quality studies were taken at 1, 7 and 14 days post-mortem. Production systems affected muscle glycogen, glucose, glucose-6-P, lactic acid, ATP, creatine-P glycolytic potential (P0.5) water holding capacity, drip loss, and Warner Bratzler shear force. Muscle energy only affected muscle contraction of the A-age-pasture system (shortest sarcomere length of 1.66 μm vs 1.75 μm highest WBS of 6 kg vs 5 kg 7 days post-mortem). PMID:23305833
Comparison of textural atributes of selected meat sausages using instrumental analysis
Vladimír Vietoris
2013-03-01
Full Text Available Normal 0 21 false false false SK X-NONE X-NONE The aim of the study was to compare textural atributes of selected meat sausages using instrumental analysis. For this purpose, seven different meat sausage samples were treated by instrumental analysis, by the use of Warner-Bratzler probe, to find differences for two selected textural parameter firmness and work of shear. As expected, various values of mentioned atributes were obtained for different samples tested in fresh stage and after storage under controlled conditions (48 hrs., 30 °C temp., and 60 % R.H. before and after cooking. For statistical evaluation of results, paired T test was used, statistically significant differences were taken at pdoi:10.5219/273
Effect of a β-agonist on meat quality and myofibrillar protein fragmentation in bulls.
Fiems, L O; Buts, B; Boucqué, C V; Demeyer, D I; Cottyn, B G
1990-01-01
Three experiments were conducted to study the effect of cimaterol on meat quality and myofibrillar protein fragmentation of the Longissimus dorsi muscle. In two experiments (Experiments 1 and 2), conducted with 16 double-muscled Belgian white-blue bulls and 15 Charolais bulls, respectively, half of the animals received 60 μg cimaterol daily per kg liveweight in the diet, during 135 and 93 days, respectively. In a third experiment, 46 normal Belgian white-blue bulls received no or 4 ppm cimaterol in the diet for 246, 127 or 71 days on average. A withdrawal period of 6 days was always applied for cimaterol-treated animals. Ultimate pH, colour and waterholding capacity were not significantly affected. The effect of cimaterol on moisture content was variable, while protein content was increased and fat was reduced. Warner-Bratzler shear force values were increased by cimaterol P meat quality. PMID:22055115
Rodriguez, Julio; Unruh, John; Villarreal, Milton; Murillo, Olger; Rojas, Sailim; Camacho, Jorge; Jaeger, John; Reinhardt, Chris
2014-03-01
Forty-eight male calves (3/4 Brahman×1/4 Charolais) were used to determine carcass cutability and meat tenderness of Longissimus lumborum (LL), Gluteus medius (GM), Semitendinosus (ST) and Psoas major (PM) steaks from lighter weight carcasses of bulls and steers castrated at 3, 7, or 12 mo of age grown under tropical pasture conditions. Steaks from steers had lower (more tender) LL Warner-Bratzler shear force (WBSF) values than those from bulls. Steaks from steers castrated at 3 mo had lower GM WBSF than those from bulls. For PM steaks, those aged 28 d had lower WBSF than those aged 2d. Steaks aged 28 d had the lowest LL and GM WBSF and steaks aged 2d had the highest LL, GM, and ST WBSF. Castration at younger ages is recommended because it provides improvement in LL and GM tenderness over bulls with no differences in carcass traits or subprimal yields. PMID:24342184
Schmidt, J R; Miller, M C; Andrae, J G; Ellis, S E; Duckett, S K
2013-09-01
Angus-cross steers (n = 60) were used to assess the effect of forage species [alfalfa (AL; Medicago sativa L.), bermudagrass (BG; Cynodon dactylon), chicory (CH; Cichorium intybus L.), cowpea (CO; Vigna unguiculata L.), and pearl millet (PM; Pennisetum glaucum (L. R Br.)] in replicated 2-ha paddocks for finishing on cattle performance, carcass quality, and meat quality in a 2-yr study. Steers were blocked by BW and assigned randomly to finishing-forage treatments before the start of the experiment. Steers grazing AL and CH had greater (P 1 kg/d). Finishing on legumes (AL and CO) increased dressing percentage, reduced Warner-Bratzler shear force values, and increased consumers preference, whereas finishing on grasses (BG and PM) enhanced anticarcinogenic fatty acid concentrations. PMID:23825343
A. Girolami
2010-04-01
Full Text Available The experiment was performed with thirty-two Altamurana and Trimeticcio lambs slaughtered at 42 and at 70 days of age. Meat organoleptic characteristics were determined on samples of M. Longissimus lumborum and Longissimus thoracis. Colour parameters were not affected by genotype, while L* value and index of yellow decreased (P<0.01 and P<0.05, respectively as age of slaughtering increased. Meat from Altamurana lambs showed lower juiciness (P<0.01 and fatness (P<0.05 than Trimeticcio lambs. No genotype and age of slaughtering effects were found for Warner-Bratzler shear force (WBSF values. Meat from younger lambs was more tender and chewable (P<0.01 but less juicy (P<0.001 and fatty (P<0.05 than meat from lambs slaughterd at 70 days.
The Hypertrophic Marchigiana: physical and biochemical parameters for meat quality evaluation
F. M. Sarti
2010-04-01
Full Text Available The aim of this study was to evaluate the meat quality of double muscled Marchigiana young bulls characterized by different genotypes for the hypertrophy: normal and mutated (heterozygous. Calpain and calpastatin activities were determined to verify the state of aging meat on a sample of Longissimus thoracis muscle (XIII thoracic rib taken at slaughtering (0h and after 24 hours (24h. After 14 days of aging, another sample of muscle was taken to evaluate physical and chemical parameters of meat quality. The results showed a better meat quality of mutated animals respect normal animals. Another interesting result was the correlation between the biochemical parameters and some physical parameters, such as WBS (Warner Bratzler Shear Force, CL (Cooking loss. These results showed the relationship between the proteolytic activity of calpain system and meat tenderness.
Effects of post-mortem aging time and type of aging on palatability of low marbled beef loins.
Lepper-Blilie, A N; Berg, E P; Buchanan, D S; Berg, P T
2016-02-01
The study objective was to evaluate the effect of post-mortem aging period (14 to 49days), dry vs. wet (D vs W) type of aging on the palatability of bone-in (BI) beef short loins (n=96) and boneless (BL) strip loins (n=96) possessing United States Department of Agriculture marbling scores between Slight and Small. Warner-Bratzler shear force (WBSF) scores decreased linearly over time (P=0.0001). WBSF was not influenced by aging method or loin type. Aged flavor was higher for DBL than for DBI with WBL and WBI intermediate. Dry aging strip loins increase aged flavor yet did not improve beefy flavor compared to wet aging. Based on objective data and panelist's scores for tenderness, juiciness and aged flavor, a boneless, 28days wet aged strip steak, cooked to 71°C would provide the best combination of eating satisfaction and value. PMID:26551359
Magolski, J D; Buchanan, D S; Maddock-Carlin, K R; Anderson, V L; Newman, D J; Berg, E P
2013-11-01
Warner-Bratzler shear force values from 560 mixed breed heifers and steers were used to determine estimates of genetic selection. Cattle were marketed from 2008 to 2011, and included five feedlot based research projects at the North Dakota State University-Carrington Research Extension Center. Samples were collected for IGENITY® analysis providing information that included selection indices and estimated breeding values for carcass traits. DNA-based test results were compared with actual carcass measurements. Marbling accounted for over 10% of the variation in WBSF while hot carcass weight was the second most influential carcass trait accounting for 4% (Pgrade, and fat thickness were low (R(2)=0.14, 0.02, 0.03, 0.03, and 0.02, respectively). Therefore selecting cattle for a higher degree of marbling and feeding a diet that meets or exceeds recommended nutrients for growth are the most important factors influencing beef tenderness and acceptability. PMID:23793083
Grouted Connections with Shear Keys
Pedersen, Ronnie; Jørgensen, M. B.; Damkilde, Lars;
2012-01-01
This paper presents a finite element model in the software package ABAQUS in which a reliable analysis of grouted pile-to-sleeve connections with shear keys is the particular purpose. The model is calibrated to experimental results and a consistent set of input parameters is estimated so that...... different structural problems can be reproduced successfully....
Bartz, B; Collins, M; Stoddard, G; Appleton, A; Livingood, R; Sobcynski, H; Vogel, K D
2015-09-01
The purpose of this study was to evaluate the impact of nonpenetrating captive bolt stunning followed by electrical induction of cardiac arrest on veal calf welfare, veal quality, and blood yield. Ninety calves from the same farm were randomly assigned to 1 of 2 treatment groups in a balanced unpaired comparison design. The first treatment group (the "head-only" method-application of the pneumatic nonpenetrating stun to the frontal plate of the skull at the intersection of 2 imaginary lines extending from the lateral canthus to the opposite poll [CONTROL]) was stunned with a nonpenetrating captive bolt gun ( = 45). The second group ( = 45) was stunned with a nonpenetrating captive bolt gun followed by secondary electrical induction of cardiac arrest (the "head/heart" method-initial application of the pneumatic nonpenetrating captive bolt stun followed by 1 s application of an electrical stun to the ventral region of the ribcage directly caudal to the junction of the humerus and scapula while the stunned calf was in lateral recumbence [HEAD/HEART]). Stunning efficacy was the indicator of animal welfare used in this study. All calves were instantly rendered insensible by the initial stun and did not display common indicators of return to consciousness. For meat quality evaluation, all samples were collected from the 12th rib region of the longissimus thoracis. Meat samples were evaluated for color, drip loss, ultimate pH, cook loss, and Warner-Bratzler shear force. The L* values (measure of meat color lightness) were darker ( 0.05) observed in a* (redness) and b* (yellowness) values between treatments. No differences ( > 0.05) were observed in drip loss, ultimate pH, cook loss, and Warner-Bratzler shear force. The blood yield from the CONTROL group (7,217.9 ± 143.5 g) was greater ( veal calves. PMID:26440354
Effect of probiotics and thyme essential oil on the texture of cooked chicken breast meat
Ebrahim Alfaig
2013-12-01
Full Text Available Background. Texture is probably the single most critical quality factor associated with the consumers’ ultimate satisfaction with a poultry meat product and can be affected by several factors including the type of feed used for chickens fattening. The use of probiotics for meat and carcass quality improvement has been questioned, while the possibility of deposition of essential oils in various muscle tissues can alter the sensory attributes of the chicken’s meat. Material and methods. Probiotics and thyme essential oil in the percentage of 0.05% were used as feed supplements for Ross 308 broiler chickens, as the broilers were reared in four separated groups based on the feed supplement as follows: control, probiotics, thyme essential oil and combination of probiotics and thyme essential oil group, while the fattening period was 42 days. TA.XT Plus-Texture analyser apparatus was used for determination of the texture profile and Warner Bratzler shear force for the cooked breast meat. Results. Warner Bratzler shear test results showed that the tested feed additives were not affecting the texture of the chicken breast meat, while probiotic appears to have moderately effect on the hardness, cohesiveness, springiness and chewiness attributes of the cooked breast meat compared with the other groups, this effect of probiotics considered as negligible, as the results showed that all the tested groups meat were very tender according to the tenderness scale. Conclusions. According to the obtained results it can be concluded the combination of probiotics and thyme group resulted in the lowest score for the hardness, cohesiveness, springiness and chewiness attributes, while probiotics group scored the highest compared with the control.
Zipper and freeway shear zone junctions
Passchier, Cees; Platt, John
2016-04-01
Ductile shear zones are usually presented as isolated planar high-strain domains in a less deformed wall rock, characterised by shear sense indicators such as characteristic deflected foliation traces. Many shear zones, however, form branched systems and if movement on such branches is contemporaneous, the resulting geometry can be complicated and lead to unusual fabric geometries in the wall rock. For Y-shaped shear zone junctions with three simultaneously operating branches, and with slip directions at a high angle to the branch line, eight basic types of shear zone triple junctions are possible, divided into three groups. The simplest type, called freeway junctions, have similar shear sense on all three branches. If shear sense is different on the three branches, this can lead to space problems. Some of these junctions have shear zone branches that join to form a single branch, named zipper junctions, or a single shear zone which splits to form two, known as wedge junctions. Closing zipper junctions are most unusual, since they form a non-active high-strain zone with opposite deflection of foliations. Shear zipper and shear wedge junctions have two shear zones with similar shear sense, and one with the opposite sense. All categories of shear zone junctions show characteristic flow patterns in the shear zone and its wall rock. Shear zone junctions with slip directions normal to the branch line can easily be studied, since ideal sections of shear sense indicators lie in the plane normal to the shear zone branches and the branch line. Expanding the model to allow slip oblique and parallel to the branch line in a full 3D setting gives rise to a large number of geometries in three main groups. Slip directions can be parallel on all branches but oblique to the branch line: two slip directions can be parallel and a third oblique, or all three branches can have slip in different directions. Such more complex shear zone junctions cannot be studied to advantage in a
Effects of shear on proteins in solution
Thomas, C. R.; Geer, D.
2010-01-01
Abstract The effects of ?shear? on proteins in solution are described and discussed. Research on this topic covers many decades, beginning with investigations of possible denaturation of enzymes during processing, whilst more recent concerns are how the quality of therapeutic proteins might be affected by shear or shear related effects. The paradigm that emerges from most studies is that shear in the fluid mechanical sense is unlikely by itself to damage most proteins and that inte...
Shear behaviour of reinforced phyllite concrete beams
Highlights: ► Phyllite concrete beams often exhibited shear with anchorage bond failure. ► Different shear design provisions for reinforced phyllite beams are compared. ► Predicted shear capacity of phyllite beams must be modified by a reduction factor. -- Abstract: The shear behaviour of concrete beams made from phyllite aggregates subjected to monotonic and cyclic loading is reported. First diagonal shear crack load of beams with and without shear reinforcement was between 42–58% and 42–92% of the failure loads respectively. The phyllite concrete beams without shear links had lower post-diagonal cracking shear resistance compared to corresponding phyllite beams with shear links. As a result of hysteretic energy dissipation, limited cyclic loading affected the stiffness, strength and deformation of the phyllite beams with shear reinforcement. Generally, beams with and without shear reinforcement showed anchorage bond failure in addition to the shear failure due to high stress concentration near the supports. The ACI, BS and EC codes are conservative for the prediction of phyllite concrete beams without shear reinforcement but they all overestimate the shear strength of phyllite concrete beams with shear reinforcement. It is recommended that the predicted shear capacity of phyllite beams reinforced with steel stirrups be modified by a reduction factor of 0.7 in order to specify a high enough safety factor on their ultimate strength. It is also recommended that susceptibility of phyllite concrete beams to undergo anchorage bond failure is averted in design by the provision of greater anchorage lengths than usually permitted.
Developments in Plasticity Approach to Shear
Hoang, Cao Linh; Nielsen, Mogens Peter
The paper deals with plastic methods applied to shear design of reinforced concrete beams. Emphasis is put on the recently developed crack sliding model applicable to non-shear reinforced and lightly shear reinforced beams and slabs. The model, which is an upper bound plasticity approach, takes...
Shear instability of a gyroid diblock copolymer
Eskimergen, Rüya; Mortensen, Kell; Vigild, Martin Etchells
2005-01-01
-induced destabilization is discussed in relation to analogous observations on shear-induced order-to-order and disorder-to-order transitions observed in related block copolymer systems and in microemulsions. It is discussed whether these phenomena originate in shear-reduced fluctuations or shear-induced dislocations....
Statistical Model of Extreme Shear
Larsen, Gunner Chr.; Hansen, Kurt Schaldemose
2004-01-01
In order to continue cost-optimisation of modern large wind turbines, it is important to continously increase the knowledge on wind field parameters relevant to design loads. This paper presents a general statistical model that offers site-specific prediction of the probability density function...... model that, on a statistically consistent basis, describe the most likely spatial shape of an extreme wind shear event. Predictions from the model have been compared with results from an extreme value data analysis, based on a large number of high-sampled full-scale time series measurements. the...... consistent, given the inevitabel uncertainties associated with model as well as with the extreme value data analysis. Keywords: Statistical model, extreme wind conditions, statistical analysis, turbulence, wind loading, statistical analysis, turbulence, wind loading, wind shear, wind turbines....
Kinematics and shear heat pattern of ductile simple shear zones with `slip boundary condition'
Mulchrone, Kieran F.; Mukherjee, Soumyajit
2016-04-01
Extrusion by Poiseuille flow and simple shear of hot lower crust has been deciphered from large hot orogens, and partial-slip boundary condition has been encountered in analogue models. Shear heat and velocity profiles are deduced from a simplified form of Navier-Stokes equation for simple shear together with extrusive Poiseuille flow and slip boundary condition for Newtonian viscous rheology. A higher velocity at the upper boundary of the shear zone promotes higher slip velocity at the lower boundary. The other parameters that affect the slip are viscosity and thickness of the shear zone and the resultant pressure gradient that drives extrusion. In the partial-slip case, depending on flow parameters (resultant pressure gradient, density and viscosity) and thickness of the shear zone, the velocity profiles can curve and indicate opposite shear senses. The corresponding shear heat profiles can indicate temperature maximum inside shear zones near either boundaries of the shear zone, or equidistant from them.
Shear Strength of Reinforced Concrete Shear Walls under Eccentric Tensile Axial Force
MIZOGUCHI, Mitsuo; ARAI, Yasuyuki; Hosoya, Koji
2002-01-01
Six reinforced concrete shear wall models were built and tested to investigate effects of cyclic lateral loading and an eccentric tensile axial force on their shear strength behavior. The following are confirmed from this test result. When the elongation at the bottom of the boundary column on the compression side for a lateral force is small, the shear strength of shear walls subjected to a tensile axial force at the boundary column can be evaluated by conventional shear strenght equations, ...
Influence of shear stress on erythrocyte aggregation.
Kim, Jeong-Ho; Lee, Hoyoon; Lee, Byoung-Kwon; Shin, Sehyun
2015-09-25
Shear stress is known to induce platelet activation and aggregation. The red blood cell (RBC) aggregation test requires the application of shear stress for the cells to disaggregate for initialization. We tested the hypothesis that applying shear stress may activate platelets, which can influence RBC aggregation. The present study used a commercial microchip-based aggregometer (RheoSCan-AnD300) with a rotating stirrer for RBC disaggregation. Whole blood samples were exposed to different magnitudes of shear stress with various shearing times. As the rotational speed was increased up to 2800 rpm, the RBC aggregation index (AI) of the whole blood increased by up to 30% (p < 0.05), whereas that of the platelet-excluded blood samples did not show any apparent alteration. The AI also increased in proportion with the stirring time. The data suggest that high shear stress affects RBC aggregation through shear-induced platelet aggregation. PMID:26444600
Magnetic shear. II - Hale region 17244
A B-gamma(delta) sunspot group with growing delta-spots of trailing polarity shows evidence in H-alpha filament structure of a transition from a state of weak magnetic shear to a state of strong shear. The shear develops in the chromosphere and transition region to the corona overlying the photospheric magnetic neutral line separating the delta-spots from the leading polarity at a time when the delta-spots are undergoing rapid growth. Several major flares occur along the sheared portion of the neutral line following the shear development. Other segments of the neutral line far removed from the delta-spots show similar evidence of shear in the H-alpha filament structure and in C IV velocity patterns as well. These quiescent regions of shear are relatively steady or decaying with time and show very little related activity. 11 references
Showalter, Sharon [OnLocation, Inc./ Energy Systems Consulting, Vienna, VA (United States); Wood, Frances [OnLocation, Inc./ Energy Systems Consulting, Vienna, VA (United States); Vimmerstedt, Laura [National Renewable Energy Lab. (NREL), Golden, CO (United States)
2010-06-01
The U.S. federal government is considering actions to reduce greenhouse gas emissions. Renewable energy and energy efficiency technologies could help reduce greenhouse gas emissions, so the cost of these technologies could significantly influence the overall cost of meeting greenhouse gas limits. This paper examines the potential benefit of reduced technology cost by analyzing the case of the Lieberman-Warner Climate Security Act of 2007 (S.2191). This act had a goal of reducing national carbon emissions in 2050 to levels 72 percent below 2006 emission levels. In April 2008, the U.S. Department of Energy, Energy Information Administration (EIA) published an analysis of the effects of S.2191 on the U.S. energy sector. This report presents a similar analysis: both analyses examined the impacts of S.2191, and both used versions of the National Energy Modeling System. The analysis reported here used modified technology assumptions to reflect U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE) program goals. The results show that achieving EERE program goals could reduce the cost of meeting greenhouse gas limits, reduce the cost of renewable electricity generation and biofuels, and reduce energy intensity.
Showalter, S.; Wood, F.; Vimmerstedt, L.
2010-06-01
The U.S. federal government is considering actions to reduce greenhouse gas emissions. Renewable energy and energy efficiency technologies could help reduce greenhouse gas emissions, so the cost of these technologies could significantly influence the overall cost of meeting greenhouse gas limits. This paper examines the potential benefit of reduced technology cost by analyzing the case of the Lieberman-Warner Climate Security Act of 2007 (S.2191). This act had a goal of reducing national carbon emissions in 2050 to levels 72 percent below 2006 emission levels. In April 2008, the U.S. Department of Energy, Energy Information Administration (EIA) published an analysis of the effects of S.2191 on the U.S. energy sector. This report presents a similar analysis: both analyses examined the impacts of S.2191, and both used versions of the National Energy Modeling System. The analysis reported here used modified technology assumptions to reflect U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE) program goals. The results show that achieving EERE program goals could reduce the cost of meeting greenhouse gas limits, reduce the cost of renewable electricity generation and biofuels, and reduce energy intensity.
Magnetogenesis through Relativistic Velocity Shear
Miller, Evan
Magnetic fields at all scales are prevalent in our universe. However, current cosmological models predict that initially the universe was bereft of large-scale fields. Standard magnetohydrodynamics (MHD) does not permit magnetogenesis; in the MHD Faraday's law, the change in magnetic field B depends on B itself. Thus if B is initially zero, it will remain zero for all time. A more accurate physical model is needed to explain the origins of the galactic-scale magnetic fields observed today. In this thesis, I explore two velocity-driven mechanisms for magnetogenesis in 2-fluid plasma. The first is a novel kinematic 'battery' arising from convection of vorticity. A coupling between thermal and plasma oscillations, this non-relativistic mechanism can operate in flows that are incompressible, quasi-neutral and barotropic. The second mechanism results from inclusion of thermal effects in relativistic shear flow instabilities. In such flows, parallel perturbations are ubiquitously unstable at small scales, with growth rates of order with the plasma frequency over a defined range of parameter-space. Of these two processes, instabilities seem far more likely to account for galactic magnetic fields. Stable kinematic effects will, at best, be comparable to an ideal Biermann battery, which is suspected to be orders of magnitude too weak to produce the observed galactic fields. On the other hand, instabilities grow until saturation is reached, a topic that has yet to be explored in detail on cosmological scales. In addition to investigating these magnetogenesis sources, I derive a general dispersion relation for three dimensional, warm, two species plasma with discontinuous shear flow. The mathematics of relativistic plasma, sheared-flow instability and the Biermann battery are also discussed.
Punching shear capacity of reinforced concrete slabs with headed shear studs
Hoang, Linh Cao; Pop, Anamaria
2015-01-01
Punching shear in slabs is analogous to shear in beams. Despite this similarity, current design codes provide distinctly different methods for the design of shear reinforcement in the two situations. For example, the Eurocode method for beam shear design is founded on the theory of rigid plasticity....... To design shear reinforcement in slabs, on the other hand, the engineer must settle for an empirical equation. The aim of the study reported is to demonstrate that it is possible in a simple manner to design shear reinforcement in slabs based on the same rigid-plasticity foundation as for beam shear...... design. For this purpose, an extension of the upper-bound crack sliding model is proposed. This involves analysis of sliding mechanisms in yield lines developed both within and outside the zone with shear reinforcement. Various types of headed shear studs were considered. The results obtained using the...
Magnetorheological Shear Flow Near Jamming
Vågberg, Daniel; Tighe, Brian
2015-03-01
Flow in magnetorheological (MR) fluids and systems near jamming both display hallmarks of complex fluid rheology, including yield stresses and shear thinning viscosities. They are also tunable, which means that both phenomena can be used as a switching mechanism in ``smart'' fluids, i.e. fluids where properties can be tuned rapidly and reversibly by changing external parameters. We use numerical simulations to investigate the rheological properties of MR fluids close to the jamming transition as a function of the applied field and volume fraction. We are especially interested in the crossover region where both phenomena are needed to describe the observed dynamics. Funded by the Dutch Organization for Scientific Research (NWO).
Statistical Model of Extreme Shear
Hansen, Kurt Schaldemose; Larsen, Gunner Chr.
2005-01-01
In order to continue cost-optimisation of modern large wind turbines, it is important to continuously increase the knowledge of wind field parameters relevant to design loads. This paper presents a general statistical model that offers site-specific prediction of the probability density function...... model that, on a statistically consistent basis, describes the most likely spatial shape of an extreme wind shear event. Predictions from the model have been compared with results from an extreme value data analysis, based on a large number of full-scale measurements recorded with a high sampling rate...
Mixing in shear thinning fluids
H. Ameur
2012-06-01
Full Text Available In the present study, a CFD characterization of the flow generated by curved-blade impellers in a cylindrical unbaffled vessel was carried out. The tank diameter was 300 mm, with a flat bottom. The liquid height was equal to the vessel diameter. The fluids simulated have a shear thinning behavior. Analyses concern the effect of the impeller speed, the fluid rheology and the number of impeller blades on the induced flow patterns and the power consumption. The predictions were compared with literature data and a satisfactory agreement was found.
Shear Mechanics of the TMJ Disc
Juran, C.M.; Dolwick, M.F.; McFetridge, P.S.
2012-01-01
The temporomandibular joint (TMJ) is a complex hinge and gliding joint that induces significant shear loads onto the fibrocartilage TMJ disc during jaw motion. The purpose of this study was to assess regional variation in the disc’s shear loading characteristics under physiologically relevant loads and to associate those mechanical findings with common clinical observations of disc fatigue and damage. Porcine TMJ discs were compressed between an axially translating bottom platen and a 2.5-cm-diameter indenter within a hydrated testing chamber. Discs were cyclically sheared at 0.5, 1, or 5 Hz to 1, 3, or 5% shear strain. Within the anterior and intermediate regions of the disc when sheared in the anteroposterior direction, both shear and compressive moduli experienced a significant decrease from instantaneous to steady state, while the posterior region’s compressive modulus decreased approximately 5%, and no significant loss of shear modulus was noted. All regions retained their shear modulus within 0.5% of instantaneous values when shear was applied in the mediolateral direction. The results of the disc’s regional shear mechanics suggest an observable and predictable link with the common clinical observation that the posterior region of the disc is most often the zone in which fatigue occurs, which may lead to disc damage and perforation. PMID:23166043
Local Gravitational Instability of Magnetized Shear Flows
Howes, G G; McWilliams, J C; Howes, Gregory G.; Cowley, Steven C.; Williams, James C. Mc
2001-01-01
The effect of magnetic shear and shear flow on local gravitationally induced instabilities is investigated. A simple model is constructed allowing for an arbitrary entropy gradient and a shear plasma flow in the Boussinesq approximation. A transformation to shearing magnetic coordinates achieves a model with plasma flow along the magnetic field lines where the coordinate lines are coincident with the field lines. The solution for the normal modes of the system depends on two parameters: the Alfven Mach number of the plasma flow and the entropy gradient. The behavior of the unstable normal modes of this system is summarized by a stability diagram. Important characteristics of this stability diagram are the following: magnetic shear is stabilizing and the entropy gradient must exceed a threshold value for unstable mode growth to occur; flow acts to suppress mode growth in a substantially unstable regime as expected, yet near marginal stability it can lessen the stabilizing effect of magnetic shear and enhance t...
Anisotropic thermal conductivity in sheared polypropylene
Dai, Shao Cong; Tanner, Roger I. [The University of Sydney, Rheology Research Group, School of Aerospace, Mechanical and Mechatronic Engineering, Sydney, NSW (Australia)
2006-01-01
We discuss the anisotropy of the thermal conductivity tensor in polymer flow in this paper. Isotactic polypropylene (iPP) specimens were deformed by injection moulding at high shear rates and by steady shear at low shear rates, and were then quenched. The thermal conductivities parallel and perpendicular to the shear direction were measured using modulated differential scanning calorimetry (MDSC) in accordance with the ASTM E1952-01. The measured results showed that the thermal conductivity of the sheared polymer was anisotropic with an increase in the shear direction. The thermal conductivity can be regarded as varying either with the strain or the stress, as suggested by Van den Brule (1989). In addition to the Van den Brule mechanism, crystallization during flow also changes the thermal conductivity and this effect may often be dominant. Suggestions for procedures in processing computations, based on both effects, are given. (orig.)
Shear banding in mesoscopic dusty plasma liquids
We experimentally demonstrate shear banding and construct a microscopic dynamic picture of a sheared 2D mesoscopic dust Coulomb liquid at the kinetic level. Under the topological constraints from the discreteness and finite boundary, the nonlinear threshold-type response of motion to the local stress induced by thermal and external drives leads to shear thinning and the enhanced avalanche-type local topological transitions with stress relaxation in the form of clusters. It causes the formation of the outer shear bands in which the mean shear rate, the velocity fluctuations, and the structural rearrangement rate are all enhanced, and leaves a weakly perturbed center band. The typical size of the cooperative hopping vortex (about three interparticle distance) sets up a common length scale for the widths of the confinement induced layering and the shear band
Hierarchical Cosmic Shear Power Spectrum Inference
Alsing, Justin; Jaffe, Andrew H; Kiessling, Alina; Wandelt, Benjamin; Hoffmann, Till
2016-01-01
We develop a Bayesian hierarchical modelling approach for cosmic shear power spectrum inference, jointly sampling from the posterior distribution of the cosmic shear field and its (tomographic) power spectra. Inference of the shear power spectrum is a powerful intermediate product for a cosmic shear analysis, since it requires very few model assumptions and can be used to perform inference on a wide range of cosmological models \\emph{a posteriori} without loss of information. We show that joint posterior for the shear map and power spectrum can be sampled effectively by Gibbs sampling, iteratively drawing samples from the map and power spectrum, each conditional on the other. This approach neatly circumvents difficulties associated with complicated survey geometry and masks that plague frequentist power spectrum estimators, since the power spectrum inference provides prior information about the field in masked regions at every sampling step. We demonstrate this approach for inference of tomographic shear $E$-...
Periodic Exponential Shear of Complex Fluids
Kalelkar, Chirag; McKinley, Gareth
2012-01-01
We define a class of flows with exponential kinematics termed Periodic Exponential Shear (PES) flow which involve periodic exponential stretching of fluid elements along with their rotation. We exhibit analytical and numerical results for PES flow by using the Oldroyd-B model for viscoelastic fluids. We calculate the growth in the shear and the normal stresses analytically as well as demonstrate that repeated application of the flow leads to stable oscillatory shear and normal stresses. We de...
Shear wall experiments and design in Japan
Park, Y.J.; Hofmayer, C.
1994-12-01
This paper summarizes the results of recent survey studies on the available experimental data bases and design codes/standards for reinforced concrete (RC) shear wall structures in Japan. Information related to the seismic design of RC reactor buildings and containment structures was emphasized in the survey. The seismic requirements for concrete structures, particularly those related to shear strength design, are outlined. Detailed descriptions are presented on the development of Japanese shear wall equations, design requirements for containment structures, and ductility requirements.
Interfacial Slip in Sheared Polymer Blends
Lo, Tak Shing; Mihajlovic, Maja; Shnidman, Yitzhak; Li, Wentao; Gersappe, Dilip
2004-01-01
We have developed a dynamic self-consistent field theory, without any adjustable parameters, for unentangled polymer blends under shear. Our model accounts for the interaction between polymers, and enables one to compute the evolution of the local rheology, microstructure and the conformations of the polymer chains under shear self-consistently. We use this model to study the interfacial dynamics in sheared polymer blends and make a quantitative comparison between this model and Molecular Dyn...
Shear wall experiments and design in Japan
This paper summarizes the results of recent survey studies on the available experimental data bases and design codes/standards for reinforced concrete (RC) shear wall structures in Japan. Information related to the seismic design of RC reactor buildings and containment structures was emphasized in the survey. The seismic requirements for concrete structures, particularly those related to shear strength design, are outlined. Detailed descriptions are presented on the development of Japanese shear wall equations, design requirements for containment structures, and ductility requirements
Dynamo efficiency with shear in helical turbulence .
Leprovost, Nicolas; Kim, Eun-Jin
2009-01-01
To elucidate the influence of shear flow on the generation of magnetic fields through the modification of turbulence property, we consider the case where a large-scale magnetic field is parallel to a large-scale shear flow without direct interaction between the two in the kinematic limit where the magnetic field does not backreact on the velocity. By nonperturbatively incorporating the effect of shear in a helically forced turbulence, we show that turbulence intensity and turbulent transport ...
Sources of helicopter rotor hub inplane shears
Kottapalli, Sesi
1993-01-01
Sources of helicopter rotor hub inplane shears are identified using simplified equations and the full aeroelastic analysis code, CAMRAD/JA (Johnson, 1988). Analytical results are obtained for an articulated rotor operating at moderate thrust and high airspeed. It is found that the blade chordwise inplane shear, which includes the aerodynamic component, the Coriolis contribution, and the inertial component, and the hub inplane shears are strongly dependent on the out-of-plane response. The sources of helicopter rotor hub inplane shears lie not only in the inplane response but depend on the flap and elastic flatwise responses/modes.
Determination of arterial wall shear stress
无
2001-01-01
The arteries can remodel their structure and function to adapt themselves to the mechanical environment. In various factors that lead to vascular remodeling, the shear stress on the arterial wall induced by the blood flow is of great importance. However, there are many technique difficulties in measuring the wall shear stress directly at present. In this paper, through analyzing the pulsatile blood flow in arteries, a method has been proposed that can determine the wall shear stress quantitatively by measuring the velocity on the arterial axis, and that provides a necessary means to discuss the influence of arterial wall shear stress on vascular remodeling.
Dynamic shear deformation in high purity Fe
Cerreta, Ellen K [Los Alamos National Laboratory; Bingert, John F [Los Alamos National Laboratory; Trujillo, Carl P [Los Alamos National Laboratory; Lopez, Mike F [Los Alamos National Laboratory; Gray, George T [Los Alamos National Laboratory
2009-01-01
The forced shear test specimen, first developed by Meyer et al. [Meyer L. et al., Critical Adiabatic Shear Strength of Low Alloyed Steel Under Compressive Loading, Metallurgical Applications of Shock Wave and High Strain Rate Phenomena (Marcel Decker, 1986), 657; Hartmann K. et al., Metallurgical Effects on Impact Loaded Materials, Shock Waves and High Strain rate Phenomena in Metals (Plenum, 1981), 325-337.], has been utilized in a number of studies. While the geometry of this specimen does not allow for the microstructure to exactly define the location of shear band formation and the overall mechanical response of a specimen is highly sensitive to the geometry utilized, the forced shear specimen is useful for characterizing the influence of parameters such as strain rate, temperature, strain, and load on the microstructural evolution within a shear band. Additionally, many studies have utilized this geometry to advance the understanding of shear band development. In this study, by varying the geometry, specifically the ratio of the inner hole to the outer hat diameter, the dynamic shear localization response of high purity Fe was examined. Post mortem characterization was performed to quantify the width of the localizations and examine the microstructural and textural evolution of shear deformation in a bcc metal. Increased instability in mechanical response is strongly linked with development of enhanced intergranular misorientations, high angle boundaries, and classical shear textures characterized through orientation distribution functions.
Cyclic Shearing Deformation Behavior of Saturated Clays
无
2007-01-01
The apparatus for static and dynamic universal triaxial and torsional shear soil testing is employed to perform stress-controlled cyclic single-direction torsional shear tests and two-direction coupled shear tests under unconsolidated-undrained conditions. Through a series of tests on saturated clay, the effects of initial shear stress and stress reversal on the clay's strain-stress behavior are examined, and the behavior of pore water pressure is studied. The experimental results indicate that the patterns of stress-strain relations are distinctly influenced by the initial shear stress in the cyclic single-direction shear tests. When the initial shear stress is large and no stress reversal occurs, the predominant deformation behavior is characterized by an accumulative effect. When the initial shear stress is zero and symmetrical cyclic stress occurs, the predominant deformation behavior is characterized by a cyclic effect. The pore water pressure fluctuates around the confining pressure with the increase of cycle number. It seems that the fluctuating amplitude increases with the increase of the cyclic stress. But a buildup of pore water pressure does not occur. The deformations of clay samples under the complex initial and the cyclic coupled stress conditions include the normal deviatoric deformation and horizontal shear deformation, the average deformation and cyclic deformation. A general strain failure criterion taking into account these deformations is recommended and is proved more stable and suitable compared to the strain failure criteria currently used.
Periodically sheared 2D Yukawa systems
We present non-equilibrium molecular dynamics simulation studies on the dynamic (complex) shear viscosity of a 2D Yukawa system. We have identified a non-monotonic frequency dependence of the viscosity at high frequencies and shear rates, an energy absorption maximum (local resonance) at the Einstein frequency of the system at medium shear rates, an enhanced collective wave activity, when the excitation is near the plateau frequency of the longitudinal wave dispersion, and the emergence of significant configurational anisotropy at small frequencies and high shear rates
ON WALL SHEAR STRESS OF ARTERY
Liu Zhao-rong; Liu Bao-yu; Qin Kai-rong
2003-01-01
In this paper, a method was proposed that the wall shear stress of artery could be determined by measuring the centerline axial velocity and radial motion of arterial wall simultaneously.The method is simple in application and can get higher precision when it is used to determine the shear stress of arterial wall in vivo.As an example, the shear stress distribution in periodic oscillatory flow of human carotid was calculated and discussed.The computed results show that the shear stress distribution at any given instant is almost uniform and will be zero at the centerline and tends to maximum at the vessel wall.
Shear Behavior of Reinforced Concrete Shear Walls under Tensile Axial Force with Eccentricity
MIZOGUCHI, Mitsuo; ARAI, Yasuyuki; KUCHIJI, Hideki
2000-01-01
A lateral loading test of six reinforced concrete shear walls subjected to an eccentric tensile axial force was carried out to examine their shear behavior. Next facts ware confirmed on the shear strength of the walls subjected to an eccentric tensile axial force. The test results can be evaluat by the shear strength equation [2] considering axial tensile stress. The calculated values given by the (AIJ "Design Guidelines for Earthquake Resistant Reinforced Concrete Buildings Based on Inelasti...
Inverse Magnetic/Shear Catalysis
McInnes, Brett
2015-01-01
It is well known that very large magnetic fields are generated when the Quark-Gluon Plasma is formed during peripheral heavy-ion collisions. Lattice, holographic, and other studies strongly suggest that these fields may, for observationally relevant field values, induce ``inverse magnetic catalysis'', signalled by a lowering of the critical temperature for the chiral/deconfinement transition. The theoretical basis of this effect has recently attracted much attention; yet so far these investigations have not included another, equally dramatic consequence of the peripheral collision geometry: the QGP acquires a large angular momentum vector, parallel to the magnetic field. Here we use holographic techniques to argue that the angular momentum can also, independently, have an effect on transition temperatures, and we obtain a rough estimate of the relative effects of the presence of both a magnetic field and an angular momentum density. We find that the shearing angular momentum reinforces the effect of the magne...
Shear Viscosity from Lattice QCD
Mages, Simon W; Fodor, Zoltán; Schäfer, Andreas; Szabó, Kálmán
2015-01-01
Understanding of the transport properties of the the quark-gluon plasma is becoming increasingly important to describe current measurements at heavy ion collisions. This work reports on recent efforts to determine the shear viscosity h in the deconfined phase from lattice QCD. The main focus is on the integration of the Wilson flow in the analysis to get a better handle on the infrared behaviour of the spectral function which is relevant for transport. It is carried out at finite Wilson flow time, which eliminates the dependence on the lattice spacing. Eventually, a new continuum limit has to be carried out which sends the new regulator introduced by finite flow time to zero. Also the non-perturbative renormalization strategy applied for the energy momentum tensor is discussed. At the end some quenched results for temperatures up to 4 : 5 T c are presented
2015-01-01
The premarital sex of senior students in some universities of Anhui province is investigated. To protect the privacy of respondents, applying randomized response technique and stratified three-stage method, the proportion of senior students premari-tal sex is studied using attribute characteristic Warner model. According to total probability formulas and variance's basic properties in Probability and Mathematical Statistics and the classical sampling theory of Cochran, the proportion and variance of senior college students premarital sex are deduced at all levels and stages. The survey reveals that the proportion of senior students premarital sex is high. Therefore, we should actively instruct the undergraduates to treat the issues of premarital sex properly and rationally.%对安徽省某高校大四学生婚前性行为进行抽样调查,为保护被调查对象的隐私,采用随机应答技术( Random-ized Response Technique,简写为RRT)结合分层三阶段抽样调查方法,利用属性特征敏感问题Warner模型分析该校大四学生发生婚前性行为的比例。运用全概率公式及方差的基本性质等概率论与数理统计知识,结合Cochran W. G的经典抽样理论,推导出各层各阶段大四学生发生婚前性行为的比例及其方差。调查结果显示大四学生婚前性行为发生比例高。为此,应该积极引导大学生理性正确的对待婚前性行为。
Prediction of breeding values for tenderness of market animals from measurements on bulls.
Barkhouse, K L; Van Vleck, L D; Cundiff, L V; Koohmaraie, M; Lunstra, D D; Crouse, J D
1996-11-01
Data were tenderness measures on steaks from 237 bulls (Group II) slaughtered after producing freezable semen and on 1,431 related steers and heifers (market animals, Group I) from Angus, Hereford, Pinzgauer, Brahman, and Sahiwal crosses from the Germ Plasm Evaluation project at the U.S. Meat Animal Research Center. Tenderness was assessed through Warner-Bratzler Shear Force (SF), taste panel tenderness (TPT), marbling score (MS), and myofibrillar fragmentation index (MFI). For all traits, as fraction Bos indicus inheritance increased, implied tenderness decreased. Heritability estimates were generally not significantly different from zero. Genetic correlations generally indicated favorable associations among the traits. The range in predicted breeding values of bulls for market animal tenderness was small and from -.34 to .32 kg for market animal shear force. Because of low estimates of heritability for SF or TPT, results from this experiment indicate that selection based on tenderness of steaks sampled from intact or late castrate males slaughtered following collection of freezable quality semen would not be very effective in improving average tenderness of steaks from steers of heifer progeny. If a mean of heritability estimates reported in the literature of .27 for shear value was assumed for market steer and heifer progeny instead of .02 as found in the present study, then selection based on estimates of shear force in young bulls would be relatively more effective in improving shear force of market progeny. PMID:8923175
Study of shear-stiffened elastomers
Tian, Tongfei; Li, Weihua; Ding, Jie; Alici, Gursel; Du, Haiping
2013-06-01
Shear thickening fluids, which are usually concentrated colloidal suspensions composed of non-aggregating solid particles suspended in fluids, exhibit a marked increase in viscosity beyond a critical shear rate. This increased viscosity is seen as being both 'field-activated', due to the dependence on shearing rate, as well as reversible. Shear thickening fluids have found good applications as protection materials, such as in liquid body armor, vibration absorber or dampers. This research aims to expand the protection material family by developing a novel solid status shear thickening material, called shear-stiffened elastomers. These new shear-stiffened elastomers were fabricated with the mixture of silicone rubber and silicone oil. A total of four SSE samples were fabricated in this study. Their mechanical and rheological properties under both steady-state and dynamic loading conditions were tested with a parallel-plate. The effects of silicone oil composition and angular frequency were summarized. When raising the angular frequency in dynamic shear test, the storage modulus of conventional silicone rubber shows a small increasing trend with the frequency. However, if silicone oil is selected to be mixed with silicone rubber, the storage modulus increases dramatically when the frequency and strain are both beyond the critical values.
On the shear instability of fluid interfaces
Alexakis, A.; Young, Y; Rosner, R
2001-01-01
We examine the linear stability of fluid interfaces subjected to a shear flow. Our main object is to generalize previous work to arbitrary Atwood number, and to allow for surface tension and weak compressibility. The motivation derives from instances in astrophysical systems where mixing across material interfaces driven by shear flows may significantly affect the dynamical evolution of these systems.
Dynamics of colloidal crystals in shear flow
Derks, D.; Wu, Y.L.; van Blaaderen, A.; Imhof, A.
2009-01-01
We investigate particle dynamics in nearly hard sphere colloidal crystals submitted to a steady shear flow. Both the fluctuations of single colloids and the collective motion of crystalline layers as a whole are studied by using a home-built counter rotating shear cell in combination with confocal m
Sheared Ising models in three dimensions
Hucht, Alfred; Angst, Sebastian
2013-03-01
The nonequilibrium phase transition in sheared three-dimensional Ising models is investigated using Monte Carlo simulations in two different geometries corresponding to different shear normals [A. Hucht and S. Angst, EPL 100, 20003 (2012)]. We demonstrate that in the high shear limit both systems undergo a strongly anisotropic phase transition at exactly known critical temperatures Tc which depend on the direction of the shear normal. Using dimensional analysis, we determine the anisotropy exponent θ = 2 as well as the correlation length exponents ν∥ = 1 and ν⊥ = 1 / 2 . These results are verified by simulations, though considerable corrections to scaling are found. The correlation functions perpendicular to the shear direction can be calculated exactly and show Ornstein-Zernike behavior. Supported by CAPES-DAAD through PROBRAL as well as by the German Research Society (DFG) through SFB 616 ``Energy Dissipation at Surfaces.''
Trapped Electron Precession Shear Induced Fluctuation Decorrelation
We consider the effects of trapped electron precession shear on the microturbulence. In a similar way the strong E x B shear reduces the radial correlation length of ambient fluctuations, the radial variation of the trapped electron precession frequency can reduce the radial correlation length of fluctuations associated with trapped electrons. In reversed shear plasmas, with the explicit dependence of the trapped electron precession shearing rate on B(subscript)theta, the sharp radial gradient of T(subscript)e due to local electron heating inside qmin can make the precession shearing mechanism more effective, and reduce the electron thermal transport constructing a positive feedback loop for the T(subscript)e barrier formation
Numerical analysis of cross shear plate rolling
Zhang, Wenqi; Bay, Niels
1997-01-01
shear zone between the forward and backward slip zones in the deformation zone thus lowering the rolling load. A numerical analysis of the cross shear rolling process is carried out based on the slab method adopting Wanheim and Bay's general friction model. The pressure distribution along the contact......The rolling process is widely applied for industrial production of metal plates. In conventional plate rolling the two work rolls are rotating at the same peripheral speed. By introducing a specific difference in the speed of the two work rolls, cross shear rolling is introduced forming a central...... are in the roll gap, the position and the size of the shear zone and the rolling load are calculated. Experimental results are presented verifying the calculations. The numerical analysis facilitates a better understanding of the mechanics in cross shear plate rolling....
Experimental study on the adiabatic shear bands
Four martensitic steels (Z50CDV5 steel, 28CND8 steel, 35NCDV16 steel and 4340 steel) with different hardness between 190 and 600 Hsub(B) (Brinell hardness), have been studied by means of dynamic compressive tests on split Hopkinson pressure bar. Microscopic observations show that the fracture are associated to the development of adiabatic shear bands (except 4340 steel with 190 Hsub(B) hardness). By means of tests for which the deformation is stopped at predetermined levels, the measurement of shear and hardness inside the band and the matrix indicates the chronology of this phenomenon: first the localization of shear, followed by the formation of adiabatic shear band and ultimatly crack initiation and propagation. These results correlated with few simulations by finite elements have permitted to suggest two mecanisms of deformation leading to the formation of adiabatic shear bands in this specific test
Three dimensional fabric evolution of sheared sand
Hasan, Alsidqi; Alshibli, Khalid (UWA)
2012-10-24
Granular particles undergo translation and rolling when they are sheared. This paper presents a three-dimensional (3D) experimental assessment of fabric evolution of sheared sand at the particle level. F-75 Ottawa sand specimen was tested under an axisymmetric triaxial loading condition. It measured 9.5 mm in diameter and 20 mm in height. The quantitative evaluation was conducted by analyzing 3D high-resolution x-ray synchrotron micro-tomography images of the specimen at eight axial strain levels. The analyses included visualization of particle translation and rotation, and quantification of fabric orientation as shearing continued. Representative individual particles were successfully tracked and visualized to assess the mode of interaction between them. This paper discusses fabric evolution and compares the evolution of particles within and outside the shear band as shearing continues. Changes in particle orientation distributions are presented using fabric histograms and fabric tensor.
Squirming through shear-thinning fluids
Datt, Charu; Elfring, Gwynn J; Pak, On Shun
2015-01-01
Many microorganisms find themselves immersed in fluids displaying non-Newtonian rheological properties such as viscoelasticity and shear-thinning viscosity. The effects of viscoelasticity on swimming at low Reynolds numbers have already received considerable attention, but much less is known about swimming in shear-thinning fluids. A general understanding of the fundamental question of how shear-thinning rheology influences swimming still remains elusive. To probe this question further, we study a spherical squirmer in a shear-thinning fluid using a combination of asymptotic analysis and numerical simulations. Shear-thinning rheology is found to affect a squirming swimmer in nontrivial and surprising ways; we predict and show instances of both faster and slower swimming depending on the surface actuation of the squirmer. We also illustrate that while a drag and thrust decomposition can provide insights into swimming in Newtonian fluids, extending this intuition to problems in complex media can prove problemat...
Transient dynamics in dense colloidal suspensions under shear: shear rate dependence
A combination of confocal microscopy and rheology experiments, Brownian dynamics (BD) and molecular dynamics (MD) simulations and mode coupling theory (MCT) have been applied in order to investigate the effect of shear rate on the transient dynamics and stress-strain relations in supercooled and glassy systems under shear. Immediately after shear is switched on, the microscopic dynamics display super-diffusion and the macroscopic rheology a stress overshoot, which become more pronounced with increasing shear rate. MCT relates both to negative sections of the generalized shear modulus, which grow with increasing shear rate. When the inverse shear rate becomes much smaller than the structural relaxation time of the quiescent system, relaxation through Brownian motion becomes less important. In this regime, larger stresses are accumulated before the system yields and the transition from localization to flow occurs earlier and more abruptly.
Inverse magnetic/shear catalysis
McInnes, Brett
2016-05-01
It is well known that very large magnetic fields are generated when the Quark-Gluon Plasma is formed during peripheral heavy-ion collisions. Lattice, holographic, and other studies strongly suggest that these fields may, for observationally relevant field values, induce "inverse magnetic catalysis", signalled by a lowering of the critical temperature for the chiral/deconfinement transition. The theoretical basis of this effect has recently attracted much attention; yet so far these investigations have not included another, equally dramatic consequence of the peripheral collision geometry: the QGP acquires a large angular momentum vector, parallel to the magnetic field. Here we use holographic techniques to argue that the angular momentum can also, independently, have an effect on transition temperatures, and we obtain a rough estimate of the relative effects of the presence of both a magnetic field and an angular momentum density. We find that the shearing angular momentum reinforces the effect of the magnetic field at low values of the baryonic chemical potential, but that it can actually decrease that effect at high chemical potentials.
IMAGE ANALYSIS FOR MODELLING SHEAR BEHAVIOUR
Philippe Lopez
2011-05-01
Full Text Available Through laboratory research performed over the past ten years, many of the critical links between fracture characteristics and hydromechanical and mechanical behaviour have been made for individual fractures. One of the remaining challenges at the laboratory scale is to directly link fracture morphology of shear behaviour with changes in stress and shear direction. A series of laboratory experiments were performed on cement mortar replicas of a granite sample with a natural fracture perpendicular to the axis of the core. Results show that there is a strong relationship between the fracture's geometry and its mechanical behaviour under shear stress and the resulting damage. Image analysis, geostatistical, stereological and directional data techniques are applied in combination to experimental data. The results highlight the role of geometric characteristics of the fracture surfaces (surface roughness, size, shape, locations and orientations of asperities to be damaged in shear behaviour. A notable improvement in shear understanding is that shear behaviour is controlled by the apparent dip in the shear direction of elementary facets forming the fracture.
Hierarchical cosmic shear power spectrum inference
Alsing, Justin; Heavens, Alan; Jaffe, Andrew H.; Kiessling, Alina; Wandelt, Benjamin; Hoffmann, Till
2016-02-01
We develop a Bayesian hierarchical modelling approach for cosmic shear power spectrum inference, jointly sampling from the posterior distribution of the cosmic shear field and its (tomographic) power spectra. Inference of the shear power spectrum is a powerful intermediate product for a cosmic shear analysis, since it requires very few model assumptions and can be used to perform inference on a wide range of cosmological models a posteriori without loss of information. We show that joint posterior for the shear map and power spectrum can be sampled effectively by Gibbs sampling, iteratively drawing samples from the map and power spectrum, each conditional on the other. This approach neatly circumvents difficulties associated with complicated survey geometry and masks that plague frequentist power spectrum estimators, since the power spectrum inference provides prior information about the field in masked regions at every sampling step. We demonstrate this approach for inference of tomographic shear E-mode, B-mode and EB-cross power spectra from a simulated galaxy shear catalogue with a number of important features; galaxies distributed on the sky and in redshift with photometric redshift uncertainties, realistic random ellipticity noise for every galaxy and a complicated survey mask. The obtained posterior distributions for the tomographic power spectrum coefficients recover the underlying simulated power spectra for both E- and B-modes.
Shear Reinforcements in the Reinforced Concrete Beams
Moayyad M. Al-Nasra
2013-10-01
Full Text Available - This study focuses on the use of different types of shear reinforcement in the reinforced concrete beams. Four different types of shear reinforcement are investigated; traditional stirrups, welded swimmer bars, bolted swimmer bars, and u-link bolted swimmer bars. Beam shear strength as well as beam deflection are the main two factors considered in this study. Shear failure in reinforced concrete beams is one of the most undesirable modes of failure due to its rapid progression. This sudden type of failure made it necessary to explore more effective ways to design these beams for shear. The reinforced concrete beams show different behavior at the failure stage in shear compare to the bending, which is considered to be unsafe mode of failure. The diagonal cracks that develop due to excess shear forces are considerably wider than the flexural cracks. The cost and safety of shear reinforcement in reinforced concrete beams led to the study of other alternatives. Swimmer bar system is a new type of shear reinforcement. It is a small inclined bars, with its both ends bent horizontally for a short distance and welded or bolted to both top and bottom flexural steel reinforcement. Regardless of the number of swimmer bars used in each inclined plane, the swimmer bars form plane-crack interceptor system instead of bar-crack interceptor system when stirrups are used. Several reinforced concrete beams were carefully prepared and tested in the lab. The results of these tests will be presented and discussed. The deflection of each beam is also measured at incrementally increased applied load.
Shear viscosity of liquid mixtures: Mass dependence
Expressions for zeroth, second, and fourth sum rules of transverse stress autocorrelation function of two component fluid have been derived. These sum rules and Mori's memory function formalism have been used to study shear viscosity of Ar-Kr and isotopic mixtures. It has been found that theoretical result is in good agreement with the computer simulation result for the Ar-Kr mixture. The mass dependence of shear viscosity for different mole fraction shows that deviation from ideal linear model comes even from mass difference in two species of fluid mixture. At higher mass ratio shear viscosity of mixture is not explained by any of the emperical model. (author)
Magnetized stratified rotating shear waves.
Salhi, A; Lehner, T; Godeferd, F; Cambon, C
2012-02-01
We present a spectral linear analysis in terms of advected Fourier modes to describe the behavior of a fluid submitted to four constraints: shear (with rate S), rotation (with angular velocity Ω), stratification, and magnetic field within the linear spectral theory or the shearing box model in astrophysics. As a consequence of the fact that the base flow must be a solution of the Euler-Boussinesq equations, only radial and/or vertical density gradients can be taken into account. Ertel's theorem no longer is valid to show the conservation of potential vorticity, in the presence of the Lorentz force, but a similar theorem can be applied to a potential magnetic induction: The scalar product of the density gradient by the magnetic field is a Lagrangian invariant for an inviscid and nondiffusive fluid. The linear system with a minimal number of solenoidal components, two for both velocity and magnetic disturbance fields, is eventually expressed as a four-component inhomogeneous linear differential system in which the buoyancy scalar is a combination of solenoidal components (variables) and the (constant) potential magnetic induction. We study the stability of such a system for both an infinite streamwise wavelength (k(1) = 0, axisymmetric disturbances) and a finite one (k(1) ≠ 0, nonaxisymmetric disturbances). In the former case (k(1) = 0), we recover and extend previous results characterizing the magnetorotational instability (MRI) for combined effects of radial and vertical magnetic fields and combined effects of radial and vertical density gradients. We derive an expression for the MRI growth rate in terms of the stratification strength, which indicates that purely radial stratification can inhibit the MRI instability, while purely vertical stratification cannot completely suppress the MRI instability. In the case of nonaxisymmetric disturbances (k(1) ≠ 0), we only consider the effect of vertical stratification, and we use Levinson's theorem to demonstrate the
Shear strength measurements of ductile polymer films with controlled normal to shear plane angles
Graphical abstract: The unique test fixture that is capable of controlling the normal to shear plane angle in a confined testing space was able to measure the shear strength of polymer films exclusively in cohesive failure. Two specimens were loaded in series such that as one fractured the other was in a state just prior to fracture and could be used for the investigation of shear bands. Highlights: → We design a novel method to measure the cohesive shear strength of polymer films. → The measured shear strength can be regarded as an intrinsic property. → The test fixture is capable of controlling the normal to shear plane angle in a confined space. → Two specimens are loaded in series such that as one fractures the other will be ready for fracture. - Abstract: Shear strength of the adhesives and polymer films was usually measured by lap shear test method. However, their fracture often associates with the combination of interfacial, interfacial-cohesive and cohesive failures. To confine the shear failure exclusively in cohesion so that the reported shear strength can be regarded as an intrinsic property of the polymer films, in this study we designed a unique test fixture that is capable of controlling the normal to shear plane angle in a confined testing space. Two poly(methyl acrylate-co-methyl methacrylate) film specimens were loaded in series in the test fixture such that as one fractured the other was in a state just prior to fracture and could be used for the investigation of shear bands by scanning electron microscopy (SEM). As the normal to shear plane angle was increased from 30 to 60o, the shear bands were more concentrated on the center region owing to the higher normal compressive stress. For the fractured specimen, the fracture surface investigated by SEM showed the striations which can be related to the shear bands. As the normal to shear plane angle was increased from 30 to 45o, the concentrated shear bands caused less striations perpendicular
Wall Shear Rates in Taylor Vortex Flow
V. Sobolik
2011-01-01
Full Text Available Wall shear rate and its axial and azimuthal components were evaluated in stable Taylor vortices. The measurements were carried out in a broad interval of Taylor numbers (52-725 and several gap width (R1/R2 = 0.5 – 0.8 by two three-segment electrodiffusion probes and three single probes flush mounted in the wall of the outer fixed cylinder. The axial distribution of wall shear rate components was obtained by sweeping the vortices along the probes using a slow axial flow. The experimental results were verified by CFD simulations. The knowledge of local wall shear rates and its fluctuations is of primordial interest for industrial applications like tangential filtration, membrane reactors and bioreactors containing shear sensitive cells.
Localization in inelastic rate dependent shearing deformations
Katsaounis, Theodoros
2016-09-04
Metals deformed at high strain rates can exhibit failure through formation of shear bands, a phenomenon often attributed to Hadamard instability and localization of the strain into an emerging coherent structure. We verify formation of shear bands for a nonlinear model exhibiting strain softening and strain rate sensitivity. The effects of strain softening and strain rate sensitivity are first assessed by linearized analysis, in- dicating that the combined effect leads to Turing instability. For the nonlinear model a class of self-similar solutions is constructed, that depicts a coherent localizing struc- ture and the formation of a shear band. This solution is associated to a heteroclinic orbit of a dynamical system. The orbit is constructed numerically and yields explicit shear localizing solutions.
Mesoscale Elucidation of Biofilm Shear Behavior
Barai, Pallab; Mukherjee, Partha P
2015-01-01
Formation of bacterial colonies as biofilm on the surface/interface of various objects has the potential to impact not only human health and disease but also energy and environmental considerations. Biofilms can be regarded as soft materials, and comprehension of their shear response to external forces is a key element to the fundamental understanding. A mesoscale model has been presented in this article based on digitization of a biofilm microstructure. Its response under externally applied shear load is analyzed. Strain stiffening type behavior is readily observed under high strain loads due to the unfolding of chains within soft polymeric substrate. Sustained shear loading of the biofilm network results in strain localization along the diagonal direction. Rupture of the soft polymeric matrix can potentially reduce the intercellular interaction between the bacterial cells. Evolution of stiffness within the biofilm network under shear reveals two regions: a) initial increase in stiffness due to strain stiffe...
Assessment of Shear Strength in Silty Soils
Stefaniak Katarzyna
2015-06-01
Full Text Available The article presents a comparison of shear strength values in silty soils from the area of Poznań, determined based on selected Nkt values recommended in literature, with values of shear strength established on the basis of Nkt values recommended by the author. Analysed silty soils are characterized by the carbonate cementation zone, which made it possible to compare selected empirical coefficients both in normally consolidated and overconsolidated soils
Linear Shear Rheology of Incompressible Foams
Buzza, D.; D. Lu, C.-Y.; Cates, M.
1995-01-01
We discuss various mechanisms for viscous dissipation in the linear response to oscillatory shear of incompressible foams (such as biliquid foams or dense emulsions). These include viscous flow of liquid in films and plateau borders; intrinsic viscosity of the surfactant layers; and diffusion resistance. Marangoni-type and marginal regeneration mechanisms are considered for the transport of surfactant. We predict (on the basis of typical parameters for biliquid foams) that the zero shear visc...
Liquid migration in sheared unsaturated granular media
Mani, Roman; Kadau, Dirk; Herrmann, Hans J.
2012-01-01
We show how liquid migrates in sheared unsaturated granular media using a grain scale model for capillary bridges. Liquid is redistributed to neighboring contacts after rupture of individual capillary bridges leading to redistribution of liquid on large scales. The liquid profile evolution coincides with a recently developed continuum description for liquid migration in shear bands. The velocity profiles which are linked to the migration of liquid as well as the density profiles of wet and dr...
Dynamo quenching due to shear flow
Leprovost, Nicolas; Kim, Eun-Jin
2008-01-01
We provide a theory of dynamo ($\\alpha$ effect) and momentum transport in three-dimensional magnetohydrodynamics. For the first time, we show that the $\\alpha$ effect is severely reduced by the shear even in the absence of magnetic field. The $\\alpha$ effect is further suppressed by magnetic fields well below equipartition (with the large-scale flow) with different scalings depending on the relative strength of shear and magnetic field. The turbulent viscosity is also found to be significantl...
Schematic mode coupling theories for shear thinning, shear thickening, and jamming
Cates, Michael E.; Holmes, Colin B.; Fuchs, Matthias; Henrich, Oliver
2003-01-01
Mode coupling theory (MCT) appears to explain several, though not all, aspects of the glass transition in colloids (particularly when short-range attractions are present). Developments of MCT, from rational foundations in statistical mechanics, account qualitatively for nonlinear flow behaviour such as the yield stress of a hard-sphere colloidal glass. Such theories so far only predict shear thinning behaviour, whereas in real colloids both shear thinning and shear thickening can be found. Th...
The Radiation Hydrodynamics of Relativistic Shear Flows
Coughlin, Eric R.; Begelman, Mitchell C.
2016-07-01
We present a method for analyzing the interaction between radiation and matter in regions of intense, relativistic shear that can arise in many astrophysical situations. We show that there is a simple velocity profile that should be manifested in regions of large shear that have “lost memory” of their boundary conditions, and we use this self-similar velocity profile to construct the surface of last scattering, or the τ ≃ 1 surface, as viewed from any comoving point within the flow. We demonstrate that a simple treatment of scattering from this τ ≃ 1 surface exactly conserves photon number, and we derive the rate at which the radiation field is heated due to the shear present in the flow. The components of the comoving radiation energy–momentum tensor are calculated, and we show that they have relatively simple, approximate forms that interpolate between the viscous (small shear) and streaming (large shear) limits. We put our expression for the energy–momentum tensor in a covariant form that does not depend on the explicit velocity profile within the fluid and, therefore, represents a natural means for analyzing general, radiation-dominated, relativistic shear flows.
Behavior of Tilted Angle Shear Connectors.
Koosha Khorramian
Full Text Available According to recent researches, angle shear connectors are appropriate to transfer longitudinal shear forces across the steel-concrete interface. Angle steel profile has been used in different positions as L-shaped or C-shaped shear connectors. The application of angle shear connectors in tilted positions is of interest in this study. This study investigates the behaviour of tilted-shaped angle shear connectors under monotonic loading using experimental push out tests. Eight push-out specimens are tested to investigate the effects of different angle parameters on the ultimate load capacity of connectors. Two different tilted angles of 112.5 and 135 degrees between the angle leg and steel beam are considered. In addition, angle sizes and lengths are varied. Two different failure modes were observed consisting of concrete crushing-splitting and connector fracture. By increasing the size of connector, the maximum load increased for most cases. In general, the 135 degrees tilted angle shear connectors have a higher strength and stiffness than the 112.5 degrees type.
Analysis of shear banding in twelve materials
Batra, R. C.; Kim, C. H.
The problem of the initiation and growth of shear bands in 12 different materials, namely, OFHC copper, Cartridge brass, Nickel 200, Armco IF (interstitial free) iron, Carpenter electric iron, 1006 steel, 2024-T351 aluminum, 7039 aluminum, low alloy steel, S-7 tool steel, Tungsten alloy, and Depleted Uranium (DU -0.75 Ti) is studied with the objectives of finding out when a shear band initiates, and upon what parameters does the band width depend. The nonlinear coupled partial differential equations governing the overall simple shearing deformations of a thermally softening viscoplastic block are analyzed. It is assumed that the thermomechanical response of these materials can be adequately represented by the Johnson-Cook law, and the only inhomogeneity present in the block is the variation in its thickness. The effect of the defect size on the initiation and subsequent growth of the band is also studied. It is found that, for each one of these 12 materials, the deformation has become nonhomogeneous by the time the maximum shear stress occurs. Also the band width, computed when the shear stress has dropped to 85 percent of its peak value, does not correlate well with the thermal conductivity of the material. The band begins to grow rapidly when the shear stress has dropped to 90 percent of its maximum value.
Cosmology with cosmic shear observations: a review.
Kilbinger, Martin
2015-07-01
Cosmic shear is the distortion of images of distant galaxies due to weak gravitational lensing by the large-scale structure in the Universe. Such images are coherently deformed by the tidal field of matter inhomogeneities along the line of sight. By measuring galaxy shape correlations, we can study the properties and evolution of structure on large scales as well as the geometry of the Universe. Thus, cosmic shear has become a powerful probe into the nature of dark matter and the origin of the current accelerated expansion of the Universe. Over the last years, cosmic shear has evolved into a reliable and robust cosmological probe, providing measurements of the expansion history of the Universe and the growth of its structure. We review here the principles of weak gravitational lensing and show how cosmic shear is interpreted in a cosmological context. Then we give an overview of weak-lensing measurements, and present the main observational cosmic-shear results since it was discovered 15 years ago, as well as the implications for cosmology. We then conclude with an outlook on the various future surveys and missions, for which cosmic shear is one of the main science drivers, and discuss promising new weak cosmological lensing techniques for future observations. PMID:26181770
Accurate shear measurement with faint sources
Zhang, Jun; Foucaud, Sebastien [Center for Astronomy and Astrophysics, Department of Physics and Astronomy, Shanghai Jiao Tong University, 955 Jianchuan road, Shanghai, 200240 (China); Luo, Wentao, E-mail: betajzhang@sjtu.edu.cn, E-mail: walt@shao.ac.cn, E-mail: foucaud@sjtu.edu.cn [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Nandan Road 80, Shanghai, 200030 (China)
2015-01-01
For cosmic shear to become an accurate cosmological probe, systematic errors in the shear measurement method must be unambiguously identified and corrected for. Previous work of this series has demonstrated that cosmic shears can be measured accurately in Fourier space in the presence of background noise and finite pixel size, without assumptions on the morphologies of galaxy and PSF. The remaining major source of error is source Poisson noise, due to the finiteness of source photon number. This problem is particularly important for faint galaxies in space-based weak lensing measurements, and for ground-based images of short exposure times. In this work, we propose a simple and rigorous way of removing the shear bias from the source Poisson noise. Our noise treatment can be generalized for images made of multiple exposures through MultiDrizzle. This is demonstrated with the SDSS and COSMOS/ACS data. With a large ensemble of mock galaxy images of unrestricted morphologies, we show that our shear measurement method can achieve sub-percent level accuracy even for images of signal-to-noise ratio less than 5 in general, making it the most promising technique for cosmic shear measurement in the ongoing and upcoming large scale galaxy surveys.
Two-dimensional magnetic colloids under shear.
Mohorič, Tomaž; Dobnikar, Jure; Horbach, Jürgen
2016-04-01
Complex rheological properties of soft disordered solids, such as colloidal gels or glasses, inspire a range of novel applications. However, the microscopic mechanisms of their response to mechanical loading are not well understood. Here, we elucidate some aspects of these mechanisms by studying a versatile model system, i.e. two-dimensional superparamagnetic colloids in a precessing magnetic field, whose structure can be tuned from a hexagonal crystal to a disordered gel network by varying the external field opening angle θ. We perform Langevin dynamics simulations subjecting these structures to a constant shear rate and observe three qualitatively different types of material response. In hexagonal crystals (θ = 0°), at a sufficiently low shear rate, plastic flow occurs via successive stress drops at which the stress releases due to the formation of dislocation defects. The gel network at θ = 48°, on the contrary, via bond rearrangement and transient shear banding evolves into a homogeneously stretched network at large strains. The latter structure remains metastable after switching off of the shear. At θ = 50°, the external shear makes the system unstable against phase separation and causes a failure of the network structure leading to the formation of hexagonal close packed clusters interconnected by particle chains. At a microcopic level, our simulations provide insight into some of the mechanisms by which strain localization as well as material failure occur in a simple gel-like network. Furthermore, we demonstrate that new stretched network structures can be generated by the application of shear. PMID:26877059
A new look on blood shear thinning
Abkarian, Manouk; Lanotte, Luca; Fromental, Jean-Marc; Mendez, Simon; Fedosov, Dmitry; Gompper, Gerhard; Mauer, Johannes; Claveria, Viviana
2015-11-01
Blood is a shear-thinning fluid. At shear rates γ˙ rouleaux'' formed by stacked red blood cells (RBCs). For higher γ˙ in the range 10 - 1000 s-1 , where RBCs flow as single elements, studies demonstrated that RBCs suspended in a viscous fluid mimicking the viscosity of whole blood, deformed into ellipsoids aligned steadily in the direction of the flow, while their membrane rotated about their center of mass like a tank-tread. Such drop-like behavior seemed to explain shear-thinning. Here, using rheometers, microfluidics and simulations, we show that the dynamics of single RBCs in plasma-like fluids display a different sequence of deformation for increasing shear rates going from discocytes to successively, stomatocytes, folded stomatocytes, trilobes and tetralobes, but never ellipsoids. This result is also identical for physiological hematocrits. We correlate this shape diagram to the different regimes in blood rheology for high shear rates and propose a new-look on the interpretation of blood shear-thinning behavior.
Influence of Shear on Rotation Capacity of Reinforced Concrete Members Without Shear Reinforcement
Vaz Rodrigues, Rui; Muttoni, Aurelio; Fernández Ruiz, Miguel
2010-01-01
The influence of shear on the rotation capacity of one-way slabs without shear reinforcement is investigated in this paper by means of an experimental study. The experimental program consisted of 11 slab strips 8400 mm (331 in.) long and 450 mm (17.7 in.) thick with a flexural reinforcement ratio of 0.79%. The rotation capacity was investigated for various values of the shear span and for two types of flexural reinforcement (hot-rolled and cold-worked bars). The specimens developed shear fail...
Local shear in general magnetic stellarator geometry
There has been relatively little work on microturbulence in stellarators. Bhattacharjee et al. gave a purely numerical illustration of linear instability for the simplest cold ion electrostatic drift wave using a general magnetic geometry ballooning mode representation. This approach was recently extended by N. Dominguez et al. with emphasis on analytic formulas derived from a single stellarator harmonic and a treatment of dissipative helical well trapped electron modes. Neither paper treats the puzzling question: How are high-m modes radially localized in stellarators with weak or no global shear? Since diffusion is likely proportional to the square of radial mode widths, this is as important as determining the growth rate. This paper argues that modes are localized by local shear not global shear. Local shear arises from the fact that the helical ripple from the external coils providing the stellarator transform increase with radius. The authors note that local curvature from the helical ripple can localize the modes along the field lines. Thus they argue that stellarators with no global shear and favorable average curvature (W7-AS) should have the same basic transport as torsatrons (Heliotron and ATF) with global shear and average unfavorable curvature. In detail they derive a complete along the field line nonlinear ballooning mode formalism in magnetic coordinates for general stellarator geometry. They apply this to the case of a single helical harmonic. For illustration, they derive a formula for diffusion from collisionless helically trapped electrons modes proportional to the square of the local shear. The model diffusion matches the universal gyroBohm LHD stellarator scaling
Exponential Shear Flow of Linear, Entangled Polymeric Liquids
Neergaard, Jesper; Park, Kyungho; Venerus, David C.; Schieber, Jay D.
2000-01-01
A previously proposed reptation model is used to interpret exponential shear flow data taken on an entangled polystyrenesolution. Both shear and normal stress measurements are made during exponential shear using mechanical means. The model iscapable of explaining all trends seen in the data, and...... suggests a novel analysis of the data. This analysis demonstrates thatexponential shearing flow is no more capable of stretching polymer chains than is inception of steady shear at comparableinstantaneous shear rates. In fact, all exponential shear flow stresses measured are bounded quantitatively by...
Punching shear capacity of reinforced concrete slabs with headed shear studs
Hoang, Linh Cao; Pop, Anamaria
2015-01-01
design. For this purpose, an extension of the upper-bound crack sliding model is proposed. This involves analysis of sliding mechanisms in yield lines developed both within and outside the zone with shear reinforcement. Various types of headed shear studs were considered. The results obtained using the...
Monotonic direct simple shear tests on sand under multidirectional loading
Li, Yao; Yang, Yunming; Yu, Hai-Sui; Roberts, Gethin Wyn
2016-01-01
Stress–strain responses of Leighton Buzzard sand are investigated under bidirectional shear. The tests are conducted by using the variable direction dynamic cyclic simple shear (VDDCSS), which is manufactured by Global Digital Systems (GDS) Instruments Ltd., U.K. Soil samples are anisotropically consolidated under a vertical normal stress and horizontal shear stress and then sheared in undrained conditions by applying a horizontal shear stress acting along a different direction from the conso...
Phase Coexistence of Complex Fluids in Shear Flow
Olmsted, Peter D; Lu, C-Y David
1999-01-01
We present some results of recent calculations of rigid rod-like particles in shear flow, based on the Doi model. This is an ideal model system for exhibiting the generic behavior of shear-thinning fluids (polymer solutions, wormlike micelles, surfactant solutions, liquid crystals) in shear flow. We present calculations of phase coexistence under shear among weakly-aligned (paranematic) and strongly-aligned phases, including alignment in the shear plane and in the vorticity direction (log-rol...
Analytical theory of forced rotating sheared turbulence: The Parallel case
Leprovost, Nicolas; Kim, Eun-Jin
2008-01-01
Forced turbulence combined with the effect of rotation and shear flow is studied. In a previous paper [N. Leprovost and E. J. Kim, Phys. Rev. E 78, 016301 (2008)], we considered the case where the shear and the rotation are perpendicular. Here, we consider the complementary case of parallel rotation and shear, elucidating how rotation and flow shear influence the generation of shear flow (e.g., the direction of energy cascade), turbulence level, transport of particles, and momentum. We show t...
Colloidal Aggregate Structure under Shear by USANS
Chatterjee, Tirtha; van Dyk, Antony K.; Ginzburg, Valeriy V.; Nakatani, Alan I.
2015-03-01
Paints are complex formulations of polymeric binders, inorganic pigments, dispersants, surfactants, colorants, rheology modifiers, and other additives. A commercially successful paint exhibits a desired viscosity profile over a wide shear rate range from 10-5 s-1 for settling to >104 s-1 for rolling, and spray applications. Understanding paint formulation structure is critical as it governs the paint viscosity profile. However, probing paint formulation structure under shear is a challenging task due to the formulation complexity containing structures with different hierarchical length scales and their alterations under the influence of an external flow field. In this work mesoscale structures of paint formulations under shear are investigated using Ultra Small-Angle Neutron Scattering (rheo-USANS). Contrast match conditions were utilized to independently probe the structure of latex binder particle aggregates and the TiO2 pigment particle aggregates. Rheo-USANS data revealed that the aggregates are fractal in nature and their self-similarity dimensions and correlations lengths depend on the chemistry of the binder particles, the type of rheology modifier present and the shear stress imposed upon the formulation. These results can be explained in the framework of diffusion and reaction limited transient aggregates structure evolution under simple shear.
Stochastic parametric resonance in shear flows
F. J. Poulin
2005-01-01
Full Text Available Time-periodic shear flows can give rise to Parametric Instability (PI, as in the case of the Mathieu equation (Stoker, 1950; Nayfeh and Mook, 1995. This mechanism results from a resonance between the oscillatory basic state and waves that are superimposed on it. Farrell and Ioannou (1996a, b explain that PI occurs because the snap-shots of the velocity profile are subject to transient growth. If the flows were purely steady the transient growth would subside and not have any long lasting effect. However, the coupling between transient growth and the time variation of the basic state create PI. Mathematically, transient growth, and therefore PI, are due to the nonorthogonal eigenspace in the linearized system. Poulin et al. (2003 studied a time-periodic barotropic shear flow that exhibited PI, and thereby produced mixing at the interface between Potential Vorticity (PV fronts. The instability led to the formation of vortices that were stretched. A later study of an oscillatory current in the Cape Cod Bay illustrated that PI can occur in realistic shear flows (Poulin and Flierl, 2005. These studies assumed that the basic state was periodic with a constant frequency and amplitude. In this work we study a shear flow similar to that found in Poulin et al. (2003, but now where the magnitude of vorticity is a stochastic variable. We determine that in the case of stochastic shear flows the transient growth of perturbations of the snapshots of the basic state still generate PI.
Shear melting of confined solid monolayer films
Schoen, M. (Institut fuer Experimentalphysik, Naturwissenschaftliche Fakultaet, Universitaet Witten/Herdecke, Stockumer Str. 10, D-5810 Witten (Germany)); Diestler, D.J. (Richard B. Wetherill Laboratory of Chemistry, Purdue University, West Lafayette, Indiana 47907 (United States)); Cushman, J.H. (Lilly Hall of Life Sciences, Purdue University, West Lafayette, Indiana 47907 (United States))
1993-03-01
Strain-induced melting of solid phases in a prototypal slit pore [a monatomic fluid constrained between two plane-parallel walls made up like atoms fixed in the configuration of the (100) plane of the face-centered cubic lattice] is investigated by Monte Carlo calculations in the isostress-isostrain'' ensemble where the thermodynamic state of the pore phase is uniquely determined by a fixed number of molecules, constant load or normal stress and constant temperature. If the walls are properly aligned laterally, a commensurate solid phase can form epitaxially. Moving the walls out of alignment (shear strain) creates a distorted solid, which reacts (shear stress) by tending to realign the walls. If the shear strain is increased beyond a critical value, the solid begins to melt. However, melting is a continuous transition which does not immediately lead to a normal liquid, but rather a disordered phase that sustains a non-negligible shear stress. Shear melting is contrasted to ordinary melting at constant normal stress, which appears to be a first-order transition.
On Shearing Fluids with Homogeneous Densities
Srivastava, D C; Kumar, Rajesh
2016-01-01
In this paper, we study shearing spherically symmetric homogeneous density fluids in comoving coordinates. It is found that the expansion of the four-velocity of a perfect fluid is homogeneous, whereas its shear is generated by an arbitrary function of time M(t), related to the mass function of the distribution. This function is found to bear a functional relationship with density. The field equations are reduced to two coupled first order ordinary differential equations for the metric coefficients, g 11 and g 22. We have explored a class of solutions assuming that M is a linear function of the density. This class embodies, as a subcase, the complete class of shear-free solutions. We have discussed the off quoted work of Kustaanheimo (1947) and have noted that it deals with shear-free fluids having anisotropic pressure. It is shown that the anisotropy of the fluid is characterized by an arbitrary function of time. We have discussed some issues of historical priorities and credentials related to shear-free sol...
The radiation hydrodynamics of relativistic shear flows
Coughlin, Eric R
2016-01-01
We present a method for analyzing the interaction between radiation and matter in regions of intense, relativistic shear that can arise in many astrophysical situations. We show that there is a simple velocity profile that should be manifested in regions of large shear that have "lost memory" of their boundary conditions, and we use this self-similar velocity profile to construct the surface of last scattering, or $\\tau \\simeq 1$ surface, as viewed from any comoving point within the flow. We demonstrate that a simple treatment of scattering from this $\\tau \\simeq 1$ surface exactly conserves photon number, and derive the rate at which the radiation field is heated due to the shear present in the flow. The components of the comoving radiation energy-momentum tensor are calculated, and we show that they have relatively simple, approximate forms that interpolate between the viscous (small shear) and streaming (large shear) limits. We put our expression for the energy-momentum tensor in a covariant form that does...
Pressure-shear experiments on granular materials.
Reinhart, William Dodd (Sandia National Laboratories, Albuquerque, NM); Thornhill, Tom Finley, III (, Sandia National Laboratories, Albuquerque, NM); Vogler, Tracy John; Alexander, C. Scott (Sandia National Laboratories, Albuquerque, NM)
2011-10-01
Pressure-shear experiments were performed on granular tungsten carbide and sand using a newly-refurbished slotted barrel gun. The sample is a thin layer of the granular material sandwiched between driver and anvil plates that remain elastic. Because of the obliquity, impact generates both a longitudinal wave, which compresses the sample, and a shear wave that probes the strength of the sample. Laser velocity interferometry is employed to measure the velocity history of the free surface of the anvil. Since the driver and anvil remain elastic, analysis of the results is, in principal, straightforward. Experiments were performed at pressures up to nearly 2 GPa using titanium plates and at higher pressure using zirconium plates. Those done with the titanium plates produced values of shear stress of 0.1-0.2 GPa, with the value increasing with pressure. On the other hand, those experiments conducted with zirconia anvils display results that may be related to slipping at an interface and shear stresses mostly at 0.1 GPa or less. Recovered samples display much greater particle fracture than is observed in planar loading, suggesting that shearing is a very effective mechanism for comminution of the grains.
Review article: Cosmology with cosmic shear observations
Kilbinger, Martin
2014-01-01
Cosmic shear is the distortion of images of distant galaxies due to weak gravitational lensing by the large-scale structure in the Universe. Such images are coherently deformed by the tidal field of matter inhomogeneities along the line of sight. By measuring galaxy shape correlations, we can study the properties and evolution of structure on large scales as well as the geometry of the Universe. Thus, cosmic shear has become a powerful probe into the nature of dark matter and the origin of the current accelerated expansion of the Universe. Over the last years, cosmic shear has evolved into a reliable and robust cosmological probe, providing measurements of the expansion history of the Universe and the growth of its structure. We review here the principles of weak gravitational lensing and show how cosmic shear is interpreted in a cosmological context. Then we give an overview of weak-lensing measurements, and present the main observational cosmic-shear results since it was discovered 15 years ago, as well as ...
A Refined Shear Deformation Plate Theory
Liu, Yucheng
2011-04-01
An improved higher-order shear deformation theory of plates is presented in this paper. The theory is developed from the transverse shear deformation theory presented by Ambartsumian [11]. The present plate theory contains kinematics of higher-order displacement field of plates, a system of higher-order differential equilibrium equations in terms of the three generalized displacements of bending plates, and a system of boundary conditions at each edge of plate boundaries. The present shear deformation theory of plates is validated by applying it to solve torsional plates and simply supported plates. The obtained solutions using the present theory are compared with the solutions of other shear-deformation theories. A good agreement is achieved through these comparisons and the advantages of the present theory are clearly verified. The shear deformation plate theory presented here can be applied to the analysis of laminated composite plates to better predict their dynamic and static behaviors. The proposed theory should also be supplemented to the theory of finite element analysis for developing new shell elements.
Delayed shear enhancement in mesoscale atmospheric dispersion
Moran, M.D. [Atmospheric Environment Service, Ontario (Canada); Pielke, R.A. [Colorado State Univ., Fort Collins, CO (United States)
1994-12-31
Mesoscale atmospheric dispersion (MAD) is more complicated than smaller-scale dispersion because the mean wind field can no longer be considered steady or horizontally homogeneous over mesoscale time and space scales. Wind shear also plays a much more important role on the mesoscale: horizontal dispersion can be enhanced and often dominated by vertical wind shear on these scales through the interaction of horizontal differential advection and vertical mixing. Just over 30 years ago, Pasquill suggested that this interaction need not be simultaneous and that the combination of differential horizontal advection with delayed or subsequent vertical mixing could maintain effective horizontal diffusion in spite of temporal or spatial reductions in boundary-layer turbulence intensity. This two-step mechanism has not received much attention since then, but a recent analysis of observations from and numerical simulations of two mesoscale tracer experiments suggests that delayed shear enhancement can play an important role in MAD. This paper presents an overview of this analysis, with particular emphasis on the influence of resolvable vertical shear on MAD in these two case studies and the contributions made by delayed shear enhancement.
Hydrodynamic theory of tissue shear flow
Popović, Marko; Merkel, Matthias; Etournay, Raphaël; Eaton, Suzanne; Jülicher, Frank; Salbreux, Guillaume
2016-01-01
We propose a hydrodynamic theory to describe shear flows in developing epithelial tissues. We introduce hydrodynamic fields corresponding to state properties of constituent cells as well as a contribution to overall tissue shear flow due to rearrangements in cell network topology. We then construct a constitutive equation for the shear rate due to topological rearrangements. We identify a novel rheological behaviour resulting from memory effects in the tissue. We show that anisotropic deformation of tissue and cells can arise from two distinct active cellular processes: generation of active stress in the tissue, and actively driven cellular rearrangements. These two active processes result in distinct cellular and tissue shape changes, depending on boundary conditions applied on the tissue. Our findings have consequences for the understanding of tissue morphogenesis during development.
Spiral morphology and galactic shear rate
Grand, Robert J J; Cropper, Mark
2012-01-01
Spiral galaxies are observed to exhibit a range of morphologies, in particular in the shape of spiral arms. A key diagnostic parameter is the pitch angle, which describes how tightly wound the spiral arms are. Observationally and analytically, a correlation between pitch angle and galactic shear rate has been detected. For the first time, we perform a suite of N-body simulations to calculate and compare the pitch angles of both individual density waves and overall spiral structure by use of two independent techniques. We find that higher galactic shear rates produce more tightly wound spiral arms, both in individual mode patterns (density waves) and in the overall density enhancement. Although the mode pattern pitch angles by construction remain constant with time, the overall logarithmic spiral arm winds over time, which is consistent with both the observational scatter in pitch angle versus shear seen from observations, and the recent idea that multiple mode patterns may interfere with each other to create ...
Shear viscosity in magnetized neutron star crust
Ofengeim, D D
2015-01-01
The electron shear viscosity due to Coulomb scattering of degenerate electrons by atomic nuclei throughout a magnetized neutron star crust is calculated. The theory is based on the shear viscosity coefficient calculated neglecting magnetic fields but taking into account gaseous, liquid and solid states of atomic nuclei, multiphonon scattering processes, and finite sizes of the nuclei albeit neglecting the effects of electron band structure. The effects of strong magnetic fields are included in the relaxation time approximation with the effective electron relaxation time taken from the field-free theory. The viscosity in a magnetized matter is described by five shear viscosity coefficients. They are calculated and their dependence on the magnetic field and other parameters of dense matter is analyzed. Possible applications and open problems are outlined.
Magnetic shear. III - Hale region 17255
Hale active region 17255, which in many respects was the most vigorous active region observed during the first operational period of SMM, appears to lie between two large areas of flow (observed in C IV) converging toward the major axis of the region. In the 6-day period from November 6-12, 1980, the major axis of the region rotates by about 25 deg. Several segments of the magnetic neutral line show C IV flow velocities of opposite sign on either side of the neutral line. Those segments whose orientation is favorable for measuring velocity components parallel to the neutral line show evidence that such flow is present, which is interpreted as evidence for magnetic shear. This, together with other evidence, suggests that magnetic shear is widespread in this region, as in the two previous regions studied. It is concluded that magnetic shear is often associated with flaring activity but is not a sufficient condition for flaring to occur. 8 references
Transversely Compressed- and Restrained Shear Joints
Schmidt, Jacob Wittrup; Hansen, Christian Skodborg
2013-01-01
Anchorage of FRP strengthening systems where the deformation perpendicular to the FRP material is restrained or a compressive force is applied on the strengthening, seems to provide ductility, increased utilization of the FRP and failure modes which can be controlled through the anchorage method....... This paper presents theoretical model which can predict the response of transversely compressed and restrained single- and double lap shear joints. The interface material model is based on a cohesive law in the shear-slip plane with a descending branch and a uniform frictional stress added due to the...... friction in the crack, emanating from the transverse pressure or restraint. The theoretical model is compared with experimental results from transversely compressed single- and double shear joints. Also theoretical predictions of a mechanical integrated sleeve-wedge anchorage load capacity are carried out...
Shear banding in thixotropic and normal emulsions
When made to flow, yield stress materials rarely flow homogeneously. This is mostly attributed to the fact that such materials show a transition from a solid- to a liquid-like state when the stress exceeds some critical value: the yield stress. Thus, if the stress is heterogeneous, so is the flow. Here we consider emulsion flows in a cone-plate geometry that, for Newtonian fluids, correspond to a homogeneous stress situation and show that shear banding can also be observed either due to wall slip or to the existence of a critical shear rate. By means of velocity profiles obtained using a confocal laser scanning microscope combined with a rheometer we conclude that the last type of shear banding occurs only in thixotropic yield stress materials.
Shear banding in thixotropic and normal emulsions
Paredes, Jose; Bonn, Daniel [Van der Waals-Zeeman Institute, University of Amsterdam, Science Park 904, 1098XH Amsterdam (Netherlands); Shahidzadeh-Bonn, Noushine [Institut Navier, ENPC-IFSTTAR-CNRS, 6 et 8 Avenue Blaise-Pascal, F-77455 Champs-sur-Marne Cedex 2 (France)
2011-07-20
When made to flow, yield stress materials rarely flow homogeneously. This is mostly attributed to the fact that such materials show a transition from a solid- to a liquid-like state when the stress exceeds some critical value: the yield stress. Thus, if the stress is heterogeneous, so is the flow. Here we consider emulsion flows in a cone-plate geometry that, for Newtonian fluids, correspond to a homogeneous stress situation and show that shear banding can also be observed either due to wall slip or to the existence of a critical shear rate. By means of velocity profiles obtained using a confocal laser scanning microscope combined with a rheometer we conclude that the last type of shear banding occurs only in thixotropic yield stress materials.
Wind Shear Target Echo Modeling and Simulation
Xiaoyang Liu
2015-01-01
Full Text Available Wind shear is a dangerous atmospheric phenomenon in aviation. Wind shear is defined as a sudden change of speed or direction of the wind. In order to analyze the influence of wind shear on the efficiency of the airplane, this paper proposes a mathematical model of point target rain echo and weather target signal echo based on Doppler effect. The wind field model is developed in this paper, and the antenna model is also studied by using Bessel function. The spectrum distribution of symmetric and asymmetric wind fields is researched by using the mathematical model proposed in this paper. The simulation results are in accordance with radial velocity component, and the simulation results also confirm the correctness of the established model of antenna.
Bubbles in sheared two-dimensional foams
Quilliet, C.; Idiart, M. A. P.; Dollet, B.; Berthier, L.; Yekini, A.
2005-01-01
Oscillatory shear on two-dimensional monodisperse liquid foams was performed. We show that the effect of the oscillatory shear is to cause the migration of bubbles which size is greater than that of a typical bubble of the foam. These so-called flaws move towards the periphery of the foam in a non random motion, thus realizing size segregation in a system which is by construction gravity insensitive. We also show that elongated cavities in the foam could be relaxed towards a more isotropic fo...
The Rotation and Shear of a String
Roberts, M D
2003-01-01
Whether a string has rotation and shear can be investigated by an anology with the point particle. Rotation and shear involve first covariant spacetime derivatives of a vector field and, because the energy-momentum tensor for both the point particle and the string have no such derivatives, the best vector fields can be identified by requiring the conservation of energy-momentum. It is found that the best vector field is a non-unit accelerating field in x, rather than a unit non-accelerating vector involving the momenta; it is also found that there is an equation obeyed by the spacetime derivative of the Lagrangian.
Enhancing Rotational Diffusion Using Oscillatory Shear
Leahy, Brian D.
2013-05-29
Taylor dispersion - shear-induced enhancement of translational diffusion - is an important phenomenon with applications ranging from pharmacology to geology. Through experiments and simulations, we show that rotational diffusion is also enhanced for anisotropic particles in oscillatory shear. This enhancement arises from variations in the particle\\'s rotation (Jeffery orbit) and depends on the strain amplitude, rate, and particle aspect ratio in a manner that is distinct from the translational diffusion. This separate tunability of translational and rotational diffusion opens the door to new techniques for controlling positions and orientations of suspended anisotropic colloids. © 2013 American Physical Society.
Shear viscosity coefficient of liquid lanthanides
Present paper deals with the computation of shear viscosity coefficient (η) of liquid lanthanides. The effective pair potential v(r) is calculated through our newly constructed model potential. The Pair distribution function g(r) is calculated from PYHS reference system. To see the influence of local field correction function, Hartree (H), Tailor (T) and Sarkar et al (S) local field correction function are used. Present results are compared with available experimental as well as theoretical data. Lastly, we found that our newly constructed model potential successfully explains the shear viscosity coefficient (η) of liquid lanthanides
Halo abundances and shear in void models
Alonso, David; García-Bellido, Juan; Haugbølle, Troels;
2012-01-01
We study the non-linear gravitational collapse of dark matter into halos through numerical N-body simulations of Lemaitre-Tolman-Bondi void models. We extend the halo mass function formalism to these models in a consistent way. This extension not only compares well with the simulated data at all...... times and radii, but it also gives interesting clues about the impact of the background shear on the growth of perturbations. Our results give hints about the possibility of constraining the background shear via cluster number counts, which could then give rise to strong constraints on general...
Reduction in intermittent transport by shearing
The intermittent transport due to coherent structures (streamers) is shown to be dramatically reduced by the shearing of mean flow in passive scalar field model, with the scaling ∝Ω-3. Here, Ω is the shearing rate of the mean flow. This reduction is much stronger than that in turbulent transport (∝Ω-1) [Kim and Diamond, Phys. Rev. Lett. 91, 075001 (2003)] in the same model. Implications for the transition from low to high confinement (L-H transition) are discussed
Structural relaxation monitored by instantaneous shear modulus
Olsen, Niels Boye; Dyre, Jeppe; Christensen, Tage Emil
1998-01-01
time definition based on a recently proposed expression for the relaxation time, where G [infinity] reflects the fictive temperature. All parameters entering the reduced time were determined from independent measurements of the frequency-dependent shear modulus of the equilibrium liquid.......This paper reports on aging of the silicone oil MS704 for sudden changes of temperature from 210.5 to 209.0 K and from 207.5 to 209.0 K studied by continuously monitoring the instantaneous shear modulus G [infinity]. The results are interpreted within the Tool-Narayanaswamy formalism with a reduced...
Estimated genetic parameters for palatability traits of steaks from Brahman cattle.
Riley, D G; Chase, C C; Hammond, A C; West, R L; Johnson, D D; Olson, T A; Coleman, S W
2003-01-01
Heritabilities and genetic and phenotypic correlations were estimated from carcass and beef palatability data collected from Brahman calves (n = 504) born in central Florida from 1996 to 2000. Traits evaluated included Warner-Bratzler shear force (after 7, 14, and 21 d of aging), panel tenderness score, connective tissue amount, juiciness, flavor intensity, and off flavor (after 14 d of aging), percentages of raw and cooked lipids, and milligrams per gram of muscle calpastatin activity. Parameters were estimated using an animal model and derivative-free restricted maximum likelihood procedures. Estimated heritabilities for d 7, 14, and 21 shear force were 0.14,0.14, and 0.06, respectively, indicating that improvement in these traits by selection would be slow. Estimated heritabilities of sensory panel attributes were 0.11, 0.12, 0.05, 0.04, and 0.01 for tenderness, connective tissue amount, juiciness, flavor intensity, and off flavor, respectively. The estimated heritabilities for percentages of raw and cooked lipids, and calpastatin activity were 0.34, 0.17, and 0.07, respectively. Most of the estimated genetic correlations among palatability traits and for palatability traits with fat thickness, marbling score, and loin muscle area were consistent with other estimates from the literature. Results indicated that improvement in tenderness based on selection for favorable shear force, sensory panel tenderness, or calpastatin activity would be slow; therefore, postslaughter intervention programs should also be considered. PMID:12597372
Exponential Shear Flow of Linear, Entangled Polymeric Liquids
Neergaard, Jesper; Park, Kyungho; Venerus, David C.; Schieber, Jay D.
2000-01-01
suggests a novel analysis of the data. This analysis demonstrates thatexponential shearing flow is no more capable of stretching polymer chains than is inception of steady shear at comparableinstantaneous shear rates. In fact, all exponential shear flow stresses measured are bounded quantitatively by......A previously proposed reptation model is used to interpret exponential shear flow data taken on an entangled polystyrenesolution. Both shear and normal stress measurements are made during exponential shear using mechanical means. The model iscapable of explaining all trends seen in the data, and...... stressmeasurements taken during inception of steady shear. Information taken from the model about chain stretching suggests thatnormal stress measurements are strong indications of stretching, whereas shear stress measurements are indicative of bothchain stretching and segment orientation....
A dynamic jamming point for shear thickening suspensions
Brown, Eric; Jaeger, Heinrich
2008-11-01
Densely packed suspensions can shear thicken, in which the viscosity increases with shear rate. We performed rheometry measurements on two model systems: corn starch in water and glass spheres in oils. In both systems we observed shear thickening up to a critical packing fraction φc (=0.55 for spherical grains) above which the flow abruptly transitions to shear thinning. The viscosity and yield stress diverge as power laws at φc. Extrapolating the dynamic ranges of shear rate and stress in the shear thickening regime up to φc suggests a finite change in shear stress with zero change in shear rate. This is a dynamic analog to the jamming point with a yield stress at zero shear rate.
Monotonic shear and shear fatigue of foam-core composite sandwich structures
Liu, L.; Song, H.; Holmes, J.W. [Georgia Institute of Technology, School of Aerospace Eng., Materials and Advanced Structure Testing Lab., Atlanta, Georgia (United States)
2006-07-01
Details of a new test apparatus that allows direct shear testing of sandwich structures is discussed. In addition to monotonic and cyclic shear, the apparatus allows studying the shear-creep behavior of various sandwich structures and can be extended to investigate lap-joints and adhesive joints. The test apparatus can accommodate sandwich panels as large as 400 mm x 400 mm. In proof-of-concept experiments, the apparatus was used to investigate the effect of loading history on the ambient temperature monotonic shear and shear fatigue life of sandwich composites with a PVC foam core and fiberglass/epoxy face sheets. The fatigue experiments were performed at a loading frequency of 1 Hz and a stress ratio between 0.16 and 0.19. During fatigue, a progressive degradation in shear modulus occurs as well as considerable stress-strain hysteresis. Damage accumulated by the cycle-by-cycle extension of cracks along the face-sheet/core interface and shear-related damage to the PVC foam core. (au)
Application of in situ direct shear device to shear strength measurement of rockfill materials
Si-hong LIU
2009-01-01
A simplified in situ direct shear test (DST) was developed for measuring the shear strength of soils in fields.In this test,a latticed shearing frame replaces the upper half of the shear box used in the conventional direct shear box test.The latticed shearing frame is directly embedded in the ground to be tested after a construction process and is pulled with a flexible chain while a constant dead load is applied to the sample in the shearing frame.This simplified in situ DST has been validated by comparing its results with those of triaxial tests on samples with parallel gradations under normal stresses less than 100 kPa.In this study,the DST was further validated by carrying out tests on samples with the same gradations,rather than on samples with parallel gradations,under normal stresses up to 880 kPa.In addition,the DST was performed inside fills in two applications.
Several methods have been developed to quantify population level changes in cell attachment strength given its large heterogeneity. One such method is the rotating disk chamber or ‘spinning disk’ in which a range of shear forces are applied to attached cells to quantify detachment force, i.e. attachment strength, which can be heterogeneous within cell populations. However, computing the exact force vectors that act upon cells is complicated by complex flow fields and variable cell morphologies. Recent observations suggest that cells may remodel their morphology and align during acute shear exposure, but contrary to intuition, shear is not orthogonal to the radial direction. Here we theoretically derive the magnitude and direction of applied shear and demonstrate that cells, under certain physiological conditions, align in this direction within minutes. Shear force magnitude is also experimentally verified which validates that for spread cells shear forces and not torque or drag dominate in this assay, and demonstrates that the applied force per cell area is largely independent of initial morphology. These findings suggest that direct quantified comparison of the effects of shear on a wide array of cell types and conditions can be made with confidence using this assay without the need for computational or numerical modeling. (paper)
A new method for shear wave speed estimation in shear wave elastography.
Engel, Aaron J; Bashford, Gregory R
2015-12-01
Visualization of mechanical properties of tissue can aid in noninvasive pathology diagnosis. Shear wave elastography (SWE) measures the elastic properties of soft tissues by estimation of local shear wave propagation speed. In this paper, a new robust method for estimation of shear wave speed is introduced which has the potential for simplifying continuous filtering and real-time elasticity processing. Shear waves were generated by external mechanical excitation and imaged at a high frame rate. Three homogeneous phantoms of varying elastic moduli and one inclusion phantom were imaged. Waves propagating in separate directions were filtered and shear wave speed was estimated by inversion of the 1-D first-order wave equation. Final 2-D shear wave speed maps were constructed by weighted averaging of estimates from opposite traveling directions. Shear wave speed results for phantoms with gelatin concentrations of 5%, 7%, and 9% were 1.52 ± 0.10 m/s, 1.86 ± 0.10 m/s, and 2.37 ± 0.15 m/s, respectively, which were consistent with estimates computed from three other conventional methods, as well as compression tests done with a commercial texture analyzer. The method was shown to be able to reconstruct a 2-D speed map of an inclusion phantom with good image quality and variance comparable to conventional methods. Suggestions for further work are given. PMID:26670851
Instabilities in Pulsating Pipe Flow of Shear-Thinning and Shear-Thickening Fluids
Sadrizadeh, Sasan
2012-01-01
In this study, we have considered the modal and non-modal stability of fluids with shear-dependent viscosity flowing in a rigid straight pipe. A second order finite-difference code is used for the simulation of pipe flow in the cylindrical coordinate system. The Carreau-Yasuda model where the rheological parameters vary in the range of 0.3 < n < 1.5 and 0.1 < λ < 100 is represents the viscosity of shear- thinning and shear thickening fluids. Variation of the periodic pulsatile for...
Heterogeneity of variances for carcass traits by percentage Brahman inheritance.
Crews, D H; Franke, D E
1998-07-01
Heterogeneity of carcass trait variances due to level of Brahman inheritance was investigated using records from straightbred and crossbred steers produced from 1970 to 1988 (n = 1,530). Angus, Brahman, Charolais, and Hereford sires were mated to straightbred and crossbred cows to produce straightbred, F1, back-cross, three-breed cross, and two-, three-, and four-breed rotational crossbred steers in four non-overlapping generations. At weaning (mean age = 220 d), steers were randomly assigned within breed group directly to the feedlot for 200 d, or to a backgrounding and stocker phase before feeding. Stocker steers were fed from 70 to 100 d in generations 1 and 2 and from 60 to 120 d in generations 3 and 4. Carcass traits included hot carcass weight, subcutaneous fat thickness and longissimus muscle area at the 12-13th rib interface, carcass weight-adjusted longissimus muscle area, USDA yield grade, estimated total lean yield, marbling score, and Warner-Bratzler shear force. Steers were classified as either high Brahman (50 to 100% Brahman), moderate Brahman (25 to 49% Brahman), or low Brahman (0 to 24% Brahman) inheritance. Two types of animal models were fit with regard to level of Brahman inheritance. One model assumed similar variances between pairs of Brahman inheritance groups, and the second model assumed different variances between pairs of Brahman inheritance groups. Fixed sources of variation in both models included direct and maternal additive and nonadditive breed effects, year of birth, and slaughter age. Variances were estimated using derivative free REML procedures. Likelihood ratio tests were used to compare models. The model accounting for heterogeneous variances had a greater likelihood (P yield, and Warner-Bratzler shear force, indicating improved fit with percentage Brahman inheritance considered as a source of heterogeneity of variance. Genetic covariances estimated from the model accounting for heterogeneous variances resulted in genetic
Zonal flow formation in the presence of ambient mean shear
Hsu, Pei-Chun; Diamond, P. H. [Center for Astrophysics and Space Sciences and Department of Physics, University of California San Diego, La Jolla, California 92093-0424 (United States)
2015-02-15
The effect of mean shear flows on zonal flow formation is considered in the contexts of plasma drift wave turbulence and quasi-geostrophic turbulence models. The generation of zonal flows by modulational instability in the presence of large-scale mean shear flows is studied using the method of characteristics as applied to the wave kinetic equation. It is shown that mean shear flows reduce the modulational instability growth rate by shortening the coherency time of the wave spectrum with the zonal shear. The scalings of zonal flow growth rate and turbulent vorticity flux with mean shear are determined in the strong shear limit.
Electrorheological Effects at High Shear Rate
无
2006-01-01
Much attention has been given to electrorheological (ER) fluids because of the ER effect, which has been described by a large number of researchers as a notable increase in the apparent viscosity of a fluid upon the application of an electric field. The description of ER effects is, however, not accurate at high shear rates. To clarify the discrepancy, we analyze and compute the apparent viscosity as a function of shear rate for ER fluid flow between rotating coaxial cylinders in the presence of an electric field. The theoretical predictions show that the increase of electric intensity contributes little to the apparent viscosity enhancement at high shear rates, while ER effects for ER fluids with a higher polarization rate still exist and ER devices possess controllability in this regime. Description of the ER effect by the apparent viscosity leads to an unrealistic conclusion that ER effects disappear at high shear rates, because the apparent viscosity of ER fluids approaches the value for Newtonian fluids. Therefore, it is concluded that the proper description of ER effects, i.e., one that holds uniformly for any strain rate when ER effects exist, is manifested by a remarkable increase in the extra stress rather than in the apparent viscosity of ER fluids.
A New Annular Shear Piezoelectric Accelerometer
Liu, Bin; Kriegbaum, B.
2000-01-01
This paper describes the construction and performance of a recently introduced Annular Shear piezoelectric accelerometer, Type 4511. The design has insulated and double-shielded case. The accelerometer housing is made of stainless steel, AISI 316L. Piezoceramic PZ23 is used. The seismic mass...
Solvable groups and a shear construction
Freibert, Marco; Swann, Andrew Francis
The twist construction is a geometric model of T-duality that includes constructions of nilmanifolds from tori. This paper shows how one-dimensional foliations on manifolds may be used in a shear construction, which in algebraic form builds certain solvable Lie groups from Abelian ones. We discus...
Equilibrium states of homogeneous sheared compressible turbulence
M. Riahi
2011-06-01
Full Text Available Equilibrium states of homogeneous compressible turbulence subjected to rapid shear is studied using rapid distortion theory (RDT. The purpose of this study is to determine the numerical solutions of unsteady linearized equations governing double correlations spectra evolution. In this work, RDT code developed by authors solves these equations for compressible homogeneous shear flows. Numerical integration of these equations is carried out using a second-order simple and accurate scheme. The two Mach numbers relevant to homogeneous shear flow are the turbulent Mach number Mt, given by the root mean square turbulent velocity fluctuations divided by the speed of sound, and the gradient Mach number Mg which is the mean shear rate times the transverse integral scale of the turbulence divided by the speed of sound. Validation of this code is performed by comparing RDT results with direct numerical simulation (DNS of [A. Simone, G.N. Coleman, and C. Cambon, Fluid Mech. 330, 307 (1997] and [S. Sarkar, J. Fluid Mech. 282, 163 (1995] for various values of initial gradient Mach number Mg0. It was found that RDT is valid for small values of the non-dimensional times St (St 10 in particular for large values of Mg0. This essential feature justifies the resort to RDT in order to determine equilibrium states in the compressible regime.
Shear-free boundary in Stokes flow
Amaranath, T.; S. D. Nigam; Palaniappan, D.
1996-01-01
A theorem of Harper for axially symmetric flow past a sphere which is a stream surface, and is also shear-free, is extended to flow past a doubly-body Ã°ÂÂ”Â… consisting of two unequal, orthogonally intersecting spheres. Several illustrative examples are given. An analogue of Faxen's law for a double-body is observed.
Modeling of Turbulent Free Shear Flows
Yoder, Dennis A.; DeBonis, James R.; Georgiadis, Nicolas J.
2013-01-01
The modeling of turbulent free shear flows is crucial to the simulation of many aerospace applications, yet often receives less attention than the modeling of wall boundary layers. Thus, while turbulence model development in general has proceeded very slowly in the past twenty years, progress for free shear flows has been even more so. This paper highlights some of the fundamental issues in modeling free shear flows for propulsion applications, presents a review of past modeling efforts, and identifies areas where further research is needed. Among the topics discussed are differences between planar and axisymmetric flows, development versus self-similar regions, the effect of compressibility and the evolution of compressibility corrections, the effect of temperature on jets, and the significance of turbulent Prandtl and Schmidt numbers for reacting shear flows. Large eddy simulation greatly reduces the amount of empiricism in the physical modeling, but is sensitive to a number of numerical issues. This paper includes an overview of the importance of numerical scheme, mesh resolution, boundary treatment, sub-grid modeling, and filtering in conducting a successful simulation.
Shear reinforced beams in autoclaved aerated concrete
Cornelius, Thomas
2010-01-01
Shear behaviour in concrete materials is very well documented, for normal density concrete materials. In this paper results of various tests on low density concrete materials like aerated autoclaved concrete (in the following denoted aircrete) will be presented and analyzed for different combinat...
Shear bands as bottlenecks in force transmission
Tordesillas, Antoinette; Pucilowski, Sebastian; Tobin, Steven; Kuhn, Matthew R.; Andò, Edward; Viggiani, Gioacchino; Druckrey, Andrew; Alshibli, Khalid
2015-06-01
The formation of shear bands is a key attribute of degradation and failure in soil, rocks, and many other forms of amorphous and crystalline materials. Previous studies of dense sand under triaxial compression and two-dimensional analogues from simulations have shown that the ultimate shear band pattern may be detected in the nascent stages of loading, well before the band's known nucleation point (i.e., around peak stress ratio), as reported in the published literature. Here we construct a network flow model of force transmission to identify the bottlenecks in the contact networks of dense granular media: triaxial compression of Caicos ooid and Ottawa sand and a discrete element simulation of simple shear. The bottlenecks localise in the nascent stages of loading —in the location where the persistent shear band ultimately forms. This corroborates recent findings on vortices that suggest localised failure is a progressive process of degradation, initiating early in the loading history at sites spanning the full extent, yet confined to a subregion, of the sample. Bottlenecks are governed by the local and global properties of the sample fabric and the grain kinematics. Grains with large rotations and/or contacts having minimal load-bearing capacities per se do not identify the bottlenecks early in the loading history.
Vortex-shear interaction and vortex identification
Kolář, Václav
Jalan : Institution of Engineers, 2006, s. 1015-1020. ISBN 983-42965-0-9. [Asian Congress of Fluid Mechanics /11./. Kuala Lumpur (MY), 22.05.2006-25.05.2006] R&D Projects: GA AV ČR IAA2060302 Institutional research plan: CEZ:AV0Z20600510 Keywords : vortex identification * vortex-shear interaction Subject RIV: BK - Fluid Dynamics
Shear deformation in thick auxetic plates
This paper aims to understand the effect of auxeticity on shear deformation in thick plates. Three models for the shear correction factor of plates as a function of Poisson’s ratio were proposed: an analytical model, a cubic fit model and a modified model. Of these three, the cubic fit model exhibits the best accuracy over the entire range of Poisson’s ratio from −1 to 0.5. The extent of shear deformation is herein investigated using the example of uniformly loaded circular plates. It was found that the maximum deformation of such plates based on Mindlin theory approximates to those according to Kirchhoff theory when the Poisson’s ratio of the plate material is highly negative. When the Poisson’s ratio of the plate material is −1 and the edge of the plate is simply supported, the calculation of the maximum deflection by Mindlin theory simplifies into that by Kirchhoff theory. These results suggest that auxeticity reduces shear deformation in thick plates, permitting the use of classical plate theory for thick plates only if the plate material is highly auxetic. (paper)
Red blood cell in simple shear flow
Chien, Wei; Hew, Yayu; Chen, Yeng-Long
2013-03-01
The dynamics of red blood cells (RBC) in blood flow is critical for oxygen transport, and it also influences inflammation (white blood cells), thrombosis (platelets), and circulatory tumor migration. The physical properties of a RBC can be captured by modeling RBC as lipid membrane linked to a cytoskeletal spectrin network that encapsulates cytoplasm rich in hemoglobin, with bi-concave equilibrium shape. Depending on the shear force, RBC elasticity, membrane viscosity, and cytoplasm viscosity, RBC can undergo tumbling, tank-treading, or oscillatory motion. We investigate the dynamic state diagram of RBC in shear and pressure-driven flow using a combined immersed boundary-lattice Boltzmann method with a multi-scale RBC model that accurately captures the experimentally established RBC force-deformation relation. It is found that the tumbling (TU) to tank-treading (TT) transition occurs as shear rate increases for cytoplasm/outer fluid viscosity ratio smaller than 0.67. The TU frequency is found to be half of the TT frequency, in agreement with experiment observations. Larger viscosity ratios lead to the disappearance of stable TT phase and unstable complex dynamics, including the oscillation of the symmetry axis of the bi-concave shape perpendicular to the flow direction. The dependence on RBC bending rigidity, shear modulus, the order of membrane spectrin network and fluid field in the unstable region will also be discussed.
Self-organization in circular shear layers
Bergeron, K.; Coutsias, E.A.; Lynov, Jens-Peter;
1996-01-01
Experiments on forced circular shear layers performed in both magnetized plasmas and in rotating fluids reveal qualitatively similar self-organization processes leading to the formation of patterns of coherent vortical structures with varying complexity. In this paper results are presented from...
Spurious Shear in Weak Lensing with LSST
Chang, C.; Kahn, S.M.; Jernigan, J.G.; Peterson, J.R.; AlSayyad, Y.; Ahmad, Z.; Bankert, J.; Bard, D.; Connolly, A.; Gibson, R.R.; Gilmore, K.; Grace, E.; Hannel, M.; Hodge, M.A.; Jee, M.J.; Jones, L.; Krughoff, S.; Lorenz, S.; Marshall, P.J.; Marshall, S.; Meert, A.
2012-09-19
The complete 10-year survey from the Large Synoptic Survey Telescope (LSST) will image {approx} 20,000 square degrees of sky in six filter bands every few nights, bringing the final survey depth to r {approx} 27.5, with over 4 billion well measured galaxies. To take full advantage of this unprecedented statistical power, the systematic errors associated with weak lensing measurements need to be controlled to a level similar to the statistical errors. This work is the first attempt to quantitatively estimate the absolute level and statistical properties of the systematic errors on weak lensing shear measurements due to the most important physical effects in the LSST system via high fidelity ray-tracing simulations. We identify and isolate the different sources of algorithm-independent, additive systematic errors on shear measurements for LSST and predict their impact on the final cosmic shear measurements using conventional weak lensing analysis techniques. We find that the main source of the errors comes from an inability to adequately characterise the atmospheric point spread function (PSF) due to its high frequency spatial variation on angular scales smaller than {approx} 10{prime} in the single short exposures, which propagates into a spurious shear correlation function at the 10{sup -4}-10{sup -3} level on these scales. With the large multi-epoch dataset that will be acquired by LSST, the stochastic errors average out, bringing the final spurious shear correlation function to a level very close to the statistical errors. Our results imply that the cosmological constraints from LSST will not be severely limited by these algorithm-independent, additive systematic effects.
Shear flow effect on ion temperature gradient vortices in plasmas with sheared magnetic field
Chakrabarti, N.; Juul Rasmussen, J.
1999-01-01
solutions of this equation are presented for various possible cases. It is shown that, for a critical value of the velocity shear asymmetric dipolar vortices can arise which are strongly modified as a localized vortex chain at resonance. For strong velocity shear these structures are destroyed and......The effect of velocity shear on ion temperature gradient (ITG) driven vortices in a nonuniform plasma in a curved, sheared magnetic field is investigated. In absence of parallel ion dynamics, vortex solutions for the ITG mode are studied analytically. It is shown that under certain conditions the...... coupled equations for potential and pressure exhibit special tripolar vortex-like structures. For the general case, however, parallel ion dynamics is included and the equation describing the stationary ITG vortex has the structure of a nonlinear Poisson-type equation. Analytical as well as numerical...
López-Barrón, Carlos R; Gurnon, A Kate; Eberle, Aaron P R; Porcar, Lionel; Wagner, Norman J
2014-04-01
We present direct measurements of the evolution of the segmental-level microstructure of a stable shear-banding polymerlike micelle solution during flow startup and cessation in the plane of flow. These measurements provide a definitive, quantitative microstructural understanding of the stages observed during flow startup: an initial elastic response with limited alignment that yields with a large stress overshoot to a homogeneous flow with associated micellar alignment that persists for approximately three relaxation times. This transient is followed by a shear (kink) band formation with a flow-aligned low-viscosity band that exhibits shear-induced concentration fluctuations and coexists with a nearly isotropic band of homogenous, highly viscoelastic micellar solution. Stable, steady banding flow is achieved only after approximately two reptation times. Flow cessation from this shear-banded state is also found to be nontrivial, exhibiting an initial fast relaxation with only minor structural relaxation, followed by a slower relaxation of the aligned micellar fluid with the equilibrium fluid's characteristic relaxation time. These measurements resolve a controversy in the literature surrounding the mechanism of shear banding in entangled wormlike micelles and, by means of comparison to existing literature, provide further insights into the mechanisms driving shear-banding instabilities in related systems. The methods and instrumentation described should find broad use in exploring complex fluid rheology and testing microstructure-based constitutive equations. PMID:24827245
Influence of material properties on the sheared impact process of shear-cap in squib valve
Background: Squib valve is a key valve in the new generation nuclear power plant, which has not been localized and the research on the failure process of shear-cap is necessary. Purpose: This research aims to study the influence of material on the failure process of shear-cap in squib valve. Methods: The finite element method is used to simulate the shear-caps' sheared process of different materials-Inconel 690, 304 stainless steel and 321 stainless steel. Results: As a result, the failure time and the final speed of piston are shown at each impact speed. Conclusions: The shear-cap of Inconel 690 is hardest to shear. A method to get the critical impact speed in the open process of valve is proposed. It can be found that the residual kinetic energy of the piston has the common feature and is 25% of the initial kinetic energy. Piston's final speed has a linear relationship to its initial speed for all three materials. (authors)
Flexible Micropost Arrays for Shear Stress Measurement
Wohl, Christopher J.; Palmieri, Frank L.; Hopkins, John W.; Jackson, Allen M.; Connell, John W.; Lin, Yi; Cisotto, Alexxandra A.
2015-01-01
Increased fuel costs, heightened environmental protection requirements, and noise abatement continue to place drag reduction at the forefront of aerospace research priorities. Unfortunately, shortfalls still exist in the fundamental understanding of boundary-layer airflow over aerodynamic surfaces, especially regarding drag arising from skin friction. For example, there is insufficient availability of instrumentation to adequately characterize complex flows with strong pressure gradients, heat transfer, wall mass flux, three-dimensionality, separation, shock waves, and transient phenomena. One example is the acoustic liner efficacy on aircraft engine nacelle walls. Active measurement of shear stress in boundary layer airflow would enable a better understanding of how aircraft structure and flight dynamics affect skin friction. Current shear stress measurement techniques suffer from reliability, complexity, and airflow disruption, thereby compromising resultant shear stress data. The state-of-the-art for shear stress sensing uses indirect or direct measurement techniques. Indirect measurements (e.g., hot-wire, heat flux gages, oil interferometry, laser Doppler anemometry, small scale pressure drag surfaces, i.e., fences) require intricate knowledge of the studied flow, restrictive instrument arrangements, large surface areas, flow disruption, or seeding material; with smaller, higher bandwidth probes under development. Direct measurements involve strain displacement of a sensor element and require no prior knowledge of the flow. Unfortunately, conventional "floating" recessed components for direct measurements are mm to cm in size. Whispering gallery mode devices and Fiber Bragg Gratings are examples of recent additions to this type of sensor with much smaller (?m) sensor components. Direct detection techniques are often single point measurements and difficult to calibrate and implement in wind tunnel experiments. In addition, the wiring, packaging, and installation
Disentangling the role of structure and friction in shear jamming
Vinutha, H. A.; Sastry, Srikanth
2016-06-01
Amorphous sphere packings have been intensely investigated to understand mechanical and flow behaviour of dense granular matter and to explore universal aspects of the jamming transition, from fluid to structurally arrested states. Considerable recent research has focused on anisotropic packings of frictional grains generated by shear deformation leading to shear jamming, occurring below the jamming density for isotropic packings of frictionless grains. Here, with the aim of disentangling the role of shear-deformation-induced structures and friction in generating shear jamming, we computationally study sheared assemblies of frictionless spheres, over a wide range of densities. We demonstrate that shear deformation alone leads to the emergence of geometric features characteristic of jammed packings, with the increase of shear strain. We also show that such emergent geometry, together with friction, leads to mechanically stable, shear-jammed, packings above a threshold density that lies well below the isotropic jamming point.
Aligning self-assembled gelators by drying under shear.
Draper, Emily R; Mykhaylyk, Oleksandr O; Adams, Dave J
2016-05-25
We show how drying under shear can be used to prepare aligned fibres and worm-like micelles from low molecular weight gelators. Shearing followed by drying leads to the dealignment before the water can be removed; continuous shear whilst drying is required to maintain the alignment. Combining a slow pH change with continuous shear allows alignment of the gelling fibres, which can then be dried. PMID:27146964
Reynolds stresses from hydrodynamic turbulence with shear and rotation
Snellman, J. E.; Käpylä, P. J.; Korpi, M. J.; Liljeström, A. J.
2009-01-01
To study the Reynolds stresses which describe turbulent momentum transport from turbulence affected by large-scale shear and rotation. Three-dimensional numerical simulations are used to study turbulent transport under the influences of large-scale shear and rotation in homogeneous, isotropically forced turbulence. We study three cases: one with only shear, and two others where in addition to shear, rotation is present. These cases differ by the angle (0 or 90\\degr) the rotation vector makes ...
Turbulent transport across shear layers in magnetically confined plasmas
Shear layers modify the turbulence in diverse ways and do not only suppress it. A spatial-temporal investigation of gyrofluid simulations in comparison with experiments allows to identify further details of the transport process across shear layers. Blobs in and outside a shear layer merge, thereby exchange particles and heat and subsequently break up. Via this mechanism particles and heat are transported radially across shear layers. Turbulence spreading is the immanent mechanism behind this process
The stability of Rossby waves in a stratified shear fluid
Tan, Benkui
1990-11-01
An investigation is undertaken of the stability of linear Rossby waves in a stratified shear fluid by means of a qualitative theory employing ordinary differential equations. It is noted that, while the basic current has no detectable shear, the Rossby waves are always stable. If the basic current possesses only horizontal shear, the unstable criterion for waves takes one form, but it takes entirely another in the case where the basic current possesses only vertical shear.
Shear viscosity for a moderately dense granular binary mixture
Garzo, Vicente; Montanero, Jose Maria
2003-01-01
The shear viscosity for a moderately dense granular binary mixture of smooth hard spheres undergoing uniform shear flow is determined. The basis for the analysis is the Enskog kinetic equation, solved first analytically by the Chapman-Enskog method up to first order in the shear rate for unforced systems as well as for systems driven by a Gaussian thermostat. As in the elastic case, practical evaluation requires a Sonine polynomial approximation. In the leading order, we determine the shear v...
Hysteresis and Lubrication in Shear Thickening of Cornstarch Suspensions
Chu, Clarence E.; Groman, Joel A.; Sieber, Hannah L.; Miller, James G.; Okamoto, Ruth J.; Katz, Jonathan I.
2014-01-01
Aqueous and brine suspensions of corn starch show striking discontinuous shear thickening. We have found that a suspension shear-thickened throughout may remain in the jammed thickened state as the strain rate is reduced, but an unjamming front may propagate from any unjammed regions. Transient shear thickening is observed at strain rates below the thickening threshold, and above it the stress fluctuates. The jammed shear-thickened state may persist to low strain rates, with stresses resembli...
Analytical theory of forced rotating sheared turbulence: The perpendicular case
Leprovost, Nicolas; Kim, Eun-Jin
2008-01-01
Rotation and shear flows are ubiquitous features of many astrophysical and geophysical bodies. To understand their origin and effect on turbulent transport in these systems, we consider a forced turbulence and investigate the combined effect of rotation and shear flow on the turbulence properties. Specifically, we study how rotation and flow shear influence the generation of shear flow (e.g., the direction of energy cascade), turbulence level, transport of particles and momentum, and the anis...
Shear effects on crystalline structures of poly(L-lactide)
Xiao, Peitao; Li, Hongfei; Huang, Shaoyong;
2013-01-01
The shearing effects of sheared polymer melts on their finally formed crystalline structures of poly(L-lactide) (PLLA) were investigated by means of small angle X-ray scattering (SAXS) and wide angle X-ray diffraction (WAXD). The results of WAXD prove that shear has no effects on the crystal stru...
Zhuang, H; Savage, E M; Lawrence, K
2010-08-01
The present experiment was carried out to evaluate the effects of electrical stimulation (ES) immediately prescalding (PS), ES immediately postdefeathering (PD), or PS combined with PD (PSPD) on the quality of early deboned (2 h) broiler breast muscles, pectoralis major (fillets), and pectoralis minor (tenders). No stimulation, early-deboned (2 h), and 24-h deboned (24 h) fillets were used for the comparison. The 42-d-old broiler carcasses were electrically stimulated with pulsed current at 200 V for 30 s over a 90-s time interval (total of 1 min over 180 s for PSPD), and breast meat was deboned 2 h postmortem. Quality indicators evaluated were CIE L*, a*, and b* color and pH of the raw fillets and cook yields and Warner-Bratzler (WB) shear force of the fillets and tenders. There were no differences in raw fillet color, pH, and cook yields of both the fillets and tenders between the 3 ES treatments. Effects of different ES treatments on meat WB shear force values varied with breast muscles. For the fillets, the average WB shear force values of both the PS and PSPD samples, which were not different from each other, were significantly lower than those of the PD samples. For the tenders, there were no differences in the average shear force values between the 3 ES treatments. Regardless of ES treatment and breast muscle, early deboned broiler breast meat from ES carcasses required significantly less force to shear than the 2-h control. These results indicate that ES can tenderize early deboned poultry breast muscles; however, the effectiveness of ES tenderization varies with ES treatments for the fillets. The PS treatment is more effective in reducing fillet shear values than PD, and there is no further reduction in shear values with PSPD compared with the PS treatment. PMID:20634531
Shear instabilities in shallow-water magnetohydrodynamics
Mak, Julian; Hughes, D W
2016-01-01
Within the framework of shallow-water magnetohydrodynamics, we investigate the linear instability of horizontal shear flows, influenced by an aligned magnetic field and stratification. Various classical instability results, such as H{\\o}iland's growth rate bound and Howard's semi-circle theorem, are extended to this shallow-water system for quite general profiles. Two specific piecewise-constant velocity profiles, the vortex sheet and the rectangular jet, are studied analytically and asymptotically; it is found that the magnetic field and stratification (as measured by the Froude number) are generally both stabilising, but weak instabilities can be found at arbitrarily large Froude number. Numerical solutions are computed for corresponding smooth velocity profiles, the hyperbolic-tangent shear layer and the Bickley jet, for a uniform background field. A generalisation of the long-wave asymptotic analysis of Drazin & Howard (1962) is employed in order to understand the instability characteristics for both ...
Undulatory swimming in shear-thinning fluids
Gagnon, David A; Arratia, Paulo E
2014-01-01
The swimming behaviour of microorganisms can be strongly influenced by the rheology of their fluid environment. In this manuscript, we experimentally investigate the effects of shear-thinning viscosity on the swimming behaviour of an undulatory swimmer, the nematode Caenorhabditis elegans. Tracking methods are used to measure the swimmer's kinematic data (including propulsion speed) and velocity fields. We find that shear-thinning viscosity modifies the velocity fields produced by the swimming nematode but does not modify the nematode's speed and beating kinematics. Velocimetry data show significant enhancement in local vorticity and circulation, and an increase in fluid velocity near the nematode's tail, compared to Newtonian fluids of similar effective viscosity. These findings are in good agreement with recent theoretical and numerical results.
Drop impact of shear thickening liquids
Boyer, Francois; Dijksman, J Frits; Lohse, Detlef
2013-01-01
The impact of drops of concentrated non-Brownian suspensions (cornstarch and polystyrene spheres) onto a solid surface is investigated experimentally. The spreading dynamics and maxi- mal deformation of the droplet of such shear thickening liquids are found to be markedly different from the impact of Newtonian drops. A particularly striking observation is that the maximal de- formation is independent of the drop velocity and that the deformation suddenly stops during the impact phase. Both observations are due to the shear-thickening rheology of the suspensions, as is theoretically explained from a balance between the kinetic energy and the viscously-dissipated en- ergy, from which we establish a scaling relation between drop maximal deformation and rheological parameters of concentrated suspensions.
Reynolds stress and shear flow generation
Korsholm, Søren Bang; Michelsen, Poul; Naulin, V.;
2001-01-01
treatment of the pseudo-Reynolds stress, we present analytical and numerical results which demonstrate that the Reynolds stress in a plasma, indeed, generates a poloidal shear flow. The numerical simulations are performed both in a drift wave turbulence regime and a resistive interchange turbulence regime......The so-called Reynolds stress may give a measure of the self-consistent flow generation in turbulent fluids and plasmas by the small-scale turbulent fluctuations. A measurement of the Reynolds stress can thus help to predict flows, e.g. shear flows in plasmas. This may assist the understanding of...... improved confinement scenarios such as H-mode confinement regimes. However, the determination of the Reynolds stress requires measurements of the plasma potential, a task that is difficult in general and nearly impossible in hot plasmas in large devices. In this work we investigate an alternative method...