WorldWideScience

Sample records for vlf emissions observed

  1. New results of structured VLF emissions observed simultaneously at two closely located stations near L ~ 5.5

    Science.gov (United States)

    Manninen, J.; Kleimenova, N. G.; Fedorenko, Yu. V.; Bespalov, P. A.; Turunen, T.

    2014-09-01

    Simultaneous records of VLF (very low frequencies) emissions have been carried out at two ground-based stations located at similar geomagnetic latitudes near L ~ 5.5 and spaced in the longitude by ~ 400 km, Kannuslehto (KAN) in Finland and Lovozero (LOZ) in Russia, using quite similar VLF receivers with two calibrated orthogonal air-core loop antennas. We found that the general spectral properties of the VLF chorus emissions at these two stations were similar and typically have right-hand polarization. Contrary to VLF chorus, the short-period VLF emissions (periodic emissions, PE) in which separated spectral elements are repeated with the periodicity of 3-4 s were mostly left-hand polarized. Usually, these waves propagated in the north-south direction. We suppose that PEs are generated inside of the plasmasphere by the cyclotron instability under a quasi-linear relaxation of the energetic electron distribution function. However, sometimes PE occurred only at an individual station. We speculated that this could be due to the influence of the local inhomogeneities to the VLF waves during the propagation through the ionospheric trough to the ground. Unusual series of short-duration (10-100 s) bursts of VLF emissions, lasting several hours, were also found in the morning under very quiet geomagnetic conditions (Kp ~ 0-1). Generally, these emissions were observed simultaneously at KAN and LOZ showing both right-hand and left-hand polarization, and different arrival directions provided the rather extended ionospheric exit area.

  2. Numerical simulation of whistler-triggered VLF emissions observed in Antartica

    Energy Technology Data Exchange (ETDEWEB)

    Nunn, D. [Southhampton Univ., Southhampton (United Kingdom); Smith, A.J. [British Antarctic Survey, Cambridge (United Kingdom)

    1996-03-01

    The authors have extracted from VLF databases from British Antarctica Survey data taken at Halley and Faraday stations, examples of whistler-triggered emissions (WTE). The WTE are relatively narrow band emissions triggered by natural background whistlers undergoing nonlinear wave particle interactions generally in the equatorial regions. They occur with either rising or falling frequency relative to the triggering waves. Using a Vlasov type code the authors are able to simulate the types of emissions which are observed. 24 refs., 8 figs., 3 tabs.

  3. Substorm-associated VLF emissions with frequency drift observed in the premidnight sector

    Science.gov (United States)

    Hayakawa, M.; Tanaka, Y.; Okada, T.; Tixier, M.; Sazhin, S. S.

    1988-06-01

    The characteristics of premidnight substorm-associated VLF emissions are examined on the basis of data obtained by the VLF/ELF campaign during November 1978 to February 1979 by means of the direction-finding measurements at two stations, Brorfelde in Denmark (L-value of about 3) and Chambon-la-Foret in France (L-value about 2) as well as ISIS satellite measurements. Two remarkable events have been analyzed, and the following main properties have emerged: (1) the emissions observed are of hiss type and are excited mainly within the plasmapause, (2) the emission activity is preceded by the development of two subsequent substorms, and (3) the emission frequency increases sharply at the first stage of the events and is followed by its subsequent gradual decrease. These properties of the temporal evolution of the wave spectrum are interpreted in terms of a quasi-linear electron cyclotron instability model for wave excitation. The initial frequency increase is believed to be due to a combined effect of L shell drift of energetic electrons injected during the first substorm and a decrease of a large-scale convection electric field during the development of the events. The subsequent frequency decrease may be related to the additional injection of energetic electrons due to the development of the second substorm.

  4. Auroral pulsations and accompanying VLF emissions

    Directory of Open Access Journals (Sweden)

    V. R. Tagirov

    Full Text Available Results of simultaneous TV observations of pulsating auroral patches and ELF-VLF-emissions in the morning sector carried out in Sodankylä (Finland on February 15, 1991 are presented. Auroral pulsating activity was typical having pulsating patches with characteristic periods of about 7 s. Narrow-band hiss emissions and chorus elements at intervals of 0.3–0.4 s formed the main ELF-VLF activity in the frequency range 1.0–2.5 kHz at the same time. The analysis of auroral images with time resolution of 0.04 s allowed perfectly separate analysis of spatial and temporal variations in the auroral luminosity. Mutual correspondence between the behaviour of the luminous auroral patches and the appearance of ELF noise type hiss emissions and VLF chorus trains was found in two intervals chosen for analysis. While the hiss emissions were associated with the appearance of luminosity inside a limited area close to the zenith, the structured VLF emissions were accompanied by rapid motion of luminosity inside the area. The spatial dimension of the pulsating area was about 45–50 km and luminosity propagated inside it with velocity of about 10–12 kms. We discuss a new approach to explain the 5–15 s auroral pulsation based on the theory of flowing cyclotron maser and relaxation characteristics of ionosphere.

    Key words. Magnetospheric physics (auroral phenomena; magnetosphere-ionosphere interactions · Space plasma physics (wave-particle interactions

  5. Early VLF perturbations observed in association with elves

    Directory of Open Access Journals (Sweden)

    Á. Mika

    2006-09-01

    Full Text Available VLF remote sensing is used to detect lower-ionospheric electron density changes associated with a certain type of transient luminous events known as elves. Both ground- and satellite-based observations of elves are analysed in relation to VLF data acquired at various receiver sites in Europe, the United States and Antarctica. Ground-based observations were performed during the EuroSprite2003 campaign, when five elves were captured by low-light cameras located in the Pyrenees. Analysis of VLF recordings from Crete shows early VLF perturbations accompanying all of the elves. A large dataset consisting of elves captured by the ISUAL (Imager of Sprites and Upper Atmospheric Lightning payload on Taiwan's FORMOSAT-2 satellite over Europe and North America has also been analysed. Early/fast VLF perturbations were found to accompany some of the elves observed over Europe. However, no VLF perturbations were detected in relation to the elves observed by ISUAL over North America. The present analysis – based on the largest database of optical elve observations used for VLF studies so far – constitutes evidence of processes initiated by the lightning EMP (electromagnetic pulse causing electron density changes in the lower ionosphere in line with theoretical predictions. It also proves that sub-ionospheric electron density changes associated with elves can intrude to lower heights and thus perturb VLF transmissions. The possibility of VLF detection, however, depends on several factors, e.g., the distance of the elve from the receiver and the transmitter–receiver great circle path (GCP, the altitude of the ionised region and the characteristics of the VLF transmitter, as well as the EMP energy, which occasionally may be sufficient to cause optical emissions but not ionisation.

  6. Simultaneous observations of quasi-periodic ELF/VLF wave emissions and electron precipitation by DEMETER satellite: A case study.

    Czech Academy of Sciences Publication Activity Database

    Hayosh, Mykhaylo; Pasmanik, D. L.; Demekhov, A. G.; Santolík, Ond?ej; Parrot, M.; Titova, E. E.

    2013-01-01

    Ro?. 118, ?. 7 (2013), s. 4523-4533. ISSN 2169-9380 R&D Projects: GA ?R(CZ) GAP209/11/2280; GA MŠk LH12231 Institutional support: RVO:68378289 Keywords : quasi-periodic ELF/VLF emissions in the magnetosphere * wave-particle interactions * demeter spacecraft measurements * whistler-mode waves Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.440, year: 2013 http://onlinelibrary.wiley.com/doi/10.1002/jgra.50179/abstract

  7. Similar behaviors of natural ELF/VLF ionospheric emissions and transmitter signals over seismic Adriatic regions

    Directory of Open Access Journals (Sweden)

    M. Y. Boudjada

    2008-11-01

    Full Text Available We report on the analysis of ELF/VLF emissions observed by the Instrument Champ Electrique (ICE experiment onboard the DEMETER micro-satellite. We consider principally selected seismic events reported by Molchanov et al. (2006. These authors studied the VLF signals radiated by ground transmitters and received on board the DEMETER micro-satellite. They revealed a drop of the signals (scattering spot connected with the occurrence of large earthquakes. In our investigations, we proceed to a spectral analysis of ICE observations with the aim to find if the natural ionospheric VLF/ELF emissions show, or not, a similar ''drop'' in the intensity as it is the case of the VLF transmitter signal. We combine our results with those of Molchanov et al. (2006, and we discuss the origin of such interesting ionospheric features in the frame of the investigation of the pre-seismic electromagnetic emissions. We show that the geomagnetic activity is a key parameter which could disturb the natural VLF ionospheric emissions, and also the transmitter signal. We find that it is not possible to conclude the presence, or not, of a preseismic effect when the Kp-index is higher than one.

  8. Perturbations of ionosphere-magnetosphere coupling by powerful VLF emissions from ground-based transmitters

    International Nuclear Information System (INIS)

    The characteristics of the plasma-wave disturbances stimulated in the near-Earth plasma by powerful VLF radiation from ground-based transmitters are investigated. Radio communication VLF transmitters of about 1 MW in power are shown to produce artificial plasma-wave channels (density ducts) in the near-Earth space that originate in the lower ionosphere above the disturbing emission source and extend through the entire ionosphere and magnetosphere of the Earth along the magnetic field lines. Measurements with the onboard equipment of the DEMETER satellite have revealed that under the action of emission from the NWC transmitter, which is one of the most powerful VLF radio transmitters, the generation of quasi-electrostatic (plasma) waves is observed on most of the satellite trajectory along the disturbed magnetic flux tube. This may probably be indicative of stimulated emission of a magnetospheric maser.

  9. Perturbations of ionosphere-magnetosphere coupling by powerful VLF emissions from ground-based transmitters

    Energy Technology Data Exchange (ETDEWEB)

    Belov, A. S., E-mail: alexis-belov@yandex.ru; Markov, G. A.; Ryabov, A. O. [Lobachevsky Nizhni Novgorod State University (Russian Federation); Parrot, M. [Environment Physics and Chemistry Laboratory (France)

    2012-12-15

    The characteristics of the plasma-wave disturbances stimulated in the near-Earth plasma by powerful VLF radiation from ground-based transmitters are investigated. Radio communication VLF transmitters of about 1 MW in power are shown to produce artificial plasma-wave channels (density ducts) in the near-Earth space that originate in the lower ionosphere above the disturbing emission source and extend through the entire ionosphere and magnetosphere of the Earth along the magnetic field lines. Measurements with the onboard equipment of the DEMETER satellite have revealed that under the action of emission from the NWC transmitter, which is one of the most powerful VLF radio transmitters, the generation of quasi-electrostatic (plasma) waves is observed on most of the satellite trajectory along the disturbed magnetic flux tube. This may probably be indicative of stimulated emission of a magnetospheric maser.

  10. Simultaneous spaced direction-finding measurements of medium-latitude VLF/ELF emissions

    Science.gov (United States)

    Hayakawa, M.; Tanaka, Y.; Iwai, A.; Ohtsu, J.; Storey, L. R. O.; Béghin, C.; Jorgensen, T. S.

    1981-05-01

    Simultaneous spaced measurements of medium-latitude VLF/ELF emissions were carried out during the three northern winters from 1976 to 1979. The experiment was making use of two different kinds of direction-finding systems (a field-analysis method and a goniometer network) at two stations in Europe, namely Brorfelde in Denmark ( L = 2.9) and Chambron-la-Foret in France ( L = 1.9); this enabled us to locate the ionospheric exit regions of emissions over a wide range of L-values up to and beyond 4.0, the average plasmapause location. In order to study the time delay in the temporal evolution of VLF emissions or the longitudinal drift of the emissions, observations from the Moshiri Observatory in Japan, widely separated in longitude, are also used. The overall system of the VLF equipment installed at the three stations is described. Then we present the VLF/ELF data of good quality obtained during the final year's campaign (Nov. 1978-Feb. 1979). By making use of the direction-finding data, we were able to classify the observed emissions into several categories, and some early results for some of the emissions are presented.

  11. Characteristics of dawnside mid-latitude VLF emissions associated with substorms as deduced from the two-stationed direction finding measurement

    Science.gov (United States)

    Hayakawa, M.; Tanaka, Y.; Okada, T.; Kurita, K.; Sazhin, S. S.

    1986-02-01

    The properties of dawnside VLF emissions for six events occurring on November 26, December 19, 20, 21, and 30, 1978 are examined. The data is obtained from direction finding measurements at a station in Brorfelde in Denmark and Chambon-la-Foret in France. The types of emissions, emission frequency variations with local time, and the location of ionospheric exit regions are investigated. The characteristics of the emissions observed are: (1) the highest concentration of VLF emissions is at LT = 06.00, (2) the VLF emissions are hiss-type, (3) the region of maximum intensity is inside the plasmapause, and (4) the VLF emissions exhibit a regular frequency drift. The analysis of the data is performed using Sazhin's (1984) quasi-linear model of the cyclotron instability of substorm electrons. The relationship between the frequency increase in the midlatitude VLF emissions and the whistler dispersion is studied.

  12. ELF and VLF observations of ionospheric disturbances caused by extra-terrestrial origin

    Science.gov (United States)

    Tanaka, Y.; Hayakawa, M.; Hobara, Y.; Raulin, J.; Takahashi, Y.; Sato, M.; Terasawa, T.

    2013-05-01

    Very Low Frequency (VLF) radio wave propagates within the Earth-ionosphere waveguide, and hence measurement of the VLF amplitude and phase can be utilized to study physics of phenomena taking place in the lower ionosphere below about 100 km. Observation of Extremely Low Frequency (ELF) radio wave is also a powerful tool to investigate ionospheric phenomena such as lightning. Here we present ELF and VLF observations of ionospheric disturbances caused by extraterrestrial phenomena. Cosmological Gamma-ray bursts has already been known as the origin of ionospheric disturbances. In addition to this, "magnetar" flares has also been recognized to affect the Earth's ionosphere. Ordinary neutron stars possess magnetic fields of about 10^12 Gauss, while magnetars are considered to have extremely strong magnetic fields of about 10^15 G. Some of the magnetars emit short-duration (~0.1 s) gamma-ray bursts repeatedly in active phases, thereby they are named as "Soft Gamma-ray Repeaters (SGRs)". As rare events, SGRs emit exceptionally bright gamma-ray flares "giant flares", whose peak fluxes exceed those of X-class large solar flares by several order of magnitudes. Recent sensitive measurement of ELF and VLF radio waves can observe ionospheric disturbances caused by these short-repeated and giant flares. Namely, we have found that transient ELF radio wave and Schumann resonance were caused by SGR giant flares in 2004. The emission mechanism is still unclear, but similarity of nuclear detonation in 1960's might give some hints to unveil the emission mechanism. Interesting application of VLF measurement of magnetar flare is that we can deduce the gamma-ray spectrum from VLF data. Intensive astronomical X-ray and gamma-ray observations have been performed by satellites in space using very sensitive detectors. Since SGR giant flare emits huge X-ray/gamma-ray flux, such sensitive detectors are affected by severe saturation problems and precise measurement is very difficult. In my presentation, we present how we deduce the photon spectrum from the VLF data. Using Monte Carlo method, we modeled ionization of lower ionosphere, and obtained altitude profile of electron number density. We then utilized Finite-Difference Time Domain (FDTD) method to simulate VLF propagation. The altitude profile and simulated amplitude change differs depending on the energy spectrum. Therefore, by comparing simulation results with the observation, we can infer the source spectrum as an inverse problem.

  13. Prediction Capabilities of VLF/LF Emission as the Main Precursor of Earthquake

    CERN Document Server

    Kachakhidze, Manana

    2013-01-01

    Recent satellite and ground-based observations proved that in earthquake preparation period in the seismogenic area we have VLF/LF and ULF electromagnetic emissions. According to the opinion of the authors of the present paper this phenomenon is more universal and reliable than other earthquake indicators. Hypothetically, in case of availability of adequate methodological grounds, in the nearest future, earth VLF/LF electromagnetic emission might be declared as the main precursor of earthquake. In particular, permanent monitoring of frequency spectrum of earth electromagnetic emission generated in the earthquake preparation period might turn out very useful with the view of prediction of large (M 5) inland earthquakes. The present paper offers a scheme of the methodology according to which the reality of the above given hypothesis can be checked up. To prove the prediction capabilities of earth electromagnetic emission we have used avalanche-like unstable model of fault formation and an analogous model of ele...

  14. Solar Flare Induced Ionospheric Perturbations Observed by VLF Sferic Propagation

    Science.gov (United States)

    McCormick, J.; Cohen, M.

    2014-12-01

    VLF waves are a useful diagnostic for D-region ionospheric disturbances due to their efficient global propagation. The D-region is too high for balloons, too low for satellites, and not ionized enough for radar reflections. Traditionally, ionosphere disturbances have been sensed using dedicated VLF transmitters allowing for only single propagation path analysis since there are only a handful of transmitters. A lightning stroke, however, releases an intense amount of VLF radio energy known as a Radio Atmospheric, or 'sferic' which propagates through the Earth-ionosphere waveguide. Lightning is globally spread and very frequent, so a sferic is therefore also a useful diagnostic of the D-region when ionized by solar flare x-ray bursts.We present observations of lightning-generated sferics during strong solar flares. The advantage to using sferics is that many individual thunderstorms effectively act as separate VLF transmitting sources. During the solar flare there is a significant change in magnitude and frequency content of sferics. This disturbance varies with distance from the source. The difference in magnitude and arrival time of these sferics have local maximums and minimums, and appears to oscillate with distance. We utilize modeling of the Earth-ionosphere system to explain the results.

  15. Statistical correlation of spectral broadening in VLF transmitter signal and low-frequency ionospheric turbulence from observation on DEMETER satellite

    Directory of Open Access Journals (Sweden)

    A. Rozhnoi

    2008-10-01

    Full Text Available In our earlier papers we have found the effect of VLF transmitter signal depression over epicenters of the large earthquakes from observation on the French DEMETER satellite that can be considered as new method of global diagnostics of seismic influence on the ionosphere. At present paper we investigate a possibility VLF signal-ionospheric turbulence interaction using additional characteristic of VLF signal-spectrum broadening. This characteristic is important for estimation of the interaction type: linear or nonlinear scattering. Our main results are the following:
    – There are two zones of increased spectrum broadening, which are centered near magnetic latitudes ?=±10° and ?=±40°. Basing on the previous case study research and ground ionosonde registrations, probably it is evidence of nonlinear (active scattering of VLF signal on the ionospheric turbulence. However occurrence rate of spectrum broadening in the middle-latitude area is higher than in the near-equatorial zone (~15–20% in comparison with ~100% in former area that is probably coincides with the rate of ionospheric turbulence.
    – From two years statistics of observation in the selected 3 low-latitude regions and 1 middle-latitude region inside reception area of VLF signal from NWC transmitter we find a correlation of spectrum broadening neither with ion-cyclotron noise (f=150–500 Hz, which possibly means poor representation of the turbulence by the noise due to its mixture with natural ELF emission (which correlates with whistler, nor with magnetic storm activity.
    – We find rather evident correlation of ion-cyclotron frequency noise, VLF signal depression and weak correlation of spectrum broadening with seismicity in the middle-latitude region over Japan. But in the low-latitude regions we do not find such a correlation. Statistical decrease of VLF signal supports our previous case study results. However rather weak spectrum broadening-seismicity statistical correlation means probably that passive scattering prevails upon nonlinear (active one.

  16. Acoustic-gravity waves in the nonisothermal atmosphere and its influence on the magnetospheric quasi-periodic vlf emissions

    Science.gov (United States)

    Savina, Olga; Bespalov, Peter; Misonova, Vera; Petrov, Kiril

    2014-05-01

    We examine two mutually complementing tasks related to the theoretical analysis of acoustic-gravity disturbances in the Earth's atmosphere and its influence on magnetosphere processes. Our research is based on modern atmospherical models. We study waves propagation, absorption, and filtration. The atmospheric nonisothermicity is taken into account, for example, by introduction of a two-layered atmosphere temperature model. For a study of more delicate effects, a piecewise-linear model, for which the analytical solution is written by the hypergeometric functions, is employed. Also we consider an influence of acoustic-gravity waves on VLF electromagnetic wave excitation in the magnetosphere. This influence occurs as a result of the following processes: a modulation of the plasma density by acoustic-gravity waves in the ionosphere, a modulation of reflection from the ionosphere for VLF waves, and a modification of the magnetospheric resonator Q-factor for VLF waves. Variation of the magnetospheric resonator Q-factor has an influence on the operation of the plasma magnetospheric maser, where the active substances are radiation belts particles and the working modes are electromagnetic VLF waves (whistler-type waves). The plasma magnetospheric maser can be responsible for an excitation of self-oscillations. These self-oscillations are frequently characterized by alternating stages of accumulation and precipitation of energetic particles into the ionosphere during a pulse of whistler emissions. Numerical and analytical investigations of the response of self-oscillations to harmonic oscillations of the whistler reflection coefficient shows that even a small modulation rate can significantly changes the magnetospheric VLF emissions. Our results can explain the causes of the modulation of energetic electron fluxes and whistler wave intensity with a time scale from 10 to 150 seconds in the day-side magnetosphere. Such quasi-periodic VLF emissions are often observed in the sub-auroral and auroral magnetosphere and have a noticeable effect on the formation of the space weather phenomena.

  17. Prediction capabilities of VLF/LF Emission as the main Precursor of earthquake

    Science.gov (United States)

    Kachakhidze, Manana; Kachakhidze, Nino

    2014-05-01

    Recent satellite and ground-based observations proved that in earthquake preparation period in the seismogenic area VLF/LF and ULF electromagnetic emissions are fixed. According to the opinion of the authors of the present work this phenomenon is more universal and reliable than other earthquake indicators. Hypothetically, in case of availability of adequate methodological grounds, in the nearest future, earth VLF/LF electromagnetic emission might be declared as the main precursor of earthquake. In particular, permanent monitoring of frequency spectrum of earth electromagnetic emission generated in the earthquake preparation period might turn out very useful with the view of prediction of large (M 5) inland earthquakes. The present work offers a scheme of the methodology according to which the reality of the above given hypothesis can be checked up. To prove the prediction capabilities of Earth electromagnetic emission we have used avalanche-like unstable model of fault formation and an analogous model of electromagnetic contour, synthesis of which, according to our opinion, is rather harmonious.

  18. VLF observations of ionospheric disturbances in association with TLEs from the EuroSprite-2007 campaign

    DEFF Research Database (Denmark)

    NaitAmor, S.; AlAbdoadaim, M. A.

    2010-01-01

    Two Very Low Frequency (VLF) AWESOME remote sensing systems located at Algiers, Algeria (36.45°N, 3.28°E) and Sebha, Libya (27.02°N, 14.26°E) monitor VLF signal perturbations for evidence of ionospheric disturbances. During the EuroSprite-2007 campaign a number of Transient Luminous Events (TLEs) were captured over the Mediterranean Sea by cameras at Pic du Midi (42.94°N, 0.14°E) and at Centre de Recherches Atmospheriques (CRA) in southwestern France (43.13°N, 0.37°E). The cameras observations are compared to collected VLF AWESOME data. We consider early VLF perturbations observed on 12-13, 17-18 October and 17-18 December, 2007. The data from the two VLF receivers confirm the association between TLEs and early VLF signal perturbations with the perturbations amplitudes dependent on the observation configuration i.e. whether the TLE is near the receiver, near the transmitter, or far from both and the scattering process. The results also reveal that the early VLF perturbations can occur in the absence of a TLE.

  19. Rare examples of early VLF events observed in association with ISUAL-detected gigantic jets

    Science.gov (United States)

    Marshall, R. A.; Adachi, T.; Hsu, R.-R.; Chen, A. B.

    2014-01-01

    We examine narrowband VLF observations and investigate the association of early VLF perturbations with gigantic jets recorded by the Imager of Sprites and Upper Atmospheric Lightnings (ISUAL) instrument aboard FORMOSAT-2. From its inception in 2004 to April 2013, the ISUAL instrument has recorded 90 gigantic jets using a triggered camera. Stanford VLF receivers located around the world are used to detect perturbations to VLF transmitter signals associated with lightning. While nine gigantic jet events occurred within 100 km of a VLF transmitter-receiver great circle path, only four early VLF events were detected in association with three ISUAL gigantic jets. One of these is a moderate event of 0.4 dB amplitude change, and the others are very small. The recovery time of these events are less than a couple of minutes and so do not constitute the "long recovery" early VLF events that have been postulated to be associated with gigantic jets. We speculate on possible explanations for the lack of other events on monitored paths, including a lack of significant ionization produced in the D region ionosphere by the gigantic jet event, weak transmitter signals recorded by the receivers, or mode effects on transmitter paths.

  20. First optical observations of energetic electron precipitation at 4278 Å caused by a powerful VLF transmitter

    Science.gov (United States)

    Denton, M. H.; Kosch, M. J.; Borovsky, J. E.; Clilverd, M. A.; Friedel, R. H. W.; Ulich, T.

    2014-04-01

    A summary is presented of experimental optical observations at 4278 Å from close to a powerful (~150 kW) VLF transmitter (call sign JXN) with a transmission frequency of 16.4 kHz. Approximately 2.5 s after transmitter turn-on, a sudden increase in optical emissions at 4278 Å was detected using a dedicated camera/charge-coupled device (CCD) monitoring system recording at a frequency of 10 Hz. The optical signal is interpreted as a burst of electron precipitation lasting ~0.5 s, due to gyro-resonant wave-particle interactions between the transmitted wave and the magnetospheric electron population. The precipitation was centered on the zenith and had no detectable spatial structure. The timing of this sequence of events is in line with theoretical predictions and previous indirect observations of precipitation. This first direct measurement of VLF-induced precipitation at 4278 Å reveals the spatial and temporal extent of the resulting optical signal close to the transmitter.

  1. New type of ensemble of quasi-periodic, long-lasting VLF emissions at the auroral zone

    Directory of Open Access Journals (Sweden)

    J. Manninen

    2012-12-01

    Full Text Available A new type of the series of quasi-periodic (QP very low frequency (VLF emissions in frequency range of 1–5 kHz, and not associated with geomagnetic pulsations, has been discovered at auroral latitudes (L = 5.3 during the Finnish VLF campaign (held in December 2011. At least five unusually spectacular events, each with a duration of several hours, have been observed during the night under conditions of quiet geomagnetic activity (Kp = 0–1, although QPs usually occur during the daytime. Contrary to the QP emissions typically occurring during the day, the spectral structure of these QP events represented an extended, complicated sequence of repeated discrete rising VLF signals. Their duration was about 2–3 min each, with the repetition periods ranging from ~1 min to ~10 min. Two such nighttime non-typical events are reported in this paper. The fine structure of the separated QP elements may represent a mixture of the different frequency band signals, which seem to have independent origins. It was found that the periodic signals with lower frequency appear to trigger the strong dispersive upper frequency signals. The temporal dynamics of the spectral structure of the QPs studied were significantly controlled by some disturbances in the solar wind and interplanetary magnetic field (IMF. This finding is very important for future theoretical investigations because the generation mechanism of this new type of QP emissions is not yet understood.

  2. Statistical investigation of the VLF quasi-periodic emissions measured by the DEMETER spacecraft.

    Czech Academy of Sciences Publication Activity Database

    Hayosh, Mykhaylo; N?mec, F.; Santolík, Ond?ej; Pasmanik, D. L.; Parrot, M.

    EGU, 2013. EGU2013-8852. ISSN 1607-7962. [EGU General Assembly 2013. 07.04.2013-12.04.2013, Vienna] Institutional support: RVO:68378289 Keywords : VLF quasi-periodic emissions Subject RIV: DG - Athmosphere Sciences, Meteorology http://meetingorganizer.copernicus.org/EGU2013/EGU2013-8852.pdf

  3. Subionospheric VLF signatures and their association with sprites observed during EuroSprite 2003

    DEFF Research Database (Denmark)

    Mika, A.; Haldoupis, C.

    2005-01-01

    In this study, VLF observations during EuroSprite-2003 are analyzed in connection with many sprites observed above thunderstorms in central France. The sprites were detected with a sensitive camera from the Observatoire du Pic du Midi in the Pyrenees overlooking storms monitored by the French national lightning detection network. The VLF observations were made in Crete, Greece with a narrowband receiver, and in Nancay, France with a broadband receiver. The storms were in the vicinity of a VLF transmitter (HWV) at Le Blanc, France, whose signal was received on Crete, arriving over a great circle path that cut through the storms to the southeast. The Nancay broadband receiver was located near HWV to the northeast of the transmitter. This setup provided a unique observational set for investigation. The receiver in Crete observed early VLF perturbations in nearly one-to-one association with the sprites, which endorses the findings of earlier work based on EuroSprite-2003 observations from a single storm. While part of the sprite-related VLF perturbations were of the early/fast type, many classified as "early/slow" having onset durations up to similar to 2s and thus suggesting a new mechanism at work which may cause a slow build up of ionization after a sprite. The only elve in the data set was found to associate also with an early/fast VLF perturbation. Moreover, the analysis showed basically no early VLF events to occur in relation to the numerous +/- CG discharges that did not lead to sprites. Bandpass filtering of the broadband VLF signal revealed that only about 5% of the sprites were escorted by early VLF perturbations, possibly due to backscatter. Finally, by using all 131 sprites captured during EuroSprite-2003, the time lags of the sprites to the preceding +/- CG discharges were computed and analyzed. The time-lag distribution had a well defined tail suggesting that at least one third of the sprites observed were lagging the +/- CG discharges by more than 30 up to 300 ms. In addition these "long-delayed" sprites were not accompanied by any radio-sferics during the sprite observation period, in sharp contrast to the short-delayed sprites which were escorted nearly always by enhanced, burst-like, sferic activity. These observations endorse the notion of long delayed sprites reported in past studies, but also show that their occurrence is much more frequent than it was thought before.

  4. In connection with identification of VLF emissions before L'Aquila earthquake

    OpenAIRE

    Kachakhidze, M. K.; Kereselidze, Z. A.; Kachakhidze, N. K.; Ramishvili, G. T.; Kukhianidze, V. J.

    2012-01-01

    The present paper deals with an attempt to check the theoretical model of self-generated seismo-electromagnetic oscillations of LAI system on the basis of retrospective data.

    Application of the offered simple model enables one to explain qualitatively the mechanism of VLF electromagnetic emission initiated in the process of an earthquake preparation. Besides, the model enables us to associate telluric character geoelectric and geomagnetic perturbations incited by rock pol...

  5. Statistical investigation of VLF quasiperiodic emissions measured by the DEMETER spacecraft.

    Czech Academy of Sciences Publication Activity Database

    Hayosh, Mykhaylo; N?mec, F.; Santolík, Ond?ej; Parrot, M.

    2014-01-01

    Ro?. 119, ?. 10 (2014), s. 8063-8072. ISSN 2169-9380 R&D Projects: GA ?R(CZ) GAP209/11/2280; GA MŠk LH12231 Grant ostatní: Akademie v?d(CZ) M100421206 Institutional support: RVO:68378289 Keywords : VLF waves in ionosphere * QP emissions * DEMETER spacecraft Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.440, year: 2013 http://onlinelibrary.wiley.com/doi/10.1002/2013JA019731/abstract

  6. Meteorological effects in the lower ionosphere as based on VLF/LF signal observations

    Directory of Open Access Journals (Sweden)

    A. Rozhnoi

    2014-04-01

    Full Text Available Very low and low frequency (VLF/LF data recorded in the Far Eastern stations Petropavlovsk-Kamchatsky (158.92° E, 53.15° N, Yuzhno-Sakhalinsk (142.75° E, 46.95° N and Yuzhno-Kurilsk (145.861° E, 44.03° N are investigated to study the meteorological effects in the lower ionosphere. The results demonstrate the sensitivity of the VLF/LF signals to the variations of atmospheric pressure, humidity, wind velocity and temperature, and the VLF/LF record at the station of Yuzhno-Kurilsk is found to be most sensitive to those variations of atmospheric parameters. The region under consideration is characterized by high winter cyclonic activity in midlatitudes and strong summer and autumn typhoon activity in low latitudes. VLF/LF signal variations during 8 tropical cyclones (TCs with different intensity are considered. Negative nighttime anomalies in the signal amplitude that are most probably caused by TC activity are found for 6 events. Those anomalies are observed during 1–2 days when TCs move inside the sensitivity zones of the subionospheric paths. Perturbations of the VLF signal observed during 2 TCs can be caused by both the TC influence and seismic activity, but no correlation between TC intensity and magnitude of the signal anomalies is found. Spectral analysis of the typhoon-induced disturbed signals revealed the fluctuations with time periods in the range of 7–16 and 15–55 min that corresponds to the range of internal gravity waves periods.

  7. Cluster observations of ELF/VLF signals generated by modulated heating of the lower ionosphere with the HAARP HF transmitter

    OpenAIRE

    Platino, M.; Inan, U. S.; Bell, T. F.; Pickett, J.; Kennedy, E. J.; Trotignon, J. G.; Rauch, J. L.; Canu, P.

    2004-01-01

    It is now well known that amplitude modulated HF transmissions into the ionosphere can be used to generate ELF/VLF signals using the so-called "electrojet antenna". Although most observations of the generated ELF/VLF signals have been made on the ground, several low and high-altitude satellite observations have also been reported (James et al., 1990). One of the important unknowns in the physics of ELF/VLF wave generation by ionospheric heating is the volume of the magnetosphere ill...

  8. Cluster observations of ELF/VLF signals generated by modulated heating of the lower ionosphere with the HAARP HF transmitter

    Directory of Open Access Journals (Sweden)

    M. Platino

    2004-07-01

    Full Text Available It is now well known that amplitude modulated HF transmissions into the ionosphere can be used to generate ELF/VLF signals using the so-called "electrojet antenna". Although most observations of the generated ELF/VLF signals have been made on the ground, several low and high-altitude satellite observations have also been reported (James et al., 1990. One of the important unknowns in the physics of ELF/VLF wave generation by ionospheric heating is the volume of the magnetosphere illuminated by the ELF/VLF waves. In an attempt to investigate this question further, ground-satellite conjunction experiments have recently been conducted using the four Cluster satellites and the HF heater of the High-Frequency Active Auroral Research Program (HAARP facility in Gakona, Alaska. Being located on largely closed field lines at L?4.9, HAARP is currently also being used for ground-to-ground type of ELF/VLF wave-injection experiments, and will be increasingly used for this purpose as it is now being upgraded for higher power operation. In this paper, we describe the HAARP installation and present recent results of the HAARP-Cluster experiments. We give an overview of the detected ELF/VLF signals at Cluster, and a possible explanation of the spectral signature detected, as well as the determination of the location of the point of injection of the HAARP ELF/VLF signals into the magnetosphere using ray tracing.

  9. In connection with identification of VLF emissions before L'Aquila earthquake

    CERN Document Server

    Kachakhidze, M; Kachakhidze, N

    2012-01-01

    The present paper deals with an attempt to check up the theoretical model of self-generated seismo-electromagnetic oscillations of LAI system on the basis of retrospective data. Application of the offered simple model enables one to explain qualitatively the mechanism of VLF electromagnetic emission initiated in the process of an earthquake preparation. It is worth to pay attention to the fact that frequency changes from MHz to kHz in electromagnetic emission spectrum comes to a good agreement with avalanche-like unstable model of fault formation. L'Aquila earthquake taken as an example to isolate reliably the Earth VLF emission from the magnetospheric electromagnetic emission of the same frequency range, MHD criterion is offered together with geomagnetic activity indexes. On the basis of the considered three earthquakes, according to the opinion of authors the model of self-generated seismo-electromagnetic oscillations of the LAI system will enable us to approach the problem of resolution of earthquake predi...

  10. In connection with identification of VLF emissions before L'Aquila earthquake

    Directory of Open Access Journals (Sweden)

    M. K. Kachakhidze

    2012-04-01

    Full Text Available The present paper deals with an attempt to check the theoretical model of self-generated seismo-electromagnetic oscillations of LAI system on the basis of retrospective data.

    Application of the offered simple model enables one to explain qualitatively the mechanism of VLF electromagnetic emission initiated in the process of an earthquake preparation. Besides, the model enables us to associate telluric character geoelectric and geomagnetic perturbations incited by rock polarization and self-generated electromagnetic oscillations of lithosphere-atmosphere system.

    L'Aquila earthquake taken as an example to isolate reliably the Earth VLF emission from the magnetospheric electromagnetic emission of the same frequency range, MHD criterion is offered together with geomagnetic activity indexes.

    On the basis of the considered three earthquakes, according to the opinion of authors the model of self-generated seismo-electromagnetic oscillations of the LAI system will enable us to approach the problem of resolution of earthquake prediction with certain accuracy.

  11. Long-term determination of energetic electron precipitation into the atmosphere from AARDDVARK subionospheric VLF observations

    Science.gov (United States)

    Neal, Jason J.; Rodger, Craig J.; Clilverd, Mark A.; Thomson, Neil R.; Raita, Tero; Ulich, Thomas

    2015-03-01

    We analyze observations of subionospherically propagating very low frequency (VLF) radio waves to determine outer radiation belt energetic electron precipitation (EEP) flux magnitudes. The radio wave receiver in Sodankylä, Finland (Sodankylä Geophysical Observatory) observes signals from the transmitter with call sign NAA (Cutler, Maine). The receiver is part of the Antarctic-Arctic Radiation-belt Dynamic Deposition VLF Atmospheric Research Konsortia (AARDDVARK). We use a near-continuous data set spanning November 2004 until December 2013 to determine the long time period EEP variations. We determine quiet day curves over the entire period and use these to identify propagation disturbances caused by EEP. Long Wave Propagation Code radio wave propagation modeling is used to estimate the precipitating electron flux magnitudes from the observed amplitude disturbances, allowing for solar cycle changes in the ambient D region and dynamic variations in the EEP energy spectra. Our method performs well during the summer months when the daylit ionosphere is most stable but fails during the winter. From the summer observations, we have obtained 693 days worth of hourly EEP flux magnitudes over the 2004-2013 period. These AARDDVARK-based fluxes agree well with independent satellite precipitation measurements during high-intensity events. However, our method of EEP detection is 10-50 times more sensitive to low flux levels than the satellite measurements. Our EEP variations also show good agreement with the variation in lower band chorus wave powers, providing some confidence that chorus is the primary driver for the outer belt precipitation we are monitoring.

  12. Characteristic of Tweek Atmospherics Observed in Mid-latitude using AWESOME VLF Receiver

    Directory of Open Access Journals (Sweden)

    Norbayah Yusop

    2014-03-01

    Full Text Available This study presents the analysis of tweek atmospherics received by AWESOME VLF receiver at station of Gakona (62.71°N, 143.99°W during four months observation from January to April 2011. Tweek which originates from lightning discharge are used to monitor the nighttime D-region ionosphere using the fundamental cut-off frequency to measure the variations of the lower ionosphere’s reflection height, the equivalent electron density at the reflection height and the propagation distance travel by tweeks. In this study, a total of 1316 tweeks are analyzed and from the analysis, it shows that equinox’s season has the highest tweek occurrence compared to winter season in March and April. The maximum harmonic (m of t weeks is found to be up to fourth ( m = 4 and tweeks with mode number one (m = 1 are more dominantly occurred. Our observations indicate that the equivalent electron densities for tweeks varies from 22-27 eL/cm3 in the altitude ranged of 75 to 91 km and demonstrate that these ELF/VLF signals travel considerable distances up to 6700 km from the causative lightning discharges. The ionospheric parameters for three locations (high, middle and low latitude respectively were compared and the results show that they are almost consistent for all the locations.

  13. Whistler-triggered emissions observed by ISIS satellites

    International Nuclear Information System (INIS)

    VLF emissions triggered by whistlers are often observed at middle and high latitudes in the topside ionosphere by ISIS satellites. Most of them are so-called LHR emissions lasting for a few seconds. Latitudinal distributions of the occurrence rate for the whistler-triggered emissions in the topside ionosphere have been obtained by using VLF electric field data received from the ISIS 1 and 2 satellites at Kashima station, Communications Research Laboratory, Japan. These VLF emissions are classified into two groups according to the type of whistlers, i.e., ducted whistlers with a continuous trace over the full frequency range of the spectrum and nonducted whistlers without a complete trace below fLHR. The latitudinal distribution of the occurrence rate for emissions triggered by ducted whistlers is considerably different from that for emissions triggered by nonducted whistlers, especially at high latitudes. The occurrence rate for the emissions by nonducted whistlers is distributed rather randomly in latitude between L = 2.0 and L = 4.2. The occurrence rate for emissions by ducted whistlers increases with latitudes between L = 1.5 and L = 2.9, and it attains a maximum of 0.33 at L = 2.7. It then abruptly drops to 0.1 at L = 3.0, and it remains below 0.1 between L = 3.0 and L = 4.0. The decrease of the occurrence rate for emissions by ducted whistlers at L = 3.0 seems to be caused by the decrease of the radiation belt electron flux near the slot region. These electron flux near the slot region. These results suggest that the VLF emissions triggered by ducted whistlers in the topside ionosphere are generated by the cyclotron resonant interaction of ducted whistlers with the magnetospheric electrons near the geomagnetic equatorial plane

  14. VLF observations of ionospheric disturbances in association with TLEs from the EuroSprite?2007 campaign

    OpenAIRE

    NaitAmor, S.; AlAbdoadaim, M. A.; Cohen, M. B.; Cotts, B. R. T.; Soula, S.; Chanrion, Olivier Arnaud; Neubert, Torsten; Abdelatif, T.

    2010-01-01

    Two Very Low Frequency (VLF) AWESOME remote sensing systems located at Algiers, Algeria (36.45°N, 3.28°E) and Sebha, Libya (27.02°N, 14.26°E) monitor VLF signal perturbations for evidence of ionospheric disturbances. During the EuroSprite-2007 campaign a number of Transient Luminous Events (TLEs) were captured over the Mediterranean Sea by cameras at Pic du Midi (42.94°N, 0.14°E) and at Centre de Recherches Atmosphériques (CRA) in southwestern France (43.13°N, 0.37°E). The cameras ob...

  15. Unducted ulf energy from tropical lightning as a possible source of mid-latitude vlf emissions and electron precipitation

    International Nuclear Information System (INIS)

    The model of Reeve and Rycroft (1976) for the generation of whistler precursors is shown to be a special case of a mechanism by which energy from tropical lightning may be directed into the plasmasphere so as to be able to resonate with energetic electrons just inside the plasmapause. The results of such a wave--particle interaction would b (1) to trigger VLF emissions which may under certain conditions be received on the ground as apparently spontaneous emissions and (2) to reduce the pitch angle of the resonant electrons, and thus cause them to be precipitated into the atmosphere at the foot of the field line just inside the plasmapause. Such precipitating electrons could significantly contribute, by secondary ionization, to the maintenance of the bottomside ionosphere at night

  16. VLF Technique and Science in India

    International Nuclear Information System (INIS)

    Since IGY period (1957-58), natural and artificially produced Very Low Frequency (VLF) electromagnetic radiations are being recorded at large number of ground stations and on board satellites to study various wave-plasma interactive phenomena. The terrestrial propagation of these VLF radio waves are primarily enabled through the earth ionosphere wave guide (EIWG) system to long horizontal distances around the globe and ducted along the geomagnetic field lines into the conjugate hemisphere through the ionosphere-plasmasphere-magnetosphere routes. The time frequency spectra indicate presence of dispersion and various cut-off frequencies providing several types of received signals like whistlers, chorus, tweeks, hiss, hisslers etc., which can be heard on an earphone with distinguishing audio structures. While the VLF technique has been a very effective tool for studying middle and high latitude phenomena, the importance of various anomalous characteristics over the Indian low latitude stations provide potentially new challenges for their scientific interpretation and modelling. The ducted and non-ducted propagation, low latitude TRIMPI/TLE effects, D-region ionisation perturbations due to solar and stellar x- and ? ray emissions and detecting precursors of seismic activities are a few problems which will gain from low latitude studies. Since the conjugate points of Indian stations lie over the Indian oceanic region, the VLF propagation effects would be relatively noise gation effects would be relatively noise free to observe rare and new phenomena requiring better SNR to detect such changes. The VLF signals emanating from the active seismic zones would require high sensitivity of the system and suitable network of transmitting and receiving stations. Results obtained on whistlers and related studies from a number of Indian stations covering geomagnetic latitude range between 13-24 deg. N are mentioned and reviewed in the background of theoretical understanding of the lightning return stroke signal elements, VLF propagation through cold plasma, ionospheric wave guide mode, electron precipitation due to cyclotron resonance and production of ionisation in the D-region due to solar/stellar UV/X/?-rays. Further use of the VLF technique in terms of improving both observational data for real time monitoring/modelling of geophysical phenomena and exploring space weather conditions are considered as part of a future Indian programme.

  17. VLF Technique and Science in India

    Science.gov (United States)

    Chakravarty, S. C.

    2010-10-01

    Since IGY period (1957-58), natural and artificially produced Very Low Frequency (VLF) electromagnetic radiations are being recorded at large number of ground stations and on board satellites to study various wave-plasma interactive phenomena. The terrestrial propagation of these VLF radio waves are primarily enabled through the earth ionosphere wave guide (EIWG) system to long horizontal distances around the globe and ducted along the geomagnetic field lines into the conjugate hemisphere through the ionosphere-plasmasphere-magnetosphere routes. The time frequency spectra indicate presence of dispersion and various cut-off frequencies providing several types of received signals like whistlers, chorus, tweeks, hiss, hisslers etc., which can be heard on an earphone with distinguishing audio structures. While the VLF technique has been a very effective tool for studying middle and high latitude phenomena, the importance of various anomalous characteristics over the Indian low latitude stations provide potentially new challenges for their scientific interpretation and modelling. The ducted and non-ducted propagation, low latitude TRIMPI/TLE effects, D-region ionisation perturbations due to solar and stellar x- and ? ray emissions and detecting precursors of seismic activities are a few problems which will gain from low latitude studies. Since the conjugate points of Indian stations lie over the Indian oceanic region, the VLF propagation effects would be relatively noise free to observe rare and new phenomena requiring better SNR to detect such changes. The VLF signals emanating from the active seismic zones would require high sensitivity of the system and suitable network of transmitting and receiving stations. Results obtained on whistlers and related studies from a number of Indian stations covering geomagnetic latitude range between 13-24 °N are mentioned and reviewed in the background of theoretical understanding of the lightning return stroke signal elements, VLF propagation through cold plasma, ionospheric wave guide mode, electron precipitation due to cyclotron resonance and production of ionisation in the D-region due to solar/stellar UV/X/?-rays. Further use of the VLF technique in terms of improving both observational data for real time monitoring/modelling of geophysical phenomena and exploring space weather conditions are considered as part of a future Indian programme.

  18. Assessing global lightning activity with ELF/VLF observations, Schumann resonances and ionospheric potential

    International Nuclear Information System (INIS)

    Complete text of publication follows. Global lightning activity is estimated from globally spaced ELF/VLF receivers and used to investigate the dynamics of the global atmospheric electric circuit. ELF/VLF radiation generated by lightning is known to propagate long distances in the Earth ionosphere waveguide, but propagation effects resulting from diurnal ionospheric variations often dominate received amplitudes at a fixed station. Day/night propagation effects thus make meaningful comparison and summation of activity across multiple stations difficult. Exact inversion of the propagation channel is possible only with knowledge of the location of each lightning impulse, a feat unattainable even with current detection networks. In a novel approach, propagation effects are accounted for using established monthly averages of lightning location provided by the Lightning Image Sensor (LIS) and applying known frequency specific attenuation parameters for daytime/nighttime ELF/VLF propagation. The method allows for quantification of daily lightning activity on a global scale using a small number of receiver sites. Obtained curves of daily lightning activity are compared to measurements of atmospheric electric field at mid and polar latitudes and also to lightning activity estimates based on Schumann resonances. For Schumann resonances we utilize a method of field decomposition that separates propagating and standing modes. It is found that in most examined cases daily global lthat in most examined cases daily global lightning activity and the atmospheric electric field are poorly correlated.

  19. Additional attenuation of natural VLF electromagnetic waves observed by the DEMETER spacecraft resulting from preseismic activity.

    Czech Academy of Sciences Publication Activity Database

    Píša, David; N?mec, F.; Santolík, Ond?ej; Parrot, M.; Rycroft, M.

    2013-01-01

    Ro?. 118, ?. 8 (2013), s. 5286-5295. ISSN 2169-9380 R&D Projects: GA ?R(CZ) GAP209/11/2280; GA ?R GA205/09/1253 Grant ostatní: European Community Seventh Framework Programme (FP7/2007-2013),(XE) 262005; AV ?R(CZ) M100431206. Institutional support: RVO:68378289 Keywords : DEMETER * VLF waves * preseismic activity * Earth-ionosphere waveguide Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.440, year: 2013 http://onlinelibrary.wiley.com/doi/10.1002/jgra.50469/abstract

  20. Possible Seismic Influence on VLF Wave Intensity: Observations by a Low-Altitude Satellite.

    Czech Academy of Sciences Publication Activity Database

    N?mec, František; Santolík, Ond?ej; Parrot, M.

    Vol. 2. Praha : MATFYZPRESS, Praha, 2008 - (Šafranková, J.; Pavl?, J.), s. 168-171 ISBN 978-80-7378-066-1. [Week of Doctoral Students 2008 /17./. Prague (CZ), 03.06.2008-06.06.2008] R&D Projects: GA ?R GA205/06/1267 Grant ostatní: CNRS/DREI(FR) PICS-3725 Institutional research plan: CEZ:AV0Z30420517 Keywords : seismo-electromagnetic effects * VLF electromagnetic waves * DEMETER Subject RIV: BL - Plasma and Gas Discharge Physics http://oberon.troja.mff.cuni.cz/~nemef1am/work/articles/08wds.pdf

  1. Multiple-Station Observation of Frequency Dependence and Polarization Characteristics of ELF/VLF waves generated via Ionospheric Modification

    Science.gov (United States)

    Maxworth, A. S.; Golkowski, M.; Cohen, M.; Moore, R. C.

    2014-12-01

    Generation of Extremely Low Frequency (ELF) and Very Low Frequency (VLF) signals through ionospheric modification has been practiced for many years. Heating the lower ionosphere with high power HF waves allows for modulation of natural current systems. Our experiments were carried out at the High Frequency Active Auroral Research Program (HAARP) facility in Alaska, USA. In this experiment, the ionosphere was heated with a vertical amplitude modulating signal and the modulation frequency was changed sequentially within an array of 40 frequencies followed by a frequency ramp. The observed magnetic field amplitude and polarization of the generated ELF/VLF signals were analyzed for multiple sites and as a function of modulation frequency. Our three observation sites: Chistochina, Paxson and Paradise are located within 36km (azimuth 47.7°), 50.2km (azimuth -20°) and 99km (azimuth 80.3°) respectively. We show that the peak amplitudes observed as a function of frequency result from vertical resonance in the Earth-ionosphere waveguide and can be used to diagnose the D-region profile. Polarization analysis showed that out of the three sites Paxson shows the highest circularity in the magnetic field polarization, compared to Chistochina and Paradise which show highly linear polarizations. The experimental results were compared with a theoretical simulation model results and it was clear that in both cases, the modulated Hall current dominates the observed signals at Chistochina and Paradise sites and at Paxson there is an equal contribution from Hall and Pedersen currents. The Chistochina site shows the highest magnetic field amplitudes in both experimental and simulation environments. Depending upon the experimental and simulation observations at the three sites, a radiation pattern for the HAARP ionospheric heater can be mapped

  2. Observation of ionospheric perturbation through ground-based VLF receiver and the DEMETER Satellite during some recent Solar Eclipses

    Science.gov (United States)

    Kanta Maji, Surya; Chakrabarti, Sandip Kumar; Pal, Sujay

    Solar eclipses always provide us a great opportunity to study upper atmosphere under a controlled experimental condition where extreme ultraviolet and X-rays from the sun are blocked gradually by the lunar disk in a predictable way. Thus, the strength of the source of high energy radiation becomes time dependent. In this paper, we report lower ionospheric response to two solar eclipses of July 22, 2009 (90.63%) and January 15, 2010 (75%) as observed by a ground-based VLF receiver at frequency 19.8 kHz placed at Khukurdaha ( 80 km away from Kolkata). We report perturbations in electron densities ionosphere during these two solar eclipses. Measurements of densities and temperatures of thermal electrons and ions were provided by instruments on board the DEMETER satellite, which flew near India during the time of partial solar obscuration. We clearly observe a significant decrease in plasma density, electron and ion temperatures along the orbit.

  3. Subionospheric VLF perturbations observed at low latitude associated with earthquake from Indonesia region

    Science.gov (United States)

    Kumar, Abhikesh; Kumar, Sushil; Hayakawa, Masashi; Menk, Frederik

    2013-09-01

    Subionospheric propagation from a Very Low Frequency (VLF) transmitter (VTX, 18.2 kHz) received at a low latitude station Suva, Fiji over a Transmitter-Receiver Great Circle Path (TRGCP) length of 11,400 km has been utilized to identify any possible ionospheric perturbations associated with the earthquakes that occurred in the Indonesia region during the period December 2006-October 2010. Out of five earthquakes that occurred with their epicenter in the fifth Fresnel zone, only an earthquake on 18 December 2006, in the North Sumatra region, has shown convincing evidence of lower ionospheric perturbations on the VTX transmission. The magnitude of this earthquake was 5.8 measured on the Richter scale and occurred at a depth of 53 km with its epicenter located 45 km off the TRGCP. The VLF amplitude data for this earthquake was analyzed using (1) terminator time (TT), (2) average nighttime and daytime amplitude variation, and (3) nighttime fluctuation (NF) methods. The results show that the sunrise TTs deviated considerably in the period 14-22 December 2006 measuring up to ~20 min on the day of the earthquake. The results also show that the average nighttime as well as the average daytime signal amplitudes decreased by about 5 dB and 3 dB, respectively, during the period of the earthquake. The NF method revealed a decline in the trend at least 2 days before the earthquake though not exceeding the 2? criteria and enhancements in the NF exceeding 2? mark, however, the normalized values of the trend, NF and dispersion did not reveal an increase above the 2? marks as reported by previous researchers. This could be due to the very long path length and the prevalence of lightning activity along the TRGCP in the Asia-Oceania Region.

  4. VLF sferics associated with TGFs

    Science.gov (United States)

    Mezentsev, Andrew; Østgaard, Nikolai; Gjesteland, Thomas; Skeltved, Alexander; Cummer, Steven

    2015-04-01

    Terrestrial gamma ray flashes (TGFs) are produced by the runaway electron beams inside the thunderclouds by bremsstrahlung. Numerous satellite observations of the TGFs cannot provide a definite answer about the details of the generation processes of TGFs. There exist two TGF production models. According to one a TGF is produced during the upward negative IC leader propagation. Another one supposes that relativistic runaway electron avalanches (RREAs) producing TGFs can develop in strong thundercloud electric fields without involving a leader discharge mechanism. One of the most promising observation instruments to investigate the TGF production is LF radio waves emitted by the RREAs or RREA generated secondary currents. Detection and analyses of the radio waveforms from these currents provide new possibilities to better understanding of TGF generation mechanisms. In this work we analyze RHESSI TGF data detected between 2004 and 2011 in association with the VLF waveforms recorded by the VLF magnetic field receiver deployed at the Duke University. Pairs of associated TGF-VLF events identified in combination with the World Wide Lightning Location Network (WWLLN) catalogue which provides independent lightning locations and timings. Selection criteria retrieved only the pairs with WWLLN-RHESSI nadir distances less than 500 km and time difference between the TGF start time and VLF sferic start time (recalculated to a WWLLN provided location) less than 150 ?s, which is based on the RHESSI-WWLLN-Duke combined timing accuracy. In total 15 events within these limits were identified. These events support the possibility of detection of VLF radio waveforms produced by RREAs or RREA associated secondary currents. Further search in the RHESSI data and Duke recordings without having WWLLN confirmed locations revealed about a hundred TGF-VLF associated pairs. These are also simultaneous within 150 ?s and less than 500 km from nadir point. In this work we compare the distribution of WWLLN-RHESSI-Duke events with the distribution of RHESSI-Duke events. This comparison supports that the radio signals are simultaneous with the TGF production.

  5. Dependence of Characteristics of SURA Induced Artificial ULF/VLF Signals on Geomagnetic Activity

    Science.gov (United States)

    Kotik, D. S.; Ryabov, A. V.; Ermakova, E. N.; Pershin, A. V.

    2015-04-01

    A comprehensive study of artificial ionospheric signal generation in the ULF/VLF bands at SURA facility in Russia was conducted during the past 4 years. We investigated the influence of geomagnetic activity on the characteristics of artificial low-frequency signals under the background of increasing solar activity. No correlation of artificial ULF signals with variations of Earth's magnetic field was observed for weak geomagnetic disturbances (Kp ? 3) while the VLF signals increased in the growth phase of the geomagnetic perturbation. In case of strong magnetic storm (Kp ? 5+) a tendency of the amplitude of the ULF/VLF signals decrease with increasing magnetic disturbance was observed. Sometimes, the modulation of artificial ULF signals with a period of 15-30 s was detected in the decay phase of magnetic storms. During storm time, a change in the polarization of artificial VLF emissions was detected. The right polarization becomes predominant. Interpretation of observed peculiarities of artificial VLF signals is given in the context of the physical mechanism of ionospheric current drive by RF pumping.

  6. Study of solar flare induced D-region ionosphere changes using VLF amplitude observations at a low latitude site

    Science.gov (United States)

    Tan, L. M.; Thu, N. N.; Ha, T. Q.; Marbouti, M.

    2014-06-01

    About 26 solar flare events from C2.56 to X3.2 classes were obtained and analyzed at Tay Nguyen University, Vietnam (12.56°N, 108.02°E) during May - December 2013 using very low frequency remote sensing to understand the responses of low latitude D-region ionosphere during solar flares. The observed VLF amplitude perturbations are used as the input parameters for the simulated Long Wavelength Propagation Capability (LWPC) program, using Wait's model of lower ionosphere, to calculate two Wait's parameters, viz. the reflection height (H') and the sharpness factor (?). The results reveal that when X-ray irradiance is increased, ? increased from 0.3 to 0.506 km-1, while H' decreased from 74 to 60 km. The electron density increased at the height of 74 km with 1-3 orders of magnitude during solar flares. These phenomena can be explained as: the ionization due to X-ray irradiance becomes greater than that due to cosmic rays and Lyman-? radiation, which increases the electron density profile. The present results are in agreement with the earlier results. The 3D representation of the electron density changes with altitude and time supports to fully understand the shape of the electron density changes due to X-ray flares. The shape variation of electron density is roughly followed to the variation of the amplitude perturbation and keeps this rule for different altitudes. It is also found that the electron density versus the height in lower latitude D-region ionosphere increases more rapidly during solar flares.

  7. ELF/VLF signatures of sprite-producing lightning discharges observed during the 2005 EuroSprite campaign

    DEFF Research Database (Denmark)

    Greenberg, E.; Price, C.

    2009-01-01

    During the summer of 2005, transient luminous events were optically imaged from the French Pyrénées as part of the EuroSprite campaign. Simultaneously, extremely low frequency (ELF: 3–3000 Hz) and broadband very low frequency (VLF: 3–30 kHz) data were recorded continuously at two separate receivers in Israel, located about 3300 km from the area of the parent lightning discharges responsible for the generation of sprites. Additionally, narrowband VLF data were collected in Crete, at about 2300 km away from the region of sprites. The motivation for the present study was to identify the signature of the sprite-producing lightning discharges in the ELF and VLF electromagnetic frequency bands, to qualify and compare their parameters, and to study the influence of the thunderstorm-activated region on its overlaying ionosphere. For the 15 sprites analyzed, their causative positive cloud-to-ground (+CG) discharges had peak current intensities between +8 and +130 kA whereas their charge moment changes (CMC) ranged from 500 to 3500 C km. Furthermore, the peak current reported by the Météorage lightning network are well correlated with the amplitudes of the VLF bursts, while showing poor correlation with the CMCs which were estimated using ELF methods. Additionally, more than one +CG was associated with six of the sprites, implying that lightning discharges that produce sprites can sometimes have multiple ground connections separated in time and space. Finally, for a significant number of events (33%) an ELF transient was not associated with sprite occurrence, suggesting that long continuing current of tens of ms may not always be a necessary condition for sprite production, a finding which influences the estimation of the global sprite rate based on Schumann resonance (SR) measurements.

  8. ELF/VLF signatures of sprite-producing lightning discharges observed during the 2005 EuroSprite campaign

    International Nuclear Information System (INIS)

    Complete text of publication follows. During the summer of 2005, transient luminous events were optically imaged from the French Pyrenees as part of the EuroSprite campaign. Simultaneously, ELF (Extremely Low Frequency: 3-3000Hz) and broadband VLF (Very Low Frequency: 3-30 kHz) data were recorded continuously at two separate receivers in Israel, located about 3300 km from the area of the parent lightning discharges responsible for the generation of sprites. Additionally, narrowband VLF data were collected in Crete, at about 2300 km away from the region of sprites. The motivation for the present study was to identify the signature of the sprite-producing lightning discharges in the ELF and VLF electromagnetic frequency bands, to qualify and compare their parameters, and to study the influence of the thunderstorm activated region on its overlaying ionosphere. For the 15 sprites analyzed, their causative positive cloud-to-ground (+CG) discharges had peak current intensities between +8 and +130 kA whereas their charge moment changes (CMC) ranged from 500 to 3500 C · km. Furthermore, the peak current reported by the Meteorage lightning network are well correlated with the amplitudes of the VLF bursts, while showing poor correlation with the CMCs which were estimated using ELF methods. Additionally, more than one +CG was associated with 6 of the sprites, implying that lightning discharges that produce sprites can sometimes have multiple ground connections separated in timeiple ground connections separated in time and space. Finally, for a significant number of events (33%) an ELF transient was not associated with sprite occurrence, suggesting that long continuing current of tens of msec may not always be a necessary condition for sprite production, a finding which influences the estimation of the global sprite rate based on Schumann Resonance (SR) measurements.

  9. Statistical analyses of spatial and time dependence of lightning whistlers observed by VLF/WBA onboard AKEBONO

    Science.gov (United States)

    Oike, Y.; Kasahara, Y.; Goto, Y.

    2013-12-01

    AKEBONO (EXOS-D) has been continuously operated for more than 24 years since 1989 to observe particles and plasma waves in the auroral region and the plasmasphere. It covers altitude region from 300 km to about 10,000 km with an inclination of 75 degree. Therefore, analyses of the data obtained by AKEBONO enable us to study how the magnetosphere varies depending on the local time, season and solar activity. The WBA (Wide Band Analyzer) is one of subsystems of the VLF instruments onboard AKEBONO. It measures one component of electric or magnetic analogue waveform at frequency band of 50 Hz - 15 kHz. Lightning whistler is one of typical waves frequently observed by the WBA. It is generated by lightning discharge and propagates along the geomagnetic field lines from northern to southern hemisphere and vice-versa. Their dispersions depend on their path length and electron density profile along their propagation path. We have been developed an automatic detection system of lightning whistlers from the spectrogram of the WBA receiver. In the present study, we statistically analyzed the data received at Uchinoura Space Center from 1989 to 2005, and got spatial and time distribution of lightning whistlers by the system. First, we found that lightning whistlers were mainly observed only inside the plasmasphere with L-value below 4. Next, we studied MLT (Magnetic Local Time) and seasonal dependences of occurrence frequency of the lightning whistlers. It is noted that the coverage of MLT and season of the AKEBONO orbit changes simultaneously, but we could successfully identified the MLT and seasonal dependences separately analyzing the long term observation data. Consequently lightning whistlers were mainly observed in the night-side (from 16 to 4 in MLT), while their occurrence frequency becomes quite small in the dayside (from 7 to 15 in MLT). Presumably this is caused by the condition of the ionosphere. In the dayside, it is difficult for whistler-mode wave to propagate into the plasmasphere but it can easily propagate in the night-side. About the seasonal dependence, we found two peaks of occurrence frequency of lightning whistlers. One is from December to January and another is from June to July. The source of lightning whistler is lightning discharge, whose occurrence frequency is known to become maximum in summer. Thus we can find two peaks of occurrence frequency which correspond to the lightning whistlers propagating from summer hemisphere to winter hemisphere. As a future work, we will study solar activity dependence of lightning whistlers. By normalizing the bias caused by MLT and seasonal dependences of lightning whistler based on the results derived in the present study, it is expected to clarify the solar activity dependence independent of the MLT and seasonal variation. It is also interesting to estimate the electron density profile using trends of whistler dispersion. The propagation time of whistler mode wave can be theoretically calculated using ray tracing technique under assumption of electron density profile model. By comparing the observed trends of dispersion along the AKEBONO trajectories with those theoretically derived, we can determine an appropriate electron density profile, and we can know the time variation of the electron density profile in the plasmasphere statistically.

  10. Azimuthal dependence of VLF propagation

    Science.gov (United States)

    Hutchins, M. L.; Jacobson, Abram R.; Holzworth, Robert H.; Brundell, James B.

    2013-09-01

    The World Wide Lightning Location Network (WWLLN) is used to measure the normalized lightning electric field at three network stations in order to examine the sferic attenuation between the stroke and the station. The electric field measurements are normalized to the radiated very low frequency (VLF) stroke energy to allow direct comparisons of the many stroke-station paths seen by WWLLN. Comparing past theoretical results and models show that WWLLN observes a stronger dependence of VLF propagation on magnetic azimuth compared to past work. The average attenuation over the water of eastward-propagating sferics is found to be 1.13±0.35 dB/Mm during the day and 0.71±0.68 dB/Mm at night, with westward-propagating sferics having average attenuation rates of 2.98±0.68 dB/Mm and 2.66±0.39 dB/Mm for day and night, respectively.

  11. Ionospheric turbulence from ground-based and satellite VLF/LF transmitter signal observations for the Simushir earthquake (November 15, 2006

    Directory of Open Access Journals (Sweden)

    Pier Francesco Biagi

    2012-04-01

    Full Text Available

    Signals from very low frequency (VLF/ low frequency (LF transmitters recorded on the ground station at Petropavlovsk-Kamchatsky and on board the French DEMETER satellite were analyzed for the Simushir earthquake (M 8.3; November 15, 2006. The period of analysis was from October 1, 2006, to January 31, 2007. The ground and satellite data were processed by a method based on the difference between the real signal at night-time and the model signal. The model for the ground observations was the monthly averaged signal amplitudes and phases, as calculated for the quiet days of every month. For the satellite data, a two-dimensional model of the signal distribution over the selected area was constructed. Preseismic effects were found several days before the earthquake, in both the ground and satellite observations.

     

  12. Detection of whistlers by the Belgian VLF antenna : Statistical analysis and comparison with Cluster data and a plasmaspheric model

    Science.gov (United States)

    Darrouzet, Fabien; Ranvier, Sylvain; De Keyser, Johan; Lamy, Hervé; Pierrard, Viviane; Borremans, Kris; Décréau, Pierrette; Lichtenberger, Janos

    2014-05-01

    Whistlers are VLF (3-30 kHz) emissions initiated by lightning, propagating along magnetic field lines, observed on ground and in space. Whistler wave analysis is an effective tool for studying the plasmasphere. Whistlers acquire particular frequency-time characteristics while they propagate through the magnetospheric plasma, and in particular through the plasmasphere. Their propagation time depends on the plasma density along their propagation paths. It is possible to derive the plasmaspheric electron density distribution from these propagation times. We therefore have started a project to detect whistlers with VLF measurements. A VLF antenna has been installed in 2011 in Humain, Belgium (50.11°N, 5.15°E). The VLF antenna is made of two perpendicular magnetic loops, oriented North-South and East-West, and with an area of approximately 50 m2 each. This antenna is part of AWDAnet, the Automatic Whistler Detector and Analyzer system's network. This network covers low, mid and high magnetic latitudes, including conjugate locations. We use the AWDA system to automatically retrieve electron density profiles from whistler measurements made in Belgium. On this poster, results of whistler occurrence are shown, as well as a comparison with density data obtained from the WHISPER instrument onboard Cluster and from a plasmaspheric model. We also present the possibilities to install a similar VLF antenna at the Belgian Antarctica station.

  13. Initial results from AWESOME VLF receiver in equatorial region of Vietnam

    Science.gov (United States)

    Vinh, Hao; Lan, Hoang Thai

    A new AWESOME VLF receiver has been setup at Nha Trang station in Vietnam during the year 2012 under ISWI program. The VLF receiver is designed and developed by Stanford University, USA. It is a part of Atmospheric Weather Electromagnetic System for Observation, Modeling and Education (AWESOME) network operated globally to study the ionosphere and the magnetosphere with the help of electromagnetic waves in very low frequency (VLF). Some of the initial results obtained from the preliminary analysis of the VLF data recorded at the station are presented. Keyword: VLF frequency, AWESOME receiver, Ionosphere.

  14. Detection of whistlers by the Belgian VLF antenna : Statistical analysis and comparison with Cluster data

    Science.gov (United States)

    Darrouzet, Fabien; Ranvier, Sylvain; De Keyser, Johan; Lamy, Hervé; Lichtenberger, Janos; Décréau, Pierrette

    2013-04-01

    Whistlers are VLF (3-30 kHz) emissions initiated by lightning, propagating along magnetic field lines, observed on ground and in space. Whistler wave analysis is an effective tool for studying the plasmasphere. Whistlers acquire particular frequency-time characteristics while they propagate through the magnetospheric plasma, and in particular through the plasmasphere. Their propagation time depends on the plasma density along their propagation paths. It is possible to derive the plasmaspheric electron density distribution from these propagation times. We therefore have started a project to detect whistlers with VLF measurements. A VLF antenna has been installed in early 2011 in Humain, Belgium (50.11^°N, 5.15^°E). The VLF antenna is made of two perpendicular magnetic loops, oriented North-South and East-West, and with an area of approximately 50 m2 each. This antenna is part of AWDAnet, the Automatic Whistler Detector and Analyzer system's network. This network covers low, mid and high magnetic latitudes, including conjugate locations. We use the AWDA system to retrieve automatically electron density profiles from whistler measurements made in Belgium. In this poster, the first results of whistler occurrence are shown, as well as the first comparison with density measurements made with the WHISPER instrument onboard Cluster.

  15. ULF wave generation through particle precipitation induced by VLF transmitters

    International Nuclear Information System (INIS)

    Recent experiments have shown that significant fluxes (10-1 erg/cm2 s) of energetic electrons can be precipitated into the ionosphere at times when VLF emissions are triggered in the magnetosphere by whistlers. If similar fluxes can be produced during the artificial triggering of VLF emissions by ground- or satellite-based VLF transmitters, then a powerful tool would be available for studying the dynamics of the lower ionosphere. In the present paper we explore the feasibility of a technique to stimulate ULF waves in the ionosphere using the tool of controlled particle precipitation. Periodic (period of >1/2 s) transmissions from a VLF ground-based transmitter are used to trigger VLF emissions and precipitate energetic electrons. The periodic precipitated flux modifies the conductivity of the D and E regions, inducing periodic changes in current flow which in turn result in the generation of Pc 1 ULF waves. Calculations indicate that ULF wave amplitudes of 1 ? may be produced in this process. Furthermore, steady state magnetic field perturbations may reach 100 ? at ground level. Since both these amplitudes would be readily measurable with present techniques, the results lend plausibility to the idea of attempting to produce detectable ULF waves by using ground- or satellite-based VLF transmitters

  16. Analysis of the effectiveness of ground-based VLF wave observations for predicting or nowcasting relativistic electron flux at geostationary orbit

    Science.gov (United States)

    Simms, Laura E.; Engebretson, Mark J.; Smith, A. J.; Clilverd, Mark; Pilipenko, Viacheslav; Reeves, Geoffrey D.

    2015-03-01

    Poststorm relativistic electron flux enhancement at geosynchronous orbit has shown correlation with very low frequency (VLF) waves measured by satellite in situ. However, our previous study found little correlation between electron flux and VLF measured by a ground-based instrument at Halley, Antarctica. Here we explore several possible explanations for this low correlation. Using 220 storms (1992-2002), our previous work developed a predictive model of the poststorm flux at geosynchronous orbit based on explanatory variables measured a day or two before the flux increase. In a nowcast model, we use averages of variables from the time period when flux is rising during the recovery phase of geomagnetic storms and limit the VLF (1.0 kHz) measure to the dawn period at Halley (09:00-12:00 UT). This improves the simple correlation of VLF wave intensity with flux, although the VLF effect in an overall multiple regression is still much less than that of other factors. When analyses are performed separately for season and interplanetary magnetic field (IMF) Bz orientation, VLF outweighs the influence of other factors only during winter months when IMF Bz is in an average northward orientation.

  17. Variations of VLF/LF signals observed on the ground and satellite during a seismic activity in Japan region in May–June 2008

    Directory of Open Access Journals (Sweden)

    A. Rozhnoi

    2010-03-01

    Full Text Available Signals of two Japanese transmitters (22.2 kHz and 40 kHz recorded on the ground VLF/LF station in Petropavlovsk-Kamchatsky and on board the DEMETER French satellite have been analyzed during a seismic activity in Japan in May–June 2008. The period of analysis was from 18 April to 27 June. During this time two rather large earthquakes occurred in the north part of Honshu Island – 7 May (M=6.8 and 13 June (M=6.9. The ground and satellite data were processed by a method based on the difference between the real signal in nighttime and the model one. For ground observations a clear decrease in both signals has been found several days before the first earthquake. For the second earthquake anomalies were detected only in JJI signal. The epicenters of earthquakes were in reliable reception zone of 40 kHz signal on board the DEMETER. Signal enhancement above the seismic active region and significant signal intensity depletion in the magnetically conjugate area has been found for satellite observation before the first earthquake. Anomalies in satellite data coincide in time with those in the ground-based observation.

  18. ELF and VLF signatures of sprites registered onboard the low altitude satellite DEMETER

    Directory of Open Access Journals (Sweden)

    J. B??cki

    2009-06-01

    Full Text Available We report the observation of ELF and VLF signature of sprites recorded on the low altitude satellite DEMETER during thunderstorm activity. At an altitude of ~700 km, waves observed on the E-field spectrograms at mid-to-low latitudes during night time are mainly dominated by up-going 0+ whistlers. During the night of 20 July 2007 two sprites have been observed around 20:10:08 UT from the observatory located on the top of the mountain ?nie?ka in Poland (50°44'09" N, 15°44'21" E, 1603 m and, ELF and VLF data have been recorded by the satellite at about 1200 km from the region of thunderstorm activity. During this event, the DEMETER instruments were switched in the burst mode and it was possible to register the wave forms. It is shown that the two sprites have been triggered by two intense +CG lightning strokes (100 kA occurring during the same millisecond but not at the same location. Despite the distance DEMETER has recorded at the same time intense and unusual ELF and VLF emissions. It is shown that the whistler wave propagates from the thunderstorm regions in the Earth-ionosphere guide and enters in the ionosphere below the satellite. They last several tens of milliseconds and the intensity of the ELF waveform is close to 1 mV/m. A particularly intense proton whistler is also associated with these emissions.

  19. Characteristics of Lightning Associated with Long Recovery Early VLF Events

    Science.gov (United States)

    Kotovsky, D. A.; Moore, R. C.; Zhu, Y.; Pilkey, J. T.; Caicedo, J. A.; Hare, B.; Rakov, V. A.; Jordan, D. M.; Uman, M. A.

    2014-12-01

    A recently discovered category of long recovery, early VLF scattering events (LOREs) indicate that the quasi-electostatic and electromagnetic radiation fields from lightning discharges are capable of producing long lasting disturbances (up to tens of minutes) in the D-region of the ionosphere. Analysis of causative VLF radio atmospherics of 52 LOREs reveals that >76% exhibit detectable precursor radiation just prior to (typically within 4 msec of) the causative lightning return stroke. In contrast, such radiation is detected for 50 kA, within 1500 km of the nearest receiver). By comparison with electric field measurements and lightning mapping array data, preliminary breakdown in natural, negative cloud-to-ground flashes is shown to produce VLF precursor radiation similar in most observable respects to those associated with VLF scattering events. It is thereby inferred that strong preliminary breakdown (and fast stepped leaders) are predominant features of discharges capable of producing long lasting D-region disturbances.

  20. Observations of plasma wave turbulence generated around large ionospheric spacecraft: Effects of motionally induced EMF and of electron beam emission

    International Nuclear Information System (INIS)

    The authors report on observations of plasma wave turbulence generated during electron beam injections, spacecraft potential variations, and neutral gas emissions of the CHARGE 2 sounding rocket experiment. The payload was flown in a mother/daughter configuration, with the two sub-payloads electrically connected by an insulated, conducting tether. While tethered, the two platforms were separated, drifting apart in a direction perpendicular to both the magnetic field and to the spacecraft velocity, reaching a maximum distance of 426 m at the end of the flight. The mother carried a high-voltage (HV) system (0-460 V), biasing the mother negative relative to the daughter. The operation of the HV bias system simulated the motional emf induced in larger orbiting space structures like the Tethered Satellite System 1 (TSS 1) space shuttle mission scheduled for the spring of 1992. In addition, the mother carried an electron beam accelerator (1 keV, 0-46 mA). The daughter diagnostics included wave receivers (400 Hz to 10 MHz) connected to a pair of electric dipole antennas. Broadband ELF/VLF turbulence was generated both during electron beam emissions and when the HV bias system was operated, while turbulence in the HF range was observed only during electron beam emissions. As a result of the electrical connection through the tether, the ELF/VLF wave intensities show little variation with separation distance of the two payloads. Two sources of wave turbulence are proposed to acrces of wave turbulence are proposed to account for the observations: (1) wave turbulence generated by the beam/spacecraft system in particular in the HF range, and (2) electron return currents to the daughter simulating VLF noise during HV operations and electron beam emissions

  1. Ionospheric precursors of earthquakes recorded by VLF receiver at Tashkent IHY station

    Science.gov (United States)

    Tojiev, S. R.; Ahmedov, B. J.; Eshkuvatov, H. E.

    2014-08-01

    Tashkent International Heliophysical Year (IHY) station is a member of Atmospheric Weather Electromagnetic System for Observation, Modeling and Education (AWESOME) network being operated globally to study the ionosphere and the magnetosphere with the help of electromagnetic waves in Very Low Frequency (VLF) band. Regular monitoring of the D- and F-layers of ionosphere over Central Asia territory is being performed on the permanent basis starting year 2008. We have studied VLF amplitude anomalies related to the EQs occurred in 2008-2009 years with magnitude more than 5 on the path way from the VLF transmitters to the Tashkent station assuming that propagation of VLF ground-based transmitters signals can be perturbed by EQ preparation detectable from the ground-based measurements in the VLF bands. For analyzing narrowband data we have used the nighttime fluctuation (NF) method paying attention to the data obtained during the local nighttime (20:00 LT-04:00 LT) in Tashkent where the VLF receiver is operating. The mean nighttime amplitude (or trend) and nighttime fluctuation are found to increase significantly before the EQ occurred on the path way from the transmitters to the receiver. The obtained results have revealed an agreement with VLF amplitude anomalies observed in Tashkent VLF station during the strong EQs occurred on the path way from the transmitters to the receiver. Some results are presented to show the probing potentiality of VLF waves to predict short term EQs with high magnitude.

  2. Lightning--induced electron precipitation events observed at L-2.4 as phase and amplitude perturbations on subionospheric VLF signals

    International Nuclear Information System (INIS)

    Lightning-induced electron precipitation (LEP) events are studied using the Trimpi effect, in which the precipitation-induced ionization enhancements in the lower ionosphere (D region) give rise to rapid perturbations of subionospheric VLF signals. In 1983,the phase and amplitude of signals from the NPM transmitter in Hawaii (23.4 kHz) and the Omega transmitter in Argentina (12.9 kHz) were measured at Palmer, Antarctica (L-2.4), together with the magnetospheric whistler background. The long baseline and over-sea great circle paths from these two sources make it possible for the observed perturbations to be interpreted using a single waveguide mode theory. Analytical expressions are used to relate the magnitude of the phase perturbations to differential changes in ionospheric reflection height along a segment of the propagation path. The predicted relationship between relative perturbation sizes on the two different signals is compared with measurements. From this information, the whistler-induced flux levels are inferred to be in the 10/sup -4/--10/sup -2/ erg cm/sup -2/ s/sup -1/ range and the precipitation regions are inferred to be roughly ''circular'' in shape, rather than elongated along L shells. Measured amplitude changes tended to be small (--0.5 dB) and negative, as expected from a single-mode theory, but the ratios of simultaneous amplitude and phase perturbations were slightly larger than the theory predicts, probably due to the effects of an additional modly due to the effects of an additional mode(s). An assessment of the relative detectability of amplitude versus phase perturbations favors phase perturbations by -- 10 dB, irrespective of the detection scheme used. copyright American Geophysical Union 1987

  3. Arctic VLF/LF data acquisition

    Science.gov (United States)

    Hepner, T.; Bickel, J. E.

    1991-02-01

    This report describes VLF/LF signal data recorded in the Arctic at fixed sites in Fairbanks, Alaska, and Thule, Greenland; on the icebreakers Polarbjorn and USCGC Northwind; and on P-3 aircraft. The various recording sites and platforms, recording equipment and data types are described, as are the methods used to calibrate the recorded data to absolute field intensity. Problems encountered during data collection, data editing, and radiated power measurements are also discussed. Near-field radiated power measurements and the overall accuracy of the VLF/LF data collected are also discussed. The observational data recorded and discussed are to be used in verifying or modifying theoretical propagation prediction models used to determine communication coverage.

  4. Higher harmonic tweek sferics observed at low latitude: estimation of VLF reflection heights and tweek propagation distance

    OpenAIRE

    KUMAR, S.; Kishore, A.; Ramachandran, V

    2008-01-01

    Lightning generated signals recorded at a low-latitude station, Suva (18.2° S, 178.3° E) Fiji, in the South Pacific region, during September 2003–July 2004, are used to study the propagation features and the reflection heights of tweek atmospherics in the waveguide formed by the Earth's surface and the lower ionosphere. Tweeks are observed only during the local night and the maximum harmonic (n) recorded is six. The occurrence of tweeks with h...

  5. Multi Station Frequency Response and Polarization of ELF/VLF Signals Generated via Ionospheric Modification

    Science.gov (United States)

    Maxworth, Ashanthi; Golkowski, Mark; University of Colorado Denver Team

    2013-10-01

    ELF/VLF wave generation via HF modulated ionospheric heating has been practiced for many years as a unique way to generate waves in the ELF/VLF band (3 Hz - 30 kHz). This paper presents experimental results and associated theoretical modeling from work performed at the High Frequency Active Auroral Research Program (HAARP) facility in Alaska, USA. An experiment was designed to investigate the modulation frequency dependence of the generated ELF/VLF signal amplitudes and polarization at multiple sites at distances of 37 km, 50 km and 99 km from the facility. While no difference is observed for X mode versus O mode modulation of the heating wave, it is found that ELF/VLF amplitude and polarization as a function of modulated ELF/VLF frequency is different for each site. An ionospheric heating code is used to determine the primary current sources leading to the observations.

  6. Higher harmonic tweek sferics observed at low latitude: estimation of VLF reflection heights and tweek propagation distance

    Directory of Open Access Journals (Sweden)

    S. Kumar

    2008-06-01

    Full Text Available Lightning generated signals recorded at a low-latitude station, Suva (18.2° S, 178.3° E Fiji, in the South Pacific region, during September 2003–July 2004, are used to study the propagation features and the reflection heights of tweek atmospherics in the waveguide formed by the Earth's surface and the lower ionosphere. Tweeks are observed only during the local night and the maximum harmonic (n recorded is six. The occurrence of tweeks with higher n progressively decreases as n increases. The dispersed part of tweeks decreases as n increases. The attenuation factor has been calculated for tweeks with n=1–3. The ionospheric reflection heights obtained assuming the transverse magnetic mode of propagation for tweek signals vary from 83–92 km. A higher harmonic of the same tweek is reflected from about 2.0 km higher than the lower harmonic. For 90% of tweeks, propagation distances are estimated to be between 1000–5000 km. Tweeks with lower n propagate longer distances than the tweeks with higher n.

  7. Optimizing an ELF/VLF Phased Array at HAARP

    Science.gov (United States)

    Fujimaru, S.; Moore, R. C.

    2013-12-01

    The goal of this study is to maximize the amplitude of 1-5 kHz ELF/VLF waves generated by ionospheric HF heating and measured at a ground-based ELF/VLF receiver. The optimization makes use of experimental observations performed during ELF/VLF wave generation experiments at the High-frequency Active Auroral Research Program (HAARP) Observatory in Gakona, Alaska. During these experiments, the amplitude, phase, and propagation delay of the ELF/VLF waves were carefully measured. The HF beam was aimed at 15 degrees zenith angle in 8 different azimuthal directions, equally spaced in a circle, while broadcasting a 3.25 MHz (X-mode) signal that was amplitude modulated (square wave) with a linear frequency-time chirp between 1 and 5 kHz. The experimental observations are used to provide reference amplitudes, phases, and propagation delays for ELF/VLF waves generated at these specific locations. The presented optimization accounts for the trade-off between duty cycle, heated area, and the distributed nature of the source region in order to construct a "most efficient" phased array. The amplitudes and phases generated by modulated heating at each location are combined in post-processing to find an optimal combination of duty cycle, heating location, and heating order.

  8. Polars - multisite emission - multiwavelength observation

    CERN Document Server

    Schwope, A D; Buckley, D; Ciardi, D R; Cropper, M; Horne, K; Howell, S; Mantel, K H; Metzner, A; O'Brien, K; Schwarz, R; Sirk, M; Steeghs, D; Still, M D; Thomas, H C; Schwope, Axel D.

    1997-01-01

    We review the main observational characteristics of AM Herculis stars (polars) at X-ray, EUV, UV, IR and optical wavelengths. Particular emphasis is given to multi-epoch, multi-wavelength observations of the eclipsing polar HU Aqr (RX J2107.9-0518). In AM Herculis stars the broad-band spectral energy distribution from X-rays to the IR is governed by only very small structures: the hot accretion regions on the footpoints af accreting field lines. The most extended structures in the binary systems on the other hand, the mass-donating secondary stars and the accretion streams, distinctly appear only as Doppler-shifted emission or absorption lines. They can best be studied by investigating selected narrow spectral features in the optical, ultraviolet or the near infrared. In this contribution both aspects will be highlighted, the structure of the accretion regions as inferred from multi-wavelength observations with low or no spectral resolution, as well as the structure of the secondary stars and the accretion st...

  9. Anomalies Observed in VLF and LF Radio Signals on the Occasion of the Western Turkey Earthquake (Mw = 5.7 on May 19, 2011

    Directory of Open Access Journals (Sweden)

    Pier Francesco Biagi

    2012-09-01

    Full Text Available Since 2009 a network of VLF (20 - 60 kHz and LF (150 - 300 kHz radio receivers is operating in Europe in order to study the disturbances produced by the earthquakes on the propagation of these signals. In 2011 the network was formed by nine receivers, of which three are located in Italy and one is in Austria, Greece, Portugal, Romania, Russia and Turkey. On May 19, 2001 an earthquake (Mw = 5.7 occurred in western Turkey, that is inside the “sensitive” area of the network. The radio data collected during April-May 2011 were studied using the Wavelet spectra, the Principal Component Analysis and the Standard Deviation trends as different methods of analysis. Evident anomalies were revealed both in the signals broadcasted by the TRT transmitter (180 kHz located near Ankara and in a VLF signal coming from a transmitter located in Western Europe and collected by the receiver TUR of the network located in eastern Turkey. Evident precursor phases were pointed out. Some differences in the efficiency of the three analysis methods were revealed.

  10. Time-of-arrival analysis applied to ELF/VLF wave generation experiments at HAARP

    Science.gov (United States)

    Moore, R. C.; Fujimaru, S.

    2012-12-01

    Time-of-arrival (TOA) analysis is applied to observations performed during ELF/VLF wave generation experiments at the High-frequency Active Auroral Research Program (HAARP) HF transmitter in Gakona, Alaska. In 2012, a variety of ELF/VLF wave generation techniques were employed to identify the dominant source altitude for each case. Observations were performed for beat-wave modulation, AM modulation, STF modulation, ICD modulation, and cubic frequency modulation, among others. For each of these cases, we identify the dominant ELF/VLF source altitude and compare the experimental results with theoretical HF heating predictions.

  11. VLF wave injections from the ground

    Science.gov (United States)

    Helliwell, R. A.

    1983-01-01

    Experiments on wave-particle interactions using VLF whistler-mode waves injected into the magnetosphere from Antartica are described. The injected signals are single-frequency coherent waves whose amplitudes and frequencies may be changed slowly with time, or else two or more coherent wave trains transmitted simultaneously to determine the nature of the response to multifrequency excitation. The waves may be amplified 30 dB or more and may trigger intense emissions having bandwidths that vary from a few to several hundred Hertz. In most cases significant growth and triggering occur only when the driving signal is essentially monochromatic (bandwidth 10 Hz). If two frequencies are transmitted simultaneously the signal at the lower frequency tends to be suppressed by 20 dB or more. These results are interpreted in terms of a feedback interaction between the waves and counter-streaming cyclotron resonant electrons in a region several hundred wavelengths long, centered on the magnetic equator.

  12. Rocket experiment on spontaneously and artificially stimulated VLF plasma waves in the ionosphere

    International Nuclear Information System (INIS)

    In situ active experiments on the nonlinear wave-wave and wave-particle interactions in the ionospheric plasma were performed by a Japanese sounding rocket K-9M-41. Both spontaneously and artificially stimulated plasma waves in the VLF range were observed. When a large amplitude electron plasma wave was transmitted from the rocket, parametrically excited ion acoustic waves were observed in addition to natural emissions such as whistlers, LHR emissions, and hisslike emissions. It was also found that 'risers' were triggered by the LHR emissions, which seem to be very similar to a phenomenon of the so-called ASE (artificially stimulated emissions). When a slow electron beam with energy lower than 3 eV was ejected from the rocket, a new type of periodic U-shaped discrete emission was observed which was excited through a wave-particle interaction. The frequency of these emissions is lower than the LHR frequency and decreases as the beam energy is increased. Spectrograms of the observed plasma waves are presented, and some are analyzed theoretically

  13. Pollution Markets with Imperfectly Observed Emissions

    OpenAIRE

    Montero, Juan-Pablo

    2004-01-01

    I study the advantages of pollution permit markets over traditional standard regulations when the regulator has incomplete information on firms’ emissions and costs of production and abatement (e.g., air pollution in large cities). Because the regulator only observes each firm’s abatement technology but neither its emissions nor its output, there are cases in which standards can lead to lower emissions and, hence, welfare dominate permits. If permits are optimally combined with standards,...

  14. Ionospheric disturbances in D-layer recorded by VLF receiver at Tashkent IHY station

    Science.gov (United States)

    Ahmedov, Bobomurat

    Tashkent International Heliophysical Year (IHY) station is a member of Atmospheric Weather Electromagnetic System for Observation, Modeling and Education (AWESOME) network being operated globally to study the ionosphere and the magnetosphere with the help of electromagnetic waves in Very Low Frequency (VLF) band. Regular monitoring of the D- and F-layers of ionosphere over Central Asia territory is being performed on the permanent basis starting year 2008. Solar flare events are permanently observed and the analysis showed that there is simultaneous correlation between the times of change of amplitude of the waves and the Solar flares. Features of the lightning discharge generated by radio atmospherics are studied and its effectiveness in D-region ionosphere diagnostics is explained. We have studied VLF amplitude anomalies related to the earthquakes (EQs) occurred in the recent years with magnitude more than 5 on the path way from the VLF transmitters to the Tashkent station assuming that propagation of VLF ground-based transmitters signals can be perturbed by EQ preparation can be detectable from the ground-based measurements in the VLF bands. For analyzing narrowband data we have used the Nighttime Fluctuation (NF) method paying attention to the data obtained during the local nighttime (20:00 LT-04:00 LT). The mean nighttime amplitude (or trend) and nighttime fluctuation are found to increase significantly before the EQ occurred on the path way from the transmitters to the receiver. The obtained results have revealed an agreement with VLF amplitude anomalies observed in Tashkent VLF station during the strong EQs occurred on the path way from the transmitters to the receiver. Some results are presented to show the probing potentiality of VLF waves to predict short term EQs with high magnitude.

  15. Polars -- multisite emission -- multiwavelength observation

    OpenAIRE

    Schwope, Axel D.; Beuermann, K.; Buckley, D. A. H.; Ciardi, D.; Cropper, M.; Horne, K.; Howell, S.; Mantel, K. -h; Metzner, A.; O Brien, K.; Schwarz, R.; Sirk, M.; Steeghs, D.; Still, M.; Thomas, H. -c

    1997-01-01

    We review the main observational characteristics of AM Herculis stars (polars) at X-ray, EUV, UV, IR and optical wavelengths. Particular emphasis is given to multi-epoch, multi-wavelength observations of the eclipsing polar HU Aqr (RX J2107.9-0518). In AM Herculis stars the broad-band spectral energy distribution from X-rays to the IR is governed by only very small structures: the hot accretion regions on the footpoints af accreting field lines. The most extended structure...

  16. More evidence for a one-to-one correlation between Sprites and Early VLF perturbations

    DEFF Research Database (Denmark)

    Haldoupis, C.; Amvrosiadi, N.

    2010-01-01

    Past studies have shown a correlation between sprites and early VLF perturbations, but the reported correlation varies widely from ?50% to 100%. The present study resolves these large discrepancies by analyzing several case studies of sprite and narrowband VLF observations, in which multiple transmitter?receiver VLF pairs with great circle paths (GCPs) passing near a sprite?producing thunderstorm were available. In this setup, the multiple paths act in a complementary way that makes the detection of early VLF perturbations much more probable compared to a single VLF path that can miss several of them, a fact that was overlooked in past studies. The evidence shows that visible sprite occurrences are accompanied by early VLF perturbations in a one?to?one correspondence. This implies that the sprite generation mechanism may cause also sub?ionospheric conductivity disturbances that produce early VLF events. However, the one?to?one visible sprite to early VLF event correspondence, if viewed conversely, appears notto be always reciprocal. This is because the number of early events detected in some case studies was considerably larger than the number of visible sprites. Since the great majority of the early events not accompanied by visible sprites appeared to be caused by positive cloud to ground (+CG) lightning discharges, it is possible that sprites or sprite halos were concurrently present in these events as well but were missed by the sprite?watch camera detection system. In order for this option to be resolved we need more studies using highly sensitive optical systems capable of detecting weaker sprites, sprite halos and elves.

  17. Modeling the relaxation of early VLF perturbations associated with transient luminous events

    International Nuclear Information System (INIS)

    Complete text of publication follows. Studies show that Early VLF perturbations, characterized by abrupt signal onsets and long recoveries, occur often in relation with Transient Luminous Events (TLEs), that is, sprites, sprite halos, and elves. Also, most of the Early VLF events are attributed to forward scattering of sub-ionospheric VLF transmissions incident upon horizontally elongated disturbances of elevated ionization in the upper D region between about 70 and 90 km. This concept is supported by the similarity of Early VLF event recoveries to those of LEPs (Lightning induced Electron Precipitation events), which are due to electron density enhancements in the upper D region caused by lightning and whistler-induced precipitation of radiation belt electrons. Here, the simplified Glukhov-Pasko-Inan (GPI) model, that has been developed for LEP investigations, is applied to simulate Early VLF event recoveries observed simultaneously with sprites in the D region. The present study shows that: 1) Early VLF events with long (short) recoveries are likely to come from higher altitudes of about 80 to 90km (lower altitudes of about 70 to 80 km) and under conditions of low (high) electron density elevations relative to ambient values, 2) although negative ion and positive cluster ion production plays a role in electron density relaxation at lower heights, the electron-single ion dissociative recombination is likely the key process at upper D region heights that defines the r upper D region heights that defines the relaxation of Early VLF perturbations, and 3) the estimated electron density increases responsible for Early VLF events reach typical values between 104 and 105 cm-3 in the upper D region ionosphere.

  18. Whistler propagation in ionospheric density ducts: Simulations and DEMETER observations

    Science.gov (United States)

    Woodroffe, J. R.; Streltsov, A. V.; Vartanyan, A.; Milikh, G. M.

    2013-11-01

    On 16 October 2009, the Detection of Electromagnetic Emissions Transmitted from Earthquake Regions (DEMETER) satellite observed VLF whistler wave activity coincident with an ionospheric heating experiment conducted at HAARP. At the same time, density measurements by DEMETER indicate the presence of multiple field-aligned enhancements. Using an electron MHD model, we show that the distribution of VLF power observed by DEMETER is consistent with the propagation of whistlers from the heating region inside the observed density enhancements. We also discuss other interesting features of this event, including coupling of the lower hybrid and whistler modes, whistler trapping in artificial density ducts, and the interference of whistlers waves from two adjacent ducts.

  19. Simultaneous observations of quasi-periodic (QP) VLF wave emissions and related ULF fluctuations of the geomagnetic field.

    Czech Academy of Sciences Publication Activity Database

    Hayosh, Mykhaylo; Santolík, O.; Parrot, M.; N?mec, F.

    Pa?íž : COSPAR, 2014. C0.4-37-14. [COSPAR Scientific Assembly /40th/. 02.08.2014-10.08.2014, in Moscow, Russia, Moskva] Institutional support: RVO:68378289 http://adsabs.harvard.edu/abs/2014cosp...40E1176H

  20. Constraining CO emission estimates using atmospheric observations

    Science.gov (United States)

    Hooghiemstra, P. B.

    2012-06-01

    We apply a four-dimensional variational (4D-Var) data assimilation system to optimize carbon monoxide (CO) emissions and to reduce the uncertainty of emission estimates from individual sources using the chemistry transport model TM5. In the first study only a limited amount of surface network observations from the National Oceanic and Atmospheric Administration Earth System Research Laboratory (NOAA/ESRL) Global Monitoring Division (GMD) is used to test the 4D-Var system. Uncertainty reduction up to 60% in yearly emissions is observed over well-constrained regions and the inferred emissions compare well with recent studies for 2004. However, since the observations only constrain total CO emissions, the 4D-Var system has difficulties separating anthropogenic and biogenic sources in particular. The inferred emissions are validated with NOAA aircraft data over North America and the agreement is significantly improved from the prior to posterior simulation. Validation with the Measurements Of Pollution In The Troposphere (MOPITT) instrument shows a slight improved agreement over the well-constrained Northern Hemisphere and in the tropics (except for the African continent). However, the model simulation with posterior emissions underestimates MOPITT CO total columns on the remote Southern Hemisphere (SH) by about 10%. This is caused by a reduction in SH CO sources mainly due to surface stations on the high southern latitudes. In the second study, we compare two global inversions to estimate carbon monoxide (CO) emissions for 2004. Either surface flask observations from NOAA or CO total columns from the MOPITT instrument are assimilated in a 4D-Var framework. In the Southern Hemisphere (SH) three important findings are reported. First, due to their different vertical sensitivity, the stations-only inversion increases SH biomass burning emissions by 108 Tg CO/yr more than the MOPITT-only inversion. Conversely, the MOPITT-only inversion results in SH natural emissions (mainly CO from oxidation of NMVOCs) that are 185 Tg CO/yr higher compared to the stations-only inversion. Second, MOPITT-only derived biomass burning emissions are reduced with respect to the prior which is in contrast to previous (inverse) modeling studies. Finally, MOPITT derived total emissions are significantly higher for South America and Africa compared to the stations-only inversion. This is likely due to a positive bias in the MOPITT V4 product. This bias is also apparent from validation with surface stations and ground-truth FTIR columns. In the final study we present the first inverse modeling study to estimate CO emissions constrained by both surface (NOAA) and satellite (MOPITT) observations using a bias correction scheme. This approach leads to the identification of a positive bias of maximum 5 ppb in MOPITT column-averaged CO mixing ratios in the remote Southern Hemisphere (SH). The 4D-Var system is used to estimate CO emissions over South America in the period 2006-2010 and to analyze the interannual variability (IAV) of these emissions. We infer robust, high spatial resolution CO emission estimates that show slightly smaller IAV due to fires compared to the Global Fire Emissions Database (GFED3) prior emissions. Moreover, CO emissions probably associated with pre-harvest burning of sugar cane plantations are underestimated in current inventories by 50-100%.

  1. Unexpected Very Low Frequency (VLF) Radio Events Recorded by the Ionospheric Satellite DEMETER

    Science.gov (United States)

    Parrot, M.; Berthelier, J. J.; Blecki, J.; Brochot, J. Y.; Hobara, Y.; Lagoutte, D.; Lebreton, J. P.; N?mec, F.; Onishi, T.; Pinçon, J. L.; Píša, D.; Santolík, O.; Sauvaud, J. A.; Slominska, E.

    2015-05-01

    DEMETER was a low Earth orbiting microsatellite in operation between July 2004 and December 2010. Its scientific objective was the study of ionospheric perturbations in relation to seismic activity and man-made activities. Its payload was designed to measure electromagnetic waves over a large frequency range as well as ionospheric plasma parameters (electron and ion densities, fluxes of energetic charged particles). This paper will show both expected and unusual events recorded by the satellite when it was in operation. These latter events have been selected from the DEMETER database because they are rare or even have never been observed before, because they have a very high intensity, or because they are related to abnormalities of the experiments under particular plasma conditions. Some events are related to man-made radio waves emitted by VLF ground-based transmitters or power line harmonic radiation. Natural waves, such as atypical quasi-periodic emissions or uncommon whistlers, are also shown.

  2. The nonlinear gyroresonance interaction between energetic electrons and coherent VLF waves propagating at an arbitrary angle with respect to the earth's magnetic field

    Science.gov (United States)

    Bell, T. F.

    1984-01-01

    A theory is presented of the nonlinear gyroresonance interaction that takes place in the magnetosphere between energetic electrons and coherent VLF waves propagating in the whistler mode at an arbitrary angle psi with respect to the earth's magnetic field B-sub-0. Particularly examined is the phase trapping (PT) mechanism believed to be responsible for the generation of VLF emissions. It is concluded that near the magnetic equatorial plane gradients of psi may play a very important part in the PT process for nonducted waves. Predictions of a higher threshold value for PT for nonducted waves generally agree with experimental data concerning VLF emission triggering by nonducted waves.

  3. Airborne observations of the infrared emission bands

    International Nuclear Information System (INIS)

    Low resolution airborne spectra from 5 to 8 ?m are now available for a sample of 40 sources selected from the IRAS LRS Atlas with PAH emission features. A new emission band at 5.2 ?m, previously predicted for PAHs, has been found in 33 sources; it also correlates with the 7.7 ?m band. This extends the generic spectrum of narrow observed PAH features to 3.3, 5.2, 5.6, 6.2, 6.9, 7.7, 8.7, 11.3, and 12.7 ?m. From this sizeable sample of sources we define the relative strengths of most of these bands in three separate nebular environments: planetaries, HII regions, and reflection nebulae. There are significant differences in the generic spectra of PAHs in these different environments, particularly in the ratio of I (6.2)/I (7.7) and in the actual wavelength of the strong 7.7 ?m peak. New observations of southern nebulae, including the unusually carbon-rich [WC10] planetary nuclei and the apparently oxygen-rich object, NGC 6302, broadens the range of C/O over which we detect PAH features to 0.2-4.8. The addition of these planetaries strengthens our earlier claim that the fraction of total emission observed by IRAS that is carried by PAH emission is correlated with nebular gas-phase C/O ratio. The [WC10] nuclei also exhibit a strong plateau of emission linking the 6.2 and 7.7 ?m features

  4. 100 Days of ELF/VLF Generation via HF Heating with HAARP (Invited)

    Science.gov (United States)

    Cohen, M.; Golkowski, M.

    2013-12-01

    ELF/VLF radio waves are difficult to generate with conventional antennas. Ionospheric HF heating facilities generate ELF/VLF waves via modulated heating of the lower ionosphere. HF heating of the ionosphere changes the lower ionospheric conductivity, which in the presence of natural currents such as the auroral electrojet, creates an antenna in the sky when heating is modulated at ELF/VLF frequencies. We present a summary of nearly 100 days of ELF/VLF wave generation experiments at the 3.6 MW HAARP facility near Gakona, Alaska, and provide a baseline reference of ELF/VLF generation capabilities with HF heating. Between February 2007 and August 2008, HAARP was operated on close to 100 days for ELF/VLF wave generation experiments, at a variety of ELF/VLF frequencies, seasons and times of day. We present comprehensive statistics of generated ELF/VLF magnetic fields observed at a nearby site, in the 500-3500 Hz band. Transmissions with a specific HF beam configuration (3.25 MHz, vertical beam, amplitude modulation) are isolated so the data comparison is self-consistent, across nearly 5 million individual measurements of either a tone or a piece of a frequency-time ramp. There is a minimum in the average generation close to local midnight. It is found that generation during local nighttime is on average weaker, but more highly variable, with a small number of very strong generation periods. Signal amplitudes from day to day may vary by as much as 20-30 dB. Generation strengthens by ~5 dB during the first ~30 minutes of transmission, which may be a signature of slow electron density changes from sustained HF heating. Theoretical calculations are made to relate the amplitude observed to the power injected into the waveguide and reaching 250 km. The median power generated by HAARP and injected into the waveguide is ~0.05-0.1 W in this base-line configuration (vertical beam, 3.25 MHz, amplitude modulation), but may have generated hundreds of Watts for brief durations. Several efficiency improvements have improved the ELF/VLF wave generation efficiency further.

  5. Satellite observation of plasma-wave disturbances induced by high-power radio emission from the NWC transmitter

    International Nuclear Information System (INIS)

    In this work, we present the results of in-situ measurements of the characteristics of electromagnetic and plasma disturbances in the ionospheric region modified by high-power emission from the NWC transmitter, which were obtained using the onboard equipment of the French microsatellite DEMETER. It is shown that under the influence of VLF emissions from the ground-based transmitters, artificial plasma-wave channels with typical transverse scales of about 1000 km can be formed in the ionospheric plasma.

  6. Airborne observations of the infrared emission bands

    International Nuclear Information System (INIS)

    Earlier airborne studies of the infrared bands between 5 and 8 microns have now been extended to a sample of southern sources selected from the IRAS Low Resolution Spectra (LRS) atlas. The correlation between the strongest bands at 6.2 and 7.7 microns is now based on a total sample of 40 sources and is very strong. A new emission band at 5.2 microns, previously predicted for polycyclic aromatic hydrocarbons (PAHs), is recognized in 27 sources; it too correlates with the dominant 7.7 micron band, showing that the 5.2 micron feature also belongs to the generic spectrum of PAH features at 3.3, 5.6, 6.2, 6.2, 7.7, 8.7, 11.3, and 12.7 microns. Sufficient sources are had now to define the relative strengths of most of these bands in three separate nebular environments: planetaries, H II regions, and reflection nebulae. Significant variations are detected in the generic spectra of PAHs in these different environments which are echoed by variations in the exact wavelength of the strong 7.7 micron peak. The earlier suggestion that, in planetaries, the fraction of total emission observed by IRAS that is carried by the PAH emissions is correlated with nebular gas-phase C/O ratio is supported by the addition of newly-observed southern planetaries, including the unusually carbon-rich (WC10) nebular nuclei. These (WC10) nuclei also exhibit a strong plateau of emission linking the 6.2 and 7.7 micron features

  7. ELF/VLF wave disturbances detected by the DEMETER satellite over the HAARP transmitter

    Science.gov (United States)

    Titova, Elena; Demekhov, Andrei; Parrot, Michel; Mogilevsky, Mikhail; Mochalov, Alexey; Pashin, Anatoly

    We report observations of electromagnetic the ELF/VLF wave disturbances by the DEMETER satellite (670 km altitude) overflying the HAARP heating facility (62.39(°) N, 145.15(°) W, L = 4.9). The HAARP HF transmitter operated at the maximum available power of 3.6 MW, O-mode polarization, and the beam directed towards the magnetic zenith. ELF/VLF waves caused by the HAARP heating are detected by the DEMETER satellite when the HF radio wave frequency was close to the critical frequency (foF2) of the ionospheric F2 layer but below it. ELF/VLF wave disturbances observed above the HAARP transmitter were detected by electrical antennas in an area with characteristic size 10 (2) km. We analyze amplitude and polarization spectra of the ELF disturbances and compare them with the characteristics of natural ELF hiss above HAARP. The VLF wave disturbances in the topside ionosphere above the HAARP transmitter were detected in the frequency ranges 8-17 kHz and 15-18 kHz which are close to the lower hybrid resonance frequency f _LHR in the heating region and its second harmonic (2f _LHR), respectively. In the case where the HAARP HF power was modulated, the detected VLF waves were also modulated with the same frequency whereas in the ELF frequency range the modulation period of the HAARP power was not observed. Possible mechanisms of generation of the ELF/VLF disturbances produced by the HAARP transmitter in the topside ionosphere are discussed.

  8. Scattering of protons of the radiation belt on the whistler mode of vlf radiation

    International Nuclear Information System (INIS)

    Fluxes of quasitrapped protons with E /sub p/ ? 1 MeV are recorded on the Interkosmos-5 earth satellite at low altitudes in the region of L ? 3-3.5 in periods of the recovery phase of magnetic storms. The observed fluxes are explained by the scattering of protons of the radiation belt on the whistler mode of vlf radiation. The scattering mechanism is analyzed for quiet and magnetically disturbed times. The energies of protons interacting with the whistler mode of vlf radiation are given as a function of L. The scattering efficiency is compared with that for scattering due to other mechanisms

  9. Scattering of radiation belt protons on the whistler mode of VLF radiation

    International Nuclear Information System (INIS)

    On the ''Interkosmos-5'' satellite during the period of the recovery phase of magnetic storms quasi-captured proton fluxes with Esub(p) approximately 1 MeV in the L approximately 3-3.5 region are detected at low altitudes. The observed fluxes are explained by scattering of radiation belt protons on the whistler of VLF-radiations. The scattering mechanism is considered for quite and magnetodisturbed time. The energy values of protons interacting with the whistler mode of VLF radiations depending on L are given. The scattering efficiency is compared with the scattering for account of other mechanisms

  10. Showa Station and Iceland conjugate-point observations

    International Nuclear Information System (INIS)

    Joint observations with France were conducted for 52 days from July 29 to September 18, 1977, at Husafell about 100 km away from the capital of Iceland, Reykjavik. Husafell is about 60 km distant from the geomagnetic conjugate point of Showa Station. The items observed in Iceland were two horizontal components of geomagnetic pulsation, VLF natural radio waves, fixed-direction photometer (4278 A) and aurora TV camera. These have been all observed continuously at Showa Station, so that detailed analyses of conjugate-point observations are possible. The observation point was at Husafell, while geomagnetic stations are at Reykjavik, Showa Station and Mizuho Station. This report is described on the intensity ratio of ELF/VLF band natural radiowaves, spectral analyses, the conjugate natures of QP emission, aurora chorus and aurora hiss, and the relation of QP emission to geomagnetic pulsation. (J.P.N.)

  11. Excitation of VLF quasi-electrostatic oscillations in the ionospheric plasma

    Directory of Open Access Journals (Sweden)

    B. Lundin

    Full Text Available A numerical solution of the dispersion equation for electromagnetic waves in a hot magnetized collisionless plasma has shown that, in a current-free ionospheric plasma, the distortion of the electron distribution function reproducing the downward flow of a thermal electron component and the compensating upward flow of the suprathermal electrons, which are responsible for the resulting heat flux, can destabilize quasi-electrostatic ion sound waves. The numerical analysis, performed with ion densities and electron temperature taken from the data recorded by the Interkosmos-24 (IK-24, Aktivny satellite, is compared with a VLF spectrum registered at the same time on board. This spectrum shows a wide frequency band emission below the local ion plasma frequency. The direction of the electron heat flux inherent to the assumed model of VLF emission generation is discussed

  12. Strong Magnetic Field Fluctuations within Filamentary Auroral Density Cavities Interpreted as VLF Saucer Sources

    Science.gov (United States)

    Knudsen, D. L.; Kabirzadeh, R.; Burchill, J. K.; Pfaff, Robert F.; Wallis, D. D.; Bounds, S. R.; Clemmons, J. H.; Pincon, J.-L.

    2012-01-01

    The Geoelectrodynamics and Electro-Optical Detection of Electron and SuprathermalIon Currents (GEODESIC) sounding rocket encountered more than 100 filamentary densitycavities associated with enhanced plasma waves at ELF (3 kHz) and VLF (310 kHz)frequencies and at altitudes of 800990 km during an auroral substorm. These cavities weresimilar in size (20 m diameter in most cases) to so-called lower-hybrid cavities (LHCs)observed by previous sounding rockets and satellites; however, in contrast, many of theGEODESIC cavities exhibited up to tenfold enhancements in magnetic wave powerthroughout the VLF band. GEODESIC also observed enhancements of ELF and VLFelectric fields both parallel and perpendicular to the geomagnetic field B0 within cavities,though the VLF E field increases were often not as large proportionally as seen in themagnetic fields. This behavior is opposite to that predicted by previously published theoriesof LHCs based on passive scattering of externally incident auroral hiss. We argue thatthe GEODESIC cavities are active wave generation sites capable of radiating VLF wavesinto the surrounding plasma and producing VLF saucers, with energy supplied by cold,upward flowing electron beams composing the auroral return current. This interpretation issupported by the observation that the most intense waves, both inside and outside cavities,occurred in regions where energetic electron precipitation was largely inhibited orabsent altogether. We suggest that the wave-enhanced cavities encountered by GEODESICwere qualitatively different from those observed by earlier spacecraft because of thefortuitous timing of the GEODESIC launch, which placed the payload at apogee within asubstorm-related return current during its most intense phase, lasting only a few minutes.

  13. Long recovery VLF perturbations associated with lightning discharges

    Science.gov (United States)

    Salut, M. M.; Abdullah, M.; Graf, K. L.; Cohen, M. B.; Cotts, B. R. T.; Kumar, Sushil

    2012-08-01

    Long D-region ionospheric recovery perturbations are a recently discovered and poorly understood subcategory of early VLF events, distinguished by exceptionally long ionospheric recovery times of up to 20 min (compared to more typical ˜1 min recovery times). Characteristics and occurrence rates of long ionospheric recovery events on the NWC transmitter signal recorded at Malaysia are presented. 48 long recovery events were observed. The location of the causative lightning discharge for each event is determined from GLD360 and WWLLN data, and each discharge is categorized as being over land or sea. Results provide strong evidence that long recovery events are attributed predominately to lightning discharges occurring over the sea, despite the fact that lightning activity in the region is more prevalent over land. Of the 48 long recovery events, 42 were attributed to lightning activity over water. Analysis of the causative lightning of long recovery events in comparison to all early VLF events reveals that these long recovery events are detectable for lighting discharges at larger distances from the signal path, indicating a different scattering pattern for long recovery events.

  14. Investigation of TEC and VLF space measurements associated to L'Aquila (Italy earthquakes

    Directory of Open Access Journals (Sweden)

    G. Stangl

    2011-04-01

    Full Text Available In this study, we report on Total Electron Content (TEC and Very Low Frequency (VLF space measurements derived from Global Positioning System (GPS and DEMETER satellites, respectively. These measurements are associated with the earthquake (EQ of a magnitude of 6.3, which occurred on 6 April 2009, in L'Aquila (Italy. Anomaly features are derived from the analysis of TEC and VLF observations recorded two weeks before and after the seismic event occurrence. A TEC map with an interpolated regional pixel resolution of 1° × 1° × 15 min in latitude, longitude and time was generated, allowing for the checking of a possible presence of disturbances over the L'Aquila region. This analysis is combined with the study of the time profile associated to the VLF flux density variations recorded by the Instrument Champ Electrique (ICE experiment on-board DEMETER satellite. We discuss, on the one hand, the combination efficiency of the electronic density and the VLF electromagnetic measurements and, on the other hand, the difficulty to distinguish between global effects and regional ones related to the earthquake.

  15. Characteristics of lightning associated transient perturbations in low latitude VLF path

    Science.gov (United States)

    Chakraborty, Suman; Chakrabarti, Sandip Kumar; Pal, Sujay

    Lightning can perturb the sub-ionospheric VLF propagation directly or indirectly. Direct perturbations in the sub-ionospheric VLF signals occur within 20 ms of the associated lightning discharges while the indirect perturbations occur through the lighting generated whistler mode waves in the magnetosphere. These whistler mode waves undergo cyclotron resonance with the trapped electrons in the magnetosphere. The electrons which are pitch angle scattered into the loss cone, precipitate into the ionosphere producing secondary ionization in the lower ionosphere. This process produce indirect VLF perturbations known as lightning induced electron precipitation (LEP) events. We have analyzed such events for the VTX-Kolkata and NWC-Kolkata path. We observed too many events. Some of them have positive shifts while others have negative shifts. We are trying to find the reasons behind such variations in amplitude shifts. We have fitted the events with FRED (Fast Rise Exponential Decay) function to characterize the onset and recovery time. We try to explain the positive and negative VLF amplitude deviation due to lightning events using the most well-known LWPC (Long Wavelength Propagation Capability) code.

  16. 100 days of ELF/VLF generation via HF heating with HAARP

    Science.gov (United States)

    Cohen, M. B.; Go?kowski, M.

    2013-10-01

    Extremely low frequency/very low frequency (ELF/VLF) radio waves are difficult to generate with conventional antennas. Ionospheric high frequency (HF) heating facilities generate ELF/VLF waves via modulated heating of the lower ionosphere. HF heating of the ionosphere changes the lower ionospheric conductivity, which in the presence of natural currents such as the auroral electrojet creates an antenna in the sky when heating is modulated at ELF/VLF frequencies. We present a summary of nearly 100 days of ELF/VLF wave generation experiments at the 3.6 MW High Frequency Active Auroral Research Program (HAARP) facility near Gakona, Alaska, at a variety of ELF/VLF frequencies, seasons, and times of day. We present comprehensive statistics of generated ELF/VLF magnetic fields observed at a nearby site, in the 500-3500 Hz band. Transmissions with a specific HF beam configuration (3.25 MHz, vertical beam, amplitude modulation) are isolated so the data comparison is self-consistent, across nearly 5 million individual measurements of either a tone or a piece of a frequency-time ramp. There is a minimum in the average generation close to local midnight. It is found that generation during local nighttime is on average weaker but more highly variable, with a small number of very strong generation periods. Signal amplitudes from day to day may vary by as much as 20-30 dB. Generation strengthens by ˜5 dB during the first ˜30 min of transmission, which may be a signature of slow electron density changes from sustained HF heating. Theoretical calculations are made to relate the amplitude observed to the power injected into the waveguide and reaching 250 km. The median power generated by HAARP and injected into the waveguide is ˜0.05-0.1 W in this baseline configuration (vertical beam, 3.25 MHz, amplitude modulation) but may have generated hundreds of watts for brief durations. Several efficiency improvements have improved the ELF/VLF wave generation efficiency further.

  17. On the altitude of the ELF/VLF source region generated during “beat-wave” HF heating experiments

    Science.gov (United States)

    Moore, R. C.; Fujimaru, S.; Cohen, M.; Go?kowski, M.; McCarrick, M. J.

    2012-09-01

    Modulated high frequency (HF, 3-10 MHz) heating of the ionosphere in the presence of the auroral electrojet currents is an effective method for generating extremely low frequency (ELF, 3-3000 Hz) and very low frequency (VLF, 3-30 kHz) radio waves. The amplitudes of ELF/VLF waves generated in this manner depend sensitively on the auroral electrojet current strength, which varies with time. In an effort to improve the reliability of ELF/VLF wave generation by ionospheric heating, recent experiments at the High-frequency Active Auroral Research Program (HAARP) facility in Gakona, Alaska, have focused on methods that are independent of the strength of the auroral electrojet currents. One such potential method is so-called “beat-wave” ELF/VLF generation. Recent experimental observations have been presented to suggest that in the absence of a significant D-region ionosphere (˜60-100 km altitude), an ELF/VLF source region can be created within the F-region ionosphere (˜150-250 km altitude). In this paper, we use a time-of-arrival analysis technique to provide direct experimental evidence that the beat-wave source region is located in the D-region ionosphere, and possibly the lower E-region ionosphere (˜100-120 km altitude), even when ionospheric diagnostics indicate a very weak D-layer. These results have a tremendous impact on the interpretation of recent experimental observations.

  18. Evaluating NOx Emissions Using Satellite Observations

    Science.gov (United States)

    Frost, G. J.; Kim, S.; Brioude, J.; McKeen, S. A.; Trainer, M.; Heckel, A.; Hilboll, A.; Richter, A.; Burrows, J. P.; Gleason, J. F.; Boersma, K. F.; Hsie, E.; Lee, S.; Angevine, W. M.; Granier, C.; Peischl, J.; Ryerson, T. B.; Fehsenfeld, F. C.

    2012-12-01

    Atmospheric NO2 columns retrieved from satellites can provide a useful top-down assessment of bottom-up NOx emissions inventories. We present three case studies of an approach to evaluate NOx emissions at a sector level by comparing satellite retrievals to regional chemical-transport model calculations of NO2 columns. In the first example, the atmospheric impact of implementing NOx controls at eastern US power plants is demonstrated. In the second study, we use NOx monitors at western US power plants to calibrate our satellite-model comparisons. We then apply our approach to evaluate bottom-up estimates of NOx emissions from western US cities. In the third example, we validate our satellite-model approach using in-situ aircraft measurements and assess NOx emissions from power plants, cities, industrial facilities, and ports in eastern Texas. We conclude with some general insights on the usefulness of this approach and suggestions for future areas of research.

  19. Mg+ and other metallic emissions observed in the thermosphere

    International Nuclear Information System (INIS)

    Limb observations of UV dayglow emissions from 80 to 300 km tangent heights were made in December, 1992, using the GLO instrument, which flew on STS-53 as a Hitchhiker-G experiment. STS-53 was at 330 km altitude and had an orbit inclination of 57 degree. The orbit placed the shuttle near the terminator for the entire mission, resulting in a unique set of observations. The GLO instrument consisted of 12 imagers and 9 spectrographs on an Az/El gimbal system. The data was obtained over 6 days of the mission. Emissions from Mg+ and Ca+ were observed, as were emissions from the neutral metallic species Mg and Na. The ultimate source of the metals is ablation of meteors; however, the spatial distribution of the emissions is controlled by upper mesospheric and thermospheric winds and, in the case of the ions, by the electromagnetic fields of the ionosphere. The observed Mg+ emission was the brightest of the metal emissions, and was observed near the poles and around the geomagnetic equator near sunset. The polar emissions were short-lived and intense, indicative of auroral activity. The equatorial emissions were more continuous, with several luminous patches propagating poleward over the period of several orbits. The instrumentation will be described, as will spatial and temporal variations of the metal emissions with emphasis on the metal ions. These observations will be compared to previous observations of thermospheric metallic speciesions of thermospheric metallic species

  20. Phenomenon of high frequency occurrence of SPA in VLF standard waves

    International Nuclear Information System (INIS)

    In the research and observation of plasmasphere of the earth in IMS, the ground-based observation on the structure and dynamics of the plasmasphere is planned, and as a part of the effort, there is observation of the phase variation in VLF standard waves. It is capable of detecting highly sensitively the influx of solar radiation and charged particles into the plasmasphere. To explain how closely the phase variation of VLF waves is related with solar surface phenomena, there is an instance in Australia that during the appearance of large sunspots, the SPA phenomenon appeared in large number in the phase observation recordings. There is good correspondence among SPA, solar flare and the intensity change of solar radio wave flux. Therefore, it is expected that the comparison with the data on the influx of solar radiation and charged particles in IMS contributes to the clarification of the phenomena in magnetosphere. (Mori, K.)

  1. IUE observations of the Jovian dayglow emission

    Science.gov (United States)

    Mcgrath, M. A.; Feldman, P. D.; Ballester, G. E.; Moos, H. W.

    1989-01-01

    IUE spectra of Jupiter are examined in light of recent models put forward to explain the anomalously bright ultraviolet emissions seen from the upper atmospheres of the outer planets. Chi-squared fits of the IUE spectra with model spectra produced by two proposed excitation mechanisms, electron impact and fluorescence of solar radiation, result in consistently higher chi-squared values for the solar fluorescence model. No conclusive evidence is found in the IUE data for the dominance of solar fluorescence over electron excitation in producing the Jovian dayglow emission.

  2. Tectonomagnetic and VLF electromagnetic signals in Central Italy

    Directory of Open Access Journals (Sweden)

    P. Palangio

    2004-06-01

    Full Text Available Tectonomagnetic field observations from absolute magnetic field level measurements were undertaken in Central Italy in an area extending between latitude 41°N and 43°N and between longitude 13°E and 15°E. Moreover,natural electromagnetic signals from a system of two VLF search coil wide-band antennas were collected at the geomagnetic observatory of L Aquila (42º23'N, 13º19'E. The analysis of these data allowed the investigation of the electromagnetic properties of the study area at different time and spatial lengthscales. Tectonomagnetic field observations were obtained comparing data simultaneously recorded at three magnetometer stations using L'Aquila Observatory as a reference for differentiation. We report on the time evolution of magnetic and electromagnetic indicators related to local and regional seismic activity.

  3. Power line emission 50/60 Hz and Schumann resonances observed by microsatellite Chibis-M in the Earth's ionosphere

    Science.gov (United States)

    Dudkin, Denys; Pilipenko, Vyacheslav; Dudkin, Fedir; Pronenko, Vira; Klimov, Stanislav

    2015-04-01

    The overhead power lines are the sources of intense wideband electromagnetic (EM) emission, especially in ELF-VLF range, because of significant length (up to a few thousand kilometers) and strong 50/60 Hz currents with noticeable distortion. The radiation efficiency of the power line emission (PLE) increases with the harmonic order, so they are well observed by ground-based EM sensors. However their observations by low orbiting satellites (LEO) are very rare, particularly at basic harmonic 50/60 Hz, because of the ionospheric plasma opacity in ELF band. The Schumann resonance (SR) is the narrow-band EM noise that occurs due to the global thunderstorm activity in the Earth-ionosphere cavity. The first five eigenmodes of the SR are 7.8, 14.3, 20.8, 27.3 and 33.8 Hz and, thus, SR harmonics are also strongly absorbed by the Earth ionosphere. The published numerical simulations show that the penetration depth of such an ELF emission into the Earth's ionosphere is limited to 50-70 km for electric field and 120-240 km for magnetic field. From this follows, that PLE and SR can hardly ever be detected by LEO satellites, i.e. above the F-layer of ionosphere. In spite of this fact, these emissions were recently observed with use of the electric field antennas placed on the satellites C/NOFS (USA) and Chibis-M (Russia). Microsatellite Chibis-M was launched on January 24, 2012, at 23:18:30 UTC from the cargo ship "Progress M-13M" to circular orbit with altitude ~500 km and inclination ~52° . Chibis-M mass is about 40 kg where one third is a scientific instrumentation. The dimensions of the microsatellite case are 0.26x0.26x0.54 m with the outside mounted solar panels, service and scientific instrumentation. The main scientific objective of Chibis-M is the theoretical model verification for the atmospheric gamma-ray bursts. It requires the study of the accompanying EM processes such as the plasma waves produced by the lightning discharges in the VLF band. Chibis-M decayed on 15 October 2014. The Chibis-M electric sensor has a small 0.42 m tip-to-tip base and was developed in Lviv Centre of Institute for Space Research, Ukraine. The sensor provides the measurement of one electric field component, which is perpendicular to the orbital plane, in the frequency range of 0.1-40,000 Hz with the noise spectral density 0.8-0.04 (?V/m)/Hz0.5 (in the band 1-100 Hz the noise is 0.2-0.04 (?V/m)/Hz0.5). We present the space distribution of the observed PLE and SR harmonics in the latitude range ±52o and connection of the PLE sources with the high-voltage overhead power lines. The electric field data have been analyzed for all Chibis-M operating time (~ 2.5 years). The fact of PLE and SR detection by LEO satellites C/NOFS and Chibis-M suggests that the model of the transionospheric ELF EM field propagation should be refined.

  4. Observational constraints on biogenic VOC emission model estimates (Invited)

    Science.gov (United States)

    Guenther, A. B.

    2013-12-01

    Chemistry and transport models require accurate estimates of biogenic volatile organic compound (BVOC) emissions in order to simulate the atmospheric constituents controlling air quality and climate, such as ozone and particles, and so the uncertainties associated with BVOC estimates may be limiting the development of effective air quality and climate management strategies. BVOC emission models include driving variables and algorithms that span scales from the leaf level to entire landscapes. While considerable effort has been made to improve BVOC emission models in the past decades, there have been relatively few attempts to quantify the uncertainties associated with these estimates or to rigorously assess emission modeling approaches. This presentation will summarize the availability of observations that can be used to constrain BVOC emission models including flux measurements (leaf enclosure, above canopy tower, and aircraft platforms) and ambient concentrations of BVOC and their products. Results from studies targeting specific BVOC emission processes (e.g., the response of isoprene emission to drought and the response of monoterpene emissions to bark beetle attack) will be shown and the application of these observations for BVOC model evaluation will be discussed. In addition, the results from multi-scale BVOC emission studies (leaf enclosure, whole canopy flux tower, regional aircraft eddy covariance) will be presented and a approach for incorporating these observations into a community model testbed will be described and used to evaluate regional BVOC emission models.

  5. Fast Emission Estimates in China Constrained by Satellite Observations (Invited)

    Science.gov (United States)

    Mijling, B.; van der A, R.

    2013-12-01

    Emission inventories of air pollutants are crucial information for policy makers and form important input data for air quality models. Unfortunately, bottom-up emission inventories, compiled from large quantities of statistical data, are easily outdated for an emerging economy such as China, where rapid economic growth changes emissions accordingly. Alternatively, top-down emission estimates from satellite observations of air constituents have important advantages of being spatial consistent, having high temporal resolution, and enabling emission updates shortly after the satellite data become available. Constraining emissions from concentration measurements is, however, computationally challenging. Within the GlobEmission project of the European Space Agency (ESA) a new algorithm has been developed, specifically designed for fast daily emission estimates of short-lived atmospheric species on a mesoscopic scale (0.25 × 0.25 degree) from satellite observations of column concentrations. The algorithm needs only one forward model run from a chemical transport model to calculate the sensitivity of concentration to emission, using trajectory analysis to account for transport away from the source. By using a Kalman filter in the inverse step, optimal use of the a priori knowledge and the newly observed data is made. We apply the algorithm for NOx emission estimates in East China, using the CHIMERE model together with tropospheric NO2 column retrievals of the OMI and GOME-2 satellite instruments. The observations are used to construct a monthly emission time series, which reveal important emission trends such as the emission reduction measures during the Beijing Olympic Games, and the impact and recovery from the global economic crisis. The algorithm is also able to detect emerging sources (e.g. new power plants) and improve emission information for areas where proxy data are not or badly known (e.g. shipping emissions). The new emission estimates result in a better agreement between observations and simulations of air pollutant concentrations, facilitating improved air quality forecasts. The EU project MarcoPolo will combine these emission estimates from space with statistical information on e.g. land use, population density and traffic to construct a new up-to-date emission inventory for China.

  6. Investigation of EM Emissions by the Electrodynamic Tether, Inclusive of an Observational Program (EMET)

    Science.gov (United States)

    Estes, Robert D.

    1998-01-01

    Our TSS-1/R investigation, which we shall refer to as EMET in this report, was an integral part of the effort by the TSS-1/R Investigators' Working Group (IWG) to come to an understanding of the complex interaction between the tethered satellite system and the ionosphere. All of the space-borne experiments were designed to collect data relevant to the local interaction. Only the ground- based experiments, EMET and its Italian counterpart Observations on the Earth's Surface of Electromagnetic Emissions (OESEE), held out any hope of characterizing the long range effects of the interaction. This was to be done by detecting electromagnetic waves generated by the system in the ionosphere, assuming the signal reached the Earth's surface with sufficient amplitude. As the type of plasma waves excited to carry charge away from the charge-exchange regions of the system at each end of the tether is one of the theoretical points about which there is greatest disagreement, a definitive identification of tether-generated waves could mark significant progress in the so-called current closure problem of electrodynamic tethers. Dr. Mario Grossi of the Smithsonian Astrophysical Observatory (SAO) initiated the investigation, and his experience in the field of ULF-ELF waves and their detection was invaluable throughout its course. Rice University had the responsibility of setting up the EMET ULF-VLF ground stations under a subcontract from SAO. Principal Investigator (PI) for the Rice effort was Prof. William E. Gordon, who was primary observer at the Arecibo Observatory during TSS-LR. Dr. Steve Noble handled major day-to-day operations, training, and planning for the ground-based measurements. Dr. James McCoy of NASA JSC, a member of the Mona/Arecibo team, was pilot for the numerous flights ferrying personnel and equipment between Puerto Rico and Mona Island. Final responsibility for the measurements rested with SAO, and the activities of field personnel and SAO investigators were closely co-ordinated during the mission. Dr. Enrico Lorenzini of SAO served as the eyes, ears, and brain of EMET in the Science Operations Area and PI table during the mission, whenever the PI was absent during the round-the-clock mission operations. The Rice University final report to SAO, which is included as an Appendix, contains details of the remote sites, means of communication, sensors, etc., as well as the affiliations of personnel involved in the data-gathering effort.

  7. Suzaku Observations of Charge Exchange Emission from Solar System Objects

    Science.gov (United States)

    Ezoe, Y.; Fujimoto, R.; Yamasaki, N. Y.; Mitsuda, K.; Ohashi, T.; Ishikawa, K.; Oishi, S.; Miyoshi, Y; Terada, N.; Futaana, Y.; Porter, F. S.; Brown, G. V.

    2012-01-01

    Recent results of charge exchange emission from solar system objects observed with the Japanese Suzaku satellite are reviewed. Suzaku is of great importance to investigate diffuse X-ray emission like the charge exchange from planetary exospheres and comets. The Suzaku studies of Earth's exosphere, Martian exosphere, Jupiter's aurorae, and comets are overviewed.

  8. Understanding NOx emission trends in China based on OMI observations

    Science.gov (United States)

    Wang, Y.; Ga, D.; Smeltzer, C. D.; Yi, R.; Liu, Z.

    2012-12-01

    We analyze OMI observations of NO2 columns over China from 2005 to 2010. Simulations using a regional 3-D chemical transport model (REAM) are used to derive the top-down anthropogenic NOx emissions. The Kendall method is then applied to derive the emission trend. The emission trend is affected by the economic slowdown in 2009. After removing the effect of one year abnormal data, the overall emission trend is 4.35±1.42% per year, which is slower than the linear-regression trend of 5.8-10.8% per year reported for previous years. We find large regional, seasonal, and urban-rural variations in emission trend. The annual emission trends of Northeast China, Central China Plain, Yangtze River Delta and Pearl River Delta are 44.98±1.39%, 5.24±1.63%, 3.31±1.02% and -4.02±1.87%, respectively. The annual emission trends of four megacities, Beijing, Shanghai, Guangzhou and Shenzhen are 0.7±0.27%, -0.75±0.31%, -4.08±1.21% and -6.22±2.85%,, considerably lower than the regional averages. These results appear to suggest that a number of factors, including migration of high-emission industries, vehicle emission regulations, emission control measures of thermal power plants, increased hydro-power usage, have reduced or reversed the increasing trend of NOx emissions in more economically developed megacities and southern coastal regions.

  9. Subionospheric VLF imaging of lightning-induced electron precipitation from the magnetosphere

    International Nuclear Information System (INIS)

    High-resoluton measurements of subionospheric VLF signals at multiple sites are used as a new tool to assess the spatial distribution and occurrence of ionospheric disturbances associated with lightning-induced electron precipitation. Simultaneous observations in California, Saskatchewan, and Quebec of VLF signals from multiple sources allow the monitoring of event activity over a course grid covering the continental US. Association of the observed VLF signal perturbations with lightning is often made on the basis of time correlation with prominent radio atmospherics. Simultaneous observations of individual events on subionospheric paths that cross one another are used to locate the disturbed ionospheric region(s). Absence of perturbations on nearby paths permits assessment of the spatial exstent of the region with a varying degree of accuracy, depending on the distribution of signal paths. In one case distinctly different onset delays (with respect to causative discharges) consistent with predictions of whistler-particle scattering theory were found, and were interpreted as being due to two separate regions separated in L value by ? 0.4 L being excited in individual events. Occurrence statistics over the course of October 1987 exhibit generally higher levels of activity at the lower-latitude end of the 2 100 km off the great circle paths is not significant

  10. Observation of Polarised Microwave Emission from Cosmic Ray Air Showers

    CERN Document Server

    Smida, R; Engel, R; Arteaga-Velazquez, J C; Bekk, K; Bertaina, M; Bluemer, J; Bozdog, H; Brancus, I M; Chiavassa, A; Cossavella, F; Di Pierro, F; Doll, P; Fuchs, B; Fuhrmann, D; Grupen, C; Haungs, A; Heck, D; Hoerandel, J R; Huber, D; Huege, T; Kampert, K -H; Kang, D; Klages, H; Kleifges, M; Kroemer, O; Link, K; Luczak, P; Ludwig, M; Mathes, H J; Mayer, H J; Mathys, S; Melissas, M; Morello, C; Neunteufel, P; Oehlschlaeger, J; Palmieri, N; Pekala, J; Pierog, T; Rautenberg, J; Rebel, H; Riegel, M; Roth, M; Salamida, F; Schieler, H; Schoo, S; Schroeder, F G; Sima, O; Stasielak, J; Toma, G; Trinchero, G C; Unger, M; Weber, M; Weindl, A; Wilczynski, H; Will, M; Wochele, J; Zabierowski, J

    2013-01-01

    We report on the first direct measurement of the basic features of microwave radio emission from extensive air showers. Using a trigger provided by the KASCADE-Grande air shower array, the signals of the microwave antennas of the CROME (Cosmic-Ray Observation via Microwave Emission) experiment have been read out and searched for signatures of radio emission by high-energy air showers. Microwave signals have been detected for more than 30 showers with energies above $3\\times10^{16}$\\,eV. The observations presented in this Letter are consistent with a mainly forward-beamed, coherent and polarised emission process in the GHz frequency range. An isotropic, unpolarised radiation is disfavoured as the dominant emission model. The measurements show that microwave radiation offers a new means of studying air showers at very high energy.

  11. Rocket investigations of electron precipitation and VLF waves in the Antarctic upper atmosphere

    International Nuclear Information System (INIS)

    The results of two Antarctic rocket campaigns, primarily initiated to investigate electron precipitation stimulated by signals from the Siple-Station ground-based VLF transmitter, are presented. While the primary objective of the campaigns was not achieved, the Siple VLF transmitter facilitated a study of the wave environment in the ionosphere. Standing wave patterns in the ionosphere were observed for the first time by detectors flown aboard the Nike-Tomahawk rockets; the same detectors monitored a continuous signal from the transmitter through the neutral atmosphere and into the ionosphere, providing unique data for comparison with theoretical studies of wave propagation. The measurements of penetrating electron precipitation were interpreted in terms of a model of energetic electron precipitation from the trapped radiational belts. 52 references

  12. The Terminator Time in subionospheric VLF/LF diurnal variation as recorded by the Romanian VLF/LF radio monitoring system related to earthquake occurrence and volcano erruptions

    Science.gov (United States)

    Moldovan, I. A.; Moldovan, A. S.; Biagi, P. F.; Ionescu, C.; Schwingenschuh, K.; Boudjada, M. Y.

    2012-04-01

    The Romanian VLF/LF monitoring system consisting in a radio receiver and the infrastructure that is necessary to record and transmit the collected data is part of the European international network named INFREP. Information on electromagnetic fields' intensities created by transmitters at a receiving site are indicating the quality of the propagation along the paths between the receivers and transmitters. Studying the ionosphere's influences on the electromagnetic waves' propagation along a certain path is a method to put into evidence possible modifications of its lower structure and composition as earthquakes' precursors. The VLF/LF receiver installed in Romania was put into operation in February 2009 and has already 3 years of testing, functioning and proving its utility in the forecast of some earthquakes or volcanic eruptions. Simultaneously we monitor, in the same site with the VLF/LF receiver, the vertical atmospheric electric field and different other meteorological parameters as: temperature, pressure or rainfall. The global magnetic conditions are emphasized with the help of Daily Geomagnetic Index Kp. At a basic level, the adopted analysis consists in a simple statistical evaluation of the signals by comparing the instantaneous values to the trend of the signal. In this paper we pay attention to the terminator times in subionospheric VLF/LF diurnal variation, which are defined as the times of minimum in amplitude (or phase) around sunrise and sunset. These terminator times are found to shift significantly just around the earthquake. In the case of Kobe earthquake, there were found significant shifts in both morning and evening terminator times and these authors interpreted the shift in terminator time in terms of the lowering of lower ionosphere by using the full-wave mode theory. A LabVIEW application which accesses the VLF/LF receiver through internet was developed. This program opens the receiver's web-page and automatically retrieves the list of data files to synchronize the user-side data with the receiver's data. Missing zipped files are also automatically downloaded. The application appends daily files into monthly and anual files and performs 3D colour-coded maps with graphic representations of VLF and LF signals' intensities versus the minute-of-the-day and the day-of-the-month, facilitating a near real-time observation of VLF and LF electromagnetic waves' propagation. This type of representation, highlights the modification of the terminator time versus the length of the solar-day, improves the user's capability to detect possible propagation anomalies due to ionosphere conditions and allows a quick visual inspection of unexpected behaviors of transmission channels at different frequencies and paths. A very special result, was observed on the recordings made on the propagation path to Iceland (NRK, 37.5kHz). Recordings are made once a minute, for a period of 303 days. Icelandic channel propagation anomalies present in the range of 40-90 days are considered to be precursory phenomena associated with Eyjafjallajokull - Iceland, volcanic eruption occurred in April-May 2010.

  13. Signature of burst particle precipitation on VLF signals propagating in the Antarctic earth-ionosphere waveguide

    International Nuclear Information System (INIS)

    The burst precipitation of energetic electrons (? 40 keV), induced by interactions with lightning-generated whistler mode waves, has been observed to cause phase and amplitude perturbations on subionospheric VLF signals (Trimpi events). With a knowledge of the propagation characteristics of the subionospheric signal, analysis of the perturbation details can lead to estimates of the energy, extent, and location of the precipitation. Trimpi events have been observed on VLF signals propagating at high latitudes (L ? 4) over Antarctica, on 3.79-kHz signals as they propagate from Siple toward VLF receivers at Halley and South Pole stations. To simulate the effects of precipitation, localized depressions in the ionospheric reflection height are introduced over the great circle propagation paths in the model, and it is seen that, while the amplitude (up to 6 dB) Trimpi events at Halley cannot be reproduced. Calculations are presented which show that signals echoing from precipitation patches located away from the great circle path could be the cause of such signatures

  14. Direct observation of phonon emission from hot electrons: spectral features in diamond secondary electron emission

    International Nuclear Information System (INIS)

    In this work we use high-resolution synchrotron-based photoelectron spectroscopy to investigate the low kinetic energy electron emission from two negative electron affinity surfaces of diamond, namely hydrogenated and lithiated diamond. For hydrogen-terminated diamond electron emission below the conduction band minimum (CBM) is clearly observed as a result of phonon emission subsequent to carrier thermalization at the CBM. In the case of lithiated diamond, we find the normal conduction band minimum emission peak is asymmetrically broadened to higher kinetic energies and argue the broadening is a result of ballistic emission from carriers thermalized to the CBM in the bulk well before the onset of band-bending. In both cases the spectra display intensity modulations that are the signature of optical phonon emission as the main mechanism for carrier relaxation. To our knowledge, these measurements represent the first direct observation of hot carrier energy loss via photoemission. (paper)

  15. A tiered observational system for anthropogenic methane emissions

    Science.gov (United States)

    Duren, R. M.; Miller, C. E.; Hulley, G. C.; Hook, S. J.; Sander, S. P.

    2014-12-01

    Improved understanding of anthropogenic methane emissions is required for closing the global carbon budget and addressing priority challenges in climate policy. Several decades of top-down and bottom-up studies show that anthropogenic methane emissions are systematically underestimated in key regions and economic sectors. These uncertainties have been compounded by the dramatic rise of disruptive technologies (e.g., the transformation in the US energy system due to unconventional gas and oil production). Methane flux estimates derived from inverse analyses and aircraft-based mass balance approaches underscore the disagreement in nationally and regionally reported methane emissions as well as the possibility of a long-tail distribution in fugitive emissions spanning the US natural gas supply chain; i.e. a small number of super-emitters may be responsible for most of the observed anomalies. Other studies highlight the challenges of sectoral and spatial attribution of fugitive emissions - including the relative contributions of dairies vs oil and gas production or disentangling the contributions of natural gas transmission, distribution, and consumption or landfill emissions in complex urban environments. Limited observational data remains a foundational barrier to resolving these challenges. We present a tiered observing system strategy for persistent, high-frequency monitoring over large areas to provide remote detection, geolocation and quantification of significant anthropogenic methane emissions across cities, states, basins and continents. We describe how this would both improve confidence in methane emission estimates and expedite resolution of fugitive emissions and leaks. We summarize recent prototype field campaigns that employ multiple vantage points and measurement techniques (including NASA's CARVE and HyTES aircraft and PanFTS instrument on Mt Wilson). We share preliminary results of this tiered observational approach including examples of individual methane point sources associated with oil and gas production and distribution, feedlots, and urban landfills in California.

  16. Statistical analysis of VLF radio emissions triggered by power line harmonic radiation and observed by the low-altitude satellite DEMETER.

    Czech Academy of Sciences Publication Activity Database

    Parrot, M.; N?mec, F.; Santolík, Ond?ej

    2014-01-01

    Ro?. 119, ?. 7 (2014), s. 5744-5754. ISSN 2169-9380 R&D Projects: GA ?R GAP205/10/2279; GA MŠk LH12231 Institutional support: RVO:68378289 Keywords : man-made waves * ionosphere Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.440, year: 2013 http://onlinelibrary.wiley.com/doi/10.1002/2014JA020139/abstract

  17. Observations of gamma-ray emission in solar flares

    International Nuclear Information System (INIS)

    This paper reviews the observations of gamma-ray emission made from the OSO-7 satellite in connection with two solar flares in early August 1972. The details of the measurements and a preliminary interpretation of some of the observed features are given. (U.S.)

  18. Observations of Anomalous Microwave Emission from HII regions

    CERN Document Server

    Dickinson, Clive

    2013-01-01

    In this brief review, I give a summary of the observations of Anomalous Microwave Emission (AME) from HII regions. AME has been detected in, or in the vicinity of, HII regions. Given the difficulties in measuring accurate SEDs over a wide range of frequencies and in complex environments, many of these detections require more data to confirm them as emitting significant AME. The contribution from optically thick free-free emission from UCHII regions may be also be significant in some cases. The AME emissivity, defined as the ratio of the AME brightness to the 100 micron brightness, is comparable to the value observed in high-latitude diffuse cirrus in some regions, but is significantly lower in others. However, this value is dependent on the dust temperature. More data, both at high frequencies (>5 GHz) and high resolution (~1 arcmin or better) is required to disentangle the emission processes in such complex regions.

  19. Egret observations of the extragalactic gamma-ray emission

    DEFF Research Database (Denmark)

    Sreekumar, P.; Bertsch, D.L.

    1998-01-01

    The all-sky survey in high-energy gamma rays (E > 30 MeV) carried out by EGRET aboard the Compton Gamma Ray Observatory provides a unique opportunity to examine in detail the diffuse gamma-ray emission. The observed diffuse emission has a Galactic component arising from cosmic-ray interactions with the local interstellar gas and radiation, as well as an almost uniformly distributed component that is generally believed to originate outside the Galaxy. Through a careful study and removal of the Galactic diffuse emission, the flux, spectrum, and uniformity of the extragalactic emission are deduced. The analysis indicates that the extragalactic emission is well described by a power-law photon spectrum with an index of -(2.10 +/- 0.03) in the 30 MeV to 100 GeV energy range. No large-scale spatial anisotropy or changes in the energy spectrum are observed in the deduced extragalactic emission. The most likely explanation for the origin of this extragalactic high-energy gamma-ray emission is that it arises primarily from unresolved gamma-ray-emitting blazars.

  20. Observation of beta-delayed proton emission from 24Al

    International Nuclear Information System (INIS)

    Utilizing the 24Mg(p,n) reaction and a low-energy proton detector ball, beta-delayed proton emission from 24Al has been observed in the form of a quasicontinuum of protons from ?300 to 1100 keV. By making a comparsion with a previously known 24Al beta-delayed alpha branching ratio, a branching ratio for beta-delayed proton emission of (1.2±0.3)x10-5 has been determined

  1. Verification of the backward wave oscillator model of VLF chorus generation using data from MAGION 5 satellite.

    Czech Academy of Sciences Publication Activity Database

    Titova, E. E.; Kozelov, B. V.; Ji?í?ek, František; Šmilauer, Jan; Demekhov, A. G.; Trakhtengerts, V. Yu.

    2003-01-01

    Ro?. 21, - (2003), s. 1073-1081. ISSN 0992-7689 R&D Projects: GA AV ?R IAA3042201 Grant ostatní: INTAS(GB) 99-0502; RFBR(RU) 01-05-643829; RFBR(RU) 02-02-17109 Institutional research plan: CEZ:AV0Z3042911 Keywords : magnetospheric physics (VLF emissions, energetic particles) * space plasma physics (wave-particle interactions) Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.031, year: 2003

  2. Solar flare impulsive phase emission observed with SDO/EVE

    International Nuclear Information System (INIS)

    Differential emission measures (DEMs) during the impulsive phase of solar flares were constructed using observations from the EUV Variability Experiment (EVE) and the Markov-Chain Monte Carlo method. Emission lines from ions formed over the temperature range log Te = 5.8-7.2 allow the evolution of the DEM to be studied over a wide temperature range at 10 s cadence. The technique was applied to several M- and X-class flares, where impulsive phase EUV emission is observable in the disk-integrated EVE spectra from emission lines formed up to 3-4 MK and we use spatially unresolved EVE observations to infer the thermal structure of the emitting region. For the nine events studied, the DEMs exhibited a two-component distribution during the impulsive phase, a low-temperature component with peak temperature of 1-2 MK, and a broad high-temperature component from 7 to 30 MK. A bimodal high-temperature component is also found for several events, with peaks at 8 and 25 MK during the impulsive phase. The origin of the emission was verified using Atmospheric Imaging Assembly images to be the flare ribbons and footpoints, indicating that the constructed DEMs represent the spatially average thermal structure of the chromospheric flare emission during the impulsive phase.

  3. Unexpected very low frequency (VLF) radio events recorded by the ionospheric satellite DEMETER.

    Czech Academy of Sciences Publication Activity Database

    Parrot, M.; Berthelier, J. J.; Blecki, J.; Brochot, J. Y.; Hobara, Y.; Lagoutte, D.; Lebreton, J. P.; N?mec, F.; Onishi, T.; Pincon, J. L.; Píša, David; Santolík, Ond?ej; Sauvaud, J. A.; Slominska, E.

    2015-01-01

    Ro?. 36, ?. 3 (2015), s. 483-511. ISSN 0169-3298 R&D Projects: GA ?R(CZ) GA14-31899S; GA MŠk LH12231 Grant ostatní: Rada Programu interní podpory projekt? mezinárodní spolupráce AV ?R(CZ) M100421206 Institutional support: RVO:68378289 Keywords : ionosphere * natural and man-made VLF radio emissions * anomalies Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.447, year: 2014 http://link.springer.com/article/10.1007%2Fs10712-015-9315-5

  4. Observations of pulsar radio-emission with microsecond resolution

    International Nuclear Information System (INIS)

    A new technique is described for observing pulsar microstructure. Observations were made with a time resolution of 0.5 ?s. The first measurement of the microstructure timescale of pulsar PSR 1749-28 was obtained. All of the observations are consistent with the amplitude-modulated noise model of Rickett together with interstellar scintillation. The relationship of the AMN model to pulsar emission theories and the direction of future research are discussed

  5. SCIAMACHY formaldehyde observations: constraint for isoprene emission estimates over Europe?

    Directory of Open Access Journals (Sweden)

    G. Dufour

    2009-03-01

    Full Text Available Formaldehyde (HCHO is an important intermediate compound in the degradation of volatile organic compounds (VOCs in the troposphere. Sources of HCHO are largely dominated by its secondary production from VOC oxidation, methane and isoprene being the main precursors in unpolluted areas. As a result of the moderate lifetime of HCHO, its spatial distribution is determined by reactive hydrocarbon emissions. We focus here on Europe and investigate the influence of the different emissions on HCHO tropospheric columns with the CHIMERE chemical transport model in order to interpret the comparisons between SCIAMACHY and simulated HCHO columns. Europe was never specifically studied before for these purposes using satellite observations. The bias between measurements and model is less than 20% on average. The differences are discussed according to the errors on the model and the observations and remaining discrepancies are attributed to a misrepresentation of biogenic emissions. This study requires the characterisation of: (1 the model errors and performances concerning formaldehyde. The errors on the HCHO columns, mainly related to chemistry and mixed emission types, are evaluated to 2×1015 molecule/cm2 and the model performances evaluated using surface measurements are satisfactory (~13%; (2 the observation errors that define the needs in spatial and temporal averaging for meaningful comparisons. Using SCIAMACHY observations as constraint for biogenic isoprene emissions in an inverse modelling scheme reduces their uncertainties by about a factor of two in region of intense emissions. The retrieved correction factors for the isoprene emissions range from a factor of 0.15 (North Africa to a factor of 2 (Poland, the United Kingdom depending on the regions.

  6. Radio observational constraints on Galactic 3D-emission models

    CERN Document Server

    Sun, X H; Waelkens, A; Enßlin, T

    2007-01-01

    (Abridged) We constrain simulated all-sky maps in total intensity, linear polarization, and rotation measure (RM) by observations. We test a number of large-scale magnetic field configurations and take the properties of the warm interstellar medium into account. From a comparison of simulated and observed maps we are able to constrain the regular large-scale Galactic magnetic field in the disk and the halo of the Galaxy. The local regular field is 2 microG and the average random field is about 3 microG. The known local excess of synchrotron emission originating either from enhanced CR electrons or random magnetic fields is able to explain the observed high-latitude synchrotron emission. The thermal electron model (NE2001) in conjunction with a proper filling factor accounts for the observed optically thin thermal emission and low frequency absorption by optically thick emission. A coupling factor between thermal electrons and the random magnetic field component is proposed, which in addition to the small fill...

  7. Broad Iron Emission from Gravitationally Lensed Quasars Observed by Chandra

    Science.gov (United States)

    Walton, D. J.; Reynolds, M. T.; Miller, J. M.; Reis, R. C.; Stern, D.; Harrison, F. A.

    2015-06-01

    Recent work has demonstrated the potential of gravitationally lensed quasars to extend measurements of black hole spin out to high redshift with the current generation of X-ray observatories. Here we present an analysis of a large sample of 27 lensed quasars in the redshift range 1.0? z? 4.5 observed with Chandra, utilizing over 1.6 Ms of total observing time, focusing on the rest-frame iron K emission from these sources. Although the X-ray signal-to-noise ratio (S/N) currently available does not permit the detection of iron emission from the inner accretion disk in individual cases in our sample, we find significant structure in the stacked residuals. In addition to the narrow core, seen almost ubiquitously in local active galactic nuclei (AGNs), we find evidence for an additional underlying broad component from the inner accretion disk, with a clear red wing to the emission profile. Based on simulations, we find the detection of this broader component to be significant at greater than the 3? level. This implies that iron emission from the inner disk is relatively common in the population of lensed quasars, and in turn further demonstrates that, with additional observations, this population represents an opportunity to significantly extend the sample of AGN spin measurements out to high redshift.

  8. Observation of dispersive wave emission by temporal cavity solitons

    CERN Document Server

    Jang, Jae K; Murdoch, Stuart G; Coen, Stephane

    2014-01-01

    We examine a coherently-driven, dispersion-managed, passive Kerr fiber ring resonator and report the first direct experimental observation of dispersive wave emission by temporal cavity solitons. Our observations are in excellent agreement with analytical predictions and they are fully corroborated by numerical simulations. These results lead to a better understanding of the behavior of temporal cavity solitons under conditions where higher-order dispersion plays a significant role. Significantly, since temporal cavity solitons manifest themselves in monolithic microresonators, our results are likely to explain the origins of spectral features observed in broadband Kerr frequency combs.

  9. Optical emission spectroscopy observations of fast pulsed capillary discharge plasmas

    Science.gov (United States)

    Avaria, G.; Ruiz, M.; Guzmán, F.; Favre, M.; Wyndham, E. S.; Chuaqui, H.; Bhuyan, H.

    2014-05-01

    We present time resolved optical emission spectroscopic (OES) observations of a low energy, pulsed capillary discharage (PCD). The optical emission from the capillary plasma and plasma jets emitted from the capillary volume was recorded with with a SpectraPro 275 spectrograph, fitted with a MCP gated OMA system, with 15 ns time resolution. The discharge was operated with different gases, including argon, nitrogen, hydrogen and methane, in a repetitive pulsed discharge mode at 10-50 Hz, with, 10-12 kV pulses applied at the cathode side. The time evolution of the electron density was measured using Stark broadening of the H? line. Several features of the capillary plasma dynamics, such as ionization growth, wall effects and plasma jet evolution, are inferred from the time evolution of the optical emission.

  10. The low ionosphere electron density changes during events of the extreme solar activity as deduced from VLF measurements

    International Nuclear Information System (INIS)

    Complete text of publication follows. It is well known that solar X-ray flares increase the electron density at the lower ionosphere edge and that it can be detected from changes in the VLF propagation through Earth-ionosphere waveguide. The influence of the CME and SEP events, usually accompanying the extreme X-ray flares, on the electron density at the ionosphere-atmosphere boundary, can be also studied using the VLF data and appropriate choice of the processes introduced into continuity equation. Several examples of electron density disturbances, induced by X class flares: X1.3 at 1054 UT on July 2005, X17 class flare at 1740 UT on September 7, 2005, X9 at 1018 UT on December 5 2006 and accompanying events, are analyzed. The lack of the proportionality between VLF amplitude/phase (determined by electron density) and X-ray irradiance in the case of huge flares, indicates that processes else than photoionization-dissociative recombination take place. The continuity equation, including the three-body recombination is solved. The time variation of the electron density height profile N(z,t) during disturbed conditions is evaluated and compared with calculations, obtained from the Wait's N(z,t) model developed for the simulation of VLF propagation. The accordance in the order of magnitude was found. Also, the effects of the series of events in period from January 15 - 22, 2005, were analyzed. The VLF recordings reveal the absence of regular diurnal pattern in amplitude a of regular diurnal pattern in amplitude and phase, suggesting that the high level of electron density persists through night hours. It can be explained by impact of energetic particles, colliding with atmospheric neutrals. The X-ray emission released in 'bremsstrahlung' process cause the ionization of atmospheric constituents. The VLF signals on two traces, NAA/24 kHz (Maine, USA - Belgrade) and GQD/22.1 kHz (Skelton, UK - Belgrade), were recorded by AbsPal system and used in this study.

  11. Deep 1.4-GHz observations of diffuse polarized emission

    CERN Document Server

    Carretti, E; Reich, W; Reich, P; Fürst, E; Bernardi, G; Cortiglioni, S; Sbarra, C

    2006-01-01

    Polarized diffuse emission observations at 1.4-GHz in a high Galactic latitude area of the northern Celestial hemisphere are presented. The 3.2 X 3.2 deg^2 field, centred at RA = 10h 58m, Dec = +42deg 18' (B1950), has Galactic coordinates l~172deg, b~+63deg and is located in the region selected as northern target of the BaR-SPOrt experiment. Observations have been performed with the Effelsberg 100-m telescope. We find that the angular power spectra of the E- and B-modes have slopes of beta_E = -1.79 +/- 0.13 and beta_B = -1.74 +/- 0.12, respectively. Because of the very high Galactic latitude and the smooth emission, a weak Faraday rotation action is expected, which allows both a fair extrapolation to Cosmic Microwave Background Polarization (CMBP) frequencies and an estimate of the contamination by Galactic synchrotron emission. We extrapolate the E-mode spectrum up to 32-GHz and confirm the possibility to safely detect the CMBP E-mode signal in the Ka band found in another low emission region (Carretti et a...

  12. Broad Iron Emission from Gravitationally Lensed Quasars Observed by Chandra

    CERN Document Server

    Walton, D J; Miller, J M; Reis, R C; Stern, D; Harrison, F A

    2015-01-01

    Recent work has demonstrated the potential of gravitationally lensed quasars to extend measurements of black hole spin out to high-redshift with the current generation of X-ray observatories. Here we present an analysis of a large sample of 27 lensed quasars in the redshift range 1.0observed with Chandra, utilizing over 1.6 Ms of total observing time, focusing on the rest-frame iron K emission from these sources. Although the X-ray signal-to-noise (S/N) currently available does not permit the detection of iron emission from the inner accretion disk in individual cases in our sample, we find significant structure in the stacked residuals. In addition to the narrow core, seen almost ubiquitously in local AGN, we find evidence for an additional underlying broad component from the inner accretion disk, with a clear red wing to the emission profile. Based on simulations, we find the detection of this broader component to be significant at greater than the 3-sigma level. This implies that iron emission...

  13. Observationally compatible model for Jupiter's IO-related decametric emission

    International Nuclear Information System (INIS)

    A model for Jupiter's Io-related decametric radiation was adjusted to provide a close fit to observed contours of emission occurrence probability on the plane of Io phase vs. the central meridian longitude for frequencies between 35 and 36 MHz. These observations were reported by Wilson, Warwick, and Libby in 1968. A nonlinear indirect emission mechanism was assumed in which Io-excited Alfven waves produce an electron beam, which in turn, after intermediate steps, results in the emission of fast extraordinary mode electromagnetic waves. This radiation is emitted into a hollow-cone beam attached to the Io flux tube at a point where the wave frequency is slightly higher than the electron cyclotron frequency. A five dipole representation of Jupiter's magnetic field was developed and used in this model; it closely matches of O4 field model and has the advantage of greater computational flexibility. The Voyager-determined distribution of electron number density vs. height above the cloud-top level was used. Appropriate adjustments were made to account for the Alfven wave propagation time between Io and the emission point

  14. XMM-Newton Observations of Solar Wind Charge Exchange Emission

    Science.gov (United States)

    Snowden, S. L.; Collier, M. R.; Kuntz, K. D.

    2004-01-01

    We present an XMM-Newton spectrum of diffuse X-ray emission from within the solar system. The spectrum is dominated by O VII and O VIII lines at 0.57 keV and 0.65 keV, O VIII (and possibly Fe XVII) lines at approximately 0.8 keV, Ne IX lines at approximately 0.92 keV, and Mg XI lines at approximately 1.35 keV. This spectrum is consistent with what is expected from charge exchange emission between the highly ionized solar wind and either interstellar neutrals in the heliosphere or material from Earth's exosphere. The emission is clearly seen as a low-energy ( E less than 1.5 keV) spectral enhancement in one of a series of observations of the Hubble Deep Field North. The X-ray enhancement is concurrent with an enhancement in the solar wind measured by the ACE satellite. The solar wind enhancement reaches a flux level an order of magnitude more intense than typical fluxes at 1 AU, and has ion ratios with significantly enhanced higher ionization states. Whereas observations of the solar wind plasma made at a single point reflect only local conditions which may only be representative of solar wind properties with spatial scales ranging from less than half of an Earth radii (approximately 10 s) to 100 Earth radii, X-ray observations of solar wind charge exchange are remote sensing measurements which may provide observations which are significantly more global in character. Besides being of interest in its own right for studies of the solar system, this emission can have significant consequences for observations of more cosmological objects. It can provide emission lines at zero redshift which are of particular interest (e.g., O VII and O VIII) in studies of diffuse thermal emission, and which can therefore act as contamination in objects which cover the entire detector field of view. We propose the use of solar wind monitoring data, such as from the ACE and Wind spacecraft, as a diagnostic to screen for such possibilities.

  15. On the numerical modelling of VLF chorus dynamical spectra

    Directory of Open Access Journals (Sweden)

    D. Nunn

    2009-06-01

    Full Text Available This paper presents a study of the use of a one-dimensional Vlasov Hybrid Simulation (VHS computer code to simulate the dynamical spectra (i.e. frequency versus time spectrograms of ELF/VLF chorus signals (from ~a fraction to ~10 kHz. Recently excellent measurements of chorus have been made in the source region close to the geomagnetic equator aboard the four spacecraft Cluster mission. Using Cluster data for wave amplitude, which is up to 300 pT, local gyrofrequency, cold plasma density, and L-shell, observed chorus signals are reproduced with remarkable fidelity and, in particular, sweep rates in the range 1–10 kHz result as observed. Further, we find that the sweep rate is a falling function of increasing cold plasma density, again in accord with observations. Finally, we have satisfactorily simulated the rather rare falling frequency elements of chorus which are sometimes observed aboard Cluster in the generation region. For both rising and falling chorus we have presented detailed structural analyses of the generation regions. The main contributor to the frequency sweep rate is primarily the establishment of wave number/frequency gradients across the generation region by the out of phase component of the resonant particle current. The secondary contributor is the shortening of the wavelength of resonant particle current relative to that of the wave field. In view of the close agreement between observation and simulation, we conclude that nonlinear electron cyclotron resonance is indeed the mechanism underlying the generation of chorus signals just outside the plasmasphere.

  16. Observations of O VI Emission from the Diffuse Interstellar Medium

    CERN Document Server

    Shelton, R L; Murphy, E M; Andersson, B G; Blair, W P; Dixon, W V; Edelstein, J D; Fullerton, A W; Gry, C; Howk, J C; Jenkins, E B; Linsky, J L; Moos, H W; Oegerle, W R; Oey, M S; Roth, K C; Sahnow, D J; Sankrit, R; Savage, B D; Sembach, K R; Shull, J M; Siegmund, O H W; Vidal-Madjar, A; Welsh, B Y; York, D G

    2001-01-01

    We report the first Far Ultraviolet Spectroscopic Explorer (FUSE) measurements of diffuse O VI (lambda,lambda 1032,1038) emission from the general diffuse interstellar medium outside of supernova remnants or superbubbles. We observed a 30arcsec x 30arcsec region of the sky centered at l = 315 and b = -41. From the observed intensities (2930+/-290(random)+/-410(systematic) and 1790+/-260(random)+/-250(systematic) photons/cm/cm/s/sr in the 1032 and 1038 Angstrom emission lines, respectively), derived equations, and assumptions about the source location, we calculate the intrinsic intensity, electron density, thermal pressure, and emitting depth. The intensities are too large for the emission to originate solely in the Local Bubble. Thus, we conclude that the Galactic thick disk and lower halo also contribute. High velocity clouds are ruled out because there are none near the pointing direction. The calculated emitting depth is small, indicating that the O VI-bearing gas fills a small volume. The observations ca...

  17. Seismo-electromagnetic VLF link calibration in Europe

    Science.gov (United States)

    Eichelberger, Hans; Schwingenschuh, Konrad; Wolbang, Daniel; Besser, Bruno P.; Rozhnoi, Alexander; Solovieva, Maria; Biagi, Pier Francesco; Stachel, Manfred; Prattes, Gustav; Boudjada, Mohammed Y.; Aydogar, Özer; Zehetleitner, Sigrid; Grill, Claudia; Jernej, Irmgard

    2015-04-01

    The general background is the investigation of seismic activity with electromagnetic signals, i.e. to disentangle amplitude and phase modifications from a variety of sources. This work focus on characterisation of very low frequency (VLF) radio links between several transmitters and the Graz receiver in the current active solar cycle. Particular emphasis is on solar flares related disturbances in the Earth-ionosphere waveguide, an important dayside non-seismic influence on the VLF paths. These variations can serve as a calibration tool of the facility even for nighttime periods when different seismo-electromagnetic (SEM) methods are applied, e.g. terminator time or nighttime amplitude. Supporting data are the GOES X-ray flux measurements. As immediate objective we study individual C/M/X-class solar flare events in the sub-ionospheric VLF waveguide (amplitude fluctuations) and calculate statistical parameters with the C-class population. The used system, which is part of a broader network of receiving stations, is primarily dedicated to investigate earthquake related phenomena and associated lithospheric atmospheric ionospheric coupling mechanisms. We receive simultaneously 12 VLF transmitters (amplitude and phase measurements) from the northern hemisphere with a selected temporal resolution of 20 seconds. We conclude that the numerous C/M/X-class solar flare events, together with the the high signal-to-noise ratio of the facility, are a valuable combination for short-term VLF path characterisation in a robust manner. As outlook, due to the steady VLF measurements, a monitoring service for certain lower atmospheric variations can be envisaged.

  18. Remote sensing space weather events: Antarctic-Arctic radiation-belt (Dynamic) Deposition-VLF Atmospheric Research Konsortium network

    OpenAIRE

    Clilverd, Mark A.; Rodger, Craig J.; Brundell, James B.; Ulich, Thomas; Lichtenberger, Janos; Cobbett, Neil; Collier, Andrew B.; Menk, Frederick W.; Seppala, Annika; Verronen, Pekka T.; Turunen, Esa

    2009-01-01

    [1] The Antarctic-Arctic Radiation-belt (Dynamic) Deposition-VLF Atmospheric Research Konsortium (AARDDVARK) provides a network of continuous long-range observations of the lower ionosphere in the polar regions. Our ultimate aim is to develop the network of sensors to detect changes in ionization levels from 30--90 km altitude, globally, continuously, and with high time resolution, with the goal of increasing the understanding of energy coupling between the Earth’s atmosphere, t...

  19. Iron Emission Lines on the Galactic Ridge Observed with Suzaku

    CERN Document Server

    Yamauchi, Shigeo; Tanaka, Yasuo; Koyama, Katsuji; Matsumoto, Hironori; Yamasaki, Noriko Y; Takahashi, Hiromitsu; Ezoe, Yuichiro

    2008-01-01

    In order to elucidate origin of the Galactic Ridge X-ray Emission, we analyzed Suzaku data taken at various regions along the Galactic plane and studied their Fe-K emission line features. Suzaku resolved the Fe line complex into three narrow lines at ~6.4 keV,~6.7 keV and ~6.97 keV, which are K-lines from neutral (or low-ionized), He-like, and H-like iron ions, respectively. The 6.7 keV line is clearly seen in all the observed regions and its longitudinal distribution is consistent with that determined from previous observations. The 6.4 keV emission line was also found in various Galactic plane regions (b~0). Differences in flux ratios of the 6.4 keV/6.7 keV and 6.97 keV/6.7 keV lines between the Galactic plane and the Galactic center regions are studied and its implication is discussed.

  20. Adjoint inversion modeling of Asian dust emission using lidar observations

    Directory of Open Access Journals (Sweden)

    K. Yumimoto

    2008-06-01

    Full Text Available A four-dimensional variational (4D-Var data assimilation system for a regional dust model (RAMS/CFORS-4DVAR; RC4 is applied to an adjoint inversion of a heavy dust event over eastern Asia during 20 March–4 April 2007. The vertical profiles of the dust extinction coefficients derived from NIES Lidar network are directly assimilated, with validation using observation data. Two experiments assess impacts of observation site selection: Experiment A uses five Japanese observation sites located downwind of dust source regions; Experiment B uses these and two other sites near source regions. Assimilation improves the modeled dust extinction coefficients. Experiment A and Experiment B assimilation results are mutually consistent, indicating that observations of Experiment A distributed over Japan can provide comprehensive information related to dust emission inversion. Time series data of dust AOT calculated using modeled and Lidar dust extinction coefficients improve the model results. At Seoul, Matsue, and Toyama, assimilation reduces the root mean square differences of dust AOT by 35–40%. However, at Beijing and Tsukuba, the RMS differences degrade because of fewer observations during the heavy dust event. Vertical profiles of the dust layer observed by CALIPSO are compared with assimilation results. The dense dust layer was trapped at potential temperatures (? of 280–300 K and was higher toward the north; the model reproduces those characteristics well. Latitudinal distributions of modeled dust AOT along the CALIPSO orbit paths agree well with those of CALIPSO dust AOT, OMI AI, and MODIS coarse-mode AOT, capturing the latitude at which AOTs and AI have high values. Assimilation results show increased dust emissions over the Gobi Desert and Mongolia; especially for 29–30 March, emission flux is about 10 times greater. Strong dust uplift fluxes over the Gobi Desert and Mongolia cause the heavy dust event. Total optimized dust emissions are 57.9 Tg (Experiment A; 57.8% larger than before assimilation and 56.3 Tg (Experiment B; 53.4% larger.

  1. Plasma waves observed by the IRM and UKS spacecraft during the AMPTE solar wind lithium releases - Overview

    Science.gov (United States)

    Haeusler, B.; Woolliscroft, L. J.; Anderson, R. R.; Gurnett, D. A.; Holzworth, R. H.

    1986-01-01

    The wave measurements from the Ion Release Module and the United Kingdom Satellite in the diamagnetic cavity, the transition region, and the upstream region are examined. Solar wind conditions during the releases on September 11 and 20, 1984 are described. The quasi-static electric field, wideband, high-frequency waves, and medium and VLF waves observations are analyzed. The data reveal that extremely low levels of wave activity are observed in the boundary between the diamagnetic cavity and external magnetic field, medium and VLF waves in the ion acoustic electrostatic cyclotron harmonic modes are detected in the transition region from the diamagnetic cavity to the solar wind, and decay in the magnetic field strength and density, and an increase in the quasi-static electric field is seen in the upstream edge of the transition region. The emissions observed are related to the different phases of the Li cloud development and different spatial regimes of the Li plasma-solar wind interaction.

  2. FERMI Observations of Gamma -Ray Emission From the Moon

    Science.gov (United States)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Atwoo, W. B.; Baldini, I.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bonamente, E.; Borgland, A. W.; Bottacini, E.; Bouvier, A.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Gehrels, N.; Hays, E.; Thompson, D. J.; McEnery, J. E.; Troja, E.

    2012-01-01

    We report on the detection of high-energy ? -ray emission from the Moon during the first 24 months of observations by the Fermi Large Area Telescope (LAT). This emission comes from particle cascades produced by cosmicray (CR) nuclei and electrons interacting with the lunar surface. The differential spectrum of the Moon is soft and can be described as a log-parabolic function with an effective cutoff at 2-3 GeV, while the average integral flux measured with the LAT from the beginning of observations in 2008 August to the end of 2010 August is F(greater than100 MeV) = (1.04 plus or minus 0.01 [statistical error] plus or minus 0.1 [systematic error]) × 10(sup -6) cm(sup -2) s(sup -1). This flux is about a factor 2-3 higher than that observed between 1991 and 1994 by the EGRET experiment on board the Compton Gamma Ray Observatory, F(greater than100 MeV)˜5×10(sup -7) cm(sup -2) s(sup -1), when solar activity was relatively high. The higher gamma -ray flux measured by Fermi is consistent with the deep solar minimum conditions during the first 24 months of the mission, which reduced effects of heliospheric modulation, and thus increased the heliospheric flux of Galactic CRs. A detailed comparison of the light curve with McMurdo Neutron Monitor rates suggests a correlation of the trends. The Moon and the Sun are so far the only known bright emitters of gamma-rays with fast celestial motion. Their paths across the sky are projected onto the Galactic center and high Galactic latitudes as well as onto other areas crowded with high-energy gamma-ray sources. Analysis of the lunar and solar emission may thus be important for studies of weak and transient sources near the ecliptic.

  3. Observations of a complete sample of emission-line galaxies

    International Nuclear Information System (INIS)

    Optical spectroscopic and broad-band imaging observations were obtained for all 172 emission-line galaxy (ELG) candidates in Lists IV and V of the University of Michigan Curtis Schmidt Objective Prism (UM) Survey. These data allow for the accurate determination of the completeness limits and selection characteristics of the survey and provide valuable information about the physical nature of the survey constituents. The UM survey is found to be comprehensive in the sense that it includes a wide range of types of active galaxies. Analysis of the data shows that the completeness characteristics of this survey are most accurately parameterized using emission-line flux and equivalent width. This result leads to the definition of a complete sample of UM galaxies which is used to determine the relative populations of the various types, of ELGs found in the survey. Important insights into the physical conditions in the emission-line regions of these objects are gained by the use of line-ratio diagnostic diagrams. A previously unrecognized segregation of the galaxies with H II region-like spectra by their ELG type is seen in these diagrams

  4. Numerical modelling of VLF radio wave propagation through earth-ionosphere waveguide and its application to sudden ionospheric disturbances

    CERN Document Server

    Pal, Sujay

    2015-01-01

    In this thesis, we theoretically predict the normal characteristics of Very Low Frequency (3~30 kHz) radio wave propagation through Earth-ionosphere waveguide corresponding to normal behavior of the D-region ionosphere. We took the VLF narrow band data from the receivers of Indian Centre for Space Physics (ICSP) to validate our models. Detection of sudden ionospheric disturbances (SIDs) are common to all the measurements. We apply our theoretical models to infer the D-region characteristics and to reproduce the observed VLF signal behavior corresponding to such SIDs. We develop a code based on ray theory to simulate the diurnal behavior of VLF signals over short propagation paths (2000~3000 km). The diurnal variation from this code are comparable to the variation obtained from a more general Long Wave Propagation Capability (LWPC) code which is based on mode theory approach. We simulate the observational results obtained during the Total Solar Eclipse of July 22, 2009 in India. We also report and simulate a h...

  5. The European VLF/LF radio network: current status

    Science.gov (United States)

    Biagi, Pier Francesco; Maggipinto, Tommaso; Ermini, A.

    2014-11-01

    For several years researches about correlation between seismicity and disturbances in radio broadcasting are being carried out: in particular, the Japanese Pacific VLF radio network and the European VLF-LF radio network have been developed during the last years. The European network has been developed starting from two LF receivers located in central Italy in 1996. Up to now, 11 receivers of a new type, able to sample the VLF and LF intensity of ten radio signals, are being into operation in different European countries. The daily updating of data is effective and the data bank is located at the Department of Physics of the University of Bari (Italy) which is the central node of the network. In order to discover anomalies, the software able to carry out automatically a daily data analysis by the Wavelet spectra method has been planned and realized. At the moment, the software operates on four signals (two LF and two VLF) collected by one of the receiver located in Italy. If the anomaly is particularly strong a warning system gives an advise on the work station into operation in the central node of the Network. In any case, before assuming an anomaly as a seismic anomaly, geomagnetic and meteorological data must be checked as well as any possible instrumental malfunction. At present these controls are carried out only discontinuously by the researchers of the Bari Team.

  6. Meridian Scan of the Electrojet using ELF/VLF Modulation

    Science.gov (United States)

    Zwi, Helio R.; Pau, Jaqueline; Wong, Alfred Y.; Sentman, David

    1996-11-01

    Systematic correlation of ELF and VLF signal strenghts with spatial distributions of electrojet and auroral arcs has been investigated in a series of experiments carried out using the HIPAS heater array (f0 = 2.85 MHz, P_rad ~= 800 kW). The heater beam was scanned along the magnetic N-S direction and ELF/VLF signals were aquired with the magnetometer setup at Gilmore Creek, AK. Electrojet parameters were obtained from the UAF magnetometer chain and from the HLMS Auroral Radar facility at Elmendorf AFB, and auroral arc positions from the all-sky camera at the Poker Flat Research Range. VLF was generated by AM modulation of the heater beam at 1.11 and 2.5 kHz, while ELF was produced by runnning the heater array in double-frequency (DF) mode at 24 or 29 Hz frequency separation. In some of the experiments simultaneous ELF and VLF modulation was successfully achieved. Preliminary results show strong time-varying dependency of received signals (particulary ELF) with beam zenith angle.

  7. An aerostat-supported ELF/VLF transmitter

    Science.gov (United States)

    Field, E. C., Jr.; Kies, L. R.; Bannister, P. R.; Ingram, R. F.; Hopkins, W. D.; Roberts, M. A.

    1989-03-01

    A demonstration of an aerostat-supported extremely low frequency/very low frequency (ELF/VLF) transmitting antenna was performed. At ELF the vertical electric dipole (VED) antenna radiated at least 100,000 times more power than would a horizontal electric dipole having the same moment. That efficiency was achieved with an altitude of 12,500 feet (3810 m). Calculations show that the radiated power will increase as the fourth power of aerostat altitude. The tether antenna exhibited a corona onset voltage of 180 kV and was resistant to the degrading effects of ELF corona. Prolonged in-corona operation is therefore possible. The antenna was continuously tuned, despite changes in height and capacitance caused by the aerostat flight dynamics. The huge 300-H ELF tuning inductor posed no problem. Enhanced VED moments were achieved at ELF by operation at voltages up to 260 kV, 40% above the corona onset voltage. At VLF the antenna emulated a monopole that had a radiation efficiency greater than 90%. The measured bandwidths were large: 1.5 kHz at 23 kHz and 3.5 kHz at 34 kHz. The antenna height exceeded one-quarter wavelength at VLF, so the antenna could be tuned capacitively and required relatively low base voltages. At both VLF and ELF the measured fields agreed closely with predictions.

  8. The Romanian VLF/LF monitoring system as a part of the INFREP international network

    Science.gov (United States)

    Moldovan, Adrian-Septimiu; Moldovan, Iren-Adelina; Otilia Placinta, Anica; Biagi, Pier Francesco

    2010-05-01

    The paper presents the Romanian VLF / LF monitoring system consisting in a radio receiver -made by Elettronika S.R.L. (Italy) and provided by the Bari University- and the infrastructure that is necessary to record and transmit the collected data. This system is a part of the international initiative INFREP. Through this initiative, originated in Italy, VLF / LF receivers are deployed in different locations in Europe. Each one is monitoring up to ten different transmissions of radio stations across the continent. Information on electromagnetic fields' intensities created by transmitters at each receiving site and gathered from this network are indicating the quality of the propagation along the paths between the receivers and transmitters. Studying the ionosphere's influences on the electromagnetic waves' propagation along a certain path is a method to put into evidence possible modifications of its lower structure and composition as earthquakes' precursors. The VLF / LF receiver installed in Romania was put into operation in February 2009 and has proved its utility in the case of Abruzzo earthquake that occurred on 6th of April 2009 (M=6.3) (Biagi et al, 2009). Since then, the receiver was relocated from Bucharest to the Black-Sea shore (Dobruja Seismologic Observatory). Changing the receiving site produced unsatisfactory monitoring data, characterized by large fluctuations of the received signals' intensities. Trying to understand this behavior has led to the conclusion that the electric component of the electromagnetic field was possibly influenced by the local atmospheric conditions (as aerosols' concentration could be). Starting from this observation we have run some tests which have indicated that a loop-type antenna is more appropriate than a vertical antenna, especially for highly electric-field polluted environments. Very good results were obtained with this new configuration, even in the site located at the Black-Sea shore. Future improvements of the receiver's analog front-end are still possible in order to get better monitoring data by rejecting the off-band noise induced by the aerial high-voltage lines that are surrounding the site, so that for us to accomplish the best achievable surveillance in VLF / LF bands, related to seismo-electromagnetic phenomena.

  9. Nighttime reactive nitrogen measurements from stratospheric infrared thermal emission observations

    Science.gov (United States)

    Abbas, Mian M.; Kunde, Virgil G.; Brasunas, J. C.; Herman, J. R.; Massie, Steven T.

    1991-01-01

    IR thermal emission spectra of the earth's atmosphere in the 700-2000/cm region were obtained with a cryogenically cooled high-resolution interferometer spectrometer on a balloon flight from Palestine, Texas, on September 15-16, 1986. The observations exhibit spectral features of a number of stratospheric constituents, including important species of the reactive nitrogen family. An analysis of the observed data for simultaneously measured vertical distributions of O3, H2O, N2O, NO2, N2O5, HNO3, and ClONO2 is presented. These measurements permit the first direct determination of the nighttime total reactive nitrogen concentrations, and the partitioning of the important elements of the NO(x) family. Comparisons of the total reactive nitrogen budget are made with the measurements by the ATMOS experiment and with the predictions of one-dimensional and two-dimensional photochemical models.

  10. Inversion of airborne tensor VLF data using integral equations

    Science.gov (United States)

    Kamm, Jochen; Pedersen, Laust B.

    2014-08-01

    The Geological Survey of Sweden has been collecting airborne tensor very low frequency data (VLF) over several decades, covering large parts of the country. The data has been an invaluable source of information for identifying conductive structures that can among other things be related to water-filled fault zones, wet sediments that fill valleys or ore mineralizations. Because the method only uses two differently polarized plane waves of very similar frequency, vertical resolution is low and interpretation is in most cases limited to maps that are directly derived from the data. Occasionally, 2-D inversion is carried out along selected profiles. In this paper, we present for the first time a 3-D inversion for tensor VLF data in order to further increase the usefulness of the data set. The inversion is performed using a non-linear conjugate gradient scheme (Polak-Ribière) with an inexact line-search. The gradient is obtained by an algebraic adjoint method that requires one additional forward calculation involving the adjoint system matrix. The forward modelling is based on integral equations with an analytic formulation of the half-space Green's tensor. It avoids typically required Hankel transforms and is particularly amenable to singularity removal prior to the numerical integration over the volume elements. The system is solved iteratively, thus avoiding construction and storage of the dense system matrix. By using fast 3-D Fourier transforms on nested grids, subsequently farther away interactions are represented with less detail and therefore with less computational effort, enabling us to bridge the gap between the relatively short wavelengths of the fields (tens of metres) and the large model dimensions (several square kilometres). We find that the approximation of the fields can be off by several per cent, yet the transfer functions in the air are practically unaffected. We verify our code using synthetic calculations from well-established 2-D methods, and trade modelling accuracy off against computational effort in order to keep the inversion feasible in both respects. Our compromise is to limit the permissible resistivity to not fall below 100 ?m to maintain computational domains as large as 10 × 10 km2 and computation times on the order of a few hours on standard PCs. We investigate the effect of possible local violations of these limits. Even though the conductivity magnitude can then not be recovered correctly, we do not observe any structural artefacts related to this in our tests. We invert a data set from northern Sweden, where we find an excellent agreement of known geological features, such as contacts or fault zones, with elongated conductive structures, while high resistivity is encountered in probably less disturbed geology, often related to topographic highs, which have survived predominantly glacial erosion processes. As expected from synthetic studies, the resolution is laterally high, but vertically limited down to the top of conductive structures.

  11. Excitation of guided ELF-VLF waves through modification of the F{sub 2} ionospheric layer by high-power radio waves

    Energy Technology Data Exchange (ETDEWEB)

    Markov, G. A.; Belov, A. S.; Komrakov, G. P. [Lobachevsky State University (Russian Federation); Parrot, M. [Environmental Physics and Chemistry Laboratory (France)

    2012-03-15

    The possibility of controlled excitation of ELF-VLF electromagnetic waves through modification of the F{sub 2} ionospheric layer by high-power high-frequency emission is demonstrated in a natural experiment by using the Sura midlatitude heating facility. The excited low-frequency waves can be used to explore the near-Earth space and stimulate the excitation of a magnetospheric maser.

  12. Modeling of very low frequency (VLF radio wave signal profile due to solar flares using the GEANT4 Monte Carlo simulation coupled with ionospheric chemistry

    Directory of Open Access Journals (Sweden)

    S. Palit

    2013-09-01

    Full Text Available X-ray photons emitted during solar flares cause ionization in the lower ionosphere (~60 to 100 km in excess of what is expected to occur due to a quiet sun. Very low frequency (VLF radio wave signals reflected from the D-region of the ionosphere are affected by this excess ionization. In this paper, we reproduce the deviation in VLF signal strength during solar flares by numerical modeling. We use GEANT4 Monte Carlo simulation code to compute the rate of ionization due to a M-class flare and a X-class flare. The output of the simulation is then used in a simplified ionospheric chemistry model to calculate the time variation of electron density at different altitudes in the D-region of the ionosphere. The resulting electron density variation profile is then self-consistently used in the LWPC code to obtain the time variation of the change in VLF signal. We did the modeling of the VLF signal along the NWC (Australia to IERC/ICSP (India propagation path and compared the results with observations. The agreement is found to be very satisfactory.

  13. Modeling of the Very Low Frequency (VLF radio wave signal profile due to solar flares using the GEANT4 Monte Carlo simulation coupled with ionospheric chemistry

    Directory of Open Access Journals (Sweden)

    S. Palit

    2013-03-01

    Full Text Available X-ray photons emitted during solar flares cause ionization in the lower ionosphere (~ 60 to 100 km in excess of what is expected from a quiet sun. Very Low Frequency (VLF radio wave signals reflected from the D region are affected by this excess ionization. In this paper, we reproduce the deviation in VLF signal strength during solar flares by numerical modeling. We use GEANT4 Monte Carlo simulation code to compute the rate of ionization due to a M-class and a X-class flare. The output of the simulation is then used in a simplified ionospheric chemistry model to calculate the time variation of electron density at different altitudes in the lower ionosphere. The resulting electron density variation profile is then self-consistently used in the LWPC code to obtain the time variation of the VLF signal change. We did the modeling of the VLF signal along the NWC (Australia to IERC/ICSP (India propagation path and compared the results with observations. The agreement is found to be very satisfactory.

  14. Source location of chorus emissions observed by Cluster

    Directory of Open Access Journals (Sweden)

    M. Parrot

    Full Text Available One of the objectives of the Cluster mission is to study sources of various electromagnetic waves using the four satellites. This paper describes the methods we have applied to data recorded from the STAFF spectrum analyser. This instrument provides the cross spectral matrix of three magnetic and two electric field components. This spectral matrix is analysed to determine, for each satellite, the direction of the wave normal relative to the Earth’s magnetic field as a function of frequency and of time. Due to the Cluster orbit, chorus emissions are often observed close to perigee, and the data analysis determines the direction of these waves. Three events observed during different levels of magnetic activity are reported. It is shown that the component of the Poynting vector parallel to the magnetic field changes its sense when the satellites cross the magnetic equator, which indicates that the chorus waves propagate away from the equator. Detailed analysis indicates that the source is located in close vicinity of the plane of the geomagnetic equator.

    Key words. Magnetospheric physics (plasma waves and instabilities; storms and substorms; Space plasma physics (waves and instabilities

  15. Location accuracy of long distance VLF lightning locationnetwork

    OpenAIRE

    Rodger, C. J.; Brundell, J. B.; Dowden, R. L.; Thomson, N. R.

    2004-01-01

    An experimental VLF WorldWide Lightning Location (WWLL) network is being developed to provide realtime locations of cloud to ground lightning discharges occurring throughout the globe. This network has expanded from a limited number of stations in the Western Pacific to its current state of 11 stations, in most longitude sectors, with additional stations planned in the near future. As part of the initial testing phase of the WWLL the network has operated in a simple mode, sending the station ...

  16. Effect of rectification of vlf waves in the earth's magnetosphere

    International Nuclear Information System (INIS)

    This paper discusses the results of an experiment on the detection of a rectified magnetospheric signal (RMS) arising in the action of a strong, modulated, low-frequency wave on the magnetospheric plasma. The signal develops at the modulation frequency of the transmitter and arrives at the receiver with a delay ? 3-5 sec. A possible mechanism of RMS generation in the region of resonance absorption of a vlf wave in the magnetosphere is discussed

  17. VLF Tan Delta Measurement for Used XLPE Power Cables

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Woo Sang; Ha, Che Wung; Joo, Kwang Ho [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2011-05-15

    Medium voltage power cables in nuclear power plants are currently managed through the visual inspection or by monitoring environmental factors such as the temperature and radiation levels. However, these methods are insufficient to monitor aging degradation of power cables. The NRC requires an additional monitoring program to detect the aged degradation, especially for safety-related power cables which are inaccessible or installed underground. EPRI suggested that very low frequency (VLF) tan {delta} test be included in MV power cable diagnostic programs. In addition, the VLF tan {delta} test was recently adopted for domestic submarine distribution cable diagnostics. KEPRI suggested that the impacts of leakage current should be controlled in VLF tan {delta} test for the submarine cables. As a pre-process to develop such a program, tan {delta} tests have been performed for 4.16 kV cables which were removed from the domestic nuclear power plant after approximate 30 years of service to analyze the degradation of long time serviced cables and the effect of leakage current from the both ends of cables

  18. VLF Tan Delta Measurement for Used XLPE Power Cables

    International Nuclear Information System (INIS)

    Medium voltage power cables in nuclear power plants are currently managed through the visual inspection or by monitoring environmental factors such as the temperature and radiation levels. However, these methods are insufficient to monitor aging degradation of power cables. The NRC requires an additional monitoring program to detect the aged degradation, especially for safety-related power cables which are inaccessible or installed underground. EPRI suggested that very low frequency (VLF) tan ? test be included in MV power cable diagnostic programs. In addition, the VLF tan ? test was recently adopted for domestic submarine distribution cable diagnostics. KEPRI suggested that the impacts of leakage current should be controlled in VLF tan ? test for the submarine cables. As a pre-process to develop such a program, tan ? tests have been performed for 4.16 kV cables which were removed from the domestic nuclear power plant after approximate 30 years of service to analyze the degradation of long time serviced cables and the effect of leakage current from the both ends of cables

  19. Regional nitrogen oxides emission trends in East Asia observed from space

    OpenAIRE

    Mijling, B.; R. J. van der A; Zhang, Q.

    2013-01-01

    Due to changing economic activity, emissions of air pollutants in East Asia change rapidly in space and time. Monthly emission estimates of nitrogen oxides derived from satellite observations provide valuable insight in the evolution of anthropogenic activity on a regional scale. We present the first results of a new emission estimation algorithm, specifically designed to use daily satellite observations of column concentrations for fast updates of emissions of short-lived atmospheric ...

  20. The Search for VLF Precursors to Major Earthquakes: A Case Study with the M9.0 Earthquake of 11-Mar-2011 (Invited)

    Science.gov (United States)

    Cohen, M.; Kosovichev, P.; Marshall, R. A.; Droscoll, A.; Scherrer, D. K.

    2013-12-01

    It has been proposed that Very Low Frequency (VLF, 3-30 kHz) radio remote sensing may be used to detect ionospheric changes which may precede major earthquakes by hours or days. We report the results of a search for VLF precursors to the M9.0 Tohoku earthquake of 11-Mar-2011, the fifth most powerful earthquake in recorded history. Broadband and narrowband radio recordings were made at a site in Onagawa, Japan located ~102 km from the epicenter. The receiver operated for about two minutes after the start of the earthquake, after which the receiver lost power. Examination of the VLF data shows no radio emissions preceding or coincident with the onset of the earthquake. However, once the secondary seismic waves reached the receiver, a number of impulses and diffuse noise bands arose which may result from the entire power grid shaking or from radio emissions from compressing or fracturing rocks. Examination of the ELF data (0.2-1 kHz) shows no precursor effect in the hours preceding the seismic activity. We also examine the amplitudes of VLF subionospherically propagating transmitter signals going back months before the earthquake. We apply previously proposed techniques to extract properties of the diurnal amplitude profile that have been thought to correlate with earthquake precursors, but find no anomalous effect despite the remarkable intensity of the earthquake and proximity of the receiver to the epicenter. In general there are anomalous deviations but they cannot be reliably correlated with seismic activity. We also report the results of a global search for a lightning precursor effect on lightning flash rates, using the GLD360 network.

  1. Reconciling reported and unreported HFC emissions with atmospheric observations.

    Science.gov (United States)

    Lunt, Mark F; Rigby, Matthew; Ganesan, Anita L; Manning, Alistair J; Prinn, Ronald G; O'Doherty, Simon; Mühle, Jens; Harth, Christina M; Salameh, Peter K; Arnold, Tim; Weiss, Ray F; Saito, Takuya; Yokouchi, Yoko; Krummel, Paul B; Steele, L Paul; Fraser, Paul J; Li, Shanlan; Park, Sunyoung; Reimann, Stefan; Vollmer, Martin K; Lunder, Chris; Hermansen, Ove; Schmidbauer, Norbert; Maione, Michela; Arduini, Jgor; Young, Dickon; Simmonds, Peter G

    2015-05-12

    We infer global and regional emissions of five of the most abundant hydrofluorocarbons (HFCs) using atmospheric measurements from the Advanced Global Atmospheric Gases Experiment and the National Institute for Environmental Studies, Japan, networks. We find that the total CO2-equivalent emissions of the five HFCs from countries that are required to provide detailed, annual reports to the United Nations Framework Convention on Climate Change (UNFCCC) increased from 198 (175-221) Tg-CO2-eq?y(-1) in 2007 to 275 (246-304) Tg-CO2-eq?y(-1) in 2012. These global warming potential-weighted aggregated emissions agree well with those reported to the UNFCCC throughout this period and indicate that the gap between reported emissions and global HFC emissions derived from atmospheric trends is almost entirely due to emissions from nonreporting countries. However, our measurement-based estimates of individual HFC species suggest that emissions, from reporting countries, of the most abundant HFC, HFC-134a, were only 79% (63-95%) of the UNFCCC inventory total, while other HFC emissions were significantly greater than the reported values. These results suggest that there are inaccuracies in the reporting methods for individual HFCs, which appear to cancel when aggregated together. PMID:25918401

  2. Fast emission estimates in China and South Africa constrained by satellite observations

    Science.gov (United States)

    Mijling, Bas; van der A, Ronald

    2013-04-01

    Emission inventories of air pollutants are crucial information for policy makers and form important input data for air quality models. Unfortunately, bottom-up emission inventories, compiled from large quantities of statistical data, are easily outdated for emerging economies such as China and South Africa, where rapid economic growth change emissions accordingly. Alternatively, top-down emission estimates from satellite observations of air constituents have important advantages of being spatial consistent, having high temporal resolution, and enabling emission updates shortly after the satellite data become available. However, constraining emissions from observations of concentrations is computationally challenging. Within the GlobEmission project (part of the Data User Element programme of ESA) a new algorithm has been developed, specifically designed for fast daily emission estimates of short-lived atmospheric species on a mesoscopic scale (0.25 × 0.25 degree) from satellite observations of column concentrations. The algorithm needs only one forward model run from a chemical transport model to calculate the sensitivity of concentration to emission, using trajectory analysis to account for transport away from the source. By using a Kalman filter in the inverse step, optimal use of the a priori knowledge and the newly observed data is made. We apply the algorithm for NOx emission estimates in East China and South Africa, using the CHIMERE chemical transport model together with tropospheric NO2 column retrievals of the OMI and GOME-2 satellite instruments. The observations are used to construct a monthly emission time series, which reveal important emission trends such as the emission reduction measures during the Beijing Olympic Games, and the impact and recovery from the global economic crisis. The algorithm is also able to detect emerging sources (e.g. new power plants) and improve emission information for areas where proxy data are not or badly known (e.g. shipping emissions). The new emission inventories result in a better agreement between observations and simulations of air pollutant concentrations, facilitating improved air quality forecasts.

  3. The VLF fingerprint of elves: Step-like and long-recovery early VLF perturbations caused by powerful ±CG lightning EM pulses

    Science.gov (United States)

    Haldoupis, Christos; Cohen, Morris; Arnone, Enrico; Cotts, Benjamin; Dietrich, Stefano

    2013-08-01

    Subionospheric VLF recordings are investigated in relation with intense cloud-to-ground (CG) lightning data. Lightning impacts the lower ionosphere via heating and ionization changes which produce VLF signal perturbations known as early VLF events. Typically, early events recover in about 100 s, but a small subclass does not recover for many minutes, known as long-recovery early events (LORE). In this study, we identify LORE as a distinct category of early VLF events, whose signature may occur either on its own or alongside the short-lived typical early VLF event. Since LORE onsets coincide with powerful lightning strokes of either polarity (±), we infer that they are due to long-lasting ionization changes in the uppermost D region ionosphere caused by electromagnetic pulses emitted by strong ± CG lightning peak currents of typically > 250 kA, which are also known to generate elves. The LORE perturbations are detected when the discharge is located within ~250 km from the great circle path of a VLF transmitter-receiver link. The probability of occurrence increases with stroke intensity and approaches unity for discharges with peak currents ? ~300 kA. LOREs are nighttime phenomena that occur preferentially, at least in the present regional data set, during winter when strong ± CG discharges are more frequent and intense. The evidence suggests LORE as a distinct signature representing the VLF fingerprint of elves, a fact which, although was predicted by theory, it escaped identification in the long-going VLF research of lightning effects in the lower ionosphere.

  4. Detection efficiency of the VLF World-Wide Lightning Location Network (WWLLN: initial case study

    Directory of Open Access Journals (Sweden)

    C. J. Rodger

    2006-12-01

    Full Text Available An experimental Very Low Frequency (VLF World-Wide Lightning Location Network (WWLLN has been developed through collaborations with research institutions across the world, providing global real-time locations of lightning discharges. As of April 2006, the network included 25 stations providing coverage for much of the Earth. In this paper we examine the detection efficiency of the WWLLN by comparing the locations from this network with lightning location data purchased from a commercial lightning location network operating in New Zealand. Our analysis confirms that WWLLN favours high peak current return stroke lightning discharges, and that discharges with larger currents are observed by more stations across the global network. We then construct a first principles detection efficiency model to describe the WWLLN, combining calibration information for each station with theoretical modelling to describe the expected amplitudes of the VLF sferics observed by the network. This detection efficiency model allows the prediction of the global variation in WWLLN lightning detection, and an estimate of the minimum CG return stroke peak current required to trigger the network. There are strong spatial variations across the globe, primarily due to station density and sensitivity.

    The WWLLN is currently best suited to study the occurrence and impacts of high peak-current lightning. For example, in 2005 about 12% of the global elve-producing lightning will have been located by the network. Since the lightning-EMP which produce elves has a high mean rate (210 per minute it has the potential to significantly influence the ionosphere on regional scales.

  5. Detection of Exomoons through Observation of Radio Emissions

    Science.gov (United States)

    Noyola, J. P.; Satyal, S.; Musielak, Z. E.

    2014-08-01

    In the Jupiter-Io system, the moon's motion produces currents along the field lines that connect it to Jupiter's polar regions. The currents generate and modulate radio emissions along their paths via the electron-cyclotron maser instability. Based on this process, we suggest that such modulation of planetary radio emissions may reveal the presence of exomoons around giant planets in exoplanetary systems. A model explaining the modulation mechanism in the Jupiter-Io system is extrapolated and used to define criteria for exomoon detectability. A cautiously optimistic scenario of the possible detection of such exomoons around Epsilon Eridani b and Gliese 876 b is provided.

  6. Satellite observations indicate substantial spatiotemporal variability in biomass burning NOx emission factors for South America

    Directory of Open Access Journals (Sweden)

    P. Castellanos

    2013-08-01

    Full Text Available Biomass burning is an important contributor to global total emissions of NOx (NO + NO2. Generally bottom-up fire emissions models calculate NOx emissions by multiplying fuel consumption estimates with static biome specific emission factors, defined in units of grams of NO per kilogram of dry matter consumed. Emission factors are a significant source of uncertainty in bottom-up fire emissions modeling because relatively few observations are available to characterize the large spatial and temporal variability of burning conditions. In this paper we use NO2 tropospheric column observations from the Ozone Monitoring Instrument (OMI from the year 2005 over South America to calculate monthly NOx emission factors for four fire types: deforestation, savanna/grassland, woodland, and agricultural waste burning. In general, the spatial trends in NOx emission factors calculated in this work are consistent with emission factors derived from in situ measurements from the region, but are more variable than published biome specific global average emission factors widely used in bottom up fire emissions inventories such as the Global Fire Emissions Database (GFED v3. Satellite based NOx emission factors also indicate substantial temporal variability in burning conditions. Overall, we found that deforestation fires have the lowest NOx emission factors, on average 30 % lower than the emission factors used in GFED v3. Agricultural fire NOx emission factors were the highest, on average a factor of 2 higher than GFED v3 values. For savanna, woodland, and deforestation fires early dry season NOx emission factors were a factor of ~1.5–2.0 higher than late dry season emission factors. A minimum in the NOx emission factor seasonal cycle for deforestation fires occurred in August, the time period of severe drought in South America in 2005. Our results support the hypothesis that prolonged dry spells may lead to an increase in the contribution of smoldering combustion from large diameter fuels to total fire emissions, which would lower the overall modified combustion efficiency (MCE and NOx emission factor, and offset the higher combustion efficiency of dryer fine fuels. We evaluated the OMI derived NOx emission factors with SCIAMACHY NO2 tropospheric column observations and found improved model performance in regions dominated by fire emissions.

  7. Analysis of narrowband emission observed in the Saturn magnetosphere.

    Czech Academy of Sciences Publication Activity Database

    Menietti, J. D.; Ye, S.; Y.; Yoon, P. H.; Santolík, Ond?ej; Rymer, A. M.; Gurnett, D. A.; Coates, A. J.

    2009-01-01

    Ro?. 114, - (2009), A06206/1-A06206/13. ISSN 0148-0227 Institutional research plan: CEZ:AV0Z30420517 Keywords : narrowband emission * Saturn magnetosphere * Cassini Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.082, year: 2009

  8. Observation of increases in emission from modern vehicles over time in Hong Kong using remote sensing

    International Nuclear Information System (INIS)

    In this study on-road gaseous emissions of vehicles are investigated using remote sensing measurements collected over three different periods. The results show that a high percentage of gaseous pollutants were emitted from a small percentage of vehicles. Liquified Petroleum Gas (LPG) vehicles generally have higher gaseous emissions compared to other vehicles, particularly among higher-emitting vehicles. Vehicles with high vehicle specific power (VSP) tend to have lower CO and HC emissions while petrol and LPG vehicles tend to have higher NO emissions when engine load is high. It can be observed that gaseous emission factors of petrol and LPG vehicles increase greatly within 2 years of being introduced to the vehicle fleet, suggesting that engine and catalyst performance deteriorate rapidly. It can be observed that LPG vehicles have higher levels of gaseous emissions than petrol vehicles, suggesting that proper maintenance of LPG vehicles is essential in reducing gaseous emissions from vehicles. - Highlights: ? Emissions collected in 3 different periods to examine changes in emission over time. ? LPG vehicles generally emit more gaseous pollutants compared to other vehicles. ? Large increase in emissions from modern petrol/LPG vehicles after 2 years' operation. ? CO and NO emissions of modern diesel vehicles are similar to those of older vehicles. - Remote sensing measurements show large increases in gaseous emissions from vehicles in Hong Kong after 2 years ofcles in Hong Kong after 2 years of operation, indicating that engine and catalyst performance deteriorate rapidly.

  9. Emission of linalool from Valencia orange blossoms and its observation in ambient air

    Science.gov (United States)

    Arey, Janet; Corchnoy, Stephanie B.; Atkinson, Roger

    Emission measurements made over a 5-month period of a Valencia orange tree showed the significant emission of the terpenoid linalool (C 10H 18O) from Valencia orange blossoms. The average annual emission rate of this Olinda Valencia orange, derived from emission measurements which include the blossoming season, is a factor of ˜10 higher than the average annual emission rate derived from measurements taken outside of the blossom season. Ambient monoterpene and linalool concentrations were measured in Riverside, California, in the spring and supported the chamber plant emissions data, with linalool concentrations as high as 17 ?g m -3 being observed in an orange grove. These results show that current biogenic emission inventories which are formulated from limited survey data, generally not including seasonal variations in the vegetative emissions, can be subject to large uncertainties.

  10. XMM Observations of X-Ray Emission from Supernovae

    Science.gov (United States)

    Immler, Stefan; Lewin, Walter

    2003-01-01

    Of the six proposed targets, only one observation was performed. The observation resulted in a 28ks observation of SN 1998S. At the time of writing the proposal, our target list only contained previously unknown X-ray supernovae. Between submission of the proposal and the actual observation, a Chandra DDT observation resulted in the detection of SN 1998S. Since SN 1998S was observed with Chandra five times before the XMM-Newton observation was made, the data did not yield enough new information to warrant a separate SN 1998S publication. The key science results of that observation were presented in a review article (by Immler and Lewin); the results were also presented at two conferences.

  11. Estimating Aerosol Emissions by Assimilating Remote Sensing Observations into a Global Transport Model

    OpenAIRE

    Teruyuki Nakajima; Makiko Nakata; Nick Schutgens

    2012-01-01

    We present a fixed-lag ensemble Kalman smoother for estimating emissions for a global aerosol transport model from remote sensing observations. We assimilate AERONET AOT and AE as well as MODIS Terra AOT over ocean to estimate the emissions for dust, sea salt and carbon aerosol and the precursor gas SO2. For January 2009, globally dust emission decreases by 26% (to 3,244 Tg/yr), sea salt emission increases by 190% (to 9073 Tg/yr), while carbon emission increases by ~45% (to 136 Tg/yr), compar...

  12. Variations in spectral characteristics of VLF chorus elements: measurements by Cluster spacecraft and comparison with the backward wave oscillator model

    Science.gov (United States)

    Titova, Elena; Kozelov, Boris; Demekhov, Andrei; Santolik, Ondrej; Macusova, Eva; Decreau, Pierrette; Rauch, Jean-Louis; Gurnett, Donald; Pickett, Jolene

    2010-05-01

    A mechanism of chorus generation was suggested by V. Yu. Trakhtengerts (1999) on the basis of the backward wave oscillator (BWO) regime of magnetospheric cyclotron maser. According to this mechanism, a succession of whistler wave packets is generated in a small near equatorial region owing to the absolute instability of whistler-mode waves in the presence of a step-like distribution function of energetic electrons in parallel velocities with respect to the geomagnetic field. In this report we compare the spectral characteristics of VLF chorus detected by the Cluster spacecraft near the geomagnetic equator, i.e., in the source region of these emissions, with the magnetospheric BWO model. In the previous study (Macusova et al., 2009), we showed that the mean frequency sweep rate of chorus elements for different orbits of Cluster spacecraft increases with a decrease in the mean value of the cold plasma density along the orbit, in accord with the BWO theory. Here, we focus on significant variations of the frequency sweep rates which are observed during each Cluster flyby in the generation region. We analyze the possible relationship of such variations with the measured plasma density for several Cluster orbits using the chorus wave packets detected by the Wideband Data instrument onboard the Cluster spacecraft and the electron density obtained from the WHISPER active sounder data. We compare results of this analysis with the BWO model. In particular, by using the measured frequency sweep rate and the cold-plasma density in the generation region we estimate a dimensionless parameter Q quantifying the excess of the energetic-electron flux over the absolute-instability threshold. We also compare the results with numerical simulations based on the BWO model. References Trakhtengerts, V. Yu., A generation mechanism for chorus emission, Ann. Geophys., 17, 95-100, 1999. Macusova, E., Santolik, O., Gurnett, D. A., Pickett, J. S., Decreau , P., Nunn, D., Demekhov, A. G., Titova. E. E., Amplitudes and frequency sweep rates of chorus wave packets, Abstract #SM53B-1382, AGU Fall Meeting, San Francisco, 2009.

  13. Regional nitrogen oxides emission trends in East Asia observed from space

    Science.gov (United States)

    Mijling, B.; van der A, R. J.; Zhang, Q.

    2013-12-01

    Due to changing economic activity, emissions of air pollutants in East Asia are changing rapidly in space and time. Monthly emission estimates of nitrogen oxides derived from satellite observations provide valuable insight into the evolution of anthropogenic activity on a regional scale. We present the first results of a new emission estimation algorithm, specifically designed to use daily satellite observations of column concentrations for fast updates of emissions of short-lived atmospheric constituents on a mesoscopic scale (~ 0.25° × 0.25°). The algorithm is used to construct a monthly NOx emission time series for the period 2007-2011 from tropospheric NO2 observations of GOME-2 for East Chinese provinces and surrounding countries. The new emission estimates correspond well with the bottom-up inventory of EDGAR v4.2, but are smaller than the inventories of INTEX-B and MEIC. They reveal a strong positive trend during 2007-2011 for almost all Chinese provinces, related to the country's economic development. We find a 41% increment of NOx emissions in East China during this period, which shows the need to update emission inventories in this region on a regular basis. Negative emission trends are found in Japan and South Korea, which can be attributed to a combined effect of local environmental policy and global economic crises. Analysis of seasonal variation distinguishes between regions with dominant anthropogenic or biogenic emissions. For regions with a mixed anthropogenic and biogenic signature, the opposite seasonality can be used for an estimation of the separate emission contributions. Finally, the non-local concentration/emission relationships calculated by the algorithm are used to quantify the direct effect of regional NOx emissions on tropospheric NO2 concentrations outside the region. For regions such as North Korea and the Beijing municipality, a substantial part of the tropospheric NO2 originates from emissions elsewhere.

  14. Regional nitrogen oxides emission trends in East Asia observed from space

    Directory of Open Access Journals (Sweden)

    B. Mijling

    2013-07-01

    Full Text Available Due to changing economic activity, emissions of air pollutants in East Asia change rapidly in space and time. Monthly emission estimates of nitrogen oxides derived from satellite observations provide valuable insight in the evolution of anthropogenic activity on a regional scale. We present the first results of a new emission estimation algorithm, specifically designed to use daily satellite observations of column concentrations for fast updates of emissions of short-lived atmospheric constituents on a~mesoscopic scale (~ 0.25° × 0.25°. The algorithm is used to construct a monthly NOx emission time series for 2007–2011 from tropospheric NO2 observations of GOME-2 for East Chinese provinces and surrounding countries. The new emission estimates correspond well with the bottom-up inventory of EDGAR v4.2, but are smaller than the inventories of INTEX-B and MEIC. They reveal a strong positive trend during 2007–2011 for almost all Chinese provinces, related to the country's economic development. We find a 41% increment of NOx emissions in East China during this period, which shows the need to update emission inventories in this region on a regular basis. Negative emission trends are found in Japan and South Korea, which can be attributed to a combined effect of local environmental policy and global economic crises. Analysis of seasonal variation distinguishes between regions with dominant anthropogenic or biogenic emissions. For regions with a mixed anthropogenic and biogenic signature, the opposite seasonality can be used for an estimation of the separate emission contributions. Finally, the non-local concentration/emission relationships calculated by the algorithm are used to quantify the direct effect of regional NOx emissions on tropospheric NO2 concentrations outside the region. For regions such as North Korea and Beijing province, a substantial part of the tropospheric NO2 originates from emissions elsewhere.

  15. The INFREP European VLF/LF Radio Monitoring Network - Present Status and Preliminary Results of the Romanian Monitoring System

    Science.gov (United States)

    Moldovan, I. A.; Moldovan, A.; Biagi, P. F.; Placinta, A. O.; Maggipinto, T.

    2012-01-01

    The paper presents the Romanian VLF / LF monitoring system consisting in a radio receiver - made by Elettronika S.R.L. (Italy) and provided by the Bari University - and the infrastructure that is necessary to record and transmit the collected data. This system is a part of the international initiative INFREP. Through this initiative, originated in Italy, VLF / LF radio receivers are deployed in different locations in Europe. Each one is monitoring up to ten different transmissions of radio stations across the continent. Information on electromagnetic fields' intensities created by transmitters at each receiving site and gathered from this network are indicating the quality of the propagation along the paths between the receivers and transmitters. Studying the ionosphere influences on the electromagnetic waves' propagation along a certain path is a method to put into evidence possible modifications of ionosphere lower structure and composition as earthquakes' precursor. The VLF / LF receiver installed in Romania was put into operation in February 2009 and has proved its utility in the case of Abruzzo earthquake that occurred on 6th of April 2009 (Mw = 6.3). Since then, the receiver was relocated from Bucharest to the Black-Sea shore (Dobrogea Seismologic Observatory). Changing the receiving site produced unsatisfactory monitoring data, characterized by large fluctuations of the received signals' intensities. Trying to understand this behavior has led to the conclusion that the electric component of the electromagnetic field was possibly influenced by the local atmospheric conditions (as aerosols' concentrations could be). Starting from this observation we have run some tests which have indicated that a loop-type antenna is more appropriate than a vertical antenna, especially for highly electric-field polluted environments. Very good results were obtained with this new configuration, even in the site located at the Black-Sea shore. Future improvements of the receiver analog front-end are still possible in order to get better monitoring data by rejecting the off-band noise induced by the aerial high-voltage lines that are surrounding the site, so that for us to accomplish the best achievable surveillance in VLF / LF bands, related to seismo-electromagnetic phenomena.

  16. Electric and VLF-MT survey of Tegatayama tunnel; Tegatayama tunnel no denki tansa oyobi VLF tansa

    Energy Technology Data Exchange (ETDEWEB)

    Nishitani, T. [Akita University, Akita (Japan). Mining College

    1997-05-27

    To survey the structure at the depth between 20 and 30 m, field tests were conducted by means of vertical electric and VFL-MT (magnetotelluric) survey. Tegatayama tunnel has a total length of 276 m, width of 7.5 m, and height of 4.7 m, and the depth from the surface is about 28 m near the top of mountain. Near the tunnel, the thickness of surface soil is about 60 cm, which consists of clay soil including soft mudstone gravel. It was found that terrace deposit is distributed up to the depth of 8 m, and that mudstone is distributed below the depth of 8 m. Weighted four-electrode method was adopted for the vertical electrical survey. Measurements were conducted at the immediately above the tunnel, 10 m apart from the center of tunnel in the right and left, and 20 m apart from the center in the east. For the VLF-MT method, component of frequency 22.2 kHz was used. As a result of the tests, it was difficult to illustrate the existence of tunnel from the vertical electrical survey only at one point. Feature of the tunnel could be well illustrated by means of the VLF-MT method. 3 refs., 9 figs.

  17. Modeled and observed ozone sensitivity to mobile-source emissions in Mexico City

    OpenAIRE

    Zavala, M.; Lei, W.; Molina, M. J; Molina, L. T.

    2008-01-01

    The emission characteristics of mobile sources in the Mexico City Metropolitan Area (MCMA) have changed significantly over the past few decades in response to emission control policies, advancements in vehicle technologies and improvements in fuel quality, among others. Along with these changes, concurrent non-linear changes in photochemical levels and criteria pollutants have been observed, providing a unique opportunity to understand the effects of perturbations of mobile emission levels on...

  18. The properties of ULF/VLF signals generated by the SURA facility without ionospheric currents modulation

    Science.gov (United States)

    Kotik, D. S.; Raybov, A. V.; Ermakova, E. N.

    2012-12-01

    During the last three years the comprehensive study of ionospheric generation of the artificial signals in ULF/VLF band was carried out at SURA facility. This research was stimulated by successive HAARP experiments on detection the low frequency signals genreated due the action of the ponderomotive forces. Two experimental campaigns under different ionospheric, geomagnetic and facility operation mode conditions was undertaken every year from 2010 to 2012. Here we are summarizing the main features of the artificial ULF/VLF signals observed in vicinity the SURA site. The signals in the 2-20 Hz band were observed in the small area around the facility with the radius approximately 15 km. It was not signal detection at the 30 km distance. The maximum of the amplitude was detected in the nearest receiving point about 3 km away from the transmitting array. The amplitude increased about 3 times when the beam was inclined on16 degrees to the south so the footprint of the geomagnetic field line comes close to the point of observation. The ULF signals increased slightly when the SURA operating frequency overlaps the critical foF2 frequency. As a rule the daytime signals are smaller then nighttime one. No any correlation was observed with geomagnetic disturbances. The time delay of the ionospheric ULF signals measured by phase method was estimated as 300-400 ms. Polarization of the ULF signals has a pronounced elliptical character. Sometimes it was linear. The part of measurements in June 2012 was coincide with magnetic storm (June 16-18, Kp=6). It was observed broadening of the signal line at frequencies of 11 and 17 Hz up to 0.2 Hz at the recovery stage of the storm at June 18 (see the figure). This fact can be interpreted as the result of the signal interaction with the radiation belt protons appeared over there during the storm time. In 2012 campaigns it was firstly observed at SURA signals on frequencies of several kilohertz at nightime which could not be explained by traditional mechanism of ionospheric current modulation. Also this signals displayed unusual behavior during the magnetic storm deceasing in the amplitude. The work was supported by RFBR grants 11-02-00419, 11-02-97104 and RF Ministry of education and science by state contract 16.518.11.7066.;

  19. Substorm-related VLF chorus events: local-time dependence and relationship to newly-injected clouds of drifting energetic electrons

    International Nuclear Information System (INIS)

    VLF chorus is a naturally occurring, electromagnetic wave phenomenon that is generated in the earth's magnetosphere during interactions between VLF waves and energetic electrons. The macrostructure of a 9-day period of VLF ground station data, recorded at two Antarctic stations, Halley Bay and Siple, has been studied using compressed time-scale spectrograms. A magnetically quiet period was chosen for analysis, within which isolated substorms occurred. It has been found that chorus frequently occurs in events, the most characteristic feature of which is an initial rise in the upper cut-off frequency of the chorus band. The events are typically observed in the midnight to 16:00 MLT sector. They are correlated with disturbances of about 100 to 750 gammas in the AE magnetic activity index, or substorms, and with energetic electron flux enhancements measured by ATS 6 at geosynchronous orbit. In addition, parameters scaled from the upper and lower cut-off frequency variations of the events have a local-time dependence. During substorms, satellites consistently encounter clouds of energetic electrons that have been injected into the nightside outer radiation zone. It is believed that the time-developing characteristics, and local-time dependencies of the chorus events are a reflection of the time-developing characteristics of clouds of energetic electrons that have recently been injected during substorms. Two interpretations of the chorus events have been investigated based horus events have been investigated based on this theory

  20. Effect of D.C. testing water tree deteriorated cable and a preliminary evaluation of V.L.F. as alternate

    International Nuclear Information System (INIS)

    This paper reports that according to the experience of some power utilities, the application of industry recommended high voltage d.c. field tests on 5-35 kV extruded dielectric cables, containing water trees, sometimes causes further deterioration of the insulation. Tests conducted on laboratory aged 15 kV ethylene propylene rubber (EP) and 15 and 28 kV crosslinked polyethylene (XLPE) insulated cables indicate that d.c. proof tests in accordance with AEIC specifications an IEEE test guides without flashover do not appear to cause further deterioration. Depending on the degree of cable aging and the level of test voltage, when flashovers take place, damage may be inflicted to XLPE cables. No damage was observed on aged EP cable, at the same test levels. Because of the aforementioned power utility experience, some users have requested an alternate field proof test. Tests conducted on new XLPE and EP cables indicate that damage to the insulation structure can be detected using VLF (0.1 Hz) voltage at approximately one-third the d.c. voltage level. Field tests conducted on severely tree deteriorated 15 kV polyethylene (PE) cable using AEIC recommended d.c. voltage level of about five times operating voltage level caused cable failure; VLF voltage levels up to two times operating voltage did not. VLF voltage appears to be a suitable alternate to d.c. voltage for field proof testing

  1. Ground-based observations of radio emissions near 2fce and 3fce in the auroral zone

    International Nuclear Information System (INIS)

    The authors report on recent ground based observations of narrow band emissions near 2 and 3 times the ionospheric electron cyclotron frequencies, from a station at Two Rivers, Alaska. Such ground based observations of electron cyclotron emission have only been observed a very limited number of times previously, and this represents the first simultaneous observation of second and third harmonic emission

  2. Numerical Simulations Of The Effect Of Localised Ionospheric Perturbations On Subionospheric VLF Propagation

    CERN Document Server

    Sulic, D; Sreckovic, V

    2014-01-01

    Electron density and temperature changes in the D-region of the ionosphere are sensitively manifested as changes in the amplitude and phase of subionospheric Very Low Frequency (VLF) signals propagating beneath the perturbed region. Disturbances (either in electron density or temperature) in the D region cause significant scattering of VLF waves propagating in the earth-ionosphere waveguide, leading to measurable changes in the amplitude and phase of the VLF waves. We analyze Lightning-induced electron precipitation (LEP) events during period 2008 - 2009 at Belgrade station on subionospheric VLF signals from four transmitters (DHO/23.4 kHz, Germany; GQD/22.1 kHz, UK; NAA/24.0 kHz USA and ICV/20.9 kHz Italy).

  3. Fast, simultaneous and robust VLF-EM data denoising and reconstruction via multivariate empirical mode decomposition

    Science.gov (United States)

    Sungkono; Bahri, Ayi S.; Warnana, Dwa D.; Monteiro Santos, Fernando A.; Santosa, Bagus J.

    2014-06-01

    The measurement of Very Low Frequency Electromagnetic (VLF-EM) is important in many different applications, i.e, environmental, archeological, geotechnical studies, etc. In recent years, improving and enhancing VLF-EM data containing complex numbers (bivariate) was presented by several authors in order to produce reliable models, generally using univariate empirical mode decomposition (EMD). Applying univariate EMD separately on each data is problematic. This results in a different number of misaligned Intrinsic Mode Functions (IMFs) which can complicate the selection of some IMFs for denoising process. Thus, a filtering method based on the multivariate empirical mode decomposition (MEMD) approach to decompose simultaneously bivariate data is proposed. In this paper we address two issues by employing the recently introduced noise assisted MEMD (N-A MEMD) for improving bivariate VLF-EM data. Firstly, the N-A MEMD to decompose bivariate measurement of the VLF-EM data into IMFs and a residue is defined as VLF-EM signal or unwanted noise. Secondly, the proposed method is used to enhance VLF-EM data and to reject unwanted noise. Finally, the proposed method is applied to a synthetic data with two added sinusoids. To demonstrate the robustness of the N-A MEMD method, the method was tested on added-noise synthetic data sets and the results were compared to the Ensemble EMD (EEMD) and Bivariate EMD (BEMD). The N-A MEMD gave more robust and accurate results than the EEMD and BEMD methods and the method required less CPU time to obtain the IMFs compared to EEMD. The method was also tested on several field data sets. The results indicate that the filtered VLF-EM data based on the N-A MEMD make the data easier to interpret and to be analyzed further. In addition, the 2D resistivity profile estimated from the inversion of filtered VLF-EM data results was appropriate to the geological condition.

  4. Characterisation of very low frequency (VLF) fluctuations at the Graz receiver knot in the INFREP system

    Science.gov (United States)

    Eichelberger, H. U.; Prattes, G.; Schwingenschuh, K.; Wolbang, D.; Boudjada, M. Y.; Rozhnoi, A.; Solovieva, M.; Biagi, P. F.; Maggipinto, T.; Stachel, M.; Jernej, I.; Aydogar, Ö.; Besser, B. P.

    2012-04-01

    In the frame of the European VLF/LF radio receiver network (International Network for Frontier Research on Earthquake Precursors - INFREP) we investigate radio paths between several transmitters and receivers, among them the Graz VLF facility. For this knot the data coverage spans more than two years of continuous samples from 11 transmitters with a network wide 20 seconds temporal resolution. The main scientific objective is the characterisation of VLF fluctuations in amplitude and phase related with artificial and natural sources, e.g. disturbances due to seismic phenomena. Examples of VLF disturbances due to seismic activity are given by Rozhnoi et al. (2009) and complementary investigations are carried out by Prattes et al. (2011). For VLF usually the (i) nighttime amplitude variations and (ii) terminator time methods are used. They have been regularly applied in data analysis of seismic events mainly in Asian area. Paths crossing the earthquake preparation zone and control links are used for earthquake events. Various VLF waveguide properties are important, e.g. the length of the individual paths, the lower lithospheric-surface boundary and the upper {day, night}-time ionospheric {D, E}-layer physics. Beside the nominal diurnal and seasonal behaviour we are measuring natural variations, e.g. solar flare effects and manmade noise, i.e. local disturbances related with the urban environment of the receiver location. Measurements indicate that above a threshold of magnitude M 5 the methods are successful applicable. We show for a time span of more than two years how VLF fluctuations and their seasonal variations relate with atmospheric parameters, e.g. temperatures, zonal wind, and heat- and momentum-fluxes and discuss the impact on seismic event detection via VLF methods. Complementary ground- and satellite-based investigations, e.g. in nearby ULF or LF frequency ranges, are useful.

  5. Solar flares detected by the new narrowband VLF receiver at SANAE IV

    Scientific Electronic Library Online (English)

    Hanna, Dahlgren; Torbjörn, Sundberg; Andrew B., Collier; Etienne, Koen; Stephen, Meyer.

    2011-10-01

    Full Text Available A narrowband receiver was installed at the SANAE IV base in Antarctica to monitor specific very low frequency (VLF) radio signals from transmitters around the world. VLF waves propagating through the Earth-Ionosphere Waveguide are excellent probes of the varying properties of the lower region of the [...] ionosphere. This paper describes the set-up of the narrowband system and demonstrates its capabilities with data from a set of solar flares on 08 February and 12 February 2010.

  6. Observation of optical emission from beam-foil excited Li-

    OpenAIRE

    Denis, A.; Desesquelles, J.

    1981-01-01

    We have verified by a method of charge assignment by Doppler effect that the line observed at 348.9 nm in a lithium beam excited by a carbon foil is due to Li- negative ion, in agreement with a calculation of Bunge [5].

  7. ALMA Capabilities for Observations of Spectral Line Emission

    CERN Document Server

    Wootten, A

    2007-01-01

    The Atacama Large Millimeter/submillimeter Array (ALMA) combines large collecting area and location on a high dry site to provide it with unparalleled potential for sensitive millimeter/submillimeter spectral line observations. Its wide frequency coverage, superb receivers and flexible spectrometer will ensure that its potential is met. Since the 1999 meeting on ALMA Science\\cite{RefA}, the ALMA team has substantially enhanced its capability for line observations. ALMA's sensitivity increased when Japan joined the project, bringing the 16 antennas of the Atacama Compcat Array (ACA), equivalent to eight additional 12m telescopes. The first four receiver cartridges for the baseline ALMA (Japan's entry has brought two additional bands to ALMA's receiver retinue) have been accepted, with performance above the already-challenging specifications. ALMA's flexibility has increased with the enhancement of the baseline correlator with additional channels and flexibility, and with the addition of a separate correlator f...

  8. Factorization of air pollutant emissions: projections versus observed trends in Europe.

    Science.gov (United States)

    Rafaj, Peter; Amann, Markus; Siri, José G

    2014-10-01

    This paper revisits the emission scenarios of the European Commission's 2005 Thematic Strategy on Air Pollution (TSAP) in light of today's knowledge. We review assumptions made in the past on the main drivers of emission changes, i.e., demographic trends, economic growth, changes in the energy intensity of GDP, fuel-switching, and application of dedicated emission control measures. Our analysis shows that for most of these drivers, actual trends have not matched initial expectations. Observed ammonia and sulfur emissions in European Union in 2010 were 10% to 20% lower than projected, while emissions of nitrogen oxides and particulate matter exceeded estimates by 8% to 15%. In general, a higher efficiency of dedicated emission controls compensated for a lower-than-expected decline in total energy consumption as well as a delay in the phase-out of coal. For 2020, updated projections anticipate lower sulfur and nitrogen oxide emissions than those under the 2005 baseline, whereby the degree to which these emissions are lower depends on what assumptions are made for emission controls and new vehicle standards. Projected levels of particulates are about 10% higher, while smaller differences emerge for other pollutants. New emission projections suggest that environmental targets established by the TSAP for the protection of human health, eutrophication and forest acidification will not be met without additional measures. PMID:25058894

  9. Observations and predictions of EUV emission from classical novae

    International Nuclear Information System (INIS)

    Theoretical modeling of novae in outburst predicts that they should be active emitters of radiation both in the EUV and soft X-ray wavelengths twice during the outburst. The first time is very early in the outburst when only an all sky survey can detect them. This period lasts only a few hours. They again become bright EUV and soft X-ray emitters late in the outburst when the remnant object becomes very hot and is still luminous. The predictions imply both that a nova can remain very hot for months to years and that the peak temperature at this time strongly depends upon the mass of the white dwarf. It is important to observe novae at these late times because a measurement of both the flux and temperature can provide information about the mass of the white dwarf, the tun-off time scale, and the energy budget of the outburst. We review the existing observations of novae in late stages of their outburst and present some newly obtained data for GQ Mus 1983. We then provide results of new hydrodynamic simulations of novae in outburst and compare the predictions to the observations. 43 refs., 6 figs

  10. 100 eV electron temperatures in the Maryland centrifugal experiment observed using electron Bernstein emission

    Energy Technology Data Exchange (ETDEWEB)

    Reid, R. R., E-mail: remington.r.reid@gmail.com [U.S. Naval Research Laboratory, Washington, DC 20375 (United States); Romero-Talamás, C. A. [Department of Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21250 (United States); Young, W. C. [CPLA, University of Wisconsin, Madison, Wisconsin 53706 (United States); Ellis, R. F.; Hassam, A. B. [IREAP, University of Maryland, College Park, Maryland 20742 (United States)

    2014-06-15

    Thermal electron Bernstein emission has been observed at the second harmonic of the electron cyclotron frequency at the mid-plane of the Maryland Centrifugal eXperiment. The emission is received in the X-mode polarization and coupled to the Bernstein wave by the B-X mode conversion process. The average B-X coupling efficiency is approximately 20%. The observed emission indicates thermal electron temperatures an excess of 100?eV in the core of the rotating plasma. The measured electron temperature is consistent with recent ion temperature measurements and indicates that the total energy confinement time exceeds 500??s.

  11. 100 eV electron temperatures in the Maryland centrifugal experiment observed using electron Bernstein emission

    Science.gov (United States)

    Reid, R. R.; Romero-Talamás, C. A.; Young, W. C.; Ellis, R. F.; Hassam, A. B.

    2014-06-01

    Thermal electron Bernstein emission has been observed at the second harmonic of the electron cyclotron frequency at the mid-plane of the Maryland Centrifugal eXperiment. The emission is received in the X-mode polarization and coupled to the Bernstein wave by the B-X mode conversion process. The average B-X coupling efficiency is approximately 20%. The observed emission indicates thermal electron temperatures an excess of 100 eV in the core of the rotating plasma. The measured electron temperature is consistent with recent ion temperature measurements and indicates that the total energy confinement time exceeds 500 ?s.

  12. Phenomenology of Neptune's radio emissions observed by the Voyager planetary radio astronomy experiment

    Science.gov (United States)

    Pedersen, B. M.; Lecacheux, A.; Zarka, P.; Aubier, M. G.; Kaiser, M. L.; Desch, M. D.

    1992-01-01

    The Neptune flyby in 1989 added a new planet to the known number of magnetized planets generating nonthermal radio emissions. We review the Neptunian radio emission morphology as observed by the planetary radio astronomy experiment on board Voyager 2 during a few weeks before and after closest approach. We present the characteristics of the two observed recurrent main components of the Neptunian kilometric radiation, i.e., the 'smooth' and the 'bursty' emissions, and we describe the many specific features of the radio spectrum during closest approach.

  13. 100 eV electron temperatures in the Maryland centrifugal experiment observed using electron Bernstein emission

    International Nuclear Information System (INIS)

    Thermal electron Bernstein emission has been observed at the second harmonic of the electron cyclotron frequency at the mid-plane of the Maryland Centrifugal eXperiment. The emission is received in the X-mode polarization and coupled to the Bernstein wave by the B-X mode conversion process. The average B-X coupling efficiency is approximately 20%. The observed emission indicates thermal electron temperatures an excess of 100?eV in the core of the rotating plasma. The measured electron temperature is consistent with recent ion temperature measurements and indicates that the total energy confinement time exceeds 500??s

  14. The impact of PMSE and NLC particles on VLF propagation

    Directory of Open Access Journals (Sweden)

    D. Nunn

    2004-04-01

    Full Text Available PMSE or Polar Mesosphere Summer Echoes are a well-known phenomenon in the summer northern polar regions, in which anomalous VHF/UHF radar echoes are returned from heights ~85km. Noctilucent clouds and electron density biteouts are two phenomena that sometimes occur together with PMSE. Electron density biteouts are electron density depletion layers of up to 90%, which may be several kms thick. Using the NOSC Modefndr code based on Wait's modal theory for subionospheric propagation, we calculate the shifts in received VLF amplitude and phase that occur as a result of electron density biteouts. The code assumes a homogeneous background ionosphere and a homogeneous biteout layer along the Great Circle Path (GCP corridor, for transmitter receiver path lengths in the range of 500–6000km.

    For profiles during the 10h about midnight and under quiet geomagnetic conditions, where the electron density at 85km would normally be less than 500el/cc, it was found that received signal perturbations were significant, of the order of 1–4dB and 5–40° of phase. Perturbation amplitudes increase roughly as the square root of frequency. At short range perturbations are rather erratic, but more consistent at large ranges, readily interpretable in terms of the shifts in excitation factor, attenuation factor and v/c ratios for Wait's modes. Under these conditions such shifts should be detectable by a well constituted experiment involving multiple paths and multiple frequencies in the north polar region in summer. It is anticipated that VLF propagation could be a valuable diagnostic for biteout/PMSE when electron density at 85km is under 500el/cc, under which circumstances PMSE are not directly detectable by VHF/UHF radars.

    Key words. Electromagnetism (wave propagation – Ionosphere (polar ionosphere – Radioscience (ionospheric propagation

  15. Modeled and observed ozone sensitivity to mobile-source emissions in Mexico City

    Directory of Open Access Journals (Sweden)

    M. Zavala

    2008-08-01

    Full Text Available The emission characteristics of mobile sources in the Mexico City Metropolitan Area (MCMA have changed significantly over the past few decades in response to emission control policies, advancements in vehicle technologies and improvements in fuel quality, among others. Along with these changes, concurrent non-linear changes in photochemical levels and criteria pollutants have been observed, providing a unique opportunity to understand the effects of perturbations of mobile emission levels on the photochemistry in the region using observational and modeling approaches. The observed historical trends of ozone (O3, carbon monoxide (CO and nitrogen oxides (NOx suggest that ozone production in the MCMA has changed from a low to a high VOC-sensitive regime over a period of 20 years. Comparison of the historical emission trends of CO, NOx and hydrocarbons derived from mobile-source emission studies in the MCMA from 1991 to 2006 with the trends of the concentrations of CO, NOx, and the CO/NOx ratio during peak traffic hours also indicates that fuel-based fleet average emission factors have significantly decreased for CO and VOCs during this period whereas NOx emission factors do not show any strong trend, effectively reducing the ambient VOC/NOx ratio.

    This study presents the results of model analyses on the sensitivity of the observed ozone levels to the estimated historical changes in its precursors. The model sensitivity analyses used a well-validated base case simulation of a high pollution episode in the MCMA with the mathematical Decoupled Direct Method (DDM and the standard Brute Force Method (BFM in the 3-D CAMx chemical transport model. The model reproduces adequately the observed historical trends and current photochemical levels. Comparison of the BFM and the DDM sensitivity techniques indicates that the model yields ozone values that increase linearly with NOx emission reductions and decrease linearly with VOC emission reductions only up to 30% from the base case. We further performed emissions perturbations from the gasoline fleet, diesel fleet, all mobile (gasoline plus diesel and all emission sources (anthropogenic plus biogenic. The results suggest that although large ozone reductions obtained in the past were from changes in emissions from gasoline vehicles, currently significant benefits could be achieved with additional emission control policies directed to regulation of VOC emissions from diesel and area sources that are high emitters of alkenes, aromatics and aldehydes.

  16. Modeled and observed ozone sensitivity to mobile-source emissions in Mexico City

    Directory of Open Access Journals (Sweden)

    M. Zavala

    2009-01-01

    Full Text Available The emission characteristics of mobile sources in the Mexico City Metropolitan Area (MCMA have changed significantly over the past few decades in response to emission control policies, advancements in vehicle technologies and improvements in fuel quality, among others. Along with these changes, concurrent non-linear changes in photochemical levels and criteria pollutants have been observed, providing a unique opportunity to understand the effects of perturbations of mobile emission levels on the photochemistry in the region using observational and modeling approaches. The observed historical trends of ozone (O3, carbon monoxide (CO and nitrogen oxides (NOx suggest that ozone production in the MCMA has changed from a low to a high VOC-sensitive regime over a period of 20 years. Comparison of the historical emission trends of CO, NOx and hydrocarbons derived from mobile-source emission studies in the MCMA from 1991 to 2006 with the trends of the concentrations of CO, NOx, and the CO/NOx ratio during peak traffic hours also indicates that fuel-based fleet average emission factors have significantly decreased for CO and VOCs during this period whereas NOx emission factors do not show any strong trend, effectively reducing the ambient VOC/NOx ratio.

    This study presents the results of model analyses on the sensitivity of the observed ozone levels to the estimated historical changes in its precursors. The model sensitivity analyses used a well-validated base case simulation of a high pollution episode in the MCMA with the mathematical Decoupled Direct Method (DDM and the standard Brute Force Method (BFM in the 3-D CAMx chemical transport model. The model reproduces adequately the observed historical trends and current photochemical levels. Comparison of the BFM and the DDM sensitivity techniques indicates that the model yields ozone values that increase linearly with NOx emission reductions and decrease linearly with VOC emission reductions only up to 30% from the base case. We further performed emissions perturbations from the gasoline fleet, diesel fleet, all mobile (gasoline plus diesel and all emission sources (anthropogenic plus biogenic. The results suggest that although large ozone reductions obtained in the past were from changes in emissions from gasoline vehicles, currently significant benefits could be achieved with additional emission control policies directed to regulation of VOC emissions from diesel and area sources that are high emitters of alkenes, aromatics and aldehydes.

  17. Observation of Solar Wind Charge Exchange Emission from Exospheric Material in and Outside Earth's Magnetosheath

    Science.gov (United States)

    Snowden, S. L.; Collier, M. R.; Cravens, T.; Kuntz, K. D.; Lepri, S. T.; Robertson, I.; Tomas, L.

    2008-01-01

    A long XMM-Newton exposure is used to observe solar wind charge exchange (SWCX) emission from exospheric material in and outside Earth s magnetosheath. The light curve of the O VII (0.5-0.62 keV) band is compared with a model for the expected emission, and while the emission is faint and the light curve has considerable scatter, the correlation is significant to better than 99.9%. This result demonstrates the validity of the geocoronal SWCX emission model for predicting a contribution to astrophysical observations to a scale factor of order unity (1.36). The results also demonstrate the potential utility of using X-ray observations to study global phenomena of the magnetosheath which currently are only investigated using in situ measurements.

  18. Hydrogen line and continuum emission in young stellar objects. II - Theoretical results and observational constraints

    Science.gov (United States)

    Alonso-Costa, Jose L.; Kwan, John

    1989-01-01

    Theoretical results for H I emission from YSOs are compared with available observations. IR line and radio continuum properties have been gathered for 29 objects that include a number of T Tau stars, several emission-line stars with IR excesses, and many heavily obscured luminous YSOs. The present excitation model can account for the observed Brackett line and radio continuum fluxes of YSOs with luminosities of 20-100,000 solar luminosities. It is argued that the observed Br-alpha line and 6-cm free-free continuum emissions are best explained in terms of a core-halo structure. The small core (ranging from r less than about 30 AU for a 10,000-solar luminosity YSO to r less than about 0.2 AU for a 10-solar luminosity YSO) is responsible for generating the strong IR line fluxes, while the surrounding diffuse halo dominates the 6-cm emission.

  19. Patterns in atmospheric carbonaceous aerosols in China: emission estimates and observed concentrations

    Directory of Open Access Journals (Sweden)

    H. Cui

    2015-03-01

    Full Text Available China is experiencing severe carbonaceous aerosol pollution driven mainly by large emissions resulting from intensive use of solid fuels. To gain a better understanding of the levels and trends of carbonaceous aerosol emissions and the resulting ambient concentrations at the national scale, we update an emission inventory of anthropogenic organic carbon (OC and elemental carbon (EC and employ existing observational studies to analyze characteristics of these aerosols including temporal, spatial, and size distributions, and the levels and shares of secondary organic carbon (SOC in total OC. We further use ground observations to test the levels and inter-annual trends of the calculated national and provincial emissions of carbonaceous aerosols, and propose possible improvements in emission estimation for the future. The national OC emissions are estimated to have increased 29% from 2000 (2127 Gg to 2012 (2749 Gg and EC by 37% (from 1356 to 1857 Gg. The residential, industrial, and transportation sectors contributed an estimated 76 ± 2, 19 ± 2 and 5 ± 1% of the total emissions of OC, respectively, and 52 ± 3, 32 ± 2 and 16 ± 2% of EC. Updated emission factors based on the most recent local field measurements, particularly for biofuel stoves, lead to considerably lower emissions of OC compared to previous inventories. Compiling observational data across the country, higher concentrations of OC and EC are found in northern and inland cities, while larger OC/EC and SOC/OC ratios are found in southern cities, due to the joint effects of primary emissions and meteorology. Higher SOC/OC ratios are estimated at rural and remote sites compared to urban ones, attributed to more emissions of OC from biofuel use, more biogenic emissions of volatile organic compound (VOC precursors to SOC, and/or transport of aged aerosols. For most sites, higher concentrations of OC, EC, and SOC are observed in colder seasons, while SOC/OC is reduced, particularly at rural and remote sites, attributed partly to weaker atmospheric oxidation and SOC formation compared to summer. Enhanced SOC formation from oxidization and anthropogenic activities like biomass combustion is judged to have crucial effects on severe haze events characterized by high particle concentrations. Several observational studies indicate an increasing trend in ambient OC/EC (but not in OC or EC individually from 2000 to 2010, confirming increased atmospheric oxidation of OC across the country. Combining the results of emission estimation and observations, the improvement over prior emission inventories is indicated by inter-annual comparisons and correlation analysis. It is also indicated, however, that the estimated growth in emissions might be faster than observed growth, and that some sources with high primary OC/EC like burning of biomass are still underestimated. Further studies to determine changing emission factors over time in the residential sector and to compare to other measurements such as satellite observations are thus suggested to improve understanding of the levels and trends of primary carbonaceous aerosol emissions in China.

  20. Patterns in atmospheric carbonaceous aerosols in China: emission estimates and observed concentrations

    Science.gov (United States)

    Cui, H.; Mao, P.; Zhao, Y.; Nielsen, C. P.; Zhang, J.

    2015-03-01

    China is experiencing severe carbonaceous aerosol pollution driven mainly by large emissions resulting from intensive use of solid fuels. To gain a better understanding of the levels and trends of carbonaceous aerosol emissions and the resulting ambient concentrations at the national scale, we update an emission inventory of anthropogenic organic carbon (OC) and elemental carbon (EC) and employ existing observational studies to analyze characteristics of these aerosols including temporal, spatial, and size distributions, and the levels and shares of secondary organic carbon (SOC) in total OC. We further use ground observations to test the levels and inter-annual trends of the calculated national and provincial emissions of carbonaceous aerosols, and propose possible improvements in emission estimation for the future. The national OC emissions are estimated to have increased 29% from 2000 (2127 Gg) to 2012 (2749 Gg) and EC by 37% (from 1356 to 1857 Gg). The residential, industrial, and transportation sectors contributed an estimated 76 ± 2, 19 ± 2 and 5 ± 1% of the total emissions of OC, respectively, and 52 ± 3, 32 ± 2 and 16 ± 2% of EC. Updated emission factors based on the most recent local field measurements, particularly for biofuel stoves, lead to considerably lower emissions of OC compared to previous inventories. Compiling observational data across the country, higher concentrations of OC and EC are found in northern and inland cities, while larger OC/EC and SOC/OC ratios are found in southern cities, due to the joint effects of primary emissions and meteorology. Higher SOC/OC ratios are estimated at rural and remote sites compared to urban ones, attributed to more emissions of OC from biofuel use, more biogenic emissions of volatile organic compound (VOC) precursors to SOC, and/or transport of aged aerosols. For most sites, higher concentrations of OC, EC, and SOC are observed in colder seasons, while SOC/OC is reduced, particularly at rural and remote sites, attributed partly to weaker atmospheric oxidation and SOC formation compared to summer. Enhanced SOC formation from oxidization and anthropogenic activities like biomass combustion is judged to have crucial effects on severe haze events characterized by high particle concentrations. Several observational studies indicate an increasing trend in ambient OC/EC (but not in OC or EC individually) from 2000 to 2010, confirming increased atmospheric oxidation of OC across the country. Combining the results of emission estimation and observations, the improvement over prior emission inventories is indicated by inter-annual comparisons and correlation analysis. It is also indicated, however, that the estimated growth in emissions might be faster than observed growth, and that some sources with high primary OC/EC like burning of biomass are still underestimated. Further studies to determine changing emission factors over time in the residential sector and to compare to other measurements such as satellite observations are thus suggested to improve understanding of the levels and trends of primary carbonaceous aerosol emissions in China.

  1. Observation of solar high energy gamma and X-ray emission and solar energetic particles

    OpenAIRE

    Struminsky, Alexei; Gan, Weiqun

    2015-01-01

    We considered 18 solar flares observed between June 2010 and July 2012, in which high energy >100 MeV {\\gamma}-emission was registered by the Large Area Telescope (LAT) aboard FermiGRO. We examined for these {\\gamma}-events soft X-ray observations by GOES, hard X-ray observations by the Anti-Coincidence Shield of the SPectrometer aboard INTEGRAL (ACS SPI) and the Gamma-Ray burst Monitor (GBM) aboard FermiGRO. Hard X-ray and {\\pi}0-decay {\\gamma}-ray emissions are used as tra...

  2. Scattering of Trapped Electrons by VLF Waves During a Magnetic Strom

    Science.gov (United States)

    Walt, M.

    2004-12-01

    The Source/Loss Cone Energetic Particle Spectrometer (SEPS) on the NASA Polar satellite measures particle fluxes with high angular resolution (1.5 deg) near the atmospheric loss cone. During the weak magnetic storm (Dst=-40 nT) of September 10, 1996 the trapped electron fluxes increased, and the angular distributions of down-going 150 keV electrons extended well inside the atmospheric loss cone. Simultaneous measurements of up-going electrons showed empty loss cones. These loss cone fluxes were observed at MLT of ~14 hrs, latitude near 45 deg, and L between 4 and 6.5, the extent of the diffusion into the loss cone increasing with increasing L. Wave measurements with the Plasma Wave Instrument, also on the Polar satellite, showed strong VLF hiss and chorus at the time of the pitch angle diffusion. The enhanced waves and electron precipitation persisted for several days. These observations support the original Kennel and Petschek (JGR 71, 1, 1966) concept that an increase in trapped electron flux would initiate wave growth and loss of particles by pitch angle scattering. However, in this case the waves did not propagate parallel to the magnetic field and thus would couple waves and particles at different L values.

  3. Path-dependent properties of subionospheric VLF amplitude and phase perturbations associated with lightning

    International Nuclear Information System (INIS)

    A comprehensive study of lightning-associated amplitude and phase perturbations on multiple VLF/LF signals (Trimpi events) observed at Stanford, California and at Palmer Station, Antarctica, has revealed a number of new properties that appear to be characteristic of the particular signal paths. (1) Signal amplitude changes are on the whole evenly distributed between enhancement and attenuation, but some individual signal paths have strong preferences for one or the other. (2) Phase changes on almost all paths show a strong preference for advancement, with phase retardation occurring rarely. (3) The range in size of amplitude and phase changes appears to be relatively constant for a given path, but it is found to vary between different paths. None of the existing models of the Trimpi effect are found to explain all of the observed new features. Instead, the new experimental findings provide an empirical framework to guide the evaluation of more sophisticated models. Analysis also indicates that the magnitudes of simultaneous amplitude and phase changes are only weakly correlated and that the recovery signatures of amplitude and phase events can be substantially different, with the signal amplitude generally recovering faster. This apparent independence of amplitude and phase perturbations is interpreted to result from the altitude distributed nature of the ionospheric disturbances

  4. Observations of oxidation products above a forest imply biogenic emissions of very reactive compounds

    Directory of Open Access Journals (Sweden)

    R. Holzinger

    2005-01-01

    Full Text Available Vertical gradients of mixing ratios of volatile organic compounds have been measured in a Ponderosa pine forest in Central California (38.90° N, 120.63° W, 1315m. These measurements reveal large quantities of previously unreported oxidation products of short lived biogenic precursors. The emission of biogenic precursors must be in the range of 13-66µmol m-2h-1 to produce the observed oxidation products. That is 6-30 times the emissions of total monoterpenes observed above the forest canopy on a molar basis. These reactive precursors constitute a large fraction of biogenic emissions at this site, and are not included in current emission inventories. When oxidized by ozone they should efficiently produce secondary aerosol and hydroxyl radicals.

  5. Observations of oxidation products above a forest imply biogenic emissions of very reactive compounds

    Directory of Open Access Journals (Sweden)

    R. Holzinger

    2004-09-01

    Full Text Available Measurements of volatile organic compounds in a pine forest (Central California, 38.90° N, 120.63° W, 1315 m reveal large quantities of previously unreported oxidation products of short lived biogenic precursors. The emission of biogenic precursors must be in the range of 13–66 µmol m?2 h?1 to produce the observed oxidation products. That is 6–30 times the emissions of total monoterpenes observed above the forest canopy on a molar basis. These reactive precursors constitute the largest fraction of biogenic emissions at this site, and are not included in current emission inventories. When oxidized by ozone they should efficiently produce secondary aerosol and hydroxyl radicals.

  6. Tropospheric methanol observations from space: retrieval evaluation and constraints on the seasonality of biogenic emissions

    Directory of Open Access Journals (Sweden)

    K. C. Wells

    2012-07-01

    Full Text Available Methanol retrievals from nadir-viewing space-based sensors offer powerful new information for quantifying methanol emissions on a global scale. Here we apply an ensemble of aircraft observations over North America to evaluate new methanol measurements from the Tropospheric Emission Spectrometer (TES on the Aura satellite, and combine the TES data with observations from the Infrared Atmospheric Sounding Interferometer (IASI on the MetOp-A satellite to investigate the seasonality of methanol emissions from northern midlatitude ecosystems. Using the GEOS-Chem chemical transport model as an intercomparison platform, we find that the TES retrieval performs well when the degrees of freedom for signal (DOFS are above 0.5, in which case the model:TES regressions are generally consistent with the model:aircraft comparisons. Including retrievals with DOFS below 0.5 degrades the comparisons, as these are excessively influenced by the a priori. The comparisons suggest DOFS >0.5 as a minimum threshold for interpreting retrievals of trace gases with a weak tropospheric signal. We analyze one full year of satellite observations and find that GEOS-Chem, driven with MEGANv2.1 biogenic emissions, underestimates observed methanol concentrations throughout the midlatitudes in springtime, with the timing of the seasonal peak in model emissions 1–2 months too late. We attribute this discrepancy to an underestimate of emissions from new leaves in MEGAN, and apply the satellite data to better quantify the seasonal change in methanol emissions for midlatitude ecosystems. The derived parameters (relative emission factors of 11.0, 0.26, 0.12 and 3.0 for new, growing, mature, and old leaves, respectively, plus a leaf area index activity factor of 0.5 for expanding canopies with leaf area index <1.2 provide a more realistic simulation of seasonal methanol concentrations in midlatitudes on the basis of both the IASI and TES measurements.

  7. Tropospheric methanol observations from space: retrieval evaluation and constraints on the seasonality of biogenic emissions

    Directory of Open Access Journals (Sweden)

    K. C. Wells

    2012-02-01

    Full Text Available Methanol retrievals from nadir-viewing space-based sensors offer powerful new information for quantifying methanol emissions on a global scale. Here we apply an ensemble of aircraft observations over North America to evaluate new methanol measurements from the Tropospheric Emission Spectrometer (TES on the Aura satellite, and combine the TES data with observations from the Infrared Atmospheric Sounding Interferometer (IASI on the MetOp-A satellite to investigate the seasonality of methanol emissions from northern midlatitude ecosystems. Using the GEOS-Chem chemical transport model as an intercomparison platform, we find that the TES retrieval performs well when the degrees of freedom for signal (DOFS are above 0.5, in which case the model : TES regressions are generally consistent with the model : aircraft comparisons. Including retrievals with DOFS below 0.5 degrades the comparisons, as these are excessively influenced by the a priori. The comparisons suggest DOFS > 0.5 as a minimum threshold for interpreting retrievals of trace gases with a weak tropospheric signal. We analyze one full year of satellite observations and find that GEOS-Chem, driven with MEGANv2.1 biogenic emissions, underestimates observed methanol concentrations throughout the midlatitudes in springtime, with the timing of the seasonal peak in model emissions 1–2 months too late. We attribute this discrepancy to an underestimate of emissions from new leaves in MEGAN, and apply the satellite data to better quantify the seasonal change in methanol emissions for midlatitude ecosystems. The derived parameters (relative emission factors of 11.0, 1.0, 0.05 and 8.6 for new, growing, mature, and old leaves, respectively, plus a leaf area index activity factor of 0.75 for expanding canopies with leaf area index < 2.0 provide a more realistic simulation of seasonal methanol concentrations in midlatitudes on the basis of IASI, TES, and ground-based measurements.

  8. Continuum Observations at 350 Microns of High-Redshift Molecular Emission Line Galaxies

    OpenAIRE

    Wu, Jingwen; Bout, Paul Vanden; Evans, Neal; Dunham, Michael

    2009-01-01

    We report observations of 15 high redshift (z = 1-5) galaxies at 350 microns using the Caltech Submillimeter Observatory and SHARC-II array detector. Emission was detected from eight galaxies, for which far-infrared luminosities, star formation rates, total dust masses, and minimum source size estimates are derived. These galaxies have star formation rates and star formation efficiencies comparable to other high redshift molecular emission line galaxies. The results are used...

  9. Coordinated NIR/mm observations of flare emission from Sagittarius A*

    CERN Document Server

    Kunneriath, D; Eckart, A; Zamaninasab, M; übel, R Gie\\ss; Schödel, R; Baganoff, F K; Morris, M R; Dov?iak, M; Duschl, W J; García-Marín, M; Karas, V; König, S; Krichbaum, T P; Krips, M; Lu, R -S; Mauerhan, J; Moultaka, J; Muži?, K; Sabha, N; Najarro, F; Pott, J -U; Schuster, K F; Sjouwerman, L O; Straubmeier, C; Thum, C; Vogel, S N; Teuben, P; Weiss, A; Wiesemeyer, H; Zensus, J A; 10.1051/0004-6361/200913613

    2010-01-01

    We report on a successful, simultaneous observation and modelling of the millimeter (mm) to near-infrared (NIR) flare emission of the Sgr A* counterpart associated with the supermassive black hole at the Galactic centre (GC). We present a mm/sub-mm light curve of Sgr A* with one of the highest quality continuous time coverages and study and model the physical processes giving rise to the variable emission of Sgr A*.

  10. On the emissivity of wire-grid polarizers for astronomical observations at mm-wavelengths

    CERN Document Server

    Schillaci, Alessandro; Alessandro, Giuseppe D'; de Bernardis, Paolo; Masi, Silvia

    2012-01-01

    We have measured, using a custom setup, the emissivity of metallic wire-grids, suitable for polarimeters and interferometers at mm and far infrared wavelengths. We find that the effective emissivity of these devices is of the order of a few %, depending on fabrication technology and aging. We discuss their use in astronomical instruments, with special attention to Martin Puplett Interferometers in low-background applications, like astronomical observations of the Cosmic Microwave Background.

  11. The dynamics of emission-line galaxies from new Fabry-Perot observations

    Science.gov (United States)

    Marquart, T.; Bergvall, N.; Östlin, G.; Amram, P.; Masegosa, J.; Boulesteix, J.; Zackrisson, E.; Gach, J.-L.; Balard, P.

    2005-05-01

    Intense star formation (SF) and starbursts (SBs) manifest themselves in emission-line spectra. Although merging and interactions are widely accepted as a trigger for SBs, it is still unclear to what extent these factors play a role and what other aspects are important. Measuring the internal motions in galaxies can, in combination with other diagnostics, contribute to our understanding of SB triggers. Here, we present recent observations of a complete sample of emission-line galaxies, using the H? emission line to determine the internal dynamics of the targets. Masses are estimated, assuming Keplerian motions.

  12. Dark matter line emission constraints from NuSTAR observations of the Bullet Cluster

    OpenAIRE

    Riemer-Sørensen, S.; Wik, D.; Madejski, G.; Molendi, S.; Gastaldello, F.; Harrison, F.A.; Craig, W.W.; Hailey, C J; Boggs, S. E.; Christensen, F.E.; Stern, D.; Zhang, W W; Hornstrup, A.

    2015-01-01

    Line emission from dark matter is well motivated for some candidates e.g. sterile neutrinos. We present the first search for dark matter line emission in the 3-80keV range in a pointed observation of the Bullet Cluster with NuSTAR. We do not detect any significant line emission and instead we derive upper limits (95% CL) on the flux, and interpret these constraints in the context of sterile neutrinos and more generic dark matter candidates. NuSTAR does not have the sensitivi...

  13. Study of the NWC electrons belt observed on DEMETER Satellite

    OpenAIRE

    Li, Xinqiao; Ma, Yuqian; Wang, Ping; Wang, Huanyu; Lu, Hong; Zhang, Xuemin; Huang, Jianping; Shi, Feng; Yu, Xiaoxia; Xu, Yanbing; Meng, Xiangcheng; Wang, Hui; Zhao, Xiaoyun; Parrot, M.

    2010-01-01

    We analyzed observation data collected by the Instrument for the Detection of Particles (IDP) on board of DEMETER satellite during the period of total seventeen months in 2007 and 2008. In the meantime, the VLF transmitter located at NWC ground station was shutdown for seven months and working for total ten months. Our analysis, for the first time, revealed in details the transient properties of the space electrons induced by the man-made VLF wave emitted by the transmitter ...

  14. Toward observationally constrained high space and time resolution CO2 urban emission inventories

    Science.gov (United States)

    Maness, H.; Teige, V. E.; Wooldridge, P. J.; Weichsel, K.; Holstius, D.; Hooker, A.; Fung, I. Y.; Cohen, R. C.

    2013-12-01

    The spatial patterns of greenhouse gas (GHG) emission and sequestration are currently studied primarily by sensor networks and modeling tools that were designed for global and continental scale investigations of sources and sinks. In urban contexts, by design, there has been very limited investment in observing infrastructure, making it difficult to demonstrate that we have an accurate understanding of the mechanism of emissions or the ability to track processes causing changes in those emissions. Over the last few years, our team has built a new high-resolution observing instrument to address urban CO2 emissions, the BErkeley Atmospheric CO2 Observing Network (BEACON). The 20-node network is constructed on a roughly 2 km grid, permitting direct characterization of the internal structure of emissions within the San Francisco East Bay. Here we present a first assessment of BEACON's promise for evaluating the effectiveness of current and upcoming local emissions policy. Within the next several years, a variety of locally important changes are anticipated--including widespread electrification of the motor vehicle fleet and implementation of a new power standard for ships at the port of Oakland. We describe BEACON's expected performance for detecting these changes, based on results from regional forward modeling driven by a suite of projected inventories. We will further describe the network's current change detection capabilities by focusing on known high temporal frequency changes that have already occurred; examples include a week of significant freeway traffic congestion following the temporary shutdown of the local commuter rail (the Bay Area Rapid Transit system).

  15. Radio Emission from Three-dimensional Relativistic Hydrodynamic Jets: Observational Evidence of Jet Stratification.

    Science.gov (United States)

    Aloy; Gómez; Ibáñez; Martí; Müller

    2000-01-10

    We present the first radio emission simulations from high-resolution three-dimensional relativistic hydrodynamic jets; these simulations allow us to study the observational implications of the interaction between the jet and the external medium. This interaction gives rise to a stratification of the jet in which a fast spine is surrounded by a slow high-energy shear layer. The stratification (in particular, the large specific internal energy and slow flow in the shear layer) largely determines the emission from the jet. If the magnetic field in the shear layer becomes helical (e.g., resulting from an initial toroidal field and an aligned field component generated by shear), the emission shows a cross section asymmetry, in which either the top or the bottom of the jet dominates the emission. This, as well as limb or spine brightening, is a function of the viewing angle and flow velocity, and the top/bottom jet emission predominance can be reversed if the jet changes direction with respect to the observer or if it presents a change in velocity. The asymmetry is more prominent in the polarized flux because of field cancellation (or amplification) along the line of sight. Recent observations of jet cross section emission asymmetries in the blazar 1055+018 can be explained by assuming the existence of a shear layer with a helical magnetic field. PMID:10600624

  16. VLF Remote Sensing of the Lower Ionosphere: Solar Flares, Electron Precipitation, Sudden Ionospheric Disturbances, Sprites, Gravity Waves and Gamma-ray Flares

    Science.gov (United States)

    Tan, J. H.; Cohen, M.; Inan, U. S.; Scherrer, P. H.; Scherrer, D.

    2005-12-01

    Stanford University Very Low Frequency (VLF) and Extremely Low Frequency (ELF) radio receivers have been used extensively for remote sensing of the ionosphere and the magnetosphere. Among the phenomena that can be uniquely measured via ELF/VLF receivers are radio atmospherics, whistlers, electron precipitation, solar flares, sudden ionospheric disturbances, gravity waves, sprites, and cosmic gamma-ray flares. With the use of simple square air-core magnetic loop antennas of a couple of meters in size, the sensitivity of these instruments allows the measurement of magnetic fields as low as several tens of femtoTesla per root-Hz, in the frequency range of ~30 Hz to 50 kHz. This sensitivity well exceeds that required to detect any event above the ambient atmospheric noise floor, determined by the totality of lightning activity on the planet. In recent years, as cost of production, timing accuracy (due to low cost GPS clocks), and data handling flexibility of the systems has improved, it has become possible to distribute many of these instruments in the form of arrays, to perform interferometric and holographic imaging of the lower ionosphere. In the context of the IHY in 2007, the ELF/VLF receiver can used extensively as part of the United Nations initiative to place scientific instruments in developing countries. Stanford University's past experiences setting up arrays of ELF/VLF receivers include an interferometer in Alaska, the Holographic Array for Ionospheric and Lightning research (HAIL) consisting of instruments at 13 different high schools in mid-western United States, a broader set of ELF/VLF receivers in Alaska, and various receivers abroad, including in France, Japan, Greece, Turkey, Ireland, and India. A global network of ELF/VLF receivers offer possibilities for a wide range of scientific topics, as well as serving as a means for educational outreach. These goals will be achieved using the newest version of the Stanford VLF receiver, known as AWESOME: Atmospheric Weather Educational System for Observation and Modeling of Electromagnetics. This new version is substantially lower in cost, and easier to set-up and use. Nevertheless, the receivers offer the same ultimate levels of resolution in time, sensitivity and dynamic range, as well as ease of handling of data that is used by researchers conducting cutting edge ionospheric and magnetospheric research. In this context, the placement of these systems at underdeveloped host countries provides an open-ended potential for exploration, limited only by the imagination and drive of the users. AWESOME monitors can be placed at schools, or universities, where they will serve the dual purpose of advancing scientific research, as well as providing a valuable tool for scientific education. Data collected can be pooled and publicly available to all the sites, strengthening the potential for both cooperative education and collaboration on the science between various regions and locations.

  17. Estimating Sulfur hexafluoride (SF6) emissions in China using atmospheric observations and inverse modeling

    Science.gov (United States)

    Fang, X.; Thompson, R.; Saito, T.; Yokouchi, Y.; Li, S.; Kim, J.; Kim, K.; Park, S.; Graziosi, F.; Stohl, A.

    2013-12-01

    With a global warming potential of around 22800 over a 100-year time horizon, sulfur hexafluoride (SF6) is one of the greenhouse gases regulated under the Kyoto Protocol. Global SF6 emissions have been increasing since circa the year 2000. The reason for this increase has been inferred to be due to rapidly increasing emissions in developing countries that are not obligated to report their annual emissions to the United Nations Framework Convention on Climate Change, notably China. In this study, SF6 emissions during the period 2006-2012 for China and other East Asian countries were determined using in-situ atmospheric measurements and inverse modeling. We performed various inversion sensitivity tests, which show the largest uncertainties in the a posteriori Chinese emissions are associated with the a priori emissions used and their uncertainty, the station network, as well as the meteorological input data. The overall relative uncertainty of the a posteriori emissions in China is estimated to be 17% in 2008. Based on sensitivity tests, we employed the optimal parameters in our inversion setup and performed yearly inversions for the study period. Inversion results show that the total a posteriori SF6 emissions from China increased from 1420 × 245 Mg/yr in 2006 to 2741 × 472 Mg/yr in 2009 and stabilized thereafter. The rapid increase in emissions reflected a fast increase in SF6 consumption in China, a result also found in bottom-up estimates. The a posteriori emission map shows high emissions concentrated in populated parts of China. During the period 2006-2012, emissions in northwestern and northern China peaked around the year 2009, while emissions in eastern, central and northeastern China grew gradually during almost the whole period. Fluctuating emissions are observed for southwestern China. These regional differences should be caused by changes of provincial SF6 usage and by shifts of usage among different sectors. Fig. 1. Footprint emission sensitivity obtained from FLEXPART 20-day backward simulations based on ECMWF input data averaged for the period 2006-2012 for all three stations. Black dots represent the corresponding measurement stations.

  18. Why is observable radio recombination line emission from galactic HII regions always close to LTE

    International Nuclear Information System (INIS)

    There is no evidence for significant deviations from LTE in single-dish observations of radio recombination line emission from galactic HII regions. This is in agreement with the known properties of HII regions, particularly their density variations and limited range of excitation parameters; the optimum configuration for strong observable non-LTE effects, low electron density and high emission measure, simply does not exist in galactic HII regions, and the observed lines are emitted under near-LTE conditions. Models of the Orion Nebulae and NGC 6604 are presented which fit all available data and show only weak stimulated emission. It is concluded that reliable electron temperatures can indeed be obtained from straightforward analysis of appropriate radio recombination lines. (orig.)

  19. AMI Observations of the Anomalous Microwave Emission in the Perseus Molecular Cloud

    CERN Document Server

    Tibbs, C T; Dickinson, C; Paladini, R; Davies, R D; Davis, R J; Grainge, K J B; Watson, R A

    2013-01-01

    We present observations of the known anomalous microwave emission region, G159.6-18.5, in the Perseus molecular cloud at 16 GHz performed with the Arcminute Microkelvin Imager Small Array. These are the highest angular resolution observations of G159.6-18.5 at microwave wavelengths. By combining these microwave data with infrared observations between 5.8 and 160 \\mu m from the Spitzer Space Telescope, we investigate the existence of a microwave - infrared correlation on angular scales of ~2 arcmin. We find that the overall correlation appears to increase towards shorter infrared wavelengths, which is consistent with the microwave emission being produced by electric dipole radiation from small, spinning dust grains. We also find that the microwave - infrared correlation peaks at 24 \\mu m (6.7\\sigma), suggesting that the microwave emission is originating from a population of stochastically heated small interstellar dust grains rather than polycyclic aromatic hydrocarbons.

  20. X-ray and ?-ray observations of pulsed emission from radio pulsars

    International Nuclear Information System (INIS)

    This dissertation presents results from a search for pulsed emission from radio pulsars in the energy range 15 keV to 10 MeV using the UCSD/MIT Hard X-ray and Low Energy ?-ray instrument on the HEAO-1 spacecraft. From a sample of twelve candidate radio pulsars, only the Crab pulsar was detected, and upper limits to the intensity of emission from the other candidates indicate that the majority (7 of 10) do not emit more than a few percent of their rotational energy loss in hard x-rays. The observations of the 18 to 200 keV pulsed emission from the Crab pulsar showed that the systematic variation of spectral slope as a function of pulse phase, discovered at lower energies (4 to 60 keV), continues up to ca 200 keV, strengthening the case for the existence of at least two pulsed emission components: the emission from the two main pulse peaks and a separate interpulse emission connecting the two peaks. The interpulse emission contributes 22% of the total pulsed flux between 15 and 200 keV and has a harder spectrum than the spectrum common to the two pulse peaks. Combining these observations with others from infrared to ?-ray energies leads to the following conclusions. (1) The phase-averaged pulsed spectrum, dominated by the emission from the two pulse peaks, requires at least three power law components with spectral breaks of ca 0.5 in spectral index at ca 1 keV and ca 1 MeV. (2) The interpulse emission has a spectrum better fit by either a thin, thermal bremsstrahlung y either a thin, thermal bremsstrahlung model with kT = 151 +- 17 keV or a Comptonization model with kT = 26 +- 3 keV and scattering depth 5.2 +- 0.3 rather than the composite power law spectrum characteristic of the peaks

  1. Observation of solar high energy gamma and X-ray emission and solar energetic particles

    CERN Document Server

    Struminsky, Alexei

    2015-01-01

    We considered 18 solar flares observed between June 2010 and July 2012, in which high energy >100 MeV {\\gamma}-emission was registered by the Large Area Telescope (LAT) aboard FermiGRO. We examined for these {\\gamma}-events soft X-ray observations by GOES, hard X-ray observations by the Anti-Coincidence Shield of the SPectrometer aboard INTEGRAL (ACS SPI) and the Gamma-Ray burst Monitor (GBM) aboard FermiGRO. Hard X-ray and {\\pi}0-decay {\\gamma}-ray emissions are used as tracers of electron and proton acceleration, respectively. Bursts of hard X-ray were observed by ACS SPI during impulsive phase of 13 events. Bursts of hard X-ray >100 keV were not found during time intervals, when prolonged hard {\\gamma}-emission was registered by LAT/FermiGRO. Those events showing prolonged high-energy gamma-ray emission not accompanied by >100 keV hard X-ray emission are interpreted as an indication of either different acceleration processes for protons and electrons or as the presence of a proton population accelerated du...

  2. Estimation of NOx emissions from NO2 hotspots in polluted background using satellite observations

    Science.gov (United States)

    Liu, Fei; Beirle, Steffen; Zhang, Qiang; Wagner, Thomas

    2015-04-01

    Satellite observations have been widely used to study NOx emissions from power plants and cities, which are major NOx sources with large impacts on human health and climate. The quantification of NOx emissions from measured column densities of NO2 requires information on the NOx lifetime, which is typically gained from atmospheric chemistry models. But some recent studies determined the NOx lifetime from the satellite observations as well by analyzing the downwind plume evolution; however, this approach was so far only applied for strong isolated 'point sources' located in clean background, like Riyadh in Saudi Arabia. Here we present a modified method for the quantification of NOx emissions and corresponding atmospheric lifetimes based on OMI observations of NO2, together with ECMWF wind fields, but without further model input, for hot spots located in polluted background. We use the observed NO2 patterns under calm wind conditions as proxy for the spatial patterns of NOx emissions; by this approach, even complex source distributions can be treated realistically. From the change of the spatial patterns of NO2 at larger wind speeds (separately for different wind directions), the effective atmospheric lifetime is fitted. Emissions are derived from integrated NO2 columns above background by division by the corresponding lifetime. NOx lifetimes and emissions are estimated for 19 power plants and 50 cities across China and the US. The derived lifetimes are 3.3 ± 1.2 hours on average with extreme values of 0.9 to 7.7 hours. The resulting very short lifetimes for mountainous sites have been found to be uncertain due to the potentially inaccurate ECMWF wind data in mountainous regions. The derived NOx emissions show overall good agreement with bottom-up inventories.

  3. The observable effects of a photospheric component on GRB's and XRF's prompt emission spectrum

    CERN Document Server

    Peér, A; Rees, Martin J; Pe'er, Asaf; M\\'esz\\'aros, Peter; Rees, Martin J.

    2005-01-01

    A thermal radiative component is likely to accompany the first stages of the prompt emission of Gamma-ray bursts (GRB's) and X-ray flashes (XRF's). We analyze the effect of such a component on the observable spectrum, assuming that the observable effects are due to a dissipation process occurring below or near the thermal photosphere. We consider both the internal shock model and a 'slow heating' model as possible dissipation mechanisms. For comparable energy densities in the thermal and the leptonic component, the dominant emission mechanism is Compton scattering. This leads to a nearly flat energy spectrum (\

  4. First observation of {sup 54}Zn and its decay by two-proton emission

    Energy Technology Data Exchange (ETDEWEB)

    Blank, B.; Bey, A.; Canchel, G.; Dossat, C.; Fleury, A.; Giovinazzo, J. [Le Haut Vigneau, CENBG, Gradignan Cedex (France); Adimi, N. [Faculte de Physique, USTHB, Alger (Algeria); Matea, I. [Le Haut Vigneau, CENBG, Gradignan Cedex (France); Grand Accelerateur National d' Ions Lourds, Caen Cedex (France); De Oliveira, F.; Stefan, I.; Geogiev, G.; Grevy, S.; Thomas, J.C. [Grand Accelerateur National d' Ions Lourds, Caen Cedex (France); Borcea, C. [Institute of Atomic Physics, Bucharest-Margurele (Romania); Cortina, D.; Caamano, M. [Universidad de Santiago de Compostela, Departamento de Fisica de Particulas, Santiago de Compostela (Spain); Stanoiu, M. [Institut de Physique Nucleaire d' Orsay (France); Aksouh, F. [Instituut voor Kern- en Stralingsfysica, Leuven (Belgium)

    2005-09-01

    In an experiment performed at the LISE3 facility of GANIL, the isotope {sup 54}Zn and its decay via two-proton emission were observed for the first time. In addition, preliminary results indicate that three implantation events of {sup 48}Ni were observed. One of the associated decay events is compatible with a two-proton emission. New data on the decay of {sup 45}Fe and its two-proton branch were recorded at the same time. The results for {sup 54}Zn are compared to theory. (orig.)

  5. PULSED VERY HIGH ENERGY ?-RAY EMISSION CONSTRAINTS FOR PSR B1951+32 FROM STACEE OBSERVATIONS

    International Nuclear Information System (INIS)

    The Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) is a ground-based telescope that uses the wave-front-sampling technique to detect very high energy (VHE) gamma rays. STACEE's sensitivity in the energy range near 100 GeV permits useful observations of pulsars with the potential to discriminate between various proposed mechanisms for pulsed gamma-ray emission. Based on the 11.3 hr of data taken during the 2005 and 2006 observing seasons, we derive an upper limit on the pulsed gamma-ray emission from PSR B1951+32 of -11 photons cm-2 s-1 above an energy threshold of 117 GeV.

  6. Hydroxyl emission altitude variability during the last solar cycle retrieved from SCIAMACHY nightglow observations

    Science.gov (United States)

    Teiser, Georg; von Savigny, Christian; Winkler, Holger

    2015-04-01

    Night-sky hydroxyl (OH*) emission observations are an important tool to study the mesosphere. They are especially t used to derive OH temperatures. For the interpretation of ground-based OH temperature measurements the knowledge of the spatial and temporal variability of the OH* nightglow emission altitude is of importance. In this context the OH* nightglow data set from SCIAMACHY (Scanning Imaging Absorption spectrometer for Atmospheric CHartographY) on Envisat (from August 2002 to April 2012) is analyzed for the 11-year solar cycle signatures and short-term variability, e.g. solar-driven 27-day cycle and QBO (Quasi-Biennial Oscillation) signatures in vertical volume emission rate profiles and mean emission altitude of the OH(3 -- 1) Meinel emission near the mesopause. The data set is also used to investigate the effect of SPEs (solar proton events) on the OH Meinel emission altitude and volume emission rate. On that point first results and the comparison with simulations using the UBIC (University of Bremen Ion Chemistry) model are presented.

  7. Observed effects of soil organic matter content on the microwave emissivity of soils

    International Nuclear Information System (INIS)

    In order to determine the significance of organic matter content on the microwave emissivity of soils when estimating soil moisture, a series of field experiments were conducted in which 1.4 GHz microwave emissivity data were collected over test plots of sandy loam soil with different organic matter levels (1.8%, 4.0%, and 6.1%) for a range of soil moisture values. Analyses of the observed data showed only minor variation in microwave emissivity due to a change in organic matter content at a given moisture level for soils with similar texture and structure. Predictions of microwave emissivity made using a dielectric model for aggregated soils exhibited the same trends and type of response as the measured data when adjusted values for the input parameters were utilized

  8. Observed effects of soil organic matter content on the microwave emissivity of soils

    Science.gov (United States)

    O'Neill, P. E.; Jackson, T. J.

    1990-01-01

    In order to determine the significance of organic matter content on the microwave emissivity of soils when estimating soil moisture, field experiments were conducted in which 1.4 GHz microwave emissivity data were collected over test plots of sandy loam soil with different organic matter levels (1.8, 4.0, and 6.1 percent) for a range of soil moisture values. Analyses of the observed data show only minor variation in microwave emissivity due to a change in organic matter content at a given moisture level for soils with similar texture and structure. Predictions of microwave emissivity made using a dielectric model for aggregated soils exhibit the same trends and type of response as the measured data when appropriate values for the input parameters were utilized.

  9. Estimation of Swiss methane emissions by near surface observations and inverse modeling

    Science.gov (United States)

    Henne, Stephan; Brian, Oney; Leuenberger, Markus; Bamberger, Ines; Eugster, Werner; Steinbacher, Martin; Meinhardt, Frank; Brunner, Dominik

    2015-04-01

    On a global scale methane (CH4) is the second most important long-lived greenhouse gas. It is released from both natural and anthropogenic processes and its atmospheric burden has more than doubled since preindustrial times. Current CH4 emission estimates are associated with comparatively large uncertainties both globally and regionally. For example, the Swiss national greenhouse gas inventory assigns an uncertainty of 18% to the country total anthropogenic CH4 emissions as compared to only 3% for anthropogenic CO2 emissions. In Switzerland, CH4 is thought to be mainly released by agricultural activities (ruminants and manure management >80%), while natural emissions from wetlands and wild animals represent a minor source (~3 %). The country total and especially the spatial distribution of CH4 emission within Switzerland strongly differs between the national and different European scale inventories. To validate the 'bottom-up' Swiss CH4 emission estimate and to reduce its uncertainty both in total and spatially, 'top-down' methods combining atmospheric CH4 observations and regional scale transport simulations can be used. Here, we analyse continuous, near surface observations of CH4 concentrations as collected within the newly established CarboCountCH measurement network (http://www.carbocount.ch). The network consists of 4 sites situated on the Swiss Plateau, comprising a tall tower site (217 m), two elevated (mountaintop) sites and a small tower site (32 m) in flat terrain. In addition, continuous CH4 observations from the nearby high-altitude site Jungfraujoch (Alps) and the mountaintop site Schauinsland (Germany) were used. Two inversion frameworks were applied to the CH4 observations in combination with source sensitivities (footprints) calculated with the regional scale version of the Lagrangian Particle Dispersion Model FLEXPART. One inversion system was based on a Bayesian framework, while the other utilized an extended Kalman filter approach. The transport model was driven by analysis fields from the non-hydrostatic numerical weather predication model COSMO at horizontal resolutions of up to 7 km x 7 km. As a result spatially resolved, annual mean CH4 fluxes for Switzerland were obtained. In general total Swiss CH4 emission remained close to the 'bottom-up' estimates, while considerable shifts in the regional distribution of the emissions were obtained. Reductions in CH4 emissions, as compared to the prior estimates, were established in regions with large emissions from ruminants, while increases resulted in the Western part of the Swiss Plateau, which is dominated by mixture of large water bodies and crop and vegetable farming. Sensitivity inversions were applied to assess the overall robustness and the uncertainty of the inversion system.

  10. Evolution of magnetotelluric, total magnetic field, and VLF field parameters in Central Italy: relations to local seismic activity

    Directory of Open Access Journals (Sweden)

    T. Ernst

    2001-06-01

    Full Text Available Magnetotelluric data were collected at Collemeluccio (41.72°N, 14.37°E in Central Italy from summer 1991 to spring 1998. Analyzed by means of tensor decomposition on the geoelectric potential and robust estimation on the geomagnetic field, this set of data allowed the investigation of the electric properties at different time-periods. The variation of some indicators, related to the phenomenon of electromagnetic induction, is presented here in its time evolution and compared to local and regional seismic activity. Tectonomagnetic field observations from absolute magnetic field level in Central Italy were also made on data simultaneously recorded at four magnetometer stations, using L'Aquila Geomagnetic Observatory as a reference for differentiation. Recent results gathered from a system of two VLF search coil wide-band antennas, installed in the L'Aquila Observatory, are also discussed in relation to local seismic activity.

  11. New Ecuadorian VLF and ELF receiver for study the ionosphere

    Science.gov (United States)

    Lopez, Ericson; Montenegro, Jefferson; Vasconez, Michael; Vicente, Klever

    Crucial physical phenomena occur in the equatorial atmosphere and ionosphere, which are currently understudied and poorly understood. Thus, scientific campaigns for monitoring the equatorial region are required in order to provide the necessary data for the physical models. Ecuador is located in strategic geographical position where these studies can be performed, providing quality data for the scientific community working in understanding the nature of these physical systems. The Quito Astronomical Observatory (QAO) of National Polytechnic School is moving in this direction by promoting research in space sciences for the study of the equatorial zone. With the participation and the valuable collaboration of international initiatives such us AWESOME, MAGDAS, SAVNET and CALLISTO, the Quito Observatory is establishing a new space physics division on the basis of the International Space Weather Initiative. As part of this project, in the QAO has been designed a new system for acquisition and processing VLF and ELF signals propagating in the ionosphere. The Labview Software is used to filtering, processing and conditioning the received signals, avoiding in this way 60 percent of the analog components present in a common receiver. The same software have been programmed to create the spectrograms and the amplitude and phase diagrams of the radio signals. The data is stored neatly in files that can be processed even with other applications.

  12. The European VLF/LF Radio Network: the current status

    Science.gov (United States)

    Biagi, Pier Francesco; Maggipinto, Tommaso; Schiavulli, Luigi; Ligonzo, Teresa; Colella, Roberto; Ermini, Anita; Martinelli, Giovanni; Palangio, Paolo; Moldovan, Iren; Silva, Hugo; Contadakis, Michael; Frantzis, Xenophon; Katzis, Konstantinos; Buyuksarac, Aydin; D'Amico, Sebastiano

    2014-05-01

    Since 2009 a network of VLF (20-60 kHz) and LF (150-300 kHz) radio receivers has been put into operation in Europe in order to study earthquakes precursors. At the moment the network consists of eleven receivers four of which are located in Italy, two in Greece and one in Portugal, Romania, Malta, Cyprus and Turkey. The data (sampling rate of 1min) are downloaded automatically at the end of each day and they are stored in the server located at the Department of Physics of the University of Bari (Italy), that is the central node of the network. Still, in some case, problems of connection exist. The different trends are open and visible on the web site: http://beta.fisica.uniba.it/infrep/Hom.aspx. The data files can be downloaded by the same web site but they are protected by username and password. Among the different methods of data analysis the Wavelet spectra appear to be the most sensitive ones. The software able to apply this technique on the radio data automatically at the end of each day has been planned and realized. At the moment it operates on four signals collected by one of the Italian receivers; if an anomaly stands up and it is over a fixed threshold a warning advise appears. In the web site, this activity is protected by a specific username and password.

  13. Observations of optical emissions from precipitation of energetic neutral atoms and ions from the ring current

    International Nuclear Information System (INIS)

    Observations of N2+ N, H Balmer (?HBa?) and other emissions due to particle precipitation have been observed at two low-latitude sites (Mt. Haleakala, Hawaii and Cachoeira Paulista, Brazil) and one mid-latitude site (McDonald Observatory, Southwest Texas). Results are compared for magnetic storms of April 13, 1981 and July 14, 1982. The emissions have the characteristics appropriate to the precipitation into the thermosphere of energetic neutral atoms and/or ions originating in the ring current. These characterisitics include high rotational/vibrational excitation of the N2+1 N emission and partial correlation with it afterward. The latitude variation shows a strong increase from low to mid latitudes. The strongest emissions occur in the evening to midnight local time period, and the storm time variations shows strongest emissions during main phases. The time variations of HBa? and N2+ 1 N emissions indicate that there is more O/O+ precipitation than H/H+ precipitation in the latter part, and sometines the whole durations of the precipitation events and the variations are consistent with H+ being lost from the inner ring current faster than other species, such as O+ and He+. Lower limits for the energy deposition rates for the strongest emissions at 40--450 dip latitude are 1--2 mWm-2 and for the strongest emissions at 120S dip latitude 0.05 mWm-2. Ionization production at its peak altitude somewhere above 110 km would be in the range from 102 cm-3 s-1 to a few times 103 cm-3 s-1 for the events in Texas, and from 100 to 102 cm-3 s-1 for the stronger events in Hawaii and Brazil

  14. Worldwide biogenic soil NOx emissions inferred from OMI NO2 observations

    Directory of Open Access Journals (Sweden)

    G. C. M. Vinken

    2014-06-01

    Full Text Available Biogenic NOx emissions from soils are a large natural source with substantial uncertainties in global bottom-up estimates (ranging from 4 to 27 Tg N yr?1. We reduce this range in emission estimates, and present a top-down soil NOx emission inventory for 2005 based on retrieved tropospheric NO2 columns from the Ozone Monitoring Instrument (OMI. We used a state-of-science soil NOx emission inventory (Hudman et al., 2012 as a priori in the GEOS-Chem chemistry transport model to identify 11 regions where tropospheric NO2 columns are dominated by soil NOx emissions. Strong correlations between soil NOx emissions and simulated NO2 columns indicated that spatial patterns in simulated NO2 columns in these regions indeed reflect the underlying soil NOx emissions. Subsequently, we used a mass-balance approach to constrain emissions for these 11 regions on all major continents using OMI observed and GEOS-Chem simulated tropospheric NO2 columns. We found that responses of simulated NO2 columns to changing NOx emissions were suppressed over low NOx regions, and accounted for these non-linearities in our inversion approach. In general, our approach suggests that emissions need to be increased in most regions. Our OMI top-down soil NOx inventory amounts to 10.0 Tg N for 2005 when only constraining the 11 regions, and 12.9 Tg N when extrapolating the constraints globally. Substantial regional differences exist (ranging from ?40% to +90%, and globally our top-down inventory is 4–35% higher than the GEOS-Chem a priori (9.6 Tg N yr?1. We evaluated NO2 concentrations simulated with our new OMI top-down inventory against surface NO2 measurements from monitoring stations in Africa, the USA, and Europe. Although this comparison is complicated by several factors, we find an encouraging improved agreement when using the OMI top-down inventory compared to using the a priori inventory. To our knowledge, this study provides, for the first time, specific constraints on soil NOx emissions on all major continents using OMI NO2 columns. Our results rule out the high end of reported soil NOx emission estimates, and suggest that global emissions are most likely around 10–13 Tg N yr?1.

  15. Worldwide biogenic soil NOx emissions inferred from OMI NO2 observations

    Science.gov (United States)

    Vinken, G. C. M.; Boersma, K. F.; Maasakkers, J. D.; Adon, M.; Martin, R. V.

    2014-09-01

    Biogenic NOx emissions from soils are a large natural source with substantial uncertainties in global bottom-up estimates (ranging from 4 to 15 Tg N yr-1). We reduce this range in emission estimates, and present a top-down soil NOx emission inventory for 2005 based on retrieved tropospheric NO2 columns from the Ozone Monitoring Instrument (OMI). We use a state-of-science soil NOx emission inventory (Hudman et al., 2012) as a priori in the GEOS-Chem chemistry transport model to identify 11 regions where tropospheric NO2 columns are dominated by soil NOx emissions. Strong correlations between soil NOx emissions and simulated NO2 columns indicate that spatial patterns in simulated NO2 columns in these regions indeed reflect the underlying soil NOx emissions. Subsequently, we use a mass-balance approach to constrain emissions for these 11 regions on all major continents using OMI observed and GEOS-Chem simulated tropospheric NO2 columns. We find that responses of simulated NO2 columns to changing NOx emissions are suppressed over low NOx regions, and account for these non-linearities in our inversion approach. In general, our approach suggests that emissions need to be increased in most regions. Our OMI top-down soil NOx inventory amounts to 10.0 Tg N for 2005 when only constraining the 11 regions, and 12.9 Tg N when extrapolating the constraints globally. Substantial regional differences exist (ranging from -40% to +90%), and globally our top-down inventory is 4-35% higher than the GEOS-Chem a priori (9.6 Tg N yr-1). We evaluate NO2 concentrations simulated with our new OMI top-down inventory against surface NO2 measurements from monitoring stations in Africa, the USA and Europe. Although this comparison is complicated by several factors, we find an encouraging improved agreement when using the OMI top-down inventory compared to using the a priori inventory. To our knowledge, this study provides, for the first time, specific constraints on soil NOx emissions on all major continents using OMI NO2 columns. Our results rule out the low end of reported soil NOx emission estimates, and suggest that global emissions are most likely around 12.9 ± 3.9 Tg N yr-1.

  16. Modelling of X-ray emission supernova remnants observed by the European satellite XMM-Newton

    International Nuclear Information System (INIS)

    This thesis deals with the X-ray emission of supernova remnants (SNRs) observed by the European satellite XMM-Newton. In SNRs, the matter heated to millions of degrees shines brightly in X-rays. This emission depends on the hydrodynamical evolution of the SNR, on the chemical composition of the ejected matter and on the ambient medium. Moreover, the blast-wave is considered to be the prime site of the production and the acceleration of cosmic-rays in our Galaxy. XMM-Newton is one of the first to allow the investigation of these different aspects thanks to its spatially-resolved spectroscopy and its very good sensitivity. l first studied Kepler's SNR (SN 1604) whose X-ray emission is dominated by the ejecta. Its observation has allowed to obtain information on the nucleosynthesis products, on their spatial distribution and on the temperature structure in the shocked ejecta. This gives strong constraints on the physics of the explosion and on the progenitor's type. l have shown also that the X-ray emission at the shock is likely to be non-thermal. Then, l studied the SNR G347.3-0.5 whose X-ray emission is entirely due to the synchrotron radiation of relativistic (TeV) electrons accelerated at the shock. From five pointing, l made a full mapping of the X-ray emission characteristics (brightness, absorption and spectral index) at small scale. Combined to radio observations, these results have indicated a clear interaction between the SNR and molecular clouds located at 1 kpc and not at 6 kpc as previously estimated. Lastly, in the framework of a self-similar hydrodynamical model coupled with non-linear particle acceleration, l have obtained the synchrotron emission profile in SNRs, including the adiabatic and radiative losses of the accelerated electrons. (author)

  17. Study of the NWC electrons belt observed on DEMETER Satellite

    CERN Document Server

    Li, Xinqiao; Wang, Ping; Wang, Huanyu; Lu, Hong; Zhang, Xuemin; Huang, Jianping; Shi, Feng; Yu, Xiaoxia; Xu, Yanbing; Meng, Xiangcheng; Wang, Hui; Zhao, Xiaoyun; Parrot, M

    2010-01-01

    We analyzed the data from 2007 to 2008, which is observed by IDP onboard DEMETER satellite, during ten months of NWC working and seven months of NWC shutdown. The characteristic of the space instantaneous electron belts, which come from the influence of the VLF transmitted by NWC, is studied comprehensively. The main distribution region of the NWC electron belts and the flux change are given. We also studied the distribution characteristic of the average energy spectrum in different magnetic shell at the height of DEMETER orbit and the difference of the average energy spectrum of the electrons in the drift loss-cone between day and night. As a result, the powerful power of NWC transmitter and the 19.8 kHz narrow bandwidth VLF emission not only created a momentary electrons enhancement region, which strides 180 degree in them longitude direction and from 1.6 to 1.9 in L value, with the rise of the electrons flux reaching to 3 orders of magnitude mostly, but also induced the enhancement or loss of electrons in ...

  18. Observation of phase transitions in hydrogenated Yttrium films via normalized infrared emissivity

    International Nuclear Information System (INIS)

    The direct observation of a sequence of phase transitions during hydrogenation of Y thin films has been realized through the use of in situ isothermal infrared emissivity measurements. The formation of different phases, ?-Y(H), YH2 and YH3, has been identified based on the observation of changes in the slope of the normalized IR emissivity vs. time curve during hydrogen loading. The presence of ?-Y(H), YH2 and YH3 was confirmed by ex situ X-ray diffraction, transmission electron microscopy, and prompt gamma activation analysis. Transmission electron microscopy further demonstrated epitaxial orientation relationships between the Al2O3 substrate, Ti buffer layer, the as-deposited Y film, as well as its hydrides. These results clearly demonstrate the power of IR emissivity imaging to monitor, in real time, the formation of hydride phases of both metallic and insulating character near the surface of a thin-film sample.

  19. Quantifying global terrestrial methanol emissions using observations from the TES satellite sensor

    Directory of Open Access Journals (Sweden)

    K. C. Wells

    2013-08-01

    Full Text Available We employ new global space-based measurements of atmospheric methanol from the Tropospheric Emission Spectrometer (TES with the adjoint of the GEOS-Chem chemical transport model to quantify terrestrial emissions of methanol to the atmosphere. Biogenic methanol emissions in the model are based on MEGANv2.1 emission algorithms, using MODIS leaf area and GEOS-5 assimilated meteorological fields. We first carry out a pseudo observation test to validate the overall approach, and find that the TES sampling density is sufficient to accurately quantify regional- to continental-scale methanol emissions using this method. A global inversion of two years of TES data yields an optimized annual global surface flux of 117 Tg yr?1 (including biogenic, pyrogenic, and anthropogenic sources, an increase of 56% from the a priori global flux of 75 Tg yr?1. Global terrestrial methanol emissions are thus approximately 25% those of isoprene (~540 Tg yr?1, and are comparable to the combined emissions of all anthropogenic volatile organic compounds (~100–200 Tg yr?1. Our a posteriori terrestrial methanol source leads to a strong improvement of the simulation relative to an ensemble of airborne observations, and corroborates two other recent top-down estimates (114–120 Tg yr?1 derived using in-situ and space-based measurements. The TES data imply a relatively modest revision of model emissions over most of the tropics, but a significant upward revision in midlatitudes, particularly over Europe and North America. We interpret the inversion results in terms of specific source types using the methanol:CO correlations measured by TES, and find that biogenic emissions are overestimated relative to biomass burning and anthropogenic emissions in central Africa and southeastern China, while they are underestimated in regions such as Brazil and the US. Based on our optimized emissions, methanol accounts for >25% of the photochemical source of CO and HCHO over many parts of the northern extratropics during springtime, and contributes ~6% of the global secondary source of those compounds annually.

  20. Effects of LatticeQCD EoS and Continuous Emission on Some Observables

    International Nuclear Information System (INIS)

    Effects of lattice-QCD-inspired equations of state and continuous emission on some observables are discussed, by solving a 3D hydrodynamics. The particle multiplicity as well ? 2 are found to increase in the mid-rapidity. We also discuss the effects of the initial-condition fluctuations

  1. Resonant behavior observed in electron field emission from acid functionalized multiwall carbon nanotubes

    OpenAIRE

    Lyth, Sm; Silva, Srp

    2009-01-01

    Acid functionalized multiwall carbon nanotube ink was deposited onto carbon fiber fabric via dip coating. Repeatable staircaselike current-field curves were observed in the field emission data. These atypical curves are attributed to resonant tunneling through localized surface states in a quantum well structure, which arises due to the presence of the surface carboxylic functional group.

  2. Resonant behavior observed in electron field emission from acid functionalized multiwall carbon nanotubes

    Science.gov (United States)

    Lyth, S. M.; Silva, S. R. P.

    2009-03-01

    Acid functionalized multiwall carbon nanotube ink was deposited onto carbon fiber fabric via dip coating. Repeatable staircaselike current-field curves were observed in the field emission data. These atypical curves are attributed to resonant tunneling through localized surface states in a quantum well structure, which arises due to the presence of the surface carboxylic functional group.

  3. The observable effects of a photospheric component on GRB's and XRF's prompt emission spectrum

    OpenAIRE

    Pe'er, Asaf; Mészáros, Peter; Rees, Martin J

    2005-01-01

    A thermal radiative component is likely to accompany the first stages of the prompt emission of Gamma-ray bursts (GRB's) and X-ray flashes (XRF's). We analyze the effect of such a component on the observable spectrum, assuming that the observable effects are due to a dissipation process occurring below or near the thermal photosphere. We consider both the internal shock model and a 'slow heating' model as possible dissipation mechanisms. For comparable energy densities in th...

  4. Development of VLF noise storm and its relation to dynamics of magnetosphere during geomagnetic storms

    International Nuclear Information System (INIS)

    Dependence between the development of geomagnetic storm and VLF noise storm is studied. Two conditions should be met for the development of noise storm in VLF-hiss (f ? 0.5-10 kHz): a) threshold intensity of electron fluxes with Ee > 40 keV in plasma layers; b) the presence of substorms resulting to widening of electron belt and its collision with cold plasma of plasmasphere. The noise storm at the fixed longitude begins about midnight independently of the phase of magnetic storm; Noise storm duration is connected with geomagnetic storm intensity by direct linear relationship

  5. Seasonality in fire emission factors using satellite observations of CO and NO2

    Science.gov (United States)

    Castellanos, P.; Boersma, K. F.; van der Werf, G.

    2012-12-01

    Burning of vegetation for deforestation, agriculture, land management, and other purposes releases large amounts of trace gases and aerosols into the atmosphere, clearly visible in satellite data records. While burned area and active fire observations in combination with biogeochemical models can provide constraints on the timing, spatial extent, and total fuel consumed by fires, further calculation of trace gas emissions from fires requires partitioning of total fuel consumed into different trace gases using emission factors. In the current formulation of Global Fire Emissions Database (GFED), emissions factors vary by biome but do not vary in time. This is because only a few direct measurements of these emissions factors exist, and of those none encompass a full fire season. In this work, we take advantage of the long data records of CO and NO2 tropospheric columns from the MOPITT and OMI satellites, respectively, to better characterize the seasonal variability of these trace gas emissions from fires. Field measurements have shown that the emissions factors of CO and NO2 are inversely related and are dependent on fuel characteristics and ambient conditions. We analyze a 6-year monthly climatology (2005-2010) of CO to NO2 ratios over important fire regions: central Amazonia, northern Australia, equatorial Africa, and southern Africa. We use the TM5 chemical transport model to separate the fire emissions signal from background variability and the contributions from lightning NOx and anthropogenic emissions. We find that in general the CO:NO2 ratio decreases over the course of the fire season and is correlated with the minimum in rainfall, possibly indicating an increase in flaming combustion, and an increase (decrease) in NOx (CO) emissions factors as fuel beds become dryer. We also analyze trends in fire-isolated NO2 and CO concentrations and find indications of increasing emissions from fires in northern Africa. These results can be used as large-scale indicators of fire characteristics. They have the potential to constrain trace gas emission variability and therefore atmospheric trace gas budgets.

  6. Solar Flare Chromospheric Line Emission: Comparison Between IBIS High-resolution Observations and Radiative Hydrodynamic Simulations

    Science.gov (United States)

    Rubio da Costa, Fatima; Kleint, Lucia; Petrosian, Vahé; Sainz Dalda, Alberto; Liu, Wei

    2015-05-01

    Solar flares involve impulsive energy release, which results in enhanced radiation over a broad spectral range and a wide range of heights. In particular, line emission from the chromosphere can provide critical diagnostics of plasma heating processes. Thus, a direct comparison between high-resolution spectroscopic observations and advanced numerical modeling results could be extremely valuable, but has not yet been attempted. In this paper, we present such a self-consistent investigation of an M3.0 flare observed by the Dunn Solar Telescope’s Interferometric Bi-dimensional Spectrometer (IBIS) on 2011 September 24 which we have modeled using the radiative hydrodynamic code RADYN. We obtained images and spectra of the flaring region with IBIS in H? 6563 Å and Ca ii 8542 Å, and with RHESSI in X-rays. The latter observations were used to infer the non-thermal electron population, which was passed to RADYN to simulate the atmospheric response to electron collisional heating. We then synthesized spectral lines and compared their shapes and intensities to those observed by IBIS and found a general agreement. In particular, the synthetic Ca ii 8542 Å profile fits well to the observed profile, while the synthetic H? profile is fainter in the core than for the observation. This indicates that H? emission is more responsive to the non-thermal electron flux than the Ca ii 8542 Å emission. We suggest that it is necessary to refine the energy input and other processes to resolve this discrepancy.

  7. Space-based observations of fire NOx emission coefficients: a global biome-scale comparison

    Directory of Open Access Journals (Sweden)

    A. K. Mebust

    2013-08-01

    Full Text Available Biomass burning represents both a significant and highly variable source of NOx to the atmosphere. This variability stems from both the episodic nature of fires, and from fire conditions such as the modified combustion efficiency of the fire, the nitrogen content of the fuel and possibly other factors that have not been identified or evaluated by comparison with observations. Satellite instruments offer an opportunity to observe emissions from wildfires, providing a large suite of measurements which allow us to study mean behavior and variability on the regional scale in a statistically rigorous manner. Here we use space-based measurements of fire radiative power from the Moderate Resolution Imaging Spectroradiometer in combination with NO2 tropospheric column densities from the Ozone Monitoring Instrument to measure mean emission coefficients (ECs in g NO MJ?1 from fires for global biomes, and across a wide range of smaller-scale ecoregions, defined as spatially-distinct clusters of fires with similar fuel type. Mean ECs for all biomes fall between 0.250–0.362 g NO MJ?1, a range that is smaller than found in previous studies of biome-scale emission factors. The majority of ecoregion ECs fall within or near this range, implying that under most conditions, mean fire emissions per unit energy are similar between different regions regardless of fuel type or spatial variability. In contrast to these similarities, we find that about 24% of individual ecoregion ECs deviate significantly (p x emissions.

  8. DEMETER observations of bursty MF emissions and their relation to ground-level auroral MF burst

    Science.gov (United States)

    Broughton, M. C.; LaBelle, J.; Parrot, M.

    2014-12-01

    A survey of medium frequency (MF) electric field data from selected orbits of the Detection of Electro-Magnetic Emissions Transmitted from Earthquakes (DEMETER) spacecraft reveals 68 examples of a new type of bursty MF emissions occurring at high latitudes associated with auroral phenomena. These resemble auroral MF burst, a natural radio emission observed at ground level near local substorm onsets. Similar to MF burst, the bursty MF waves observed by DEMETER have broadband, impulsive frequency structure covering 1.5-3.0 MHz, amplitudes of 50-100 ?V/m, an overall occurrence rate of ˜0.76% with higher occurrence during active times, and strong correlation with auroral hiss. The magnetic local time distribution of the MF waves observed by DEMETER shows peak occurrence rate near 18 MLT, somewhat earlier than the equivalent peak in the occurrence rate of ground level MF burst, though propagation effects and differences in the latitudes sampled by the two techniques may explain this discrepancy. Analysis of solar wind and SuperMAG data suggests that while the bursty MF waves observed by DEMETER are associated with enhanced auroral activity, their coincidence with substorm onset may not be as exact as that of ground level MF burst. One conjunction occurs in which MF burst is observed at Churchill, Manitoba, within 8 min of MF emissions detected by DEMETER on field lines approximately 1000 km southeast of Churchill. These observations may plausibly be associated with the same auroral event detected by ground level magnetometers at several Canadian observatories. Although it is uncertain, the balance of the evidence suggests that the bursty MF waves observed with DEMETER are the same phenomenon as the ground level MF burst. Hence, theories of MF burst generation in the ionosphere, such as beam-generated Langmuir waves excited over a range of altitudes or strong Langmuir turbulence generating a range of frequencies within a narrow altitude range, need to be revisited to see whether they predict in situ detection of MF burst.

  9. High spectral resolution observations of the molecular hydrogen emission in the orion molecular cloud

    International Nuclear Information System (INIS)

    Observations of line profiles of the vibrationally excited H2 gas in the Orion molecular cloud are presented. The ? = 1 ? 0S(1), ? = 1 ? OS(0) and ? = 2 ? 1 S(1) lines emitted at a wavelength near 2 ?m, have been observed with a spectral resolution of 20 km s-1. The region has been mapped extensively in the ? = 1 ? 0 S(1) line with a spatial resolution of 10'' and 5'', and the line has been monitored at a few positions over a period of 15 months. The profiles of the ? =1 ? 0 S(0) and ? = 2 ? 1 S(1) lines have been compared at two positions. The mapping measurements show variations from the periphery where the profiles are narrow, symmetric and have a peak velocity equal to that of the molecular cloud, to the center of the region of emission where the profiles are wide, asymmetric and blueshifted. The line profiles do not appear to vary with time or with the energy of the upper level of the transition. The results are interpreted by a model of a radially expanding flow of gas. From a study of H2 excitation behind a shock front and in a magnetic precursor ahead of a shock wave, it is concluded that the high velocity emission comes from the high velocity gas in the flow, and the low velocity emission comes from gas in the molecular cloud surrounding the flow, with density inhomogeneities contributing to the detailed profiles. Finally the H2 emission is compared to the CO and H2O maser emission and b>O maser emission and to the infrared continuum sources. An instrument which incorporates a piezoelectrically scanned Fabry-Perot interferometer, an InSb detector cooled to approx. 55K, a rotary chopper, and an offset guider has been built to make these observations. Its operation is described in an appendix

  10. Earth observations for estimating greenhouse gas emissions from deforestation in developing countries

    International Nuclear Information System (INIS)

    In response to the United Nations Framework Convention on Climate Change (UNFCCC) process investigating the technical issues surrounding the ability to reduce greenhouse gas (GHG) emissions from deforestation in developing countries, this paper reviews technical capabilities for monitoring deforestation and estimating emissions. Implementation of policies to reduce emissions from deforestation require effective deforestation monitoring systems that are reproducible, provide consistent results, meet standards for mapping accuracy, and can be implemented at the national level. Remotely sensed data supported by ground observations are key to effective monitoring. Capacity in developing countries for deforestation monitoring is well-advanced in a few countries and is a feasible goal in most others. Data sources exist to determine base periods in the 1990s as historical reference points. Forest degradation (e.g. from high impact logging and fragmentation) also contribute to greenhouse gas emissions but it is more technically challenging to measure than deforestation. Data on carbon stocks, which are needed to estimate emissions, cannot currently be observed directly over large areas with remote sensing. Guidelines for carbon accounting from deforestation exist and are available in approved Intergovernmental Panel on Climate Change (IPCC) reports and can be applied at national scales in the absence of forest inventory or other data. Key constraints for implementing programs Key constraints for implementing programs to monitor greenhouse gas emissions from deforestation are international commitment of resources to increase capacity, coordination of observations to ensure pan-tropical coverage, access to free or low-cost data, and standard and consensual protocols for data interpretation and analysis

  11. Investigation of VLF and HF waves showing seismo-ionospheric anomalies induced by the 29 September 2009 Samoa earthquake (Mw=8.1

    Directory of Open Access Journals (Sweden)

    M. Parrot

    2010-05-01

    Full Text Available In Samoa Islands, a powerful earthquake took place at 17:48:10.99 UTC (06:48:10.99 LT on 29 September 2009 with a magnitude Mw=8.1. Using ICE (Instrument Champ Electrique and IMSC (Instrument Magnetic Search Coil experiments onboard the DEMETER (Detection of Electromagnetic Emissions Transmitted from Earthquake Regions satellite we have surveyed possible variations in electromagnetic signals transmitted by the ground-based VLF transmitter NPM in Hawaii and in HF plasma waves close to the Samoa earthquake during the seismic activity. The indices Dst and Kp were used to distinguish pre-earthquake anomalies from the other anomalies related to the geomagnetic activities. In a previous study we have shown that anomalies in IAP (plasma analyzer and ISL (Langmuir probe experiments onboard the DEMETER and also TEC (Total Electron Content data appear 1 to 5 days before the Samoa earthquake. In this paper we show that the anomalies in the VLF transmitter signal and in the HF range appear with the same time scale. The lack of significant geomagnetic activities indicates that these anomalous behaviors could be regarded as seismo-ionospheric precursors. It is also shown that comparative analysis is more effective in seismo-ionospheric studies.

  12. Dust emissivity in the Submm/Mm: SCUBA and SIMBA observations of Barnard 68

    OpenAIRE

    Bianchi, S; Goncalves, J.; M. Albrecht; Caselli, P; Chini, R.; Galli, D.; Walmsley, M

    2003-01-01

    We have observed the dark cloud Barnard 68 with SCUBA at 850 um and with SIMBA at 1.2 mm. The submillimetre and millimetre dust emission correlate well with the extinction map of Alves, Lada and Lada (2001).The A_V/850um correlation is clearly not linear and suggests lower temperatures for the dust in the inner core of the cloud. Assuming a model for the temperature gradient, we derive the cloud-averaged dust emissivities (normalised to the V-Band extinction efficiency) at 8...

  13. Helium Emissions Observed in Ground-Based Spectra of Solar Prominences

    OpenAIRE

    Ramelli, Renzo; Stellmacher, Goetz; Wiehr, Eberhard; Bianda, Michele

    2012-01-01

    The only prominent line of singly ionized helium in the visible spectral range, helium-II 4686 A, is observed together with the helium-I 5015 A singlet and the helium-I 4471 A triplet line in solar prominences. The sodium emission, NaD2, is used as a tracer for helium-II emissions which are sufficiently bright to exceed the noise level near 10^-6 of the disk-center intensity. The so selected prominences are characterized by small non-thermal line broadening and almost absent...

  14. ULTRAVIOLET AND EXTREME-ULTRAVIOLET EMISSIONS AT THE FLARE FOOTPOINTS OBSERVED BY ATMOSPHERE IMAGING ASSEMBLY

    Energy Technology Data Exchange (ETDEWEB)

    Qiu Jiong; Longcope, Dana W.; Liu Wenjuan [Department of Physics, Montana State University, Bozeman, MT 59717-3840 (United States); Sturrock, Zoe [Department of Applied Mathematics, University of St. Andrews (United Kingdom); Klimchuk, James A. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2013-09-01

    A solar flare is composed of impulsive energy release events by magnetic reconnection, which forms and heats flare loops. Recent studies have revealed a two-phase evolution pattern of UV 1600 A emission at the feet of these loops: a rapid pulse lasting for a few seconds to a few minutes, followed by a gradual decay on timescales of a few tens of minutes. Multiple band EUV observations by the Atmosphere Imaging Assembly further reveal very similar signatures. These two phases represent different but related signatures of an impulsive energy release in the corona. The rapid pulse is an immediate response of the lower atmosphere to an intense thermal conduction flux resulting from the sudden heating of the corona to high temperatures (we rule out energetic particles due to a lack of significant hard X-ray emission). The gradual phase is associated with the cooling of hot plasma that has been evaporated into the corona. The observed footpoint emission is again powered by thermal conduction (and enthalpy), but now during a period when approximate steady-state conditions are established in the loop. UV and EUV light curves of individual pixels may therefore be separated into contributions from two distinct physical mechanisms to shed light on the nature of energy transport in a flare. We demonstrate this technique using coordinated, spatially resolved observations of UV and EUV emissions from the footpoints of a C3.2 thermal flare.

  15. P-MaNGA Galaxies: Emission Lines Properties - Gas Ionisation and Chemical Abundances from Prototype Observations

    CERN Document Server

    Belfiore, F; Bundy, K; Thomas, D; Maraston, C; Wilkinson, D; Sánchez, S F; Bershady, M; Blanc, G A; Bothwell, M; Cales, S L; Coccato, L; Drory, N; Emsellem, E; Fu, H; Gelfand, J; Law, D; Masters, K; Parejko, J; Tremonti, C; Wake, D; Weijmans, A; Yan, R; Xiao, T; Zhang, K; Zheng, T; Bizyaev, D; Kinemuchi, K; Oravetz, D; Simmons, A

    2014-01-01

    MaNGA (Mapping Nearby Galaxies at Apache Point Observatory) is a SDSS-IV survey that will obtain spatially resolved spectroscopy from 3600 \\AA\\ to 10300 \\AA\\ for a representative sample of over 10000 nearby galaxies. In this paper we present the analysis of nebular emission line properties using observations of 14 galaxies obtained with P-MaNGA, a prototype of the MaNGA instrument. By using spatially resolved diagnostic diagrams we find extended star formation in galaxies that are centrally dominated by Seyfert/LINER-like emission, illustrating that galaxy characterisations based on single fibre spectra are necessarily incomplete. We observe extended (up to $\\rm 1 R_{e}$) LINER-like emission in the central regions of three galaxies. We make use of the $\\rm EW(H \\alpha)$ to argue that the observed emission is consistent with ionisation from hot evolved stars. Using stellar population indices we conclude that galactic regions which are ionised by a Seyfert/LINER-like radiation field are also devoid of recent st...

  16. Disturbances of the VLF/LF radio signal reception at Dobrogea Seismological Observatory due to local abnormal electric activity

    Science.gov (United States)

    Moldovan, Iren-Adelina; Toader, Victorin; Dolea, Paul; Biagi, Pier Francesco

    2015-04-01

    The National Institute for Earth Physics, as part of the INFREP initiative, has monitored radio waves emitted by 10 transmitters all over Europe in relation with seismicity in the last 5 years. In Romania a radio receiving system is located in only one site (Dobrogea Seismological Observatory) situated in Eforie Nord, in the Eastern part of Romania. The electro-magnetic field monitored both at the ground and (sub) ionospheric level, in different frequency ranges (VLF/LF) is considered to be promising for earthquake forecasting. Because the abnormal behavior of the VLF/LF recordings that could not be correlated with the tectonic activity of the seismogenic zones crossed by the radio paths, we decided to monitor other two parameters, at the receiving site: the vertical component of the atmospheric electric field, which indicates variations of electrical properties of the near-ground air (Boltek electric field mill), and the atmospheric local conditions (WS-3600 weather station). The zone is also surveyed by seismic devices (seismometers, accelerometers and infrasonic equipment) and GPS/GNSS base stations to emphasize the local tectonic conditions. We obtained in such way a multiple-parameter monitoring system that increases the confidence in observational data and decreases uncertainties regarding the accuracy of the data recorded until now. As we are exploring different parameters we have obtained some conclusions regarding the correlation of the anomalies with their possible causes. The final expectation of the monitoring system regard the chance to take a snapshot of the geophysical medium before, during and after a significant earthquake occurrence and to reveal if there was or wasn't a noticeable trace of the preparatory stage of it. This work was partially supported by a grant of the Romanian National Authority for Scientific Research, Programe for research- Space Technology and Avanced Research - STAR, project number 84/2013, and by the NUCLEU project, PN 09 30/2009.

  17. Efficiency and Sensitivity Analysis of Observation Networks for Atmospheric Inverse Modelling with Emissions

    CERN Document Server

    Wu, Xueran; Jacob, Birgit

    2015-01-01

    The controllability of advection-diffusion systems, subject to uncertain initial values and emission rates, is estimated, given sparse and error affected observations of prognostic state variables. In predictive geophysical model systems, like atmospheric chemistry simulations, different parameter families influence the temporal evolution of the system.This renders initial-value-only optimisation by traditional data assimilation methods as insufficient. In this paper, a quantitative assessment method on validation of measurement configurations to optimize initial values and emission rates, and how to balance them, is introduced. In this theoretical approach, Kalman filter and smoother and their ensemble based versions are combined with a singular value decomposition, to evaluate the potential improvement associated with specific observational network configurations. Further, with the same singular vector analysis for the efficiency of observations, their sensitivity to model control can be identified by deter...

  18. Correcting atmospheric effects in thermal ground observations for hyperspectral emissivity estimation

    Science.gov (United States)

    Timmermans, Joris; Buitrago, Maria

    2014-05-01

    Knowledge of Land surface temperature is of crucial importance in energy balance studies and environmental modeling. Accurate retrieval of land surface temperature (LST) demands detailed knowledge of the land surface emissivity. Measured radiation by remote sensing sensors to land surface temperature can only be performed using a-priori knowledge of the emissivity. Uncertainties in the retrieval of this emissivity can cause huge errors in LST estimations. The retrieval of emissivity (and LST) is per definition an underdetermined inversion, as only one observation is made while two variables are to be estimated. Several researches have therefore been performed on measuring emissivity, such as the normalized emissivity method, the temperature-emissivity separation (TES) using the minimum and maximum difference of emissivity and the use of vegetation indices. In each of these approaches atmospherically corrected radiance measurements by remote sensing sensors are correlated to ground measurements. Usually these ground measurements are performed with the ground equivalent of the remote sensing sensors; the CIMEL 312-2 has the same spectral bands as ASTER. This way parameterizations acquired this way are only usable for specific sensors and need to be redone for newer sensors. Recently hyperspectral thermal radiometers, such as the MIDAC, have been developed that can solve this problem. By using hyperspectral observations of emissivity, together with sensor simulators, ground measurements of different satellite sensor can be simulated. This facilitates the production of validation data for the different TES algorithms. However before such measurements can be performed extra steps of processing need to be performed. Atmospheric correction becomes more important in hyperspectral observations than for broadband observations, as energy levels measured per band is lower. As such the atmosphere has a relative larger contribution if bandwidths become smaller. The goal of this research was to enhance current methods for estimation of hyperspectral emissivity from field measurements. In particular the research focused on the atmospheric correction of the hyperspectral data, and the estimation of emissivity and temperature. For this, radiation measurements over different vegetation types were performed using the MIDAC thermal hyperspectral radiometer. The measurements of thermal radiation were performed in 2012 during ESA`s REFLEX fieldcampaign and each consisted of rapid acquisition of 4 targets: a hot and cold black-body (with predefined temperature), a gold plate and the vegetation-component of interest (vegetation/soil). The high spectral resolution of the measurement (at 0.5 cm-1 resolution) enables the characterization of individual gaseous absorption features and consequently allows for the atmospheric correction. Atmospheric correction of the 4 measurements was performed by creating a simple atmospheric correction model on basis of MODTRAN simulations. These MODTRAN outputs were converted to band resolutions using the spectral sensitivity of the MIDAC instrument. This approach enabled the estimation of different gas concentrations, such as C02 and H20, and at the same time atmospherically correct the raw measurements. Afterwards the data of the vegetation-component and gold plate (Infragold standard) were calibrated against the measurements of the hot/cold black bodies. Using the measurement of the gold plate the measured radiation from the vegetation-component was corrected for incoming radiation. Afterwards the temperature and emissivity of the vegetation-component was determined by fitting the atmospherically corrected data against the Planck curve. The success of the methodology was tested against measurements performed simultaneously with the MIDAC acquisitions. The atmospheric correction approach was tested by comparing the retrieved gaseous concentrations with LICOR 7500 measurements of these constituents. The TES estimations were evaluated by comparing the retrieved temperature with measurements of the vegetation-compon

  19. Dark matter line emission constraints from NuSTAR observations of the Bullet Cluster

    CERN Document Server

    Riemer-Sørensen, S; Madejski, G; Molendi, S; Gastaldello, F; Harrison, F A; Craig, W W; Hailey, C J; Boggs, S E; Christensen, F E; Stern, D; Zhang, W W; Hornstrup, A

    2015-01-01

    Line emission from dark matter is well motivated for some candidates e.g. sterile neutrinos. We present the first search for dark matter line emission in the 3-80keV range in a pointed observation of the Bullet Cluster with NuSTAR. We do not detect any significant line emission and instead we derive upper limits (95% CL) on the flux, and interpret these constraints in the context of sterile neutrinos and more generic dark matter candidates. NuSTAR does not have the sensitivity to constrain the recently claimed line detection at 3.5keV, but improves on the constraints for energies of 10-25keV.

  20. The Impact of Return-Current Losses on the Observed Emissions from Solar Flares

    Science.gov (United States)

    Holman, Gordon D.

    2011-01-01

    Electrons accelerated in solar flares are expected to drive a co-spatial return current in the ambient plasma when they escape the acceleration region. This return current maintains plasma neutrality and the stability of the beam of streaming electrons. The electric field that drives this return current also decelerates the energetic electrons in the beam. The corresponding energy loss experienced by the accelerated electrons can affect the observed properties of the X-ray and radio emissions from flares and the evolution of the thermal flare plasma. I will discuss the properties of the flare emissions expected in a classical, steady-state model. As part of this discussion, I will examine Gordon Emslie's 1980 conjecture that return-current losses result in a maximum brightness for the hard X-ray emission from flares.

  1. Constraints on ship NOx emissions in Europe using OMI NO2 observations

    Science.gov (United States)

    Vinken, G. C. M.; Boersma, K. F.

    2012-04-01

    About 90% of world trade is transported by oceangoing ships, and seaborne trade has been shown to have increased by about 5% per year in the past decade. Global ship traffic is currently not regulated under international treaties (e.g. Kyoto protocol) and ships are still allowed to burn low-grade bunker fuel. As a result, ships emit large quantities of nitrogen oxides (NOx = NO + NO2), important precursors for ozone (O3) and particulate matter formation. Previous studies indicated that the global NOx emissions from shipping are in the range 3.0-10.4 Tg N per year (15-30% of total global NOx emissions). Because most ships sail within 400 km of the coast, it is important to understand the contribution of ship emissions to atmospheric composition in the densely populated coastal regions. Chemistry Transport Models (CTMs), in combination with emission inventories, are used to simulate atmospheric concentrations of air pollutants to assess the impact of ship emissions. However, these bottom-up inventories, based on extrapolation of a few engine measurements and strong assumptions, suffer from large uncertainties. In this study we provide top-down constraints on ship NOx emissions in Europe using satellite observations of NO2 columns. We use the nested version of the GEOS-Chem model (0.5°-0.667°) to simulate tropospheric NO2 columns over Europe for the years 2005-2006, using our plume-in-grid treatment of ship NOx emissions. We improve the NO2 retrievals from the Ozone Monitoring Instrument (OMI v2.0) by replacing the coarse a priori (TM4) vertical NO2 profiles (2°-3°) with the high-resolution GEOS-Chem profiles. This ensures consistency between the retrievals and model simulations. GEOS-Chem simulations of tropospheric NO2 columns show remarkable quantitative agreement with the observed OMI columns over Europe (R2=0.89, RMS difference < 0.2-1015 molec. cm-2), providing confidence in the ability of the model to simulate NO2 pollution over the European mainland. We proceed and show quantitative comparisons of simulated and observed columns over two distinct ship tracks in Europe (west of France and Mediterranean Sea). Our comparisons suggest that both the AMVER-ICOADS and EMEP inventories provide too low NOx emissions for these ship tracks, with important implications for exceedances of air quality standards in coastal regions.

  2. New Radio Observations of Anomalous Microwave Emission in the H II Region RCW175

    Science.gov (United States)

    Battistelli, E. S.; Carretti, E.; Cruciani, A.; de Bernardis, P.; Génova-Santos, R.; Masi, S.; Naldi, A.; Paladini, R.; Piacentini, F.; Tibbs, C. T.; Verstraete, L.; Ysard, N.

    2015-03-01

    We have observed the H II region RCW175 with the 64 m Parkes telescope at 8.4 GHz and 13.5 GHz in total intensity, and at 21.5 GHz in both total intensity and polarization. High angular resolution ranging from 1 to 2.4 arcmin, high sensitivity, and polarization capability enable us to perform a detailed study of the different constituents of the H II region. For the first time, we resolve three distinct regions at microwave frequencies, two of which are part of the same annular diffuse structure. Our observations enable us to confirm the presence of anomalous microwave emission (AME) from RCW175. Fitting the integrated flux density across the entire region with the currently available spinning dust models, using physically motivated assumptions, indicates the presence of at least two spinning dust components: a warm component (T gas = 5800 K) with a relatively large hydrogen number density n H = 26.3/cm3 and a cold component (T gas = 100 K) with a hydrogen number density of n H = 150/cm3. The present study is an example highlighting the potential of using high angular-resolution microwave data to break model parameter degeneracies. Thanks to the spectral coverage and angular resolution of the Parkes observations, we have been able to derive one of the first AME/excess maps, at 13.5 GHz, showing clear evidence that the bulk of the anomalous emission arises in particular from one of the source components, with some additional contribution from the diffuse structure. A cross-correlation analysis with thermal dust emission has shown a high degree of correlation with one of the regions within RCW175. In the center of RCW175, we find an average polarized emission at 21.5 GHz of 2.2 ± 0.2(rand.) ± 0.3(sys.)% of the total emission, where we have included both systematic and statistical uncertainties at 68% CL. This polarized emission could be due to sub-dominant synchrotron emission from the region and is thus consistent with very faint or non-polarized emission associated with AME.

  3. Probing the origin of VHE emission from M 87 with MWL observations in 2010

    International Nuclear Information System (INIS)

    The large majority of extragalactic very high energy (VHE; E >100 GeV) sources belongs to the class of active galactic nuclei (AGN), in particular the BL Lac sub-class. AGNs are characterized by an extremely bright and compact emission region, powered by a super-massive black hole (SMBH) and an accretion disk, and relativistic outflows (jets) detected all across the electro-magnetic spectrum. In BL Lac sources the jet axis is oriented close to the line of sight, giving rise to a relativistic boosting of the emission. In radio galaxies, on the other hand, the jet makes a larger angle to the line of sight allowing to resolve the central core and the jet in great details. The giant radio galaxy M 87 with its proximity (16 Mpc) and its very massive black hole ((3-6)x109MSun) provides a unique laboratory to investigate VHE emission in such objects and thereby probe particle acceleration to relativistic energies near SMBH and in jets. M 87 has been established as a VHE emitter since 2005. The VHE emission displays strong variability on time-scales as short as a day. It has been subject of a large joint VHE and multi-wavelength (MWL) monitoring campaign in 2008, where a rise in the 43 GHz VLBA radio emission of the innermost region (core) was found to coincide with a flaring activity at VHE. This had been interpreted as a strong indication that the VHE emission is produced in the direct vicinity of the SMBH black hole. In 2010 again a flare at VHE was dk hole. In 2010 again a flare at VHE was detected triggering further MWL observations with the VLBA, Chandra, and other instruments. At the same time M 87 was also observed with the Fermi/LAT telescope at GeV energies and the European VLBI Network (EVN). In this contribution preliminary results from the campaign will be presented.

  4. Observation of the O I ultraviolet intercombination emissions in the terrestrial dayglow

    International Nuclear Information System (INIS)

    Spectroscopic observations have been made of the terrestrial ultraviolet dayglow (850-1,850 angstrom) using newly developed instrumentation in a sounding rocket payload. The atmospheric conditions and viewing geometry were such as to suppress nitrogen emissions relative to those from atomic oxygen. This permitted the identification and measurement of the weak O I 1,173-angstrom (3s' 3D0 - 2p4 1D) intercombination multiplet and the 1,641-angstrom (3s 3S0 - 2p4 1D) line as well as the strong 989-angstrom and 1,304-angstrom emissions. The 1,173-angstrom emission rate increase at lower altitudes, while the 989-angstrom emission, from the same upper level, decreased at lower altitudes. This behavior is consistent with the radiative entrapment model of Meier (1982) and the laboratory value of the 1,173-angstrom/989-angstrom branching ratio of 1.5 x 10-4 (Morrison, 1985). The 1,641-angstrom/1,304-angstrom emission ratio is also consistent with a radiative entrapment model and a branching ratio near 5.0 x 10-6. Lack of detection of the 1,484-angstrom (3s' 3D10 - 2p4 1S0) intercombination line allows an upper limit to be placed on the 1,484-angstrom branching ratio, confirming that emission in this line is less significant in depleting the 3s' 3D0 term than is 1,173-angstrom emissio term than is 1,173-angstrom emission

  5. Observations and modeling of forward and reflected chorus waves captured by THEMIS

    Directory of Open Access Journals (Sweden)

    O. Agapitov

    2011-03-01

    Full Text Available Discrete ELF/VLF chorus emissions are the most intense electromagnetic plasma waves observed in the radiation belts of the Earth's magnetosphere. Chorus emissions, whistler-mode wave packets propagating roughly along magnetic field lines from a well-localized source in the vicinity of the magnetic equator to polar regions, can be reflected at low altitudes. After reflection, wave packets can return to the equatorial plane region. Understanding of whistler wave propagation and reflection is critical to a correct description of wave-particle interaction in the radiation belts. We focus on properties of reflected chorus emissions observed by the THEMIS (Time History of Events and Macroscale Interactions During Substorms spacecraft Search Coil Magnetometer (SCM and Electric Field Instrument (EFI at ELF/VLF frequencies up to 4 kHz at L?8. We determine the direction of the Poynting flux and wave vector distribution for forward and reflected chorus waves. Although both types of chorus waves were detected near the magnetic equator and have similar, discrete structure and rising tones, reflected waves are attenuated by a factor of 10–30 and have 10% higher frequency than concurrently-observed forward waves. Modeling of wave propagation and reflection using geometrical optics ray-tracing allowed us to determine the chorus source region location and explain observed propagation characteristics. We find that reflected wave attenuation at a certain spatial region is caused by divergence of the ray paths of these non-ducted emissions, and that the frequency shift is caused by generation of the reflected waves at lower L-shells where the local equatorial gyrofrequency is larger.

  6. Response of the mid-latitude D-region ionosphere to the total solar eclipse of 22 July 2009 studied using VLF signals in South Korean peninsula

    Science.gov (United States)

    Phanikumar, D. V.; Kwak, Y.-S.; Patra, A. K.; Maurya, A. K.; Singh, Rajesh; Park, S.-M.

    2014-09-01

    In this paper, we analyze VLF signals received at Busan to study the the D-region changes linked with the solar eclipse event of 22 July 2009 for very short (?390 km) transmitter-receiver great circle path (TRGCP) during local noon time 00:36-03:13 UT (09:36-12:13 KST). The eclipse crossed south of Busan with a maximum obscuration of ?84%. Observations clearly show a reduction of ?6.2 dB in the VLF signal strength at the time of maximum solar obscuration (84% at 01:53 UT) as compared to those observed on the control days. Estimated values of change in Wait ionospheric parameters: reflection height (h?) in km and inverse scale height parameter (?) in km-1 from Long Wave Propagation Capability (LWPC) model during the maximum eclipse phase as compared to unperturbed ionosphere are 7 km and 0.055 km-1, respectively. Moreover, the D-region electron density estimated from model computation shows 95% depletion in electron density at the height of ?71 km. The reflection height is found to increase by ?7 km in the D-region during the eclipse as compared to those on the control days, implying a depletion in the Lyman-? flux by a factor of ?7. The present observations are discussed in the light of current understanding on the solar eclipse induced D-region dynamics.

  7. Fracture of piezoelectric materials causing electromagnetic emissions

    OpenAIRE

    Silva, Hugo Gonçalves; Areias, P.M.; Garção, J.E.; Van Goethem, N.; Bezzeghoud, Mourad

    2011-01-01

    The seismo-electromagnetic phenomena (SEMG) are integrated in a relatively recent research field that studies diverse phenomena such as: unusual seismo-electrical signals [1], abnormal ultra-low-frequency (ULF) seismo-electromagnetic emissions [2], very-low-frequency (VLF) and low-frequency (LF) radiobroadcast anomalies associated with ionosphere perturbations [3], variation of total electron content of the ionosphere [4], and atypical infrared emissions [5], all related with the preparatory ...

  8. Panchromatic observations of the textbook GRB 110205A: constraining physical mechanisms of prompt emission and afterglow

    CERN Document Server

    Zheng, W; Sakamoto, T; Beardmore, A P; Pasquale, M; Wu, X F; Gorosabel, J; Urata, Y; Sugita, S; Zhang, B; Pozanenko, A; Nissinen, M; Sahu, D K; Im, M; Ukwatta, T N; Andreev, M; Klunko, E; Volnova, A; Akerlof, C W; Anto, P; Barthelmy, S D; Breeveld, A; Carsenty, U; Castillo-Carri'on, S; Castro-Tirado, A J; Chester, M M; Chuang, C J; Cunniffe, R; Postigo, A; Duffard, R; Flewelling, H; Gehrels, N; Guver, T; Guziy, S; Hentunen, V P; Huang, K Y; Jelínek, M; Koch, T S; Kub'anek, P; Kuin, P; McKay, T A; Mottola, S; Oates, S R; O'Brien, P; Page, M J; Pandey, S B; Pulgar, C; Rujopakarn, W; Rykoff, E; Salmi, T; S'anchez-Ramírez, R; Schaefer, B E; Sergeev, A; Sonbas, E; Sota, A; Tello, J C; Yamaoka, K; Yost, S A; Yuan, F

    2011-01-01

    We present a comprehensive analysis of a bright, long duration (T90 ~ 257 s) GRB 110205A at redshift z= 2.22. The optical prompt emission was detected by Swift/UVOT, ROTSE-IIIb and BOOTES telescopes when the GRB was still radiating in the gamma-ray band. Nearly 200 s of observations were obtained simultaneously from optical, X-ray to gamma-ray, which makes it one of the exceptional cases to study the broadband spectral energy distribution across 6 orders of magnitude in energy during the prompt emission phase. By fitting the time resolved prompt spectra, we clearly identify, for the first time, an interesting two-break energy spectrum, roughly consistent with the standard GRB synchrotron emission model in the fast cooling regime. Although the prompt optical emission is brighter than the extrapolation of the best fit X/gamma-ray spectra, it traces the gamma-ray light curve shape, suggesting a relation to the prompt high energy emission. The synchrotron + SSC scenario is disfavored by the data, but the models i...

  9. Direct observation of correlations between individual photon emission events of a microcavity laser.

    Science.gov (United States)

    Wiersig, J; Gies, C; Jahnke, F; Assmann, M; Berstermann, T; Bayer, M; Kistner, C; Reitzenstein, S; Schneider, C; Höfling, S; Forchel, A; Kruse, C; Kalden, J; Hommel, D

    2009-07-01

    Lasers are recognized for coherent light emission, the onset of which is reflected in a change in the photon statistics. For many years, attempts have been made to directly measure correlations in the individual photon emission events of semiconductor lasers. Previously, the temporal decay of these correlations below or at the lasing threshold was considerably faster than could be measured with the time resolution provided by the Hanbury Brown/Twiss measurement set-up used. Here we demonstrate a measurement technique using a streak camera that overcomes this limitation and provides a record of the arrival times of individual photons. This allows us to investigate the dynamical evolution of correlations between the individual photon emission events. We apply our studies to micropillar lasers with semiconductor quantum dots as the active material, operating in the regime of cavity quantum electrodynamics. For laser resonators with a low cavity quality factor, Q, a smooth transition from photon bunching to uncorrelated emission with increasing pumping is observed; for high-Q resonators, we see a non-monotonic dependence around the threshold where quantum light emission can occur. We identify regimes of dynamical anti-bunching of photons in agreement with the predictions of a microscopic theory that includes semiconductor-specific effects. PMID:19587766

  10. Chandra Observations of Extended X-Ray Emission in ARP 220

    Science.gov (United States)

    McDowell, J. C.; Clements, D. L.; Lamb, S. A.; Shaked, S.; Hearn, N. C.; Colina, L.; Mundell, C.; Borne, K.; Baker, A. C.; Arribas, S.

    2003-01-01

    We resolve the extended X-ray emission from the prototypical ultraluminous infrared galaxy Arp 220. Extended, faint, edge-brightened, soft X-ray lobes outside the optical galaxy are observed to a distance of 1CL 15 kpc on each side of the nuclear region. Bright plumes inside the optical isophotes coincide with the optical line emission and extend 1 1 kpc from end to end across the nucleus. The data for the plumes cannot be fitted by a single-temperature plasma and display a range of temperatures from 0.2 to 1 keV. The plumes emerge from bright, diffuse circumnuclear emission in the inner 3 kpc centered on the Ha peak, which is displaced from the radio nuclei. There is a close morphological correspondence between the Ha and soft X-ray emission on all spatial scales. We interpret the plumes as a starburst-driven superwind and discuss two interpretations of the emission from the lobes in the context of simulations of the merger dynamics of Arp 220.

  11. Observations of artificial and natural optical emissions at the HAARP facility

    Directory of Open Access Journals (Sweden)

    T. Pedersen

    2008-05-01

    Full Text Available Extensive optical observations have been carried out at the High Frequency Active Auroral Research Program (HAARP ionospheric heating facility since it began operations in 1999. A number of modern optical diagnostic instruments are hosted at remote sites as well as the main transmitter facility, which has recently been expanded from the initial 960 kW prototype configuration to its full 3.6 MW design capability. Upgrades to optical diagnostics have allowed a number of interesting new observations to be made at the 960 kW power level since 2004. Systematic beam-swinging experiments generating quantifiable levels of optical emission at various regions in the sky for the first time clearly show that emission intensity is very sensitive to distance from the magnetic zenith, and drops off rapidly at about 15° zenith angle in directions other than magnetic south. High temporal resolution measurements of emissions in the 557.7 nm green line at start-up and in short transmitter pulses demonstrate that localized irregularities are preferentially excited in the initial seconds of heating, with evolution into a more homogenous spot occurring over a period of about 1 min. High-quality emission altitude profiles at both 630.0 and 557.7 nm have recently been isolated from side-looking data, spanning an altitude extent of over 200 km, which has allowed determination of the effective lifetime of O (1D over an unprecedented altitude range. An innovative automated remote imager network utilizing low-cost mirror optics has been designed and deployed to make such measurements routinely. Observations of natural optical emissions at the site have revealed the common presence of highly structured but faint co-rotating subauroral precipitation that acts to suppress excitation of artificial F region optical emissions in areas of active precipitation. The observed spatial modulation of artificial optical emissions by structured precipitation is consistent with localized absorption of HF waves in the ionospheric D layer enhanced by the energetic particle precipitation.

  12. Observations of solar radio emissions in meter wavelengths carried by CALLISTO-BR

    Science.gov (United States)

    Fernandes, F. C. R.; Silva, R. D. C.; Sodré, Z. A. L.; Costa, J. E. R.; Sawant, H. S.

    2012-04-01

    Two Callisto-type (Compound Astronomical Low-cost Low frequency Instrument for Spectroscopy and Transportable Observatory) spectrographs are in operation in Cachoeira Paulista, Brazil, since 2010. The CALLISTO-BR integrates the e-Callisto network consisting of several radio spectrographs distributed around the world, for provide continuous monitoring (24 hours) of the solar activity in the meter frequency range of 45 - 870 MHz. The solar radio emissions observations carried out by Callisto can be used as a diagnostic of several physical processes on the Sun. Here, we present the observations of several bursts recorded by CALLISTO-BR, such as type I bursts associated with a long lasting noise storm, recorded on March 30, 2010 in the typical frequency band around 200 MHz; a group of normal drifting type III bursts recorded in March 31, 2010 and also in February 15, 2011 and a rarely observed broadband (~180 - 800 MHz) continuum emission presenting positive frequency drifting (from low to high frequencies), suggesting the source is moving towards photosphere. Observations of type II and type IV bursts were also recorded. Details of these and many other solar radio emissions recorded by CALLISTO-BR will be presented and their implications for the solar activity and space weather investigations will be discussed.

  13. Atmospheric observations of carbon monoxide and fossil fuel CO2 emissions from East Asia

    DEFF Research Database (Denmark)

    Turnbull, Jocelyn C.; Tans, Pieter P.

    2011-01-01

    Flask samples from two sites in East Asia, Tae-Ahn Peninsula, Korea (TAP), and Shangdianzi, China (SDZ), were measured for trace gases including CO2, CO and fossil fuel CO2(CO(2)ff, derived from Delta(CO2)-C-14 observations). The five-year TAP record shows high CO(2)ff when local air comes from the Korean Peninsula. Most samples, however, reflect air masses from Northeastern China with lower CO(2)ff. Our small set of SDZ samples from winter 2009/2010 have strongly elevated CO(2)ff. Biospheric CO2 contributes substantially to total CO2 variability at both sites, even in winter when non-fossil CO2 sources (including photosynthesis, respiration, biomass burning and biofuel use) contribute 20-30% of the total CO2 enhancement. Carbon monoxide (CO) correlates strongly with CO(2)ff. The SDZ and TAP far-field (China influenced) samples have CO: CO(2)ff ratios (R-CO:CO2ff) of 47 +/- 2 and 44 +/- 3 ppb/ppm respectively, consistent with recent bottom-up inventory estimates and other observational studies. Locally influenced TAP samples fall into two distinct data sets, ascribed to air sourced from South Korea and North Korea. The South Korea samples have low R-CO:CO2ff of 13 +/- 3 ppb/ppm, slightly higher than bottom-up inventories, but consistent with emission ratios for other developed nations. We compare our CO(2)ff observations with modeled CO(2)ff using the FLEXPART Lagrangian particle dispersion model convolved with a bottom-up CO(2)ff emission inventories. The modeled annual mean CO(2)ff mole fractions are consistent with our observations when the model inventory includes the reported 63% increase in Chinese emissions from 2004 to 2010, whereas a model version which holds Chinese emissions flat is unable to replicate the observations.

  14. HST/ACS Observations of Europa's Atmospheric UV Emission at Eastern Elongation

    CERN Document Server

    Saur, Joachim; Roth, Lorenz; Nimmo, Francis; Strobel, Darrell F; Retherford, Kurt D; McGrath, Melissa A; Schilling, Nico; Gérard, Jean-Claude; Grodent, Denis

    2011-01-01

    We report results of a Hubble Space Telescope (HST) campaign with the Advanced Camera for Surveys to observe Europa at eastern elongation, i.e. Europa's leading side, on 2008 June 29. With five consecutive HST orbits, we constrain Europa's atmospheric \\ion{O}{1} 1304 \\A and \\ion{O}{1} 1356 \\A emissions using the prism PR130L. The total emissions of both oxygen multiplets range between 132 $\\pm$ 14 and 226 $\\pm$ 14 Rayleigh. An additional systematic error with values on the same order as the statistical errors may be due to uncertainties in modelling the reflected light from Europa's surface. The total emission also shows a clear dependence of Europa's position with respect to Jupiter's magnetospheric plasma sheet. We derive a lower limit for the O$_2$ column density of 6 $\\times$ 10$^{18}$ m$^{-2}$. Previous observations of Europa's atmosphere with STIS in 1999 of Europa's trailing side show an enigmatic surplus of radiation on the anti-Jovian side within the disk of Europa. With emission from a radially symm...

  15. The Importance of Nebular Continuum and Line Emission in Observations of Young Massive Star Clusters

    CERN Document Server

    Reines, Amy E; Whelan, David G; Johnson, Kelsey E

    2009-01-01

    In this spectroscopic study of infant massive star clusters, we find that continuum emission from ionized gas rivals the stellar luminosity at optical wavelengths. In addition, we find that nebular line emission is significant in many commonly used broad-band HST filters including the F814W I-band, the F555W V-band and the F435W B-band. Two young massive clusters (YMCs) in NGC 4449 were targeted for spectroscopic observations after Reines et al. (2008a) discovered an F814W I-band excess in their photometric study of radio-detected clusters in the galaxy. The spectra were obtained with the Dual Imaging Spectrograph on the 3.5 m APO telescope. We supplement these data with HST and SDSS photometry. By comparing our data to the Starburst99 and GALEV models, we find that nebular continuum emission competes with the stellar light in our observations and that the relative contribution is largest in the U- and I-bands, where the Balmer and Paschen jumps are located. The spectra also exhibit strong line emission inclu...

  16. Simultaneous optical/gamma-ray observations of GRB 121217's prompt emission

    CERN Document Server

    Elliott, J; Schmidl, S; Greiner, J; Gruber, D; Oates, S; Kobayashi, S; Zhang, B; Cummings, J R; Filgas, R; Gehrels, N; Grupe, D; Kann, D A; Klose, S; Krühler, T; Guelbenzu, A Nicuesa; Rau, A; Rossi, A; Siegel, M; Schady, P; Sudilovsky, V; Tanga, M; Varela, K

    2013-01-01

    Since the advent of the Swift satellite it has been possible to obtain precise localisations of GRB positions of sub-arcsec accuracy within seconds, facilitating ground-based robotic telescopes to automatically slew to the target within seconds. This has yielded a plethora of observational data for the afterglow phase of the GRB, but the quantity of data (<2 keV) covering the initial prompt emission still remains small. Only in a handful of cases has it been possible obtain simultaneous coverage of the prompt emission in a multi-wavelength regime (gamma-ray to optical), as a result of: observing the field by chance prior to the GRB (e.g. 080319B/naked-eye burst), long-prompt emission (e.g., 080928, 110205A) or triggered on a pre-cursor (e.g., 041219A, 050820A, 061121). This small selection of bursts have shown both correlated and uncorrelated gamma-ray and optical light curve behaviour, and the multi-wavelength emission mechanism remains far from resolved (i.e. single population synchrotron self-Component,...

  17. The development of the International Network for Frontier Research on Earthquake Precursors (INFREP) by designing new analysing software and by setting up new recording locations of radio VLF/LF signals in Romania

    Science.gov (United States)

    Moldovan, Iren-Adelina; Petruta Constantin, Angela; Emilian Toader, Victorin; Toma-Danila, Dragos; Biagi, Pier Francesco; Maggipinto, Tommaso; Dolea, Paul; Septimiu Moldovan, Adrian

    2014-05-01

    Based on scientific evidences supporting the causality between earthquake preparatory stages, space weather and solar activity and different types of electromagnetic (EM) disturbances together with the benefit of having full access at ground and space based EM data, INFREP proposes a complex and cross correlated investigation of phenomena that occur in the coupled system Lithosphere-Atmosphere-Ionsophere in order to identify possible causes responsible for anomalous effects observed in the propagation characteristics of radio waves, especially at low (LF) and very low frequency (VLF). INFREP, a network of VLF (20-60 kHz) and LF (150-300 kHz) radio receivers, was put into operation in Europe in 2009, having as principal goal, the study of disturbances produced by the earthquakes on the propagation properties of these signals. The Romanian NIEP VLF / LF monitoring system consisting in a radio receiver -made by Elettronika S.R.L. (Italy) and provided by the Bari University- and the infrastructure that is necessary to record and transmit the collected data, is a part of the international initiative INFREP. The NIEP VLF / LF receiver installed in Romania was put into operation in February 2009 in Bucharest and relocated to the Black-Sea shore (Dobruja Seismologic Observatory) in December 2009. The first development of the Romanian EM monitoring system was needed because after changing the receiving site from Bucharest to Eforie we obtained unsatisfactory monitoring data, characterized by large fluctuations of the received signals' intensities. Trying to understand this behavior has led to the conclusion that the electric component of the electromagnetic field was possibly influenced by the local conditions. Starting from this observation we have run some tests and changed the vertical antenna with a loop-type antenna that is more appropriate in highly electric-field polluted environments. Since the amount of recorded data is huge, for streamlining the research process we have realized the automation of the transfer, storage and initial processing of data using the LabView software platform. The special designed LabVIEW application, which accesses the VLF/LF receiver through internet, opens the receiver's web-page and automatically retrieves the list of data files to synchronize the user-side data with the receiver's data. Missing zipped files are also automatically downloaded. The application performs primary, statistical correlation and spectral analysis, appends daily files into monthly and annual files and performs 3D color-coded maps with graphic representations of VLF and LF signals' intensities versus the minute-of-the-day and the day-of-the-month, facilitating a near real-time observation of VLF and LF electromagnetic waves' propagation. Another feature of the software is the correlation of the daily recorded files for the studied frequencies by overlaying the 24 hours radio activity and taking into account the sunrise and sunset. The next step in developing the Romanian EM recording system is to enlarge the INFREP network with new VLF/LF receivers for a better coverage and separation of European seismogenic zones. This will be done in the future by using national resources. The unitary seismotectonic zoning of Romania and the whole Europe is a very important step for this goal.

  18. Training School Pupils in the Scientific Method: Student Participation in an International VLF Radio Experiment

    Science.gov (United States)

    Denton, J. J.; Denton, M. H.; Kavanagh, A. J.; Harron, H.; Ulich, T.; Denton, J. S.

    2012-01-01

    We report on a school-university collaboration to involve students in the deployment, testing, and operation of a very low frequency (VLF) radio receiver as part of an international network of such experiments. A background to the collaboration is presented, along with a summary of planning and development, and the ultimate deployment of the…

  19. Assessment of ground-based atmospheric observations for verification of greenhouse gas emissions from an urban region

    OpenAIRE

    Mckain, Kathryn; Wofsy, Steven C.; Nehrkorn, Thomas; Eluszkiewicz, Janusz; Ehleringer, James R.; Stephens, Britton B.

    2012-01-01

    International agreements to limit greenhouse gas emissions require verification to ensure that they are effective and fair. Verification based on direct observation of atmospheric greenhouse gas concentrations will be necessary to demonstrate that estimated emission reductions have been actualized in the atmosphere. Here we assess the capability of ground-based observations and a high-resolution (1.3 km) mesoscale atmospheric transport model to determine a change in greenhouse gas emissions ...

  20. Distribution of exciton emission linewidth observed for GaAs quantum dots grown by droplet epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, Keiji [Quantum Dot Research Center, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Kuroda, Takashi [Quantum Dot Research Center, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012 (Japan); Watanabe, Katsuyuki; Mano, Takaaki [Quantum Dot Research Center, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Kido, Giyuu [Tsukuba Magnetic Laboratory, National Institute for Materials Science, 3-13 Sakura, Tsukuba, Ibaraki 305-0003 (Japan); Koguchi, Nobuyuki [Quantum Dot Research Center, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Sakoda, Kazuaki, E-mail: sakoda.kazuaki@nims.go.j [Quantum Dot Research Center, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai Tsukuba, Ibaraki 305-8577 (Japan)

    2010-12-15

    We report on the exciton emission linewidth of self-assembled GaAs/AlGaAs quantum dots grown by droplet epitaxy. We applied stabilized single-photon Fourier spectroscopy to accurately evaluate the exciton linewidth of single quantum dots and found an extremely large distribution of the linewidth ranging from 40 to 400{mu}eV at 4 K. Even the smallest linewidth is not lifetime limited and no correlation was observed between the linewidth and the exciton emission energy. These results are consistent with our previous observation of the strong correlation between the carrier dynamics in the barrier layer and the exciton linewidth of the quantum dots, and imply that the linewidth is not an intrinsic property of genuine quantum dots, but a consequence of their local environment, which can be explained by fluctuating Stark shift caused by photo-excited charged carriers.

  1. Distribution of exciton emission linewidth observed for GaAs quantum dots grown by droplet epitaxy

    International Nuclear Information System (INIS)

    We report on the exciton emission linewidth of self-assembled GaAs/AlGaAs quantum dots grown by droplet epitaxy. We applied stabilized single-photon Fourier spectroscopy to accurately evaluate the exciton linewidth of single quantum dots and found an extremely large distribution of the linewidth ranging from 40 to 400?eV at 4 K. Even the smallest linewidth is not lifetime limited and no correlation was observed between the linewidth and the exciton emission energy. These results are consistent with our previous observation of the strong correlation between the carrier dynamics in the barrier layer and the exciton linewidth of the quantum dots, and imply that the linewidth is not an intrinsic property of genuine quantum dots, but a consequence of their local environment, which can be explained by fluctuating Stark shift caused by photo-excited charged carriers.

  2. Inverse modelling of European N2O emissions. Assimilating observations from different networks

    Energy Technology Data Exchange (ETDEWEB)

    Corazza, M.; Bergamaschi, P.; Dentener, F. [European Commission Joint Research Centre, Institute for Environment and Sustainability, 21027 Ispra (Italy); Vermeulen, A.T.; Popa, E. [Energy research Centre of the Netherlands ECN, Petten (Netherlands); Aalto, T. [Finnish Meteorological Institute FMI, Helsinki (Finland); Haszpra, L. [Hungarian Meteorological Service, Budapest (Hungary); Meinhardt, F. [Umweltbundesamt UBA, Messstelle Schauinsland, Kirchzarten (Germany); O' Doherty, S. [School of Chemistry, University of Bristol, Bristol (United Kingdom); Thompson, R. [Laboratoire des Sciences du Climat et de l' Environment LSCE, Gif sur Yvette (France); Moncrieff, J. [Edinburgh University, Edinburgh (United Kingdom); Steinbacher, M. [Swiss Federal Laboratories for Materials Science and Technology Empa, Duebendorf (Switzerland); Jordan, A. [Max Planck Institute for Biogeochemistry, Jena (Germany); Dlugokencky, E. [NOAA Earth System Research Laboratory, Global Monitoring Division, Boulder, CO (United States); Bruehl, C. [Max Planck Institute for Chemistry, Mainz (Germany); Krol, M. [Wageningen University and Research Centre WUR, Wageningen (Netherlands)

    2010-07-01

    We describe the setup and first results of an inverse modelling system for atmospheric N2O, based on a four-dimensional variational (4DVAR) technique and the atmospheric transport zoom model TM5. We focus in this study on the European domain, utilizing a comprehensive set of quasi-continuous measurements over Europe, complemented by N2O measurements from the Earth System Research Laboratory of the National Oceanic and Atmospheric Administration (NOAA/ESRL) cooperative global air sampling network. Despite ongoing measurement comparisons among networks parallel measurements at a limited number of stations show that significant offsets exist among the different laboratories. Since the spatial gradients of N2O mixing ratios are of the same order of magnitude as these biases, the direct use of these biased datasets would lead to significant errors in the derived emissions. Therefore, in order to also use measurements with unknown offsets, a new bias correction scheme has been implemented within the TM5-4DVAR inverse modelling system, thus allowing the simultaneous assimilation of observations from different networks. The N2O bias corrections determined in the TM5-4DVAR system agree within 0.1 ppb (dry-air mole fraction) with the bias derived from the measurements at monitoring stations where parallel NOAA discrete air samples are available. The N2O emissions derived for the northwest European countries for 2006 show good agreement with the bottom-up emission inventories reported to the United Nations Framework Convention on Climate Change (UNFCCC). Moreover, the inverse model can significantly narrow the uncertainty range reported in N2O emission inventories, while the lack of measurements does not allow for better emission estimates in southern Europe. Several sensitivity experiments were performed to test the robustness of the results. It is shown that also inversions without detailed a priori spatio-temporal emission distributions are capable to reproduce major regional emission patterns within the footprint of the existing atmospheric network, demonstrating the strong constraints of the atmospheric observations on the derived emissions.

  3. Inverse modelling of European N2O emissions: assimilating observations from different networks

    Directory of Open Access Journals (Sweden)

    C. Brühl

    2011-03-01

    Full Text Available We describe the setup and first results of an inverse modelling system for atmospheric N2O, based on a four-dimensional variational (4DVAR technique and the atmospheric transport zoom model TM5. We focus in this study on the European domain, utilizing a comprehensive set of quasi-continuous measurements over Europe, complemented by N2O measurements from the Earth System Research Laboratory of the National Oceanic and Atmospheric Administration (NOAA/ESRL cooperative global air sampling network. Despite ongoing measurement comparisons among networks parallel measurements at a limited number of stations show that significant offsets exist among the different laboratories. Since the spatial gradients of N2O mixing ratios are of the same order of magnitude as these biases, the direct use of these biased datasets would lead to significant errors in the derived emissions. Therefore, in order to also use measurements with unknown offsets, a new bias correction scheme has been implemented within the TM5-4DVAR inverse modelling system, thus allowing the simultaneous assimilation of observations from different networks. The N2O bias corrections determined in the TM5-4DVAR system agree within ~0.1 ppb (dry-air mole fraction with the bias derived from the measurements at monitoring stations where parallel NOAA discrete air samples are available. The N2O emissions derived for the northwest European and east European countries for 2006 show good agreement with the bottom-up emission inventories reported to the United Nations Framework Convention on Climate Change (UNFCCC. Moreover, the inverse model can significantly narrow the uncertainty range reported in N2O emission inventories for these countries, while the lack of measurements does not allow to reduce the uncertainties of emission estimates in southern Europe. Several sensitivity experiments were performed to test the robustness of the results. It is shown that also inversions without detailed a priori spatio-temporal emission distributions are capable to reproduce major regional emission patterns within the footprint of the existing atmospheric network, demonstrating the strong constraints of the atmospheric observations on the derived emissions.

  4. Inverse modelling of European N2O emissions: assimilating observations from different networks

    Directory of Open Access Journals (Sweden)

    C. Brühl

    2010-11-01

    Full Text Available We describe the setup and first results of an inverse modelling system for atmospheric N2O, based on a four-dimensional variational (4DVAR technique and the atmospheric transport zoom model TM5. We focus in this study on the European domain, utilizing a comprehensive set of quasi-continuous measurements over Europe, complemented by N2O measurements from the Earth System Research Laboratory of the National Oceanic and Atmospheric Administration (NOAA/ESRL cooperative global air sampling network. Despite ongoing measurement comparisons among networks parallel measurements at a limited number of stations show that significant offsets exist among the different laboratories. Since the spatial gradients of N2O mixing ratios are of the same order of magnitude as these biases, the direct use of these biased datasets would lead to significant errors in the derived emissions. Therefore, in order to also use measurements with unknown offsets, a new bias correction scheme has been implemented within the TM5-4DVAR inverse modelling system, thus allowing the simultaneous assimilation of observations from different networks. The N2O bias corrections determined in the TM5-4DVAR system agree within 0.1 ppb (dry-air mole fraction with the bias derived from the measurements at monitoring stations where parallel NOAA discrete air samples are available. The N2O emissions derived for the northwest European countries for 2006 show good agreement with the bottom-up emission inventories reported to the United Nations Framework Convention on Climate Change (UNFCCC. Moreover, the inverse model can significantly narrow the uncertainty range reported in N2O emission inventories, while the lack of measurements does not allow for better emission estimates in southern Europe. Several sensitivity experiments were performed to test the robustness of the results. It is shown that also inversions without detailed a priori spatio-temporal emission distributions are capable to reproduce major regional emission patterns within the footprint of the existing atmospheric network, demonstrating the strong constraints of the atmospheric observations on the derived emissions.

  5. Quantification of Shipping Emissions in the Eastern Mediterranean and Comparison with Satellite Observations

    Science.gov (United States)

    Kilic, A.; Unal, A.; Kindap, T.; Karaca, M.; Khan, M. N.

    2010-12-01

    Shipping is considered as one of the main emission sources worldwide. Recent studies suggest that, in the Mediterrenean, ship emissions are responsible for 10-50% of black carbon, 2-12% ozone in the surface layer and 5-20% for nitrogen dioxide atmospheric column burden (Marmer et al., 2009). It is, therefore, essential to have an accurate emissions estimation for ships. Marmara Sea, an inland sea connecting the Mediterrenean to the Black Sea, has significant marine activity. Marmara region, surrounding the Marmara Sea, has over 30 million population (including Istanbul megacity) with significant emission sources (e.g., on-road traffic, industry). Emission amounts from ships can be calculated based on two different methodologies, one is according to the total amount of bunker fuels for maritime transport sold which is called top down approach and the other is shipping activity-based bottom-up approach. The top-down estimation method is not suitable for calculations of shipping emissions in Turkey since fuel sales cannot be accurately obtained. Also, top-down approaches possibly have some errors, since data assumptions for the average engine power, engine operating hours and emission factors are the most important uncertain inputs. Previously, a few studies based on bottom-up aproach have been carried on about shipping emissions in Marmara Sea according to the shipping statistics belong to Istanbul and Canakkale Straits and port regions. These studies were mainly depending on very rough assumptions such as avearage ship speed, fixed ships routes, generalized engine types and average fuel consumptions. Deniz C. (2008) estimated shipping emissions in 2003, for Marmara Sea and Turkish Straits as 111,000 tons for NOx, 87,000 tons for SO2, 5,451,000 tons for CO2, 4762 tons for PM. Although- between 2003 and 2008- there is approximately 15% increase in number of ships passsing through Turkish Straits, this study shows that, shippings emissions for the same region are estimated to be more than 3 times of previous studies. In this study, Automatic Information System (AIS) records of marine vessels (having 1 minute temporal resolution) for over 10,000 ships operating at the study area (including Marmara Sea, Istanbul and Canakkale Straits and some parts of Black Sea and Aegian Sea) were obtained from Turkish Undersecretariat for Maritime Affairs for the period between August 2008 and August 2009. These records include the position of the ships, gross tonnage and ship types. Using energy based emission factors for each operation mode, minute-by-minute emissions were estimated. Annual emission totals for merchant ships were estimated as 605,000 tons for NOX; 495,000 tons for SO2; 25,600 tons for HC; 53,300 tons for PM and 29,630,000 tons for CO2. This paper presents the methodology and the findings of the emissions estimates for ships. The results will also be compared to satellite observations. For this purpose, CO measurements from MOPITT and SO2 measurements from OMI will be utilized.

  6. Observations of oxidation products above a forest imply biogenic emissions of very reactive compounds

    OpenAIRE

    Holzinger, R.; Lee, A; Paw, K. T.; U. A. H. Goldstein

    2005-01-01

    Measurements of volatile organic compounds in a pine forest (Central California, 38.90° N, 120.63° W, 1315 m) reveal large quantities of previously unreported oxidation products of short lived biogenic precursors. The emission of biogenic precursors must be in the range of 13–66 µmol m?2 h?1 to produce the observed oxidation products. That is 6–30 times the emissio...

  7. Observation of hard X-rays line emission from Her X-1

    International Nuclear Information System (INIS)

    We present the results of a hard X-ray measurement of the binary source Her X-1, carried out with a balloon borne X-ray telescope consisting of two Multiwire Proportional Counters, having 900 cm2 sensitive area each and spectral resolution of 15% and 24% FWHM respectively at 60 keV. The source was observed during the 'Mid-on' state. Our data confirm the previously reported high energy emission line overimposed on the low energy thermal spectrum. (orig.)

  8. Sensitivity of wetland methane emissions to model assumptions: application and model testing against site observations

    Directory of Open Access Journals (Sweden)

    L. Meng

    2012-07-01

    Full Text Available Methane emissions from natural wetlands and rice paddies constitute a large proportion of atmospheric methane, but the magnitude and year-to-year variation of these methane sources are still unpredictable. Here we describe and evaluate the integration of a methane biogeochemical model (CLM4Me; Riley et al., 2011 into the Community Land Model 4.0 (CLM4CN in order to better explain spatial and temporal variations in methane emissions. We test new functions for soil pH and redox potential that impact microbial methane production in soils. We also constrain aerenchyma in plants in always-inundated areas in order to better represent wetland vegetation. Satellite inundated fraction is explicitly prescribed in the model, because there are large differences between simulated fractional inundation and satellite observations, and thus we do not use CLM4-simulated hydrology to predict inundated areas. A rice paddy module is also incorporated into the model, where the fraction of land used for rice production is explicitly prescribed. The model is evaluated at the site level with vegetation cover and water table prescribed from measurements. Explicit site level evaluations of simulated methane emissions are quite different than evaluating the grid-cell averaged emissions against available measurements. Using a baseline set of parameter values, our model-estimated average global wetland emissions for the period 1993–2004 were 256 Tg CH4 yr?1 (including the soil sink and rice paddy emissions in the year 2000 were 42 Tg CH4 yr?1. Tropical wetlands contributed 201 Tg CH4 yr?1, or 78% of the global wetland flux. Northern latitude (>50 N systems contributed 12 Tg CH4 yr?1. However, sensitivity studies show a large range (150–346 Tg CH4 yr?1 in predicted global methane emissions (excluding emissions from rice paddies. The large range is sensitive to (1 the amount of methane transported through aerenchyma, (2 soil pH (±100 Tg CH4 yr?1, and (3 redox inhibition (±45 Tg CH4 yr?1. Results are sensitive to biases in the CLMCN and to errors in the satellite inundation fraction. In particular, the high latitude methane emission estimate may be biased low due to both underestimates in the high-latitude inundated area captured by satellites and unrealistically low high-latitude productivity and soil carbon predicted by CLM4.

  9. Herschel HIFI observations of O$_2$ toward Orion: special conditions for shock enhanced emission

    CERN Document Server

    Chen, Jo-Hsin; Viti, Serena; Snell, Ronald; Lis, Dariusz C; Benz, Arnold; Bergin, Edwin; Black, John; Caselli, Paola; Encrenaz, Pierre; Falgarone, Edith; Goicoechea, Javier R; Hjalmarson, Ake; Hollenbach, David; Kaufman, Michael; Melnick, Gary; Neufeld, David; Pagani, Laurent; van der Tak, Floris; van Dishoeck, Ewine; Yildiz, Umut A

    2014-01-01

    We report observations of molecular oxygen (O$_2$) rotational transitions at 487 GHz, 774 GHz, and 1121 GHz toward Orion Peak A. The O2 lines at 487 GHz and 774 GHz are detected at velocities of 10-12 km/s with line widths 3 km/s; however, the transition at 1121 GHz is not detected. The observed line characteristics, combined with the results of earlier observations, suggest that the region responsible for the O$_2$ emission is 9" (6e16 cm) in size, and is located close to the H2 Peak 1position (where vibrationally-excited H$_2$ emission peaks), and not at Peak A, 23" away. The peak O2 column density is 1.1e18/cm2. The line velocity is close to that of 621 GHz water maser emission found in this portion of the Orion Molecular Cloud, and having a shock with velocity vector lying nearly in the plane of the sky is consistent with producing maximum maser gain along the line-of-sight. The enhanced O$_2$ abundance compared to that generally found in dense interstellar clouds can be explained by passage of a low-velo...

  10. Topographic Effects on the Surface Emissivity of a Mountainous Area Observed by a Spaceborne Microwave Radiometer

    Directory of Open Access Journals (Sweden)

    Frank S. Marzano

    2008-03-01

    Full Text Available A simulation study to understand the influence of topography on the surfaceemissivity observed by a satellite microwave radiometer is carried out. We analyze theeffects due to changes in observation angle, including the rotation of the polarization plane.A mountainous area in the Alps (Northern Italy is considered and the information on therelief extracted from a digital elevation model is exploited. The numerical simulation refersto a radiometric image, acquired by a conically-scanning radiometer similar to AMSR-E,i.e., flying at 705 km of altitude with an observation angle of 55°. To single out the impacton surface emissivity, scattering of the radiation due to the atmosphere or neighboringelevated surfaces is not considered. C and X bands, for which atmospheric effects arenegligible, and Ka band are analyzed. The results indicate that the changes in the localobservation angle tend to lower the apparent emissivity of a radiometric pixel with respectto the corresponding flat surface characteristics. The effect of the rotation of thepolarization plane enlarges (vertical polarization, or attenuates (horizontal polarizationthis decrease. By doing some simplifying assumptions for the radiometer antenna, theconclusion is that the microwave emissivity at vertical polarization is underestimated,whilst the opposite occurs for horizontal polarization, except for Ka band, for which bothunder- and overprediction may occur. A quantification of the differences with respect to aflat soil and an approximate evaluation of their impact on soil moisture retrieval areyielded.

  11. A multiple-mode three-dimensional model of VLF propagation in the earth-ionosphere waveguide in the presence of localized D region disturbances

    International Nuclear Information System (INIS)

    Transient localized D region disturbances, such as those associated with lightning discharges, affect the characteristics of VLF waves propagating in the Earth-ionosphere waveguide. In particular, both phase and amplitude changes in the subionospheric signal can be observed at receiving sites as a result of the wave scattering that takes place in the disturbed region. In the present paper we present a multiple-mode three- dimensional model of VLF propagation in the Earth-ionosphere waveguide in the presence of localized D region disturbances. The model takes into account great circle (GC) propagation paths with realistic ground and ionospheric conductivity changes that result in mode conversion along the path. It is assumed that conductivity changes transverse to the GC paths are negligible except in the vicinity of the D region disturbance and that mode coupling is negligible within the distributed region. This new model is applied to experimental observations and is found to be in general agreement. The diagnostics potential of the model for characterizing energetic particle precipitation events is discussed. 33 refs., 14 figs

  12. Location accuracy of long distance VLF lightning locationnetwork

    Directory of Open Access Journals (Sweden)

    C. J. Rodger

    2004-03-01

    Full Text Available An experimental VLF WorldWide Lightning Location (WWLL network is being developed to provide realtime locations of cloud to ground lightning discharges occurring throughout the globe. This network has expanded from a limited number of stations in the Western Pacific to its current state of 11 stations, in most longitude sectors, with additional stations planned in the near future. As part of the initial testing phase of the WWLL the network has operated in a simple mode, sending the station trigger times into a central processing point rather than using the sferic Time of Group Arrival (TOGA. During this initial stage, a significant quantity of lightning location data has been collected, some of which is being applied to research questions. In this paper the operation of the WWLL network is described, and the location accuracy of the pre-TOGA WWLL network is characterised. This is performed by contrasting commercial lightning location data from an Australian network, Kattron, over 2 days in January 2002, with 4 WWLL stations covering the same region. It was found that there were 426 matched lightning events, corresponding to lightning discharges with large lightning return stroke peak currents (mean absolute peak current of ~26kA compared with ~12kA for all Kattron events. By considering the random errors in the difference locations between the matching lightning events, an appropriate Gaussian timing error for the WWLL network of receiving stations is determined, and hence an estimate for the global location errors for the existing 11-station network is found. The "worst-case" global location error for the existing network ranges spatially from 7.5–100km, with the global median being 15km, and the global mean 30km. When the TOGA method is implemented, the station timing errors will decrease, allowing for an increase in the location accuracies. Hence, the location accuracy estimates determined in this paper will be very conservative for the future WWLL network employing the TOGA technique.

    Key words. Meteorology and atmospheric dynamics (lightning, atmospheric electricity, instruments and techniques

  13. Using TIMED/SABER nightglow observations to investigate hydroxyl emission mechanisms in the mesopause region

    Science.gov (United States)

    Xu, Jiyao; Gao, Hong; Smith, Anne K.; Zhu, Yajun

    2012-01-01

    Thermosphere, Ionosphere, Mesosphere, Energetics, and Dynamics (TIMED)/Sounding of the Atmosphere Using Broadband Emission Radiometry (SABER) observations of vertical profiles of the OH nightglow emission rates, temperature, and ozone are used along with a theoretical model of the OH nightglow to distinguish the dominant mechanism for the nightglow. From the comparison between the model fit and the observations we conclude that the chemical reaction O3 + H?OH(v ? 9) + O2 leads to population distributions of vibrationally excited states that are consistent with the measurements. The contribution of the reaction HO2 + O?OH(v ? 6) + O2 to the nightglow is not needed to reproduce the measurements above 80 km, at least for the emissions originating from vibrational transitions with v ? 4. The analysis also determines the best fits for quenching of OH(v) by O2 and O. The results show that the quenching rate of OH(v) by O2 is smaller and that the removal by O is larger than currently used for the analysis of SABER data. The rate constant for OH(v) quenching by O2 decreases with temperature in the mesopause region. The vertical profiles of atomic oxygen and hydrogen retrieved using both 2.0 and 1.6 ?m channels of Meinel band emission of the OH nightglow and the new quenching rates are slightly smaller than the profiles retrieved using only the 2.0 ?m channel and the quenching rate coefficients currently used for the analysis of SABER data. The fits of the model to the observations were also used to evaluate two other assumptions. The assumption of sudden death quenching of OH by O2 and N2 (i.e., quenching to the ground state rather than to intermediate vibrational levels) leads to poorer agreement with the SABER observations. The question of whether the reaction with or quenching by atomic oxygen depends on the OH vibrational level could not be resolved; assumptions of vibrational level dependence and independence both gave good fits to the observed emissions.

  14. Hard X-ray emission from Serpens X-1 as observed by INTEGRAL

    CERN Document Server

    Masetti, N; Palazzi, E; Amati, L; Caroli, E; Di Cocco, G; Frontera, F; Orlandini, M

    2004-01-01

    We here report results of an INTEGRAL observation of the X-ray burst and atoll source Ser X-1 performed on May 2003. The object was observed for a total of 400 ks but nearly 8 degrees off-axis due to the amalgamation with an observation of SS 433, the pointing target source. Ser X-1 was detected up to 30 keV with unprecedented positional accuracy for a high-energy emission; a sharp spectral drop is evident beyond this energy. Significant variability is seen in the 20-30 keV light curve. Comparison with previous observations indicates that the source was in its high (banana) state and displayed a soft spectrum during the INTEGRAL pointing. A (non simultaneous) broadband radio-to-gamma-rays broad-band spectral energy distribution for Ser X-1 is also presented for the first time.

  15. Direct Observation of Coronal Magnetic Fields by Vector Tomography of the Coronal Emission Line Polarizations

    CERN Document Server

    Kramar, M; Tomczyk, S

    2015-01-01

    This article presents the first direct "observation" of the global-scale, 3D coronal magnetic fields of Carrington Rotation (CR) Cycle 2112 using vector tomographic inversion techniques. The Vector tomographic inversion uses observational measurements of the Fe {\\sc{xiii}} 10747 \\AA\\ Hanle effect polarization signals by the Coronal Multichannel Polarimeter (CoMP) and coronal density and temperature structures derived from scalar tomographic inversion of STEREO/EUVI coronal emission lines (CELs) intensity images as inputs to derive a coronal magnetic field model that best reproduces the observed polarization signals. While independent verifications of the vector tomography results cannot be performed, we compared the tomography inverted coronal magnetic fields with those constructed by MagnetoHydroDynamic (MHD) simulation based on observed photospheric magnetic fields of CR 2112 and 2113. We found that the MHD model for CR 2112 is qualitatively consistent with the tomography inverted result for most of the rec...

  16. A climatology of dust emission events from northern Africa using long-term surface observations

    Science.gov (United States)

    Cowie, S. M.; Knippertz, P.; Marsham, J. H.

    2014-08-01

    Long-term (1984-2012) surface observations from 70 stations in the Sahara and Sahel are used to explore the diurnal, seasonal and geographical variations in dust emission events and thresholds. The frequency of dust emission (FDE) is calculated using the present weather codes of SYNOP reports. Thresholds are estimated as the wind speed for which there is a 50% probability of dust emission and are then used to calculate strong wind frequency (SWF) and dust uplift potential (DUP), where the latter is an estimate of the dust-generating power of winds. Stations are grouped into six coherent geographical areas for more in-depth analysis. FDE is highest at stations in Sudan and overall peaks in spring north of 23° N. South of this, where stations are directly influenced by the summer monsoon, the annual cycle in FDE is more variable. Thresholds are highest in northern Algeria, lowest in the latitude band 16-21° N and have greatest seasonal variations in the Sahel. Spatial variability in thresholds partly explain spatial variability in frequency of dust emission events on an annual basis. However, seasonal variations in thresholds for the six grouped areas are not the main control on seasonal variations in FDE. This is demonstrated by highly correlated seasonal cycles of FDE and SWF which are not significantly changed by using a fixed, or seasonally varying, threshold. The likely meteorological mechanisms generating these patterns such as low-level jets and haboobs are discussed.

  17. A climatology of dust emission events from northern Africa using long-term surface observations

    Directory of Open Access Journals (Sweden)

    S. M. Cowie

    2014-03-01

    Full Text Available Long-term (1984–2012 surface observations from 70 stations in the Sahara and Sahel are used to explore the diurnal, seasonal and geographical variations in dust emission events and thresholds. The frequency of dust emission (FDE is calculated using the present weather codes of SYNOP reports. Thresholds are estimated as the wind speed for which there is a 50% probability of dust emission and are then used to calculate strong wind frequency (SWF and dust uplift potential (DUP, where the latter is an estimate of the dust-generating power of winds. Stations are grouped into six coherent geographical areas for more in-depth analysis. FDE is highest at stations in Sudan and overall peaks in spring north of 23° N. South of this, where stations are directly influenced by the summer monsoon, the annual cycle in FDE is more variable. Thresholds are highest in northern Algeria, lowest in the latitude band 16–21° N and have greatest seasonal variations in the Sahel. Spatial variability in thresholds partly explain spatial variability in frequency of dust emission events on an annual basis. However, seasonal variations in thresholds for the six grouped areas are not the main control on seasonal variations in FDE. This is demonstrated by highly correlated seasonal cycles of FDE and SWF which are not significantly changed by using a fixed, or seasonally varying, threshold. The likely meteorological mechanisms generating these patterns such as low-level jets and haboobs are discussed.

  18. Volcanic emissions from AIRS observations: detection methods, case study, and statistical analysis

    Science.gov (United States)

    Hoffmann, Lars; Griessbach, Sabine; Meyer, Catrin I.

    2014-10-01

    Monitoring volcanic emissions is important for many reasons, most notably for impacts on climate and possible hazards for human health or aviation safety. Satellite instruments allow for long-term monitoring of volcanic emissions on a global scale. In this paper we introduce new detection indices for volcanic ash and sulfur dioxide (SO2) that are optimized for radiance measurements of the Atmospheric InfraRed Sounder (AIRS). Radiative transfer calculations are used to determine the sensitivity of the ash index (AI) on the aerosol optical depth and the SO2 index (SI) on the SO2 column density. A case study on AIRS observations after the eruption of the Puyehue Cordon-Caulle, Chile, in June 2011 demonstrates that the new indices work in practice. A statistical analysis of a ten-year record (2002 to 2013) of AIRS data provides AI thresholds that help to better discriminate volcanic emissions from regular events such as dust storms. We compared our new SI with the AIRS operational product and found that it is more sensitive and better suppresses interfering background signals. Our new volcanic emission data products have been successfully applied in other scientific studies.

  19. Energy Spectra of the Soft X-ray Diffuse Emission in Fourteen Fields Observed with Suzaku

    CERN Document Server

    Yoshino, T; Yamasaki, N Y; Takei, Y; Hagihara, T; Masui, K; Bauer, M; McCammon, D; Fujimoto, R; Wang, Q D; Yao, Y

    2009-01-01

    The soft diffuse X-ray emission of twelve fields observed with Suzaku are presented together with two additional fields from previous analyses. All have galactic longitudes 65 deg < l < 295 deg to avoid contributions from the very bright diffuse source that extends at least 30 deg from the Galactic center. The surface brightnesses of the Suzaku nine fields for which apparently uncontaminated ROSAT All Sky Survey (RASS) were available were statistically consistent with the RASS values, with an upper limit for differences of 17e-6 c s-1 amin-2 in R45-band. The OVII and OVIII intensities are well correlated to each other, and OVII emission shows an intensity floor at ~2 photons s-1 cm-2 str-1 (LU). The high-latitude OVIII emission shows a tight correlation with excess of OVII emission above the floor, with OVIII intensity = 0.5 x [(OVII intensity) - 2 LU], suggesting that temperatures averaged over different line-of-sight show a narrow distribution around ~0.2 keV. We consider that the offset intensity of ...

  20. ON THE NATURE OF PROMINENCE EMISSION OBSERVED BY SDO/AIA

    International Nuclear Information System (INIS)

    The prominence-corona transition region (PCTR) plays a key role in the thermal and pressure equilibrium of solar prominences. Our knowledge of this interface is limited and several major issues remain open, including the thermal structure and, in particular, the maximum temperature of the detectable plasma. The high signal-to-noise ratio of images obtained by the Atmospheric Imaging Assembly (AIA) on NASA's Solar Dynamics Observatory clearly shows that prominences are often seen in emission in the 171 and 131 bands. We investigate the temperature sensitivity of these AIA bands for prominence observations, in order to infer the temperature content in an effort to explain the emission. Using the CHIANTI atomic database and previously determined prominence differential emission measure distributions, we build synthetic spectra to establish the main emission-line contributors in the AIA bands. We find that the Fe IX line always dominates the 171 band, even in the absence of plasma at >106 K temperatures, while the 131 band is dominated by Fe VIII. We conclude that the PCTR has sufficient plasma emitting at >4 × 105 K to be detected by AIA.

  1. On the Nature of Prominence Emission Observed by SDO/AIA

    Science.gov (United States)

    Parenti, S.; Schmieder, B.; Heinzel, P.; Golub, L.

    2012-07-01

    The prominence-corona transition region (PCTR) plays a key role in the thermal and pressure equilibrium of solar prominences. Our knowledge of this interface is limited and several major issues remain open, including the thermal structure and, in particular, the maximum temperature of the detectable plasma. The high signal-to-noise ratio of images obtained by the Atmospheric Imaging Assembly (AIA) on NASA's Solar Dynamics Observatory clearly shows that prominences are often seen in emission in the 171 and 131 bands. We investigate the temperature sensitivity of these AIA bands for prominence observations, in order to infer the temperature content in an effort to explain the emission. Using the CHIANTI atomic database and previously determined prominence differential emission measure distributions, we build synthetic spectra to establish the main emission-line contributors in the AIA bands. We find that the Fe IX line always dominates the 171 band, even in the absence of plasma at >106 K temperatures, while the 131 band is dominated by Fe VIII. We conclude that the PCTR has sufficient plasma emitting at >4 × 105 K to be detected by AIA.

  2. On the nature of prominence emission observed by SDO/AIA

    CERN Document Server

    Parenti, Susanna; Heinzel, Petr; Golub, Leon

    2012-01-01

    The Prominence-Corona Transition Region (PCTR) plays a key role in the thermal and pressure equilibrium of solar prominences. Our knowledge of this interface is limited and several major issues remain open, including the thermal structure and, in particular, the maximum temperature of the detectable plasma. The high signal-to-noise ratio of images obtained by the Atmospheric Imaging Assembly (AIA) on NASA's Solar Dynamics Observatory clearly show that prominences are often seen in emission in the 171 and 131 bands. We investigate the temperature sensitivity of these AIA bands for prominence observation, in order to infer the temperature content in an effort to explain the emission. Using the CHIANTI atomic database and previously determined prominence differential emission measure distributions, we build synthetic spectra to establish the main emission-line contributors in the AIA bands. We find that the Fe IX line always dominates the 171 band, even in the absence of plasma at > 10^6 K temperatures, while th...

  3. Detection and Characterization of Cold Interstellar Dust and PAH Emission from COBE Observations

    CERN Document Server

    Dwek, E

    1996-01-01

    Using data obtained by the DIRBE and FIRAS instruments on the COBE spacecraft we present the mean 3.5-1000 um dust spectrum from the high latitude cirrus clouds. These data represent the most comprehensive wavelength coverage of dust emission, and first strong evidence for the presence of PAHs in cirrus. The COBE data are well fit with a dust model consisting of a mixture of PAH molecules and bare astronomical silicate and graphite grains. From the model we derive the size distribution, abundances relative to the total hydrogen column density, and relative contribution of each dust component to the observed IR emission. The model provides a good fit to the FIRAS spectrum in the 140-500 um wavelength regime, but leaves an excess Galactic emission component at 500-1000 um. The nature of this component is still unresolved. The model requires about 85% of the solar carbon abundance to be locked up in dust, a third of that in PAHs. The remaining ~ 15% is in the gas as inferred from the [C II] 158 um line emission ...

  4. Gamma-Ray Emission in Dissipative Pulsar Magnetospheres: From Theory to Fermi Observations

    Science.gov (United States)

    Kalapotharakos, Constantinos; Harding, Alice K.; Kazanas, Demosthenes

    2014-10-01

    We compute the patterns of ?-ray emission due to curvature radiation in dissipative pulsar magnetospheres. Our ultimate goal is to construct macrophysical models that are able to reproduce the observed ?-ray light curve phenomenology recently published in the Second Fermi Pulsar Catalog. We apply specific forms of Ohm's law on the open field lines using a broad range for the macroscopic conductivity values that result in solutions ranging, from near-vacuum to near-force-free. Using these solutions, we generate model ?-ray light curves by calculating realistic trajectories and Lorentz factors of radiating particles under the influence of both the accelerating electric fields and curvature radiation reaction. We further constrain our models using the observed dependence of the phase lags between the radio and ?-ray emission on the ?-ray peak separation. We perform a statistical comparison of our model radio-lag versus peak-separation diagram and the one obtained for the Fermi standard pulsars. We find that for models of uniform conductivity over the entire open magnetic field line region, agreement with observations favors higher values of this parameter. We find, however, significant improvement in fitting the data with models that employ a hybrid form of conductivity, specifically, infinite conductivity interior to the light cylinder and high but finite conductivity on the outside. In these models the ?-ray emission is produced in regions near the equatorial current sheet but modulated by the local physical properties. These models have radio lags near the observed values and statistically best reproduce the observed light curve phenomenology. Additionally, they also produce GeV photon cut-off energies.

  5. Observation of Extended VHE Emission from the Supernova Remnant IC 443 with VERITAS

    CERN Document Server

    Acciari, V A; Arlen, T; Aune, T; Bautista, M; Beilicke, M; Benbow, W; Bradbury, S M; Buckley, J H; Bugaev, V; Butt, Y; Byrum, K; Cannon, A; Celik, O; Cesarini, A; Chow, Y C; Ciupik, L; Cogan, P; Colin, P; Cui, W; Daniel, M K; Dickherber, R; Duke, C; Dwarkadas, V V; Ergin, T; Fegan, S J; Finley, J P; Finnegan, G; Fortin, P; Fortson, L; Furniss, A; Gall, D; Gibbs, K; Gillanders, G H; Godambe, S; Grube, J; Guenette, R; Gyuk, G; Hanna, D; Hays, E; Holder, J; Horan, D; Hui, C M; Humensky, T B; Imran, A; Kaaret, Philip; Karlsson, N; Kertzman, M; Kieda, D; Kildea, J; Konopelko, A; Krawczynski, H; Krennrich, F; Lang, M J; Le Bohec, S; Maier, G; McCann, A; McCutcheon, M; Millis, J; Moriarty, P; Ong, R A; Otte, A N; Pandel, D; Perkins, J S; Pohl, M; Quinn, J; Ragan, K; Reyes, L C; Reynolds, P T; Roache, E; Rose, H J; Schroedter, M; Sembroski, G H; Smith, A W; Steele, D; Swordy, S P; Theiling, M; Toner, J A; Valcarcel, L; Varlotta, A; Vasilev, V V; Vincent, S; Wagner, R G; Wakely, S P; Ward, J E; Weekes, T C; Weinstein, A; Weisgarber, T; Williams, D A; Wissel, S; Wood, M; Zitzer, B

    2009-01-01

    We present evidence that the very-high-energy (VHE, E > 100 GeV) gamma-ray emission coincident with the supernova remnant IC 443 is extended. IC 443 contains one of the best-studied sites of supernova remnant/molecular cloud interaction and the pulsar wind nebula CXOU J061705.3+222127, both of which are important targets for VHE observations. VERITAS observed IC 443 for 37.9 hours during 2007 and detected emission above 300 GeV with an excess of 247 events, resulting in a significance of 8.3 standard deviations (sigma) before trials and 7.5 sigma after trials in a point-source search. The emission is centered at 06 16 51 +22 30 11 (J2000) +- 0.03_stat +- 0.08_sys degrees, with an intrinsic extension of 0.16 +- 0.03_stat +- 0.04_sys degrees. The VHE spectrum is well fit by a power law (dN/dE = N_0 * (E/TeV)^-Gamma) with a photon index of 2.99 +- 0.38_stat +- 0.3_sys and an integral flux above 300 GeV of (4.63 +- 0.90_stat +- 0.93_sys) * 10^-12 cm^-2 s^-1. These results are discussed in the context of existing ...

  6. Time-monitoring Observations of Br$\\gamma$ Emission from Young Stars

    CERN Document Server

    Eisner, J A; Rieke, M J; Flaherty, K M; Stone, Jordan M; Arnold, T J; Cortes, S R; Cox, E; Hawkins, C; Cole, A; Zajac, S; Rudolph, A L

    2014-01-01

    We present multiple epochs of near-IR spectroscopy for a sample of 25 young stars, including T Tauri, Herbig Ae/Be, and FU Ori objects. Using the FSPEC instrument on the Bok 90-inch telescope, we obtained K-band spectra of the BrGamma transition of hydrogen, with a resolution of ~3500. Epochs were taken over a span of >1 year, sampling time-spacings of roughly one day, one month, and one year. The majority of our targets show BrGamma emission, and in some cases these are the first published detections. Time-variability is seen in approximately half of the targets showing BrGamma emission. We compare the observed variability with expectations for rotationally-modulated accretion onto the central stars and time-variable continuum emission or extinction from matter in the inner disk. Our observations are not entirely consistent with models of rotationally-modulated magnetospheric accretion. Further monitoring, over a larger number of epochs, will facilitate more quantitative constraints on variability timescales...

  7. HST WFC3 Early Release Science: Emission-Line Galaxies from IR Grism Observations

    CERN Document Server

    Straughn, A N; Kuemmel, M; Walsh, J R; Cohen, S H; Gardner, J P; Windhorst, R A; O'Connell, R W; Pirzkal, N; Meurer, G; McCarthy, P J; Hathi, N P; Malhotra, S; Rhoads, J; Balick, B; Bond, H E; Calzetti, D; Disney, M J; Dopita, M A; Frogel, J A; Hall, D N B; Holtzman, J A; Kimble, R A; Luppino, G; Paresce, F; Saha, A; Silk, J I; Trauger, J T; Walker, A R; Whitmore, B C; Young, E T

    2010-01-01

    We present grism spectra of emission--line galaxies (ELGs) from 0.6--1.6 microns from the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST). These new infrared grism data augment previous optical Advanced Camera for Surveys G800L (0.6--0.95 micron) grism data in GOODS--South, extending the wavelength covereage well past the G800L red cutoff. The ERS grism field was observed at a depth of 2 orbits per grism, yielding spectra of hundreds of faint objects, a subset of which are presented here. ELGs are studied via the \\Ha, \\OIII, and \\OII\\ emission lines detected in the redshift ranges 0.2$\\cle$z$\\cle$1.6, 1.2$\\cle$z$\\cle$2.4 and 2.0$\\cle$z$\\cle$3.6 respectively in the G102 (0.8--1.1 microns; R$\\sim$210) and G141 (1.1--1.6 microns; R$\\sim$130) grisms. The higher spectral resolution afforded by the WFC3 grisms also reveals emission lines not detectable with the G800L grism (e.g., \\SII\\ and \\SIII\\ lines). From these relatively shallow observations, line luminosities, star--formation rates, and grism s...

  8. UV and EUV Emissions at the Flare Foot-points Observed by AIA

    CERN Document Server

    Qiu, Jiong; Longcope, Dana W; James,; Klimchuk, A; Wen-Juan,; Liu,

    2013-01-01

    A solar flare is composed of impulsive energy release events by magnetic reconnection, which forms and heats flare loops. Recent studies have revealed a two-phase evolution pattern of UV 1600\\AA\\ emission at the feet of these loops: a rapid pulse lasting for a few seconds to a few minutes, followed by a gradual decay on timescales of a few tens of minutes. Multiple band EUV observations by AIA further reveal very similar signatures. These two phases represent different but related signatures of an impulsive energy release in the corona. The rapid pulse is an immediate response of the lower atmosphere to an intense thermal conduction flux resulting from the sudden heating of the corona to high temperatures (we rule out energetic particles due to a lack of significant hard X-ray emission). The gradual phase is associated with the cooling of hot plasma that has been evaporated into the corona. The observed footpoint emission is again powered by thermal conduction (and enthalpy), but now during a period when appr...

  9. Observations of soft x-ray line emissions, from solar flares by Tansei 4 satellite

    International Nuclear Information System (INIS)

    Observations of soft X-ray line emissions of highly ionized iron and calcium have been made by Bragg spectrometer (LiF) aboard Tansei 4 satellite. Two wave length regions: 1.8 - 2.0 A and 3.1 - 3.25 A are measured simultaneously with spectral resolution of 0.005 A. A combination of high sensitivity and high time resolution measurements enabled to detect initial heating phase of flares. Rapid shift of the peak intensity in the iron line spectrum from 1,885 A region to 1.865 A region together with K sub(?) emmission has been observed at the very initial phase of impulsive flares in coincidence with hard X-ray and microwave bursts. This indicates that individual heating occurrs in less than 10 seconds simultaneously with the production of high energy electrons. Rapid increase of turbulence during the heating phase has been found from line broadening of FeXXV resonance line. It is also found that temperature and emission measure of soft X-ray emitting plasma increase and decrease simultaneously for small flares contrary to previous results by soft X-ray continuum emission. Plasma compression has been suggested for the heating mechanism of flares. (author)

  10. Observations of the extinction and excitation of the molecular hydrogen emission in Orion

    International Nuclear Information System (INIS)

    We present the first observations of two quadrupole rotational transitions of molecular hydrogen, the J = 7?5 and 9?7 transitions, along with several previously observed vibration-rotation H2 lines in the Orion molecular cloud. The line ratios indicate a 2.1 ?m extinction of approximately 2 mag. This extinction is intermediate between the earliest estimates of 4 mag and the more recent estimate of 1.2--2.0 mag. A comparison of the populations of three vibrational levels indicates a distribution of excitation temperatures between 1000 and 3000 K for the levels included; 1500 K best represents the temperature of the gas responsible for the v = 1?0 line emission. These results imply the total luminosity of the molecular hydrogen emission is 200 +- 80L/sub sun/, and the mass of the emitting gas is of order 0.05 M/sub sun/. The uncertainties in the structure of the extinction and the geometry of the emission region may make it impossible to determine the luminosity and mass of the hot H2 any more accurately. The mass and cooling time of the hot H2 indicates at least 10 M/sub sun/ of material has been heated over the lifetime of the outflow

  11. Observation of Solar Wind Charge Exchange Emission From Exospheric Material in and Outside Earth's Magnetosheath 2008 September 25

    Science.gov (United States)

    Snowden, S. L.; Collier, M. R.; Cravens, T.; Kuntz, K. D.; Lepri, S. T.; Robertson, I.; Tomas, L.

    2009-01-01

    A long XMM-Newton exposure is used to observe solar wind charge exchange (SWCX) emission from exospheric material in and outside Earth's magnetosheath. The light curve of the O vii (0.5-0.62 keV) band is compared with a model for the expected emission, and while the emission is faint and the light curve has considerable scatter, the correlation is significant to better than 99.9%. This result demonstrates the validity of the geocoronal SWCX emission model for predicting a contribution to astrophysical observations to a scale factor of order unity (1.5). In addition, an average value of the SWCX O vii emission from the magnetosheath over the observation of 2.6 +/- 0.5 LU is derived. The results also demonstrate the potential utility of using X-ray observations to study global phenomena of the magnetosheath which currently are only investigated using in situ measurements.

  12. Numerical modeling of Asian dust emission and transport with adjoint inversion using LIDAR network observations

    Directory of Open Access Journals (Sweden)

    K. Yumimoto

    2007-11-01

    Full Text Available A four-dimensional variational (4D-Var data assimilation system for a regional dust model (RAMS/CFORS-4DVAR; RC4 is applied to a heavy dust event which occurred between 20 March and 4 April 2007 over eastern Asia. The vertical profiles of the dust extinction coefficients derived from NIES LIDAR observation network are directly assimilated. We conduct two experiments to evaluate impacts of selections of observation sites: Experiment A uses five Japanese observation sites located only downwind of dust source regions; the other Experiment B uses these sites together with two other sites near source regions (China and Korea. Validations using various observation data (e.g., PM10 concentration, MODIS AOT, OMI Aerosol Index, and the dust extinction coefficient derived by space-based LIDAR NASA/CALIPSO are demonstrated. The modeled dust extinction coefficients are improved considerably through the assimilation. Assimilation results of Experiment A are consistent with those of Experiment B, indicating that observations of Experiment A can capture the dust event correctly and include sufficient information for dust emission inversion. Time series of dust AOT calculated by modeled and LIDAR dust extinction coefficients show good agreement. At Seoul, Matsue, and Toyama, assimilation reduces the root mean square errors of dust AOT by 31–32%. Vertical profiles of the dust layer observed by CALIPSO are also compared with assimilation results. The dense dust layer was trapped between ?=280–300 K and elevated higher toward the north; the model reproduces those characteristics well. The modeled dust AOT along the orbit paths agrees well with the CALIPSO dust AOT, OMI AI, and the coarse mode AOT retrieved from MODIS; especially the modeled dust AOT and the MODIS coarse mode AOT are consistent quantitatively. Assimilation results increase dust emissions over the Gobi Desert and Mongolia considerably; especially between 29 and 30 March, emission flux is increased by about 2–3 times. The heavy dust event is caused by the heavy dust uplift flux over the Gobi Desert and Mongolia during those days. We obtain the total optimized dust emissions of 57.9 Tg (Experiment A; 57.8% larger than before assimilation and 56.3 Tg (Experiment B; 53.4% larger.

  13. Characterization of gaseous pollutant and particulate matter emission rates from a commercial broiler operation part I: Observed trends in emissions

    Science.gov (United States)

    Roumeliotis, Taylor S.; Dixon, Brad J.; Van Heyst, Bill J.

    2010-10-01

    This paper characterizes the emission rates of size fractionated particulate matter, inorganic aerosols, acid gases, ammonia and methane measured over four flocks at a commercial broiler chicken facility. Mean emission rates of each pollutant, along with sampling notes, were reported in this paper, the first in a series of two. Sampling notes were needed because inherent gaps in data may bias the mean emission rates. The mean emission rates of PM 10 and PM 2.5 were 5.0 and 0.78 g day -1 [Animal Unit, AU] -1, respectively, while inorganic aerosols mean emission rates ranged from 0.15 to 0.46 g day -1 AU -1 depending on the season. The average total acid gas emission rate was 0.43 g day -1 AU -1 with the greatest contribution from nitrous and nitric acids and little contribution from sulfuric acid (as SO 2). Ammonia emissions were seasonally dependent, with a mean emission rate of 66.0 g day -1 AU -1 in the cooler seasons and 94.5 g day -1 AU -1 during the warmer seasons. Methane emissions were relatively consistent with a mean emission rate of 208 g day -1 AU -1. The diurnal pattern in each pollutant's emission rate was relatively consistent after normalizing the hourly emissions according to each daily mean emission rate. Over the duration of a production cycle, all the measured pollutants' emissions increased proportionally to the total live mass of birds in the house, with the exception of ammonia. Interrelationships between pollutants provide evidence of mutually dependent release mechanisms, which suggests that it may be possible to fill data gaps with minimal data requirements. In the second paper (Roumeliotis, T.S., Dixon, B.J., Van Heyst, B.J. Characterization of gaseous pollutants and particulate matter emission rates from a commercial broiler operation part II: correlated emission rates. Atmospheric Environment, 2010.), regression correlations are developed to estimate daily mean emission rates for data gaps and, using the normalized hourly diurnal patterns from this paper, emission factors were generated for each pollutant.

  14. EMISSION HEIGHT AND TEMPERATURE DISTRIBUTION OF WHITE-LIGHT EMISSION OBSERVED BY HINODE/SOT FROM THE 2012 JANUARY 27 X-CLASS SOLAR FLARE

    International Nuclear Information System (INIS)

    White-light emissions were observed from an X1.7 class solar flare on 2012 January 27, using three continuum bands (red, green, and blue) of the Solar Optical Telescope on board the Hinode satellite. This event occurred near the solar limb, and so differences in the locations of the various emissions are consistent with differences in heights above the photosphere of the various emission sources. Under this interpretation, our observations are consistent with the white-light emissions occurring at the lowest levels of where the Ca II H emission occurs. Moreover, the centers of the source regions of the red, green, and blue wavelengths of the white-light emissions are significantly displaced from each other, suggesting that those respective emissions are emanating from progressively lower heights in the solar atmosphere. The temperature distribution was also calculated from the white-light data, and we found the lower-layer emission to have a higher temperature. This indicates that high-energy particles penetrated down to near the photosphere, and deposited heat into the ambient lower layers of the atmosphere

  15. Search for extended gamma ray emission in Markarian 421 using VERITAS observations

    CERN Document Server

    ,

    2014-01-01

    Very high energy (VHE: >100 GeV) gamma rays coming from AGN can pair-produce on the intergalactic background light generating an electromagnetic cascade. If the Intergalactic Magnetic Field (IGMF) is sufficiently strong, this cascade may result in an extended isotropic emission of photons around the source, or halo. Using VERITAS observations of the blazar Markarian 421, we search for extended emission by comparing the source angular distribution (${\\theta}^2$) from a quiescent period with one coming from a flare period, which can be considered as halo-free. ${\\chi}^2$ test showed no significant statistical differences between the samples, suggesting that the effect is either non-existent or too weak to be detected. We calculated upper limits for the extended flux considering different angle ranges, the most stringent being <8% of the Crab Nebulae flux (C.U), in the range $0\\deg \\leq {\\theta} \\leq 0.1\\deg$ .

  16. Observations and trends of emissions from gas flaring in the Persian Gulf region using OMI

    Science.gov (United States)

    He, H.; Soltanieh, M.; Dickerson, R. R.

    2014-12-01

    Gas flaring associated with oil production is common where there is no local market for natural gas (mostly methane) and emits large amount of air pollutants and greenhouse gases to the atmosphere. OMI NO2, SO2 and Aerosol Index (AI) observations from 2005 to 2013 were analyzed, and successfully characterize emissions from major flaring sources in the Persian Gulf region. The SO2/NO2 ratio can distinguish flaring regions with relatively high SO2 component, from urban and industrial areas, where domestic heating, internal combustion of motor vehicles and power generation with a relatively high NO2 component dominate. Concentrations of these gases over facilities for production and export of oil reflect the economic recession of 2008/9 and reduced oil exports due to sanctions imposed in 2012. A nearby site involved primarily in copper smelting show no such trend. These temporal trends are being analyzed to improve emissions estimates.

  17. Energetic Neutral Atom Emissions From Venus: VEX Observations and Theoretical Modeling

    Science.gov (United States)

    Fok, M.-C.; Galli, A.; Tanaka, T.; Moore, T. E.; Wurz, P.; Holmstrom, M.

    2007-01-01

    Venus has almost no intrinsic magnetic field to shield itself from its surrounding environment. The solar wind thus directly interacts with the planetary ionosphere and atmosphere. One of the by-products of this close encounter is the production of energetic neutral atom (ENA) emissions. Theoretical studies have shown that significant amount of ENAs are emanated from the planet. The launch of the Venus Express (VEX) in 2005 provided the first light ever of the Venus ENA emissions. The observed ENA flux level and structure are in pretty good agreement with the theoretical studies. In this paper, we present VEX ENA data and the comparison with numerical simulations. We seek to understand the solar wind interaction with the planet and the impacts on its atmospheres.

  18. First observation of ?-delayed three-proton emission in 45Fe

    International Nuclear Information System (INIS)

    The decay of extremely neutron deficient 45Fe has been studied by means of a new type of a gaseous detector in which a technique of digital imaging was used to record tracks of charged particles. The ?+ decay channels accompanied by proton emission were clearly identified. In addition to ?-delayed one-proton and ?-delayed two-proton decays, ?-delayed three-proton emission was recorded which represents the first direct and unambiguous observation of this decay channel. The branching ratio for the ? decay of 45Fe and the corresponding partial half-life are found to be 0.30±0.04 and T1/2(?)=8.7±1.3 ms, respectively

  19. Dust emissivity in the Submm\\/Mm SCUBA and SIMBA observations of Barnard 68

    CERN Document Server

    Bianchi, S; Albrecht, M; Caselli, P; Chini, R; Galli, D; Walmsley, M C

    2003-01-01

    We have observed the dark cloud Barnard 68 with SCUBA at 850 um and with SIMBA at 1.2 mm. The submillimetre and millimetre dust emission correlate well with the extinction map of Alves, Lada and Lada (2001).The A_V/850um correlation is clearly not linear and suggests lower temperatures for the dust in the inner core of the cloud. Assuming a model for the temperature gradient, we derive the cloud-averaged dust emissivities (normalised to the V-Band extinction efficiency) at 850 um and 1.2 mm. We find k_850um/k_V = 4.0 +/- 1.0 x 10^-5 and k_1.2mm/k_V = 9.0 +/- 3.0 x 10^-6. These values are compared with other determinations in this wavelength regime and with expectations for models of diffuse dust and grain growth in dense clouds.

  20. Sensitivity of wetland methane emissions to model assumptions: application and model testing against site observations

    Directory of Open Access Journals (Sweden)

    L. Meng

    2011-06-01

    Full Text Available Methane emissions from natural wetlands and rice paddies constitute a large proportion of atmospheric methane, but the magnitude and year-to-year variation of these methane sources is still unpredictable. Here we describe and evaluate the integration of a methane biogeochemical model (CLM4Me; Riley et al., 2011 into the Community Land Model 4.0 (CLM4CN in order to better explain spatial and temporal variations in methane emissions. We test new functions for soil pH and redox potential that impact microbial methane production in soils. We also constrain aerenchyma in plants in always-inundated areas in order to better represent wetland vegetation. Satellite inundated fraction is explicitly prescribed in the model because there are large differences between simulated fractional inundation and satellite observations. A rice paddy module is also incorporated into the model, where the fraction of land used for rice production is explicitly prescribed. The model is evaluated at the site level with vegetation cover and water table prescribed from measurements. Explicit site level evaluations of simulated methane emissions are quite different than evaluating the grid cell averaged emissions against available measurements. Using a baseline set of parameter values, our model-estimated average global wetland emissions for the period 1993–2004 were 256 Tg CH4 yr?1, and rice paddy emissions in the year 2000 were 42 Tg CH4 yr?1. Tropical wetlands contributed 201 Tg CH4 yr?1, or 78 % of the global wetland flux. Northern latitude (>50 N systems contributed 12 Tg CH4 yr?1. We expect this latter number may be an underestimate due to the low high-latitude inundated area captured by satellites and unrealistically low high-latitude productivity and soil carbon predicted by CLM4. Sensitivity analysis showed a large range (150–346 Tg CH4 yr?1 in predicted global methane emissions. The large range was sensitive to: (1 the amount of methane transported through aerenchyma, (2 soil pH (± 100 Tg CH4 yr?1, and (3 redox inhibition (± 45 Tg CH4 yr?1.

  1. In-situ stressing of rock: Observation of infrared emission prior to failure

    Science.gov (United States)

    Dahlgren, R.; Freund, F. T.; Momayez, M.; Bleier, T. E.; Dunson, C.; Joggerst, P.; Jones, K.; Wang, S.

    2009-12-01

    Blocks of igneous rocks such as anorthosite and granite subjected at one end to uniaxial stress have been shown to emit a small but distinct excess amount of infrared (IR) light (Freund, F. T., et al, JASTP, 71, 2009). This anomalous IR emission arises from the radiative de-excitation of electron vacancy defects, which, upon stress-activation, flow into the unstressed portion and recombine at the surface. This non-thermal IR emission occurs in the 8 ?m to 14 ?m wavelength region. Field experiments are performed by slowly stressing large boulders and monitoring the IR emission in situ with a Bruker EM27 Fourier Transform Infrared (FTIR) spectrometer. The boulders are prepared by drilling four blind holes into the rock, 50-100 cm deep, in an array roughly parallel to, and behind, the surface from where the IR emission is monitored. Any debris and water is blown out of the boreholes with compressed air, and the rock is given time to dry and relax from drilling-induced stresses. The holes are then filled with grout that expands upon curing, creating an increasing radial pressure of up to 5 × 103 t/m2. The experiments were carried out with two large granite boulders, one of about 30 t of hard (over 150 MPa) granite at the University of Arizona’s Henry "Hank" Grunstedt San Xavier Mining Laboratory, located in the copper mining district near Tucson, AZ and the other of about 7 t of weathered granite in the Sierra Nevada foothills near Oakhurst, CA. The Bruker EM27 FTIR spectrometer equipped with a 20 cm reflective telescope collects the IR emission from a safe distance at a rate of a full 4-16 µm spectrum every 30 sec. After recording baseline data, the grout was mixed with water and poured into the holes as IR emission was monitored continuously until the experiment was terminated after rock failure. The time of failure is noted whenever the first acoustic or visual cues are sensed from the boulder. The IR data shows that after a period of quiescence, pronounced non-thermal IR emission is observed within minutes of the rock failure.

  2. Global SF6 emission estimates inferred from atmospheric observations - a test case for Kyoto reporting

    Science.gov (United States)

    Levin, I.; Naegler, T.

    2009-04-01

    Sulphur hexafluoride (SF6) is one of the strongest greenhouse gases per molecule in the atmosphere. SF6 emissions are also one of the six greenhouse gases targeted for reduction under the Kyoto Protocol. Here we present a long-term data set of globally distributed high-precision atmospheric SF6 observations which show an increase in mixing ratios from near zero in the 1970s to a global mean value of 6.3 ppt by the end of 2007. Because of its long atmospheric lifetime of around 3000 years, the accumulation of SF6 in the atmosphere is a direct measure of its global emissions: Analysis of our long-term data records implies a decrease of global SF6 sources after 1995, most likely due to emission reductions in industrialised countries. However, after 1998 the global SF6 source increases again, which is probably due to enhanced emissions from transition economies such as in China and India. Moreover, observed north-south concentration differences in SF6 suggest that emissions calculated from statistical (bottom-up) information and reported by Annex II parties to the United Nations Framework Convention on Climate Change (UNFCCC) may be too low by up to 50%. This clearly shows the importance and need for atmospheric (top-down) validation of Kyoto reporting which is only feasible with a dense world-wide observational network for greenhouse and other trace gases. Other members of the Global SF6 Trends Team: R. Heinz (1), D. Osusko (1), E. Cuevas (2), A. Engel (3), J. Ilmberger (1), R.L. Langenfelds (4), B. Neininger (5), C.v. Rohden (1), L.P. Steele (4), A. Varlagin (6), R. Weller (7), D.E. Worthy (8), S.A. Zimov (9) (1) Institut für Umweltphysik, University of Heidelberg, 69120 Heidelberg, Germany, (2) Centro de Investigación Atmosférica de Izaña, Instituto Nacional de Meteorología (INM), 38071 Santa Cruz de Tenerife, Spain, (3) Institut für Atmosphäre und Umwelt, J.W. Goethe Universität Frankfurt, 60438 Frankfurt/Main, Germany, (4) Centre for Australian Weather and Climate Research / CSIRO Marine and Atmospheric Research (CMAR), Aspendale, Victoria 3195, Australia, (5) MetAir AG, 6313 Menzingen, Switzerland, (6) Svertsov Institute for Evolutionary and Ecological Problems (IPEE), 117071 Moscow, Russia, (7) Alfred Wegener Institute for Polar and Marine Research, 27568 Bremerhaven, Germany, (8) Environment Canada, Climate Research Division / CCMR, Toronto, ON M3H 5T4, Canada, (9) Cherskii, Republic of Sakha (Yakutia), Russia

  3. Observations of nonmethane organic compounds during ARCTAS ? Part 1: Biomass burning emissions and plume enhancements

    Directory of Open Access Journals (Sweden)

    A. Wisthaler

    2011-11-01

    Full Text Available Mixing ratios of a large number of nonmethane organic compounds (NMOCs were observed by the Trace Organic Gas Analyzer (TOGA on board the NASA DC-8 as part of the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS field campaign. Many of these NMOCs were observed concurrently by one or both of two other NMOC measurement techniques on board the DC-8: proton-transfer-reaction mass spectrometry (PTR-MS and whole air canister sampling (WAS. A comparison of these measurements to the data from TOGA indicates good agreement for the majority of co-measured NMOCs. The ARCTAS study, which included both spring and summer deployments, provided opportunities to sample a large number of biomass burning (BB plumes with origins in Asia, California and central Canada, ranging from very recent emissions to plumes aged one week or more. For this analysis, BB smoke interceptions were grouped by flight, source region and, in some cases, time of day, generating 40 identified BB plumes for analysis. Normalized excess mixing ratios (NEMRs to CO were determined for each of the 40 plumes for up to 19 different NMOCs or NMOC groups. Although the majority of observed NEMRs for individual NMOCs or NMOC groups were in agreement with previously-reported values, the observed NEMRs to CO for ethanol, a rarely quantified gas-phase trace gas, ranged from values similar to those previously reported, to up to an order of magnitude greater. Notably, though variable between plumes, observed NEMRs of individual light alkanes are highly correlated within BB emissions, independent of estimated plume ages. BB emissions of oxygenated NMOC were also found to be often well-correlated. Using the NCAR Master Mechanism chemical box model initialized with concentrations based on two observed scenarios, fresh Canadian BB and fresh Californian BB, decreases are predicted for the low molecular weight carbonyls (i.e. formaldehyde, acetaldehyde, acetone and methyl ethyl ketone, MEK and alcohols (i.e. methanol and ethanol as the plumes evolve in time, i.e. the production of these compounds is less than the chemical loss. Comparisons of the modeled NEMRs to the observed NEMRs from BB plumes estimated to be three days in age or less indicate overall good agreement.

  4. Milagro Observations of TeV Emission from Galactic Sources in the Fermi Bright Source List

    CERN Document Server

    Abdo, A A; Aune, T; Berley, D; Chen, C; Christopher, G E; DeYoung, T; Dingus, B L; Ellsworth, R W; González, M M; Goodman, J A; Hays, E; Hoffman, C M; Huentemeyer, P H; Kolterman, B E; Linnemann, J T; McEnery, J E; Morgan, T; Mincer, A I; Némethy, P; Pretz, J; Ryan, J M; Parkinson, P M Saz; Shoup, A; Sinnis, G; Smith, A J; Vasileiou, V; Walker, G P; Williams, D A; Yodh, G B

    2009-01-01

    We present the result of a search of Milagro sky map for spatial correlations with sources from a subset of the recent Fermi Bright Source List (BSL). The BSL consists of the 205 most significant sources detected above 100 MeV by the Fermi Large Area Telescope. We select sources based on their categorization in the BSL, taking all confirmed or possible Galactic sources in the field of view of Milagro. Of the 34 Fermi sources selected, 14 are observed by Milagro at a significance of 3 standard deviations or more. We conduct this search with a new analysis which employs newly-optimized gamma-hadron separation and utilizes the full 8-year Milagro dataset. Milagro is sensitive to gamma rays above 1 TeV and these results extend the observation of these sources far above the Fermi energy band. With the new analysis and additional data, TeV emission is definitively observed associated with the Fermi pulsar J2229.0+6114, in the the Boomerang Pulsar Wind Nebula (PWN). Furthermore, an extended region of TeV emission is...

  5. High-J CO emission in the Cepheus E protostellar outflow observed with SOFIA/GREAT

    DEFF Research Database (Denmark)

    I. Gómez-Ruiz, A.; Gusdorf, A.

    2012-01-01

    We present and analyze two spectrally resolved high-J CO lines towards the molecular outflow Cep E, driven by an intermediate-mass class 0 protostar. Using the GREAT receiver on board SOFIA, we observed the CO (12--11) and (13--12) transitions (E_u ~ 430 and 500 K, respectively) towards one position in the blue lobe of this outflow, that had been known to display high-velocity molecular emission. We detect the outflow emission in both transitions, up to extremely high velocities (~ 100 km/s with respect to the systemic velocity). We divide the line profiles into three velocity ranges that each have interesting spectral features: standard, intermediate, and extremely high-velocity. One distinct bullet is detected in each of the last two. A large velocity gradient analysis for these three velocity ranges provides constraints on the kinetic temperature and volume density of the emitting gas, >~ 100 K and > ~ 10^4 cm^-3, respectively. These results are in agreement with previous ISO observations and are comparable with results obtained by Herschel for similar objects. We conclude that high-J CO lines are a good tracer of molecular bullets in protostellar outflows. Our analysis suggests that different physical conditions are at work in the intermediate velocity range compared with the standard and extremely high-velocity gas at the observed position.

  6. NuSTAR Observations of the Bullet Cluster: Constraints on Inverse Compton Emission

    CERN Document Server

    Wik, Daniel R; Molendi, Silvano; Madejski, Grzegorz; Harrison, Fiona A; Zoglauer, Andreas; Grefenstette, Brian W; Gastaldello, Fabio; Madsen, Kristin K; Westergaard, Niels J; Ferreira, Desiree D M; Kitaguchi, Takao; Pedersen, Kristian; Boggs, Steven E; Christensen, Finn E; Craig, William W; Hailey, Charles J; Stern, Daniel; Zhang, William W

    2014-01-01

    The search for diffuse non-thermal inverse Compton (IC) emission from galaxy clusters at hard X-ray energies has been undertaken with many instruments, with most detections being either of low significance or controversial. Background and contamination uncertainties present in the data of non-focusing observatories result in lower sensitivity to IC emission and a greater chance of false detection. We present 266ks NuSTAR observations of the Bullet cluster, detected from 3-30 keV. NuSTAR's unprecedented hard X-ray focusing capability largely eliminates confusion between diffuse IC and point sources; however, at the highest energies the background still dominates and must be well understood. To this end, we have developed a complete background model constructed of physically inspired components constrained by extragalactic survey field observations, the specific parameters of which are derived locally from data in non-source regions of target observations. Applying the background model to the Bullet cluster dat...

  7. Observations of the emission processes of a fast capillary discharge operated in nitrogen

    International Nuclear Information System (INIS)

    We present observations of the emission characteristics of the plasma processes of a low inductance, sub Joule, compact capillary discharge, when operated in nitrogen at up to 600 Hz. A quarter period of under 10 ns is achieved allowing currents of order 5 kA. Four geometries are explored: two lengths, 21 and 36 mm, and two internal diameters, 1.6 and 3.2 mm. Transient hollow cathode fast electrons are associated with enhanced soft x-ray emission at shorter wavelengths with measured output energies of N VI at 28.8 Å as compared with a Maxwellian plasma. Time-integrated spectroscopy together with filtered diode signals, and with spatial resolution, reveals a small axial emitting plasma close to the anode. Optical time-resolved spectroscopy gives larger scale plasma parameters both of the anode and the cathode plasmas. This volume plasma covers the range 2–8 eV, while the x-ray emitting plasma covers 10–20 eV, according to geometry. Nitrogen metastable emission is also observed in the hollow cathode volume prior to breakdown. Both internal wall diameter and capillary length affect both the spectrum and the x-ray emitting volume as does the axial pressure gradient. Electron beams from the transient hollow cathode are associated in model spectra with the observed N VI, O VI and Al VII–X ionization stages. Operating conditions that affect the spectral purity and discharge characteristics include the internal pressure gradient and nitrogen to helium mix ratio. We disitrogen to helium mix ratio. We discuss the suitability of the capillary geometries as a soft x-ray source and in the context of available computer models. (paper)

  8. Observations and interpretation of the permitted emission line spectra of quasi-stellar objects

    International Nuclear Information System (INIS)

    Combined optical and infrared spectrophotometry of the emission line spectra of 14 QSOs are presented. These observations allow the determination of the hydrogen L?/Balmer line ratios in high redshift objects and the P?/Balmer line ratios in low redshift objects. An attempt is made to synthesize the intrinsic hydrogen line spectrum of QSOs. The resulting spectrum is inconsistent with optically thin recombination models reddened by dust but agrees qualitatively with recent optically thick radiative transfer calculations (one of which is presented here) with T/sub e/ greater than or equal to 1.5 x 104K in the line emitting region and with perhaps a small amount of reddening (E(B-V) less than or equal to 0.2). Much of the observed continuum structure between 2000 A and 4000 A can be attributed to optically thin Balmer continuum emission from a region with T/sub e/ less than or equal to 104K plus blended optically thick FeII transitions. Since previous published permitted line formation models for QSOs were unable to produce adequate agreement with the observed emission line spectra, a more detailed formalism was developed. The present work describes a formalism for the solution of the frequency-integrated radiative transfer equation and the atomic steady state equation appropriate to an externally-irradiated, semi-infinite medium. The source functions are cast into equivalent two level forms, and the equations linking the emergent flux, the line cns linking the emergent flux, the line center source function, the flux divergence coefficient, rho, and the atomic steady state equation are given

  9. EVE-RHESSI Observations of Thermal and Nonthermal Solar Flare Emission

    Science.gov (United States)

    McTiernan, James; Caspi, A.; Warren, H.

    2013-07-01

    Solar flares accelerate electrons up to hundreds of MeV and heat plasma to tens of MK. In large (GOES M- and X-class) flares, in addition to the 10-25 MK plasma thought to be the result of chromospheric evaporation, even hotter plasma (up to 50 MK) may be directly heated in the corona. While observations of hard X-ray bremmstrahlung directly probe the nonthermal electron population, for large flares the spectra below 20-30 keV are typically dominated by thermal emission. The low energy extent of the nonthermal spectrum can be only loosely quantified by hard X-ray spectrometers, resulting in significant implications for calculating flare energy budgets and for constraining possible acceleration mechanisms. A precise characterization of the thermal emission is imperative. Extreme ultraviolet observations from the EUV Variability Experiment (EVE) on-board the Solar Dynamics Observatory (SDO), combined with X-ray data from the Reuven Ramaty High Energy Spectroscopic Imager (RHESSI), currently offer the most comprehensive view of the flare temperature distribution. EVE observes EUV emission lines with peak formation temperatures of 2-20 MK, while RHESSI observes the X-ray bremsstrahlung of hot, 10-50 MK plasma; combined, the two instruments cover the full range of flare plasma temperatures. In this work, we handle the EVE-RHESSI data for a few large flares in three steps; first we calculate differential emission measures (DEMs) using EVE and RHESSI independently for purposes of cross-calibration. Second, we create combined EVE-RHESSI DEMs, fixing the nonthermal spectral parameters to those found using a RHESSI-only spectral fit. The final step is to unconstrain the nonthermal parameters (in particular, the low-energy cutoff of the spectrum) and let them be fit in the same process as the EVE-RHESSI DEM, to obtain a fully self-consistent thermal plus nonthermal model. This research is supported by NASA Heliophysics Guest Investigator Grant NNX12AH48G.

  10. Observations of the Mo emission band satellite obtained by incident electrons of near-threshold energy

    OpenAIRE

    Jonnard, Philippe; Bonnelle, Christiane; Jarrige, I.

    2004-01-01

    The satellite of the Mo L$\\beta_{2}$ valence emission band ($4d \\rightarrow 2p_{3/2}$ transition) is excited by bombarding a molybdenum target with electrons having energy around the $2p_{3/2}$ ionization threshold. This satellite, whose intensity is higher than that of the parent transition, is observed about 8~eV above it. This energy interval is well accounted by theoretical calculations that take into account the correlations between the various decay processes. New light is shed on the d...

  11. Persistent emission and bursts from Aquila X-1 observed by Einstein

    Science.gov (United States)

    Czerny, M.; Czerny, B.; Grindlay, J. E.

    1987-01-01

    A two-component model is applied to an X-ray outburst from Aql X-1 recorded by the Einstein Observatory in March-April 1979. The model treats such outbursts as a combination of a soft, multicolor component (accretion disk) and a hard-blackbody component (boundary layer emission). Evaluation of the light curves indicates that the bursts were caused by an increase in the accretion rate. The calculations also suggest that the system observed is inclined at a 33 deg angle.

  12. Persistent emission and bursts from Aquila X-1 observed by Einstein

    International Nuclear Information System (INIS)

    A two-component model is applied to an X-ray outburst from Aql X-1 recorded by the Einstein Observatory in March-April 1979. The model treats such outbursts as a combination of a soft, multicolor component (accretion disk) and a hard-blackbody component (boundary layer emission). Evaluation of the light curves indicates that the bursts were caused by an increase in the accretion rate. The calculations also suggest that the system observed is inclined at a 33 deg angle. 37 references

  13. The zonal structure of tropical O3 and CO as observed by the Tropospheric Emission Spectrometer in November 2004 – Part 1: Inverse modeling of CO emissions

    Directory of Open Access Journals (Sweden)

    J. Worden

    2009-06-01

    Full Text Available We conduct an inverse modeling analysis of measurements of atmospheric CO from the TES and MOPITT satellite instruments using the GEOS-Chem global chemical transport model to quantify emissions of CO in the tropics in November 2004. We also assess the consistency of the information provided by TES and MOPITT on surface emissions of CO. We focus on the tropics in November 2004, during the biomass burning season, because TES observations of CO and O3 and MOPITT observations of CO reveal significantly greater abundances of these gases than simulated by the GEOS-Chem model during that period. We find that both datasets suggest substantially greater emissions of CO from sub-equatorial Africa and the Indonesian/Australian region than in the climatological emissions in the model. The a posteriori emissions from sub-equatorial Africa based on TES and MOPITT data were 173 Tg CO/yr and 184 Tg CO/yr, respectively, compared to the a priori of 95 Tg CO/yr. In the Indonesian/Australian region, the a posteriori emissions inferred from TES and MOPITT data were 155 Tg CO/yr and 185 Tg CO/yr, respectively, whereas the a priori was 69 Tg CO/yr. The differences between the a posteriori emission estimates obtained from the two datasets are generally less than 20%. The a posteriori emissions significantly improve the simulated distribution of CO, however, large regional residuals remain, and are likely due to systematic errors in the analysis. Reducing these residuals and improving the accuracy of top-down emission estimates will require better characterization of systematic errors in the observations and the model (chemistry and transport.

  14. Evaluation of a plot-scale methane emission model using eddy covariance observations and footprint modelling

    Directory of Open Access Journals (Sweden)

    A. Budishchev

    2014-09-01

    Full Text Available Most plot-scale methane emission models – of which many have been developed in the recent past – are validated using data collected with the closed-chamber technique. This method, however, suffers from a low spatial representativeness and a poor temporal resolution. Also, during a chamber-flux measurement the air within a chamber is separated from the ambient atmosphere, which negates the influence of wind on emissions. Additionally, some methane models are validated by upscaling fluxes based on the area-weighted averages of modelled fluxes, and by comparing those to the eddy covariance (EC flux. This technique is rather inaccurate, as the area of upscaling might be different from the EC tower footprint, therefore introducing significant mismatch. In this study, we present an approach to validate plot-scale methane models with EC observations using the footprint-weighted average method. Our results show that the fluxes obtained by the footprint-weighted average method are of the same magnitude as the EC flux. More importantly, the temporal dynamics of the EC flux on a daily timescale are also captured (r2 = 0.7. In contrast, using the area-weighted average method yielded a low (r2 = 0.14 correlation with the EC measurements. This shows that the footprint-weighted average method is preferable when validating methane emission models with EC fluxes for areas with a heterogeneous and irregular vegetation pattern.

  15. Novel Stimulated Electromagnetic Emission Observations with Artificial Airglow Using RF Excitation with HAARP

    Science.gov (United States)

    Briczinski, S. J., Jr.; Bernhardt, P. A.; Siefring, C. L.; Michell, R.; Hampton, D. L.; Watkins, B. J.; Bristow, W. A.

    2014-12-01

    High power HF radio waves interacting with the ionosphere provide aeronomers with a unique space-based laboratory capability. The High-Frequency Active Auroral Research Program (HAARP) in Gakona, Alaksa is the world's largest heating facility, producing effective radiated powers in the gigawatt range. Experiments performed at HAARP have allowed researchers to study many non-linear effects of wave-plasma interactions. Stimulated Electromagnetic Emissions (SEE) are of interest to the ionospheric community for its diagnostic purposes. Typical SEE experiments at HAARP have focused on characterizing the parametric decay of the electromagnetic pump wave into several different wave modes such as upper and lower hybrid, ion acoustic, ion-Bernstein and electron-Bernstein. Recent HAARP experiments have used both conventional and novel techniques to excite ionospheric disturbances at gyroharmonic frequencies. Stable layers of artificial ionization have been generated using a "twisted beam" pattern with the heating array. Compared to pencil beam techniques, these layers are long-lived and produce their own unique SEE patterns. The "downshifted mass" or DSM has shown to be a strong indicator of artificial ionization generation. Additionally, several other previously uncharacterized SEE features have been observed. These emissions are under study to be linked with other heating phenomena such as enhanced optical emissions, ion and plasma line generation, HF radar backscatter and enhanced electron acceleration.

  16. On the dependence of the OH* Meinel emission altitude on vibrational level: SCIAMACHY observations and model simulations

    Directory of Open Access Journals (Sweden)

    J. P. Burrows

    2012-09-01

    Full Text Available Measurements of the OH Meinel emissions in the terrestrial nightglow are one of the standard ground-based techniques to retrieve upper mesospheric temperatures. It is often assumed that the emission peak altitudes are not strongly dependent on the vibrational level, although this assumption is not based on convincing experimental evidence. In this study we use Envisat/SCIAMACHY (Scanning Imaging Absorption spectroMeter for Atmospheric CHartographY observations in the near-IR spectral range to retrieve vertical volume emission rate profiles of the OH(3-1, OH(6-2 and OH(8-3 Meinel bands in order to investigate whether systematic differences in emission peak altitudes can be observed between the different OH Meinel bands. The results indicate that the emission peak altitudes are different for the different vibrational levels, with bands originating from higher vibrational levels having higher emission peak altitudes. It is shown that this finding is consistent with the majority of the previously published results. The SCIAMACHY observations yield differences in emission peak altitudes of up to about 4 km between the OH(3-1 and the OH(8-3 band. The observations are complemented by model simulations of the fractional population of the different vibrational levels and of the vibrational level dependence of the emission peak altitude. The model simulations reproduce the observed vibrational level dependence of the emission peak altitude well – both qualitatively and quantitatively – if quenching by atomic oxygen as well as multi-quantum collisional relaxation by O2 is considered. If a linear relationship between emission peak altitude and vibrational level is assumed, then a peak altitude difference of roughly 0.5 km per vibrational level is inferred from both the SCIAMACHY observations and the model simulations.

  17. On the dependence of the OH* Meinel emission altitude on vibrational level: SCIAMACHY observations and model simulations

    Directory of Open Access Journals (Sweden)

    J. P. Burrows

    2012-02-01

    Full Text Available Measurements of the OH Meinel emissions in the terrestrial nightglow are one of the standard ground-based techniques to retrieve upper mesospheric temperatures. It is often assumed that the emission peak altitudes are not strongly dependent on the vibrational level, although this assumption is not based on convincing experimental evidence. In this study we use Envisat/SCIAMACHY (Scanning Imaging Absorption spectroMeter for Atmospheric CHartographY observations in the near-IR spectral range to retrieve vertical volume emission rate profiles of the OH(3-1, OH(6-2 and OH(8-3 Meinel bands in order to investigate, whether systematic differences in emission peak altitudes can be observed between the different OH Meinel bands. The results indicate that the emission peak altitudes are different for the different vibrational levels, with bands originating from higher vibrational levels having higher emission peak altitudes. It is shown that this finding is consistent with the majority of the previously published results. The SCIAMACHY observations yield differences in emission peak altitudes of up to about 4 km between the OH(3-1 and the OH(8-3 band. The observations are complemented by model simulations of the fractional population of the different vibrational levels and of the vibrational level dependence of the emission peak altitude. The model simulations well reproduce the observed vibrational level dependence of the emission peak altitude – both qualitatively and quantitatively – if quenching by atomic oxygen as well as multi-quantum collisional relaxation by O2 is considered. If a linear relationship between emission peak altitude and vibrational level is assumed, then a peak altitude difference of roughly 0.5 km per vibrational level is inferred from both the SCIAMACHY observations and the model simulations.

  18. Neutral hydrogen 21 cm line emission-absorption observations of the interstellar medium

    International Nuclear Information System (INIS)

    Neutral hydrogen gas in the interstellar medium (ISM) emits a narrow spectral line is easily detectable in all directions. This gas also absorbs continuum radiation along lines of sight to distant radio sources. If spectra taken along these lines of sight can be reliably decomposed into emission and absorption spectra, then a mean excitation temperature, the spin temperature T/sub S/, can be determined. These temperature measurements constrain possible models of the ISM. The direct interpretation of measured spin temperatures is limited by the fact that they are harmonic mean temperatures for all the neutral material at each velocity along each line of sight. It is known from previous studies that cold (T/sub S/ approx. few hundred K) and warm (T/sub s/ approx. few thousand K) neutral phases exist in the ISM, and since the absorption is particularly sensitive to the cold gas, measured spin temperatures might nowhere along the line of sight equal the physical temperature of the gas. In practice, the reliability of the decomposition of the on source spectrum into emission and absorption components is limited by receiver noise and by compromises between the ideal and realizable observations. These compromises involve assumptions which cannot be directly tested about the spatial structure of the gas perpendicular to the line of sight, particularly on very small angular scales. Emission and absorption spectra towards 23 extragalactic continuum sources has been obtained, 8 ic continuum sources has been obtained, 8 of which have emission at high velocity (/v/ > 50 km s-1), paying particularly close attention to the uncertainties involved as they affect spin temperature measurements

  19. HF beam parameters in ELF/VLF wave generation via modulated heating of the ionosphere

    Science.gov (United States)

    Cohen, M. B.; Golkowski, M.; Lehtinen, N. G.; Inan, U. S.; McCarrick, M. J.

    2012-05-01

    ELF/VLF (0.3-30 kHz) wave generation is achievable via modulated HF (3-30 MHz) heating of the lower ionosphere in the presence of natural currents such as the auroral electrojet. Using the 3.6 MW High Frequency Active Auroral Research Program (HAARP) facility near Gakona, AK, we investigate the effect of HF frequency and beam size on the generated ELF/VLF amplitudes, as a function of modulation frequency, and find that generation in the Earth-ionosphere waveguide generally decreases with increasing HF frequency between 2.75-9.50 MHz. HAARP is also capable of spreading the HF power over a wider area, and we find that a larger beam area yields larger generated amplitudes on the ground. Measurements are shown to generally agree with a theoretical model, which is then applied to also predict the effect of HF beam parameters on magnetospheric injection with HAARP.

  20. NuSTAR observations of the bullet cluster: constraints on inverse compton emission

    DEFF Research Database (Denmark)

    Wik, Daniel R.; Hornstrup, Allan

    2014-01-01

    The search for diffuse non-thermal inverse Compton (IC) emission from galaxy clusters at hard X-ray energies has been undertaken with many instruments, with most detections being either of low significance or controversial. Because all prior telescopes sensitive at E > 10 keV do not focus light and have degree-scale fields of view, their backgrounds are both high and difficult to characterize. The associated uncertainties result in lower sensitivity to IC emission and a greater chance of false detection. In this work, we present 266 ks NuSTAR observations of the Bullet cluster, which is detected in the energy range 3-30 keV. NuSTAR's unprecedented hard X-ray focusing capability largely eliminates confusion between diffuse IC and point sources; however, at the highest energies, the background still dominates and must be well understood. To this end, we have developed a complete background model constructed of physically inspired components constrained by extragalactic survey field observations, the specific parameters of which are derived locally from data in non-source regions of target observations. Applying the background model to the Bullet cluster data, we find that the spectrum is well-but not perfectly-described as an isothermal plasma with kT = 14.2 ± 0.2 keV. To slightly improve the fit, a second temperature component is added, which appears to account for lower temperature emission from the cool core, pushing the primary component to kT ~ 15.3 keV. We see no convincing need to invoke an IC component to describe the spectrum of the Bullet cluster, and instead argue that it is dominated at all energies by emission from purely thermal gas. The conservatively derived 90% upper limit on the IC flux of 1.1 × 10-12 erg s-1 cm-2 (50-100 keV), implying a lower limit on B ? 0.2 ?G, is barely consistent with detected fluxes previously reported. In addition to discussing the possible origin of this discrepancy, we remark on the potential implications of this analysis for the prospects for detecting IC in galaxy clusters in the future.

  1. Fermi Observations of High-Energy Gamma-Ray Emission from GRB 080916C

    International Nuclear Information System (INIS)

    Gamma-ray bursts (GRBs) are highly energetic explosions signaling the death of massive stars in distant galaxies. The Gamma-ray Burst Monitor and Large Area Telescope onboard the Fermi Observatory together record GRBs over a broad energy range spanning about 7 decades of gamma-ray energy. In September 2008, Fermi observed the exceptionally luminous GRB 080916C, with the largest apparent energy release yet measured. The high-energy gamma rays are observed to start later and persist longer than the lower energy photons. A simple spectral form fits the entire GRB spectrum, providing strong constraints on emission models. The known distance of the burst enables placing lower limits on the bulk Lorentz factor of the outflow and on the quantum gravity mass. (authors)

  2. Fermi Observations of High-Energy Gamma-Ray Emission from GRB 080916C

    Science.gov (United States)

    Abdo, A. A.; Ackermann, M.; Arimoto, M.; Asano, K.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Ballet, J.; Band, D. L.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Battelino, M.; Baughman, B. M.; Bechtol, K.; Bellardi, F.; Bellazzini, R.; Berenji, B.; Bhat, P. N.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bogaert, G.; Bogart, J. R.; Bonamente, E.; Bonnell, J.; Borgland, A. W.; Bouvier, A.; Bregeon, J.; Brez, A.; Briggs, M. S.; Brigida, M.; Bruel, P.; Burnett, T. H.; Burrows, D.; Busetto, G.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Casandjian, J. M.; Ceccanti, M.; Cecchi, C.; Celotti, A.; Charles, E.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Cominsky, L. R.; Connaughton, V.; Conrad, J.; Costamante, L.; Cutini, S.; DeKlotz, M.; Dermer, C. D.; de Angelis, A.; de Palma, F.; Digel, S. W.; Dingus, B. L.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Dumora, D.; Edmonds, Y.; Evans, P. A.; Fabiani, D.; Farnier, C.; Favuzzi, C.; Finke, J.; Fishman, G.; Focke, W. B.; Frailis, M.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giebels, B.; Giglietto, N.; Giommi, P.; Giordano, F.; Glanzman, T.; Godfrey, G.; Goldstein, A.; Granot, J.; Greiner, J.; Grenier, I. A.; Grondin, M.-H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Haller, G.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hays, E.; Morata, J. A. Hernando; Hoover, A.; Hughes, R. E.; Jóhannesson, G.; Johnson, A. S.; Johnson, R. P.; Johnson, T. J.; Johnson, W. N.; Kamae, T.; Katagiri, H.; Kataoka, J.; Kavelaars, A.; Kawai, N.; Kelly, H.; Kennea, J.; Kerr, M.; Kippen, R. M.; Knödlseder, J.; Kocevski, D.; Kocian, M. L.; Komin, N.; Kouveliotou, C.; Kuehn, F.; Kuss, M.; Lande, J.; Landriu, D.; Larsson, S.; Latronico, L.; Lavalley, C.; Lee, B.; Lee, S.-H.; Lemoine-Goumard, M.; Lichti, G. G.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Makeev, A.; Marangelli, B.; Mazziotta, M. N.; McBreen, S.; McEnery, J. E.; McGlynn, S.; Meegan, C.; Mészáros, P.; Meurer, C.; Michelson, P. F.; Minuti, M.; Mirizzi, N.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Moretti, E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Nelson, D.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohno, M.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Ormes, J. F.; Ozaki, M.; Paciesas, W. S.; Paneque, D.; Panetta, J. H.; Parent, D.; Pelassa, V.; Pepe, M.; Perri, M.; Pesce-Rollins, M.; Petrosian, V.; Pinchera, M.; Piron, F.; Porter, T. A.; Preece, R.; Rainò, S.; Ramirez-Ruiz, E.; Rando, R.; Rapposelli, E.; Razzano, M.; Razzaque, S.; Rea, N.; Reimer, A.; Reimer, O.; Reposeur, T.; Reyes, L. C.; Ritz, S.; Rochester, L. S.; Rodriguez, A. Y.; Roth, M.; Ryde, F.; Sadrozinski, H. F.-W.; Sanchez, D.; Sander, A.; Parkinson, P. M. Saz; Scargle, J. D.; Schalk, T. L.; Segal, K. N.; Sgrò, C.; Shimokawabe, T.; Siskind, E. J.; Smith, D. A.; Smith, P. D.; Spandre, G.; Spinelli, P.; Stamatikos, M.; Starck, J.-L.; Stecker, F. W.; Steinle, H.; Stephens, T. E.; Strickman, M. S.; Suson, D. J.; Tagliaferri, G.; Tajima, H.; Takahashi, H.; Takahashi, T.; Tanaka, T.; Tenze, A.; Thayer, J. B.; Thayer, J. G.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Tramacere, A.; Turri, M.; Tuvi, S.; Usher, T. L.; van der Horst, A. J.; Vigiani, L.; Vilchez, N.; Vitale, V.; von Kienlin, A.; Waite, A. P.; Williams, D. A.; Wilson-Hodge, C.; Winer, B. L.; Wood, K. S.; Wu, X. F.; Yamazaki, R.; Ylinen, T.; Ziegler, M.; Fermi LAT Collaboration; Fermi GBM Collaboration

    2009-03-01

    Gamma-ray bursts (GRBs) are highly energetic explosions signaling the death of massive stars in distant galaxies. The Gamma-ray Burst Monitor and Large Area Telescope onboard the Fermi Observatory together record GRBs over a broad energy range spanning about 7 decades of gamma-ray energy. In September 2008, Fermi observed the exceptionally luminous GRB 080916C, with the largest apparent energy release yet measured. The high-energy gamma rays are observed to start later and persist longer than the lower energy photons. A simple spectral form fits the entire GRB spectrum, providing strong constraints on emission models. The known distance of the burst enables placing lower limits on the bulk Lorentz factor of the outflow and on the quantum gravity mass.

  3. Fermi Observations of high-energy gamma-ray emissions from GRB 080916C

    CERN Document Server

    Abdo, A A; Arimoto, M; Asano, K; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Band, D L; Barbiellini, Guido; Baring, Matthew G; Bastieri, Denis; Battelino, M; Baughman, B M; Bechtol, K; Bellardi, F; Bellazzini, R; Berenji, B; Bhat, P N; Bissaldi, E; Blandford, R D; Bloom, Elliott D; Bogaert, G; Bogart, J R; Bonamente, E; Bonnell, J; Borgland, A W; Bouvier, A; Bregeon, J; Brez, A; Briggs, M S; Brigida, M; Bruel, P; Burnett, Thompson H; Burrows, David N; Busetto, Giovanni; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Ceccanti, M; Cecchi, C; Celotti, Annalisa; Charles, E; Chekhtman, A; Cheung, C.C.Teddy; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, Johann; Cominsky, Lynn R; Connaughton, V; Conrad, J; Costamante, L; Cutini, S; DeKlotz, M; Dermer, C D; De Angelis, Alessandro; de Palma, F; Digel, S W; Dingus, B L; do Couto e Silva, Eduardo; Drell, P S; Dubois, R; Dumora, D; Edmonds, Y; Evans, P A; Fabiani, D; Farnier, C; Favuzzi, C; Finke, Justin D; Fishman, G; Focke, W B; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giommi, P; Giordano, F; Glanzman, Thomas Lynn; Godfrey, Gary L; Goldstein, A; Granot, J; Greiner, J; Grenier, I A; Grondin, M H; Grove, J.Eric; Guillemot, L; Guiriec, S; Haller, G; Hanabata, Y; Harding, Alice K; Hayashida, M; Hays, Elizabeth A; Hernando Morata, J A; Hoover, A; Hughes, R E; Johannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, Tsuneyoshi; Katagiri, H; Kataoka, J; Kavelaars, A; Kawai, N; Kelly, H; Kennea, J; Kerr, M; Kippen, R M; Knodlseder, J; Kocevski, D; Kocian, M L; Komin, N; Kouveliotou, C; Kuehn, Frederick Gabriel Ivar; Kuss, Michael; Lande, J; Landriu, D; Larsson, S; Latronico, L; Lavalley, C; Lee, B; Lee, S H; Lemoine-Goumard, M; Lichti, G G; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, Pasquale; Madejski, G M; Makeev, A; Marangelli, B; Mazziotta, M N; McBreen, Sheila; McEnery, J E; McGlynn, S; Meegan, C; Miszaros, P; Meurer, C; Michelson, P F; Minuti, M; Mirizzi, N; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Moretti, E; Morselli, A; Moskalenko, Igor Vladimirovich; Murgia, Simona; Nakamori, T; Nelson, D; Nolan, P L; Norris, J P; Nuss, E; Ohno, M; Ohsugi, Takashi; Okumura, Akira; Omodei, N; Orlando, E; Ormes, J F; Ozaki, M; Paciesas, W S; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Perri, M; Pesce-Rollins, M; Petrosian, Vahe; Pinchera, M; Piron, F; Porter, Troy A; Preece, R; Rainr, S; Ramirez-Ruiz, E; Rando, R; Rapposelli, E; Razzano, M; Razzaque, Soebur; Rea, N; Reimer, A; Reimer, O; Reposeur, Thierry; Reyes, Luis C; Ritz, S; Rochester, L S; Rodriguez, A Y; Roth, M; Ryde, F; Sadrozinski, H F W; Sanchez, D; Sander, A; Parkinson, P.M.Saz; Scargle, J D; Schalk, T L; Segal, K N; Sgro, C; Shimokawabe, T; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Stamatikos, M; Starck, Jean-Luc; Stecker, Floyd William; Steinle, H; Stephens, T E; Strickman, M S; Suson, Daniel J; Tagliaferri, G.; Tajima, Hiroyasu; Takahashi, H; Takahashi, T; Tanaka, T; Tenze, A; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, Diego F; Tosti, G; Tramacere, A; Turri, M; Tuvi, S; Usher, T L; van der Horst, A J; Vigiani, L; Vilchez, N; Vitale, V; von Kienlin, A; Waite, A P; Williams, D A; Wilson-Hodge, C; Winer, B L; Wood, K S; Wu, X F; Yamazaki, R; Ylinen, T; Ziegler, M; 10.1126/science.1169101

    2009-01-01

    Gamma-ray bursts (GRBs) are highly energetic explosions signaling the death of massive stars in distant galaxies. The Gamma-ray Burst Monitor and Large Area Telescope onboard the Fermi Observatory together record GRBs over a broad energy range spanning about 7 decades of gammaray energy. In September 2008, Fermi observed the exceptionally luminous GRB 080916C, with the largest apparent energy release yet measured. The high-energy gamma rays are observed to start later and persist longer than the lower energy photons. A simple spectral form fits the entire GRB spectrum, providing strong constraints on emission models. The known distance of the burst enables placing lower limits on the bulk Lorentz factor of the outflow and on the quantum gravity mass.

  4. Supermassive binary black holes - possible observational effects in the x-ray emission

    Directory of Open Access Journals (Sweden)

    Jovanovi? Predrag

    2014-01-01

    Full Text Available Here we discuss the possible observational effects in the X-ray emission from two relativistic accretion disks in a supermassive binary black hole system. For that purpose we developed a model and performed numerical simulations of the X-ray radiation from a relativistic accretion disk around a supermassive black hole, based on the ray-tracing method in the Kerr metric, and applied it to the case of the close binary supermassive black holes. Our results indicate that the broad Fe K? line is a powerful tool for detecting such systems and studying their properties. The most favorable candidates for observational studies are the supermassive binary black holes in the galactic mergers during the phase when the orbital velocities of their components are very large and exceed several thousand kms -1. [Projekat Ministarstva nauke Republike Srbije, br. 176003: Gravitation and the Large Scale Structure of the Universe i br. 176001: Astrophysical Spectroscopy of Extragalactic Objects

  5. Theoretical analysis of conditions for observation of plasma oscillations in semiconductors from pulsed terahertz emission

    Energy Technology Data Exchange (ETDEWEB)

    Reklaitis, Antanas, E-mail: reklaitis@pfi.lt [Semiconductor Physics Institute, Center for Physical Sciences and Technology, A. Goshtauto 11, Vilnius 01108 (Lithuania)

    2014-08-28

    Oscillations of electron-hole plasma generated by femtosecond optical pulse in freestanding semiconductor are studied using hydrodynamic model and Monte Carlo simulations. The conditions required for the observation of coherent plasma oscillations in THz emission from semiconductor are determined. It is shown that several conditions have to be fulfilled in order to observe coherent plasma oscillations. First, the intensity of the optical pulse must exceed some threshold value. Second, the optical absorption depth must exceed the thickness of the built-in electric field region. Third, the generation of electron-hole pairs with uniform illumination is required, i.e., the laser beam with the flattop intensity profile has to be used. It is found that the duration of the optical pulse does not play a vital role in the development of plasma oscillations.

  6. Theoretical analysis of conditions for observation of plasma oscillations in semiconductors from pulsed terahertz emission

    International Nuclear Information System (INIS)

    Oscillations of electron-hole plasma generated by femtosecond optical pulse in freestanding semiconductor are studied using hydrodynamic model and Monte Carlo simulations. The conditions required for the observation of coherent plasma oscillations in THz emission from semiconductor are determined. It is shown that several conditions have to be fulfilled in order to observe coherent plasma oscillations. First, the intensity of the optical pulse must exceed some threshold value. Second, the optical absorption depth must exceed the thickness of the built-in electric field region. Third, the generation of electron-hole pairs with uniform illumination is required, i.e., the laser beam with the flattop intensity profile has to be used. It is found that the duration of the optical pulse does not play a vital role in the development of plasma oscillations

  7. Herschel/HIFI observations of molecular emission in protoplanetary nebulae and young planetary nebulae

    CERN Document Server

    Bujarrabal, V; Soria-Ruiz, R

    2011-01-01

    We performed Herschel/HIFI observations of intermediate-excitation molecular lines in the far-infrared/submillimeter range in a sample of ten protoplanetary nebulae and young planetary nebulae. The high spectral resolution provided by HIFI yields accurate measurements of the line profiles. The observation of these high-energy transitions allows an accurate study of the excitation conditions, particularly in the warm gas, which cannot be properly studied from the low-energy lines. We have detected FIR/sub-mm lines of several molecules, in particular of 12CO, 13CO, and H2O. Emission from other species, like NH3, OH, H2^{18}O, HCN, SiO, etc, has been also detected. Wide profiles showing sometimes spectacular line wings have been found. We have mainly studied the excitation properties of the high-velocity emission, which is known to come from fast bipolar outflows. From comparison with general theoretical predictions, we find that CRL 618 shows a particularly warm fast wind, with characteristic kinetic temperatur...

  8. Gamma-Ray Emission in Dissipative Pulsar Magnetospheres: From Theory to Fermi Observations

    CERN Document Server

    Kalapotharakos, Constantinos; Kazanas, Demosthenes

    2013-01-01

    We compute the patterns of gamma-ray emission due to curvature radiation (CR) in dissipative pulsar magnetospheres. Our ultimate goal was to reveal the macrophysical models that are able to reproduce the observed gamma-ray light-curve phenomenology recently published in the Second Fermi Pulsar Catalog. Assuming Force-Free (FF) conditions for the closed magnetic field lines, on the open field lines we use specific dissipative prescriptions for the current density and a broad range for the conductivity values that result in solutions ranging from near-vacuum to near-FF. Using these dissipative models, we generated model gamma-ray light-curves by calculating realistic trajectories and Lorentz factors of particles, under the influence of both the accelerating electric fields and CR-reaction. In addition to modeling the gamma-ray light-curves we further constrained our models using the observed dependence of the phase-lags between the radio and gamma-ray emission on the gamma-ray peak-separation, one of the multiw...

  9. High-resolution observations of gamma-ray line emission from SN 1987A

    Science.gov (United States)

    Sandie, W. G.; Nakano, G. H.; Chase, L. F.; Fishman, G. J.; Meegan, C. A.; Wilson, R. B.; Paciesas, W. S.; Lashe, G. P.

    1988-09-01

    A balloon-borne gamma-ray spectrometer comprising an array of high-purity germanium (HPGE) detectors was flown from Alice Springs, Australia, on October 29-30-31, norminally 250 days after the observed neutrino pulse. High-resolution data, typically 2.5 keV at 1.33 MeV, for two transists of the supernova SN 1987A were obtained along with interspersed background data. A significant net flux of gamma rays with energy 847 keV was observed from the direction of SN 1987A on each transit. No prominent gamma-ray features were seen at other energies, although data analysis is still in progress. A preliminary estimate of the line flux at 847 keV is ~5×10-4 photons cm-2 s-1 with statistical significance greater than three sigma. This line may be interpreted as emission from the first excited state of 56Fe due to the radioactive decay of 56Co, providing strong evidence for nucleosynthesis in the supernova. No emission was seen from the second excited state of 56Fe at 1238 keV. A preliminary upper limit for the 1238-keV line is ~5×10-4 photons cm-2 s-1. The flux estimates may be considerably altered as the systematics of the experiment are better understood.

  10. OBSERVATIONAL STUDY OF THE CONTINUUM AND WATER MASER EMISSION IN THE IRAS 19217+1651 REGION

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Esnard, T.; Trinidad, M. A. [Departamento de Astronomia, Universidad de Guanajuato, Apdo Postal 144, Guanajuato, GTO, Mexico CP 36000 (Mexico); Migenes, V., E-mail: tatiana@iga.cu, E-mail: trinidad@astro.ugto.mx, E-mail: vmigenes@byu.edu [Department of Physics and Astronomy, Brigham Young University, ESC-N145, Provo, UT 84602 (United States)

    2012-12-20

    We report interferometric observations of the high-mass star-forming region IRAS 19217+1651. We observed the radio continuum (1.3 cm and 3.6 cm) and water maser emission using the Very Large Array (VLA-EVLA) in transition mode (configuration A). Two radio continuum sources were detected at both wavelengths, I19217-A and I19217-B. In addition, 17 maser spots were observed distributed mainly in two groups, M1 and M2, and one isolated maser. This latter could be indicating the relative position of another continuum source which we did not detect. The results indicate that I19217-A appears to be consistent with an ultracompact H II region associated with a zero-age main-sequence B0-type star. Furthermore, the 1.3 cm continuum emission of this source suggests a cometary morphology. In addition, I19217-B appears to be an H II region consisting of at least two stars, which may be contributing to its complex structure. It was also found that the H{sub 2}O masers of the group M1 are apparently associated with the continuum source I19217-A. These are tracing motions which are not gravitationally bound according to their spatial distribution and kinematics. They also seem to be describing outflows in the direction of the elongated cometary region. On the other hand, the second maser group, M2, could be tracing the base of a jet. Finally, infrared data from Spitzer, Midcourse Space Experiment, and IRIS show that IRAS 19217+1651 is embedded inside a large open bubble, like a broken ring, which possibly has affected the morphology of the cometary H II region observed at 1.3 cm.

  11. OBSERVATIONAL STUDY OF THE CONTINUUM AND WATER MASER EMISSION IN THE IRAS 19217+1651 REGION

    International Nuclear Information System (INIS)

    We report interferometric observations of the high-mass star-forming region IRAS 19217+1651. We observed the radio continuum (1.3 cm and 3.6 cm) and water maser emission using the Very Large Array (VLA-EVLA) in transition mode (configuration A). Two radio continuum sources were detected at both wavelengths, I19217-A and I19217-B. In addition, 17 maser spots were observed distributed mainly in two groups, M1 and M2, and one isolated maser. This latter could be indicating the relative position of another continuum source which we did not detect. The results indicate that I19217-A appears to be consistent with an ultracompact H II region associated with a zero-age main-sequence B0-type star. Furthermore, the 1.3 cm continuum emission of this source suggests a cometary morphology. In addition, I19217-B appears to be an H II region consisting of at least two stars, which may be contributing to its complex structure. It was also found that the H2O masers of the group M1 are apparently associated with the continuum source I19217-A. These are tracing motions which are not gravitationally bound according to their spatial distribution and kinematics. They also seem to be describing outflows in the direction of the elongated cometary region. On the other hand, the second maser group, M2, could be tracing the base of a jet. Finally, infrared data from Spitzer, Midcourse Space Experiment, and IRIS show that IRAS 19217+1651 is embedded inside a large open bubble, like a bedded inside a large open bubble, like a broken ring, which possibly has affected the morphology of the cometary H II region observed at 1.3 cm.

  12. Relationship between statistical characteristics of vlf fields and modulating properties of the ionospheric boundary

    International Nuclear Information System (INIS)

    The author studies the effect of the modulating properties of the ionospheric boundary on statistical properties of vlf signals. It is shown that under multimode propagation conditions a change in stochastic mode modulation leads to a change in the statistical characteristics of the resultant field. Unique features of the behavior of mean-square deviations of spatial and interfrequency amplitude and phase correlators with distance are considered. The results are illustrated with experimental data

  13. Carbon dioxide observations at Cape Rama, India for the period 1993–2002: implications for constraining Indian emissions

    Digital Repository Service at National Institute of Oceanography (India)

    Tiwari, Y.K.; Patra, P.K.; Chevallier, F.; Francey, R.J.; Krummel, P.B.; Allison, C.E.; Revadekar, J.V.; Chakraborty, S.; Langenfelds, R.L.; Bhattacharya, S.K.; Borole, D.V.; RaviKumar, K.; Steele, L.P.

    2011-01-01

    . In this study, we have compared CRI CO 2 observations for the period 1993–2002 with three different forward model simula- tions to explore the challenges facing observational and modelling efforts in order to link Indian emissions to the large... with high-resolution trans- port modelling will be required. 1. Boden, T., Marland, G. and Andres, R. J., National CO 2 emissions from fossil-fuel burning, cement manufacture, and gas flaring: 1951–2007. Carbon Dioxide Information Analysis Centre...

  14. VLF-R studies in the Agora of Magnesia archaeological site, Aydin, Turkey

    International Nuclear Information System (INIS)

    Very low frequency wave-resistivity (VLF-R) method has been widely used for near surface and archaeological prospection over the last two decades. Shallow buried structures that show resistivity variation with respect to a surrounding medium could be determined with VLF-R. It is also a particularly rapid and cost-effective technique for collecting data on large-scale exploration. VLF-R studies were carried out in the Agora of Magnesia archaeological site (Ayd?n, Turkey) in order to determine the location and depth of ruins of the temple of Zeus. After performing theoretical studies to test the inversion algorithm, apparent resistivity and phase data were collected with three different frequencies and a laterally constrained two-layer inversion process was applied to each station. In addition to the inversion of all profiles for each frequency, all lines were stacked within a precise resistivity interval to obtain a 3D view of the structure. An excavation site is recommended after achieving the location of the temple. (paper)

  15. SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP ) OBSERVATIONS: GALACTIC FOREGROUND EMISSION

    International Nuclear Information System (INIS)

    We present updated estimates of Galactic foreground emission using seven years of WMAP data. Using the power spectrum of differences between multi-frequency template-cleaned maps, we find no evidence for foreground contamination outside of the updated (KQ85y7) foreground mask. We place a 15 ?K upper bound on rms foreground contamination in the cleaned maps used for cosmological analysis. Further, the cleaning process requires only three power-law foregrounds outside of the mask. We find no evidence for polarized foregrounds beyond those from soft (steep-spectrum) synchrotron and thermal dust emission; in particular we find no indication in the polarization data of an extra 'haze' of hard synchrotron emission from energetic electrons near the Galactic center. We provide an updated map of the cosmic microwave background (CMB) using the internal linear combination method, updated foreground masks, and updates to point source catalogs using two different techniques. With additional years of data, we now detect 471 point sources using a five-band technique and 417 sources using a three-band CMB-free technique. In total there are 62 newly detected point sources, a 12% increase over the five-year release. Also new are tests of the Markov chain Monte Carlo foreground fitting procedure against systematics in the time-stream data, and tests against the observed beam asymmetry. Within a few degrees of the Galactic plane, the behavior in total intensity of low-frequency foregroutotal intensity of low-frequency foregrounds is complicated and not completely understood. WMAP data show a rapidly steepening spectrum from 20 to 40 GHz, which may be due to emission from spinning dust grains, steepening synchrotron, or other effects. Comparisons are made to a 1 deg 408 MHz map (Haslam et al.) and the 11 deg ARCADE 2 data (Singal et al.). We find that spinning dust or steepening synchrotron models fit the combination of WMAP and 408 MHz data equally well. ARCADE data appear inconsistent with the steepening synchrotron model and consistent with the spinning dust model, though some discrepancies remain regarding the relative strength of spinning dust emission. More high-resolution data in the 10-40 GHz range would shed much light on these issues.

  16. Quantifying the Seasonal and Interannual Variability of North American Isoprene Emissions Using Satellite Observations of the Formaldehyde Column

    Science.gov (United States)

    Palmer, Paul I.; Abbot, Dorian S.; Fu, Tzung-May; Jacob, Daniel J.; Chance, Kelly; Kurosu, Thomas P.; Guenther, Alex; Wiedinmyer, Christine; Stanton, Jenny C.; Pilling, Michael J.; Pressley, Shelley N.; Lamb, Brian; Sumner, Anne Louise

    2006-01-01

    Quantifying isoprene emissions using satellite observations of the formaldehyde (HCHO) columns is subject to errors involving the column retrieval and the assumed relationship between HCHO columns and isoprene emissions, taken here from the GEOS-CHEM chemical transport model. Here we use a 6-year (1996-2001) HCHO column data set from the Global Ozone Monitoring Experiment (GOME) satellite instrument to (1) quantify these errors, (2) evaluate GOME-derived isoprene emissions with in situ flux measurements and a process-based emission inventory (Model of Emissions of Gases and Aerosols from Nature, MEGAN), and (3) investigate the factors driving the seasonal and interannual variability of North American isoprene emissions. The error in the GOME HCHO column retrieval is estimated to be 40%. We use the Master Chemical Mechanism (MCM) to quantify the time-dependent HCHO production from isoprene, alpha- and beta-pinenes, and methylbutenol and show that only emissions of isoprene are detectable by GOME. The time-dependent HCHO yield from isoprene oxidation calculated by MCM is 20-30% larger than in GEOS-CHEM. GOME-derived isoprene fluxes track the observed seasonal variation of in situ measurements at a Michigan forest site with a -30% bias. The seasonal variation of North American isoprene emissions during 2001 inferred from GOME is similar to MEGAN, with GOME emissions typically 25% higher (lower) at the beginning (end) of the growing season. GOME and MEGAN both show a maximum over the southeastern United States, but they differ in the precise location. The observed interannual variability of this maximum is 20-30%, depending on month. The MEGAN isoprene emission dependence on surface air temperature explains 75% of the month-to-month variability in GOME-derived isoprene emissions over the southeastern United States during May-September 1996-2001.

  17. On the spatial relationship between lightning discharges and propagation paths of perturbed subionospheric VLF/LF signals

    International Nuclear Information System (INIS)

    A study has been made of the spatial relationship between propagation paths of subionospheric VLF/LF signals exhibiting sudden amplitude perturbations (Trimpi events) and time correlated cloud-to-ground lightning flashes. On each of the 4 days examined the storm centers were located close to the signal path from the NAU transmitter (28.5-kHz) in Puerto Rico to Stanford (SU) and were at large distances from the propagation path of the 48.5-kHz transmitter signal from Nebraska to SU. Nevertheless, no Trimpi events were observed on the former path, while many were seen on the latter. Furthermore, the detected Trimpi perturbations of the 48.5-kHz signal received at Stanford were found to be associated with the lightning activity in the distant storm centers. Since the NAU-SU path lies entirely at L < 2 and the 48.5-SU path is located mostly at 2< L <3, the L dependent magnetospheric conditions which determine the level of lightning-induced electron precipitation are different along the two paths. Thus, the authors postulate that the observed difference in Trimpi occurence on the two paths was due to the different magnetospheric conditions. Hence the occurence of Trimpi events over the geographical region corresponding to L <3 may be more dominantly controlled by magnetospheric conditions than the source lightning distribution

  18. FORTE observations of simultaneous VHF and optical emissions from lightning: Basic phenomenology

    International Nuclear Information System (INIS)

    Preliminary observations of simultaneous VHF and optical emissions from lightning as seen by the Fast on-Orbit Recording of Transient Events (FORTE) spacecraft are presented. VHF/optical waveform pairs are routinely collected both as individual lightning events and as sequences of events associated with cloud-to-ground (CG) and intracloud (IC) flashes. CG pulses can be distinguished from IC pulses on the basis of the properties of the VHF and optical waveforms but mostly on the basis of the associated VHF spectrograms. The VHF spectrograms are very similar to previous ground-based HF and VHF observations of lightning and show signatures associated with return strokes, stepped and dart leaders, attachment processes, and intracloud activity. For a typical IC flash, the FORTE-detected VHF is generally characterized by impulsive broadband bursts of emission, and the associated optical emissions are often highly structured. For a typical initial return stroke, the FORTE-detected VHF is generated by the stepped leader, the attachment process, and the actual return stroke. For a typical subsequent return stroke, the FORTE-detected VHF is mainly generated by dart leader processes. The detected optical signal in both return stroke cases is primarily produced by the in-cloud portion of the discharge and lags the arrival of the corresponding VHF emissions at the satellite by a mean value of 243 ?s. This delay is composed of a transit time delay (mean of 105 ?s) as the return se delay (mean of 105 ?s) as the return stroke current propagates from the attachment point up into the region of in-cloud activity plus an additional delay due to the scattering of light during its traversal through the clouds. The broadening of the light pulse during its propagation through the clouds is measured and used to infer a mean of this scattering delay of about 138 ?s (41 km additional path length) for CG light. This value for the mean scattering delay is consistent with the Thomason and Krider [1982] model for light propagation through clouds. (c) 2000 American Geophysical Union

  19. IUE observations of a luminous M supergiant that exhibits emission continuum in the far ultraviolet

    Science.gov (United States)

    Michalitsianos, A. G.; Hobbs, R. W.; Kafatos, M.

    1980-01-01

    IUE observations of the late-type M supergiant star TV Gem which reveal an intense continuum in the far ultraviolet are discussed. TV Gem was observed in low dispersion in November 1979 and in high and low dispersion in January 1980 by the short and long wavelength cameras of the IUE spectrometer. An essentially featureless UV continuum was obtained, with the exception of a number of broad absorption features in the short wavelength region. A comparison with ground-based observations indicates that at wavelengths greater than 3200 A the continuum emission is essentially due to the M1 supergiant, while at shorter wavelengths the continuum is dominated by a hot companion. The UV continuum can be explained by a B9 or A1 III-IV early companion approximately 2 to 3 magnitudes fainter than the M1 supergiant, or by an accretion disk formed by mass transfer from the extended envelope of the M1 primary onto the surface of a highly condensed secondary. Soft X-ray observations from HEAO 2 are suggested as a means to investigate these interpretations.

  20. VHE gamma-ray emission from the FSRQs observed by the MAGIC telescopes

    CERN Document Server

    Lindfors, E; de Almeida, U Barres; Mazin, D; Paneque, D; Saito, K; Gonzalez, J Becerra; Berger, K; De Caneva, G; Schultz, C; Sitarek, J; Stamerra, A; Tavecchio, F; Buson, S; D'Ammando, F; Hayashida, M; Tornikoski, M; Hovatta, T

    2013-01-01

    Among more than fifty blazars detected in very high energy (VHE, E>100GeV) gamma-rays, only three belong to the subclass of Flat Spectrum Radio Quasars (FSRQs): PKS 1510-089, PKS 1222+216 and 3C 279. The detection of FSRQs in the VHE range is challenging, mainly because of their steep soft spectra in the GeV-TeV regime. MAGIC has observed and detected all FSRQs known to be VHE emitters up to now and found that they exhibit very different behavior. The 2010 discovery of PKS 1222+216 (z = 0.432) with the fast variability observed, challenges simple one-zone emission models and more complicated scenarios have been proposed. 3C 279 is the most distant VHE gamma-ray emitting AGN (z = 0.536), which was discovered by MAGIC in 2006 and detected again in 2007. In 2011 MAGIC observed 3C 279 two times: first during a monitoring campaign and later observations were triggered by a flare detected with Fermi-LAT. We present the MAGIC results and the multiwavelength behavior during this flaring epoch. Finally, we report the ...

  1. Observational constraints on the distribution, seasonality, and environmental predictors of North American boreal methane emissions

    Science.gov (United States)

    Miller, Scot M.; Worthy, Doug E. J.; Michalak, Anna M.; Wofsy, Steven C.; Kort, Eric A.; Havice, Talya C.; Andrews, Arlyn E.; Dlugokencky, Edward J.; Kaplan, Jed O.; Levi, Patricia J.; Tian, Hanqin; Zhang, Bowen

    2014-02-01

    Wetlands comprise the single largest global source of atmospheric methane, but current flux estimates disagree in both magnitude and distribution at the continental scale. This study uses atmospheric methane observations over North America from 2007 to 2008 and a geostatistical inverse model to improve understanding of Canadian methane fluxes and associated biogeochemical models. The results bridge an existing gap between traditional top-down, inversion studies, which typically emphasize total emission budgets, and biogeochemical models, which usually emphasize environmental processes. The conclusions of this study are threefold. First, the most complete process-based methane models do not always describe available atmospheric methane observations better than simple models. In this study, a relatively simple model of wetland distribution, soil moisture, and soil temperature outperformed more complex model formulations. Second, we find that wetland methane fluxes have a broader spatial distribution across western Canada and into the northern U.S. than represented in existing flux models. Finally, we calculate total methane budgets for Canada and for the Hudson Bay Lowlands, a large wetland region (50-60°N, 75-96°W). Over these lowlands, we find total methane fluxes of 1.8±0.24 Tg C yr-1, a number in the midrange of previous estimates. Our total Canadian methane budget of 16.0±1.2 Tg C yr-1 is larger than existing inventories, primarily due to high anthropogenic emissions in Alberta. However, methane observations are sparse in western Canada, and additional measurements over Alberta will constrain anthropogenic sources in that province with greater confidence.

  2. Recent Large Reduction in Sulfur Dioxide Emissions from Chinese Power Plants Observed by the Ozone Monitoring Instrument

    Science.gov (United States)

    Li, Can; Zhang, Qiang; Krotkov, Nickolay A.; Streets, David G.; He, Kebin; Tsay, Si-Chee; Gleason, James F.

    2010-01-01

    The Ozone Monitoring Instrument (OMI) aboard NASA's Aura satellite observed substantial increases in total column SO2 and tropospheric column NO2 from 2005 to 2007, over several areas in northern China where large coal-fired power plants were built during this period. The OMI-observed SO2/NO2 ratio is consistent with the SO2/ NO2, emissions estimated from a bottom-up approach. In 2008 over the same areas, OMI detected little change in NO2, suggesting steady electricity output from the power plants. However, dramatic reductions of S0 2 emissions were observed by OMI at the same time. These reductions confirm the effectiveness of the flue-gas desulfurization (FGD) devices in reducing S02 emissions, which likely became operational between 2007 and 2008. This study further demonstrates that the satellite sensors can monitor and characterize anthropogenic emissions from large point sources.

  3. Seasonal and diurnal variation of ELF emission occurrences at 750-Hz band observed at geomagnetically conjugate stations

    International Nuclear Information System (INIS)

    Statistical characteristics of emission occurrence are examined, using digital data of 750-Hz intensity records obtained at the conuugate pai of statins, Syowa Station in Antarrctica and Husafell in Iceland. The geographic local time at Syowa and Husafell is magnetic local time plus 3 hours and minur 1 hour, respectively. The following notable diurnal variations and seasonal variations were found: (1) The emissions were mostly observed during the daytime in the conjugate region. However, the magnetic local time when the emission occurrence rate reached maximum at Husafell was 2-3 hours later than that at Syowa. (2) The seasonal variations of emission occurrence showed the same tendency at the conjugate stations. The emission intensities showed a maximum during local summer and a minimum during local winter in both hemispheres. The ratio fo average emission intensity in each season to the intensity in winter is approximately 2.1-2.2 for summer, 1.7-1.9 for autumn, and 1.7 for spring. From these statistical characteristics, ELF emission intensity strongly depends on not only magnetic local time but also geographic local time and seasons, suggesting that ELF emissions observed on the ground are strongly controlled by the sunlight effects. The sunlight may affect the asymmetry of wave duct enhancement and wave propagation from the magnetosphere to the ionosphere in both hemisphers. Other effects are also discussed in this paper

  4. Derivation of an observation-based map of North African dust emission

    Energy Technology Data Exchange (ETDEWEB)

    Evan, Amato T.; Fiedler, Stephanie; Zhao, Chun; Menut, Laurent; Schepanski, Kerstin; Flamant, C.; Doherty, Owen

    2015-03-01

    Changes in the emission, transport and deposition of aeolian dust have profound effects on regional climate, so that characterizing the lifecycle of dust in observations and improving the representation of dust in global climate models is necessary. A fundamental aspect of characterizing the dust cycle is quantifying surface dust fluxes, yet no spatially explicit estimates of this flux exist for the World’s major source regions. Here we present a novel technique for creating a map of the annual mean emitted dust flux for North Africa based on retrievals of dust storm frequency from the Meteosat Second Generation Spinning Enhanced Visible and InfraRed Imager (SEVIRI) and the relationship between dust storm frequency and emitted mass flux derived from the output of five models that simulate dust. Our results suggest that 64 (±16)% of all dust emitted from North Africa is from the Bodélé depression, and that 13 (±3)% of the North African dust flux is from a depression lying in the lee of the Aïr and Hoggar Mountains, making this area the second most important region of emission within North Africa.

  5. Continuum Observations at 350 Microns of High-Redshift Molecular Emission Line Galaxies

    CERN Document Server

    Wu, Jingwen; Evans, Neal; Dunham, Michael

    2009-01-01

    We report observations of 15 high redshift (z = 1-5) galaxies at 350 microns using the Caltech Submillimeter Observatory and SHARC-II array detector. Emission was detected from eight galaxies, for which far-infrared luminosities, star formation rates, total dust masses, and minimum source size estimates are derived. These galaxies have star formation rates and star formation efficiencies comparable to other high redshift molecular emission line galaxies. The results are used to test the idea that star formation in these galaxies occurs in a large number of basic units, the units being similar to star-forming clumps in the Milky Way. The luminosity of these extreme galaxies can be reproduced in a simple model with (0.9-30) *10^6 dense clumps, each with a luminosity of 5 *10^5 Lsun, the mean value for such clumps in the Milky Way. Radiative transfer models of such clumps can provide reasonable matches to the overall SEDs of the galaxies. They indicate that the individual clumps are quite opaque in the far-infra...

  6. CONTINUUM OBSERVATIONS AT 350 MICRONS OF HIGH-REDSHIFT MOLECULAR EMISSION LINE GALAXIES

    International Nuclear Information System (INIS)

    We report observations of 15 high-redshift (z = 1 - 5) galaxies at 350 ?m using the Caltech Submillimeter Observatory and Submillimeter High Angular Resolution Camera II array detector. Emission was detected from eight galaxies, for which far-infrared luminosities, star formation rates (SFRs), total dust masses, and minimum source size estimates are derived. These galaxies have SFRs and star formation efficiencies comparable to other high-redshift molecular emission line galaxies. The results are used to test the idea that star formation in these galaxies occurs in a large number of basic units, the units being similar to star-forming clumps in the Milky Way. The luminosity of these extreme galaxies can be reproduced in a simple model with (0.9-30)x106 dense clumps, each with a luminosity of 5 x 105 Lsun, the mean value for such clumps in the Milky Way. Radiative transfer models of such clumps can provide reasonable matches to the overall spectral energy distributions (SEDs) of the galaxies. They indicate that the individual clumps are quite opaque in the far-infrared. Luminosity-to-mass ratios vary over two orders of magnitude, correlating strongly with the dust temperature derived from simple fits to the SED. The gas masses derived from the dust modeling are in remarkable agreement with those from CO luminosities, suggesting that the assumptions going into both calculations are reasonable.

  7. Polarization observations in a low synchrotron emission field at 1.4 GHz

    CERN Document Server

    Bernardi, G; Cortiglioni, S; Sault, R J; Kesteven, M J; Poppi, S

    2003-01-01

    We present the first observation of the diffuse polarized synchrotron radiation of a patch ($\\sim 3^\\circ \\times 3^\\circ$) in the BOOMERanG field, one of the areas with the lowest CMB foreground emission. The work has been carried out with the Australia Telescope Compact Array at 1.4 GHz with 3.4 arcmin resolution and sensitivity of $\\sim 0.18$ mJy beam$^{-1}$. The mean polarized signal has been found to be $P_{rms} = \\sqrt{(Q_{rms}^2 + U_{rms}^2)} = 11.6 \\pm 0.6$ mK, nearly one order of magnitude below than in the Galactic Plane. Extrapolations to frequencies of interest for cosmological investigations suggest that polarized synchrotron foreground noise should allow the detection of the CMB Polarization $E$--mode already at 32 GHz and make us confident that, at 90 GHz, it is accessible with no relevant foreground contamination. Last but not least, even the $B$--mode detection for $T/S > 0.01$ is not ruled out in such a low emission patch.

  8. Assessing methane wetland emissions through the use of multiple models and GOSAT satellite observations

    Science.gov (United States)

    Parker, Robert; Boesch, Hartmut; Fraser, Annemarie; Palmer, Paul; Wilson, Chris; Mcnorton, Joey; Chipperfield, Martyn; Hayman, Garry

    2014-05-01

    Over a 20-year timescale, methane has a radiative forcing comparable to that of CO2, making it the second most important anthropogenic greenhouse gas. This, along with the influence it has on tropospheric ozone and water vapour, means that it plays a key role in the Earth's atmosphere. However, recent unexpected changes in the methane growth rate have highlighted that there are still gaps in our understanding of the CH4 budget which can arise from the upscaling of the highly accurate, but sparse, surface concentration data to continental scales. This work focuses on addressing the major uncertainties that currently exist in wetland methane emissions by comparing state-of-the-art chemical transport and climate-chemistry models, using a common set of wetland emission inventories, to the University of Leicester GOSAT CH4 dataset. We will present regional comparisons of the different model runs with the GOSAT satellite data with a particular focus on wetland regions such as the Amazon and south-East Asia and assess how well the different model runs agree with observations.

  9. Modelling observations of hot gas emission from embedded low-mass protostars

    CERN Document Server

    Visser, R; Bruderer, S; van Dishoeck, E F; Herczeg, G J; Brinch, C; Doty, S D; Harsono, D; Wolfire, M G

    2011-01-01

    Aims. Young stars interact vigorously with their surroundings, as evident from the highly rotationally excited CO (up to Eup=4000 K) and H2O emission (up to 600 K) detected by the Herschel Space Observatory in embedded low-mass protostars. Our aim is to construct a model that reproduces the observations quantitatively, to investigate the origin of the emission, and to use the lines as probes of the various heating mechanisms. Methods. The model consists of a spherical envelope with a bipolar outflow cavity. Three heating mechanisms are considered: passive heating by the protostellar luminosity, UV irradiation of the outflow cavity walls, and C-type shocks along the cavity walls. Line fluxes are calculated for CO and H2O and compared to Herschel data and complementary ground-based data for the protostars NGC1333 IRAS2A, HH 46 and DK Cha. The three sources are selected to span a range of evolutionary phases and physical characteristics. Results. The passively heated gas in the envelope accounts for 3-10% of the...

  10. Observation of a physical matrix effect during cold vapour generation measurement of mercury in emissions samples

    International Nuclear Information System (INIS)

    Highlights: • A matrix effect for CV-AFS measurement of mercury in emissions samples is reported. • This results from the different efficiencies of liberation of reduced mercury. • There is a good correlation between solution density and the size of the effect. • Several methods to overcome the bias are presented and discussed. - Abstract: The observation of a physical matrix effect during the cold vapour generation–atomic fluorescence measurement of mercury in emissions samples is reported. The effect is as a result of the different efficiencies of liberation of reduced mercury from solution as the matrix of the solution under test varies. The result of this is that peak area to peak height ratios decease as matrix concentration increases, passing through a minimum, before the ratio then increases as matrix concentration further increases. In the test matrices examined – acidified potassium dichromate and sodium chloride solutions – the possible biases caused by differences between the calibration standard matrix and the test sample matrix were as large as 2.8% (relative) representing peak area to peak height ratios for calibration standards and matrix samples of 45 and 43.75, respectively. For the system considered there is a good correlation between the density of the matrix and point of optimum liberation of dissolved mercury for both matrix types. Several methods employing matrix matching and mathematical correction to overcome the bias are presented and their relative merits discussed; the most promising being the use of peak area, rather than peak height, for quantification

  11. Development of an ultraviolet proportional counter with potential for faint FUV line emission observations

    Science.gov (United States)

    O'Malia, Kasandra K. J.; Beasley, Matthew N.; Green, James C.

    2009-08-01

    We present the results of developing a Lyman alpha blind detector for (? 1000-1100 Å). This detector has potential applications to astrophysical FUV emission observations, particularly the O VI doublet at 1037.62 and 1031.93 Å. By filling the detector with a gas whose ionization potential is above the energy of the bright Ly? airglow line at 10.2eV we hoped to produce an FUV detector that is Ly? blind. Propane (C3H8 ) and acetylene (C2H2) were tested as potential gas fillers. Both gases were found to have significant sensitivity to the Ly? line, either because of impurities in the gas or from dissociation products formed from Ly? photons, and therefore the detector did not provide the ~107 suppression of Ly? that is necessary to directly detect faint, diffuse FUV emission. When filled with acetylene the detector is 13 times more sensitive to Ar 1067 Å (a proxy for the O VI 1038 and 1032 Å doublet lines) than to Ly? and when filled with propane the detector is 3 times more sensitive to the argon line. The detector has a quantum efficiency of about 7% at 1067 Å with either gas and may hold promise for a completely Ly? blind FUV detector if a suitable gas is found.

  12. Optimizing global CO emission estimates using a four-dimensional variational data assimilation system and surface network observations

    Directory of Open Access Journals (Sweden)

    P. B. Hooghiemstra

    2011-05-01

    Full Text Available We apply a four-dimensional variational (4D-VAR data assimilation system to optimize carbon monoxide (CO emissions for 2003 and 2004 and to reduce the uncertainty of emission estimates from individual sources using the chemistry transport model TM5. The system is designed to assimilate large (satellite datasets, but in the current study only a limited amount of surface network observations from the National Oceanic and Atmospheric Administration Earth System Research Laboratory (NOAA/ESRL Global Monitoring Division (GMD is used to test the 4D-VAR system. By design, the system is capable to adjust the emissions in such a way that the posterior simulation reproduces background CO mixing ratios and large-scale pollution events at background stations. Uncertainty reduction up to 60 % in yearly emissions is observed over well-constrained regions and the inferred emissions compare well with recent studies for 2004. However, with the limited amount of data from the surface network, the system becomes data sparse resulting in a large solution space. Sensitivity studies have shown that model uncertainties (e.g., vertical distribution of biomass burning emissions and the OH field and the prior inventories used, influence the inferred emission estimates. Also, since the observations only constrain total CO emissions, the 4D-VAR system has difficulties in separating anthropogenic and biogenic sources in particular. The inferred emissions are validated with NOAA aircraft data over North America and the agreement is significantly improved from the prior to posterior simulation. Validation with the Measurements Of Pollution In The Troposphere (MOPITT instrument version 4 (V4 shows a slight improved agreement over the well-constrained Northern Hemisphere and in the tropics (except for the African continent. However, the model simulation with posterior emissions underestimates MOPITT CO total columns on the remote Southern Hemisphere (SH by about 10 %. This is caused by a reduction in SH CO sources mainly due to surface stations on the high southern latitudes.

  13. Observations and modeling of the dust emission from the H2-bright galaxy-wide shock in Stephan's Quintet

    CERN Document Server

    Guillard, P; Cluver, M E; Appleton, P N; Forets, G Pineau des; Ogle, P

    2010-01-01

    Spitzer Space Telescope observations revealed powerful mid-infrared (mid-IR) H2 rotational line emission from the Stephan's Quintet (SQ) X-ray emitting large scale shock associated with a collision between two galaxies. Because H2 forms on dust grains, the presence of H2 is physically linked to the survival of dust, and we expect some dust emission to come from the molecular gas. To test this interpretation, IR observations and dust modeling are used to identify and characterize the thermal dust emission from the shocked molecular gas. The spatial distribution of the IR emission allows us to isolate the faint PAH and dust continuum emission associated with the molecular gas in the SQ shock. We model the spectral energy distribution (SED) of this emission, and fit it to Spitzer observations. Faint PAH and dust continuum emission are detected in the SQ shock, outside star-forming regions. The 12/24um flux ratio in the shock is remarkably close to that of the diffuse Galactic interstellar medium, leading to a Ga...

  14. Space-Based Observations of the Seasonal Variations in Biomass Burning Emissions of NOx and VOCs over Africa during 2000

    Science.gov (United States)

    Jaegle, L.; Steinberger, L.; Martin, R. V.; Chance, K. V.; Kurosu, T. P.; Palmer, P. I.; Chin, M.

    2003-12-01

    We use tropospheric NO2 and HCHO columns from the Global Ozone Monitoring Experiment (GOME) satellite instrument to map the spatial and seasonal variations of NOx and volatile organic compounds (VOC) emissions over Africa during 2000. Our tropospheric column retrievals include the local effects of aerosols, clouds, as well as shape factors for NO2 and HCHO from the GEOS-CHEM global 3-D chemical transport model. The GOME NO2 columns display a very strong biomass burning signal with the well-known seasonality: fire season in Northern (Southern) Africa between November and March (May and October) with a north to south (northwest to southeast) progession. In addition, a strong signal from biogenic NOx emissions is present throughout the wet season, with particularly high NO2 columns in June over North Africa. Elevated GOME HCHO columns are observed over biomass burning areas, as well as over the tropical forests of central Africa (indicating strong biogenic isoprene emissions). We derive a top-down NOx emission inventory from the GOME column NO2 observations through an inversion with the GEOS-CHEM model. Our estimate of annual surface NOx emissions is 8 Tg N yr-1 over Africa for 2000 (4.1 and 3.9 Tg N yr-1 for North and South Africa, respectively), which is 50% larger than our bottom-up GEOS-CHEM emission inventory. Most of the difference is attributed to stronger than expected biogenic NOx emissions from soils, as well as to too low NOx emission factors used in the GEOS-CHEM model for North African Savannas. We will use space based observations of active fires (ATSR, VIRS) and burned areas (GBA2000) to separate biomass burning from biogenic emissions of NOx and VOCs, and examine their respective spatial and temporal variability during 2000. In addition, we will compare the GOME observations and GEOS-CHEM model results to studies from the SAFARI 2000 field mission over Southern Africa.

  15. Satellite observations of peroxyacetyl nitrate from the Aura Tropospheric Emission Spectrometer

    Directory of Open Access Journals (Sweden)

    V. H. Payne

    2014-06-01

    Full Text Available We present a description of the algorithm used to retrieve peroxyacetyl nitrate (PAN concentrations from the Aura Tropospheric Emission Spectrometer (TES. We describe the spectral microwindows, error analysis and the utilization of a priori and initial guess information provided by the GEOS-Chem global chemical transport model. The TES PAN retrievals contain up to one degree of freedom for signal. Estimated single-measurement uncertainties are 30 to 50%. The detection limit for a single TES measurement is dependent on the atmospheric and surface conditions as well as on the instrument noise. For observations where the cloud optical depth is less than 0.5, we find that the TES detection limit for PAN is in the region of 200 to 300 pptv. We show that PAN retrievals over the Northern Hemisphere Pacific in springtime show spatial features that are qualitatively consistent with the expected distribution of PAN in outflow of Asian pollution.

  16. BeppoSAX Observations of Bright Seyfert 2 Galaxies Measuring the Intrinsic Continuum Emission

    CERN Document Server

    Bassani, L; Malaguti, G; Palumbo, G G C; Dadina, M; Comastri, A; Cocco, G D; Blanco, P R; Dal Fiume, D; Fabian, A C; Frontera, F; Ghisellini, G; Grandi, P; Guainazzi, M; Haardt, F; MacCacaro, T; Maiolino, R; Matt, G; Piro, L; Santangelo, A; Trifoglio, M; Zhang, N

    1998-01-01

    We report broad band (0.1-200 keV) X-ray observations, made by BeppoSAX, of a sample of bright Seyfert 2 galaxies: NGC7172, NGC2110, NGC4507, Mkn 3 and NGC7674. These spectra provide a better understanding of the effects of X-ray reprocessing by cold material in the source and allow to put tighter constraints on the various spectral parameters involved. In particular, the data are used to determine, with less ambiguities than in the past, the shape of the intrinsic continuum emission by means of the high energy data. Within the small sample both Compton thin and Compton thick sources are found according to the expectations of the unified theory.

  17. Observation of resonance enhanced neutron standing waves using charged particle emission after neutron capture

    International Nuclear Information System (INIS)

    The effect of resonance enhancement of neutron standing waves in a structure glass/Cu (1000 Angstrom)/Ti (2000 Angstrom)/6LiF (200 Angstrom) is investigated. For particular neutron wavelengths there is observed a decrease in the intensity of the reflected neutrons and the corresponding increase in the emission of alpha-particles and tritons induced by neutron capture in 6Li nuclei. It is the evidence of an increase in the neutron density of the 6LiF layer for such wavelengths and is connected with the interference of the incident neutron wave and the neutron wave reflected from the Cu layer. The experimental and calculated data point to the existence of a resonance enhanced neutron wave field in the Ti and 6LiF layers

  18. Observation of a heated electron population associated with the 6300A SAR arc emission

    International Nuclear Information System (INIS)

    Conjunctive observations of the Dynamics Explorer satellite pair and the Pacific Northwest Laboratory scanning photometer unit at Richland, WA have allowed identification of the low energy, heated, electron population associated with the 6300A SAR arc emission. Measurements over the SAR arc on day 296 of 1981 show an enhanced flux in the low altitude 5-12 ev electrons. Analysis of this electron population shows them to be fairly Maxwellian with temperatures on the order of 9900 +/- 11000K and an earthward field aligned velocity of approximately 275 +/- 60 km/sec. The electrons are not accompanied by ion precipitation. The ion loss cone is empty at least as high as 6000 km. This fact may cast some doubt as to the role of the ring current ions in the SAR arc production. 11 references, 4 figures

  19. Observation of a heating electron population associated with the 6300A SAR arc emission

    International Nuclear Information System (INIS)

    Conjunctive observations of the Dynamics Explorer satellite pair and the Pacific Northwest Laboratory scanning photometer unit at Richland, WA have allowed identification of the low energy, heated, electron population associated with the 6300A SAR arc emission. Measurements over the SAR arc on day 296 of 1981 show an enhanced flux in the low altitude 5-12 ev electrons. Analysis of this electron population shows them to be fairly Maxwellian with temperatures on the order of 9900 +- 11000K and an earthward field aligned velocity of approximately 275 +- 60 km/sec. The electrons are not accompanied by ion precipitation. The ion loss cone is empty at least as high as 6000 km. This fact may cast some doubt as to the role of the ring current ions in the SAR arc produciton

  20. Image observation of ultraweak biophoton emission from animal wound tissue and tumor tissue

    Science.gov (United States)

    He, Yonghong; Tang, Yonghong; Zhong, Xueyun; Tan, Shici; Xing, Da

    1999-09-01

    No clear image of Ultraweak Biophoton Emission (UBE) from animal has been reported so far. With the detection system equipped with a back-illuminated cooled CCD (-60 degree(s)C), we have clearly observed UBE images of the wound tissues and the tumor tissues with long exposure time. The intensity of UBE from the wound tissue or the tumor tissue is higher than that from normal tissues. We proposed that the increase of UBE from wound response is the result from defense mechanism of body in which white blood cells' respiration burst is involved, the UBE from transplanted cancer tissue is related to the disorder of metabolism because of the malignant growth and multiplication of tumor cells. Non- invasive diagnosis might be realized in medicine by this technique following the further improvement of sensitivity of the detector.

  1. A comparative study of measured amplitude and phase perturbations of VLF and LF radio signals induced by solar flares

    Directory of Open Access Journals (Sweden)

    Šuli? D.M.

    2014-01-01

    Full Text Available Very Low Frequency (VLF and Low Frequency (LF signal perturbations were examined to study ionospheric disturbances induced by solar X-ray flares in order to understand processes involved in propagation of VLF/LF radio signals over short paths and to estimate specific characteristics of each short path. The receiver at the Belgrade station is constantly monitoring the amplitude and phase of a coherent and subionospherically propagating LF signal operated in Sicily NSC at 45.90 kHz, and a VLF signal operated in Isola di Tavolara ICV at 20.27 kHz, with the great circle distances of 953 km and 976 km, respectively. A significant number of similarities between these short paths is a direct result of both transmitters and the receiver’s geographic location. The main difference is in transmitter frequencies. From July 2008 to February 2014 there were about 200 events that were chosen for further examination. All selected examples showed that the amplitude and phase of VLF and LF signals were perturbed by solar X-ray flares occurrence. This six-year period covers both minimum and maximum of solar activity. Simultaneous measurement of amplitude and phase of the VLF/LF signals during a solar flare occurrence was applied to evaluate the electron density profile versus altitude, to carry out the function of time over the middle Europe. [Projekat Ministarstva nauke Republike Srbije, br. 176002 i br. III4402

  2. The GROUSE project III: Ks-band observations of the thermal emission from WASP-33b

    CERN Document Server

    de Mooij, E J W; de Kok, R J; Snellen, I A G; Kenworthy, M A; Karjalainen, R; 10.1051/0004-6361/201219434

    2013-01-01

    In recent years, day-side emission from about a dozen hot Jupiters has been detected through ground-based secondary eclipse observations in the near-infrared. These near-infrared observations are vital for determining the energy budgets of hot Jupiters, since they probe the planet's spectral energy distribution near its peak. The aim of this work is to measure the Ks-band secondary eclipse depth of WASP-33b, the first planet discovered to transit an A-type star. This planet receives the highest level of irradiation of all transiting planets discovered to date. Furthermore, its host-star shows pulsations and is classified as a low-amplitude delta-Scuti. As part of our GROUnd-based Secondary Eclipse (GROUSE) project we have obtained observations of two separate secondary eclipses of WASP-33b in the Ks-band using the LIRIS instrument on the William Herschel Telescope (WHT). The telescope was significantly defocused to avoid saturation of the detector for this bright star (K~7.5). To increase the stability and th...

  3. Recent Observations and Modeling of Narrowband Stimulated Electromagnetic Emissions SEEs at HAARP and EISCAT

    Science.gov (United States)

    Scales, W.; Mahmoudian, A.; Fu, H.; Bordikar, M. R.; Samimi, A.; Bernhardt, P. A.; Briczinski, S. J., Jr.; Kosch, M. J.; Senior, A.; Isham, B.

    2014-12-01

    There has been significant interest in so-called narrowband Stimulated Electromagnetic Emission SEE over the past several years due to recent discoveries at the High Frequency Active Auroral Research Program HAARP facility near Gakone, Alaska. Narrowband SEE (NSEE) has been defined as spectral features in the SEE spectrum typically within 1 kHz of the transmitter (or pump) frequency. SEE is due to nonlinear processes leading to re-radiation at frequencies other than the pump wave frequency during heating the ionospheric plasma with high power HF radio waves. Although NSEE exhibits a richly complex structure, it has now been shown after a substantial number of observations at HAARP, that NSEE can be grouped into two basic classes. The first are those spectral features, associated with Stimulated Brillouin Scatter SBS, which typically occur when the pump frequency is not close to electron gyro-harmonic frequencies. Typically, these spectral features are within roughly 50 Hz of the pump wave frequency where it is to be noted that the O+ ion gyro-frequency is roughly 50 Hz. The second class of spectral features corresponds to the case when the pump wave frequency is typically within roughly 10 kHz of electron gyro-harmonic frequencies. In this case, spectral features ordered by harmonics of ion gyro-frequencies are typically observed, and termed Stimulated Ion Bernstein Scatter SIBS. This presentation will first provide an overview of the recent NSEE experimental observations at HAARP. Both Stimulated Brillouin Scatter SBS and Stimulated Ion Bernstein Scatter SIBS observations will be discussed as well as their relationship to each other. Possible theoretical formulation in terms of parametric decay instabilities and computational modeling will be provided. Possible applications of NSEE will be pointed out including triggering diagnostics for artificial ionization layer formation, proton precipitation event diagnostics, electron temperature measurements in the heated volume and detection of heavy ion species. Finally potential for observing such SEE at the European Incoherent Scatter EISCAT facility will be discussed.

  4. Direct observation of electron emission from the grain boundaries of chemical vapour deposition diamond films by tunneling atomic force microscopy

    International Nuclear Information System (INIS)

    The emission of electrons from diamond in vacuum occurs readily as a result of the negative electron affinity of the hydrogenated surface due to features with nanoscale dimensions, which can concentrate electric fields high enough to induce electron emission from them. Electrons can be emitted as a result of an applied electric field (field emission) with possible uses in displays or cold-cathode devices. Alternatively, electrons can be emitted simply by heating the diamond in vacuum to temperatures as low as 350?°C (thermionic emission), and this may find applications in solar energy generation or energy harvesting devices. Electron emission studies usually use doped polycrystalline diamond films deposited onto Si or metallic substrates by chemical vapor deposition, and these films have a rough, faceted morphology on the micron or nanometer scale. Electron emission is often improved by patterning the diamond surface into sharp points or needles, the idea being that the field lines concentrate at the points lowering the barrier for electron emission. However, there is little direct evidence that electrons are emitted from these sharp tips. The few reports in the literature that have studied the emission sites suggested that emission came from the grain boundaries and not the protruding regions. We now present direct observation of the emission sites over a large area of polycrystalline diamond using tunneling atomic force microscopy. We confirm that the emission current comes mostly from the grain boundaries, which is consistent with a model for emission in which the non-diamond phase is the source of electrons with a threshold that is determined by the surrounding hydrogenated diamond surface

  5. Direct observation of electron emission from the grain boundaries of chemical vapour deposition diamond films by tunneling atomic force microscopy

    Science.gov (United States)

    Chatterjee, Vijay; Harniman, Robert; May, Paul W.; Barhai, P. K.

    2014-04-01

    The emission of electrons from diamond in vacuum occurs readily as a result of the negative electron affinity of the hydrogenated surface due to features with nanoscale dimensions, which can concentrate electric fields high enough to induce electron emission from them. Electrons can be emitted as a result of an applied electric field (field emission) with possible uses in displays or cold-cathode devices. Alternatively, electrons can be emitted simply by heating the diamond in vacuum to temperatures as low as 350 °C (thermionic emission), and this may find applications in solar energy generation or energy harvesting devices. Electron emission studies usually use doped polycrystalline diamond films deposited onto Si or metallic substrates by chemical vapor deposition, and these films have a rough, faceted morphology on the micron or nanometer scale. Electron emission is often improved by patterning the diamond surface into sharp points or needles, the idea being that the field lines concentrate at the points lowering the barrier for electron emission. However, there is little direct evidence that electrons are emitted from these sharp tips. The few reports in the literature that have studied the emission sites suggested that emission came from the grain boundaries and not the protruding regions. We now present direct observation of the emission sites over a large area of polycrystalline diamond using tunneling atomic force microscopy. We confirm that the emission current comes mostly from the grain boundaries, which is consistent with a model for emission in which the non-diamond phase is the source of electrons with a threshold that is determined by the surrounding hydrogenated diamond surface.

  6. Direct observation of electron emission from the grain boundaries of chemical vapour deposition diamond films by tunneling atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Vijay [School of Chemistry, University of Bristol, Cantock' s Close, Bristol BS8 1TS (United Kingdom); Department of Physics, Birla Institute of Technology, Mesra, Ranchi 835215 (India); Harniman, Robert; May, Paul W., E-mail: paul.may@bristol.ac.uk [School of Chemistry, University of Bristol, Cantock' s Close, Bristol BS8 1TS (United Kingdom); Barhai, P. K. [Department of Physics, Birla Institute of Technology, Mesra, Ranchi 835215 (India)

    2014-04-28

    The emission of electrons from diamond in vacuum occurs readily as a result of the negative electron affinity of the hydrogenated surface due to features with nanoscale dimensions, which can concentrate electric fields high enough to induce electron emission from them. Electrons can be emitted as a result of an applied electric field (field emission) with possible uses in displays or cold-cathode devices. Alternatively, electrons can be emitted simply by heating the diamond in vacuum to temperatures as low as 350?°C (thermionic emission), and this may find applications in solar energy generation or energy harvesting devices. Electron emission studies usually use doped polycrystalline diamond films deposited onto Si or metallic substrates by chemical vapor deposition, and these films have a rough, faceted morphology on the micron or nanometer scale. Electron emission is often improved by patterning the diamond surface into sharp points or needles, the idea being that the field lines concentrate at the points lowering the barrier for electron emission. However, there is little direct evidence that electrons are emitted from these sharp tips. The few reports in the literature that have studied the emission sites suggested that emission came from the grain boundaries and not the protruding regions. We now present direct observation of the emission sites over a large area of polycrystalline diamond using tunneling atomic force microscopy. We confirm that the emission current comes mostly from the grain boundaries, which is consistent with a model for emission in which the non-diamond phase is the source of electrons with a threshold that is determined by the surrounding hydrogenated diamond surface.

  7. Occasional large emissions of nitrous oxide and methane observed in stormwater biofiltration systems

    International Nuclear Information System (INIS)

    Designed, green infrastructures are becoming a customary feature of the urban landscape. Sustainable technologies for stormwater management, and biofilters in particular, are increasingly used to reduce stormwater runoff volumes and peaks as well as improve the water quality of runoff discharged into urban water bodies. Although a lot of research has been devoted to these technologies, their effect in terms of greenhouse gas fluxes in urban areas has not been yet investigated. We present the first study aimed at quantifying greenhouse gas fluxes between the soil of stormwater biofilters and the atmosphere. N2O, CH4, and CO2 were measured periodically over a year in two operational vegetated biofiltration cells at Monash University in Melbourne, Australia. One cell had a saturated zone at the bottom, and compost and hardwood mulch added to the sandy loam filter media. The other cell had no saturated zone and was composed of sandy loam. Similar sedges were planted in both cells. The biofilter soil was a small N2O source and a sink for CH4 for most measurement events, with occasional large emissions of both N2O and CH4 under very wet conditions. Average N2O fluxes from the cell with the saturated zone were almost five-fold greater (65.6 ?g N2O–N m?2 h?1) than from the other cell (13.7 ?g N2O–N m?2 h?1), with peaks up to 1100 ?g N2O–N m?2 h?1. These N2O fluxes are of similar magnitude to those measured in other urban soils, but with larger peak emissions. The CH4 sink strength of the cell with the saturated zone (? 3.8 ?g CH4–C m?2 h?1) was lower than the other cell (? 18.3 ?g CH4–C m?2 h?1). Both cells of the biofilter appeared to take up CH4 at similar rates to other urban lawn systems; however, the biofilter cells displayed occasional large CH4 emissions following inflow events, which were not seen in other urban systems. CO2 fluxes increased with soil temperature in both cells, and in the cell without the saturated zone CO2 fluxes decreased as soil moisture increased. Other studies of CO2 fluxes from urban soils have found both similar and larger CO2 emissions than those measured in the biofilter. The results of this study suggest that the greenhouse gas footprint of stormwater treatment warrant consideration in the planning and implementation of engineered green infrastructures. - Highlights: ? First study of greenhouse gas fluxes from a stormwater biofilter. ? Observed occasional large emissions of nitrous oxide and methane. ? Biofilter designs with and without a saturated zone were net sinks for methane. ? Carbon dioxide emissions were four times less than those from lawns

  8. Occasional large emissions of nitrous oxide and methane observed in stormwater biofiltration systems

    Energy Technology Data Exchange (ETDEWEB)

    Grover, Samantha P.P., E-mail: samantha.grover@monash.edu [Department of Civil Engineering, Monash University, Clayton, Victoria, 3800 (Australia); Cohan, Amanda, E-mail: acoh5@student.monash.edu [Department of Civil Engineering, Monash University, Clayton, Victoria, 3800 (Australia); Chan, Hon Sen, E-mail: hon.sen.chan@gmail.com [Department of Civil Engineering, Monash University, Clayton, Victoria, 3800 (Australia); Livesley, Stephen J., E-mail: sjlive@unimelb.edu.au [Department of Resource Management and Geography, The University of Melbourne, Richmond, Victoria, 3121 (Australia); Beringer, Jason, E-mail: jason.beringer@monash.edu [School of Geography and Environmental Science, Monash University, Clayton, Victoria, 3800 (Australia); Monash Water for Liveability, Monash University, Clayton, Victoria, 3800 (Australia); Daly, Edoardo, E-mail: edoardo.daly@monash.edu [Department of Civil Engineering, Monash University, Clayton, Victoria, 3800 (Australia); Monash Water for Liveability, Monash University, Clayton, Victoria, 3800 (Australia)

    2013-11-01

    Designed, green infrastructures are becoming a customary feature of the urban landscape. Sustainable technologies for stormwater management, and biofilters in particular, are increasingly used to reduce stormwater runoff volumes and peaks as well as improve the water quality of runoff discharged into urban water bodies. Although a lot of research has been devoted to these technologies, their effect in terms of greenhouse gas fluxes in urban areas has not been yet investigated. We present the first study aimed at quantifying greenhouse gas fluxes between the soil of stormwater biofilters and the atmosphere. N{sub 2}O, CH{sub 4}, and CO{sub 2} were measured periodically over a year in two operational vegetated biofiltration cells at Monash University in Melbourne, Australia. One cell had a saturated zone at the bottom, and compost and hardwood mulch added to the sandy loam filter media. The other cell had no saturated zone and was composed of sandy loam. Similar sedges were planted in both cells. The biofilter soil was a small N{sub 2}O source and a sink for CH{sub 4} for most measurement events, with occasional large emissions of both N{sub 2}O and CH{sub 4} under very wet conditions. Average N{sub 2}O fluxes from the cell with the saturated zone were almost five-fold greater (65.6 ?g N{sub 2}O–N m{sup ?2} h{sup ?1}) than from the other cell (13.7 ?g N{sub 2}O–N m{sup ?2} h{sup ?1}), with peaks up to 1100 ?g N{sub 2}O–N m{sup ?2} h{sup ?1}. These N{sub 2}O fluxes are of similar magnitude to those measured in other urban soils, but with larger peak emissions. The CH{sub 4} sink strength of the cell with the saturated zone (? 3.8 ?g CH{sub 4}–C m{sup ?2} h{sup ?1}) was lower than the other cell (? 18.3 ?g CH{sub 4}–C m{sup ?2} h{sup ?1}). Both cells of the biofilter appeared to take up CH{sub 4} at similar rates to other urban lawn systems; however, the biofilter cells displayed occasional large CH{sub 4} emissions following inflow events, which were not seen in other urban systems. CO{sub 2} fluxes increased with soil temperature in both cells, and in the cell without the saturated zone CO{sub 2} fluxes decreased as soil moisture increased. Other studies of CO{sub 2} fluxes from urban soils have found both similar and larger CO{sub 2} emissions than those measured in the biofilter. The results of this study suggest that the greenhouse gas footprint of stormwater treatment warrant consideration in the planning and implementation of engineered green infrastructures. - Highlights: ? First study of greenhouse gas fluxes from a stormwater biofilter. ? Observed occasional large emissions of nitrous oxide and methane. ? Biofilter designs with and without a saturated zone were net sinks for methane. ? Carbon dioxide emissions were four times less than those from lawns.

  9. Airborne Ethane Observations over the Barnett and Bakken Shale Formations: Quantification of Ethane Fluxes and Attribution of Methane Emissions

    Science.gov (United States)

    Smith, M. L.; Kort, E. A.; Karion, A.; Sweeney, C.; Peischl, J.; Ryerson, T. B.

    2014-12-01

    The largest emissions sources of methane, a potent greenhouse gas and the primary component of natural gas, are the fossil fuel sector and microbial processes that occur in agricultural settings, landfills, and wetlands. Attribution of methane to these different source sectors has proven difficult, as evidenced by persistent disagreement between the annual emissions estimated from atmospheric observations (top-down) and from inventories (bottom-up). Given the rapidly changing natural gas infrastructure in North America, and the implications of associated rapid changes in emissions of methane for climate, it is crucial we improve our ability to quantify and understand current and future methane emissions. Here, we present evidence that continuous in-situ airborne observations of ethane, which is a tracer for fossil fuel emissions, are a new and useful tool for attribution of methane emissions to specific source sectors. Additionally, with these new airborne observations we present the first tightly constrained ethane emissions estimates of oil and gas production fields using the well-known mass balance method. The ratios of ethane-to-methane (C2H6:CH4) of specific methane emissions sources were studied over regions of high oil and gas production from the Barnett, TX and Bakken, ND shale plays, using continuous (1Hz frequency) airborne ethane measurements paired with simultaneous methane measurements. Despite the complex mixture of sources in the Barnett region, the methane emissions were well-characterized by distinct C2H6:CH4 relationships indicative of a high-ethane fossil fuel source (e.g., "wet" gas), a low-ethane fossil fuel source (e.g., "dry" gas), and an ethane-free, or microbial source. The defined set of C2H6:CH4 that characterized the emissions input to the atmosphere was used in conjunction with the total ethane and methane fluxes to place bounds on the fraction of methane emissions attributable to each source. Additionally, substantial ethane fluxes from the Barnett and Bakken regions were observed (1% to 10% of estimated national ethane emissions), and emissions of these magnitudes may significantly impact regional atmospheric chemistry and air quality by influencing production of tropospheric ozone.

  10. Multiscale observations of CO2, 13CO2, and pollutants at Four Corners for emission verification and attribution.

    Science.gov (United States)

    Lindenmaier, Rodica; Dubey, Manvendra K; Henderson, Bradley G; Butterfield, Zachary T; Herman, Jay R; Rahn, Thom; Lee, Sang-Hyun

    2014-06-10

    There is a pressing need to verify air pollutant and greenhouse gas emissions from anthropogenic fossil energy sources to enforce current and future regulations. We demonstrate the feasibility of using simultaneous remote sensing observations of column abundances of CO2, CO, and NO2 to inform and verify emission inventories. We report, to our knowledge, the first ever simultaneous column enhancements in CO2 (3-10 ppm) and NO2 (1-3 Dobson Units), and evidence of ?(13)CO2 depletion in an urban region with two large coal-fired power plants with distinct scrubbing technologies that have resulted in ?NOx/?CO2 emission ratios that differ by a factor of two. Ground-based total atmospheric column trace gas abundances change synchronously and correlate well with simultaneous in situ point measurements during plume interceptions. Emission ratios of ?NOx/?CO2 and ?SO2/?CO2 derived from in situ atmospheric observations agree with those reported by in-stack monitors. Forward simulations using in-stack emissions agree with remote column CO2 and NO2 plume observations after fine scale adjustments. Both observed and simulated column ?NO2/?CO2 ratios indicate that a large fraction (70-75%) of the region is polluted. We demonstrate that the column emission ratios of ?NO2/?CO2 can resolve changes from day-to-day variation in sources with distinct emission factors (clean and dirty power plants, urban, and fires). We apportion these sources by using NO2, SO2, and CO as signatures. Our high-frequency remote sensing observations of CO2 and coemitted pollutants offer promise for the verification of power plant emission factors and abatement technologies from ground and space. PMID:24843169

  11. AST/RO Observations of CO J=7-6 Emission from the Galactic Center

    Science.gov (United States)

    Kim, S.; Martin, C. L.; Stark, A. A.; Lane, A. P.

    2000-12-01

    We present a map of the Galactic Center region in the CO J=7-6 transition observed with the Antarctic Submillimeter Telescope and Remote Observatory (AST/RO) located at Amundsen-Scott South Pole Station. Emission from the 809 GHz J=7-6 transition of 12CO was mapped over the region -2.7 < l < 3.6, -1.0 < b < 1.0, on a 1' grid with a spatial resolution of ~ 85''. The CO J=4-3 and [CI] emissions from this region have been mapped with AST/RO by Martin et al. (2001) and Ojha et al. (2000). These two spectral lines are distributed throughout the Galactic Center region in a manner almost identical to that of CO J=1-0; the CO(4-3)/ CO(1-0) line ratio and the [CI]/CO line ratios are remarkably uniform across a wide variety of Galactic Center features. In contrast, the CO J=7-6 emission from the Galactic Center region is confined to the Sgr A and Sgr B2 complexes. The implication is that the photon-dominated regions surrounding the Galactic Center are remarkably similar in mean density and kinetic temperature at n = 3000 cm-3 and T = 35 K, except for the two special regions Sgr A and Sgr B2, which are denser. The CO(7-6)/CO(4-3) line temperature ratios near Sgr B2 are similar to those observed in the nuclear region of the starburst galaxy M82 (Mao et al. 2000), while the CO(7-6)/CO(4-3) line temperature ratios around Sgr A are a factor of three lower than those near Sgr B2. The CO(7-6)/CO(4-3) line ratio in the Galactic Center region as a whole is at least an order of magnitude less than that in a comparable region near the center of M82. This research was supported in part by the National Science Foundation under a cooperative agreement with the Center for Astrophysical Research in Antarctica (CARA), grant number NSF OPP 89-20223. CARA is a National Science Foundation Science and Technology Center.

  12. Constraints on ship NOx emissions in Europe using GEOS-Chem and OMI satellite NO2 observations

    Directory of Open Access Journals (Sweden)

    G. C. M. Vinken

    2013-07-01

    Full Text Available We present a top-down ship NOx emission inventory for the Baltic Sea, North Sea, Bay of Biscay and Mediterranean Sea, based on satellite observed tropospheric NO2 columns of the Ozone Monitoring Instrument (OMI for 2005–2006. We improved the representation of ship emissions in the GEOS-Chem chemistry transport model, and compared simulated NO2 columns to consistent satellite observations. Relative differences between simulated and observed NO2 columns have been used to constrain ship emissions in four European seas (Baltic Sea, North Sea, Bay of Biscay and Mediterranean Sea. The constrained ship tracks account for 39% of total top-down European ship NOx emissions, which amounts to 0.96 Tg N for 2005, and 1.0 Tg N for 2006 (11–15% lower than the bottom-up EMEP ship emission inventory. Our results indicate that EMEP emissions in the Mediterranean Sea are too high (by 60% and misplaced by up to 150 km, which can have important consequences for local air quality simulations. In the North Sea, our top-down emissions amount to 0.05 Tg N for 2005 (35% lower than EMEP. Increased top-down emissions were found for the Baltic Sea and Bay of Biscay, with emission totals of 0.05 Tg N (131% higher than EMEP and 0.08 Tg N for 2005 (128% higher than EMEP, respectively. Our study explicitly accounts for the (non-linear sensitivity of satellite retrievals to changes in the a priori NO2 profiles. Although the effect of this sensitivity might be minor for small emission increments, our findings stress the need for consistent information in satellite retrieval and model, as satellite observations are never fully independent of model information (i.e. assumptions on vertical NO2 profiles. Our study provides for the first time a space-based top-down ship NOx emission inventory, and can serve as a framework for future studies to constrain ship emissions using satellite NO2 observations in other seas.

  13. Emissions of mercury in southern Africa derived from long-term observations at Cape Point, South Africa

    Directory of Open Access Journals (Sweden)

    E.-G. Brunke

    2012-08-01

    Full Text Available Mercury emissions in South Africa have so far been estimated only by a bottom-up approach from activities and emission factors for different processes. In this paper we derive GEM/CO (GEM being gaseous elemental mercury, Hg0, GEM/CO2, GEM/CH4, CO/CO2, CH4/CO2, and CH4/CO emission ratios from plumes observed during long-term monitoring of these species at Cape Point between March 2007 and December 2009. The average observed GEM/CO, GEM/CO2, GEM/CH4, CO/CO2, CH4/CO2, and CH4/CO emission ratios were 2.40 ± 2.65 pg m?3 ppb?1 (n = 47, 62.7 ± 80.2 pg m?3 ppm?1 (n = 44, 3.61 ± 4.66 pg m?3 ppb?1 (n = 46, 35.6 ± 25.4 ppb ppm?1 (n = 52, 20.2 ± 15.5 ppb ppm?1 (n = 48, and 0.876 ± 1.106 ppb ppb?1 (n = 42, respectively. The observed CO/CO2, CH4/CO2, and CH4/CO emission ratios agree within the combined uncertainties of the observations and emissions with the ratios calculated from EDGAR (version 4.2 CO2, CO, and CH4 inventories for South Africa and southern Africa (South Africa, Lesotho, Swaziland, Namibia, Botswana, Zimbabwe, and Mozambique in 2007 and 2008 (inventories for 2009 are not available yet. Total elemental mercury emission of 13.1, 15.2, and 16.1 t Hg yr?1 are estimated independently using the GEM/CO, GEM/CO2, and GEM/CH4 emission ratios and the annual mean CO, CO2, and CH4 emissions, respectively, of South Africa in 2007 and 2008. The average of these independent estimates of 14.8 t GEM yr?1 is much less than the total emission of 257 t Hg yr?1 shown by older inventories which are now considered to be wrong. Considering the uncertainties of our emission estimate, of the emission inventories, and the fact that emission of GEM represents 50–78 % of all mercury emissions, our estimate is comparable to the currently cited GEM emissions in 2004 and somewhat smaller than emissions in 2006. A further increase of mercury emissions due to increasing electricity consumption will lead to a more pronounced difference. A quantitative assessment of the difference and its significance, however, will require emission inventories for the years of observations (2007–2009 as well as better data on the speciation of the total mercury emissions in South Africa.

  14. Fermi LAT observation of quiet gamma-ray emission from the Sun and first solar flares detection

    International Nuclear Information System (INIS)

    We show the latest results of Fermi-LAT observations of the quiescent Sun during the first 18 months of the mission. During this period the solar activity was at its minimum, hence the solar emission induced by cosmic rays was at its maximum. Two emission components are clearly distinguished: the point-like emission from the solar disk due to the cosmic-ray cascades in the solar atmosphere, and the extended emission due to inverse Compton scattering of cosmic ray electrons on solar photons in the heliosphere. We present the entire analysis, showing spectra and angular profiles of both components and discuss the comparison with models and future plans. Finally we report on Fermi Large Area Telescope (LAT) detection of the first solar flares and discussing the possible emission mechanisms.

  15. Observation of Two-Photon Interference Using the Zero-Phonon-Line Emission of a Single Molecule

    International Nuclear Information System (INIS)

    We report the results of coincidence counting experiments at the output of a Michelson interferometer using the zero-phonon-line emission of a single molecule at 1.4 K. Under continuous wave excitation, we observe the absence of coincidence counts as an indication of two-photon interference. This corresponds to the observation of Hong-Ou-Mandel correlations

  16. Observations of a mode transition in a hydrogen hollow cathode discharge using phase resolved optical emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Sam, E-mail: sam.dixon@anu.edu.au; Charles, Christine; Dedrick, James; Boswell, Rod [Space Plasma, Power and Propulsion Laboratory, Research School of Physics and Engineering, The Australian National University, Canberra ACT 0200 (Australia); Gans, Timo; O' Connell, Deborah [Department of Physics, York Plasma Institute, University of York, Heslington, York YO10 5DD (United Kingdom)

    2014-07-07

    Two distinct operational modes are observed in a radio frequency (rf) low pressure hydrogen hollow cathode discharge. The mode transition is characterised by a change in total light emission and differing expansion structures. An intensified CCD camera is used to make phase resolved images of Balmer ? emission from the discharge. The low emission mode is consistent with a typical ? discharge, and appears to be driven by secondary electrons ejected from the cathode surface. The bright mode displays characteristics common to an inductive discharge, including increased optical emission, power factor, and temperature of the H{sub 2} gas. The bright mode precipitates the formation of a stationary shock in the expansion, observed as a dark region adjacent to the source-chamber interface.

  17. Mars Global Surveyor Thermal Emission Spectrometer (TES) Observations of Dust Opacity During Aerobraking and Science Phasing

    Science.gov (United States)

    Smith, Michael D.; Pearl, John C.; Conrath, Barney J.; Christensen, Philip R.

    1999-01-01

    The Mars Global Surveyor (MGS) arrived at Mars in September 1997 near Mars southern spring equinox and has now provided monitoring of conditions in the Mars atmosphere for more than half a Mars year. The large majority of the spectra taken by the Thermal Emission Spectrometer (TES) are in a nadir geometry (downward looking mode) where Mars is observed through the atmosphere. Most of these contain the distinct spectral signature of atmospheric dust. For these nadir-geometry spectra we retrieve column-integrated infrared aerosol (dust) opacities. TES observations during the aerobraking and science-phasing portions of the MGS mission cover the seasonal range L(sub s)=184 deg - 28 deg. Excellent spatial coverage was obtained in the southern hemisphere. Northern hemisphere coverage is generally limited to narrow strips taken during the periapsis pass but is still very valuable. At the beginning of the mission the 9-(micron)meter dust opacity at midsouthern latitudes was low (0.15-0.25). As the season advanced through southern spring and into summer, TES observed several regional dust storms (including the Noachis dust storm of November 1997) where peak 9-(micron)meter dust opacities approached or exceeded unity, as well as numerous smaller local storms. Both large and small dust storms exhibited significant changes in both spatial coverage and intensity over a timescale of a day. Throughout southern spring and summer the region at the edge of the retreating southern seasonal polar ice cap was observed to be consistently more dusty than other latitudes.

  18. Observation of coherent two-photon emission from the first vibrationally-excited state of hydrogen molecules

    CERN Document Server

    Miyamoto, Yuki; Kuma, Susumu; Masuda, Takahiko; Katsuragawa, Masayuki; Nakano, Itsuo; Ohae, Chiaki; Sasao, Noboru; Tanaka, Minoru; Uetake, Satoshi; Yoshimi, Akihiro; Yoshimura, Koji; Yoshimura, Motohiko

    2014-01-01

    In this paper, we describe an experiment which was conducted to explore the macro-coherent amplification mechanism using a two-photon emission process from the first vibrationally-excited state of para-hydrogen molecule. Large coherence in the initial state was prepared by the adiabatic Raman population transfer method, and the lowest Stokes sideband was used as a trigger field. We observed the coherent twophoton emission consistent with the expectation of the paired super-radiance master equation.

  19. Development of a method for estimating emissions from oil and gas production sites utilizing remote observations

    Science.gov (United States)

    There is a lack of information on emissions of ozone precursors, hazardous air pollutants, and greenhouse gases from oil and gas production operations, and measurement of these emissions presents many challenges. Assessment is complicated by the fugitive nature ofthe emissions, v...

  20. First observation of 54Zn and its decay by two-proton emission

    CERN Document Server

    Blank, B; Canchel, G; Dossat, C; Fleury, A; Giovinazzo, J; Matea, I; Adimi, N; De Oliveira, F; Stefan, I; Georgiev, G; Grévy, S; Thomas, J C; Borcea, C; Cortina-Gil, D; Caamano, M; Stanoiu, M; Aksouh, F; Brown, B A; Barker, F C; Richter, W A

    2005-01-01

    The nucleus 54Zn has been observed for the first time in an experiment at the SISSI/LISE3 facility of GANIL in the quasi-fragmentation of a 58Ni beam at 74.5 MeV/nucleon in a natNi target. The fragments were analysed by means of the ALPHA-LISE3 separator and implanted in a silicon-strip detector where correlations in space and time between implantation and subsequent decay events allowed us to generate almost background free decay spectra for about 25 different nuclei at the same time. Eight 54Zn implantation events were observed. From the correlated decay events, the half-life of 54Zn is determined to be 3.2 +1.8/-0.8 ms. Seven of the eight implantations are followed by two-proton emission with a decay energy of 1.48(2) MeV. The decay energy and the partial half-life are compared to model predictions and allow for a test of these two-proton decay models.

  1. First Observation of 54Zn and its Decay by Two-Proton Emission

    International Nuclear Information System (INIS)

    The nucleus 54Zn has been observed for the first time in an experiment at the SISSI/LISE3 facility of GANIL in the quasifragmentation of a 58Ni beam at 74.5 MeV/nucleon in a natNi target. The fragments were analyzed by means of the ALPHA-LISE3 separator and implanted in a silicon-strip detector where correlations in space and time between implantation and subsequent decay events allowed us to generate almost background free decay spectra for about 25 different nuclei at the same time. Eight 54Zn implantation events were observed. From the correlated decay events, the half-life of 54Zn is determined to be 3.2-0.8+1.8 ms. Seven of the eight implantations are followed by two-proton emission with a decay energy of 1.48(2) MeV. The decay energy and the partial half-life are compared to model predictions and allow for a test of these two-proton decay models

  2. Solar Flare Chromospheric Line Emission: Comparison Between IBIS High-resolution Observations and Radiative Hydrodynamic Simulations

    CERN Document Server

    da Costa, Fatima Rubio; Petrosian, Vahé; Dalda, Alberto Sainz; Liu, Wei

    2014-01-01

    Solar flares involve impulsive energy release, which results in enhanced radiation in a broad spectral and at a wide height range. In particular, line emission from the chromosphere (lower atmosphere) can provide critical diagnostics of plasma heating processes. Thus, a direct comparison between high-resolution spectroscopic observations and advanced numerical modeling results can be extremely valuable, but has not been attempted so far. We present in this paper such a self-consistent investigation of an M3.0 flare observed by the Dunn Solar Telescope's (DST) Interferometric Bi-dimensional Spectrometer (IBIS) on 2011 September 24 that we have modeled with the radiative hydrodynamic code RADYN (Carlsson & Stein 1992, 1997; Abbett & Hawley 1999; Allred et al. 2005). We obtained images and spectra of the flaring region with IBIS in H$\\alpha$ 6563 \\AA\\ and Ca II 8542 \\AA, and with the Reuven Ramaty High Energy Solar Spectroscope Imager (RHESSI) in X-rays. The latter was used to infer the non-thermal elect...

  3. Observation of ion cyclotron emission owing to DD fusion product H ions in JT-60U

    International Nuclear Information System (INIS)

    High-frequency fluctuations in the ion cyclotron range of frequency (ICRF) are excited in magnetically confined plasmas because of the distortion of velocity distribution. In deuterium plasma experiments in JT-60U, ion cyclotron emission (ICE) detected as magnetic fluctuations is observed using ICRF antennas as pickup loops. The toroidal wave-numbers can be estimated using the phase differences between the signals from antenna elements arrayed in the toroidal direction. In this manuscript, ICE due to fusion product (FP) H ions, ICE(H), which is identified separately from the second-harmonic ICE caused by D ions, is newly reported. ICE is considered to result from spontaneous excitation of magnetosonic waves associated with FP high-energy ions. ICE caused by 3He ions and T ions has already been identified and confirmed to have finite toroidal wave-numbers. In contrast, ICE caused by ions originating in neutral beam injection has no toroidal wave-numbers. It is suggested that the appearance of ICE(H) depends strongly on the plasma density, and weak magnetic shear operation is one of the possible conditions for the observation of ICE(H). (author)

  4. New radio observations of anomalous microwave emission in the HII region RCW175

    CERN Document Server

    Battistelli, E S; Cruciani, A; de Bernardis, P; Genova-Santos, R; Masi, S; Naldi, A; Paladini, R; Piacentini, F; Tibbs, C T; Verstraete, L; Ysard, N

    2015-01-01

    We have observed the HII region RCW175 with the 64m Parkes telescope at 8.4GHz and 13.5GHz in total intensity, and at 21.5GHz in both total intensity and polarization. High angular resolution, high sensitivity, and polarization capability enable us to perform a detailed study of the different constituents of the HII region. For the first time, we resolve three distinct regions at microwave frequencies, two of which are part of the same annular diffuse structure. Our observations enable us to confirm the presence of anomalous microwave emission (AME) from RCW175. Fitting the integrated flux density across the entire region with the currently available spinning dust models, using physically motivated assumptions, indicates the presence of at least two spinning dust components: a warm component with a relatively large hydrogen number density n_H=26.3/cm^3 and a cold component with a hydrogen number density of n_H=150/cm^3. The present study is an example highlighting the potential of using high angular-resolutio...

  5. X-ray Emission from the Wolf-Rayet Bubble NGC 6888. I. Chandra ACIS-S Observations

    CERN Document Server

    Toalá, J A; Gruendl, R A; Chu, Y -H

    2013-01-01

    We analyze Chandra observations of the Wolf-Rayet (WR) bubble NGC 6888. This WR bubble presents similar spectral and morphological X-ray characteristics to those of S 308, the only other WR bubble also showing X-ray emission. The observed spectrum is soft, peaking at the N VII line emission at 0.5 keV with additional line emission at 0.7 - 0.9 keV and a weak tail of harder emission up to ~1.5 keV. This spectrum can be described by a two-temperature optically thin plasma emission model (T_{1}~1.4x10^{6} K, T_{2}~7.4x10^{6} K). We confirm the results of previous X-ray observations that no noticeable temperature variations are detected in the nebula. The X-ray-emitting plasma is distributed in three apparent morphological components: two caps along the tips of the major axis and an extra contribution toward the northwest blowout not reported in previous analysis of the X-ray emission toward this WR nebula. Using the plasma model fits of the Chandra ACIS spectra for the physical properties of the hot gas and the ...

  6. A Climatology of dust emission in northern Africa using surface observations from 1984-2012

    Science.gov (United States)

    Cowie, Sophie; Knippertz, Peter; Marsham, John

    2014-05-01

    The huge quantity of mineral dust emitted annually from northern Africa makes this area crucial to the global dust cycle. Once in the atmosphere, dust aerosols have a significant impact on the global radiation budget, clouds, the carbon cycle and can even act as a fertilizer to rain forests in South America. Current model estimates of dust production from northern Africa are uncertain. At the heart of this problem is insufficient understanding of key dust emitting processes such as haboobs (cold pools generated through evaporation of convective precipitation), low-level jets (LLJs) and dry convection (dust devils and dust plumes). Scarce observations in this region, in particular in the Sahara, make model evaluation difficult. This work uses long-term surface observations from 70 stations situated in the Sahara and Sahel to explore the diurnal, seasonal and geographical variations in dust emission events and thresholds. Quality flags are applied to each station to indicate a day-time bias or gaps in the time period 1984-2012. The frequency of dust emission (FDE) is calculated using the present weather codes (WW) of SYNOP reports, where WW = 07,08,09,30-35 and 98. Thresholds are investigated by estimating the wind speeds for which there is a 25%, 50% and 75% probability of dust emission. The 50% threshold is used to calculate strong wind frequency (SWF) and the diagnostic parameter dust uplift potential (DUP); a thresholded cubic function of wind-speed which quantifies the dust generating power of winds. Stations are grouped into 6 areas (North Algeria, Central Sahara, Egypt, West Sahel, Central Sahel and Sudan) for more in-depth analysis of these parameters. Spatially, thresholds are highest in northern Algeria and lowest in the Sahel around the latitude band 16N-21N. Annual mean FDE is anti-correlated with the threshold, showing the importance of spatial variations in thresholds for mean dust emission. The annual cycles of FDE and SWF for the 6 grouped areas are highly correlated (0.95 to 0.99). These correlations are barely reduced when annual-mean thresholds are used, showing that seasonal variations in thresholds are not the main control on the seasonal variations in FDE. Relationships between annual cycles in FDE and DUP are more complex than between FDE and SWF, reflecting the seasonal variations in the types and intensities of dust events. FDE is highest in spring north of 23N. South of this, where stations are directly influenced by the summer monsoon, the annual cycle in FDE is much more variable. Half of the total DUP occurs at wind-speeds greater than ~ 28 ms-1, which highlights the importance of rare high-energy wind events. The likely meteorological mechanisms generating these patterns are discussed.

  7. A flare observed in coronal, transition region, and helium I 10830 Å emissions

    International Nuclear Information System (INIS)

    On 2012 June 17, we observed the evolution of a C-class flare associated with the eruption of a filament near a large sunspot in the active region NOAA 11504. We obtained high spatial resolution filtergrams using the 1.6 m New Solar Telescope at the Big Bear Solar Observatory in broadband TiO at 706 nm (bandpass: 10 Å) and He I 10830 Å narrow band (bandpass: 0.5 Å, centered 0.25 Å to the blue). We analyze the spatio-temporal behavior of the He I 10830 Å data, which were obtained over a 90''×90'' field of view with a cadence of 10 s. We also analyze simultaneous data from the Atmospheric Imaging Assembly and Extreme Ultraviolet Variability Experiment instruments on board the Solar Dynamics Observatory spacecraft, and data from the Reuven Ramaty High Energy Solar Spectroscopic Imager and GOES spacecrafts. Non-thermal effects are ignored in this analysis. Several quantitative aspects of the data, as well as models derived using the '0D' enthalpy-based thermal evolution of loops model code, indicate that the triplet states of the 10830 Å multiplet are populated by photoionization of chromospheric plasma followed by radiative recombination. Surprisingly, the He II 304 Å line is reasonably well matched by standard emission measure calculations, along with the C IV emission which dominates the Atmosphere Imaging Assembly 1600 Å channel during flares. This work lends support to some of our previous work combining X-ray, EUV, and UV data of flares to build models of energy transport from corona to chromosphere.

  8. HUBBLE SPACE TELESCOPE WFC3 EARLY RELEASE SCIENCE: EMISSION-LINE GALAXIES FROM INFRARED GRISM OBSERVATIONS

    International Nuclear Information System (INIS)

    We present grism spectra of emission-line galaxies (ELGs) from 0.6 to 1.6 ?m from the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope. These new infrared grism data augment previous optical Advanced Camera for Surveys G800L 0.6-0.95 ?m grism data in GOODS-South from the PEARS program, extending the wavelength coverage well past the G800L red cutoff. The Early Release Science (ERS) grism field was observed at a depth of two orbits per grism, yielding spectra of hundreds of faint objects, a subset of which is presented here. ELGs are studied via the H?, [O III], and [O II] emission lines detected in the redshift ranges 0.2 ?B(F098M) ? 25 mag. Seventeen GOODS-South galaxies that previously only had photometric redshifts now have new grism-spectroscopic redshifts, in some cases with large corrections to the photometric redshifts (?z ? 0.3-0.5). Additionally, one galaxy had no previously measured redshift but now has a secure grism-spectroscopic redshift, for a total of 18 new GOtal of 18 new GOODS-South spectroscopic redshifts. The faintest source in our sample has a magnitude mAB(F098M)= 26.9 mag. The ERS grism data also reflect the expected trend of lower specific star formation rates for the highest mass galaxies in the sample as a function of redshift, consistent with downsizing and discovered previously from large surveys. These results demonstrate the remarkable efficiency and capability of the WFC3 NIR grisms for measuring galaxy properties to faint magnitudes and redshifts to z ?> 2.

  9. A Flare Observed in Coronal, Transition Region, and Helium I 10830 Å Emissions

    Science.gov (United States)

    Zeng, Zhicheng; Qiu, Jiong; Cao, Wenda; Judge, Philip G.

    2014-10-01

    On 2012 June 17, we observed the evolution of a C-class flare associated with the eruption of a filament near a large sunspot in the active region NOAA 11504. We obtained high spatial resolution filtergrams using the 1.6 m New Solar Telescope at the Big Bear Solar Observatory in broadband TiO at 706 nm (bandpass: 10 Å) and He I 10830 Å narrow band (bandpass: 0.5 Å, centered 0.25 Å to the blue). We analyze the spatio-temporal behavior of the He I 10830 Å data, which were obtained over a 90''×90'' field of view with a cadence of 10 s. We also analyze simultaneous data from the Atmospheric Imaging Assembly and Extreme Ultraviolet Variability Experiment instruments on board the Solar Dynamics Observatory spacecraft, and data from the Reuven Ramaty High Energy Solar Spectroscopic Imager and GOES spacecrafts. Non-thermal effects are ignored in this analysis. Several quantitative aspects of the data, as well as models derived using the "0D" enthalpy-based thermal evolution of loops model code, indicate that the triplet states of the 10830 Å multiplet are populated by photoionization of chromospheric plasma followed by radiative recombination. Surprisingly, the He II 304 Å line is reasonably well matched by standard emission measure calculations, along with the C IV emission which dominates the Atmosphere Imaging Assembly 1600 Å channel during flares. This work lends support to some of our previous work combining X-ray, EUV, and UV data of flares to build models of energy transport from corona to chromosphere.

  10. Observation of angular effects on thermal infrared emissivity derived with the MODTES algorithm and MODIS data

    Science.gov (United States)

    García-Santos, Vicente; Niclòs, Raquel; Coll, César; Valor, Enric; Caselles, Vicente

    2015-04-01

    The MOD21 Land Surface Temperature and Emissivity (LST&E) product will be included in forthcoming MODIS Collection 6. Surface temperature and emissivities for thermal infrared (TIR) bands 29 (8.55 ?m), 31 (11 ?m) and 32 (12 ?m) will be retrieved using the ASTER TES method adapted to MODIS at-sensor spectral radiances, previously corrected with the Water Vapor Scaling method (MODTES algorithm). LSE of most natural surfaces changes with soil moisture content, type of surface cover, surface roughness or sensor viewing geometry. The present study addresses the observation of anisotropy effects on LSE of bare soils using MODIS data and a processor simulator of the MOD21 product, since it is not available yet. Two highly homogeneous and quasi-invariant desert sites were selected to carry out the present study. The first one is the White Sands National Monument, located in Tularosa Valley (South-central New Mexico, USA), which is a dune system desert at 1216 m above sea level, with an area of 704 km2 and a maximum dune height of 10 m. The grain size is considered fine sand and the major mineralogy component is gypsum. The second site selected was the Great Sands National Park, located in the San Luis Valley (Colorado, USA). Great Sands is also a sand dune system desert, created from quartz and volcanic fragments derived from Santa Fe and Alamosa formations. The major mineral is quartz, with minor traces of potassium and feldspar. The grain size of the sand is medium to coarse according to the X-Ray Diffraction measurements. Great Sands covers an area of 104 km2 at 2560 m above sea level and the maximum dune height is 230 m. The obtained LSEs and their dependence on azimuth and zenith viewing angles were analyzed, based on series of MODIS scenes from 2010 to 2013. MODTES nadir and off-nadir LSEs showed a good agreement with laboratory emissivity measurements. Results show that band 29 LSE decreases with the zenithal angle up to 0.041 from its nadir value, while LSEs for bands 31 and 32 do not show significant changes with zenith angle.

  11. Fermi Large Area Telescope observations of high-energy gamma-ray emission from behind-the-limb solar flares

    CERN Document Server

    Pesce-Rollins, Melissa; Petrosian, Vahe'; Liu, Wei; da Costa, Fatima Rubio; Allafort, Alice

    2015-01-01

    Fermi-LAT >30 MeV observations have increased the number of detected solar flares by almost a factor of 10 with respect to previous space observations. These sample both the impulsive and long duration phases of GOES M and X class flares. Of particular interest is the recent detections of three solar flares whose position behind the limb was confirmed by the STEREO-B spacecraft. While gamma-ray emission up to tens of MeV resulting from proton interactions has been detected before from occulted solar flares, the significance of these particular events lies in the fact that these are the first detections of >100 MeV gamma-ray emission from footpoint-occulted flares. We will present the Fermi-LAT, RHESSI and STEREO observations of these flares and discuss the various emission scenarios for these sources and implications for the particle acceleration mechanisms.

  12. Observation of CH4 and other Non-CO2 Green House Gas Emissions from California

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Marc L.; Zhao, Chuanfeng; Riley, William J.; Andrews, Arlyn C.

    2009-01-09

    In 2006, California passed the landmark assembly bill AB-32 to reduce California's emissions of greenhouse gases (GHGs) that contribute to global climate change. AB-32 commits California to reduce total GHG emissions to 1990 levels by 2020, a reduction of 25 percent from current levels. To verify that GHG emission reductions are actually taking place, it will be necessary to measure emissions. We describe atmospheric inverse model estimates of GHG emissions obtained from the California Greenhouse Gas Emissions Measurement (CALGEM) project. In collaboration with NOAA, we are measuring the dominant long-lived GHGs at two tall-towers in central California. Here, we present estimates of CH{sub 4} emissions obtained by statistical comparison of measured and predicted atmospheric mixing ratios. The predicted mixing ratios are calculated using spatially resolved a priori CH{sub 4} emissions and surface footprints, that provide a proportional relationship between the surface emissions and the mixing ratio signal at tower locations. The footprints are computed using the Weather Research and Forecast (WRF) coupled to the Stochastic Time-Inverted Lagrangian Transport (STILT) model. Integral to the inverse estimates, we perform a quantitative analysis of errors in atmospheric transport and other factors to provide quantitative uncertainties in estimated emissions. Regressions of modeled and measured mixing ratios suggest that total CH{sub 4} emissions are within 25% of the inventory estimates. A Bayesian source sector analysis obtains posterior scaling factors for CH{sub 4} emissions, indicating that emissions from several of the sources (e.g., landfills, natural gas use, petroleum production, crops, and wetlands) are roughly consistent with inventory estimates, but livestock emissions are significantly higher than the inventory. A Bayesian 'region' analysis is used to identify spatial variations in CH{sub 4} emissions from 13 sub-regions within California. Although, only regions near the tower are significantly constrained by the tower measurements, CH{sub 4} emissions from the south Central Valley appear to be underestimated in a manner consistent with the under-prediction of livestock emissions. Finally, we describe a pseudo-experiment using predicted CH{sub 4} signals to explore the uncertainty reductions that might be obtained if additional measurements were made by a future network of tall-tower stations spread over California. These results show that it should be possible to provide high-accuracy estimates of surface CH{sub 4} emissions for multiple regions as a means to verify future emissions reductions.

  13. Inverse Modeling of Urban and Regional Emissions of CO in China using Observations from the MOPITT Instrument

    Science.gov (United States)

    Jiang, Z.; Jones, D. B.; Kar, J.; Wang, Y.; Kopacz, M.; Henze, D. K.; Singh, K.; Shim, C.; Drummond, J. R.

    2010-12-01

    Observations of CO from the MOPITT satellite instrument show enhanced abundances of CO over the Wei River valley in China. High CO mixing ratios, often exceeding 300 ppbv at 800 hPa are observed in the vicinity of Linfen. Simulations of atmospheric CO with the GEOS-Chem model consistently underestimate the observed CO in this region. MOPITT also reveals higher abundances of CO across southeastern China than predicted by GEOS-Chem. Previous inverse modeling of CO observations using the GEOS-Chem model suggested that CO emissions in East Asia were more than 60% greater than the a priori emission inventory estimates in the model. However, that work was done using a version of GEOS-Chem with coarse horizontal resolution. We have conducted an inverse modeling analysis of the MOPITT data at a spatial resolution of 0.5° x 0.67° across Asia, using the adjoint of the nested GEOS-Chem model, to better quantify urban and regional emissions of CO. We focus on quantifying emissions from Xian, Linfen, and Taiyuan, three major industrial cities in the Wei River valley. We also examine the variations in CO emissions in summers of 2006, 2007, and 2008 in the Beijing region to assess the impact of the strict pollution controls that were implemented in August 2008 to improve local air quality for the Olympic Games.

  14. Recent Observations and Modeling of Narrowband Stimulated Electromagnetic Emissions SEEs at the HAARP Facility

    Science.gov (United States)

    Scales, Wayne; Bernhardt, Paul; McCarrick, Michael; Briczinski, Stanley; Mahmoudian, Alireza; Fu, Haiyang; Ranade Bordikar, Maitrayee; Samimi, Alireza

    There has been significant interest in so-called narrowband Stimulated Electromagnetic Emission SEE over the past several years due to recent discoveries at the High Frequency Active Auroral Research Program HAARP facility near Gakone, Alaska. Narrowband SEE (NSEE) has been defined as spectral features in the SEE spectrum typically within 1 kHz of the transmitter (or pump) frequency. SEE is due to nonlinear processes leading to re-radiation at frequencies other than the pump wave frequency during heating the ionospheric plasma with high power HF radio waves. Although NSEE exhibits a richly complex structure, it has now been shown after a substantial number of observations at HAARP, that NSEE can be grouped into two basic classes. The first are those spectral features, associated with Stimulated Brillouin Scatter SBS, which typically occur when the pump frequency is not close to electron gyro-harmonic frequencies. Typically, these spectral features are within roughly 50 Hz of the pump wave frequency where it is to be noted that the O+ ion gyro-frequency is roughly 50 Hz. The second class of spectral features corresponds to the case when the pump wave frequency is typically within roughly 10 kHz of electron gyro-harmonic frequencies. In this case, spectral features ordered by harmonics of ion gyro-frequencies are typically observed, and termed Stimulated Ion Bernstein Scatter SIBS. There is also important parametric behavior on both classes of NSEE depending on the pump wave parameters including the field strength, antenna beam angle, and electron gyro-harmonic number. This presentation will first provide an overview of the recent NSEE experimental observations at HAARP. Both Stimulated Brillouin Scatter SBS and Stimulated Ion Bernstein Scatter SIBS observations will be discussed as well as their relationship to each other. Possible theoretical formulation in terms of parametric decay instabilities will be provided. Computer simulation model results will be presented to provide insight into associated higher order nonlinear effects including particle acceleration and wave-wave processes. Both theory and model results will be put into the context of the experimental observations. Finally, possible applications of NSEE will be pointed out including triggering diagnostics for artificial ionization layer formation, proton precipitation event diagnostics, and electron temperature measurements in the heated volume.

  15. Inference of fault and fracture systems beneath the Matatlan waste dump basement, a VLF study

    Scientific Electronic Library Online (English)

    Miguel Ángel, Alatorre-Zamora; José Oscar, Campos-Enríquez; Salvador Isidro, Belmonte-Jiménez; Jaime, Ibarra-Nuño.

    2014-09-01

    Full Text Available Se utilizó la técnica VLF para inferir zonas de fallas o de grandes fracturas que pudiesen servir como conductos para fluidos de desechos contaminantes en el vertedero de Matatlán, en Guadalajara, al oeste de México. Para interpretar los datos se usaron los filtros de Fraser y de Karous-Hjelt. Se in [...] terpretaron perfiles de forma directa empleando el filtro modificado de Karous-Hjelt. Se aplicaron los filtros de Fraser y de Karous-Hjelt conjugados a todos los datos. Los resultados de ambas técnicas muestran similitud en las posiciones y orientaciones de rasgos anómalos que se asocian a zonas de fracturas o de fallas. Se observa una zona de falla en el centro del sitio, que tiene un rumbo NEE-SWW. Otros rasgos importantes inferidos tienen direcciones NW-SE y se observan en la parte occidental del área. El uso conjunto de las técnicas basadas en los filtros de K-H y de Fraser dan resultados como una estructura N-S inferida en el límite occidental del vertedero, así como rasgos anómalos de dirección NW-SE, principalmente en la mitad occidental del sitio. La estructura N-S tiene la misma dirección que el Cañón del Río Grande de Santiago, mientras que los rasgos NW-SE coinciden con las direcciones del rift Tepic-Zacoalco. Hacia el centro del área aparecen otros rasgos con direcciones NE-SW. Todos estos rasgos y sus direcciones coinciden de manera fuerte con la predominancia de grupos de fracturas mostrados en el análisis estadístico de fracturas, y podrían servir como conductos para la migración de lixiviados hacia el Cañón Coyula, al sur, y hacia el Cañón del Río Grande de Santiago, al este del sitio. Un análisis estadístico de direcciones de fracturas mostró 4 direcciones principales N-S (A), N75-80E (B), N60-65W (C) y N25-30W (D), y dos direcciones secundarias que son N45-55E (E) y 90E (F). El patrón primario A coincide con la dirección del Cañón del Río Grande de Santiago, mientras que el patrón secundario F tiene una dirección paralela a la del Cañón Coyula. Abstract in english We used the VLF technique to infer fault or major fracture zones that might serve as path for contaminant waste fluids in the Matatlan dumpsite, in Guadalajara, western Mexico. To interpret the data we used the Fraser, and Karous-Hjelt filters. Profiles were interpreted with 2D direct modeling based [...] on Karous-Hjelt modified filter (K-H). The Fraser and Karous-Hjelt conjugated filter were applied to the entire data. The results of both techniques show similarities in the directions and positions of anomalous features, which are assumed fault or fracture zones. We observed one fault zone at the centre of the site, with a NEE-SWW strike. Other important inferred structures have NW-SE directions at the western part of the site. The cooperative use of both techniques, based on K-H filter and the Fraser filter give results as an N-S inferred structure in the westernmost part of the zone, as well as NW-SE linear anomalies, mainly in the western half of the site. The N-S structure has the same direction as that of Rio Grande de Santiago Canyon. The NW-SE features coincide with the directions of the Tepic-Zacoalco rift. Others NE-SW lineaments are located towards the centre of the area. These facts coincide strongly with the predominance of fracture groups show in the fracture analysis. The inferred structures could serve as conduits for the leachates to migrate towards the Coyula canyon as well as towards the Rio Grande de Santiago Canyon. Statistic analysis of fracture orientations showed N-S (A), N75-80E (B), N60-65W (C), and N25-30W (D) main directions, and N45-55E (E), and 90E (F) secondary directions. Group A coincides with the direction of the Rio Grande de Santiago Canyon, whereas pattern F have the same direction as Coyula Canyon.

  16. The nature of the low-frequency emission of M51: First observations of a nearby galaxy with LOFAR

    OpenAIRE

    Mulcahy, D. D.; Horneffer, A.; Beck, R; G. Heald; Fletcher, A; Scaife, A.; Adebahr, B.; Anderson, J. M.; Bonafede, A; Brüggen, M; Brunetti, G.; Chy?y, K. T.; Conway, J.; Dettmar, R-J.; Enßlin, T.

    2014-01-01

    The grand-design spiral galaxy M51 was observed with the LOFAR High Frequency Antennas (HBA) and imaged in total intensity and polarisation. This observation covered the frequencies between 115 MHz and 175 MHz. We produced an image of total emission of M51 at the mean frequency of 151 MHz with 20 arcsec resolution and 0.3 mJy rms noise, which is the most sensitive image of a galaxy at frequencies below 300 MHz so far. The integrated spectrum of total radio emission is descri...

  17. Wave-particle interaction phenomena observed by antarctic rockets

    International Nuclear Information System (INIS)

    Rocket measurements of wave and particles activities made at Syowa Station in Antarctica during IMS period are reviewed. Nine rockets were used for such observations, out of which 6 rockets were launched in the auroral sky. In the VLF frequency range, 0 - 10 KHz, wideband spectra of wave electric and magnetic fields, Poynting flux and the direction of propagation vector were measured for chorus, ELF and VLF hiss, and for electrostatic noises. In the MF and HF range, the dynamic frequency spectra of 0.1 - 10 MHz were measured. The relationship of these wave phenomena with energetic particle activities measured by the same rockets are discussed. (author)

  18. HST-COS Observations of Hydrogen, Helium, Carbon and Nitrogen Emission from the SN 1987A Reverse Shock

    CERN Document Server

    France, Kevin; Penton, Steven V; Kirshner, Robert P; Challis, Peter; Laming, J Martin; Bouchet, Patrice; Chevalier, Roger; Fransson, Claes; Garnavich, Peter M; Heng, Kevin; Larsson, Josefin; Lawrence, Stephen; Lundqvist, Peter; Panagia, Nino; Pun, Chun S J; Smith, Nathan; Sollerman, Jesper; Sonneborn, George; Sugerman, Ben; Wheeler, J Craig

    2011-01-01

    We present the most sensitive ultraviolet observations of Supernova 1987A to date. Imaging spectroscopy from the Hubble Space Telescope-Cosmic Origins Spectrograph shows many narrow (dv \\sim 300 km/s) emission lines from the circumstellar ring, broad (dv \\sim 10 -- 20 x 10^3 km/s) emission lines from the reverse shock, and ultraviolet continuum emission. The high signal-to-noise (> 40 per resolution element) broad LyA emission is excited by soft X-ray and EUV heating of mostly neutral gas in the circumstellar ring and outer supernova debris. The ultraviolet continuum at \\lambda > 1350A can be explained by HI 2-photon emission from the same region. We confirm our earlier, tentative detection of NV \\lambda 1240 emission from the reverse shock and we present the first detections of broad HeII \\lambda1640, CIV \\lambda1550, and NIV] \\lambda1486 emission lines from the reverse shock. The helium abundance in the high-velocity material is He/H = 0.14 +/- 0.06. The NV/H-alpha line ratio requires partial ion-electron e...

  19. Experimental estimates of electron density variations at the reflection height of VLF signals

    International Nuclear Information System (INIS)

    To study the behaviour of the electron concentration at the reflection level of very low frequency (VLF) waves, two years of phase and amplitude records of the 12.9 kHz signals emitted from Omega-Argentina (43.200S; 294.600E) and received at Tucuman (26.900S; 294.700E) have been used. The experimental results are compared with values derived from the International Reference Ionosphere model (IRI-79). The experimental data show a seasonal variation not predicted by the model. (author)

  20. An Analysis of BeppoSAX LECS Observations of EUV Emission in Clusters of Galaxies

    OpenAIRE

    Berghoefer, T. W.; Bowyer, S.

    2001-01-01

    Kaastra et al. (1999) have used the BeppoSAX LECS instrument to search for excess EUV emission in Abell 2199. They claim that the results obtained confirm an independent report of an excess EUV emission in this cluster (Lieu et al. 1999). Using an inflight derived procedure that is better suited to the analysis of extended sources and which avoids uncertainties related to ground-based calibrations for the overall detector sensitivity profile, we find no excess EUV emission i...

  1. Observational cosmology with the PLANCK satellite: modelling of the polarized Galactic emissions

    International Nuclear Information System (INIS)

    This thesis is dedicated to the Cosmic Microwave Background (CMB) anisotropies measurement and to the characterisation of the foreground Galactic emissions. This work is in the framework of the Planck satellite data analysis preparation. First, this thesis give a description of the Big Bang model and of the CMB physics. Then, we present the Archeops, WMAP and PLANCK experiments and their data analysis. Part two is devoted to the description of the diffuse Galactic synchrotron, free-free and thermal dust emissions and to the study of those emissions in the Galactic plane. Using comparison between our simulations and the WMAP, Archeops and IRIS data we are able to provide partial maps of the spatial variations of the dust grain temperature and of the spectral index of the synchrotron and thermal dust emissions. Third part is dedicated to the study of the two main polarized Galactic emissions: synchrotron and thermal dust emissions. We evaluate effective models based on template maps. We also build physical model based on physics for these emissions that is to say shape of the Galactic magnetic field and matter density in our Galaxy. Using maps and Galactic profiles, we compare our simulations of these emissions to the Archeops and WMAP data. Thanks to that we are able to provide for the first time a coherent model of the synchrotron and thermal dust emissions. Then we propose a method to improved the constraints on our model using the PLANCK data. Finally the last part focuses on the angular power spectra of the polarized Galactic emissions. We estimate the contamination due to these foreground emissions on the CMB signal. In addition we propose a method to minimize the contamination of the CMB PLANCK data by the thermal dust emission using masks. (author)

  2. Comparative inverse analysis of satellite (MODIS) and ground (PM10) observations to estimate dust emissions in East Asia

    Science.gov (United States)

    Ku, Bonyang; Park, Rokjin J.

    2013-01-01

    Soil dust aerosol is the largest contributor to aerosol mass concentrations in the troposphere and has considerable effects on air quality and climate. Arid and semi-arid areas of East Asia are one of the important dust source regions thus it is crucial to understand dust mobilization and accurately estimate dust emissions in East Asia. However, present dust models still contain large uncertainties with dust emissions that remain a significant contributor to the overall uncertainties in the model. In this study, we attempt to reduce these uncertainties by using an inverse modeling technique and obtain optimized dust emissions. We use Moderate Resolution Imaging Spectrometer (MODIS) aerosol optical depths (AODs) and groundbased mass concentrations of particles less than 10 ?m in aerodynamic diameter (PM10) observations over East Asia in May 2007. The MODIS AODs are validated with AErosol RObotic NETwork (AERONET) AODs. The inversion uses the maximum a posteriori method and the GEOS-Chem chemical transport model (CTM) as a forward model. The model error is large over dust source regions including the Gobi Desert and Mongolia. We find that inverse modeling analyses from the MODIS and PM10 observations consistently result in decrease of dust emissions over Mongolia and the Gobi Desert. Whereas over the Taklamakan Desert and Manchuria, the inverse modeling analyses from both observations yield contrast results such as increase of dust sources using MODIS AODs, while decrease of those using PM10 observations. We discuss some limitations of both observations to obtain the optimized dust emissions and suggest several strategies for the improvement of dust emission estimates in the model.

  3. Exosat observations of broad iron K line emission from Scorpius X-1

    International Nuclear Information System (INIS)

    Using the Exosat Gas Scintillation Proportional Counter a broad iron K emission line is found to be present in the X-ray spectrum of Sco X-1. The line full width half-maximum (FWHM) is 0.7 keV, independent of the source intensity state. During flaring intervals the line intensity remains constant such that the equivalent width, decreases from 50 eV to 25 eV across a flare. During quiescent intervals lasting several hours or more the line flux can decrease by up to a factor of 2. The line centroid is centered on 6.75 keV. The observed line width suggests Compton broadening by a hot scattering cloud with an optical depth of a few. The invariance of the line FWHM during flares rules out the previously suggested self-Comptonized thermal bremsstrahlung model. The line more likely originates in an optically thick accretion disk corona that lies at 100 to 1000 neutron star radii. The 2-25 keV continuum can be modeled as a blackbody plus unsaturated Comptonized spectrum. The flaring is caused by increases in the luminosity of the blackbody component from 10 percent to 40 percent of the total. The two-component continuum model is interpreted in terms of disk accretion onto a neutron star with a weak magnetic field and the inner accretion disk terminated at the neutron star surface by a boundary layer. 45 references

  4. Observational studies on the Near-Infrared Unidentified Emission Bands in Galactic HII regions

    CERN Document Server

    Mori, Tamami I; Sakon, Itsuki; Ishihara, Daisuke; Shimonishi, Takashi; Ohsawa, Ryou; Bell, Aaron C

    2014-01-01

    Using a large collection of near-infrared spectra (2.5-5.4 um) of Galactic HII regions and HII region-like objects, we perform a systematic investigation of the astronomical polycyclic aromatic hydrocarbon (PAH) features. 36 objects were observed by the use of the infrared camera onboard the AKARI satellite as a part of a directer's time program. In addition to the well-known 3.3-3.6 um features, most spectra show a relatively-weak emission feature at 5.22 um with sufficient signal-to-noise ratios, which we identify as the PAH 5.25 um band previously reported. By careful analysis, we find good correlations between the 5.25 um band and both the aromatic hydrocarbon feature at 3.3 um and the aliphatic ones at around 3.4-3.6 um. The present results give us convincing evidence that the astronomical 5.25 um band is associated with C-H vibrations as suggested by previous studies and show its potential to probe the PAH size distribution. The analysis also shows that the aliphatic to aromatic ratio of I(3.4-3.6)/I(3....

  5. Decreasing emissions of NOx relative to CO2 in East Asia inferred from satellite observations

    Science.gov (United States)

    Reuter, M.; Buchwitz, M.; Hilboll, A.; Richter, A.; Schneising, O.; Hilker, M.; Heymann, J.; Bovensmann, H.; Burrows, J. P.

    2014-11-01

    At present, global CO2 emission inventories are mainly based on bottom-up estimates that rely, for example, on reported fossil fuel consumptions and fuel types. The associated uncertainties propagate into the CO2-to-NOx emission ratios that are used in pollution prediction and monitoring, as well as into biospheric carbon fluxes derived by inverse models. Here we analyse simultaneous and co-located satellite retrievals from SCIAMACHY (ref. ; SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY) of the column-average dry-air mole fraction of CO2 (refs , ) and NO2 (refs , , ) for the years 2003-2011 to provide a top-down estimate of trends in emissions and in the ratio between CO2 and NOx emissions. Our analysis shows that the CO2-to-NOx emission ratio has increased by 4.2 +/- 1.7% yr-1 in East Asia. In this region, we find a large positive trend of CO2 emissions (9.8 +/- 1.7% yr-1), which we largely attribute to the growing Chinese economy. This trend exceeds the positive trend of NOx emissions (5.8 +/- 0.9% yr-1). Our findings suggest that the recently installed and renewed technology in East Asia, such as power plants, transportation and so on, is cleaner in terms of NOx emissions than the old infrastructure, and roughly matches relative emission levels in North America and Europe.

  6. Development of a United States-Mexico Emissions Inventory for the Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study.

    Science.gov (United States)

    Kuhns, Hampden; Knipping, Eladio M; Vukovich, Jeffrey M

    2005-05-01

    The Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study was commissioned to investigate the sources of haze at Big Bend National Park in southwest Texas. The modeling domain of the BRAVO Study includes most of the continental United States and Mexico. The BRAVO emissions inventory was constructed from the 1999 National Emission Inventory for the United States, modified to include finer-resolution data for Texas and 13 U.S. states in close proximity. The first regional-scale Mexican emissions inventory designed for air-quality modeling applications was developed for 10 northern Mexican states, the Tula Industrial Park in the state of Hidalgo, and the Popocatépetl volcano in the state of Puebla. Emissions data were compiled from numerous sources, including the U.S. Environmental Protection Agency (EPA), the Texas Natural Resources Conservation Commission (now Texas Commission on Environmental Quality), the Eastern Research Group, the Minerals Management Service, the Instituto Nacional de Ecología, and the Instituto Nacional de Estadistica Geografía y Informática. The inventory includes emissions for CO, nitrogen oxides, sulfur dioxide, volatile organic compounds (VOCs), ammonia, particulate matter (PM) Wind-blown dust and biomass burning were not included in the inventory, although high concentrations of dust and organic PM attributed to biomass burning have been observed at Big Bend National Park. The SMOKE modeling system was used to generate gridded emissions fields for use with the Regional Modeling System for Aerosols and Deposition (REMSAD) and the Community Multiscale Air Quality model modified with the Model of Aerosol Dynamics, Reaction, Ionization and Dissolution (CMAQ-MADRID). The compilation of the inventory, supporting model input data, and issues encountered during the development of the inventory are documented. A comparison of the BRAVO emissions inventory for Mexico with other emerging Mexican emission inventories illustrates their uncertainty. PMID:15991676

  7. Fermi large area telescope observations of the cosmic-ray induced ?-ray emission of the Earth's atmosphere

    International Nuclear Information System (INIS)

    We report on measurements of the cosmic-ray induced ?-ray emission of Earth's atmosphere by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The Large Area Telescope has observed the Earth during its commissioning phase and with a dedicated Earth limb following observation in September 2008. These measurements yielded ?6.4x106 photons with energies >100 MeV and ?250 hours total live time for the highest quality data selection. This allows the study of the spatial and spectral distributions of these photons with unprecedented detail. The spectrum of the emission--often referred to as Earth albedo gamma-ray emission--has a power-law shape up to 500 GeV with spectral index ?=2.79±0.06.

  8. Optical observations geomagnetically conjugate to sprite-producing lightning discharges

    Directory of Open Access Journals (Sweden)

    R. A. Marshall

    2005-09-01

    Full Text Available Theoretical studies have predicted that large positive cloud-to-ground discharges can trigger a runaway avalanche process of relativistic electrons, forming a geomagnetically trapped electron beam. The beam may undergo pitch angle and energy scattering during its traverse of the Earth's magnetosphere, with a small percentage of electrons remaining in the loss cone and precipitating in the magnetically conjugate atmosphere. In particular, N2 1P and N2+1N optical emissions are expected to be observable. In July and August 2003, an attempt was made to detect these optical emissions, called "conjugate sprites", in correlation with sprite observations in Europe near . Sprite observations were made from the Observatoire du Pic du Midi (OMP in the French Pyrenées, and VLF receivers were installed in Europe to detect causative sferics and ionospheric disturbances associated with sprites. In the Southern Hemisphere conjugate region, the Wide-angle Array for Sprite Photometry (WASP was deployed at the South African Astronomical Observatory (SAAO, near Sutherland, South Africa, to observe optical emissions with a field-of-view magnetically conjugate to the Northern Hemisphere observing region. Observations at OMP revealed over 130 documented sprites, with WASP observations covering the conjugate region successfully for 30 of these events. However, no incidences of optical emissions in the conjugate hemisphere were found. Analysis of the conjugate optical data from SAAO, along with ELF energy measurements from Palmer Station, Antarctica, and charge-moment analysis, show that the lightning events during the course of this experiment likely had insufficient intensity to create a relativistic beam.

    Keywords. Ionosphere (Ionsophere-magnetosphere interactions; Ionospheric disturbances; Instruments and techniques

  9. Case studies of quasi-periodic VLF emissions and related ULF fluctuations of the magnetic field.

    Czech Academy of Sciences Publication Activity Database

    Hayosh, Mykhaylo; Santolík, Ond?ej; N?mec, F.; Parrot, M.

    s. l : American Geophysical Union, 2014. [AGU Fall Meeting. 15.12.2014-19.12.2014, San Francisco] Institutional support: RVO:68378289 https://agu.confex.com/agu/fm14/webprogrampreliminary/Paper16132.html

  10. Statistical investigation of six years of the Demeter measurements of the VLF quasi-periodic emissions.

    Czech Academy of Sciences Publication Activity Database

    Hayosh, Mykhaylo; N?mec, F.; Santolík, Ond?ej; Parrot, M.

    San Francisco : AGU, 2013. SM43A-2259. [AGU Fall Meeting 2013. 09.12.2013-13.12.2013, San Francisco] Institutional support: RVO:68378289 Keywords : Wave propagation * Magnetosphere: inner Subject RIV: BL - Plasma and Gas Discharge Physics http://abstractsearch.agu.org/meetings/2013/FM/sections/SM/sessions/SM43A/abstracts/SM43A-2259.html

  11. Longitudinal drift of substorm electrons as the reason of impulsive precipitation events and VLF emissions

    OpenAIRE

    Lubchich, A. A.; Yahnin, A. G.; Titova, E. E.; Demekhov, A. G.; Yu Trakhtengerts, V.; Manninen, J.; Turunen, T.

    2006-01-01

    Using the data from satellite CRRES and three geostationary LANL spacecraft, the propagation of an electron cloud from midnight to the evening sector is investigated. An electron cloud was injected during a weak isolated substorm that developed on a quiet geomagnetic background. It is found that within the local time sector from 03:00 until at least 08:00 MLT, the propagation of electrons at perpendicular pitch-angles is well described by a simple model of drift in the dipole magneti...

  12. X-ray emission from the Wolf-Rayet bubble NGC 6888. I. Chandra ACIS-S observations

    International Nuclear Information System (INIS)

    We analyze Chandra observations of the Wolf-Rayet (W-R) bubble NGC 6888. This W-R bubble presents similar spectral and morphological X-ray characteristics to those of S 308, the only other W-R bubble also showing X-ray emission. The observed spectrum is soft, peaking at the N VII line emission at 0.5 keV, with additional line emission at 0.7-0.9 keV and a weak tail of harder emission up to ?1.5 keV. This spectrum can be described by a two-temperature optically thin plasma emission model (T 1 ? 1.4 × 106 K, T 2 ? 7.4 × 106 K). We confirm the results of previous X-ray observations that no noticeable temperature variations are detected in the nebula. The X-ray-emitting plasma is distributed in three apparent morphological components: two caps along the tips of the major axis and an extra contribution toward the northwest blowout not reported in previous analyses of the X-ray emission toward this W-R nebula. Using the plasma model fits of the Chandra ACIS spectra for the physical properties of the hot gas and the ROSAT PSPC image to account for the incomplete coverage of Chandra observations, we estimate a luminosity of L X = (7.7 ± 0.1) ×1033 erg s–1 for NGC 6888 at a distance of 1.26 kpc. The average rms electron density of the X-ray-emitting gas is ? 0.4 cm–3 for a total mass ? 1.2 M ?.

  13. Observation and analysis of self-amplified spontaneous emission at the APS low-energy undulator test line

    International Nuclear Information System (INIS)

    Exponential growth of self-amplified spontaneous emission at 530 nm was first experimentally observed at the Advanced Photon Source low-energy undulator test line in December 1999. Since then, further detailed measurements and analysis of the results have been made. Here, we present the measurements and compare these with calculations based on measured electron beam properties and theoretical expectations

  14. Estimation of NOx emissions from Delhi using Car MAX-DOAS observations and comparison with OMI satellite data

    OpenAIRE

    Shaiganfar, R.; Beirle, S.; Sharma, M.; A CHAUHAN; Singh, R.P.; T. Wagner

    2011-01-01

    We present the first Multi-Axis-(MAX-) DOAS observations in India performed during April 2010 and January 2011 in Delhi and nearby regions. The MAX-DOAS instrument was mounted on a car roof, which allowed us to perform measurements along individual driving routes. From car MAX-DOAS observations along closed circles around Delhi, together with information on wind speed and direction, the NOx emissions from the greater Delhi area were determined: our estimate of 4.4 × 10...

  15. An 80 KW SCR VLF power source for drift-pump-coil excitation

    International Nuclear Information System (INIS)

    The drift-pump antenna coils in the end regions of the TMX-U mirror machine at LLNL require kiloamperes of current excitation in the 10 to 30 kHz range during the 75 ms shots. The coil's self-inductance will be series-resonated at the operating frequency f/sub 0/ with a high-Q inductor and capacitor. The overall tank Q?200. The resonator acts as a current multiplier and VLF energy reservoir whose time constant tau=Q/?f/sub 0/. The sources to be described are modular SCR pulse generators which are inductively coupled to the resonator, and deliver alternate-polarity, half-sine-wave current pulses which are 35?s wide. As in a Class C vacuum-tube harmonic generator, the coupled resonator selectively extracts the Fourier component of the pulse current nearest f/sub 0/, and allows other components to pass unimpeded. DC to VLF efficiencies >80% have been measured. Resonator fill-up at the start of a shot is a problem for the pulse generator, since the only circuit damping is provided by the gradual buildup of the coupled resonator voltage. A clamping circuit across the generator's capacitor bank limits its voltage to a level safe for the SCRs, with the clamped current being returned to the main dc supply. The clamped pulse generator behaves like a current source for any load resistance from zero up to a critical value where SCR commutation failure occurs

  16. Detection and characterization of a 500 mic dust emissivity excess in the Galactic Plane using Herschel/Hi-GAL observations

    CERN Document Server

    Paradis, D; Noriega-Crespo, A; Mény, C; Piacentini, F; Thompson, M A; Marshall, D J; Veneziani, M; Bernard, J -P; Molinari, S

    2011-01-01

    Past and recent observations have revealed unexpected variations of the FIR-mm dust emissivity. In the Herschel spectral range, those are often referenced to as a 500 {\\mu}m emission excess. Several dust emission models have been developed to interpret astrophysical data in the FIR-mm domain. However, these are commonly not able to fully reconcile theoretical predictions with observations. On the contrary, the recently revised Two Level System (TLS) model seems to provide a promising way to interpret the existing data. The newly available Herschel Hi-GAL data which covers most of the inner Milky-Way offers a unique opportunity to investigate possible variations in the dust emission properties both with wavelength and the environment. By combining the IRIS 100 {\\mu}m with the Hi-GAL 160, 250, 350 and 500 {\\mu}m data, we model the dust emission spectra in each pixel of the Hi-GAL maps, using both the TLS model and, for comparison, a single modified black-body fit. The effect of temperature mixing along the line...

  17. Atmospheric observation-based global SF6 emissions – comparison of top-down and bottom-up estimates

    Directory of Open Access Journals (Sweden)

    D. E. Worthy

    2009-12-01

    Full Text Available Emissions of sulphur hexafluoride (SF6, one of the strongest greenhouse gases on a per molecule basis, are targeted to be collectively reduced under the Kyoto Protocol. Because of its long atmospheric lifetime (?3000 years, the accumulation of SF6 in the atmosphere is a direct measure of its global emissions. Examination of our extended data set of globally distributed high-precision SF6 observations shows an increase in SF6 abundance from near zero in the 1970s to a global mean of 6.7 ppt by the end of 2008. In-depth evaluation of our long-term data records shows that the global source of SF6 decreased after 1995, most likely due to SF6 emission reductions in industrialised countries, but increased again after 1998. By subtracting those emissions reported by Annex I countries to the United Nations Framework Convention of Climatic Change (UNFCCC from our observation-inferred SF6 source leaves a surprisingly large gap of more than 70–80% of non-reported SF6 emissions in the last decade.

  18. Comparative study of measured amplitude and phase perturbations on VLF and LF radio signals induced by solar flares

    CERN Document Server

    Sulic, D M

    2014-01-01

    Very Low Frequency, VLF and Low Frequency, LF signal perturbations were examined to study ionospheric disturbances induced by solar X-ray flares. The aim was to understand processes in propagation VLF/LF radio signals over short paths, and to estimate specific characteristics of each short path. The receiver at Belgrade station continuously monitor the amplitude and phase of coherent and subionospherically propagating LF signal operated in Sicily, NSC at 45.90, kHz and VLF signal operated in Isola di Tavolara ICV at 20.27 kHz, with great circle distances of 953 km and 976 km, respectively. Geographical locations of transmitters and receiver site result that these short paths have many similarity. The main difference is in transmitter frequencies. In period from 2008 to February 2014 were selected around 200 events for further examination. In all selected examples amplitude and phase on VLF and LF signals were perturbed by occurrence of solar X-ray flares. This six years period covers minimum and maximum of so...

  19. First estimates of volume distribution of HF-pump enhanced emissions at 6300 and 5577 Å: a comparison between observations and theory

    OpenAIRE

    Gustavsson, B.; Kosch, M.; Wong, A.; Pedersen, T.; Heinselman, C.; Mutiso, C.; Bristow, B.; Hughes, J.; Wang, W.

    2008-01-01

    We present bi-static observations of radio-wave induced optical emissions at 6300 and 5577 Å from a night-time radio-induced optical emission ionospheric pumping experiment at the HIPAS (Fairbanks) facility in Alaska. The optical observations were made at HIPAS and from HAARP located 285 km south-east. From these observations the altitude distribution of the emissions is estimated with tomography-like methods. These estimates are compared with theoretical models. Other diagnostics use...

  20. First estimates of volume distribution of HF-pump enhanced emissions at 6300 and 5577 Å : a comparison between observations and theory

    OpenAIRE

    Gustavsson, Bjo?rn Johan; Kosch, Mike; Wong, Alfred; Pedersen, Todd; Heinselman, Craig; Mutiso, Charles; Bristow, Bill; Hughes, John; Wang, Weiyuan

    2008-01-01

    We present bi-static observations of radio-wave induced optical emissions at 6300 and 5577 Å from a night-time radio-induced optical emission ionospheric pumping experiment at the HIPAS (Fairbanks) facility in Alaska. The optical observations were made at HIPAS and from HAARP located 285 km south-east. From these observations the altitude distribution of the emissions is estimated with tomography-like methods. These estimates are compared with theoretical models. Other diagnostics used to su...

  1. Optimizing global CO emissions using a four-dimensional variational data assimilation system and surface network observations

    Directory of Open Access Journals (Sweden)

    P. B. Hooghiemstra

    2011-01-01

    Full Text Available We apply a four-dimensional variational (4D-VAR data assimilation system to optimize carbon monoxide (CO emissions for 2003 and 2004 and to reduce the uncertainty of emission estimates from individual sources using the chemistry transport model TM5. The system is designed to assimilate large (satellite datasets, but in the current study only a limited amount of surface network observations from the National Oceanic and Atmospheric Administration Earth System Research Laboratory (NOAA/ESRL Global Monitoring Division (GMD is used to test the 4D-VAR system. By design, the system is capable to adjust the emissions in such a way that the posterior simulation reproduces background CO mixing ratios and large-scale pollution events at background stations. Uncertainty reduction up to 60% in yearly emissions is observed over well-constrained regions and the inferred emissions compare well with recent studies. However, with the limited amount of data from the surface network, the system becomes data sparse. This results in a large solution space and the 4D-VAR system has difficulties in separating anthropogenic and biogenic sources in particular. In addition we show that uncertainties in the model such as biomass burning injection height and the OH distribution largely influence the inversion results. The inferred emissions are validated with NOAA aircraft data over North America and the agreement is significantly improved from prior to posterior simulation. Validation with the Measurements Of Pollution In The Troposphere (MOPITT instrument version 4 (V4 shows only a slight improved agreement over the well-constrained Northern Hemisphere. However, the model with optimized emissions underestimates MOPITT CO total columns on the remote Southern Hemisphere (SH by about 40%. This is caused by a reduction in SH CO sources mainly due to surface stations on the high southern latitudes.

  2. Theoretical versus observed gas-particle partitioning of carbonyl emissions from motor vehicles.

    Science.gov (United States)

    Chen, Jianjun; Jakober, Chris; Clegg, Simon; Kleeman, Michael J

    2010-10-01

    A state-of-the-science thermodynamic model describing gas-particle absorption processes was used to predict the gas-particle partitioning of mixtures of approximately 60 carbonyl compounds emitted from low-emission gasoline-powered vehicles, three-way catalyst gasoline-powered vehicles, heavy-duty diesel vehicles under the idle-creep condition (HDDV idle), and heavy-duty diesel vehicles under the five-mode test (HDDV 5-mode). Exhaust was diluted by a factor of 120-580 with a residence time of approximately 43 sec. The predicted equilibrium absorption partitioning coefficients differed from the measured partitioning coefficients by several orders of magnitude. Time scales to reach equilibrium in the dilution sampling system were close to the actual residence time during the HDDV 5-mode test and much longer than the actual residence time during the other vehicle tests. It appears that insufficient residence time in the sampling system cannot uniformly explain the failure of the absorption mechanism to explain the measured partitioning. Other gas-particle partitioning mechanisms (e.g., heterogeneous reactions, capillary adsorption) beyond the simple absorption theory are needed to explain the discrepancy between calculated carbonyl partitioning coefficients and observed partitioning. Both of these alternative partitioning mechanisms imply great challenges for the measurement and modeling of semi-volatile primary organic aerosol (POA) species from motor vehicles. Furthermore, as emitted particle concentrations from newer vehicles approach atmospheric background levels, dilution sampling systems must fundamentally change their approach so that they use realistic particle concentrations in the dilution air to approximately represent real-world conditions. Samples collected with particle-free dilution air yielding total particulate matter concentrations below typical ambient concentrations will not provide a realistic picture of partitioning for semi-volatile compounds. PMID:21090551

  3. Emission Ratios for Ammonia and Formic Acid and Observations of Peroxy Acetyl Nitrate (PAN and Ethylene in Biomass Burning Smoke as Seen by the Tropospheric Emission Spectrometer (TES

    Directory of Open Access Journals (Sweden)

    Vivienne H. Payne

    2011-11-01

    Full Text Available We use the Tropospheric Emission Spectrometer (TES aboard the NASA Aura satellite to determine the concentrations of the trace gases ammonia (NH3 and formic acid (HCOOH within boreal biomass burning plumes, and present the first detection of peroxy acetyl nitrate (PAN and ethylene (C2H4 by TES. We focus on two fresh Canadian plumes observed by TES in the summer of 2008 as part of the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS-B campaign. We use TES retrievals of NH3 and HCOOH within the smoke plumes to calculate their emission ratios (1.0% ± 0.5% and 0.31% ± 0.21%, respectively relative to CO for these Canadian fires. The TES derived emission ratios for these gases agree well with previous aircraft and satellite estimates, and can complement ground-based studies that have greater surface sensitivity. We find that TES observes PAN mixing ratios of ~2 ppb within these mid-tropospheric boreal biomass burning plumes when the average cloud optical depth is low ( < 0.1 and that TES can detect C2H4 mixing ratios of ~2 ppb in fresh biomass burning smoke plumes.

  4. Synthesis of Zn S:Co semiconductor nano particles 2.5 nm and observing wavelength emission 423 nm

    International Nuclear Information System (INIS)

    Synthesis of nano crystal semiconductor Zn S:Co are prepared by wet chemical method at room temperature. The effects of increasing cobalt's doped in Zn S are studied, and indicated the size distribution, absorption, excitation, emission, and structure of particles. Band gap and size of nano-particles are calculated by using absorption wavelength, the size values are measured and compared with XRD and Transmission Electron Microscopy results. By using L S- 55, we observed the emissions with excitation of 283 nm for different intensity at 423 nm.

  5. XMM-Newton Reflection Grating Spectrometer Observations of Discrete Soft-X-ray Emission Features from NGC 1068

    OpenAIRE

    Kinkhabwala, A.; Sako, M.; Behar, E.; Kahn, S. M.; Paerels, F.; Brinkman, A.C.; Kaastra, J. S.; Gu, M. F.; Liedahl, D. A.

    2002-01-01

    We present the first high-resolution, soft-X-ray spectrum of the prototypical Seyfert 2 galaxy, NGC 1068. This spectrum was obtained with the XMM-Newton Reflection Grating Spectrometer. Emission lines from H-like and He-like low-Z ions (from C to Si) and Fe-L-shell ions dominate the spectrum. Strong, narrow radiative recombination continua (RRC) for several ions are also present, implying that most of the observed soft-X-ray emission arises in low-temperature (few eV) plasma...

  6. First Spitzer Space Telescope Observations of Magnetic Cataclysmic Variables: Evidence for Excess Emission at 3--8 microns

    CERN Document Server

    Howell, S B; Hoard, D W; Wachter, S; Harrison, T; Thomas, H C B; Stefaniak, L; Ciardi, D R; Szkody, P; Van Belle, G T; Howell, Steve B.; Brinkworth, Carolyn; Wachter, Stefanie; Harrison, Thomas; Thomas, Howard Chun Beth; Stefaniak, Linda; Ciardi, David R.; Szkody, Paula; Belle, Gerard van

    2006-01-01

    We present the first observations of magnetic cataclysmic variables with the Spitzer Space Telescope. We used the Infrared Array Camera to obtain photometry of the polars EF Eri, GG Leo, V347 Pav, and RX J0154.0-5947 at 3.6, 4.5, 5.8, and 8.0 $\\mu$m. In all of our targets, we detect excess mid-infrared emission over that expected from the component stars alone. We explore the origin of this IR excess by examining bremsstrahlung, cyclotron emission, circumbinary dust, and L/T brown dwarf secondary stars. Bremsstrahlung and cyclotron emission appear unlikely to be significant contributors to the observed fluxes. At present, the most likely candidate for the excess emission is dust that is probably located in a circumbinary disk with an inner temperature near 800 K. However, a simple dust disk plus any reasonable low mass or brown dwarf-like secondary star is unable to fully explain the observed flux densities in the 3--8 $\\mu$m region.

  7. XMM-Newton Observations of MBM 12: More Constraints on the Solar Wind Charge Exchange and Local Bubble Emissions

    Science.gov (United States)

    Koutroumpa, Dimitra; Smith, Randall K.; Edgar, Richard J.; Kuntz, Kip D.; Plucinsky, Paul P.; Snowden, Steven L.

    2010-01-01

    We present the first analysis of an XMM-Newton observation of the nearby molecular cloud MBM 12. We find that in the direction of MBM 12 the total O VII (0.57 keV) triplet emission is 1.8(+0.5/-0.6) photons/sq cm/s/sr (or Line Units - LU) while for the O VIII (0.65 keV) line emission we find a 3(sigma) upper limit of Charge-eXchange (SWCX) which we compare to the XMM-Newton observations. This comparison provides new constraints on the relative heliospheric and Local Bubble contributions to the local diffuse X-ray background. The heliospheric SWCX model predicts 0.82 LU for O VII, which accounts for approx. 46+/-15% of the observed value, and 0.33 LU for the O VIII line emission consistent with the XMM-Newton observed value. We discuss our results in combination with previous observations of the MBM 12 with CHANDRA and Suzaku.

  8. Quantifying biogenic VOC emissions over North America using formaldehyde column observations from space

    Science.gov (United States)

    Palmer, P. I.; Abbot, D. S.; Fu, T.; Jacob, D. J.; Martin, R. V.; Chance, K.; Guenther, A.

    2003-12-01

    Formaldehyde (HCHO) columns measured from space using solar UV backscatter allow mapping of reactive hydrocarbon emissions.Our study focuses on North America,where isoprene provides the dominant contribution to HCHO during summer months. Using seven years (1995-2001) of HCHO column data from the GOME satellite instrument we show that the seasonal and interannual variability of HCHO over North America is consistent with known factors that drive regional-scale isoprene emissions. Our previous work has highlighted discrepancies between isoprene emissions derived from GOME and current inventories. These discrepancies are addressed by performing a detailed simulation of oxidant chemistry using the GEOS-CHEM global 3-D model, driven by a new-generation biogenic emission inventory. The contributions from other VOCs, in particular the terpenes, to the GOME HCHO data is also examined. An emission inventory of isoprene calculated from GOME HCHO data is presented with its estimated uncertainties. We evaluate these emissions using in situ measurements of isoprene flux and HCHO concentrations.

  9. Characteristics of VLF wave propagation in the Earth's magnetosphere in the presence of an artificial density duct

    Science.gov (United States)

    Pasmanik, Dmitry; Demekhov, Andrei

    We study the propagation of VLF waves in the Earth's ionosphere and magnetosphere in the presence of large-scale artificial plasma inhomogeneities which can be created by HF heating facilities like HAARP and ``Sura''. A region with enhanced cold plasma density can be formed due to the action of HF heating. This region is extended along geomagnetic field (up to altitudes of several thousand km) and has rather small size across magnetic field (about 1 degree). The geometric-optical approximation is used to study wave propagation. The plasma density and ion composition are calculated with the use of SAMI2 model, which was modified to take the effect of HF heating into account. We calculate ray trajectories of waves with different initial frequency and wave-normal angles and originating at altitudes of about 100 km in the region near the heating area. The source of such waves could be the lightning discharges, modulated HF heating of the ionosphere, or VLF transmitters. Variation of the wave amplitude along the ray trajectories due to refraction is considered and spatial distribution of wave intensity in the magnetosphere is analyzed. We show that the presence of such a density disturbances can lead to significant changes of wave propagation trajectories, in particular, to efficient guiding of VLF waves in this region. This can result in a drastic increase of the VLF-wave intensity in the density duct. The dependence of wave propagation properties on parameters of heating facility operation regime is considered. We study the variation of the spatial distribution of VLF wave intensity related to the slow evolution of the artificial inhomogeneity during the heating.

  10. Estimation of country-scale methane emissions by airborne and ground-based in situ observations and inverse modeling

    Science.gov (United States)

    Brunner, D.; Henne, S.; Oney, B. J.; Leuenberger, M.; Hiller, R.; Bamberger, I.; Eugster, W.; Neininger, B.

    2014-12-01

    Methane (CH4) is the second most important long-lived greenhouse gas from both natural and anthropogenic sources. In Switzerland, CH4 sources are dominated by agricultural activities (>80%) while natural emissions from wetlands and wild animals are thought to represent a minor source (~3 %). Except for leakage from the natural gas distribution network, all relevant emissions in Switzerland are associated with microbial processes which, due to their diffuse nature and sensitivity to ambient conditions, are associated with comparatively large uncertainties. The Swiss National Greenhouse Gas Inventory, for example, assigns an uncertainty of 18% to the country total CH4 emissions as compared to only 3% for CO2. To verify the Swiss national CH4 emission estimate and to reduce its uncertainty, "top-down" methods combining atmospheric observations and regional scale transport simulations can be used. Here, we present two independent analyses of the Swiss CH4 emission budget using inverse modeling. The first is based on airborne observations during more than 20 flights of a motor glider conducted in the framework of the MAIOLICA project. The second is based on near surface measurements from the newly established CarboCount CH measurement network (http://www.carbocount.ch). A Bayesian inversion framework is applied to these observations in combination with source sensitivities (footprints) calculated with the Lagrangian Particle Dispersion Model FLEXPART. To account for the complex terrain and flow in Switzerland, FLEXPART is driven by meteorological fields from the non-hydrostatic numerical weather forecast model COSMO at horizontal resolutions of up to 2 km x 2 km. Due to the critical role of the transport simulations, we first present an analysis of the sensitivity to different model configurations (e.g. resolution, time-averaged winds versus instantaneous fields, ECMWF versus COSMO fields). We then present the inverse modeling results separately for the airborne and the ground-based observations contrasting the numbers to the official National Greenhouse Gas Inventory.

  11. Observation of the fine structure for rovibronic spectral lines in visible part of emission spectra of $D_2$

    CERN Document Server

    Lavrov, B P; Zhukov, A S

    2011-01-01

    For the first time the fine structure of rovibronic spectral lines in visible part of emission spectra of $D_2$ molecule has been observed. Observed splitting in visible doublets is about 0.2 cm$^{-1}$ in good accordance with previous observations in the infrared part of the spectrum ($a^3\\Sigma_g^+ \\to c^3\\Pi_u$ electronic transition) by means of FTIR and laser spectroscopy. Relative intensities of the fine structure components are in agreement with our calculations of adiabatic line strengths for Hund's case "b" coupling scheme.

  12. Assessment of cardiac single-photon emission computed tomography performance using a scanning linear observer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chih-Jie; Kupinski, Matthew A.; Volokh, Lana [College of Optical Sciences, University of Arizona, Tucson, Arizona 85721 (United States); GE Healthcare, Haifa 39120 (Israel)

    2013-01-15

    Purpose: Single-photon emission computed tomography (SPECT) is widely used to detect myocardial ischemia and myocardial infarction. It is important to assess and compare different SPECT system designs in order to achieve the highest detectability of cardiac defects. Methods: Whitaker et al.'s study ['Estimating random signal parameters from noisy images with nuisance parameters: linear and scanning-linear methods,' Opt. Express 16(11), 8150-8173 (2008)] on the scanning linear observer (SLO) shows that the SLO can be used to estimate the location and size of signals. One major advantage of the SLO is that it can be used with projection data rather than with reconstruction data. Thus, this observer model assesses the overall hardware performance independent of any reconstruction algorithm. In addition, the computation time of image quality studies is significantly reduced. In this study, three systems based on the design of the GE cadmium zinc telluride-based dedicated cardiac SPECT camera Discovery 530c were assessed. This design, which is officially named the Alcyone Technology: Discovery NM 530c, was commercialized in August, 2009. The three systems, GE27, GE19, and GE13, contain 27, 19, and 13 detectors, respectively. Clinically, a human heart can be virtually segmented into three coronary artery territories: the left-anterior descending artery, left-circumflex artery, and right coronary artery. One of the most important functions of a cardiac SPECT system is to produce images from which a radiologist can accurately predict in which territory the defect exists [http://www.asnc.org/media/PDFs/PPReporting081511.pdf, Guideline from American Society of Nuclear Cardiology]. A good estimation of the extent of the defect from the projection images is also very helpful for determining the seriousness of the myocardial ischemia. In this study, both the location and extent of defects were estimated by the SLO, and the system performance was assessed by localization receiver operating characteristic (LROC) [P. Khurd and G. Gindi, 'Decision strategies maximizing the area under the LROC curve,' Proc. SPIE 5749, 150-161 (2005)] or estimation receiver operating characteristic (EROC) [E. Clarkson, 'Estimation receiver operating characteristic curve and ideal observers for combined detection/estimation tasks,' J. Opt. Soc. Am. A 24, B91-B98 (2007)] curves. Results: The area under the LROC/EROC curve (AULC/AUEC) and the true positive fraction (TPF) at a specific false positive fraction (FPF) can be treated as the figures of merit. For radii estimation with a 1 mm tolerance, the AUEC values of the GE27, GE19, and GE13 systems are 0.8545, 0.8488, and 0.8329, and the TPF at FPF = 5% are 77.1%, 76.46%, and 73.55%, respectively. The assessment of all three systems revealed that the GE19 system yields estimated information and cardiac defect detectability very close to those of the GE27 system while using eight fewer detectors. Thus, 30% of the expensive detector units can be removed with confidence. Conclusions: As the results show, a combination of the SLO and LROC/EROC curves can determine the configuration that yields the most relevant estimation/detection information. Thus, this is a useful method for assessing cardiac SPECT systems.

  13. Assessment of cardiac single-photon emission computed tomography performance using a scanning linear observer

    International Nuclear Information System (INIS)

    Purpose: Single-photon emission computed tomography (SPECT) is widely used to detect myocardial ischemia and myocardial infarction. It is important to assess and compare different SPECT system designs in order to achieve the highest detectability of cardiac defects. Methods: Whitaker et al.’s study [“Estimating random signal parameters from noisy images with nuisance parameters: linear and scanning-linear methods,” Opt. Express 16(11), 8150–8173 (2008)] on the scanning linear observer (SLO) shows that the SLO can be used to estimate the location and size of signals. One major advantage of the SLO is that it can be used with projection data rather than with reconstruction data. Thus, this observer model assesses the overall hardware performance independent of any reconstruction algorithm. In addition, the computation time of image quality studies is significantly reduced. In this study, three systems based on the design of the GE cadmium zinc telluride-based dedicated cardiac SPECT camera Discovery 530c were assessed. This design, which is officially named the Alcyone Technology: Discovery NM 530c, was commercialized in August, 2009. The three systems, GE27, GE19, and GE13, contain 27, 19, and 13 detectors, respectively. Clinically, a human heart can be virtually segmented into three coronary artery territories: the left-anterior descending artery, left-circumflex artery, and right coronary artery. One of the most important functions of a cardiac SPECT system ictions of a cardiac SPECT system is to produce images from which a radiologist can accurately predict in which territory the defect exists [http://www.asnc.org/media/PDFs/PPReporting081511.pdf, Guideline from American Society of Nuclear Cardiology]. A good estimation of the extent of the defect from the projection images is also very helpful for determining the seriousness of the myocardial ischemia. In this study, both the location and extent of defects were estimated by the SLO, and the system performance was assessed by localization receiver operating characteristic (LROC) [P. Khurd and G. Gindi, “Decision strategies maximizing the area under the LROC curve,” Proc. SPIE 5749, 150–161 (2005)] or estimation receiver operating characteristic (EROC) [E. Clarkson, “Estimation receiver operating characteristic curve and ideal observers for combined detection/estimation tasks,” J. Opt. Soc. Am. A 24, B91–B98 (2007)] curves. Results: The area under the LROC/EROC curve (AULC/AUEC) and the true positive fraction (TPF) at a specific false positive fraction (FPF) can be treated as the figures of merit. For radii estimation with a 1 mm tolerance, the AUEC values of the GE27, GE19, and GE13 systems are 0.8545, 0.8488, and 0.8329, and the TPF at FPF = 5% are 77.1%, 76.46%, and 73.55%, respectively. The assessment of all three systems revealed that the GE19 system yields estimated information and cardiac defect detectability very close to those of the GE27 system while using eight fewer detectors. Thus, 30% of the expensive detector units can be removed with confidence. Conclusions: As the results show, a combination of the SLO and LROC/EROC curves can determine the configuration that yields the most relevant estimation/detection information. Thus, this is a useful method for assessing cardiac SPECT systems.

  14. Initial LOFAR observations of epoch of reionization windows. II. Diffuse polarized emission in the ELAIS-N1 field

    Science.gov (United States)

    Jeli?, V.; de Bruyn, A. G.; Mevius, M.; Abdalla, F. B.; Asad, K. M. B.; Bernardi, G.; Brentjens, M. A.; Bus, S.; Chapman, E.; Ciardi, B.; Daiboo, S.; Fernandez, E. R.; Ghosh, A.; Harker, G.; Jensen, H.; Kazemi, S.; Koopmans, L. V. E.; Labropoulos, P.; Martinez-Rubi, O.; Mellema, G.; Offringa, A. R.; Pandey, V. N.; Patil, A. H.; Thomas, R. M.; Vedantham, H. K.; Veligatla, V.; Yatawatta, S.; Zaroubi, S.; Alexov, A.; Anderson, J.; Avruch, I. M.; Beck, R.; Bell, M. E.; Bentum, M. J.; Best, P.; Bonafede, A.; Bregman, J.; Breitling, F.; Broderick, J.; Brouw, W. N.; Brüggen, M.; Butcher, H. R.; Conway, J. E.; de Gasperin, F.; de Geus, E.; Deller, A.; Dettmar, R.-J.; Duscha, S.; Eislöffel, J.; Engels, D.; Falcke, H.; Fallows, R. A.; Fender, R.; Ferrari, C.; Frieswijk, W.; Garrett, M. A.; Grießmeier, J.; Gunst, A. W.; Hamaker, J. P.; Hassall, T. E.; Haverkorn, M.; Heald, G.; Hessels, J. W. T.; Hoeft, M.; Hörandel, J.; Horneffer, A.; van der Horst, A.; Iacobelli, M.; Juette, E.; Karastergiou, A.; Kondratiev, V. I.; Kramer, M.; Kuniyoshi, M.; Kuper, G.; van Leeuwen, J.; Maat, P.; Mann, G.; McKay-Bukowski, D.; McKean, J. P.; Munk, H.; Nelles, A.; Norden, M. J.; Paas, H.; Pandey-Pommier, M.; Pietka, G.; Pizzo, R.; Polatidis, A. G.; Reich, W.; Röttgering, H.; Rowlinson, A.; Scaife, A. M. M.; Schwarz, D.; Serylak, M.; Smirnov, O.; Steinmetz, M.; Stewart, A.; Tagger, M.; Tang, Y.; Tasse, C.; ter Veen, S.; Thoudam, S.; Toribio, C.; Vermeulen, R.; Vocks, C.; van Weeren, R. J.; Wijers, R. A. M. J.; Wijnholds, S. J.; Wucknitz, O.; Zarka, P.

    2014-08-01

    Aims: This study aims to characterise the polarized foreground emission in the ELAIS-N1 field and to address its possible implications for extracting of the cosmological 21 cm signal from the LOw-Frequency ARray - Epoch of Reionization (LOFAR-EoR) data. Methods: We used the high band antennas of LOFAR to image this region and RM-synthesis to unravel structures of polarized emission at high Galactic latitudes. Results: The brightness temperature of the detected Galactic emission is on average ~4 K in polarized intensity and covers the range from -10 to + 13 rad m-2 in Faraday depth. The total polarized intensity and polarization angle show a wide range of morphological features. We have also used the Westerbork Synthesis Radio Telescope (WSRT) at 350 MHz to image the same region. The LOFAR and WSRT images show a similar complex morphology at comparable brightness levels, but their spatial correlation is very low. The fractional polarization at 150 MHz, expressed as a percentage of the total intensity, amounts to ?1.5%. There is no indication of diffuse emission in total intensity in the interferometric data, in line with results at higher frequencies Conclusions: The wide frequency range, high angular resolution, and high sensitivity make LOFAR an exquisite instrument for studying Galactic polarized emission at a resolution of ~1-2 rad m-2 in Faraday depth. The different polarized patterns observed at 150 MHz and 350 MHz are consistent with different source distributions along the line of sight wring in a variety of Faraday thin regions of emission. The presence of polarized foregrounds is a serious complication for epoch of reionization experiments. To avoid the leakage of polarized emission into total intensity, which can depend on frequency, we need to calibrate the instrumental polarization across the field of view to a small fraction of 1%.