WorldWideScience

Sample records for visible light activity

  1. Enhanced visible-light activity of titania via confinement inside carbon nanotubes

    KAUST Repository

    Chen, Wei; Fan, Zhongli; Zhang, Bei; Ma, Guijun; Takanabe, Kazuhiro; Zhang, Xixiang; Lai, Zhiping

    2011-01-01

    O 2 in comparison with nanoparticles dispersed on the outer surface of CNTs, extending the photoresponse of TiO 2 from the UV to the visible-light region. The CNT-confined TiO 2 exhibited improved visible-light activity in the degradation of methylene

  2. Preparation of sensitized ZnS and its photocatalytic activity under visible light irradiation

    International Nuclear Information System (INIS)

    Zhang Haitao; Chen Xinyi; Li Zhaosheng; Kou Jiahui; Yu Tao; Zou Zhigang

    2007-01-01

    In this paper, sensitized ZnS with visible light driven photocatlytic ability was successfully prepared. The obtained ZnS was characterized by x-ray diffraction, UV-visible diffuse reflectance spectra and Fourier transform infrared spectra. The photocatalytic property of the prepared ZnS was evaluated by decomposing methyl orange (MO). These sensitized ZnS powders with a proper molar ratio showed higher photocatalytic activity than TiO 2 (P25) under visible light (λ > 420 nm) irradiation. A possible explanation for the visible light activity of the prepared ZnS was proposed

  3. Photocatalytic activity of Fe-doped CaTiO₃ under UV-visible light.

    Science.gov (United States)

    Yang, He; Han, Chong; Xue, Xiangxin

    2014-07-01

    The photocatalytic degradation of methylene blue (MB) over Fe-doped CaTiO₃ under UV-visible light was investigated. The as-prepared samples were characterized using X-ray diffraction (XRD), scanning electron microscope (SEM) equipped with an energy dispersive spectrometer (EDS) system, Fourier transform infrared spectra (FT-IR), and UV-visible diffuse reflectance spectroscopy (DRS). The results show that the doping with Fe significantly promoted the light absorption ability of CaTiO₃ in the visible light region. The Fe-doped CaTiO₃ exhibited higher photocatalytic activity than CaTiO₃ for the degradation of MB. However, the photocatalytic activity of the Fe-doped CaTiO₃ was greatly influenced by the calcination temperature during the preparation process. The Fe-doped CaTiO₃ prepared at 500°C exhibited the best photocatalytic activity, with degradation of almost 100% MB (10ppm) under UV-visible light for 180 min. Copyright © 2014. Published by Elsevier B.V.

  4. Preparation of TiO2-Fullerene Composites and Their Photocatalytic Activity under Visible Light

    Directory of Open Access Journals (Sweden)

    Ken-ichi Katsumata

    2012-01-01

    Full Text Available The development of visible light-sensitive photocatalytic materials is being investigated. In this study, the anatase and rutile-C60 composites were prepared by solution process. The characterization of the samples was conducted by using XRD, UV-vis, FT-IR, Raman, and TEM. The photocatalytic activity of the samples was evaluated by the decolorization of the methylene blue. From the results of the Raman, FT-IR, and XRD, the existence of the C60 was confirmed in the samples. The C60 was modified on the anatase or rutile particle as a cluster. The C60 didn't have the photocatalytic activity under UV and visible light. The anatase and rutile-C60 composites exhibited lower photocatalytic activity than the anatase and rutile under UV light. The anatase-C60 exhibited also lower activity than the anatase under visible light. On the other hand, the rutile-C60 exhibited higher activity than the rutile under visible light. It is considered that the photogenerated electrons can transfer from the C60 to the rutile under visible light irradiation.

  5. Photocatalytic Activity and Characterization of Carbon-Modified Titania for Visible-Light-Active Photodegradation of Nitrogen Oxides

    Directory of Open Access Journals (Sweden)

    Chun-Hung Huang

    2012-01-01

    Full Text Available A variety of carbon-modified titania powders were prepared by impregnation method using a commercial available titania powder, Hombikat UV100, as matrix material while a range of alcohols from propanol to hexanol were used as precursors of carbon sources. Rising the carbon number of alcoholic precursor molecule, the modified titania showed increasing visible activities of NOx photodegradation. The catalyst modified with cyclohexanol exhibited the best activities of 62%, 62%, 59%, and 54% for the total NOx removal under UV, blue, green, and red light irradiation, respectively. The high activity with long wavelength irradiation suggested a good capability of photocatalysis in full visible light spectrum. Analysis of UV-visible spectrum indicated that carbon modification promoted visible light absorption and red shift in band gap. XPS spectroscopic analysis identified the existence of carbonate species (C=O, which increased with the increasing carbon number of precursor molecule. Photoluminescence spectra demonstrated that the carbonate species suppressed the recombination rate of electron-hole pair. As a result, a mechanism of visible-light-active photocatalyst was proposed according to the formation of carbonate species on carbon-modified TiO2.

  6. Strategies of making TiO2 and ZnO visible light active

    International Nuclear Information System (INIS)

    Rehman, Shama; Ullah, Ruh; Butt, A.M.; Gohar, N.D.

    2009-01-01

    In modern purification techniques employing semiconductor mediated photooxidation of toxic substances, zinc oxide (ZnO) and titanium dioxide (TiO 2 ) are the most widely used metal oxides due to their unique blend of properties. However, the band edges of these semiconductors lie in the UV region which makes them inactive under visible light irradiation. Researchers have been interested in the modification of electronic and optical properties of these metal oxides for their efficient use in water and air purification under visible light irradiation. Visible light activity has been induced in TiO 2 and ZnO by surface modification via organic materials/semiconductor coupling and band gap modification by doping with metals and nonmetals, co-doping with nonmetals, creation of oxygen vacancies and oxygen sub-stoichiometry. This paper encompasses the progress and developments made so far through these techniques in the visible light photocatalysis with TiO 2 and ZnO. Recently, nitrogen doping in titania has been extensively carried out and therefore somewhat detailed discussion in this respect has been presented. Visible light activation of titania clusters encapsulated in zeolite-Y by nitrogen doping and incorporation of dye or organic sensitizers inside the zeolite framework, has also been highlighted in this review.

  7. Double-doped TiO{sub 2} nanoparticles as an efficient visible-light-active photocatalyst and antibacterial agent under solar simulated light

    Energy Technology Data Exchange (ETDEWEB)

    Ashkarran, Ali Akbar, E-mail: ashkarran@umz.ac.ir [Department of Physics, Faculty of Basic Sciences, University of Mazandaran, Babolsar (Iran, Islamic Republic of); Hamidinezhad, Habib [Nano and Biotechnology Research Group, Faculty of Basic Sciences, University of Mazandaran, Babolsar (Iran, Islamic Republic of); Haddadi, Hedayat [Department of Chemistry, Faculty of Sciences, Shahrekord University, P.O. Box 115, Shahrekord (Iran, Islamic Republic of); Mahmoudi, Morteza [Department of Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2014-05-01

    Graphical abstract: Double doping introduces two different electronic states in the band gap of TiO{sub 2}, which increase the lifetime of the charge carriers and leads to narrower band gap and enhancement of the visible-light absorption. - Highlights: • Preparation of single and double doped TiO{sub 2} NPs using a simple sol–gel route. • Extension of light absorption spectrum toward the visible region. • Enhanced visible-light photo-induced activity and antibacterial property in double doped TiO{sub 2} NPs. - Abstract: Silver and nitrogen doped TiO{sub 2} nanoparticles (NPs) were synthesized via sol–gel method. The physicochemical properties of the achieved NPs were characterized by various methods including X-Ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and ultra violet–visible absorption spectroscopy (UV–vis). Both visible-light photocatalytic activity and antimicrobial properties were successfully demonstrated for the degradation of Rhodamine B (Rh. B.), as a model dye, and inactivation of Escherichia coli (E. coli), as a representative of microorganisms. The concentration of the employed dopant was optimized and the results revealed that the silver and nitrogen doped TiO{sub 2} NPs extended the light absorption spectrum toward the visible region and significantly enhanced the photodegradation of model dye and inactivation of bacteria under visible-light irradiation while double-doped TiO{sub 2} NPs exhibited highest photocatalytic and antibacterial activity compared with single doping. The significant enhancement in the photocatalytic activity and antibacterial properties of the double doped TiO{sub 2} NPs, under visible-light irradiation, can be attributed to the generation of two different electronic states acting as electron traps in TiO{sub 2} and responsible for narrowing the band gap of TiO{sub 2} and shifting its optical response from UV to the

  8. Inactivation of bacterial biofilms using visible-light-activated unmodified ZnO nanorods

    Science.gov (United States)

    Aponiene, Kristina; Serevičius, Tomas; Luksiene, Zivile; Juršėnas, Saulius

    2017-09-01

    Various zinc oxide (ZnO) nanostructures are widely used for photocatalytic antibacterial applications. Since ZnO possesses a wide bandgap, it is believed that only UV light may efficiently assist bacterial inactivation, and diverse crystal lattice modifications should be applied in order to narrow the bandgap for efficient visible-light absorption. In this work we show that even unmodified ZnO nanorods grown by an aqueous chemical growth technique are found to possess intrinsic defects that can be activated by visible light (λ = 405 nm) and successfully applied for total inactivation of various highly resistant bacterial biofilms rather than more sensitive planktonic bacteria. Time-resolved fluorescence analysis has revealed that visible-light excitation creates long-lived charge carriers (τ > 1 μs), which might be crucial for destructive biochemical reactions achieving significant bacterial biofilm inactivation. ZnO nanorods covered with bacterial biofilms of Enterococcus faecalis MSCL 302 after illumination by visible light (λ = 405 nm) were inactivated by 2 log, and Listeria monocytogenes ATCL3C 7644 and Escherichia coli O157:H7 biofilms by 4 log. Heterogenic waste-water microbial biofilms, consisting of a mixed population of mesophilic bacteria after illumination with visible light were also completely destroyed.

  9. Enhanced visible-light activity of titania via confinement inside carbon nanotubes

    KAUST Repository

    Chen, Wei

    2011-09-28

    Titania confined inside carbon nanotubes (CNTs) was synthesized using a restrained hydrolysis method. Raman spectra and magnetic measurements using a SQUID magnetometer suggested the formation of remarkable oxygen vacancies over the encapsulated TiO 2 in comparison with nanoparticles dispersed on the outer surface of CNTs, extending the photoresponse of TiO 2 from the UV to the visible-light region. The CNT-confined TiO 2 exhibited improved visible-light activity in the degradation of methylene blue (MB) relative to the outside titania and commercial P25, which is attributed to the modification of the electronic structure of TiO 2 induced by the unique confinement inside CNTs. These results provide further insight into the effect of confinement within CNTs, and the composites are expected to be promising for applications in visible-light photocatalysis. © 2011 American Chemical Society.

  10. Characterization and mechanism analysis of N doped TiO2 with visible light response and its enhanced visible activity

    International Nuclear Information System (INIS)

    Cheng Xiuwen; Yu Xiujuan; Xing Zipeng

    2012-01-01

    Nitrogen doped TiO 2 nanoparticles were synthesized through a hydrolysis-precipitation process using ammonia water as the doping species. The resulting materials were characterized by XRD, DRS, SPS, XPS and FT-IR. Further, the activity enhanced-mechanism was discussed in detail. XRD results showed that doping with nitrogen could effectively retard the phase transformation of TiO 2 from anatase to rutile and increase the anatase crystallinity. DRS and SPS results indicated that the light absorbance edge of nitrogen doped TiO 2 nanoparticle was obviously red-shifted to visible light region and the separation rates of photogenerated charge carriers were greatly improved, respectively. XPS and FT-IR analysis implied that the contents of surface hydroxyl groups were improved significantly and the VBM (valance bond maximum) of O2p was 2.3 eV. Under the visible light irradiation with 120 min, a 65.3% degradation rate of phenol could be achieved. The photocatalytic activity of nitrogen doped TiO 2 was 2.08 and 1.97 times than that of pure TiO 2 and P25 TiO 2 , respectively. The enhanced visible light activity was attributed to the well anatase crystallinity, small crystallite size, intense light absorbance edge in visible region, more content of surface hydroxyl groups and high separation efficiency of photogenerated charge carriers.

  11. TiO2/carbon nanotube hybrid nanostructures: Solvothermal synthesis and their visible light photocatalytic activity

    International Nuclear Information System (INIS)

    Tian Lihong; Ye Liqun; Deng Kejian; Zan Ling

    2011-01-01

    MWCNT/TiO 2 hybrid nanostructures were prepared via solvothermal synthesis and sol-gel method with benzyl alcohol as a surfactant. As-prepared hybrid materials were characterized by X-ray diffraction, transmission electron microscopy, UV-vis diffuse reflectance spectra and X-ray photoelectron spectroscopy. The results showed that MWCNTs were uniformly decorated with anatase nanocrystals in solvothermal condition, but MWCNTs were embedded in a majority of TiO 2 nanoparticles by sol-gel method. When the weight ratio of MWCNTs to TiO 2 was 20%, MWCNT/TiO 2 hybrid nanostructures prepared by solvothermal synthesis exhibited higher visible-light-driven photocatalytic activity than that prepared by sol-gel method. Post-annealing of MWCNT/TiO 2 nanostructures at 400 deg. C resulted in the formation of the carbonaceous Ti-C bonds on the interface between TiO 2 and MWCNTs, which enhanced the photoabsorbance of the hybrid materials in the visible light region and improved the visible-light degradation efficiency of methylene blue. - Graphical abstract: MWCNT/TiO 2 nanostructures have been prepared by solvothermal method, which exhibited higher visible-light-driven photocatalytic activity than that prepared by sol-gel method. The carbonaceous Ti-C bonds on the interface between TiO 2 and MWCNTs enhanced the photoabsorbance of the hybrid materials in the visible light region. Highlights: → Anatase TiO 2 nanoparticles were anchored on CNTs surface uniformly via solvothermal method → The morphology facilitated the electron transfer between CNTs and TiO 2 → Ti-C bonds extended the absorption of MWCNT/TiO 2 to the whole visible light region. → The hybrid nanostructures showed enhanced visible-light induced photocatalytic activity.

  12. Catalyst-free activation of peroxides under visible LED light irradiation through photoexcitation pathway

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yaowen [Department of Environmental Engineering, Wuhan University, Wuhan, 430079 (China); Shenzhen Research Institute of Wuhan University, Shenzhen, 518057 (China); Li, Yixi; Yao, Linyu; Li, Simiao; Liu, Jin [Department of Environmental Engineering, Wuhan University, Wuhan, 430079 (China); Zhang, Hui, E-mail: eeng@whu.edu.cn [Department of Environmental Engineering, Wuhan University, Wuhan, 430079 (China); Shenzhen Research Institute of Wuhan University, Shenzhen, 518057 (China)

    2017-05-05

    Highlights: • Persulfate could decolorize Rhodamine B (RhB) directly via non-radical reactions. • LED lamps emitting white light were utilized as the visible light source. • Dyes could activate peroxides through photoexcitation pathway. • Decolorization of dyes and production of radicals were achieved simultaneously. • The catalyst-free peroxide/dye/Vis process was effective in a broad pH range. - Abstract: Catalysts are known to activate peroxides to generate active radicals (i.e., hydroxyl radical (·OH) and sulfate radical (SO{sub 4}·{sup −})) under certain conditions, but the activation of peroxides in the absence of catalysts under visible light irradiation has been rarely reported. This work demonstrates a catalyst-free activation of peroxides for the generation of ·OH and/or SO{sub 4}·{sup −} through photoexcited electron transfer from organic dyes to peroxides under visible LED light irradiation, where Rhodamine B (RhB) and Eosin Y (EY) were selected as model dyes. The formation of ·OH and/or SO{sub 4}·{sup −} in the reactions and the electron transfer from the excited dyes to peroxides were validated via electron paramagnetic resonance (EPR), photoluminescence (PL) spectra and cyclic voltammetry (CV). The performance of the peroxide/dye/Vis process was demonstrated to be altered depending on the target substrate. Meanwhile, the peroxide/dye/Vis process was effective for simultaneous decolorization of dyes and production of active radicals under neutral even or basic conditions. The findings of this study clarified a novel photoexcitation pathway for catalyst-free activation of peroxides under visible light irradiation, which could avoid the secondary metal ion (dissolved or leached) pollution from the metal-based catalysts and expand the application range of the peroxide-based catalytic process.

  13. Preparation of Fe-Doped TiO2 Nanotubes and Their Photocatalytic Activities under Visible Light

    Directory of Open Access Journals (Sweden)

    Honghui Teng

    2013-01-01

    Full Text Available Fe-doped TiO2 nanotubes (Fe-TNTs have been prepared by ultrasonic-assisted hydrothermal method. The structure and composition of the as-prepared TiO2 nanotubes were characterized by transmission electron microscopy, X-ray diffraction, and UV-Visible absorption spectroscopy. Their photocatalytic activities were evaluated by the degradation of MO under visible light. The UV-visible absorption spectra of the Fe-TNT showed a red shift and an enhancement of the absorption in the visible region compared to the pure TNT. The Fe-TNTs were provided with good photocatalytic activities and photostability and under visible light irradiation, and the optimum molar ratio of Ti : Fe was found to be 100 : 1 in our experiments.

  14. Pseudo and true visible light photocatalytic activity of nanotube titanic acid/graphene composites

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaodong, E-mail: donguser@hotmail.com; Liu, Xiaogang; Xue, Xiaoxiao; Pan, Hui; Zhang, Min; Li, Qiuye; Yu, Laigui; Yang, Jianjun; Zhang, Zhijun [Henan University, Key Laboratory of Ministry of Education for Special Functional Materials (China)

    2013-09-15

    Nanotube titanic acid/graphene (NTA/Gr) composites were prepared by an easy hydrothermal treatment of graphene oxide (GO) and NTA in a mixed solvent of ethanol-water. As-prepared NTA/Gr composites and GO were characterized by means of Fourier transform infrared spectrometry, X-ray diffraction, diffuse-reflection spectrometry, thermal analysis, and transmission electron microscopy. Besides, the photocatalytic activities of as-prepared NTA/Gr composites were evaluated by monitoring the degradation of methyl orange (MO) under visible light irradiation. It has been found that extending hydrothermal reaction time (24 h instead of 3 h) leads to great changes in the morphology and crystal structure of as-prepared composites. Namely, the orthorhombic NTA (ca. 10 nm in diameter) in the composite transformed to anatase TiO{sub 2} particle (ca. 20-30 nm in diameter) while the Gr sheets (with micrometers-long wrinkles) in it transformed to a few Gr fragments (ca. 50 nm in diameter). Correspondingly, the NTA/Gr composite transformed to titanium dioxide/graphene (TiO{sub 2}/Gr) composite. In the meantime, pure GO only has adsorption effect but it has no photocatalytic activity in the visible light region. Nevertheless, increasing Gr ratio results in enhanced visible light absorption capability and photocatalytic activity of NTA/Gr composites as well as the TiO{sub 2}/Gr composites. This demonstrates that the true visible light photocatalytic activity of NTA/Gr composites as well as the TiO{sub 2}/Gr composites for the degradation of MO is not as excellent as expected, and their high apparent activity is attributed to the strong adsorption of MO on the composites.

  15. Pseudo and true visible light photocatalytic activity of nanotube titanic acid/graphene composites

    Science.gov (United States)

    Wang, Xiaodong; Liu, Xiaogang; Xue, Xiaoxiao; Pan, Hui; Zhang, Min; Li, Qiuye; Yu, Laigui; Yang, Jianjun; Zhang, Zhijun

    2013-09-01

    Nanotube titanic acid/graphene (NTA/Gr) composites were prepared by an easy hydrothermal treatment of graphene oxide (GO) and NTA in a mixed solvent of ethanol-water. As-prepared NTA/Gr composites and GO were characterized by means of Fourier transform infrared spectrometry, X-ray diffraction, diffuse-reflection spectrometry, thermal analysis, and transmission electron microscopy. Besides, the photocatalytic activities of as-prepared NTA/Gr composites were evaluated by monitoring the degradation of methyl orange (MO) under visible light irradiation. It has been found that extending hydrothermal reaction time (24 h instead of 3 h) leads to great changes in the morphology and crystal structure of as-prepared composites. Namely, the orthorhombic NTA (ca. 10 nm in diameter) in the composite transformed to anatase TiO2 particle (ca. 20-30 nm in diameter) while the Gr sheets (with micrometers-long wrinkles) in it transformed to a few Gr fragments (ca. 50 nm in diameter). Correspondingly, the NTA/Gr composite transformed to titanium dioxide/graphene (TiO2/Gr) composite. In the meantime, pure GO only has adsorption effect but it has no photocatalytic activity in the visible light region. Nevertheless, increasing Gr ratio results in enhanced visible light absorption capability and photocatalytic activity of NTA/Gr composites as well as the TiO2/Gr composites. This demonstrates that the true visible light photocatalytic activity of NTA/Gr composites as well as the TiO2/Gr composites for the degradation of MO is not as excellent as expected, and their high apparent activity is attributed to the strong adsorption of MO on the composites.

  16. Hierarchical ZnO/S,N:GQD composites: Biotemplated synthesis and enhanced visible-light-driven photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Aijun, E-mail: caiaijun80@163.com [College of Life Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066600 (China); College of Chemistry and Material Sciences, Hebei Normal University, Shijiazhuang 050016 (China); Wang, Xiuping, E-mail: wangxiuping0721@163.com [College of Life Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066600 (China); Qi, Yanling, E-mail: qyl6790@126.com [College of Life Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066600 (China); Ma, Zichuan, E-mail: mazc@vip.163.com [College of Chemistry and Material Sciences, Hebei Normal University, Shijiazhuang 050016 (China)

    2017-01-01

    Highlights: • ZnO/S,N:GQD composites were synthesized by using poplar leaves as biotemplates. • The composites have enhanced visible-light-driven photocatalytic activity. • The highly efficient charge separation of electron-hole pairs is achieved. • High surface areas play an important role in the photocatalysis. - Abstract: Graphene quantum dots co-doped with sulfur and nitrogen (S,N:GQDs) are successfully combined with leaf-templated ZnO nanoparticles (L-ZnO) to obtain hierarchical L-ZnO/S,N:GQD composites exhibiting highly surface area. The morphology, structure, and the visible-light-driven photocatalytic activity are investigated. Compared with non-templated ZnO/S,N:GQDs, L-ZnO/S,N:GQD composites exhibit higher photocatalytic activity for the degradation of rhodamine B under visible light irradiation. Such elevated photocatalytic activity results from two main effects: one is the highly effective charge separation in L-ZnO/S,N:GQD composites; the other is the high surface area, allowing for efficient capture of the visible light.

  17. Visible-light photocatalytic activity of nitrided TiO2 thin films

    International Nuclear Information System (INIS)

    Camps, Enrique; Escobar-Alarcon, L.; Camacho-Lopez, Marco Antonio; Casados, Dora A. Solis

    2010-01-01

    TiO 2 thin films have been applied in UV-light photocatalysis. Nevertheless visible-light photocatalytic activity would make this material more attractive for applications. In this work we present results on the modification of titanium oxide (anatase) sol-gel thin films, via a nitriding process using a microwave plasma source. After the treatment in the nitrogen plasma, the nitrogen content in the TiO 2 films varied in the range from 14 up to 28 at%. The titanium oxide films and the nitrided ones were characterized by XPS, micro-Raman spectroscopy and UV-vis spectroscopy. Photocatalytic activity tests were done using a Methylene Blue dye solution, and as catalyst TiO 2 and nitrided TiO 2 films. The irradiation of films was carried out with a lamp with emission in the visible (without UV). The results showed that the nitrided TiO 2 films had photocatalytic activity, while the unnitrided films did not.

  18. Two dimensional visible-light-active Pt-BiOI photoelectrocatalyst for efficient ethanol oxidation reaction in alkaline media

    Science.gov (United States)

    Zhai, Chunyang; Hu, Jiayue; Sun, Mingjuan; Zhu, Mingshan

    2018-02-01

    Two dimensional (2D) BiOI nanoplates were synthesized and used as support for the deposition of Pt nanoparticles. Owing to broad visible light absorption (up to 660 nm), the as-obtained Pt-BiOI electrode was used as effective photoelectrocatalyst in the application of catalytic ethanol oxidation in alkaline media under visible light irradiation. Compared to dark condition, the Pt-BiOI modified electrode displayed 3 times improved catalytic activity towards ethanol oxidation under visible light irradiation. The synergistic effect of electrocatalytic and photocatalytic, and the unique of 2D structures contribute to the improvement of catalytic activity. The mechanism of enhanced photoelectrocatalytic process is proposed. The present results suggest that 2D visible-light-activated BiOI can be served as promising support for the decoration of Pt and applied in the fields of photoelectrochemical and photo-assisted fuel cell applications

  19. [VISIBLE LIGHT AND HUMAN SKIN (REVIEW)].

    Science.gov (United States)

    Tsibadze, A; Chikvaidze, E; Katsitadze, A; Kvachadze, I; Tskhvediani, N; Chikviladze, A

    2015-09-01

    Biological effect of a visible light depends on extend of its property to penetrate into the tissues: the greater is a wavelength the more is an effect of a radiation. An impact of a visible light on the skin is evident by wave and quantum effects. Quanta of a visible radiation carry more energy than infrared radiation, although an influence of such radiation on the skin is produced by the light spectrum on the boarder of the ultraviolet and the infrared rays and is manifested by thermal and chemical effects. It is determined that large doses of a visible light (405-436 nm) can cause skin erythema. At this time, the ratio of generation of free radicals in the skin during an exposure to the ultraviolet and the visible light range from 67-33% respectively. Visible rays of 400-500 nm length of wave cause an increase of the concentration of oxygen's active form and mutation of DNA and proteins in the skin. The urticaria in 4-18% of young people induced by photodermatosis is described. As a result of a direct exposure to sunlight photosensitive eczema is more common in elderly. Special place holds a hereditary disease - porphyria, caused by a visible light. In recent years, dermatologists widely use phototherapy. The method uses polychromatic, non-coherent (wavelength of 515-1200 nm) pulsating beam. During phototherapy/light treatment a patient is being exposed to sunlight or bright artificial light. Sources of visible light are lasers, LEDs and fluorescent lamps which have the full range of a visible light. Phototherapy is used in the treatment of acne vulgaris, seasonal affective disorders, depression, psoriasis, eczema and neurodermities. LED of the red and near infrared range also is characterized by the therapeutic effect. They have an ability to influence cromatophores and enhance ATP synthesis in mitochondria. To speed up the healing of wounds and stimulate hair growth light sources of a weak intensity are used. The light of blue-green spectrum is widely used for

  20. Structural analysis and visible light-activated photocatalytic activity of iron-containing soda lime aluminosilicate glass

    Energy Technology Data Exchange (ETDEWEB)

    Iida, Yusuke; Akiyama, Kazuhiko [Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachi-Oji, Tokyo 192-0397 (Japan); Kobzi, Balázs; Sinkó, Katalin; Homonnay, Zoltán [Institute of Chemistry, Eötvös Loránd University, Pázmany P. s., 1/A, Budapest 1117 (Hungary); Kuzmann, Ernő [Institute of Chemistry, Eötvös Loránd University, Pázmany P. s., 1/A, Budapest 1117 (Hungary); Laboratory of Nuclear Chemistry, Chemical Research Center, Hungarian Academy of Sciences, Budapest 1512 (Hungary); Ristić, Mira; Krehula, Stjepko [Division of Materials Chemistry, RuđerBošković Institute, Bijenička cesta 54, Zagreb 10000 (Croatia); Nishida, Tetsuaki [Department of Biological and Environmental Chemistry, Faculty of Humanity-Oriented Science and Engineering, Kinki University, 11-6 Kayanomori, Iizuka, Fukuoka 820-8555 (Japan); Kubuki, Shiro, E-mail: kubuki@tmu.ac.jp [Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachi-Oji, Tokyo 192-0397 (Japan)

    2015-10-05

    Highlights: • Hematite was precipitated by heat treatment of iron aluminosilicate glass. • The hematite phase shows visible light photocatalytic activity. • We could prepare an effective photocatalyst from ‘ubiquitous elements’. - Abstract: A relationship between structure and visible light-activated photocatalytic activity of iron-containing soda lime aluminosilicate (15Na{sub 2}O⋅15CaO⋅40Fe{sub 2}O{sub 3}⋅xAl{sub 2}O{sub 3}⋅(30−x)SiO{sub 2}) glass (xNCFAS) was investigated by means of {sup 57}Fe-Mössbauer spectroscopy, X-ray diffractometry (XRD) and UV–visible light absorption spectroscopy (UV–VIS). The {sup 57}Fe-Mössbauer spectrum of 11NCFAS glass measured after heat-treatment at 1000 °C for 100 min was composed of a paramagnetic doublet due to Fe{sup III}(T{sub d}) and two magnetic sextets due to regular hematite (α-Fe{sub 2}O{sub 3}) and hematite with larger internal magnetic field. X-ray diffraction patterns of heat-treated xNCFAS samples resulted in decrease of α-Fe{sub 2}O{sub 3} and increase of Ca{sub 2}Fe{sub 22}O{sub 33} or CaFe{sub 2}O{sub 4} with alumina content. A quick decrease in methylene blue (MB) concentration from 15.6 to 4.7 μmol L{sup −1} was observed in the photocatalytic reaction test with 40 mg of heat-treated 11NCFAS glass under visible light-exposure. The largest first-order rate constant of MB decomposition (k) was estimated to be 9.26 × 10{sup −3} min{sup −1}. Tauc’s plot yielded a band gap energy (E{sub g}) of 1.88 eV for heat-treated 11NCFAS glass, which is smaller than previously reported E{sub g} of 2.2 eV for α-Fe{sub 2}O{sub 3}. These results prove that addition of Al{sub 2}O{sub 3} into iron-containing soda lime silicate glass is favorable for the preparation of improved visible light-photocatalyst with ‘ubiquitous’ elements.

  1. Facile preparation of squarylium dye sensitized TiO{sub 2} nanoparticles and their enhanced visible-light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhongyu, E-mail: zhongyuli@mail.tsinghua.edu.cn [Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164 (China); Changzhou Expansion New Stuff Technology Limited Company, Changzhou 213122 (China); Fang, Yongling [Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164 (China); Zhan, Xueqiu [Department of Basic Courses, Wuxi Institute of Technology, Wuxi 214121 (China); Xu, Song [Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164 (China)

    2013-07-05

    Highlights: •ISQ dye sensitized TiO{sub 2} nanoparticles were prepared via a facile solution method. •ISQ/TiO{sub 2} nanoparticles exhibited significantly enhanced visible light activity. •ISQ/TiO{sub 2} showed high visible light photocatalytic activity over MB decomposition. •ISQ/TiO{sub 2} nanoparticles exhibited good photocatalytic stability. -- Abstract: A squarylium dye, 1,3-bis[(3,3-dimethylindolin-2-ylidene)methyl]squaraine (ISQ) sensitized TiO{sub 2} nanoparticles photocatalysts with different mass ratio of ISQ to TiO{sub 2} were facilely prepared by blending ISQ and TiO{sub 2} in ethanol solution. The resulting composite photocatalysts were characterized by the X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectra (FT-IR) and UV–vis diffuse reflectance spectroscope (DRS). The visible light photocatalytic activities of ISQ sensitized TiO{sub 2} nanoparticles were evaluated using the degradation of methylene blue (MB) as a photodegradation target. The results showed that photo-response of the ISQ sensitized TiO{sub 2} nanoparticles were remarkably extended to visible-light region, and the ISQ dye sensitized TiO{sub 2} exhibited significantly enhanced photocatalytic activity under visible light irradiation. The maximum photocatalytic activity of the ISQ sensitized TiO{sub 2} was found at a composite photocatalyst (mass ratio of ISQ to TiO{sub 2} was 1:3), and its degradation efficiency of MB reached approximately 98% in 2 h under visible light irradiation. Furthermore, a possible mechanism for the photocatalytic oxidative degradation was also proposed.

  2. Transition metal-modified zinc oxides for UV and visible light photocatalysis.

    Science.gov (United States)

    Bloh, J Z; Dillert, R; Bahnemann, D W

    2012-11-01

    In order to use photocatalysis with solar light, finding more active and especially visible light active photocatalysts is a very important challenge. Also, studies of these photocatalysts should employ a standardized test procedure so that their results can be accurately compared and evaluated with one another. A systematic study of transition metal-modified zinc oxide was conducted to determine whether they are suitable as visible light photocatalysts. The photocatalytic activity of ZnO modified with eight different transition metals (Cu, Co, Fe, Mn, Ni, Ru, Ti, Zr) in three different concentrations (0.01, 0.1, and 1 at.%) was investigated under irradiation with UV as well as with visible light. The employed activity test is the gas-phase degradation of acetaldehyde as described by the ISO standard 22197-2. The results suggest that the UV activity can be improved with almost any modification element and that there exists an optimal modification ratio at about 0.1 at.%. Additionally, Mn- and Ru-modified ZnO display visible light activity. Especially the Ru-modified ZnO is highly active and surpasses the visible light activity of all studied titania standards. These findings suggest that modified zinc oxides may be a viable alternative to titanium dioxide-based catalysts for visible light photocatalysis. Eventually, possible underlying mechanisms are proposed and discussed.

  3. Photocatalytic activity of Sulfer-doped TiO2 fiber under visible light illumination (Joint research)

    International Nuclear Information System (INIS)

    Takeyama, Akinori; Yamamoto, Shunya; Yoshikawa, Masahito; Hasegawa, Yoshio; Awatsu, Satoshi

    2007-03-01

    The Sol-Gel derived precursor fiber was annealed under hydrogen disulfeid (H 2 S) following oxygen atmosphere, Sulfur-doped TiO 2 fiber was obtained. Crystal structure of the fiber was identified as anatase phase of TiO 2 . The energy band gap of the fiber was narrower by about 0.06 eV than that of anatase, which showed that it could absorb visible light. The fiber contains about 0.58 atomic % of Sulfur, and they located at the oxygen lattice site of TiO 2 . Under visible light illumination, the fiber degraded Trichloroethylen (TCE) and produced carbon dioxide (CO 2 ). This shows Sulfur-doped TiO 2 fiber has the photocatalytic activity under visible light illumination. (author)

  4. Role of visible light-activated photocatalyst on the reduction of anthrax spore-induced mortality in mice.

    Directory of Open Access Journals (Sweden)

    Jyh-Hwa Kau

    Full Text Available BACKGROUND: Photocatalysis of titanium dioxide (TiO(2 substrates is primarily induced by ultraviolet light irradiation. Anion-doped TiO(2 substrates were shown to exhibit photocatalytic activities under visible-light illumination, relative environmentally-friendly materials. Their anti-spore activity against Bacillus anthracis, however, remains to be investigated. We evaluated these visible-light activated photocatalysts on the reduction of anthrax spore-induced pathogenesis. METHODOLOGY/PRINCIPAL FINDINGS: Standard plating method was used to determine the inactivation of anthrax spore by visible light-induced photocatalysis. Mouse models were further employed to investigate the suppressive effects of the photocatalysis on anthrax toxin- and spore-mediated mortality. We found that anti-spore activities of visible light illuminated nitrogen- or carbon-doped titania thin films significantly reduced viability of anthrax spores. Even though the spore-killing efficiency is only approximately 25%, our data indicate that spores from photocatalyzed groups but not untreated groups have a less survival rate after macrophage clearance. In addition, the photocatalysis could directly inactivate lethal toxin, the major virulence factor of B. anthracis. In agreement with these results, we found that the photocatalyzed spores have tenfold less potency to induce mortality in mice. These data suggest that the photocatalysis might injury the spores through inactivating spore components. CONCLUSION/SIGNIFICANCE: Photocatalysis induced injuries of the spores might be more important than direct killing of spores to reduce pathogenicity in the host.

  5. Preparation, characterization and enhanced visible-light photocatalytic activities of BiPO4/BiVO4 composites

    International Nuclear Information System (INIS)

    Wu, Siyuan; Zheng, Hong; Lian, Youwei; Wu, Yiying

    2013-01-01

    Graphical abstract: - Highlights: • BiPO 4 /BiVO 4 composites were successfully prepared by the hydrothermal method. • BiPO 4 /BiVO 4 composites exhibited broad absorption in the visible region. • Visible-light photocatalytic activities of BiPO 4 /BiVO 4 composites were enhanced. • P/V molar ratio and pH value of the reaction affect photocatalytic activity. • The mechanism of enhanced visible-light photocatalytic activities was discussed. - Abstract: BiPO 4 /BiVO 4 composites with different P/V molar ratios were prepared by the hydrothermal method and the effect of pH values of hydrothermal reaction on photocatalytic activity of BiPO 4 /BiVO 4 composite was investigated. The photocatalysts were characterized by X-ray diffraction, field emission scanning electron microscopy, energy-dispersive spectroscopy, X-ray photoelectron spectroscopy and UV–vis diffuse reflectance spectroscopy. The photocatalytic property of BiPO 4 /BiVO 4 was evaluated by photocatalytic degradation of Methylene blue under visible light irradiation. The results showed that the photocatalytic activity of the composites was much higher than that of pure BiPO 4 and BiVO 4 . The rate constant of Methylene blue degradation over BiPO 4 /BiVO 4 (P/V molar ratio of 5:1 and hydrothermal reaction pH value of 1.5) is 1.7 times that of pure BiVO 4 . The photocatalytic activity enhancement of BiPO 4 /BiVO 4 composite is closely related to the BiVO 4 functioning as a sensitizer to adsorb visible light and the heterojunction of BiPO 4 /BiVO 4 acting as an active center for hindering the rapid recombination of electron–hole pairs during the photocatalytic reaction

  6. Nanostructure sensitization of transition metal oxides for visible-light photocatalysis

    Directory of Open Access Journals (Sweden)

    Hongjun Chen

    2014-05-01

    Full Text Available To better utilize the sunlight for efficient solar energy conversion, the research on visible-light active photocatalysts has recently attracted a lot of interest. The photosensitization of transition metal oxides is a promising approach for achieving effective visible-light photocatalysis. This review article primarily discusses the recent progress in the realm of a variety of nanostructured photosensitizers such as quantum dots, plasmonic metal nanostructures, and carbon nanostructures for coupling with wide-bandgap transition metal oxides to design better visible-light active photocatalysts. The underlying mechanisms of the composite photocatalysts, e.g., the light-induced charge separation and the subsequent visible-light photocatalytic reaction processes in environmental remediation and solar fuel generation fields, are also introduced. A brief outlook on the nanostructure photosensitization is also given.

  7. Visible Light Responsive Catalyst for Air Water Purification Project

    Science.gov (United States)

    Wheeler, Raymond M.

    2014-01-01

    Investigate and develop viable approaches to render the normally UV-activated TIO2 catalyst visible light responsive (VLR) and achieve high and sustaining catalytic activity under the visible region of the solar spectrum.

  8. Photocatalytic activity of attapulgite–BiOCl–TiO2 toward degradation of methyl orange under UV and visible light irradiation

    International Nuclear Information System (INIS)

    Zhang, Lili; Zhang, Jiahui; Zhang, Weiguang; Liu, Jianquan; Zhong, Hui; Zhao, Yijiang

    2015-01-01

    Highlights: • Excellent photocatalyst was obtained by introducing BiOCl–TiO 2 onto attapulgite. • 100 mg L −1 methyl orange (MO) was totally decomposed under UV light within 70 min. • 92.6% of 10 mg L −1 MO was decomposed within 120 min under visible light. • ATT–BiOCl–TiO 2 show better activity than P 25 especially under visible light. • Mechanism of photocatalytic activity enhancement was identified. - Abstract: An environmental friendly composite photocatalyst with efficient UV and visible light activity has been synthesized by introducing BiOCl–TiO 2 hybrid oxide onto the surface of attapulgite (ATT) (denoted as ATT–BiOCl–TiO 2 ), using a simple in situ depositing technique. The obtained products were characterized by XRD, TEM, BET and UV–vis diffuse reflectance spectra measurements. Results showed that BiOCl–TiO 2 composite particles were successfully loaded onto attapulgite fibers' surface without obvious aggregation. The photocatalytic activity of ATT–BiOCl–TiO 2 was investigated by degradation of methyl orange under UV and visible light irradiation. It was found that 100 mg L −1 methyl orange was totally decomposed under UV light within 70 min and 92.57% of 10 mg L −1 methyl orange was decomposed under visible light within 120 min using ATT–BiOCl–TiO 2 as photocatalyst. These results were quite better than that of P 25 , especially under visible light irradiation. Possible mechanism for the enhancement was proposed

  9. Enhanced visible light-responsive photocatalytic activity of LnFeO3 (Ln = La, Sm) nanoparticles by synergistic catalysis

    International Nuclear Information System (INIS)

    Li, Li; Wang, Xiong; Zhang, Yange

    2014-01-01

    Highlights: • LnFeO 3 (Ln = La, Sm) nanoparticles were prepared by a facile sol–gel method. • The samples exhibit superior visible-light-responsive photocatalytic activity. • Synergistic effect will enhance the photodegradation of RhB under visible light. - Abstract: LnFeO 3 (Ln = La, Sm) nanoparticles were prepared by a facile sol–gel method with assistance of glycol at different calcination temperatures. The as-synthesized LnFeO 3 was characterized by X-ray diffraction, transmission electron microscopy, differential scanning calorimeter and thermogravimetric analysis, and UV–vis absorption spectroscopy. The photocatalytic behaviors of LnFeO 3 nanoparticles were evaluated by photodegradation of rhodamine B under visible light irradiation. The results indicate that the visible light-responsive photocatalytic activity of LnFeO 3 nanoparticles was enhanced remarkably by the synergistic effect between the semiconductor photocatalysis and Fenton-like reaction. And a possible catalytic mechanism was also proposed based on the experimental results

  10. Plasmon-resonance-enhanced visible-light photocatalytic activity of Ag quantum dots/TiO2 microspheres for methyl orange degradation

    Science.gov (United States)

    Yu, Xin; Shang, Liwei; Wang, Dongjun; An, Li; Li, Zhonghua; Liu, Jiawen; Shen, Jun

    2018-06-01

    We successfully prepared Ag quantum dots modified TiO2 microspheres by facile solvothermal and calcination method. The as-prepared Ag quantum dots/TiO2 microspheres were characterized by scanning electron microscope, transmission electron microscope, X-ray diffraction, X-ray photoelectron spectroscopy and UV-vis diffuse reflectance spectroscopy. The Ag quantum dots/TiO2 photocatalyst showed excellent visible light absorption and efficient photocatalytic activity for methyl orange degradation. And the sample with the molar ratio of 0.05 (Ag to Ti) showed the best visible light photocatalytic activity for methyl orange degradation, mainly because of the surface plasmon resonance (SPR) effects of Ag quantum dots to generate electron and hole pairs for enhanced visible light photocatalysis. Finally, possible visible light photocatalytic mechanism of Ag quantum dots/TiO2 microspheres for methyl orange degradation was proposed in detail.

  11. UV-visible light-activated Ag-decorated, monodisperse TiO2 aggregates for treatment of the pharmaceutical oxytetracycline.

    Science.gov (United States)

    Han, Changseok; Likodimos, Vlassis; Khan, Javed Ali; Nadagouda, Mallikarjuna N; Andersen, Joel; Falaras, Polycarpos; Rosales-Lombardi, Pablo; Dionysiou, Dionysios D

    2014-10-01

    Noble metal Ag-decorated, monodisperse TiO2 aggregates were successfully synthesized by an ionic strength-assisted, simple sol-gel method and were used for the photocatalytic degradation of the antibiotic oxytetracycline (OTC) under both UV and visible light (UV-visible light) irradiation. The synthesized samples were characterized by X-ray diffraction analysis (XRD); UV-vis diffuse reflectance spectroscopy; environmental scanning electron microscopy (ESEM); transmission electron microscopy (TEM); high-resolution TEM (HR-TEM); micro-Raman, energy-dispersive X-ray spectroscopy (EDS); and inductively coupled plasma optical emission spectrometry (ICP-OES). The results showed that the uniformity of TiO2 aggregates was finely tuned by the sol-gel method, and Ag was well decorated on the monodisperse TiO2 aggregates. The absorption of the samples in the visible light region increased with increasing Ag loading that was proportional to the amount of Ag precursor added in the solution over the tested concentration range. The Brunauer, Emmett, and Teller (The BET) surface area slightly decreased with increasing Ag loading on the TiO2 aggregates. Ag-decorated TiO2 samples demonstrated enhanced photocatalytic activity for the degradation of OTC under UV-visible light illumination compared to that of pure TiO2. The sample containing 1.9 wt% Ag showed the highest photocatalytic activity for the degradation of OTC under both UV-visible light and visible light illumination. During the experiments, the detected Ag leaching for the best TiO2-Ag photocatalyst was much lower than the National Secondary Drinking Water Regulation for Ag limit (0.1 mg L(-1)) issued by the US Environmental Protection Agency.

  12. Synthesis and visible-light-driven photocatalytic activity of p–n heterojunction Ag_2O/NaTaO_3 nanocubes

    International Nuclear Information System (INIS)

    Yang, Songbo; Xu, Dongbo; Chen, Biyi; Luo, Bifu; Yan, Xu; Xiao, Lisong; Shi, Weidong

    2016-01-01

    Highlights: • We firstly report a facile way to prepare the visible-light-driven Ag_2O/NaTaO_3p–n heterojunction by chemical precipitation method. • The Ag_2O/NaTaO_3 heterojunction shows the highest photocatalytic activity than the pure NaTaO_3 and Ag_2O nanoparticles under visible light. • The enhancement of the heterojunction photocatalytic activity was discussed and the photocatalytic mechanism was tested in our paper. • In summary, we think that the Ag_2O/NaTaO_3 heterojunction with the strong visible light absorption and efficient photocatalytic activity have been extended application in photocatalysis for organic dyes pollutants degradation and purification of water. - Abstract: The constructing of p–n heterojunction photocatalytic system has received much attention in environmental purification and hydrogen generation from water. In this study, an efficient visible-light-driven p–n heterojunction Ag_2O/NaTaO_3 was successfully prepared by chemical precipitation method at room temperature. It showed an enhanced photocatalytic activity for the degradation of rhodamine B (RhB) under visible-light irradiation, much higher than those of either individual Ag_2O or NaTaO_3. The reactive species scavenger results indicated the superoxide anion radicals (·O"2"−) played key roles in RhB decoloration. From the experimental results and the relative band gap position of these semiconductors, a detailed possible photocatalytic mechanism of the Ag_2O/NaTaO_3 heterojunction under visible light was proposed. The enhancement of the photocatalytic activity was attributed to the interfacial electronic interaction between NaTaO_3 and Ag_2O and the high migration efficiency of photogenerated carriers.

  13. Synthesis of Hollow CdS-TiO2 Microspheres with Enhanced Visible-Light Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Yuning Huo

    2012-01-01

    Full Text Available CdS-TiO2 composite photocatalyst in the shape of hollow microsphere was successfully synthesized via the hard-template preparation with polystyrene microspheres followed by ion-exchange approach. The hollow CdS-TiO2 microspheres significantly extended the light adsorption into visible light region, comparing to TiO2 microspheres. It led to much higher photocatalytic activities of hollow CdS-TiO2 microspheres than that of TiO2 during the photodegradation of rhodamine B under visible light irradiations. Furthermore, the well-remained hollow structure could achieve light multireflection within the interior cavities and the separation of photo-induced electrons and holes is efficient in CdS-TiO2, which were facilitated to improving the photoactivity.

  14. Synergistic Effect of Cu2O and Urea as Modifiers of TiO2 for Enhanced Visible Light Activity

    Directory of Open Access Journals (Sweden)

    Marcin Janczarek

    2018-06-01

    Full Text Available Low cost compounds, i.e., Cu2O and urea, were used as TiO2 modifiers to introduce visible light activity. Simple and cheap methods were applied to synthesize an efficient and stable nanocomposite photocatalytic material. First, the core-shell structure TiO2–polytriazine derivatives were prepared. Thereafter, Cu2O was added as the second semiconductor to form a dual heterojunction system. Enhanced visible light activity was found for the above-mentioned nanocomposite, confirming a synergistic effect of Cu2O and urea (via polytriazine derivatives on titania surface. Two possible mechanisms of visible light activity of the considered material were proposed regarding the type II heterojunction and Z-scheme through the essential improvement of the charge separation effect.

  15. Facile synthesis of phosphorus doped graphitic carbon nitride polymers with enhanced visible-light photocatalytic activity

    International Nuclear Information System (INIS)

    Zhang, Ligang; Chen, Xiufang; Guan, Jing; Jiang, Yijun; Hou, Tonggang; Mu, Xindong

    2013-01-01

    Graphical abstract: - Highlights: • P-doped g-C 3 N 4 has been prepared by a one-pot green synthetic approach. • The incorporation of P resulted in favorable textural and electronic properties. • Doping with P enhanced the visible-light photocatalytic activity of g-C 3 N 4 . • A postannealing treatment further enhanced the activity of P-doped g-C 3 N 4 . • Photogenerated holes were the main species responsible for the activity. - Abstract: Phosphorus-doped carbon nitride materials were prepared by a one-pot green synthetic approach using dicyandiamide monomer and a phosphorus containing ionic liquid as precursors. The as-prepared materials were subjected to several characterizations and investigated as metal-free photocatalysts for the degradation of organic pollutants (dyes like Rhodamine B, Methyl orange) in aqueous solution under visible light. Results revealed that phosphorus-doped carbon nitride have a higher photocatalytic activity for decomposing Rhodamine B and Methyl orange in aqueous solution than undoped g-C 3 N 4 , which was attributed to the favorable textural, optical and electronic properties caused by doping with phosphorus heteroatoms into carbon nitride host. A facile postannealing treatment further improved the activity of the photocatalytic system, due to the higher surface area and smaller structural size in the postcalcined catalysts. The phosphorus-doped carbon nitride showed high visible-light photocatalytic activity, making them promising materials for a wide range of potential applications in photochemistry

  16. Synthesis of visible light active Gd3+-substituted ZnFe2O4 nanoparticles for photocatalytic and antibacterial activities

    Science.gov (United States)

    Patil, S. B.; Bhojya Naik, H. S.; Nagaraju, G.; Viswanath, R.; Rashmi, S. K.

    2017-08-01

    In the present analysis, we study the assembly of a low-cost and visible light active ZnFe2-xGdxO4 ( x = 0 , 0.3, 0.5 and 0.7) nanoparticles (NPs) photocatalyst. The synthesized samples were characterized by several physicochemical techniques, such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV-Visible absorption spectroscopy (UV-Vis), scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). The phase transition from cubic to orthorhombic was confirmed by XRD patterns. The increase in the concentration of Gd3+ substitution in ZnFe2O4 NPs enhances the redshift of absorption in the visible region of UV-Vis absorption spectra and reduces the band gap. In the photo-Fenton-type reaction, the gadolinium-substituted zinc ferrite (ZGF) NPs exhibit a significant catalytic activity for the degradation of methylene blue (99% in 90 minutes) under visible light (500W xenon lamp) with respect to bare samples (95% in 240 minutes) and they also show an excellent reusability nature. These materials were also screened for antibacterial activity against Gram-negative bacteria strains ( Pseudomonas aeruginosa and Escherichia coli).

  17. CdS nanoparticles/CeO_2 nanorods composite with high-efficiency visible-light-driven photocatalytic activity

    International Nuclear Information System (INIS)

    You, Daotong; Pan, Bao; Jiang, Fan; Zhou, Yangen; Su, Wenyue

    2016-01-01

    Graphical abstract: Coupling CdS with CeO_2 can effectively improve the light-harvesting ability of wide-band gap CeO_2 NRs as the photoinduced electrons on the conduction band of CdS are transfered to the conduction band of CeO_2. - Highlights: • Coupling CdS can effectively improve the light-harvesting ability of wide-band gap CeO_2. • CdS/CeO_2 composites show high photocatalytic activity under visible light irradiation. • The mechanism of photocatalytic H_2 evolution over CdS/CeO_2 was proposed. - Abstract: Different mole ratios of CdS nanoparticles (NPs)/CeO_2 nanorods (NRs) composites with effective contacts were synthesized through a two-step hydrothermal method. The crystal phase, microstructure, optical absorption properties, electrochemical properties and photocatalytic H_2 production activity of these composites were investigated. It was concluded that the photogenerated charge carriers in the CdS NPs/CeO_2 NRs composite with a proper mole ratio (1:1) exhibited the longest lifetime and highest separation efficiency, which was responsible for the highest H_2-production rate of 8.4 mmol h"−"1 g"−"1 under visible-light irradiation (λ > 420 nm). The superior photocatalytic H_2 evolution properties are attributed to the transfer of visible-excited electrons of CdS NPs to CeO_2 NRs, which can effectively extend the light absorption range of wide-band gap CeO_2 NRs. This work provides feasible routes to develop visible-light responsive CeO_2-based nanomaterial for efficient solar utilization.

  18. Synthesis of CdSe-TiO_2 Photocatalyst and Their Enhanced Photocatalytic Activities under UV and Visible Light

    International Nuclear Information System (INIS)

    Lim, Chang Sung; Chen, Ming Liang; Oh, Won Chun

    2011-01-01

    In this study, CdSe-TiO_2 photocatalyst were synthesized by a facile solvothermal method and characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis and UV-vis diffuse reflectance spectrophotometer. The photocatalytic activity was investigated by degrading methylene blue (MB) in aqueous solution under irradiation of UV light as well as visible light. The absorbance of degraded MB solution was determined by UV-vis spectrophotometer. The results revealed that the CdSe- TiO_2 photocatalyst exhibited much higher photocatalytic activity than TiO_2 both under irradiation of UV light as well as visible light

  19. Facile in situ solvothermal method to synthesize MWCNT/SnIn4S8 composites with enhanced visible light photocatalytic activity

    International Nuclear Information System (INIS)

    Ding, Chaoying; Tian, Li; Liu, Bo; Liang, Qian; Li, Zhongyu; Xu, Song; Liu, Qiaoli; Lu, Dayong

    2015-01-01

    Highlights: • MWCNT/SnIn 4 S 8 composites were facilely fabricated via in situ solvothermal method. • MWCNT/SnIn 4 S 8 composites exhibited significantly enhanced visible-light activity. • MWCNT/SnIn 4 S 8 composites showed remarkable visible light photocatalytic activity. • MWCNT/SnIn 4 S 8 composites exhibited excellent photo-stability. • Possible photocatalytic mechanism under visible-light irradiation was proposed. - Abstract: Superior photocatalytic activity could be achieved by multi-walled carbon nanotube (MWCNT) incorporated in the porous assembly of marigold-like SnIn 4 S 8 heterostructures synthesized by a flexible in-situ solvothermal method. The as-prepared MWCNT/SnIn 4 S 8 composites were well-characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM) and UV–vis diffuse reflectance spectroscopy (DRS). The photocatalytic properties of the as-prepared samples were tested by photo-degradation of aqueous malachite green (MG) under the irradiation of visible light. It was found that the MWCNT/SnIn 4 S 8 composites showed enhanced visible light photocatalytic activity for dye degradation, and an optimum photocatalytic activity was observed over 3.0 wt.% MWCNT incorporated SnIn 4 S 8 composites. The superior photocatalytic activity of MWCNT/SnIn 4 S 8 composites could be ascribed to the existence of MWCNT which could serve as a good electron acceptor, mediator as well as the co-catalyst for dye degradation. The synergistic effect between SnIn 4 S 8 and MWCNT in the composites facilitated the interfacial charge transfer driven by the excitation of SnIn 4 S 8 under visible-light irradiation. Furthermore, a possible mechanism for the photocatalytic degradation of MWCNT/SnIn 4 S 8 composites was also discussed

  20. Visible light active TiO2 films prepared by electron beam deposition of noble metals

    International Nuclear Information System (INIS)

    Hou Xinggang; Ma Jun; Liu Andong; Li Dejun; Huang Meidong; Deng Xiangyun

    2010-01-01

    TiO 2 films prepared by sol-gel method were modified by electron beam deposition of noble metals (Pt, Pd, and Ag). Effects of noble metals on the chemical and surface characteristics of the films were studied using XPS, TEM and UV-Vis spectroscopy techniques. Photocatalytic activity of modified TiO 2 films was evaluated by studying the degradation of methyl orange dye solution under visible light UV irradiation. The result of TEM reveals that most of the surface area of TiO 2 is covered by tiny particles of noble metals with diameter less than 1 nm. Broad red shift of UV-Visible absorption band of modified photocatalysts was observed. The catalytic degradation of methyl orange in aqueous solutions under visible light illumination demonstrates a significant enhancement of photocatalytic activity of these films compared with the un-loaded films. The photocatalytic efficiency of modified TiO 2 films by this method is affected by the concentration of impregnating solution.

  1. Visible Light Induces Melanogenesis in Human Skin through a Photoadaptive Response

    Science.gov (United States)

    Randhawa, Manpreet; Seo, InSeok; Liebel, Frank; Southall, Michael D.; Kollias, Nikiforos; Ruvolo, Eduardo

    2015-01-01

    Visible light (400–700 nm) lies outside of the spectral range of what photobiologists define as deleterious radiation and as a result few studies have studied the effects of visible light range of wavelengths on skin. This oversight is important considering that during outdoors activities skin is exposed to the full solar spectrum, including visible light, and to multiple exposures at different times and doses. Although the contribution of the UV component of sunlight to skin damage has been established, few studies have examined the effects of non-UV solar radiation on skin physiology in terms of inflammation, and limited information is available regarding the role of visible light on pigmentation. The purpose of this study was to determine the effect of visible light on the pro-pigmentation pathways and melanin formation in skin. Exposure to visible light in ex-vivo and clinical studies demonstrated an induction of pigmentation in skin by visible light. Results showed that a single exposure to visible light induced very little pigmentation whereas multiple exposures with visible light resulted in darker and sustained pigmentation. These findings have potential implications on the management of photo-aggravated pigmentary disorders, the proper use of sunscreens, and the treatment of depigmented lesions. PMID:26121474

  2. Visible Light Induces Melanogenesis in Human Skin through a Photoadaptive Response.

    Science.gov (United States)

    Randhawa, Manpreet; Seo, InSeok; Liebel, Frank; Southall, Michael D; Kollias, Nikiforos; Ruvolo, Eduardo

    2015-01-01

    Visible light (400-700 nm) lies outside of the spectral range of what photobiologists define as deleterious radiation and as a result few studies have studied the effects of visible light range of wavelengths on skin. This oversight is important considering that during outdoors activities skin is exposed to the full solar spectrum, including visible light, and to multiple exposures at different times and doses. Although the contribution of the UV component of sunlight to skin damage has been established, few studies have examined the effects of non-UV solar radiation on skin physiology in terms of inflammation, and limited information is available regarding the role of visible light on pigmentation. The purpose of this study was to determine the effect of visible light on the pro-pigmentation pathways and melanin formation in skin. Exposure to visible light in ex-vivo and clinical studies demonstrated an induction of pigmentation in skin by visible light. Results showed that a single exposure to visible light induced very little pigmentation whereas multiple exposures with visible light resulted in darker and sustained pigmentation. These findings have potential implications on the management of photo-aggravated pigmentary disorders, the proper use of sunscreens, and the treatment of depigmented lesions.

  3. Visible Light Induces Melanogenesis in Human Skin through a Photoadaptive Response.

    Directory of Open Access Journals (Sweden)

    Manpreet Randhawa

    Full Text Available Visible light (400-700 nm lies outside of the spectral range of what photobiologists define as deleterious radiation and as a result few studies have studied the effects of visible light range of wavelengths on skin. This oversight is important considering that during outdoors activities skin is exposed to the full solar spectrum, including visible light, and to multiple exposures at different times and doses. Although the contribution of the UV component of sunlight to skin damage has been established, few studies have examined the effects of non-UV solar radiation on skin physiology in terms of inflammation, and limited information is available regarding the role of visible light on pigmentation. The purpose of this study was to determine the effect of visible light on the pro-pigmentation pathways and melanin formation in skin. Exposure to visible light in ex-vivo and clinical studies demonstrated an induction of pigmentation in skin by visible light. Results showed that a single exposure to visible light induced very little pigmentation whereas multiple exposures with visible light resulted in darker and sustained pigmentation. These findings have potential implications on the management of photo-aggravated pigmentary disorders, the proper use of sunscreens, and the treatment of depigmented lesions.

  4. Visible-Light-Responsive Catalyst Development for Volatile Organic Carbon Remediation Project

    Science.gov (United States)

    Zeitlin, Nancy; Hintze, Paul E.; Coutts, Janelle

    2015-01-01

    Photocatalysis is a process in which light energy is used to 'activate' oxidation/reduction reactions. Unmodified titanium dioxide (TiO2), a common photocatalyst, requires high-energy UV light for activation due to its large band gap (3.2 eV). Modification of TiO2 can reduce this band gap, leading to visible-light-responsive (VLR) photocatalysts. These catalysts can utilize solar and/or visible wavelength LED lamps as an activation source, replacing mercury-containing UV lamps, to create a "greener," more energy-efficient means for air and water revitalization. Recently, KSC developed several VLR catalysts that, on preliminary evaluation, possessed high catalytic activity within the visible spectrum; these samples out-performed existing commercial VLR catalysts.

  5. Visible Lasers and Emerging Color Converters for Lighting and Visible Light Communications

    KAUST Repository

    Shen, Chao

    2017-10-30

    GaN-based lasers are promising for white lighting and visible-light communication (VLC). The advances of III-nitride photonic integration, and the application of YAG crystal and perovskite-based phosphors to lighting and VLC will be discussed.

  6. Visible Lasers and Emerging Color Converters for Lighting and Visible Light Communications

    KAUST Repository

    Shen, Chao

    2017-01-01

    GaN-based lasers are promising for white lighting and visible-light communication (VLC). The advances of III-nitride photonic integration, and the application of YAG crystal and perovskite-based phosphors to lighting and VLC will be discussed.

  7. Recent progress on doped ZnO nanostructures for visible-light photocatalysis

    International Nuclear Information System (INIS)

    Samadi, Morasae; Zirak, Mohammad; Naseri, Amene; Khorashadizade, Elham; Moshfegh, Alireza Z.

    2016-01-01

    Global environmental pollution and energy supply demand have been regarded as important concerns in recent years. Metal oxide semiconductor photocatalysts is a promising approach to apply environmental remediation as well as fuel generation from water splitting and carbon dioxide reduction. ZnO nanostructures have been shown promising photocatalytic activities due to their non-toxic, inexpensive, and highly efficient nature. However, its wide band gap hinders photo-excitation for practical photocatalytic applications under solar light as an abundant, clean and safe energy source. To overcome this barrier, many strategies have been developed in the last decade to apply ZnO nanostructured photocatalysts under visible light. In this review, we have classified different approaches to activate ZnO as a photocatalyst in visible-light spectrum. Utilization of various nonmetals, transition metals and rare-earth metals for doping in ZnO crystal lattice to create visible-light-responsive doped ZnO photocatalysts is discussed. Generation of localized energy levels within the gap in doped ZnO nanostructures has played an important role in effective photocatalytic reaction under visible-light irradiation. The effect of dopant type, ionic size and its concentration on the crystal structure, electronic property and morphology of doped ZnO with a narrower band gap is reviewed systematically. Finally, a comparative study is performed to evaluate two classes of metals and nonmetals as useful dopants for ZnO nanostructured photocatalysts under visible light. - Highlights: • Metals and nonmetals used as a dopant to shift ZnO band gap toward visible-light. • Modification of electronic structure played a crucial role in doped ZnO activity. • Correlation between dopant's characteristics and ZnO visible activity was reviewed. • Photo-degradation of doped ZnO was studied and compared for different dopants.

  8. Recent progress on doped ZnO nanostructures for visible-light photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Samadi, Morasae; Zirak, Mohammad [Department of Physics, Sharif University of Technology, P.O. Box 11555-9161, Tehran (Iran, Islamic Republic of); Naseri, Amene [Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 11365-8639, Tehran (Iran, Islamic Republic of); Khorashadizade, Elham [Department of Physics, Sharif University of Technology, P.O. Box 11555-9161, Tehran (Iran, Islamic Republic of); Moshfegh, Alireza Z., E-mail: moshfegh@sharif.edu [Department of Physics, Sharif University of Technology, P.O. Box 11555-9161, Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 11365-8639, Tehran (Iran, Islamic Republic of)

    2016-04-30

    Global environmental pollution and energy supply demand have been regarded as important concerns in recent years. Metal oxide semiconductor photocatalysts is a promising approach to apply environmental remediation as well as fuel generation from water splitting and carbon dioxide reduction. ZnO nanostructures have been shown promising photocatalytic activities due to their non-toxic, inexpensive, and highly efficient nature. However, its wide band gap hinders photo-excitation for practical photocatalytic applications under solar light as an abundant, clean and safe energy source. To overcome this barrier, many strategies have been developed in the last decade to apply ZnO nanostructured photocatalysts under visible light. In this review, we have classified different approaches to activate ZnO as a photocatalyst in visible-light spectrum. Utilization of various nonmetals, transition metals and rare-earth metals for doping in ZnO crystal lattice to create visible-light-responsive doped ZnO photocatalysts is discussed. Generation of localized energy levels within the gap in doped ZnO nanostructures has played an important role in effective photocatalytic reaction under visible-light irradiation. The effect of dopant type, ionic size and its concentration on the crystal structure, electronic property and morphology of doped ZnO with a narrower band gap is reviewed systematically. Finally, a comparative study is performed to evaluate two classes of metals and nonmetals as useful dopants for ZnO nanostructured photocatalysts under visible light. - Highlights: • Metals and nonmetals used as a dopant to shift ZnO band gap toward visible-light. • Modification of electronic structure played a crucial role in doped ZnO activity. • Correlation between dopant's characteristics and ZnO visible activity was reviewed. • Photo-degradation of doped ZnO was studied and compared for different dopants.

  9. TiO2 nanoparticles immobilized on carbon nanotubes for enhanced visible-light photo-induced activity

    Directory of Open Access Journals (Sweden)

    Ali Akbar Ashkarran

    2015-04-01

    Full Text Available CNT–TiO2 nanocomposites were prepared through (i simple mixing of as prepared CNTs and TiO2 nanoparticles (NPs, (ii simple mixing of as prepared CNTs and TiO2 NPs followed by heat treatment and (iii simple mixing of as prepared CNTs and TiO2 NPs followed by UV illumination. The synthesis of CNTs and TiO2 NPs were performed individually by arc discharge in water and sol–gel methods, respectively and characterized by X-ray diffraction (XRD, ultra violet and visible spectroscopy (UV–vis, Fourier transform infrared spectroscopy (FT-IR, scanning electron microscopy (SEM and transmission electron microscopy (TEM. The visible-light photocatalytic performance of CNT–TiO2 nanocomposites was successfully demonstrated for the degradation of Rhodamine B (Rh. B as a model dye at room temperature. It is found that CNT–TiO2 nanocomposites extended the light absorption spectrum toward the visible region and considerably improved the photocatalytic efficiency under visible-light irradiation. The visible-light photocatalytic activities of CNT–TiO2 nanocomposites in which CNTs are produced by arc discharge in deionized (DI water at 40, 60 and 80 A arc currents and combined through three different protocols are also investigated. It was found that samples prepared at 80 A arc current and 5 s arc duration followed by UV illumination revealed best photocatalytic activity compared with the same samples prepared under simple mixing and simple mixing followed by heat treatment. The enhancement in the photocatalytic property of CNT–TiO2 nanocomposites prepared at 80 A arc current followed by UV illumination may be ascribed to the quality of CNTs produced at this current, as was reported before.

  10. Mechanochemical Synthesis of Visible Light Sensitive Titanium Dioxide Photocatalyst

    Directory of Open Access Journals (Sweden)

    Jan Šubrt

    2011-01-01

    Full Text Available Phase transition of anatase nanoparticles into the phases TiO2-II and rutile under grinding was studied. The addition of ammonium carbamate to the reaction mixture inhibits the phase conversion and the cold welding of particles. The UV-visible absorption spectrum showed narrowing the band gap width after grinding with an ammonium carbamate additive resulting in shift of the light absorption of the ground sample towards the visible region. By EPR, intensive formation of OH• radical at irradiation of the sample with both UV (λ > 300 nm and visible (λ > 435 nm light was observed. High photocatalytic activity of the ground sample in visible light region was demonstrated also by measurement of kinetics of the photocatalytic decomposition of 4-chlorophenol.

  11. Preparation of Fe-doped TiO{sub 2} nanotube arrays and their photocatalytic activities under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Ya-Fang; Huang, Sheng-You [Department of Physics, Wuhan University, Wuhan 430072 (China); Sang, Jian-Ping, E-mail: jpsang@acc-lab.whu.edu.cn [Department of Physics, Wuhan University, Wuhan 430072 (China); Department of Physics, Jianghan University, Wuhan 430056 (China); Zou, Xian-Wu [Department of Physics, Wuhan University, Wuhan 430072 (China)

    2010-02-15

    Fe-doped TiO{sub 2} nanotube arrays have been prepared by the template-based liquid phase deposition method. Their morphologies, structures and optical properties were investigated by scanning electron microscopy, transmission electron microscopy, X-ray diffraction and UV-vis absorption spectroscopy. Their photocatalytic activities were evaluated by the degradation of methylene blue under visible light. The UV-vis absorption spectra of the Fe-doped TiO{sub 2} nanotube arrays showed a red shift and an enhancement of the absorption in the visible region compared to the undoped sample. The Fe-doped TiO{sub 2} nanotube arrays exhibited good photocatalytic activities under visible light irradiation, and the optimum dopant amount was found to be 5.9 at% in our experiments.

  12. Enhanced visible-light photocatalytic activity of Fe/ZnO for rhodamine B degradation and its photogenerated charge transfer properties

    International Nuclear Information System (INIS)

    Yi, Shasha; Cui, Jiabao; Li, Shuo; Zhang, Lijing; Wang, Dejun; Lin, Yanhong

    2014-01-01

    Highlights: • ZnO and Fe/ZnO nanoflowers were synthesized via a hydrothermal process. • Fe/ZnO nanoflowers show improved photocatalytic activity under the irradiation of visible light. • In the Fe/ZnO system, Fe 3+ and Fe 2+ coexistences in the ZnO host. • The detailed photocatalytic mechanism and the role of Fe in the photodegradation system are discussed. - Abstract: Zinc oxide (ZnO) and iron doped zinc oxide (Fe/ZnO) nanoflowers were successfully synthesized via a simple hydrothermal process. The samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman scattering, ultraviolet–visible (UV–vis) diffuse spectroscopy and scanning electron microscopy (SEM), and it was found that the dopant ions replaced some of the crystal lattice zinc ions, and furthermore, Fe 3+ and Fe 2+ ions coexist. Photocatalytic activities of the catalysts were assessed based on the degradation of rhodamine B (RhB) in aqueous solution under both UV and visible light irradiation (λ > 420 nm), respectively. All Fe/ZnO samples showed enhanced photocatalytic activity under the irradiation of visible light. On the contrary, Fe/ZnO products displayed poorer performance than that of pure ZnO in the presence of UV light. This phenomenon can be attributed to the coexistence of Fe 3+ and Fe 2+ in the ZnO host. The photophysical mechanism of the UV and visible photocatalytic activity was investigated with the help of surface photovoltage (SPV) and PL measurements, respectively. The results indicated the influence of coexistence of Fe 3+ and Fe 2+ in ZnO host on the separation and transfer behavior of the photogenerated charges in the UV and visible regions, which are distinctly different: under the irradiation of UV light, the recombination of the photogenerated electrons and holes was promoted, whereas the separation and transfer of photogenerated electrons and holes was facilitated under the visible light irradiation. The detailed photocatalytic

  13. Visible Light Irradiation-Mediated Drug Elution Activity of Nitrogen-Doped TiO2 Nano tubes

    International Nuclear Information System (INIS)

    Oh, S.; Moon, K.S.; Bae, J.M.; Moon, J.H.; Jin, S.

    2013-01-01

    We have developed nitrogen-doped TiO 2 nano tubes showing photo catalytic activity in the visible light region and have investigated the triggered release of antibiotics from these nano tubes in response to remote visible light irradiation. Scanning electron microscopy (SEM) observations indicated that the structure of TiO 2 nano tubes was not destroyed on the conditions of 0.05 and 0.1 M diethanolamine treatment. The results of X-ray photoelectron spectroscopy (XPS) confirmed that nitrogen, in the forms of nitrite (TiO 2 ) and nitrogen monoxide (NO), had been incorporated into the TiO 2 nano tube surface. A drug-release test revealed that the antibiotic-loaded TiO 2 nano tubes showed sustained and prolonged drug elution with the help of polylactic acid. Visible light irradiation tests showed that the antibiotic release from nitrogen-doped nano tubes was significantly higher than that from pure TiO 2 nano tubes (ρ ≨ 0.05).

  14. Optical properties and visible-light-driven photocatalytic activity of Bi8V2O17 nanoparticles

    International Nuclear Information System (INIS)

    Pu, Yinfu; Liu, Ting; Huang, Yanlin; Chen, Cuili; Kim, Sun Il; Seo, Hyo Jin

    2015-01-01

    Bi 8 V 2 O 17 (4Bi 2 O 3 ·V 2 O 5 ) nanoparticles with the uniform size of about 50 nm were fabricated through the Pechini method. The crystal structure was investigated by X-ray powder diffraction and the structural refinement. The surface of the as-synthesized samples was characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy, and X-ray photoelectron spectroscopy. The optical properties, band structure, and the degradation mechanisms were discussed. The experimental results demonstrate that Bi 8 V 2 O 17 nanoparticles have an efficient visible-light absorption with band-gap energy of 1.85 eV and a direct allowed electronic transition. The photocatalytic activity was evaluated by the photodegradation of the methylene blue (MB) under visible-light irradiation (λ > 420 nm) as a function of time. These results indicate that Bi 8 V 2 O 17 could be a potential photocatalyst driven by visible light. The effective photocatalytic activity was discussed on the base of the crystal structure characteristic

  15. Visible-light photocatalytic performances of TiO2 nanoparticles modified by trace derivatives of PVA

    Directory of Open Access Journals (Sweden)

    Le SHI

    2016-10-01

    Full Text Available In order to study the visible-light photocatalytic activity and catalysis stability of nanocomposites, a TiO2-based visible-light photocatalyst is prepared by surface-modification of TiO2 nanoparticles using trace conjugated derivatives from polyvinyl alcohol (DPVA via a facile method. The obtained DPVA/TiO2 nanocomposites are characterized by X-ray diffraction (XRD, Fourier transform infrared Spectra (FT-IR, scanning electron microscopy (SEM, UV-vis diffuse reflection spectroscopy (DRS, and X-ray photoelectron spectroscopy (XPS. With Rhodamine B (RhB as a model pollutant, the visible-light photocatalytic activity and stability of DPVA/TiO2 nanocomposites are investigated by evaluating the RhB decomposition under visible light irradiation. The results reveal that the trace conjugated polymers on the TiO2 surface doesn’t change the crystalline and crystal size of TiO2 nanoparticles, but significantly enhances their visible-light absorbance and visible-light photocatalytic activity. The nanocomposite with the PVA and TiO2 mass ratio of 1∶200 exhibits the highest visible-light photocatalytic activity. The investigated nanocomposites exhibit well visible-light photoctatalytic stability. The photogenerated holes are thought as the main active species for the RhB photodegradation in the presence of the DPVA/TiO2 nanocomposites.

  16. Synthesis of spherical Ag/ZnO heterostructural composites with excellent photocatalytic activity under visible light and UV irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hairui, E-mail: liuhairui1@126.com [College of Physics & Electronics Engineering, Henan Normal University, Henan Key Laboratory of Photovoltaic Materials, Xinxiang 453007 (China); Hu, Yanchun [College of Physics & Electronics Engineering, Henan Normal University, Henan Key Laboratory of Photovoltaic Materials, Xinxiang 453007 (China); Zhang, Zhuxia [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, Shanxi 030024 (China); College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024 (China); Liu, Xuguang [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, Shanxi 030024 (China); Jia, Husheng [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, Shanxi 030024 (China); College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024 (China); Xu, Bingshe [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, Shanxi 030024 (China)

    2015-11-15

    Graphical abstract: Ag nanoparticles decorated ZnO microspheres heterostructural composites were fabricated via a two-step chemical method, and present enhanced UV and visible light photocatalytic activity, which ascribed to the formation of Schottky barriers in the regions between Ag-NPs and ZnO-MSs and effective electron transfer from plasmon-excited Ag(0) nanoparticles to ZnO-MSs by strong localization of surface plasmonic resonance. - Highlights: • Ag/ZnO microspheres heterostructural composites were fabricated via a two-step chemical method. • Ag/ZnO composites exhibits enhanced visible light and UV light photocatalytic activity. • The UV and visible-light photocatalytic activity sequences are different for Ag/ZnO composites with the increase of Ag content. • The enhanced UV and visible light photocatalytic activity could be attributed to the formation of the Schottky barriers and surface plasmon resonance. - Abstract: Ag nanoparticles (Ag-NPs) decorated ZnO microspheres (ZnO-MSs) heterostructural composites were fabricated via a two-step chemical method. The ZnO-MSs with the diameter about 700 nm was initially prepared by ultrasonic technology. Subsequently, Ag-NPs with a diameter of 20–50 nm were anchored onto the surface of the as-prepared ZnO-MSs by a microwave polyol process. The morphology, structural and optical properties of the as-synthesized materials were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and high resolution TEM (HRTEM), X-ray photoelectron spectroscopy (XPS), UV–visible absorption spectroscopy, and photoluminescence spectroscopy. The results show that the surface plasmon absorption band of Ag/ZnO composites is distinctly broadened and the PL intensity of Ag/ZnO heterostructural composites varies with the increase of Ag loading. The photocatalytic activity of the Ag/ZnO composites were evaluated by the degradation of rhodamine B (Rh

  17. Synthesis of spherical Ag/ZnO heterostructural composites with excellent photocatalytic activity under visible light and UV irradiation

    International Nuclear Information System (INIS)

    Liu, Hairui; Hu, Yanchun; Zhang, Zhuxia; Liu, Xuguang; Jia, Husheng; Xu, Bingshe

    2015-01-01

    Graphical abstract: Ag nanoparticles decorated ZnO microspheres heterostructural composites were fabricated via a two-step chemical method, and present enhanced UV and visible light photocatalytic activity, which ascribed to the formation of Schottky barriers in the regions between Ag-NPs and ZnO-MSs and effective electron transfer from plasmon-excited Ag(0) nanoparticles to ZnO-MSs by strong localization of surface plasmonic resonance. - Highlights: • Ag/ZnO microspheres heterostructural composites were fabricated via a two-step chemical method. • Ag/ZnO composites exhibits enhanced visible light and UV light photocatalytic activity. • The UV and visible-light photocatalytic activity sequences are different for Ag/ZnO composites with the increase of Ag content. • The enhanced UV and visible light photocatalytic activity could be attributed to the formation of the Schottky barriers and surface plasmon resonance. - Abstract: Ag nanoparticles (Ag-NPs) decorated ZnO microspheres (ZnO-MSs) heterostructural composites were fabricated via a two-step chemical method. The ZnO-MSs with the diameter about 700 nm was initially prepared by ultrasonic technology. Subsequently, Ag-NPs with a diameter of 20–50 nm were anchored onto the surface of the as-prepared ZnO-MSs by a microwave polyol process. The morphology, structural and optical properties of the as-synthesized materials were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and high resolution TEM (HRTEM), X-ray photoelectron spectroscopy (XPS), UV–visible absorption spectroscopy, and photoluminescence spectroscopy. The results show that the surface plasmon absorption band of Ag/ZnO composites is distinctly broadened and the PL intensity of Ag/ZnO heterostructural composites varies with the increase of Ag loading. The photocatalytic activity of the Ag/ZnO composites were evaluated by the degradation of rhodamine B (Rh

  18. Preparation, characterization and photocatalytic activity of visible-light-driven plasmonic Ag/AgBr/ZnFe2O4 nanocomposites

    International Nuclear Information System (INIS)

    Li, Xiaojuan; Tang, Duanlian; Tang, Fan; Zhu, Yunyan; He, Changfa; Liu, Minghua; Lin, Chunxiang; Liu, Yifan

    2014-01-01

    Highlights: • A plasmonic Ag/AgBr/ZnFe 2 O 4 photocatalyst has been successfully synthesized. • Ag/AgBr/ZnFe 2 O 4 nanocomposites exhibit high visible light photocatalytic activity. • Ag/AgBr/ZnFe 2 O 4 photocatalyst is stable and magnetically separable. - Abstract: A visible-light-driven plasmonic Ag/AgBr/ZnFe 2 O 4 nanocomposite has been successfully synthesized via a deposition–precipitation and photoreduction through a novel one-pot process. X-ray diffraction spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy and UV–vis diffuse reflectance spectroscopy were employed to investigate the crystal structure, chemical composition, morphology, and optical properties of the as-prepared nanocomposites. The photocatalytic activities of the nanocomposites were evaluated by photodegradation of Rhodamine B (RhB) and phenol under visible light. The results demonstrated that the obtained Ag/AgBr/ZnFe 2 O 4 nanocomposites exhibited higher photocatalytic activity as compared to pure ZnFe 2 O 4 . In addition, the sample photoreduced for 20 min and calcined at 500 °C achieved the highest photocatalytic activity. Furthermore, the Ag/AgBr/ZnFe 2 O 4 nanocomposite has high stability under visible light irradiation and could be conveniently separated by using an external magnetic field

  19. Visible light reduces C. elegans longevity.

    Science.gov (United States)

    De Magalhaes Filho, C Daniel; Henriquez, Brian; Seah, Nicole E; Evans, Ronald M; Lapierre, Louis R; Dillin, Andrew

    2018-03-02

    The transparent nematode Caenorhabditis elegans can sense UV and blue-violet light to alter behavior. Because high-dose UV and blue-violet light are not a common feature outside of the laboratory setting, we asked what role, if any, could low-intensity visible light play in C. elegans physiology and longevity. Here, we show that C. elegans lifespan is inversely correlated to the time worms were exposed to visible light. While circadian control, lite-1 and tax-2 do not contribute to the lifespan reduction, we demonstrate that visible light creates photooxidative stress along with a general unfolded-protein response that decreases the lifespan. Finally, we find that long-lived mutants are more resistant to light stress, as well as wild-type worms supplemented pharmacologically with antioxidants. This study reveals that transparent nematodes are sensitive to visible light radiation and highlights the need to standardize methods for controlling the unrecognized biased effect of light during lifespan studies in laboratory conditions.

  20. An ion exchange strategy to BiOI/CH{sub 3}COO(BiO) heterojunction with enhanced visible-light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Han, Qiaofeng, E-mail: hanqiaofeng@njust.edu.cn; Yang, Zhen; Wang, Li; Shen, Zichen; Wang, Xin; Zhu, Junwu; Jiang, Xiaohong

    2017-05-01

    Highlights: • BiOI/BiOAc heterojunction was firstly synthesized by an ion exchange route. • BiOI/BiOAc exhibited enhanced visible-light-driven photoreactivity for the dyes degradation in comparison with individuals. • Photocatalytic activity of the as-prepared BiOI/BiOAc is better than that prepared by precipitation-deposition method. • Photosensitization effect of BiOI to BiOAc was superior to that of Bi{sub 2}S{sub 3} due to suitable solubility constant. - Abstract: It is very significant to develop CH{sub 3}COO(BiO) (denoted as BiOAc) based photocatalysts for the removal of pollutants due to its non-toxicity and availability. We previously reported that BiOAc exhibited excellent photocatalytic activity for rhodamine B (RhB) degradation under UV light irradiation. Herein, by an ion exchange approach, BiOI/BiOAc heterojunction could be easily obtained. The as-prepared heterojunction possessed enhanced photodegradation activity for multiple dyes including RhB and methyl orange (MO) under visible light illumination in comparison with individual materials. Good visible-light photocatalytic activity of the heterojunction could be attributed to the increased visible light response, effective charge transfer from the modified band position and close interfacial contact due to partial ion exchange method.

  1. Enhanced visible light-induced photocatalytic activity of surface-modified BiOBr with Pd nanoparticles

    Science.gov (United States)

    Meng, Xiangchao; Li, Zizhen; Chen, Jie; Xie, Hongwei; Zhang, Zisheng

    2018-03-01

    Palladium nanoparticles well-dispersed on BiOBr surfaces were successfully prepared via a two-step process, namely hydrothermal synthesis of BiOBr followed by photodeposition of palladium. Surface-exposed palladium nanoparticles may improve the harvesting capacity of visible light photons via the surface plasmonic resonance effect to produce extra electrons. Palladium is an excellent electron acceptor, and therefore favours the separation of photogenerated electron/hole pairs. As a result, palladium significantly improves the photocatalytic activity of BiOBr in the removal of organic pollutants (phenol) under visible light irradiation. In addition to as-prepared samples which were comprehensively characterized, the mechanism for the enhancement via the deposition of palladium nanoparticles was also proposed based on results. This work may serve as solid evidence to confirm that surface-deposited palladium nanoparticles are capable of improving photocatalytic activity, and that photodeposition may be an effective approach to load metal nanoparticles onto a surface.

  2. Preparation of Ag deposited TiO2 (Ag/TiO2) composites and investigation on visible-light photocatalytic degradation activity in magnetic field

    Science.gov (United States)

    Zhang, L.; Ma, C. H.; Wang, J.; Li, S. G.; Li, Y.

    2014-12-01

    In this study, Ag deposited TiO2 (Ag/TiO2) composites were prepared by three different methods (Ultraviolet Irradiation Deposition (UID), Vitamin C Reduction (VCR) and Sodium Borohydride Reduction (SBR)) for the visible-light photocatalytic degradation of organic dyes in magnetic field. And then the prepared Ag deposited TiO2 (Ag/TiO2) composites were characterized physically by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The visible-light photocatalytic activities of these three kinds of Ag deposited TiO2 (Ag/TiO2) composites were examined and compared through the degradation of several organic dyes under visible-light irradiation in magnetic field. In addition, some influence factors such as visible-light irradiation time, organic dye concentration, revolution speed, magnetic field intensity and organic dye kind on the visible-light photocatalytic activity of Ag deposited TiO2 (Ag/TiO2) composite were reviewed. The research results showed that the presence of magnetic field significantly enhanced the visible-light photocatalytic activity of Ag deposited TiO2 (Ag/TiO2) composites and then contributed to the degradation of organic dyes.

  3. Visible-Light-Driven BiOI-Based Janus Micromotor in Pure Water.

    Science.gov (United States)

    Dong, Renfeng; Hu, Yan; Wu, Yefei; Gao, Wei; Ren, Biye; Wang, Qinglong; Cai, Yuepeng

    2017-02-08

    Light-driven synthetic micro-/nanomotors have attracted considerable attention due to their potential applications and unique performances such as remote motion control and adjustable velocity. Utilizing harmless and renewable visible light to supply energy for micro-/nanomotors in water represents a great challenge. In view of the outstanding photocatalytic performance of bismuth oxyiodide (BiOI), visible-light-driven BiOI-based Janus micromotors have been developed, which can be activated by a broad spectrum of light, including blue and green light. Such BiOI-based Janus micromotors can be propelled by photocatalytic reactions in pure water under environmentally friendly visible light without the addition of any other chemical fuels. The remote control of photocatalytic propulsion by modulating the power of visible light is characterized by velocity and mean-square displacement analysis of optical video recordings. In addition, the self-electrophoresis mechanism has been confirmed for such visible-light-driven BiOI-based Janus micromotors by demonstrating the effects of various coated layers (e.g., Al 2 O 3 , Pt, and Au) on the velocity of motors. The successful demonstration of visible-light-driven Janus micromotors holds a great promise for future biomedical and environmental applications.

  4. Facile preparation and visible light photocatalytic activity of CdIn2S4 monodispersed spherical particles

    International Nuclear Information System (INIS)

    Mu Jin; Wei Qinglian; Yao Pingping; Zhao Xueling; Kang Shizhao; Li Xiangqing

    2012-01-01

    Highlights: ► CdIn 2 S 4 monodispersed spherical particles were prepared by a soft solution method. ► Mercaptoacetic acid was used as capping agent to hinder the fast crystal growth. ► Thioacetamide as sulfur source resulted in the slow growth of particles. ► CdIn 2 S 4 spheres showed high visible light photocatalytic activity. - Abstract: We developed a facile method to prepare CdIn 2 S 4 monodispersed spherical particles by using mercaptoacetic acid as capping agent and thioacetamide as sulfur source. The results indicated that the size and morphology of CdIn 2 S 4 particles were related to reaction time. The CdIn 2 S 4 spherical particles with an average size of about 236 nm and a narrow size distribution were formed after reacting for 7 h. The photocatalytic activity of as-synthesized CdIn 2 S 4 spherical particles was evaluated by the photocatalytic degradation of methyl orange under visible light illumination. The results showed that the photocatalytic activity increased with prolonging reaction time in the preparation of CdIn 2 S 4 spherical particles. The CdIn 2 S 4 spherical particles prepared after reacting for 7 h exhibited a 98% degradation efficiency of methyl orange after 15 min visible light irradiation.

  5. Visible-light photocatalytic activity of graphene oxide-wrapped Bi{sub 2}WO{sub 6} hierarchical microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Jiali; Yu, Hongwen, E-mail: yuhw@iga.ac.cn; Li, Haiyan; Sun, Lei; Zhang, Kexin; Yang, Hongjun

    2015-07-30

    Graphical abstract: - Highlights: • GO/Bi{sub 2}WO{sub 6} are readily fabricated by facile bubbling pretreatment and freeze drying. • GO/Bi{sub 2}WO{sub 6} possess excellent photocatalytic activity under visible light irradiation. • The visible light activity of GO/Bi{sub 2}WO{sub 6} is affected by the amount of GO. • The photostablity of GO is due to the photo-generated electrons transfer to Bi{sub 2}WO{sub 6}. - Abstract: A facile approach of fabricating homogeneous graphene oxide (GO)-wrapped Bi{sub 2}WO{sub 6} microspheres (GO/Bi{sub 2}WO{sub 6}) is developed. The transmission electron microscopy (TEM) results show that a heterojunction interface between GO and Bi{sub 2}WO{sub 6}. The UV–vis diffuse reflection spectra (DRS) reveal that the as-prepared GO/Bi{sub 2}WO{sub 6} composites own more intensive absorption in the visible light range compared with pure Bi{sub 2}WO{sub 6}. These characteristic structural and optical properties endow GO/Bi{sub 2}WO{sub 6} composites with enhanced photocatalytic activity. The enhanced photocatalytic activity of the GO/Bi{sub 2}WO{sub 6} is attributed predominantly to the synergetic effect between GO and Bi{sub 2}WO{sub 6}, causing rapid generation and separation of photo-generated charge carriers.

  6. Electrodeposition synthesis of MnO{sub 2}/TiO{sub 2} nanotube arrays nanocomposites and their visible light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xuyao [School of Chemistry Science and Technology, and Institute of Physical Chemistry, Zhanjiang Normal University, Zhanjiang 524048 (China); Zhou, Xiaosong, E-mail: zxs801213@163.com [School of Chemistry Science and Technology, and Institute of Physical Chemistry, Zhanjiang Normal University, Zhanjiang 524048 (China); Li, Xiaoyu, E-mail: lixiaoyu@iga.ac.cn [Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Science, Changchun 130012 (China); Yang, Fei [The State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research of Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101 (China); Jin, Bei; Xu, Tan; Li, Guosheng; Li, Manyi [School of Chemistry Science and Technology, and Institute of Physical Chemistry, Zhanjiang Normal University, Zhanjiang 524048 (China)

    2014-11-15

    Highlights: • MnO{sub 2}/TiO{sub 2} nanotube arrays nanocomposites are prepared by electrodeposition. • MnO{sub 2}/TiO{sub 2} exhibits high visible light photocatalytic activity. • The results of XRD show the depositions are attributed to α-MnO{sub 2}. • A photocatalytic mechanism is discussed under visible light irradiation. - Abstract: MnO{sub 2}/TiO{sub 2} nanotube arrays nanocomposite photocatalysts have been synthesized through an electrodeposition method. X-ray powder diffraction analysis and X-ray photoelectron spectroscopy measurements reveal that the products of electrodeposition method are MnO{sub 2}. Scanning electron microscopy measurements suggest that the depositions are deposited on the surface or internal of the nanotube. UV–vis light absorbance spectra demonstrate the excellent adsorption properties of MnO{sub 2}/TiO{sub 2} over the whole region of visible light, which enables this novel photocatalytic material to possess remarkable activity in the photocatalytic degradation of acid Orange II under visible light radiation. Moreover, a possible photocatalytic mechanism is discussed.

  7. Ag loading induced visible light photocatalytic activity for pervoskite SrTiO3 nanofibers

    Science.gov (United States)

    Wu, Yeqiu; He, Tao

    2018-06-01

    The synthesis and photocatalytic activities of Ag-SrTiO3 nanofibers were reported in this work. The fabricated Ag-SrTiO3 nanofibers were characterized by TG-DSC, XRD, IR, XPS, SEM, TEM, DRS and ESR techniques. The XRD and IR results show that Ag-SrTiO3 nanofibers have a perovskite structure after the heat treatment at 700 °C. The XPS result shows that Ag element exists as Ag0 in the fabricated Ag-SrTiO3 nanofibers. The SEM and TEM images indicate the obtaining of nanofibers with porous structure. The photocatalytic activity of Ag-SrTiO3 nanofibers was evaluated by degrading RhB and MB under visible light irradiation. The Ag-SrTiO3 nanofibers show excellent photocatalytic activity under visible light irradiation because of the surface plasmon resonance effect of Ag0. In the photocatalysis process of RhB and MB, lots of hydroxyl radicals were generated, which plays the key role in the decomposition of organic pollutants.

  8. Visible light active TiO{sub 2} films prepared by electron beam deposition of noble metals

    Energy Technology Data Exchange (ETDEWEB)

    Hou Xinggang, E-mail: hou226@163.co [Department of Physics, Tianjin Normal University, Tianjin 300387 (China); Ma Jun [Department of Physics, Tianjin Normal University, Tianjin 300387 (China); Liu Andong [Key Laboratory of Beam Technology and Material Modification of Ministry of Education, Beijing Normal University, Beijing 100875 (China); Li Dejun; Huang Meidong; Deng Xiangyun [Department of Physics, Tianjin Normal University, Tianjin 300387 (China)

    2010-03-15

    TiO{sub 2} films prepared by sol-gel method were modified by electron beam deposition of noble metals (Pt, Pd, and Ag). Effects of noble metals on the chemical and surface characteristics of the films were studied using XPS, TEM and UV-Vis spectroscopy techniques. Photocatalytic activity of modified TiO{sub 2} films was evaluated by studying the degradation of methyl orange dye solution under visible light UV irradiation. The result of TEM reveals that most of the surface area of TiO{sub 2} is covered by tiny particles of noble metals with diameter less than 1 nm. Broad red shift of UV-Visible absorption band of modified photocatalysts was observed. The catalytic degradation of methyl orange in aqueous solutions under visible light illumination demonstrates a significant enhancement of photocatalytic activity of these films compared with the un-loaded films. The photocatalytic efficiency of modified TiO{sub 2} films by this method is affected by the concentration of impregnating solution.

  9. Synthesis and visible-light-driven photocatalytic activity of p–n heterojunction Ag{sub 2}O/NaTaO{sub 3} nanocubes

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Songbo [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Xu, Dongbo [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013 (China); Chen, Biyi; Luo, Bifu [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Yan, Xu [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013 (China); Xiao, Lisong, E-mail: xiaolisong123@sina.com [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Shi, Weidong, E-mail: swd1978@ujs.edu.cn [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2016-10-15

    Highlights: • We firstly report a facile way to prepare the visible-light-driven Ag{sub 2}O/NaTaO{sub 3}p–n heterojunction by chemical precipitation method. • The Ag{sub 2}O/NaTaO{sub 3} heterojunction shows the highest photocatalytic activity than the pure NaTaO{sub 3} and Ag{sub 2}O nanoparticles under visible light. • The enhancement of the heterojunction photocatalytic activity was discussed and the photocatalytic mechanism was tested in our paper. • In summary, we think that the Ag{sub 2}O/NaTaO{sub 3} heterojunction with the strong visible light absorption and efficient photocatalytic activity have been extended application in photocatalysis for organic dyes pollutants degradation and purification of water. - Abstract: The constructing of p–n heterojunction photocatalytic system has received much attention in environmental purification and hydrogen generation from water. In this study, an efficient visible-light-driven p–n heterojunction Ag{sub 2}O/NaTaO{sub 3} was successfully prepared by chemical precipitation method at room temperature. It showed an enhanced photocatalytic activity for the degradation of rhodamine B (RhB) under visible-light irradiation, much higher than those of either individual Ag{sub 2}O or NaTaO{sub 3}. The reactive species scavenger results indicated the superoxide anion radicals (·O{sup 2−}) played key roles in RhB decoloration. From the experimental results and the relative band gap position of these semiconductors, a detailed possible photocatalytic mechanism of the Ag{sub 2}O/NaTaO{sub 3} heterojunction under visible light was proposed. The enhancement of the photocatalytic activity was attributed to the interfacial electronic interaction between NaTaO{sub 3} and Ag{sub 2}O and the high migration efficiency of photogenerated carriers.

  10. A visible-light-driven photocatalytic activity of vanadate garnet AgCa2Ni2V3O12 nanoparticles

    International Nuclear Information System (INIS)

    Lu, Yuting; Chen, Luyang; Li, Yuze; Huang, Yanlin; Cheng, Han; Seo, Hyo Jin

    2015-01-01

    A visible-light-driven photocatalyst of nanosized vanadate garnet AgCa 2 Ni 2 V 3 O 12 was prepared by a modified Pechini method. The nanoparticles were characterized with the measurements such as X-ray powder diffraction (XRD) and structural refinements, scanning electron microscope (SEM), and UV–visible (UV–Vis) absorption spectrum. The sample has an efficient absorption in the UV–Vis light region with a narrow band-gap energy of 2.16 eV and an indirect allowed electronic transition. Besides, the photocatalysis of AgCa 2 Ni 2 V 3 O 12 nanoparticles was evaluated by photo-degradation of methylene blue under visible-light irradiation, which shows excellent photocatalytic activity. The effective photocatalytic activity was discussed on the base of the garnet crystal structure such as the activated optical centers of Ni–O octahedron and V–O tetrahedral, highly distorted Ag–O dodecahedra, and long V–V distance in the lattices

  11. Bactericidal activity under UV and visible light of cotton fabrics coated with anthraquinone-sensitized TiO2

    KAUST Repository

    Rahal, Raed

    2013-06-01

    This study describes a method derived from ISO/TC 206/SC specifications to assess the bactericidal activity against a bacterial strain, Pseudomonas fluorescens, of various photocatalytic fabrics, under UVA and filtered visible light. The experimental method allowed the accurate quantification of bacteria survival on photoactive surfaces and films under UVA and UV-free visible irradiation. Cotton fabrics coated with TiO2, anthraquinone or anthraquinone-sensitized TiO2 display a significant bactericidal efficiency. TiO2-coated fabrics are very efficient against P. fluorescens after 4 h UVA irradiation (bacteria survival below the detection limit). Under UVA-free visible light, anthraquinone-sensitized TiO2 coated fabrics induced a significant bactericidal activity after 2 h irradiation, while anthraquinone alone-coated fabrics were not as efficient and TiO2 coated fabrics were almost inefficient. These results show that although exhibiting a weak n-π* band in the 350-420 nm range, anthraquinone is a good candidate as an efficient visible light photosensitizer. A synergy effect between anthraquinone and TiO2 was demonstrated. A possible reaction mechanism, involving a synergy effect for singlet oxygen formation with anthraquinone-sensitized TiO2 is proposed to account for these results. © 2012 Elsevier B.V. All rights reserved.

  12. CdS nanoparticles/CeO{sub 2} nanorods composite with high-efficiency visible-light-driven photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    You, Daotong; Pan, Bao; Jiang, Fan; Zhou, Yangen; Su, Wenyue, E-mail: suweny@fzu.edu.cn

    2016-02-15

    Graphical abstract: Coupling CdS with CeO{sub 2} can effectively improve the light-harvesting ability of wide-band gap CeO{sub 2} NRs as the photoinduced electrons on the conduction band of CdS are transfered to the conduction band of CeO{sub 2}. - Highlights: • Coupling CdS can effectively improve the light-harvesting ability of wide-band gap CeO{sub 2}. • CdS/CeO{sub 2} composites show high photocatalytic activity under visible light irradiation. • The mechanism of photocatalytic H{sub 2} evolution over CdS/CeO{sub 2} was proposed. - Abstract: Different mole ratios of CdS nanoparticles (NPs)/CeO{sub 2} nanorods (NRs) composites with effective contacts were synthesized through a two-step hydrothermal method. The crystal phase, microstructure, optical absorption properties, electrochemical properties and photocatalytic H{sub 2} production activity of these composites were investigated. It was concluded that the photogenerated charge carriers in the CdS NPs/CeO{sub 2} NRs composite with a proper mole ratio (1:1) exhibited the longest lifetime and highest separation efficiency, which was responsible for the highest H{sub 2}-production rate of 8.4 mmol h{sup −1} g{sup −1} under visible-light irradiation (λ > 420 nm). The superior photocatalytic H{sub 2} evolution properties are attributed to the transfer of visible-excited electrons of CdS NPs to CeO{sub 2} NRs, which can effectively extend the light absorption range of wide-band gap CeO{sub 2} NRs. This work provides feasible routes to develop visible-light responsive CeO{sub 2}-based nanomaterial for efficient solar utilization.

  13. Synthesis of surface oxygen-deficient BiPO{sub 4} nanocubes with enhanced visible light induced photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Bingtao; Yin, Haoyong; Li, Tao; Gong, Jianying; Lv, Shumei; Nie, Qiulin, E-mail: yhy@hdu.edu.cn [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou (China)

    2017-05-15

    The visible light driven BiPO{sub 4} nanocubes with sufficient surface oxygen deficiency were fabricated by a hydrothermal process and subsequently ultrasonic assistant Fe reduction process. The products were characterized by XRD, DRS, XPS, SEM and TEM which showed that the BiPO{sub 4} had cuboid-like shape with a smooth surface and clear edges and the oxygen vacancies were successfully introduced on the surface of the BiPO{sub 4} nanocubes. The as prepared oxygen-deficient BiPO{sub 4} nanocubes showed greatly enhanced visible light induced photocatalytic activity in degradation of Rhodamine B. The enhanced photocatalytic performance and expanded visible light response of BiPO{sub 4} may be due to the introduction of surface oxygen vacancies which can generate the oxygen vacancies mid-gap states lower to the conduction band of BiPO{sub 4}. (author)

  14. Visible light driven multifunctional photocatalysis in TeO2-based semiconductor glass ceramics

    Science.gov (United States)

    Kushwaha, Himmat Singh; Thomas, Paramanandam; Vaish, Rahul

    2017-01-01

    Photocatalytic xCaCu3Ti4O12-(100-x)TeO2 (x=0.25 mol% to 3 mol%), glass nanocomposites were fabricated and investigated for wastewater treatment, self-cleaning surfaces, and photocatalytic hydrogen evolution. Visible light active crystals of Cu-doped TiO2 and TiTe3O8 were grown by optimized crystallization of as-quenched glasses. The visible light photocatalytic activity of glass samples was investigated for estrogenic pharmaceutical pollutants, and the degradation rate was obtained as 168.56 min-1 m-2. A higher photocatalytic H2 production rate was observed (135 μmole h-1 g-1) for the crystallized CaCu3Ti4O12-TeO2 (x=3. 0) glass plate under visible light. The self-cleaning performance was observed using contact angle measurements for water under dark and light conditions. These visible light active glass ceramics are a cost effective sustainable solution for water treatment and self-cleaning applications.

  15. Preparation and characterization of visible light-driven AgCl/PPy photocatalyst

    International Nuclear Information System (INIS)

    Gu Shuna; Li Bing; Zhao Chongjun; Xu Yunlong; Qian Xiuzhen; Chen, Guorong

    2011-01-01

    Graphical abstract: AgCl/PPy composite exhibits improved photocatalytic performance and high stability under visible light. Display Omitted Highlights: → AgCl/(PPy) nanocomposites as visible light driven photocatalyst. → Composites exhibited high visible light-driven photocatalytic activity and stability. → Photocatalytic process on MO followed photoreduction mechanisms. → Used photocatalyst can be regenerated in aqueous FeCl 3 solution. - Abstract: Visible light photoactive AgCl/polypyrrole (PPy) composites were prepared via the reaction between excessive Ag + and Cl - ions in the presence of PPy . The AgCl/PPy composites were systematically characterized using Fourier transform infrared (FTIR) spectroscopy, Raman spectra, X-ray diffraction (XRD), Scanning electron microscope (SEM), Transmission electron microscope (TEM) and Thermal gravity analysis (TGA). It was found that face-centered cubic AgCl nanocrystallite and 0.2 wt% PPy component existed in the composite and spherical AgCl/PPy nanoparticles were in the range of 200-600 nm. The AgCl/PPy composites showed higher visible light-driven photocatalytic activity and stability than that of AgCl. A photoreduction mechanism was postulated for AgCl/PPy photocatalyst on dye methyl orange (MO). The used AgCl/PPy photocatalyst was facilely regenerated by an oxidation process in aqueous FeCl 3 solution.

  16. Preparation and characterization of visible light-driven AgCl/PPy photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Gu Shuna; Li Bing [Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Zhao Chongjun, E-mail: chongjunzhao@ecust.edu.cn [Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Xu Yunlong; Qian Xiuzhen; Chen, Guorong [Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2011-05-05

    Graphical abstract: AgCl/PPy composite exhibits improved photocatalytic performance and high stability under visible light. Display Omitted Highlights: > AgCl/(PPy) nanocomposites as visible light driven photocatalyst. > Composites exhibited high visible light-driven photocatalytic activity and stability. > Photocatalytic process on MO followed photoreduction mechanisms. > Used photocatalyst can be regenerated in aqueous FeCl{sub 3} solution. - Abstract: Visible light photoactive AgCl/polypyrrole (PPy) composites were prepared via the reaction between excessive Ag{sup +} and Cl{sup -} ions in the presence of PPy{sub .} The AgCl/PPy composites were systematically characterized using Fourier transform infrared (FTIR) spectroscopy, Raman spectra, X-ray diffraction (XRD), Scanning electron microscope (SEM), Transmission electron microscope (TEM) and Thermal gravity analysis (TGA). It was found that face-centered cubic AgCl nanocrystallite and 0.2 wt% PPy component existed in the composite and spherical AgCl/PPy nanoparticles were in the range of 200-600 nm. The AgCl/PPy composites showed higher visible light-driven photocatalytic activity and stability than that of AgCl. A photoreduction mechanism was postulated for AgCl/PPy photocatalyst on dye methyl orange (MO). The used AgCl/PPy photocatalyst was facilely regenerated by an oxidation process in aqueous FeCl{sub 3} solution.

  17. Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination

    International Nuclear Information System (INIS)

    Saravanan, R.; Karthikeyan, S.; Gupta, V.K.; Sekaran, G.; Narayanan, V.; Stephen, A.

    2013-01-01

    The photocatalytic degradation of organic dyes such as methylene blue and methyl orange in the presence of various percentages of composite catalyst under visible light irradiation was carried out. The catalyst ZnO nanorods and ZnO/CuO nanocomposites of different weight ratios were prepared by new thermal decomposition method, which is simple and cost effective. The prepared catalysts were characterized by different techniques such as X-ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, Fourier transform infrared spectroscopy and UV–visible absorption spectroscopy. Further, the most photocatalytically active composite material was used for degradation of real textile waste water under visible light illumination. The irradiated samples were analysed by total organic carbon and chemical oxygen demand. The efficiency of the catalyst and their photocatalytic mechanism has been discussed in detail. Highlights: ► Visible light active photocatalyst ► Degradation of methylene blue and methyl orange ► Preparation of composite materials is a simple, fast and cost effective method. ► Nano composite materials ► Degradation of textile waste water

  18. UV Blocking Glass: Low Cost Filters for Visible Light Photocatalytic Assessment

    Directory of Open Access Journals (Sweden)

    Charles W. Dunnill

    2014-01-01

    Full Text Available A number of commercially available art protection products have been compared and assessed for their suitability as UV blocking filters in the application of “visible light” photocatalytic research. Many groups claiming visible light photocatalytic success employ filters to block out stray UV radiation in order to justify that their photocatalysts are indeed visible light photocatalysts and not UV light photocatalysts. These filters come in varying degrees of ability and price and many authors fail to correctly characterise their filters in individual papers. The use of effective filters to prevent both false positive and false negative results is important to maintain scientific rigor and create accurate understanding of the subject. The optimum UV filter would have the highest UV blocking properties (<390 nm and simultaneously the highest visible light transmission (390–750 nm. Single and double layers of each of the glass products were assessed as well as laminate products. The conclusions show an inexpensive and highly effective setup for the conduction of visible light photochemistry that should be incorporated as a standard part in any researcher’s work where the claim of visible light activity is made.

  19. Liquid phase deposition of WO3/TiO2 heterojunction films with high photoelectrocatalytic activity under visible light irradiation

    International Nuclear Information System (INIS)

    Zhang, Man; Yang, Changzhu; Pu, Wenhong; Tan, Yuanbin; Yang, Kun; Zhang, Jingdong

    2014-01-01

    Highlights: • Liquid phase deposition is developed for preparing WO 3 /TiO 2 heterojunction films. • TiO 2 film provides an excellent platform for WO 3 deposition. • WO 3 expands the absorption band edge of TiO 2 film to visible light region. • WO 3 /TiO 2 heterojunction film shows high photoelectrocatalytic activity. - ABSTRACT: The heterojunction films of WO 3 /TiO 2 were prepared by liquid phase deposition (LPD) method via two-step processes. The scanning electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopic analysis indicated that flower-like WO 3 film was successfully deposited on TiO 2 film with the LPD processes. The TiO 2 film provided an excellent platform for WO 3 deposition while WO 3 obviously expanded the absorption of TiO 2 film to visible light. As the result, the heterojunction film of WO 3 /TiO 2 exhibited higher photocurrent response to visible light illumination than pure TiO 2 or WO 3 film. The photoelectrocatalytic (PEC) activity of WO 3 /TiO 2 film was evaluated by degrading Rhodamin B (RhB) and 4-chlorophenol (4-CP) under visible light irradiation. The results showed that the LPD WO 3 /TiO 2 film possessed high PEC activity for efficient removal of various refractory organic pollutants

  20. Solvothermal synthesis of carbon coated N-doped TiO{sub 2} nanostructures with enhanced visible light catalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Yan Xuemin, E-mail: yanzhangmm2002@163.com [College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023 (China); Kang Jialing; Gao Lin; Xiong Lin; Mei Ping [College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023 (China)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Chitosan was used as carbon and nitrogen resource to modify TiO{sub 2} nanostructure. Black-Right-Pointing-Pointer Nanocomposites with mesostructure were obtained by one-step solvothermal method. Black-Right-Pointing-Pointer Carbon species were modified on the surface of TiO{sub 2}. Black-Right-Pointing-Pointer Nitrogen was doped into the anatase titania lattice. Black-Right-Pointing-Pointer CTS-TiO{sub 2} nanocomposites show superior visible light photocatalytic activity. - Abstract: Visible light-active carbon coated N-doped TiO{sub 2} nanostructures(CTS-TiO{sub 2}) were prepared by a facile one-step solvothermal method with chitosan as carbon and nitrogen resource at 180 Degree-Sign C. The as-prepared samples were characterized by transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), N{sub 2} adsorption-desorption analysis, X-ray photoelectron spectroscopy (XPS), and ultraviolet-visible (UV-vis) diffuse reflectance spectroscopy. The CTS-TiO{sub 2} nanocomposites possess anatase phase of nanocrystalline structure with average particle size of about 5-7 nm. A wormhole mesostructure can be observed in the CTS-TiO{sub 2} nanocomposites due to the constituent agglomerated of nanoparticles. It has been evidenced that the nitrogen was doped into the anatase titania lattice and the carbon species were modified on the surface of TiO{sub 2}. The photocatalytic activities of the as-prepared photocatalysts were measured by the degradation of methylene blue (MB) under visible light irradiation at {lambda} {>=} 400 nm. The results show that CTS-TiO{sub 2} nanostructures display a higher visible light photocatalytic activity than pure TiO{sub 2}, commercial P25 and C-coated TiO{sub 2} (C-TiO{sub 2}) photocatalysts. The higher photocatalytic activity could be attributed to the band-gap narrowed by N-doping and the accelerated separation of the photo-generated electrons

  1. AgBr/MgBi2O6 heterostructured composites with highly efficient visible-light-driven photocatalytic activity

    Science.gov (United States)

    Zhong, Liansheng; Hu, Chaohao; Zhuang, Jing; Zhong, Yan; Wang, Dianhui; Zhou, Huaiying

    2018-06-01

    AgBr/MgBi2O6 heterostructured photocatalysts were synthesized by the deposition-precipitation method. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL), and UV-Visible diffuse reflectance spectroscopy (UV-Vis DRS) were employed to examine the phase structure, morphology and optical properties of the as-prepared samples. The photocatalytic activity was investigated by decomposing methylene blue (MB) solution under visible light irradiation (λ > 420 nm). AgBr/MgBi2O6 composites exhibited significantly enhanced visible-light-driven photocatalytic properties in comparison with pure MgBi2O6 and AgBr. When the molar ratio of AgBr to MgBi2O6 was 3:1, the composite catalyst showed the optimal photocatalytic activity and excellent stability. The enhanced photocatalytic activity of AgBr/MgBi2O6 composites was attributed to the formation of p-n heterojunction between AgBr and MgBi2O6, thereby resulting in the effective separation and transfer of photogenerated electrons-hole pairs.

  2. Design for The Indoor Visible Light Communication Application System Based on LED Visible Light

    Directory of Open Access Journals (Sweden)

    Lian Wenyu

    2017-01-01

    Full Text Available This paper designs an indoor visible light communication application system based on LED. The system can modulate the original signal one or more times, move to a specific frequency band, transmit on the power line, in the LED terminal use this module to decode, restore the Ethernet signals. This design is applicable to the simplicity of the LED visible light communication applications, which provide the premise and guarantee for the construction of smart home network.

  3. Effective visible light-active nitrogen and samarium co-doped BiVO4 for the degradation of organic pollutants

    International Nuclear Information System (INIS)

    Wang, Min; Niu, Chao; Liu, Jun; Wang, Qianwu; Yang, Changxiu; Zheng, Haoyan

    2015-01-01

    Nitrogen and samarium co-doped BiVO 4 (N–xSm–BiVO 4 ) nanoparticles were synthesized using a sol–gel method with a corn stem template. The physicochemical properties of the resultant N–xSm–BiVO 4 particles were characterized using various methods: XPS, XRD, SEM, BET, and UV–Vis DRS analyses. The visible-light photocatalytic activity was successfully demonstrated by degrading a model dye, namely, methyl orange. The dopant content was optimized, and the nitrogen and samarium co-doped BiVO 4 extended the light absorption spectrum toward the visible region, significantly enhancing the photodegradation of the model dye. The Sm and N co-doped BiVO 4 exhibited the highest photocatalytic activity compared to materials with a single dopant or no dopant. The significantly enhanced photocatalytic activity of the N–Sm co-doped BiVO 4 under visible-light irradiation can be attributed to the synergistic effects of the nitrogen and samarium. - Highlights: • The N–Sm codoped BiVO 4 were synthesized using a sol–gel method with a corn stem template. • The N and Sm codoped BiVO 4 has excellent photocatalytic activity of methyl orange degradation. • The maximum activity was observed when the molar ratio of Sm/Bi was 1.0. • The high photocatalytic activity was caused by the synergistic effects between N doping and Sm doping

  4. Visible Light Responsive Catalyst for Air & Water Purification

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective for this project was to investigate and develop viable approaches to render the normally UV-activated titanium dioxide (TiO2) catalyst visible light...

  5. Enhanced visible-light activities for PEC water reduction of CuO nanoplates by coupling with anatase TiO2 and mechanism

    International Nuclear Information System (INIS)

    Li, Zhijun; Qu, Yang; He, Guangwen; Humayun, Muhammad; Chen, Shuangying; Jing, Liqiang

    2015-01-01

    Graphical abstract: - Highlights: • CuO nanoplates were successfully prepared as photocathodes for PEC water reduction. • Visible-light activity for PEC water reduction is improved after coupling with TiO 2 . • Improved PEC performance is attributed to the enhanced visible-excited charge separation. • Enhanced charge separation results from high-energy electron transfer from CuO to TiO 2 . - Abstract: CuO nanoplates were prepared by a feasible hydrothermal method, and then utilized as photocathodes for photoelectrochemical (PEC) water reduction in a neutral medium under visible-light irradiation. It is clearly demonstrated that the visible-light activities of the resulting nanoplates for PEC water reduction could be greatly improved after coupling with a proper amount of nanocrystalline anatase TiO 2 . This is attributed to the enhanced charge separation in the fabricated TiO 2 /CuO nanoplate composites mainly based on the atmosphere-controlled steady-state surface photovoltage spectra. Moreover, it is suggested that the enhanced charge separation resulted from the transfer of visible-light-excited high-energy electrons from CuO to TiO 2 as confirmed from the single-wavelength PEC behavior

  6. White LED visible light communication technology research

    Science.gov (United States)

    Yang, Chao

    2017-03-01

    Visible light communication is a new type of wireless optical communication technology. White LED to the success of development, the LED lighting technology is facing a new revolution. Because the LED has high sensitivity, modulation, the advantages of good performance, large transmission power, can make it in light transmission light signal at the same time. Use white LED light-emitting characteristics, on the modulation signals to the visible light transmission, can constitute a LED visible light communication system. We built a small visible optical communication system. The system composition and structure has certain value in the field of practical application, and we also research the key technology of transmitters and receivers, the key problem has been resolved. By studying on the optical and LED the characteristics of a high speed modulation driving circuit and a high sensitive receiving circuit was designed. And information transmission through the single chip microcomputer test, a preliminary verification has realized the data transmission function.

  7. Improved visible-light photocatalytic activity of TiO2 co-doped with copper and iodine

    Science.gov (United States)

    Dorraj, Masoumeh; Goh, Boon Tong; Sairi, Nor Asrina; Woi, Pei Meng; Basirun, Wan Jefrey

    2018-05-01

    Cu-I-co-doped TiO2 photocatalysts active to visible light absorption were prepared by hydrothermal method and calcined at various temperatures (350 °C, 450 °C, and 550 °C). The co-doped powders at 350 °C displayed the highest experimental Brunauer-Emmett-Teller surface area and lowest photoluminescence intensity, which demonstrated that a decrease in electron-hole recombination process. The synthesis of co-doped TiO2 was performed at this optimized temperature. In the co-doped sample, the Cu2+ doped TiO2 lattice created a major "red-shift" in the absorption edge due to the presence of the 3d Cu states, whereas the amount of red-shift from the I5+ doping in the TiO2 lattice was minor. Interestingly, the presence of Cu2+ species also boosted the reduction of I5+ ions to the lower multi-valance state I- in the TiO2 lattice by trapping the photogenerated electrons, which resulted in effective separation of the photogenerated charges. The Cu-I-co-doped TiO2 was able to degrade methyl orange dye under visible-light irradiation with improved photocatalytic activity compared with the single metal-doped TiO2 and pure TiO2 because of the strong visible light absorption and effective separation of photogenerated charges caused by the synergistic effects of Cu and I co-dopants.

  8. Low temperature synthesis of polyaniline-crystalline TiO2-halloysite composite nanotubes with enhanced visible light photocatalytic activity.

    Science.gov (United States)

    Li, Cuiping; Wang, Jie; Guo, Hong; Ding, Shujiang

    2015-11-15

    A series of one-dimensional polyaniline-crystalline TiO2-halloysite composite nanotubes with different mass ratio of polyaniline to TiO2 are facilely prepared by employing the low-temperature synthesis of crystalline TiO2 on halloysite nanotubes. The halloysite nanotubes can adsorb TiO2/polyaniline precursors and induce TiO2 nanocrystals/polyaniline to grow on the support in situ simultaneously. By simply adjusting the acidity of reaction system, PANI-crystalline TiO2-HA composite nanotubes composed of anatase, a mixed phase TiO2 and different PANI redox state are obtained. The XRD and UV-vis results show that the surface polyaniline sensitization has no effect on the crystalline structure of halloysite and TiO2 and the light response of TiO2 is extended to visible-light regions. Photocatalysis test results reveal the photocatalytic activity will be affected by the pH value and the volume ratio of ANI to TTIP. The highest photocatalytic activity is achieved with the composite photocatalysts prepared at pH 0.5 and 1% volume ratio of ANI and TTIP owing to the sensitizing effect of polyaniline and the charge transfer from the photoexcited PANI sensitizer to TiO2. Moreover, the PANI-TiO2-HA composite nanotubes synthesized by one-step at pH 0.5 with 1% volume ratio of ANI to TTIP exhibit higher visible light photocatalytic activity than those synthesized by the two-step. Heterogeneous PANI-TiO2-HA composite nanotubes prepared at pH 0.5 exhibit a higher degradation activity than that prepared at pH 1.5. The redoped experiment proves that the PANI redox state plays the main contribution to the enhanced visible light catalytic degradation efficiency of PANI-TiO2-HA prepared at pH 0.5. Furthermore, the heterogeneous PANI-crystalline TiO2-HA nanotubes have good photocatalytic stability and can be reused four times with only gradual loss of activity under visible light irradiation. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Mechanochemically synthesized sub-5 nm sized CuS quantum dots with high visible-light-driven photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shun; Ge, Zhen-Hua [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Zhang, Bo-Ping, E-mail: bpzhang@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Yao, Yao [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Wang, Huan-Chun [School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 (China); Yang, Jing; Li, Yan; Gao, Chao [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Lin, Yuan-Hua [School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 (China)

    2016-10-30

    Highlights: • CuS quantum dots (<5 nm) were synthesized by mechanochemical ball milling. • Defects was observed in the CuS quantum dots. • They show good visible light photocatalytic activity as Fenton-like reagents. - Abstract: We report a simple mechanochemical ball milling method for synthesizing monodisperse CuS quantum dots (QDs) with sizes as small as sub-5 nm. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and UV–vis spectroscopy. The CuS QDs exhibited excellent visible-light-driven photocatalytic activity and stability for degradation of Rodanmine B aqueous solution as Fenton-like reagents. Our study opens the opportunity to low-cost and facile synthesis of QDs in large scale for future industrial applications.

  10. Synthesis and visible-light-driven photocatalytic activity of p-n heterojunction Ag2O/NaTaO3 nanocubes

    Science.gov (United States)

    Yang, Songbo; Xu, Dongbo; Chen, Biyi; Luo, Bifu; Yan, Xu; Xiao, Lisong; Shi, Weidong

    2016-10-01

    The constructing of p-n heterojunction photocatalytic system has received much attention in environmental purification and hydrogen generation from water. In this study, an efficient visible-light-driven p-n heterojunction Ag2O/NaTaO3 was successfully prepared by chemical precipitation method at room temperature. It showed an enhanced photocatalytic activity for the degradation of rhodamine B (RhB) under visible-light irradiation, much higher than those of either individual Ag2O or NaTaO3. The reactive species scavenger results indicated the superoxide anion radicals (rad O2-) played key roles in RhB decoloration. From the experimental results and the relative band gap position of these semiconductors, a detailed possible photocatalytic mechanism of the Ag2O/NaTaO3 heterojunction under visible light was proposed. The enhancement of the photocatalytic activity was attributed to the interfacial electronic interaction between NaTaO3 and Ag2O and the high migration efficiency of photogenerated carriers.

  11. Porous TiO_2 nanofibers decorated CdS nanoparticles by SILAR method for enhanced visible-light-driven photocatalytic activity

    International Nuclear Information System (INIS)

    Tian, Fengyu; Hou, Dongfang; Hu, Fuchao; Xie, Kui; Qiao, Xiuqing; Li, Dongsheng

    2017-01-01

    Graphical abstract: A heterojunction photocatalyst with CdS Nanoparticles self-assembled via SILAR Method at surfaces of electrospun TiO2 nanofibers shows enhanced visible-light photocatalytic activities. - Highlights: • Combined electrospinning and successive ionic layer adsorption and reaction process. • Pouous TiO_2 nanofibers decorated CdS nanoparticles. • Synergetic effect of photosensitization and heterojunction. - Abstract: 1D porous CdS nanoparticles/TiO_2 nanofibers heterostructure has been fabricated via simple electrospinning and a successive ionic layer adsorption and reaction (SILAR) process. The morphology, composition, and optical properties of the resulting CdS/TiO_2 heterostructures can be rationally tailored through changing the SILAR cycles. The photocatalytic hydrogen evolution and decomposition of rhodamine B (RhB) of the as-synthesized heterostructured photocatalysts were investigated under visible light irradiation. Compared to TiO_2 nanofibers,the as-obtained CdS/TiO_2 heterostructures exhibit enhanced photocatalytic activity for hydrogen production and decomposition of RhB under visible-light irradiation. The heterojunction system performs best with H_2 generation rates of 678.61 μmol h"−"1 g"−"1 under visible light irradiation which benefits from the two effects: (a) the 1D porous nanofibrous morphology contributes to not only more active sites but also more efficient transfer of the photogenerated charges (b) the synergetic effect of heterojunction and photosensitization reducing the recombination of photogenerated electrons and holes.

  12. Photocatalytic activity enhancement by electron irradiation of fullerene derivative-TiO2 nanoparticles under visible light illumination

    International Nuclear Information System (INIS)

    Cho, Sung Oh; Yoo, Seung Hwa; Lee, Dong Hoon

    2011-01-01

    Photocatalytic decomposition of aqueous organic pollutant have attracted many interest due to its simple, low cost, and clean procedure. By only using the sun light and photocatalyst, especially TiO 2 nanoparticles based systems have been extensively studied and commercialized for real life application. However, TiO 2 has a critical disadvantage, which can only absorb the ultra-violet region of the solar spectrum, due to the large band-gap of 3.2 eV. Extensive studies have been preformed to expand the light absorption of TiO 2 to the visible light region of the solar spectrum, by doping metal or non-metal elements on TiO 2 or attaching small band-gap semiconductors on TiO 2 . In this study, a fullerene derivative 1-(3- carboxypropyl)-1-phenyl[6,6]C 61 (PCBA) was attached on the surface of TiO 2 nanoparticles, and its photocatalytic activity was evaluated by decomposition of methyl orange under visible light. Furthermore, enhancement in the photocatalytic activity of these nanoparticles by electron irradiation is discussed

  13. Band structure and visible light photocatalytic activity of multi-type nitrogen doped TiO(2) nanoparticles prepared by thermal decomposition.

    Science.gov (United States)

    Dong, Fan; Zhao, Weirong; Wu, Zhongbiao; Guo, Sen

    2009-03-15

    Multi-type nitrogen doped TiO(2) nanoparticles were prepared by thermal decomposition of the mixture of titanium hydroxide and urea at 400 degrees C for 2h. The as-prepared photocatalysts were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra (UV-vis DRS), and photoluminescence (PL). The results showed that the as-prepared samples exhibited strong visible light absorption due to multi-type nitrogen doped in the form of substitutional (N-Ti-O and Ti-O-N) and interstitial (pi* character NO) states, which were 0.14 and 0.73 eV above the top of the valence band, respectively. A physical model of band structure was established to clarify the visible light photocatalytic process over the as-prepared samples. The photocatalytic activity was evaluated for the photodegradation of gaseous toluene under visible light irradiation. The activity of the sample prepared from wet titanium hydroxide and urea (TiO(2)-Nw, apparent reaction rate constant k = 0.045 min(-1)) was much higher than other samples including P25 (k = 0.0013 min(-1)). The high activity can be attributed to the results of the synergetic effects of strong visible light absorption, good crystallization, large surface hydroxyl groups, and enhanced separation of photoinduced carriers.

  14. Synergistic Effects of Sm and C Co-Doped Mixed Phase Crystalline TiO2 for Visible Light Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Fuchang Peng

    2017-02-01

    Full Text Available Mixed phase TiO2 nanoparticles with element doping by Sm and C were prepared via a facile sol-gel procedure. The UV-Vis light-diffuse reflectance spectroscopy analysis showed that the absorption region of co-doped TiO2 was shifted to the visible-light region, which was attributed to incorporation of samarium and carbon into the TiO2 lattice during high-temperature reaction. Samarium effectively decreased the anatase-rutile phase transformation. The grain size can be controlled by Sm doping to achieve a large specific surface area useful for the enhancement of photocatalytic activity. The photocatalytic activities under visible light irradiation were evaluated by photocatalytic degradation of methylene blue (MB. The degradation rate of MB over the Sm-C co-doped TiO2 sample was the best. Additionally, first-order apparent rate constants increased by about 4.3 times compared to that of commercial Degusssa P25 under the same experimental conditions. Using different types of scavengers, the results indicated that the electrons, holes, and •OH radicals are the main active species for the MB degradation. The high visible-light photocatalytic activity was attributed to low recombination of the photo-generated electrons and holes which originated from the synergistic effect of the co-doped ions and the heterostructure.

  15. AgI/Ag3PO4 hybrids with highly efficient visible-light driven photocatalytic activity

    International Nuclear Information System (INIS)

    Katsumata, Hideyuki; Hayashi, Takahiro; Taniguchi, Masanao; Suzuki, Tohru; Kaneco, Satoshi

    2015-01-01

    Highlights: • AgI/Ag 3 PO 4 hybrid was prepared via an in situ anion-exchange method. • AgI/Ag 3 PO 4 displays the excellent photocatalytic activity under visible light. • AgI/Ag 3 PO 4 readily transforms to be Ag@AgI/Ag 3 PO 4 system. • h + and O 2 ·− play the major role in the AO 7 decolorization over AgI/Ag 3 PO 4 . • The activity enhancement is ascribed to a Z-scheme system composed of Ag 3 PO 4 , Ag and AgI. - Abstract: Highly efficient visible-light-driven AgI/Ag 3 PO 4 hybrid photocatalysts with different mole ratios of AgI were prepared via an in situ anion-exchange method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–vis diffuse reflectance spectroscopy (DRS) and photoluminescence (PL) technique. Under visible light irradiation (>420 nm), the AgI/Ag 3 PO 4 photocatalysts displayed the higher photocatalytic activity than pure Ag 3 PO 4 and AgI for the decolorization of acid orange 7 (AO 7). Among the hybrid photocatalysts, AgI/Ag 3 PO 4 with 80% of AgI exhibited the highest photocatalytic activity for the decolorization of AO 7. X-ray photoelectron spectroscopy (XPS) results revealed that AgI/Ag 3 PO 4 readily transformed to be Ag@AgI/Ag 3 PO 4 system while the photocatalytic activity of AgI/Ag 3 PO 4 remained after 5 recycling runs. In addition, the quenching effects of different scavengers displayed that the reactive h + and O 2 ·− play the major role in the AO 7 decolorization. The photocatalytic activity enhancement of AgI/Ag 3 PO 4 hybrids can be ascribed to the efficient separation of electron–hole pairs through a Z-scheme system composed of Ag 3 PO 4 , Ag and AgI, in which Ag nanoparticles act as the charge separation center

  16. Synthesis of hierarchically meso-macroporous TiO2/CdS heterojunction photocatalysts with excellent visible-light photocatalytic activity.

    Science.gov (United States)

    Zhao, Haixin; Cui, Shu; Yang, Lan; Li, Guodong; Li, Nan; Li, Xiaotian

    2018-02-15

    Photocatalysts with a hierarchically porous structure have attracted considerable attention owing to their wide pore size distribution and high surface area, which enhance the efficiency of transporting species to active sites. In this study, hierarchically meso-macroporous TiO 2 photocatalysts decorated with highly dispersed CdS nanoparticles were synthesized via hydrolysis, followed by a hydrothermal treatment. The textural mesopores and interconnected pore framework provided more accessible active sites and efficient mass transport for the photocatalytic process. The light collection efficiency was enhanced because of multiple scattering of incident light in the macropores. Moreover, the formation of a heterojunction between the CdS and TiO 2 nanoparticles extended the photoresponse of TiO 2 to the visible-light range and enhanced the charge separation efficiency. Therefore, the hierarchically meso-macroporous TiO 2 /CdS photocatalysts exhibited excellent photocatalytic activity for the degradation of rhodaming B under visible-light irradiation. Trapping experiments demonstrated that superoxide radicals (O 2 - ) and hydroxyl radicals (OH) were the main active species in photocatalysis. A reasonable photocatalytic mechanism of TiO 2 /CdS heterojunction photocatalysts was also presented. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Visible-light photocatalytic activity of the metastable Bi20TiO32 synthesized by a high-temperature quenching method

    International Nuclear Information System (INIS)

    Cheng Hefeng; Huang Baibiao; Dai Ying; Qin Xiaoyan; Zhang Xiaoyang; Wang Zeyan; Jiang Minhua

    2009-01-01

    Metastable Bi 20 TiO 32 samples were synthesized by a high-temperature quenching method using α-Bi 2 O 3 and anatase TiO 2 as raw materials. The photocatalytic activity of the as-prepared samples was measured with the photodegradation of methyl orange at room temperature under visible light irradiation. The Bi 20 TiO 32 samples exhibited good absorption in the visible light region with a band gap of about 2.38 eV and the band structure of Bi 20 TiO 32 was studied. Photodegradation against methyl orange was much better than α-Bi 2 O 3 prepared by the same way. The photocatalytic activity of Bi 20 TiO 32 samples is supposed to be associated with the hybridized Bi 6s and O 2p orbitals. In addition, the dispersive characteristic of Bi 6s orbital in the hybridized valence band facilitates the mobility of the photogenerated carriers and hampers their recombination. - Graphical abstract: Metastable Bi 20 TiO 32 samples were successfully synthesized by a quenching process. Photodegradation against methyl orange showed high visible-light activity and it was supposed to be associated with its corresponding band structure.

  18. An efficient visible and UV-light-activated B–N-codoped TiO2 photocatalytic film for solar depollution prepared via a green method

    International Nuclear Information System (INIS)

    Xu Qingchi; Zhang Yan; He Ziming; Loo, Say Chye Joachim; Tan, Timothy Thatt Yang

    2012-01-01

    This work reports an efficient visible and UV-light-activated boron and nitrogen codoped TiO 2 porous film prepared via a “green” and direct coating approach. Such photocatalyst is highly promising for solar depollution application due to its efficient photocatalytic activities in both visible and UV spectrum. The preparation method avoids the use of organic solvents, which are usually more expensive and hazardous compared with water. Using stearic acid as the model organic pollutant, the visible-light photocatalytic activity of optimized porous B–N-codoped TiO 2 film (p-3B–N–TiO 2 ) is 3 times higher than that of porous N-doped TiO 2 (p-N–TiO 2 ) film, while its UV photocatalytic activity is almost double that of p-N–TiO 2 film and comparable to that of porous TiO 2 . The enhancement in photocatalytic activity is attributed to higher surface area due to the porous structure, improved visible-light absorption attributed to interstitially substituted boron atoms, and coexistence of boron and nitrogen dopants which may reduce Ti 3+ recombination centers.

  19. The Simplest Way to Iodine-Doped Anatase for Photocatalysts Activated by Visible Light

    Directory of Open Access Journals (Sweden)

    Václav Štengl

    2011-01-01

    Full Text Available Iodine-doped TiO2 was prepared by thermal hydrolysis of aqueous solutions of the titanium peroxo-complex, which includes no organic solvents or organometallic compounds. The synthesized samples were characterized by X-ray diffraction (XRD, Raman spectroscopy (RS, infrared spectroscopy (IR, specific surface area (BET, and porosity determination (BJH. The morphology and particle size was determined by high-resolution transmission electron microscopy (HRTEM and selected area electron diffraction (SAED. All prepared samples have a red-shifted band-gap transition, well crystalline anatase structure, and porous particles with a 100–200 m2 g−1 specific surface area. The photocatalytic activity of iodine-doped titania samples was determined by decomposition of Orange II dye during irradiation at 365 nm and 400 nm. Iodine doping promotes the titania photocatalytic activity very efficiently under visible light irradiation. The titania sample with 0.32 wt.% I has the highest catalytic activity during the photocatalyzed degradation of Orange II dye in an aqueous suspension in the UV and visible regions.

  20. Pouous TiO2 nanofibers decorated CdS nanoparticles by SILAR method for enhanced visible-light-driven photocatalytic activity

    Science.gov (United States)

    Tian, Fengyu; Hou, Dongfang; Hu, Fuchao; Xie, Kui; Qiao, Xiuqing; Li, Dongsheng

    2017-01-01

    1D porous CdS nanoparticles/TiO2 nanofibers heterostructure has been fabricated via simple electrospinning and a successive ionic layer adsorption and reaction (SILAR) process. The morphology, composition, and optical properties of the resulting CdS/TiO2 heterostructures can be rationally tailored through changing the SILAR cycles. The photocatalytic hydrogen evolution and decomposition of rhodamine B (RhB) of the as-synthesized heterostructured photocatalysts were investigated under visible light irradiation. Compared to TiO2 nanofibers,the as-obtained CdS/TiO2 heterostructures exhibit enhanced photocatalytic activity for hydrogen production and decomposition of RhB under visible-light irradiation. The heterojunction system performs best with H2 generation rates of 678.61 μmol h-1 g-1 under visible light irradiation which benefits from the two effects: (a) the 1D porous nanofibrous morphology contributes to not only more active sites but also more efficient transfer of the photogenerated charges (b) the synergetic effect of heterojunction and photosensitization reducing the recombination of photogenerated electrons and holes.

  1. Composites of Laminar Nanostructured ZnO and VOx-Nanotubes Hybrid as Visible Light Active Photocatalysts

    Directory of Open Access Journals (Sweden)

    Eglantina Benavente

    2018-02-01

    Full Text Available A series of hybrid heterostructured nanocomposites of ZnO with V2O5 nanotubes (VOx-NTs in different mixing ratios were synthesized, with the aim of reducing the recombination of photoinduced charge carriers and to optimize the absorption of visible light. The study was focused on the use of heterostructured semiconductors that can extend light absorption to the visible range and enhance the photocatalytic performance of ZnO in the degradation of methylene blue as a model pollutant. The addition of VOx-NTs in the synthesis mixture led to a remarkable performance in the degradation of the model dye, with hybrid ZnO (stearic acid/VOx-NTs at a ratio of 1:0.06 possessing the highest photocatalytic activity, about seven times faster than pristine zinc oxide. Diffuse reflectance spectroscopic measurements and experiments in the presence of different trapping elements allowed us to draw conclusions regarding the band positions and photocatalytic degradation mechanism. The photocatalytic activity measured in three subsequent cycles showed good reusability as no significant loss in efficiency of dye degradation was observed.

  2. Preparation of visible-light-responsive TiO{sub 2} coatings using molten KNO{sub 3} treatment and their photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Liang [Tianjin Key Lab of Integrated Design and On-line Monitoring for Light Industry & Food Machinery and Equipment, Tianjin (China); College of Mechanical Engineering, Tianjin University of Science & Technology, No. 1038 Dagu Nanlu, Hexi District, Tianjin 300222 (China); College of Mechanical Engineering & Graduate School, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Guan, Sujun; Takaya, Shunsuke [College of Mechanical Engineering & Graduate School, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Yoshida, Hiroyuki [Chiba Industrial Technology Research Institute, 6-13-1, Tendai, Inage-ku, Chiba 263-0016 (Japan); Tochihara, Misako [JFE Techno-Research Corporation, No. 1 Kawasaki-cho, Chuo-ku, Chiba 260-0835 (Japan); Lu, Yun, E-mail: luyun@faculty.chiba-u.jp [College of Mechanical Engineering & Graduate School, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan)

    2017-06-15

    Highlights: • Molten KNO{sub 3} treatment are used to prepare K-doped TiO{sub 2} photocatalyst coatings. • The coatings show good antibacterial activity even in absence of light. • The photocatalytic activity is increased with the amount increase of K-doping. • The good antibacterial activity should come from the doping and release of K ions. - Abstract: In this work, the process of mechanical coating followed by molten KNO{sub 3} treatment is given to prepare visible-light-responsive K{sup +}-doped TiO{sub 2}. X-ray diffraction (XRD), scanning electron spectroscopy (SEM), Energy dispersive spectrometer (EDS) and X-ray photoelectron spectroscopy (XPS) were conducted to characterize these TiO{sub 2} coatings. The results showed that K{sup +}-doped anatase TiO{sub 2}/Ti composite coatings formed after molten KNO{sub 3} treatment at elevated temperatures. Meanwhile, their photocatalytic degradation of methylene blue (MB) and the antibacterial activity against Escherichia coli (E. coli) was also studied. The visible-light-responsive photocatalytic activity of the coatings in MB degradation increased with increase of K{sup +} ions when holding temperature was raised from 673 to 773 K. An excellent antibacterial activity of the K{sup +}-doped TiO{sub 2}/Ti coatings against E. coli was also obtained even in absence of light. The antibacterial activity in dark should attribute to the release of K{sup +} ions from the coatings. The photocatalytic activity under visible-light irradiation should result from the absorption spectrum extension due to the doping of K{sup +} ions into the lattice of TiO{sub 2}.

  3. Porous TiO{sub 2} nanofibers decorated CdS nanoparticles by SILAR method for enhanced visible-light-driven photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Fengyu; Hou, Dongfang, E-mail: dfhouok@126.com; Hu, Fuchao; Xie, Kui; Qiao, Xiuqing; Li, Dongsheng, E-mail: lidongsheng1@126.com

    2017-01-01

    Graphical abstract: A heterojunction photocatalyst with CdS Nanoparticles self-assembled via SILAR Method at surfaces of electrospun TiO2 nanofibers shows enhanced visible-light photocatalytic activities. - Highlights: • Combined electrospinning and successive ionic layer adsorption and reaction process. • Pouous TiO{sub 2} nanofibers decorated CdS nanoparticles. • Synergetic effect of photosensitization and heterojunction. - Abstract: 1D porous CdS nanoparticles/TiO{sub 2} nanofibers heterostructure has been fabricated via simple electrospinning and a successive ionic layer adsorption and reaction (SILAR) process. The morphology, composition, and optical properties of the resulting CdS/TiO{sub 2} heterostructures can be rationally tailored through changing the SILAR cycles. The photocatalytic hydrogen evolution and decomposition of rhodamine B (RhB) of the as-synthesized heterostructured photocatalysts were investigated under visible light irradiation. Compared to TiO{sub 2} nanofibers,the as-obtained CdS/TiO{sub 2} heterostructures exhibit enhanced photocatalytic activity for hydrogen production and decomposition of RhB under visible-light irradiation. The heterojunction system performs best with H{sub 2} generation rates of 678.61 μmol h{sup −1} g{sup −1} under visible light irradiation which benefits from the two effects: (a) the 1D porous nanofibrous morphology contributes to not only more active sites but also more efficient transfer of the photogenerated charges (b) the synergetic effect of heterojunction and photosensitization reducing the recombination of photogenerated electrons and holes.

  4. Facile synthesis of Ag nanoparticles supported on TiO2 inverse opal with enhanced visible-light photocatalytic activity

    International Nuclear Information System (INIS)

    Zhao Yongxun; Yang Beifang; Xu Jiao; Fu Zhengping; Wu Min; Li Feng

    2012-01-01

    TiO 2 inverse opal films loaded with silver nanoparticles (ATIO) were synthesized on glass substrates. TiO 2 inverse opal (TIO) films were prepared via a sol–gel process using self-assembly of SiO 2 colloidal crystal template and a facile wet chemical route featuring an AgNO 3 precursor solution to fabricate silver nanoparticles on the TIO films. The inverse opal structure and Ag deposition physically and chemically modify titania, respectively. The catalysts were characterized by Raman spectroscopy, field-emission scanning electron microscopy, high-resolution transmission electron microscopy (HRTEM), UV–vis absorption spectra, X-ray photoelectron spectroscopy and photoluminescence spectroscopy. The HRTEM results show that Ag nanoparticles measuring 5–10 nm were evenly distributed on TIO. Both the UV- and visible-light photocatalytic activities of the samples were evaluated by analyzing the degradation of methylene blue (MB) in aqueous solution. The results reveal that the apparent reaction rate constant (k app ) of MB degradation of the sample ATIO under UV-light irradiation is approximately 1.5 times that of the conventional Ag-loaded TiO 2 film (ATF) without an ordered porous structure at an AgNO 3 concentration of 5 mM in the precursor solution. At an AgNO 3 concentration of 10 mM, the sample exhibits a k app value approximately 4.2 times that of ATF under visible-light irradiation. This enhanced visible-light photocatalytic performance can be attributed to the synergistic effect of optimized Ag nanoparticle deposition and an ordered macroporous TIO structure. Repeated cycling tests revealed that the samples showed stable photocatalytic activity, even after six repeated cycles. - Highlights: ►TiO 2 inverse opal films loaded with silver nanoparticles were synthesized. ►Physical and chemical modifications of TiO 2 were achieved simultaneously. ►The catalysts exhibited enhanced visible-light photocatalytic activity. ►The mechanism for enhanced

  5. Photodetector Characteristics in Visible Light Communication

    KAUST Repository

    Ho, Kang-Ting

    2016-04-01

    Typically, in the semiconductor industry pn heterojunctions have been used as either light-emitting diodes (LED) or photodiodes by applying forward current bias or reverse voltage bias, respectively. However, since both devices use the same structure, the light emitting and detecting properties could be combine in one single device, namely LED-based photodetector. Therefore, by integrating LED-based photodetectors as either transmitter or receiver, optical wireless communication could be easily implemented for bidirectional visible light communication networks at low-cost. Therefore, this dissertation focus on the investigation of the photodetection characteristics of InGaN LED-based photodetectors for visible light communication in the blue region. In this regard, we obtain external quantum efficiency of 10 % and photoresponse rise time of 71 μs at 405-nm illumination, revealing high-performance photodetection characteristics. Furthermore, we use orthogonal frequency division multiplexing quadrature amplitude modulation codification scheme to enlarge the operational bandwidth. Consequently, the transmission rate of the communication is efficiently enhanced up to 420 Mbit/s in visible light communication.

  6. Effective visible light-active nitrogen and samarium co-doped BiVO{sub 4} for the degradation of organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Min; Niu, Chao [College of Environmental and Chemical Engineering, Shenyang Ligong University, Shenyang 110165 (China); Liu, Jun, E-mail: minwang62@msn.com [Shenyang Military General Hospital, Shenyang 110016 (China); Wang, Qianwu; Yang, Changxiu; Zheng, Haoyan [College of Environmental and Chemical Engineering, Shenyang Ligong University, Shenyang 110165 (China)

    2015-11-05

    Nitrogen and samarium co-doped BiVO{sub 4} (N–xSm–BiVO{sub 4}) nanoparticles were synthesized using a sol–gel method with a corn stem template. The physicochemical properties of the resultant N–xSm–BiVO{sub 4} particles were characterized using various methods: XPS, XRD, SEM, BET, and UV–Vis DRS analyses. The visible-light photocatalytic activity was successfully demonstrated by degrading a model dye, namely, methyl orange. The dopant content was optimized, and the nitrogen and samarium co-doped BiVO{sub 4} extended the light absorption spectrum toward the visible region, significantly enhancing the photodegradation of the model dye. The Sm and N co-doped BiVO{sub 4} exhibited the highest photocatalytic activity compared to materials with a single dopant or no dopant. The significantly enhanced photocatalytic activity of the N–Sm co-doped BiVO{sub 4} under visible-light irradiation can be attributed to the synergistic effects of the nitrogen and samarium. - Highlights: • The N–Sm codoped BiVO{sub 4} were synthesized using a sol–gel method with a corn stem template. • The N and Sm codoped BiVO{sub 4} has excellent photocatalytic activity of methyl orange degradation. • The maximum activity was observed when the molar ratio of Sm/Bi was 1.0. • The high photocatalytic activity was caused by the synergistic effects between N doping and Sm doping.

  7. Alkaline hydrogen peroxide treatment for TiO_2 nanoparticles with superior water-dispersibility and visible-light photocatalytic activity

    International Nuclear Information System (INIS)

    Wu, Chung-Yi; Tu, Kuan-Ju; Lo, Yu-Shiu; Pang, Yean Ling; Wu, Chien-Hou

    2016-01-01

    Alkaline hydrogen peroxide treatment was proposed as a simple and green way to improve the performance of commercial TiO_2 powder for water-dispersibility and visible-light photocatalytic activity on the degradation of dye pollutants. The performance of treated TiO_2 was evaluated as a function of NaOH concentration, H_2O_2 concentration, and treatment time. The optimal conditions were determined to be 24 h in 100 mM H_2O_2 and 8 M NaOH. The treated samples were characterized by Raman spectroscopy, high-resolution transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), and ultraviolet–visible spectrophotometry. The analysis revealed that the crystal structure, morphology, and absorption band gap were retained, but the surface of the treated TiO_2 was dramatically changed. The treated TiO_2 was highly dispersible with a uniform hydrodynamic size of 41 ± 12 nm and stable over months in water at pH 3 without any stabilizing ligand and could significantly enhance the visible-light photodegradation of dye pollutants. The superior performance might be attributed to the formation of abundant surface hydroxyl groups. This treatment paves the way for developing water-dispersible TiO_2 with superior visible-light induced photocatalytic degradation of dye pollutants without any complicated and expensive surface modification. - Highlights: • Alkaline hydrogen peroxide is proposed to treat commercial TiO_2 powder. • The treated TiO_2 powder exhibits superior water-dispersibility with a uniform size distribution. • The treated TiO_2 powder can significantly enhance the visible-light photodegradation of dyes.

  8. Pulsed laser synthesis in liquid of efficient visible-light-active ZnO/rGO nanocomposites for improved photo-catalytic activity

    Science.gov (United States)

    Moqbel, Redhwan A.; Gondal, Mohammed A.; Qahtan, Talal F.; Dastageer, Mohamed A.

    2018-03-01

    In this work the synthesis of visible light active zinc oxide/reduced graphene oxide (ZnO/rGO) nanocomposite by laser induced fragmentation of particulates in liquid, its morphological/optical characterizations, and its application in the process of photo-catalytic degradation of toxic Rhodamine B (RhB) dye under visible radiation were studied. It is observed from the optical and morphological characterization that the anchoring of ZnO on the rGO sheets in ZnO/rGO nanocomposite considerably reduced the aggregation of ZnO (increased surface area), reduced the recombination of photo-induced charge carriers, promoted more adsorption of reactants on the catalytic surface and also enhanced and extended the light absorption in the visible spectral region. With all these improved characteristics of ZnO/rGO nanocomposite, it was found that this material as a photo-catalyst yielded an RhB degradation efficiency of 86%, as compared to the 40% degradation with pure ZnO NPs under the same experimental conditions. In the ZnO/rGO nanocomposite, rGO functions as an electron acceptor to promote charge separation, an aggregation inhibitor to enhance the active surface area, a co-catalyst, a good dye adsorber and also as a supporting matrix for ZnO.

  9. Visible Light Photocatalytic Properties of Modified Titanium Dioxide Nanoparticles via Aluminium Treatment

    Directory of Open Access Journals (Sweden)

    Dessy Ariyanti

    2016-03-01

    Full Text Available Titanium dioxide (TiO2 has gained much attentions for the last few decades due to its remarkable performance in photocatalysis and some other related properties. However, its wide bandgap (~3.2 eV can only absorb UV energy which is only ~5% of solar light spectrum. The objective of this research was to improve the photocatalytic activity of TiO2 by improving the optical absorption to the visible light range. Here, colored TiO2 nanoparticles range from light to dark grey were prepared via aluminium treatment at the temperatures ranging from 400 to 600 oC. The modified TiO2 is able to absorb up to 50% of visible light (400-700 nm and shows a relatively good photocatalytic activity in organic dye (Rhodamine B degradation under visible light irradiation compared with the commercial TiO2. Copyright © 2016 BCREC GROUP. All rights reserved Received: 10th November 2015; Revised: 7th January 2016; Accepted: 7th January 20 How to Cite: Ariyanti, D., Dong, J.Z., Dong, J.Y., Gao, W. (2016. Visible Light Photocatalytic Properties of Modified Titanium Dioxide Nanoparticles via Aluminium Treatment. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (1: 40-47. (doi:10.9767/bcrec.11.1.414.40-47 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.1.414.40-47

  10. Enhanced visible light photocatalytic activity of copper-doped titanium oxide–zinc oxide heterojunction for methyl orange degradation

    Energy Technology Data Exchange (ETDEWEB)

    Dorraj, Masoumeh, E-mail: masidor20@gmail.com [Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Alizadeh, Mahdi [UM Power Energy Dedicated Advanced Centre (UMPEDAC), Level 4 Wisma R& D, University of Malaya, Jalan Pantai Baharu, 59990 Kuala Lumpur (Malaysia); Sairi, Nor Asrina, E-mail: asrina@um.edu.my [Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); University of Malaya Centre for Ionic Liquids, Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Basirun, Wan Jefrey [Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Goh, Boon Tong [Low Dimensional Materials Research Centre, Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Woi, Pei Meng; Alias, Yatimah [Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); University of Malaya Centre for Ionic Liquids, Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2017-08-31

    Highlights: • The novel Cu-TiO{sub 2}/ZnO heterojunction nanocomposite was synthesized for the first time via a two-step process. • The Cu-TiO{sub 2}/ZnO heterostructured nanocomposite exhibited an enhanced visible-light-driven photocatalytic activity for MO degradation. • The heterostructured nanocomposite could be recycled during the degradation of MO in a three-cycle experiment with good stability. - Abstract: A novel Cu-doped TiO{sub 2} coupled with ZnO nanoparticles (Cu-TiO{sub 2}/ZnO) was prepared by sol-gel method and subsequent precipitation for methyl orange (MO) photodegradation under visible light irradiation. The compositions and shapes of the as-prepared Cu-TiO{sub 2}/ZnO nanocomposites were characterized by photoluminescence spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, UV–vis diffuse reflectance spectra and Brunauer–Emmett–Teller adsorption isotherm techniques. The Cu-TiO{sub 2}/ZnO nanocomposites showed considerably higher photocatalytic activity for MO removal from water under visible light irradiation than that of single-doped semiconductors. The effects of Cu-TiO{sub 2} and ZnO mass ratios on the photocatalytic reaction were also studied. A coupling percentage of 30% ZnO exhibited the highest photocatalytic activity. The enhanced photocatalytic activity of the Cu-TiO{sub 2}/ZnO nanocomposites was mainly attributed to heterojunction formation, which allowed the efficient separation of photoinduced electron−hole pairs at the interface. Moreover, these novel nanocomposites could be recycled during MO degradation in a three-cycle experiment without evident deactivation, which is particularly important in environmental applications.

  11. The study of photocatalysis under ultraviolet + visible two-beam light irradiation using undoped nano-titanium dioxide

    International Nuclear Information System (INIS)

    Liu Baoshun; Wen Liping; Zhao Xiujian

    2008-01-01

    The nano-TiO 2 powder was synthesized using wet chemical method and characterized by X-ray diffraction (XRD), Raman spectroscopy, Brunauer-Emmett-Teller (BET), and transmission electron microscope (TEM). The photodegradation of aqueous methyl orange and phenol under the irradiation of visible, ultraviolet (UV), and UV + visible lights was used to evaluate the photocatalytic activity of nano-TiO 2 powder prepared. It is found that the photocatalysis under UV and visible light irradiation simultaneously is much faster than the sum of that solely induced by UV light and visible light. UV-vis spectroscopy, photoluminescence (PL) spectroscopy, and X-ray photoelectron spectroscopy (XPS) were used to investigate the physical cause of the enhancement of photocatalytic activity induced by UV + visible two-beam light irradiation. A photocatalytic mechanism based on the d-d transition of photoinduced electrons on surface located at conduction band was suggested to explain the experimental result. It is considered that this is a novel method to utilize visible light in the photocatalysis by using undoped TiO 2 material

  12. Indoor visible light communication with smart lighting technology

    Science.gov (United States)

    Das Barman, Abhirup; Halder, Alak

    2017-02-01

    An indoor visible-light communication performance is investigated utilizing energy efficient white light by 2D LED arrays. Enabled by recent advances in LED technology, IEEE 802.15.7 standardizes high-data-rate visible light communication and advocates for colour shift keying (CSK) modulation to overcome flicker and to support dimming. Voronoi segmentation is employed for decoding N-CSK constellation which has superior performance compared to other existing decoding methods. The two chief performance degrading effects of inter-symbol interference and LED nonlinearity is jointly mitigated using LMS post equalization at the receiver which improves the symbol error rate performance and increases field of view of the receiver. It is found that LMS post equalization symbol at 250MHz offers 7dB SNR improvement at SER10-6

  13. Visible light alters yeast metabolic rhythms by inhibiting respiration.

    Science.gov (United States)

    Robertson, James Brian; Davis, Chris R; Johnson, Carl Hirschie

    2013-12-24

    Exposure of cells to visible light in nature or in fluorescence microscopy often is considered to be relatively innocuous. However, using the yeast respiratory oscillation (YRO) as a sensitive measurement of metabolism, we find that non-UV visible light has a significant impact on yeast metabolism. Blue/green wavelengths of visible light shorten the period and dampen the amplitude of the YRO, which is an ultradian rhythm of cell metabolism and transcription. The wavelengths of light that have the greatest effect coincide with the peak absorption regions of cytochromes. Moreover, treating yeast with the electron transport inhibitor sodium azide has similar effects on the YRO as visible light. Because impairment of respiration by light would change several state variables believed to play vital roles in the YRO (e.g., oxygen tension and ATP levels), we tested oxygen's role in YRO stability and found that externally induced oxygen depletion can reset the phase of the oscillation, demonstrating that respiratory capacity plays a role in the oscillation's period and phase. Light-induced damage to the cytochromes also produces reactive oxygen species that up-regulate the oxidative stress response gene TRX2 that is involved in pathways that enable sustained growth in bright visible light. Therefore, visible light can modulate cellular rhythmicity and metabolism through unexpectedly photosensitive pathways.

  14. Optical properties and visible-light-driven photocatalytic activity of Bi{sub 8}V{sub 2}O{sub 17} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Pu, Yinfu; Liu, Ting; Huang, Yanlin [Soochow University, College of Chemistry, Chemical Engineering and Materials Science (China); Chen, Cuili; Kim, Sun Il; Seo, Hyo Jin, E-mail: hjseo@pknu.ac.kr [Pukyong National University, Department of Physics and Interdisciplinary Program of Biomedical, Mechanical & Electrical Engineering (Korea, Republic of)

    2015-05-15

    Bi{sub 8}V{sub 2}O{sub 17} (4Bi{sub 2}O{sub 3}·V{sub 2}O{sub 5}) nanoparticles with the uniform size of about 50 nm were fabricated through the Pechini method. The crystal structure was investigated by X-ray powder diffraction and the structural refinement. The surface of the as-synthesized samples was characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy, and X-ray photoelectron spectroscopy. The optical properties, band structure, and the degradation mechanisms were discussed. The experimental results demonstrate that Bi{sub 8}V{sub 2}O{sub 17} nanoparticles have an efficient visible-light absorption with band-gap energy of 1.85 eV and a direct allowed electronic transition. The photocatalytic activity was evaluated by the photodegradation of the methylene blue (MB) under visible-light irradiation (λ > 420 nm) as a function of time. These results indicate that Bi{sub 8}V{sub 2}O{sub 17} could be a potential photocatalyst driven by visible light. The effective photocatalytic activity was discussed on the base of the crystal structure characteristic.

  15. Synthesis and photocatalytic properties of visible light responsive La/TiO2-graphene composites

    International Nuclear Information System (INIS)

    Khalid, N.R.; Ahmed, E.; Hong Zhanglian; Ahmad, M.

    2012-01-01

    Highlights: ► Synthesis of La/TiO 2 -graphene composites by two-step hydrothermal method. ► Efficient charge separation due to La doping and graphene incorporation. ► Enhanced photocatalytic activity of composite catalyst for MB degradation under visible-light. - Abstract: La/TiO 2 -graphene composites used as photocatalyst were prepared by two-step hydrothermal method. The as-prepared composites were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-visible diffuse reflectance spectroscopy (DRS) and photoluminescence spectroscopy (PL). The results of optical properties of La/TiO 2 -graphene composites exhibit extended light absorption in visible-light region and possess better charge separation capability as compared to pure TiO 2 . The photocatalytic activity measurement demonstrate that La/TiO 2 -graphene composites exhibited an enhanced photocatalytic activity for methylene blue (MB) degradation under visible-light irradiation compared to pure TiO 2 , which was attributed to greater adsorptivity of dyes, extended light absorption and increased charge separation efficiency due to excellent electrical properties of graphene and the large surface contact between graphene and La/TiO 2 nanoparticles.

  16. Antibacterial properties of F-doped ZnO visible light photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Podporska-Carroll, Joanna, E-mail: joannapcarroll@gmail.com [Center for Research in Engineering Surface Technology (CREST), DIT FOCAS Institute, Kevin St., Dublin (Ireland); Myles, Adam [Center for Research in Engineering Surface Technology (CREST), DIT FOCAS Institute, Kevin St., Dublin (Ireland); School of Chemical and Pharmaceutical Sciences, Dublin Institute of Technology, Kevin St., Dublin (Ireland); Quilty, Brid [School of Biotechnology, Dublin City University, Dublin (Ireland); McCormack, Declan E.; Fagan, Rachel [Center for Research in Engineering Surface Technology (CREST), DIT FOCAS Institute, Kevin St., Dublin (Ireland); School of Chemical and Pharmaceutical Sciences, Dublin Institute of Technology, Kevin St., Dublin (Ireland); Hinder, Steven J. [The Surface Analysis Laboratory, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Dionysiou, Dionysios D., E-mail: dionysios.d.dionysiou@uc.edu [Environmental Engineering and Science Program, Department of Biomedical, Chemical and Environmental Engineering (DBCEE), 705 Engineering Research Center, University of Cincinnati, Cincinnati, OH 45221-0012 (United States); Pillai, Suresh C., E-mail: Pillai.Suresh@itsligo.ie [Center for Research in Engineering Surface Technology (CREST), DIT FOCAS Institute, Kevin St., Dublin (Ireland); Nanotechnology Research Group, Department of Environmental Science, PEM Centre, Institute of Technology Sligo, Sligo (Ireland)

    2017-02-15

    Highlights: • F doped ZnO nano-powders were obtained by a modified sol–gel method. • These materials were found to be effective against S. aureus and E. coli. • Enhanced visible light photocatalytic and antimicrobial properties were obtained. • The toxic effect of ZnO on bacteria can be due to the release of zinc cations. • Production of reactive oxidation species influences bacterial viability. - Abstract: Nanocrystalline ZnO photocatalysts were prepared by a sol–gel method and modified with fluorine to improve their photocatalytic anti-bacterial activity in visible light. Pathogenic bacteria such as Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) were employed to evaluate the antimicrobial properties of synthesized materials. The interaction with biological systems was assessed by analysis of the antibacterial properties of bacteria suspended in 2% (w/w) powder solutions. The F-doping was found to be effective against S. aureus (99.99% antibacterial activity) and E. coli (99.87% antibacterial activity) when irradiated with visible light. Production of reactive oxygen species is one of the major factors that negatively impact bacterial growth. In addition, the nanosize of the ZnO particles can also be toxic to microorganisms. The small size and high surface-to-volume ratio of the ZnO nanoparticles are believed to play a role in enhancing antimicrobial activity.

  17. Enhanced photoelectrochemical and photocatalytic activity in visible-light-driven Ag/BiVO_4 inverse opals

    International Nuclear Information System (INIS)

    Fang, Liang; Nan, Feng; Yang, Ying; Cao, Dawei

    2016-01-01

    BiVO_4 photonic crystal inverse opals (io-BiVO_4) with highly dispersed Ag nanoparticles (NPs) were prepared by the nanosphere lithography method combining the pulsed current deposition method. The incorporation of the Ag NPs can significantly improve the photoelectrochemical and photocatalytic activity of BiVO_4 inverse opals in the visible light region. The photocurrent density of the Ag/io-BiVO_4 sample is 4.7 times higher than that of the disordered sample without the Ag NPs, while the enhancement factor of the corresponding kinetic constant in photocatalytic experiment is approximately 3. The improved photoelectrochemical and photocatalytic activity is benefited from two reasons: one is the enhanced light harvesting owing to the coupling between the slow light and localized surface plasmon resonance effect; the other is the efficient separation of charge carriers due to the Schottky barriers.

  18. High visibility temporal ghost imaging with classical light

    Science.gov (United States)

    Liu, Jianbin; Wang, Jingjing; Chen, Hui; Zheng, Huaibin; Liu, Yanyan; Zhou, Yu; Li, Fu-li; Xu, Zhuo

    2018-03-01

    High visibility temporal ghost imaging with classical light is possible when superbunching pseudothermal light is employed. In the numerical simulation, the visibility of temporal ghost imaging with pseudothermal light, equaling (4 . 7 ± 0 . 2)%, can be increased to (75 ± 8)% in the same scheme with superbunching pseudothermal light. The reasons for that the retrieved images are different for superbunching pseudothermal light with different values of degree of second-order coherence are discussed in detail. It is concluded that high visibility and high quality temporal ghost image can be obtained by collecting sufficient number of data points. The results are helpful to understand the difference between ghost imaging with classical light and entangled photon pairs. The superbunching pseudothermal light can be employed to improve the image quality in ghost imaging applications.

  19. Synthesis, characterization and photocatalytic activity of WO3/TiO2 for NO removal under UV and visible light irradiation

    International Nuclear Information System (INIS)

    Luévano-Hipólito, E.; Martínez-de la Cruz, A.; López-Cuellar, E.; Yu, Q.L.; Brouwers, H.J.H.

    2014-01-01

    Samples with different proportions WO 3 /TiO 2 were prepared by co-precipitation method followed by a heat treatment. The samples were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (DRS), and adsorption–desorption N 2 isotherms (BET). The photocatalytic properties of WO 3 /TiO 2 samples were evaluated in the photo-oxidation reaction of nitric oxide (NO) under UV and visible light irradiation. The highest photocatalytic activity was observed in the WO 3 /TiO 2 sample with a composition of 80% mole of TiO 2 . Among the different substrates used for supporting the photocatalyst, the best results were reached over concrete and glass when it was exposed to UV and visible light irradiation, respectively. In overall, the photocatalytic efficiency of the synthesized materials was higher under UV than visible light irradiation. - Highlights: • WO 3 /TiO 2 prepared in simple way show high photocatalytic activity for NO removal. • The concrete was the best substrate to the performance of WO 3 /TiO 2 with UV radiation. • The glass was the best substrate to the performance of WO 3 /TiO 2 with visible radiation

  20. Efficient resource allocation scheme for visible-light communication system

    Science.gov (United States)

    Kim, Woo-Chan; Bae, Chi-Sung; Cho, Dong-Ho; Shin, Hong-Seok; Jung, D. K.; Oh, Y. J.

    2009-01-01

    A visible-light communication utilizing LED has many advantagies such as visibility of information, high SNR (Signal to Noise Ratio), low installation cost, usage of existing illuminators, and high security. Furthermore, exponentially increasing needs and quality of LED have helped the development of visible-light communication. The visibility is the most attractive property in visible-light communication system, but it is difficult to ensure visibility and transmission efficiency simultaneously during initial access because of the small amount of initial access process signals. In this paper, we propose an efficient resource allocation scheme at initial access for ensuring visibility with high resource utilization rate and low data transmission failure rate. The performance has been evaluated through the numerical analysis and simulation results.

  1. Study on activities of vanadium (IV/V) doped TiO2(R) nanorods induced by UV and visible light

    International Nuclear Information System (INIS)

    Li, Li; Liu Chunyan; Liu Yun

    2009-01-01

    Vanadium (IV/V) doped rutile TiO 2 naonorods had been successfully synthesized through a single step hydrothermal method. The photocatalyst was characterized by transmission electron microscopy (TEM), selected area electron diffraction (SAED), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), UV-vis diffusive reflectance spectroscopy (DRS) and X-ray photoelectron spectroscopy (XPS). The results showed that the doping of V ions had significant influence on the band gap energy and the surface state of TiO 2 . The photo-activities of the new catalysts were investigated under ultraviolet (UV) and visible light. The UV-photocatalytic activity of the as-prepared catalysts was hardly influenced by doping V ions; while under visible light, the samples with 1 wt% and 0.1 wt% V exhibited enhanced activity to the oxidation of methylene blue (MB) and the reduction of Cr (VI), respectively

  2. Ag-loaded TiO2/reduced graphene oxide nanocomposites for enhanced visible-light photocatalytic activity

    International Nuclear Information System (INIS)

    Vasilaki, E.; Georgaki, I.; Vernardou, D.; Vamvakaki, M.; Katsarakis, N.

    2015-01-01

    Highlights: • Ag nanoparticles were loaded on TiO 2 by chemical reduction. • TiO 2 /Ag and TiO 2 samples were deposited on reduced graphene oxide (rGO). • Their performance was evaluated via methylene blue removal under visible-light. • TiO 2 /Ag/rGO presented superior activity compared to TiO 2 , TiO 2 /Ag and TiO 2 /rGO. - Abstract: In this work, Ag nanoparticles were loaded by chemical reduction onto TiO 2 P25 under different loadings ranging from 1 up to 4 wt% and hydrothermally deposited on reduced graphene oxide sheets. Chemical reduction was determined to be an effective preparation approach for Ag attachment to titania, leading to the formation of small silver nanoparticles with an average diameter of 4.2 nm. The photocatalytic performance of the hybrid nanocomposite materials was evaluated via methylene blue (MB) dye removal under visible-light irradiation. The rate of dye decolorization was found to depend on the metal loading, showing an increase till a threshold value of 3 wt%, above which the rate drops. Next, the as prepared sample of TiO 2 /Ag of better photocatalytic response, i.e., at a 3 wt% loading value, was hydrothermally deposited on a platform of reduced graphene oxide (rGO) of tunable content (mass ratio). TiO 2 /Ag/rGO coupled nanocomposite presented significantly enhanced photocatalytic activity compared to the TiO 2 /Ag, TiO 2 /rGO composites and bare P25 titania semiconductor photocatalysts. In particular, after 45 min of irradiation almost complete decolorization of the dye was observed for the TiO 2 /Ag/rGO nanocatalyst, while the respective removal efficiency was 92% for TiO 2 /Ag, 93% for TiO 2 /rGO and only 80% for the bare TiO 2 nanoparticles. This simple step by step preparation strategy allows for optimum exploitation of the advanced properties of metal plasmonic effect and reduced graphene oxide as the critical host for boosting the overall photocatalytic activity towards visible-light.

  3. Irradiation of skin with visible light induces reactive oxygen species and matrix-degrading enzymes.

    Science.gov (United States)

    Liebel, Frank; Kaur, Simarna; Ruvolo, Eduardo; Kollias, Nikiforos; Southall, Michael D

    2012-07-01

    Daily skin exposure to solar radiation causes cells to produce reactive oxygen species (ROS), which are a primary factor in skin damage. Although the contribution of the UV component to skin damage has been established, few studies have examined the effects of non-UV solar radiation on skin physiology. Solar radiation comprises UV, and thus the purpose of this study was to examine the physiological response of skin to visible light (400-700 nm). Irradiation of human skin equivalents with visible light induced production of ROS, proinflammatory cytokines, and matrix metalloproteinase (MMP)-1 expression. Commercially available sunscreens were found to have minimal effects on reducing visible light-induced ROS, suggesting that UVA/UVB sunscreens do not protect the skin from visible light-induced responses. Using clinical models to assess the generation of free radicals from oxidative stress, higher levels of free radical activity were found after visible light exposure. Pretreatment with a photostable UVA/UVB sunscreen containing an antioxidant combination significantly reduced the production of ROS, cytokines, and MMP expression in vitro, and decreased oxidative stress in human subjects after visible light irradiation. Taken together, these findings suggest that other portions of the solar spectrum aside from UV, particularly visible light, may also contribute to signs of premature photoaging in skin.

  4. A metallic metal oxide (Ti5O9)-metal oxide (TiO2) nanocomposite as the heterojunction to enhance visible-light photocatalytic activity.

    Science.gov (United States)

    Li, L H; Deng, Z X; Xiao, J X; Yang, G W

    2015-01-26

    Coupling titanium dioxide (TiO2) with other semiconductors is a popular method to extend the optical response range of TiO2 and improve its photon quantum efficiency, as coupled semiconductors can increase the separation rate of photoinduced charge carriers in photocatalysts. Differing from normal semiconductors, metallic oxides have no energy gap separating occupied and unoccupied levels, but they can excite electrons between bands to create a high carrier mobility to facilitate kinetic charge separation. Here, we propose the first metallic metal oxide-metal oxide (Ti5O9-TiO2) nanocomposite as a heterojunction for enhancing the visible-light photocatalytic activity of TiO2 nanoparticles and we demonstrate that this hybridized TiO2-Ti5O9 nanostructure possesses an excellent visible-light photocatalytic performance in the process of photodegrading dyes. The TiO2-Ti5O9 nanocomposites are synthesized in one step using laser ablation in liquid under ambient conditions. The as-synthesized nanocomposites show strong visible-light absorption in the range of 300-800 nm and high visible-light photocatalytic activity in the oxidation of rhodamine B. They also exhibit excellent cycling stability in the photodegrading process. A working mechanism for the metallic metal oxide-metal oxide nanocomposite in the visible-light photocatalytic process is proposed based on first-principle calculations of Ti5O9. This study suggests that metallic metal oxides can be regarded as partners for metal oxide photocatalysts in the construction of heterojunctions to improve photocatalytic activity.

  5. Room-temperature synthesis of Zn(0.80)Cd(0.20)S solid solution with a high visible-light photocatalytic activity for hydrogen evolution.

    Science.gov (United States)

    Wang, Dong-Hong; Wang, Lei; Xu, An-Wu

    2012-03-21

    Visible light photocatalytic H(2) production from water splitting is of great significance for its potential applications in converting solar energy into chemical energy. In this study, a series of Zn(1-x)Cd(x)S solid solutions with a nanoporous structure were successfully synthesized via a facile template-free method at room temperature. The obtained solid solutions were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), ultraviolet-visible (UV-vis) diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDS) and N(2) adsorption-desorption analysis. The solid solutions show efficient photocatalytic activity for H(2) evolution from aqueous solutions containing sacrificial reagents S(2-) and SO(3)(2-) under visible-light irradiation without a Pt cocatalyst, and loading of the Pt cocatalyst further improves the visible-light photocatalytic activity. The optimal photocatalyst with x = 0.20 prepared at pH = 7.3 displays the highest activity for H(2) evolution. The bare and 0.25 wt% Pt loaded Zn(0.80)Cd(0.20)S nanoparticles exhibit a high H(2) evolution rate of 193 μmol h(-1) and 458 μmol h(-1) under visible-light irradiation (λ ≥ 420 nm), respectively. In addition, the bare and 0.25 wt% Pt loaded Zn(0.80)Cd(0.20)S catalysts show a high H(2) evolution rate of 252 and 640 μmol h(-1) under simulated solar light irradiation, respectively. Moreover, the Zn(0.80)Cd(0.20)S catalyst displays a high photocatalytic stability for H(2) evolution under long-term light irradiation. The incorporation of Cd in the solid solution leads to the visible light absorption, and the high content of Zn in the solid solution results in a relatively negative conduction band, a modulated band gap and a rather wide valence bandwidth, which are responsible for the excellent photocatalytic performance of H(2) production and for the high photostability

  6. An efficient visible and UV-light-activated B-N-codoped TiO{sub 2} photocatalytic film for solar depollution prepared via a green method

    Energy Technology Data Exchange (ETDEWEB)

    Xu Qingchi; Zhang Yan; He Ziming [Nanyang Technological University, School of Chemical and Biomedical Engineering (Singapore); Loo, Say Chye Joachim, E-mail: joachimloo@ntu.edu.sg [Nanyang Technological University, School of Materials Science and Engineering (Singapore); Tan, Timothy Thatt Yang, E-mail: tytan@ntu.edu.sg [Nanyang Technological University, School of Chemical and Biomedical Engineering (Singapore)

    2012-08-15

    This work reports an efficient visible and UV-light-activated boron and nitrogen codoped TiO{sub 2} porous film prepared via a 'green' and direct coating approach. Such photocatalyst is highly promising for solar depollution application due to its efficient photocatalytic activities in both visible and UV spectrum. The preparation method avoids the use of organic solvents, which are usually more expensive and hazardous compared with water. Using stearic acid as the model organic pollutant, the visible-light photocatalytic activity of optimized porous B-N-codoped TiO{sub 2} film (p-3B-N-TiO{sub 2}) is 3 times higher than that of porous N-doped TiO{sub 2} (p-N-TiO{sub 2}) film, while its UV photocatalytic activity is almost double that of p-N-TiO{sub 2} film and comparable to that of porous TiO{sub 2}. The enhancement in photocatalytic activity is attributed to higher surface area due to the porous structure, improved visible-light absorption attributed to interstitially substituted boron atoms, and coexistence of boron and nitrogen dopants which may reduce Ti{sup 3+} recombination centers.

  7. Effects of the preparation method on the structure and the visible-light photocatalytic activity of Ag2CrO4

    Directory of Open Access Journals (Sweden)

    Difa Xu

    2014-05-01

    Full Text Available Silver chromate (Ag2CrO4 photocatalysts are prepared by microemulsion, precipitation, and hydrothermal methods, in order to investigate the effect of preparation methods on the structure and the visible-light photocatalytic activity. It is found that the photocatalytic activity of the prepared Ag2CrO4was highly dependent on the preparation methods. The sample prepared by microemulsion method exhibits the highest photocatalytic efficiency on the degradation of methylene blue (MB under visible-light irradiation. The enhanced photocatalytic activity could be ascribed to the smaller particle size, higher surface area, relatively stronger light absorption, and blue-shift absorption edge, which result in the adsorption of more MB molecules, a shorter diffusion process of more photogenerated excitons, and a stronger oxidation ability of the photogenerated holes. Considering the universalities of microemulsion, precipitation, and hydrothermal methods, this work may also provide a prototype for the comparative study of semiconductor based photocatalysis for water purification and environmental remediation.

  8. Synergistic effect of single-electron-trapped oxygen vacancies and carbon species on the visible light photocatalytic activity of carbon-modified TiO2

    International Nuclear Information System (INIS)

    Wang, Xiaodong; Xue, Xiaoxiao; Liu, Xiaogang; Xing, Xing; Li, Qiuye; Yang, Jianjun

    2015-01-01

    Carbon-modified TiO 2 (CT) nanoparticles were prepared via a two-step method of heat treatment without the resorcinol-formaldehyde (RF) polymer. As-prepared CT nanoparticles were characterized by means of X-ray diffraction (XRD), UV–Vis diffuse reflectance spectroscopy (UV–Vis/DRS), transmission electron microscopy (TEM), N 2 adsorption–desorption isotherms, thermal analysis (TA), electron spin resonance (ESR), and X-ray photoelectron spectroscopy (XPS). The visible light photocatalytic activities were evaluated on the basis of the degradation of methyl orange (MO). The synergistic effect of single-electron-trapped oxygen vacancies (SETOVs) and the carbon species on the visible light photocatalytic activities of the CT nanoparticles were discussed. It was found that the crystalline phase, the morphology, and particle size of the CT nanoparticles depended on the second heat-treatment temperature instead of the first heat-treatment temperature. The visible light photocatalytic activities were attributed to the synergistic effect of SETOVs and the carbon species, and also depended on the specific surface area of the photocatalysts. - Highlights: • Carbon-modified TiO 2 particles have been prepared without RF polymer. • The visible light photocatalytic activities of the particles have been evaluated. • The band gap energy structure of the carbon-modified TiO 2 has been proposed. • Synergistic effect of SETOVs and carbon species has been discussed. • The activities also depend on the specific surface area of the catalysts

  9. Synthesis of flower-like Ag{sub 2}O/BiOCOOH p-n heterojunction with enhanced visible light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shijie [Innovation & Application Institute, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022 (China); Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan 316021 (China); State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620 (China); Xu, Kaibing [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Research Center for Analysis and Measurement, Donghua University, Shanghai 201620 (China); Hu, Shiwei, E-mail: hushiweihai@163.com [Innovation & Application Institute, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022 (China); Jiang, Wei [Innovation & Application Institute, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022 (China); Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan 316021 (China); Zhang, Junlei [Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433 (China); Liu, Jianshe [State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620 (China); Zhang, Lisha, E-mail: lszhang@dhu.edu.cn [State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620 (China)

    2017-03-01

    Highlights: • Ag{sub 2}O/BiOCOOH p-n heterojunctions are prepared by a solvothermal deposition-precipitation method. • They consist of flower-like BiOCOOH microspheres decorated with Ag{sub 2}O nanoparticles. • Heterojunction with the Ag/Bi molar ratio of 0.2/1 showed the highest photocatalytic activity. • The photogenerated holes (h{sup +}) and superoxide radical anions (·O{sub 2}{sup −}) have been found to be the main reactive species. - Abstract: The development of efficient semiconductor heterojunction photocatalysts has drawn much attention. Herein, we have reported a kind of flower-like Ag{sub 2}O/BiOCOOH p-n heterojunction as a novel and efficient visible-light-driven photocatalyst. The Ag{sub 2}O/BiOCOOH heterojunctions have been successfully prepared via a solvothermal precipitation-deposition method. They consist of flower-like BiOCOOH microspheres (diameters: 1–2.5 μm) decorated with Ag{sub 2}O nanoparticles (size: ∼14 nm). In addition, optical characterization reveals that they have broad visible-light photo-absorption. Importantly, under visible-light irradiation (λ > 400 nm), all Ag{sub 2}O/BiOCOOH heterojunctions exhibit enhanced photocatalytic activity than pure BiOCOOH or Ag{sub 2}O for the degradation of rhodamine B (RhB) dye and para-chlorophenol (4-CP). Especially, the Ag{sub 2}O/BiOCOOH heterojunction with the Ag/Bi molar ratio of 0.2/1 shows the highest photocatalytic activity, which is even higher than the activity from the mechanical mixture (8 wt% Ag{sub 2}O + 92 wt% BiOCOOH). This enhanced photocatalytic performance could be predominantly attributed to the efficient separation of photogenerated electron-hole pairs. The photogenerated holes (h{sup +}) and superoxide radical anions (·O{sub 2}{sup −}) have been found to be the main reactive species responsible for the photodegradation of RhB dye in aqueous solution. Therefore, the Ag{sub 2}O/BiOCOOH p-n heterojunction has great potential to be used as a kind of efficient

  10. Highly Efficient F, Cu doped TiO2 anti-bacterial visible light active photocatalytic coatings to combat hospital-acquired infections

    Science.gov (United States)

    Leyland, Nigel S.; Podporska-Carroll, Joanna; Browne, John; Hinder, Steven J.; Quilty, Brid; Pillai, Suresh C.

    2016-04-01

    Bacterial infections are a major threat to the health of patients in healthcare facilities including hospitals. One of the major causes of patient morbidity is infection with Staphylococcus aureus. One of the the most dominant nosocomial bacteria, Methicillin Resistant Staphylococcus aureus (MRSA) have been reported to survive on hospital surfaces (e.g. privacy window glasses) for up to 5 months. None of the current anti-bacterial technology is efficient in eliminating Staphylococcus aureus. A novel transparent, immobilised and superhydrophilic coating of titanium dioxide, co-doped with fluorine and copper has been prepared on float glass substrates. Antibacterial activity has demonstrated (by using Staphylococcus aureus), resulting from a combination of visible light activated (VLA) photocatalysis and copper ion toxicity. Co-doping with copper and fluorine has been shown to improve the performance of the coating, relative to a purely fluorine-doped VLA photocatalyst. Reductions in bacterial population of log10 = 4.2 under visible light irradiation and log10 = 1.8 in darkness have been achieved, compared with log10 = 1.8 under visible light irradiation and no activity, for a purely fluorine-doped titania. Generation of reactive oxygen species from the photocatalytic coatings is the major factor that significantly reduces the bacterial growth on the glass surfaces.

  11. A visible-light-driven photocatalytic activity of vanadate garnet AgCa{sub 2}Ni{sub 2}V{sub 3}O{sub 12} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yuting; Chen, Luyang; Li, Yuze; Huang, Yanlin [Soochow University, College of Chemistry, Chemical Engineering and Materials Science (China); Cheng, Han; Seo, Hyo Jin, E-mail: hjseo@pknu.ac.kr [Pukyong National University, Department of Physics and Interdisciplinary Program of Biomedical, Mechanical and Electrical Engineering (Korea, Republic of)

    2015-10-15

    A visible-light-driven photocatalyst of nanosized vanadate garnet AgCa{sub 2}Ni{sub 2}V{sub 3}O{sub 12} was prepared by a modified Pechini method. The nanoparticles were characterized with the measurements such as X-ray powder diffraction (XRD) and structural refinements, scanning electron microscope (SEM), and UV–visible (UV–Vis) absorption spectrum. The sample has an efficient absorption in the UV–Vis light region with a narrow band-gap energy of 2.16 eV and an indirect allowed electronic transition. Besides, the photocatalysis of AgCa{sub 2}Ni{sub 2}V{sub 3}O{sub 12} nanoparticles was evaluated by photo-degradation of methylene blue under visible-light irradiation, which shows excellent photocatalytic activity. The effective photocatalytic activity was discussed on the base of the garnet crystal structure such as the activated optical centers of Ni–O octahedron and V–O tetrahedral, highly distorted Ag–O dodecahedra, and long V–V distance in the lattices.

  12. Improved spring model-based collaborative indoor visible light positioning

    Science.gov (United States)

    Luo, Zhijie; Zhang, WeiNan; Zhou, GuoFu

    2016-06-01

    Gaining accuracy with indoor positioning of individuals is important as many location-based services rely on the user's current position to provide them with useful services. Many researchers have studied indoor positioning techniques based on WiFi and Bluetooth. However, they have disadvantages such as low accuracy or high cost. In this paper, we propose an indoor positioning system in which visible light radiated from light-emitting diodes is used to locate the position of receivers. Compared with existing methods using light-emitting diode light, we present a high-precision and simple implementation collaborative indoor visible light positioning system based on an improved spring model. We first estimate coordinate position information using the visible light positioning system, and then use the spring model to correct positioning errors. The system can be employed easily because it does not require additional sensors and the occlusion problem of visible light would be alleviated. We also describe simulation experiments, which confirm the feasibility of our proposed method.

  13. Enhanced UV-Visible Light Photocatalytic Activity by Constructing Appropriate Heterostructures between Mesopore TiO₂ Nanospheres and Sn₃O₄ Nanoparticles.

    Science.gov (United States)

    Hu, Jianling; Tu, Jianhai; Li, Xingyang; Wang, Ziya; Li, Yan; Li, Quanshui; Wang, Fengping

    2017-10-19

    Novel TiO₂/Sn₃O₄ heterostructure photocatalysts were ingeniously synthesized via a scalable two-step method. The impressive photocatalytic abilities of the TiO₂/Sn₃O₄ sphere nanocomposites were validated by the degradation test of methyl orange and •OH trapping photoluminescence experiments under ultraviolet (UV) and visible light irradiation, respectively. Especially under the visible light, the TiO₂/Sn₃O₄ nanocomposites demonstrated a superb photocatalytic activity, with 81.2% of methyl orange (MO) decomposed at 30 min after irradiation, which greatly exceeded that of the P25 (13.4%), TiO₂ (0.5%) and pure Sn₃O₄ (59.1%) nanostructures. This enhanced photocatalytic performance could be attributed to the mesopore induced by the monodispersed TiO₂ cores that supply sufficient surface areas and accessibility to reactant molecules. This exquisite hetero-architecture facilitates extended UV-visible absorption and efficient photoexcited charge carrier separation.

  14. Controlled Defects of Zinc Oxide Nanorods for Efficient Visible Light Photocatalytic Degradation of Phenol

    Directory of Open Access Journals (Sweden)

    Jamal Al-Sabahi

    2016-03-01

    Full Text Available Environmental pollution from human and industrial activities has received much attention as it adversely affects human health and bio-diversity. In this work we report efficient visible light photocatalytic degradation of phenol using supported zinc oxide (ZnO nanorods and explore the role of surface defects in ZnO on the visible light photocatalytic activity. ZnO nanorods were synthesized on glass substrates using a microwave-assisted hydrothermal process, while the surface defect states were controlled by annealing the nanorods at various temperatures and were characterized by photoluminescence and X-ray photoelectron spectroscopy. High performance liquid chromatography (HPLC was used for the evaluation of phenol photocatalytic degradation. ZnO nanorods with high surface defects exhibited maximum visible light photocatalytic activity, showing 50% degradation of 10 ppm phenol aqueous solution within 2.5 h, with a degradation rate almost four times higher than that of nanorods with lower surface defects. The mineralization process of phenol during degradation was also investigated, and it showed the evolution of different photocatalytic byproducts, such as benzoquinone, catechol, resorcinol and carboxylic acids, at different stages. The results from this study suggest that the presence of surface defects in ZnO nanorods is crucial for its efficient visible light photocatalytic activity, which is otherwise only active in the ultraviolet region.

  15. Facile preparation of C, N co-modified Nb2O5 nanoneedles with enhanced visible light photocatalytic activity

    KAUST Repository

    Xue, Jiao; Wang, Runwei; Zhang, Zongtao; Qiu, Shilun

    2016-01-01

    activity than commercial Degussa P25 and commercial Nb2O5 towards photodegradation of Rhodamine B (RhB) at a concentration of 10 mg L−1 under visible light. Special chemical species, such as carbonate species and NOX species, that exist on the surface

  16. Graphitic carbon nitride/Cu2O heterojunctions: Preparation, characterization, and enhanced photocatalytic activity under visible light

    International Nuclear Information System (INIS)

    Tian, Yanlong; Chang, Binbin; Fu, Jie; Zhou, Baocheng; Liu, Jiyang; Xi, Fengna; Dong, Xiaoping

    2014-01-01

    As a metal-free semiconductor material, graphitic carbon nitride (C 3 N 4 ), the high recombination rate of photogenerated charges and insufficient sunlight absorption limit its solar-based photocatalytic activity. Here, we reported the heterojunctions of C 3 N 4 –Cu 2 O with a p–n junction structure, which was synthesized by a hydrothermal method. The HR-TEM result revealed an intimate interface between C 3 N 4 and Cu 2 O in the heterojunction, and UV–vis diffuse reflection spectra showed their extended spectral response in the visible region compared with pure C 3 N 4 . These excellent structural and spectral properties, as well as p–n junction structures, endowed the C 3 N 4 –Cu 2 O heterojunctions with enhanced photocatalytic activities. The possible photocatalytic mechanism that photogenerated holes as the mainly oxidant species in photocatalysis was proposed base on the trapping experiments. - Highlights: • A hydrothermal method was used to prepare C3N 4 –Cu 2 O heterojunction. • The resulting heterojunction possesses broader absorption in the visible region. • The material owns a high visible light activity and stability for dye degradation

  17. Visible-light optical coherence tomography: a review

    Science.gov (United States)

    Shu, Xiao; Beckmann, Lisa; Zhang, Hao F.

    2017-12-01

    Visible-light optical coherence tomography (vis-OCT) is an emerging imaging modality, providing new capabilities in both anatomical and functional imaging of biological tissue. It relies on visible light illumination, whereas most commercial and investigational OCTs use near-infrared light. As a result, vis-OCT requires different considerations in engineering design and implementation but brings unique potential benefits to both fundamental research and clinical care of several diseases. Here, we intend to provide a summary of the development of vis-OCT and its demonstrated applications. We also provide perspectives on future technology improvement and applications.

  18. Enhanced visible light photocatalytic activity of copper-doped titanium oxide-zinc oxide heterojunction for methyl orange degradation

    Science.gov (United States)

    Dorraj, Masoumeh; Alizadeh, Mahdi; Sairi, Nor Asrina; Basirun, Wan Jefrey; Goh, Boon Tong; Woi, Pei Meng; Alias, Yatimah

    2017-08-01

    A novel Cu-doped TiO2 coupled with ZnO nanoparticles (Cu-TiO2/ZnO) was prepared by sol-gel method and subsequent precipitation for methyl orange (MO) photodegradation under visible light irradiation. The compositions and shapes of the as-prepared Cu-TiO2/ZnO nanocomposites were characterized by photoluminescence spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, UV-vis diffuse reflectance spectra and Brunauer-Emmett-Teller adsorption isotherm techniques. The Cu-TiO2/ZnO nanocomposites showed considerably higher photocatalytic activity for MO removal from water under visible light irradiation than that of single-doped semiconductors. The effects of Cu-TiO2 and ZnO mass ratios on the photocatalytic reaction were also studied. A coupling percentage of 30% ZnO exhibited the highest photocatalytic activity. The enhanced photocatalytic activity of the Cu-TiO2/ZnO nanocomposites was mainly attributed to heterojunction formation, which allowed the efficient separation of photoinduced electron-hole pairs at the interface. Moreover, these novel nanocomposites could be recycled during MO degradation in a three-cycle experiment without evident deactivation, which is particularly important in environmental applications.

  19. Fabrication of TiO{sub 2}/Ag{sub 2}O heterostructure with enhanced photocatalytic and antibacterial activities under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bingkun, E-mail: liubk2015@zzuli.edu.cn [School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002 (China); Mu, Lilong; Han, Bing [School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002 (China); Zhang, Jingtao [School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002 (China); Shi, Hengzhen, E-mail: shihz@zzuli.edu.cn [School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002 (China)

    2017-02-28

    Highlights: • TiO{sub 2}/Ag{sub 2}O composite photocatalyst was synthesized successfully. • The composites show better photocatalytic activity for MB under visible light. • The composites also possess good antibacterial properties. • The mechanism of enhanced photocatalytic activities was investigated. - Abstract: TiO{sub 2}/Ag{sub 2}O heterostructure prepared by a facile in situ precipitation route was used as an effective visible light-driven photocatalyst for degradation of methylene blue (MB) and inactivation of E. coli. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) revealed that Ag{sub 2}O nanoparticles were well distributed on the surface of TiO{sub 2} microspheres. The TiO{sub 2}/Ag{sub 2}O composite with optimal mass ratio of TiO{sub 2} and Ag{sub 2}O displayed extremely good photodegradation ability and antibacterial capability under visible light irradiation, which was mainly ascribed to the synergistic effect between Ag{sub 2}O and TiO{sub 2,} including highly dispersed smaller Ag{sub 2}O particles, increased visible light absorption and efficient separation of photo-induced charge carriers. Meanwhile, the roles of the radical species in the photocatalysis process were investigated. Our results showed that the TiO{sub 2}/Ag{sub 2}O could be used as a dual functional material in water treatment of removing the organic pollutant and killing the bacterium at the same time.

  20. Solvothermal synthesis of stable nanoporous polymeric bases-crystalline TiO2 nanocomposites: visible light active and efficient photocatalysts for water treatment.

    Science.gov (United States)

    Liu, Fujian; Kong, Weiping; Wang, Liang; Noshadi, Iman; Zhang, Zhonghua; Qi, Chenze

    2015-02-27

    Visible light active and stable nanoporous polymeric base-crystalline TiO2 nanocomposites were solvothermally synthesized from in situ copolymerization of divinylbenzene (DVB) with 1-vinylimidazolate (VI) or 4-vinylpyridine (Py) in the presence of tetrabutyl titanate without the use of any other additives (PDVB-VI-TiO2-x, PDVB-Py-TiO2-x, where x stands for the molar ratio of TiO2 to VI or Py), which showed excellent activity with respect to catalyzing the degradation of organic pollutants of p-nitrophenol (PNP) and rhodamine-B (RhB). TEM and SEM images show that PDVB-VI-TiO2-x and PDVB-Py-TiO2-x have abundant nanopores, and TiO2 nanocrystals with a high degree of crystallinity were homogeneously embedded in the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x, forming a stable 'brick-and-mortar' nanostructure. PDVB-VI and PDVB-Py supports act as the glue linking TiO2 nanocrystals to form nanopores and constraining the agglomeration of TiO2 nanocrystals. XPS spectra show evidence of unique interactions between TiO2 and basic sites in these samples. UV diffuse reflectance shows that PDVB-VI-TiO2-x and PDVB-Py-TiO2-x exhibit a unique response to visible light. Catalytic tests show that the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x were active in catalyzing the degradation of PNP and RhB organic pollutants under visible light irradiation. The enhanced activities of the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x were ascribed to synergistic effects between abundant nanopores and the unique optical adsorption of visible light in the samples.

  1. Solvothermal synthesis of stable nanoporous polymeric bases-crystalline TiO2 nanocomposites: visible light active and efficient photocatalysts for water treatment

    Science.gov (United States)

    Liu, Fujian; Kong, Weiping; Wang, Liang; Noshadi, Iman; Zhang, Zhonghua; Qi, Chenze

    2015-02-01

    Visible light active and stable nanoporous polymeric base-crystalline TiO2 nanocomposites were solvothermally synthesized from in situ copolymerization of divinylbenzene (DVB) with 1-vinylimidazolate (VI) or 4-vinylpyridine (Py) in the presence of tetrabutyl titanate without the use of any other additives (PDVB-VI-TiO2-x, PDVB-Py-TiO2-x, where x stands for the molar ratio of TiO2 to VI or Py), which showed excellent activity with respect to catalyzing the degradation of organic pollutants of p-nitrophenol (PNP) and rhodamine-B (RhB). TEM and SEM images show that PDVB-VI-TiO2-x and PDVB-Py-TiO2-x have abundant nanopores, and TiO2 nanocrystals with a high degree of crystallinity were homogeneously embedded in the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x, forming a stable ‘brick-and-mortar’ nanostructure. PDVB-VI and PDVB-Py supports act as the glue linking TiO2 nanocrystals to form nanopores and constraining the agglomeration of TiO2 nanocrystals. XPS spectra show evidence of unique interactions between TiO2 and basic sites in these samples. UV diffuse reflectance shows that PDVB-VI-TiO2-x and PDVB-Py-TiO2-x exhibit a unique response to visible light. Catalytic tests show that the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x were active in catalyzing the degradation of PNP and RhB organic pollutants under visible light irradiation. The enhanced activities of the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x were ascribed to synergistic effects between abundant nanopores and the unique optical adsorption of visible light in the samples.

  2. Alkaline hydrogen peroxide treatment for TiO{sub 2} nanoparticles with superior water-dispersibility and visible-light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chung-Yi; Tu, Kuan-Ju; Lo, Yu-Shiu [Department of Biomedical Engineering and Environmental Sciences, College of Nuclear Science, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Pang, Yean Ling [Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 43000 Kajang, Selangor (Malaysia); Wu, Chien-Hou, E-mail: chwu@mx.nthu.edu.tw [Department of Biomedical Engineering and Environmental Sciences, College of Nuclear Science, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2016-09-15

    Alkaline hydrogen peroxide treatment was proposed as a simple and green way to improve the performance of commercial TiO{sub 2} powder for water-dispersibility and visible-light photocatalytic activity on the degradation of dye pollutants. The performance of treated TiO{sub 2} was evaluated as a function of NaOH concentration, H{sub 2}O{sub 2} concentration, and treatment time. The optimal conditions were determined to be 24 h in 100 mM H{sub 2}O{sub 2} and 8 M NaOH. The treated samples were characterized by Raman spectroscopy, high-resolution transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), and ultraviolet–visible spectrophotometry. The analysis revealed that the crystal structure, morphology, and absorption band gap were retained, but the surface of the treated TiO{sub 2} was dramatically changed. The treated TiO{sub 2} was highly dispersible with a uniform hydrodynamic size of 41 ± 12 nm and stable over months in water at pH 3 without any stabilizing ligand and could significantly enhance the visible-light photodegradation of dye pollutants. The superior performance might be attributed to the formation of abundant surface hydroxyl groups. This treatment paves the way for developing water-dispersible TiO{sub 2} with superior visible-light induced photocatalytic degradation of dye pollutants without any complicated and expensive surface modification. - Highlights: • Alkaline hydrogen peroxide is proposed to treat commercial TiO{sub 2} powder. • The treated TiO{sub 2} powder exhibits superior water-dispersibility with a uniform size distribution. • The treated TiO{sub 2} powder can significantly enhance the visible-light photodegradation of dyes.

  3. Amorphous TiO2 doped with carbon for visible light photodegradation of rhodamine B and 4-chlorophenol

    International Nuclear Information System (INIS)

    Shao, Penghui; Tian, Jiayu; Zhao, Zhiwei; Shi, Wenxin; Gao, Shanshan; Cui, Fuyi

    2015-01-01

    Graphical abstract: - Highlights: • Amorphous TiO 2 doped with carbon is prepared as a visible photocatalyst. • RhB and 4-chlorophenol are decomposed effectively by carbon-doped amorphous TiO 2 . • The mechanism for visible light photocatalysis is discussed detailedly. - Abstract: Visible light photocatalytic activity of amorphous TiO 2 doped with carbon is prepared by a facile sol-gel route for the first time. The most active sample with mesostructure of amorphous phase, high surface area (273 m 2 g −1 ) and large pore volume (0.33 cm 3 g −1 ) is identified by X-ray diffractometer, Raman spectrometer, transmission electron microscope and N 2 adsorption–desorption isotherms. In addition, the most active sample is characterized by Fourier transform-infrared spectrometer, X-ray photoelectron spectrometer, UV–vis diffuse reflectance spectrometer and luminescence spectrometer. The results show that the most active sample with oxygenic groups has a narrower bandgap and lower recombination of electron–hole, due to the carbon doping and phase of amorphous. Effective photodegradation capability and stability of rhodamine B and colorless 4-chlorophenol are verified by photocatalytic tests under visible light irradiation. A possible mechanism of amorphous TiO 2 doped with carbon for visible light photocatalysis is proposed. The findings of this paper will provide new insights to design visible light-induced photocatalyst based on amorphous TiO 2 for organic removal

  4. Heterojunctions of p-BiOI Nanosheets/n-TiO2 Nanofibers: Preparation and Enhanced Visible-Light Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Kexin Wang

    2016-01-01

    Full Text Available p-BiOI nanosheets/n-TiO2 nanofibers (p-BiOI/n-TiO2 NFs have been facilely prepared via the electrospinning technique combining successive ionic layer adsorption and reaction (SILAR. Dense BiOI nanosheets with good crystalline and width about 500 nm were uniformly assembled on TiO2 nanofibers at room temperature. The amount of the heterojunctions and the specific surface area were well controlled by adjusting the SILAR cycles. Due to the synergistic effect of p-n heterojunctions and high specific surface area, the obtained p-BiOI/n-TiO2 NFs exhibited enhanced visible-light photocatalytic activity. Moreover, the p-BiOI/n-TiO2 NFs heterojunctions could be easily recycled without decreasing the photocatalytic activity owing to their one-dimensional nanofibrous structure. Based on the above, the heterojunctions of p-BiOI/n-TiO2 NFs may be promising visible-light-driven photocatalysts for converting solar energy to chemical energy in environment remediation.

  5. Reactive magnetron sputtering deposition of bismuth tungstate onto titania nanoparticles for enhancing visible light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Ratova, Marina, E-mail: marina_ratova@hotmail.com [Surface Engineering Group, School of Engineering, Manchester Metropolitan University, Manchester, M1 5GD (United Kingdom); Kelly, Peter J.; West, Glen T. [Surface Engineering Group, School of Engineering, Manchester Metropolitan University, Manchester, M1 5GD (United Kingdom); Tosheva, Lubomira; Edge, Michele [School of Science and the Environment, Manchester Metropolitan University, Manchester M1 5GD (United Kingdom)

    2017-01-15

    Highlights: • Bismuth tungstate coatings were deposited by reactive magnetron sputtering. • Oscillating bowl was introduced to the system to enable coating of nanopartulates. • Deposition of Bi{sub 2}WO{sub 6} enhanced visible light activity of titania nanoparticles. • The best results were obtained for coating with Bi:W ratio of approximately 2:1. • Deposition of Bi{sub 2}WO{sub 6} onto TiO{sub 2} resulted in more efficient electron-hole separation. - Abstract: Titanium dioxide − bismuth tungstate composite materials were prepared by pulsed DC reactive magnetron sputtering of bismuth and tungsten metallic targets in argon/oxygen atmosphere onto anatase and rutile titania nanoparticles. The use of an oscillating bowl placed beneath the two magnetrons arranged in a co-planar closed field configuration enabled the deposition of bismuth tungstate onto loose powders, rather than a solid substrate. The atomic ratio of the bismuth/tungsten coatings was controlled by varying the power applied to each target. The effect of the bismuth tungstate coatings on the phase, optical and photocatalytic properties of titania was investigated by X-ray diffraction, energy-dispersive X-ray spectroscopy (EDX), Brunauer–Emmett–Teller (BET) surface area measurements, transmission electron microscopy (TEM), UV–vis diffuse reflectance spectroscopy and an acetone degradation test. The latter involved measurements of the rate of CO{sub 2} evolution under visible light irradiation of the photocatalysts, which indicated that the deposition of bismuth tungstate resulted in a significant enhancement of visible light activity, for both anatase and rutile titania particles. The best results were achieved for coatings with a bismuth to tungsten atomic ratio of 2:1. In addition, the mechanism by which the photocatalytic activity of the TiO{sub 2} nanoparticles was enhanced by compounding it with bismuth tungstate was studied by microwave cavity perturbation. The results of these

  6. Solvothermal synthesis of graphene-Sb2S3 composite and the degradation activity under visible light

    International Nuclear Information System (INIS)

    Tao, Wenguang; Chang, Jiuli; Wu, Dapeng; Gao, Zhiyong; Duan, Xiaoli; Xu, Fang; Jiang, Kai

    2013-01-01

    Graphical abstract: Display Omitted Highlights: ► Graphene-Sb 2 S 3 composites were synthesized through a facile solvothermal method. ► Hydroxyl radicals are the main species responsible for the photodegradation activity. ► Graphene-Sb 2 S 3 demonstrated dramatically improved visible light degradation activity. -- Abstract: Novel graphene-Sb 2 S 3 (G-Sb 2 S 3 ) composites were synthesized via a facile solvothermal method with graphene oxide (GO), SbCl 3 and thiourea as the reactants. GO played an important role in controlling the size and the distribution of the formed Sb 2 S 3 nanoparticles on the graphene sheets with different density. Due to the negative surface charge, smaller Sb 2 S 3 particles size and efficient electrons transfer from Sb 2 S 3 to graphene, the composites demonstrated improved photodegradation activity on rhodamine B (RhB). Among these composites, the product G-Sb 2 S 3 0.1, which was synthesized with the GO concentration of 0.1 mg/mL, exhibited the highest photodegradation activity owing to the considerable density of Sb 2 S 3 nanoparticles onto graphene sheet free of aggregation. Hydroxyl radicals (·OH) derived from conduction band (CB) electrons of Sb 2 S 3 is suggested to be responsible for the photodegradation of RhB. The high visible light degradation activity and the satisfactory cycling stability made the as-prepared G-Sb 2 S 3 0.1 an applicable photocatalyst.

  7. Effect of nickel doping on the photocatalytic activity of ZnO thin films under UV and visible light

    International Nuclear Information System (INIS)

    Kaneva, Nina V.; Dimitrov, Dimitre T.; Dushkin, Ceco D.

    2011-01-01

    Nanostructured ZnO thin films with different concentrations of Ni 2+ doping (0, 1, 5, 10 and 15 wt.%) are prepared by the sol-gel method for the first time. The thin films are prepared from zinc acetate, 2-methoxyethanol and monoethanolamine on glass substrates by using dip coating method. The films comprise of ZnO nanocrystallites with hexagonal crystal structure, as revealed by X-ray diffraction. The film surface is with characteristic ganglia-like structure as observed by Scanning Electron Microscopy. Furthermore, the Ni-doped films are tested with respect to the photocatalysis in aqueous solutions of malachite green upon UV-light illumination, visible light and in darkness. The initial concentration of malachite green and the amount of catalyst are varied during the experiments. It is found that increasing of the amount of Ni 2+ ions with respect to ZnO generally lowers the photocatalytic activity in comparison with the pure ZnO films. Nevertheless, all films exhibit a substantial activity under both, UV and visible light and in darkness as well, which is promising for the development of new ZnO photocatalysts by the sol-gel method.

  8. Facile synthesis of cobalt-doped zinc oxide thin films for highly efficient visible light photocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Altintas Yildirim, Ozlem, E-mail: ozlemaltintas@gmail.com [Department of Metallurgical and Materials Engineering, Selcuk University, Konya (Turkey); Arslan, Hanife; Sönmezoğlu, Savaş [Department of Metallurgical and Materials Engineering, Karamanoglu Mehmetbey University, Karaman (Turkey); Nanotechnology R& D Laboratory, Karamanoglu Mehmetbey University, Karaman (Turkey)

    2016-12-30

    Highlights: • Photocatalytically active Co-ZnO thin film was obtained by sol-gel method. • Co{sup 2+} doping narrowed the band gap of pure ZnO to an extent of 3.18 eV. • Co-ZnO was effective in MB degradation under visible light. • Optimum dopant content to show high performance was 3 at.%. - Abstract: Cobalt-doped zinc oxide (Co:ZnO) thin films with dopant contents ranging from 0 to 5 at.% were prepared using the sol–gel method, and their structural, morphological, optical, and photocatalytic properties were characterized. The effect of the dopant content on the photocatalytic properties of the films was investigated by examining the degradation behavior of methylene blue (MB) under visible light irradiation, and a detailed investigation of their photocatalytic activities was performed by determining the apparent quantum yields (AQYs). Co{sup 2+} ions were observed to be substitutionally incorporated into Zn{sup 2+} sites in the ZnO crystal, leading to lattice parameter constriction and band gap narrowing due to the photoinduced carriers produced under the visible light irradiation. Thus, the light absorption range of the Co:ZnO films was improved compared with that of the undoped ZnO film, and the Co:ZnO films exhibited highly efficient photocatalytic activity (∼92% decomposition of MB after 60-min visible light irradiation for the 3 at.% Co:ZnO film). The AQYs of the Co:ZnO films were greatly enhanced under visible light irradiation compared with that of the undoped ZnO thin film, demonstrating the effect of the Co doping level on the photocatalytic activity of the films.

  9. Recyclable UV and visible light photocatalytically active amorphous TiO2 doped with M (III) ions (M = Cr and Fe)

    International Nuclear Information System (INIS)

    Buddee, Supat; Wongnawa, Sumpun; Sirimahachai, Uraiwan; Puetpaibool, Walailak

    2011-01-01

    Research highlights: → The low photocatalytic activity of amorphous TiO2 was enhanced by doping with Cr(III) or Fe(III) ions. → The doped catalysts performed close to P25 under UV light and better with visible light. → The doped catalysts can be recycled. - Abstract: Samples of amorphous TiO 2 doped with Cr(III) and Fe(III), designated as Cr-TiO 2 and Fe-TiO 2 , were prepared via modified impregnation method. The resulting products were characterized by X-ray diffraction, scanning electron microscopy, specific surface area by the Brunauer, Emmett and Teller method, UV-vis absorption and diffuse reflectance spectroscopy, and electron spin resonance spectroscopy. Experimental results revealed that the concentrations of dopants under studied, from 0.05 to 0.2 mol%, had no effect on the phase of products. The band gap energies shifted from 3.28 eV in the undoped amorphous TiO 2 to 2.50 eV and 2.86 eV for Fe-TiO 2 and Cr-TiO 2 , respectively. The doped amorphous TiO 2 showed photocatalytic activities under both UV and visible light with optimal results at 0.1 mol% dopants. Under UV irradiation, the 0.1 mol% doped samples decolorized methylene blue solutions to the same extent as the commercial TiO 2 samples (P25 and anatase) in 5 h. Under visible light, the doped samples decolorized dye solutions in 12 h while the commercial ones were much less active. The used catalysts can be recycled many times without any special treatment.

  10. Vertically aligned ZnO@CdS nanorod heterostructures for visible light photoinactivation of bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Zirak, M. [Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of); Akhavan, O., E-mail: oakhavan@sharif.edu [Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 14588-89694, Tehran (Iran, Islamic Republic of); Moradlou, O. [Department of Chemistry, Faculty of Sciences, Alzahra University, P.O. Box 1993893973, Tehran (Iran, Islamic Republic of); Nien, Y.T. [Department of Materials Science and Engineering, National Formosa University, Huwei District, Taiwan (China); Moshfegh, A.Z. [Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 14588-89694, Tehran (Iran, Islamic Republic of)

    2014-03-25

    Highlights: • Synthesis of vertically aligned ZnO@CdS nanorod heterostructures. • Effective antibacterial application of the ZnO@CdS nanorods under visible light irradiation. • Determination of the optimum loading of CdS on the ZnO nanorods in the antibacterial application. -- Abstract: Vertically aligned ZnO@CdS nanorod heterostructure films with various loadings of CdS nanoparticle shell were synthesized and applied in photoinactivation of Escherichia coli bacteria under visible light irradiation. While neither the bare ZnO nanorods (with band-gap energy (E{sub g}) of ∼3.28 eV) under visible light irradiation nor the nanorod heterostructures in dark exhibited any significant antibacterial activity, the ZnO@CdS nanorod heterostructures (with E{sub g} ∼2.5–2.6 eV) could successfully inactivate the bacteria under visible light irradiation. Furthermore, it was found that an optimum loading of the CdS shell (corresponding to the effective thickness less than ∼15 nm) is required to achieve a complete inactivation of the bacteria after 24 h visible light irradiation at room temperature. Using X-ray photoelectron spectroscopy, the lower photoinactivation efficiencies of the ZnO@CdS nanorod heterostructure at CdS thicknesses lower and higher than the optimum one were assigned to lower amounts of CdS nanoparticles and OH bonds (substantially existed on the hydrothermally synthesized ZnO nanorods) which are responsible for absorption of the visible light and production of hydroxyl radicals, respectively. Water contact angle measurements showed that the sample with more surface OH groups has a more hydrophilic surface and so more antibacterial activity.

  11. Vertically aligned ZnO@CdS nanorod heterostructures for visible light photoinactivation of bacteria

    International Nuclear Information System (INIS)

    Zirak, M.; Akhavan, O.; Moradlou, O.; Nien, Y.T.; Moshfegh, A.Z.

    2014-01-01

    Highlights: • Synthesis of vertically aligned ZnO@CdS nanorod heterostructures. • Effective antibacterial application of the ZnO@CdS nanorods under visible light irradiation. • Determination of the optimum loading of CdS on the ZnO nanorods in the antibacterial application. -- Abstract: Vertically aligned ZnO@CdS nanorod heterostructure films with various loadings of CdS nanoparticle shell were synthesized and applied in photoinactivation of Escherichia coli bacteria under visible light irradiation. While neither the bare ZnO nanorods (with band-gap energy (E g ) of ∼3.28 eV) under visible light irradiation nor the nanorod heterostructures in dark exhibited any significant antibacterial activity, the ZnO@CdS nanorod heterostructures (with E g ∼2.5–2.6 eV) could successfully inactivate the bacteria under visible light irradiation. Furthermore, it was found that an optimum loading of the CdS shell (corresponding to the effective thickness less than ∼15 nm) is required to achieve a complete inactivation of the bacteria after 24 h visible light irradiation at room temperature. Using X-ray photoelectron spectroscopy, the lower photoinactivation efficiencies of the ZnO@CdS nanorod heterostructure at CdS thicknesses lower and higher than the optimum one were assigned to lower amounts of CdS nanoparticles and OH bonds (substantially existed on the hydrothermally synthesized ZnO nanorods) which are responsible for absorption of the visible light and production of hydroxyl radicals, respectively. Water contact angle measurements showed that the sample with more surface OH groups has a more hydrophilic surface and so more antibacterial activity

  12. Microwave-Hydrothermal Synthesis of SnO2-CNTs Hybrid Nanocomposites with Visible Light Photocatalytic Activity.

    Science.gov (United States)

    Wu, Shuisheng; Dai, Weili

    2017-03-03

    SnO2 nanoparticles coated on carbon nanotubes (CNTs) were prepared via a simple microwave-hydrothermal route. The as-obtained SnO2-CNTs composites were characterized using X-ray powder diffraction, Raman spectroscopy, and transmission electron microscopy. The photocatalytic activity of as-prepared SnO2-CNTs for degradation of Rhodamine B under visible light irradiation was investigated. The results show that SnO2-CNTs nanocomposites have a higher photocatalytic activity than pure SnO2 due to the rapid transferring of electrons and the effective separation of holes and electrons on SnO2-CNTs.

  13. Structural Design Principle of Small-Molecule Organic Semiconductors for Metal-Free, Visible-Light-Promoted Photocatalysis.

    Science.gov (United States)

    Wang, Lei; Huang, Wei; Li, Run; Gehrig, Dominik; Blom, Paul W M; Landfester, Katharina; Zhang, Kai A I

    2016-08-08

    Herein, we report on the structural design principle of small-molecule organic semiconductors as metal-free, pure organic and visible light-active photocatalysts. Two series of electron-donor and acceptor-type organic semiconductor molecules were synthesized to meet crucial requirements, such as 1) absorption range in the visible region, 2) sufficient photoredox potential, and 3) long lifetime of photogenerated excitons. The photocatalytic activity was demonstrated in the intermolecular C-H functionalization of electron-rich heteroaromates with malonate derivatives. A mechanistic study of the light-induced electron transport between the organic photocatalyst, substrate, and the sacrificial agent are described. With their tunable absorption range and defined energy-band structure, the small-molecule organic semiconductors could offer a new class of metal-free and visible light-active photocatalysts for chemical reactions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Facile synthesis and enhanced visible light photocatalytic activity of N and Zr co-doped TiO2 nanostructures from nanotubular titanic acid precursors

    Science.gov (United States)

    Zhang, Min; Yu, Xinluan; Lu, Dandan; Yang, Jianjun

    2013-12-01

    Zr/N co-doped TiO2 nanostructures were successfully synthesized using nanotubular titanic acid (NTA) as precursors by a facile wet chemical route and subsequent calcination. These Zr/N-doped TiO2 nanostructures made by NTA precursors show significantly enhanced visible light absorption and much higher photocatalytic performance than the Zr/N-doped P25 TiO2 nanoparticles. Impacts of Zr/N co-doping on the morphologies, optical properties, and photocatalytic activities of the NTA precursor-based TiO2 were thoroughly investigated. The origin of the enhanced visible light photocatalytic activity is discussed in detail.

  15. Visible Light Communication Systems Conception and VIDAS

    OpenAIRE

    Kumar, Navin; Lourenço, Nuno; Spiez, Michal; Aguiar, Rui L

    2008-01-01

    Visible Light Communication (VLC) using LEDs is emerging as a key technology for a ubiquitous communication system, because LED has the advantages of fast switching, long life expectancy, being less expensive and being visible light that is safe for the human body. The VLC system is expected to undergo rapid progress, inspiring numerous indoor and outdoor applications; however, many technical issues need to be addressed, especially in outdoor environment. In order to provide a better understa...

  16. The Development of Visible-Light Photoredox Catalysis in Flow.

    Science.gov (United States)

    Garlets, Zachary J; Nguyen, John D; Stephenson, Corey R J

    2014-04-01

    Visible-light photoredox catalysis has recently emerged as a viable alternative for radical reactions otherwise carried out with tin and boron reagents. It has been recognized that by merging photoredox catalysis with flow chemistry, slow reaction times, lower yields, and safety concerns may be obviated. While flow reactors have been successfully applied to reactions carried out with UV light, only recent developments have demonstrated the same potential of flow reactors for the improvement of visible-light-mediated reactions. This review examines the initial and continuing development of visible-light-mediated photoredox flow chemistry by exemplifying the benefits of flow chemistry compared with conventional batch techniques.

  17. Ternary ZnO/AgI/Ag2CO3 nanocomposites: Novel visible-light-driven photocatalysts with excellent activity in degradation of different water pollutants

    International Nuclear Information System (INIS)

    Golzad-Nonakaran, Behrouz; Habibi-Yangjeh, Aziz

    2016-01-01

    ZnO/AgI/Ag 2 CO 3 nanocomposites with different Ag 2 CO 3 contents were fabricated by a facile ultrasonic-irradiation method. The resultant samples were fairly characterized using XRD, EDX, SEM, TEM, UV–vis DRS, FT-IR, and PL techniques to reveal their microstructure, purity, morphology, and spectroscopic properties. Photocatalytic activity of the prepared samples was investigated by photodegradation of four dye pollutants (rhodamine B, methyl orange, methylene blue, and fuchsine) under visible-light irradiation. The photocatalytic experiments in degradation of rhodamine B showed that the ternary ZnO/AgI/Ag 2 CO 3 (30%) nanocomposite has an enhanced activity nearly 19 and 14 times higher than those of the binary ZnO/Ag 2 CO 3 and ZnO/AgI photocatalysts, respectively. Based on the obtained results, the highly enhanced activity was attributed to generation of more electron-hole pairs under visible-light irradiation and separation of the photogenerated charge carriers due to formation of tandem n-n heterojunctions between counterparts of the nanocomposite. The active species trapping experiments were also examined and it was showed that superoxide ion radicals play a vital role in the photocatalytic degradation reaction. More importantly, the ternary photocatalyst demonstrated good photostability. - Highlights: • ZnO/AgI/Ag 2 CO 3 nanocomposites were fabricated by an ultrasonic-irradiation method. • The activity was investigated by photodegradation of four dyes under visible light. • ZnO/AgI/Ag 2 CO 3 (30%) nanocomposite has the best activity under visible light. • Activity is 19 and 14-folds higher than ZnO/Ag 2 CO 3 and ZnO/AgI in degradation of RhB.

  18. Ag{sub 2}CO{sub 3}/UiO-66(Zr) composite with enhanced visible-light promoted photocatalytic activity for dye degradation

    Energy Technology Data Exchange (ETDEWEB)

    Sha, Zhou [Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 (Singapore); NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, #02-01, 117411 (Singapore); Chan, Hardy Sze On [Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 (Singapore); Wu, Jishan, E-mail: chmwuj@nus.edu.sg [Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 (Singapore); NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, #02-01, 117411 (Singapore)

    2015-12-15

    Highlights: • UiO-66 was an outstanding substrate due to its superior properties and stability. • Ag{sub 2}CO{sub 3}/UiO-66 photocatalyst was synthesized by a simple solution method. • Ag{sub 2}CO{sub 3}/UiO-66 had excellent RhB degrading activity under visible-light irradiation. • Higher surface area of Ag{sub 2}CO{sub 3} in Ag{sub 2}CO{sub 3}/UiO-66 led to the enhanced activity. • Diverse active species may participate in the process of RhB degradation. - Abstract: Because of their excellent properties, metal-organic frameworks (MOFs) are considered as ideal materials for the development of visible-light photocatalyst. Particularly, although increasing research interests have been put on MOF based photocatalysts, the MOF supported Ag{sub 2}CO{sub 3} as photocatalyst has not been reported in the field of water treatment. In this study, a zirconium based MOF, UiO-66, was incorporated with Ag{sub 2}CO{sub 3} through a convenient solution method and used for visible-light prompted dye degradation. Compared to the mixture of pristine UiO-66 and Ag{sub 2}CO{sub 3}, the developed Ag{sub 2}CO{sub 3}/UiO-66 composite exhibited enhanced photocatalytic activity to the degradation of rhodamine B (RhB) under visible-light irradiation. It was supposed that the participation of UiO-66 during the synthesis of Ag{sub 2}CO{sub 3} was crucial for such improvement. In addition, the Ag{sub 2}CO{sub 3}/UiO-66 composite demonstrated good structural stability after the degradation experiment, and most of its photocatalytic activity was still preserved after the recycle test. Moreover, the photocatalytic mechanism of the Ag{sub 2}CO{sub 3}/UiO-66 composite was investigated and a possible pathway of RhB degradation was also proposed.

  19. A Novel Heterostructure of BiOI Nanosheets Anchored onto MWCNTs with Excellent Visible-Light Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Shijie Li

    2017-01-01

    Full Text Available Developing efficient visible-light-driven (VLD photocatalysts for environmental decontamination has drawn significant attention in recent years. Herein, we have reported a novel heterostructure of multiwalled carbon nanotubes (MWCNTs coated with BiOI nanosheets as an efficient VLD photocatalyst, which was prepared via a simple solvothermal method. The morphology and structure were characterized by powder X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM, UV-Vis diffuse reflectance spectroscopy (DRS, and specific surface area measurements. The results showed that BiOI nanosheets were well deposited on MWCNTs. The MWCNTs/BiOI composites exhibited remarkably enhanced photocatalytic activity for the degradation of rhodamine B (RhB, methyl orange (MO, and para-chlorophenol (4-CP under visible-light, compared with pure BiOI. When the MWCNTs content is 3 wt %, the MWCNTs/BiOI composite (3%M-Bi achieves the highest activity, which is even higher than that of a mechanical mixture (3 wt % MWCNTs + 97 wt % BiOI. The superior photocatalytic activity is predominantly due to the strong coupling interface between MWCNTs and BiOI, which significantly promotes the efficient electron-hole separation. The photo-induced holes (h+ and superoxide radicals (O2− mainly contribute to the photocatalytic degradation of RhB over 3%M-Bi. Therefore, the MWCNTs/BiOI composite is expected to be an efficient VLD photocatalyst for environmental purification.

  20. Security in Visible Light Communication: Novel Challenges and Opportunities

    Directory of Open Access Journals (Sweden)

    Christian ROHNER

    2015-09-01

    Full Text Available As LED lighting becomes increasingly ubiquitous, Visible Light Communication is attracting the interest of academia and industry as a complement to RF as the physical layer for the Internet of Things. Aside from its much greater spectral availability compared to RF, visible light has several attractive properties that may promote its uptake: its lack of health risks, its opportunities for spatial reuse, its relative immunity to multipath fading, its lack of electromagnetic interference, and its inherently secure nature: differently from RF, light does not penetrate through walls. In this paper, we outline the security implications of Visible Light Communication, review the existing contributions to this under-explored space, and survey the research opportunities that we envision for the near future.

  1. Luminescence- and nanoparticle-mediated increase of light absorption by photoreceptor cells: Converting UV light to visible light

    OpenAIRE

    Li, Lei; Sahi, Sunil K.; Peng, Mingying; Lee, Eric B.; Ma, Lun; Wojtowicz, Jennifer L.; Malin, John H.; Chen, Wei

    2016-01-01

    We developed new optic devices ? singly-doped luminescence glasses and nanoparticle-coated lenses that convert UV light to visible light ? for improvement of visual system functions. Tb3+ or Eu3+ singly-doped borate glasses or CdS-quantum dot (CdS-QD) coated lenses efficiently convert UV light to 542?nm or 613?nm wavelength narrow-band green or red light, or wide-spectrum white light, and thereby provide extra visible light to the eye. In zebrafish (wild-type larvae and adult control animals,...

  2. Can visible light impact litter decomposition under pollution of ZnO nanoparticles?

    Science.gov (United States)

    Du, Jingjing; Zhang, Yuyan; Liu, Lina; Qv, Mingxiang; Lv, Yanna; Yin, Yifei; Zhou, Yinfei; Cui, Minghui; Zhu, Yanfeng; Zhang, Hongzhong

    2017-11-01

    ZnO nanoparticles is one of the most used materials in a wide range including antibacterial coating, electronic device, and personal care products. With the development of nanotechnology, ecotoxicology of ZnO nanoparticles has been received increasing attention. To assess the phototoxicity of ZnO nanoparticles in aquatic ecosystem, microcosm experiments were conducted on Populus nigra L. leaf litter decomposition under combined effect of ZnO nanoparticles and visible light radiation. Litter decomposition rate, pH value, extracellular enzyme activity, as well as the relative contributions of fungal community to litter decomposition were studied. Results showed that long-term exposure to ZnO nanoparticles and visible light led to a significant decrease in litter decomposition rate (0.26 m -1 vs 0.45 m -1 ), and visible light would increase the inhibitory effect (0.24 m -1 ), which caused significant decrease in pH value of litter cultures, fungal sporulation rate, as well as most extracellular enzyme activities. The phototoxicity of ZnO nanoparticles also showed impacts on fungal community composition, especially on the genus of Varicosporium, whose abundance was significantly and positively related to decomposition rate. In conclusion, our study provides the evidence for negatively effects of ZnO NPs photocatalysis on ecological process of litter decomposition and highlights the contribution of visible light radiation to nanoparticles toxicity in freshwater ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Visible light photoelectrocatalysis with salicylic acid-modified TiO2 nanotube array electrode for p-nitrophenol degradation

    International Nuclear Information System (INIS)

    Wang Xin; Zhao Huimin; Quan Xie; Zhao Yazhi; Chen Shuo

    2009-01-01

    This research focused on immersion method synthesis of visible light active salicylic acid (SA)-modified TiO 2 nanotube array electrode and its photoelectrocatalytic (PEC) activity. The SA-modified TiO 2 nanotube array electrode was synthesized by immersing in SA solution with an anodized TiO 2 nanotube array electrode. Scanning electron microscope (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), infrared spectroscopy (IR), UV-vis diffuse reflectance spectrum (DRS), and Surface photovoltage (SPV) were used to characterize this electrode. It was found that SA-modified TiO 2 nanotube array electrode absorbed well into visible region and exhibited enhanced visible light PEC activity on the degradation of p-nitrophenol (PNP). The degradation efficiencies increased from 63 to 100% under UV light, and 79-100% under visible light (λ > 400 nm), compared with TiO 2 nanotube array electrode. The enhanced PEC activity of SA-modified TiO 2 nanotube array electrode was attributed to the amount of surface hydroxyl groups introduced by SA-modification and the extension of absorption wavelength range.

  4. Luminescence- and nanoparticle-mediated increase of light absorption by photoreceptor cells: Converting UV light to visible light.

    Science.gov (United States)

    Li, Lei; Sahi, Sunil K; Peng, Mingying; Lee, Eric B; Ma, Lun; Wojtowicz, Jennifer L; Malin, John H; Chen, Wei

    2016-02-10

    We developed new optic devices - singly-doped luminescence glasses and nanoparticle-coated lenses that convert UV light to visible light - for improvement of visual system functions. Tb(3+) or Eu(3+) singly-doped borate glasses or CdS-quantum dot (CdS-QD) coated lenses efficiently convert UV light to 542 nm or 613 nm wavelength narrow-band green or red light, or wide-spectrum white light, and thereby provide extra visible light to the eye. In zebrafish (wild-type larvae and adult control animals, retinal degeneration mutants, and light-induced photoreceptor cell degeneration models), the use of Tb(3+) or Eu(3+) doped luminescence glass or CdS-QD coated glass lenses provide additional visible light to the rod and cone photoreceptor cells, and thereby improve the visual system functions. The data provide proof-of-concept for the future development of optic devices for improvement of visual system functions in patients who suffer from photoreceptor cell degeneration or related retinal diseases.

  5. Synthesis and visible-light-induced catalytic activity of Ag{sub 2}S-coupled TiO{sub 2} nanoparticles and nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Xie Yi; Heo, Sung Hwan; Kim, Yong Nam; Yoo, Seung Hwa; Cho, Sung Oh, E-mail: socho@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), 373-1 Guseong, Yuseong, Daejeon 305-701 (Korea, Republic of)

    2010-01-08

    We present the synthesis and visible-light-induced catalytic activity of Ag{sub 2}S-coupled TiO{sub 2} nanoparticles (NPs) and TiO{sub 2} nanowires (NWs). Through a simple wet chemical process from a mixture of peroxo titanic acid (PTA) solution, thiourea and AgAc, a composite of Ag{sub 2}S NPs and TiO{sub 2} NPs with sizes of less than 7 nm was formed. When the NP composite was further treated with NaOH solution followed by annealing at ambient conditions, a new nanocomposite material comprising Ag{sub 2}S NPs on TiO{sub 2} NWs was created. Due to the coupling with such a low bandgap material as Ag{sub 2}S, the TiO{sub 2} nanocomposites could have a visible-light absorption capability much higher than that of pure TiO{sub 2}. As a result, the synthesized Ag{sub 2}S/TiO{sub 2} nanocomposites exhibited much higher catalytic efficiency for the decomposition of methyl orange than commercial TiO{sub 2} (Degussa P25, Germany) under visible light.

  6. Photoelectrocatalytic activity of liquid phase deposited α-Fe2O3 films under visible light illumination

    International Nuclear Information System (INIS)

    Zhang, Man; Pu, Wenhong; Pan, Shichang; Okoth, Otieno Kevin; Yang, Changzhu; Zhang, Jingdong

    2015-01-01

    Liquid phase deposition (LPD) technique was employed to prepare α-Fe 2 O 3 films for photoelectrocatalytic degradation of pollutants. The obtained LPD films were characterized by various surface analysis techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and X-ray photoelectron spectroscopy (XPS). The results indicated that α-Fe 2 O 3 films with porous structure were successfully deposited on the titanium substrates by the LPD process. The UV–Visible diffuse reflectance spectroscopic (DRS) analysis showed that the obtained LPD α-Fe 2 O 3 film mainly absorbed visible light, which was advantageous to the utilization of solar energy. Under visible light illumination, the Fe 2 O 3 film electrodes exhibited sensitive photocurrent responses, which were affected by the calcination temperature. Consistent with the photocurrent analysis, the α-Fe 2 O 3 film calcined at 600 °C showed the best photoelectrocatalytic performance, and different organic pollutants such as methyl orange (MO) and p-nitrophenol (PNP) were effectively degraded over the LPD film electrode by photoelectrocatalytic treatment under visible light illumination. - Highlights: • α-Fe 2 O 3 film is prepared by liquid phase deposition process. • LPD α-Fe 2 O 3 film has a porous structure and absorbs visible light. • Calcination temperature shows a significant effect on the PEC performance of α-Fe 2 O 3 film. • α-Fe 2 O 3 film is efficient for photoelectrocatalytic degradation of pollutants

  7. Hydrothermal Synthesis of Nitrogen-Doped Titanium Dioxide and Evaluation of Its Visible Light Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Junjie Qian

    2012-01-01

    Full Text Available Nitrogen-doped titanium dioxide (N-doped TiO2 photocatalyst was synthesized from nanotube titanic acid (denoted as NTA; molecular formula H2Ti2O5·H2O precursor via a hydrothermal route in ammonia solution. As-synthesized N-doped TiO2 catalysts were characterized by means of X-ray diffraction, transmission electron microscopy, diffuse reflectance spectrometry, X-ray photoelectron spectroscopy, electron spin resonance spectrometry and Fourier transform infrared spectrometry. It was found that nanotube ammonium titanate (NAT was produced as an intermediate during the preparation of N-doped TiO2 from NTA, as evidenced by the N1s X-ray photoelectron spectroscopic peak of NH4 + at 401.7 eV. The catalyst showed much higher activities to the degradation of methylene blue and p-chlorophenol under visible light irradiation than Degussa P25. This could be attributed to the enhanced absorption of N-doped TiO2 in visible light region associated with the formation of single-electron-trapped oxygen vacancies and the inhibition of recombination of photo-generated electron-hole pair by doped nitrogen.

  8. Fabrication of Z-scheme plasmonic photocatalyst Ag@AgBr/g-C3N4 with enhanced visible-light photocatalytic activity

    International Nuclear Information System (INIS)

    Yang, Yuxin; Guo, Wan; Guo, Yingna; Zhao, Yahui; Yuan, Xing; Guo, Yihang

    2014-01-01

    Graphical abstract: - Highlights: • Z-scheme plasmonic photocatalyst of Ag@AgBr/g-C 3 N 4 is prepared for the first time. • Ag@AgBr/g-C 3 N 4 shows enhanced visible-light photocatalytic activity. • Photocatalytic mechanism based on the experimental results is revealed. • Photocatalytic degradation pathway of MO is put forward. - Abstract: A series of Ag@AgBr grafted graphitic carbon nitride (Ag@AgBr/g-C 3 N 4 ) plasmonic photocatalysts are fabricated through photoreducing AgBr/g-C 3 N 4 hybrids prepared by deposition–precipitation method. The phase and chemical structures, electronic and optical properties as well as morphologies of Ag@AgBr/g-C 3 N 4 heterostructures are well-characterized. Subsequently, the photocatalytic activity of Ag@AgBr/g-C 3 N 4 is evaluated by the degradation of methyl orange (MO) and rhodamin B (RB) under visible-light irradiation. The enhanced photocatalytic activity of Ag@AgBr/g-C 3 N 4 compared with g-C 3 N 4 and Ag@AgBr is obtained and explained in terms of the efficient visible-light utilization efficiency as well as the construction of Z-scheme, which keeps photogenerated electrons and holes with high reduction and oxidation capability, evidenced by photoelectrochemical tests and free radical and hole scavenging experiments. Based on the intermediates identified in the reaction system, the photocatalytic degradation pathway of MO is put forward

  9. Disparity in Cutaneous Pigmentary Response to LED vs Halogen Incandescent Visible Light: Results from a Single Center, Investigational Clinical Trial Determining a Minimal Pigmentary Visible Light Dose.

    Science.gov (United States)

    Soleymani, Teo; Cohen, David E; Folan, Lorcan M; Okereke, Uchenna R; Elbuluk, Nada; Soter, Nicholas A

    2017-11-01

    Background: While most of the attention regarding skin pigmentation has focused on the effects of ultraviolet radiation, the cutaneous effects of visible light (400 to 700nm) are rarely reported. The purpose of this study was to investigate the cutaneous pigmentary response to pure visible light irradiation, examine the difference in response to different sources of visible light irradiation, and determine a minimal pigmentary dose of visible light irradiation in melanocompetent subjects with Fitzpatrick skin type III - VI. The study was designed as a single arm, non-blinded, split-side dual intervention study in which subjects underwent visible light irradiation using LED and halogen incandescent light sources delivered at a fluence of 0.14 Watts/cm2 with incremental dose progression from 20 J/cm2 to 320 J/cm2. Pigmentation was assessed by clinical examination, cross-polarized digital photography, and analytic colorimetry. Immediate, dose-responsive pigment darkening was seen with LED light exposure in 80% of subjects, beginning at 60 Joules. No pigmentary changes were seen with halogen incandescent light exposure at any dose in any subject. This study is the first to report a distinct difference in cutaneous pigmentary response to different sources of visible light, and the first to demonstrate cutaneous pigment darkening from visible LED light exposure. Our findings raise the concern that our increasing daily artificial light surroundings may have clandestine effects on skin biology. J Drugs Dermatol. 2017;16(11):1105-1110..

  10. Orbital Angular Momentum Multiplexing over Visible Light Communication Systems

    Science.gov (United States)

    Tripathi, Hardik Rameshchandra

    This thesis proposes and explores the possibility of using Orbital Angular Momentum multiplexing in Visible Light Communication system. Orbital Angular Momentum is mainly applied for laser and optical fiber transmissions, while Visible Light Communication is a technology using the light as a carrier for wireless communication. In this research, the study of the state of art and experiments showing some results on multiplexing based on Orbital Angular Momentum over Visible Light Communication system were done. After completion of the initial stage; research work and simulations were performed on spatial multiplexing over Li-Fi channel modeling. Simulation scenarios which allowed to evaluate the Signal-to-Noise Ratio, Received Power Distribution, Intensity and Illuminance were defined and developed.

  11. Highly antibacterial activity of N-doped TiO2 thin films coated on stainless steel brackets under visible light irradiation

    International Nuclear Information System (INIS)

    Cao, Shuai; Liu, Bo; Fan, Lingying; Yue, Ziqi; Liu, Bin; Cao, Baocheng

    2014-01-01

    In this study, the radio frequency (RF) magnetron sputtering method was used to prepare a TiO 2 thin film on the surface of stainless steel brackets. Eighteen groups of samples were made according to the experimental parameters. The crystal structure and surface morphology were characterized by X-ray diffraction, and scanning electron microscopy, respectively. The photocatalytic properties under visible light irradiation were evaluated by measuring the degradation ratio of methylene blue. The sputtering temperature was set at 300 °C, and the time was set as 180 min, the ratio of Ar to N was 30:1, and annealing temperature was set at 450 °C. The thin films made under these parameters had the highest visible light photocatalytic activity of all the combinations of parameters tested. Antibacterial activities of the selected thin films were also tested against Lactobacillus acidophilus and Candida albicans. The results demonstrated the thin film prepared under the parameters above showed the highest antibacterial activity.

  12. UV and visible light photocatalytic activity of Au/TiO2 nanoforests with Anatase/Rutile phase junctions and controlled Au locations.

    Science.gov (United States)

    Yu, Yang; Wen, Wei; Qian, Xin-Yue; Liu, Jia-Bin; Wu, Jin-Ming

    2017-01-24

    To magnify anatase/rutile phase junction effects through appropriate Au decorations, a facile solution-based approach was developed to synthesize Au/TiO 2 nanoforests with controlled Au locations. The nanoforests cons®isted of anatase nanowires surrounded by radially grown rutile branches, on which Au nanoparticles were deposited with preferred locations controlled by simply altering the order of the fabrication step. The Au-decoration increased the photocatalytic activity under the illumination of either UV or visible light, because of the beneficial effects of either electron trapping or localized surface plasmon resonance (LSPR). Gold nanoparticles located preferably at the interface of anatase/rutile led to a further enhanced photocatalytic activity. The appropriate distributions of Au nanoparticles magnify the beneficial effects arising from the anatase/rutile phase junctions when illuminated by UV light. Under the visible light illumination, the LSPR effect followed by the consecutive electron transfer explains the enhanced photocatalysis. This study provides a facile route to control locations of gold nanoparticles in one-dimensional nanostructured arrays of multiple-phases semiconductors for achieving a further increased photocatalytic activity.

  13. Unique bar-like sulfur-doped C3N4/TiO2 nanocomposite: Excellent visible light driven photocatalytic activity and mechanism study

    Science.gov (United States)

    Zhao, Yu; Xu, Shiping; Sun, Xiang; Xu, Xing; Gao, Baoyu

    2018-04-01

    In this work, a nanocomposite of TiO2 nanoparticles coupled with sulfur-doped C3N4 (S-C3N4) laminated layer was successfully fabricated using a facile impregnation method and the nanocomposite exhibited superior photocatalytic activity in pollutant removal under visible light irradiation, compared to bare TiO2, g-C3N4 and binary C3N4-TiO2 nanocomposite. The enhanced photocatalytic activity was benefited from the efficient migration and transformation of electron-hole (e--h+) pairs, improved visible light absorption capability, and relatively large specific surface area induce by sulfur doping. Interestingly, the introduction of sulfur changes regulated the morphology of g-C3N4 leading to the formation of ultrathin g-C3N4 layer nanosheet assemblies and unique bar-like g-C3N4/TiO2 nanocomposite, which is beneficial for the outstanding performance of the product. In addition, trapping experiment was carried out to identify the main active species in the photocatalytic reaction over the S-C3N4/TiO2 photocatalyst, and functional mechanism of the composite was proposed. This work may provide new ideas for the fabrication and utilization of highly efficient photocatalyst with excellent visible light response in environmental purification applications.

  14. Simple method of preparing nitrogen - doped nanosized TiO2 powders of high photocatalytic activity under visible light

    International Nuclear Information System (INIS)

    Nguyen Van Hung; Dang Thi Thanh Le

    2014-01-01

    Nitrogen-doped nanosized TiO 2 powders were prepared by a simple thermal treatment method of the mixture of titanium dioxide and urea. The prepared products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectra (UV-Vis-DRS) and Fourier transform infrared (FT-IR) spectroscopy. The results showed that the crystal structure of N-TiO 2 was a mixture of anatase and rutile phases, and the average particle size was 31 nm calculated from XRD results. The UV-vis spectra indicate an increase in absorption of visible light when compared to undoped TiO 2 . The photocatalytic activity of nitrogen-doped TiO 2 powder was evaluated by the decomposition of methylene blue under visible light irradiation. And it was found that nitrogen-doped TiO 2 powders exhibited much higher photocatalytic activity than undoped TiO 2 . Moreover, the study also showed that, the doping N atoms improve the growth of the TiO 2 crystal and phase transformation. (author)

  15. Large-scale controllable synthesis of dumbbell-like BiVO4 photocatalysts with enhanced visible-light photocatalytic activity

    International Nuclear Information System (INIS)

    Lu Yang; Luo Yongsong; Kong Dezhi; Zhang Deyang; Jia Yonglei; Zhang Xinwei

    2012-01-01

    The controllable synthesis of novel dumbbell-like BiVO 4 hierarchical nanostructures has been successfully obtained via a simple hydrothermal route. The as-synthesized products were studied by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy and UV–vis absorption spectroscopy. The results showed that the nucleation and growth of the nanodumbbells were governed by an oriented aggregation growth mechanism. It is noteworthy that the concentration of poly(vinyl pyrrolidone) and the volume ratio of H 2 O to CH 3 COOH were crucial to the growth of the final nanoarchitectures. Control experiments were also carried out to investigate the factors which impact on the morphology of the products. Furthermore, the as-prepared BiVO 4 hierarchical nanostructures demonstrated the superior visible-light-driven photocatalytic efficiency, which is helpful for the separation and recycle considering their promising applications in harmful pollutants disposal. - Graphical Abstract: The controllable synthesis of novel dumbbell-like BiVO 4 hierarchical nanostructures has been successfully obtained via a simple hydrothermal route; the as-prepared BiVO 4 hierarchical nanostructures demonstrated the superior visible-light-driven photocatalytic efficiency. Highlights: ►Dumbbell-like BiVO 4 structures were synthesized and characterized for the first time. ► The volume ratios of H 2 O to CH 3 COOH were crucial to the final morphologies. ► Their photocatalytic activity was up to 90% under visible-light irradiation. ► Dumbbell-like BiVO 4 structures may utilize the pollutant disposal.

  16. Carbon-doped SnS2 nanostructure as a high-efficiency solar fuel catalyst under visible light.

    Science.gov (United States)

    Shown, Indrajit; Samireddi, Satyanarayana; Chang, Yu-Chung; Putikam, Raghunath; Chang, Po-Han; Sabbah, Amr; Fu, Fang-Yu; Chen, Wei-Fu; Wu, Chih-I; Yu, Tsyr-Yan; Chung, Po-Wen; Lin, M C; Chen, Li-Chyong; Chen, Kuei-Hsien

    2018-01-12

    Photocatalytic formation of hydrocarbons using solar energy via artificial photosynthesis is a highly desirable renewable-energy source for replacing conventional fossil fuels. Using an L-cysteine-based hydrothermal process, here we synthesize a carbon-doped SnS 2 (SnS 2 -C) metal dichalcogenide nanostructure, which exhibits a highly active and selective photocatalytic conversion of CO 2 to hydrocarbons under visible-light. The interstitial carbon doping induced microstrain in the SnS 2 lattice, resulting in different photophysical properties as compared with undoped SnS 2 . This SnS 2 -C photocatalyst significantly enhances the CO 2 reduction activity under visible light, attaining a photochemical quantum efficiency of above 0.7%. The SnS 2 -C photocatalyst represents an important contribution towards high quantum efficiency artificial photosynthesis based on gas phase photocatalytic CO 2 reduction under visible light, where the in situ carbon-doped SnS 2 nanostructure improves the stability and the light harvesting and charge separation efficiency, and significantly enhances the photocatalytic activity.

  17. Fullerene C70 decorated TiO2 nanowires for visible-light-responsive photocatalyst

    International Nuclear Information System (INIS)

    Cho, Er-Chieh; Ciou, Jing-Hao; Zheng, Jia-Huei; Pan, Job; Hsiao, Yu-Sheng; Lee, Kuen-Chan; Huang, Jen-Hsien

    2015-01-01

    Graphical abstract: - Highlights: • TiO 2 nanowire decorated with C 60 and C 70 derivatives has been synthesized. • The fullerenes impede the charge recombination due to its high electron affinity. • The fullerenes expand the utilization of solar light from UV to visible light. • The modified-TiO 2 has great biocompatibility. - Abstract: In this study, we have synthesized C 60 and C 70 -modified TiO 2 nanowire (NW) through interfacial chemical bonding. The results indicate that the fullerenes (C 60 and C 70 derivatives) can act as sinks for photogenerated electrons in TiO 2 , while the fullerene/TiO 2 is illuminated under ultraviolet (UV) light. Therefore, in comparison to the pure TiO 2 NWs, the modified TiO 2 NWs display a higher photocatalytic activity under UV irradiation. Moreover, the fullerenes also can function as a sensitizer to TiO 2 which expand the utilization of solar light from UV to visible light. The results reveal that the C 70 /TiO 2 NWs show a significant photocatalytic activity for degradation of methylene blue (MB) in visible light region. To better understand the mechanism responsible for the effect of fullerenes on the photocatalytic properties of TiO 2 , the electron only devices and photoelectrochemical cells based on fullerenes/TiO 2 are also fabricated and evaluated.

  18. Synthesis, characterization and photocatalytic activity of WO{sub 3}/TiO{sub 2} for NO removal under UV and visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Luévano-Hipólito, E. [CIIDIT, Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, Ciudad Universitaria, C.P. 66451 San Nicolás de los Garza, N.L. (Mexico); Martínez-de la Cruz, A., E-mail: azael.martinezdl@uanl.edu.mx [CIIDIT, Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, Ciudad Universitaria, C.P. 66451 San Nicolás de los Garza, N.L. (Mexico); López-Cuellar, E. [CIIDIT, Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, Ciudad Universitaria, C.P. 66451 San Nicolás de los Garza, N.L. (Mexico); Yu, Q.L.; Brouwers, H.J.H. [Department of the Built Environment, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2014-11-14

    Samples with different proportions WO{sub 3}/TiO{sub 2} were prepared by co-precipitation method followed by a heat treatment. The samples were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (DRS), and adsorption–desorption N{sub 2} isotherms (BET). The photocatalytic properties of WO{sub 3}/TiO{sub 2} samples were evaluated in the photo-oxidation reaction of nitric oxide (NO) under UV and visible light irradiation. The highest photocatalytic activity was observed in the WO{sub 3}/TiO{sub 2} sample with a composition of 80% mole of TiO{sub 2}. Among the different substrates used for supporting the photocatalyst, the best results were reached over concrete and glass when it was exposed to UV and visible light irradiation, respectively. In overall, the photocatalytic efficiency of the synthesized materials was higher under UV than visible light irradiation. - Highlights: • WO{sub 3}/TiO{sub 2} prepared in simple way show high photocatalytic activity for NO removal. • The concrete was the best substrate to the performance of WO{sub 3}/TiO{sub 2} with UV radiation. • The glass was the best substrate to the performance of WO{sub 3}/TiO{sub 2} with visible radiation.

  19. Visible-light photocatalytic activity of graphene oxide-wrapped Bi2WO6 hierarchical microspheres

    Science.gov (United States)

    Zhai, Jiali; Yu, Hongwen; Li, Haiyan; Sun, Lei; Zhang, Kexin; Yang, Hongjun

    2015-07-01

    A facile approach of fabricating homogeneous graphene oxide (GO)-wrapped Bi2WO6 microspheres (GO/Bi2WO6) is developed. The transmission electron microscopy (TEM) results show that a heterojunction interface between GO and Bi2WO6. The UV-vis diffuse reflection spectra (DRS) reveal that the as-prepared GO/Bi2WO6 composites own more intensive absorption in the visible light range compared with pure Bi2WO6. These characteristic structural and optical properties endow GO/Bi2WO6 composites with enhanced photocatalytic activity. The enhanced photocatalytic activity of the GO/Bi2WO6 is attributed predominantly to the synergetic effect between GO and Bi2WO6, causing rapid generation and separation of photo-generated charge carriers.

  20. Visible light communication applications in healthcare.

    Science.gov (United States)

    Muhammad, Shoaib; Qasid, Syed Hussain Ahmed; Rehman, Shafia; Rai, Aitzaz Bin Sulltan

    2016-01-01

    With the development in science, methods of communication are also improved, replacing old ones with new advanced ways in an attempt to make data transfer more secure, safer for health, and time as well as cost efficient. One of such methods is Visible Light Communication, as the name implies data is transferred through a light equipment such as incandescent or florescent bulb having speed of 10 Kb/s or LEDs approaching speed of 500 Mb/s [1]. VLC uses visible light between 384 and 789 THz [2,3]. Though range is limitation of VLC, however data transfer up-to distance of 1 to 2 km although at lower transfer rate has been reached.The VLC system comprises of light source like LED and receiver equipment, however, with advancement, now LEDs are used for both sending and receiving data. LED remains on all the time, and there is no change in brightness level during the whole process, making it safe for eyes. Currently, VLC system is facing some serious technical challenges before it could be applied in daily life.

  1. Synergistic effect of surface self-doping and Fe species-grafting for enhanced photocatalytic activity of TiO{sub 2} under visible-light

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Lina [Center for Advanced Optoelectronic Functional Materials Research, Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024 (China); Institute of Material Physics, Key Laboratory of Display Materials and Photoelectric Devices of Ministry of Education, Tianjin University of Technology, Tianjin 300384 (China); Wang, Changhua; Wan, Fangxu; Zheng, Han [Center for Advanced Optoelectronic Functional Materials Research, Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024 (China); Zhang, Xintong, E-mail: xtzhang@nenu.edu.cn [Center for Advanced Optoelectronic Functional Materials Research, Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024 (China)

    2017-02-28

    Highlights: • Anatase TiO{sub 2} was modified with Fe-ethoxide through wet impregnation method. • XPS and EPR investigation supported the formation of Vo and Fe species. • Vo improved the optical absorption properties to a larger extent. • Fe species inhibited the charge carrier recombination process. • Synergism between Vo and Fe species enhanced the photocatalytic activity. - Abstract: Surface grafting of transition-metal complexes or oxides is an appealing way to enhance the photocatalytic activity of TiO{sub 2} under visible-light excitation. However, the performance of these co-catalysts assistant TiO{sub 2} photocatalysts is still not sufficient enough due to their relatively weak visible-light absorption. Herein, we report a simple impregnation treatment with ferric ethoxide/ethanol solvent, followed with mild heating which can significantly enhance the visible-light absorption and photocatalytic activity of TiO{sub 2}. XPS and EPR analyses manifest that the oxygen vacancies (V{sub O}s) and Fe-species are simultaneously introduced to the surface of TiO{sub 2}. The chemical state and photocatalytic activity of the Fe-species-grafted TiO{sub 2−x} is dependent on the heating temperature after impregnation. The sample heat-treated at 250 °C exhibits the optimal photocatalytic performance for β-naphthol degradation with rate constant 6.0, 2.7, and 3.9 times higher than that of TiO{sub 2}, TiO{sub 2−x}, and Fe-TiO{sub 2}, respectively. The activity enhancement is discussed on the basis of the synergistic effect and energy-level matching of surface V{sub O}s and Fe-species co-catalyst, i.e. the V{sub O}s defects states increase the visible-light absorption and the Fe-species in the form of FeOOH promote the consumption of photo-generated electrons through multi-electron reduction of adsorbed molecule oxygen.

  2. In situ photoactivated plasmonic Ag{sub 3}PO{sub 4}@silver as a stable catalyst with enhanced photocatalytic activity under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dongfang; Wang, Jiaxun, E-mail: zdfbb66@aliyun.com [College of Science, Huazhong Agricultural University, Wuhan (China)

    2017-05-15

    Silver orthophosphate (Ag{sub 3}PO{sub 4}) had been reported as an excellent candidate to split water or decompose pollutants with high efficiency in visible light region, yet is not stable due to the reduction of silver ion. In this work, an easy-fabricated method (in situ photoinduced reduction) was provided to enhance the stability of Ag{sub 3}PO{sub 4} for its possible application as a visible-light sensitive photocatalyst. The as-prepared samples were characterized by X-ray diffraction (XRD), UV-vis diffuse reflectance spectra, photoluminescence spectra (PL) and Photoelectrochemical measurements. The Ag{sub 3}PO{sub 4}/Ag photocatalysts showed strong photocatalytic activity for decomposition of RhB dye or phenol-X-3B mixture under visible light irradiation (λ> 420 nm) and can be used repeatedly. The possible mechanism for the enhanced photocatalytic properties of the Ag{sub 3}PO{sub 4} /Ag hybrid was also discussed. It was found that •OH and holes take priority over •O{sub 2}{sup -} radicals in serving as the main oxidant in the Ag{sub 3}PO{sub 4}/Ag photocatalytic system. Especially, the experimental results indicate that the surface plasmon resonance of Ag nanoparticles and a large negative charge of PO{sub 4}{sup 3-} ions as well as high separation efficiency of {sup e-} --h{sup +} pairs, facilitated the enhancement of the photocatalytic activity of the Ag{sub 3} PO{sub 4} /Ag composite. The results indicated that Ag{sub 3} PO{sub 4} /Ag is an efficient and stable visible-light-driven photocatalyst. (author)

  3. CdSe nanorod/TiO2 nanoparticle heterojunctions with enhanced solar- and visible-light photocatalytic activity

    Directory of Open Access Journals (Sweden)

    Fakher Laatar

    2017-12-01

    Full Text Available CdSe nanorods (NRs with an average length of ≈120 nm were prepared by a solvothermal process and associated to TiO2 nanoparticles (Aeroxide® P25 by annealing at 300 °C for 1 h. The content of CdSe NRs in CdSe/TiO2 composites was varied from 0.5 to 5 wt %. The CdSe/TiO2 heterostructured materials were characterized by XRD, TEM, SEM, XPS, UV–visible spectroscopy and Raman spectroscopy. TEM images and XRD patterns show that CdSe NRs with wurtzite structure are associated to TiO2 particles. The UV–visible spectra demonstrate that the narrow bandgap of CdSe NRs serves to increase the photoresponse of CdSe/TiO2 composites until ≈725 nm. The CdSe (2 wt %/TiO2 composite exhibits the highest photocatalytic activity for the degradation of rhodamine B in aqueous solution under simulated sunlight or visible light irradiation. The enhancement in photocatalytic activity likely originates from CdSe sensitization of TiO2 and the heterojunction between these materials which facilitates electron transfer from CdSe to TiO2. Due to its high stability (up to ten reuses without any significant loss in activity, the CdSe/TiO2 heterostructured catalysts show high potential for real water decontamination.

  4. Effects of Curcuma extract and visible light on adults with plaque psoriasis.

    Science.gov (United States)

    Carrion-Gutierrez, Miguel; Ramirez-Bosca, Ana; Navarro-Lopez, Vicente; Martinez-Andres, Asunción; Asín-Llorca, Manuel; Bernd, August; Horga de la Parte, José Francisco

    2015-01-01

    We conducted a phase IV randomized, double-blind, placebo-controlled, pilot clinical trial to investigate the safety and efficacy of oral curcumin together with local phototherapy in patients with plaque psoriasis. Patients with moderate to severe psoriasis received Curcuma extract orally with real visible light phototherapy (VLRT) or simulated visible light phototherapy (VLST) in the experimental area, while the rest of the body surface was treated with ultraviolet A (UVA) radiation. The endpoints were the number of responders and the temporal course of the response. The secondary outcomes were related to safety and adverse events. Twenty-one patients were included in the study. In the intention-to-treat analysis, no patients included in the VLRT group showed "moderate" or "severe" plaques after the treatment, in contrast to the patients included in the VSLT group (pCurcuma if activated with visible light phototherapy, a new therapeutic method that would be safer for patients than existing treatments.

  5. Rational construction of Z-scheme Ag_2CrO_4/g-C_3N_4 composites with enhanced visible-light photocatalytic activity

    International Nuclear Information System (INIS)

    Luo, Jin; Zhou, Xiaosong; Ma, Lin; Xu, Xuyao

    2016-01-01

    Highlights: • Novel visible-light driven Ag_2CrO_4/g-C_3N_4 composites were synthesized. • Ag_2CrO_4/g-C_3N_4 exhibited enhanced visible-light photocatalytic activity. • The reasons for the enhanced photocatalytic activity were revealed. - Abstract: Novel visible-light driven Z-scheme Ag_2CrO_4/g-C_3N_4 composites with different contents of Ag_2CrO_4 were fabricated by a facile chemical precipitation method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectroscopy (UV-vis DRS), photoluminescence (PL) spectroscopy and photoelectrochemical measurements. Compared with individual g-C_3N_4 and Ag_2CrO_4, the Ag_2CrO_4/g-C_3N_4 composites displayed much larger photocatalytic activities for the photocatalytic degradation of methyl orange (MO) solution at room temperature under visible light irradiation (λ > 420 nm). Importantly, the optimum photodegradation rate constant of the Ag_2CrO_4/g-C_3N_4 composite at a theoretical weight content of 8.0% Ag_2CrO_4 for the photodegradation of MO was 0.0068 min"−"1, which was 5.7 and 4.3 times higher than that of pure g-C_3N_4 and Ag_2CrO_4, respectively. Such enormous enhancement in photocatalytic performance was predominantly ascribed to the efficient separation and transfer of photogenerated electrons and holes at the Ag_2CrO_4/g-C_3N_4 interface imparted through the Z-scheme electron transfer. Furthermore, radical trap experiments depicted that both the holes and superoxide radical anions were thought to dominate oxidative species of the Ag_2CrO_4/g-C_3N_4 composite for MO degradation under visible light irradiation. Ultimately, a tentative Z-scheme photodegradation mechanism was proposed. This work may be useful for the rational design of new types of Z-scheme photocatalysts and provide some illuminate insights into the Z-scheme transfer mechanism for application in energy

  6. Hybrid bilayer plasmonic metasurface efficiently manipulates visible light

    Science.gov (United States)

    Qin, Fei; Ding, Lu; Zhang, Lei; Monticone, Francesco; Chum, Chan Choy; Deng, Jie; Mei, Shengtao; Li, Ying; Teng, Jinghua; Hong, Minghui; Zhang, Shuang; Alù, Andrea; Qiu, Cheng-Wei

    2016-01-01

    Metasurfaces operating in the cross-polarization scheme have shown an interesting degree of control over the wavefront of transmitted light. Nevertheless, their inherently low efficiency in visible light raises certain concerns for practical applications. Without sacrificing the ultrathin flat design, we propose a bilayer plasmonic metasurface operating at visible frequencies, obtained by coupling a nanoantenna-based metasurface with its complementary Babinet-inverted copy. By breaking the radiation symmetry because of the finite, yet small, thickness of the proposed structure and benefitting from properly tailored intra- and interlayer couplings, such coupled bilayer metasurface experimentally yields a conversion efficiency of 17%, significantly larger than that of earlier single-layer designs, as well as an extinction ratio larger than 0 dB, meaning that anomalous refraction dominates the transmission response. Our finding shows that metallic metasurface can counterintuitively manipulate the visible light as efficiently as dielectric metasurface (~20% in conversion efficiency in Lin et al.’s study), although the metal’s ohmic loss is much higher than dielectrics. Our hybrid bilayer design, still being ultrathin (~λ/6), is found to obey generalized Snell’s law even in the presence of strong couplings. It is capable of efficiently manipulating visible light over a broad bandwidth and can be realized with a facile one-step nanofabrication process. PMID:26767195

  7. Enhanced visible-light photocatalytic activity for selective oxidation of amines into imines over TiO2(B)/anatase mixed-phase nanowires

    International Nuclear Information System (INIS)

    Dai, Jun; Yang, Juan; Wang, Xiaohan; Zhang, Lei; Li, Yingjie

    2015-01-01

    Graphical abstract: Visible-light photocatalytic activities for selective oxidation of amines into imines are greatly affected by the crystal structure of TiO 2 catalysts and mixed-phase TiO 2 (B)/anatase possess higher photoactivity because of the moderate adsorption ability and efficient charge separation. - Highlights: • Visible-light photocatalytic oxidation of amines to imines is studied over different TiO 2 . • Photocatalytic activities are greatly affected by the crystal structure of TiO 2 nanowires. • Mixed-phase TiO 2 (B)/anatase exhibits higher catalytic activity than single-phase TiO 2 . • Enhanced activity is ascribed to efficient adsorption ability and interfacial charge separation. • Photoinduced charge transfer mechanism on TiO 2 (B)/anatase catalysts is also proposed. - Abstract: Wirelike catalysts of mixed-phase TiO 2 (B)/anatase TiO 2 , bare anatase TiO 2 and TiO 2 (B) are synthesized via calcining precursor hydrogen titanate obtained from hydrothermal process at different temperatures between 450 and 700 °C. Under visible light irradiation, mixed-phase TiO 2 (B)/anatase TiO 2 catalysts exhibit enhanced photocatalytic activity in comparison with pure TiO 2 (B) and anatase TiO 2 toward selective oxidation of benzylamines into imines and the highest photocatalytic activity is achieved by TW-550 sample consisting of 65% TiO 2 (B) and 35% anatase. The difference in photocatalytic activities of TiO 2 samples can be attributed to the different adsorption abilities resulted from their crystal structures and interfacial charge separation driven by surface-phase junctions between TiO 2 (B) and anatase TiO 2 . Moreover, the photoinduced charge transfer mechanism of surface complex is also proposed over mixed-phase TiO 2 (B)/anatase TiO 2 catalysts. Advantages of this photocatalytic system include efficient utilization of solar light, general suitability to amines, reusability and facile separation of nanowires catalysts

  8. Copper NPs decorated titania: A novel synthesis by high energy US with a study of the photocatalytic activity under visible light.

    Science.gov (United States)

    Stucchi, Marta; Bianchi, Claudia L; Pirola, Carlo; Cerrato, Giuseppina; Morandi, Sara; Argirusis, Christos; Sourkouni, Georgia; Naldoni, Alberto; Capucci, Valentino

    2016-07-01

    The most important drawback of the use of TiO2 as photocatalyst is its lack of activity under visible light. To overcome this problem, the surface modification of commercial micro-sized TiO2 by means of high-energy ultrasound (US), employing CuCl2 as precursor molecule to obtain both metallic copper as well as copper oxides species at the TiO2 surface, is here. We have prepared samples with different copper content, in order to evaluate its impact on the photocatalytic performances of the semiconductor, and studied in particular the photodegradation in the gas phase of some volatile organic molecules (VOCs), namely acetone and acetaldehyde. We used a LED lamp in order to have only the contribution of the visible wavelengths to the TiO2 activation (typical LED lights have no emission in the UV region). We employed several techniques (i.e., HR-TEM, XRD, FT-IR and UV-Vis) in order to characterize the prepared samples, thus evidencing different sample morphologies as a function of the various copper content, with a coherent correlation between them and the photocatalytic results. Firstly, we demonstrated the possibility to use US to modify the TiO2, even when it is commercial and micro-sized as well; secondly, by avoiding completely the UV irradiation, we confirmed that pure TiO2 is not activated by visible light. On the other hand, we showed that copper metal and metal oxides nanoparticles strongly and positively affect its photocatalytic activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Enhancement in visible light-responsive photocatalytic activity by embedding Cu-doped ZnO nanoparticles on multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, M., E-mail: mzkhm73@gmail.com [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Ahmed, E., E-mail: profejaz@gmail.com [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Hong, Z.L.; Jiao, X.L. [State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Abbas, T. [Institute of Industrial Control System, Rawalpindi (Pakistan); Khalid, N.R. [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2013-11-15

    Copper doped ZnO nanoparticles embedded on multi-walled carbon nanotubes (CNTs) were successfully synthesized using a facile, nontoxic sol method. The resulting visible light-responsive Cu-doped ZnO/CNTs composites were characterized using powder X-ray diffraction (XRD), high resolution transmission electron microscope (HR-TEM), transmission electron microscope (TEM), scanning electron microscope (SEM) with energy dispersive X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS) and Brunauer Emmett Teller (BET) surface area analyzer. Optical properties of Cu-doped ZnO/CNTs nanocomposites, studied using UV–vis diffuse reflectance spectroscopy and photoluminescence spectroscopy (PL), which exhibited extended light absorption in visible light region and possessed better charge separation capability, respectively as compared to Cu-doped ZnO, pure ZnO and ZnO/CNTs composite. The photocatalytic activity was tested by degradation of methyl orange (MO) dye under visible light irradiation. The results demonstrated that Cu-doped ZnO/CNTs nanocomposites effectively bleached out MO, showing an impressive photocatalytic enhancement over ZnO, commercial ZnO, Cu-doped ZnO nanoparticles and ZnO/CNTs nanocomposites. Chemical oxygen demand (COD) of textile wastewater was also measured before and after the photocatalysis experiment under sunlight to evaluate the mineralization of wastewater. The significant decrease in COD of the treated effluent revealed a complete destruction of the organic molecules along with color removal. This dramatically enhanced photoactivity of nanocomposite photocatalysts was attributed to greater adsorptivity of dyes, extended light absorption and increased charge separation efficiency due to excellent electrical properties of carbon nanotubes and the large surface area.

  10. The {0 0 1} facets-dependent superior photocatalytic activities of BiOCl nanosheets under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yingjun [College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021 (China); Wang, Qin, E-mail: qinwang@imu.edu.cn [College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021 (China); Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot 010021 (China); Liu, Baocang [College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021 (China); Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot 010021 (China); Zhang, Jun, E-mail: cejzhang@imu.edu.cn [College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021 (China); Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot 010021 (China)

    2015-09-15

    Graphical abstract: - Highlights: • BiOCl nanosheets were selectively synthesized via a facile hydrothermal method. • The percentage of {0 0 1} facets over BiOCl nanosheets were well controlled. • These samples manifest superior catalytic activity for the degradation of RhB dyes. - Abstract: BiOCl nanosheets with tunable lamella thickness and dominantly exposed {0 0 1} facets were selectively synthesized via a facile hydrothermal method. By modifying the synthetic parameters, such as the amount of P123 and mannitol, the reaction time, types of surfactants, the size, thickness, morphologies, and percentage of {0 0 1} facets over BiOCl nanosheets were well controlled. The exposed {0 0 1} facets with high surface energy and high density of oxygen atoms are not only conducive to the adsorption of the rhodamine B (RhB) dye but also can accumulate the photo-generated electrons, which can be captured by O{sub 2} and converted into reactive oxygen species O{sub 2}{sup −}·. Therefore, the resultant ultrathin BiOCl nanosheets with exposed {0 0 1} facets exhibit superior catalytic activity for dye photosensitization degradation under visible light irradiation. Impressively, the ultrathin BiOCl nanosheets prepared with P123 and mannitol manifest superior catalytic activity and RhB was completely degraded within 20 min. Our current work is expected to offer a new insight into photocatalytic theory for better understanding of visible light photocatalytic reactions and rational design of highly active photocatalysts.

  11. Integrating visible light 3D scanning into the everyday world

    Science.gov (United States)

    Straub, Jeremy

    2015-05-01

    Visible light 3D scanning offers the potential to non-invasively and nearly non-perceptibly incorporate 3D imaging into the everyday world. This paper considers the various possible uses of visible light 3D scanning technology. It discusses multiple possible usage scenarios including in hospitals, security perimeter settings and retail environments. The paper presents a framework for assessing the efficacy of visible light 3D scanning for a given application (and compares this to other scanning approaches such as those using blue light or lasers). It also discusses ethical and legal considerations relevant to real-world use and concludes by presenting a decision making framework.

  12. Probing the Effects of Templating on the UV and Visible Light Photocatalytic Activity of Porous Nitrogen-Modified Titania Monoliths for Dye Removal.

    Science.gov (United States)

    Nursam, Natalita M; Wang, Xingdong; Tan, Jeannie Z Y; Caruso, Rachel A

    2016-07-13

    Porous nitrogen-modified titania (N-titania) monoliths with tailored morphologies were prepared using phase separation and agarose gel templating techniques. The doping and templating process were simultaneously carried out in a one-pot step using alcohol amine-assisted sol-gel chemistry. The amount of polymer used in the monoliths that were prepared using phase separation was shown to affect both the physical and optical properties: higher poly(ethylene glycol) content increased the specific surface area, porosity, and visible light absorption of the final materials. For the agarose-templated monoliths, the infiltration conditions affected the monolith morphology. A porous monolith with high surface area and the least shrinkage was obtained when the N containing alkoxide precursor was infiltrated into the agarose scaffolds at 60 °C. The effect of the diverse porous morphologies on the photocatalytic activity of N-titania was studied for the decomposition of methylene blue (MB) under visible and UV light irradiation. The highest visible light activity was achieved by the agarose-templated N-titania monolith, in part due to higher N incorporation. This sample also showed better UV activity, partly because of the higher specific surface area (up to 112 m(2) g(-1)) compared to the phase separation-induced monoliths (up to 103 m(2) g(-1)). Overall, agarose-templated, porous N-titania monoliths provided better features for effectively removing the MB contaminant.

  13. Highly antibacterial activity of N-doped TiO{sub 2} thin films coated on stainless steel brackets under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Shuai; Liu, Bo; Fan, Lingying; Yue, Ziqi [Department of Orthodontics, School of Stomatology, Lanzhou University, Lanzhou 730000 (China); Liu, Bin [Department of Materials Science, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); Cao, Baocheng, E-mail: caobch@lzu.edu.cn [Department of Orthodontics, School of Stomatology, Lanzhou University, Lanzhou 730000 (China)

    2014-08-01

    In this study, the radio frequency (RF) magnetron sputtering method was used to prepare a TiO{sub 2} thin film on the surface of stainless steel brackets. Eighteen groups of samples were made according to the experimental parameters. The crystal structure and surface morphology were characterized by X-ray diffraction, and scanning electron microscopy, respectively. The photocatalytic properties under visible light irradiation were evaluated by measuring the degradation ratio of methylene blue. The sputtering temperature was set at 300 °C, and the time was set as 180 min, the ratio of Ar to N was 30:1, and annealing temperature was set at 450 °C. The thin films made under these parameters had the highest visible light photocatalytic activity of all the combinations of parameters tested. Antibacterial activities of the selected thin films were also tested against Lactobacillus acidophilus and Candida albicans. The results demonstrated the thin film prepared under the parameters above showed the highest antibacterial activity.

  14. Unidirectional visible light communication and illumination with LEDs

    NARCIS (Netherlands)

    Li, S.; Pandharipande, A.; Willems, F.M.J.

    2016-01-01

    Visible light communication (VLC) with light emitting diodes (LEDs) has attracted interest for interactive and networked lighting control, and consumer infotainment applications. In this paper, we propose an LED system for jointly achieving unidirectional VLC while providing flicker-free

  15. Synthesis of TiO2 nanorod-decorated graphene sheets and their highly efficient photocatalytic activities under visible-light irradiation

    International Nuclear Information System (INIS)

    Lee, Eunwoo; Hong, Jin-Yong; Kang, Haeyoung; Jang, Jyongsik

    2012-01-01

    Highlights: ► TiO 2 nanorods were successfully decorated on the surface of graphene sheets. ► Population of TiO 2 nanorods can be controlled by changing experimental conditions. ► TiO 2 nanorod-decorated graphene sheets have an expanded light absorption range. ► TiO 2 nanorod-decorated graphene sheets showed unprecedented photocatalytic activity. - Abstract: The titanium dioxide (TiO 2 ) nanorod-decorated graphene sheets photocatalysts with different TiO 2 nanorods population have been synthesized by a simple non-hydrolytic sol–gel approach. Electron microscopy and X-ray diffraction analysis indicated that the TiO 2 nanorods are well-dispersed and successfully anchored on the graphene sheet surface through the formation of covalent bonds between Ti and C atoms. The photocatalytic activities are evaluated in terms of the efficiencies of photodecomposition and adsorption of methylene blue (MB) in aqueous solution under visible-light irradiation. The as-synthesized TiO 2 nanorod-decorated graphene sheets showed unprecedented photodecomposition efficiency compared to the pristine TiO 2 nanorods and the commercial TiO 2 (P-25, Degussa) under visible-light. It is believed that this predominant photocatalytic activity is due to the synergistic contribution of both a retarded charge recombination rate caused by a high electronic mobility of graphene and an increased surface area originated from nanometer-sized TiO 2 nanorods. Furthermore, photoelectrochemical study is performed to give deep insights into the primary roles of graphene that determines the photocatalytic activity.

  16. Visible light photoreduction of CO.sub.2 using heterostructured catalysts

    Science.gov (United States)

    Matranga, Christopher; Thompson, Robert L; Wang, Congjun

    2015-03-24

    The method provides for use of sensitized photocatalyst for the photocatalytic reduction of CO.sub.2 under visible light illumination. The photosensitized catalyst is comprised of a wide band gap semiconductor material, a transition metal co-catalyst, and a semiconductor sensitizer. The semiconductor sensitizer is photoexcited by visible light and forms a Type II band alignment with the wide band gap semiconductor material. The wide band gap semiconductor material and the semiconductor sensitizer may be a plurality of particles, and the particle diameters may be selected to accomplish desired band widths and optimize charge injection under visible light illumination by utilizing quantum size effects. In a particular embodiment, CO.sub.2 is reduced under visible light illumination using a CdSe/Pt/TiO2 sensitized photocatalyst with H.sub.2O as a hydrogen source.

  17. Development of Visible Light-Responsive Sensitized Photocatalysts

    Directory of Open Access Journals (Sweden)

    Donghua Pei

    2012-01-01

    Full Text Available The paper presents a review of studies about the visible-light-promoted photodegradation of the contaminants and energy conversion with sensitized photocatalysts. Herein we studied mechanism, physical properties, and synergism effect of the sensitized photocatalysts as well as the method for enhancing the photosensitized effect. According to the reported studies in the literature, inorganic sensitizers, organic dyes, and coordination metal complexes were very effective sensitizers that were studied mostly, of which organic dyes photosensitization is the most widely studied modified method. Photosensitization is an important way to extend the excitation wavelength to the visible range, and therefore sensitized photocatalysts play an important role in the development of visible light-responsive photocatalysts for future industrialized applications. This paper mainly describes the types, modification, photocatalytic performance, application, and the developments of photosensitization for environmental application.

  18. Highly Transparent, Visible-Light Photodetector Based on Oxide Semiconductors and Quantum Dots.

    Science.gov (United States)

    Shin, Seung Won; Lee, Kwang-Ho; Park, Jin-Seong; Kang, Seong Jun

    2015-09-09

    Highly transparent phototransistors that can detect visible light have been fabricated by combining indium-gallium-zinc oxide (IGZO) and quantum dots (QDs). A wide-band-gap IGZO film was used as a transparent semiconducting channel, while small-band-gap QDs were adopted to absorb and convert visible light to an electrical signal. Typical IGZO thin-film transistors (TFTs) did not show a photocurrent with illumination of visible light. However, IGZO TFTs decorated with QDs showed enhanced photocurrent upon exposure to visible light. The device showed a responsivity of 1.35×10(4) A/W and an external quantum efficiency of 2.59×10(4) under illumination by a 635 nm laser. The origin of the increased photocurrent in the visible light was the small band gap of the QDs combined with the transparent IGZO films. Therefore, transparent phototransistors based on IGZO and QDs were fabricated and characterized in detail. The result is relevant for the development of highly transparent photodetectors that can detect visible light.

  19. Photocatalytic degradation of 2-propanol and phenol using Au loaded MnWO4 nanorod under visible light irradiation

    CSIR Research Space (South Africa)

    Chakraborty, AK

    2012-06-01

    Full Text Available ) under visible light ( = 420 nm) irradiation. The Au loading was optimized to 3.79 wt% for the highest efficiency. The enhanced photocatalytic activity originates from the absorption of visible light by MnWO4 as well as the introduction...

  20. Visible light activated catalytic effect of iron containing soda-lime silicate glass characterized by 57Fe-Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Shiro Kubuki; Jun Iwanuma; Yusuke Takahashi; Kazuhiko Akiyama; Ernoe Kuzmann; Hungarian Academy of Sciences, Budapest; Tetsuaki Nishida

    2014-01-01

    A relationship between local structure and visible light activated catalytic effect of iron containing soda lime silicate glass with the composition of 15Na 2 O·15CaO·xFe 2 O 3 ·(70-x)SiO 2 , x = 5-50 mass %, abbreviated as NCFSx was investigated by means of 57 Fe-Moessbauer spectroscopy, X-ray diffractometry (XRD), small angle X-ray scattering (SAXS), electrospray ionization mass spectrometry (ESI-MS) and ultraviolet-visible light absorption spectroscopy (UV-Vis). Moessbauer spectra of NCFSx glass with 'x' being equal to or larger than 30 after isothermal annealing at 1,000 deg C for 100 min consisted of a paramagnetic doublet and a magnetic sextet. The former had isomer shift (δ) of 0.24 mm s -1 and quadrupole splitting (Δ) of 0.99 mm s -1 due to distorted Fe III O 4 tetrahedra, and the latter had δ of 0.36 mm s -1 and internal magnetic field (H int ) of 51.8 T due to hematite (α-Fe 2 O 3 ). The absorption area (A) of α-Fe 2 O 3 varied from 47.2 to 75.9, 93.1, 64.8 and 47.9 % with 'x' from 30 to 35, 40, 45 and 50, indicating that the amount of precipitated α-Fe 2 O 3 varied with the Fe 2 O 3 content of NCFSx glass. The precipitation of α-Fe 2 O 3 was also confirmed by XRD study of annealed NCFS glass with 'x' larger than 30. A relaxed sexted with δ, H int and Γ of 0.34 mm s -1 and 37.9 T and 1.32 mm s -1 was observed from the Moessbauer spectra of annealed NCFSx glass with 'x' of 45 and 50, implying that the precipitation of non-stoichiometric iron hydroxide oxide with the composition of Fe 1.833 (OH) 0.5 O 2.5 having the similar structure of α-Fe 2 O 3 and α-FeOOH. A remarkable decrease in the concentration of methylene blue (MB) from 10 to 0.0 μmol L -1 with the first-order rate constant (k) of 2.87 × 10 -2 h -1 was observed for 10-day leaching test using annealed NCFS50 glass under visible light irradiation. ESI-MS study indicated that existence of fragments with m/z value of 129, 117 and 207 etc. originating from MB having m/z of 284. This

  1. Plasmonic Titania Photo catalysts Active under UV and Visible-Light Irradiation: Influence of Gold Amount, Size, and Shape

    International Nuclear Information System (INIS)

    Kowalska, E.; Rau, S.; Kowalska, E.; Kowalska, E.; Ohtani, B.

    2012-01-01

    Plasmonic titania photo catalysts were prepared by titania modification with gold by photo deposition. It was found that for smaller amount of deposited gold (≤ 0.1 wt%), anatase presence and large surface area were beneficial for efficient hydrogen evolution during methanol dehydrogenation. After testing twelve amounts of deposited gold on large rutile titania, the existence of three optima for 0.5, 2 and >6 wt% of gold was found during acetic acid degradation. Under visible light irradiation, in the case of small gold NPs deposited on fine anatase titania, the dependence of photo activity on gold amount was parabolic, and large gold amount (2 wt%), observable as an intensively coloured powder, caused photo activity decrease. While for large gold NPs deposited on large rutile titania, the dependence represented cascade increase, due to change of size and shape of deposited gold with its amount increase. It has been thought that spherical/hemispherical shape of gold NPs, in comparison with rod-like ones, is beneficial for higher level of photo activity under visible light irradiation. For all tested systems and regardless of deposited amount of gold, each rutile Au/TiO 2 photo catalyst of large gold and titania NPs exhibited much higher photo activity than anatase Au/TiO 2 of small gold and titania NPs

  2. Electronic structure and visible light photocatalysis water splitting property of chromium-doped SrTiO3

    International Nuclear Information System (INIS)

    Liu, J.W.; Chen, G.; Li, Z.H.; Zhang, Z.G.

    2006-01-01

    Cr-doped SrTi 1- x Cr x O 3 (x=0.00, 0.02, 0.05, 0.10) powders, prepared by solvothermal method, were further characterized by ultraviolet-visible (UV-vis) absorption spectroscopy. The UV-vis spectra indicate that the SrTi 1- x Cr x O 3 powders can absorb not only UV light like pure SrTiO 3 powder but also the visible-light spectrum (λ>420 nm). The results of density functional theory (DFT) calculation illuminate that the visible-light absorption bands in the SrTi 1- x Cr x O 3 catalyst are attributed to the band transition from the Cr 3d to the Cr 3d+Ti 3d hybrid orbital. The photocatalytic activities of chromium-doped SrTiO 3 both under UV and visible light are increased with the increase in the amounts of chromium. -- Graphical abstract: SrTi 1- x Cr x O 3 powders, prepared by solvothermal method, can absorb not only UV light like pure SrTiO 3 powder but also the visible-light spectrum (λ>420 nm). The results of DFT calculation illuminate that the visible-light absorption bands in the SrTi 1- x Cr x O 3 catalyst are attributed to the band transition from the Cr 3d to the Cr 3d+Ti 3d hybrid orbital

  3. Preparation and characterization of carbon and nitrogen Co-doped TiO/sub 2/ with enhanced visible light activity

    International Nuclear Information System (INIS)

    Li, D.; Fang, B.; Zhang, K.; Hu, C.

    2012-01-01

    To make full use of solar light in photocatalysis reactions, carbon and nitrogen co-doped Titanium dioxide nanoparticles were prepared through a facile process. Subsequently the structure and properties of the doped nanoparticles were characterized by UV-Vis spectroscopy, photoluminescence spectra (PL), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), respectively. In addition, the photo-catalytic activity of the samples was evaluated by photo-catalytic degradation of methyl orange aqueous solution under visible light irradiation. Results revealed that the calcined temperatures affected the structure and photo-catalytic activity of the nanoparticles and the N, C-co-doped TiO/sub 2/ (400 deg. C) nanoparticles exhibited the highest photo-catalytic activity, which could be attributed to the synergistic effect of co-doped carbon and nitrogen atoms. (author)

  4. Turn on the lights: leveraging visible light for communications and positioning

    Science.gov (United States)

    Hranilovic, Steve

    2015-01-01

    The need for ubiquitous broadband connectivity is continually growing, however, radio spectrum is increasingly scarce and limited by interference. In addition, the energy efficiency of many radio transmitters is low and most input energy is converted to heat. A widely overlooked resource for positioning and broadband access is optical wireless communication reusing existing illumination installations. As many of the 14 billion incandescent bulbs in use worldwide are converted to energy efficient LED lighting, a unique opportunity exists to augment them with visible light communications (VLC) and visible light positioning (VLP). VLC- and VLP- enabled LED lighting is not only energy efficient but enables a host of new use cases such as location-aware ubiquitous high-speed wireless communication links. This talk presents the recent work of the Free-space Optical Communication Algorithms Laboratory (FOCAL) at McMaster University in Hamilton, Canada in developing novel signaling and indoor localization techniques using illumination devices. Developments in the signaling design for VLC systems will be presented along with several prototype VLC communication systems. Novel approaches to the integration of VLC networks with power line communications (PLC) are discussed. The role of visible light communications and ranging for automotive safety will also be highlighted. Several approaches to indoor positioning using illumination devices and simple smartphone-based receivers will be presented. Finally, a vision for VLC and VLP technologies will be presented along with our ongoing research directions.

  5. A Cost-Effective Solid-State Approach to Synthesize g-C3N4 Coated TiO2 Nanocomposites with Enhanced Visible Light Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Min Fu

    2013-01-01

    Full Text Available Novel graphitic carbon nitride (g-C3N4 coated TiO2 nanocomposites were prepared by a facile and cost-effective solid-state method by thermal treatment of the mixture of urea and commercial TiO2. Because the C3N4 was dispersed and coated on the TiO2 nanoparticles, the as-prepared g-C3N4/TiO2 nanocomposites showed enhanced absorption and photocatalytic properties in visible light region. The as-prepared g-C3N4 coated TiO2 nanocomposites under 450°C exhibited efficient visible light photocatalytic activity for degradation of aqueous MB due to the increased visible light absorption and enhanced MB adsorption. The g-C3N4 coated TiO2 nanocomposites would have wide applications in both environmental remediation and solar energy conversion.

  6. UV Blocking Glass: Low Cost Filters for Visible Light Photocatalytic Assessment

    OpenAIRE

    Dunnill, Charles W.

    2014-01-01

    A number of commercially available art protection products have been compared and assessed for their suitability as UV blocking filters in the application of “visible light” photocatalytic research. Many groups claiming visible light photocatalytic success employ filters to block out stray UV radiation in order to justify that their photocatalysts are indeed visible light photocatalysts and not UV light photocatalysts. These filters come in varying degrees of ability and price and many author...

  7. Enhanced photodegradation activity of methyl orange over Ag2CrO4/SnS2 composites under visible light irradiation

    International Nuclear Information System (INIS)

    Luo, Jin; Zhou, Xiaosong; Ma, Lin; Xu, Xuyao; Wu, Jingxia; Liang, Huiping

    2016-01-01

    Highlights: • Novel visible-light-driven Ag 2 CrO 4 /SnS 2 composites are synthesized. • Ag 2 CrO 4 /SnS 2 exhibits higher photocatalytic activity than pure Ag 2 CrO 4 and SnS 2 . • Ag 2 CrO 4 /SnS 2 exhibits excellent stability for the photodegradation of MO. • The possible photocatalytic mechanism was discussed in detail. - Abstract: Novel Ag 2 CrO 4 /SnS 2 composites were prepared by a simple chemical precipitation method and characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, UV–vis diffuse reflectance spectroscopy and photoluminescence spectroscopy. The visible light photocatalytic tests showed that the Ag 2 CrO 4 /SnS 2 composites enhanced photocatalytic activities for the photodegradation of methyl orange (MO) under visible light irradiation (λ > 420 nm), and the optimum rate constant of Ag 2 CrO 4 /SnS 2 at a weight content of 1.0% Ag 2 CrO 4 for the degradation of MO was 2.2 and 1.5 times larger than that of pure Ag 2 CrO 4 and SnS 2 , respectively. The improved activity could be attributed to high separation efficiency of photogenerated electrons-hole pairs on the interface of Ag 2 CrO 4 and SnS 2 , which arised from the synergistic effect between Ag 2 CrO 4 and SnS 2 . Moreover, the possible photocatalytic mechanism with superoxide radical anions and holes species as the main reactive species in photocatalysis process was proposed on the basis of experimental results.

  8. A novel fabrication methodology for sulfur-doped ZnO nanorods as an active photoanode for improved water oxidation in visible-light regime

    Science.gov (United States)

    Khan, A.; Ahmed, M. I.; Adam, A.; Azad, A.-M.; Qamar, M.

    2017-02-01

    Incorporation of foreign moiety in the lattice of semiconductors significantly alters their optoelectronic behavior and opens a plethora of new applications. In this paper, we report the synthesis of sulfur-doped zinc oxide (S-doped ZnO) nanorods by reacting ZnO nanorods with diammonium sulfide in vapor phase. Microscopic investigation revealed that the morphological features, such as, the length (2-4 μm) and width (100-250 nm) of the original hexagonal ZnO nanorods remained intact post-sulfidation. X-ray photoelectron spectroscopy analysis of the sulfide sample confirmed the incorporation of sulfur into ZnO lattice. The optical measurements suggested the extension of absorption threshold into visible region upon sulfidation. Photoelectrochemical (PEC) activities of pure and S-doped ZnO nanorods were compared for water oxidation in visible light (λ > 420 nm), which showed several-fold increment in the performance of S-doped ZnO sample; the observed amelioration in the PEC activity was rationalized in terms of preferred visible light absorption and low resistance of sulfide sample, as evidenced by optical and electrochemical impedance spectroscopy.

  9. Removal of gaseous toluene by the combination of photocatalytic oxidation under complex light irradiation of UV and visible light and biological process

    International Nuclear Information System (INIS)

    Wei Zaishan; Sun Jianliang; Xie Zhirong; Liang Mingyan; Chen Shangzhi

    2010-01-01

    Photocatalysis is a promising technology for treatment of gaseous waste; its disadvantages, however, include causing secondary pollution. Biofiltration has been known as an efficient technology for treatment volatile organic compounds (VOCs) at low cost of maintenance, and produces harmless by-products; its disadvantages, include large volume of bioreactor and slow adaptation to fluctuating concentrations in waste gas. A bench scale system integrated with a photocatalytic oxidation and a biofilter unit for the treatment of gases containing toluene was investigated. The integrated system can effectively oxidize toluene with high removal efficiency. The photocatalytic activity of N-TiO 2 /zeolite was evaluated by the decomposition of toluene in air under UV and visible light (VL) illumination. The N-TiO 2 /zeolite has more photocatalytic activity under complex light irradiation of UV and visible light for toluene removal than that of pure TiO 2 /zeolite under UV or visible light irradiation. N-TiO 2 /zeolite was characterized by scanning electron microscopy (SEM), X-ray photoelectron spectrum analysis (XPS), Fourier transform infrared spectroscopy (FT-IR), and as-obtained products were identified by means of gas chromatography/mass spectrometry (GC/MS). Results revealed that the photocatalyst was porous and was high photoactive for mineralizing toluene. The high activity can be attributed to the results of the synergetic effects of strong UV and visible light absorption, surface hydroxyl groups. The photocatalytic degradation reaction of toluene with the N-TiO 2 /zeolite follows Langmuir-Hinshelwood kinetics. Toluene biodegradation rate matches enzymatic oxidation kinetics model.

  10. Cytotoxicity of serum protein-adsorbed visible-light photocatalytic Ag/AgBr/TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Seo, Ji Hye; Jeon, Won Il; Dembereldorj, Uuriintuya; Lee, So Yeong; Joo, Sang-Woo

    2011-01-01

    Highlights: ► Photocytotoxicity of visible-light catalytic NPs was examined in vitro. ► Ag/AgBr/TiO 2 NPs were well internalized in cells after adsorption of serum proteins. ► Cell viability was decreased by 40–60% using ∼8 ppm NPs and 60 W/cm 2 visible light within 5 h. ► Mitochondria activity test indicated the reactive oxygen species for photo-destruction of cells. ► Ag/AgBr/TiO 2 NPs were found to eliminate xenograft tumors significantly in vivo. - Abstract: Photocytotoxicity of visible-light catalytic Ag/AgBr/TiO 2 nanoparticles (NPs) was examined both in vitro and in vivo. The Ag/AgBr/TiO 2 NPs were prepared by the deposition–precipitation method. Their crystalline structures, atomic compositions, and light absorption property were examined by X-ray diffraction (XRD) patterns, X-ray photoelectron (XPS) intensities, and ultraviolet-visible (UV–vis) diffuse reflectance spectroscopic tools. The Ag/AgBr/TiO 2 NPs appeared to be well internalized in human carcinoma cells as evidenced by transmission electron microscopy (TEM). The cytotoxicity of cetylmethylammonium bromide (CTAB) appeared to be significantly reduced by adsorption of serum proteins in the cellular medium on the NP surfaces. Two types of human cervical HeLa and skin A431 cancer cells were tested to check their viability after the cellular uptake of the Ag/AgBr/TiO 2 NPs and subsequent exposure to an illumination of visible light from a 60 W/cm 2 halogen lamp. Fluorescence images taken to label mitochondria activity suggest that the reactive oxygen species should trigger the photo-destruction of cancer cells. After applying the halogen light illumination for 50–250 min and ∼8 ppm (μg/mL) of photocatalytic Ag/AgBr/TiO 2 NPs, we observed a 40–60% selective decrease of cell viability. Ag/AgBr/TiO 2 NPs were found to eliminate xenograft tumors significantly by irradiating visible light in vivo for 10 min.

  11. One-Pot Synthesis of Cu2ZnSnSe4 Nanoplates and their Visible-Light-Driven Photocatalytic Activity

    Science.gov (United States)

    Han, Zhenzhen; Li, Nan; Shi, Aihua; Wang, Haohua; Ma, Feng; Lv, Yi; Wu, Rongqian

    2018-01-01

    A SeO2 ethanol solution as the facile precursor has been used for the preparation of quaternary Cu2ZnSnSe4 (CZTSe) nanoplates. Monodispersed single-phase CZTSe nanoplates have been prepared successfully by a facile one-pot thermal chemical method. The as-prepared CZTSe nanoplates show uniform morphology with a bandgap of 1.4 eV. As a proof of concept, the CZTSe nanoplates have been used as a visible-light-driven photocatalyst for Rhodamine B dye degradation and show high photocatalytic activity and stability. The excellent dye removal is mainly ascribed to the efficient light utilization of CZTSe nanoplates.

  12. Preparation and spectroscopic characterization of visible light sensitized N doped TiO2 (rutile)

    International Nuclear Information System (INIS)

    Livraghi, S.; Czoska, A.M.; Paganini, M.C.; Giamello, E.

    2009-01-01

    Nitrogen doped TiO 2 represents one of the most promising material for photocatalitic degradation of environmental pollutants with visible light. However, at present, a great deal of activity is devoted to the anatase polymorph while few data about rutile are available. In the present paper we report an experimental characterization of N doped polycrystalline rutile TiO 2 prepared via sol-gel synthesis. Nitrogen doping does not affect the valence band to conduction band separation but, generates intra band gap localized states which are responsible of the on set of visible light absorption. The intra band gap states correspond to a nitrogen containing defect similar but not coincident with that recently reported for N doped anatase. - Graphical abstract: Nitrogen doped TiO 2 represents one of the most promising material for photocatalitic degradation of environmental pollutants with visible light. However, at present, a great deal of activity is devoted to the anatase polymorph while few data about rutile are available. In the present paper we report an experimental characterization of N doped polycrystalline rutile TiO 2 prepared via sol-gel synthesis

  13. Vertically oriented TiO(x)N(y) nanopillar arrays with embedded Ag nanoparticles for visible-light photocatalysis.

    Science.gov (United States)

    Jiang, Weitao; Ullah, Najeeb; Divitini, Giorgio; Ducati, Caterina; Kumar, R Vasant; Ding, Yucheng; Barber, Zoe H

    2012-03-27

    We present a straightforward method to produce highly crystalline, vertically oriented TiO(x)N(y) nanopillars (up to 1 μm in length) with a band gap in the visible-light region. This process starts with reactive dc sputtering to produce a TiN porous film, followed by a simple oxidation process at elevated temperatures in oxygen or air. By controlling the oxidation conditions, the band gap of the prepared TiO(x)N(y) can be tuned to different wavelength within the range of visible light. Furthermore, in order to inhibit carrier recombination to enhance the photocatalytic activity, Ag nanoparticles have been embedded into the nanogaps between the TiO(x)N(y) pillars by photoinduced reduction of Ag(+) (aq) irradiated with visible light. Transmission electron microscopy reveals that the Ag nanoparticles with a diameter of about 10 nm are uniformly dispersed along the pillars. The prepared TiO(x)N(y) nanopillar matrix and Ag:TiO(x)N(y) network show strong photocatalytic activity under visible-light irradiation, evaluated via degradation of Rhodamine B. © 2012 American Chemical Society

  14. Mesoporous cerium oxide nanospheres for the visible-light driven photocatalytic degradation of dyes

    Directory of Open Access Journals (Sweden)

    Subas K. Muduli

    2014-04-01

    Full Text Available A facile, solvothermal synthesis of mesoporous cerium oxide nanospheres is reported for the purpose of the photocatalytic degradation of organic dyes and future applications in sustainable energy research. The earth-abundant, relatively affordable, mixed valence cerium oxide sample, which consists of predominantly Ce7O12, has been characterized by powder X-ray diffraction, X-ray photoelectron and UV–vis spectroscopy, and transmission electron microscopy. Together with N2 sorption experiments, the data confirms that the new cerium oxide material is mesoporous and absorbs visible light. The photocatalytic degradation of rhodamin B is investigated with a series of radical scavengers, suggesting that the mechanism of photocatalytic activity under visible-light irradiation involves predominantly hydroxyl radicals as the active species.

  15. Facile Synthesis of Magnetic Photocatalyst Ag/BiVO4/Mn1−xZnxFe2O4 and Its Highly Visible-Light-Driven Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Taiping Xie

    2018-05-01

    Full Text Available Ag/BiVO4/Mn1−xZnxFe2O4 was synthesized with a dip-calcination in situ synthesis method. This work was hoped to provide a simple method to synthesis three-phase composite. The phase structure, optical properties and magnetic feature were confirmed by X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, X-ray photoelectron spectrometer (XPS, transmission electron microscopy (TEM, ultraviolet-visible diffuse reflectance spectrophotometer (UV-vis DRS, and vibrating sample magnetometer (VSM. The photocatalytic activity was investigated by Rhodamine B (RhB photo-degradation under visible light irradiation. The photo-degradation rate of RhB was 94.0~96.0% after only 60 min photocatalytic reaction under visible light irradiation, revealing that it had an excellent visible-light-induced photocatalytic activity. In the fifth recycle, the degradation rate of Ag/BiVO4/Mn1−xZnxFe2O4 still reached to 94.0%. Free radical tunnel experiments confirmed the dominant role of •O2− in the photocatalytic process for Ag/BiVO4/Mn1−xZnxFe2O4. Most importantly, the mechanism that multifunction Ag could enhance photocatalytic activity was explained in detail.

  16. In-situ anion exchange fabrication of porous ZnO/ZnSe heterostructural microspheres with enhanced visible light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hairui, E-mail: liuhairui1@126.com [College of Physics & Electrics Engineering, Henan Normal University, Henan Key Laboratory of Photovoltaic Materials, Xinxiang 453007 (China); Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, Shanxi, 030024 (China); College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024 (China); Hu, Yanchun [College of Physics & Electrics Engineering, Henan Normal University, Henan Key Laboratory of Photovoltaic Materials, Xinxiang 453007 (China); He, Xia [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, Shanxi, 030024 (China); Jia, Husheng, E-mail: jia_husheng@126.com [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, Shanxi, 030024 (China); College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024 (China); Liu, Xuguang; Xu, Bingshe [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, Shanxi, 030024 (China)

    2015-11-25

    Porous ZnO microspheres were fabricated by an ultrasonic irradiation technique. Subsequently, through a facile in-situ anion exchange reaction between the ZnO microsphere and sodium selenite, spherical ZnO/ZnSe heterostructures with different ratios of the two components were fabricated. The as-obtained products were characterized by field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray (EDX) spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), and UV–vis spectrometry. The results reveal that the secondary ZnSe nanoparticles are grown on the surface of pre-grown ZnO microspheres. Compared with pure ZnO microspheres, the ZnO/ZnSe hetero-microspheres show enhance visible-light photocatalytic activity for degradation of methylene blue (MB) and 4-nitrophenol (4-NP). The enhanced photocatalytic performance is attributed to fast separation and transport of photogenerated electrons and holes derived from the coupling effect of ZnSe and ZnO heterostructure. Photoluminescent spectra further indicate that the ZnO/ZnSe heterostructures greatly suppress the charge recombination of photogenerated electron–hole pairs, which would be beneficial to improve their photocatalytic activity. Finally, the photocatalytic mechanism of the ZnO/ZnSe heterostructures is proposed. - Graphical abstract: Porous ZnO/ZnSe heterostructures with different ratios of the two components were fabricated and present enhance visible-light photocatalytic activity for degradation of methylene blue (MB) and 4-nitrophenol (4-NP). The enhanced photocatalytic performance is attributed to fast separation and transport of photogenerated electrons and holes derived from the coupling effect of ZnSe and ZnO heterostructure. - Highlights: • Spherical ZnO/ZnSe porous composites were fabricated by in-situ anion exchange. • ZnO/ZnSe composites exhibited enhanced visible-light photocatalytic activity. • The matching band gap improves the separation of

  17. Highly efficient visible light TiO{sub 2} photocatalyst prepared by sol-gel method at temperatures lower than 300 {sup o}C

    Energy Technology Data Exchange (ETDEWEB)

    Wang Desong, E-mail: dswang06@126.com [School of Sciences, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018 (China); Xiao Libin; Luo Qingzhi; Li Xueyan; An Jing [School of Sciences, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018 (China); Duan Yandong [College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018 (China)

    2011-08-15

    Graphical abstract: Display Omitted Highlights: {yields} Mesoporous anatase nano-TiO{sub 2} photocatalyst was synthesized by sol-gel method at lower temperature ({<=}300 {sup o}C). {yields} Its visible light photocatalytic activity is greatly higher than that of TiO{sub 2} (P-25) and its photocatalytic stability is excellent. {yields} Carbon self-doping and visible photosensitive organic groups result in the improvement of the visible light photocatalytic activity. -- Abstract: Highly efficient visible light TiO{sub 2} photocatalyst was prepared by the sol-gel method at lower temperature ({<=}300 {sup o}C), and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and differential scanning calorimetry-thermogravimetric analysis (DSC-TGA). The effects of the heat treatment temperature and time of the as-prepared TiO{sub 2} on its visible light photocatalytic activity were investigated by monitoring the degradation of methyl orange solution under visible light irradiation (wavelength {>=} 400 nm). Results show that the as-prepared TiO{sub 2} nanoparticles possess an anatase phase and mesoporous structure with carbon self-doping and visible photosensitive organic groups. The visible light photocatalytic activity of the as-prepared TiO{sub 2} is greatly higher than those of the commercial TiO{sub 2} (P-25) and other visible photocatalysts reported in literature (such as PPy/TiO{sub 2}, P3HT/TiO{sub 2}, PANI/TiO{sub 2}, N-TiO{sub 2} and Fe{sup 3+}-TiO{sub 2}) and its photocatalytic stability is excellent. The reasons for improving the visible light photocatalytic activity of the as-prepared TiO{sub 2} can be explained by carbon self-doping and a large amount of visible photosensitive groups existing in the as-prepared TiO{sub 2}. The apparent optical thickness ({tau}{sub app}), local

  18. Enhanced photocatalytic activity of nanocellulose supported zinc oxide composite for RhB dye as well as ciprofloxacin drug under sunlight/visible light

    Science.gov (United States)

    Tavker, Neha; Sharma, Manu

    2018-05-01

    Zinc oxide nanoparticles were synthesised from zinc acetate di-hydrate via co-precipitation method. Nanocellulose was isolated from agrowaste using chemo-mechanical treatments and characterized. Nanocellulose supported zinc oxide composites were prepared through in-situ method by adding different amounts of nanocellulose. The photocatalytic efficiency of pure Zno and nanocellulose supported ZnO was calculated using RhB dye under visible light and sun light. The composites which had nanocellulose in greater ratio showed higher degradation efficiency in sunlight rather than visible light for both; dye and drug. All the composites showed high rate of photodegradation compared to bare ZnO and bare nanocellulose. The enhancement in photocatalytic activity was observed maximum where the amount of cellulose was maximum. The maximum observed rate was 0.025 min-1 using Ciprofloxacin drug due to the increase in lifetime of Z4 sample delaying the electron and hole pair recombination. The degrading efficiency of nanocellulose supported zinc oxide (NC/ZnO) composite for RhB was found to be 35% in visible, 76% in sunlight and 75% for ciprofloxacin under sunlight.

  19. Enhanced visible-light photocatalytic activity for selective oxidation of amines into imines over TiO{sub 2}(B)/anatase mixed-phase nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Jun [Institute of Applied Chemistry, Henan Polytechnic University, Jiaozuo 454003 (China); State Key Laboratory Cultivation Base for Gas Geology and Gas Control, School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454003 (China); Yang, Juan, E-mail: yangjuanhpu@yahoo.com [Institute of Applied Chemistry, Henan Polytechnic University, Jiaozuo 454003 (China); Wang, Xiaohan; Zhang, Lei; Li, Yingjie [Institute of Applied Chemistry, Henan Polytechnic University, Jiaozuo 454003 (China)

    2015-09-15

    Graphical abstract: Visible-light photocatalytic activities for selective oxidation of amines into imines are greatly affected by the crystal structure of TiO{sub 2} catalysts and mixed-phase TiO{sub 2}(B)/anatase possess higher photoactivity because of the moderate adsorption ability and efficient charge separation. - Highlights: • Visible-light photocatalytic oxidation of amines to imines is studied over different TiO{sub 2}. • Photocatalytic activities are greatly affected by the crystal structure of TiO{sub 2} nanowires. • Mixed-phase TiO{sub 2}(B)/anatase exhibits higher catalytic activity than single-phase TiO{sub 2}. • Enhanced activity is ascribed to efficient adsorption ability and interfacial charge separation. • Photoinduced charge transfer mechanism on TiO{sub 2}(B)/anatase catalysts is also proposed. - Abstract: Wirelike catalysts of mixed-phase TiO{sub 2}(B)/anatase TiO{sub 2}, bare anatase TiO{sub 2} and TiO{sub 2}(B) are synthesized via calcining precursor hydrogen titanate obtained from hydrothermal process at different temperatures between 450 and 700 °C. Under visible light irradiation, mixed-phase TiO{sub 2}(B)/anatase TiO{sub 2} catalysts exhibit enhanced photocatalytic activity in comparison with pure TiO{sub 2}(B) and anatase TiO{sub 2} toward selective oxidation of benzylamines into imines and the highest photocatalytic activity is achieved by TW-550 sample consisting of 65% TiO{sub 2}(B) and 35% anatase. The difference in photocatalytic activities of TiO{sub 2} samples can be attributed to the different adsorption abilities resulted from their crystal structures and interfacial charge separation driven by surface-phase junctions between TiO{sub 2}(B) and anatase TiO{sub 2}. Moreover, the photoinduced charge transfer mechanism of surface complex is also proposed over mixed-phase TiO{sub 2}(B)/anatase TiO{sub 2} catalysts. Advantages of this photocatalytic system include efficient utilization of solar light, general suitability to

  20. Facile synthesis of surface N-doped Bi_2O_2CO_3: Origin of visible light photocatalytic activity and in situ DRIFTS studies

    International Nuclear Information System (INIS)

    Zhou, Ying; Zhao, Ziyan; Wang, Fang; Cao, Kun; Doronkin, Dmitry E.; Dong, Fan; Grunwaldt, Jan-Dierk

    2016-01-01

    Graphical abstract: Surfactant (CTAB) can induce nitrogen interstitially doping in the Bi_2O_2CO_3 surface, leading to the formation of localized states from N−O bond, which probably account for the origin of the visible light activity. Moreover, the photocatalytic NO oxidation processes over Bi_2O_2CO_3 were successfully monitored for the first time by in situ DRIFTS. - Highlights: • Interstitially doping N in the Bi_2O_2CO_3 surface was achieved at room temperature. • N-doped Bi_2O_2CO_3 exhibited significantly enhanced visible light photocatalytic activity compared to the pristine Bi_2O_2CO_3. • The formation of localized states from N−O bond could account for the visible light activity of Bi_2O_2CO_3. • The photocatalytic NO oxidation process was monitored by in situ DRIFTS. - Abstract: Bi_2O_2CO_3 nanosheets with exposed {001} facets were prepared by a facile room temperature chemical method. Due to the high oxygen atom density in {001} facets of Bi_2O_2CO_3, the addition of cetyltrimethylammonium bromide (CTAB) does not only influence the growth of crystalline Bi_2O_2CO_3, but also modifies the surface properties of Bi_2O_2CO_3 through the interaction between CTAB and Bi_2O_2CO_3. Nitrogen from CTAB as dopant interstitially incorporates in the Bi_2O_2CO_3 surface evidenced by both experimental and theoretical investigations. Hence, the formation of localized states from N−O bond improves the visible light absorption and charge separation efficiency, which leads to an enhancement of visible light photocatalytic activity toward to the degradation of Rhodamine B (RhB) and oxidation of NO. In addition, the photocatalytic NO oxidation over Bi_2O_2CO_3 nanosheets was successfully monitored for the first time using in situ diffuse reflectance infrared Fourier-transform spectroscopy (DRIFTS). Both bidentate and monodentate nitrates were identified on the surface of catalysts during the photocatalytic reaction process. The application of this strategy to

  1. Microtruss structures with enhanced elasticity fabricated through visible light photocuring

    Directory of Open Access Journals (Sweden)

    Hari Nanthakumar

    Full Text Available We report on the fabrication of an open cellular solid structure using visible light photocuring in combination with light-induced self-writing. A visible light sensitive photopolymer is irradiated with multiple arrays of microscale optical beams, which are generated from LEDs. These beams undergo self-trapping and elicit the inscription of microscale, solid struts into the medium. This process creates a structure consisting of multiple, intersecting struts that form a microtruss structure. Such structures retain their elasticity at higher temperatures as compared to a bulk film of the same thickness. This is the first demonstration of visible light photocuring of photopolymers into a microtruss structure, as well as investigation into their elastic properties under tension. Keywords: Polymers, Self-trapping, Microstructures, Cellular solids

  2. Ternary ZnO/AgI/Ag{sub 2}CO{sub 3} nanocomposites: Novel visible-light-driven photocatalysts with excellent activity in degradation of different water pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Golzad-Nonakaran, Behrouz; Habibi-Yangjeh, Aziz, E-mail: ahabibi@uma.ac.ir

    2016-12-01

    ZnO/AgI/Ag{sub 2}CO{sub 3} nanocomposites with different Ag{sub 2}CO{sub 3} contents were fabricated by a facile ultrasonic-irradiation method. The resultant samples were fairly characterized using XRD, EDX, SEM, TEM, UV–vis DRS, FT-IR, and PL techniques to reveal their microstructure, purity, morphology, and spectroscopic properties. Photocatalytic activity of the prepared samples was investigated by photodegradation of four dye pollutants (rhodamine B, methyl orange, methylene blue, and fuchsine) under visible-light irradiation. The photocatalytic experiments in degradation of rhodamine B showed that the ternary ZnO/AgI/Ag{sub 2}CO{sub 3} (30%) nanocomposite has an enhanced activity nearly 19 and 14 times higher than those of the binary ZnO/Ag{sub 2}CO{sub 3} and ZnO/AgI photocatalysts, respectively. Based on the obtained results, the highly enhanced activity was attributed to generation of more electron-hole pairs under visible-light irradiation and separation of the photogenerated charge carriers due to formation of tandem n-n heterojunctions between counterparts of the nanocomposite. The active species trapping experiments were also examined and it was showed that superoxide ion radicals play a vital role in the photocatalytic degradation reaction. More importantly, the ternary photocatalyst demonstrated good photostability. - Highlights: • ZnO/AgI/Ag{sub 2}CO{sub 3} nanocomposites were fabricated by an ultrasonic-irradiation method. • The activity was investigated by photodegradation of four dyes under visible light. • ZnO/AgI/Ag{sub 2}CO{sub 3} (30%) nanocomposite has the best activity under visible light. • Activity is 19 and 14-folds higher than ZnO/Ag{sub 2}CO{sub 3} and ZnO/AgI in degradation of RhB.

  3. Visible-light system for detecting doxorubicin contamination on skin and surfaces.

    Science.gov (United States)

    Van Raalte, J; Rice, C; Moss, C E

    1990-05-01

    A portable system that uses fluorescence stimulated by visible light to identify doxorubicin contamination on skin and surfaces was studied. When activated by violet-blue light in the 465-nm range, doxorubicin fluoresces, emitting orange-red light in the 580-nm range. The light source to stimulate fluorescence was a slide projector with a filter to selectively pass short-wave (blue) visible light. Fluorescence was both observed visually with viewing spectacles and photographed. Solutions of doxorubicin in sterile 0.9% sodium chloride injection were prepared in nine standard concentrations ranging from 2 to 0.001 mg/mL. Droplets of each admixture were placed on stainless steel, laboratory coat cloth, pieces of latex examination glove, bench-top absorbent padding, and other materials on which antineoplastics might spill or leak. These materials then were stored for up to eight weeks and photographed weekly. The relative ability of water, household bleach, hydrogen peroxide solution, and soap solution to deactivate doxorubicin was also measured. Finally, this system was used to inspect the antineoplastic-drug preparation and administration areas of three outpatient cancer clinics for doxorubicin contamination. Doxorubicin fluorescence was easily detectable with viewing spectacles when a slide projector was used as the light source. The photographic method was sensitive for doxorubicin concentrations from 2.0 to 0.001 mg/mL. Immersion of study materials in bleach for one minute eliminated detectable fluorescence. Doxorubicin contamination is detectable for at least eight weeks in the ambient environment. Probable doxorubicin contamination was detected in two of the three clinics surveyed. A safe, portable system that uses fluorescence stimulated by visible light is a sensitive method for detecting doxorubicin on skin and surfaces.

  4. High activity of Ag-doped Cd0.1Zn0.9S photocatalyst prepared by the hydrothermal method for hydrogen production under visible-light irradiation

    Directory of Open Access Journals (Sweden)

    Leny Yuliati

    2014-05-01

    Full Text Available Background: The hydrothermal method was used as a new approach to prepare a series of Ag-doped Cd0.1Zn0.9S photocatalysts. The effect of Ag doping on the properties and photocatalytic activity of Cd0.1Zn0.9S was studied for the hydrogen production from water reduction under visible light irradiation.Results: Compared to the series prepared by the co-precipitation method, samples prepared by the hydrothermal method performed with a better photocatalytic activity. The sample with the optimum amount of Ag doping showed the highest hydrogen production rate of 3.91 mmol/h, which was 1.7 times higher than that of undoped Cd0.1Zn0.9S. With the Ag doping, a red shift in the optical response was observed, leading to a larger portion of the visible light absorption than that of without doping. In addition to the larger absorption in the visible-light region, the increase in photocatalytic activity of samples with Ag doping may also come from the Ag species facilitating electron–hole separation.Conclusion: This study demonstrated that Ag doping is a promising way to enhance the activity of Cd0.1Zn0.9S photocatalyst.

  5. Enhanced visible light photocatalytic properties of Fe-doped TiO2 nanorod clusters and monodispersed nanoparticles

    International Nuclear Information System (INIS)

    Liu, Y.; Wei, J.H.; Xiong, R.; Pan, C.X.; Shi, J.

    2011-01-01

    In order to get photocatalysts with desired morphologies and enhanced visible light responses, the Fe-doped TiO 2 nanorod clusters and monodispersed nanoparticles were prepared by modified hydrothermal and solvothermal method, respectively. The microstructures and morphologies of TiO 2 crystals can be controlled by restraining the hydrolytic reaction rates. The Fe-doped photocatalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis absorption spectroscopy (UV-vis), N 2 adsorption-desorption measurement (BET), and photoluminescence spectroscopy (PL). The refinements of the microstructures and morphologies result in the enhancement of the specific surface areas. The Fe 3+ -dopants in TiO 2 lattices not only lead to the significantly extending of the optical responses from UV to visible region but also diminish the recombination rates of the electrons and holes. The photocatalytic activities were evaluated by photocatalytic decomposition of formaldehyde in air under visible light illumination. Compared with P25 (TiO 2 ) and N-doped TiO 2 nanoparticles, the Fe-doped photocatalysts show high photocatalytic activities under visible light.

  6. Hydrothermal fabrication of N-doped (BiO){sub 2}CO{sub 3}: Structural and morphological influence on the visible light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Fan, E-mail: dfctbu@126.com [Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, College of Environmental and Biological Engineering, Chongqing Technology and Business University, Chongqing 400067 (China); Wang, Rui; Li, Xinwei [Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, College of Environmental and Biological Engineering, Chongqing Technology and Business University, Chongqing 400067 (China); Ho, Wing-Kei [Department of Science and Environmental Studies, The Centre for Education in Environmental Sustainability, The Hong Kong Institute of Education, Hong Kong (China)

    2014-11-15

    Graphical abstract: - Highlights: • Persimmon-like, flower-like N-doped (BiO){sub 2}CO{sub 3} superstructures were prepared. • The superstructures were fabricated by one-step hydrothermal method. • The hydrothermal temperature controlled the morphological structure. • N-doped (BiO){sub 2}CO{sub 3} superstructure showed enhanced photocatalytic activity. • The high activity can be ascribed to doped nitrogen and hierarchical structure. - Abstract: Various 3D N-doped (BiO){sub 2}CO{sub 3} (N-BOC) hierarchical superstructures self-assembled with 2D nanosheets were fabricated by one-step hydrothermal treatment of bismuth citrate and urea. The as-obtained samples were characterized by XRD, XPS, FT-IR, SEM, N{sub 2} adsorption–desorption isotherms and UV–vis DRS. The hydrothermal temperature plays a crucial role in tuning the crystal and morphological structure of the samples. Adjusting the reaction temperature to 150, 180 and 210 °C, we obtained N-doped (BiO){sub 2}CO{sub 3} samples with corresponding attractive persimmon-like, flower-like and nanoflakes nano/microstructures. The photocatalytic activities of the samples were evaluated by removal of NO under visible and solar light irradiation. The results revealed that the N-doped (BiO){sub 2}CO{sub 3} hierarchical superstructures showed enhanced visible light photocatalytic activity compared to pure (BiO){sub 2}CO{sub 3} and TiO{sub 2}-based visible light photocatalysts. The outstanding photocatalytic performance of N-BOC samples can be ascribed to the doped nitrogen and the special hierarchical structure. The present work could provide new perspectives in controlling the morphological structure and photocatalytic activity of photocatalyst for better environmental pollution control.

  7. Enhancement of visible-light photocatalytic activity of silver and mesoporous carbon co-modified Bi2WO6

    International Nuclear Information System (INIS)

    Zhao, Qian; Gong, Ming; Liu, Wangping; Mao, Yulin; Le, Shukun; Ju, Shang; Long, Fei; Liu, Xiufang; Liu, Kai; Jiang, Tingshun

    2015-01-01

    Graphical abstract: - Highlights: • Silver and mesoporous carbon co-modified Bi 2 WO 6 (Ag/Bi 2 WO 6 /CMK-3) composite was prepared. • Photocatalytic activity of Bi 2 WO 6 was remarkably enhanced by co-modification of silver and mesoporous carbon. • The degradation rate of MB can reach ca. 95.1% under visible light irradiation. • The Ag/Bi 2 WO 6 /CMK-3 composite has good stability and potential application prospects. - Abstract: Ordered mesoporous carbon CMK-3 was prepared by hard template method using SBA-15 as template, sucrose as carbon source. Flower/sphere-like Bi 2 WO 6 and CMK-3/Bi 2 WO 6 photocatalysts were synthesized by hydrothermal method, and then Ag/Bi 2 WO 6 and Ag/Bi 2 WO 6 /CMK-3 composite photocatalysts were prepared via a photoreduction process. The samples were characterized by XRD, UV–vis, TEM (HR-TEM), SEM, N 2 physical adsorption and PL and their photocatalytic activities were evaluated by the photocatalytic degradation of methylene blue (MB) under visible light irradiation. The results show that both incorporating of CMK-3 and Ag loading greatly improved the photocatalytic activity of Bi 2 WO 6 , and the content of CMK-3 and silver have an impact on the photocatalytic activity of Bi 2 WO 6 . The photocatalytic activity of Ag/Bi 2 WO 6 /CMK-3 photocatalyst is superior to the activities of CMK-3/Bi 2 WO 6 and Ag/Bi 2 WO 6 under comparable conditions, and Ag/Bi 2 WO 6 /CMK-3 photocatalyst has high stability and is easy to be recycled. Also, the mechanism for the enhancement of the photocatalytic activity of CMK-3 and Ag co-modified Bi 2 WO 6 was also investigated

  8. Hydrothermal synthesis of Ca3Bi8O15 rods and their visible light photocatalytic properties

    International Nuclear Information System (INIS)

    Li, Wenjuan; Kong, Desheng; Cui, Xiaoli; Du, Dandan; Yan, Tingjiang; You, Jinmao

    2014-01-01

    Graphical abstract: The novel Ca 3 Bi 8 O 15 rods can utilize the sunlight efficiently with the small band-gap. Using methyl orange (MO) as a model organic pollutant, the photocatalysts exhibited good photocatalytic activity, with the photodegradation conversion ratio of MO being up to 90% after 2 h of visible light (420 nm < λ < 800 nm) irradiation. - Highlights: • Ca 3 Bi 8 O 15 rods were synthesized by a hydrothermal method. • They can utilize the sunlight efficiently with the small band-gap. • They showed good photocatalytic activities in the degradation of MO, RhB and 4-CP. • The conversion ratio of MO was up to 90% after 2 h of visible light irradiation. - Abstract: High efficient visible light Ca 3 Bi 8 O 15 photocatalysts were synthesized by a hydrothermal method. Characterized by X-ray diffractometer, transmission electron microscopy, and the UV–vis diffuse reflectance spectroscopy, the results showed that the novel Ca 3 Bi 8 O 15 rods can utilize the sunlight efficiently with the small band-gap. Using methyl orange (MO) as a model organic pollutant, the photocatalysts exhibited good photocatalytic activity, with the photodegradation conversion ratio of MO being up to 90% after 2 h of visible light (420 nm < λ < 800 nm) irradiation. Furthermore, they also showed good photocatalytic activities in the degradation of rhodamine B and p-chlorophenol. Through the investigation of the degraded mechanism, the main active species played important roles in the degradation process were holes, O 2 · − and ·OH

  9. Incorporation of N–ZnO/CdS/Graphene oxide composite photocatalyst for enhanced photocatalytic activity under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Huo, Pengwei, E-mail: huopw1@163.com [School of Chemistry & Chemical Engineering Jiangsu University Zhenjiang, 212013 (China); Institute of Green Chemistry and Chemical Technology, Jiangsu University, Zhenjiang, 212013 (China); Zhou, Mingjun; Tang, Yanfeng [School of Chemistry & Chemical Engineering Jiangsu University Zhenjiang, 212013 (China); Liu, Xinlin [School of Energy & Power Engineering Jiangsu University Zhenjiang, 212013 (China); Ma, Changchang; Yu, Longbao [School of Chemistry & Chemical Engineering Jiangsu University Zhenjiang, 212013 (China); Yan, Yongsheng, E-mail: yys@mail.ujs.edu.cn [School of Chemistry & Chemical Engineering Jiangsu University Zhenjiang, 212013 (China); Institute of Green Chemistry and Chemical Technology, Jiangsu University, Zhenjiang, 212013 (China)

    2016-06-15

    N–ZnO/CdS/Graphene oxide (GO) composite photocatalysts have been successfully synthesized by hydrothermal method. The as-prepared composite photocatalysts were characterized by X-ray diffraction (XRD), Raman, scanning electron microscopy(SEM), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), fourier transform infrared (FT-IR) spectra, UV–vis diffuse reflectance spectra (UV–vis DRS), thermogravimetry (TG) and photoluminescence (PL). The as-prepared photocatalysts exhibited strong visible light photocatalytic activity toward to degradation of antibiotics under ambient conditions. Particularly, the N–ZnO/CdS/GO composite photocatalysts showed the higher photocatalytic degradation rate (86%) of ciprofloxacin CIP under visible light irradiation than the pure photocatalysts. Compared with degradation of different antibiotics (tetracycline (TC), oxytetracycline hydrochloride (OTC-HCl) and levofloxacin (LEV)), the N–ZnO/CdS/GO composite photocatalysts also exhibited high photocatalytic activities. According to the experiments, the role of GO in the composite photocatalysts acted as an electron conductor, and also enhanced the separation rate of electrons and holes which greatly improved the photocatalytic activity. Lastly, the mechanism of enhanced photocatalytic degradation of CIP was also discussed. - Highlights: • N–ZnO/CdS/GO composite was synthesized by the hydrothermal processes. • N–ZnO/CdS composites prevent pure CdS or ZnO from photocorrosion. • N–ZnO/CdS/GO shows the remarkable photocatalytic activity and stability.

  10. ZnO nanoparticles decorated on graphene sheets through liquid arc discharge approach with enhanced photocatalytic performance under visible-light

    International Nuclear Information System (INIS)

    Ashkarran, Ali Akbar; Mohammadi, Bahareh

    2015-01-01

    Graphical abstract: TEM image of ZnO–graphene composite. - Highlights: • Innovative approach for synthesis of zinc oxide–graphene (ZnO–G) hybrid nanostructures. • Combination of bottom-up and top-down methods. • Decoration of ZnO nanoparticles on the surface of graphene. • Visible-light photocatalytic performance. - Abstract: We present an innovative approach for synthesis of zinc oxide–graphene (ZnO–G) hybrid nanostructures through combination of improved hummer and arc discharge methods in liquid. A detailed study of the considerable visible-light photocatalytic activities of these nanostructures for the degradation of Phenol red (PR) and Methyl orange (MO) as standard organic compounds under the irradiation of 90 W halogen light for 2 h has been performed. The ZnO–G nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer Emmett Teller (BET) and ultra violet–visible absorption spectroscopy (UV–vis). The results revealed that the ZnO–G nanostructures extended the light absorption spectrum toward the visible region and remarkably enhanced the photodegradation of standard dyes under visible-light irradiation. It has been confirmed that the ZnO–G nanostructures could be excited by visible-light (E ∼ 2.6 eV). The major enhancement in the photocatalytic activity of ZnO–G nanostructures under visible-light irradiation can be attributed to the effect of electron transport among ZnO nanoparticles (NPs) and graphene sheets. A mechanism for photocatalytic degradation of organic pollutants over ZnO–G photocatalyst was proposed based on our observations

  11. ZnO nanoparticles decorated on graphene sheets through liquid arc discharge approach with enhanced photocatalytic performance under visible-light

    Energy Technology Data Exchange (ETDEWEB)

    Ashkarran, Ali Akbar, E-mail: ashkarran@umz.ac.ir; Mohammadi, Bahareh

    2015-07-01

    Graphical abstract: TEM image of ZnO–graphene composite. - Highlights: • Innovative approach for synthesis of zinc oxide–graphene (ZnO–G) hybrid nanostructures. • Combination of bottom-up and top-down methods. • Decoration of ZnO nanoparticles on the surface of graphene. • Visible-light photocatalytic performance. - Abstract: We present an innovative approach for synthesis of zinc oxide–graphene (ZnO–G) hybrid nanostructures through combination of improved hummer and arc discharge methods in liquid. A detailed study of the considerable visible-light photocatalytic activities of these nanostructures for the degradation of Phenol red (PR) and Methyl orange (MO) as standard organic compounds under the irradiation of 90 W halogen light for 2 h has been performed. The ZnO–G nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer Emmett Teller (BET) and ultra violet–visible absorption spectroscopy (UV–vis). The results revealed that the ZnO–G nanostructures extended the light absorption spectrum toward the visible region and remarkably enhanced the photodegradation of standard dyes under visible-light irradiation. It has been confirmed that the ZnO–G nanostructures could be excited by visible-light (E ∼ 2.6 eV). The major enhancement in the photocatalytic activity of ZnO–G nanostructures under visible-light irradiation can be attributed to the effect of electron transport among ZnO nanoparticles (NPs) and graphene sheets. A mechanism for photocatalytic degradation of organic pollutants over ZnO–G photocatalyst was proposed based on our observations.

  12. Surface plasmon resonance enhanced visible-light-driven photocatalytic activity in Cu nanoparticles covered Cu{sub 2}O microspheres for degrading organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Yahui, E-mail: chengyahui@nankai.edu.cn [Department of Electronics and Key Laboratory of Photo-Electronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin 300071 (China); Lin, Yuanjing [Department of Electronics and Key Laboratory of Photo-Electronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin 300071 (China); Xu, Jianping [Institute of Material Physics, Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384 (China); He, Jie; Wang, Tianzhao; Yu, Guojun; Shao, Dawei; Wang, Wei-Hua; Lu, Feng [Department of Electronics and Key Laboratory of Photo-Electronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin 300071 (China); Li, Lan [Institute of Material Physics, Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384 (China); Du, Xiwen [School of Material Science and Engineering, Tianjin University, Tianjin 300072 (China); Wang, Weichao [Department of Electronics and Key Laboratory of Photo-Electronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin 300071 (China); Liu, Hui, E-mail: liuhui@nankai.edu.cn [Department of Electronics and Key Laboratory of Photo-Electronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin 300071 (China); Zheng, Rongkun [School of Physics, The University of Sydney, Sydney, NSW 2006 (Australia)

    2016-03-15

    Graphical abstract: - Highlights: • Cu NPs introduce the SPR and result in an increase of visible light absorption. • The photocatalytic activity of Cu{sub 2}O/Cu improves greatly due to the SPR effect. • A dark catalytic activity is observed stemming from the Fenton-like reaction. • The • O{sub 2}{sup −} and • OH radicals contribute to the photocatalytic process. • The • OH radicals contribute to the dark catalytic process. - Abstract: Micron-sized Cu{sub 2}O with different coverage of Cu nanoparticles (NPs) on the sphere has been synthesized by a redox procedure. The absorption spectra show that Cu NPs induce the surface plasmon resonance (SPR) at the wavelength of ∼565 nm. Methylene blue (MB) photodegrading experiments under visible-light display that the Cu{sub 2}O–Cu–H{sub 2}O{sub 2} system exhibits a superior photocatalytic activity to Cu{sub 2}O–H{sub 2}O{sub 2} or pure H{sub 2}O{sub 2} with an evident dependency on Cu coverage. The maximum photodegradation rate is 88% after visible-light irradiating for 60 min. The role of the Cu NPs is clarified through photodegradation experiments under 420 nm light irradiation, which is different from the SPR wavelength of Cu NPs (∼565 nm). By excluding the SPR effect, it proves that Cu SPR plays a key role in the photodegradation. Besides, a dark catalytic activity is observed stemming from the Fenton-like reaction with the aid of H{sub 2}O{sub 2}. The radical quenching experiments indicate that both • O{sub 2}{sup −} and • OH radicals contribute to the photocatalysis, while the dark catalysis is only governed by the • OH radicals, leading to a lower activity comparing with the photocatalysis. Therefore, with introducing Cu NPs and H{sub 2}O{sub 2}, the Cu{sub 2}O-based photocatalytic activity could be significantly improved due to the SPR effect and dark catalysis.

  13. Visible-light-induced photocatalysis of low-level methyl-tertiary butyl ether (MTBE) and trichloroethylene (TCE) using element-doped titanium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Wan-Kuen; Yang, Chang-Hee [Department of Environmental Engineering, Kyungpook National University, Sankeokdong, Bukgu, Daegu 702-701 (Korea)

    2010-04-15

    While the photocatalytic degradation of various volatile organic compounds in conjunction with UV light has been widely reported, visible-light-induced photocatalytic degradation of low-levels of the pollutants MTBE and TCE, which have been linked to potential adverse health effects, is rarely reported. The present study examined whether visible-light-activated S- or N-doped TiO{sub 2} photocatalytic technology can be used to control indoor concentrations of MTBE and TCE. This study consists of the characterization of the doped TiO{sub 2} powders, as well as an investigation of their photocatalytic activities. In regards to both powders, a shift of the absorbance spectrum towards the visible light region was observed. An activity test suggested that these photocatalysts exhibited reasonably high degradation efficiencies towards MTBE and TCE under visible light irradiation. The degradation efficiencies of MTBE and TCE by S- and N-doped photocatalysts exceeded 75 and 80%, respectively, at input concentrations (IC) of 0.1 ppm. Degradation efficiency was dependent on both IC and relative humidity. TCE could enhance the degradation efficiency of MTBE even under visible-light irradiation. The estimated mineralization efficiencies (MEs) were comparable to those of previous studies conducted with UV/TiO{sub 2} systems. Similar to the relative degradation efficiencies, the ME of TCE was higher in comparison to that of MTBE. The CO production measured during the photocatalytic processes represented a negligible addition to indoor CO levels. These results suggest that visible-light-activated S- and N-doped TiO{sub 2} photocatalysts may prove a useful tool in the effort to improve indoor air quality. (author)

  14. LED-based high-speed visible light communications

    Science.gov (United States)

    Chi, Nan; Shi, Meng; Zhao, Yiheng; Wang, Fumin; Shi, Jianyang; Zhou, Yingjun; Lu, Xingyu; Qiao, Liang

    2018-01-01

    We are seeing a growing use of light emitting diodes (LEDs) in a range of applications including lighting, TV and backlight board screen, display etc. In comparison with the traditional incandescent and fluorescent light bulbs, LEDs offer long life-space, much higher energy efficiency, high performance cost ratio and above all very fast switching capability. LED based Visible Light Communications (VLC) is an emerging field of optical communications that focuses on the part of the electromagnetic spectrum that humans can see. Depending on the transmission distance, we can divide the whole optical network into two categories, long haul and short haul. Visible light communication can be a promising candidate for short haul applications. In this paper, we outline the configuration of VLC, its unique benefits, and describe the state of the art research contributions consisting of advanced modulation formats including adaptive bit loading OFDM, carrierless amplitude and phase (CAP), pulse amplitude modulation (PAM) and single carrier Nyquist, linear equalization and nonlinear distortion mitigation based on machine learning, quasi-balanced coding and phase-shifted Manchester coding. These enabling technologies can support VLC up to 10Gb/s class free space transmission.

  15. Facile Synthesis and Characterization of N-Doped TiO2 Photocatalyst and Its Visible-Light Activity for Photo-Oxidation of Ethylene

    Directory of Open Access Journals (Sweden)

    Yu-Hao Lin

    2015-01-01

    Full Text Available A facile wet chemical method was adopted for preparing highly photoactive nitrogen doped TiO2 (N-TiO2 powders with visible responsive capability, which could be achieved by the hydrolysis of titanium isopropoxide (TTIP in the ammonium hydroxide precursor solution in various concentrations and then calcined at different temperatures. The N-TiO2 powders were characterized, and the photocatalytic activity was evaluated for the photocatalytic oxidation of ethylene gas under visible light irradiation to optimize the synthesizing conditions of N-TiO2 catalyst. The N-TiO2 photocatalytic powders were calcined in a range of temperatures from 300 to 600°C and obviously found to have greater photocatalytic activities than commercial TiO2 P25. The strong absorption in the visible light region could be ascribed to good crystallization and adapted sinter temperature of as prepared sample. XPS test demonstrated that the N was doped into TiO2 lattice and made an interstitial formation (Ti-O-N, and N doping also retarded the phase transformation from anatase to rutile as well. The N-TiO2 catalyst prepared with 150 mL ammonium hydroxide added and calcined at 500°C showed the best photocatalytic activity. The experimental results also proved the enhanced photoactivity of N-TiO2 material depends on the synthesizing conditions.

  16. Visible light communications modulation and signal processing

    CERN Document Server

    Wang, Zhaocheng; Huang, Wei; Xu, Zhengyuan

    2018-01-01

    This informative new book on state-of-the-art visible light communication (VLC) provides, for the first time, a systematical and advanced treatment of modulation and signal processing for VLC. Visible Light Communications: Modulation and Signal Processing offers a practical guide to designing VLC, linking academic research with commercial applications. In recent years, VLC has attracted attention from academia and industry since it has many advantages over the traditional radio frequency, including wide unregulated bandwidth, high security, and low cost. It is a promising complementary technique in 5G and beyond wireless communications, especially in indoor applications. However, lighting constraints have not been fully considered in the open literature when considering VLC system design, and its importance has been underestimated. That’s why this book—written by a team of experts with both academic research experience and industrial development experience in the field—is so welcome. To help readers u...

  17. Advances and prospects in visible light communications

    International Nuclear Information System (INIS)

    Chen Hongda; Wu Chunhui; Li Honglei; Chen Xiongbin; Gao Zongyu; Cui Shigang; Wang Qin

    2016-01-01

    Visible light communication (VLC) is an emerging technology in optical wireless communication (OWC) that has attracted worldwide research in recent years. VLC can combine communication and illumination together, which could be applied in many application scenarios such as visible light communication local area networks (VLANs), indoor localization, and intelligent lighting. In recent years, pioneering and significant work have been made in the field of VLC. In this paper, an overview of the recent progress in VLC is presented. We also demonstrate our recent experiment results including bidirectional 100 Mbit/s VLAN or Li-Fi system based on OOK modulation without blue filter. The VLC systems that we proposed are good solutions for high-speed VLC application systems with low-cost and low-complexity. VLC technology shows a bright future due to its inherent advantages, shortage of RF spectra and ever increasing popularity of white LEDs. (review)

  18. A Difference in Cutaneous Pigmentary Response to LED Versus Halogen Incandescent Visible Light: A Case Report from a Single Center, Investigational Clinical Trial Determining a Minimal Pigmentary Visible Light Dose.

    Science.gov (United States)

    Soleymani, Teo; Soter, Nicholas A; Folan, Lorcan M; Elbuluk, Nada; Okereke, Uchenna R; Cohen, David E

    2017-04-01

    BACKGROUND: While most of the attention regarding skin pigmentation has focused on the effects on ultraviolet radiation, the cutaneous effects of visible light (400 to 700nm) are rarely reported. In this report, we describe a case of painful erythema and induration that resulted from direct irradiation of UV-naïve skin with visible LED light in a patient with Fitzpatrick type II skin. METHODS AND RESULTS: A 24-year-old healthy woman with Fitzpatrick type II skin presented to our department to participate in a clinical study. As part of the study, the subject underwent visible light irradiation with an LED and halogen incandescent visible light source. After 5 minutes of exposure, the patient complained of appreciable pain at the LED exposed site. Evaluation demonstrated erythema and mild induration. There were no subjective or objective findings at the halogen incandescent irradiated site, which received equivalent fluence (0.55 Watts / cm2). The study was halted as the subject was unable to tolerate the full duration of visible light irradiation. CONCLUSION: This case illustrates the importance of recognizing the effects of visible light on skin. While the vast majority of investigational research has focused on ultraviolet light, the effects of visible light have been largely overlooked and must be taken into consideration, in all Fitzpatrick skin types. J Drugs Dermatol. 2017;16(4):388-392..

  19. Bismuth titanate nanorods and their visible light photocatalytic properties

    International Nuclear Information System (INIS)

    Pei, L.Z.; Liu, H.D.; Lin, N.; Yu, H.Y.

    2015-01-01

    Highlights: • Bismuth titanate nanorods have been synthesized by a simple hydrothermal process. • The size of bismuth titanate nanorods can be controlled by growth conditions. • Bismuth titanate nanorods show good photocatalytic activities of methylene blue and Rhodamine B. - Abstract: Bismuth titanate nanorods have been prepared using a facile hydrothermal process without additives. The bismuth titanate products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM) and UV-vis diffusion reflectance spectrum. XRD pattern shows that the bismuth titanate nanorods are composed of cubic Bi 2 Ti 2 O 7 phase. Electron microscopy images show that the length and diameter of the bismuth titanate nanorods are 50-200 nm and 2 μm, respectively. Hydrothermal temperature and reaction time play important roles on the formation and size of the bismuth titanate nanorods. UV-vis diffusion reflectance spectrum indicates that bismuth titanate nanorods have a band gap of 2.58 eV. The bismuth titanate nanorods exhibit good photocatalytic activities in the photocatalytic degradation of methylene blue (MB) and Rhodamine B (RB) under visible light irradiation. The bismuth titanate nanorods with cubic Bi 2 Ti 2 O 7 phase are a promising candidate as a visible light photocatalyst

  20. Melanin photosensitization and the effect of visible light on epithelial cells.

    Directory of Open Access Journals (Sweden)

    Orlando Chiarelli-Neto

    Full Text Available Protecting human skin from sun exposure is a complex issue that involves unclear aspects of the interaction between light and tissue. A persistent misconception is that visible light is safe for the skin, although several lines of evidence suggest otherwise. Here, we show that visible light can damage melanocytes through melanin photosensitization and singlet oxygen (1O2 generation, thus decreasing cell viability, increasing membrane permeability, and causing both DNA photo-oxidation and necro-apoptotic cell death. UVA (355 nm and visible (532 nm light photosensitize 1O2 with similar yields, and pheomelanin is more efficient than eumelanin at generating 1O2 and resisting photobleaching. Although melanin can protect against the cellular damage induced by UVB, exposure to visible light leads to pre-mutagenic DNA lesions (i.e., Fpg- and Endo III-sensitive modifications; these DNA lesions may be mutagenic and may cause photoaging, as well as other health problems, such as skin cancer.

  1. Two-way visible light communication and illumination with LEDs

    NARCIS (Netherlands)

    Li, S.; Pandharipande, A.; Willems, F.M.J.

    2017-01-01

    Visible light communications (VLC) with light-emitting diodes (LEDs) has attracted applications, such as data communications, lighting control, and light interaction. In this paper, we propose a system by which two LED devices are used for two-way VLC while also providing illumination. We consider

  2. Facile synthesis of amino-functionalized titanium metal-organic frameworks and their superior visible-light photocatalytic activity for Cr(VI) reduction

    International Nuclear Information System (INIS)

    Wang, Hou; Yuan, Xingzhong; Wu, Yan; Zeng, Guangming; Chen, Xiaohong; Leng, Lijian; Wu, Zhibin; Jiang, Longbo; Li, Hui

    2015-01-01

    Highlights: • NH 2 functionalized MIL-125(Ti) was fabricated by a facile solvothermal method. • The photocatalyst could reduce Cr(VI)–Cr(III) under visible light irradiation. • The Ti 3+ –Ti 4+ intervalence electron transfer is important for Cr(VI) reduction. • Used NH 2 -MIL-125(Ti) can be recycled for the photocatalytic reduction. - Abstract: Porous metal-organic frameworks (MOFs) have been arousing a great interest in exploring the application of MOFs as photocatalyst in environment remediation. In this work, two different MOFs, Ti-benzenedicarboxylate (MIL-125(Ti)) and amino-functionalized Ti-benzenedicarboxylate (NH 2 -MIL-125(Ti)) were successfully synthesized via a facile solvothermal method. The MIL-125(Ti) and NH 2 -MIL-125(Ti) were well characterized by XRD, SEM, XPS, N 2 adsorption–desorption measurements, thermogravimetric analysis and UV–vis diffuse reflectance spectra (DRS). It is revealed that the NH 2 -MIL-125(Ti) has well crystalline lattice, large surface area and mesoporous structure, chemical and thermal stability, and enhanced visible-light absorption up to 520 nm, which was associated with the chromophore (amino group) in the organic linker. Compared with MIL-125(Ti), NH 2 -MIL-125(Ti) exhibited more efficient photocatalytic activity for Cr(VI) reduction from aqueous solution under visible-light irradiation. The addition of hole scavenger, the hole scavenger concentration and the pH value of the reaction solution played important roles in the photo-catalytic reduction of Cr(VI). The presence of Ti 3+ –Ti 4+ intervalence electron transfer was the main reason for photo-excited electrons transportation from titanium-oxo clusters to Cr(VI), facilitating the Cr(VI) reduction under the acid condition. It was demonstrated that amino-functionalized Ti(IV)-based MOFs could be promising visible-light photocatalysts for the treatment of Cr(VI)-contained wastewater

  3. Visible-light activate Ag/WO3 films based on wood with enhanced negative oxygen ions production properties

    Science.gov (United States)

    Gao, Likun; Gan, Wentao; Cao, Guoliang; Zhan, Xianxu; Qiang, Tiangang; Li, Jian

    2017-12-01

    The Ag/WO3-wood was fabricated through a hydrothermal method and a silver mirror reaction. The system of visible-light activate Ag/WO3-wood was used to produce negative oxygen ions, and the effect of Ag nanoparticles on negative oxygen ions production was investigated. From the results of negative oxygen ions production tests, it can be observed that the sample doped with Ag nanoparticles, the concentration of negative oxygen ions is up to 1660 ions/cm3 after 60 min visible light irradiation. Moreover, for the Ag/WO3-wood, even after 60 min without irradiation, the concentration of negative oxygen ions could keep more than 1000 ions/cm3, which is up to the standard of the fresh air. Moreover, due to the porous structure of wood, the wood acted as substrate could promote the nucleation of nanoparticles, prevent the agglomeration of the particles, and thus lead the improvement of photocatalytic properties. And such wood-based functional materials with the property of negative oxygen ions production could be one of the most promising materials in the application of indoor decoration materials, which would meet people's pursuit of healthy, environment-friendly life.

  4. Determination of photo-catalytic activity of un-doped and Mn-doped TiO2 anatase powders on acetaldehyde under UV and visible light

    International Nuclear Information System (INIS)

    Papadimitriou, Vassileios C.; Stefanopoulos, Vassileios G.; Romanias, Manolis N.; Papagiannakopoulos, Panos; Sambani, Kyriaki; Tudose, Valentin; Kiriakidis, George

    2011-01-01

    Titanium dioxide (TiO 2 ) photocatalytic powder materials doped with various levels of manganese (Mn) were synthesized to be used as additives to wall painting in combating indoor and outdoor air pollution. The heterogeneous photocatalytic degradation of gaseous acetaldehyde (CH 3 CHO) on Mn–TiO 2 surfaces under ultraviolet and visible (UV/Vis) irradiation was investigated, by employing the Photochemical Static Reactor coupled with Fourier-Transformed Infrared spectroscopy (PSR/FTIR) technique. Experiments were performed by exposing acetaldehyde (∼ 400 Pa) and synthetic air mixtures (∼ 1.01 × 10 5 Pa total pressure) on un-doped TiO 2 and doped with various levels of Mn (0.1–33% mole percentage) under UV and visible irradiation at room temperature. Photoactivation was initiated using either UV or visible light sources with known emission spectra. Initially, the photo-activity of CH 3 CHO under the above light sources, and the physical adsorption of CH 3 CHO on Mn–TiO 2 samples in the absence of light were determined prior to the photocatalytic experiments. The photocatalytic loss of CH 3 CHO on un-doped TiO 2 and Mn–TiO 2 samples in the absence and presence of UV or visible irradiation was measured over a long time period (≈ 60 min), to evaluate their relative photocatalytic activity. The gaseous photocatalytic end products were also determined using absorption FTIR spectroscopy. Carbon dioxide (CO 2 ) was identified as the main photocatalysis product. It was found that 0.1% Mn–TiO 2 samples resulted in the highest photocatalytic loss of CH 3 CHO under visible irradiation. This efficiency was drastically diminished at higher levels of Mn doping (1–33%). The CO 2 yields were the highest for 0.1% Mn–TiO 2 samples under UV irradiation, in agreement with the observed highest CH 3 CHO decomposition rates. It was demonstrated that low-level (0.1%) doping of TiO 2 with Mn results in a significant increase of their photocatalytic activity in the visible

  5. Invisibility Cloaking Based on Geometrical Optics for Visible Light

    Science.gov (United States)

    Ichikawa, H.; Oura, M.; Taoda, T.

    2013-06-01

    Optical cloaking has been one of unattainable dreams and just a subject in fiction until recently. Several different approaches to cloaking have been proposed and demonstrated: stealth technology, active camouflage and transformation optics. The last one would be the most formal approach modifying electromagnetic field around an object to be cloaked with metamaterials. While cloaking based on transformation optics, though valid only at single frequency, is experimentally demonstrated in microwave region, its operation in visible spectrum is still distant from realisation mainly owing to difficulty in fabricating metamaterial structure whose elements are much smaller than wavelength of light. Here we show that achromatic optical cloaking in visible spectrum is possible with the mere principle based on geometrical optics. In combining a pair of polarising beam splitters and right-angled prisms, rays of light to be obstructed by an object can make a detour to an observer, while unobstructed rays go straight through two polarising beam splitters. What is observed eventually through the device is simply background image as if nothing exists in between.

  6. Synthesis and Visible-Light Photocatalytic Activity of CeO₂ Nanoboxes Based on Pearson’s Principle.

    Science.gov (United States)

    Ge, Shengsong; Bao, Liwei; Shao, Qian; Zhang, Qiaoxia; Liu, Zingyun

    2017-01-01

    The CeO₂ nanoboxes with well-defined hollow structure were fabricated by template-engaged coordinating etching of Cu₂O cubes based on Pearson’s hard and soft acid-base principle. The morphologically uniform CeO₂ nanoboxes have an average edge length of 400 nm and shell thickness of around 60 nm. The strong chemical affinity between Cu+ and S₂O(2− 3) was the driving force for the etching of Cu₂O templates and the formation of shells. A possible formation mechanism of CeO₂ nanoboxes was proposed. The synthesized CeO₂ nanoboxes exhibit good photocatalytic activity for photodegradation of acid orange 7 (AO 7) under visible light irradiation.

  7. Facile synthesis of flower-like BiOI hierarchical spheres at room temperature with high visible-light photocatalytic activity

    International Nuclear Information System (INIS)

    Wang, Xiao-jing; Li, Fa-tang; Li, Dong-yan; Liu, Rui-hong; Liu, Shuang-jun

    2015-01-01

    Graphical abstract: - Highlights: • Flower-like BiOI hierarchical sphere is obtained in the presence of ethylene glycol. • A template free hydrolysis route is employed at room temperature. • Ethylene glycol plays an important role in assembling BiOI nanoflakes to form spheres. • The BiOI sphere shows high visible-light photocatalytic activity and good stability. - Abstract: Flower-like BiOI hierarchical spheres are prepared at room temperature via a template free route simply by dropping water into ethylene glycol (EG) solution containing reactants based on the hydrolysis and oriented assembly roles of water and EG, respectively. The BiOI samples are characterized by X-ray diffraction (XRD), nitrogen adsorption/desorption, emission scanning electron microscopy (SEM), UV–Vis diffuse reflectance spectra (UV–Vis DRS), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The photocatalytic reaction rate constant of the as-prepared BiOI hierarchical spheres is 15.8, 13.3, and 2.0 times that of BiOI nanoflakes obtained in the absence of EG in degradation of anionic dye (methyl orange), cationic dye (methylene blue), and colorless target pollutant (phenol), respectively, under the visible-light irradiation, which can be attributed to its unique flower-like structure for utilization of light, small crystal size, and large specific surface area

  8. The behavior of active bactericidal and antifungal coating under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Gang; Zhang, Xiaodong; Zhao, Yan; Su, Haijia, E-mail: suhj@mail.buct.edu.cn; Tan, Tianwei

    2014-02-15

    In the present paper, the novel active bactericidal and antifungal coatings (ABAC) have been prepared through the immobilization of Fe-doped TiO{sub 2} (anatase) with chitosan. The characterization of ABAC using optical microscope imaging, SEM, AFM and FTIR shows that the Fe doped TiO{sub 2} is embedded into the chitosan coating with favorable dispersion through the hydrogen bonds interaction between chitosan molecules and TiO{sub 2}. The contact angle measurement demonstrated the hydrophilicity of ABAC (θ = 34.5 ± 4.1°). The bactericidal activity of ABAC has been evaluated by inactivating three different test strains: Escherichia coli, Candida albicans and Aspergillus niger which illustrates the apparently higher bactericidal ability than chitosan, Fe-TiO{sub 2} and chitosan/TiO{sub 2} (pure) under visible light irradiation and its bactericidal activity is lasting for at least 24 h. ABAC showed rapid and efficient antibacterial ability for the three tested strains and its antibacterial ratio in 2 h for E. coli, C. albicans and A. niger was 99.9%, 97.0% and 95.0%, respectively. The prepared chitosan/TiO{sub 2} composite emulsion shows favorable storage stability and can be stored up to 1 year without losing its bactericidal activity. ABAC is a low-cost and eco-friendly antibacterial coating products and promising for domestic, medical and industrial applications.

  9. Selective synthesis and visible-light photocatalytic activities of BiVO4 with different crystalline phases

    International Nuclear Information System (INIS)

    Zhang Xi; Ai Zhihui; Jia Falong; Zhang Lizhi; Fan Xiaoxing; Zou Zhigang

    2007-01-01

    Tetragonal and monoclinic bismuth vanadate (BiVO 4 ) powders were selectively synthesized by aqueous processes. The characterizations of the as-prepared BiVO 4 powders were carried out by X-ray diffraction, nitrogen adsorption, scanning electron microscopy and UV-vis diffuse reflectance spectroscopy. The photocatalytic activities of different BiVO 4 samples were determined by degradation of methylene blue solution under visible-light irradiation (λ > 420 nm) and compared with that of TiO 2 (Degussa P25). The band gaps of the as-prepared BiVO 4 were determined from UV-vis diffuse reflectance spectra. It was found that monoclinic BiVO 4 with a band gap of 2.34 eV showed higher photocatalytic activity than that of tetragonal BiVO 4 with a band gap of 3.11 eV

  10. Visible-Light Degradation of Dyes and Phenols over Mesoporous Titania Prepared by Using Anthocyanin from Red Radish as Template

    Directory of Open Access Journals (Sweden)

    Zhiying Yan

    2014-01-01

    Full Text Available Heterogeneous photocatalysis is able to operate effectively to eliminate organic compounds from wastewater in the presence of semiconductor photocatalyst and a light source. Although photosensitization of titania by organic dyes is one of the conventional ways for visible-light utilization of titania, previous studies have not yet addressed the use of natural food coloring agents as templates in the synthesis of mesostructured materials, let alone the simultaneous achievement of highly crystalline mesoscopic framework and visible-light photocatalytic activity. In this work, anthocyanin, a natural pigment from red radish was directly used as template in synthesis of highly crystalline mesoporous titania. The synthesized mesoporous titania samples were characterized by a combination of various physicochemical techniques, such as XRD, SEM, HRTEM, nitrogen adsorption/desorption, and diffuse reflectance UV-Vis. The prepared mesoporous titania photocatalyst exhibited significant activity under visible-light irradiation for the degradation of dyes and phenols due to its red shift of band-gap-absorption onset and visible-light response as a result of the incorporation of surface carbon species.

  11. Low-temperature solid-state preparation of ternary CdS/g-C_3N_4/CuS nanocomposites for enhanced visible-light photocatalytic H_2-production activity

    International Nuclear Information System (INIS)

    Cheng, Feiyue; Yin, Hui; Xiang, Quanjun

    2017-01-01

    Highlights: • CdS/g-C_3N_4/CuS composite were synthesized by low-temperature solid-state method. • CdS/g-C_3N_4/CuS show enhanced visible-light photocatalytic H_2 evolution activity. • The enhanced photocatalytic H_2 production activity is due to the heterojunction. • Heterojunction between the components promote charge separation/transfer property. - Abstract: Low-temperature solid-state method were gradually demonstrated as a high efficiency, energy saving and environmental protection strategy to fabricate composite semiconductor materials. CdS-based multiple composite photocatalytic materials have attracted increasing concern owning to the heterostructure constituents with tunable band gaps. In this study, the ternary CdS/g-C_3N_4/CuS composite photocatalysts were prepared by a facile and novel low-temperature solid-state strategy. The optimal ternary CdS/g-C_3N_4/CuS composite exhibits a high visible-light photocatalytic H_2-production rate of 57.56 μmol h"−"1 with the corresponding apparent quantum efficiency reaches 16.5% at 420 nm with Na_2S/Na_2SO_3 mixed aqueous solution as sacrificial agent. The ternary CdS/g-C_3N_4/CuS composites show the enhanced visible-light photocatalytic H_2-evolution activity comparing with the binary CdS-based composites or simplex CdS. The enhanced photocatalytic activity is ascribed to the heterojunctions and the synergistic effect of CuS and g-C_3N_4 in promotion of the charge separation and charge mobility. This work shows that the low-temperature solid-state method is efficient and environmentally benign for the preparation of CdS-based multiple composite photocatalytic materials with enhanced visible-light photocatalytic H_2-production activity.

  12. Hierarchical nanostructured 3D flowerlike BiOX particles with excellent visible-light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jinling, E-mail: sjl2010004@imust.cn; Wang, Baoying; Guo, Xianjie; Wang, Ruifen; Dong, Zhongping [Inner Mongolia University of Science and Technology, School of Material and Metallurgy (China)

    2016-08-15

    BiOX (X = Cl, Br, and I) semiconductors were firstly prepared by a facile mixed solvent solvothermal route. Several characterization tools were employed to study the phase structures, morphologies, and optical properties of the samples. The in situ chemically mixed prepared BiOX particles with diameters 3.0–5.0 μm, fabricated by nanoplates in the thickness range of 5–18 nm, exhibited the highest visible-light photocatalytic activity among the as-prepared samples and Degussa P{sub 25} for the degradation of Rhodamine B (RhB). This result can be due to the narrow bandgap, broad sunlight range, high electronic negativity, and efficient separation of photoinduced electron–hole pairs. Finally, a possible photocatalytic mechanism has been proposed.

  13. The direct synthesis of mesoporous structured MnO2/TiO2 nanocomposite: a novel visible-light active photocatalyst with large pore size

    Science.gov (United States)

    Xue, Min; Huang, Li; Wang, Jian-Qiang; Wang, Ying; Gao, Ling; Zhu, Jian-hua; Zou, Zhi-Gang

    2008-05-01

    A series of visible-light-driven mesoporous structured MnO2/TiO2 nanocrystal photocatalysts have been synthesized through a modified sol-gel method, and the N2 adsorption-desorption isotherm confirms that the mesoporous materials possess large pore size (up to 9.2 nm) and a narrow pore size distribution. X-ray powder diffraction (XRD) analyses and complementary x-ray photoelectron spectroscopy (XPS) measurements reveal that the doping of the transition metal Mn inhibits the growth of TiO2 anatase nanocrystals and the Mn species are highly dispersed on the surface of TiO2. The ultraviolet (UV)-vis spectrum demonstrates the excellent adsorption properties of MnO2/TiO2 over the whole region of visible light, which enables this novel photocatalysis material to possess remarkable activity in the photocatalytic degradation of methylene blue under visible light radiation. Moreover, a 'coating mechanism' based on the nucleation of titania nanocrystals along with the interaction between the dopant precursors and titania clusters has been suggested.

  14. The direct synthesis of mesoporous structured MnO2/TiO2 nanocomposite: a novel visible-light active photocatalyst with large pore size

    International Nuclear Information System (INIS)

    Xue Min; Huang Li; Wang Jianqiang; Wang Ying; Zou Zhigang; Gao Ling; Zhu Jianhua

    2008-01-01

    A series of visible-light-driven mesoporous structured MnO 2 /TiO 2 nanocrystal photocatalysts have been synthesized through a modified sol-gel method, and the N 2 adsorption-desorption isotherm confirms that the mesoporous materials possess large pore size (up to 9.2 nm) and a narrow pore size distribution. X-ray powder diffraction (XRD) analyses and complementary x-ray photoelectron spectroscopy (XPS) measurements reveal that the doping of the transition metal Mn inhibits the growth of TiO 2 anatase nanocrystals and the Mn species are highly dispersed on the surface of TiO 2 . The ultraviolet (UV)-vis spectrum demonstrates the excellent adsorption properties of MnO 2 /TiO 2 over the whole region of visible light, which enables this novel photocatalysis material to possess remarkable activity in the photocatalytic degradation of methylene blue under visible light radiation. Moreover, a 'coating mechanism' based on the nucleation of titania nanocrystals along with the interaction between the dopant precursors and titania clusters has been suggested

  15. TiO2-anatase modified by carbon as the photo catalyst under visible light

    International Nuclear Information System (INIS)

    Morawski, A.W.; Janus, M.; Tryba, B.; Kalucki, K.; Tryba, B.; Inagaki, M.

    2006-01-01

    The photo-catalytic oxidation of phenol in water under a visible light over anatase-type titanium dioxide (Tytanpol A11, Poland), modified by carbon deposited via n-hexane carbonization, was investigated. The catalysts, which had small (0-0.2 mass%) and high (0.69-0.85 mass%) contents of carbon showed a little lower catalytic photo-activity than pristine TiO 2 . However, the catalyst with high content of carbon (0.85 mass%) gave almost 14-times lower turbidity in the phenol solution after the photo-catalyst sedimentation. These two factors depend on the carbon content and have an influence on the 'practical efficiency' of the catalysts. The 'practical efficiency' of the catalyst under visible light, calculated from these two factors, was therefore 14-times higher for the catalyst containing 0.85 mass% carbon (whereas for UV radiation, it was found to be lower - 0.2 mass% -; this is the result of a previous work). The surface modification of the catalyst with 0.85% carbon seemed to be stable under visible light. The deposition of carbon on TiO 2 by carbonization of n-hexane was supposed to lead to obtain the catalyst, which could be easily used in a water-treatment system under visible light. (authors)

  16. Nitrogen-modified nano-titania: True phase composition, microstructure and visible-light induced photocatalytic NO{sub x} abatement

    Energy Technology Data Exchange (ETDEWEB)

    Tobaldi, D.M., E-mail: david.tobaldi@ua.pt [Department of Materials and Ceramic Engineering / CICECO−Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Pullar, R.C. [Department of Materials and Ceramic Engineering / CICECO−Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Gualtieri, A.F. [Dipartimento di Scienze Chimiche e Geologiche, Università degli studi di Modena e Reggio Emilia, I-41121 Modena (Italy); Otero-Irurueta, G.; Singh, M.K. [Center for Mechanical Technology and Automation – TEMA, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Seabra, M.P.; Labrincha, J.A. [Department of Materials and Ceramic Engineering / CICECO−Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal)

    2015-11-15

    Titanium dioxide (TiO{sub 2}) is a popular photocatalyst used for many environmental and anti-pollution applications, but it normally operates under UV light, exploiting ∼5% of the solar spectrum. Nitrification of titania to form N-doped TiO{sub 2} has been explored as a way to increase its photocatalytic activity under visible light, and anionic doping is a promising method to enable TiO{sub 2} to harvest visible-light by changing its photo-absorption properties. In this paper, we explore the insertion of nitrogen into the TiO{sub 2} lattice using our green sol–gel nanosynthesis method, used to create 10 nm TiO{sub 2} NPs. Two parallel routes were studied to produce nitrogen-modified TiO{sub 2} nanoparticles (NPs), using HNO{sub 3}+NH{sub 3} (acid-precipitated base-peptised) and NH{sub 4}OH (totally base catalysed) as nitrogen sources. These NPs were thermally treated between 450 and 800 °C. Their true phase composition (crystalline and amorphous phases), as well as their micro-/nanostructure (crystalline domain shape, size and size distribution, edge and screw dislocation density) was fully characterised through advanced X-ray methods (Rietveld-reference intensity ratio, RIR, and whole powder pattern modelling, WPPM). As pollutants, nitrogen oxides (NO{sub x}) are of particular concern for human health, so the photocatalytic activity of the NPs was assessed by monitoring NO{sub x} abatement, using both solar and white-light (indoor artificial lighting), simulating outdoor and indoor environments, respectively. Results showed that the onset of the anatase-to-rutile phase transformation (ART) occurred at temperatures above 450 °C, and NPs heated to 450 °C possessed excellent photocatalytic activity (PCA) under visible white-light (indoor artificial lighting), with a PCA double than that of the standard P25 TiO{sub 2} NPs. However, higher thermal treatment temperatures were found to be detrimental for visible-light photocatalytic activity, due to the effects

  17. Synthesis of ZnO nanorod–nanosheet composite via facile hydrothermal method and their photocatalytic activities under visible-light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Wai Kian [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Abdul Razak, Khairunisak; Lockman, Zainovia [School of Materials and Mineral Resources, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Pulau Pinang (Malaysia); Kawamura, Go; Muto, Hiroyuki [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Matsuda, Atsunori, E-mail: matsuda@ee.tut.ac.jp [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan)

    2014-03-15

    ZnO composite films consisting of ZnO nanorods and nanosheets were prepared by low-temperature hydrothermal processing at 80 °C on seeded glass substrates. The seed layer was coated on glass substrates by sol–gel dip-coating and pre-heated at 300 °C for 10 min prior to hydrothermal growth. The size of the grain formed after pre-heat treatment was ∼40 nm. A preferred orientation seed layer at the c-axis was obtained, which promoted vertical growth of the ZnO nanorod arrays and formation of the ZnO nanosheets. X-ray diffraction patterns and high-resolution transmission electron microscope (HR-TEM) images confirmed that the ZnO nanorods and nanosheets consist of single crystalline and polycrystalline structures, respectively. Room temperature photoluminescence spectra of the ZnO nanorod–nanosheet composite films exhibited band-edge ultraviolet (UV) and visible emission (blue and green) indicating the formation of ZnO crystals with good crystallinity and are supported by Raman scattering results. The formation of one-dimensional (1D) ZnO nanorod arrays and two-dimensional (2D) ZnO nanosheet films using seeded substrates in a single low-temperature hydrothermal step would be beneficial for realization of device applications that utilize substrates with limited temperature stability. The ZnO nanorods and nanosheets composite structure demonstrated higher photocatalytic activity during degradation of aqueous methylene blue under visible-light irradiation. -- Graphical abstract: Schematic illustration of ZnO nanorod–nanosheet composite structure formation by hydrothermal at low-temperature of 80 °C against time. Highlights: • Novel simultaneous formation of ZnO nanorods and nanosheets composite structure. • Facile single hydrothermal step formation at low-temperature. • Photoluminescence showed ultraviolet and visible emission. • Feasible application on substrates with low temperature stability. • Improved photocatalytic activity under visible-light

  18. Hydrogen-terminated mesoporous silicon monoliths with huge surface area as alternative Si-based visible light-active photocatalysts

    KAUST Repository

    Li, Ting

    2016-07-21

    Silicon-based nanostructures and their related composites have drawn tremendous research interest in solar energy storage and conversion. Mesoporous silicon with a huge surface area of 400-900 m2 g-1 developed by electrochemical etching exhibits excellent photocatalytic ability and stability after 10 cycles in degrading methyl orange under visible light irradiation, owing to its unique mesoporous network, abundant surface hydrides and efficient light harvesting. This work showcases the profound effects of surface area, crystallinity, pore topology on charge migration/recombination and mass transportation. Therein the ordered 1D channel array has outperformed the interconnected 3D porous network by greatly accelerating the mass diffusion and enhancing the accessibility of the active sites on the extensive surfaces. © 2016 The Royal Society of Chemistry.

  19. The photocatalytic degradation of methylene blue by green semiconductor films that is induced by irradiation by a light-emitting diode and visible light.

    Science.gov (United States)

    Yang, Chih-Chi; Doong, Ruey-An; Chen, Ku-Fan; Chen, Giin-Shan; Tsai, Yung-Pin

    2018-01-01

    This study develops a low-energy rotating photocatalytic contactor (LE-RPC) that has Cu-doped TiO 2 films coated on stainless-steel rotating disks, to experimentally evaluate the efficiency of the degradation and decolorization of methylene blue (MB) under irradiation from different light sources (visible 430 nm, light-emitting diode [LED] 460 nm, and LED 525 nm). The production of hydroxyl radicals is also examined. The experimental results show that the photocatalytic activity of TiO 2 that is doped with Cu 2+ is induced by illumination with visible light and an LED. More than 90% of methylene blue at a 10 mg/L concentration is degraded after illumination by visible light (430 nm) for 4 hr at 20 rpm. This study also demonstrates that the quantity of hydroxyl radicals produced is directly proportional to the light energy intensity. The greater the light energy intensity, the greater is the number of hydroxyl radicals produced. The CuO-doped anatase TiO 2 powder was successfully synthesized in this study by a sol-gel method. The catalytic abilities of the stainless-steel film were enhanced in the visible light regions. This study has successfully modified the nano-photocatalytic materials to drop band gap and has also successfully fixed the nano-photocatalytic materials on a substratum to effectively treat dye wastewater in the range of visible light. The results can be useful to the development of a low-energy rotating photocatalytic contactor for decontamination purposes.

  20. Semipolar InGaN-based superluminescent diodes for solid-state lighting and visible light communications

    KAUST Repository

    Shen, Chao; Ng, Tien Khee; Lee, Changmin; Leonard, John T.; Nakamura, Shuji; Speck, James S.; Denbaars, Steven P.; Alyamani, Ahmed Y.; El-Desouki, Munir M.; Ooi, Boon S.

    2017-01-01

    III-nitride light emitters, such as light-emitting diodes (LEDs) and laser diodes (LDs), have been demonstrated and studied for solid-state lighting (SSL) and visible-light communication (VLC) applications. However, for III-nitride LEDbased SSL

  1. Enhanced visible-light photocatalytic activities of Ag{sub 3}PO{sub 4}/MWCNT nanocomposites fabricated by facile in situ precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bo [Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164 (China); Li, Zhongyu, E-mail: zhongyuli@mail.tsinghua.edu.cn [Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164 (China); Changzhou Expansion New Stuff Technology Limited Company, Changzhou 213122 (China); Jilin Institute of Chemical Technology, Jilin 132022 (China); Xu, Song, E-mail: cyanine123@163.com [Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164 (China); Han, Dandan; Lu, Dayong [Jilin Institute of Chemical Technology, Jilin 132022 (China)

    2014-05-01

    Highlights: • Ag{sub 3}PO{sub 4}/MWCNT composites were facilely fabricated via in situ precipitation method. • Ag{sub 3}PO{sub 4}/MWCNT composites exhibited enhanced visible-light photocatalytic activity. • Ag{sub 3}PO{sub 4}/MWCNT composites showed good photostability compared with Ag{sub 3}PO{sub 4} particles. • Possible photocatalytic mechanism under visible-light irradiation was proposed. - Abstract: The Ag{sub 3}PO{sub 4}/MWCNT nanocomposites were facilely fabricated via in situ precipitation method by adding (NH{sub 4}){sub 2}HPO{sub 4} into the mixture of multi-walled carbon nanotube (MWCNT) and AgNO{sub 3} solution under stirring. The as-prepared Ag{sub 3}PO{sub 4}/MWCNT nanocomposites were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM), the Brunauer–Emmett–Teller surface area (BET) and UV–vis diffuse reflectance spectroscopy. The TEM results showed that the Ag{sub 3}PO{sub 4} nanoparticles were distributed on the surface of MWCNT uniformly with an average diameter of 70 nm, indicating excellent loading result. The photocatalytic activities of Ag{sub 3}PO{sub 4}/MWCNT nanocomposites were investigated by degrading methylene blue (MB) and malachite green (MG) under visible-light irradiation. It was found that the Ag{sub 3}PO{sub 4}/MWCNT nanocomposite exhibited excellent photocatalytic performance with enhanced photocatalytic efficiency and good photostability compared with bare Ag{sub 3}PO{sub 4}. Furthermore, a possible mechanism for the photocatalytic oxidative degradation was also discussed.

  2. Facile synthesis and enhanced visible-light photocatalysis of graphitic carbon nitride composite semiconductors.

    Science.gov (United States)

    Li, Huiquan; Liu, Yuxing; Gao, Xing; Fu, Cong; Wang, Xinchen

    2015-04-13

    The semiconductor heterojunction has been an effective architecture to enhance photocatalytic activity by promoting photogenerated charge separation. Here, graphitic carbon nitride (CN) and B-modified graphitic carbon nitride (CNB) composite semiconductors were fabricated by a facile calcination process using cheap, sustainable, and easily available sodium tetraphenylboron and urea as precursors. The synthetic CN-CNB-25 semiconductor with a suitable CNB content showed the highest visible-light activity. Its degradation ratio for methyl orange and phenol was more than twice that of CN and CNB and its H2 evolution rate was ∼3.4 and ∼1.8 times higher than that of CN and CNB, respectively. It also displayed excellent stability and reusability. The enhanced activity of CN-CNB-25 was attributed predominantly to the efficient separation of photoinduced electrons and holes. This paper describes a visible-light-responsive CN composite semiconductor with great potential in environmental and energy applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Synthesis of C@Bi{sub 2}MoO{sub 6} nanocomposites with enhanced visible light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yuying; Wu, Juan; Ma, Tianjin; Wang, Pengchao; Cui, Chunyue; Ma, Dong, E-mail: madong8088@126.com

    2017-05-01

    Highlights: • C@BM composites were obtained by two–step hydrothermal method. • The properties of Bi{sub 2}MoO{sub 6} were deeply influenced by carbon layer. • Carbon could reduce recombination of electrons and holes in C@BM composites. • The holes and ·O{sub 2}{sup −} are the two main reactive species for Rh B degradation. - Abstract: Carbon–coated Bi{sub 2}MoO{sub 6} (C@BM) composites have been successfully synthesized via two–step hydrothermal method. The morphology, structure and photocatalytic performance of the composites in the degradation of Rhodamine B (Rh B) are characterized. The results show that the C@BM composites exhibit enhanced photocatalytic performance in the degradation of Rh B with maximum degradation rates of 90% (210 min) under visible light irradiation. 1.0%C@BM sample shows the highest photocatalytic activity, and the improved photocatalytic performance is mainly ascribed to the formation of Mo−O−C and Bi−O−C bonds. The bonds could promote electron transfer from Bi{sub 2}MoO{sub 6} to carbon layer and inhibit the recombination of electron–hole pairs with the presence of carbon layer in the composites. Moreover, the carbon layer on Bi{sub 2}MoO{sub 6} could enhance the absorption in the visible light region. In the photocatalytic degradation process, ·O{sub 2}{sup −}and holes are the predominant active species for the decomposition of Rh B.

  4. Visible light driven photocatalysis and antibacterial activity of AgVO3 and Ag/AgVO3 nanowires

    International Nuclear Information System (INIS)

    Singh, Anamika; Dutta, Dimple P.; Ballal, A.; Tyagi, A.K.; Fulekar, M.H.

    2014-01-01

    Graphical abstract: - Highlights: • Ag/AgVO 3 and pure AgVO 3 nanowires synthesized by sonochemical process. • Characterization done using XRD, SEM, TEM, EDX and BET analysis. • Visible light degradation of RhB by Ag/AgVO 3 within 45 min. • Antibacterial activity of Ag/AgVO 3 demonstrated. - Abstract: Ag/AgVO 3 nanowires and AgVO 3 nanorods were synthesized in aqueous media via a facile sonochemical route. The as-synthesized products were characterized by X-ray diffraction, Brunauer–Emmett–Teller surface area analysis, scanning electron microscopy together with an energy dispersion X-ray spectrum analysis, transmission electron microscopy and UV–vis diffuse reflectance spectroscopy. The results revealed that inert atmosphere promotes the formation of Ag/AgVO 3 nanowires. The photocatalytic studies revealed that the Ag/AgVO 3 nanowires exhibited complete photocatalytic degradation of Rhodamine B within 45 min under visible light irradiation. The antibacterial activity of Ag/AgVO 3 nanowires was tested against Escherechia coli and Bacillus subtilis. The minimum growth inhibitory concentration value was found to be 50 and 10 folds lower than for the antibiotic ciprofloxacin for E. coli and B. subtilis, respectively. The antibacterial properties of the β-AgVO 3 nanorods prove that in case of the Ag dispersed Ag/AgVO 3 nanowires, the enhanced antibacterial action is also due to contribution from the AgVO 3 support

  5. Visible light induced electron transfer process over nitrogen doped TiO2 nanocrystals prepared by oxidation of titanium nitride

    International Nuclear Information System (INIS)

    Wu Zhongbiao; Dong Fan; Zhao Weirong; Guo Sen

    2008-01-01

    Nitrogen doped TiO 2 nanocrystals with anatase and rutile mixed phases were prepared by incomplete oxidation of titanium nitride at different temperatures. The as-prepared samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), core level X-ray photoelectron spectroscopy (CL XPS), valence band X-ray photoelectron spectroscopy (VB XPS), UV-vis diffuse reflectance spectra (UV-vis DRS), and visible light excited photoluminescence (PL). The photocatalytic activity was evaluated for photocatalytic degradation of toluene in gas phase under visible light irradiation. The visible light absorption and photoactivities of these nitrogen doped TiO 2 nanocrystals can be clearly attributed to the change of the additional electronic (N - ) states above the valence band of TiO 2 modified by N dopant as revealed by the VB XPS and visible light induced PL. A band gap structure model was established to explain the electron transfer process over nitrogen doped TiO 2 nanocrystals under visible light irradiation, which was consistent with the previous theoretical and experimental results. This model can also be applied to understand visible light induced photocatalysis over other nonmetal doped TiO 2

  6. Gold nanoparticles embedded in Ta 2 O 5 /Ta 3 N 5 as active visible-light plasmonic photocatalysts for solar hydrogen evolution

    KAUST Repository

    Luo, Yujing; Liu, Xiaoming; Tang, Xinghua; Luo, Yan; Zeng, Qianyao; Deng, Xiaolei; Ding, Shaolei; Sun, Yiqun

    2014-01-01

    Here, we demonstrate a new recreating photocatalytic activity of a Nano Au/Ta2O5 composite for hydrogen evolution from water as a visible-light-responsive plasmonic photocatalyst by embedding Au nanoparticles in a Ta2O5 host lattice. The Nano Au/Ta2

  7. Photocatalytic Hydrogen or Oxygen Evolution from Water over S- or N-Doped TiO2 under Visible Light

    Directory of Open Access Journals (Sweden)

    Kazumoto Nishijima

    2008-01-01

    Full Text Available S- or N-doping of TiO2 powder having an anatase or rutile phase extended the photocatalytic activity for water oxidation and reduction under UV light and visible light irradiation. For the reduction of water, anatase-doped TiO2 showed higher level of activity than that of doped TiO2 having a rutile phase using ethanol as an electron donor. Furthermore, the activity level of S-doped TiO2 for hydrogen evolution was higher than that of N-doped TiO2 photocatalysts under visible light. Photocatalytic oxidation of water on doped TiO2 having a rutile phase proceeded with fairly high efficiency when Fe3+ ions were used as electron acceptors compared to that on doped TiO2 having an anatase phase. In addition, water splitting under visible light irradiation was achieved by construction of a Z-scheme photocatalysis system employing the doped TiO2 having anatase and rutile phases for H2 and O2 evolution and the I−/IO3− redox couple as an electron relay.

  8. Toxic effect of visible light on Drosophila lifespan depending upon diet protein content.

    Science.gov (United States)

    Shen, Jie; Zhu, Xiang; Gu, Yitian; Zhang, Chiqian; Huang, Jiahong; Qing, Xiao

    2018-03-01

    We investigated the toxic effect of visible light on Drosophila lifespan in both sexes. The toxic effect of ultraviolet (UV) light on organisms is well known. However, the effects of illumination with visible light remain unclear. Here, we found that visible light could be toxic to Drosophila survival, depending on the protein content in diet. In addition, further analysis revealed significant interaction between light and sex, and showed that strong light shortened life span by causing opposite direction changes in mortality rate parameters in females versus males. Our findings suggest that photoageing may be a general phenomenon, and support the theory of sexual antagonistic pleiotropy in aging intervention. The results caution that exposure to visible light could be hazardous to life span and suggest that identification of the underlying mechanism would allow better understanding of aging intervention.

  9. Fabrication of BiOBr nanosheets@TiO{sub 2} nanobelts p–n junction photocatalysts for enhanced visible-light activity

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yang [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Huang, Xiang [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); School of Science, Tibet University, Lhasa 850000 (China); Tan, Xin [School of Science, Tibet University, Lhasa 850000 (China); Yu, Tao, E-mail: yutao@tju.edu.cn [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China); Li, Xiangli [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China); Yang, Libin [College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin 300457 (China); Wang, Shucong [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2016-03-01

    Graphical abstract: - Highlights: • BiOBr nanosheets@TiO{sub 2} nanobelts p–n junction photocatalysts have been synthesized. • The p–n junction photocatalysts improved water splitting and dye degradation activity. • BiOBr amount in the BiOBr@TiO{sub 2} photocatalysts was investigated. - Abstract: The construction of p–n junction structure is a smart strategy for improving the photocatalytic activity, since p–n junctions can inhibit the recombination of photo-induced charges. Herein, BiOBr nanosheets@TiO{sub 2} nanobelts p–n junction photocatalysts were prepared by assembling BiOBr nanosheets on the surface of TiO{sub 2} nanobelts via a hydrothermal route followed by a co-precipitation process. BiOBr@TiO{sub 2} p–n junction photocatalysts exhibited enhanced photocatalytic activity in photocatalytic H{sub 2} production over water splitting and photodegradation of Rhodamine B (RhB) under visible light irradiation. Mott–Schottky plots confirmed the formation of p–n junctions in the interface of BiOBr and TiO{sub 2}. The enhanced photocatalytic performance can be ascribed to the 1D nanostructure and the formation of p–n junctions. This work shows a potential application of low cost BiOBr as a substitute for noble metals in photocatalytic H{sub 2} production under visible light irradiation.

  10. Uniformly dispersed CdS nanoparticles sensitized TiO{sub 2} nanotube arrays with enhanced visible-light photocatalytic activity and stability

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lingjuan [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices, Hefei 230009 (China); Lv, Jun, E-mail: lvjun117@126.com [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices, Hefei 230009 (China); Xu, Guangqing; Wang, Yan; Xie, Kui [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices, Hefei 230009 (China); Chen, Zhong [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798 (Singapore); Wu, Yucheng, E-mail: ycwu@hfut.edu.cn [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices, Hefei 230009 (China)

    2013-12-15

    In this study, TiO{sub 2} nanotube arrays (TiO{sub 2}-NTs) with various intertube spaces were fabricated in the electrolyte with different water contents and the CdS nanoparticles (CdS NPs) were further deposited onto the TiO{sub 2}-NTs as a sensitizer via a sequential chemical bath deposition (S-CBD) method. The FE-SEM, TEM, XRD and XPS results demonstrated that the CdS NPs were uniformly deposited onto the surface of TiO{sub 2}-NTs. It was found that higher water content in electrolyte was in favor of large intertube space and pore size and the uniform deposition of CdS NPs. The photocatalytic degradation of methyl orange was tested with the as-prepared CdS/TiO{sub 2}-NTs under visible light (λ>400 nm). It was found that the photodegradation rate reached as high as 96.7% under visible irradiation for 180 min. In addition, a reasonable degradation rate of 75.8% was achieved even after 5 cycles, suggesting a good photocatalytic stability of the as-prepared CdS/TiO{sub 2}-NTs. - Graphical abstract: The whole sheet of CdS NPs sensitized TiO{sub 2}-NTs with the Ti subtract was used for degradation of methyl orange under visible light (λ>400 nm) on a XPA-7 photochemical reactor. - Highlights: • Intertube space, pore size were controlled by changing water content in electrolyte. • CdS nanoparticles were uniformly deposited onto the surface of TiO{sub 2} nanotubes. • The catalyst with Ti substrate used as a whole was very convenient for recycling. • Visible-light photocatalytic activity and stability were highly enhanced.

  11. Influence of visible-light irradiation on physicochemical and photocatalytic properties of nitrogen-doped three-dimensional (3D) titanium dioxide

    International Nuclear Information System (INIS)

    Lee, Hyun Uk; Lee, Soon Chang; Choi, Saehae; Son, Byoungchul; Kim, Hyeran; Lee, Sang Moon; Kim, Hae Jin; Lee, Jouhahn

    2013-01-01

    Highlights: • The N-3D TiO 2 was synthesized at low temperature via a modified hydrothermal process and ultrasound irradiation. • The N-3D TiO 2 is irradiated with visible-light (*N-3D TiO 2 ) to improve the hydroxylation of its surface. • The N- and *N-3D TiO 2 exhibited excellent photocatalytic and antibacterial activities. • Moreover, the *N-3D TiO 2 exhibits excellent photocatalytic stability. -- Abstract: We report highly active visible-light driven nitrogen-doped three-dimensional polycrystalline anatase TiO 2 photocatalysts (N-3D TiO 2 ) for environmental and biomedical applications. N-3D TiO 2 is synthesized at a low temperature ( 2 is additionally irradiated with visible-light to improve the hydroxylation of its surface. Under visible-light irradiation, the photocatalytic activity of visible-light irradiated N-3D TiO 2 (*N-3D TiO 2 ; [k] = 1.435 h −1 ) is 26.1 times higher than that of 3D TiO 2 ([k] = 0.055 h −1 ). The *N-3D TiO 2 is highly recyclable and retained 91.8% of the initial decolorization rate after fifteen cycles. Interestingly, the *N-3D TiO 2 shows very strong antibacterial properties against both Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) after exposure to visible-light for 3 h. The antibacterial properties of *N-3D TiO 2 are more effective than those of TiO 2 , 3D TiO 2 , and N-3D TiO 2 . More than 91.3% of the E. coli is sterilized after ten cycles. There are a large increase in the photocatalytic and antibacterial activity of *N-3D TiO 2 relative to that of N-3D TiO 2 owing to the hydroxylation of the N-3D TiO 2 surface as a result of the visible-light irradiation. These results indicate that *N-3D TiO 2 might have utility in several promising applications such as highly efficient water/air treatment, inactivation of pathogenic microorganisms, and solar-energy conversion

  12. Visible-light active thin-film WO3 photocatalyst with controlled high-rate deposition by low-damage reactive-gas-flow sputtering

    Directory of Open Access Journals (Sweden)

    Nobuto Oka

    2015-10-01

    Full Text Available A process based on reactive gas flow sputtering (GFS for depositing visible-light active photocatalytic WO3 films at high deposition rates and with high film quality was successfully demonstrated. The deposition rate for this process was over 10 times higher than that achieved by the conventional sputtering process and the process was highly stable. Furthermore, Pt nanoparticle-loaded WO3 films deposited by the GFS process exhibited much higher photocatalytic activity than those deposited by conventional sputtering, where the photocatalytic activity was evaluated by the extent of decomposition of CH3CHO under visible light irradiation. The decomposition time for 60 ppm of CH3CHO was 7.5 times more rapid on the films deposited by the GFS process than on the films deposited by the conventional process. During GFS deposition, there are no high-energy particles bombarding the growing film surface, whereas the bombardment of the surface with high-energy particles is a key feature of conventional sputtering. Hence, the WO3 films deposited by GFS should be of higher quality, with fewer structural defects, which would lead to a decrease in the number of centers for electron-hole recombination and to the efficient use of photogenerated holes for the decomposition of CH3CHO.

  13. Fullerene C{sub 70} decorated TiO{sub 2} nanowires for visible-light-responsive photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Er-Chieh [Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan (China); Ciou, Jing-Hao [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Zheng, Jia-Huei; Pan, Job [Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan (China); Hsiao, Yu-Sheng, E-mail: yshsiao@mail.mcut.edu.tw [Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan (China); Lee, Kuen-Chan, E-mail: kclee@kmu.edu.tw [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Huang, Jen-Hsien, E-mail: 295604@cpc.com.tw [Department of Green Material Technology, Green Technology Research Institute, CPC Corporation, Kaohsiung 30010, Taiwan (China)

    2015-11-15

    Graphical abstract: - Highlights: • TiO{sub 2} nanowire decorated with C{sub 60} and C{sub 70} derivatives has been synthesized. • The fullerenes impede the charge recombination due to its high electron affinity. • The fullerenes expand the utilization of solar light from UV to visible light. • The modified-TiO{sub 2} has great biocompatibility. - Abstract: In this study, we have synthesized C{sub 60} and C{sub 70}-modified TiO{sub 2} nanowire (NW) through interfacial chemical bonding. The results indicate that the fullerenes (C{sub 60} and C{sub 70} derivatives) can act as sinks for photogenerated electrons in TiO{sub 2}, while the fullerene/TiO{sub 2} is illuminated under ultraviolet (UV) light. Therefore, in comparison to the pure TiO{sub 2} NWs, the modified TiO{sub 2} NWs display a higher photocatalytic activity under UV irradiation. Moreover, the fullerenes also can function as a sensitizer to TiO{sub 2} which expand the utilization of solar light from UV to visible light. The results reveal that the C{sub 70}/TiO{sub 2} NWs show a significant photocatalytic activity for degradation of methylene blue (MB) in visible light region. To better understand the mechanism responsible for the effect of fullerenes on the photocatalytic properties of TiO{sub 2}, the electron only devices and photoelectrochemical cells based on fullerenes/TiO{sub 2} are also fabricated and evaluated.

  14. Photocatalytic Reduction Activity of 001  TiO2 Codoped with F and Fe under Visible Light for Bromate Removal

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2016-01-01

    Full Text Available The presence of bromate in water is a well-known problem because of its toxic effects on human health, particularly its carcinogenic potential. Photocatalytic reduction is an attractive process for bromate removal. F- and Fe-codoped TiO2 (F-Fe-TiO2 with a {001} facet was successfully prepared, and its bromate-removal activity under visible light was examined. The microstructure, morphology, and chemical state of the doping elements and the optical property of the photocatalysts were examined using transmission electron microscopy (TEM, X-ray photoelectron spectroscopy (XPS, electron paramagnetic resonance (EPR, photoluminescence spectroscopy (PLS, and UV-Vis diffuse reflectance spectra (DRS. The results indicate that the optical properties of F-Fe-TiO2 with the {001} facet and cuboid morphology were obviously improved and its photocatalytic activity was significantly enhanced. The bromate solution of 100 μg/L was thoroughly removed with 0.5 g/L dosage of 1.0% F- and 0.08% Fe-codoped TiO2 composite within 1 hour under visible light.

  15. Preparation and characterization of N-I co-doped nanocrystal anatase TiO2 with enhanced photocatalytic activity under visible-light irradiation

    International Nuclear Information System (INIS)

    Zhou Liang; Deng Jian; Zhao Yubao; Liu Wanbing; An Lin; Chen Fei

    2009-01-01

    N-I co-doped TiO 2 nanoparticles were prepared by hydrolysis method, using ammonia and iodic acid as the doping sources and Ti(OBu) 4 as the titanium source. The prepared catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and ultraviolet-visible diffuse reflection spectroscopy (UV-vis DRS). XRD spectra show that N-I-TiO 2 samples calcined at 673 K for 3 h are of anatase structure. XPS analysis of N-I-TiO 2 samples indicates that some N atoms replace O atoms in TiO 2 lattice, and I exist in I 7+ , I - and I 5+ chemical states in the samples. UV-vis DRS results reveal that N-I-TiO 2 had significant optical absorption in the region of 400-600 nm. The photocatalytic activity of catalysts was evaluated by monitoring the photocatalytic degradation of methyl orange (MO). Compared with P25 and mono-doped TiO 2 , N-I-TiO 2 powder shows higher photocatalytic activity under both visible-light (λ > 420 nm) and UV-vis light irradiation. Furthermore, N-I-TiO 2 also displays higher COD removal rate under UV-vis light irradiation.

  16. Zinc oxide nanorod mediated visible light photoinactivation of model microbes in water

    Energy Technology Data Exchange (ETDEWEB)

    Sapkota, Ajaya; Anceno, Alfredo J; Dutta, Joydeep [Center of Excellence in Nanotechnology, Asian Institute of Technology, Klong Luang, Pathumthani 12120 (Thailand); Baruah, Sunandan; Shipin, Oleg V, E-mail: alfredo.anceno@cemagref.fr, E-mail: joy@ait.ac.th [Environmental Engineering and Management, Asian Institute of Technology, Klong Luang, Pathumthani 12120 (Thailand)

    2011-05-27

    The inactivation of model microbes in aqueous matrix by visible light photocatalysis as mediated by ZnO nanorods was investigated. ZnO nanorods were grown on glass substrate following a hydrothermal route and employed in the inactivation of gram-negative Escherichia coli and gram-positive Bacillus subtilis in MilliQ water. The concentration of Zn{sup 2+} ions in the aqueous matrix, bacterial cell membrane damage, and DNA degradation at post-exposure were also studied. The inactivation efficiencies for both organisms under light conditions were about two times higher than under dark conditions across the cell concentrations assayed. Anomalies in supernatant Zn{sup 2+} concentration were observed under both conditions as compared to control treatments, while cell membrane damage and DNA degradation were observed only under light conditions. Inactivation under dark conditions was hence attributed to the bactericidal effect of Zn{sup 2+} ions, while inactivation under light conditions was due to the combined effects of Zn{sup 2+} ions and photocatalytically mediated electron injection. The reduction of pathogenic bacterial densities by the photocatalytically active ZnO nanorods in the presence of visible light implies potential ex situ application in water decontamination at ambient conditions under sunlight.

  17. Preparation of fluorescein-functionalized electrospun fibers coated with TiO{sub 2} and gold nanoparticles for visible-light-induced photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Won Suk [Department of Chemistry, Hannam University, Daejeon 306-791 (Korea, Republic of); Choi, Insung S. [Department of Chemistry, KAIST, Daejeon 305-701 (Korea, Republic of); Lee, Jungkyu K., E-mail: jkl@knu.ac.kr [Molecular-Level Interface Research Center, Department of Chemistry and Green-Nano Research Center, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Yoon, Kuk Ro, E-mail: kryoon@hannam.ac.kr [Department of Chemistry, Hannam University, Daejeon 306-791 (Korea, Republic of)

    2015-08-01

    We demonstrated a new type of visible light-induced photocatalyst, comprising fluorescein molecules, TiO{sub 2}, and gold nanoparticles anchored onto polymer fibers. The synthesized fiber composite was fully characterized by thermogravimetric analysis, scanning electron microscopy, transmission electron microscopy, FT-IR spectroscopy, contact angle measurement, and fluorescence microscopy. Under sunlight and visible light irradiation, the photocatalytic activity of the tricomponent system showed 2–3 times greater photodegradation efficiency for methylene blue than a representative photocatalyst, Degussa P25. - Graphical abstract: PSS/PAH-FITC/TiO{sub 2}/AuNP composite demonstrated 2–3 times greater visible light photodegradation efficiency for methylene blue than a representative photocatalyst, Degussa P25. Display Omitted - Highlights: • Synthesis of a novel composite, polymer fiber/organic dye/TiO{sub 2}/gold nanoparticles. • The composite was characterized by TGA, SEM, TEM, and fluorescence microscopy. • Improved visible light photocatalytic activity of the sythesized novel composite.

  18. Hierarchical architectures of ZnS–In2S3 solid solution onto TiO2 nanofibers with high visible-light photocatalytic activity

    International Nuclear Information System (INIS)

    Liu, Chengbin; Meng, Deshui; Li, Yue; Wang, Longlu; Liu, Yutang; Luo, Shenglian

    2015-01-01

    Graphical abstract: A unique hierarchical architecture of ZnS–In 2 S 3 solid solution onto TiO 2 nanofibers was fabricated. The hierarchical heterostructures exhibit high visible light photocatalytic activity and outstanding recycling performance. - Highlights: • Novel hierarchical heterostructure of TiO 2 @ZnS–In 2 S 3 solid solution. • Efficient inhibition of ZnS–In 2 S 3 solid solution aggregation. • High visible light photocatalytic activity. • Highly stable recycling performance. - Abstract: A unique hierarchical architecture of ZnS–In 2 S 3 solid solution nanostructures onto TiO 2 nanofibers (TiO 2 @ZnS–In 2 S 3 ) has been successfully fabricated by simple hydrothermal method. The ZnS–In 2 S 3 solid solution nanostructures exhibit a diversity of morphologies: nanosheet, nanorod and nanoparticle. The porous TiO 2 nanofiber templates effectively inhibit the aggregation growth of ZnS–In 2 S 3 solid solution. The formation of ZnS–In 2 S 3 solid solution is proved by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) and the intimate contact between TiO 2 nanofibers and ZnS–In 2 S 3 solid solution favors fast transfer of photogenerated electrons. The trinary TiO 2 @ZnS–In 2 S 3 heterostructures exhibit high adsorption capacity and visible light photocatalytic activity for the degradation of rhodamine B dye (RhB), remarkably superior to pure TiO 2 nanofibers or binary structures (ZnS/TiO 2 nanofibers, In 2 S 3 /TiO 2 nanofibers and ZnS–In 2 S 3 solid solution). Under visible light irradiation the RhB photocatalytic degradation rate over TiO 2 @ZnS–In 2 S 3 heterostructures is about 16.7, 12.5, 6.3, 5.9, and 2.2 times that over pure TiO 2 nanofibers, ZnS nanoparticles, In 2 S 3 /TiO 2 nanofibers, ZnS/TiO 2 nanofibers, and ZnS-In 2 S 3 solid solution, respectively. Furthermore, the TiO 2 @ZnS–In 2 S 3 heterostructures show highly stable recycling performance

  19. Visible Light Photocatalysis of [2+2] Styrene Cycloadditions via Energy Transfer

    Science.gov (United States)

    Lu, Zhan; Yoon, Tehshik P.

    2012-01-01

    Hip to be square: Styrenes participate in [2+2] cycloadditions upon irradiation with visible light in the presence of an iridium(III) polypyridyl complex. In contrast to previous reports of visible light photoredox catalysis, the mechanism of this process involves photosensitization by energy transfer and not electron transfer. PMID:22965321

  20. The enhanced visible light photocatalytic activity of yttrium-doped BiOBr synthesized via a reactable ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    He, Minqiang; Li, Weibing [School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 (China); Xia, Jiexiang, E-mail: xjx@ujs.edu.cn [School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 (China); Xu, Li; Di, Jun [School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 (China); Xu, Hui [School of the Environment, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 (China); Yin, Sheng [School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 (China); Li, Huaming, E-mail: lhm@ujs.edu.cn [School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 (China); Li, Mengna [School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 (China)

    2015-03-15

    Graphical abstract: Yttrium (Y)-doped BiOBr with different Y doping concentrations has been synthesized via solvothermal method in the presence of reactable ionic liquid 1-hexadecyl-3-methylimidazolium bromide ([C16mim]Br). The photocatalytic activities of the yttrium doped BiOBr samples were evaluated by the degradation of ciprofloxacin (CIP) and rhodamine B (RhB) under visible-light irradiation. The yttrium doped BiOBr exhibited enhanced photocatalytic activity for the degradation of the two types of pollutants, and the 5wt%Y-doped BiOBr showed the highest photocatalytic activity. The enhanced photocatalytic performance could be attributed to the reduced band gap and improved separation of electron–hole pairs. - Highlights: • Yttrium (Y)-doped BiOBr composites have been synthesized via solvothermal method in the presence of reactable ionic liquid [C16mim]Br. • The yttrium doped BiOBr exhibited enhanced photocatalytic activity for the degradation of ciprofloxacin (CIP) and rhodamine B (RhB). • The enhanced photocatalytic performance could be attributed to the reduced band gap and improved separation of electron–hole pairs. - Abstract: Yttrium (Y)-doped BiOBr with different Y doping concentrations has been synthesized via solvothermal method in the presence of reactable ionic liquid 1-hexadecyl-3-methylimidazolium bromide ([C{sub 16}mim]Br). Their structures, morphologies and optical properties were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and UV–vis diffuse reflectance spectroscopy (DRS). The photocatalytic activities of the yttrium doped BiOBr samples were evaluated by the degradation of ciprofloxacin (CIP) and rhodamine B (RhB) under visible-light irradiation. The yttrium doped BiOBr exhibited enhanced photocatalytic activity for the degradation of the two types of pollutants, and the 5wt%Y-doped BiOBr showed the highest

  1. A chemical bath deposition route to facet-controlled Ag{sub 3}PO{sub 4} thin films with improved visible light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Gunjakar, Jayavant L.; Jo, Yun Kyung; Kim, In Young; Lee, Jang Mee; Patil, Sharad B. [Department of Chemistry and Nanoscience, College of Natural Sciences, Ewha Womans University, Seoul 03760 (Korea, Republic of); Pyun, Jae-Chul [Department of Materials Science and Engineering, College of Engineering, Yonsei University, Seoul (Korea, Republic of); Hwang, Seong-Ju, E-mail: hwangsju@ewha.ac.kr [Department of Chemistry and Nanoscience, College of Natural Sciences, Ewha Womans University, Seoul 03760 (Korea, Republic of)

    2016-08-15

    A facile, economic, and reproducible chemical bath deposition (CBD) method is developed for the fabrication of facet-controlled Ag{sub 3}PO{sub 4} thin films with enhanced visible light photocatalytic activity. The fine-control of bath temperature, precursor, complexing agent, substrate, and solution pH is fairly crucial in preparing the facet-selective thin film of Ag{sub 3}PO{sub 4} nanocrystal. The change of precursor from silver nitrate to silver acetate makes possible the tailoring of the crystal shape of Ag{sub 3}PO{sub 4} from cube to rhombic dodecahedron and also the bandgap tuning of the deposited films. The control of [Ag{sup +}]/[phosphate] ratio enables to maximize the loading amount of Ag{sub 3}PO{sub 4} crystals per the unit area of the deposited film. All the fabricated Ag{sub 3}PO{sub 4} thin films show high photocatalytic activity for visible light-induced degradation of organic molecules, which can be optimized by tailoring the crystal shape of the deposited crystals. This CBD method is also useful in preparing the facet-controlled hybrid film of Ag{sub 3}PO{sub 4}–ZnO photocatalyst. The present study clearly demonstrates the usefulness of the present CBD method for fabricating facet-controlled thin films of metal oxosalt and its nanohybrid. - Highlights: • The crystal facet of Ag{sub 3}PO{sub 4} films can be tuned by chemical bath deposition. • The crystal shape of Ag{sub 3}PO{sub 4} is tailorable from cube to rhombic dodecahedron. • Facet-tuned Ag{sub 3}PO{sub 4} film shows enhanced visible light photocatalyst activity.

  2. The effects of the bacterial interaction with visible-light responsive titania photocatalyst on the bactericidal performance

    Directory of Open Access Journals (Sweden)

    Cheng Chia-Liang

    2009-01-01

    Full Text Available Abstract Bactericidal activity of traditional titanium dioxide (TiO2 photocatalyst is effective only upon irradiation by ultraviolet light, which restricts the potential applications of TiO2 for use in our living environments. Recently carbon-containing TiO2 was found to be photoactive at visible-light illumination that affords the potential to overcome this problem; although, the bactericidal activity of these photocatalysts is relatively lower than conventional disinfectants. Evidenced from scanning electron microscopy and confocal Raman spectral mapping analysis, we found the interaction with bacteria was significantly enhanced in these anatase/rutile mixed-phase carbon-containing TiO2. Bacteria-killing experiments indicate that a significantly higher proportion of all tested pathogens including Staphylococcus aureus, Shigella flexneri and Acinetobacter baumannii, were eliminated by the new nanoparticle with higher bacterial interaction property. These findings suggest the created materials with high bacterial interaction ability might be a useful strategy to improve the antimicrobial activity of visible-light-activated TiO2.

  3. Hydroxyapatite supported Ag3PO4 nanoparticles with higher visible light photocatalytic activity

    International Nuclear Information System (INIS)

    Hong Xiaoting; Wu Xiaohui; Zhang Qiuyun; Xiao Mingfeng; Yang Gelin; Qiu Meirong; Han Guocheng

    2012-01-01

    Hydroxyapatite supported Ag 3 PO 4 nanocomposites have been synthesized by a wet impregnation process. UV-vis absorption spectra show a red shift of the absorption edges for the composite systems compared to pure hydroxyapatite support. The surface structure and morphology of the nanocomposites were characterized by Brunauer-Emmett-Teller (BET) apparatus, X-ray diffraction (XRD), transmission electron microscopy (TEM). The results suggest that Ag 3 PO 4 nanoparticles (6-17 nm in diameter) are well dispersed on the hydroxyapatite support and Ag 3 PO 4 nanoparticles density is larger for the higher Ag + loading sample. The as-prepared nanocomposite photocatalysts showed a pronounced photocatalytic activity upon decomposition of methylene blue dye in aqueous solution under both visible light (wavelength > 400 nm) and UV-vis light irradiation. A synergic mechanism of inherent photocatalytic capability of Ag 3 PO 4 and the accelerated electron/hole separation resulting from the photoinduced electrons captured by the slow-released Ag + at the interface of Ag 3 PO 4 and hydroxyapatite is proposed for the nanocomposites on the enhancement of photocatalytic performance in comparison to that of pure Ag 3 PO 4 nanoparticles. The support of hydroxyapatite may also act as an absorbent which favors the mass transfer in heterogeneous photocatalysis reaction.

  4. Visible Light Neural Stimulation on graphitic-Carbon Nitride/Graphene Photocatalytic Fibers

    DEFF Research Database (Denmark)

    Zhang, Zhongyang; Xu, Ruodan; Wang, Zegao

    2017-01-01

    conversion, was for the first time investigated. Specifically, g-C3N4 was combined with graphene oxide (GO) in a 3D manner on the surfaces of electrospun polycaprolactone/gelatin (PG) fibers and functioned as a biocompatible interface for visible-light stimulating neuronal differentiation. The enhanced......Light stimulation allows remote and spatiotemporally accurate operation that has been applied as effective, non-invasive means of therapeutic interventions. Here, visible light neural stimulation of graphitic carbon nitride (g-C3N4), an emerging photocatalyst with visible-light optoelectronic...... was confirmed by the Lactate Dehydrogenase (LDH) assay, live dead staining and colorimetric cell viability assay CCK-8. Under a bidaily, monochromatic light stimulation at a wavelength of 450 nm at 10mW/cm2, a 18.5-fold increase of neurite outgrowth of PC12 was found on g-C3N4 coated fibers; while AA reduced GO...

  5. Origin of visible-light sensitivity in N-doped TiO2 films

    International Nuclear Information System (INIS)

    Nakano, Yoshitaka; Morikawa, Takeshi; Ohwaki, Takeshi; Taga, Yasunori

    2007-01-01

    We report on visible-light sensitivity in N-doped TiO 2 (TiO 2 :N) films that were deposited on n + -GaN/Al 2 O 3 substrates by reactive magnetron sputtering and subsequently crystallized by annealing at 550 deg. C in flowing N 2 gas. The N-doping concentration was ∼8.8%, as determined by X-ray photoelectron spectroscopy measurements. From transmission electron microscopic observations and optical absorption measurements, yellow-colored TiO 2 :N samples showed an enhanced granular structure and strong absorption in the visible-light region. Photoelectron spectroscopy in air measurements showed a noticeable decrease in ionization energy of TiO 2 by the N doping. Deep-level optical spectroscopy measurements revealed two characteristic deep levels located at ∼1.18 and ∼2.48 eV below the conduction band. The 1.18 eV level is probably attributable to the O vacancy state and can be active as an efficient generation-recombination center. The pronounced 2.48 eV band is newly introduced by the N doping and contributes to band-gap narrowing of TiO 2 by mixing with the O 2p valence band. Therefore, this localized intraband is probably one origin of visible-light sensitivity in TiO 2 :N

  6. Nanotechnology in environmental remediation: degradation of volatile organic compounds (VOCs) over visible-light-active nanostructured materials.

    Science.gov (United States)

    Selvaraj, Rengaraj; Al-Kindy, Salma M Z; Silanpaa, Mika; Kim, Younghun

    2014-01-01

    Volatile organic compounds (VOCs) are major pollutants and are considered to be one of the most important contaminants generated by human beings living in urban and industrial areas. Methyl tert-butyl ether (MTBE) is a VOC that has been widely used as a gasoline additive to reduce VOC emissions from motor vehicles. However, new gasoline additives like MTBE are having negative environmental impacts. Recent survey reports clearly show that groundwater is often polluted owing to leakage of petroleum products from underground storage tanks. MTBE is highly soluble in water (e.g., 0.35-0.71 M) and has been detected at high concentrations in groundwater. The presence of MTBE in groundwater poses a potential health problem. The documented effects of MTBE exposure are headaches, vomiting, diarrhea, fever, cough, muscle aches, sleepiness, disorientation, dizziness, and skin and eye irritation. To address these problems, photocatalytic treatment is the preferred treatment for polluted water. In the present work, a simple and template-free solution phase synthesis method has been developed for the preparation of novel cadmium sulfide (CdS) hollow microspheres using cadmium nitrate and thioacetamide precursors. The synthesized products have been characterized by a variety of methods, including X-ray powder diffraction, high-resolution scanning electron microscopy (HR-SEM), X-ray photoelectron spectroscopy, and UV-visible diffused reflectance spectroscopy. The HR-SEM measurements revealed the spherical morphology of the CdS microspheres, which evolved by the oriented aggregation of the primary CdS nanocrystals. Furthermore, studies of photocatalytic activity revealed that the synthesized CdS hollow microspheres exhibit an excellent photocatalytic performance in rapidly degrading MTBE in aqueous solution under visible light illumination. These results suggest that CdS microspheres will be an interesting candidate for photocatalytic detoxification studies under visible light

  7. Semipolar InGaN-based superluminescent diodes for solid-state lighting and visible light communications

    KAUST Repository

    Shen, Chao

    2017-02-16

    III-nitride light emitters, such as light-emitting diodes (LEDs) and laser diodes (LDs), have been demonstrated and studied for solid-state lighting (SSL) and visible-light communication (VLC) applications. However, for III-nitride LEDbased SSL-VLC system, its efficiency is limited by the

  8. Visible-Light-Driven Hydrogen Evolution Using Planarized Conjugated Polymer Photocatalysts.

    Science.gov (United States)

    Sprick, Reiner Sebastian; Bonillo, Baltasar; Clowes, Rob; Guiglion, Pierre; Brownbill, Nick J; Slater, Benjamin J; Blanc, Frédéric; Zwijnenburg, Martijn A; Adams, Dave J; Cooper, Andrew I

    2016-01-26

    Linear poly(p-phenylene)s are modestly active UV photocatalysts for hydrogen production in the presence of a sacrificial electron donor. Introduction of planarized fluorene, carbazole, dibenzo[b,d]thiophene or dibenzo[b,d]thiophene sulfone units greatly enhances the H 2 evolution rate. The most active dibenzo[b,d]thiophene sulfone co-polymer has a UV photocatalytic activity that rivals TiO 2 , but is much more active under visible light. The dibenzo[b,d]thiophene sulfone co-polymer has an apparent quantum yield of 2.3 % at 420 nm, as compared to 0.1 % for platinized commercial pristine carbon nitride.

  9. Postmodification of MOF-5 using secondary complex formation using 8- hydroxyquinoline (HOQ) for the development of visible light active photocatalysts

    Science.gov (United States)

    Thakare, Sanjay R.; Ramteke, Shruti M.

    2018-05-01

    A novel HOQ@MOF-5 compound photocatalyst was successfully constructed by interacting 8- Hydroxyquinoline with MOF-5 synthesized through a room temperature method. The secondary complex formation between the Zn cluster with 8-Hydroxyquinoline harnessed visible light and acted as a mediator to transfer photoinduced electrons to MOF-5 for enhancing the photocatalytic reaction rate with visible light. HOQ@MOF-5 was characterized by various spectroscopic techniques, such as XRD showing the crystalline nature of compound, UV-Visible spectroscopy showing the 2.54 eV band gap of HOQ@MOF-5 and morphological analysis tools, such as the nanoparticle nature of the compound with 9.561 nm particle size. The photocatalytic effect was estimated using the photocatalytic degradation of phenol as a representative organic pollutant under visible light irradiation. This work provides a new compound acting as source of electrons transfer for the development of efficient photocatalysts for remediation of environmental pollution.

  10. Facile synthesis of amino-functionalized titanium metal-organic frameworks and their superior visible-light photocatalytic activity for Cr(VI) reduction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hou [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Yuan, Xingzhong, E-mail: yxz@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Wu, Yan [College of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); Zeng, Guangming [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Chen, Xiaohong [School of Business, Central South University, Changsha 410083 (China); Leng, Lijian; Wu, Zhibin; Jiang, Longbo [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Li, Hui [Institute of Bio-energy, Hunan Academy of Forestry, Changsha 410004 (China)

    2015-04-09

    Highlights: • NH{sub 2} functionalized MIL-125(Ti) was fabricated by a facile solvothermal method. • The photocatalyst could reduce Cr(VI)–Cr(III) under visible light irradiation. • The Ti{sup 3+}–Ti{sup 4+} intervalence electron transfer is important for Cr(VI) reduction. • Used NH{sub 2}-MIL-125(Ti) can be recycled for the photocatalytic reduction. - Abstract: Porous metal-organic frameworks (MOFs) have been arousing a great interest in exploring the application of MOFs as photocatalyst in environment remediation. In this work, two different MOFs, Ti-benzenedicarboxylate (MIL-125(Ti)) and amino-functionalized Ti-benzenedicarboxylate (NH{sub 2}-MIL-125(Ti)) were successfully synthesized via a facile solvothermal method. The MIL-125(Ti) and NH{sub 2}-MIL-125(Ti) were well characterized by XRD, SEM, XPS, N{sub 2} adsorption–desorption measurements, thermogravimetric analysis and UV–vis diffuse reflectance spectra (DRS). It is revealed that the NH{sub 2}-MIL-125(Ti) has well crystalline lattice, large surface area and mesoporous structure, chemical and thermal stability, and enhanced visible-light absorption up to 520 nm, which was associated with the chromophore (amino group) in the organic linker. Compared with MIL-125(Ti), NH{sub 2}-MIL-125(Ti) exhibited more efficient photocatalytic activity for Cr(VI) reduction from aqueous solution under visible-light irradiation. The addition of hole scavenger, the hole scavenger concentration and the pH value of the reaction solution played important roles in the photo-catalytic reduction of Cr(VI). The presence of Ti{sup 3+}–Ti{sup 4+} intervalence electron transfer was the main reason for photo-excited electrons transportation from titanium-oxo clusters to Cr(VI), facilitating the Cr(VI) reduction under the acid condition. It was demonstrated that amino-functionalized Ti(IV)-based MOFs could be promising visible-light photocatalysts for the treatment of Cr(VI)-contained wastewater.

  11. Enhancement of visible light photocatalytic activity of ZnS and CdS nanoparticles based on organic and inorganic coating

    Energy Technology Data Exchange (ETDEWEB)

    Soltani, Nayereh, E-mail: nayereh.soltani@gmail.com [Department of Physics, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Saion, Elias; Yunus, W. Mahmood Mat; Erfani, Maryam; Navasery, Manizheh; Bahmanrokh, Ghazaleh [Department of Physics, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Rezaee, Kadijeh [Department of Nuclear Engineering, Faculty of Advance Sciences and Technologies, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of)

    2014-01-30

    Coating of ZnS and CdS nanoparticles with organic and inorganic materials can extend their light absorption in the visible region and their stability against photo-corrosion. Such materials could emerge as excellent photocatalysts for the elimination of pollutants from aqueous media using solar energy. In this study, PVP (polyvinyl pyrrolidone)-capped ZnS and CdS nanoparticles, ZnS/CdS and CdS/ZnS core shell nanoparticles were synthesized by microwave irradiation method and characterized using different techniques. The XRD patterns exhibited cubic and hexagonal structures for coated ZnS and CdS nanoparticles, respectively. Morphological evaluation of TEM images showed that the nanoparticles are generally spherical in shape. The UV–visible spectra confirmed a shift in the band gap of coated nanoparticles to longer or shorter wavelengths due to size and potential-well effects. The photocatalytic activity of nanoparticles toward dye degradation under visible light was found to be improved after coating. PVP-capped ZnS and CdS exhibited an enhancement in the initial methylene blue degradation efficiency by a factor of about 1.3. ZnS nanoparticles coated by CdS displayed the initial efficiency 3.2 times higher than bare ZnS. The maximum dye removal was obtained in presence of CdS/ZnS core shells which is 1.4 times more efficient than bare CdS.

  12. Preparation of mesoporous CdS-containing TiO{sub 2} film and enhanced visible light photocatalytic property

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yanmei; Wang, Renliang, E-mail: rlwang@tsmc.edu.cn; Zhang, Wenping; Ge, Haiyan; Wang, Xiaopeng; Li, Li

    2015-01-15

    Highlights: • Well-dispersed distribution of CdS nanoparticles inside of TiO{sub 2} mesoporous structures was fabricated. • The sensitization of CdS nanoparticles significantly extends the response of TiO{sub 2} mesoporous film in the visible region. • An improved visible light photocatalytic activity was observed by the CdS–MTF. - Abstract: Mesoporous TiO{sub 2} films containing CdS nanocrystals were successfully fabricated by a two-step process of successive ionic layer adsorption and reaction (SILAR) technique and a solvothermal method followed by annealing. The distribution of CdS nanoparticles in the inner structures of the TiO{sub 2} mesoporous films is confirmed by field emission scanning electron microscope. The CdS modification of the mesoporous films results in an increase in the visible light adsorption, and exhibits more excellent photocatalytic degradation of methyl orange (MO) under visible light irradiation.

  13. Indoor anti-occlusion visible light positioning systems based on particle filtering

    Science.gov (United States)

    Jiang, Meng; Huang, Zhitong; Li, Jianfeng; Zhang, Ruqi; Ji, Yuefeng

    2015-04-01

    As one of the most popular categories of mobile services, a rapid growth of indoor location-based services has been witnessed over the past decades. Indoor positioning methods based on Wi-Fi, radio-frequency identification or Bluetooth are widely commercialized; however, they have disadvantages such as low accuracy or high cost. An emerging method using visible light is under research recently. The existed visible light positioning (VLP) schemes using carrier allocation, time allocation and multiple receivers all have limitations. This paper presents a novel mechanism using particle filtering in VLP system. By this method no additional devices are needed and the occlusion problem in visible light would be alleviated which will effectively enhance the flexibility for indoor positioning.

  14. Enhanced visible light photocatalytic activity of g-C3N4 assisted by hydrogen peroxide

    Science.gov (United States)

    Chen, Quan-Liang; Liu, Yi-Ling; Tong, Li-Ge

    2018-04-01

    Water pollution has caused much attention nowadays. Photocatalysis as a kind of advanced oxidation technology has been widely studied in the field of environmental pollution control. As a stable non-metal photocatalyst, the photocatalytic activity of g-C3N4 assisted by H2O2 was investigated for the degradation of Rhodamine B (RhB) under visible light irradiation. The combination of g-C3N4 and H2O2 has much higher activity than that of pure g-C3N4 or H2O2. Neutral solution is preferred for the high phtotocatalytic activity of g-C3N4 with H2O2. The effect of the amount of catalyst, H2O2 concentration and RhB concentration was investigated. Photocatalytic mechanism study using radical scavenger showed free radicals {{{{O}}}2}- and · OH are the main active species. g-C3N4 assisted by H2O2 showed good photostability and repeatability after five cycles of degradation experiment.

  15. A visible light-curable yet visible wavelength-transparent resin for stereolithography 3D printing

    Science.gov (United States)

    Park, Hong Key; Shin, Mikyung; Kim, Bongkyun; Park, Jin Woo; Lee, Haeshin

    2018-04-01

    Herein, a new polymeric resin for stereolithography (SLA) three-dimensional printing (SLA-3DP) is reported. An ultraviolet (UV) or visible (VIS) light source is critical for SLA printing technology. UV light can be used to manufacture 3D objects in SLA-3DP, but there are significant occupational safety and health issues (particularly for eyes). These issues prevent the widespread use of SLA-3DP at home or in the office. Through the use of VIS light, the safety and health issues can largely be solved, but only non-transparent 3D objects can be manufactured, which prevents the application of 3DP to the production of various common transparent consumer products. For these reasons, we developed a VIS light-curable yet visibly transparent resin for SLA-3DP, which also retains UV curability. The key was to identify the photoinitiator diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide (DPTBP). DPTBP was originally designed as a UV photoinitiator, but we found that VIS light irradiation is sufficient to split DPTBP and generate radicals due to its slight VIS light absorption up to 420 nm. The cured resin displays high transparency and beautiful transparent colors by incorporating various dyes; additionally, its mechanical properties are superior to those of commercial resins (Arario 410) and photoinitiators (Irgacure 2959).

  16. Graphene-spindle shaped TiO2 mesocrystal composites: Facile synthesis and enhanced visible light photocatalytic performance

    International Nuclear Information System (INIS)

    Yang, Xiaofei; Qin, Jieling; Li, Yang; Zhang, Rongxian; Tang, Hua

    2013-01-01

    Highlights: • Graphene-TiO 2 mesocrystal composites were fabricated via a facile approach. • Graphene sheets were decorated with spindle-like TiO 2 mesocrystals. • Graphene causes enhanced light absorbance and visible light photocatalytic activity. • Oxygen-containing radicals are believed to responsible for its improved activity. -- Abstract: Graphene (GR)-TiO 2 mesocrystal composites were prepared by a facile template-free process based on the combination of sol–gel and solvothermal methods, and were characterized using field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Raman spectroscopy, UV–vis diffuse reflectance spectroscopy (UV–vis DRS), nitrogen absorption and electron spin resonance (ESR). Visible light photocatalytic performance of GR-TiO 2 composites was evaluated for photocatalytic degradation of organic dye Rhodamine B. It was found that the amount of graphene oxide (GO) added obviously affects morphologies of TiO 2 mesocrystals and photocatalytic activities of as-prepared nanocomposites. Composites prepared in the presence of different amounts of GO all exhibit higher photocatalytic activity than pure TiO 2 mesocrystals and P25, the composite obtained by using 20 mg GO presents the most uniform TiO 2 mesocrystals in the composite and shows the highest photocatalytic efficiency. The mechanism for the generation of TiO 2 mesocrystals in the GR-TiO 2 composite is proposed and possible reasons for the enhancement in visible light photocatalytic efficiency are also discussed

  17. Synthesis of porous carbon-doped g-C_3N_4 nanosheets with enhanced visible-light photocatalytic activity

    International Nuclear Information System (INIS)

    Bao, Nan; Hu, Xinde; Zhang, Qingzhe; Miao, Xinhan; Jie, Xiuyan; Zhou, Shuai

    2017-01-01

    Highlights: • NSs-APAM photocatalysts were synthesized by a green and handy route. • APAM was used as the intercalator and carbon source in the preparation. • The combination of photo-induced charge carriers was greatly restrained. • Significantly enhanced visible-light photocatalytic activity was witnessed. • The NSs-APAM also showed a good recycling stability. - Abstract: The porous carbon-doped g-C_3N_4 nanosheets photocatalysts (NSs-APAM) were synthesized using anionic polyacrylamide (APAM) as the intercalator and carbon source via the thermal treatment method. The as-prepared samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FT-IR), nitrogen adsorption, X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance absorption spectra (UV-DRS) and photoluminescence spectroscopy (PL). The results indicate that the APAM can effectively induce the formation of high-quality nanosheets (NSs) with narrowed bandgap. The specific surface area of NSs-APAM is 118.6 m"2/g, which is 5-fold larger than bulk g-C_3N_4. The carbon doping could narrow the bandgap, from 2.75 eV of g-C_3N_4 NSs without carbon doping (NSs-Water) to 2.41 eV of NSs-APAM. The two-dimensional NSs structure facilitates the charge separation by shortening the diffusion distance to the surface of photocatalysts. The synergic effects of the carbon doping and unique structural properties contributed to the superior photocatalytic activity of NSs-APAM with 95% degradation rate towards X–3 B after 30 min visible-light irradiation.

  18. Sensitization of Perovskite Strontium Stannate SrSnO3 towards Visible-Light Absorption by Doping

    Directory of Open Access Journals (Sweden)

    Hungru Chen

    2014-01-01

    Full Text Available Perovskite strontium stannate SrSnO3 is a promising photocatalyst. However, its band gap is too large for efficient solar energy conversion. In order to sensitize SrSnO3 toward visible-light activities, the effects of doping with various selected cations and anions are investigated by using hybrid density functional calculations. Results show that doping can result in dopant level to conduction band transitions which lie lower in energy compared to the original band gap transition. Therefore, it is expected that doping SrSnO3 can induce visible-light absorption.

  19. Catadioptric lenses in Visible Light Communications

    Science.gov (United States)

    Garcia-Marquez, J.; Valencia, J. C.; Perez, H.; Topsu, S.

    2015-04-01

    Since few years ago, visible light communications (VLC) have experience an accelerated interest from a research point of view. The beginning of this decade has seen many improvements in VLC at an electronic level. High rates of transmission at low bit error ratios (BER) have been reported. A few numbers of start-ups have initiated activities to offer a variety of applications ranging from indoor geo-localization to internet, but in spite of these advancements, some other problems arise. Long-range transmissions mean a high BER which reduce the number of applications. In this sense, new redesigned optical collectors or in some cases, optical reflectors must be considered to ensure a low BER at higher distance transmissions. Here we also expose a preliminary design of a catadioptric and monolithical lens for a LI-FI receiver with two rotationally symmetrical main piecewise surfaces za and zb. These surfaces are represented in a system of cylindrical coordinates with an anterior surface za with a central and refractive sector surrounded by a peripheral reflective sector and a back piecewise surface zb with a central refractive sector and a reflective sector, both characterized as ideal for capturing light within large acceptance angles.

  20. Facile synthesis of CdS@TiO2 core–shell nanorods with controllable shell thickness and enhanced photocatalytic activity under visible light irradiation

    International Nuclear Information System (INIS)

    Dong, Wenhao; Pan, Feng; Xu, Leilei; Zheng, Minrui; Sow, Chorng Haur; Wu, Kai; Xu, Guo Qin

    2015-01-01

    Graphical abstract: - Highlights: • CdS nanorods were coated with amorphous TiO 2 shells under a mild condition. • The TiO 2 shell thickness can be controlled from 3.5 to 40 nm. • CdS@TiO 2 nanorods exhibit enhanced photocatalytic activities under visible light. • Efficient charge carriers separation leads to the improved photocatalytic activity. - Abstract: Amorphous TiO 2 layers with a controllable thickness from 3.5 to 40 nm were coated on the one-dimensional CdS nanorods surface under mild conditions. Compared to the bare CdS nanorods, the as-prepared CdS@TiO 2 nanorods exhibit enhanced photocatalytic activities for phenol photodecomposition under visible light irradiation. The improved photoactivity is ascribed to the efficient separation of photogenerated electron and hole charge carriers between CdS cores and TiO 2 shells. This study promises a simple approach to fabricating CdS@TiO 2 core–shell structure nanocomposites, and can be applied for other semiconductor cores with TiO 2 shells

  1. Synthesis of Phase Pure Hexagonal YFeO3 Perovskite as Efficient Visible Light Active Photocatalyst

    Directory of Open Access Journals (Sweden)

    Mohammed Ismael

    2017-11-01

    Full Text Available Hexagonal perovskite YFeO3 was synthesized by a complex-assisted sol-gel technique allowing crystallization at calcination temperatures below 700 °C. As determined by diffuse reflectance spectroscopy (DRS and Tauc plots, the hexagonal YFeO3 exhibits a lower optical band gap (1.81 eV than the orthorhombic structure (about 2.1 eV or even higher being typically obtained at elevated temperatures (>700 °C, and thus enables higher visible light photocatalysis activity. Structure and morphology of the synthesized YFeO3 perovskites were analyzed by powder X-ray diffraction (XRD and nitrogen adsorption, proving that significantly smaller crystallite sizes and higher surface areas are obtained for YFeO3 with a hexagonal phase. The photocatalytic activity of the different YFeO3 phases was deduced via the degradation of the model pollutants methyl orange and 4-chlorophenol. Experiments under illumination with light of different wavelengths, in the presence of different trapping elements, as well as photoelectrochemical tests allow conclusions regarding band positions of YFeO3 and the photocatalytic degradation mechanism. X-ray photoelectron spectroscopy indicates that a very thin layer of Y2O3 might support the photocatalysis by improving the separation of photogenerated charge carriers.

  2. Fabrication of CaFe2O4 nanofibers via electrospinning method with enhanced visible light photocatalytic activity

    Science.gov (United States)

    Wang, Jianmin; Wang, Yunan; Liu, Yinglei; Li, Song; Cao, Feng; Qin, Gaowu

    CaFe2O4 nanofibers with diameters of about 130nm have been fabricated via a facile electrospinning method. The structures, morphologies and optical properties of the obtained CaF2O4 nanofibers have been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV-Visible UV-Vis diffuse reflectance spectrum. The photocatalytic activities of the CaFe2O4 nanofibers are evaluated by the photo-degradation of Methyl orange (MO). The results show that the CaFe2O4 nanofibers (72%) exhibit much higher photocatalytic performance than the CaFe2O4 powders (27%) prepared by conventional method under visible light irradiation. The enhanced photocatalytic performance of CaFe2O4 nanofibers could be attributed to the large surface area, high photogenerated charge carriers density and low charge transfer resistance, as revealed by photoelectrochemical measurement. And fundamentally, it could be attributed to the decreased particle size and the fibrous nanostructure. This work not only provides an efficient way to improve the photocatalytic activity of CaFe2O4, but also provides a new method for preparing materials with nanofibrous structure.

  3. Intimate Coupling of Photocatalysis and Biodegradation for Degrading Phenol Using Different Light Types: Visible Light vs UV Light.

    Science.gov (United States)

    Zhou, Dandan; Xu, Zhengxue; Dong, Shanshan; Huo, Mingxin; Dong, Shuangshi; Tian, Xiadi; Cui, Bin; Xiong, Houfeng; Li, Tingting; Ma, Dongmei

    2015-07-07

    Intimate coupling of photocatalysis and biodegradation (ICPB) technology is attractive for phenolic wastewater treatment, but has only been investigated using UV light (called UPCB). We examined the intimate coupling of visible-light-induced photocatalysis and biodegradation (VPCB) for the first time. Our catalyst was prepared doping both of Er(3+) and YAlO3 into TiO2 which were supported on macroporous carriers. The macroporous carriers was used to support for the biofilms as well. 99.8% removal efficiency of phenol was achieved in the VPCB, and this was 32.6% higher than that in the UPCB. Mineralization capability of UPCB was even worse, due to less adsorbable intermediates and cell lysis induced soluble microbial products release. The lower phenol degradation in the UPCB was due to the serious detachment of the biofilms, and then the microbes responsible for phenol degradation were insufficient due to disinfection by UV irradiation. In contrast, microbial communities in the carriers were well protected under visible light irradiation and extracellular polymeric substances secretion was enhanced. Thus, we found that the photocatalytic reaction and biodegradation were intimately coupled in the VPCB, resulting in 64.0% removal of dissolved organic carbon. Therefore, we found visible light has some advantages over UV light in the ICPB technology.

  4. Improved Visible Light Photocatalytic Activity for TiO2 Nanomaterials by Codoping with Zinc and Sulfur

    Directory of Open Access Journals (Sweden)

    Qianzhi Xu

    2015-01-01

    Full Text Available S/Zn codoped TiO2 nanomaterials were synthesized by a sol-gel method. X-ray diffraction, UV-vis diffuse reflectance spectroscopy, transmission electron microscopy, photoluminescence spectroscopy, and X-ray photoelectron spectroscopy were used to characterize the morphology, structure, and optical properties of the prepared samples. The introduction of Zn and S resulted in significant red shift of absorption edge for TiO2-based nanomaterials. The photocatalytic activity was evaluated by degrading reactive brilliant red X-3B solution under simulated sunlight irradiation. The results showed S/Zn codoped TiO2 exhibited higher photocatalytic activity than pure TiO2 and commercial P25, due to the photosynergistic effect of obvious visible light absorption, efficient separation of photoinduced charge carriers, and large surface area. Moreover, the content of Zn and S in the composites played important roles in photocatalytic activity of TiO2-based nanomaterials.

  5. Visible light induced changes in the immune response through an eye-brain mechanism (photoneuroimmunology).

    Science.gov (United States)

    Roberts, J E

    1995-07-01

    The immune system is susceptible to a variety of stresses. Recent work in neuroimmunology has begun to define how mood alteration, stress, the seasons, and daily rhythms can have a profound effect on immune response through hormonal modifications. Central to these factors may be light through an eye-brain hormonal modulation. In adult primates, only visible light (400-700 nm) is received by the retina. This photic energy is then transduced and delivered to the visual cortex and by an alternative pathway to the suprachiasmatic nucleus (SCN). The SCN is a part of the hypothalamic region in the brain believed to direct circadian rhythm. Visible light exposure also modulates the pituitary and pineal gland which leads to neuroendocrine changes. Melatonin, norepinephrine and acetylcholine decrease with light activation, while cortisol, serotonin, gaba and dopamine levels increase. The synthesis of vasoactive intestinal polypeptide (VIP), gastrin releasing peptide (GRP) and neuropeptide Y (NPY) in rat SCN has been shown to be modified by light. These induced neuroendocrine changes can lead to alterations in mood and circadian rhythm. All of these neuroendocrine changes can lead to immune modulation. An alternative pathway for immune modulation by light is through the skin. Visible light (400-700 nm) can penetrate epidermal and dermal layers of the skin and may directly interact with circulating lymphocytes to modulate immune function. However, even in the presence of phototoxic agents such as eosin and rose bengal, visible light did not produce suppression of contact hypersensitivity with suppresser cells. In contrast to visible light, in vivo exposure to UV-B (280-320 nm) and UV-A (320-400 nm) radiation can only alter normal human immune function by a skin mediated response. Each UV subgroup (B, A) induces an immunosuppressive response but by differing mechanisms involving the regulation of differing interleukins and growth factors. Some effects observed in humans are

  6. Polymer dots grafted TiO2 nanohybrids as high performance visible light photocatalysts.

    Science.gov (United States)

    Li, Gen; Wang, Feng; Liu, Peng; Chen, Zheming; Lei, Ping; Xu, Zhongshan; Li, Zengxi; Ding, Yanfen; Zhang, Shimin; Yang, Mingshu

    2018-04-01

    As a new member of carbon dots (CDs), Polymer dots (PDs) prepared by hydrothermal treatment of polymers, usually consist of the carbon core and the connected partially degraded polymer chains. This type of CDs might possess aqueous solubility, non-toxicity, excellent stability against photo-bleaching and high visible light activity. In this research, PDs were prepared by a moderate hydrothermal treatment of polyvinyl alcohol, and PDs grafted TiO 2 (PDs-TiO 2 ) nanohybrids with TiOC bonds were prepared by a facile in-situ hydrothermal treatment of PDs and Ti (SO 4 ) 2 . Under visible light irradiation, the PDs-TiO 2 demonstrate excellent photocatalytic activity for methyl orange degradation, and the photocatalytic rate constant of PDs-TiO 2 is 3.6 and 9.5 times higher than that of pure TiO 2 and commercial P25, respectively. In addition, the PDs-TiO 2 exhibit good recycle stability under UV-Vis light irradiation. The interfacial TiOC bonds and the π-conjugated structures in PDs-TiO 2 can act as the pathways to quickly transfer the excited electrons between PDs and TiO 2 , therefore contribute to the excellent photocatalytic activity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Sol-Gel-Assisted Microwave-Derived Synthesis of Anatase Ag/TiO2/GO Nanohybrids toward Efficient Visible Light Phenol Degradation

    Directory of Open Access Journals (Sweden)

    E. H. Alsharaeh

    2017-05-01

    Full Text Available Abstract: A simple microwave-assisted (MWI wet chemical route to synthesize pure anatase phase titanium dioxide (TiO2 nanoparticles (NPs is reported here using titanium tetrachloride (TiCl4 as starting material. The as-prepared TiO2 NPs were characterized by electron microscopy, X-ray diffraction, UV/visible absorption spectroscopy, and infrared and Raman spectroscopic techniques. Further modification of the anatase TiO2 NPs was carried out by incorporating plasmonic silver (Ag NPs and graphene oxide (GO in order to enhance the visible light absorption. The photocatalytic activities of the anatase TiO2, Ag/TiO2, and Ag/TiO2/GO nanocomposites were evaluated under both ultraviolet (UV and visible light irradiation using phenol as a model contaminant. The presence of Ag NPs was found to play a significant role to define the photocatalytic activity of the Ag/TiO2/GO nanocomposite. It was found that the Ag performed like a sink under UV excitation and stored photo-generated electrons from TiO2, whereas, under visible light excitation, the Ag acted as a photosensitizer enhancing the photocatalytic activity of the nanocomposite. The detailed mechanism was studied based on photocatalytic activities of Ag/TiO2/GO nanocomposites. Therefore, the as-prepared Ag/TiO2/GO nanocomposite was used as photocatalytic materials under both UV and visible light irradiation toward degradation of organic molecules.

  8. Down-conversion phosphors as noble-metal-free co-catalyst in ZnO for efficient visible light photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Haipeng [Institute of Coordination Bond Metrology and Engineering, College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China); Liu, Xinjuan, E-mail: lxj669635@126.com [Institute of Coordination Bond Metrology and Engineering, College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China); Liu, Jiaqing [Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai 200062 (China); Lei, Wenyan [Institute of Coordination Bond Metrology and Engineering, College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China); Li, Jinliang [Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai 200062 (China); Wu, Tianyang [Institute of Coordination Bond Metrology and Engineering, College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China); Li, Ping [Shanghai Nanotechnology Promotion Center, Shanghai 200237 (China); Li, Huili; Pan, Likun [Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai 200062 (China)

    2017-01-01

    Graphical abstract: ZnO-Lu{sub 3}(Al,Si){sub 5}(O,N){sub 12}:Ce{sup 3+} hybrid photocatalysts were synthesized via a fast microwave-assisted approach for visible light photocatalytic degradation of organic pollutions with a high degradation rate of 91%. - Highlights: • ZnO-Lu{sub 3}(Al,Si){sub 5}(O,N){sub 12}:Ce{sup 3+} were synthesized via a facile microwave-assisted method. • Lu{sub 3}(Al,Si){sub 5}(O,N){sub 12}:Ce{sup 3+} acts as co-catalyst to facilitates the self-sensitized degradation of MB. • ZnO-Lu{sub 3}(Al,Si){sub 5}(O,N){sub 12}:Ce{sup 3+} exhibited enhanced visible light photocatalytic activity. • A high MB degradation rate of 91% was achieved under visible light irradiation. - Abstract: Exploring novel visible light responsive photocatalysts is one of greatly significant issues from the viewpoint of using solar energy. Here we report the yellow-orange emitting α-Si{sub 3}N{sub 4}-doped Lu{sub 3}Al{sub 5}O{sub 12}:Ce{sup 3+} (Lu{sub 3}Al{sub 5-x}Si{sub x}O{sub 12-x}N{sub x}:Ce{sup 3+}) phosphors as a noble-metal-free co-catalyst for enhanced visible light photocatalytic activity of ZnO. The results show that ZnO-Lu{sub 3}Al{sub 5-x}Si{sub x}O{sub 12-x}N{sub x}:Ce{sup 3+} hybrid photocatalysts using a fast microwave-assisted approach exhibits a 91% methylene blue (MB) degradation under visible light irradiation at 240 min, which evidence the synergistic effect of ZnO and Lu{sub 3}Al{sub 5-x}Si{sub x}O{sub 12-x}N{sub x}:Ce{sup 3+} that suppress the rate of charge recombination and increase the self-sensitized degradation of MB. ZnO-down conversion phosphors can be envisaged as potential candidate in environmental engineering and solar energy applications.

  9. Implementasi Sistem Penyiaran Musik Digital di Kafe menggunakan Visible Light Communication

    Directory of Open Access Journals (Sweden)

    DENNY DARLIS

    2018-03-01

    Full Text Available ABSTRAK Teknologi penyiaran dengan frekuensi radio menggunakan teknik modulasi frekuensi (FM telah dikenal sejak lama. Teknologi ini memfasilitasi pengiriman suara melalui sinyal analog dari pemancar kepada penerima. Pengembangan teknologi komunikasi menggunakan cahaya tampak yang memanfaatkan lampu LED sebagai pengirim informasi cukup banyak dilakukan. Pada penelitian ini diimplementasi sistem pengiriman dan penerimaaan siaran musik digital dengan memanfaatkan cahaya tampak yang berasal dari lampu penerangan di kafe. Sistem visible light communication (VLC diimplementasikan dengan menggunakan metoda modulasi intensitas dan deteksi langsung (IM/DD. Dari hasil pengujian dapat ditunjukkan bahwa sistem ini dapat melewatkan siaran musik digital dengan redaman rata-rata 7,77 dB pada jarak maksimal adalah 3 meter. Hasil dari sistem yang telah dirancang dan diimplementasikan menunjukan hasil yang baik sehingga layak untuk diterapkan pada system penyiaran musik digital di kafe. Kata kunci: Visible Light Communication, IM/DD, Sistem Penyiaran Musik Digital, Sistem Penerangan Kafe. ABSTRACT Broadcasting technology uses radio frequency and technique of frequency modulation (FM has been known for a long time. This technology allows the transmission of voice through analog signals from transmitter to receiver. Currently, many research on visible light communication technology utilizes LED lights as the sender. In this paper presented the results of transmitter and receiver system implementation of digital musik broadcast for use in the cafe. Visible light communication (VLC system is implemented using intensity modulation and direct detection (IM/DD method. From the test results can be shown that this system can pass digital musik broadcast with an average attenuation of 7.77 dB at maximum distance is 3 meters. Results of the system that has been designed and implemented shows good results, so it deserves to be applied to the digital musik broadcasting

  10. Implementasi Sistem Penyiaran Musik Digital di Kafe menggunakan Visible Light Communication

    Directory of Open Access Journals (Sweden)

    DENNY DARLIS

    2017-06-01

    Full Text Available ABSTRAKTeknologi penyiaran dengan frekuensi radio menggunakan teknik modulasi frekuensi (FM telah dikenal sejak lama. Teknologi ini memfasilitasi pengiriman suara melalui sinyal analog dari pemancar kepada penerima. Pengembangan teknologi komunikasi menggunakan cahaya tampak yang memanfaatkan lampu LED sebagai pengirim informasi cukup banyak dilakukan. Pada penelitian ini diimplementasi sistem pengiriman dan penerimaaan siaran musik digital dengan memanfaatkan cahaya tampak yang berasal dari lampu penerangan di kafe. Sistem visible light communication (VLC diimplementasikan dengan menggunakan metoda modulasi intensitas dan deteksi langsung (IM/DD. Dari hasil pengujian dapat ditunjukkan bahwa sistem ini dapat melewatkan siaran musik digital dengan redaman rata-rata 7,77 dB pada jarak maksimal adalah 3 meter. Hasil dari sistem yang telah dirancang dan diimplementasikan menunjukan hasil yang baik sehingga layak untuk diterapkan pada system penyiaran musik digital di kafe.Kata kunci: Visible Light Communication, IM/DD, Sistem Penyiaran Musik Digital, Sistem Penerangan Kafe.ABSTRACTBroadcasting technology uses radio frequency and technique of frequency modulation (FM has been known for a long time. This technology allows the transmission of voice through analog signals from transmitter to receiver. Currently, many research on visible light communication technology utilizes LED lights as the sender. In this paper presented the results of transmitter and receiver system implementation of digital musik broadcast for use in the cafe. Visible light communication (VLC system is implemented using intensity modulation and direct detection (IM/DD method. From the test results can be shown that this system can pass digital musik broadcast with an average attenuation of 7.77 dB at maximum distance is 3 meters. Results of the system that has been designed and implemented shows good results, so it deserves to be applied to the digital musik broadcasting system in

  11. Integrative Multi-Spectral Sensor Device for Far-Infrared and Visible Light Fusion

    Science.gov (United States)

    Qiao, Tiezhu; Chen, Lulu; Pang, Yusong; Yan, Gaowei

    2018-06-01

    Infrared and visible light image fusion technology is a hot spot in the research of multi-sensor fusion technology in recent years. Existing infrared and visible light fusion technologies need to register before fusion because of using two cameras. However, the application effect of the registration technology has yet to be improved. Hence, a novel integrative multi-spectral sensor device is proposed for infrared and visible light fusion, and by using the beam splitter prism, the coaxial light incident from the same lens is projected to the infrared charge coupled device (CCD) and visible light CCD, respectively. In this paper, the imaging mechanism of the proposed sensor device is studied with the process of the signals acquisition and fusion. The simulation experiment, which involves the entire process of the optic system, signal acquisition, and signal fusion, is constructed based on imaging effect model. Additionally, the quality evaluation index is adopted to analyze the simulation result. The experimental results demonstrate that the proposed sensor device is effective and feasible.

  12. A Behavior of Strobe Light in Non-Visibility (Dense Fog) Environments

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jai Wan; Choi, Young Soo; Jeong, Kyung Min [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In this study, a strobe light was used to understand the behavior of light in an aerosol-like non-visibility environment. Fog was injected into a vinyl pleated cylindrical fog box that is 1 m in diameter and 5.5 m in length. After the fog concentration became saturated in the fog box, the strobe light was set off at regular time intervals until the fog particles almost dissipated in the box. Images of the behavior of the light from the strobe were taken from outside of the fog box with a digital camera in line with the strobe light sync signal. In the case of a DBA (or severe accident) of the nuclear power plant accident, coolant should be injected over the reactor pressure vessel to cool the reactor core. Cold coolant that has been poured into the reactor pressure vessel would be discharged through the nozzles of the core spray system or through pipelines in the fire protection system. The discharging cold coolant would impact high temperature structures with surface temperatures of around 250 .deg. C or higher, such as the reactor pressure vessel that surrounds the reactor core, and then evaporate and turn into steam. The steam cools while forming mist (aerosol including radioactivity), which can cause a sharp drop in visibility. Assuming that a robot has been deployed to manage and mitigate the DBA (or severe accident) at the nuclear power plant, the robot must perform its task in a non-visibility environment. A color CCD/CMOS camera corresponding to visible wavelength (400 - 700 nm) can be attached to the robot for observation and navigation. The camera needs lights in order to secure a clear field of view. Generally, the aperture of a lens is correlated to the intensity of illumination. The brighter the light, the smaller the aperture can be. If the aperture becomes narrower to the size of a pin hole, a clearer image in deep focus can be obtained. As the aperture decreases in the half, the required amount of light doubles. The observed behavior of the strobe

  13. A Behavior of Strobe Light in Non-Visibility (Dense Fog) Environments

    International Nuclear Information System (INIS)

    Cho, Jai Wan; Choi, Young Soo; Jeong, Kyung Min

    2015-01-01

    In this study, a strobe light was used to understand the behavior of light in an aerosol-like non-visibility environment. Fog was injected into a vinyl pleated cylindrical fog box that is 1 m in diameter and 5.5 m in length. After the fog concentration became saturated in the fog box, the strobe light was set off at regular time intervals until the fog particles almost dissipated in the box. Images of the behavior of the light from the strobe were taken from outside of the fog box with a digital camera in line with the strobe light sync signal. In the case of a DBA (or severe accident) of the nuclear power plant accident, coolant should be injected over the reactor pressure vessel to cool the reactor core. Cold coolant that has been poured into the reactor pressure vessel would be discharged through the nozzles of the core spray system or through pipelines in the fire protection system. The discharging cold coolant would impact high temperature structures with surface temperatures of around 250 .deg. C or higher, such as the reactor pressure vessel that surrounds the reactor core, and then evaporate and turn into steam. The steam cools while forming mist (aerosol including radioactivity), which can cause a sharp drop in visibility. Assuming that a robot has been deployed to manage and mitigate the DBA (or severe accident) at the nuclear power plant, the robot must perform its task in a non-visibility environment. A color CCD/CMOS camera corresponding to visible wavelength (400 - 700 nm) can be attached to the robot for observation and navigation. The camera needs lights in order to secure a clear field of view. Generally, the aperture of a lens is correlated to the intensity of illumination. The brighter the light, the smaller the aperture can be. If the aperture becomes narrower to the size of a pin hole, a clearer image in deep focus can be obtained. As the aperture decreases in the half, the required amount of light doubles. The observed behavior of the strobe

  14. Solvothermal fabrication of activated semi-coke supported TiO{sub 2}-rGO nanocomposite photocatalysts and application for NO removal under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Weiwei; Li, Chunhu, E-mail: lichunhu@ouc.edu.cn; Wang, Liang; Sun, ShengNan; Yan, Xin

    2015-10-30

    Highlights: • Activated semi-coke supported TiO{sub 2}-rGO photocatalysts were fabricated by one-step solvothermal method. • The photocatalytic performance for NO removal was studied under visible light irradiation. • The introduction of rGO is responsible for superior photocatalytic activity. • Optimum operational parameters at 70 °C, with 8% O{sub 2} and 8% relative humidity were obtained. • Thermal vapor regeneration is the most suitable generation method. - Abstract: The photocatalysts of activated semi-coke supported TiO{sub 2}-rGO nanocomposite (TiO{sub 2}-rGO/ASC) with different contents of reduced graphene oxide were fabricated by one-step solvothermal method for NO removal under visible light irradiation. It was confirmed that 8% content of reduced graphene oxide presented the best NO photooxidation performance under visible light irradiation at 70 °C with 350–400 mg/m{sup 3} NO,5% O{sub 2} and 5% relative humidity. The reasons for improved activity were discussed, alloyed with the mechanism of producing CO. Detailed structural information of TiO{sub 2}-rGO/ASC photocatalysts was characterized by scanning electron microscope (SEM), energy dispersive X-ray Spectroscopy (EDX), X-ray diffraction analysis (XRD), UV–Vis diffuse reflectance spectra (UV–Vis DRS) and photoluminescence (PL), which indicated that the introduction of rGO was responsible for well dispersion, smaller crystalline size, red shift of absorption band and suppressing quick photo-induced charges recombination of TiO{sub 2}-rGO/ASC photocatalysts. Optimization of operational parameters with 70 °C, 8% O{sub 2} and 8% relative humidity were also obtained. Deactivation of TiO{sub 2}-rGO/ASC photocatalysts for NO removal was investigated by Fourier-transform infrared (FTIR) analysis. Regeneration experiments showed that thermal vapor regeneration would be optimal method owing to excellent regenerative capacity and inexpensive procedure.

  15. Preparation and characterization of graphene oxide/Ag{sub 2}CO{sub 3} photocatalyst and its visible light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jiade; Wei, Longfu [School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province (China); Yu, Changlin, E-mail: yuchanglinjx@163.com [School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province (China); School of Environment Engineering and Biology Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong Province (China); Fang, Wen [School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province (China); State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002 (China); Xie, Yu, E-mail: xieyu_121@163.com [School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province (China); College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, Jiangxi (China); Zhou, Wanqin; Zhu, Lihua [School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province (China)

    2015-12-15

    Graphical abstract: - Highlights: • GO/Ag{sub 2}CO{sub 3} photocatalyst was prepared by liquid deposition process. • GO increase e{sup −}/h{sup +} pairs separation. • The production of ·OH and O{sub 2}·{sup −} radicals was promoted. • High photocatalytic activity and stability were obtained over GO/Ag{sub 2}CO{sub 3}. - Abstract: Graphene oxide (GO) was firstly fabricated from graphite powder by Hummers method. Then a series of GO/Ag{sub 2}CO{sub 3} composite photocatalysts (0.1% GO/Ag{sub 2}CO{sub 3}, 0.5%GO/Ag{sub 2}CO{sub 3}, 1%GO/Ag{sub 2}CO{sub 3}, 4%GO/Ag{sub 2}CO{sub 3}) were synthesized by a facile liquid deposition process. The produced products were characterized by powder X-ray diffraction (XRD), N{sub 2} physical adsorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscope (FT-IR), Raman spectra and UV–vis diffuse reflectance spectroscopy (UV–vis DRS). The photocatalytic activity of the samples was evaluated by photocatalytic degradation of methyl orange (MO) under visible light irradiation. The influence of GO concentration on the photocatalytic activity of GO/Ag{sub 2}CO{sub 3} was investigated. The results showed that GO can be easily dispersed into Ag{sub 2}CO{sub 3}, producing well contacted GO/Ag{sub 2}CO{sub 3} composite. Coupling of trace GO largely enhanced the visible light absorption. Moreover, GO could suppress the growth of Ag{sub 2}CO{sub 3} grain crystals. With optimum GO content (0.5%), the degradation rate of MO is 85.37% after 120 min light irradiation, which Exhibits 1.53 times activity of that of pure Ag{sub 2}CO{sub 3}. More importantly, a large improvement in stability was obtained over the composite. The increase in photocatalytic activity and stability could be mainly attributed to the coupling of GO which increased the surface area and suppressed the recombination rate of e{sup −}/h{sup +} pairs.

  16. Structuring Pd Nanoparticles on 2H-WS2 Nanosheets Induces Excellent Photocatalytic Activity for Cross-Coupling Reactions under Visible Light.

    Science.gov (United States)

    Raza, Faizan; Yim, DaBin; Park, Jung Hyun; Kim, Hye-In; Jeon, Su-Ji; Kim, Jong-Ho

    2017-10-18

    Effective photocatalysts and their surface engineering are essential for the efficient conversion of solar energy into chemical energy in photocatalyzed organic transformations. Herein, we report an effective approach for structuring Pd nanoparticles (NPs) on exfoliated 2H-WS 2 nanosheets (WS 2 /PdNPs), resulting in hybrids with extraordinary photocatalytic activity in Suzuki reactions under visible light. Pd NPs of different sizes and densities, which can modulate the photocatalytic activity of the as-prepared WS 2 /PdNPs, were effectively structured on the basal plane of 2H-WS 2 nanosheets via a sonic wave-assisted nucleation method without any reductants at room temperature. As the size of Pd NPs on WS 2 /PdNPs increased, their photocatalytic activity in Suzuki reactions at room temperature increased substantially. In addition, it was found that protic organic solvents play a crucial role in activating WS 2 /PdNPs catalysts in photocatalyzed Suzuki reactions, although these solvents are generally considered much less effective than polar aprotic ones in the conventional Suzuki reactions promoted by heterogeneous Pd catalysts. A mechanistic investigation suggested that photogenerated holes are transferred to protic organic solvents, whereas photogenerated electrons are transferred to Pd NPs. This transfer makes the Pd NPs electron-rich and accelerates the rate-determining step, i.e., the oxidative addition of aryl halides under visible light. WS 2 /PdNPs showed the highest turnover frequency (1244 h -1 ) for photocatalyzed Suzuki reactions among previously reported photocatalysts.

  17. A Simple Method for the Preparation of TiO2 /Ag-AgCl@Polypyrrole Composite and Its Enhanced Visible-Light Photocatalytic Activity.

    Science.gov (United States)

    Yao, Tongjie; Shi, Lei; Wang, Hao; Wang, Fangxiao; Wu, Jie; Zhang, Xiao; Sun, Jianmin; Cui, Tieyu

    2016-01-01

    A novel and facile method was developed to prepare a visible-light driven TiO2 /Ag-AgCl@polypyrrole (PPy) photocatalyst with Ag-AgCl nanoparticles supported on TiO2 nanofibers and covered by a thin PPy shell. During the synthesis, the PPy shell and Ag-AgCl nanoparticles were prepared simultaneously onto TiO2 nanofibers, which simplified the preparation procedure. In addition, because Ag-AgCl aggregates were fabricated via partly etching the Ag nanoparticles, their size was well controlled at the nanoscale, which was beneficial for improvement of the contact surface area. Compared with reference photocatalysts, the TiO2 /Ag-AgCl@PPy composite exhibited an enhanced photodegradation activity towards rhodamine B under visible-light irradiation. The superior photocatalytic property originated from synergistic effects between TiO2 nanofibers, Ag-AgCl nanoparticles and the PPy shell. Furthermore, the TiO2 /Ag-AgCl@PPy composite could be easily separated and recycled without obvious reduction in activity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Photocatalytic Pre-Oxidation of Arsenic (III) in Groundwater by a Visible-Light-Driven System with Magnetic Separating Characteristic

    Science.gov (United States)

    Cui, Y.; Liu, Y.; Peng, L.; Qin, Y.

    2017-12-01

    Arsenic was a typical toxic metalloid element and its contamination in groundwater was widely recognized as a global health problem, especially in north China, where people depended on groundwater as water resource. Arsenic was existed as As(III) in underground water, and has low affinity to the surface of various minerals and more toxic and more difficultly to be removed compared with As(V), so a pre-oxidation technology by transforming As (III) to As (V) is highly desirable. Electrochemical and oxidizing agents were traditional technology, which usually causes secondary pollution. A novel methodology is presented here, using prepared magnetic visible-light-driven nanomaterials as recyclable media to investigate As(III) pre-oxidation processing. Ag@AgCl core-shell nanowires were first synthesized by oxidation of Ag nanowires with moderate FeCl3, and exhibited excellent photocatalytic activity to As(III) with visible-light. The ratio of chloridization was proved to act as key effect on photocatalytic oxidation efficiency. Testing with simulated groundwater condition proved that pH, ionic strength and concentration of humic acid have obvious effects on Ag@AgCl photocatalytic ability. h+ and ·O2- were confirmed to be the main active species during the visible-light driven photocatalytic oxidation process for As(III) by trapping experiments with radical scavengers. Then Fe0 was introduced to prepare Fe-Ag nanowire and chloridized into Fe-Ag@AgCl to provide magnetic characteristic. The magnetic recycling and re-chloride experiments validated this visible-light-driven material has excellent stable and high reused ability as photocatalyst under visible light irradiation.

  19. Graphene oxide–CdS composite with high photocatalytic degradation and disinfection activities under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Peng; Liu, Jincheng [School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Sun, Darren Delai, E-mail: DDSUN@ntu.edu.sg [School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Ng, Wunjern [School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Nanyang Environment and Water Research Institute, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2013-04-15

    Highlights: ► GO–CdS composites were prepared through a novel two-phase mixing method. ► Uniform deposition of CdS nanoparticles on GO sheets. ► Reduced charge recombination rate. ► Enhanced photo-stability. ► High photodegradation and disinfection efficiency. -- Abstract: Graphene oxide (GO)–CdS composites were synthesized via a novel two-phase mixing method successfully. CdS nanoparticles were uniformly self-assembled on GO sheets at water/toluene interface. The photocatalytic degradation (photodegradation) and disinfection activities of GO–CdS composites were investigated thoroughly. The results show that GO–CdS composites exhibit higher efficiency in photodegradation of various water pollutants than pure CdS nanoparticles under visible light irradiation. In addition, the interactions between GO sheets and CdS nanoparticles inhibit the photo-corrosion of CdS and leaching of Cd{sup 2+}. Only 3.5 wt% Cd{sup 2+} of GO–CdS was leached out after photodegradation, while 38.6 wt% Cd{sup 2+} of CdS was lost into aqueous solution. Furthermore, the disinfection activity of GO–CdS composites was investigated for the first time. Nearly 100% of both Gram-negative Escherichia coli (E. coli) and Gram-positive Bacillus subtilis (B. subtilis) were killed within 25 min under visible light irradiation. The excellent performances of GO–CdS composites can be attributed to that (1) effective charge transfer from CdS to GO reduces the recombination rate of photo-generated electron–hole pairs; (2) uniform deposition of CdS on GO sheets eliminates aggregation of CdS nanoparticles; and (3) the strong interactions between GO and CdS enhancing the durability of GO–CdS composites. Finally, the mechanism behind these excellent performances was verified by transient photocurrent measurement and further confirmed by ESR technique as well as employing a radical scavenging species – dimethyl sulfoxide (DMSO)

  20. Graphene oxide–CdS composite with high photocatalytic degradation and disinfection activities under visible light irradiation

    International Nuclear Information System (INIS)

    Gao, Peng; Liu, Jincheng; Sun, Darren Delai; Ng, Wunjern

    2013-01-01

    Highlights: ► GO–CdS composites were prepared through a novel two-phase mixing method. ► Uniform deposition of CdS nanoparticles on GO sheets. ► Reduced charge recombination rate. ► Enhanced photo-stability. ► High photodegradation and disinfection efficiency. -- Abstract: Graphene oxide (GO)–CdS composites were synthesized via a novel two-phase mixing method successfully. CdS nanoparticles were uniformly self-assembled on GO sheets at water/toluene interface. The photocatalytic degradation (photodegradation) and disinfection activities of GO–CdS composites were investigated thoroughly. The results show that GO–CdS composites exhibit higher efficiency in photodegradation of various water pollutants than pure CdS nanoparticles under visible light irradiation. In addition, the interactions between GO sheets and CdS nanoparticles inhibit the photo-corrosion of CdS and leaching of Cd 2+ . Only 3.5 wt% Cd 2+ of GO–CdS was leached out after photodegradation, while 38.6 wt% Cd 2+ of CdS was lost into aqueous solution. Furthermore, the disinfection activity of GO–CdS composites was investigated for the first time. Nearly 100% of both Gram-negative Escherichia coli (E. coli) and Gram-positive Bacillus subtilis (B. subtilis) were killed within 25 min under visible light irradiation. The excellent performances of GO–CdS composites can be attributed to that (1) effective charge transfer from CdS to GO reduces the recombination rate of photo-generated electron–hole pairs; (2) uniform deposition of CdS on GO sheets eliminates aggregation of CdS nanoparticles; and (3) the strong interactions between GO and CdS enhancing the durability of GO–CdS composites. Finally, the mechanism behind these excellent performances was verified by transient photocurrent measurement and further confirmed by ESR technique as well as employing a radical scavenging species – dimethyl sulfoxide (DMSO)

  1. Low-temperature solid-state preparation of ternary CdS/g-C3N4/CuS nanocomposites for enhanced visible-light photocatalytic H2-production activity

    Science.gov (United States)

    Cheng, Feiyue; Yin, Hui; Xiang, Quanjun

    2017-01-01

    Low-temperature solid-state method were gradually demonstrated as a high efficiency, energy saving and environmental protection strategy to fabricate composite semiconductor materials. CdS-based multiple composite photocatalytic materials have attracted increasing concern owning to the heterostructure constituents with tunable band gaps. In this study, the ternary CdS/g-C3N4/CuS composite photocatalysts were prepared by a facile and novel low-temperature solid-state strategy. The optimal ternary CdS/g-C3N4/CuS composite exhibits a high visible-light photocatalytic H2-production rate of 57.56 μmol h-1 with the corresponding apparent quantum efficiency reaches 16.5% at 420 nm with Na2S/Na2SO3 mixed aqueous solution as sacrificial agent. The ternary CdS/g-C3N4/CuS composites show the enhanced visible-light photocatalytic H2-evolution activity comparing with the binary CdS-based composites or simplex CdS. The enhanced photocatalytic activity is ascribed to the heterojunctions and the synergistic effect of CuS and g-C3N4 in promotion of the charge separation and charge mobility. This work shows that the low-temperature solid-state method is efficient and environmentally benign for the preparation of CdS-based multiple composite photocatalytic materials with enhanced visible-light photocatalytic H2-production activity.

  2. Visible-light photochemical activity of heterostructured core-shell materials composed of selected ternary titanates and ferrites coated by tiO2.

    Science.gov (United States)

    Li, Li; Liu, Xuan; Zhang, Yiling; Nuhfer, Noel T; Barmak, Katayun; Salvador, Paul A; Rohrer, Gregory S

    2013-06-12

    Heterostructured photocatalysts comprised of microcrystalline (mc-) cores and nanostructured (ns-) shells were prepared by the sol-gel method. The ability of titania-coated ATiO3 (A = Fe, Pb) and AFeO3 (A = Bi, La, Y) catalysts to degrade methylene blue in visible light (λ > 420 nm) was compared. The catalysts with the titanate cores had enhanced photocatalytic activities for methylene blue degradation compared to their components alone, whereas the catalysts with ferrite cores did not. The temperature at which the ns-titania shell is crystallized influences the photocatalytic dye degradation. mc-FeTiO3/ns-TiO2 annealed at 500 °C shows the highest reaction rate. Fe-doped TiO2, which absorbs visible light, did not show enhanced photocatalytic activity for methylene blue degradation. This result indicates that iron contamination is not a decisive factor in the reduced reactivity of the titania coated ferrite catalysts. The higher reactivity of materials with the titanate cores suggests that photogenerated charge carriers are more easily transported across the titanate-titanate interface than the ferrite-titanate interface and this provides guidance for materials selection in composite catalyst design.

  3. Photogenerated carriers transfer in dye-graphene-SnO2 composites for highly efficient visible-light photocatalysis.

    Science.gov (United States)

    Zhuang, Shendong; Xu, Xiaoyong; Feng, Bing; Hu, Jingguo; Pang, Yaru; Zhou, Gang; Tong, Ling; Zhou, Yuxue

    2014-01-08

    The visible-light-driven photocatalytic activities of graphene-semiconductor catalysts have recently been demonstrated, however, the transfer pathway of photogenerated carriers especially where the role of graphene still remains controversial. Here we report graphene-SnO2 aerosol nanocomposites that exhibit more superior dye adsorption capacity and photocatalytic efficiency compared with pure SnO2 quantum dots, P25 TiO2, and pure graphene aerosol under the visible light. This study examines the origin of the visible-light-driven photocatalysis, which for the first time links to the synergistic effect of the cophotosensitization of the dye and graphene to SnO2. We hope this concept and corresponding mechanism of cophotosensitization could provide an original understanding for the photocatalytic reaction process at the level of carrier transfer pathway as well as a brand new approach to design novel and versatile graphene-based composites for solar energy conversion.

  4. Photocatalytic Surface Patterning of Cellulose using Diazonium Salts and Visible Light

    OpenAIRE

    Schroll, Peter; Fehl, Charlie; Dankesreiter, Stephan; König, Burkhard

    2013-01-01

    Coumarin-functionalized cellulose sheets were chemically modified using a visible light catalyzed “Photo-Meerwein” arylation. Use of a photomask to pattern the surface resulted in directly visible images.

  5. Convolutional Neural Network-Based Shadow Detection in Images Using Visible Light Camera Sensor

    Directory of Open Access Journals (Sweden)

    Dong Seop Kim

    2018-03-01

    Full Text Available Recent developments in intelligence surveillance camera systems have enabled more research on the detection, tracking, and recognition of humans. Such systems typically use visible light cameras and images, in which shadows make it difficult to detect and recognize the exact human area. Near-infrared (NIR light cameras and thermal cameras are used to mitigate this problem. However, such instruments require a separate NIR illuminator, or are prohibitively expensive. Existing research on shadow detection in images captured by visible light cameras have utilized object and shadow color features for detection. Unfortunately, various environmental factors such as illumination change and brightness of background cause detection to be a difficult task. To overcome this problem, we propose a convolutional neural network-based shadow detection method. Experimental results with a database built from various outdoor surveillance camera environments, and from the context-aware vision using image-based active recognition (CAVIAR open database, show that our method outperforms previous works.

  6. Visible light mediated upgrading of biomass to biofuel

    Science.gov (United States)

    AgPd@g-C3N4, comprising heterogenized Ag and Pdnanoparticles on graphitic carbon nitride, g-C3N4, has beensynthesized and used for the upgrading of biofuel as exemplifiedby the hydrodeoxygenation of lignin-derived vanillin underphotochemical conditions using formic acid. The bimetallicframework is found to be highly active due to the synergisticeffects of Ag and Pd with the graphitic carbon nitride support andtheir mutual interaction.This dataset is associated with the following publication:Varma , R., M. Nadagouda , S. Verma, and R.B. Nasir Baig. Visible light mediated upgrading of biomass to biofuel. Energy & Environmental Science. RSC Publishing, Cambridge, UK, 18(5): 1327-1333, (2016).

  7. Facile synthesis of carbon-ZnO nanocomposite with enhanced visible light photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Akir, Sana [Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 − IEMN, F-59000, Centrale Lille (France); Laboratoire de Physique des Matériaux Lamellaires et Nano-Matériaux Hybrides, Faculté des Sciences de Bizerte, Université de Carthage, 7021, Bizerte (Tunisia); Laboratoire de Physico-chimie des Matériaux Minéraux et leurs Applications, Centre National des Recherches en Sciences des Matériaux, Technopôle de Bordj Cedria, BP73, 8027, Soliman (Tunisia); Hamdi, Abderrahmane [Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 − IEMN, F-59000, Centrale Lille (France); Laboratoire de Physique des Matériaux Lamellaires et Nano-Matériaux Hybrides, Faculté des Sciences de Bizerte, Université de Carthage, 7021, Bizerte (Tunisia); Laboratory of Semi-conductors, Nano-structures and Advanced Technologies, Research and Technology Centre of Energy, Borj-Cedria Science and Technology Park, BP 95, 2050, Hammam-Lif (Tunisia); Addad, Ahmed [UMET, UMR CNRS 8207, Université Lille 1, 59655 Villeneuve d' Ascq Cédex (France); Coffinier, Yannick [Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 − IEMN, F-59000, Centrale Lille (France); Boukherroub, Rabah, E-mail: rabah.boukherroub@iemn.univ-lille1.fr [Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 − IEMN, F-59000, Centrale Lille (France); and others

    2017-04-01

    Highlights: • C-ZnO nanocomposite was successfully prepared via a facile and eco-friendly process. • C-ZnO NPs have excellent photocatalytic activity for RhB dye degradation under visible light irradiation compared with literature. • The visible photocatalytic properties originate from injection e{sup −} in CB of ZnO from RhB. - Abstract: The present study describes a facile route for synthesis of carbon-ZnO nanocomposites (C-ZnO) via hydrothermal process in presence of glucose as carbon precursor. The samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectroscopy (DRS) and photoluminescence (PL) measurements. The results showed carbon uniformly coated on the surface of the ZnO nanoparticles to form the C-ZnO nanocomposites. Further investigation revealed that carbon could significantly protect ZnO NPs against the coalescence during high temperature treatment. The obtained C-ZnO nanocomposite showed excellent photocatalytic activity for the degradation of rhodamine B (RhB) under visible light irradiation, which was attributed to the repressed charge carrier recombination in the nanocomposite. Quenching experiments and photocurrent measurements revealed a photocatalytic mechanism occurring through photosensitization.

  8. Novel GQD-PVP-CdS composite with enhanced visible-light-driven photocatalytic properties

    International Nuclear Information System (INIS)

    Fan, Tao; Li, Yinle; Shen, Jianfeng; Ye, Mingxin

    2016-01-01

    Graphical abstract: - Highlights: • GQD-PVP-CdS composite was prepared for the first time through a facile hydrothermal route. • GQD-PVP-CdS demonstrated outstanding photoactivity under visible light illumination. • GQDs and polymeric material are compounded with CdS nanoparticles simultaneously for the first time. • The addition of GQDs plays pivotal roles in the enhancement of the photoactivity. - Abstract: A facile one-step hydrothermal method to synthesize graphene quantum dots (GQDs)-polyvinyl pyrrolidone (PVP)-CdS nanocomposite was reported. The nanocomposite was thoroughly characterized with X-ray diffraction, transmission electron microscopy, scanning electron microscopy, Fourier-transform infrared spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and ultraviolet–visible spectroscopy. The results confirmed the formation of GQD-PVP-CdS composite with a uniform size (5–10 nm) and a relatively low band gap (E_g = 2.23 eV). Moreover, the as-prepared composite exhibited enhanced photocatalytic activity toward the degradation of organic contaminants, with 92.3% of methyl orange (10 mg/L) removed after 3 hours of visible light illumination. This enhancement in photocatalytic activity was postulated to be attributed to the upconversion property of GQDs and a more efficient charge distribution between GQDs and CdS particles.

  9. Photodegradation of aniline by goethite doped with boron under ultraviolet and visible light irradiation

    International Nuclear Information System (INIS)

    Liu, Guanglong; Liao, Shuijiao; Zhu, Duanwei; Liu, Linghua; Cheng, Dongsheng; Zhou, Huaidong

    2011-01-01

    Highlights: → Goethite modified by boron was prepared by sol-gel method in presence of boron acid at the low temperature. → B-goethite has slight red shift in the band gap transition beside their stronger light absorption compared with pristine goethite. → The results showed that semiconductor photocatalytic reaction mechanism should exist in the process of aniline degradation with goethite and B-goethite as photocatalyst. -- Abstract: In the present study, goethite and goethite doped with boron (B-goethite) were employed to detect the presence or absence of semiconductor photocatalytic reaction mechanism in the reaction systems. B-goethite was prepared by sol-gel method in presence of boron acid in order to improve its photocatalystic efficiency under the ultraviolet and visible light irradiation. The optical properties of goethite and B-goethite were characterized by ultraviolet and visible absorption spectra and the result indicated that B-goethite has slight red shift in the band gap transition beside their stronger light absorption compared with pristine goethite. Degradation of aniline was investigated in presence of goethite and B-goethite in aqueous solution. It was found that the B-goethite photocatalyst exhibited enhanced ultraviolet and visible light photocatalytic activity in degradation of aniline compared with the pristine goethite. The photocatalytic degradation mechanism of B-goethite was discussed.

  10. Synthesis, characterization and photocatalytic activity of cubic-like CuCr2O4 for dye degradation under visible light irradiation

    International Nuclear Information System (INIS)

    Yuan, Wenhui; Liu, Xiaoxia; Li, Li

    2014-01-01

    Graphical abstract: Hydrothermal synthesis method was applied for preparation of cubic-like CuCr 2 O 4 spinel nanoparticles without template. The synthesized cubic-like CuCr 2 O 4 shows excellent photocatalytic activity for degradation of RhB and MB cationic dyes but not for MO anionic dye in the presence of H 2 O 2 under visible light irradiation. - Highlights: • The cubic-like CuCr 2 O 4 spinel nanoparticles were successfully synthesized via the hydrothermal synthesis method. • The calcination temperature has a great influence on the morphology, particle size and photocatalytic activity of CuCr 2 O 4 . • The pH at the point of zero charge (pH pzc ) of the CuCr 2 O 4 calcined at 600 °C is about 4.52. • The cubic-like CuCr 2 O 4 calcined at 600 °C exhibits excellent photocatalytic activity for RhB and MB in the presence of H 2 O 2 under visible-light irradiation. - Abstract: CuCr 2 O 4 nanoparticles with cubic-like morphology were prepared via hydrothermal synthesis method without template. The CuCr 2 O 4 samples were characterized by thermogravimetry and differential scanning calorimetry (TG–DSC), X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectra (DRS) and Zeta potentials, respectively. The results indicated that cubic-like CuCr 2 O 4 could be successfully synthesized by calcining the precursor at 600 °C, and the calcination temperature greatly influenced the morphology and optical performance of CuCr 2 O 4 . The pH at the point of zero charge (pH pzc ) of the CuCr 2 O 4 calcined at 600 °C was about 4.52. The photocatalytic activity of CuCr 2 O 4 was evaluated for degradation of rhodamine B (RhB), methylene blue (MB), and methyl orange (MO) in the presence of H 2 O 2 under visible light irradiation and the effects of the calcination temperature, dosage of photocatalyst, etc., on photocatalytic activity were studied in detail. The photocatalytic results

  11. Performance evaluation of X-ray CT using visible scintillation light

    International Nuclear Information System (INIS)

    Kodama, Kiyoyuki; Hamada, Minoru; Suzuki, Tamotsu; Hashimoto, Masatoshi; Hanada, Takashi; Ide, Tatsuya; Maruyama, Koichi

    2004-01-01

    We proposed a new method of performance evaluation for X-ray CT using visible scintillation light and examined its usefulness in this study. When we scanned a plastic scintillator disk in a gantry opening of the X-ray CT, we could observe visible scintillation light. The rotation of the light-emitting area of the disk corresponded to that of the X-ray tube. We were able to record the scintillation light by digital video camera. By analyzing the area of visible scintillation light, the rotation speed of the X-ray tube, angular spread of the X-ray beam, uniformity of the incident X-rays, and change in X-ray energy were measured. No other method is available to obtain the above parameters of X-ray CT during a single CT scan. In the measurements of the uniformity of incident X-rays and change of X-ray energy, our method showed good accuracy in detecting the attenuation caused by the couch between the X-ray tube and the plastic scintillator disc. The proposed method is inexpensive and easy-to-use. We conclude that the method is a useful tool for performance evaluation as well as a maintenance tool for X-ray CT. (author)

  12. Monoclinic BiVO4 micro-/nanostructures: Microwave and ultrasonic wave combined synthesis and their visible-light photocatalytic activities

    International Nuclear Information System (INIS)

    Zhang, Yafang; Li, Guangfang; Yang, Xiaohui; Yang, Hao; Lu, Zhong; Chen, Rong

    2013-01-01

    Graphical abstract: Monoclinic BiVO 4 with different sizes and morphologies were synthesized by a facile microwave and ultrasonic wave combined technique for the first time and exhibited different optical properties and visible-light-driven photocatalytic efficiency. Highlights: ► BiVO 4 nanostructures were prepared by microwave and ultrasonic wave combined method. ► BiVO 4 nanostructures could be modulated by varying the solvent and pH value. ► Different BiVO 4 nanostructures exhibited different photocatalytic activities. ► The photocatalytic performance was influenced by the band gap, phase and size. - Abstract: Monoclinic bismuth vanadate (m-BiVO 4 ) micro-/nanostructures with different sizes and morphologies were successfully prepared via a facile and rapid microwave and ultrasonic wave combined technique. The obtained BiVO 4 products were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM) and UV–vis diffuse reflection spectroscopy (DRS). It was found that the solvent and pH value had a significant influence on morphology, size and crystalline structure of the product. Nut-like, potato-like and broccoli-like monoclinic BiVO 4 were fabricated in different solvents. The crystal phase could be modulated by varying the pH value of reaction system. The photocatalytic activities of the products were also evaluated by the degradation of Rhodamine B (RhB) under visible light irradiation. The result revealed that the photocatalytic activities of BiVO 4 nanostructures were closely related to the crystalline phase, band gap and particle size. Monoclinic BiVO 4 nanoparticles with small crystal size and large band gap exhibited remarkable photocatalytic performance.

  13. Synthesis of Nb doped TiO2 nanotube/reduced graphene oxide heterostructure photocatalyst with high visible light photocatalytic activity

    Science.gov (United States)

    Niu, Xiaoyou; Yan, Weijing; Zhao, Hongli; Yang, Jingkai

    2018-05-01

    Limited by the narrowed photoresponse range and unsatisfactory recombination of photoinduced electron-hole pairs, the photocatalytic efficiency of TiO2 is still far below what is expected. Here, we initially doped TiO2 nanotubes (TNTS) by transition metal ion Nb, then it is coupled with reduced graphene oxide (rGO) to construct a heterostructure photocatalyst. The defect state presented in TiO2 leading to the formation of localized midgap states (MS) in the bandgap, which regulating the band structure of TiO2 and extending the optical absorption to visible light region. The internal charge transport and transfer behavior analyzed by electrochemical impedance spectroscopy (EIS) reveal that the coupling of rGO with TNTS results in the formation of electron transport channel in the heterostructure, which makes a great contribution to the photoinduced charge separation. As expected, the Nb-TNTS/rGO exhibits a stable and remarkably enhanced photocatalytic activity in the visible-light irradiation degradation of methylene blue (MB), up to ∼5 times with respect to TNTS, which is attributed to the effective inhibition of charge recombination, the reduction of bandgap and higher redox potential, as well as the great adsorptivity.

  14. Defect induced visible-light-activated near-infrared emissions in Gd3-x-y-zYbxBiyErzGa5O12

    Science.gov (United States)

    Tong, Liping; Saito, Katsuhiko; Guo, Qixin; Zhou, Han; Fan, Tongxiang; Zhang, Di

    2017-11-01

    Visible-light-activated near-infrared luminescent materials are promising photoluminescent materials due to their convenience and low cost. Crystal defects can seriously affect the performance of luminescent materials, and better understanding of the complexity of the structural disorder and electronic structures of such materials opens up new possibilities in luminescent material development. In this work, we successfully design a novel, effective, visible-light-activated near-infrared luminescent Gd3Ga5O12: 4.2%Yb3+, 8.4%Er3+, and 4.2%Bi3+ system based on first principles. This exhibits strong emission intensity and high luminous efficiency (0.993) and also has a lifetime (7.002 ms) that is at least twice as long as the longest lifetime reported in published papers. We utilize density functional theory with an effective LSDA + U method to study the structural properties of Gd3-x-y-zGa5O12: xYb3+, yBi3+, zEr3+ (GGG: Yb3+, Bi3+, Er3+). The d and f electron orbits of rare-earth ions are considered for an effective Hund exchange. Detailed analysis reveals that GGG: 4.2%Yb3+, 8.4%Er3+, 4.2%Bi3+ has the smallest cell volume because of the strong covalent bonds of Bi-O, Er-O, and Yb-O. Bi 3d is a hybridized state that acts as sensitizing ions during the process of luminescence in GGG: Yb3+, Bi3+, Er3+. Together with experimental and theoretical results, we analyze the influence of defects on emission intensity. The locations of Yb3+, Er3+, and Bi3+ are determined by X-ray absorption fine structure measurements, which are in agreement with the model constructed using first principles. This work may provide innovative guidance for the design of high-performance visible-light-activated near-infrared luminophores based on calculations and a new methodology for application of coherent laser radar and optical communication.

  15. A study of parameter setting and characterization of visible-light driven nitrogen-modified commercial TiO2 photocatalysts

    International Nuclear Information System (INIS)

    Kuo, Yu-Lin; Su, Te-Li; Kung, Fu-Chen; Wu, Tsai-Jung

    2011-01-01

    Highlights: → A cost-effective and highly-efficient visible-light driven nitrogen-modified TiO 2 photocatalyst was prepared by a simple hydrolysis method. → The obtained optimum conditions applied to Taguchi method for preparing visible-light driven photocatalyst were undergone by the process of stirring for 1 day using 4M ammonium as the nitrogen source, and then calcining at 400 ° C for 2 h. → Several materials technologies of characterizing N-TiO2 photocatalyst have been used to realize the modification of TiO2 by ammonia water as the nitrogen source. - Abstract: An optimal condition applied to the Taguchi method with an L 9 orthogonal array for preparing a visible-light driven nitrogen-modified TiO 2 (N-TiO 2 ) photocatalyst by a simple hydrolysis method has been examined for material characteristics and a photodecolorization test of methyl blue (MB) under various visible light source (fluorescent and blue LED lamps) irradiations. Results of the material characterization showed that the absorption of prepared N-TiO 2 powder exhibited a significant extension into visible light regimes with an optical bandgap (Eg) of around 2.96 eV, which subsequently improved the visible-light photocatalytic activity of N-TiO 2 samples. The superior photocatalytic properties, the pseudo first-order reaction rate constants (k) and photodecolorization efficiency (η%) of a N-TiO 2 photocatalyst during the photodecolorization test of methyl blue (MB) under two different visible light irradiations were very evident compared to those for pure TiO 2 . For photodecolorization of practical dyeing from the waste water from the dyeing and finishing industry, a higher photodecolorization efficiency of N-TiO 2 powder toward Direct blue-86 (DB-86) (Direct Fast Turquoise Blue GL) dye was also achieved.

  16. Crystallization-mediated amorphous CuxO (x = 1, 2)/crystalline CuI p-p type heterojunctions with visible light enhanced and ultraviolet light restrained photocatalytic dye degradation performance

    Science.gov (United States)

    Wang, Hongli; Cai, Yun; Zhou, Jian; Fang, Jun; Yang, Yang

    2017-04-01

    We report simple and cost-effective fabrication of amorphous CuxO (x = 1, 2)/crystalline CuI p-p type heterojunctions based on crystallization-mediated approaches including antisolvent crystallization and crystal reconstruction. Starting from CuI acetonitrile solution, large crystals in commercial CuI can be easily converted to aggregates consisting of small particles by the crystallization processes while the spontaneous oxidation of CuI by atmospheric/dissolved oxygen can induce the formation of trace CuxO on CuI surface. As a proof of concept, the as-fabricated CuxO/CuI heterojunctions exhibit effective photocatalytic activity towards the degradation of methyl blue and other organic pollutants under visible light irradiation, although the wide band-gap semiconductor CuI is insensible to visible light. Unexpectedly, the CuxO/CuI heterojunctions exhibit restrained photocatalytic activity when ultraviolet light is applied in addition to the visible. It is suggested that the CuxO/CuI interface can enhance the spatial separation of the electron-hole pairs with the excitation of CuxO under visible light and prolong the lifetime of photogenerated charges with high redox ability. The present work represents a critically important step in advancing the crystallization technique for potential mass production of semiconductor heterojunctions in a mild manner.

  17. Visible-active photocatalytic behaviors observed in nanostructured lead chalcogenides PbX (X = S, Se, Te)

    International Nuclear Information System (INIS)

    Qiao, Li-Na; Wang, H.C.; Shen, Y.; Lin, Yuan-Hua; Nan, Ce-Wen

    2016-01-01

    Nanostructured lead chalcogenides (PbX, X = Te, Se, S) were prepared via a simple hydrothermal method. The powder samples were characterized by XRD, SEM, SAED and DRS. Phase composition and microstructure analysis indicate that these samples are pure lead chalcogenides phases and have similar morphologies. These lead chalcogenides display efficient absorption in the UV-visible light range. The photocatalytic properties of lead chalcogenides nanoparticles were evaluated by the photodegradation of Congo red under UV-visible light irradiation in air atmosphere. The Congo red solution can be efficiently degraded under visible light in the presence of lead chalcogenides nanoparticles. The photocatalytic activities of lead chalcogenides generally increase with increasing their band gaps and shows no appreciable loss after repeated cycles. Our results may be useful for developing new photocatalyst systems responsive to visible light among narrow band gap semiconductors

  18. Synthesis, Characterization, and Evaluation of Boron-Doped Iron Oxides for the Photocatalytic Degradation of Atrazine under Visible Light

    Directory of Open Access Journals (Sweden)

    Shan Hu

    2012-01-01

    Full Text Available Photocatalytic degradation of atrazine by boron-doped iron oxides under visible light irradiation was investigated. In this work, boron-doped goethite and hematite were successfully prepared by sol-gel method with trimethylborate as boron precursor. The powders were characterized by XRD, UV-vis diffuse reflectance spectra, and porosimetry analysis. The results showed that boron doping could influence the crystal structure, enlarge the BET surface area, improve light absorption ability, and narrow their band-gap energy. The photocatalytic activity of B-doped iron oxides was evaluated in the degradation of atrazine under the visible light irradiation, and B-doped iron oxides showed higher atrazine degradation rate than that of pristine iron oxides. Particularly, B-doped goethite exhibited better photocatalytic activity than B-doped hematite.

  19. [Influence of titanium dioxide activated under visible light on survival of mold fungi].

    Science.gov (United States)

    Kądziołka, Daria; Rokicka, Paulina; Markowska-Szczupak, Agata; Morawski, Antoni W

    2018-01-01

    In public and residential buildings, fungi are usually found in the dust or growing on building materials medium such. It has been known that a number of their spores may contaminate the indoor environment and deteriorate air quality in accommodation spaces. Previously designed air cleaning systems do not guarantee a complete removal of agents harmful to humans and animals. Therefore, there is a great need to develop a new solution to remove molds from indoor air. In recent years, photocatalysis based on titanium dioxide (TiO2) has been proposed as an effective method for air pollutants removal. The aim of the study was to determine the effect of TiO2 activated under artificial sun light (UV-VIS - ultraviolet - visible spectroscopy) on survival of fungi Penicillium chrysogenum and Aspergillus niger. The commercial P 25 (Aeroxide P 25, Evonik, Germany) and nitrogen modified titanium dioxide (N-TiO2) were used. The microbiological study was performed using Penicillium chrysogenum and Aspergillus niger fungi. The survival of fungi was determined on the basis of changes in their concentration. It was found that N-TiO2 has a stronger antifungal activity against P. chrysogenum and A. niger than P 25. For N-TiO2, the complete elimination of molds was possible after 3 h under artificial solar light activation. The minimal concentration of photocatalyst was 0.01 g×dm-3 (P. chrysogenum) and 0.1 g×dm-3 (A. niger). The nitrogen modification of titanium dioxide produced expected results and N-TiO2 presented good antifungal activity. The findings of the presented investigation can lead to the development of air filter to be used for removal of harmful agents (including molds) from indoor environment. Med Pr 2018;69(1):59-65. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  20. Visible light emission from porous silicon carbide

    DEFF Research Database (Denmark)

    Ou, Haiyan; Lu, Weifang

    2017-01-01

    Light-emitting silicon carbide is emerging as an environment-friendly wavelength converter in the application of light-emitting diode based white light source for two main reasons. Firstly, SiC has very good thermal conductivity and therefore a good substrate for GaN growth in addition to the small...... lattice mismatch. Secondly, SiC material is abundant, containing no rear-earth element material as commercial phosphor. In this paper, fabrication of porous SiC is introduced, and their morphology and photoluminescence are characterized. Additionally, the carrier lifetime of the porous SiC is measured...... by time-resolved photoluminescence. The ultrashort lifetime in the order of ~70ps indicates porous SiC is very promising for the application in the ultrafast visible light communications....

  1. Bi2WO6 nanoflowers: An efficient visible light photocatalytic activity for ceftriaxone sodium degradation

    Science.gov (United States)

    Zhao, Yanyan; Wang, Yongbo; Liu, Enzhou; Fan, Jun; Hu, Xiaoyun

    2018-04-01

    The morphology-controlled synthesis of nano-structure photocatalyst have leaded a new possibility to improve their physical and chemical properties. Herein, Bi2WO6 nanocrystals (BWO) with nano-flower, nano plates, knot shape, rod like and irregular morphologies have been successfully synthesized through a highly facile hydrothermal process by simply adjusting pH values, reactive solvents and temperature. Photocatalytic activity of the as-prepared samples were evaluated by degradation of Ceftriaxone sodium under visible light irradiation (λ > 420 nm), the results indicated that all the BWO samples exhibit morphology-associated photocatalytic activity, and the 3D flowerlike-structure of BWO composed of well-ordered nano plates (BWO-D-5) displayed the outstanding photocatalytic activity. Through getting insight into the mechanism, h+ and rad O2- play major roles compared with rad OH in photocatalytic degradation process. The possible pathway of Ceftriaxone sodium and the intermediates were proposed to better understand the reaction process. Moreover, this work not only provides an example of morphology-dependent photocatalytic activity of BWO but also provides an illustrative example for removing organic pollutant molecules according to practical requirements.

  2. Enhanced photoelectrocatalytic performance of titanium dioxide/carbon cloth based photoelectrodes by graphene modification under visible-light irradiation

    International Nuclear Information System (INIS)

    Zhai, Chunyang; Zhu, Mingshan; Ren, Fangfang; Yao, Zhangquan; Du, Yukou; Yang, Ping

    2013-01-01

    Highlights: • Graphene modified well-define TiO 2 sphere on carbon cloth has been fabricated. • RGO/TiO 2 /CC exhibits efficient visible light photoelectrocatalytic activity. • RGO/TiO 2 /CC electrode shows enhanced PEC activity for degradation of MB pollutant. • A synergetic effect of photocatalysis and electrocatalysis in the PEC process. -- Abstract: Reduced graphene oxide nanosheets modified TiO 2 nanospheres on carbon cloth electrodes (RGO/TiO 2 /CC) have been fabricated and used for photoelectrocatalytic (PEC) degradation of organic pollutants under visible light irradiation. The fabricated RGO/TiO 2 /CC electrodes were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV–vis diffuse reflectance spectroscopy. Compared with TiO 2 /CC electrode, the RGO modified TiO 2 /CC electrode evidently shows improved visible light-driven PEC activity for degradation of an often used model pollutant, methylene blue (MB). Moreover, the efficiency of MB degradation by PEC process (0.0133 min −1 ) is about 13-fold and 7-fold faster than that of electrochemical process (0.001 min −1 ) and photocatalytic process (0.0018 min −1 ), respectively. The improved catalytic activity for PEC degradation of MB pollutants could be attributed to the existence of RGO, which extends the absorption onset of TiO 2 to longer wavelength direction and promotes the separation of electron–hole pairs generated under visible light irradiation. The promotion effect on the electron–hole separation is supported by photocurrent and electrochemical impedance measurements. In addition, a synergetic effect of photocatalysis and electrocatalysis is involved in the PEC process, by which the recombination of photogenerated electron–hole pairs is significantly suppressed

  3. Visible Light Communication: An Emerging Area in Wireless

    Indian Academy of Sciences (India)

    A. Chockalingam

    infrared to ultraviolet. • includes visible light wavelengths (380 to 780 nm). Concluding remarks. NH ... low power, high data rate systems in satellites, portable devices, etc. .... improve spectral efficiency and performance. • Issues. • channel ...

  4. Visible Light-Photocatalytic Activity of Sulfate-Doped Titanium Dioxide Prepared by the Sol−Gel Method

    Directory of Open Access Journals (Sweden)

    Tsuneo Fujii

    2013-04-01

    Full Text Available Sulfate-doped TiO2 was prepared from sol−gel systems containing titaniumalkoxide and sulfuric acid. The time needed for gelation of the systems was significantlyreduced by ultrasonic irradiation. The doped sulfate was observed by FTIR and XPSmeasurements. Some sulfate ions remained in the TiO2 even after heating at 300−600 °C.The UV and visible photocatalytic activities of the samples were confirmed by thedegradation of trichloroethylene (TCE. The activity of the photocatalyst samples duringthe UV irradiation strongly depended on their crystallinities rather than their specificsurface areas, i.e., adsorption ability. The degradation rate during the visible irradiationdepended on both the adsorption ability and visible absorption of the photocatalystsamples. The visible absorption induced by the sulfate-doping was effective for theTCE degradation.

  5. Bottom-up production of meta-atoms for optical magnetism in visible and NIR light

    Science.gov (United States)

    Barois, Philippe; Ponsinet, Virginie; Baron, Alexandre; Richetti, Philippe

    2018-02-01

    Many unusual optical properties of metamaterials arise from the magnetic response of engineered structures of sub-wavelength size (meta-atoms) exposed to light. The top-down approach whereby engineered nanostructure of well-defined morphology are engraved on a surface proved to be successful for the generation of strong optical magnetism. It faces however the limitations of high cost and small active area in visible light where nanometre resolution is needed. The bottom-up approach whereby the fabrication metamaterials of large volume or large area results from the combination of nanochemitry and self-assembly techniques may constitute a cost-effective alternative. This approach nevertheless requires the large-scale production of functional building-blocks (meta-atoms) bearing a strong magnetic optical response. We propose in this paper a few tracks that lead to the large scale synthesis of magnetic metamaterials operating in visible or near IR light.

  6. Precoded generalized space shift keying for indoor visible light communications

    KAUST Repository

    Kadampot, Ishaque Ashar; Park, Kihong; Alouini, Mohamed-Slim

    2014-01-01

    We consider a visible light communication system with 2 transmit light emitting diodes (LED) and nr receive photodiodes. An optical generalized space shift keying modulation scheme is considered for the transmission of bits where each LED can

  7. Hierarchical Bi{sub 2}WO{sub 6} architectures decorated with Pd nanoparticles for enhanced visible-light-driven photocatalytic activities

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jinniu; Chen, Tianhua [School of Physics and Information Technology, Shaanxi Normal University, Xi’an, 710062 (China); Lu, Hongbing, E-mail: hblu@snnu.edu.cn [School of Physics and Information Technology, Shaanxi Normal University, Xi’an, 710062 (China); Yang, Zhibo; Yin, Feng; Gao, Jianzhi; Liu, Qianru [School of Physics and Information Technology, Shaanxi Normal University, Xi’an, 710062 (China); Tu, Yafang [Department of Physics, Institute for Interdisciplinary Research, Jianghan University, Wuhan, 430056 (China)

    2017-05-15

    Highlights: • A new kind of Pd decorated Bi{sub 2}WO{sub 6} hierarchical microarchitecture was synthesized. • Pd nanoparticles remarkably improved the photocatalytic activity of Bi{sub 2}WO{sub 6}. • The photo-generated holes and ·O{sub 2}{sup −} played a crucial role in the degradation of RhB. • The photocatalytic enhancement mechanism of the Pd-Bi{sub 2}WO{sub 6} composites was proposed. - Abstract: A new kind of hierarchical Pd-Bi{sub 2}WO{sub 6} architecture decorated with different molar ratios of Pd to Bi, has been fabricated by a hydrothermal process, followed by a chemical deposition method. The photocatalytic activities of the pure Bi{sub 2}WO{sub 6} and Pd-Bi{sub 2}WO{sub 6} nanocatalyst were examined in the degradation of Rhodamine B (RhB) dyes and phenol under visible light. The photocatalytic results showed that the Pd-Bi{sub 2}WO{sub 6} nanocomposites possessed observably enhanced photocatalytic activities. Particularly, the 2.0% Pd loaded Bi{sub 2}WO{sub 6} had the highest photocatalytic activity, exhibiting a nearly complete degradation of 30 mg/L RhB and 10 mg/L phenol within only 50 and 60 min, respectively. In addition, the trapping experiment results indicated that the photo-generated holes (h{sup +}) and ·O{sub 2}{sup −} played a crucial role in the degradation of RhB. According to the experimental results, the photocatalytic degradation mechanism of Pd-Bi{sub 2}WO{sub 6} was also proposed. The enhanced photocatalytic activities were ascribed to the combined effects of the highly efficient separation of electrons and holes, improved visible light utilization and increased BET specific surface areas of the Pd-Bi{sub 2}WO{sub 6} nanocomposites.

  8. Lanthanum doped titania decorated with silver plasmonic nanoparticles with enhanced photocatalytic activity under UV-visible light

    Science.gov (United States)

    Dal'Toé, Adrieli T. O.; Colpani, Gustavo Lopes; Padoin, Natan; Fiori, Márcio Antônio; Soares, Cíntia

    2018-05-01

    Lanthanum doped titanium dioxide decorated with silver plasmonic nanoparticles (Ag-La/TiO2 NPs) materials were prepared using a simple ultrasound-assisted wet impregnation method followed by silver photodeposition. The obtained photocatalysts with different Ag contents were characterized by XRD, FE-SEM, EDX, TEM, BET, XPS, DRS and PL techniques. Moreover, the size distribution of the nanoparticles aggregates was assessed. The characterization analysis revealed that La doping slightly changed the crystalline phase of TiO2, increased the amount of surface hydroxyl groups and interacted with TiO2 nanoparticles via Ti-O-La bond, while Ag photodeposition enhanced the absorption of visible light due to the effects of localized surface plamon resonance and significantly decreased electronic recombination rate by the Schottky junction. Furthermore, the combination of Ag-La induced the formation of oxygen vacancies, which increased the amount of adsorbed surface hydroxyl groups in Ag-La/TiO2. In addition, Ag-La possibly decreased the semiconductor surface energy, which acted positively in the reduction of NPs aggregation. These features along with better textural properties (greater surface areas) played a fundamental role in the enhancement of the photocatalytic activity of Ag-La/TiO2 composites for the decolorization of methylene blue under UV-visible irradiation compared to the mono-metallic (La/TiO2 and Ag/TiO2) modified photocatalysts. Finally, a mechanism for the transfer of charge carriers in Ag-La/TiO2 photocatalyst under UV-visible irradiation was proposed.

  9. Enhanced visible light photocatalytic degradation of methylene blue by F-doped TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Wei [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai 200062 (China); Liu, Xinjuan, E-mail: lxj669635@126.com [Shanghai Nanotechnlogy Promotion Center, Shanghai 200237 (China); Center for Coordination Bond and Electronic Engineering, College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China); Pan, Likun, E-mail: lkpan@phy.ecnu.edu.cn [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai 200062 (China); Li, Jinliang; Liu, Junying [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai 200062 (China); Zhang, Jing; Li, Ping; Chen, Chen [Shanghai Nanotechnlogy Promotion Center, Shanghai 200237 (China); Sun, Zhuo [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai 200062 (China)

    2014-11-15

    Graphical abstract: F-doped TiO2 is synthesized using a modified sol–gel method for visible photocatalytic degradation of MB with a high degradation rate of 91%. - Highlights: • F-doped TiO{sub 2} are synthesized using a modified sol–gel method. • The photocatalytic degradation of methylene blue by F-doped TiO{sub 2} is investigated. • A high methylene blue degradation rate of 91% is achieved under visible light irradiation. - Abstract: F-doped TiO{sub 2} (F-TiO{sub 2}) were successfully synthesized using a modified sol–gel method. The morphologies, structures, and photocatalytic performance in the degradation of methylene blue (MB) were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, UV–vis absorption spectroscopy, and electrochemical impedance spectra, respectively. The results show that F-TiO{sub 2} exhibits an enhanced photocatalytic performance in the degradation of MB with a maximum degradation rate of 91% under visible light irradiation as compared with pure TiO{sub 2} (32%). The excellent photocatalytic activity is due to the contribution from the increased visible light absorption, promoted separation of photo-generated electrons and holes as well as enhanced photocatalytic oxidizing species with the doping of F in TiO{sub 2}.

  10. Synthesis of supported silver nano-spheres on zinc oxide nanorods for visible light photocatalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Saoud, Khaled [Virginia Commonwealth University-Qatar, Doha (Qatar); Alsoubaihi, Rola [Virginia Commonwealth University, Richmond, VA (United States); Bensalah, Nasr [Qatar University, Doha (Qatar); Bora, Tanujjal [Chair in Nanotechnology, Water Research Center, Sultan Qaboos University, P.O. Box 33, Al-Khoudh-123 (Oman); Bertino, Massimo [Virginia Commonwealth University, Richmond, VA (United States); Dutta, Joydeep, E-mail: dutta@squ.edu.om [Chair in Nanotechnology, Water Research Center, Sultan Qaboos University, P.O. Box 33, Al-Khoudh-123 (Oman)

    2015-03-15

    Highlights: • Synthesis of supported Ag NPs on ZnO nanorods using open vessel microwave reactor. • Use of the Ag/ZnO NPs as an efficient visible light photocatalyst. • Complete degradation of methylene blue in 1 h with 0.5 g/L Ag/ZnO NPs. - Abstract: We report the synthesis of silver (Ag) nano-spheres (NS) supported on zinc oxide (ZnO) nanorods through two step mechanism, using open vessel microwave reactor. Direct reduction of ZnO from zinc nitrates was followed by deposition precipitation of the silver on the ZnO nanorods. The supported Ag/ZnO nanoparticles were then characterized by electron microscopy, X-ray diffraction, FTIR, photoluminescence and UV–vis spectroscopy. The visible light photocatalytic activity of Ag/ZnO system was investigated using a test contaminant, methylene blue (MB). Almost complete removal of MB in about 60 min for doses higher than 0.5 g/L of the Ag/ZnO photocatalyst was achieved. This significant improvement in the photocatalytic efficiency of Ag/ZnO photocatalyst under visible light irradiation can be attributed to the presence of Ag nanoparticles on the ZnO nanoparticles which greatly enhances absorption in the visible range of solar spectrum enabled by surface plasmon resonance effect from Ag nanoparticles.

  11. Controllable synthesis of Bi{sub 2}WO{sub 6} nanoplate self-assembled hierarchical erythrocyte microspheres via a one-pot hydrothermal reaction with enhanced visible light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhenya; Huang, Lin; Xie, Yanyu; Lin, Zheguan; Fan, Yunyan; Liu, Dan; Chen, Lu; Zhang, Zizhong, E-mail: z.zhang@fzu.edu.cn; Wang, Xuxu

    2017-05-01

    Highlights: • Bi{sub 2}WO{sub 6} hierarchical erythrocyte structure was designed by F{sup −}-assisted one-pot reaction. • Erythrocyte structure enhanced the visible-light photocatalytic activity of Bi{sub 2}WO{sub 6}. • Superoxide radical anions and h{sup +} were the main active species for RhB degradation. - Abstract: This work provides a simple approach of the F{sup −}-assisted one-pot hydrothermal reaction to successfully synthesize Bi{sub 2}WO{sub 6} hierarchical erythrocyte microspheres. The importance role of F{sup −} was systematically investigated by comparing different type of halogen ions, hydrothermal temperature and time. The possible growth mechanism of Bi{sub 2}WO{sub 6} hierarchical structures was proposed. The hierarchical erythrocytes were formed through the well-ordered and oriented self-assembly of thin Bi{sub 2}WO{sub 6} nanoplate primary subunits. F{sup −} ions were absorbed on Bi{sub 2}WO{sub 6} nanoplate surface to suppress the nanoplate stack but to induce a self-assembly through the edge interaction of Bi{sub 2}WO{sub 6} nanoplates into erythrocyte-like hierarchical microspheres superstructures. This erythrocyte structure narrowed the band gap energy and enhanced the visible-light photocatalytic activity of Bi{sub 2}WO{sub 6}. Moreover, superoxide radical anions and h{sup +} were revealed as the main active species responding for the RhB degradation on Bi{sub 2}WO{sub 6} under visible light irradiation.

  12. Ternary reduced-graphene-oxide/Bi2MoO6/Au nanocomposites with enhanced photocatalytic activity under visible light

    International Nuclear Information System (INIS)

    Bi, Jinhong; Fang, Wei; Li, Li; Li, Xiaofen; Liu, Minghua; Liang, Shijing; Zhang, Zizhong; He, Yunhui; Lin, Huaxiang; Wu, Ling; Liu, Shengwei; Wong, Po Keung

    2015-01-01

    A novel ternary nanocomposite photocatalyst consisted of reduced-graphene-oxide (RGO), Bi 2 MoO 6 and plasmonic Au nanoparticles were successfully fabricated by multiple steps including a simple solvothermal process and photochemical reduction process. RGO/Bi 2 MoO 6 /Au was characterized by X-ray powder diffraction patterns, transmission electron microscopy, UV–vis diffuse reflectance spectra, Raman spectroscopy and X-ray photoelectron spectroscopy. In comparison with Bi 2 MoO 6 , RGO/Bi 2 MoO 6 and Au/Bi 2 MoO 6 , RGO/Bi 2 MoO 6 /Au exhibits an enhanced photocatalytic activity for decomposition of Rhodamine B under visible light. The separation efficiency of the photogenerated holes and electrons on Bi 2 MoO 6 is promoted by the combined effect of both RGO and Au in the ternary composite, and thus enhances photocatalytic activity. The scavenger study revealed that both hole and superoxide are the major reactive species for the photocatalytic degradation of Rhodamine B using RGO/Bi 2 MoO 6 /Au photocatalyst. - Graphical abstract: A novel ternary nanocomposite photocatalyst consisted of reduced-graphene-oxide (RGO), Bi 2 MoO 6 and plasmonic Au nanoparticles were successfully fabricated by multiple steps including a simple solvothermal process and photochemical reduction process. The resulted ternary nanocomposites greatly enhanced the visible light photocatalytic properties compared to Bi 2 MoO 6 , RGO/Bi 2 MoO 6 or Au/Bi 2 MoO 6 binary systems. The improved photocatalytic activity was mainly attributed to the synergistic effect of Au and RGO with better separation of the photogenerated holes and electrons, resulting from the surface plasmonic resonance and extra strong electron magnetic field of Au nanoparticles and the high electron conductivity of RGO. - Highlights: • The ternary nanocomposites RGO/Bi 2 MoO 6 /Au were constructed for the first time. • RGO/Bi 2 MoO 6 /Au showed much higher visible photoactivity than RGO (Au)/Bi 2 MoO 6 . • The improved

  13. A practical pathway for the preparation of Fe_2O_3 decorated TiO_2 photocatalyst with enhanced visible-light photoactivity

    International Nuclear Information System (INIS)

    Cheng, Li; Qiu, Shoufei; Chen, Juanrong; Shao, Jian; Cao, Shunsheng

    2017-01-01

    Shifting the ultra-violet of titania to visible light driven photocatalysis can be realized by coupling with metallic or non-metallic elements. However, time-consuming multi-step process and significant loss of UV photocatalytic activity of such TiO_2-based photocatalysts severely hinder their practical applications. In this work, we explore the idea of creating a practical method for the preparation of Fe_2O_3 decorated TiO_2 (TiO_2/Fe_2O_3) photocatalyst with controlled visible-light photoactivity. This method only involves the calcination of the mixture (commercial P25 powders and magnetic Fe_3O_4 nanoparticles) prepared by a mechanical process. The morphology and properties of TiO_2/Fe_2O_3 composites were characterized by Transmission electron microscope, X-ray diffraction, UV–vis spectroscopy, and X-ray photoelectron spectroscopy. Results confirm the fusion of TiO_2 and Fe_2O_3, which promotes photo-generated electrons/holes migration and separation. Because of the strong synergistic effect, the as-synthesized TiO_2/Fe_2O_3 composites manifest an enhanced visible-light photocatalytic activity. Especially, the TiO_2/Fe_2O_3 photocatalyst is very easy to be constructed via an one-step protocol that efficiently overcomes the time-consuming multi-step processes used in existed strategies for the preparation of Fe_2O_3/TiO_2 photocatalysts, providing a new insight into the practical application of TiO_2/Fe_2O_3 visible light photocatalyst. - Highlights: • We introduced a practical preparation of Fe_2O_3 decorated TiO_2 photocatalyst. • TiO_2/Fe_2O_3 was developed using commercial precursors in a high efficient manner. • Visible-light activity of TiO_2/Fe_2O_3 could be tuned by changing amount of Fe_3O_4 precursor. • TiO_2/Fe_2O_3 exhibited a higher visible-light photocatalytic activity than P25.

  14. Visible-Light-Responsive Photocatalysis: Ag-Doped TiO2 Catalyst Development and Reactor Design Testing

    Science.gov (United States)

    Coutts, Janelle L.; Hintze, Paul E.; Meier, Anne; Shah, Malay G.; Devor, Robert W.; Surma, Jan M.; Maloney, Phillip R.; Bauer, Brint M.; Mazyck, David W.

    2016-01-01

    In recent years, the alteration of titanium dioxide to become visible-light-responsive (VLR) has been a major focus in the field of photocatalysis. Currently, bare titanium dioxide requires ultraviolet light for activation due to its band gap energy of 3.2 eV. Hg-vapor fluorescent light sources are used in photocatalytic oxidation (PCO) reactors to provide adequate levels of ultraviolet light for catalyst activation; these mercury-containing lamps, however, hinder the use of this PCO technology in a spaceflight environment due to concerns over crew Hg exposure. VLR-TiO2 would allow for use of ambient visible solar radiation or highly efficient visible wavelength LEDs, both of which would make PCO approaches more efficient, flexible, economical, and safe. Over the past three years, Kennedy Space Center has developed a VLR Ag-doped TiO2 catalyst with a band gap of 2.72 eV and promising photocatalytic activity. Catalyst immobilization techniques, including incorporation of the catalyst into a sorbent material, were examined. Extensive modeling of a reactor test bed mimicking air duct work with throughput similar to that seen on the International Space Station was completed to determine optimal reactor design. A bench-scale reactor with the novel catalyst and high-efficiency blue LEDs was challenged with several common volatile organic compounds (VOCs) found in ISS cabin air to evaluate the system's ability to perform high-throughput trace contaminant removal. The ultimate goal for this testing was to determine if the unit would be useful in pre-heat exchanger operations to lessen condensed VOCs in recovered water thus lowering the burden of VOC removal for water purification systems.

  15. Rational construction of Z-scheme Ag{sub 2}CrO{sub 4}/g-C{sub 3}N{sub 4} composites with enhanced visible-light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Jin, E-mail: lj328520504@126.com; Zhou, Xiaosong; Ma, Lin; Xu, Xuyao

    2016-12-30

    Highlights: • Novel visible-light driven Ag{sub 2}CrO{sub 4}/g-C{sub 3}N{sub 4} composites were synthesized. • Ag{sub 2}CrO{sub 4}/g-C{sub 3}N{sub 4} exhibited enhanced visible-light photocatalytic activity. • The reasons for the enhanced photocatalytic activity were revealed. - Abstract: Novel visible-light driven Z-scheme Ag{sub 2}CrO{sub 4}/g-C{sub 3}N{sub 4} composites with different contents of Ag{sub 2}CrO{sub 4} were fabricated by a facile chemical precipitation method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectroscopy (UV-vis DRS), photoluminescence (PL) spectroscopy and photoelectrochemical measurements. Compared with individual g-C{sub 3}N{sub 4} and Ag{sub 2}CrO{sub 4}, the Ag{sub 2}CrO{sub 4}/g-C{sub 3}N{sub 4} composites displayed much larger photocatalytic activities for the photocatalytic degradation of methyl orange (MO) solution at room temperature under visible light irradiation (λ > 420 nm). Importantly, the optimum photodegradation rate constant of the Ag{sub 2}CrO{sub 4}/g-C{sub 3}N{sub 4} composite at a theoretical weight content of 8.0% Ag{sub 2}CrO{sub 4} for the photodegradation of MO was 0.0068 min{sup −1}, which was 5.7 and 4.3 times higher than that of pure g-C{sub 3}N{sub 4} and Ag{sub 2}CrO{sub 4}, respectively. Such enormous enhancement in photocatalytic performance was predominantly ascribed to the efficient separation and transfer of photogenerated electrons and holes at the Ag{sub 2}CrO{sub 4}/g-C{sub 3}N{sub 4} interface imparted through the Z-scheme electron transfer. Furthermore, radical trap experiments depicted that both the holes and superoxide radical anions were thought to dominate oxidative species of the Ag{sub 2}CrO{sub 4}/g-C{sub 3}N{sub 4} composite for MO degradation under visible light irradiation. Ultimately, a tentative Z-scheme photodegradation mechanism

  16. Switching Diarylethenes Reliably in Both Directions with Visible Light.

    Science.gov (United States)

    Fredrich, Sebastian; Göstl, Robert; Herder, Martin; Grubert, Lutz; Hecht, Stefan

    2016-01-18

    A diarylethene photoswitch was covalently connected to two small triplet sensitizer moieties in a conjugated and nonconjugated fashion and the photochromic performance of the resulting compounds was investigated. In comparison with the parent diarylethene (without sensitizers) and one featuring saturated linkages, the conjugated photoswitch offers superior fatigue resistance upon visible-light excitation due to effective triplet energy transfer from the biacetyl termini to the diarylethene core. Our design makes it possible to switch diarylethenes with visible light in both directions in a highly efficient and robust fashion based on extending π-conjugation and by-product-free ring-closure via the triplet manifold. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Visible light driven photocatalysis and antibacterial activity of AgVO{sub 3} and Ag/AgVO{sub 3} nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Anamika [Department of Life Sciences, University of Mumbai, Santacruz (E), Mumbai 400 098 (India); Dutta, Dimple P., E-mail: dimpled@barc.gov.in [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Ballal, A. [Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Tyagi, A.K. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Fulekar, M.H. [School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar 382 030, Gujarat (India)

    2014-03-01

    Graphical abstract: - Highlights: • Ag/AgVO{sub 3} and pure AgVO{sub 3} nanowires synthesized by sonochemical process. • Characterization done using XRD, SEM, TEM, EDX and BET analysis. • Visible light degradation of RhB by Ag/AgVO{sub 3} within 45 min. • Antibacterial activity of Ag/AgVO{sub 3} demonstrated. - Abstract: Ag/AgVO{sub 3} nanowires and AgVO{sub 3} nanorods were synthesized in aqueous media via a facile sonochemical route. The as-synthesized products were characterized by X-ray diffraction, Brunauer–Emmett–Teller surface area analysis, scanning electron microscopy together with an energy dispersion X-ray spectrum analysis, transmission electron microscopy and UV–vis diffuse reflectance spectroscopy. The results revealed that inert atmosphere promotes the formation of Ag/AgVO{sub 3} nanowires. The photocatalytic studies revealed that the Ag/AgVO{sub 3} nanowires exhibited complete photocatalytic degradation of Rhodamine B within 45 min under visible light irradiation. The antibacterial activity of Ag/AgVO{sub 3} nanowires was tested against Escherechia coli and Bacillus subtilis. The minimum growth inhibitory concentration value was found to be 50 and 10 folds lower than for the antibiotic ciprofloxacin for E. coli and B. subtilis, respectively. The antibacterial properties of the β-AgVO{sub 3} nanorods prove that in case of the Ag dispersed Ag/AgVO{sub 3} nanowires, the enhanced antibacterial action is also due to contribution from the AgVO{sub 3} support.

  18. Joint illumination and visible-light communication systems : data rates and extra power consumption

    NARCIS (Netherlands)

    Tsiatmas, Anagnostis; Willems, Frans; Linnartz, Jean-Paul; Baggen, C.P.M.J.; Bergmans, Jan

    2015-01-01

    Visible Light Communications (VLC) have been promoted as an energy-efficient Gb/s-technology for indoor settings, since VLC can be merged with the illumination functionality. As a result, Joint Illumination and visible-light Communication (JIC) systems are perceived as a green technology and the

  19. Mitochondrial damage and cytoskeleton reorganization in human dermal fibroblasts exposed to artificial visible light similar to screen-emitted light.

    Science.gov (United States)

    Rascalou, Adeline; Lamartine, Jérôme; Poydenot, Pauline; Demarne, Frédéric; Bechetoille, Nicolas

    2018-05-05

    Artificial visible light is everywhere in modern life. Social communication confronts us with screens of all kinds, and their use is on the rise. We are therefore increasingly exposed to artificial visible light, the effects of which on skin are poorly known. The purpose of this study was to model the artificial visible light emitted by electronic devices and assess its effect on normal human fibroblasts. The spectral irradiance emitted by electronic devices was optically measured and equipment was developed to accurately reproduce such artificial visible light. Effects on normal human fibroblasts were analyzed on human genome microarray-based gene expression analysis. At cellular level, visualization and image analysis were performed on the mitochondrial network and F-actin cytoskeleton. Cell proliferation, ATP release and type I procollagen secretion were also measured. We developed a device consisting of 36 LEDs simultaneously emitting blue, green and red light at distinct wavelengths (450 nm, 525 nm and 625 nm) with narrow spectra and equivalent radiant power for the three colors. A dose of 99 J/cm 2 artificial visible light was selected so as not to induce cell mortality following exposure. Microarray analysis revealed 2984 light-modulated transcripts. Functional annotation of light-responsive genes revealed several enriched functions including, amongst others, the "mitochondria" and "integrin signaling" categories. Selected results were confirmed by real-time quantitative PCR, analyzing 24 genes representing these two categories. Analysis of micro-patterned culture plates showed marked fragmentation of the mitochondrial network and disorganization of the F-actin cytoskeleton following exposure. Functionally, there was considerable impairment of cell growth and spread, ATP release and type I procollagen secretion in exposed fibroblasts. Artificial visible light induces drastic molecular and cellular changes in normal human fibroblasts. This may impede

  20. Au/ZnO nanoarchitectures with Au as both supporter and antenna of visible-light

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tianyu; Chen, Wei; Hua, Yuxiang; Liu, Xiaoheng, E-mail: xhliu@mail.njust.edu.cn

    2017-01-15

    Highlights: • An inversed Au/ZnO nanostructure was fabricated with ZnO loaded onto Au. • The Au/ZnO nanocomposites showed enhanced properties in visible-light photocatalysis. • The SPR effect of Au was considered important for visible-light photocatalysis. - Abstract: In this paper, we fabricate Au/ZnO nanostructure with smaller ZnO nanoparticles loaded onto bigger gold nanoparticles via combining seed-mediated method and sol-gel method. The obtained Au/ZnO nanocomposites exhibit excellent properties in photocatalysis process like methyl orange (MO) degradation and oxidative conversion of methanol into formaldehyde under visible light irradiation. The enhanced properties were ascribed to the surface plasmon resonance (SPR) effect of Au nanoparticles, which could contribute to the separation of photo-excited electrons and holes and facilitate the process of absorbing visible light. This paper contributes to the emergence of multi-functional nanocomposites with possible applications in visible-light driven photocatalysts and makes the Au/ZnO photocatalyst an exceptional choice for practical applications such as environmental purification of organic pollutants in aqueous solution and the synthesis of fine chemicals and intermediates.

  1. Au/ZnO nanoarchitectures with Au as both supporter and antenna of visible-light

    International Nuclear Information System (INIS)

    Liu, Tianyu; Chen, Wei; Hua, Yuxiang; Liu, Xiaoheng

    2017-01-01

    Highlights: • An inversed Au/ZnO nanostructure was fabricated with ZnO loaded onto Au. • The Au/ZnO nanocomposites showed enhanced properties in visible-light photocatalysis. • The SPR effect of Au was considered important for visible-light photocatalysis. - Abstract: In this paper, we fabricate Au/ZnO nanostructure with smaller ZnO nanoparticles loaded onto bigger gold nanoparticles via combining seed-mediated method and sol-gel method. The obtained Au/ZnO nanocomposites exhibit excellent properties in photocatalysis process like methyl orange (MO) degradation and oxidative conversion of methanol into formaldehyde under visible light irradiation. The enhanced properties were ascribed to the surface plasmon resonance (SPR) effect of Au nanoparticles, which could contribute to the separation of photo-excited electrons and holes and facilitate the process of absorbing visible light. This paper contributes to the emergence of multi-functional nanocomposites with possible applications in visible-light driven photocatalysts and makes the Au/ZnO photocatalyst an exceptional choice for practical applications such as environmental purification of organic pollutants in aqueous solution and the synthesis of fine chemicals and intermediates.

  2. Facile synthesis of surface N-doped Bi{sub 2}O{sub 2}CO{sub 3}: Origin of visible light photocatalytic activity and in situ DRIFTS studies

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ying, E-mail: yzhou@swpu.edu.cn [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Xindu Rd. 8, Chengdu 610500 (China); The Center of New Energy Materials and Technology, School of Materials Science and Engineering, Southwest Petroleum University, Xindu Rd. 8, Chengdu 610500 (China); Insititute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe (Germany); Zhao, Ziyan [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Xindu Rd. 8, Chengdu 610500 (China); The Center of New Energy Materials and Technology, School of Materials Science and Engineering, Southwest Petroleum University, Xindu Rd. 8, Chengdu 610500 (China); Wang, Fang; Cao, Kun [The Center of New Energy Materials and Technology, School of Materials Science and Engineering, Southwest Petroleum University, Xindu Rd. 8, Chengdu 610500 (China); Doronkin, Dmitry E. [Insititute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe (Germany); Dong, Fan [College of Environmental and Biological Engineering, Chonqing Technology and Business University, Chongqing 400067 (China); Grunwaldt, Jan-Dierk, E-mail: grunwaldt@kit.edu [Insititute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe (Germany)

    2016-04-15

    Graphical abstract: Surfactant (CTAB) can induce nitrogen interstitially doping in the Bi{sub 2}O{sub 2}CO{sub 3} surface, leading to the formation of localized states from N−O bond, which probably account for the origin of the visible light activity. Moreover, the photocatalytic NO oxidation processes over Bi{sub 2}O{sub 2}CO{sub 3} were successfully monitored for the first time by in situ DRIFTS. - Highlights: • Interstitially doping N in the Bi{sub 2}O{sub 2}CO{sub 3} surface was achieved at room temperature. • N-doped Bi{sub 2}O{sub 2}CO{sub 3} exhibited significantly enhanced visible light photocatalytic activity compared to the pristine Bi{sub 2}O{sub 2}CO{sub 3}. • The formation of localized states from N−O bond could account for the visible light activity of Bi{sub 2}O{sub 2}CO{sub 3}. • The photocatalytic NO oxidation process was monitored by in situ DRIFTS. - Abstract: Bi{sub 2}O{sub 2}CO{sub 3} nanosheets with exposed {001} facets were prepared by a facile room temperature chemical method. Due to the high oxygen atom density in {001} facets of Bi{sub 2}O{sub 2}CO{sub 3}, the addition of cetyltrimethylammonium bromide (CTAB) does not only influence the growth of crystalline Bi{sub 2}O{sub 2}CO{sub 3}, but also modifies the surface properties of Bi{sub 2}O{sub 2}CO{sub 3} through the interaction between CTAB and Bi{sub 2}O{sub 2}CO{sub 3}. Nitrogen from CTAB as dopant interstitially incorporates in the Bi{sub 2}O{sub 2}CO{sub 3} surface evidenced by both experimental and theoretical investigations. Hence, the formation of localized states from N−O bond improves the visible light absorption and charge separation efficiency, which leads to an enhancement of visible light photocatalytic activity toward to the degradation of Rhodamine B (RhB) and oxidation of NO. In addition, the photocatalytic NO oxidation over Bi{sub 2}O{sub 2}CO{sub 3} nanosheets was successfully monitored for the first time using in situ diffuse reflectance infrared Fourier

  3. Efficient visible-light photocatalytic oxidation of gaseous NO with graphitic carbon nitride (g–C_3N_4) activated by the alkaline hydrothermal treatment and mechanism analysis

    International Nuclear Information System (INIS)

    Nie, Haoyu; Ou, Man; Zhong, Qin; Zhang, Shule; Yu, Lemeng

    2015-01-01

    Highlights: • Various porous g–C_3N_4 samples were obtained by the alkaline hydrothermal treatment. • 0.12CN possesses the largest BET specific surface area and pore volume. • The NO conversion in the presence of 0.12CN reaches 40.4%. • Reasons for the enhanced PCO performance with treated g–C_3N_4 was analyzed. • Further mechanism of the PCO of NO relevant with active species was investigated. - Abstract: In this paper, an enhanced visible-light photocatalytic oxidation (PCO) of NO (∼400 ppm) in the presence of the graphitic carbon nitride (g–C_3N_4) treated by the alkaline hydrothermal treatment is evaluated. Various g–C_3N_4 samples were treated in different concentrations of NaOH solutions and the sample treated in 0.12 mol L"−"1 of NaOH solution possesses the largest BET specific surface area as well as the optimal ability of the PCO of NO. UV–vis diffuse reflection spectra (DRS) and photoluminescence (PL) spectra were also conducted, and the highly improved photocatalytic performance is ascribed to the large specific surface area and high pore volume, which provides more adsorption and active sites, the wide visible-light adsorption edge and the narrow band gap, which is favorable for visible-light activation, as well as the decreased recombination rate of photo-generated electrons and holes, which could contribute to the production of active species. Fluorescence spectra and a trapping experiment were conducted to further the mechanism analysis of the PCO of NO, illustrating that superoxide radicals (·O_2"−) play the dominant role among active species in the PCO of NO.

  4. Crystallization-mediated amorphous Cu_xO (x = 1, 2)/crystalline CuI p–p type heterojunctions with visible light enhanced and ultraviolet light restrained photocatalytic dye degradation performance

    International Nuclear Information System (INIS)

    Wang, Hongli; Cai, Yun; Zhou, Jian; Fang, Jun; Yang, Yang

    2017-01-01

    Highlights: • Cu_xO(x = 1, 2)/CuI p–p type heterojunctions were facilely constructed via crystallization-mediated approaches. • Cu_xO/CuI heterojunctions exhibit effective visible-light-driven photocatalytic activity for dye degradation. • The Cu_xO/CuI interface can enhance the spatial separation of the photogenerated electron–hole pairs. • This work represents a critical step for mass production of functional semiconductor heterojunctions in a mild manner. - Abstract: We report simple and cost-effective fabrication of amorphous Cu_xO (x = 1, 2)/crystalline CuI p–p type heterojunctions based on crystallization-mediated approaches including antisolvent crystallization and crystal reconstruction. Starting from CuI acetonitrile solution, large crystals in commercial CuI can be easily converted to aggregates consisting of small particles by the crystallization processes while the spontaneous oxidation of CuI by atmospheric/dissolved oxygen can induce the formation of trace Cu_xO on CuI surface. As a proof of concept, the as-fabricated Cu_xO/CuI heterojunctions exhibit effective photocatalytic activity towards the degradation of methyl blue and other organic pollutants under visible light irradiation, although the wide band-gap semiconductor CuI is insensible to visible light. Unexpectedly, the Cu_xO/CuI heterojunctions exhibit restrained photocatalytic activity when ultraviolet light is applied in addition to the visible. It is suggested that the Cu_xO/CuI interface can enhance the spatial separation of the electron–hole pairs with the excitation of Cu_xO under visible light and prolong the lifetime of photogenerated charges with high redox ability. The present work represents a critically important step in advancing the crystallization technique for potential mass production of semiconductor heterojunctions in a mild manner.

  5. Vehicular Visible Light Networks for Urban Mobile Crowd Sensing

    Directory of Open Access Journals (Sweden)

    Barbara M. Masini

    2018-04-01

    Full Text Available Crowd sensing is a powerful tool to map and predict interests and events. In the future, it could be boosted by an increasing number of connected vehicles sharing information and intentions. This will be made available by on board wireless connected devices able to continuously communicate with other vehicles and with the environment. Among the enabling technologies, visible light communication (VLC represents a low cost solution in the short term. In spite of the fact that vehicular communications cannot rely on the sole VLC due to the limitation provided by the light which allows communications in visibility only, VLC can however be considered to complement other wireless communication technologies which could be overloaded in dense scenarios. In this paper we evaluate the performance of VLC connected vehicles when urban crowd sensing is addressed and we compare the performance of sole vehicular visible light networks with that of VLC as a complementary technology of IEEE 802.11p. Results, obtained through a realistic simulation tool taking into account both the roadmap constraints and the technologies protocols, help to understand when VLC provides the major improvement in terms of delivered data varying the number and position of RSUs and the FOV of the receiver.

  6. Vehicular Visible Light Networks for Urban Mobile Crowd Sensing.

    Science.gov (United States)

    Masini, Barbara M; Bazzi, Alessandro; Zanella, Alberto

    2018-04-12

    Crowd sensing is a powerful tool to map and predict interests and events. In the future, it could be boosted by an increasing number of connected vehicles sharing information and intentions. This will be made available by on board wireless connected devices able to continuously communicate with other vehicles and with the environment. Among the enabling technologies, visible light communication (VLC) represents a low cost solution in the short term. In spite of the fact that vehicular communications cannot rely on the sole VLC due to the limitation provided by the light which allows communications in visibility only, VLC can however be considered to complement other wireless communication technologies which could be overloaded in dense scenarios. In this paper we evaluate the performance of VLC connected vehicles when urban crowd sensing is addressed and we compare the performance of sole vehicular visible light networks with that of VLC as a complementary technology of IEEE 802.11p. Results, obtained through a realistic simulation tool taking into account both the roadmap constraints and the technologies protocols, help to understand when VLC provides the major improvement in terms of delivered data varying the number and position of RSUs and the FOV of the receiver.

  7. Visible Light Responsive Catalysts Using Quantum Dot-Modified Ti02 for Air and Water Purification

    Science.gov (United States)

    Coutts, Janelle L.; Levine, Lanfang H.; Richards, Jeffrey T.; Hintze, paul; Clausen, Christian

    2012-01-01

    The method of photocatalysis utilizing titanium dioxide, TiO2, as the catalyst has been widely studied for trace contaminant control for both air and water applications because of its low energy consumption and use of a regenerable catalyst. Titanium dioxide requires ultraviolet light for activation due to its band gap energy of 3.2 eV. Traditionally, Hg-vapor fluorescent light sources are used in PCO reactors and are a setback for the technology for space application due to the possibility of Hg contamination. The development of a visible light responsive (VLR) TiO2-based catalyst could lead to the use of solar energy in the visible region (approx.45% of the solar spectrum lies in the visible region; > 400 nm) or highly efficient LEDs (with wavelengths > 400 nm) to make PCO approaches more efficient, economical, and safe. Though VLR catalyst development has been an active area of research for the past two decades, there are few commercially available VLR catalysts; those that are available still have poor activity in the visible region compared to that in the UV region. Thus, this study was aimed at the further development of VLR catalysts by a new method - coupling of quantum dots (QD) of a narrow band gap semiconductor (e.g., CdS, CdSe, PbS, ZnSe, etc.) to the TiO2 by two preparation methods: 1) photodeposition and 2) mechanical alloying using a high-speed ball mill. A library of catalysts was developed and screened for gas and aqueous phase applications, using ethanol and 4-chlorophenol as the target contaminants, respectively. Both target compounds are well studied in photocatalytic systems serve as model contaminants for this research. Synthesized catalysts were compared in terms of preparation method, type of quantum dots, and dosage of quantum dots.

  8. CNT supported Mn-doped ZnO nanoparticles: simple synthesis and improved photocatalytic activity for degradation of malachite green dye under visible light

    Science.gov (United States)

    Mohamed, R. M.; Shawky, Ahmed

    2018-03-01

    Hexagonal ZnO nanoparticles doped with Mn and supported with a minor amount of carbon nanotubes (CNTs) were synthesized through a simple coprecipitation-ultrasonication process with high yield. The effect of Mn doping, as well as CNTs addition on structure, surface morphology and texture, optical and electronic properties, was studied. We found that just 1% Mn doping and 1% CNT addition on ZnO showed the best crystallinity, highest surface area, improved visible light absorption, and a lowest estimated band gap of 2.6 eV with minimum charge recombination as revealed from photoluminescence spectra. The application of the optimum composition of the synthesized sample for the photodegradation of malachite green dye showed enhanced photocatalytic activity > 95% under visible light irradiation within 120 min at a minimum dosage of 0.1 g L-1 without any using of hole scavenger or changing the pH. This work highlighting the humble preparation procedure and develops photocatalysis research for real industrial applications.

  9. Gold nanoparticles embedded in Ta 2 O 5 /Ta 3 N 5 as active visible-light plasmonic photocatalysts for solar hydrogen evolution

    KAUST Repository

    Luo, Yujing

    2014-07-10

    Here, we demonstrate a new recreating photocatalytic activity of a Nano Au/Ta2O5 composite for hydrogen evolution from water as a visible-light-responsive plasmonic photocatalyst by embedding Au nanoparticles in a Ta2O5 host lattice. The Nano Au/Ta2O 5 composite samples were prepared through a simple Pechini-type sol-gel process. Further nitridating Nano Au/Ta2O5 composite samples in ammonia flow at 1123 K yielded Nano Au/Ta3N 5 composite samples. The obtained Nano Au/Ta3N5 composite exhibited a significantly enhanced photocatalytic activity in the visible region for hydrogen evolution from water compared with blank Ta 3N5 nanoparticles. UV-visible diffuse reflectance spectra and photocatalytic activity measurements indicated that the excitation of surface plasmon resonance of Au nanoparticles is responsible for the new recreating photocatalytic activity of the Nano Au/Ta2O5 composite and significantly enhanced photocatalytic activity of the Nano Au/Ta3N5 composite for hydrogen evolution in the visible region, which might be ascribed to the charge transfer effect in Nano Au/Ta 2O5 composite and the synergetic effect of charge transfer and near-field electromagnetic effect in Nano Au/Ta3N5 composite induced by surface plasmon resonance of embedded Au nanoparticles. The current study could provide a new paradigm for designing plasmonic metal/semiconductor composite systems for photocatalytic, photovoltaic and other optoelectronic devices. © the Partner Organisations 2014.

  10. Visible light communication: Applications, architecture, standardization and research challenges

    OpenAIRE

    Khan, Latif Ullah

    2016-01-01

    The Radio Frequency (RF) communication suffers from interference and high latency issues. Along with this, RF communication requires a separate setup for transmission and reception of RF waves. Overcoming the above limitations, Visible Light Communication (VLC) is a preferred communication technique because of its high bandwidth and immunity to interference from electromagnetic sources. The revolution in the field of solid state lighting leads to the replacement of florescent lamps by Light E...

  11. A facile fabrication of nitrogen-doped electrospun In2O3 nanofibers with improved visible-light photocatalytic activity

    Science.gov (United States)

    Lu, Na; Shao, Changlu; Li, Xinghua; Miao, Fujun; Wang, Kexin; Liu, Yichun

    2017-01-01

    Semiconductor photocatalysis demonstrates to be an effective approach for eliminating most types of environment contaminants and for producing hydrogen. Herein, a facile synthesis route combining electrospinning technique and thermal treatment method under NH3 atmosphere has been presented as a straightforward protocol for the fabrication of nitrogen-doped In2O3 (N-In2O3) nanofibers, the nitrogen content of which can be well controlled by adjusting the annealing temperature. Photocatalytic tests show that the N-In2O3 nanofibers demonstrate an improved degradation rate of Rhodamine B (RB) compared with pure In2O3 nanofibers under visible-light irradiation. This can be attributed to the nitrogen atom introducing at interstitial sites as well as the generation of oxygen vacancy on the surface of In2O3 nanofibers, resulting in the enhanced utilization of visible light for the N-In2O3 nanofibers. Furthermore, the obtained N-In2O3 nanofibers with the advantage of ultra-long one-dimensional nanostructures can be recycled several times by facile sedimentation and hence present almost no decrease in photocatalytic activity indicative of a well regeneration capability. Therefore, the as-fabricated nitrogen-doped In2O3 nanofibers as a promising photocatalyst present good photocatalytic degradation of organic pollutant in waste water for practical application.

  12. A study of parameter setting and characterization of visible-light driven nitrogen-modified commercial TiO{sub 2} photocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Yu-Lin, E-mail: ylkuo@mail.ntust.edu.tw [Department of Mechanical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan (China); Su, Te-Li [Department of Cosmetic Application and Management, St. Mary' s Medicine, Nursing and Management College, Yilan 266, Taiwan (China); Kung, Fu-Chen [Department of Health Developing and Health Marketing, Kainan University, Taoyuan County 338, Taiwan (China); Wu, Tsai-Jung [Department of Mechanical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan (China)

    2011-06-15

    Highlights: {yields} A cost-effective and highly-efficient visible-light driven nitrogen-modified TiO{sub 2} photocatalyst was prepared by a simple hydrolysis method. {yields} The obtained optimum conditions applied to Taguchi method for preparing visible-light driven photocatalyst were undergone by the process of stirring for 1 day using 4M ammonium as the nitrogen source, and then calcining at 400{sup Degree-Sign }C for 2 h. {yields} Several materials technologies of characterizing N-TiO2 photocatalyst have been used to realize the modification of TiO2 by ammonia water as the nitrogen source. - Abstract: An optimal condition applied to the Taguchi method with an L{sub 9} orthogonal array for preparing a visible-light driven nitrogen-modified TiO{sub 2} (N-TiO{sub 2}) photocatalyst by a simple hydrolysis method has been examined for material characteristics and a photodecolorization test of methyl blue (MB) under various visible light source (fluorescent and blue LED lamps) irradiations. Results of the material characterization showed that the absorption of prepared N-TiO{sub 2} powder exhibited a significant extension into visible light regimes with an optical bandgap (Eg) of around 2.96 eV, which subsequently improved the visible-light photocatalytic activity of N-TiO{sub 2} samples. The superior photocatalytic properties, the pseudo first-order reaction rate constants (k) and photodecolorization efficiency ({eta}%) of a N-TiO{sub 2} photocatalyst during the photodecolorization test of methyl blue (MB) under two different visible light irradiations were very evident compared to those for pure TiO{sub 2}. For photodecolorization of practical dyeing from the waste water from the dyeing and finishing industry, a higher photodecolorization efficiency of N-TiO{sub 2} powder toward Direct blue-86 (DB-86) (Direct Fast Turquoise Blue GL) dye was also achieved.

  13. Development of a visible light transmission (VLT) measurement system using an open-path optical method

    Science.gov (United States)

    Nurulain, S.; Manap, H.

    2017-09-01

    This paper describes about a visible light transmission (VLT) measurement system using an optical method. VLT rate plays an important role in order to determine the visibility of a medium. Current instrument to measure visibility has a gigantic set up, costly and mostly fails to function at low light condition environment. This research focuses on the development of a VLT measurement system using a simple experimental set-up and at a low cost. An open path optical technique is used to measure a few series of known-VLT thin film that act as sample of different visibilities. This measurement system is able to measure the light intensity of these thin films within the visible light region (535-540 nm) and the response time is less than 1s.

  14. Preparation and enhanced photocatalytic activity of carbon nitride/titania(001 vs 101 facets)/reduced graphene oxide (g-C{sub 3}N{sub 4}/TiO{sub 2}/rGO) hybrids under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Meina [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Yu, Jianhua [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Tobacoo Monopoly Bureau, Guangxi Zhuang Autonomous Rejion, Nanning, 530022 (China); Hu, Qun; Su, Wenli [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Fan, Minguang, E-mail: fanmg@gxu.edu.cn [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Guangxi Key Laboratory Petrochemical Rescource Processing and Process Intensification Technology, Nanning 530004 (China); Li, Bin [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Dong, Lihui, E-mail: donglihui2005@126.com [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China)

    2016-12-15

    Graphical abstract: Schematic for the enhanced photocatalytic activity of CN/T/rGO hybrids upon visible light irradiation. - Highlights: • g-C{sub 3}N{sub 4}/TiO{sub 2}(001 vs 101 Facets)/rGO were prepared via one-step solvothermal route. • Performance evaluation was carried out under visible light irradiation. • Samples show excellent photocatalytic activities and stablity. • A possible photocatalytic mechanism is proposed. • The structural effects of g-C{sub 3}N{sub 4}/TiO{sub 2}/rGO explain excellent performance. - Abstract: Herein, a novel photocatalyst, anatase TiO{sub 2} nanoparticles with both exposed (101) and (001) facets synchronously incorporated with g-C{sub 3}N{sub 4} and graphene, was successfully prepared via a simple one-step solvothermal route. The morphology and structure of as-prepared composites were confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM), N{sub 2} adsorption, Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible diffuse reflectance spectroscopy (UV–vis DRS). Efficiency of the prepared samples was investigated by monitoring the degradation of Methyl Orange (MO), Rhodamine B (RhB) and phenol under visible light irradiation. Improved photocatalytic activity in g-C{sub 3}N{sub 4}/TiO{sub 2}/rGO is observed owing to higher specific surface area and enhanced visible light absorption capability. Most importantly, the in situ g-C{sub 3}N{sub 4} and rGO doping might enhance the interaction among g-C{sub 3}N{sub 4}, TiO{sub 2} (001 vs 101) and rGO, which generates more synergistic heteroconjunctions in g-C{sub 3}N{sub 4}/TiO{sub 2}/rGO facilitating a fast electron transfer at the interface among them. This synergistic approach could prove useful for the design and development of other visible light active photocatalysts with high chemical stability.

  15. Photocatalytic degradation of methylene blue on Fe3+-doped TiO2 nanoparticles under visible light irradiation

    Institute of Scientific and Technical Information of China (English)

    SU Bitao; WANG Ke; BAI Jie; MU Hongmei; TONG Yongchun; MIN Shixiong; SHE Shixiong; LEI Ziqiang

    2007-01-01

    Fe3+-doped TiO2 composite nanoparticles with different doping amounts were successfully synthesized using sol-gel method and characterized by X-ray diffraction (XRD),transmission electron microscopy (TEM) and ultraviolet-visible spectroscopy (UV-Vis) diffuse reflectance spectra (DRS). The photocatalytic degradation of methylene blue was used as a model reaction to evaluate the photocatalytic activity of Fe3+/TiO2 nanoparticles under visible light irradia-tion. The influence of doping amount of Fe3+ (ω: 0.00%-3.00%) on photocatalytic activities of TiO2 was investigated.Results show that the size of Fe3+/TiO2 particles decreases with the increase of the amount of Fe3+ and their absorptionspectra are broaden and absorption intensities are also increased. Doping Fe3+ can control the conversion of TiO2 from anatase to rutile. The doping amount of Fe3+ remarkably affects the activity of the catalyst, and the optimum efficiency occurs at about the doping amount of 0.3%. The appropriate doping of Fe3+ can markedly increase the catalytic activity of TiO2 under visible light irradiation.

  16. Enhanced photocatalytic performance of BiVO_4 in aqueous AgNO_3 solution under visible light irradiation

    International Nuclear Information System (INIS)

    Huang, Chien-Kai; Wu, Tsunghsueh; Huang, Chang-Wei; Lai, Chi-Yung; Wu, Mei-Yao; Lin, Yang-Wei

    2017-01-01

    Graphical abstract: Ag"+ ions enhanced photocatalytic activity of BiVO_4 under visible light irradiation. - Highlights: • The presence of Ag"+ ions enhanced the photodegradation activity of BiVO_4. • Photoreduction of Ag deposited on the BiVO_4 surface was obtained. • Luminescence and electrochemical results elucidated the photocatalytic mechanism. • Holes and oxygen radicals were the main reactive species generated by BiVO_4/Ag"+. • Used BiVO_4/Ag"+ exhibited photocatalytic antibacterial activity toward E. coli. - Abstract: Monoclinic-phase bismuth vanadate (BiVO_4) with a 2.468 eV band gap exhibited enhanced synergic photodegradation activity toward methylene blue (MB) when combined with silver ions (Ag"+) in an aqueous solution under visible light irradiation. The mass ratio of AgNO_3 to BiVO_4 and the calcination temperature were discovered to considerably affect the degradation activity of BiVO_4/Ag"+. Superior photocatalytic performance was obtained when BiVO_4 was mixed with 0.01%(w/v) AgNO_3 solution, and complete degradation of MB was achieved after 25 min visible light irradiation, outperforming BiVO_4 or AgNO_3 solution alone. The enhanced photodegradation was investigated using systematic luminescence measurements, electrochemical impedance spectroscopy, and scavenger addition, after which a photocatalytic mechanism for MB degradation under visible light irradiation was identified that involved oxygen radicals and holes. This study also discovered the two dominating processes involved in enhancing the electron–hole separation efficiency and reducing their recombination rate, namely photoreduction of Ag"+ and the formation of a BiVO_4/Ag heterojunction. The synergic effect between BiVO_4 and Ag"+ was discovered to be unique. BiVO_4/Ag"+ was successfully used to degrade two other dyes and disinfect Escherichia Coli. A unique fluorescent technique using BiVO_4 and a R6G solution to detect Ag"+ ions in water was discovered.

  17. Controlled preparation of Ag–Cu2O nanocorncobs and their enhanced photocatalytic activity under visible light

    International Nuclear Information System (INIS)

    Yang, Siyuan; Zhang, Shengsen; Wang, Hongjuan; Yu, Hao; Fang, Yueping; Peng, Feng

    2015-01-01

    Graphical abstract: The corncob-like Ag–Cu 2 O nanostructure with suitably exposed Ag surface exhibited much higher photocatalytic activity than Ag@Cu 2 O nanocables and Cu 2 O nanowires. - Highlights: • Ag–Cu 2 O nanocorncobs have been controllably prepared by a simple synthesis. • The possible formation mechanism of Ag–Cu 2 O has been studied. • Ag–Cu 2 O exhibits noticeable improved photocurrent compared with the pure Cu 2 O NWs. • Ag–Cu 2 O with suitably exposed Ag surface shows much higher photocatalytic activity. - Abstract: Novel corncob-like nano-heterostructured Ag–Cu 2 O photocatalyst has been controllably prepared by adjusting the synthetic parameters, and the possible formation mechanism has been also studied. The photoelectrochemical and photocatalytic performances demonstrated that the as-prepared Ag–Cu 2 O nanocorncobs exhibited higher photocatalytic activity than both pure Cu 2 O nanowires and cable-like Ag@Cu 2 O nano-composites. It was concluded that Ag–Cu 2 O nanocorncobs with suitably exposed Ag surface not only effectively inhibit the recombination of electron–hole pairs but also suitably increase the active sites of electronic conduction, and thus increasing the photocatalytic activity under visible light irradiation

  18. Effective Electron Transfer Pathway of the Ternary TiO2/RGO/Ag Nanocomposite with Enhanced Photocatalytic Activity under Visible Light

    Directory of Open Access Journals (Sweden)

    Hongwei Tian

    2017-05-01

    Full Text Available Mesoporous TiO2/reduced graphene oxide/Ag (TiO2/RGO/Ag ternary nanocomposite with an effective electron transfer pathway is obtained by an electrostatic self-assembly method and photo-assisted treatment. Compared with bare mesoporous TiO2 (MT and mesoporous TiO2/RGO (MTG, the ternary mesoporous TiO2/RGO/Ag (MTGA nanocomposite exhibited superior photocatalytic performance for the degradation of methylene blue (MB under visible light, and the degradation rate reached 0.017 min−1, which was 3.4-times higher than that of MTG. What is more, the degradation rate of MTGA nanocomposite after three cycle times is 91.2%, and the composition is unchanged. In addition, we found that the OH•, h+ and especially O2•− contribute to the high photocatalytic activity of MTGA for MB degradation. It is proposed that Ag nanoparticles can form the local surface plasmon resonance (LSPR to absorb the visible light and distract the electrons into MT, and RGO can accept the electrons from MT to accelerate the separation efficiency of photogenerated carriers. The establishment of MTGA ternary nanocomposite makes the three components act synergistically to enhance the photocatalytic performance.

  19. Active tracking system for visible light communication using a GaN-based micro-LED and NRZ-OOK.

    Science.gov (United States)

    Lu, Zhijian; Tian, Pengfei; Chen, Hong; Baranowski, Izak; Fu, Houqiang; Huang, Xuanqi; Montes, Jossue; Fan, Youyou; Wang, Hongyi; Liu, Xiaoyan; Liu, Ran; Zhao, Yuji

    2017-07-24

    Visible light communication (VLC) holds the promise of a high-speed wireless network for indoor applications and competes with 5G radio frequency (RF) system. Although the breakthrough of gallium nitride (GaN) based micro-light-emitting-diodes (micro-LEDs) increases the -3dB modulation bandwidth exceptionally from tens of MHz to hundreds of MHz, the light collected onto a fast photo receiver drops dramatically, which determines the signal to noise ratio (SNR) of VLC. To fully implement the practical high data-rate VLC link enabled by a GaN-based micro-LED, it requires focusing optics and a tracking system. In this paper, we demonstrate an active on-chip tracking system for VLC using a GaN-based micro-LED and none-return-to-zero on-off keying (NRZ-OOK). Using this novel technique, the field of view (FOV) was enlarged to 120° and data rates up to 600 Mbps at a bit error rate (BER) of 2.1×10 -4 were achieved without manual focusing. This paper demonstrates the establishment of a VLC physical link that shows enhanced communication quality by orders of magnitude, making it optimized for practical communication applications.

  20. Enhanced visible-light-induced photocatalytic activity of α-Fe2O3 adsorbing redox enzymes

    Directory of Open Access Journals (Sweden)

    Kai Kamada

    2015-03-01

    Full Text Available We report fabrication of hybrid photocatalyst composed of an n-type semiconductor (α-Fe2O3 and a redox enzyme (horseradish peroxidase; HRP, and its performance for oxidation of luminol in an aqueous solution. The hybrid photocatalyst is simply formed via physical adsorption of HRP to an α-Fe2O3 sintered body. Under visible light irradiation, the bare α-Fe2O3 with a narrow bandgap photocatalytically oxidizes luminol along with blue emission that can be used as an indicator of the photocatalytic performance. The blue emission is largely strengthened after the adsorption of HRP, demonstrating that the presence of enzyme improves apparent photocatalytic activity of α-Fe2O3. The favorable effect is derived from synergistic oxidation of luminol by the biocatalysts (HRP as well as by the photocatalyst (α-Fe2O3. In this paper, influence of excitation wavelength, adsorption amount of HRP, and reaction temperature on the overall photocatalytic activity are elucidated, and then a reaction mechanism of the proposed novel hybrid photocatalyst is discussed in detail.

  1. Understanding the superior photocatalytic activity of noble metals modified titania under UV and visible light irradiation.

    Science.gov (United States)

    Bumajdad, Ali; Madkour, Metwally

    2014-04-28

    Although TiO2 is one of the most efficient photocatalysts, with the highest stability and the lowest cost, there are drawbacks that hinder its practical applications like its wide band gap and high recombination rate of the charge carriers. Consequently, many efforts were directed toward enhancing the photocatalytic activity of TiO2 and extending its response to the visible region. To head off these attempts, modification of TiO2 with noble metal nanoparticles (NMNPs) received considerable attention due to their role in accelerating the transfer of photoexcited electrons from TiO2 and also due to the surface plasmon resonance which induces the photocatalytic activity of TiO2 under visible light irradiation. This insightful perspective is devoted to the vital role of TiO2 photocatalysis and its drawbacks that urged researchers to find solutions such as modification with NMNPs. In a coherent context, we discussed here the characteristics which qualify NMNPs to possess a great enhancement effect for TiO2 photocatalysis. Also we tried to understand the reasons behind this effect by means of photoluminescence (PL) and electron paramagnetic resonance (EPR) spectra, and Density Functional Theory (DFT) calculations. Then the mechanism of action of NMNPs upon deposition on TiO2 is presented. Finally we introduced a survey of the behaviour of these noble metal NPs on TiO2 based on the particle size and the loading amount.

  2. Secrecy Dimming Capacity in Multi-LED PAM-Based Visible Light Communications

    Directory of Open Access Journals (Sweden)

    Byung Wook Kim

    2017-01-01

    Full Text Available Recently, mobile cloud computing (MCC has gained a lot of interest for researchers building the next-generation mobile applications. Because unauthorized access may cause serious problems, security and privacy with MCC have become significant issues. This paper addresses the secrecy dimming capacity of secure transmission in MCC over visible light communication (VLC channels. By obtaining the entropy-maximizing symbol probability of multiple light emitting diode- (LED- based pulse amplitude modulation (PAM, mathematical analysis of the secrecy dimming capacity of VLC was derived. Simulation results show that the secure transmission ability of multi-LED-based VLC is determined according to the number of activated LEDs and target dimming level. This can be a guideline for practical VLC-based mobile network designers intending to secure wireless transmission and to decide on the number of activated LEDs at target dimming level to operate.

  3. Eosin Y Catalyzed Visible-Light-Promoted Aerobic Oxidative Cyclization of 2-Aminobenzothiazole

    Directory of Open Access Journals (Sweden)

    Vishal Srivastava

    2015-12-01

    Full Text Available A mild and efficient one-pot visible light irradiated synthesis of 2-aminobenzothiazole 4(a–l from arylisothiocyanate 1(a–l and secondary amines 2 have been reported in presence of eosin Y as an organophotoredox catalyst at room temperature under aerobic condition. This synthesis includes application of air and visible light as inexpensive, readily available, high atom economy, non-toxic and sustainable regents.

  4. Preparation and enhanced photocatalytic activity of carbon nitride/titania(001 vs 101 facets)/reduced graphene oxide (g-C3N4/TiO2/rGO) hybrids under visible light

    Science.gov (United States)

    Huang, Meina; Yu, Jianhua; Hu, Qun; Su, Wenli; Fan, Minguang; Li, Bin; Dong, Lihui

    2016-12-01

    Herein, a novel photocatalyst, anatase TiO2 nanoparticles with both exposed (101) and (001) facets synchronously incorporated with g-C3N4 and graphene, was successfully prepared via a simple one-step solvothermal route. The morphology and structure of as-prepared composites were confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption, Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS). Efficiency of the prepared samples was investigated by monitoring the degradation of Methyl Orange (MO), Rhodamine B (RhB) and phenol under visible light irradiation. Improved photocatalytic activity in g-C3N4/TiO2/rGO is observed owing to higher specific surface area and enhanced visible light absorption capability. Most importantly, the in situ g-C3N4 and rGO doping might enhance the interaction among g-C3N4, TiO2 (001 vs 101) and rGO, which generates more synergistic heteroconjunctions in g-C3N4/TiO2/rGO facilitating a fast electron transfer at the interface among them. This synergistic approach could prove useful for the design and development of other visible light active photocatalysts with high chemical stability.

  5. Hierarchical Ag/AgCl-TiO{sub 2} hollow spheres with enhanced visible-light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xu Long; Yin, Hao Yong [College of Materials Environment Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Nie, Qiu Lin, E-mail: nieqiulin@hdu.edu.cn [College of Materials Environment Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Wu, Wei Wei [College of Materials Environment Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Zhang, Yang; LiYuan, Qiu [College of Science, Hangzhou Dianzi University, Hangzhou 310018 (China)

    2017-01-01

    The hierarchical Ag/AgCl-TiO{sub 2} hollow spheres were synthesized by depositing Ag/AgCl nanoparticles on TiO{sub 2} hollow spheres via a precipitation photoreduction method, and they were further characterized using TGA, SEM, TEM, XRD, XPS, UV–vis DRS and photoelectric chemical analysis. The analysis showed that the hierarchical Ag/AgCl-TiO{sub 2} hollow spheres exhibited the highest photocatalytic activity, which was approximately 13 times higher than that of TiO{sub 2} hollow spheres. The high photocatalytic activity of the composites is due to efficient electron-hole pairs separation at the photocatalyst interfaces, and localized surface plasmon resonance of Ag nanoparticles formed on AgCl particles in the degradation reaction. - Highlights: • TiO{sub 2} hollow spheres were prepared by a sacrificial template method. • The hollow spheres were modified with Ag/AgCl to form the heterojunctions. • The modification may produce synergistic effect of LSPR and hollow structure. • Visible light photocatalytic activity was enhanced on this hollow catalyst. • The mechanism of the improved photocatalytic performance was discussed.

  6. Nitrogen complex species and its chemical nature in TiO2 for visible-light sensitized photocatalysis

    International Nuclear Information System (INIS)

    Asahi, Ryoji; Morikawa, Takeshi

    2007-01-01

    A photocatalyst with high reactivity under visible-light has been desired to utilize solar irradiation or interior lighting efficiently. Nitrogen-doped TiO 2 revealed significant improvement in optical absorption and photocatalytic activity over TiO 2 under visible light. We have performed the first-principles calculations to study the detailed N complex species introduced in TiO 2 . The results include stable geometries, densities of states, formation energies, and core levels. The present systematic studies account for the long-term controversial issue on N-doped TiO 2 , in particular, regarding the detailed assignment of N 1s binding energies observed in the XPS measurement. The detailed analyses of the formation energies show that introducing the N species more in a controlled way via process conditions is crucial to achieve the optimized photocatalytic performance

  7. Composite multi-lobe descriptor for cross spectral face recognition: matching active IR to visible light images

    Science.gov (United States)

    Cao, Zhicheng; Schmid, Natalia A.

    2015-05-01

    Matching facial images across electromagnetic spectrum presents a challenging problem in the field of biometrics and identity management. An example of this problem includes cross spectral matching of active infrared (IR) face images or thermal IR face images against a dataset of visible light images. This paper describes a new operator named Composite Multi-Lobe Descriptor (CMLD) for facial feature extraction in cross spectral matching of near-infrared (NIR) or short-wave infrared (SWIR) against visible light images. The new operator is inspired by the design of ordinal measures. The operator combines Gaussian-based multi-lobe kernel functions, Local Binary Pattern (LBP), generalized LBP (GLBP) and Weber Local Descriptor (WLD) and modifies them into multi-lobe functions with smoothed neighborhoods. The new operator encodes both the magnitude and phase responses of Gabor filters. The combining of LBP and WLD utilizes both the orientation and intensity information of edges. Introduction of multi-lobe functions with smoothed neighborhoods further makes the proposed operator robust against noise and poor image quality. Output templates are transformed into histograms and then compared by means of a symmetric Kullback-Leibler metric resulting in a matching score. The performance of the multi-lobe descriptor is compared with that of other operators such as LBP, Histogram of Oriented Gradients (HOG), ordinal measures, and their combinations. The experimental results show that in many cases the proposed method, CMLD, outperforms the other operators and their combinations. In addition to different infrared spectra, various standoff distances from close-up (1.5 m) to intermediate (50 m) and long (106 m) are also investigated in this paper. Performance of CMLD is evaluated for of each of the three cases of distances.

  8. Antibacterial property of Ag nanoparticle-impregnated N-doped titania films under visible light

    Science.gov (United States)

    Wong, Ming-Show; Chen, Chun-Wei; Hsieh, Chia-Chun; Hung, Shih-Che; Sun, Der-Shan; Chang, Hsin-Hou

    2015-07-01

    Photocatalysts produce free radicals upon receiving light energy; thus, they possess antibacterial properties. Silver (Ag) is an antibacterial material that disrupts bacterial physiology. Our previous study reported that the high antibacterial property of silver nanoparticles on the surfaces of visible light-responsive nitrogen-doped TiO2 photocatalysts [TiO2(N)] could be further enhanced by visible light illumination. However, the major limitation of this Ag-TiO2 composite material is its durability; the antibacterial property decreased markedly after repeated use. To overcome this limitation, we developed TiO2(N)/Ag/TiO2(N) sandwich films in which the silver is embedded between two TiO2(N) layers. Various characteristics, including silver and nitrogen amounts, were examined in the composite materials. Various analyses, including electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and ultraviolet-visible absorption spectrum and methylene blue degradation rate analyses, were performed. The antibacterial properties of the composite materials were investigated. Here we revealed that the antibacterial durability of these thin films is substantially improved in both the dark and visible light, by which bacteria, such as Escherichia coli, Streptococcus pyogenes, Staphylococcus aureus, and Acinetobacter baumannii, could be efficiently eliminated. This study demonstrated a feasible approach to improve the visible-light responsiveness and durability of antibacterial materials that contain silver nanoparticles impregnated in TiO2(N) films.

  9. Protection from visible light by commonly used textiles is not predicted by ultraviolet protection.

    Science.gov (United States)

    Van den Keybus, Caroline; Laperre, Jan; Roelandts, Rik

    2006-01-01

    Interest is increasing in the prevention of acute and chronic actinic damage provided by clothing. This interest has focused mainly on protection against ultraviolet irradiation, but it has now also turned to protection against visible light. This change is mainly due to the action spectrum in the visible light range of some photodermatoses and the increasing interest in photodynamic therapy. The ultraviolet protection provided by commercially available textiles can be graded by determining an ultraviolet protection factor. Several methods have already been used to determine the ultraviolet protection factor. The fact that protection from visible light by textiles cannot be predicted by their ultraviolet protection makes the situation more complicated. This study attempts to determine whether or not the ultraviolet protection factor value of a particular textile is a good parameter for gauging its protection in the visible light range and concludes that a protection factor of textile materials against visible light needs to be developed. This development should go beyond the protection factor definition used in this article, which has some limitations, and should take into account the exact action spectrum for which the protection is needed.

  10. Doping effect on monolayer MoS2 for visible light dye degradation - A DFT study

    Science.gov (United States)

    Cheriyan, Silpa; Balamurgan, D.; Sriram, S.

    2018-04-01

    The electronic and optical properties of, Nitrogen (N), Cobalt (Co), and Co-N co-doped monolayers of MoS2 has been studied by using density functional theory (DFT) for visible light photocatalytic activity. From the calculations, it has been observed that the band gap of monolayer MoS2 has been reduced while doping. However, the band gaps of pristine and N doped MoS2 monolayers only falls in the visible region while for Co and Co-N co-doped systems, the band gap shifted to IR region. The optical calculation also confirms the results. The formation energy values of the doped system reaveal that MoS2 monolayer drops its stability while doping. To evaluate the photocatalytic response, band edge potentials of pristine and N-MoS2 are calculated, and the observed results show that compared to N-doped MoS2 monolayer, pure MoS2 is highly suitable for visible light photocatalytic dye degradation.

  11. Microbial inactivation kinetics and mechanisms of carbon-doped TiO{sub 2} (C-TiO{sub 2}) under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Jaehong [Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, Jeonbuk 570-752 (Korea, Republic of); School of Natural Resources, University of Nebraska–Lincoln, Lincoln, NE 68583-0817 (United States); Seo, Young-Seok; Oh, Byung-Taek [Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, Jeonbuk 570-752 (Korea, Republic of); Cho, Min, E-mail: cho317@jbnu.ac.kr [Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, Jeonbuk 570-752 (Korea, Republic of)

    2016-04-05

    Highlights: • Carbon modified TiO{sub 2} photocatalysts prepared by sol–gel methods. • C-TiO{sub 2} was highly effective in the inactivation of L. monocytogenes. • C-TiO{sub 2} was shown to be more synergistic inactivation effect under visible light. • C-TiO{sub 2} be useful in the development of alternative disinfectants for environmental application. - Abstract: In this study, titanium dioxide nanoparticles doped with carbon (C-TiO{sub 2}) were synthesized by means of sol–gel methods, and the synthesis was verified by means of X-ray photoelectron spectroscopy. The nanoparticles’ photocatalytic disinfection activity of Listeria monocytogenes was tested under UV and visible light. The observed inactivation levels for 150 min of visible light exposure with and without UV cutoff filters were 2.10 and 2.45 log, respectively. We also found that traditional reactive oxygen species had insignificant actions on C-TiO{sub 2} photocatalysts and that L. monocytogenes inactivation in the C-TiO{sub 2} system under visible light was induced in large part by the midgap states (h{sub mid}{sup +}) that was produced photochemically from the visible light response. C-TiO{sub 2} was found to accelerate bacterial inactivation (of L. monocytogenes) in the presence of visible light. Our data suggests that the C-TiO{sub 2} may be useful in the development of alternative disinfectants for environmental applications.

  12. Enhanced visible light photocatalytic activity in SnO{sub 2}@g-C{sub 3}N{sub 4} core-shell structures

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Hao; Zhao, Xiaoru, E-mail: xrzhao@nwpu.edu.cn; Duan, Libing; Liu, Ruidi; Li, Hui

    2017-04-15

    Highlights: • Novel SnO{sub 2}@g-C{sub 3}N{sub 4} core-shell structures were successfully synthesized. • The core-shell structures exhibited enhanced visible light photocatalytic activity. • The enhanced photocatalytic activity was due to synergic action of SnO{sub 2} and g-C{sub 3}N{sub 4}. - Abstract: SnO{sub 2}@g-C{sub 3}N{sub 4} core-shell structures were successfully synthesized by simple calcination of SnO{sub 2} microspheres and urea in a muffle furnace. The investigation of morphologies and microstructures showed that g-C{sub 3}N{sub 4} was wrapped tightly on the surface of SnO{sub 2} microspheres with large intimate interface contact areas between the g-C{sub 3}N{sub 4} shells and SnO{sub 2} cores. The X-ray photoelectron spectroscopy results and photoluminescence spectra demonstrated that the intimate interface contacts could facilitate the transfer and separation of the photogenerated charge carriers at their interface, thus the recombination of the photogenerated electron-hole pairs was impeded. The photocatalytic activity of the synthesized composites was evaluated by the photodegradation of methyl orange under visible light irradiation. It was found that SnO{sub 2}@g-C{sub 3}N{sub 4} exhibited higher photodegradation rate (k = 0.013 min{sup −1}) than that of g-C{sub 3}N{sub 4} (k = 0.008 min{sup −1}) and pure SnO{sub 2}. The enhanced photocatalytic activity could be attributed to the synergic action of SnO{sub 2} and g-C{sub 3}N{sub 4}.

  13. A facile approach to pure-phase Bi{sub 2}Fe{sub 4}O{sub 9} nanoparticles sensitive to visible light

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X., E-mail: xiongwang@njust.edu.cn [School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, 117543 (Singapore); Zhang, M.; Tian, P. [School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Chin, W.S. [Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, 117543 (Singapore); Zhang, C.M. [School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2014-12-01

    Graphical abstract: - Highlights: • Pure-phase Bi{sub 2}Fe{sub 4}O{sub 9} nanoparticles were prepared by a facile and environmentally benign sol–gel method. • The multiband characteristic of the nanoparticles greatly expands the visible light absorption. • The visible-light-driven photocatalytic activity of the obtained nanoparticles was improved by 30-fold as compared to the bulk. - Abstract: Pure-phase Bi{sub 2}Fe{sub 4}O{sub 9} nanoparticles with mullite-type structure were successfully fabricated through a facile and environmentally benign sol–gel process. According to the UV–Vis diffuse reflection spectrum, the multiband structure and the band edge position of the nanoparticles were confirmed, indicating the prominent absorption in the expanded visible-light region. As compared to the bulk, the visible-light-driven photocatalytic activity of the obtained nanoparticles was improved by 30-fold. The much improved photocatalytic efficiency of the sample mainly owed to the small crystal size and the multiband characteristic as well as the adding of H{sub 2}O{sub 2} as electron scavenger and a source of hydroxide free radicals instead of Fenton-like reaction, leading to a low recombination of the photogenerated e{sup −}/h{sup +} pairs.

  14. Formation of multilayer-Eosin Y-sensitized TiO{sub 2} via Fe{sup 3+} coupling for efficient visible-light photocatalytic hydrogen evolution

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuexiang; Guo, Miaomiao; Peng, Shaoqin [Department of Chemistry, Nanchang University, Nanchang 330031 (China); Lu, Gongxuan; Li, Shuben [State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2009-07-15

    An efficient visible-light active photocatalyst of multilayer-Eosin Y-sensitized TiO{sub 2} is prepared through linkage of Fe{sup 3+} between not only TiO{sub 2} and Eosin Y but also different Eosin Y molecules to form three-dimensional polymeric dye structure. The multilayer-dye-sensitized photocatalyst is found to have high light harvesting efficiency and photocatalytic activity for hydrogen evolution under visible light irradiation ({lambda} > 420 nm). On the optimum conditions (1:1 initial molar ratio of Eosin Y to Fe(NO{sub 3}){sub 3}, initial 10 x 10{sup -3} M Eosin Y, and 1.0 wt% Pt deposited by in situ photoreduction), its maximal apparent quantum yield for hydrogen evolution is 19.1% from aqueous triethanolamine solution (TEOA aq). The present study highlights linking between dye molecules via metal ions as a general way to develop efficient visible-light photocatalyst. (author)

  15. Crystallization-mediated amorphous Cu{sub x}O (x = 1, 2)/crystalline CuI p–p type heterojunctions with visible light enhanced and ultraviolet light restrained photocatalytic dye degradation performance

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongli; Cai, Yun; Zhou, Jian; Fang, Jun, E-mail: fangjun@njtech.edu.cn; Yang, Yang, E-mail: yangy@njtech.edu.cn

    2017-04-30

    Highlights: • Cu{sub x}O(x = 1, 2)/CuI p–p type heterojunctions were facilely constructed via crystallization-mediated approaches. • Cu{sub x}O/CuI heterojunctions exhibit effective visible-light-driven photocatalytic activity for dye degradation. • The Cu{sub x}O/CuI interface can enhance the spatial separation of the photogenerated electron–hole pairs. • This work represents a critical step for mass production of functional semiconductor heterojunctions in a mild manner. - Abstract: We report simple and cost-effective fabrication of amorphous Cu{sub x}O (x = 1, 2)/crystalline CuI p–p type heterojunctions based on crystallization-mediated approaches including antisolvent crystallization and crystal reconstruction. Starting from CuI acetonitrile solution, large crystals in commercial CuI can be easily converted to aggregates consisting of small particles by the crystallization processes while the spontaneous oxidation of CuI by atmospheric/dissolved oxygen can induce the formation of trace Cu{sub x}O on CuI surface. As a proof of concept, the as-fabricated Cu{sub x}O/CuI heterojunctions exhibit effective photocatalytic activity towards the degradation of methyl blue and other organic pollutants under visible light irradiation, although the wide band-gap semiconductor CuI is insensible to visible light. Unexpectedly, the Cu{sub x}O/CuI heterojunctions exhibit restrained photocatalytic activity when ultraviolet light is applied in addition to the visible. It is suggested that the Cu{sub x}O/CuI interface can enhance the spatial separation of the electron–hole pairs with the excitation of Cu{sub x}O under visible light and prolong the lifetime of photogenerated charges with high redox ability. The present work represents a critically important step in advancing the crystallization technique for potential mass production of semiconductor heterojunctions in a mild manner.

  16. Enhanced photosensitized degradation of rhodamine B on CdS/TiO{sub 2} nanocomposites under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wenjuan [Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Sciences and Engineering, Nanjing University of Information Sciences and Engineering, Nanjing 210044 (China); Research Institute of Photocatalysis, State Key Laboratory Breeding Base of Photocatalysis, Fuzhou University, Fuzhou 350002 (China); Shandong Province Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165 (China); Cui, Xiaoli [Shandong Province Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165 (China); Wang, Peixian; Shao, Yu [Research Institute of Photocatalysis, State Key Laboratory Breeding Base of Photocatalysis, Fuzhou University, Fuzhou 350002 (China); Li, Danzhen, E-mail: dzli@fzu.edu.cn [Research Institute of Photocatalysis, State Key Laboratory Breeding Base of Photocatalysis, Fuzhou University, Fuzhou 350002 (China); Teng, Fei [Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Sciences and Engineering, Nanjing University of Information Sciences and Engineering, Nanjing 210044 (China)

    2013-09-01

    Graphical abstract: The photosensitized degradation of RhB was largely enhanced by the synergistic effect of the RhB and CdS/TiO{sub 2} nanocomposite. The composite of the two inorganic semiconductors with appropriate oxidation reduction energy levels enhanced the charge separation and extended the absorption response to visible region. - Highlights: • CdS/TiO{sub 2} nanocomposites were synthesized by a simple hydrothermal method. • Samples prepared at 200 °C, 12 h, CdS/TiO{sub 2} = 12% possessed the best activity. • The photosensitized degradation of RhB was largely enhanced by the composite. • The better activity was due to the synergistic effect of the RhB and CdS/TiO{sub 2}. - Abstract: Visible-light-driven photocatalysts, CdS/TiO{sub 2} nanocomposites were synthesized by a simple hydrothermal method. Their formation and structures were characterized by X-ray diffractometer, transmission electron microscopy, diffuse reflectance spectroscopy, and X-ray photoelectron spectroscopy. Taking rhodamine B (RhB) as a model, their photocatalytic activities in aqueous phase under visible light irradiation (420 < λ < 800 nm) were tested. The results showed that the composite of CdS and TiO{sub 2} with appropriate oxidation reduction energy levels enhanced the charge separation and extended the absorption response into visible light region. Thus, the photosensitized degradation of RhB was largely enhanced. The degradation mechanism was explored concretely.

  17. Graphene oxide quantum dot-sensitized porous titanium dioxide microsphere: Visible-light-driven photocatalyst based on energy band engineering.

    Science.gov (United States)

    Zhang, Yu; Qi, Fuyuan; Li, Ying; Zhou, Xin; Sun, Hongfeng; Zhang, Wei; Liu, Daliang; Song, Xi-Ming

    2017-07-15

    We report a novel graphene oxide quantum dot (GOQD)-sensitized porous TiO 2 microsphere for efficient photoelectric conversion. Electro-chemical analysis along with the Mott-Schottky equation reveals conductivity type and energy band structure of the two semiconductors. Based on their energy band structures, visible light-induced electrons can transfer from the p-type GOQD to the n-type TiO 2 . Enhanced photocurrent and photocatalytic activity in visible light further confirm the enhanced separation of electrons and holes in the nanocomposite. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Visible-light self-cleaning cotton by metalloporphyrin-sensitized photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Afzal, Shabana [School of Applied Sciences and Engineering, Monash University, Churchill 3842 (Australia); Daoud, Walid A., E-mail: wdaoud@cityu.edu.hk [School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong); Langford, Steven J. [School of Chemistry, Monash University, Clayton 3800 (Australia)

    2013-06-15

    Thin films of meso-tetra(4-carboxyphenyl)porphyrin with different metal centres (MTCPP, M = Fe, Co and Zn) in combination with anatase TiO{sub 2} have been formed on cotton fabric. Their self-cleaning properties have been evaluated by conducting the photocatalytic degradation of methylene blue under visible-light irradiation. All MTCPP/TiO{sub 2}-coated cotton fabrics showed superior self-cleaning performance as compared to the bare TiO{sub 2}-coated cotton. Among the three metal porphyrins, FeTCPP showed the highest photocatalytic activity with complete degradation of methylene blue in 180 min. The fabrics were characterized by FESEM, XRD, UV–vis and fluorescence spectroscopy.

  19. Low-temperature solid-state preparation of ternary CdS/g-C{sub 3}N{sub 4}/CuS nanocomposites for enhanced visible-light photocatalytic H{sub 2}-production activity

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Feiyue; Yin, Hui; Xiang, Quanjun, E-mail: xiangqj@mail.hzau.edu.cn

    2017-01-01

    Highlights: • CdS/g-C{sub 3}N{sub 4}/CuS composite were synthesized by low-temperature solid-state method. • CdS/g-C{sub 3}N{sub 4}/CuS show enhanced visible-light photocatalytic H{sub 2} evolution activity. • The enhanced photocatalytic H{sub 2} production activity is due to the heterojunction. • Heterojunction between the components promote charge separation/transfer property. - Abstract: Low-temperature solid-state method were gradually demonstrated as a high efficiency, energy saving and environmental protection strategy to fabricate composite semiconductor materials. CdS-based multiple composite photocatalytic materials have attracted increasing concern owning to the heterostructure constituents with tunable band gaps. In this study, the ternary CdS/g-C{sub 3}N{sub 4}/CuS composite photocatalysts were prepared by a facile and novel low-temperature solid-state strategy. The optimal ternary CdS/g-C{sub 3}N{sub 4}/CuS composite exhibits a high visible-light photocatalytic H{sub 2}-production rate of 57.56 μmol h{sup −1} with the corresponding apparent quantum efficiency reaches 16.5% at 420 nm with Na{sub 2}S/Na{sub 2}SO{sub 3} mixed aqueous solution as sacrificial agent. The ternary CdS/g-C{sub 3}N{sub 4}/CuS composites show the enhanced visible-light photocatalytic H{sub 2}-evolution activity comparing with the binary CdS-based composites or simplex CdS. The enhanced photocatalytic activity is ascribed to the heterojunctions and the synergistic effect of CuS and g-C{sub 3}N{sub 4} in promotion of the charge separation and charge mobility. This work shows that the low-temperature solid-state method is efficient and environmentally benign for the preparation of CdS-based multiple composite photocatalytic materials with enhanced visible-light photocatalytic H{sub 2}-production activity.

  20. Visible-light-induced Ag/BiVO4 semiconductor with enhanced photocatalytic and antibacterial performance

    Science.gov (United States)

    Regmi, Chhabilal; Dhakal, Dipesh; Wohn Lee, Soo

    2018-02-01

    An Ag-loaded BiVO4 visible-light-driven photocatalyst was synthesized by the microwave hydrothermal method followed by photodeposition. The photocatalytic performance of the synthesized samples was evaluated on a mixed dye (methylene blue and rhodamine B), as well as bisphenol A in aqueous solution. Similarly, the disinfection activities of synthesized samples towards the Gram-negative Escherichia coli (E. coli) in a model cell were investigated under irradiation with visible light (λ ≥ 420 nm). The synthesized samples have monoclinic scheelite structure. Photocatalytic results showed that all Ag-loaded BiVO4 samples exhibited greater degradation and a higher mineralization rate than the pure BiVO4, probably due to the presence of surface plasmon absorption that arises due to the loading of Ag on the BiVO4 surface. The optimum Ag loading of 5 wt% has the highest photocatalytic performance and greatest stability with pseudo-first-order rate constants of 0.031 min-1 and 0.023 min-1 for the degradation of methylene blue and rhodamine B respectively in a mixture with an equal volume and concentration of each dye. The photocatalytic degradation of bisphenol A reaches 76.2% with 5 wt% Ag-doped BiVO4 within 180 min irradiation time. Similarly, the Ag-loaded BiVO4 could completely inactivate E. coli cells within 30 min under visible light irradiation. The disruption of the cell membrane as well as degradation of protein and DNA exhibited constituted evidence for antibacterial activity towards E. coli. Moreover, the bactericidal mechanisms involved in the photocatalytic disinfection process were systematically investigated.

  1. Hierarchical nanostructures assembled from ultrathin Bi2WO6 nanoflakes and their visible-light induced photocatalytic property

    International Nuclear Information System (INIS)

    Wang, Xiong; Tian, Peng; Lin, Ying; Li, Li

    2015-01-01

    Graphical abstract: Hierarchical Bi 2 WO 6 nanostructures assembled from nanoflakes were successfully synthesized by a facile hydrothermal method. The excellent photocatalytic activity and recycling performance might be mainly ascribed to the unique hierarchical nanostructures and are expected to offer the nanostructures promising applications in the field of wastewater treatment. - Highlights: • Hierarchical Bi 2 WO 6 nanostructures assembled from nanoflakes were successfully synthesized by a facile hydrothermal method. • Visible-light-induced photocatalytic efficiency of the obtained nanoarchitectures was enhanced about 6 times. • A possible mechanism was proposed. - Abstract: With the aid of ethylene glycol and sodium dodecylbenzene sulfonate, the hierarchical Bi 2 WO 6 nanoarchitectures assembled from nanoflakes could be attained by a facile solvothermal method. The synthetic strategy is versatile and environmentally friendly and a plausible growth-assembly process was proposed for the formation of the hierarchical nanostructures. The visible-light-irradiated photocatalytic activity was estimated by the degradation of rhodamine B. Compared with the sample prepared by a solid-state reaction, the visible-light-induced photocatalytic efficiency of the nanostructures was enhanced about 6 times. The photocatalysis tests show that the nanostructures exhibit excellent photocatalytic activity and recycling performance, which were mainly ascribed to the unique hierarchical nanostructures and are expected to offer promising applications in the field of wastewater treatment

  2. Room-Temperature and Aqueous-Phase Synthesis of Plasmonic Molybdenum Oxide Nanoparticles for Visible-Light-Enhanced Hydrogen Generation.

    Science.gov (United States)

    Shi, Jiayuan; Kuwahara, Yasutaka; Wen, Meicheng; Navlani-García, Miriam; Mori, Kohsuke; An, Taicheng; Yamashita, Hiromi

    2016-09-06

    A straightforward aqueous synthesis of MoO3-x nanoparticles at room temperature was developed by using (NH4 )6 Mo7 O24 ⋅4 H2 O and MoCl5 as precursors in the absence of reductants, inert gas, and organic solvents. SEM and TEM images indicate the as-prepared products are nanoparticles with diameters of 90-180 nm. The diffuse reflectance UV-visible-near-IR spectra of the samples indicate localized surface plasmon resonance (LSPR) properties generated by the introduction of oxygen vacancies. Owing to its strong plasmonic absorption in the visible-light and near-infrared region, such nanostructures exhibit an enhancement of activity toward visible-light catalytic hydrogen generation. MoO3-x nanoparticles synthesized with a molar ratio of Mo(VI) /Mo(V) 1:1 show the highest yield of H2 evolution. The cycling catalytic performance has been investigated to indicate the structural and chemical stability of the as-prepared plasmonic MoO3-x nanoparticles, which reveals its potential application in visible-light catalytic hydrogen production. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Visible Light Communications towards 5G

    Directory of Open Access Journals (Sweden)

    S. Zvanovec

    2015-04-01

    Full Text Available 5G networks have to offer extremely high capacity for novel streaming applications. One of the most promising approaches is to embed large numbers of co-operating small cells into the macro-cell coverage area. Alternatively, optical wireless based technologies can be adopted as an alternative physical layer offering higher data rates. Visible light communications (VLC is an emerging technology for future high capacity communication links (it has been accepted to 5GPP in the visible range of the electromagnetic spectrum (~370–780 nm utilizing light-emitting diodes (LEDs simultaneously provide data transmission and room illumination. A major challenge in VLC is the LED modulation bandwidths, which are limited to a few MHz. However, myriad gigabit speed transmission links have already been demonstrated. Non line-of-sight (NLOS optical wireless is resistant to blocking by people and obstacles and is capable of adapting its’ throughput according to the current channel state information. Concurrently, organic polymer LEDs (PLEDs have become the focus of enormous attention for solid-state lighting applications due to their advantages over conventional white LEDs such as ultra-low costs, low heating temperature, mechanical flexibility and large photoactive areas when produced with wet processing methods. This paper discusses development of such VLC links with a view to implementing ubiquitous broadcasting networks featuring advanced modulation formats such as orthogonal frequency division multiplexing (OFDM or carrier-less amplitude and phase modulation (CAP in conjunction with equalization techniques. Finally, this paper will also summarize the results of the European project ICT COST IC1101 OPTICWISE (Optical Wireless Communications - An Emerging Technology dealing VLC and OLEDs towards 5G networks.

  4. Probing Photocatalytic Characteristics of Sb-Doped TiO2 under Visible Light Irradiation

    Directory of Open Access Journals (Sweden)

    Lingjing Luo

    2014-01-01

    Full Text Available Sb-doped TiO2 nanoparticle with varied dopant concentrations was synthesized using titanium tetrachloride (TiCl4 and antimony chloride (SbCl3 as the precursors. The properties of Sb-doped TiO2 nanoparticles were characterized by X-ray diffraction (XRD, scanning electron microscope (SEM, fluorescence spectrophotometer, and Uv-vis spectrophotometer. The absorption edge of TiO2 nanoparticles could be extended to visible region after doping with antimony, in contrast to the UV absorption of pure TiO2. The results showed that the photocatalytic activity of Sb-doped TiO2 nanoparticles was much more active than pure TiO2. The 0.1% Sb-doped TiO2 nanoparticles demonstrated the best photocatalytic activity which was better than that of the Degussa P25 under visible light irradiation using terephthalic acid as fluorescent probe. The effects of Sb dopant on the photocatalytic activity and the involved mechanism were extensively investigated in this work as well.

  5. Efficient photocatalytic degradation of ibuprofen in aqueous solution using novel visible-light responsive graphene quantum dot/AgVO{sub 3} nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Zhen-dong [Department of Physics, Tsinghua University, Beijing 100084 (China); Wang, Jia-jun [Shanghai Institute of Applied Radiation, Shanghai University, Shanghai 200444 (China); Wang, Liang, E-mail: wangl@shu.edu.cn [Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444 (China); Yang, Xiong-yu; Xu, Gang [Shanghai Institute of Applied Radiation, Shanghai University, Shanghai 200444 (China); Tang, Liang, E-mail: tang1liang@shu.edu.cn [Shanghai Institute of Applied Radiation, Shanghai University, Shanghai 200444 (China)

    2016-07-15

    Highlights: • A novel heterojunction photocatalyst, GQD/AgVO{sub 3} was prepared. • The morphology of GQD/AgVO{sub 3} was well characterized. • Ibuprofen was easily decomposed using GQD/AgVO{sub 3} under visible-light irradiation. • The degradation pathway of ibuprofen was also suggested. - Abstract: Single crystalline, non-toxicity, and long-term stability graphene quantum dots (GQDs) were modified onto the AgVO{sub 3} nanoribbons by a facile hydrothermal and sintering technique which constructs a unique heterojunction photocatalyst. Characterization results indicate that GQDs are well dispersed on the surface of AgVO{sub 3} nanoribbons and GQD/AgVO{sub 3} heterojunctions are formed, which can greatly promote the separation efficiency of photogenerated electron-hole pairs under visible light irradiation. By taking advantage of this feature, the GQD/AgVO{sub 3} heterojunctions exhibit considerable improvement on the photocatalytic activities for the degradation of ibuprofen (IBP) under visible light irradiation as compared to pure AgVO{sub 3}. The photocatalytic activity of GQD/AgVO{sub 3} heterojunctions is relevant with GQD ratio and the optimal activity is obtained at 3 wt% with the highest separation efficiency of photogenerated electron-hole pairs. Integrating the physicochemical and photocatalytic properties, the factors controlling the photocatalytic activity of GQD/AgVO{sub 3} heterojunctions are discussed in detail. Moreover, potential photocatalytic degradation mechanisms of IBP via GQD/AgVO{sub 3} heterojunctions under visible light are proposed.

  6. Automatic illumination compensation device based on a photoelectrochemical biofuel cell driven by visible light

    Science.gov (United States)

    Yu, You; Han, Yanchao; Xu, Miao; Zhang, Lingling; Dong, Shaojun

    2016-04-01

    Inverted illumination compensation is important in energy-saving projects, artificial photosynthesis and some forms of agriculture, such as hydroponics. However, only a few illumination adjustments based on self-powered biodetectors that quantitatively detect the intensity of visible light have been reported. We constructed an automatic illumination compensation device based on a photoelectrochemical biofuel cell (PBFC) driven by visible light. The PBFC consisted of a glucose dehydrogenase modified bioanode and a p-type semiconductor cuprous oxide photocathode. The PBFC had a high power output of 161.4 μW cm-2 and an open circuit potential that responded rapidly to visible light. It adjusted the amount of illumination inversely irrespective of how the external illumination was changed. This rational design of utilizing PBFCs provides new insights into automatic light adjustable devices and may be of benefit to intelligent applications.Inverted illumination compensation is important in energy-saving projects, artificial photosynthesis and some forms of agriculture, such as hydroponics. However, only a few illumination adjustments based on self-powered biodetectors that quantitatively detect the intensity of visible light have been reported. We constructed an automatic illumination compensation device based on a photoelectrochemical biofuel cell (PBFC) driven by visible light. The PBFC consisted of a glucose dehydrogenase modified bioanode and a p-type semiconductor cuprous oxide photocathode. The PBFC had a high power output of 161.4 μW cm-2 and an open circuit potential that responded rapidly to visible light. It adjusted the amount of illumination inversely irrespective of how the external illumination was changed. This rational design of utilizing PBFCs provides new insights into automatic light adjustable devices and may be of benefit to intelligent applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00759g

  7. PAMAM templated N,Pt co-doped TiO2 for visible light photodegradation of brilliant black.

    Science.gov (United States)

    Nzaba, Sarre Kadia Myra; Ntsendwana, Bulelwa; Mamba, Bhekie Brilliance; Kuvarega, Alex Tawanda

    2018-05-01

    This study examined the photocatalytic degradation of an azo dye brilliant black (BB) using non-metal/metal co-doped TiO 2 . N,Pt co-doped TiO 2 photocatalysts were prepared by a modified sol-gel method using amine-terminated polyamidoamine dendrimer generation 0 (PG0) as a template and source of nitrogen. Structural, morphological, and textural properties were evaluated using scanning electron microscopy coupled to energy-dispersive X-ray spectroscopy (SEM/EDX), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction spectroscopy (XRD), X-ray photoelectron spectroscopy (XPS), thermal gravimetric analysis (TGA), Fourier transform infrared (FTIR), Raman spectroscopy (RS), photoluminescence (PL) and ultra-violet/visible spectroscopy (UV-Vis). The synthesized photocatalysts exhibited lower band gap energies as compared to the Degussa P-25, revealing a red shift in band gap towards the visible light absorption region. Photocatalytic activity of N,Pt co-doped TiO 2 was measured by the reaction of photocatalytic degradation of BB dye. Enhanced photodegradation efficiency of BB was achieved after 180-min reaction time with an initial concentration of 50 ppm. This was attributed to the rod-like shape of the materials, larger surface area, and enhanced absorption of visible light induced by N,Pt co-doping. The N,Pt co-doped TiO 2 also exhibited pseudo-first-order kinetic behavior with half-life and rate constant of 0.37 and 0.01984 min -1 , respectively. The mechanism of the photodegradation of BB under the visible light irradiation was proposed. The obtained results prove that co-doping of TiO 2 with N and Pt contributed to the enhanced photocatalytic performances of TiO 2 for visible light-induced photodegradation of organic contaminants for environmental remediation. Therefore, this work provides a new approach to the synthesis of PAMAM templated N,Pt co-doped TiO 2 for visible light photodegradation of brilliant black.

  8. Visible light-responded C, N and S co-doped anatase TiO{sub 2} for photocatalytic reduction of Cr(VI)

    Energy Technology Data Exchange (ETDEWEB)

    Lei, X.F., E-mail: leixuefei69@163.com [School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004 (China); Institute of Metallurgical Resource and Environmental Engineering, Northeastern University, Shenyang 110819 (China); Liaoning Key Laboratory of Metallurgical Resource Recycling Science, Shenyang 110819 (China); Liaoning Engineering and Technology Research Center of Boron Resource, Comprehensive, Utilization, Shenyang 110819 (China); Liaoning Provincial Universities Key Laboratory of Boron Resource Ecological, Utilization, Technology and Boron Materials, Shenyang 110819 (China); Xue, X.X.; Yang, H. [Institute of Metallurgical Resource and Environmental Engineering, Northeastern University, Shenyang 110819 (China); Liaoning Key Laboratory of Metallurgical Resource Recycling Science, Shenyang 110819 (China); Liaoning Engineering and Technology Research Center of Boron Resource, Comprehensive, Utilization, Shenyang 110819 (China); Liaoning Provincial Universities Key Laboratory of Boron Resource Ecological, Utilization, Technology and Boron Materials, Shenyang 110819 (China); Chen, C.; Li, X.; Pei, J.X.; Niu, M.C.; Yang, Y.T.; Gao, X.Y. [School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004 (China)

    2015-10-15

    The (C, N and S) co-doped TiO{sub 2} (TH-TiO{sub 2}) samples were synthesized by a sol-gel method calcined at 500 °C, employing butyl titanate as the titanium source and thiourea as the dopant. The structures of TH-TiO{sub 2} samples were characterized by X-ray diffraction (XRD), Transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectra (DRS), photoluminescence (PL) spectroscopy, Thermo gravimetry and differential thermal analysis (TG-DTA), Scanning electron microscopy (SEM) and nitrogen adsorption–desorption isotherms. The photocatalytic activities were checked through the photocatalytic reduction of Cr(VI) as a model compound under visible light irradiation. The results showed that the thiourea content played an important role on the microstructure and photocatalytic activity of the samples. According to XPS results, (C, N and S) atoms were successfully co-doped into the nanostructures of TH-TiO{sub 2} samples. TH-TiO{sub 2} samples with thiourea: Ti molar ratio of 1.5 exhibits higher photocatalytic activity than that of the other samples under visible light irradiation, which can be attributed to the synergic effect of the pure anatase structure, the higher light absorption characteristics in visible regions, separation efficiency of electron–hole pairs, the specific surface area and the optimum (C, N and S) content. - Graphical abstract: (C, N and S) co-doped TiO{sub 2} samples show good photocatalytic activity for Cr (VI) reduction under visible light irradiation. - Highlights: • (C, N and S) co-doping in TH-TiO{sub 2} samples can promote the formation of the pure anatase structure. • (C, N and S) atoms were successfully co-doped into the nanostructures of TH-TiO{sub 2} samples. • The band gap energy of TH-TiO{sub 2} samples reduced after (C, N and S) co-doping. • (C, N and S) co-doped TiO{sub 2} samples were effective for the photocatalytic reduction of Cr(VI) under visible light

  9. Zinc vanadate nanorods and their visible light photocatalytic activity

    International Nuclear Information System (INIS)

    Pei, L.Z.; Lin, N.; Wei, T.; Liu, H.D.; Yu, H.Y.

    2015-01-01

    Highlights: • Zinc vanadate nanorods have been synthesized by a facile hydrothermal process. • The size of zinc vanadate nanorods can be controlled by growth conditions. • Zinc vanadate nanorods show good photocatalytic activities of methylene blue under solar light. - Abstract: Zinc vanadate nanorods have been synthesized by a simple hydrothermal process using zinc acetate and sodium vanadate as the raw materials. The zinc vanadate nanorods have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM) and solid UV–vis diffuse reflectance spectrum. XRD pattern and HRTEM image show that the zinc vanadate nanorods are composed of single crystalline monoclinic Zn 2 V 2 O 7 phase. SEM and TEM observations show that the diameter and length of the zinc vanadate nanorods are 50–100 nm and about 5 μm, respectively. Sodium dodecyl sulfonate (SDS) has an essential role in the formation of zinc vanadate nanorods. The SDS-assisted nucleation and growth process have been proposed to explain the formation and growth of the zinc vanadate nanorods. Solid UV–vis diffuse reflectance spectrum shows that the zinc vanadate nanorods have a band gap of 2.76 eV. The photocatalytic activities of the zinc vanadate nanorods have been evaluated by the photocatalytic degradation of methylene blue (MB) under solar light irradiation. The MB with the concentration of 10 mg L −1 can be degraded totally under the solar light irradiation for 4 h. It is suggested that the zinc vanadate nanorods exhibit promising application potential for the degradation of organic pollutants under solar light irradiation

  10. Enhanced photoactivity of CuPp-TiO{sub 2} photocatalysts under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Xiangfei, Lue [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian, Shaanxi 710069 (China); Li Jun, E-mail: junli@nwu.edu.cn [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian, Shaanxi 710069 (China); Chen, Wang; Mingyue, Duan; Yun, Luo; Guiping, Yao [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian, Shaanxi 710069 (China); Junlong, Wang [Wei Nan Teachers University, Wei Nan, Shaanxi, 714000 (China)

    2010-11-15

    Three novel porphyrins, 5,10,15-tri-phenyl-20-[4-(3-phenoxy)-propoxy]phenyl porphyrin, 5,15-di-phenyl-10,20-di-[4-(3-phenoxy)-propoxy]phenyl porphyrin and 5-phenyl-10,15,20-tri- [4-(3-phenoxy)-propoxy]phenyl porphyrin, and their corresponding copper(II) complexes were synthesized and characterized spectroscopically. The photocatalytic effects of TiO{sub 2} samples impregnated with copper(II) porphyrins was investigated by photodegradation of 4-nitrophenol (4-NP) in aqueous solution under visible light. The photocatalysts were characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-vis spectra and FT-IR spectra. The results indicated that CuPps were successfully loaded and interacted with the surface of TiO{sub 2} microsphere, which is crucial to enhance the activity of the catalytic composite under visible light.

  11. Enhanced visible-light photocatalysis and gas sensor properties of polythiophene supported tin doped titanium nanocomposite

    Science.gov (United States)

    Chandra, M. Ravi; Siva Prasada Reddy, P.; Rao, T. Siva; Pammi, S. V. N.; Siva Kumar, K.; Vijay Babu, K.; Kiran Kumar, Ch.; Hemalatha, K. P. J.

    2017-06-01

    The polythiophene supported tin doped titanium nanocomposites (PTh/Sn-TiO2) were synthesized by modified sol-gel process through oxidative polymerization of thiophene. The fourier transform infrared spectroscopy (FT-IR) and UV-Vis diffuse reflectance spectroscopy (UV-DRS) analysis confirms the existence of synergetic interaction between metal oxide and polymer along with extension of absorption edge to visible region. The composites are found to be in spherical form with core-shell structure, which is confirmed by scanning electron spectroscopy (SEM) and transmission electron microscopy (TEM) images, the presence of all respective elements of composite are proven by energy-dispersive X-ray spectroscopy (EDX) analysis. The importance of polythiophene on surface of metal oxide has been were studied as a function of photocatalytic activity for degradation of organic pollutant congo red and gas sensor behavior towards liquid petroleum gas (LPG). All the composites are photocatalytically active and the composite with 1.5 wt% thiophene degrades the pollutant congo red within 120 min when compared to remaining catalysts under visible light irradiation. On the other hand, same composite have shown potential gas sensor properties towards LPG at 300 °C. Considering all the results, it can be noted that polythiophene acts as good sensitizer towards LPG and supporter for the tin doped titania that improve the photocatalytic activity under visible light.

  12. Discrete Input Signaling for MISO Visible Light Communication Channels

    KAUST Repository

    Arfaoui, Mohamed Amine; Rezki, Zouheir; Ghrayeb, Ali; Alouini, Mohamed-Slim

    2017-01-01

    In this paper, we study the achievable secrecy rate of visible light communication (VLC) links for discrete input distributions. We consider single user single eavesdropper multiple-input single-output (MISO) links. In addition, both beamforming

  13. Enhanced visible-light-response photocatalytic degradation of methylene blue on Fe-loaded BiVO4 photocatalyst

    International Nuclear Information System (INIS)

    Chala, Sinaporn; Wetchakun, Khatcharin; Phanichphant, Sukon; Inceesungvorn, Burapat; Wetchakun, Natda

    2014-01-01

    Highlights: • Fe-loaded BiVO 4 particles were prepared by hydrothermal method. • Physicochemical properties played a significant role in photocatalytic process. • All Fe-loaded BiVO 4 samples showed higher photocatalytic activity than pure BiVO 4 . • The Fe 3+ ions may improve the separation of photogenerated electrons and holes. - Abstract: Pure BiVO 4 and nominal 0.5–5.0 mol% Fe-loaded BiVO 4 samples were synthesized by hydrothermal method. All samples were characterized in order to obtain the correlation between structure and photocatalytic properties by X-ray diffraction, Brunauer, Emmett and Teller, UV–vis diffuse reflectance spectrophotometry, photoluminescence spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and inductively coupled plasma-optical emission spectroscopy. The structure of all samples was single-phase monoclinic scheelite. The absorption spectrum of 5.0 mol% Fe-loaded BiVO 4 shifted to the visible region, suggesting the potential application of this material as a superior visible-light driven photocatalyst in comparison with pure BiVO 4 . Photocatalytic activities of all photocatalyst samples were examined by studying the degradation of methylene blue under visible light irradiation. The results clearly showed that Fe-loaded BiVO 4 sample exhibited remarkably higher activity than pure BiVO 4

  14. An Unusual Strong Visible-Light Absorption Band in Red Anatase TiO2 Photocatalyst Induced by Atomic Hydrogen-Occupied Oxygen Vacancies.

    Science.gov (United States)

    Yang, Yongqiang; Yin, Li-Chang; Gong, Yue; Niu, Ping; Wang, Jian-Qiang; Gu, Lin; Chen, Xingqiu; Liu, Gang; Wang, Lianzhou; Cheng, Hui-Ming

    2018-02-01

    Increasing visible light absorption of classic wide-bandgap photocatalysts like TiO 2 has long been pursued in order to promote solar energy conversion. Modulating the composition and/or stoichiometry of these photocatalysts is essential to narrow their bandgap for a strong visible-light absorption band. However, the bands obtained so far normally suffer from a low absorbance and/or narrow range. Herein, in contrast to the common tail-like absorption band in hydrogen-free oxygen-deficient TiO 2 , an unusual strong absorption band spanning the full spectrum of visible light is achieved in anatase TiO 2 by intentionally introducing atomic hydrogen-mediated oxygen vacancies. Combining experimental characterizations with theoretical calculations reveals the excitation of a new subvalence band associated with atomic hydrogen filled oxygen vacancies as the origin of such band, which subsequently leads to active photo-electrochemical water oxidation under visible light. These findings could provide a powerful way of tailoring wide-bandgap semiconductors to fully capture solar light. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Photocatalytic hydrogen generation from water under visible light using core/shell nano-catalysts.

    Science.gov (United States)

    Wang, X; Shih, K; Li, X Y

    2010-01-01

    A microemulsion technique was employed to synthesize nano-sized photocatalysts with a core (CdS)/shell (ZnS) structure. The primary particles of the photocatalysts were around 10 nm, and the mean size of the catalyst clusters in water was about 100 nm. The band gaps of the catalysts ranged from 2.25 to 2.46 eV. The experiments of photocatalytic H(2) generation showed that the catalysts (CdS)(x)/(ZnS)(1-x) with x ranging from 0.1 to 1 were able to produce hydrogen from water photolysis under visible light. The catalyst with x=0.9 had the highest rate of hydrogen production. The catalyst loading density also influenced the photo-hydrogen production rate, and the best catalyst concentration in water was 1 g L(-1). The stability of the nano-catalysts in terms of size, morphology and activity was satisfactory during an extended test period for a specific hydrogen production rate of 2.38 mmol g(-1) L(-1) h(-1) and a quantum yield of 16.1% under visible light (165 W Xe lamp, lambda>420 nm). The results demonstrate that the (CdS)/(ZnS) core/shell nano-particles are a novel photo-catalyst for renewable hydrogen generation from water under visible light. This is attributable to the large band-gap ZnS shell that separates the electron/hole pairs generated by the CdS core and hence reduces their recombinations.

  16. III-nitride Photonic Integrated Circuit: Multi-section GaN Laser Diodes for Smart Lighting and Visible Light Communication

    KAUST Repository

    Shen, Chao

    2017-01-01

    The past decade witnessed the rapid development of III-nitride light-emitting diodes (LEDs) and laser diodes (LDs), for smart lighting, visible-light communication (VLC), optical storage, and internet-of-things. Recent studies suggested that the Ga

  17. Resource allocation for multichannel broadcasting visible light communication

    Science.gov (United States)

    Le, Nam-Tuan; Jang, Yeong Min

    2015-11-01

    Visible light communication (VLC), which offers the possibility of using light sources for both illumination and data communications simultaneously, will be a promising incorporation technique with lighting applications. However, it still remains some challenges especially coverage because of field-of-view limitation. In this paper, we focus on this issue by suggesting a resource allocation scheme for VLC broadcasting system. By using frame synchronization and a network calculus QoS approximation, as well as diversity technology, the proposed VLC architecture and QoS resource allocation for the multichannel-broadcasting MAC (medium access control) protocol can solve the coverage limitation problem and the link switching problem of exhibition service.

  18. Green synthesis of AgI-reduced graphene oxide nanocomposites: Toward enhanced visible-light photocatalytic activity for organic dye removal

    International Nuclear Information System (INIS)

    Reddy, D. Amaranatha; Lee, Seunghee; Choi, Jiha; Park, Seonhwa; Ma, Rory; Yang, Haesik; Kim, Tae Kyu

    2015-01-01

    Graphical abstract: - Highlights: • A novel green synthesis of AgI-RGO nanocomposites. • Significant improvement of the photocatalytic activity in RGO wrapped composites. • Additive promoted photocatalytic performance in AgI-RGO composites. • AgI-RGO nanocomposites may find applications in luminescent and catalytic devices. - Abstract: Novel reduced graphene oxide (RGO) enwrapped AgI nanocomposites were successfully fabricated by a facile template-free ultrasound-assisted method at room temperature. The structural, morphological, and optical studies demonstrate that the obtained nanostructures have good crystallinity and that the graphene nanosheets are decorated densely with AgI nanostructures. The photocatalytic activity of the composite was evaluated by the degradation of an organic dye, Rhodamine B (RhB), under visible-light irradiation. The results indicate that AgI with incorporated graphene exhibited much higher photocatalytic activity than the pure AgI due to the improved separation efficiency of the photogenerated carriers and that it prolonged the lifetime of the electron–hole pairs due to the chemical bonding between AgI and graphene. AgI (0.4 mg mL −1 of graphene oxide) nanocomposites displayed the highest photocatalytic degradation efficiency and the corresponding catalytic efficiencies within 70 min were ∼96%. Moreover, with the assistance of H 2 O 2 the photocatalytic ability of the as-obtained AgI-RGO nanocomposites was enhanced. The corresponding catalytic efficiencies within 30 min were ∼96.8% (for 1 mL H 2 O 2 ) under the same irradiation conditions. The excellent visible-light photocatalytic efficiency and luminescence properties make the AgI-RGO nanocomposites promising candidates for the removal of organic dyes for water purification and enable their application in near-UV white LEDs

  19. Monoclinic BiVO{sub 4} micro-/nanostructures: Microwave and ultrasonic wave combined synthesis and their visible-light photocatalytic activities

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yafang; Li, Guangfang; Yang, Xiaohui; Yang, Hao; Lu, Zhong [Key Laboratory for Green Chemical Process of Ministry of Education and Hubei Novel Reactor and Green Chemical Technology Key Laboratory, Wuhan Institute of Technology, Xiongchu Avenue, Wuhan 430073 (China); Chen, Rong, E-mail: rchenhku@hotmail.com [Key Laboratory for Green Chemical Process of Ministry of Education and Hubei Novel Reactor and Green Chemical Technology Key Laboratory, Wuhan Institute of Technology, Xiongchu Avenue, Wuhan 430073 (China); Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Lumo Road, Wuhan 430074 (China)

    2013-02-25

    Graphical abstract: Monoclinic BiVO{sub 4} with different sizes and morphologies were synthesized by a facile microwave and ultrasonic wave combined technique for the first time and exhibited different optical properties and visible-light-driven photocatalytic efficiency. Highlights: Black-Right-Pointing-Pointer BiVO{sub 4} nanostructures were prepared by microwave and ultrasonic wave combined method. Black-Right-Pointing-Pointer BiVO{sub 4} nanostructures could be modulated by varying the solvent and pH value. Black-Right-Pointing-Pointer Different BiVO{sub 4} nanostructures exhibited different photocatalytic activities. Black-Right-Pointing-Pointer The photocatalytic performance was influenced by the band gap, phase and size. - Abstract: Monoclinic bismuth vanadate (m-BiVO{sub 4}) micro-/nanostructures with different sizes and morphologies were successfully prepared via a facile and rapid microwave and ultrasonic wave combined technique. The obtained BiVO{sub 4} products were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM) and UV-vis diffuse reflection spectroscopy (DRS). It was found that the solvent and pH value had a significant influence on morphology, size and crystalline structure of the product. Nut-like, potato-like and broccoli-like monoclinic BiVO{sub 4} were fabricated in different solvents. The crystal phase could be modulated by varying the pH value of reaction system. The photocatalytic activities of the products were also evaluated by the degradation of Rhodamine B (RhB) under visible light irradiation. The result revealed that the photocatalytic activities of BiVO{sub 4} nanostructures were closely related to the crystalline phase, band gap and particle size. Monoclinic BiVO{sub 4} nanoparticles with small crystal size and large band gap exhibited remarkable photocatalytic performance.

  20. Synthesis, characterization and visible light photocatalytic activity of Cr 3+ , Ce 3+ and N co-doped TiO 2 for the degradation of humic acid

    KAUST Repository

    Rashid, S. G.; Gondal, M. A.; Hameed, A.; Aslam, M.; Dastageer, M. A.; Yamani, Z. H.; Anjum, Dalaver H.

    2015-01-01

    The synthesis, characterization and photocatalytic activity of Cr3+ and Ce3+ co-doped TiON (N-doped TiO2) for the degradation of humic acid with exposure to visible light is reported. The synthesized bimetal (Cr3+ + Ce3+) modified TiON (Cr-Ce/TiON), with an evaluated bandgap of 2.1 eV, exhibited an enhanced spectral response in the visible region as compared to pure and Ce3+ doped TiON (Ce/TiON). The XRD analysis revealed the insertion of Cr3+ and Ce3+ in the crystal lattice along with Ti4+ and N that resulted in the formation of a strained TiON anatase structure with an average crystallite size of ∼10 nm. Raman analysis also supported the formation of stressed rigid structures after bimetal doping. HRTEM confirmed the homogeneous distribution of both the doped metallic components in the crystal lattice of TiON without the formation of surface oxides of either Cr3+ or Ce3+. Electron energy loss spectroscopy (EELS) analysis revealed no change in the oxidation of either Cr or Ce during the synthesis. The synthesized Cr-Ce/TiON catalyst exhibited appreciable photocatalytic activity for the degradation of humic acid on exposure to visible light. Additionally, a noticeable mineralization of carbon rich humic acid was also witnessed. The photocatalytic activity of the synthesized catalyst was compared with pristine and Ce3+ doped TiON. © The Royal Society of Chemistry 2015.

  1. Ternary g-C{sub 3}N{sub 4}/ZnO/AgCl nanocomposites: Synergistic collaboration on visible-light-driven activity in photodegradation of an organic pollutant

    Energy Technology Data Exchange (ETDEWEB)

    Akhundi, Anise; Habibi-Yangjeh, Aziz, E-mail: ahabibi@uma.ac.ir

    2015-12-15

    Graphical abstract: - Highlights: • Novel ternary g-C{sub 3}N{sub 4}/ZnO/AgCl nanocomposites were prepared using a facile method. • g-C{sub 3}N{sub 4}/ZnO/AgCl (40%) has superior activity in degradation of RhB under visible-light. • The activity is 7.5 and 6-fold higher than g-C{sub 3}N{sub 4}/ZnO and g-C{sub 3}N{sub 4}/AgCl, respectively. • There are synergistic collaboration between ZnO and AgCl in enhancing the activity. - Abstract: The present work demonstrates the preparation of ternary g-C{sub 3}N{sub 4}/ZnO/AgCl nanocomposites, as novel visible-light-driven photocatalysts, using a facile large-scale methodology. The microstructure, morphology, purity, thermal, and spectroscopic properties of the prepared samples were studied using XRD, TEM, EDX, TG, UV–vis DRS, FT-IR, and PL techniques. Compared with the g-C{sub 3}N{sub 4}/ZnO and g-C{sub 3}N{sub 4}/AgCl nanocomposites, the g-C{sub 3}N{sub 4}/ZnO/AgCl nanocomposites displayed higher photocatalytic activity for degradation of rhodamine B under visible-light irradiation. Photocatalytic activity of the g-C{sub 3}N{sub 4}/ZnO/AgCl (40%) nanocomposite is about 9.5, 7.5, and 6-fold higher than those of the g-C{sub 3}N{sub 4}, g-C{sub 3}N{sub 4}/ZnO, and g-C{sub 3}N{sub 4}/AgCl samples, respectively. The enhanced photocatalytic activity of the nanocomposites was mainly attributed to efficiently separation of the charge carriers by synergistic collaboration of ZnO and AgCl in removing photogenerated electrons from g-C{sub 3}N{sub 4}. Furthermore, the results showed that the photocatalytic activity of the nanocomposite considerably depends on the preparation time, calcination temperature, and scavengers of the reactive species. Finally, the nanocomposite was found to be a reusable photocatalyst.

  2. PREPARATION AND VISIBLE LIGHT RESPONSIVE PHOTOCATALYTIC ACTIVITY OF Fe3O4/Ni-Al-Ce LDH/Bi2WO6 COMPOSITES

    Directory of Open Access Journals (Sweden)

    Jiaqi Hao

    Full Text Available Novel Fe3O4/Ni-Al-Ce LDH/Bi2WO6 composites were prepared through a hydrothermal method and co-precipitation method. The morphologies and structures of the photocatalysts were characterized by XRD, Raman, TEM, UV-vis-DRS, BET surface area and VSM techniques. The photocatalytic performances of the photocatalysts were investigated by the decolorization of methyl orange (MO under visible-light irradiation. The results showed that the Fe3O4/Ni-Al-Ce LDH/Bi2WO6 composites exhibited greater photocatalytic activities compared to pure Bi2WO6 and the Ni-Al-Ce LDH; the decolorization rate of MO was 87% within 60 min under visible-light irradiation. The decolorization efficiency of the composite material remained at 71% after 4 recycling runs, showing improved stability. Furthermore, the experimental results also showed that the photocatalytic reactions for the composites followed first-order reaction kinetics. Therefore, the Fe3O4/Ni-Al-Ce LDH/Bi2WO6 composites were photocatalysts with high efficiencies and stabilities for a photocatalytic reaction of an organic pollutant, and this study provides a new, effective method for the development of wastewater treatment.

  3. Integrating porphyrin nanoparticles into a 2D graphene matrix for free-standing nanohybrid films with enhanced visible-light photocatalytic activity.

    Science.gov (United States)

    Chen, Yingzhi; Huang, Zheng-Hong; Yue, Mengbin; Kang, Feiyu

    2014-01-21

    Organic nanostructures in terms of porphyrin building blocks have shown great potential in visible-light photocatalytic applications because of their optical, electrical, and catalytic properties. Graphenes are known to provide a high-quality two-dimensional (2D) support for inorganic semiconductor nanostructures to increase the adsorption capability of the photocatalysts and an electron-transfer medium with attractive potential to enhance photogenerated charge separation. A combination of porphyrin nanostructures with graphene sheets, particularly in the form of free-standing films, is highly desirable due to its photocatalysing feasibility and convenience. Toward this aim, we demonstrate a facile method to integrate porphyrin (meso-tetra(p-hydroxyphenyl)porphyrin, p-THPP) nanoparticles (NPs) into macroscopic graphene (reduced graphene oxide, rGO) films through vacuum filtration of the co-colloids of graphene oxide (GO) and p-THPP nanoparticles (NPs) followed by gaseous reduction. The obtained p-THPP/rGO nanohybrid film exhibits enhanced visible-light photocatalytic activity compared to each moiety of the hybrid, and this photocatalyst can be easily separated and recycled for successive use with excellent stability. The results show that this facile fabrication of the p-THPP/rGO nanohybrid film makes it available for high-performance optoelectronic applications, as well as for device integration.

  4. One-pot solvothermal synthesis of three-dimensional (3D) BiOI/BiOCl composites with enhanced visible-light photocatalytic activities for the degradation of bisphenol-A

    International Nuclear Information System (INIS)

    Xiao, Xin; Hao, Rong; Liang, Min; Zuo, Xiaoxi; Nan, Junmin; Li, Laisheng; Zhang, Weide

    2012-01-01

    Highlights: ► Synthesis of 3D BiOI/BiOCl microspheres by a one-pot template-free solvothermal method. ► Photocatalyst is BiOI/BiOCl composites. ► BiOI/BiOCl composites have enhanced visible-light photocatalytic ability to bisphenol-A. ► A simple and direct photodegradation pathway of bisphenol-A is proposed. - Abstract: Three-dimensional (3D) BiOI/BiOCl composite microspheres with enhanced visible-light photodegradation activity of bisphenol-A (BPA) are synthesized by a simple, one-pot, template-free, solvothermal method using BiI 3 and BiCl 3 as precursors. These 3D hierarchical microspheres with heterojunction structures are composed of 2D nanosheets and have composition-dependent absorption properties in the ultraviolet and visible light regions. The photocatalytic oxidation of BPA over BiOI/BiOCl composites followed pseudo first-order kinetics according to the Langmuir–Hinshelwood model. The highest photodegradation efficiency of BPA, i.e., nearly 100%, was observed with the BiOI/BiOCl composite (containing 90% BiOI) using a catalyst dosage of 1 g L −1 in the BPA solution (C 0 = 20 mg L −1 , pH = 7.0) under visible light irradiation for 60 min. Under these conditions, the reaction rate constant was more than 4 and 20 times greater than that of pure BiOI and the commercially available Degussa P25, respectively. The superior photocatalytic activity of this composite catalyst is attributed to the suitable band gap energies and the low recombination rate of the photogenerated electron–hole pairs due to the presence of BiOI/BiOCl heterostructures. Only one intermediate at m/z 151 was observed in the photodegradation process of BPA by liquid chromatography combined with mass spectrometry (LC–MS) analysis, and a simple and hole-predominated photodegradation pathway of BPA was subsequently proposed. Furthermore, this photocatalyst exhibited a high mineralization ratio, high stability and easy separation for recycling use, suggesting that it is a

  5. Facile Synthesis of g-C3N4 Nanosheets/ZnO Nanocomposites with Enhanced Photocatalytic Activity in Reduction of Aqueous Chromium(VI under Visible Light

    Directory of Open Access Journals (Sweden)

    Xiaoya Yuan

    2016-09-01

    Full Text Available Graphitic-C3N4 nanosheets (CN/ZnO photocatalysts (CN/ZnO with different CN loadings were successfully prepared via a simple precipitation-calcination in the presence of exfoliated C3N4 nanosheets. Their morphology and structure were thoroughly characterized by powder X-ray diffraction (XRD, scanning electron microscopy (SEM, high-resolution transmission electron microscopy (HRTEM, X-ray photoelectron spectroscopy (XPS, UV-Vis diffuse reflectance spectroscopy (DRS and photoluminescence spectra (PL. The results showed that hexagonal wurzite-phase ZnO nanoparticles were randomly distributed onto the CN nanosheets with a well-bonded interface between the two components in the CN/ZnO composites. The performance of the photocatalytic Cr(VI reduction indicated that CN/ZnO exhibited better photocatalytic activity than pure ZnO under visible-light irradiation and the photocatalyst composite with a lower loading of CN sheets eventually displayed higher activity. The enhanced performance of CN/ZnO photocatalysts could be ascribed to the increased absorption of the visible light and the effective transfer and separation of the photogenerated charge carriers.

  6. Facile synthesis of CNTs/CaIn{sub 2}S{sub 4} composites with enhanced visible-light photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Yang; Li, Qin, E-mail: liqin0518@mail.scuec.edu.cn; Wu, Xiaofeng; Lv, Kangle; Tang, Dingguo; Li, Mei, E-mail: limei@mail.scuec.edu.cn

    2017-01-01

    Highlights: • CNTs/CaIn{sub 2}S{sub 4} (CIS) composites were prepared by a microwave hydrothermal method. • CNTs were embedded tightly in the hierarchical marigold-like CIS microspheres. • Intimate contact between CNTs and CIS made interfacial charge transfer available. • The composite exhibited obviously higher photocatalytic activity than bare CIS. • The composite was applicable in both environment remediation and energy conversion. - Abstract: In response to the continuous concerns to environmental contamination and energy crisis, visible-light-driven photocatalysis has attracted broad attention for its potential applications in environment remediation and energy conversion. In this study, visible-light-responsive CNTs/CaIn{sub 2}S{sub 4} (CIS) composite photocatalyst was designed and synthesized by a facile one-step microwave hydrothermal method. The effects of CNTs content on the crystallinity, structure, light absorption, specific surface area and photocatalytic performance of CIS semiconductor were systematically studied. The results demonstrated that the prepared composite with a suitable amount of CNTs exhibited an apparently enhanced photocatalytic activity than bare CIS for both X-3B dye degradation and H{sub 2} production under visible-light irradiation. The optimal content of CNTs was found to be 1 wt%. The corresponding apparent rate constants of photocatalytic degradation and H{sub 2}-production rate are about two times as that of bare CaIn{sub 2}S{sub 4} semiconductor. Comprehensive analysis demonstrated that such enhancement was mainly attributed to the strong coupling interface between CNTs and CIS, which largely improved the separation efficiency of photogenerated charge carriers in space. However, excessive CNTs resulted in a decreased photocatalytic activity due to the shield of active sites and absorbed photons on the surface of CIS photocatalyst. This work could shed new light on the design and synthesis of carbon material

  7. UV-visible light photocatalytic properties of NaYF4:(Gd, Si)/TiO2 composites

    Science.gov (United States)

    Mavengere, Shielah; Kim, Jung-Sik

    2018-06-01

    In this study, a new novel composite photocatalyst of NaYF4:(Gd, Si)/TiO2 phosphor has been synthesized by two step method of solution combustion and sol-gel. The photocatalyst powders were characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), UV-vis spectroscopy and photoluminescence (PL) spectroscopy. Raman spectroscopy confirmed the anatase TiO2 phase which remarkably increased with existence of yttrium silicate compounds between 800 cm-1 and 900 cm-1. Double-addition of Gd3+-Si4+ ions in NaYF4 host introduced sub-energy band levels with intense absorption in the ultraviolet (UV) light region. Photocatalytic activity was examined by exposing methylene blue (MB) solutions mixed with photocatalyst powders to 254 nm UV-C fluorescent lamp and 200 W visible lights. The UV and visible photocatalytic reactivity of the NaYF4:(Gd, 1% Si)/TiO2 phosphor composites showed enhanced MB degradation efficiency. The coating of NaYF4:(Gd, 1% Si) phosphor with TiO2 nanoparticles creates energy band bending at the phosphor/TiO2 interfaces. Thus, these composites exhibited enhanced absorption of UV/visible light and the separation of electron and hole pairs for efficient photocatalysis.

  8. A comparison study of rhodamine B photodegradation over nitrogen-doped lamellar niobic acid and titanic acid under visible-light irradiation.

    Science.gov (United States)

    Li, Xiukai; Kikugawa, Naoki; Ye, Jinhua

    2009-01-01

    A solid-state reaction method with urea as a nitrogen precursor was used to prepare nitrogen-doped lamellar niobic and titanic solid acids (i.e., HNb(3)O(8) and H(2)Ti(4)O(9)) with different acidities for visible-light photocatalysis. The photocatalytic activities of the nitrogen-doped solid acids were evaluated for rhodamine B (RhB) degradation and the results were compared with those obtained over the corresponding nitrogen-doped potassium salts. Techniques such as XRD, BET, SEM, X-ray photoelectron spectroscopy, and UV-visible diffuse reflectance spectroscopy were adopted to explore the nature of the materials as well as the characteristics of the doped nitrogen species. It was found that the intercalation of the urea precursor helped to stabilize the layered structures of both lamellar solid acids and enabled easier nitrogen doping. The effects of urea intercalation were more significant for the more acidic HNb(3)O(8) sample than for the less acidic H(2)Ti(4)O(9). Compared with the nitrogen-doped KNb(3)O(8) and K(2)Ti(4)O(9) samples, the nitrogen-doped HNb(3)O(8) and H(2)Ti(4)O(9) solid acids absorb more visible light and exhibit a superior activity for RhB photodegradation under visible-light irradiation. The nitrogen-doped HNb(3)O(8) sample performed the best among all the samples. The results of the current study suggest that the protonic acidity of the lamellar solid-acid sample is a key factor that influences nitrogen doping and the resultant visible-light photocatalysis.

  9. Enhanced visible light photocatalytic performance of polyaniline modified mesoporous single crystal TiO{sub 2} microsphere

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Yaocheng [College of Environmental Science and Engineering, Hunan University, Changsha, 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Tang, Lin, E-mail: tanglin@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha, 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Zeng, Guangming, E-mail: zgming@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha, 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Dong, Haoran; Yan, Ming; Wang, Jingjing [College of Environmental Science and Engineering, Hunan University, Changsha, 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Hu, Wei [College of Physics and Microelectronics Science, Hunan University, Changsha, 410082 (China); Wang, Jiajia; Zhou, Yaoyu; Tang, Jing [College of Environmental Science and Engineering, Hunan University, Changsha, 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China)

    2016-11-30

    Highlights: • The mesoporous single crystal microsphere of PANI/MS-TiO{sub 2} improved the light absorption. • The mesoporous structure of MS-TiO{sub 2} can increase the loading amount of PANI. • The synergistic effect between PANI and MS-TiO{sub 2} promoted the separation of charges. • Improved photocatalysis was achieved via PANI modified mesoporous single crystal TiO{sub 2} microsphere. - Abstract: Polyaniline (PANI) modified mesoporous single crystal TiO{sub 2} microsphere (PANI/MS-TiO{sub 2}) with excellent photocatalytic activity was successfully prepared by a simple method of solution evaporation and chemisorption. The X-ray diffraction characterization demonstrated that the whole MS-TiO{sub 2} kept the crystal type of anatase. The nitrogen adsorption-desorption characterization coupled with scanning electron microscopy indicated that the MS-TiO{sub 2} possessed a unique mesoporous structure with high specific surface area, which resulted in the increased load of PANI on the surface of MS-TiO{sub 2} and multiple light reflection in the photocatalyst. The UV–vis diffuse reflectance spectra confirmed that PANI/MS-TiO{sub 2} presented more absorption ability in the visible light range than that of the pristine MS-TiO{sub 2}. The transient photocurrent responses and electrochemical impedance spectroscopy (EIS) indicated the high photo responses and fast photogenerated charge separation efficiency of PANI/MS-TiO{sub 2}. The photocatalytic activity of the PANI/MS-TiO{sub 2} was evaluated by the photodegradation of RhB and MB under visible light irradiation. MS-TiO{sub 2} photocatalyst with different molar ration of PANI had been prepared, and the results showed that the optimal photocatalyst (PANI/MS-TiO{sub 2} (1:40)) exhibited the highest photocatalytic efficiency which is nearly three times as great as that of pristine MS-TiO{sub 2} for the degradation of the RhB and MB under visible light irradiation. The remarkable performance of the PANI

  10. In situ Sn2+-incorporation synthesis of titanate nanotubes for photocatalytic dye degradation under visible light illumination

    International Nuclear Information System (INIS)

    Tsai, Chien-Cheng; Chen, Liang-Che; Yeh, Te-Fu; Teng, Hsisheng

    2013-01-01

    Highlights: ► Sn 2+ ions sensitize titanate nanotubes for photocatalysis under visible-light illumination. ► The Sn 5s orbital replaces the O 2p orbital as the top level of the valence band of titanates. ► The presence of Sn 2+ lifts the valence band of titanate nanotubes by approximately 0.9 eV. ► The doped Sn 2+ sites are active in donating photo-induced charges to dye degradation. - Abstract: Sn 2+ -incorporated titanate nanotubes, prepared by washing a layered sodium titanate with a SnCl 2 solution for tube formation, exhibit noticeable photocatalytic activity under visible light irradiation. This in situ synthesis results in a Sn/Ti ratio of approximately 0.6. Because of the introduction of Sn 2+ ions, the Sn 5s orbital replaces the O 2p orbital as the top level of the valence band of titanate nanotubes. Optical absorption analysis shows that Sn doping reduces the bandgap of titanate nanotubes from 3.5 to 2.6 eV. Oxidation of the Sn 2+ -incorporated titanate nanotubes leads to oxidation of Sn 2+ to Sn 4+ , hence, widening the bandgap. Under visible light irradiation, Sn 2+ -incorporated titanate nanotubes effectively degrade methylene blue in an aqueous solution, whereas the bare titanate nanotubes exhibit substantially lower photocatalytic activity. Photoluminescence analysis demonstrates that the induced charges from excitation of the Sn 2+ ions tend to be relaxed through chemical interactions, rather than irradiative recombination.

  11. Characterization and photocatalytic performance evaluation of various metal ion-doped microstructured TiO2 under UV and visible light.

    Science.gov (United States)

    Sahoo, Chittaranjan; Gupta, Ashok K

    2015-01-01

    Commercially available microcrystalline TiO2 was doped with silver, ferrous and ferric ion (1.0 mol %) using silver nitrate, ferrous sulfate and ferric nitrate solutions following the liquid impregnation technology. The catalysts prepared were characterised by FESEM, XRD, FTIR, DRS, particle size and micropore analysis. The photocatalytic activity of the prepared catalysts was tested on the degradation of two model dyes, methylene blue (3,7-bis (Dimethylamino)-phenothiazin-5-ium chloride, a cationic thiazine dye) and methyl blue (disodium;4-[4-[[4-(4-sulfonatoanilino)phenyl]-[4-(4-sulfonatophenyl)azaniumylidenecyclohexa-2,5-dien-1-ylidene]methyl]anilino]benzene sulfonate, an anionic triphenyl methane dye) under irradiation by UV and visible light in a batch reactor. The efficiency of the photocatalysts under UV and visible light was compared to ascertain the light range for effective utilization. The catalysts were found to have the anatase crystalline structure and their particle size is in a range of 140-250 nm. In the case of Fe(2+) doped TiO2 and Fe(3+) doped TiO2, there was a greater shift in the optical absorption towards the visible range. Under UV light, Ag(+) doped TiO2 was the most efficient catalyst and the corresponding decolorization was more than 99% for both the dyes. Under visible light, Fe(3+) doped TiO2 was the most efficient photocatalyst with more than 96% and 90% decolorization for methylene blue and methyl blue, respectively. The kinetics of the reaction under both UV and visible light was investigated using the Langmuir-Hinshelwood pseudo-first-order kinetic model. Kinetic measurements confirmed that, Ag(+) doped TiO2 was most efficient in the UV range, while Fe(3+) doped TiO2 was most efficient in the visible range.

  12. Preparation And Characterization of Cu-Fe/ TiO2 Photocatalyst for Visible Light Deep Desulfurization

    International Nuclear Information System (INIS)

    Hayyiratul Fatimah Mohd Zaid; Kait, C.F.; Mohamed Ibrahim Abdul Mutalib

    2016-01-01

    A photooxidative system for deep desulfurization of model diesel fuel was explored. Nanoparticles of anatase titania (TiO 2 ) were synthesized via sol-gel hydrothermal method. The TiO 2 was further modified with bimetallic Cu-Fe using wet-impregnation method followed by calcination process in order to extend the activity region of the photocatalyst to visible-light. A series of bimetallic 2.2 wt % Cu-Fe/ TiO 2 photocatalysts with different Cu:Fe mass compositions were characterized for their physical, chemical and optical properties using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), diffuse reflectance UV-visible spectroscopy (DR-UV-Vis), Fourier Transform Infrared Spectroscopy (FTIR) and Brunauer-Emmet-Teller (BET) surface area analysis. The performance of the photocatalysts was evaluated for photooxidation of dibenzothiophene (DBT) as the sulfur species from model oil in the presence of hydrogen peroxide, H 2 O 2 under 500 W visible light illumination. The highest sulfur conversion of 82.36 % was observed for photocatalyst with 10:1Cu:Fe mass composition. (author)

  13. (meth)acrylates on in situ visible light polymerization of ...

    Indian Academy of Sciences (India)

    60

    ... faster to be cured using a visible light source with a Tungsten-Halogen lamp ... ranging from 350 to 1100 nm, which even covers some UV and near IR region. .... incorporation of the acid-containing and/or acrylate-containing monomer led to.

  14. Synthesis of porous carbon-doped g-C{sub 3}N{sub 4} nanosheets with enhanced visible-light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Nan, E-mail: baonan@sdu.edu.cn [School of Environmental Science and Engineering, Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Shanda South Road 27, Jinan 250100 (China); Hu, Xinde [School of Environmental Science and Engineering, Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Shanda South Road 27, Jinan 250100 (China); Zhang, Qingzhe [Institut National de la Recherche Scientifique (INRS), Centre Énergie Materiaux et Télécommunications, Université du Québec, 1650 Boulevard Lionel-Boulet, Varennes, Québec, J3X 1S2, Canada (Canada); Miao, Xinhan; Jie, Xiuyan; Zhou, Shuai [School of Environmental Science and Engineering, Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Shanda South Road 27, Jinan 250100 (China)

    2017-05-01

    Highlights: • NSs-APAM photocatalysts were synthesized by a green and handy route. • APAM was used as the intercalator and carbon source in the preparation. • The combination of photo-induced charge carriers was greatly restrained. • Significantly enhanced visible-light photocatalytic activity was witnessed. • The NSs-APAM also showed a good recycling stability. - Abstract: The porous carbon-doped g-C{sub 3}N{sub 4} nanosheets photocatalysts (NSs-APAM) were synthesized using anionic polyacrylamide (APAM) as the intercalator and carbon source via the thermal treatment method. The as-prepared samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FT-IR), nitrogen adsorption, X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance absorption spectra (UV-DRS) and photoluminescence spectroscopy (PL). The results indicate that the APAM can effectively induce the formation of high-quality nanosheets (NSs) with narrowed bandgap. The specific surface area of NSs-APAM is 118.6 m{sup 2}/g, which is 5-fold larger than bulk g-C{sub 3}N{sub 4}. The carbon doping could narrow the bandgap, from 2.75 eV of g-C{sub 3}N{sub 4} NSs without carbon doping (NSs-Water) to 2.41 eV of NSs-APAM. The two-dimensional NSs structure facilitates the charge separation by shortening the diffusion distance to the surface of photocatalysts. The synergic effects of the carbon doping and unique structural properties contributed to the superior photocatalytic activity of NSs-APAM with 95% degradation rate towards X–3 B after 30 min visible-light irradiation.

  15. Broadband plasmonic perfect light absorber in the visible spectrum for solar cell applications

    Science.gov (United States)

    Mudachathi, Renilkumar; Tanaka, Takuo

    2018-03-01

    The coupling of electromagnetic waves with subwavelength metal structures results in the perfect light absorption and has been extensively explored in the recent years for many possible applications like photovoltaics, sensing, photodetectors, emitters and camouflaging systems to name a few. Herein we present the design and fabrication of a broadband plasmonic light absorber using aluminum as functional material for operation in the visible frequency range. The metal structures can be tuned in size to manipulate the plasmonic resonance; thereby light absorption at any desired wavelengths could be realized. Thus the broadband light absorber in the visible spectrum is designed using metal structures of different sizes supporting non-overlapping individual resonances at regular intervals of wavelengths. The metal structures of different sizes are grouped in to a single unit cell and the absorber is fabricated by periodically arranging these unit cells in a square lattice. Light absorption of more than 90% for over a broad wavelength range of 200 nm from 425 nm to 650 nm in the visible spectrum is demonstrated.

  16. Preparation of Ag–AgBr/TiO2–graphene and its visible light photocatalytic activity enhancement for the degradation of polyacrylamide

    International Nuclear Information System (INIS)

    Rong, Xinshan; Qiu, Fengxian; Zhang, Chen; Fu, Liang; Wang, Yuanyuan; Yang, Dongya

    2015-01-01

    Highlights: • Ag–AgBr/TiO 2 –graphene (AATG) composite photocatalyst was prepared. • AATG was applied to photocatalytic degradation of polyacrylamide (PAM). • Degradation condition such as mass ratio of TiO 2 /graphene, dose, pH and time, was investigated. • The AATG composite photocatalyst can be separated from system effectively and easily. • The prepared AATG exhibits significant photocatalytic activity after five successive recycles. - Abstract: In current work, TiO 2 was modified by Ag/AgBr semiconductor and graphene to enhance its photocatalytic activity for the degradation of polyacrylamide (PAM). Ag–AgBr/TiO 2 –graphene (AATG) composite photocatalysts were prepared by the deposition–precipitation method combining a subsequent calcination process. The structure, surface morphology and chemical composition of AATG composite photocatalysts were investigated by XRD, XPS, DRS, PL, SEM, EDS, TEM, and HRTEM methods. XRD and XPS results show that Ag 0 is generated from Ag + under visible light irradiation. Degradation of PAM was chosen to evaluate photocatalytic activity using AATG composite as photocatalysts. The conditions such as mass ratio of TiO 2 /graphene, catalyst dose, pH and contact time, were investigated for the degradation of PAM. Possible pathway and mechanism were proposed for photocatalytic degradation of PAM over AATG composite photocatalyst under visible light irradiation. The prepared AATG composite photocatalyst can be separated from system effectively and easily; and exhibits significant photocatalytic activity after five successive recycles, which confirmed that the components of the AATG are not photo decomposed and the structure is stable during the photocatalytic process

  17. Visible light alters yeast metabolic rhythms by inhibiting respiration

    OpenAIRE

    Robertson, James Brian; Davis, Chris R.; Johnson, Carl Hirschie

    2013-01-01

    In some organisms, respiration fluctuates cyclically, and these rhythms can be a sensitive gauge of metabolism. Constant or pulsatile exposure of yeast to visible wavelengths of light significantly alters and/or initiates these respiratory oscillations, revealing a further dimension of the challenges to yeast living in natural environments. Our results also have implications for the use of light as research tools—e.g., for excitation of fluorescence microscopically—even in organisms such as y...

  18. Enhancement in visible light photocatalytic activity by embedding Cu nanoparticles over CuS/MCM-41 nanocomposite

    Science.gov (United States)

    Sohrabnezhad, Sh.; Karamzadeh, M.

    2017-07-01

    This article indicate the biogenic synthesis of copper nanoparticles (Cu NPs) using the borage flowers extract of Borago officinalis over CuS/MCM-41 nanocomposite (NC). No external reducing was utilized in the developed method. The CuS-MCM-41 NC was used as stabilizing agent. The synthesis of CuS nanostructure in MCM-41 material has been realized by hydrothermal method. Their physiochemical properties have been characterized by X-ray diffraction, transmission electron microscopy (TEM), UV-Visible diffuse reflectance spectroscopy, and Fourier transform infrared spectroscopy. On the basis of TEM images, a layer of Cu NPs has been located over CuS/MCM-41 NC with average diameter of 60-80 nm. The results revealed the spherical nature of the prepared Cu NPs with diameter less than 10 nm. The DR spectra of Cu NPs in MCM-41 and CuS-MCM-41 NCs showed surface plasmon resonance bands at 570 and 500-600 nm, respectively. The photocatalytic activity was evaluated under visible light irradiation using the photocatalytic degradation of methylene blue (MB) as a model reaction. The prepared Cu/CuS/MCM-41 nanocomposite microspheres showed higher photodegradation ability for MB than CuS/MCM-41. The degradation of MB achieved up to 80% after 60 min and the nanocomposite could be recycled and reused.

  19. Penning plasma based simultaneous light emission source of visible and VUV lights

    Energy Technology Data Exchange (ETDEWEB)

    Vyas, G. L., E-mail: glvyas27@gmail.com [Manipal University Jaipur (India); Prakash, R.; Pal, U. N. [CSIR-Central Electronics and Engineering Research Institute, Microwave Tubes Division (India); Manchanda, R. [Institute for Plasma Research (India); Halder, N. [Manipal University Jaipur (India)

    2016-06-15

    In this paper, a laboratory-based penning plasma discharge source is reported which has been developed in two anode configurations and is able to produce visible and VUV lights simultaneously. The developed source has simultaneous diagnostics facility using Langmuir probe and optical emission spectroscopy. The two anode configurations, namely, double ring and rectangular configurations, have been studied and compared for optimum use of the geometry for efficient light emissions and recording. The plasma is produced using helium gas and admixture of three noble gases including helium, neon, and argon. The source is capable to produce eight spectral lines for pure helium in the VUV range from 20 to 60 nm and total 24 spectral lines covering the wavelength range 20–106 nm for the admixture of gases. The large range of VUV lines is generated from gaseous admixture rather from the sputtered materials. The recorded spectrum shows that the plasma light radiations in both visible and VUV range are larger in double ring configuration than that of the rectangular configurations at the same discharge operating conditions. To clearly understand the difference, the imaging of the discharge using ICCD camera and particle-in-cell simulation using VORPAL have also been carried out. The effect of ion diffusion, metastable collision with the anode wall and the nonlinear effects are correlated to explain the results.

  20. III-nitride Photonic Integrated Circuit: Multi-section GaN Laser Diodes for Smart Lighting and Visible Light Communication

    KAUST Repository

    Shen, Chao

    2017-04-01

    The past decade witnessed the rapid development of III-nitride light-emitting diodes (LEDs) and laser diodes (LDs), for smart lighting, visible-light communication (VLC), optical storage, and internet-of-things. Recent studies suggested that the GaN-based LDs, which is free from efficiency droop, outperform LEDs as a viable high-power light source. Conventionally, the InGaN-based LDs are grown on polar, c-plane GaN substrates. However, a relatively low differential gain limited the device performance due to a significant polarization field in the active region. Therefore, the LDs grown on nonpolar m-plane and semipolar (2021)-plane GaN substrates are posed to deliver high-efficiency owing to the entirely or partially eliminated polarization field. To date, the smart lighting and VLC functionalities have been demonstrated based on discrete devices, such as LDs, transverse-transmission modulators, and waveguide photodetectors. The integration of III-nitride photonic components, including the light emitter, modulator, absorber, amplifier, and photodetector, towards the realization of III-nitride photonic integrated circuit (PIC) offers the advantages of small-footprint, high-speed, and low power consumption, which has yet to be investigated. This dissertation presents the design, fabrication, and characterization of the multi-section InGaN laser diodes with integrated functionalities on semipolar (2021)-plane GaN substrates for enabling such photonic integration. The blue-emitting integrated waveguide modulator-laser diode (IWM-LD) exhibits a high modulation efficiency of 2.68 dB/V. A large extinction ratio of 11.3 dB is measured in the violet-emitting IWM-LD. Utilizing an integrated absorber, a high optical power (250mW), droop-free, speckle-free, and large modulation bandwidth (560MHz) blue-emitting superluminescent diode is reported. An integrated short-wavelength semiconductor optical amplifier with the laser diode at ~404 nm is demonstrated with a large gain of 5

  1. Facile preparation of C, N co-modified Nb2O5 nanoneedles with enhanced visible light photocatalytic activity

    KAUST Repository

    Xue, Jiao

    2016-09-28

    C, N co-modified niobium pentoxide (Nb2O5) nanoneedles have been successfully synthesized via a facile hydrothermal method with Niobium Chloride (NbCl5) as a precursor and triethylamine as both the carbon and nitrogen source. The formation process of Nb2O5 nanoneedles has been presented in detail by investigating the effect of the crystallization temperature, the amount of triethylamine and the calcination temperature. The as-prepared Nb2O5 nanoneedles exhibit more efficient photocatalytic activity than commercial Degussa P25 and commercial Nb2O5 towards photodegradation of Rhodamine B (RhB) at a concentration of 10 mg L−1 under visible light. Special chemical species, such as carbonate species and NOX species, that exist on the surface of the as-prepared catalyst could extend the absorption into the visible region and thus enhance the photocatalytic activity of the Nb2O5 nanoneedles. At the same time, the obtained Nb2O5 nanoneedles exhibit excellent stability even after three successive cycles. A possible photodegradation mechanism was proposed and the corresponding photodecomposition process of RhB over the Nb2O5 nanoneedles was elucidated by a reactive species trapping experiment, suggesting that h+ and O2˙− play a major role in the photodegradation of RhB in aqueous solution.

  2. Efficient visible-light photocatalytic activity by band alignment in mesoporous ternary polyoxometalate-Ag2S-CdS semiconductors

    Science.gov (United States)

    Kornarakis, I.; Lykakis, I. N.; Vordos, N.; Armatas, G. S.

    2014-07-01

    Porous multicomponent semiconductor materials show improved photocatalytic performance due to the large and accessible pore surface area and high charge separation efficiency. Here we report the synthesis of well-ordered porous polyoxometalate (POM)-Ag2S-CdS hybrid mesostructures featuring a controllable composition and high photocatalytic activity via a two-step hard-templating and topotactic ion-exchange chemical process. Ag2S compounds and polyoxometalate cluster anions with different reduction potentials, such as PW12O403-, SiW12O404- and PMo12O403-, were employed as electron acceptors in these ternary heterojunction photocatalysts. Characterization by small-angle X-ray scattering, X-ray diffraction, transmission electron microscopy and N2 physisorption measurements showed hexagonal arrays of POM-Ag2S-CdS hybrid nanorods with large internal BET surface areas and uniform mesopores. The Keggin structure of the incorporated POM clusters was also verified by elemental X-ray spectroscopy microanalysis, infrared and diffuse-reflectance ultraviolet-visible spectroscopy. These new porous materials were implemented as visible-light-driven photocatalysts, displaying exceptional high activity in aerobic oxidation of various para-substituted benzyl alcohols to the corresponding carbonyl compounds. Our experiments show that the spatial separation of photogenerated electrons and holes at CdS through the potential gradient along the CdS-Ag2S-POM interfaces is responsible for the increased photocatalytic activity.Porous multicomponent semiconductor materials show improved photocatalytic performance due to the large and accessible pore surface area and high charge separation efficiency. Here we report the synthesis of well-ordered porous polyoxometalate (POM)-Ag2S-CdS hybrid mesostructures featuring a controllable composition and high photocatalytic activity via a two-step hard-templating and topotactic ion-exchange chemical process. Ag2S compounds and polyoxometalate cluster

  3. Visible light broadband perfect absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Jia, X. L.; Meng, Q. X.; Yuan, C. X.; Zhou, Z. X.; Wang, X. O., E-mail: wxo@hit.edu.cn [School of Science, Harbin Institute of Technology, Harbin 150001 (China)

    2016-03-15

    The visible light broadband perfect absorbers based on the silver (Ag) nano elliptical disks and holes array are studied using finite difference time domain simulations. The semiconducting indium silicon dioxide thin film is introduced as the space layer in this sandwiched structure. Utilizing the asymmetrical geometry of the structures, polarization sensitivity for transverse electric wave (TE)/transverse magnetic wave (TM) and left circular polarization wave (LCP)/right circular polarization wave (RCP) of the broadband absorption are gained. The absorbers with Ag nano disks and holes array show several peaks absorbance of 100% by numerical simulation. These simple and flexible perfect absorbers are particularly desirable for various potential applications including the solar energy absorber.

  4. A highly uniform ZnO/NaTaO3 nanocomposite: Enhanced self-sensitized degradation of colored pollutants under visible light

    International Nuclear Information System (INIS)

    Xing, Guanjie; Tang, Changhe; Zhang, Bo; Zhao, Lanxiao; Su, Yiguo; Wang, Xiaojing

    2015-01-01

    In this study, a highly uniform ZnO/NaTaO 3 composite was prepared via simple hydrothermal synthesis. XRD confirmed the composite was constructed by pure cubic phase of NaTaO 3 and hexagonal phase of ZnO. SEM analysis showed that as-prepared ZnO/NaTaO 3 shaped as an irregular ginger with an obviously smaller size than that of pure ZnO without obvious agglomeration. EDS mapping demonstrated that the four elements (Na, Ta, O, Zn) in the composite were very uniformly distributed. The photocatalytic behaviors of as-prepared composites were studied in the degradation of methylene blue both under UV and visible irradiation. The bare ZnO showed the highest activity with 99.8% methylene blue (MB) photodegraded in 70 min under UV light irradiation whereas 94% photodegraded rate was achieved for ZnO/NaTaO 3 . More importantly, the uniform composite of ZnO/NaTaO 3 exhibited effective degradation of methylene blue under visible light which can be attributed to the well dyes adsorption abilities and the high efficiency of electron separation, induced by the synergistic effect between ZnO and NaTaO 3 . It is confirmed the dye rather than a semiconductor is excited under visible light irradiation and a self-sensitized photocatalytic mechanism was then proposed based on the experimental results. - Graphical abstract: Visible light photocatalytic activity of ZnO/NaTaO 3 and proposed schematic of self-sensitization directed photogradation of MB. - Highlights: • Highly uniform ZnO/NaTaO 3 photocatalysts were fabricated by hydrothermal method. • ZnO/NaTaO 3 composite exhibited effective degradation of MB under visible light. • ZnO/NaTaO 3 composite effectively promoted dye adsorption and electrons separation. • A self-sensitized photocatalytic mechanism was proposed for the degradation of dye

  5. Peculiarities of near-ultraviolet (365 nm) and visible light effects in Paramecium Caudatum cells

    International Nuclear Information System (INIS)

    Samoilova, K.A.; Sushchenko, N.B.

    1977-01-01

    After treatment with 365 nm or visible light Paramecium caudatum cells fail to divide and die shortly after irradiation; no death occurs long after irradiation, as well as after several cell cycles, unlike the situation after the action of 254 nm or 300-380 nm. Irradiation inhibits mainly the first cell cycle following which the recovery of cells starts. Thus no after-effects take place after the action of 365 nm and visible light, and the patterns of their effects are rather similar. The photoreactivation of damages induced by 365 nm is quite small, being about 2 times less than that for 254 nm and 300-380 nm. Similarity of the action of 254, 300-380, 365 nm and visible light was established by the stimulation of cell division by low doses and increase in viability of infusoria from cultures with low survival and depressed rate of multiplication. This effect of 365 nm is not eliminated by visible light; moreover, the latter promotes the 'therapeutic' effect of the 365 nm line. (author)

  6. Nanocomposite of exfoliated bentonite/g-C3N4/Ag3PO4 for enhanced visible-light photocatalytic decomposition of Rhodamine B.

    Science.gov (United States)

    Ma, Jianfeng; Huang, Daiqin; Zhang, Wenyi; Zou, Jing; Kong, Yong; Zhu, Jianxi; Komarneni, Sridhar

    2016-11-01

    Novel visible-light-driven heterojunction photocatalyst comprising exfoliated bentonite, g-C3N4 and Ag3PO4 (EB/g-C3N4/Ag3PO4) was synthesized by a facile and green method. The composites EB/g-C3N4/Ag3PO4 were characterized by X-ray diffraction, Transmission electron microscopy, Fourier transform infrared spectroscopy, UV-Vis diffuse reflectance spectroscopy and the Brunauer, Emmett, and Teller (BET) surface area method. Under visible light irradiation, EB/g-C3N4/Ag3PO4 composites displayed much higher photocatalytic activity than that of either pure g-C3N4 or pure Ag3PO4 in the degradation of Rhodamine B (RhB). Among the hybrid photocatalysts, EB/g-C3N4/Ag3PO4 composite containing 20 wt% Ag3PO4 exhibited the highest photocatalytic activity for the decolorization of RhB. Under the visible-light irradiation, the RhB dye was completely decolorized in less than 60 min. The enhanced photocatalytic performance is attributed to the stable structure, enlarged surface area, strong adsorbability, strong light absorption ability, and high-efficiency separation rate of photoinduced electron-hole pairs. Our finding paves a way to design highly efficient and stable visible-light-induced photocatalysts for practical applications in wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Ag3PO4/ZnO: An efficient visible-light-sensitized composite with its application in photocatalytic degradation of Rhodamine B

    International Nuclear Information System (INIS)

    Liu, Wei; Wang, Mingliang; Xu, Chunxiang; Chen, Shifu; Fu, Xianliang

    2013-01-01

    Graphical abstract: The free OH radicals generated in the VB of ZnO play the primary role in the visible-light photocatalytic degradation of RhB in Ag 3 PO 4 /ZnO system. The accumulated electrons in the CB of Ag 3 PO 4 can be transferred to O 2 adsorbed on the surface of the composite semiconductors and H 2 O 2 yields. H 2 O 2 reacts with electrons in succession to produce active ·OH to some extent. Display Omitted Highlights: ► Efficient visible-light-sensitized Ag 3 PO 4 /ZnO composites were successfully prepared. ► Effect of Ag 3 PO 4 content on the catalytic activity of Ag 3 PO 4 /ZnO is studied in detail. ► Rate constant of RhB degradation over Ag 3 PO 4 (3.0 wt.%)/ZnO is 3 times that of Ag 3 PO 4 . ► The active species in RhB degradation are examined by adding a series of scavengers. ► Visible light degradation mechanism of RhB over Ag 3 PO 4 /ZnO is systematically studied. -- Abstract: The efficient visible-light-sensitized Ag 3 PO 4 /ZnO composites with various weight percents of Ag 3 PO 4 were prepared by a facile ball milling method. The photocatalysts were characterized by XRD, DRS, SEM, EDS, XPS, and BET specific area. The ·OH radicals produced during the photocatalytic reaction was detected by the TA–PL technique. The photocatalytic property of Ag 3 PO 4 /ZnO was evaluated by photocatalytic degradation of Rhodamine B under visible light irradiation. Significantly, the results revealed that the photocatalytic activity of the composites was much higher than that of pure Ag 3 PO 4 and ZnO. The rate constant of RhB degradation over Ag 3 PO 4 (3.0 wt.%)/ZnO is 3 times that of single-phase Ag 3 PO 4 . The optimal percentage of Ag 3 PO 4 in the composite is 3.0 wt.%. It is proposed that the ·OH radicals produced in the valence band of ZnO play the leading role in the photocatalytic degradation of Rhodamine B by Ag 3 PO 4 /ZnO systems under visible light irradiation.

  8. Remarkable photo-catalytic degradation of malachite green by nickel doped bismuth selenide under visible light irradiation

    Science.gov (United States)

    Kulsi, Chiranjit; Ghosh, Amrita; Mondal, Anup; Kargupta, Kajari; Ganguly, Saibal; Banerjee, Dipali

    2017-01-01

    Bismuth selenide (Bi2Se3) and nickel (Ni) doped Bi2Se3 were prepared by a solvothermal approach to explore the photo-catalytic performance of the materials in degradation of malachite green (MG). The presence of nickel was confirmed by X-ray photoelectron spectroscopy (XPS) measurement in doped Bi2Se3. The results showed that the nickel doping played an important role in microstructure and photo-catalytic activity of the samples. Nickel doped Bi2Se3 sample exhibited higher photo-catalytic activity than that of the pure Bi2Se3 sample under visible-light irradiation. The photo-catalytic degradation followed first-order reaction kinetics. Fast degradation kinetics and complete (100% in 5 min of visible light irradiation) removal of MG was achieved by nickel doped Bi2Se3 in presence of hydrogen peroxide (H2O2) due to modification of band gap energies leading to suppression of photo-generated electron-hole recombination.

  9. Reduced graphene oxide and Ag wrapped TiO2 photocatalyst for enhanced visible light photocatalysis

    International Nuclear Information System (INIS)

    Leong, Kah Hon; Sim, Lan Ching; Jang, Min; Ibrahim, Shaliza; Bahnemann, Detlef; Saravanan, Pichiah

    2015-01-01

    A well-organised reduced graphene oxide (RGO) and silver (Ag) wrapped TiO 2 nano-hybrid was successfully achieved through a facile and easy route. The inherent characteristics of the synthesized RGO-Ag/TiO 2 were revealed through crystalline phase, morphology, chemical composition, Raman scattering, UV-visible absorption, and photoluminescence analyses. The adopted synthesis route significantly controlled the uniform formation of silver nanoparticles and contributed for the absorption of light in the visible spectrum through localized surface plasmon resonance effects. The wrapped RGO nanosheets triggered the electron mobility and promoted visible light shift towards red spectrum. The accomplishment of synergised effect of RGO and Ag well degraded Bisphenol A under visible light irradiation with a removal efficiency of 61.9%

  10. Research on the Collinear Equation Model of Visual Positioning Based on Visible Light Communication

    Directory of Open Access Journals (Sweden)

    Wang Yuqi

    2015-01-01

    Full Text Available A positioning method based on visible light communication is proposed, which receiving visible light information by low-resolution photodiode array and receiving visual information by the front camera of mobile phone. The terminal position is determined by matching spot information provided by photodiode array with visual information and position information provided by visible light communication. A collinear equation model is derived which based on mobile phone front camera. A hardware-in-loop simulation has been conducted to verify the collinear equation. The three-dimensional positioning error is on the level of decimeter. Moreover, the main factors which affect the positioning accuracy are analyzed in order to further improve the positioning accuracy.

  11. Design and fabrication of a TiO2/nano-silicon composite visible light photocatalyst

    International Nuclear Information System (INIS)

    Lin, C.Y.; Fang, Y.K.; Kuo, C.H.; Chen, S.F.; Lin, C.-S.; Chou, T.H.; Lee, Y.-H.; Lin, J.-C.; Hwang, S.-B.

    2006-01-01

    Nano-silicon (nc-Si) was utilized as the charges generator to promote the photocatalytic and super-hydrophilic reactivity of TiO 2 film under visible light irradiation. The photocatalytic ability of TiO 2 /nc-Si composite photocatalyst was evaluated by a set of experiments to photodecompose 100 ppm methylene blue (MB) in aqueous solution. And the super-hydrophilic property was characterized by measuring the water droplet contacts angle, under visible light irradiation in atmospheric air and at room temperature. Under 100 mW/cm 2 visible light irradiation, the droplet contact angles were reduced to 0 deg. within 4 h with nc-Si charge generator. Additionally, the rate constant of MB photo-degradation was promoted 6.6 times

  12. Fabrication of AgX-loaded Ag2CO3 (X = Cl, I) composites and their efficient visible-light-driven photocatalytic activity

    International Nuclear Information System (INIS)

    Xu, Hui; Zhu, Jiaxiang; Song, Yongxiu; Zhu, Tingting; Zhao, Wenkai; Song, Yanhua; Da, Zulin; Liu, Chengbao; Li, Huaming

    2015-01-01

    Highlights: • The novel AgX/Ag 2 CO 3 composites have been synthesized by ion exchange reaction. • AgX/Ag 2 CO 3 exhibit higher photoactivity and stability than that of Ag 2 CO 3 . • The band structure of AgX/Ag 2 CO 3 is beneficial to improve the photoactivity. - Abstract: The novel visible-light-driven AgX/Ag 2 CO 3 (X = Cl, I) hybrid materials were synthesized by ion exchange reaction. The physical and chemical properties of the catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), energy dispersive spectrometer (EDS), transmission electron microscopy (TEM), diffuse-reflection spectra (DRS) and photocurrent techniques. The as-prepared AgX/Ag 2 CO 3 (X = Cl, I) composites showed higher photocatalytic activity than that of the pure Ag 2 CO 3 photocatalyst under visible light irradiation (λ ⩾ 400 nm) in the process of methylene blue (MB) degradation. The optimal mass percentage of AgCl and AgI in the AgX/Ag 2 CO 3 (X = Cl, I) composite was 20.54 wt% and 40 wt%, respectively. The enhancement of photocatalytic activity was attributed to the suitable band potential between AgX and Ag 2 CO 3 , which was beneficial to increase the separation efficiency of electrons and holes. Besides, the photocatalytic mechanism of AgX/Ag 2 CO 3 (X = Cl, I) composites was also proposed

  13. Preparation, characterization and visible-light-driven photocatalytic activity of a novel Fe(III) porphyrin-sensitized TiO{sub 2} nanotube photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Meng [National Engineering Lab of Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Wan, Junmin, E-mail: wwjm2001@126.com [National Engineering Lab of Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018 (China); State Key Laboratory of advanced Textiles Materials and Manufacture Technology, MOE, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Hu, Zhiwen; Peng, Zhiqin; Wang, Bing [National Engineering Lab of Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Wang, Huigang [State Key Laboratory of advanced Textiles Materials and Manufacture Technology, MOE, Zhejiang Sci-Tech University, Hangzhou 310018 (China)

    2017-01-01

    Highlights: • FeTCPP-TNT photocatalysts are synthesized. • FeTCPP and tube-like structure are helpful to induce interfacial charge transfer at surface junction. • FeTCPP and tube-like structure are favorable for enhancing photocatalytic activity. • The photocatalytic mechanism of FeTCPP-TNT is proposed. • The photocatalyst are proven to be effective and chemically-stable catalysts. - Abstract: Iron(III) meso-tetra(4-carboxyphenyl) porphyrin (FeTCPP) loaded on the surface of TiO{sub 2} nanotubes (TNTs) has been successfully prepared through improved hydrothermal and heating reflux process. The new photocatalyst has been characterized and analyzed by TEM/EDS, BET, XRD, FT-IR, DRS, PL, XPS and EPR. The photocatalytic activity of FeTCPP/TNT nanocomposite was evaluated by the photodegradation of MB under visible light irradiation. The degradation results showed a purification of more than 90% MB in simulating wastewater, and confirmed that the prepared FeTCPP/TNT nanocomposite has acquired superior photocatalytic activitiy. The 6 times cycled results suggested the great stability of the photocatalyst. These results confirmed the FeTCPP played an important role in capturing photons and expanding the absorption wavelength to the visible light region, and the FeTCPP/TNT photocatalyst is also beneficial for the electron transfer and long-distance transmission, and could efficiently increase the separation of the electron-hole pairs, and accelerate the decomposition of organic pollutants. In addition, nano-sized structures can increase adsorption capability.

  14. Solvothermal fabrication of activated semi-coke supported TiO2-rGO nanocomposite photocatalysts and application for NO removal under visible light

    Science.gov (United States)

    Yang, Weiwei; Li, Chunhu; Wang, Liang; Sun, ShengNan; Yan, Xin

    2015-10-01

    The photocatalysts of activated semi-coke supported TiO2-rGO nanocomposite (TiO2-rGO/ASC) with different contents of reduced graphene oxide were fabricated by one-step solvothermal method for NO removal under visible light irradiation. It was confirmed that 8% content of reduced graphene oxide presented the best NO photooxidation performance under visible light irradiation at 70 °C with 350-400 mg/m3 NO,5% O2 and 5% relative humidity. The reasons for improved activity were discussed, alloyed with the mechanism of producing CO. Detailed structural information of TiO2-rGO/ASC photocatalysts was characterized by scanning electron microscope (SEM), energy dispersive X-ray Spectroscopy (EDX), X-ray diffraction analysis (XRD), UV-Vis diffuse reflectance spectra (UV-Vis DRS) and photoluminescence (PL), which indicated that the introduction of rGO was responsible for well dispersion, smaller crystalline size, red shift of absorption band and suppressing quick photo-induced charges recombination of TiO2-rGO/ASC photocatalysts. Optimization of operational parameters with 70 °C, 8% O2 and 8% relative humidity were also obtained. Deactivation of TiO2-rGO/ASC photocatalysts for NO removal was investigated by Fourier-transform infrared (FTIR) analysis. Regeneration experiments showed that thermal vapor regeneration would be optimal method owing to excellent regenerative capacity and inexpensive procedure.

  15. Physicochemcial characteristic of CdS-anchored porous WS2 hybrid in the photocatalytic degradation of crystal violet under UV and visible light irradiation

    Science.gov (United States)

    Vattikuti, S. V. Prabhakar; Ngo, Ich-Long; Byon, Chan

    2016-11-01

    In this work, we report the synthesis of CdS-incorporated porous WS2 by a simple hydrothermal method. The structural, morphological, and optical properties of the samples were examined by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), high resolution X-ray photoelectron spectroscopy (XPS) and UV-visible spectrometry. The photocatalytic activities were established for degradation of crystal violet (CV) under UV and visible light irradiation. The CdS-incorporated porous WS2 hybrid demonstrated high photocatalytic activity for degradation of CV pollutant compared to pure CdS nanoparticles and porous WS2 sheets. This result implies that the CdS-incorporated porous WS2 promoted more electron-hole pair transformation under UV and visible light irradiation. This significant enhancement of photocatalytic efficiency of CdS-incorporated porous WS2 photocatalyst under visible light can be ascribed to the presence of CdS nanospheres on the meshed-like WS2 sheets which potentially improves absorption in the visible range enabled by surface plasmon resonance effect of CdS nanospheres. The photostability and reusability of the CdS-porous WS2 were examined through recycling experiments.

  16. Deep Learning-Based Iris Segmentation for Iris Recognition in Visible Light Environment

    Directory of Open Access Journals (Sweden)

    Muhammad Arsalan

    2017-11-01

    Full Text Available Existing iris recognition systems are heavily dependent on specific conditions, such as the distance of image acquisition and the stop-and-stare environment, which require significant user cooperation. In environments where user cooperation is not guaranteed, prevailing segmentation schemes of the iris region are confronted with many problems, such as heavy occlusion of eyelashes, invalid off-axis rotations, motion blurs, and non-regular reflections in the eye area. In addition, iris recognition based on visible light environment has been investigated to avoid the use of additional near-infrared (NIR light camera and NIR illuminator, which increased the difficulty of segmenting the iris region accurately owing to the environmental noise of visible light. To address these issues; this study proposes a two-stage iris segmentation scheme based on convolutional neural network (CNN; which is capable of accurate iris segmentation in severely noisy environments of iris recognition by visible light camera sensor. In the experiment; the noisy iris challenge evaluation part-II (NICE-II training database (selected from the UBIRIS.v2 database and mobile iris challenge evaluation (MICHE dataset were used. Experimental results showed that our method outperformed the existing segmentation methods.

  17. Enhanced photocatalytic performance of BiVO{sub 4} in aqueous AgNO{sub 3} solution under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chien-Kai [Department of Chemistry, National Changhua University of Education, Changhua City, Taiwan (China); Wu, Tsunghsueh [Department of Chemistry, University of Wisconsin-Platteville, Platteville (United States); Huang, Chang-Wei [Department of Chemistry, National Changhua University of Education, Changhua City, Taiwan (China); Lai, Chi-Yung [Department of Biology, National Changhua University of Education, Changhua, Taiwan (China); Wu, Mei-Yao, E-mail: meiyaowu0919@gmail.com [Research Centre for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung City, Taiwan (China); Lin, Yang-Wei, E-mail: linywjerry@cc.ncue.edu.tw [Department of Chemistry, National Changhua University of Education, Changhua City, Taiwan (China)

    2017-03-31

    Graphical abstract: Ag{sup +} ions enhanced photocatalytic activity of BiVO{sub 4} under visible light irradiation. - Highlights: • The presence of Ag{sup +} ions enhanced the photodegradation activity of BiVO{sub 4}. • Photoreduction of Ag deposited on the BiVO{sub 4} surface was obtained. • Luminescence and electrochemical results elucidated the photocatalytic mechanism. • Holes and oxygen radicals were the main reactive species generated by BiVO{sub 4}/Ag{sup +}. • Used BiVO{sub 4}/Ag{sup +} exhibited photocatalytic antibacterial activity toward E. coli. - Abstract: Monoclinic-phase bismuth vanadate (BiVO{sub 4}) with a 2.468 eV band gap exhibited enhanced synergic photodegradation activity toward methylene blue (MB) when combined with silver ions (Ag{sup +}) in an aqueous solution under visible light irradiation. The mass ratio of AgNO{sub 3} to BiVO{sub 4} and the calcination temperature were discovered to considerably affect the degradation activity of BiVO{sub 4}/Ag{sup +}. Superior photocatalytic performance was obtained when BiVO{sub 4} was mixed with 0.01%(w/v) AgNO{sub 3} solution, and complete degradation of MB was achieved after 25 min visible light irradiation, outperforming BiVO{sub 4} or AgNO{sub 3} solution alone. The enhanced photodegradation was investigated using systematic luminescence measurements, electrochemical impedance spectroscopy, and scavenger addition, after which a photocatalytic mechanism for MB degradation under visible light irradiation was identified that involved oxygen radicals and holes. This study also discovered the two dominating processes involved in enhancing the electron–hole separation efficiency and reducing their recombination rate, namely photoreduction of Ag{sup +} and the formation of a BiVO{sub 4}/Ag heterojunction. The synergic effect between BiVO{sub 4} and Ag{sup +} was discovered to be unique. BiVO{sub 4}/Ag{sup +} was successfully used to degrade two other dyes and disinfect Escherichia Coli. A

  18. Visible-Light-Responsive Catalysts Using Quantum Dot-Modified TiO2 for Air and Water Purification

    Science.gov (United States)

    Coutts, Janelle L.; Hintze, Paul E.; Clausen, Christian; Richards, Jeffrey Todd

    2014-01-01

    Photocatalysis, the oxidation or reduction of contaminants by light-activated catalysts, utilizing titanium dioxide (TiO2) as the catalytic substrate has been widely studied for trace contaminant control in both air and water applications. The interest in this process is due primarily to its low energy consumption and capacity for catalyst regeneration. Titanium dioxide requires ultraviolet light for activation due to its relatively large band gap energy of 3.2 eV. Traditionally, Hg-vapor fluorescent light sources are used in PCO reactors; however, the use of mercury precludes the use of this PCO technology in a spaceflight environment due to concerns over crew Hg exposure. The development of a visible-light responsive (VLR) TiO2-based catalyst would eliminate the concerns over mercury contamination. Further, VLR development would allow for the use of ambient visible solar radiation or highly efficient LEDs, both of which would make PCO approaches more efficient, flexible, economical, and safe. Though VLR catalyst development has been an active area of research for the past two decades, there are few commercially available VLR catalysts. Those VLR catalysts that are commercially available do not have adequate catalytic activity, in the visible region, to make them competitive with those operating under UV irradiation. This study was initiated to develop more effective VLR catalysts through a novel method in which quantum dots (QD) consisting of narrow band gap semiconductors (e.g., CdS, CdSe, PbS, ZnSe, etc.) are coupled to TiO2 via two preparation methods: 1) photodeposition and 2) mechanical alloying using a high-speed ball mill. A library of catalysts was developed and screened for gas and aqueous phase applications using ethanol and 4-chlorophenol as the target contaminants, respectively. Both target compounds are well studied in photocatalytic systems and served as model contaminants for this research. Synthesized catalysts were compared in terms of

  19. Visible light communication: Applications, architecture, standardization and research challenges

    Directory of Open Access Journals (Sweden)

    Latif Ullah Khan

    2017-05-01

    Full Text Available The Radio Frequency (RF communication suffers from interference and high latency issues. Along with this, RF communication requires a separate setup for transmission and reception of RF waves. Overcoming the above limitations, Visible Light Communication (VLC is a preferred communication technique because of its high bandwidth and immunity to interference from electromagnetic sources. The revolution in the field of solid state lighting leads to the replacement of florescent lamps by Light Emitting Diodes (LEDs which further motivates the usage of VLC. This paper presents a survey of the potential applications, architecture, modulation techniques, standardization and research challenges in VLC.

  20. BiVO4–graphene catalyst and its high photocatalytic performance under visible light irradiation

    International Nuclear Information System (INIS)

    Fu Yongsheng; Sun Xiaoqiang; Wang Xin

    2011-01-01

    Highlights: ► A facile strategy is designed to deposit leaf-like BiVO 4 lamellas on graphene sheet. ► Graphene oxide is reduced to graphene in the hydrothermal reaction process. ► BiVO 4 –graphene system shows high catalytic effects under visible light irradiation. - Abstract: A BiVO 4 –graphene photocatalyst was prepared by a facile one-step hydrothermal method and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray photoelectron spectra (XPS), and transmission electron microscopy (TEM) techniques. The results show that the graphene sheets in this catalyst are exfoliated and decorated by leaf-like BiVO 4 lamellas. In comparison with the pure BiVO 4 catalyst, the BiVO 4 –graphene system reveals much higher photocatalytic activity for degradation of methyl orange (MO), methylene blue (MB), Rhodamine B (RhB) and active black BL-G in water under visible light irradiation due to the concerted effects of BiVO 4 and graphene sheets or their integrated properties.

  1. A Cu-Zn nanoparticle promoter for selective carbon dioxide reduction and its application in visible-light-active Z-scheme systems using water as an electron donor.

    Science.gov (United States)

    Yin, Ge; Sako, Hiroshi; Gubbala, Ramesh V; Ueda, Shigenori; Yamaguchi, Akira; Abe, Hideki; Miyauchi, Masahiro

    2018-04-17

    Selective carbon dioxide photoreduction to produce formic acid was achieved under visible light irradiation using water molecules as electron donors, similar to natural plants, based on the construction of a Z-scheme light harvesting system modified with a Cu-Zn alloy nanoparticle co-catalyst. The faradaic efficiency of our Z-scheme system for HCOOH generation was over 50% under visible light irradiation.

  2. Significantly enhanced visible light response in single TiO2 nanowire by nitrogen ion implantation

    Science.gov (United States)

    Wu, Pengcheng; Song, Xianyin; Si, Shuyao; Ke, Zunjian; Cheng, Li; Li, Wenqing; Xiao, Xiangheng; Jiang, Changzhong

    2018-05-01

    The metal-oxide semiconductor TiO2 shows enormous potential in the field of photoelectric detection; however, UV-light absorption only restricts its widespread application. It is considered that nitrogen doping can improve the visible light absorption of TiO2, but the effect of traditional chemical doping is far from being used for visible light detection. Herein, we dramatically broadened the absorption spectrum of the TiO2 nanowire (NW) by nitrogen ion implantation and apply the N-doped single TiO2 NW to visible light detection for the first time. Moreover, this novel strategy effectively modifies the surface states and thus regulates the height of Schottky barriers at the metal/semiconductor interface, which is crucial to realizing high responsivity and a fast response rate. Under the illumination of a laser with a wavelength of 457 nm, our fabricated photodetector exhibits favorable responsivity (8 A W-1) and a short response time (0.5 s). These results indicate that ion implantation is a promising method in exploring the visible light detection of TiO2.

  3. Synthesis of mesoporous TiO(2-x)N(x) spheres by template free homogeneous co-precipitation method and their photo-catalytic activity under visible light illumination.

    Science.gov (United States)

    Parida, K M; Naik, Brundabana

    2009-05-01

    The article presents preparation, characterization and catalytic activity evaluation of an efficient nitrogen doped mesoporous titania sphere photo-catalyst for degradation of methylene blue (MB) and methyl orange (MO) under visible light illumination. Nitrogen doped titania was prepared by soft chemical route i.e. template free, slow and controlled homogeneous co-precipitation from titanium oxysulfate sulfuric acid complex hydrate, urea, ethanol and water. The molar composition of TiOSO(4) to urea was varied to prepare different atomic % nitrogen doped titania. Mesoporous anatase TiO(2-x)N(x) spheres with average crystallite size of 10 nm and formation of titanium oxynitride center were confirmed from HRTEM, XRD and XPS study. UV-vis DRS showed a strong absorption in the range of 400-500 nm which supports its use in visible spectrum of light. Nitrogen adsorption-desorption study supports the porous nature of the doped material. All the TiO(2-x)N(x) samples showed higher photo-catalytic activity than Degussa P(25) and undoped mesoporous titania. Sample containing around one atomic % nitrogen showed highest activity among the TiO(2-x)N(x) samples.

  4. Two-dimensionally grown single-crystal silicon nanosheets with tunable visible-light emissions.

    Science.gov (United States)

    Kim, Sung Wook; Lee, Jaejun; Sung, Ji Ho; Seo, Dong-jae; Kim, Ilsoo; Jo, Moon-Ho; Kwon, Byoung Wook; Choi, Won Kook; Choi, Heon-Jin

    2014-07-22

    Since the discovery of graphene, growth of two-dimensional (2D) nanomaterials has greatly attracted attention. However, spontaneous growth of atomic two-dimensional (2D) materials is limitedly permitted for several layered-structure crystals, such as graphene, MoS2, and h-BN, and otherwise it is notoriously difficult. Here we report the gas-phase 2D growth of silicon (Si), that is cubic in symmetry, via dendritic growth and an interdendritic filling mechanism and to form Si nanosheets (SiNSs) of 1 to 13 nm in thickness. Thin SiNSs show strong thickness-dependent photoluminescence in visible range including red, green, and blue (RGB) emissions with the associated band gap energies ranging from 1.6 to 3.2 eV; these emission energies were greater than those from Si quantum dots (SiQDs) of the similar sizes. We also demonstrated that electrically driven white, as well as blue, emission in a conventional organic light-emitting diode (OLED) geometry with the SiNS assembly as the active emitting layers. Tunable light emissions in visible range in our observations suggest practical implications for novel 2D Si nanophotonics.

  5. Hydrazine-based synergistic Ti(III)/N doping of surfactant-templated TiO{sub 2} thin films for enhanced visible light photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Syed Z.; Rankin, Stephen E., E-mail: srankin@engr.uky.edu

    2016-10-01

    This study reports the preparation of titanium (Ti{sup 3+}) and nitrogen co-doped cubic ordered mesoporous TiO{sub 2} thin films using N{sub 2}H{sub 4} treatment. The resulting co-doped TiO{sub 2} (Ti{sup 3+}-N-TiO{sub 2}) thin films show significant enhancements in visible light absorption and photocatalytic activity. Cubic ordered mesoporous TiO{sub 2} thin films were prepared via a sol-gel method with Pluronic F127 as the pore template. After brief calcination, the TiO{sub 2} films were dipped into hydrazine hydrate which acts both as a nitrogen source and as a reducing agent, followed by heating at low temperature (90 °C). The hydrazine treatment period was varied from 5 to 20 h to obtain different degrees of reduction and nitrogen doping. X-ray photoelectron spectroscopy (XPS) analyses and UV–vis absorbance spectra of Ti{sup 3+}-N-TiO{sub 2} films indicate that the incorporated N atoms and Ti{sup 3+} reduce the band gap of TiO{sub 2} and thus enhance the absorption of visible light. The corresponding visible light photocatalytic activity of Ti{sup 3+}-N-TiO{sub 2} films was determined from the photocatalytic degradation of methylene blue under visible light illumination (at 455 nm). The Ti{sup 3+}-N-TiO{sub 2} films prepared with 10 h of treatment show the optimum photocatalytic activity, with a pseudo-first order rate coefficient of 0.12 h{sup −1}, which is 3 times greater than that of undoped TiO{sub 2} films. Calcination temperature and time were varied prior to hydrazine treatment to confirm that a brief calcination at low temperature (10 min at 350 °C) gave the best photochemical activity. In photoelectrochemical water oxidation using a 455 nm LED, the Ti{sup 3+}-N-TiO{sub 2} films prepared with 10 h of N{sub 2}H{sub 4} treatment show about 4 times the photocurrent compared to undoped TiO{sub 2} films. The present study suggests that hydrazine induced doping is a promising approach to enable synergistic incorporation of N and Ti{sup 3+} into the

  6. The chemistry of amine radical cations produced by visible light photoredox catalysis

    Directory of Open Access Journals (Sweden)

    Jie Hu

    2013-10-01

    Full Text Available Amine radical cations are highly useful reactive intermediates in amine synthesis. They have displayed several modes of reactivity leading to some highly sought-after synthetic intermediates including iminium ions, α-amino radicals, and distonic ions. One appealing method to access amine radical cations is through one-electron oxidation of the corresponding amines under visible light photoredox conditions. This approach and subsequent chemistries are emerging as a powerful tool in amine synthesis. This article reviews synthetic applications of amine radical cations produced by visible light photocatalysis.

  7. Highly Efficient Low-Temperature N-Doped TiO2 Catalysts for Visible Light Photocatalytic Applications

    Science.gov (United States)

    Mahy, Julien G.; Cerfontaine, Vincent; Devred, François; Gaigneaux, Eric M.; Heinrichs, Benoît; Lambert, Stéphanie D.

    2018-01-01

    In this paper, TiO2 prepared with an aqueous sol-gel synthesis by peptization process is doped with nitrogen precursor to extend its activity towards the visible region. Three N-precursors are used: urea, ethylenediamine and triethylamine. Different molar N/Ti ratios are tested and the synthesis is adapted for each dopant. For urea- and trimethylamine-doped samples, anatase-brookite TiO2 nanoparticles of 6–8 nm are formed, with a specific surface area between 200 and 275 m2·g−1. In ethylenediamine-doped samples, the formation of rutile phase is observed, and TiO2 nanoparticles of 6–8 nm with a specific surface area between 185 and 240 m2·g−1 are obtained. X-ray photoelectron spectroscopy (XPS) and diffuse reflectance measurements show the incorporation of nitrogen in TiO2 materials through Ti–O–N bonds allowing light absorption in the visible region. Photocatalytic tests on the remediation of water polluted with p-nitrophenol show a marked improvement for all doped catalysts under visible light. The optimum doping, taking into account cost, activity and ease of synthesis, is up-scaled to a volume of 5 L and compared to commercial Degussa P25 material. This up-scaled sample shows similar properties compared to the lab-scale sample, i.e., a photoactivity 4 times higher than commercial P25. PMID:29642626

  8. Fabrication of visible-light-driven Ag/TiO{sub 2} heterojunction composites induced by shock wave

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Chunxiao [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Chen, Pengwan, E-mail: pwchen@bit.edu.cn [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China); Liu, Jianjun [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Yin, Hao [Institute of Systems Engineering, China Academy of Engineering Physics, Mianyang 612900, Sichuan Province (China); Gao, Xin; Mei, Xiaofeng [State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China)

    2016-09-15

    Using metatitanic acid (H{sub 2}TiO{sub 3}) and silver nitrate (AgNO{sub 3}) as titanium precursor and silver source respectively, a visible-light responsible Ag/TiO{sub 2} heterojunction photocatalyst is successfully prepared by shock wave with detonation-driven flyer impact. X-ray powder diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV–visible diffuse reflectance spectroscopy (UV–Vis DRS) and photoluminescence (PL) emission spectra are employed to characterize the phase structure, morphology, chemical composition and optical property of the recovered samples. The results indicate the metatitanic acid transforms to pure rutile TiO{sub 2} phase by shock wave which possess large surface area. Ag nanoparticles cover on the surface of TiO{sub 2} uniformly and a nanojunction structure is formed efficiently, which play important roles as an electron-conduction bridge and in the surface plasmon resonance effect. Ag modification feasibly improves the separation efficiency for photoinduced electron–hole pairs and enhances the visible-light response. Furthermore, due to the further enhanced separation for photogenerated charges resulting from close interfacial contact of the hetero structure, the obtained Ag/TiO{sub 2} photocatalyst exhibit remarkably improved photocatalytic activities (88% within 2 h) than that of P25 and shock induced pure TiO{sub 2} for the degradation of Rhodamine B under simulated sunlight irradiation. The experimental result shows the shock loading is an effective method to get Ag/TiO{sub 2} photocatalyst and offers new ideas to fabricate other heterojunction composite materials. - Highlights: • Shock wave was a new method of material modification. • The Ag/TiO{sub 2} hetero structure was formed efficiently by shock loading. • The visible-light responsible sample showed an enhanced photocatalytic activity. • This work gave new ideas to fabricate other heterojunction materials.

  9. Novel development of nanocrystalline kesterite Cu2ZnSnS4 thin film with high photocatalytic activity under visible light illumination

    Science.gov (United States)

    Apostolopoulou, Andigoni; Mahajan, Sandip; Sharma, Ramphal; Stathatos, Elias

    2018-01-01

    Cu2ZnSnS4 (CZTS) represents a promising p-type direct band gap semiconductor with large absorption coefficient in the visible region of solar light. In the present study, a kesterite CZTS nanocrystalline film, with high purity, was successfully synthesized via the combination of successive ionic layer adsorption and reaction (SILAR) and chemical bath deposition (CBD) technique. The morphology and structural properties of the CZTS films were characterized by FE-SEM microscopy, porosimetry in terms of Brunauer-Emmett-Teller (BET) technique, X-ray diffraction and Raman spectroscopy. The as-prepared films under mild heat treatment at 250 °C in the presence of sulfur atmosphere exhibited fine nanostructure with 35 nm average particle size, high specific surface area of 53 m2/g and 9 nm pore diameter. The photocatalytic activity of the films was examined to the degradation of Basic Blue 41 (BB-41) and Acid Orange 8 (AO-8) organic azo dyes under visible light irradiation, demonstrating 97.5% and 70% discoloration for BB-41 and AO-8 respectively. Reusability of the CZTS films was also tested proving good stability over several repetitions. The reduction of photocatalyst's efficiency after three successive repetitions didn't exceed 5.6% and 8.5% for BB-41 and AO-8 respectively.

  10. On the Secrecy Capacity of MISO Visible Light Communication Channels

    KAUST Repository

    Arfaoui, Mohamed Amine; Rezki, Zouheir; Ghrayeb, Ali; Alouini, Mohamed-Slim

    2017-01-01

    We study the secrecy capacity of the multiple- input single-output (MISO) Gaussian wiretap visible light communication (VLC) channel. We study a typical VLC scenario with one transmitter, one legitimate receiver, and one eavesdropper. Specifically

  11. Synthesis and visible light photoactivity of anatase Ag, and garlic loaded TiO2 nanocrystalline catalyst

    Science.gov (United States)

    An excellent visible light activated Ag and S doped TiO2 nanocatalyst was prepared by using AgNO3 and garlic (Allium sativum) as Ag+ and sulfur sources, respectively. The catalyst resisted the change from anatase to rutile phase even at calcination at 700 oC. The photocatalytic e...

  12. Visible light assisted photodecolorization of eosin-Y in aqueous solution using hesperidin modified TiO2 nanoparticles

    Science.gov (United States)

    Vignesh, K.; Suganthi, A.; Rajarajan, M.; Sakthivadivel, R.

    2012-03-01

    Hesperidin a flavanoid, modified TiO2 nanoparticles (Hes-TiO2) was synthesized to improve the visible light driven photocatalytic performance of TiO2. The synthesized nanoparticles were characterized by UV-visible diffuse reflectance spectroscopy (UV-vis-DRS), FT-IR, powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). The photocatalytic activity of Hes-TiO2 was investigated based on the decolorization of eosin-Y under visible light irradiation. Hes-TiO2 showed high efficiency for the decolorization of eosin-Y. The influences of various reaction parameters like effect of pH, catalyst dosage and initial dye concentration on the photocatalytic efficiency were investigated. The adsorption of eosin-Y on Hes-TiO2 was found favorable by the Langmuir approach. The removal percentage of chemical oxygen demand (COD) was determined to evaluate the mineralization of eosin-Y during photodecolorization. Based on the intermediates obtained in the GC-MS spectroscopic technique, a probable degradation mechanism has been proposed.

  13. Visible light assisted photodecolorization of eosin-Y in aqueous solution using hesperidin modified TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Vignesh, K.; Suganthi, A.; Rajarajan, M.; Sakthivadivel, R.

    2012-01-01

    Hesperidin a flavanoid, modified TiO 2 nanoparticles (Hes-TiO 2 ) was synthesized to improve the visible light driven photocatalytic performance of TiO 2 . The synthesized nanoparticles were characterized by UV-visible diffuse reflectance spectroscopy (UV-vis-DRS), FT-IR, powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). The photocatalytic activity of Hes-TiO 2 was investigated based on the decolorization of eosin-Y under visible light irradiation. Hes-TiO 2 showed high efficiency for the decolorization of eosin-Y. The influences of various reaction parameters like effect of pH, catalyst dosage and initial dye concentration on the photocatalytic efficiency were investigated. The adsorption of eosin-Y on Hes-TiO 2 was found favorable by the Langmuir approach. The removal percentage of chemical oxygen demand (COD) was determined to evaluate the mineralization of eosin-Y during photodecolorization. Based on the intermediates obtained in the GC-MS spectroscopic technique, a probable degradation mechanism has been proposed.

  14. AgBr/diatomite for the efficient visible-light-driven photocatalytic degradation of Rhodamine B

    Science.gov (United States)

    Fang, Jing; Zhao, Huamei; Liu, Qinglei; Zhang, Wang; Gu, Jiajun; Su, Yishi; Abbas, Waseem; Su, Huilan; You, Zhengwei; Zhang, Di

    2018-03-01

    The treatment of organic pollution via photocatalysis has been investigated for a few decades. However, earth-abundant, cheap, stable, and efficient substrates are still to be developed. Here, we prepare an efficient visible-light-driven photocatalyst via the deposition of Ag nanoparticles (light intensity. For comparison, AgBr/SiO2 ( κ = 0.04 min-1) and commercial AgBr nanoparticles ( κ = 0.05 min-1) were measured as well. The experimental results reveal that diatomite acted more than a substrate benefiting the dispersion of AgBr nanoparticles, as well as a cooperator to help harvest visible light and adsorb dye molecules, leading to the efficient visible-light-driven photocatalytic performance of AgBr/diatomite. Considering the low cost (10 per ton) and large-scale availability of diatomite, our study provides the possibility to prepare other types of diatomite-based efficient photocatalytic composites with low-cost but excellent photocatalytic performance.

  15. Eosin Y-sensitized nanosheet-stacked hollow-sphere TiO2 for efficient photocatalytic H2 production under visible-light irradiation

    Science.gov (United States)

    Shi, Jinwen; Guan, Xiangjiu; Zhou, Zhaohui; Liu, Haipei; Guo, Liejin

    2015-06-01

    Nanosheet (with around 20 nm in thickness)-stacked hollow-sphere TiO2 was synthesized via a modified solvothermal reaction for different times followed by calcination treatment at different temperatures. After surface modification by different cations (H+ or Fe3+) and further sensitization by Eosin Y, the obtained photocatalysts achieved remarkably enhanced H2-production activity (about 4.2 times of that for Eosin Y-sensitized P25) and stability under visible-light irradiation. The improved photocatalytic performance was synergistically caused by the enhanced Eosin Y sensitization (due to the enlarged surface area and electropositively modified surface), the optimized crystal structure (well-crystallized anatase phase), and the unique micro/nanostructure (nanosheet-stacked hollow spheres). This work presented an effective route to explore new visible-light-driven H2-production photocatalysts by coupling nanomaterials with special morphologies and metal-free dyes with visible-light absorption.

  16. Eosin Y-sensitized nanosheet-stacked hollow-sphere TiO2 for efficient photocatalytic H2 production under visible-light irradiation

    International Nuclear Information System (INIS)

    Shi, Jinwen; Guan, Xiangjiu; Zhou, Zhaohui; Liu, Haipei; Guo, Liejin

    2015-01-01

    Nanosheet (with around 20 nm in thickness)-stacked hollow-sphere TiO 2 was synthesized via a modified solvothermal reaction for different times followed by calcination treatment at different temperatures. After surface modification by different cations (H + or Fe 3+ ) and further sensitization by Eosin Y, the obtained photocatalysts achieved remarkably enhanced H 2 -production activity (about 4.2 times of that for Eosin Y-sensitized P25) and stability under visible-light irradiation. The improved photocatalytic performance was synergistically caused by the enhanced Eosin Y sensitization (due to the enlarged surface area and electropositively modified surface), the optimized crystal structure (well-crystallized anatase phase), and the unique micro/nanostructure (nanosheet-stacked hollow spheres). This work presented an effective route to explore new visible-light-driven H 2 -production photocatalysts by coupling nanomaterials with special morphologies and metal-free dyes with visible-light absorption

  17. Synthesis of metal free ultrathin graphitic carbon nitride sheet for photocatalytic dye degradation of Rhodamine B under visible light irradiation

    Science.gov (United States)

    Rahman, Shakeelur; Momin, Bilal; Higgins M., W.; Annapure, Uday S.; Jha, Neetu

    2018-04-01

    In recent times, low cost and metal free photocatalyts driven under visible light have attracted a lot of interest. One such photo catalyst researched extensively is bulk graphitic carbon nitride sheets. But the low surface area and weak mobility of photo generated electrons limits its photocatalytic performance in the visible light spectrum. Here we present the facile synthesis of ultrathin graphitic carbon nitride using a cost effective melamine precursor and its application in highly efficient photocatalytic dye degradation of Rhodamine B molecules. Compared to bulk graphitic carbon nitride, the synthesized ultrathin graphitic carbon nitride shows an increase in surface area, a a decrease in optical band gap and effective photogenerated charge separation which facilitates the harvest of visible light irradiation. Due to these optimal properties of ultrathin graphitic carbon nitride, it shows excellent photocatalytic activity with photocatalytic degradation of about 95% rhodamine B molecules in 1 hour.

  18. High photocatalytic activity of hierarchical SiO2@C-doped TiO2 hollow spheres in UV and visible light towards degradation of rhodamine B.

    Science.gov (United States)

    Zhang, Ying; Chen, Juanrong; Hua, Li; Li, Songjun; Zhang, Xuanxuan; Sheng, Weichen; Cao, Shunsheng

    2017-10-15

    Ongoing research activities are targeted to explore high photocatalytic activity of TiO 2 -based photocatalysts for the degradation of environmental contaminants under UV and visible light irradiation. In this work, we devise a facile, cost-effective technique to in situ synthesize hierarchical SiO 2 @C-doped TiO 2 (SCT) hollow spheres for the first time. This strategy mainly contains the preparation of monodisperse cationic polystyrene spheres (CPS), sequential deposition of inner SiO 2 , the preparation of the sandwich-like CPS@SiO 2 @CPS particles, and formation of outer TiO 2 . After the one-step removal of CPS templates by calcination at 450°C, hierarchical SiO 2 @C-doped TiO 2 hollow spheres are in situ prepared. The morphology, hierarchical structure, and properties of SCT photocatalyst were characterized by TEM. SEM, STEM Mapping, BET, XRD, UV-vis spectroscopy, and XPS. Results strongly confirm the carbon doping in the outer TiO 2 lattice of SCT hollow spheres. When the as-synthesized SCT hollow spheres were employed as a photocatalyst for the degradation of Rhodamine B under visible-light and ultraviolet irradiation, the SCT photocatalyst exhibits a higher photocatalytic activity than commercial P25, effectively overcoming the limitations of poorer UV activity for many previous reported TiO 2 -based photocatalysts due to doping. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Thickness-dependent photocatalytic performance of graphite oxide for degrading organic pollutants under visible light.

    Science.gov (United States)

    Oh, Junghoon; Chang, Yun Hee; Kim, Yong-Hyun; Park, Sungjin

    2016-04-28

    Photocatalysts use sustainable solar light energy to trigger various catalytic reactions. Metal-free nanomaterials have been suggested as cost-effective and environmentally friendly photocatalysts. In this work, we propose thickness-controlled graphite oxide (GO) as a metal-free photocatalyst, which is produced by exfoliating thick GO particles via stirring and sonication. All GO samples exhibit photocatalytic activity for degrading an organic pollutant, rhodamine B under visible light, and the thickest sample shows the best catalytic performance. UV-vis-NIR diffuse reflectance absorption spectra indicate that thicker GO samples absorb more vis-NIR light than thinner ones. Density-functional theory calculations show that GO has a much smaller band gap than that of single-layer graphene oxide, and thus suggest that the largely-reduced band gap is responsible for this trend of light absorption.

  20. Influence of In{sup 3+}-doping and Ag{sup 0}-depositing on the visible-light-induced photocatalytic activity of TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pengfei, E-mail: zpf@mail.csu.edu.cn [College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083 (China); Li, Xiaowei; Wu, Xingke [College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083 (China); Zhao, Tianxiang [College of Physical Science and Technology, Central South University, Changsha, 410083 (China); Wen, Lishi [Metal Graduate School, Chinese Academy of Sciences, Shenyang, Liaoning, 110016 (China)

    2016-07-15

    In{sup 3+}-doped and Ag{sup 0}-deposited TiO{sub 2} (Ag{sup 0}/In{sup 3+}/TiO{sub 2}), In{sup 3+}-doped TiO{sub 2} (In{sup 3+}/TiO{sub 2}), Ag{sup 0}-deposited TiO{sub 2} (Ag{sup 0}/TiO{sub 2}), and pure TiO{sub 2} were synthesized via sol–gel and photocatalytic reduction route. The as-prepared samples were characterized by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), scanning electron microscopy (SEM), X-ray photoelectron spectroscope (XPS), UV–visible absorption spectra techniques and photoluminescence (PL) emission spectra, and their visible-light-induced photocatalytic activity was evaluated by the decomposition of methylene blue (MB). Modifying of TiO{sub 2} by making Ag{sup 0} deposit on its surface extended the absorption limit of TiO{sub 2} from 390 to 464 nm due to the broadening of surface plasmon absorption, and promoted charge separation of photoinduced electrons (e{sup –}) and holes (h{sup +}) because of the Schottky barrier at Ag{sup 0}–TiO{sub 2} interface. Modifying of TiO{sub 2} by making In{sup 3+} (r = 81 pm) to take the place of Ti{sup 4+} (r = 68 pm) in its lattice extended the absorption limit of TiO{sub 2} from 390 to 602 nm by the donor-doped energy level (2.06 eV) formed in the forbidden band of TiO{sub 2} (3.18 eV), and promoted charge separation of photoinduced e{sup –}/h{sup +} by the decrease of crystallite size, increase of anatase content and formation of point defects (oxygen vacancy and titanium interstitial) resulting from the local expansive lattice distortion of TiO{sub 2}. Because of their synergistic effects, co-modifying of TiO{sub 2} by making both In{sup 3+} take the place of Ti{sup 4+} in its lattice and Ag{sup 0} deposit on its surface extended the absorption limit of TiO{sub 2} from 390 to 670 nm, and promoted the charge separation of photoinduced e{sup –}/h{sup +} more efficiently. The co-modifying's synergistic effects made Ag{sup 0}/In{sup 3+}/TiO{sub 2} exhibit distinctly higher visible-light

  1. Graphitic-C(3)N(4)-hybridized TiO(2) nanosheets with reactive {001} facets to enhance the UV- and visible-light photocatalytic activity.

    Science.gov (United States)

    Gu, Liuan; Wang, Jingyu; Zou, Zhijuan; Han, Xijiang

    2014-03-15

    AnataseTiO(2)nanosheets with dominant {001} facets were hybridized with graphitic carbon nitride (g-C(3)N(4)) using a facile solvent evaporation method. On top of the superior photocatalytic performance of highly reactive {001} facets, the hybridization with g-C(3)N(4) is confirmed to further improve the reactivity through degrading a series of organic molecules under both UV- and visible-light irradiation. It is proposed that an effective charge separation between g-C(3)N(4) and TiO2 exists in the photocatalytic process, i.e., the transferring of photogenerated holes from the valence band (VB) of TiO(2) to the highest occupied molecular orbital (HOMO) of g-C(3)N(4), and the injecting of electrons from the lowest unoccupied molecular orbital (LUMO) of g-C(3)N(4) to the conduction band (CB) of TiO(2). Due to this synergistic effect, the enhancement of UV- and visible-light photoactivity over the hybrid is achieved. Furthermore, it has been revealed that holes were the main factor for the improved photoactivity under UV-light, while the OH radicals gained the predominance for degrading organic molecules under visible-light. Overall, this work would be significant for fabricating efficient UV-/visible-photocatalysts and providing deeper insight into the enhanced mechanisms of π-conjugated molecules hybridized semiconductors. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Fabrication of efficient visible light activated Cu–P25–graphene ternary composite for photocatalytic degradation of methyl blue

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Zheng [Department of Chemistry, School of Science, Beijing Jiaotong University, Beijing 100044 (China); Duan, Wubiao, E-mail: wbduan@bjtu.edu.cn [Department of Chemistry, School of Science, Beijing Jiaotong University, Beijing 100044 (China); Liu, Bo; Chen, Xidong [Department of Chemistry, School of Science, Beijing Jiaotong University, Beijing 100044 (China); Yang, Feihua; Guo, Jianping [State Key Laboratory of Solid Wastes Resource Utilization and Energy Saving Building Materials, Beijing Building Materials Academy of Sciences Research, Beijing 100041 (China)

    2015-11-30

    Graphical abstract: This enhanced photocatalytic activity of multi-doped P25 arises due to the synergistic effect of dopants contribution to improve visible light absorption and increase of the lifetime of photo-generated charge carriers. Plausible mechanism for the photocatalytic degradation of MB on CPG nanocomposite is illustrated in the figure above. Graphene incooperated with TiO{sub 2} promotes the formation of Ti−C or Ti−O−C bonds that introduced an additional energy level above the valence band of TiO{sub 2}. Furthermore, copper and graphene serve as an inhibitor of recombination by trapping electrons to promote charge separation. Simultaneously, doping Cu{sup 2+} ions into TiO{sub 2} could also induce more oxygen vacancies, which can produce more hydroxyl groups. Finally, the enhanced adsorptivity of π–π interaction between MB and the composite catalyst was as well significant for photocatalytic activity. - Highlights: • Hydrothermal method was proposed to fabricate Cu–P25–graphene ternary composite at relative low temperature. • Degradation efficiency and hydrogen evolution rate of CPG-4 was up to 98% and 1.90 mmol g{sup −1} respectively. • The efficiency of MB removal by CPG-4 was sustainable and consistent. • The particles-on-a-sheet structure and synergistic effects of Cu{sup 2+} ions and GO lead to the improved photocatalytic activity. • The effects of pH values of methyl blue solution for photocatalysts was investigated. - Abstract: Cu–P25–graphene nanocomposite was fabricated through hydrothermal method at relatively low temperature. The technique used is P25–graphene (PG) binary composite was firstly prepared by P25 and graphite oxide (GO), and then Cu{sup 2+} ions were impregnated into PG composite. The prepared samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), transmission electron microscopy (TEM), UV–vis diffuse reflectance

  3. Facile synthesis of flake-like TiO{sub 2}/C nano-composites for photocatalytic H{sub 2} evolution under visible-light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Baolin; Zhou, Juan; Liang, Xiaoyu; Song, Kainan; Su, Xintai, E-mail: suxintai827@163.com

    2017-01-15

    Highlights: • TiO{sub 2}/C nano-flakes were prepared by a facile phase-transfer strategy combined with salt-template calcination method. • The sub–10 nm of TiO{sub 2} NPs were uniformly dispersed on the carbon flakes. • The TiO{sub 2}/C nano-flakes showed a superior visible-light photocatalytic activity for H{sub 2} production. - Abstract: The production of H{sub 2} by photocatalytic water splitting has become a promising approach for clean, economical, and renewable evolution of H{sub 2} by using solar energy. In spite of tremendous efforts, the present challenge for materials scientists is to build a highly active photocatalytic system with high efficiency and low cost. Here we report a facile method for the preparation of TiO{sub 2}/C nano-flakes, which was used as an efficient visible-light photocatalyst for H{sub 2} evolution. This composite material was prepared by using a phase-transfer strategy combined with salt-template calcination treatment. The results showed that anatase TiO{sub 2} nanoparticles with the diameter of ∼10 nm were uniformly dispersed on the carbon nano-flakes. In addition, the samples prepared at 600 °C (denoted as T600) endowed a larger surface area of 196 m{sup 2} g{sup −1} and higher light absorption, resulting in enhanced photocatalytic activity. Further, the T600 product reached a high H{sub 2} production rate of 57.2 μmol h{sup −1} under visible-light irradiation. This unusual photocatalytic activity arose from the positive synergetic effect between the TiO{sub 2} and carbon in this hybrid catalyst. This work highlights the potential of TiO{sub 2}/C nano-flakes in the field of photocatalytic H{sub 2} evolution under visible-light irradiation.

  4. Increasing of visibility on the pedestrian crossing by the additional lighting systems

    Science.gov (United States)

    Baleja, Richard; Bos, Petr; Novak, Tomas; Sokansky, Karel; Hanusek, Tomas

    2017-09-01

    Pedestrian crossings are critical places for road accidents between pedestrians and motor vehicles. For this reason, it is very important to increase attention when the pedestrian crossings are designed and it is necessary to take into account all factors that may contribute to higher safety. Additional lighting systems for pedestrian crossings are one of them and the lighting systems must fulfil the requirements for higher visibility from the point of view of car drivers from both directions. This paper describes the criteria for the suitable additional lighting system on pedestrian crossings. Generally, it means vertical illuminance on the pedestrian crossing from the driver’s view, horizontal illuminance on the crossing and horizontal illuminance both in front of and behind the crossing placed on the road and their acceptable ratios. The article also describes the choice of the colours of the light (correlated colour temperature) and its influence on visibility. As a part of the article, there are case designs of additional lighting systems for pedestrian crossings and measurements from realized additional lighting systems by luxmeters and luminance cameras and their evaluation.

  5. Driving Unidirectional Molecular Rotary Motors with Visible Light by Intra- And Intermolecular Energy Transfer from Palladium Porphyrin

    NARCIS (Netherlands)

    Cnossen, Arjen; Hou, Lili; Pollard, Michael M.; Wesenhagen, Philana V.; Browne, Wesley R.; Feringa, Ben L.

    2012-01-01

    Driving molecular rotary motors using visible light (530-550 nm) instead of UV light was achieved using palladium tetraphenylporphyrin as a triplet sensitizer. Visible light driven rotation was confirmed by UV/vis absorption, circular dichroism and H-1 NMR spectroscopy and the rotation was confirmed

  6. Visible light-induced photocatalytic degradation of Reactive Blue-19 over highly efficient polyaniline-TiO2 nanocomposite: a comparative study with solar and UV photocatalysis.

    Science.gov (United States)

    Kalikeri, Shankramma; Kamath, Nidhi; Gadgil, Dhanashri Jayant; Shetty Kodialbail, Vidya

    2018-02-01

    Polyaniline-TiO 2 (PANI-TiO 2 ) nanocomposite was prepared by in situ polymerisation method. X-ray diffractogram (XRD) showed the formation of PANI-TiO 2 nanocomposite with the average crystallite size of 46 nm containing anatase TiO 2 . The PANI-TiO 2 nanocomposite consisted of short-chained fibrous structure of PANI with spherical TiO 2 nanoparticles dispersed at the tips and edge of the fibres. The average hydrodynamic diameter of the nanocomposite was 99.5 nm. The band gap energy was 2.1 eV which showed its ability to absorb light in the visible range. The nanocomposite exhibited better visible light-mediated photocatalytic activity than TiO 2 (Degussa P25) in terms of degradation of Reactive Blue (RB-19) dye. The photocatalysis was favoured under initial acidic pH, and complete degradation of 50 mg/L dye could be achieved at optimum catalyst loading of 1 g/L. The kinetics of degradation followed the Langmuir-Hinshelhood model. PANI-TiO 2 nanocomposite showed almost similar photocatalytic activity under UV and visible light as well as in the solar light which comprises of radiation in both UV and visible light range. Chemical oxygen demand removal of 86% could also be achieved under visible light, confirming that simultaneous mineralization of the dye occurred during photocatalysis. PANI-TiO 2 nanocomposites are promising photocatalysts for the treatment of industrial wastewater containing RB-19 dye.

  7. Carbon wrapped and doped TiO{sub 2} mesoporous nanostructure with efficient visible-light photocatalysis for NO removal

    Energy Technology Data Exchange (ETDEWEB)

    He, Di; Li, Yongli, E-mail: lyl@bjut.edu.cn; Wang, Inshu, E-mail: wangjsh@bjut.edu.cn; Wu, Junshu; Yang, Yilong; An, Qier

    2017-01-01

    Highlights: • Carbon wrapped and doped mesoporous titanium dioxide nanocrystals were fabricated. • Meso/micropores are generated on TiO{sub 2} surface caused by eliminating of carbon precursor. • Absorption edge is extended to visible region owing to the carbon-doping. • About 71% of NO is removed under visible light irradiation even in absence of moisture. - Abstract: Carbon wrapped and doped mesoporous anatase TiO{sub 2} nanocrystals were prepared by a hydrothermal approach in acetic acid aqueous containing chitosan. A designed post-thermal treatment was employed to enhance the incorporation between carbon and TiO{sub 2}. After hydrothermal process, mesoporous anatase TiO{sub 2} formed with wrapped by a few layers of carbon shell. Here chitosan was used as not only the template for the formation of mesopores, but also the carbon source toward the carbon layers coating. Furthermore, chitosan provided doping element into TiO{sub 2} lattice and induced to form Ti−C bond which caused Ti(III) with oxygen vacancies. The Ti(III)-oxygen vacancy are partly responsible for visible-light response and high photocatalytic activity, which can accelerate electron transfer thus inhibit photogenerated charge recombination. The photocatalytic activity was evaluated using photo-oxidation of gaseous NO under visible light irradiation as the probe reaction. In the optimum result, 71% of NO with starting concentration at ppb level was photo-degraded. Our results also showed that the photogenerated electrons played a key role in photodegradation of NO, as a result, the environmental humidity level had a negligible effect on the photocatalysis.

  8. One-pot solvothermal synthesis of three-dimensional (3D) BiOI/BiOCl composites with enhanced visible-light photocatalytic activities for the degradation of bisphenol-A

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Xin [School of Chemistry and Environment, South China Normal University, Key Lab of Theoretical Chemistry of Environment, Guangzhou 510006 (China); Nano Science Research Center, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640 (China); Hao, Rong; Liang, Min; Zuo, Xiaoxi [School of Chemistry and Environment, South China Normal University, Key Lab of Theoretical Chemistry of Environment, Guangzhou 510006 (China); Nan, Junmin, E-mail: jmnan@scnu.edu.cn [School of Chemistry and Environment, South China Normal University, Key Lab of Theoretical Chemistry of Environment, Guangzhou 510006 (China); Li, Laisheng [School of Chemistry and Environment, South China Normal University, Key Lab of Theoretical Chemistry of Environment, Guangzhou 510006 (China); Zhang, Weide [Nano Science Research Center, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640 (China)

    2012-09-30

    Highlights: Black-Right-Pointing-Pointer Synthesis of 3D BiOI/BiOCl microspheres by a one-pot template-free solvothermal method. Black-Right-Pointing-Pointer Photocatalyst is BiOI/BiOCl composites. Black-Right-Pointing-Pointer BiOI/BiOCl composites have enhanced visible-light photocatalytic ability to bisphenol-A. Black-Right-Pointing-Pointer A simple and direct photodegradation pathway of bisphenol-A is proposed. - Abstract: Three-dimensional (3D) BiOI/BiOCl composite microspheres with enhanced visible-light photodegradation activity of bisphenol-A (BPA) are synthesized by a simple, one-pot, template-free, solvothermal method using BiI{sub 3} and BiCl{sub 3} as precursors. These 3D hierarchical microspheres with heterojunction structures are composed of 2D nanosheets and have composition-dependent absorption properties in the ultraviolet and visible light regions. The photocatalytic oxidation of BPA over BiOI/BiOCl composites followed pseudo first-order kinetics according to the Langmuir-Hinshelwood model. The highest photodegradation efficiency of BPA, i.e., nearly 100%, was observed with the BiOI/BiOCl composite (containing 90% BiOI) using a catalyst dosage of 1 g L{sup -1} in the BPA solution (C{sub 0} = 20 mg L{sup -1}, pH = 7.0) under visible light irradiation for 60 min. Under these conditions, the reaction rate constant was more than 4 and 20 times greater than that of pure BiOI and the commercially available Degussa P25, respectively. The superior photocatalytic activity of this composite catalyst is attributed to the suitable band gap energies and the low recombination rate of the photogenerated electron-hole pairs due to the presence of BiOI/BiOCl heterostructures. Only one intermediate at m/z 151 was observed in the photodegradation process of BPA by liquid chromatography combined with mass spectrometry (LC-MS) analysis, and a simple and hole-predominated photodegradation pathway of BPA was subsequently proposed. Furthermore, this photocatalyst

  9. A novel mirror diversity receiver for indoor MIMO visible light

    KAUST Repository

    Park, Ki-Hong; Alheadary, Wael G.; Alouini, Mohamed-Slim

    2016-01-01

    In this paper, we propose and study a non-imaging receiver design reducing the correlation of channel matrix for indoor multiple-input multiple-output (MIMO) visible light communication (VLC) systems. Contrary to previous works, our proposed mirror

  10. Preparation of Hierarchical BiOBr Microspheres for Visible Light-Induced Photocatalytic Detoxification and Disinfection

    Directory of Open Access Journals (Sweden)

    Ayla Ahmad

    2016-01-01

    Full Text Available Photocatalytic degradation is a promising alternative to traditional wastewater treatment methods. Recently developed visible light-responsive photocatalyst, BiOBr, has attracted extensive attentions. Hereby, a detailed investigation of application of BiOBr to bacterial inactivation and organic pollutants degradation is reported. Hydrothermal catalyst was prepared using template-free method. While, for solvothermal synthesis, CTAB was used as a template. Results indicate a higher photocatalytic activity by the solvothermally prepared catalyst. Solvothermally prepared BiOBr exhibited high photocatalytic activities in both water detoxification and disinfection.

  11. BODIPY star-shaped molecules as solid state colour converters for visible light communications

    Energy Technology Data Exchange (ETDEWEB)

    Vithanage, D. A.; Manousiadis, P. P.; Sajjad, M. T.; Samuel, I. D. W., E-mail: idws@st-andrews.ac.uk, E-mail: gat@st-andrews.ac.uk; Turnbull, G. A., E-mail: idws@st-andrews.ac.uk, E-mail: gat@st-andrews.ac.uk [Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, St. Andrews KY16 9SS (United Kingdom); Rajbhandari, S. [School of Computing, Electronics and Mathematics, Coventry University, Coventry, West Midlands CV1 2JH (United Kingdom); Department of Engineering Science, University of Oxford, Oxford OX1 3PJ (United Kingdom); Chun, H.; Faulkner, G.; O' Brien, D. C. [Department of Engineering Science, University of Oxford, Oxford OX1 3PJ (United Kingdom); Orofino, C.; Cortizo-Lacalle, D.; Findlay, N. J.; Skabara, P. J. [WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL (United Kingdom); Kanibolotsky, A. L. [WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL (United Kingdom); Institute of Physical-Organic Chemistry and Coal Chemistry, 02160 Kyiv (Ukraine)

    2016-07-04

    In this paper, we study a family of solid-state, organic semiconductors for visible light communications. The star-shaped molecules have a boron-dipyrromethene (BODIPY) core with a range of side arm lengths which control the photophysical properties. The molecules emit red light with photoluminescence quantum yields ranging from 22% to 56%. Thin films of the most promising BODIPY molecules were used as a red colour converter for visible light communications. The film enabled colour conversion with a modulation bandwidth of 73 MHz, which is 16 times higher than that of a typical phosphor used in LED lighting systems. A data rate of 370 Mbit/s was demonstrated using On-Off keying modulation in a free space link with a distance of ∼15 cm.

  12. Layered MoSe2/Bi2WO6 composite with P-N heterojunctions as a promising visible-light induced photocatalyst

    Science.gov (United States)

    Xie, Taiping; Liu, Yue; Wang, Haiqiang; Wu, Zhongbiao

    2018-06-01

    In this paper, layered MoSe2/Bi2WO6 composites were fabricated by a simple bath sonication method for photocatalytic applications. Their photocatalytic performances were then investigated via the photocatalytic oxidation of gaseous toluene under visible-light irradiation. As a result, 1.5%-MoSe2/Bi2WO6 catalyst showed the highest activity with a degradation rate of nearly 80% during three-hour visible-light irradiation. The k value determined of 1.5%-MoSe2/Bi2WO6 was approximately 6 times higher than that of pure Bi2WO6 and 7 times higher compared with pure MoSe2. After a series of characterizations, it was concluded that the p-n heterojunctions of MoSe2/Bi2WO6 composites with strong interlayer interactions could effectively prolong the life time of photoinduced electron-hole pairs. And both the contents of surface superoxide and hydroxyl radicals were thereby increased, benefitting the photocatalytic process. Furthermore, the hydroxyl radicals and holes were found to be the major active species. This work provided a way to design photocatalyst with enhanced visible-light driven photoactivity toward indoor air pollutants purification.

  13. One-pot synthesis of copper-doped graphitic carbon nitride nanosheet by heating Cu–melamine supramolecular network and its enhanced visible-light-driven photocatalysis

    International Nuclear Information System (INIS)

    Gao, Junkuo; Wang, Jiangpeng; Qian, Xuefeng; Dong, Yingying; Xu, Hui; Song, Ruijing; Yan, Chenfeng; Zhu, Hangcheng; Zhong, Qiwei

    2015-01-01

    Here we report a novel synthetic pathway for preparation of Cu-doped g-C 3 N 4 (Cu-g-C 3 N 4 ) with nanosheet morphology by using a two dimensional Cu–melamine supramolecular network as both sacrificial template and precursor. The specific surface area of Cu-g-C 3 N 4 is 40.86 m 2 g −1 , which is more than 7 times larger than that of pure g-C 3 N 4 . Cu-g-C 3 N 4 showed strong optical absorption in the visible-light region and expanded the absorption to the near-infrared region. The uniform nanosheet morphology, higher surface area and strong visible-light absorption have enabled Cu-g-C 3 N 4 exhibiting enhanced visible light photocatalytic activity for the photo-degradation of methylene blue (MB). The results indicate that metal–melamine supramolecular network can be promising precursors for the one step preparation of efficient metal-doped g-C 3 N 4 photocatalysts. - Graphical abstract: Cu-doped g-C 3 N 4 (Cu-g-C 3 N 4 ) with nanosheet morphology was fabricated via a simple one step preparation by using a two dimensional Cu–melamine supra-molecular network as both sacrificial template and precursor. - Highlights: • Cu-doped g-C 3 N 4 (Cu-g-C 3 N 4 ) with nanosheet morphology was prepared. • Cu-g-C 3 N 4 showed strong optical absorption in the visible-light region. • Cu-g-C 3 N 4 exhibits enhanced visible light photocatalytic activity

  14. Nanosecond high-power dense microplasma switch for visible light

    Energy Technology Data Exchange (ETDEWEB)

    Bataller, A., E-mail: bataller@physics.ucla.edu; Koulakis, J.; Pree, S.; Putterman, S. [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095 (United States)

    2014-12-01

    Spark discharges in high-pressure gas are known to emit a broadband spectrum during the first 10 s of nanoseconds. We present calibrated spectra of high-pressure discharges in xenon and show that the resulting plasma is optically thick. Laser transmission data show that such a body is opaque to visible light, as expected from Kirchoff's law of thermal radiation. Nanosecond framing images of the spark absorbing high-power laser light are presented. The sparks are ideal candidates for nanosecond, high-power laser switches.

  15. Far-ultraviolet spectral changes of titanium dioxide with gold nanoparticles by ultraviolet and visible light

    Science.gov (United States)

    Tanabe, Ichiro; Kurawaki, Yuji

    2018-05-01

    Attenuated total reflectance spectra including the far-ultraviolet (FUV, ≤ 200 nm) region of titanium dioxide (TiO2) with and without gold (Au) nanoparticles were measured. A newly developed external light-irradiation system enabled to observe spectral changes of TiO2 with Au nanoparticles upon light irradiations. Absorption in the FUV region decreased and increased by the irradiation with ultraviolet and visible light, respectively. These spectral changes may reflect photo-induced electron transfer from TiO2 to Au nanoparticles under ultraviolet light and from Au nanoparticles to TiO2 under visible light, respectively.

  16. Phase transformation synthesis of TiO2/CdS heterojunction film with high visible-light photoelectrochemical activity

    Science.gov (United States)

    Liu, Canjun; Yang, Yahui; Li, Jie; Chen, Shu

    2018-06-01

    CdS/TiO2 heterojunction film used as a photoanode has attracted much attention in the past few years due to its good visible light photocatalytic activity. However, CdS/TiO2 films prepared by conventional methods (successive ionic layer adsorption and reaction, chemical bath deposition and electrodeposition) show numerous grain boundaries in the CdS layer and an imperfect contact at the heterojunction interface. In this study, we designed a phase transformation method to fabricate CdS/TiO2 nanorod heterojunction films. The characterization results showed that the CdS layer with fewer grain boundaries was conformally coated on the TiO2 nanorod surface and the formation mechanism has been explained in this manuscript. Moreover, the prepared CdS/TiO2 films show a high photocatalytic activity and the photocurrent density is as high as 9.65 mA cm‑2 at 0.80 V versus RHE. It may be attributed to fewer grain boundaries and a compact heterojunction contact, which can effectively improve charge separation and transportation.

  17. Sustainable Strategy Utilizing Biomass: Visible-Light-Mediated Synthesis of gamma-Valerolactone

    Data.gov (United States)

    U.S. Environmental Protection Agency — A novel sustainable approach to valued g-valerolactone was investigated. This approach exploits the visible-light-mediated conversion of biomass-derived levulinic...

  18. Rapid water disinfection using vertically aligned MoS_2 nanofilms and visible light

    International Nuclear Information System (INIS)

    Liu, Chong; Kong, Desheng; Hsu, Po-Chun; Yuan, Hongtao; Lee, Hyun-Wook

    2016-01-01

    Here, solar energy is readily available in most climates and can be used for water purification. However, solar disinfection of drinking water (SODIS) mostly relies on ultraviolet light, which represents only 4% of total solar energy, and this leads to slow treatment speed. The development of new materials that can harvest visible light for water disinfection, and speed up solar water purification, is therefore highly desirable. Here, we show that few-layered vertically aligned MoS_2 (FLV-MoS_2) films can be used to harvest the whole spectrum of visible light (~ 50% of solar energy) and achieve highly efficient water disinfection. The bandgap of MoS_2 was increased from 1.3 eV to 1.55 eV by decreasing the domain size, which allowed the FLV-MoS_2 to generate reactive oxygen species (ROS) for bacterial inactivation in water. The FLV-MoS_2 showed ~15 times better log inactivation efficiency of indicator bacteria compared to bulk MoS_2, and much faster inactivation of bacteria under both visible light and sunlight illumination compared to widely used TiO_2. Moreover, by using a 5 nm copper film on top of the FLV-MoS_2 as a catalyst to facilitate electron-hole pair separation and promote the generation of ROS, the disinfection rate was further increased 6 fold. With our approach, we achieved water disinfection of >99.999% inactivation of bacteria in 20 minutes with a small amount of material (1.6 mg/L) under simulated visible light.

  19. Rapid water disinfection using vertically aligned MoS2 nanofilms and visible light

    International Nuclear Information System (INIS)

    Liu, Chong; Kong, Desheng; Hsu, Po-Chun; Yuan, Hongtao; Lee, Hyun-Wook

    2016-01-01

    In most climates, solar energy is readily available and can be used for water purification. But, solar disinfection of drinking water mostly relies on ultraviolet light, which represents only 4% of the total solar energy, and this leads to a slow treatment speed. Therefore, the development of new materials that can harvest visible light for water disinfection, and so speed up solar water purification, is highly desirable. Here we show that few-layered vertically aligned MoS_2 (FLV-MoS_2) films can be used to harvest the whole spectrum of visible light (~50% of solar energy) and achieve highly efficient water disinfection. The bandgap of MoS_2 was increased from 1.3 to 1.55 eV by decreasing the domain size, which allowed the FLV-MoS_2 to generate reactive oxygen species (ROS) for bacterial inactivation in the water. The FLV-MoS_2 showed a ~15 times better log inactivation efficiency of the indicator bacteria compared with that of bulk MoS_2, and a much faster inactivation of bacteria under both visible light and sunlight illumination compared with the widely used TiO_2. Moreover, by using a 5 nm copper film on top of the FLV-MoS_2 as a catalyst to facilitate electron–hole pair separation and promote the generation of ROS, the disinfection rate was increased a further sixfold. Here, we achieved water disinfection of >99.999% inactivation of bacteria in 20 min with a small amount of material (1.6 mg l–1) under simulated visible light.

  20. Enhanced visible-light-response photocatalytic degradation of methylene blue on Fe-loaded BiVO{sub 4} photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Chala, Sinaporn [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wetchakun, Khatcharin [Program of Physics, Faculty of Science, Ubon Ratchathani Rajabhat University, Ubon Ratchathani 34000 (Thailand); Phanichphant, Sukon [Materials Science Research Centre, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Inceesungvorn, Burapat [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wetchakun, Natda, E-mail: natda_we@yahoo.com [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2014-06-01

    Highlights: • Fe-loaded BiVO{sub 4} particles were prepared by hydrothermal method. • Physicochemical properties played a significant role in photocatalytic process. • All Fe-loaded BiVO{sub 4} samples showed higher photocatalytic activity than pure BiVO{sub 4}. • The Fe{sup 3+} ions may improve the separation of photogenerated electrons and holes. - Abstract: Pure BiVO{sub 4} and nominal 0.5–5.0 mol% Fe-loaded BiVO{sub 4} samples were synthesized by hydrothermal method. All samples were characterized in order to obtain the correlation between structure and photocatalytic properties by X-ray diffraction, Brunauer, Emmett and Teller, UV–vis diffuse reflectance spectrophotometry, photoluminescence spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and inductively coupled plasma-optical emission spectroscopy. The structure of all samples was single-phase monoclinic scheelite. The absorption spectrum of 5.0 mol% Fe-loaded BiVO{sub 4} shifted to the visible region, suggesting the potential application of this material as a superior visible-light driven photocatalyst in comparison with pure BiVO{sub 4}. Photocatalytic activities of all photocatalyst samples were examined by studying the degradation of methylene blue under visible light irradiation. The results clearly showed that Fe-loaded BiVO{sub 4} sample exhibited remarkably higher activity than pure BiVO{sub 4}.