WorldWideScience

Sample records for vibrational coupled cluster

  1. Computation of expectation values from vibrational coupled-cluster at the two-mode coupling level

    DEFF Research Database (Denmark)

    Zoccante, Alberto; Seidler, Peter; Christiansen, Ove

    2011-01-01

    In this work we show how the vibrational coupled-cluster method at the two-mode coupling level can be used to calculate zero-point vibrational averages of properties. A technique is presented, where any expectation value can be calculated using a single set of Lagrangian multipliers computed...

  2. Similarity-transformed equation-of-motion vibrational coupled-cluster theory

    Science.gov (United States)

    Faucheaux, Jacob A.; Nooijen, Marcel; Hirata, So

    2018-02-01

    A similarity-transformed equation-of-motion vibrational coupled-cluster (STEOM-XVCC) method is introduced as a one-mode theory with an effective vibrational Hamiltonian, which is similarity transformed twice so that its lower-order operators are dressed with higher-order anharmonic effects. The first transformation uses an exponential excitation operator, defining the equation-of-motion vibrational coupled-cluster (EOM-XVCC) method, and the second uses an exponential excitation-deexcitation operator. From diagonalization of this doubly similarity-transformed Hamiltonian in the small one-mode excitation space, the method simultaneously computes accurate anharmonic vibrational frequencies of all fundamentals, which have unique significance in vibrational analyses. We establish a diagrammatic method of deriving the working equations of STEOM-XVCC and prove their connectedness and thus size-consistency as well as the exact equality of its frequencies with the corresponding roots of EOM-XVCC. We furthermore elucidate the similarities and differences between electronic and vibrational STEOM methods and between STEOM-XVCC and vibrational many-body Green's function theory based on the Dyson equation, which is also an anharmonic one-mode theory. The latter comparison inspires three approximate STEOM-XVCC methods utilizing the common approximations made in the Dyson equation: the diagonal approximation, a perturbative expansion of the Dyson self-energy, and the frequency-independent approximation. The STEOM-XVCC method including up to the simultaneous four-mode excitation operator in a quartic force field and its three approximate variants are formulated and implemented in computer codes with the aid of computer algebra, and they are applied to small test cases with varied degrees of anharmonicity.

  3. Tensor-decomposed vibrational coupled-cluster theory: Enabling large-scale, highly accurate vibrational-structure calculations

    Science.gov (United States)

    Madsen, Niels Kristian; Godtliebsen, Ian H.; Losilla, Sergio A.; Christiansen, Ove

    2018-01-01

    A new implementation of vibrational coupled-cluster (VCC) theory is presented, where all amplitude tensors are represented in the canonical polyadic (CP) format. The CP-VCC algorithm solves the non-linear VCC equations without ever constructing the amplitudes or error vectors in full dimension but still formally includes the full parameter space of the VCC[n] model in question resulting in the same vibrational energies as the conventional method. In a previous publication, we have described the non-linear-equation solver for CP-VCC calculations. In this work, we discuss the general algorithm for evaluating VCC error vectors in CP format including the rank-reduction methods used during the summation of the many terms in the VCC amplitude equations. Benchmark calculations for studying the computational scaling and memory usage of the CP-VCC algorithm are performed on a set of molecules including thiadiazole and an array of polycyclic aromatic hydrocarbons. The results show that the reduced scaling and memory requirements of the CP-VCC algorithm allows for performing high-order VCC calculations on systems with up to 66 vibrational modes (anthracene), which indeed are not possible using the conventional VCC method. This paves the way for obtaining highly accurate vibrational spectra and properties of larger molecules.

  4. Intermediate coupling vibrational descriptions of odd mass gold isotopes

    CERN Document Server

    Vieu, C; Paar, V

    1976-01-01

    The theoretical analysis of /sup 193-195/Au levels is semi qualitatively performed in the frame of the intermediate coupling vibrational models of Kisslinger-Sorensen and Alaga. From the comparison between the experimental data and the corresponding predictions of the two models, conclusions are drawn on the influence of the clusters and broken pairs.

  5. Equilibrium structure and atomic vibrations of Nin clusters

    Science.gov (United States)

    Borisova, Svetlana D.; Rusina, Galina G.

    2017-12-01

    The equilibrium bond lengths and binding energy, second differences in energy and vibrational frequencies of free clusters Nin (2 ≤ n ≤ 20) were calculated with the use of the interaction potential obtained in the tight-binding approximation (TBA). The results show that the minimum vibration frequency plays a significant role in the evaluation of the dynamic stability of the clusters. A nonmonotonic dependence of the minimum vibration frequency of clusters on their size and the extreme values for the number of atoms in a cluster n = 4, 6, 13, and 19 are demonstrated. This result agrees with the theoretical and experimental data on stable structures of small metallic clusters.

  6. SOPPA and CCSD vibrational corrections to NMR indirect spin-spin coupling constants of small hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Faber, Rasmus; Sauer, Stephan P. A. [Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø (Denmark)

    2015-12-31

    We present zero-point vibrational corrections to the indirect nuclear spin-spin coupling constants in ethyne, ethene, cyclopropene and allene. The calculations have been carried out both at the level of the second order polarization propagator approximation (SOPPA) employing a new implementation in the DALTON program, at the density functional theory level with the B3LYP functional employing also the Dalton program and at the level of coupled cluster singles and doubles (CCSD) theory employing the implementation in the CFOUR program. Specialized coupling constant basis sets, aug-cc-pVTZ-J, have been employed in the calculations. We find that on average the SOPPA results for both the equilibrium geometry values and the zero-point vibrational corrections are in better agreement with the CCSD results than the corresponding B3LYP results. Furthermore we observed that the vibrational corrections are in the order of 5 Hz for the one-bond carbon-hydrogen couplings and about 1 Hz or smaller for the other couplings apart from the one-bond carbon-carbon coupling (11 Hz) and the two-bond carbon-hydrogen coupling (4 Hz) in ethyne. However, not for all couplings lead the inclusion of zero-point vibrational corrections to better agreement with experiment.

  7. Heterogeneous Dynamics of Coupled Vibrations

    NARCIS (Netherlands)

    Cringus, Dan; Jansen, Thomas I. C.; Pshenichnikov, Maxim S.; Schoenlein, RW; Corkum, P; DeSilvestri, S; Nelson, KA; Riedle, E

    2009-01-01

    Frequency-dependent dynamics of coupled stretch vibrations of a water molecule are revealed by 2D IR correlation spectroscopy. These are caused by non-Gaussian fluctuations of the environment around the individual OH stretch vibrations.

  8. Vibration control of a cluster of buildings through the Vibrating Barrier

    Science.gov (United States)

    Tombari, A.; Garcia Espinosa, M.; Alexander, N. A.; Cacciola, P.

    2018-02-01

    A novel device, called Vibrating Barrier (ViBa), that aims to reduce the vibrations of adjacent structures subjected to ground motion waves has been recently proposed. The ViBa is a structure buried in the soil and detached from surrounding buildings that is able to absorb a significant portion of the dynamic energy arising from the ground motion. The working principle exploits the dynamic interaction among vibrating structures due to the propagation of waves through the soil, namely the structure-soil-structure interaction. In this paper the efficiency of the ViBa is investigated to control the vibrations of a cluster of buildings. To this aim, a discrete model of structures-site interaction involving multiple buildings and the ViBa is developed where the effects of the soil on the structures, i.e. the soil-structure interaction (SSI), the structure-soil-structure interaction (SSSI) as well as the ViBa-soil-structures interaction are taken into account by means of linear elastic springs. Closed-form solutions are derived to design the ViBa in the case of harmonic excitation from the analysis of the discrete model. Advanced finite element numerical simulations are performed in order to assess the efficiency of the ViBa for protecting more than a single building. Parametric studies are also conducted to identify beneficial/adverse effects in the use of the proposed vibration control strategy to protect cluster of buildings. Finally, experimental shake table tests are performed to a prototype of a cluster of two buildings protected by the ViBa device for validating the proposed numerical models.

  9. A Miniature Coupled Bistable Vibration Energy Harvester

    International Nuclear Information System (INIS)

    Zhu, D; Arthur, D C; Beeby, S P

    2014-01-01

    This paper reports the design and test of a miniature coupled bistable vibration energy harvester. Operation of a bistable structure largely depends on vibration amplitude rather than frequency, which makes it very promising for wideband vibration energy harvesting applications. A coupled bistable structure consists of a pair of mobile magnets that create two potential wells and thus the bistable phenomenon. It requires lower excitation to trigger bistable operation compared to conventional bistable structures. Based on previous research, this work focused on miniaturisation of the coupled bistable structure for energy harvesting application. The proposed bistable energy harvester is a combination of a Duffing's nonlinear structure and a linear assisting resonator. Experimental results show that the output spectrum of the miniature coupled bistable vibration energy harvester was the superposition of several spectra. It had a higher maximum output power and a much greater bandwidth compared to simply the Duffing's structure without the assisting resonator

  10. Benchmarking density-functional-theory calculations of rotational g tensors and magnetizabilities using accurate coupled-cluster calculations.

    Science.gov (United States)

    Lutnaes, Ola B; Teale, Andrew M; Helgaker, Trygve; Tozer, David J; Ruud, Kenneth; Gauss, Jürgen

    2009-10-14

    An accurate set of benchmark rotational g tensors and magnetizabilities are calculated using coupled-cluster singles-doubles (CCSD) theory and coupled-cluster single-doubles-perturbative-triples [CCSD(T)] theory, in a variety of basis sets consisting of (rotational) London atomic orbitals. The accuracy of the results obtained is established for the rotational g tensors by careful comparison with experimental data, taking into account zero-point vibrational corrections. After an analysis of the basis sets employed, extrapolation techniques are used to provide estimates of the basis-set-limit quantities, thereby establishing an accurate benchmark data set. The utility of the data set is demonstrated by examining a wide variety of density functionals for the calculation of these properties. None of the density-functional methods are competitive with the CCSD or CCSD(T) methods. The need for a careful consideration of vibrational effects is clearly illustrated. Finally, the pure coupled-cluster results are compared with the results of density-functional calculations constrained to give the same electronic density. The importance of current dependence in exchange-correlation functionals is discussed in light of this comparison.

  11. Stochastic coupled cluster theory: Efficient sampling of the coupled cluster expansion

    Science.gov (United States)

    Scott, Charles J. C.; Thom, Alex J. W.

    2017-09-01

    We consider the sampling of the coupled cluster expansion within stochastic coupled cluster theory. Observing the limitations of previous approaches due to the inherently non-linear behavior of a coupled cluster wavefunction representation, we propose new approaches based on an intuitive, well-defined condition for sampling weights and on sampling the expansion in cluster operators of different excitation levels. We term these modifications even and truncated selections, respectively. Utilising both approaches demonstrates dramatically improved calculation stability as well as reduced computational and memory costs. These modifications are particularly effective at higher truncation levels owing to the large number of terms within the cluster expansion that can be neglected, as demonstrated by the reduction of the number of terms to be sampled when truncating at triple excitations by 77% and hextuple excitations by 98%.

  12. Spectroscopic and electric properties of the LiCs molecule: a coupled cluster study including higher excitations

    Science.gov (United States)

    Sørensen, L. K.; Fleig, T.; Olsen, J.

    2009-08-01

    Aimed at obtaining complete and highly accurate potential energy surfaces for molecules containing heavy elements, we present a new general-order coupled cluster method which can be applied in the framework of the spin-free Dirac formalism. As an initial application we present a systematic study of electron correlation and relativistic effects on the spectroscopic and electric properties of the LiCs molecule in its electronic ground state. In particular, we closely investigate the importance of excitations higher than coupled cluster doubles, spin-free and spin-dependent relativistic effects and the correlation of outer-core electrons on the equilibrium bond length, the harmonic vibrational frequency, the dissociation energy, the dipole moment and the static electric dipole polarizability. We demonstrate that our new implementation allows for highly accurate calculations not only in the bonding region but also along the complete potential curve. The quality of our results is demonstrated by a vibrational analysis where an almost complete set of vibrational levels has been calculated accurately.

  13. Spectroscopic and electric properties of the LiCs molecule: a coupled cluster study including higher excitations

    International Nuclear Information System (INIS)

    Soerensen, L K; Fleig, T; Olsen, J

    2009-01-01

    Aimed at obtaining complete and highly accurate potential energy surfaces for molecules containing heavy elements, we present a new general-order coupled cluster method which can be applied in the framework of the spin-free Dirac formalism. As an initial application we present a systematic study of electron correlation and relativistic effects on the spectroscopic and electric properties of the LiCs molecule in its electronic ground state. In particular, we closely investigate the importance of excitations higher than coupled cluster doubles, spin-free and spin-dependent relativistic effects and the correlation of outer-core electrons on the equilibrium bond length, the harmonic vibrational frequency, the dissociation energy, the dipole moment and the static electric dipole polarizability. We demonstrate that our new implementation allows for highly accurate calculations not only in the bonding region but also along the complete potential curve. The quality of our results is demonstrated by a vibrational analysis where an almost complete set of vibrational levels has been calculated accurately.

  14. Dissimilar Dynamics of Coupled Water Vibrations

    NARCIS (Netherlands)

    Jansen, Thomas L. C.; Cringus, Dan; Pshenichnikov, Maxim S.

    2009-01-01

    Dissimilar dynamics of coupled stretch vibrations of a water molecule are revealed by two-dimensional, IR correlation spectroscopy. These are caused by essentially non-Gaussian fluctuations of the electric field exerted by the environment on the individual OH stretch vibrations. Non-Gaussian

  15. Vibronic coupling in molecular crystals: A Franck-Condon Herzberg-Teller model of H-aggregate fluorescence based on quantum chemical cluster calculations

    Energy Technology Data Exchange (ETDEWEB)

    Wykes, M., E-mail: mikewykes@gmail.com; Parambil, R.; Gierschner, J. [Madrid Institute for Advanced Studies, IMDEA Nanoscience, Calle Faraday 9, Campus Cantoblanco, 28049 Madrid (Spain); Beljonne, D. [Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc 20, 7000 Mons (Belgium)

    2015-09-21

    Here, we present a general approach to treating vibronic coupling in molecular crystals based on atomistic simulations of large clusters. Such clusters comprise model aggregates treated at the quantum chemical level embedded within a realistic environment treated at the molecular mechanics level. As we calculate ground and excited state equilibrium geometries and vibrational modes of model aggregates, our approach is able to capture effects arising from coupling to intermolecular degrees of freedom, absent from existing models relying on geometries and normal modes of single molecules. Using the geometries and vibrational modes of clusters, we are able to simulate the fluorescence spectra of aggregates for which the lowest excited state bears negligible oscillator strength (as is the case, e.g., ideal H-aggregates) by including both Franck-Condon (FC) and Herzberg-Teller (HT) vibronic transitions. The latter terms allow the adiabatic excited state of the cluster to couple with vibrations in a perturbative fashion via derivatives of the transition dipole moment along nuclear coordinates. While vibronic coupling simulations employing FC and HT terms are well established for single-molecules, to our knowledge this is the first time they are applied to molecular aggregates. Here, we apply this approach to the simulation of the low-temperature fluorescence spectrum of para-distyrylbenzene single-crystal H-aggregates and draw comparisons with coarse-grained Frenkel-Holstein approaches previously extensively applied to such systems.

  16. First principles study of vibrational dynamics of ceria-titania hybrid clusters

    Energy Technology Data Exchange (ETDEWEB)

    Majid, Abdul, E-mail: abdulmajid40@yahoo.com; Bibi, Maryam [University of Gujrat, Department of Physics (Pakistan)

    2017-04-15

    Density functional theory based calculations were performed to study vibrational properties of ceria, titania, and ceria-titania hybrid clusters. The findings revealed the dominance of vibrations related to oxygen when compared to those of metallic atoms in the clusters. In case of hybrid cluster, the softening of normal modes related to exterior oxygen atoms in ceria and softening/hardening of high/low frequency modes related to titania dimmers are observed. The results calculated for monomers conform to symmetry predictions according to which three IR and three Raman active modes were detected for TiO{sub 2}, whereas two IR active and one Raman active modes were observed for CeO{sub 2}. The comparative analysis indicates that the hybrid cluster CeTiO{sub 4} contains simultaneous vibrational fingerprints of the component dimmers. The symmetry, nature of vibrations, IR and Raman activity, intensities, and atomic involvement in different modes of the clusters are described in detail. The study points to engineering of CeTiO{sub 4} to tailor its properties for technological visible region applications in photocatalytic and electrochemical devices.

  17. Projected coupled cluster theory.

    Science.gov (United States)

    Qiu, Yiheng; Henderson, Thomas M; Zhao, Jinmo; Scuseria, Gustavo E

    2017-08-14

    Coupled cluster theory is the method of choice for weakly correlated systems. But in the strongly correlated regime, it faces a symmetry dilemma, where it either completely fails to describe the system or has to artificially break certain symmetries. On the other hand, projected Hartree-Fock theory captures the essential physics of many kinds of strong correlations via symmetry breaking and restoration. In this work, we combine and try to retain the merits of these two methods by applying symmetry projection to broken symmetry coupled cluster wave functions. The non-orthogonal nature of states resulting from the application of symmetry projection operators furnishes particle-hole excitations to all orders, thus creating an obstacle for the exact evaluation of overlaps. Here we provide a solution via a disentanglement framework theory that can be approximated rigorously and systematically. Results of projected coupled cluster theory are presented for molecules and the Hubbard model, showing that spin projection significantly improves unrestricted coupled cluster theory while restoring good quantum numbers. The energy of projected coupled cluster theory reduces to the unprojected one in the thermodynamic limit, albeit at a much slower rate than projected Hartree-Fock.

  18. Advances in molecular vibrations and collision dynamics molecular clusters

    CERN Document Server

    Bacic, Zatko

    1998-01-01

    This volume focuses on molecular clusters, bound by van der Waals interactions and hydrogen bonds. Twelve chapters review a wide range of recent theoretical and experimental advances in the areas of cluster vibrations, spectroscopy, and reaction dynamics. The authors are leading experts, who have made significant contributions to these topics.The first chapter describes exciting results and new insights in the solvent effects on the short-time photo fragmentation dynamics of small molecules, obtained by combining heteroclusters with femtosecond laser excitation. The second is on theoretical work on effects of single solvent (argon) atom on the photodissociation dynamics of the solute H2O molecule. The next two chapters cover experimental and theoretical aspects of the energetics and vibrations of small clusters. Chapter 5 describes diffusion quantum Monte Carlo calculations and non additive three-body potential terms in molecular clusters. The next six chapters deal with hydrogen-bonded clusters, refle...

  19. Analysis on Coupled Vibration of a Radially Polarized Piezoelectric Cylindrical Transducer

    Directory of Open Access Journals (Sweden)

    Jie Xu

    2017-12-01

    Full Text Available Coupled vibration of a radially polarized piezoelectric cylindrical transducer is analyzed with the mechanical coupling coefficient method. The method has been utilized to analyze the metal cylindrical transducer and the axially polarized piezoelectric cylindrical transducer. In this method, the mechanical coupling coefficient is introduced and defined as the stress ratio in different directions. Coupled vibration of the cylindrical transducer is regarded as the interaction of the plane radial vibration of a ring and the longitudinal vibration of a tube. For the radially polarized piezoelectric cylindrical transducer, the radial and longitudinal electric admittances as functions of mechanical coupling coefficients and angular frequencies are derived, respectively. The resonance frequency equations are obtained. The dependence of resonance frequency and mechanical coupling coefficient on aspect ratio is studied. Vibrational distributions on the surfaces of the cylindrical transducer are presented with experimental measurement. On the support of experiments, this work is verified and provides a theoretical foundation for the analysis and design of the radially polarized piezoelectric cylindrical transducer.

  20. Controlling coupled bending-twisting vibrations of anisotropic composite wing

    Science.gov (United States)

    Ryabov, Victor; Yartsev, Boris

    2018-05-01

    The paper discusses the possibility to control coupled bending-twisting vibrations of anisotropic composite wing by means of the monoclinic structures in the reinforcement of the plating. Decomposing the potential straining energy and kinetic energy of natural vibration modes into interacting and non-interacting parts, it became possible to introduce the two coefficients that integrally consider the effect of geometry and reinforcement structure upon the dynamic response parameters of the wing. The first of these coefficients describes the elastic coupling of the natural vibration modes, the second coefficient describes the inertial one. The paper describes the numerical studies showing how the orientation of considerably anisotropic CRP layers in the plating affects natural frequencies, loss factors, coefficients of elastic and inertial coupling for several lower tones of natural bending-twisting vibrations of the wing. Besides, for each vibration mode, partial values of the above mentioned dynamic response parameters were determined by means of the relationships for orthotropic structures where instead of "free" shearing modulus in the reinforcement plant, "pure" shearing modulus is used. Joint analysis of the obtained results has shown that each pair of bending-twisting vibration modes has its orientation angle ranges of the reinforcing layers where the inertial coupling caused by asymmetry of the cross-section profile with respect to the main axes of inertia decreases, down to the complete extinction, due to the generation of the elastic coupling in the plating material. These ranges are characterized by the two main features: 1) the difference in the natural frequencies of the investigated pair of bending-twisting vibration modes is the minimum and 2) natural frequencies of bending-twisting vibrations belong to a stretch restricted by corresponding partial natural frequencies of the investigated pair of vibration modes. This result is of practical importance

  1. Design of a Maglev Vibration Test Platform for the Research of Maglev Vehicle-girder Coupled Vibration Problem

    Directory of Open Access Journals (Sweden)

    Zhou Danfeng

    2017-01-01

    Full Text Available The maglev vehicle-girder coupled vibration problem has been encountered in many maglev test or commercial lines, which significantly degrade the performance of the maglev train. In previous research on the principle of the coupled vibration problem, it has been discovered that the fundamental model of the maglev girder can be simplified as a series of mass-spring resonators of different but related resonance frequencies, and that the stability of the vehicle-girder coupled system can be investigated by separately examining the stability of each mass-spring resonator – electromagnet coupled system. Based on this conclusion, a maglev test platform, which includes a single electromagnetic suspension control system, is built for experimental study of the coupled vibration problem. The guideway of the test platform is supported by a number of springs so as to change its flexibility. The mass of the guideway can also be changed by adjusting extra weights attached to it. By changing the flexibility and mass of the guideway, the rules of the maglev vehicle-girder coupled vibration problem are to be examined through experiments, and related theory on the vehicle-girder self-excited vibration proposed in previous research is also testified.

  2. Cases of coupled vibrations and prametric instability in rotating machines

    OpenAIRE

    Luneno, Jean-Claude

    2012-01-01

    The principal task in this research project was to analyse the causes and consequences of coupled vibrations and parametric instability in hydropower rotors; where both horizontal and vertical machines are involved. Vibration is a well-known undesirable behavior of dynamical systems characterised by persistent periodic, quasi-periodic or chaotic motions. Vibrations generate noise and cause fatigue, which initiates cracks in mechanical structures. Motions coupling can in some cases augment the...

  3. Coupling vibration research on Vehicle-bridge system

    Science.gov (United States)

    Zhou, Jiguo; Wang, Guihua

    2018-01-01

    The vehicle-bridge coupling system forms when vehicle running on a bridge. It will generate a relatively large influence on the driving comfort and driving safe when the vibration of the vehicle is bigger. A three-dimensional vehicle-bridge system with biaxial seven degrees of freedom has been establish in this paper based on finite numerical simulation. Adopting the finite element transient numerical simulation to realize the numerical simulation of vehicle-bridge system coupling vibration. Then, analyze the dynamic response of vehicle and bridge while different numbers of vehicles running on the bridge. Got the variation rule of vertical vibration of car body and bridge, and that of the contact force between the wheel and bridge deck. The research results have a reference value for the analysis about the vehicle running on a large-span cabled bridge.

  4. Optimization design of high power ultrasonic circular ring radiator in coupled vibration.

    Science.gov (United States)

    Xu, Long; Lin, Shuyu; Hu, Wenxu

    2011-10-01

    This paper presents a new high power ultrasonic (HPU) radiator, which consists of a transducer, an ultrasonic horn, and a metal circular ring. Both the transducer and horn in longitudinal vibrations are used to drive a metal circular ring in a radial-axial coupled vibration. This coupled vibration cannot only generate ultrasound in both the radial and axial directions, but also focus the ultrasound inside the circular ring. Except for the radial-axial coupled vibration mode, the third longitudinal harmonic vibration mode with relative large vibration amplitude is also detected, which can be used as another operation mode. Overall, the HPU with these two vibration modes should have good potential to be applied in liquid processing, such as sonochemistry, ultrasonic cleaning, and Chinese herbal medicine extraction. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Steam turbine coupling misalignment detection by vibrational analysis

    International Nuclear Information System (INIS)

    Behzad, M.; Asoyesh, M.

    2001-01-01

    Machinery troubleshooting and diagnostics via vibration analysis have historically been proven, and once again become enlightened topics with the recent popularity of predictive maintenance programs. Among several causes of vibration of turbomachinery, coupling misalignment plays an important role.The results of a theoretical analysis of coupling misalignment and its frequency spectrum characteristics, which can be used for predictive maintenance programs, are compared with other numerical investigations and practical results. The analytical method used in this research is very straightforward and does not need any computer programming

  6. Active Control of Parametric Vibrations in Coupled Rotor-Blade Systems

    DEFF Research Database (Denmark)

    Christensen, Rene Hardam; Santos, Ilmar

    2003-01-01

    of modes. The designed control scheme is applied to a coupled rotor-blade system and dynamic responses are numerically evaluated. Such responses show that the vibrations are efficiently reduced. Frequency response diagrams demonstrate that both basis and parametric vibration modes are significantly...... the model becomes periodic-variant. In order to reduce basis as well as parametric vibrations by means of active control in such systems a time-variant control strategy has to be adopted. This paper presents a methodology for designing an active controller to reduce vibrations in a coupled rotor......-blade system. The main aim is to control blade as well as hub vibrations in such a system by means of active control with focus on reducing the parametric vibration. A periodic state feedback controller is designed by transforming the system into a linear time-invariant form. Using this a controller...

  7. MULTIMODE quantum calculations of vibrational energies and IR spectrum of the NO⁺(H₂O) cluster using accurate potential energy and dipole moment surfaces.

    Science.gov (United States)

    Homayoon, Zahra

    2014-09-28

    A new, full (nine)-dimensional potential energy surface and dipole moment surface to describe the NO(+)(H2O) cluster is reported. The PES is based on fitting of roughly 32,000 CCSD(T)-F12/aug-cc-pVTZ electronic energies. The surface is a linear least-squares fit using a permutationally invariant basis with Morse-type variables. The PES is used in a Diffusion Monte Carlo study of the zero-point energy and wavefunction of the NO(+)(H2O) and NO(+)(D2O) complexes. Using the calculated ZPE the dissociation energies of the clusters are reported. Vibrational configuration interaction calculations of NO(+)(H2O) and NO(+)(D2O) using the MULTIMODE program are performed. The fundamental, a number of overtone, and combination states of the clusters are reported. The IR spectrum of the NO(+)(H2O) cluster is calculated using 4, 5, 7, and 8 modes VSCF/CI calculations. The anharmonic, coupled vibrational calculations, and IR spectrum show very good agreement with experiment. Mode coupling of the water "antisymmetric" stretching mode with the low-frequency intermolecular modes results in intensity borrowing.

  8. MULTIMODE quantum calculations of vibrational energies and IR spectrum of the NO+(H2O) cluster using accurate potential energy and dipole moment surfaces

    Science.gov (United States)

    Homayoon, Zahra

    2014-09-01

    A new, full (nine)-dimensional potential energy surface and dipole moment surface to describe the NO+(H2O) cluster is reported. The PES is based on fitting of roughly 32 000 CCSD(T)-F12/aug-cc-pVTZ electronic energies. The surface is a linear least-squares fit using a permutationally invariant basis with Morse-type variables. The PES is used in a Diffusion Monte Carlo study of the zero-point energy and wavefunction of the NO+(H2O) and NO+(D2O) complexes. Using the calculated ZPE the dissociation energies of the clusters are reported. Vibrational configuration interaction calculations of NO+(H2O) and NO+(D2O) using the MULTIMODE program are performed. The fundamental, a number of overtone, and combination states of the clusters are reported. The IR spectrum of the NO+(H2O) cluster is calculated using 4, 5, 7, and 8 modes VSCF/CI calculations. The anharmonic, coupled vibrational calculations, and IR spectrum show very good agreement with experiment. Mode coupling of the water "antisymmetric" stretching mode with the low-frequency intermolecular modes results in intensity borrowing.

  9. MULTIMODE quantum calculations of vibrational energies and IR spectrum of the NO+(H2O) cluster using accurate potential energy and dipole moment surfaces

    International Nuclear Information System (INIS)

    Homayoon, Zahra

    2014-01-01

    A new, full (nine)-dimensional potential energy surface and dipole moment surface to describe the NO + (H 2 O) cluster is reported. The PES is based on fitting of roughly 32 000 CCSD(T)-F12/aug-cc-pVTZ electronic energies. The surface is a linear least-squares fit using a permutationally invariant basis with Morse-type variables. The PES is used in a Diffusion Monte Carlo study of the zero-point energy and wavefunction of the NO + (H 2 O) and NO + (D 2 O) complexes. Using the calculated ZPE the dissociation energies of the clusters are reported. Vibrational configuration interaction calculations of NO + (H 2 O) and NO + (D 2 O) using the MULTIMODE program are performed. The fundamental, a number of overtone, and combination states of the clusters are reported. The IR spectrum of the NO + (H 2 O) cluster is calculated using 4, 5, 7, and 8 modes VSCF/CI calculations. The anharmonic, coupled vibrational calculations, and IR spectrum show very good agreement with experiment. Mode coupling of the water “antisymmetric” stretching mode with the low-frequency intermolecular modes results in intensity borrowing

  10. Vibrationally coupled electron transport through single-molecule junctions

    Energy Technology Data Exchange (ETDEWEB)

    Haertle, Rainer

    2012-04-26

    vibrational effects have a profound influence on the transport characteristics of a single-molecule contact and play therefore a fundamental role in this transport problem. Our findings demonstrate that vibrationally coupled electron transport through a molecular junction involves two types of processes: (i) transport processes, where an electron tunnels through the molecular bridge from one lead to the other, and (ii) electron-hole pair creation processes, where an electron tunnels from one of the leads onto the molecular bridge and back to the same lead again. Transport processes directly contribute to the electrical current flowing through a molecular contact and involve both excitation and deexcitation processes of the vibrational modes of the junction. Electron-hole pair creation processes do not directly contribute to the electrical current and typically involve only deexcitation processes. Nevertheless, they constitute a cooling mechanism for the vibrational modes of a single-molecule junction that is as important as cooling by transport processes. As the level of vibrational excitation determines the efficiency of electron transport processes, they have an indirect influence on the electrical current flowing through the junction. As we show, however, this influence can be substantial, in particular, if the molecule is coupled asymmetrically to the leads. Accounting for all these processes and their complex interrelationship, we analyze a number of intriguing transport phenomena, including rectification, negative differential resistance, anomalous peak broadening, mode-selective vibrational excitation and vibrationally induced decoherence. Moreover, we show that higher levels of vibrational excitation are obtained for weaker electronic-vibrational coupling. Thus, based on physical grounds, we establish a relation between the weak electronic-vibrational coupling limit and the limit of large bias voltages, where the level of vibrational excitation in a molecular junction

  11. Singlet-paired coupled cluster theory for open shells

    Science.gov (United States)

    Gomez, John A.; Henderson, Thomas M.; Scuseria, Gustavo E.

    2016-06-01

    Restricted single-reference coupled cluster theory truncated to single and double excitations accurately describes weakly correlated systems, but often breaks down in the presence of static or strong correlation. Good coupled cluster energies in the presence of degeneracies can be obtained by using a symmetry-broken reference, such as unrestricted Hartree-Fock, but at the cost of good quantum numbers. A large body of work has shown that modifying the coupled cluster ansatz allows for the treatment of strong correlation within a single-reference, symmetry-adapted framework. The recently introduced singlet-paired coupled cluster doubles (CCD0) method is one such model, which recovers correct behavior for strong correlation without requiring symmetry breaking in the reference. Here, we extend singlet-paired coupled cluster for application to open shells via restricted open-shell singlet-paired coupled cluster singles and doubles (ROCCSD0). The ROCCSD0 approach retains the benefits of standard coupled cluster theory and recovers correct behavior for strongly correlated, open-shell systems using a spin-preserving ROHF reference.

  12. Singlet-paired coupled cluster theory for open shells

    International Nuclear Information System (INIS)

    Gomez, John A.; Henderson, Thomas M.; Scuseria, Gustavo E.

    2016-01-01

    Restricted single-reference coupled cluster theory truncated to single and double excitations accurately describes weakly correlated systems, but often breaks down in the presence of static or strong correlation. Good coupled cluster energies in the presence of degeneracies can be obtained by using a symmetry-broken reference, such as unrestricted Hartree-Fock, but at the cost of good quantum numbers. A large body of work has shown that modifying the coupled cluster ansatz allows for the treatment of strong correlation within a single-reference, symmetry-adapted framework. The recently introduced singlet-paired coupled cluster doubles (CCD0) method is one such model, which recovers correct behavior for strong correlation without requiring symmetry breaking in the reference. Here, we extend singlet-paired coupled cluster for application to open shells via restricted open-shell singlet-paired coupled cluster singles and doubles (ROCCSD0). The ROCCSD0 approach retains the benefits of standard coupled cluster theory and recovers correct behavior for strongly correlated, open-shell systems using a spin-preserving ROHF reference.

  13. Seniority-based coupled cluster theory

    International Nuclear Information System (INIS)

    Henderson, Thomas M.; Scuseria, Gustavo E.; Bulik, Ireneusz W.; Stein, Tamar

    2014-01-01

    Doubly occupied configuration interaction (DOCI) with optimized orbitals often accurately describes strong correlations while working in a Hilbert space much smaller than that needed for full configuration interaction. However, the scaling of such calculations remains combinatorial with system size. Pair coupled cluster doubles (pCCD) is very successful in reproducing DOCI energetically, but can do so with low polynomial scaling (N 3 , disregarding the two-electron integral transformation from atomic to molecular orbitals). We show here several examples illustrating the success of pCCD in reproducing both the DOCI energy and wave function and show how this success frequently comes about. What DOCI and pCCD lack are an effective treatment of dynamic correlations, which we here add by including higher-seniority cluster amplitudes which are excluded from pCCD. This frozen pair coupled cluster approach is comparable in cost to traditional closed-shell coupled cluster methods with results that are competitive for weakly correlated systems and often superior for the description of strongly correlated systems

  14. Mechanisms of Coupled Vibrational Relaxation and Dissociation in Carbon Dioxide.

    Science.gov (United States)

    Armenise, Iole; Kustova, Elena

    2018-05-21

    A complete vibrational state-specific kinetic scheme describing dissociating carbon dioxide mixtures is proposed. CO 2 symmetric, bending and asymmetric vibrations and dissociation-recombination are strongly coupled through inter-mode vibrational energy transfers. Comparative study of state-resolved rate coefficients is carried out; the effect of different transitions may vary considerably with temperature. A non-equilibrium 1-D boundary layer flow typical to hypersonic planetary entry is studied in the state-to-state approach. To assess the sensitivity of fluid-dynamic variables and heat transfer to various vibrational transitions and chemical reactions, corresponding processes are successively included to the kinetic scheme. It is shown that vibrational-translational (VT) transitions in the symmetric and asymmetric modes do not alter the flow and can be neglected whereas the VT 2 exchange in the bending mode is the main channel of vibrational relaxation. Inter-mode vibrational exchanges affect the flow implicitly, through energy redistribution enhancing VT relaxation; the dominating role belongs to near-resonant transitions between symmetric and bending modes as well as between CO molecules and CO 2 asymmetric mode. Strong coupling between VT 2 relaxation and chemical reactions is emphasized. While vibrational distributions and average vibrational energy show strong dependence on the kinetic scheme, the heat flux is more sensitive to chemical reactions.

  15. Computational Aspects of Nuclear Coupled-Cluster Theory

    International Nuclear Information System (INIS)

    Dean, David Jarvis; Hagen, Gaute; Hjorth-Jensen, M.; Papenbrock, T.F.

    2008-01-01

    Coupled-cluster theory represents an important theoretical tool that we use to solve the quantum many-body problem. Coupled-cluster theory also lends itself to computation in a parallel computing environment. In this article, we present selected results from ab initio studies of stable and weakly bound nuclei utilizing computational techniques that we employ to solve coupled-cluster theory. We also outline several perspectives for future research directions in this area.

  16. Relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons (Conference Presentation)

    Science.gov (United States)

    Simpkins, Blake S.; Fears, Kenan P.; Dressick, Walter J.; Dunkelberger, Adam D.; Spann, Bryan T.; Owrutsky, Jeffrey C.

    2016-09-01

    Coherent coupling between an optical transition and confined optical mode have been investigated for electronic-state transitions, however, only very recently have vibrational transitions been considered. Here, we demonstrate both static and dynamic results for vibrational bands strongly coupled to optical cavities. We experimentally and numerically describe strong coupling between a Fabry-Pérot cavity and carbonyl stretch ( 1730 cm 1) in poly-methylmethacrylate and provide evidence that the mixed-states are immune to inhomogeneous broadening. We investigate strong and weak coupling regimes through examination of cavities loaded with varying concentrations of a urethane monomer. Rabi splittings are in excellent agreement with an analytical description using no fitting parameters. Ultrafast pump-probe measurements reveal transient absorption signals over a frequency range well-separated from the vibrational band, as well as drastically modified relaxation rates. We speculate these modified kinetics are a consequence of the energy proximity between the vibration-cavity polariton modes and excited state transitions and that polaritons offer an alternative relaxation path for vibrational excitations. Varying the polariton energies by angle-tuning yields transient results consistent with this hypothesis. Furthermore, Rabi oscillations, or quantum beats, are observed at early times and we see evidence that these coherent vibration-cavity polariton excitations impact excited state population through cavity losses. Together, these results indicate that cavity coupling may be used to influence both excitation and relaxation rates of vibrations. Opening the field of polaritonic coupling to vibrational species promises to be a rich arena amenable to a wide variety of infrared-active bonds that can be studied in steady state and dynamically.

  17. Cluster synchronization induced by one-node clusters in networks with asymmetric negative couplings

    International Nuclear Information System (INIS)

    Zhang, Jianbao; Ma, Zhongjun; Zhang, Gang

    2013-01-01

    This paper deals with the problem of cluster synchronization in networks with asymmetric negative couplings. By decomposing the coupling matrix into three matrices, and employing Lyapunov function method, sufficient conditions are derived for cluster synchronization. The conditions show that the couplings of multi-node clusters from one-node clusters have beneficial effects on cluster synchronization. Based on the effects of the one-node clusters, an effective and universal control scheme is put forward for the first time. The obtained results may help us better understand the relation between cluster synchronization and cluster structures of the networks. The validity of the control scheme is confirmed through two numerical simulations, in a network with no cluster structure and in a scale-free network

  18. Cluster synchronization induced by one-node clusters in networks with asymmetric negative couplings

    Science.gov (United States)

    Zhang, Jianbao; Ma, Zhongjun; Zhang, Gang

    2013-12-01

    This paper deals with the problem of cluster synchronization in networks with asymmetric negative couplings. By decomposing the coupling matrix into three matrices, and employing Lyapunov function method, sufficient conditions are derived for cluster synchronization. The conditions show that the couplings of multi-node clusters from one-node clusters have beneficial effects on cluster synchronization. Based on the effects of the one-node clusters, an effective and universal control scheme is put forward for the first time. The obtained results may help us better understand the relation between cluster synchronization and cluster structures of the networks. The validity of the control scheme is confirmed through two numerical simulations, in a network with no cluster structure and in a scale-free network.

  19. Theoretical and Experimental Study on Electromechanical Coupling Properties of Multihammer Synchronous Vibration System

    Directory of Open Access Journals (Sweden)

    Xin Lai

    2016-01-01

    Full Text Available Industrial simulation of real external load using multiple exciting points or increasing exciting force by synchronizing multiple exciting forces requires multiple vibration hammers to be coordinated and work together. Multihammer vibration system which consists of several hammers is a complex electromechanical system with complex electromechanical coupling. In this paper, electromechanical coupling properties of such a multihammer vibration system were studied in detail using theoretical derivation, numerical simulation, and experiment. A kinetic model of multihammer synchronous vibration system was established, and approximate expressions for electromechanical coupling strength were solved using a small parameter periodic averaging method. Basic coupling rules and reasons were obtained. Self-synchronization and frequency hopping phenomenon were also analyzed. Subsequently, numerical simulations were carried out and electromechanical coupling process was obtained for different parameters. Simulation results verify correctness of the proposed model and results. Finally, experiments were carried out, self-synchronization and frequency hopping phenomenon were both observed, and results agree well with theoretical deduction and simulation results. These results provide theoretical foundations for multihammer synchronous vibration system and its synchronous control.

  20. Can Single-Reference Coupled Cluster Theory Describe Static Correlation?

    Science.gov (United States)

    Bulik, Ireneusz W; Henderson, Thomas M; Scuseria, Gustavo E

    2015-07-14

    While restricted single-reference coupled cluster theory truncated to singles and doubles (CCSD) provides very accurate results for weakly correlated systems, it usually fails in the presence of static or strong correlation. This failure is generally attributed to the qualitative breakdown of the reference, and can accordingly be corrected by using a multideterminant reference, including higher-body cluster operators in the ansatz, or allowing symmetry breaking in the reference. None of these solutions are ideal; multireference coupled cluster is not black box, including higher-body cluster operators is computationally demanding, and allowing symmetry breaking leads to the loss of good quantum numbers. It has long been recognized that quasidegeneracies can instead be treated by modifying the coupled cluster ansatz. The recently introduced pair coupled cluster doubles (pCCD) approach is one such example which avoids catastrophic failures and accurately models strong correlations in a symmetry-adapted framework. Here, we generalize pCCD to a singlet-paired coupled cluster model (CCD0) intermediate between coupled cluster doubles and pCCD, yielding a method that possesses the invariances of the former and much of the stability of the latter. Moreover, CCD0 retains the full structure of coupled cluster theory, including a fermionic wave function, antisymmetric cluster amplitudes, and well-defined response equations and density matrices.

  1. Ro-vibrational averaging of the isotropic hyperfine coupling constant for the methyl radical

    Energy Technology Data Exchange (ETDEWEB)

    Adam, Ahmad Y.; Jensen, Per, E-mail: jensen@uni-wuppertal.de [Fakultät Mathematik und Naturwissenschaften, Physikalische und Theoretische Chemie, Bergische Universität Wuppertal, D-42097 Wuppertal (Germany); Yachmenev, Andrey; Yurchenko, Sergei N. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2015-12-28

    We present the first variational calculation of the isotropic hyperfine coupling constant of the carbon-13 atom in the CH{sub 3} radical for temperatures T = 0, 96, and 300 K. It is based on a newly calculated high level ab initio potential energy surface and hyperfine coupling constant surface of CH{sub 3} in the ground electronic state. The ro-vibrational energy levels, expectation values for the coupling constant, and its temperature dependence were calculated variationally by using the methods implemented in the computer program TROVE. Vibrational energies and vibrational and temperature effects for coupling constant are found to be in very good agreement with the available experimental data. We found, in agreement with previous studies, that the vibrational effects constitute about 44% of the constant’s equilibrium value, originating mainly from the large amplitude out-of-plane bending motion and that the temperature effects play a minor role.

  2. Ro-vibrational averaging of the isotropic hyperfine coupling constant for the methyl radical

    Science.gov (United States)

    Adam, Ahmad Y.; Yachmenev, Andrey; Yurchenko, Sergei N.; Jensen, Per

    2015-12-01

    We present the first variational calculation of the isotropic hyperfine coupling constant of the carbon-13 atom in the CH3 radical for temperatures T = 0, 96, and 300 K. It is based on a newly calculated high level ab initio potential energy surface and hyperfine coupling constant surface of CH3 in the ground electronic state. The ro-vibrational energy levels, expectation values for the coupling constant, and its temperature dependence were calculated variationally by using the methods implemented in the computer program TROVE. Vibrational energies and vibrational and temperature effects for coupling constant are found to be in very good agreement with the available experimental data. We found, in agreement with previous studies, that the vibrational effects constitute about 44% of the constant's equilibrium value, originating mainly from the large amplitude out-of-plane bending motion and that the temperature effects play a minor role.

  3. Ro-vibrational averaging of the isotropic hyperfine coupling constant for the methyl radical

    International Nuclear Information System (INIS)

    Adam, Ahmad Y.; Jensen, Per; Yachmenev, Andrey; Yurchenko, Sergei N.

    2015-01-01

    We present the first variational calculation of the isotropic hyperfine coupling constant of the carbon-13 atom in the CH 3 radical for temperatures T = 0, 96, and 300 K. It is based on a newly calculated high level ab initio potential energy surface and hyperfine coupling constant surface of CH 3 in the ground electronic state. The ro-vibrational energy levels, expectation values for the coupling constant, and its temperature dependence were calculated variationally by using the methods implemented in the computer program TROVE. Vibrational energies and vibrational and temperature effects for coupling constant are found to be in very good agreement with the available experimental data. We found, in agreement with previous studies, that the vibrational effects constitute about 44% of the constant’s equilibrium value, originating mainly from the large amplitude out-of-plane bending motion and that the temperature effects play a minor role

  4. Space robots with flexible appendages: Dynamic modeling, coupling measurement, and vibration suppression

    Science.gov (United States)

    Meng, Deshan; Wang, Xueqian; Xu, Wenfu; Liang, Bin

    2017-05-01

    For a space robot with flexible appendages, vibrations of flexible structure can be easily excited during both orbit and/or attitude maneuvers of the base and the operation of the manipulators. Hence, the pose (position and attitude) of the manipulator's end-effector will greatly deviate from the desired values, and furthermore, the motion of the manipulator will trigger and exacerbate vibrations of flexible appendages. Given lack of the atmospheric damping in orbit, the vibrations will last for quite a while and cause the on-orbital tasks to fail. We derived the rigid-flexible coupling dynamics of a space robot system with flexible appendages and established a coupling model between the flexible base and the space manipulator. A specific index was defined to measure the coupling degree between the flexible motion of the appendages and the rigid motion of the end-effector. Then, we analyzed the dynamic coupling for different conditions, such as modal displacements, joint angles (manipulator configuration), and mass properties. Moreover, the coupling map was adopted and drawn to represent the coupling motion. Based on this map, a trajectory planning method was addressed to suppress structure vibration. Finally, simulation studies of typical cases were performed, which verified the proposed models and method. This work provides a theoretic basis for the system design, performance evaluation, trajectory planning, and control of such space robots.

  5. MULTIMODE quantum calculations of vibrational energies and IR spectrum of the NO{sup +}(H{sub 2}O) cluster using accurate potential energy and dipole moment surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Homayoon, Zahra, E-mail: zhomayo@emory.edu [Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322 (United States)

    2014-09-28

    A new, full (nine)-dimensional potential energy surface and dipole moment surface to describe the NO{sup +}(H{sub 2}O) cluster is reported. The PES is based on fitting of roughly 32 000 CCSD(T)-F12/aug-cc-pVTZ electronic energies. The surface is a linear least-squares fit using a permutationally invariant basis with Morse-type variables. The PES is used in a Diffusion Monte Carlo study of the zero-point energy and wavefunction of the NO{sup +}(H{sub 2}O) and NO{sup +}(D{sub 2}O) complexes. Using the calculated ZPE the dissociation energies of the clusters are reported. Vibrational configuration interaction calculations of NO{sup +}(H{sub 2}O) and NO{sup +}(D{sub 2}O) using the MULTIMODE program are performed. The fundamental, a number of overtone, and combination states of the clusters are reported. The IR spectrum of the NO{sup +}(H{sub 2}O) cluster is calculated using 4, 5, 7, and 8 modes VSCF/CI calculations. The anharmonic, coupled vibrational calculations, and IR spectrum show very good agreement with experiment. Mode coupling of the water “antisymmetric” stretching mode with the low-frequency intermolecular modes results in intensity borrowing.

  6. Coupled bending and torsional vibration of a rotor system with nonlinear friction

    International Nuclear Information System (INIS)

    Hua, Chunli; Cao, Guohua; Zhu, Zhencai; Rao, Zhushi; Ta, Na

    2017-01-01

    Unacceptable vibrations induced by the nonlinear friction in a rotor system seriously affect the health and reliability of the rotating ma- chinery. To find out the basic excitation mechanism and characteristics of the vibrations, a coupled bending and torsional nonlinear dynamic model of rotor system with nonlinear friction is presented. The dynamic friction characteristic is described with a Stribeck curve, which generates nonlinear friction related to relative velocity. The motion equations of unbalance rotor system are established by the Lagrangian approach. Through numerical calculation, the coupled vibration characteristics of a rotor system under nonlinear friction are well investigated. The influence of main system parameters on the behaviors of the system is discussed. The bifurcation diagrams, waterfall plots, the times series, orbit trails, phase plane portraits and Poincaré maps are obtained to analyze dynamic characteristics of the rotor system and the results reveal multiform complex nonlinear dynamic responses of rotor system under rubbing. These analysis results of the present paper can effectively provide a theoretical reference for structural design of rotor systems and be used to diagnose self- excited vibration faults in this kind of rotor systems. The present research could contribute to further understanding on the self-excited vibration and the bending and torsional coupling vibration of the rotor systems with Stribeck friction model.

  7. Coupled bending and torsional vibration of a rotor system with nonlinear friction

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Chunli; Cao, Guohua; Zhu, Zhencai [China University of Mining and Technology, Xuzhou (China); Rao, Zhushi; Ta, Na [Shanghai Jiao Tong University, Shanghai (China)

    2017-06-15

    Unacceptable vibrations induced by the nonlinear friction in a rotor system seriously affect the health and reliability of the rotating ma- chinery. To find out the basic excitation mechanism and characteristics of the vibrations, a coupled bending and torsional nonlinear dynamic model of rotor system with nonlinear friction is presented. The dynamic friction characteristic is described with a Stribeck curve, which generates nonlinear friction related to relative velocity. The motion equations of unbalance rotor system are established by the Lagrangian approach. Through numerical calculation, the coupled vibration characteristics of a rotor system under nonlinear friction are well investigated. The influence of main system parameters on the behaviors of the system is discussed. The bifurcation diagrams, waterfall plots, the times series, orbit trails, phase plane portraits and Poincaré maps are obtained to analyze dynamic characteristics of the rotor system and the results reveal multiform complex nonlinear dynamic responses of rotor system under rubbing. These analysis results of the present paper can effectively provide a theoretical reference for structural design of rotor systems and be used to diagnose self- excited vibration faults in this kind of rotor systems. The present research could contribute to further understanding on the self-excited vibration and the bending and torsional coupling vibration of the rotor systems with Stribeck friction model.

  8. Heavy atom vibrational modes and low-energy vibrational autodetachment in nitromethane anions

    International Nuclear Information System (INIS)

    Thompson, Michael C.; Weber, J. Mathias; Baraban, Joshua H.; Matthews, Devin A.; Stanton, John F.

    2015-01-01

    We report infrared spectra of nitromethane anion, CH 3 NO 2 − , in the region 700–2150 cm −1 , obtained by Ar predissociation spectroscopy and electron detachment spectroscopy. The data are interpreted in the framework of second-order vibrational perturbation theory based on coupled-cluster electronic structure calculations. The modes in the spectroscopic region studied here are mainly based on vibrations involving the heavier atoms; this work complements earlier studies on nitromethane anion that focused on the CH stretching region of the spectrum. Electron detachment begins at photon energies far below the adiabatic electron affinity due to thermal population of excited vibrational states

  9. Microscopic theory of particle-vibration coupling

    Energy Technology Data Exchange (ETDEWEB)

    Colo, Gianluca; Bortignon, Pier Francesco [Dipartimento di Fisica, Universita degli Studi di Milano and INFN, Sez. di Milano, via Celoria 16, 20133 Milano (Italy); Sagawa, Hiroyuki [Center for Mathematics and Physics, University of Aizu, Aizu-Wakamatsu, Fukushima 965-8560 (Japan); Moghrabi, Kassem; Grasso, Marcella; Giai, Nguyen Van, E-mail: colo@mi.infn.it [Institut de Physique Nucleaire, Universite Paris-Sud, IN2P3-CNRS, 91406 Orsay Cedex (France)

    2011-09-16

    Some recent microscopic implementations of the particle-vibration coupling (PVC) theory for atomic nuclei are briefly reviewed. Within the nonrelativistic framework, the results seem to point to the necessity of fitting new effective interactions that can work beyond mean field. In keeping with this, the divergences which arise must be cured. A method is proposed, and the future perspectives that are opened are addressed.

  10. Microscopic theory of particle-vibration coupling

    International Nuclear Information System (INIS)

    Colo, Gianluca; Bortignon, Pier Francesco; Sagawa, Hiroyuki; Moghrabi, Kassem; Grasso, Marcella; Giai, Nguyen Van

    2011-01-01

    Some recent microscopic implementations of the particle-vibration coupling (PVC) theory for atomic nuclei are briefly reviewed. Within the nonrelativistic framework, the results seem to point to the necessity of fitting new effective interactions that can work beyond mean field. In keeping with this, the divergences which arise must be cured. A method is proposed, and the future perspectives that are opened are addressed.

  11. VIBRATION ANALYSIS OF TURBINE BASED ON FLUID-STRUCTURE COUPLING

    Institute of Scientific and Technical Information of China (English)

    LIU Demin; LIU Xiaobing

    2008-01-01

    The vibration of a Francis turbine is analyzed with the additional quality matrix method based on fluid-structure coupling (FSC). Firstly, the vibration frequency and mode of blade and runner in air and water are calculated. Secondly, the influences to runner frequency domain by large flow, small flow and design flow working conditions are compared. Finally the influences to runner modes by centrifugal forces under three rotating speeds of 400 r/min, 500 r/min and 600 r/min are compared. The centrifugal force and small flow working condition have greatly influence on the vibration of small runner. With the increase of centrifugal force, the vibration frequency of the runner is sharply increased. Some order frequencies are even close to the runner natural frequency in the air. Because the low frequency vibration will severely damage the stability of the turbine, low frequency vibration of units should be avoided as soon as possible.

  12. Communication: A simplified coupled-cluster Lagrangian for polarizable embedding.

    Science.gov (United States)

    Krause, Katharina; Klopper, Wim

    2016-01-28

    A simplified coupled-cluster Lagrangian, which is linear in the Lagrangian multipliers, is proposed for the coupled-cluster treatment of a quantum mechanical system in a polarizable environment. In the simplified approach, the amplitude equations are decoupled from the Lagrangian multipliers and the energy obtained from the projected coupled-cluster equation corresponds to a stationary point of the Lagrangian.

  13. Communication: A simplified coupled-cluster Lagrangian for polarizable embedding

    International Nuclear Information System (INIS)

    Krause, Katharina; Klopper, Wim

    2016-01-01

    A simplified coupled-cluster Lagrangian, which is linear in the Lagrangian multipliers, is proposed for the coupled-cluster treatment of a quantum mechanical system in a polarizable environment. In the simplified approach, the amplitude equations are decoupled from the Lagrangian multipliers and the energy obtained from the projected coupled-cluster equation corresponds to a stationary point of the Lagrangian

  14. Coupled vibrations in horizontal and vertical rotor-bearings systems

    OpenAIRE

    Luneno, Jean-Claude

    2010-01-01

    For dynamical systems having several degrees of freedom, motion in one direction can induce motion in the other and/or vice versa. This means that there is a certain coupling between these two motions. Coupling can in some cases be a source of instability that causes self-excited vibrations in rotating machinery. In modeling hydropower rotors, couplings other than those that are the result of gyroscopic effect are normally not considered. This is due to the complexity of the reasons for coupl...

  15. Coupled vibrations in horizontal and vertical rotor-bearing systems

    OpenAIRE

    Luneno, Jean-Claude

    2011-01-01

    For dynamical systems having several degrees of freedom, motion in one direction can induce motion in the other. This means that there is a certain coupling between these two motions. Coupling can in some cases be a source of instability that causes self-excited vibrations in rotating machinery. In classical modeling of rotor systems, couplings other than those that are the result of gyroscopic effect are normally not considered. This is due to thecomplexity of the reasons for coupling which ...

  16. First-principles investigation of the dissociation and coupling of methane on small copper clusters: Interplay of collision dynamics and geometric and electronic effects

    Energy Technology Data Exchange (ETDEWEB)

    Varghese, Jithin J.; Mushrif, Samir H., E-mail: shmushrif@ntu.edu.sg [School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 (Singapore)

    2015-05-14

    Small metal clusters exhibit unique size and morphology dependent catalytic activity. The search for alternate minimum energy pathways and catalysts to transform methane to more useful chemicals and carbon nanomaterials led us to investigate collision induced dissociation of methane on small Cu clusters. We report here for the first time, the free energy barriers for the collision induced activation, dissociation, and coupling of methane on small Cu clusters (Cu{sub n} where n = 2–12) using ab initio molecular dynamics and metadynamics simulations. The collision induced activation of the stretching and bending vibrations of methane significantly reduces the free energy barrier for its dissociation. Increase in the cluster size reduces the barrier for dissociation of methane due to the corresponding increase in delocalisation of electron density within the cluster, as demonstrated using the electron localisation function topology analysis. This enables higher probability of favourable alignment of the C–H stretching vibration of methane towards regions of high electron density within the cluster and makes higher number of sites available for the chemisorption of CH{sub 3} and H upon dissociation. These characteristics contribute in lowering the barrier for dissociation of methane. Distortion and reorganisation of cluster geometry due to high temperature collision dynamics disturb electron delocalisation within them and increase the barrier for dissociation. Coupling reactions of CH{sub x} (x = 1–3) species and recombination of H with CH{sub x} have free energy barriers significantly lower than complete dehydrogenation of methane to carbon. Thus, competition favours the former reactions at high hydrogen saturation on the clusters.

  17. First-principles investigation of the dissociation and coupling of methane on small copper clusters: Interplay of collision dynamics and geometric and electronic effects

    International Nuclear Information System (INIS)

    Varghese, Jithin J.; Mushrif, Samir H.

    2015-01-01

    Small metal clusters exhibit unique size and morphology dependent catalytic activity. The search for alternate minimum energy pathways and catalysts to transform methane to more useful chemicals and carbon nanomaterials led us to investigate collision induced dissociation of methane on small Cu clusters. We report here for the first time, the free energy barriers for the collision induced activation, dissociation, and coupling of methane on small Cu clusters (Cu n where n = 2–12) using ab initio molecular dynamics and metadynamics simulations. The collision induced activation of the stretching and bending vibrations of methane significantly reduces the free energy barrier for its dissociation. Increase in the cluster size reduces the barrier for dissociation of methane due to the corresponding increase in delocalisation of electron density within the cluster, as demonstrated using the electron localisation function topology analysis. This enables higher probability of favourable alignment of the C–H stretching vibration of methane towards regions of high electron density within the cluster and makes higher number of sites available for the chemisorption of CH 3 and H upon dissociation. These characteristics contribute in lowering the barrier for dissociation of methane. Distortion and reorganisation of cluster geometry due to high temperature collision dynamics disturb electron delocalisation within them and increase the barrier for dissociation. Coupling reactions of CH x (x = 1–3) species and recombination of H with CH x have free energy barriers significantly lower than complete dehydrogenation of methane to carbon. Thus, competition favours the former reactions at high hydrogen saturation on the clusters

  18. Methodology for Analysing Controllability and Observability of Bladed Disc Coupled Vibrations

    DEFF Research Database (Denmark)

    Christensen, Rene Hardam; Santos, Ilmar

    2004-01-01

    to place sensors and actuators so that all vibration levels can be monitored and controlled. Due to the special dynamic characteristics of rotating coupled bladed discs, where disc lateral motion is coupled to blade flexible motion, such analyses become quite complicated. The dynamics is described...... by a time-variant mathematical model, which presents parametric vibration modes and centrifugal stiffening effects resulting in increasing blade natural frequencies. In this framework the objective and contribution of this paper is to present a methodology for analysing the modal controllability...

  19. Simulation of the photodetachment spectrum of HHfO- using coupled-cluster calculations

    Science.gov (United States)

    Mok, Daniel K. W.; Dyke, John M.; Lee, Edmond P. F.

    2016-12-01

    The photodetachment spectrum of HHfO- was simulated using restricted-spin coupled-cluster single-double plus perturbative triple {RCCSD(T)} calculations performed on the ground electronic states of HHfO and HHfO-, employing basis sets of up to quintuple-zeta quality. The computed RCCSD(T) electron affinity of 1.67 ± 0.02 eV at the complete basis set limit, including Hf 5s25p6 core correlation and zero-point energy corrections, agrees well with the experimental value of 1.70 ± 0.05 eV from a recent photodetachment study [X. Li et al., J. Chem. Phys. 136, 154306 (2012)]. For the simulation, Franck-Condon factors were computed which included allowances for anharmonicity and Duschinsky rotation. Comparisons between simulated and experimental spectra confirm the assignments of the molecular carrier and electronic states involved but suggest that the experimental vibrational structure has suffered from poor signal-to-noise ratio. An alternative assignment of the vibrational structure to that suggested in the experimental work is presented.

  20. Influence of Ultrasonic Vibrations on the Static Friction Characteristics of a Rubber/Aluminum Couple

    International Nuclear Information System (INIS)

    Cheng Ting-Hai; Gao Han; Bao Gang

    2011-01-01

    A novel ultrasonic vibration approach is introduced into a chloroprene rubber/aluminum friction couple for improving the static friction properties between rubber and metal. Compared to the test results without vibrations, the static friction force of a chloroprene rubber/aluminum couple decreases observably, leading to the ultimate displacement of rubber. The values of the static friction force and ultimate displacement can be ultimately reduced to 23.1% and 50% of those without ultrasonic vibrations, respectively. (fundamental areas of phenomenology(including applications))

  1. Vibrational Averaging of the Isotropic Hyperfine Coupling Constants for the Methyl Radical

    Science.gov (United States)

    Adam, Ahmad; Jensen, Per; Yachmenev, Andrey; Yurchenko, Sergei N.

    2014-06-01

    Electronic contributions to molecular properties are often considered as the major factor and usually reported in the literature without ro-vibrational corrections. However, there are many cases where the nuclear motion contributions are significant and even larger than the electronic contribution. In order to obtain accurate theoretical predictions, nuclear motion effects on molecular properties need to be taken into account. The computed isotropic hyperfine coupling constants for the nonvibrating methyl radical CH_3 are far from the experimental values. For CH_3, we have calculated the vibrational-state-dependence of the isotropic hyperfine coupling constant in the electronic ground state. The vibrational wavefunctions used in the averaging procedure were obtained variationally with the TROVE program. Analytical representations for the potential energy surfaces and the hyperfine coupling constant surfaces are obtained in least-squares fitting procedures. Thermal averaging has been carried out for molecules in thermal equilibrium, i.e., with Boltzmann-distributed populations. The calculation methods and the results will be discussed in detail.

  2. Anharmonic vibrational properties in periodic systems: energy, electron-phonon coupling, and stress

    OpenAIRE

    Monserrat, Bartomeu; Drummond, N. D.; Needs, R. J.

    2013-01-01

    A unified approach is used to study vibrational properties of periodic systems with first-principles methods and including anharmonic effects. Our approach provides a theoretical basis for the determination of phonon-dependent quantities at finite temperatures. The low-energy portion of the Born-Oppenheimer energy surface is mapped and used to calculate the total vibrational energy including anharmonic effects, electron-phonon coupling, and the vibrational contribution to the stress tensor. W...

  3. Antiferromagnetic exchange coupling measurements on single Co clusters

    Science.gov (United States)

    Wernsdorfer, W.; Leroy, D.; Portemont, C.; Brenac, A.; Morel, R.; Notin, L.; Mailly, D.

    2009-03-01

    We report on single-cluster measurements of the angular dependence of the low-temperature ferromagnetic core magnetization switching field in exchange-coupled Co/CoO core-shell clusters (4 nm) using a micro-bridge DC superconducting quantum interference device (μ-SQUID). It is observed that the coupling with the antiferromagnetic shell induces modification in the switching field for clusters with intrinsic uniaxial anisotropy depending on the direction of the magnetic field applied during the cooling. Using a modified Stoner-Wohlfarth model, it is shown that the core interacts with two weakly coupled and asymmetrical antiferromagnetic sublattices. Ref.: C. Portemont, R. Morel, W. Wernsdorfer, D. Mailly, A. Brenac, and L. Notin, Phys. Rev. B 78, 144415 (2008)

  4. Coupled vibration study of the blade of the flexible wind wheel with the low-speed shafting

    International Nuclear Information System (INIS)

    Su, L Y; Zhao, R Z; Liu, H; Meng, Z R

    2013-01-01

    Movement and deformation of flexible wind wheel has a profound effect on dynamics of the low-speed shafting in Megawatt wind turbine. The paper is based on the power production1.2 MW wind turbine, vibration characteristics of elastic wind wheel with the low-speed shafting were studied. In order to obtain the finite element model, the author created a physical model of this coupled system and used the minimum energy principle to simplify the model. While its single blade simplified as cantilever. Using modal superposition method for solving the coupled system model. Structural mechanics equations were used to solve the simple blade finite element model. Analyzing the natural frequency of the coupled system and the stress diagram, the results indicate that in the coupling system, low frequency vibration occurs in the low-speed shaft bearing, while the high-frequency vibration happens on wind turbine blades. In the low-frequency vibration process, blades vibration and low-speed shaft vibration there is a strong correlation. Contrast inherent frequency of the wind wheel with natural frequency of a single blade, the results show that the frequency of the wind wheel slightly less than it in the single blade

  5. Agglomeration of powders with a new-coupled vibration-compaction device

    Directory of Open Access Journals (Sweden)

    Serris Eric

    2017-01-01

    Full Text Available Inorganic powder recycling should be a crucial process for the “smart factories” in the future. A complex three-phase system (bauxite mixed with ordinary Portland cement and water with a new-coupled vibration-compaction device is studied. The compressive stress of compacts seems to be improved by using this device at low compaction pressure leaving the other characteristics unchanged. The tomographic study of macroscopic porosities shows differences in the pores repartitions inside vibrated and untreated compacts. Classic porosity repartition is shown in the classic compacted bauxite compacts whereas in the vibrated-compacted bauxite exhibits inhomogeneities. Despite this, we find these results quite promising for further investigations.

  6. BCS superconductivity for weakly coupled clusters

    International Nuclear Information System (INIS)

    Friedel, J.

    1992-01-01

    BCS superconductivity is expected to have fairly high critical temperatures when clusters of moderate sizes are weakly coupled to form a crystal. This remark extends to quasi zerodimensional cases, a remark initially made by Labbe for quasi one-dimensional ones and by Hirsch, Bok and Labbe for quasi twodimensional ones. Possible applications are envisaged for twodimensional clusters (fullerene) or threedimensional ones (metal clusters, Chevrel phases). Conditions for optimal applicability of the scheme are somewhat restricted. (orig.)

  7. Magnetoelectric coupling of a magnetoelectric flux gate sensor in vibration noise circumstance

    Directory of Open Access Journals (Sweden)

    Zhaoqiang Chu

    2018-01-01

    Full Text Available A magnetoelectric (ME flux gate sensor (MEFGS consisting of piezoelectric PMN-PT single crystals and ferromagnetic amorphous alloy ribbon in a self-differential configuration is featured with the ability of weak magnetic anomaly detection. Here, we further investigated its ME coupling and magnetic field detection performance in vibration noise circumstance, including constant frequency, impact, and random vibration noise. Experimental results show that the ME coupling coefficient of MEFGS is as high as 5700 V/cm*Oe at resonant frequency, which is several orders magnitude higher than previously reported differential ME sensors. It was also found that under constant and impact vibration noise circumstance, the noise reduction and attenuation factor of MEFGS are over 17 and 85.7%, respectively. This work is important for practical application of MEFGS in real environment.

  8. The Lagrangians and Hamiltonians of damped coupled vibrations

    International Nuclear Information System (INIS)

    Ding Guangtao; Gan Huilan; Zheng Xianfeng; Cui Zhifeng

    2012-01-01

    In this paper, the analytical mechanization of two kinds of damped coupled vibrations is studied. First, by use of coordinate transformations the equations of motion are transformed into the self-ad- joint form. Secondly, the Lagrangians are obtained according to Engels method. Finally the Lagrangians and Hamiltonians of the original equations are deduced by using the inverse transformation. (authors)

  9. Predictive coupled-cluster isomer orderings for some SinCm (m, n ≤ 12) clusters: A pragmatic comparison between DFT and complete basis limit coupled-cluster benchmarks

    International Nuclear Information System (INIS)

    Byrd, Jason N.; Lutz, Jesse J.; Jin, Yifan; Ranasinghe, Duminda S.; Perera, Ajith; Bartlett, Rodney J.; Montgomery, John A.; Duan, Xiaofeng F.; Burggraf, Larry W.; Sanders, Beverly A.

    2016-01-01

    The accurate determination of the preferred Si 12 C 12 isomer is important to guide experimental efforts directed towards synthesizing SiC nano-wires and related polymer structures which are anticipated to be highly efficient exciton materials for the opto-electronic devices. In order to definitively identify preferred isomeric structures for silicon carbon nano-clusters, highly accurate geometries, energies, and harmonic zero point energies have been computed using coupled-cluster theory with systematic extrapolation to the complete basis limit for set of silicon carbon clusters ranging in size from SiC 3 to Si 12 C 12 . It is found that post-MBPT(2) correlation energy plays a significant role in obtaining converged relative isomer energies, suggesting that predictions using low rung density functional methods will not have adequate accuracy. Utilizing the best composite coupled-cluster energy that is still computationally feasible, entailing a 3-4 SCF and coupled-cluster theory with singles and doubles extrapolation with triple-ζ (T) correlation, the closo Si 12 C 12 isomer is identified to be the preferred isomer in the support of previous calculations [X. F. Duan and L. W. Burggraf, J. Chem. Phys. 142, 034303 (2015)]. Additionally we have investigated more pragmatic approaches to obtaining accurate silicon carbide isomer energies, including the use of frozen natural orbital coupled-cluster theory and several rungs of standard and double-hybrid density functional theory. Frozen natural orbitals as a way to compute post-MBPT(2) correlation energy are found to be an excellent balance between efficiency and accuracy.

  10. A new potential energy surface for vibration-vibration coupling in HF-HF collisions. Formulation and quantal scattering calculations

    Science.gov (United States)

    Schwenke, David W.; Truhlar, Donald G.

    1988-04-01

    We present new ab initio calculations of the HF-HF interaction potential for the case where both molecules are simultaneously displaced from their equilibrium internuclear distance. These and previous ab initio calculations are then fit to a new analytic representation which is designed to be efficient to evaluate and to provide an especially faithful account of the forces along the vibrational coordinates. We use the new potential for two sets of quantal scattering calculations for collisions in three dimensions with total angular momentum zero. First we test that the angular harmonic representation of the anisotropy is adequate by comparing quantal rigid rotator calculations to those carried out for potentials involving higher angular harmonics and for which the expansion in angular harmonics is systematically increased to convergence. Then we carry out large-scale quantal calculations of vibration-vibration energy transfer including the coupling of both sets of vibrational and rotational coordinates. These calculations indicate that significant rotational energy transfer accompanies the vibration-to-vibration energy transfer process.

  11. Vibrational Mode-Specific Autodetachment and Coupling of CH2CN-

    Science.gov (United States)

    Lyle, Justin; Mabbs, Richard

    2017-06-01

    The Cyanomethyl Anion, CH_{2}CN-, and neutral radical have been studied extensively, with several findings of autodetachment about the totally symmetric transition, as well as high resolution experiments revealing symmetrically forbidden and weak vibrational features. We report photoelectron spectra using the Velocity-Mapped Imaging Technique in 1-2 \\wn increments over a range of 13460 to 15384 \\wn that has not been previously examined. These spectra include excitation of the ground state cyanomethyl anion into the direct detachment thresholds of previously reported vibrational modes for the neutral radical. Significant variations from Franck-Condon behavior were observed in the branching ratios for resolved vibrational features for excitation in the vicinity of the thresholds involving the νb{3} and νb{5} modes. These are consistent with autodetachment from rovibrational levels of a dipole bound state acting as a resonance in the detachment continuum. The autodetachment channels involve single changes in vibrational quantum number, consistent with the vibrational propensity rule but in some cases reveal relaxation to a different vibrational mode indicating coupling between the modes and/or a breakdown of the normal mode approximation.

  12. Impact-driven, frequency up-converting coupled vibration energy harvesting device for low frequency operation

    International Nuclear Information System (INIS)

    Gu, Lei; Livermore, Carol

    2011-01-01

    This paper presents experiments and models of an energy harvesting device in which a low frequency resonator impacts a high frequency energy harvesting resonator, resulting in energy harvesting predominantly at the system's coupled vibration frequency. Analysis shows that a reduced mechanical damping ratio during coupled vibration enables increased electrical power generation as compared with conventional technology. Experiments demonstrate that the efficiency of electrical power transfer is significantly improved with the coupled vibration approach. An average power output of 0.43 mW is achieved under 0.4g acceleration at 8.2 Hz, corresponding to a power density of 25.5 µW cm −3 . The measured power and power density at the resonant frequency are respectively 4.8 times and 13 times the measured peak values for a conventional harvester created from a low frequency beam alone

  13. Delay-induced cluster patterns in coupled Cayley tree networks

    Science.gov (United States)

    Singh, A.; Jalan, S.

    2013-07-01

    We study effects of delay in diffusively coupled logistic maps on the Cayley tree networks. We find that smaller coupling values exhibit sensitiveness to value of delay, and lead to different cluster patterns of self-organized and driven types. Whereas larger coupling strengths exhibit robustness against change in delay values, and lead to stable driven clusters comprising nodes from last generation of the Cayley tree. Furthermore, introduction of delay exhibits suppression as well as enhancement of synchronization depending upon coupling strength values. To the end we discuss the importance of results to understand conflicts and cooperations observed in family business.

  14. Vibrational contribution to the thermodynamics of nanosized precipitates: vacancy-copper clusters in bcc-Fe

    International Nuclear Information System (INIS)

    Talati, Mina; Posselt, Matthias; Al-Motasem, Ahmed; Bergner, Frank; Bonny, Giovanni

    2012-01-01

    The effects of lattice vibration on the thermodynamics of nanosized coherent clusters in bcc-Fe consisting of vacancies and/or copper are investigated within the harmonic approximation. A combination of on-lattice simulated annealing based on Metropolis Monte Carlo simulations and off-lattice relaxation by molecular dynamics is applied to obtain the most stable cluster configurations at T = 0 K. The most recent interatomic potential built within the framework of the embedded-atom method for the Fe-Cu system is used. The total free energy of pure bcc-Fe and fcc-Cu as well as the total formation free energy and the total binding free energy of the vacancy-copper clusters are determined for finite temperatures. Our results are compared with the available data from previous investigations performed using many-body interatomic potentials and first-principles methods. For further applications in rate theory and object kinetic Monte Carlo simulations, the vibrational effects evaluated in the present study are included in the previously developed analytical fitting formulae. (paper)

  15. Design and Vibration Sensitivity Analysis of a MEMS Tuning Fork Gyroscope with an Anchored Diamond Coupling Mechanism

    Directory of Open Access Journals (Sweden)

    Yanwei Guan

    2016-04-01

    Full Text Available In this paper, a new micromachined tuning fork gyroscope (TFG with an anchored diamond coupling mechanism is proposed while the mode ordering and the vibration sensitivity are also investigated. The sense-mode of the proposed TFG was optimized through use of an anchored diamond coupling spring, which enables the in-phase mode frequency to be 108.3% higher than the anti-phase one. The frequencies of the in- and anti-phase modes in the sense direction are 9799.6 Hz and 4705.3 Hz, respectively. The analytical solutions illustrate that the stiffness difference ratio of the in- and anti-phase modes is inversely proportional to the output induced by the vibration from the sense direction. Additionally, FEM simulations demonstrate that the stiffness difference ratio of the anchored diamond coupling TFG is 16.08 times larger than the direct coupling one while the vibration output is reduced by 94.1%. Consequently, the proposed new anchored diamond coupling TFG can structurally increase the stiffness difference ratio to improve the mode ordering and considerably reduce the vibration sensitivity without sacrificing the scale factor.

  16. Exciton–vibrational coupling in the dynamics and spectroscopy of Frenkel excitons in molecular aggregates

    International Nuclear Information System (INIS)

    Schröter, M.; Ivanov, S.D.; Schulze, J.; Polyutov, S.P.; Yan, Y.; Pullerits, T.; Kühn, O.

    2015-01-01

    The influence of exciton–vibrational coupling on the optical and transport properties of molecular aggregates is an old problem that gained renewed interest in recent years. On the experimental side, various nonlinear spectroscopic techniques gave insight into the dynamics of systems as complex as photosynthetic antennae. Striking evidence was gathered that in these protein–pigment complexes quantum coherence is operative even at room temperature conditions. Investigations were triggered to understand the role of vibrational degrees of freedom, beyond that of a heat bath characterized by thermal fluctuations. This development was paralleled by theory, where efficient methods emerged, which could provide the proper frame to perform non-Markovian and non-perturbative simulations of exciton–vibrational dynamics and spectroscopy. This review summarizes the state of affairs of the theory of exciton–vibrational interaction in molecular aggregates and photosynthetic antenna complexes. The focus is put on the discussion of basic effects of exciton–vibrational interaction from the stationary and dynamics points of view. Here, the molecular dimer plays a prominent role as it permits a systematic investigation of absorption and emission spectra by numerical diagonalization of the exciton–vibrational Hamiltonian in a truncated Hilbert space. An extension to larger aggregates, having many coupled nuclear degrees of freedom, becomes possible with the Multi-Layer Multi-Configuration Time-Dependent Hartree (ML-MCTDH) method for wave packet propagation. In fact it will be shown that this method allows one to approach the limit of almost continuous spectral densities, which is usually the realm of density matrix theory. Real system–bath situations are introduced for two models, which differ in the way strongly coupled nuclear coordinates are treated, as a part of the relevant system or the bath. A rather detailed exposition of the Hierarchy Equations Of Motion (HEOM

  17. Electron-Mediated Phonon-Phonon Coupling Drives the Vibrational Relaxation of CO on Cu(100)

    Science.gov (United States)

    Novko, D.; Alducin, M.; Juaristi, J. I.

    2018-04-01

    We bring forth a consistent theory for the electron-mediated vibrational intermode coupling that clarifies the microscopic mechanism behind the vibrational relaxation of adsorbates on metal surfaces. Our analysis points out the inability of state-of-the-art nonadiabatic theories to quantitatively reproduce the experimental linewidth of the CO internal stretch mode on Cu(100) and it emphasizes the crucial role of the electron-mediated phonon-phonon coupling in this regard. The results demonstrate a strong electron-mediated coupling between the internal stretch and low-energy CO modes, but also a significant role of surface motion. Our nonadiabatic theory is also able to explain the temperature dependence of the internal stretch phonon linewidth, thus far considered a sign of the direct anharmonic coupling.

  18. On the convergence of zero-point vibrational corrections to nuclear shieldings and shielding anisotropies towards the complete basis set limit in water

    DEFF Research Database (Denmark)

    Faber, Rasmus; Buczek, Aneta; Kupka, Teobald

    2017-01-01

    ), coupled cluster singles and doubles (CCSD), coupled cluster singles and doubles with perturbative triples corrections (CCSD(T)) and Kohn-Sham density functional theory (DFT) with the B3LYP exchange-correlation functional methods in combination with the second order vibrational perturbation theory (VPT2...

  19. Relationships for electron-vibrational coupling in conjugated π organic systems

    Science.gov (United States)

    O'Neill, L.; Lynch, P.; McNamara, M.; Byrne, H. J.

    2005-06-01

    A series of π conjugated systems were studied by absorption, photoluminescence and vibrational spectroscopy. As is common for these systems, a linear relationship between the positioning of the absorption and photoluminescence maxima plotted against inverse conjugation length is observed. The relationships are in good agreement with the simple particle in a box method, one of the earliest descriptions of the properties of one-dimensional organic molecules. In addition to the electronic transition energies, it was observed that the Stokes shift also exhibited a well-defined relationship with increasing conjugation length, implying a correlation between the electron-vibrational coupling and chain length. This correlation is further examined using Raman spectroscopy, whereby the integrated Raman scattering is seen to behave superlinearly with chain length. There is a clear indication that the vibrational activity and thus nonradiative decay processes are controllable through molecular structure. The correlations between the Stokes energies and the vibrational structure are also observed in a selection of PPV based polymers and a clear trend of increasing luminescence efficiency with decreasing vibrational activity and Stokes shift is observable. The implications of such structure property relationships in terms of materials design are discussed.

  20. Similarity transformed coupled cluster response (ST-CCR) theory--a time-dependent similarity transformed equation-of-motion coupled cluster (STEOM-CC) approach.

    Science.gov (United States)

    Landau, Arie

    2013-07-07

    This paper presents a new method for calculating spectroscopic properties in the framework of response theory utilizing a sequence of similarity transformations (STs). The STs are preformed using the coupled cluster (CC) and Fock-space coupled cluster operators. The linear and quadratic response functions of the new similarity transformed CC response (ST-CCR) method are derived. The poles of the linear response yield excitation-energy (EE) expressions identical to the ones in the similarity transformed equation-of-motion coupled cluster (STEOM-CC) approach. ST-CCR and STEOM-CC complement each other, in analogy to the complementarity of CC response (CCR) and equation-of-motion coupled cluster (EOM-CC). ST-CCR/STEOM-CC and CCR/EOM-CC yield size-extensive and size-intensive EEs, respectively. Other electronic-properties, e.g., transition dipole strengths, are also size-extensive within ST-CCR, in contrast to STEOM-CC. Moreover, analysis suggests that in comparison with CCR, the ST-CCR expressions may be confined to a smaller subspace, however, the precise scope of the truncation can only be determined numerically. In addition, reformulation of the time-independent STEOM-CC using the same parameterization as in ST-CCR, as well as an efficient truncation scheme, is presented. The shown convergence of the time-dependent and time-independent expressions displays the completeness of the presented formalism.

  1. Magnetically coupled flextensional transducer for wideband vibration energy harvesting: Design, modeling and experiments

    Science.gov (United States)

    Zou, Hong-Xiang; Zhang, Wen-Ming; Li, Wen-Bo; Wei, Ke-Xiang; Hu, Kai-Ming; Peng, Zhi-Ke; Meng, Guang

    2018-03-01

    The combination of nonlinear bistable and flextensional mechanisms has the advantages of wide operating frequency and high equivalent piezoelectric constant. In this paper, three magnetically coupled flextensional vibration energy harvesters (MF-VEHs) are designed from three magnetically coupled vibration systems which utilize a magnetic repulsion, two symmetrical magnetic attractions and multi-magnetic repulsions, respectively. The coupled dynamic models are developed to describe the electromechanical transitions. Simulations under harmonic excitation and random excitation are carried out to investigate the performance of the MF-VEHs with different parameters. Experimental validations of the MF-VEHs are performed under different excitation levels. The experimental results verify that the developed mathematical models can be used to accurately characterize the MF-VEHs for various magnetic coupling modes. A comparison of three MF-VEHs is provided and the results illustrate that a reasonable arrangement of multiple magnets can reduce the threshold excitation intensity and increase the harvested energy.

  2. Stability analysis of coupled torsional vibration and pressure in oilwell drillstring system

    Science.gov (United States)

    Toumi, S.; Beji, L.; Mlayeh, R.; Abichou, A.

    2018-01-01

    To address security issues in oilwell drillstring system, the drilling operation handling which is in generally not autonomous but ensured by an operator may be drill bit destructive or fatal for the machine. To control of stick-slip phenomenon, the drillstring control at the right speed taking only the drillstring vibration is not sufficient as the mud dynamics and the pressure change around the drill pipes cannot be neglected. A coupled torsional vibration and pressure model is presented, and the well-posedness problem is addressed. As a Partial Differential Equation-Ordinary Differential Equation (PDE-ODE) coupled system, and in order to maintain a non destructive downhole pressure, we investigate the control stability with and without the damping term in the wave PDE. In terms of, the torsional variable, the downhole pressure, and the annulus pressure, the coupled system equilibrium is shown to be exponentially stable.

  3. Coupled analysis of multi-impact energy harvesting from low-frequency wind induced vibrations

    Science.gov (United States)

    Zhu, Jin; Zhang, Wei

    2015-04-01

    Energy need from off-grid locations has been critical for effective real-time monitoring and control to ensure structural safety and reliability. To harvest energy from ambient environments, the piezoelectric-based energy-harvesting system has been proven very efficient to convert high frequency vibrations into usable electrical energy. However, due to the low frequency nature of the vibrations of civil infrastructures, such as those induced from vehicle impacts, wind, and waves, the application of a traditional piezoelectric-based energy-harvesting system is greatly restrained since the output power drops dramatically with the reduction of vibration frequencies. This paper focuses on the coupled analysis of a proposed piezoelectric multi-impact wind-energy-harvesting device that can effectively up-convert low frequency wind-induced vibrations into high frequency ones. The device consists of an H-shape beam and four bimorph piezoelectric cantilever beams. The H-shape beam, which can be easily triggered to vibrate at a low wind speed, is originated from the first Tacoma Narrows Bridge, which failed at wind speeds of 18.8 m s-1 in 1940. The multi-impact mechanism between the H-shape beam and the bimorph piezoelectric cantilever beams is incorporated to improve the harvesting performance at lower frequencies. During the multi-impact process, a series of sequential impacts between the H-shape beam and the cantilever beams can trigger high frequency vibrations of the cantilever beams and result in high output power with a considerably high efficiency. In the coupled analysis, the coupled structural, aerodynamic, and electrical equations are solved to obtain the dynamic response and the power output of the proposed harvesting device. A parametric study for several parameters in the coupled analysis framework is carried out including the external resistance, wind speed, and the configuration of the H-shape beam. The average harvested power for the piezoelectric cantilever

  4. Equation-of-motion coupled cluster perturbation theory revisited

    DEFF Research Database (Denmark)

    Eriksen, Janus Juul; Jørgensen, Poul; Olsen, Jeppe

    2014-01-01

    The equation-of-motion coupled cluster (EOM-CC) framework has been used for deriving a novel series of perturbative corrections to the coupled cluster singles and doubles energy that formally con- verges towards the full configuration interaction energy limit. The series is based on a Møller-Ples......-Plesset partitioning of the Hamiltonian and thus size extensive at any order in the perturbation, thereby rem- edying the major deficiency inherent to previous perturbation series based on the EOM-CC ansatz. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4873138]...

  5. Emergent organization of oscillator clusters in coupled self ...

    Indian Academy of Sciences (India)

    Additionally, the maps are coupled sequentially and unidirectionally, to their nearest neighbor, through the difference of their parametric variations. Interestingly we find that this model asymptotically yields clusters of superstable oscillators with different periods. We observe that the sizes of these oscillator clusters have a ...

  6. The Influence of Shaft’s Bending on the Coupling Vibration of a Flexible Blade-Rotor System

    Directory of Open Access Journals (Sweden)

    Chao-feng Li

    2017-01-01

    Full Text Available The influence of shaft bending on the coupling vibration of rotor-blades system is nonignorable. Therefore, this paper analyzed the influence of shaft bending on the coupling vibration of rotor-blades system. The vibration mode function of shaft under elastic supporting condition was also derived to ensure accuracy of the model as well. The influence of the number of blades, the position of disk, and the support stiffness of shaft on critical speed of system was analyzed. The numerical results show that there were two categories of coupling mode shapes which belong to a set where the blade’s first two modes predominate in the system: shaft-blade (SB mode and interblade (BB mode due to the coupling between blade and shaft. The BB mode was of repeated frequencies of (Nb-2 multiplicity for number blades, and the SB mode was of repeated frequencies of (2 multiplicity for number blades. What is more, with the increase of the number of blades, natural frequency of rotor was decreasing linearly, that of BB mode was constant, and that of SB mode was increasing linearly. Natural frequency of BB mode was not affected while that of rotor and SB mode was affected (changed symmetrically with the center of shaft by the position of disk. In the end, vibration characteristics of coupling mode shapes were analyzed.

  7. Predictive coupled-cluster isomer orderings for some Si{sub n}C{sub m} (m, n ≤ 12) clusters: A pragmatic comparison between DFT and complete basis limit coupled-cluster benchmarks

    Energy Technology Data Exchange (ETDEWEB)

    Byrd, Jason N., E-mail: byrd.jason@ensco.com [Quantum Theory Project, University of Florida, Gainesville, Florida 32611 (United States); ENSCO, Inc., 4849 North Wickham Road, Melbourne, Florida 32940 (United States); Lutz, Jesse J., E-mail: jesse.lutz.ctr@afit.edu; Jin, Yifan; Ranasinghe, Duminda S.; Perera, Ajith; Bartlett, Rodney J., E-mail: rodbartl@ufl.edu [Quantum Theory Project, University of Florida, Gainesville, Florida 32611 (United States); Montgomery, John A. [Department of Physics, University of Connecticut, Storrs, Connecticut 06269 (United States); Duan, Xiaofeng F. [Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio 45433 (United States); Air Force Research Laboratory DoD Supercomputing Resource Center, Wright-Patterson Air Force Base, Ohio 45433 (United States); Burggraf, Larry W. [Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio 45433 (United States); Sanders, Beverly A. [Quantum Theory Project, University of Florida, Gainesville, Florida 32611 (United States); Department of Computer and Information Science and Engineering, University of Florida, Gainesville, Florida 32611 (United States)

    2016-07-14

    The accurate determination of the preferred Si{sub 12}C{sub 12} isomer is important to guide experimental efforts directed towards synthesizing SiC nano-wires and related polymer structures which are anticipated to be highly efficient exciton materials for the opto-electronic devices. In order to definitively identify preferred isomeric structures for silicon carbon nano-clusters, highly accurate geometries, energies, and harmonic zero point energies have been computed using coupled-cluster theory with systematic extrapolation to the complete basis limit for set of silicon carbon clusters ranging in size from SiC{sub 3} to Si{sub 12}C{sub 12}. It is found that post-MBPT(2) correlation energy plays a significant role in obtaining converged relative isomer energies, suggesting that predictions using low rung density functional methods will not have adequate accuracy. Utilizing the best composite coupled-cluster energy that is still computationally feasible, entailing a 3-4 SCF and coupled-cluster theory with singles and doubles extrapolation with triple-ζ (T) correlation, the closo Si{sub 12}C{sub 12} isomer is identified to be the preferred isomer in the support of previous calculations [X. F. Duan and L. W. Burggraf, J. Chem. Phys. 142, 034303 (2015)]. Additionally we have investigated more pragmatic approaches to obtaining accurate silicon carbide isomer energies, including the use of frozen natural orbital coupled-cluster theory and several rungs of standard and double-hybrid density functional theory. Frozen natural orbitals as a way to compute post-MBPT(2) correlation energy are found to be an excellent balance between efficiency and accuracy.

  8. A Coupling Vibration Test Bench and the Simulation Research of a Maglev Vehicle

    Directory of Open Access Journals (Sweden)

    Weihua Ma

    2015-01-01

    Full Text Available To study the characteristics of the coupling vibration between a maglev vehicle and its track beam system and to improve the performance of the levitation system, a new type of vibration test bench was developed. Take a single maglev frame as the study object; simulation of the coupling vibration of the maglev vehicle, levitation system, and track beam were achieved. In addition, all types of real track irregularity excitations can be simulated using hydraulic actuators of the test bench. To expand the research scope, a simulation model was developed that can conduct the simulation research synergistically with the test bench. Based on a dynamics model of the test bench, the dynamics simulation method determined the influence on the levitation control performance of three factors: the track beam support stiffness, the track beam mass, and the track irregularity. The vibration resonance phenomenon of the vehicle/track system was reproduced by the dynamics simulation, and a portion of the simulation results were validated by the test results. By combining the test bench and the dynamics model, experiments can be guided by the simulation results, and the experimental results can validate the dynamics simulation results.

  9. Two-Dimensional Infrared Study of Vibrational Coupling between Azide and Nitrile Reporters in a RNA Nucleoside.

    Science.gov (United States)

    Schmitz, Andrew J; Hogle, David G; Gai, Xin Sonia; Fenlon, Edward E; Brewer, Scott H; Tucker, Matthew J

    2016-09-08

    The vibrations in the azide, N3, asymmetric stretching region and nitrile, CN, symmetric stretching region of 2'-azido-5-cyano-2'-deoxyuridine (N3CNdU) are examined by two-dimensional infrared (2D IR) spectroscopy. At earlier waiting times, the 2D IR spectrum shows the presence of both vibrational transitions along the diagonal and off-diagonal cross peaks indicating vibrational coupling. The coupling strength is determined from the off-diagonal anharmonicity to be 66 cm(-1) for the intramolecular distance of ∼7.9 Å, based on a structural map generated for this model system. In addition, the frequency-frequency correlation decay is detected, monitoring the solvent dynamics around each individual probe position. Overall, these vibrational reporters can be utilized in tandem to simultaneously track global structural information and fast structural fluctuations.

  10. Coupled Cluster Theory for Large Molecules

    DEFF Research Database (Denmark)

    Baudin, Pablo

    This thesis describes the development of local approximations to coupled cluster (CC) theory for large molecules. Two different methods are presented, the divide–expand–consolidate scheme (DEC), for the calculation of ground state energies, and a local framework denoted LoFEx, for the calculation...

  11. The polarizable embedding coupled cluster method

    DEFF Research Database (Denmark)

    Sneskov, Kristian; Schwabe, Tobias; Kongsted, Jacob

    2011-01-01

    We formulate a new combined quantum mechanics/molecular mechanics (QM/MM) method based on a self-consistent polarizable embedding (PE) scheme. For the description of the QM region, we apply the popular coupled cluster (CC) method detailing the inclusion of electrostatic and polarization effects...

  12. A coupled-cluster study of photodetachment cross sections of closed-shell anions

    Science.gov (United States)

    Cukras, Janusz; Decleva, Piero; Coriani, Sonia

    2014-11-01

    We investigate the performance of Stieltjes Imaging applied to Lanczos pseudo-spectra generated at the coupled cluster singles and doubles, coupled cluster singles and approximate iterative doubles and coupled cluster singles levels of theory in modeling the photodetachment cross sections of the closed shell anions H-, Li-, Na-, F-, Cl-, and OH-. The accurate description of double excitations is found to play a much more important role than in the case of photoionization of neutral species.

  13. Contribution to the heavy-ion optical potential from coupling to vibrational states

    Energy Technology Data Exchange (ETDEWEB)

    Donangelo, R; Canto, L F; Hussein, M S

    1978-11-01

    The component of the optical potential in the elastic channel due to the coupling to vibrational states in Coulomb excitation is derived using a previously developed semiclassical method. Several numerical examples are worked out.

  14. Hole-vibrational coupling in Pentacene thin films detected by UPS

    International Nuclear Information System (INIS)

    Yamame, H.; Fukagawa, H.; Honda, H.; Ono, M.; Okudaira, K.K.; Ueno, N.; Kera, S.; Ishii, H.

    2004-01-01

    Full text:The hole/electron-vibrational coupling plays a crucial rule in the hole/electron transport in organic devices. In this work, fine structure of the highest occupied molecular orbital (HOMO) band in oriented thin films of pentacene on graphite (HOPG) was studied by using high-resolution ultraviolet photoelectron spectroscopy (UPS). Figure 1 shows the comparison of UPS spectra between pentacene thin films (circles) and gas-phase pentacene (dashed line). We observed a very sharp HOMO band, which consists of at least three components, as observed for Cu-phthalocyanine monolayer on HOPG. It is of note that the relative intensities of fine structures are different between the condensed phase and gas phase, while their energy separations are the same for the two phases (∼ 0.17 eV / 1400 cm -1 ). Furthermore, the relative intensity of fine structures showed remarkable dependence on photoelectron-take-off angle. Judging from these results, the observed fine structures in UPS originate from the hole-vibrational (molecular C-C stretching) coupling in pentacene thin films. At the conference, temperature and thickness dependences of UPS will be discussed

  15. Research on Effective Electric-Mechanical Coupling Coefficient of Sandwich Type Piezoelectric Ultrasonic Transducer Using Bending Vibration Mode

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2015-01-01

    Full Text Available An analytical model on electromechanical coupling coefficient and the length optimization of a bending piezoelectric ultrasonic transducer are proposed. The piezoelectric transducer consists of 8 PZT elements sandwiched between four thin electrodes, and the PZT elements are clamped by a screwed connection between fore beam and back beam. Firstly, bending vibration model of the piezoelectric transducer is built based on the Timoshenko beam theory. Secondly, the analytical model of effective electromechanical coupling coefficient is built based on the bending vibration model. Energy method and electromechanical equivalent circuit method are involved in the modelling process. To validate the analytical model, sandwich type piezoelectric transducer example in second order bending vibration mode is analysed. Effective electromechanical coupling coefficient of the transducer is optimized with simplex reflection technique, and the optimized ratio of length of the transducers is obtained. Finally, experimental prototypes of the sandwich type piezoelectric transducers are fabricated. Bending vibration mode and impedance of the experimental prototypes are tested, and electromechanical coupling coefficient is obtained according to the testing results. Results show that the analytical model is in good agreement with the experimental model.

  16. Seniority zero pair coupled cluster doubles theory

    International Nuclear Information System (INIS)

    Stein, Tamar; Henderson, Thomas M.; Scuseria, Gustavo E.

    2014-01-01

    Coupled cluster theory with single and double excitations accurately describes weak electron correlation but is known to fail in cases of strong static correlation. Fascinatingly, however, pair coupled cluster doubles (p-CCD), a simplified version of the theory limited to pair excitations that preserve the seniority of the reference determinant (i.e., the number of unpaired electrons), has mean field computational cost and is an excellent approximation to the full configuration interaction (FCI) of the paired space provided that the orbital basis defining the pairing scheme is adequately optimized. In previous work, we have shown that optimization of the pairing scheme in the seniority zero FCI leads to a very accurate description of static correlation. The same conclusion extends to p-CCD if the orbitals are optimized to make the p-CCD energy stationary. We here demonstrate these results with numerous examples. We also explore the contributions of different seniority sectors to the coupled cluster doubles (CCD) correlation energy using different orbital bases. We consider both Hartree-Fock and Brueckner orbitals, and the role of orbital localization. We show how one can pair the orbitals so that the role of the Brueckner orbitals at the CCD level is retained at the p-CCD level. Moreover, we explore ways of extending CCD to accurately describe strongly correlated systems

  17. A coupled-cluster study of photodetachment cross sections of closed-shell anions

    International Nuclear Information System (INIS)

    Cukras, Janusz; Decleva, Piero; Coriani, Sonia

    2014-01-01

    We investigate the performance of Stieltjes Imaging applied to Lanczos pseudo-spectra generated at the coupled cluster singles and doubles, coupled cluster singles and approximate iterative doubles and coupled cluster singles levels of theory in modeling the photodetachment cross sections of the closed shell anions H − , Li − , Na − , F − , Cl − , and OH − . The accurate description of double excitations is found to play a much more important role than in the case of photoionization of neutral species

  18. Effects of shape and dopant on structural, optical absorption, Raman, and vibrational properties of silver and copper quantum clusters: A density functional theory study

    International Nuclear Information System (INIS)

    Li Wei-Yin; Chen Fu-Yi

    2014-01-01

    We investigate the effects of shape and single-atom doping on the structural, optical absorption, Raman, and vibrational properties of Ag 13 , Ag 12 Cu 1 , Cu 13 , and Cu 12 Ag 1 clusters by using the (time-dependent) density functional theory. The results show that the most stable structures are cuboctahedron (COh) for Ag 13 and icosahedron (Ih) for Cu 13 , Ag 12 Cu 1core , and Cu 12 Ag 1sur . In the visible—near infrared optical absorption, the transitions consist of the interband and the intraband transitions. Moreover, red shifts are observed as follows: 1) clusters change from Ag 12 Cu 1core to Ag 13 to Ag 12 Cu 1sur with the same motifs, 2) the shapes of pure Ag 13 and Ag 12 Cu 1core clusters change from COh to Ih to decahedron (Dh), 3) the shape of Ag 12 Cu 1sur clusters changes from Ih to COh to Dh, and 4) the shapes of pure Cu 13 and Cu 12 Ag 1 clusters change from Ih to Dh to COh. All of the Raman and vibrational spectra exhibit many significant vibrational modes related to the shapes and the compositions of the clusters. The ranges of vibrational spectra of Ag 13 , Ag 12 Cu 1 or Cu 13 , and Cu 12 Ag 1 clusters become narrower and the vibrational intensities increase as the shape of the clusters changes from Ih to Dh to COh. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  19. One- and two-cluster synchronized dynamics of non-diffusively coupled Tchebycheff map networks

    International Nuclear Information System (INIS)

    Schäfer, Mirko; Greiner, Martin

    2012-01-01

    We use the master stability formalism to discuss one- and two-cluster synchronization of coupled Tchebycheff map networks. For diffusively coupled map systems, the one-cluster synchronized dynamics is given by the behaviour of the individual maps, and the coupling only determines the stability of the coherent state. For the case of non-diffusive coupling and for two-cluster synchronization, the synchronized dynamics on networks is different from the behaviour of the single individual map. Depending on the coupling, we study numerically the characteristics of various forms of the resulting synchronized dynamics. The stability properties of the respective one-cluster synchronized states are discussed for arbitrary network structures. For the case of two-cluster synchronization on bipartite networks we also present analytical expressions for fixed points and zig-zag patterns, and explicitly determine the linear stability of these orbits for the special case of ring-networks.

  20. Coupled Boundary and Finite Element Analysis of Vibration from Railway Tunnels

    DEFF Research Database (Denmark)

    Andersen, Lars; Jones, C.J.C.

    2006-01-01

    The analysis of vibration from railway tunnels is of growing interest as new and higher-speed railways are built under the ground to address the transport problems of growing modern urban areas around cities. Such analysis can be carried out using numerical methods but models and therefore comput...... body vibration (about 4 to 80 Hz). A coupled finite element and boundary element scheme is applied in both two and three dimensions. Two tunnel designs are considered: a cut-and-cover tunnel for a double track and a single-track tunnel dug with the New Austrian Tunnelling Method (NATM)....

  1. Gold cluster carbonyls: saturated adsorption of CO on gold cluster cations, vibrational spectroscopy, and implications for their structures.

    Science.gov (United States)

    Fielicke, André; von Helden, Gert; Meijer, Gerard; Pedersen, David B; Simard, Benoit; Rayner, David M

    2005-06-15

    We report on the interaction of carbon monoxide with cationic gold clusters in the gas phase. Successive adsorption of CO molecules on the Au(n)(+) clusters proceeds until a cluster size specific saturation coverage is reached. Structural information for the bare gold clusters is obtained by comparing the saturation stoichiometry with the number of available equivalent sites presented by candidate structures of Au(n)(+). Our findings are in agreement with the planar structures of the Au(n)(+) cluster cations with n < or = 7 that are suggested by ion mobility experiments [Gilb, S.; Weis, P.; Furche, F.; Ahlrichs, R.; Kappes, M. M. J. Chem. Phys. 2001, 116, 4094]. By inference we also establish the structure of the saturated Au(n)(CO)(m)(+) complexes. In certain cases we find evidence suggesting that successive adsorption of CO can distort the metal cluster framework. In addition, the vibrational spectra of the Au(n)(CO)(m)(+) complexes in both the CO stretching region and in the region of the Au-C stretch and the Au-C-O bend are measured using infrared photodepletion spectroscopy. The spectra further aid in the structure determination of Au(n)(+), provide information on the structure of the Au(n)(+)-CO complexes, and can be compared with spectra of CO adsorbates on deposited clusters or surfaces.

  2. a Study of Vibrational Mode Coupling in 2-FLUOROETHANOL and 1,2-DIFLUOROETHANE Using High-Resolution Infrared Spectroscopy.

    Science.gov (United States)

    Mork, Steven Wayne

    High resolution infrared spectroscopy was used to examine intramolecular vibrational interactions in 2 -fluoroethanol (2FE) and 1,2-difluoroethane (DFE). A high resolution infrared spectrophotometer capable of better than 10 MHz spectral resolution was designed and constructed. The excitation source consists of three lasers: an argon-ion pumped dye laser which pumps a color -center laser. The infrared beam from the color-center laser is used to excite sample molecules which are rotationally and vibrationally cooled in a supersonic molecular beam. Rovibrational excitation of the sample molecules is detected by monitoring the kinetic energy of the molecular beam with a bolometer. The high resolution infrared spectrum of 2FE was collected and analyzed over the 2977-2990 cm^ {-1}^ectral region. This region contains the asymmetric CH stretch on the fluorinated carbon. The spectrum revealed extensive perturbations in the rotational fine structure. Analysis of these perturbations has provided a quantitative measure of selective vibrational mode coupling between the C-H stretch and its many neighboring dark vibrational modes. Interestingly, excitation of the C-H stretch is known to induce a photoisomerization reaction between 2FE's Gg^' and Tt conformers. Implications of the role of mode coupling in the reaction mechanism are also addressed. Similarly, the high resolution infrared spectrum of DFE was collected and analyzed over the 2978-2996 cm ^{-1}^ectral region. This region contains the symmetric combination of asymmetric C-H stretches in DFE. Perturbations in the rotational fine structure indicate vibrational mode coupling to a single dark vibrational state. The dark state is split by approximately 19 cm^{-1} due to tunneling between two identical gauche conformers. The coupling mechanism is largely anharmonic with a minor component of B/C-plane Coriolis coupling. Effects of centrifugal distortion along the molecular A-axis are also observed. The coupled vibrational

  3. Accurate ab initio vibrational energies of methyl chloride

    International Nuclear Information System (INIS)

    Owens, Alec; Yurchenko, Sergei N.; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter

    2015-01-01

    Two new nine-dimensional potential energy surfaces (PESs) have been generated using high-level ab initio theory for the two main isotopologues of methyl chloride, CH 3 35 Cl and CH 3 37 Cl. The respective PESs, CBS-35  HL , and CBS-37  HL , are based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set (CBS) limit, and incorporate a range of higher-level (HL) additive energy corrections to account for core-valence electron correlation, higher-order coupled cluster terms, scalar relativistic effects, and diagonal Born-Oppenheimer corrections. Variational calculations of the vibrational energy levels were performed using the computer program TROVE, whose functionality has been extended to handle molecules of the form XY 3 Z. Fully converged energies were obtained by means of a complete vibrational basis set extrapolation. The CBS-35  HL and CBS-37  HL PESs reproduce the fundamental term values with root-mean-square errors of 0.75 and 1.00 cm −1 , respectively. An analysis of the combined effect of the HL corrections and CBS extrapolation on the vibrational wavenumbers indicates that both are needed to compute accurate theoretical results for methyl chloride. We believe that it would be extremely challenging to go beyond the accuracy currently achieved for CH 3 Cl without empirical refinement of the respective PESs

  4. A coupled-cluster study of photodetachment cross sections of closed-shell anions

    Energy Technology Data Exchange (ETDEWEB)

    Cukras, Janusz; Decleva, Piero; Coriani, Sonia, E-mail: coriani@units.it [Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, via L. Giorgieri 1, I-34127, Trieste (Italy)

    2014-11-07

    We investigate the performance of Stieltjes Imaging applied to Lanczos pseudo-spectra generated at the coupled cluster singles and doubles, coupled cluster singles and approximate iterative doubles and coupled cluster singles levels of theory in modeling the photodetachment cross sections of the closed shell anions H{sup −}, Li{sup −}, Na{sup −}, F{sup −}, Cl{sup −}, and OH{sup −}. The accurate description of double excitations is found to play a much more important role than in the case of photoionization of neutral species.

  5. Noise-induced synchronization, desynchronization, and clustering in globally coupled nonidentical oscillators

    KAUST Repository

    Lai, Yi Ming

    2013-07-09

    We study ensembles of globally coupled, nonidentical phase oscillators subject to correlated noise, and we identify several important factors that cause noise and coupling to synchronize or desynchronize a system. By introducing noise in various ways, we find an estimate for the onset of synchrony of a system in terms of the coupling strength, noise strength, and width of the frequency distribution of its natural oscillations. We also demonstrate that noise alone can be sufficient to synchronize nonidentical oscillators. However, this synchrony depends on the first Fourier mode of a phase-sensitivity function, through which we introduce common noise into the system. We show that higher Fourier modes can cause desynchronization due to clustering effects, and that this can reinforce clustering caused by different forms of coupling. Finally, we discuss the effects of noise on an ensemble in which antiferromagnetic coupling causes oscillators to form two clusters in the absence of noise. © 2013 American Physical Society.

  6. Fluid-structure coupling between a vibrating cylinder and a narrow annular flow

    International Nuclear Information System (INIS)

    Perotin, L.

    1994-01-01

    This paper presents an analytical investigation of the fluidelastic coupling between an axial annular flow and a flexible vibrating axisymmetrical structure. The model presented is suited to single-phase, incompressible, viscous fluids and to annular flows of variable cross-section, axially symmetrical when the structure is motionless.An experimental validation of this model is presented at the end of the paper: the results obtained with the numerical model are compared with experimental data for an oscillating cylinder free to vibrate under the effect of a variable-cross-section annular flow. ((orig.))

  7. Phase correlation and clustering of a nearest neighbour coupled oscillators system

    CERN Document Server

    Ei-Nashar, H F

    2002-01-01

    We investigated the phases in a system of nearest neighbour coupled oscillators before complete synchronization in frequency occurs. We found that when oscillators under the influence of coupling form a cluster of the same time-average frequency, their phases start to correlate. An order parameter, which measures this correlation, starts to grow at this stage until it reaches maximum. This means that a time-average phase locked state is reached between the oscillators inside the cluster of the same time- average frequency. At this strength the cluster attracts individual oscillators or a cluster to join in. We also observe that clustering in averaged frequencies orders the phases of the oscillators. This behavior is found at all the transition points studied.

  8. Phase correlation and clustering of a nearest neighbour coupled oscillators system

    International Nuclear Information System (INIS)

    EI-Nashar, Hassan F.

    2002-09-01

    We investigated the phases in a system of nearest neighbour coupled oscillators before complete synchronization in frequency occurs. We found that when oscillators under the influence of coupling form a cluster of the same time-average frequency, their phases start to correlate. An order parameter, which measures this correlation, starts to grow at this stage until it reaches maximum. This means that a time-average phase locked state is reached between the oscillators inside the cluster of the same time- average frequency. At this strength the cluster attracts individual oscillators or a cluster to join in. We also observe that clustering in averaged frequencies orders the phases of the oscillators. This behavior is found at all the transition points studied. (author)

  9. Coupled lateral-torsional-axial vibrations of a helical gear-rotor-bearing system

    Science.gov (United States)

    Li, Chao-Feng; Zhou, Shi-Hua; Liu, Jie; Wen, Bang-Chun

    2014-10-01

    Considering the axial and radial loads, a mathematical model of angular contact ball bearing is deduced with Hertz contact theory. With the coupling effects of lateral, torsional and axial vibrations taken into account, a lumped-parameter nonlinear dynamic model of helical gearrotor-bearing system (HGRBS) is established to obtain the transmission system dynamic response to the changes of different parameters. The vibration differential equations of the drive system are derived through the Lagrange equation, which considers the kinetic and potential energies, the dissipative function and the internal/external excitation. Based on the Runge-Kutta numerical method, the dynamics of the HGRBS is investigated, which describes vibration properties of HGRBS more comprehensively. The results show that the vibration amplitudes have obvious fluctuation, and the frequency multiplication and random frequency components become increasingly obvious with changing rotational speed and eccentricity at gear and bearing positions. Axial vibration of the HGRBS also has some fluctuations. The bearing has self-variable stiffness frequency, which should be avoided in engineering design. In addition, the bearing clearance needs little attention due to its slightly discernible effect on vibration response. It is suggested that a careful examination should be made in modelling the nonlinear dynamic behavior of a helical gear-rotor-bearing system.

  10. Photoionization cross section by Stieltjes imaging applied to coupled cluster Lanczos pseudo-spectra

    Science.gov (United States)

    Cukras, Janusz; Coriani, Sonia; Decleva, Piero; Christiansen, Ove; Norman, Patrick

    2013-09-01

    A recently implemented asymmetric Lanczos algorithm for computing (complex) linear response functions within the coupled cluster singles (CCS), coupled cluster singles and iterative approximate doubles (CC2), and coupled cluster singles and doubles (CCSD) is coupled to a Stieltjes imaging technique in order to describe the photoionization cross section of atoms and molecules, in the spirit of a similar procedure recently proposed by Averbukh and co-workers within the Algebraic Diagrammatic Construction approach. Pilot results are reported for the atoms He, Ne, and Ar and for the molecules H2, H2O, NH3, HF, CO, and CO2.

  11. Photoionization cross section by Stieltjes imaging applied to coupled cluster Lanczos pseudo-spectra

    International Nuclear Information System (INIS)

    Cukras, Janusz; Coriani, Sonia; Decleva, Piero; Christiansen, Ove; Norman, Patrick

    2013-01-01

    A recently implemented asymmetric Lanczos algorithm for computing (complex) linear response functions within the coupled cluster singles (CCS), coupled cluster singles and iterative approximate doubles (CC2), and coupled cluster singles and doubles (CCSD) is coupled to a Stieltjes imaging technique in order to describe the photoionization cross section of atoms and molecules, in the spirit of a similar procedure recently proposed by Averbukh and co-workers within the Algebraic Diagrammatic Construction approach. Pilot results are reported for the atoms He, Ne, and Ar and for the molecules H 2 , H 2 O, NH 3 , HF, CO, and CO 2

  12. Natural Frequncies of Coupled Blade-Bending and Shaft-Torsional Vibrations

    Directory of Open Access Journals (Sweden)

    B.O. Al-Bedoor

    2007-01-01

    Full Text Available In this study, the coupled shaft-torsional and blade-bending natural frequencies are investigated using a reduced order mathematical model. The system-coupled model is developed using the Lagrangian approach in conjunction with the assumed modes method to discretize the blade bending deflection. The model accounts for the blade stagger (setting angle, the system rotating speed and its induced stiffening effect. The coupled equations of motion are linearized based on the small deformation theory for the blade bending and shaft torsional deformation to enable calculation of the system natural frequencies for various combinations of system parameters. The obtained coupled eignvalue system is ready for use as a reference for comparison for larger size finite element simulations and for the use as a fast check on natural frequencies for the coupled blade bending and shaft torsional vibrations in the design and diagnostics processes. Some results on the predicted natural frequencies are graphically presented and discussed pertinent to the coupling controlling factors and their effects. In addition, the predicted coupled natural frequencies are validated using the Finite Element Commercial Package (Pro-Mechanica where good agreements are found.

  13. Photoionization cross section by Stieltjes imaging applied to coupled cluster Lanczos pseudo-spectra

    Energy Technology Data Exchange (ETDEWEB)

    Cukras, Janusz; Coriani, Sonia; Decleva, Piero [Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, via L. Giorgieri 1, I-34127 Trieste (Italy); Christiansen, Ove [Department of Chemistry, Aarhus University, DK-8000 Aarhus C (Denmark); Norman, Patrick [Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden)

    2013-09-07

    A recently implemented asymmetric Lanczos algorithm for computing (complex) linear response functions within the coupled cluster singles (CCS), coupled cluster singles and iterative approximate doubles (CC2), and coupled cluster singles and doubles (CCSD) is coupled to a Stieltjes imaging technique in order to describe the photoionization cross section of atoms and molecules, in the spirit of a similar procedure recently proposed by Averbukh and co-workers within the Algebraic Diagrammatic Construction approach. Pilot results are reported for the atoms He, Ne, and Ar and for the molecules H{sub 2}, H{sub 2}O, NH{sub 3}, HF, CO, and CO{sub 2}.

  14. Study on the coupled vibration of square cylinders in a liquid, 3

    International Nuclear Information System (INIS)

    Kasai, Hiroaki

    1984-01-01

    The through-liquid coupled vibration of a group of square bars with same structural particulars supported in a vessel filled with liquid is under the control by the gap width between the bars, the gap width between the vessel and the bars, the ratio of the density of the bars and the liquid, the viscosity of the liquid and so on. Also the number of the natural frequency and the mode of vibration of the group of bars is 2 x the number of bars. In order to forecast the behavior of heat exchangers, the in-core structures of nuclear reactors and others at the time of earthquakes, the relation among these influencing factors and the vibration characteristics of a group of bars is to be examined. In this study, the vibration response was theoretically examined in the case where the system of many bars arranged two-dimensionally was subjected to forced vibration was examined. First, the method of reducing the equations of fluid force and the equations of motion of bars by using the axisymmetry of vibration mode was considered. Next, the method of approximate calculation under the assumption that fluid force is averaged was proposed. The vibration characteristics of various bar group models were compared by using the exact model and the approximate model, and it was confirmed that this method of approximate calculation can be practically used. (Kako, I.)

  15. Piezoelectric Tailoring with Enhanced Electromechanical Coupling for Concurrent Vibration Control of Mistuned Periodic Structures

    National Research Council Canada - National Science Library

    Wang, Kon-Well

    2006-01-01

    The objective of this research is to advance the state of the art of vibration control of mistuned periodic structures utilizing the electromechanical coupling and damping characteristics of piezoelectric networking...

  16. A quasiparticle-based multi-reference coupled-cluster method.

    Science.gov (United States)

    Rolik, Zoltán; Kállay, Mihály

    2014-10-07

    The purpose of this paper is to introduce a quasiparticle-based multi-reference coupled-cluster (MRCC) approach. The quasiparticles are introduced via a unitary transformation which allows us to represent a complete active space reference function and other elements of an orthonormal multi-reference (MR) basis in a determinant-like form. The quasiparticle creation and annihilation operators satisfy the fermion anti-commutation relations. On the basis of these quasiparticles, a generalization of the normal-ordered operator products for the MR case can be introduced as an alternative to the approach of Mukherjee and Kutzelnigg [Recent Prog. Many-Body Theor. 4, 127 (1995); Mukherjee and Kutzelnigg, J. Chem. Phys. 107, 432 (1997)]. Based on the new normal ordering any quasiparticle-based theory can be formulated using the well-known diagram techniques. Beyond the general quasiparticle framework we also present a possible realization of the unitary transformation. The suggested transformation has an exponential form where the parameters, holding exclusively active indices, are defined in a form similar to the wave operator of the unitary coupled-cluster approach. The definition of our quasiparticle-based MRCC approach strictly follows the form of the single-reference coupled-cluster method and retains several of its beneficial properties. Test results for small systems are presented using a pilot implementation of the new approach and compared to those obtained by other MR methods.

  17. Accurate ab initio vibrational energies of methyl chloride

    Energy Technology Data Exchange (ETDEWEB)

    Owens, Alec, E-mail: owens@mpi-muelheim.mpg.de [Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr (Germany); Department of Physics and Astronomy, University College London, Gower Street, WC1E 6BT London (United Kingdom); Yurchenko, Sergei N.; Yachmenev, Andrey; Tennyson, Jonathan [Department of Physics and Astronomy, University College London, Gower Street, WC1E 6BT London (United Kingdom); Thiel, Walter [Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr (Germany)

    2015-06-28

    Two new nine-dimensional potential energy surfaces (PESs) have been generated using high-level ab initio theory for the two main isotopologues of methyl chloride, CH{sub 3}{sup 35}Cl and CH{sub 3}{sup 37}Cl. The respective PESs, CBS-35{sup  HL}, and CBS-37{sup  HL}, are based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set (CBS) limit, and incorporate a range of higher-level (HL) additive energy corrections to account for core-valence electron correlation, higher-order coupled cluster terms, scalar relativistic effects, and diagonal Born-Oppenheimer corrections. Variational calculations of the vibrational energy levels were performed using the computer program TROVE, whose functionality has been extended to handle molecules of the form XY {sub 3}Z. Fully converged energies were obtained by means of a complete vibrational basis set extrapolation. The CBS-35{sup  HL} and CBS-37{sup  HL} PESs reproduce the fundamental term values with root-mean-square errors of 0.75 and 1.00 cm{sup −1}, respectively. An analysis of the combined effect of the HL corrections and CBS extrapolation on the vibrational wavenumbers indicates that both are needed to compute accurate theoretical results for methyl chloride. We believe that it would be extremely challenging to go beyond the accuracy currently achieved for CH{sub 3}Cl without empirical refinement of the respective PESs.

  18. Vibrational transition moments of CH4 from first principles

    Science.gov (United States)

    Yurchenko, Sergei N.; Tennyson, Jonathan; Barber, Robert J.; Thiel, Walter

    2013-09-01

    New nine-dimensional (9D), ab initio electric dipole moment surfaces (DMSs) of methane in its ground electronic state are presented. The DMSs are computed using an explicitly correlated coupled cluster CCSD(T)-F12 method in conjunction with an F12-optimized correlation consistent basis set of the TZ-family. A symmetrized molecular bond representation is used to parameterise these 9D DMSs in terms of sixth-order polynomials. Vibrational transition moments as well as band intensities for a large number of IR-active vibrational bands of 12CH4 are computed by vibrationally averaging the ab initio dipole moment components. The vibrational wavefunctions required for these averages are computed variationally using the program TROVE and a new ‘spectroscopic’ 12CH4 potential energy surface. The new DMSs will be used to produce a hot line list for 12CH4.

  19. Nonlinear vibrations analysis of rotating drum-disk coupling structure

    Science.gov (United States)

    Chaofeng, Li; Boqing, Miao; Qiansheng, Tang; Chenyang, Xi; Bangchun, Wen

    2018-04-01

    A dynamic model of a coupled rotating drum-disk system with elastic support is developed in this paper. By considering the effects of centrifugal and Coriolis forces as well as rotation-induced hoop stress, the governing differential equation of the drum-disk is derived by Donnell's shell theory. The nonlinear amplitude-frequency characteristics of coupled structure are studied. The results indicate that the natural characteristics of the coupling structure are sensitive to the supporting stiffness of the disk, and the sensitive range is affected by rotating speeds. The circumferential wave numbers can affect the characteristics of the drum-disk structure. If the circumferential wave number n = 1 , the vibration response of the drum keeps a stable value under an unbalanced load of the disk, there is no coupling effect if n ≠ 1 . Under the excitation, the nonlinear hardening characteristics of the forward traveling wave are more evident than that of the backward traveling wave. Moreover, because of the coupling effect of the drum and the disk, the supporting stiffness of the disk has certain effect on the nonlinear characteristics of the forward and backward traveling waves. In addition, small length-radius and thickness-radius ratios have a significant effect on the nonlinear characteristics of the coupled structure, which means nonlinear shell theory should be adopted to design rotating drum's parameter for its specific structural parameters.

  20. Three-dimensional analytic probabilities of coupled vibrational-rotational-translational energy transfer for DSMC modeling of nonequilibrium flows

    International Nuclear Information System (INIS)

    Adamovich, Igor V.

    2014-01-01

    A three-dimensional, nonperturbative, semiclassical analytic model of vibrational energy transfer in collisions between a rotating diatomic molecule and an atom, and between two rotating diatomic molecules (Forced Harmonic Oscillator–Free Rotation model) has been extended to incorporate rotational relaxation and coupling between vibrational, translational, and rotational energy transfer. The model is based on analysis of semiclassical trajectories of rotating molecules interacting by a repulsive exponential atom-to-atom potential. The model predictions are compared with the results of three-dimensional close-coupled semiclassical trajectory calculations using the same potential energy surface. The comparison demonstrates good agreement between analytic and numerical probabilities of rotational and vibrational energy transfer processes, over a wide range of total collision energies, rotational energies, and impact parameter. The model predicts probabilities of single-quantum and multi-quantum vibrational-rotational transitions and is applicable up to very high collision energies and quantum numbers. Closed-form analytic expressions for these transition probabilities lend themselves to straightforward incorporation into DSMC nonequilibrium flow codes

  1. Vibration mixer

    Energy Technology Data Exchange (ETDEWEB)

    Alekhin, S.A.; Chernov, V.S.; Denisenko, V.V.; Gorodnyanskiy, I.F.; Prokopov, L.I.; Tikhonov, Yu.P.

    1983-01-01

    The vibration mixer is proposed which contains a housing, vibration drive with rod installed in the upper part of the mixing mechanism made in the form of a hollow shaft with blades. In order to improve intensity of mixing and dispersion of the mud, the shaft with the blades is arranged on the rod of the vibrator and is equipped with a cam coupling whose drive disc is attached to the vibration rod. The rod is made helical, while the drive disc of the cam coupling is attached to the helical surface of the rod. In addition, the vibration mixer is equipped with perforated discs installed on the ends of the rods.

  2. Communication: A Jastrow factor coupled cluster theory for weak and strong electron correlation

    International Nuclear Information System (INIS)

    Neuscamman, Eric

    2013-01-01

    We present a Jastrow-factor-inspired variant of coupled cluster theory that accurately describes both weak and strong electron correlation. Compatibility with quantum Monte Carlo allows for variational energy evaluations and an antisymmetric geminal power reference, two features not present in traditional coupled cluster that facilitate a nearly exact description of the strong electron correlations in minimal-basis N 2 bond breaking. In double-ζ treatments of the HF and H 2 O bond dissociations, where both weak and strong correlations are important, this polynomial cost method proves more accurate than either traditional coupled cluster or complete active space perturbation theory. These preliminary successes suggest a deep connection between the ways in which cluster operators and Jastrow factors encode correlation

  3. Application of Bibliographic Coupling versus Cited Titles Words in Patent Fuzzy Clustering

    Directory of Open Access Journals (Sweden)

    Anahita Kermani

    2013-03-01

    Full Text Available Attribute selection is one of the steps before patent clustering. Various attributes can be used for clustering. In this study, the effect of using citation and citation title words, respectively, in form of bibliographic coupling and citation title words sharing, were measured and compared with each other, as patent attributes. This study was done in an experimental method, on a collection of 717 US Patent cited in the patents belong to 977/774 subclass of US Patent Classification. Fuzzy C-means was used for patent clustering and extended BCubed precision and extended BCubed recall were used as evaluation measure. The results showed that the clustering produced by bibliographic coupling had better performance than clustering used citation title words and existence of cluster structure were in a wider range of exhaustivity than citation title words.

  4. Phase models and clustering in networks of oscillators with delayed coupling

    Science.gov (United States)

    Campbell, Sue Ann; Wang, Zhen

    2018-01-01

    We consider a general model for a network of oscillators with time delayed coupling where the coupling matrix is circulant. We use the theory of weakly coupled oscillators to reduce the system of delay differential equations to a phase model where the time delay enters as a phase shift. We use the phase model to determine model independent existence and stability results for symmetric cluster solutions. Our results extend previous work to systems with time delay and a more general coupling matrix. We show that the presence of the time delay can lead to the coexistence of multiple stable clustering solutions. We apply our analytical results to a network of Morris Lecar neurons and compare these results with numerical continuation and simulation studies.

  5. Influence of weak vibrational-electronic couplings on 2D electronic spectra and inter-site coherence in weakly coupled photosynthetic complexes

    Energy Technology Data Exchange (ETDEWEB)

    Monahan, Daniele M.; Whaley-Mayda, Lukas; Fleming, Graham R., E-mail: grfleming@lbl.gov [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Kavli Energy NanoSciences Institute at Berkeley, Berkeley, California 94720 (United States); Ishizaki, Akihito [Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585 (Japan)

    2015-08-14

    Coherence oscillations measured in two-dimensional (2D) electronic spectra of pigment-protein complexes may have electronic, vibrational, or mixed-character vibronic origins, which depend on the degree of electronic-vibrational mixing. Oscillations from intrapigment vibrations can obscure the inter-site coherence lifetime of interest in elucidating the mechanisms of energy transfer in photosynthetic light-harvesting. Huang-Rhys factors (S) for low-frequency vibrations in Chlorophyll and Bacteriochlorophyll are quite small (S ≤ 0.05), so it is often assumed that these vibrations influence neither 2D spectra nor inter-site coherence dynamics. In this work, we explore the influence of S within this range on the oscillatory signatures in simulated 2D spectra of a pigment heterodimer. To visualize the inter-site coherence dynamics underlying the 2D spectra, we introduce a formalism which we call the “site-probe response.” By comparing the calculated 2D spectra with the site-probe response, we show that an on-resonance vibration with Huang-Rhys factor as small as S = 0.005 and the most strongly coupled off-resonance vibrations (S = 0.05) give rise to long-lived, purely vibrational coherences at 77 K. We moreover calculate the correlation between optical pump interactions and subsequent entanglement between sites, as measured by the concurrence. At 77 K, greater long-lived inter-site coherence and entanglement appear with increasing S. This dependence all but vanishes at physiological temperature, as environmentally induced fluctuations destroy the vibronic mixing.

  6. Vibrational Fano resonances in the photodetachment of dipole-bound anions

    International Nuclear Information System (INIS)

    Edwards, Stephen T; Tully, John C; Johnson, Mark A

    2012-01-01

    A simple model for the photodetachment of dipole-bound anions is proposed where non-adiabatic coupling of vibrational states leads to a Fano resonance in the spectrum. It is found that the shape of the photodetachment spectrum depends significantly on the parameter representing molecular polarizability. The model is also applied to a Fano profile observed in the photodetachment of small water cluster anions.

  7. Time-dependent risks of cancer clustering among couples: a nationwide population-based cohort study in Taiwan.

    Science.gov (United States)

    Wang, Jong-Yi; Liang, Yia-Wen; Yeh, Chun-Chen; Liu, Chiu-Shong; Wang, Chen-Yu

    2018-02-21

    Spousal clustering of cancer warrants attention. Whether the common environment or high-age vulnerability determines cancer clustering is unclear. The risk of clustering in couples versus non-couples is undetermined. The time to cancer clustering after the first cancer diagnosis is yet to be reported. This study investigated cancer clustering over time among couples by using nationwide data. A cohort of 5643 married couples in the 2002-2013 Taiwan National Health Insurance Research Database was identified and randomly matched with 5643 non-couple pairs through dual propensity score matching. Factors associated with clustering (both spouses with tumours) were analysed by using the Cox proportional hazard model. Propensity-matched analysis revealed that the risk of clustering of all tumours among couples (13.70%) was significantly higher than that among non-couples (11.84%) (OR=1.182, 95% CI 1.058 to 1.321, P=0.0031). The median time to clustering of all tumours and of malignant tumours was 2.92 and 2.32 years, respectively. Risk characteristics associated with clustering included high age and comorbidity. Shared environmental factors among spouses might be linked to a high incidence of cancer clustering. Cancer incidence in one spouse may signal cancer vulnerability in the other spouse. Promoting family-oriented cancer care in vulnerable families and preventing shared lifestyle risk factors for cancer are suggested. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  8. Cluster synchronization in community network with hybrid coupling

    International Nuclear Information System (INIS)

    Yang, Lixin; Jiang, Jun; Liu, Xiaojun

    2016-01-01

    Highlights: • A community network model with hybrid coupling is proposed. • Control scheme is designed via combining adaptive external coupling strength and feedback control. • The influence of topology structure on synchronization of community network is discussed. - Abstract: A general model of community network with hybrid coupling is proposed in this paper. In the community network model with hybrid coupling, the inner connections are in the same type of coupling within the same community and in different types of coupling in different communities. The connections between different pair of communities are also nonidentical. Cluster synchronization of community network with hybrid coupling is investigated via adaptive couplings control scheme. Effective controllers are designed for constructing an effective control scheme and adjusting automatically the adaptive external coupling strength by taking external coupling strength as adaptive variables on a small fraction of network edges. Moreover, the impact of the topology on the synchronizability of community network is investigated. The numerical results reveal that the number of links between communities and the degree of the connector nodes have significant effects on the synchronization performance.

  9. Effects of phase and coupling between the vibrational modes on selective excitation in coherent anti-Stokes Raman scattering microscopy

    International Nuclear Information System (INIS)

    Patel, Vishesha; Malinovsky, Vladimir S.; Malinovskaya, Svetlana

    2010-01-01

    Coherent anti-Stokes Raman scattering (CARS) microscopy has been a major tool of investigation of biological structures as it contains the vibrational signature of molecules. A quantum control method based on chirped pulse adiabatic passage was recently proposed for selective excitation of a predetermined vibrational mode in CARS microscopy [Malinovskaya and Malinovsky, Opt. Lett. 32, 707 (2007)]. The method utilizes the chirp sign variation at the peak pulse amplitude and gives a robust adiabatic excitation of the desired vibrational mode. Using this method, we investigate the impact of coupling between vibrational modes in molecules on controllability of excitation of the CARS signal. We analyze two models of two coupled two-level systems (TLSs) having slightly different transitional frequencies. The first model, featuring degenerate ground states of the TLSs, gives robust adiabatic excitation and maximum coherence in the resonant TLS for positive value of the chirp. In the second model, implying nondegenerate ground states in the TLSs, a population distribution is observed in both TLSs, resulting in a lack of selectivity of excitation and low coherence. It is shown that the relative phase and coupling between the TLSs play an important role in optimizing coherence in the desired vibrational mode and suppressing unwanted transitions in CARS microscopy.

  10. Synchronization as Aggregation: Cluster Kinetics of Pulse-Coupled Oscillators.

    Science.gov (United States)

    O'Keeffe, Kevin P; Krapivsky, P L; Strogatz, Steven H

    2015-08-07

    We consider models of identical pulse-coupled oscillators with global interactions. Previous work showed that under certain conditions such systems always end up in sync, but did not quantify how small clusters of synchronized oscillators progressively coalesce into larger ones. Using tools from the study of aggregation phenomena, we obtain exact results for the time-dependent distribution of cluster sizes as the system evolves from disorder to synchrony.

  11. Investigating vibrational anharmonic couplings in cyanide-bridged transition metal mixed valence complexes using two-dimensional infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Slenkamp, Karla M.; Lynch, Michael S.; Van Kuiken, Benjamin E.; Brookes, Jennifer F.; Bannan, Caitlin C.; Daifuku, Stephanie L.; Khalil, Munira, E-mail: mkhalil@chem.washington.edu [Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195 (United States)

    2014-02-28

    Using polarization-selective two-dimensional infrared (2D IR) spectroscopy, we measure anharmonic couplings and angles between the transition dipole moments of the four cyanide stretching (ν{sub CN}) vibrations found in [(NH{sub 3}){sub 5}Ru{sup III}NCFe{sup II}(CN){sub 5}]{sup −} (FeRu) dissolved in D{sub 2}O and formamide and [(NC){sub 5}Fe{sup II}CNPt{sup IV}(NH{sub 3}){sub 4}NCFe{sup II}(CN){sub 5}]{sup 4−} (FePtFe) dissolved in D{sub 2}O. These cyanide-bridged transition metal complexes serve as model systems for studying the role of high frequency vibrational modes in ultrafast photoinduced charge transfer reactions. Here, we focus on the spectroscopy of the ν{sub CN} modes in the electronic ground state. The FTIR spectra of the ν{sub CN} modes of the bimetallic and trimetallic systems are strikingly different in terms of frequencies, amplitudes, and lineshapes. The experimental 2D IR spectra of FeRu and FePtFe and their fits reveal a set of weakly coupled anharmonic ν{sub CN} modes. The vibrational mode anharmonicities of the individual ν{sub CN} modes range from 14 to 28 cm{sup −1}. The mixed-mode anharmonicities range from 2 to 14 cm{sup −1}. In general, the bridging ν{sub CN} mode is most weakly coupled to the radial ν{sub CN} mode, which involves the terminal CN ligands. Measurement of the relative transition dipole moments of the four ν{sub CN} modes reveal that the FeRu molecule is almost linear in solution when dissolved in formamide, but it assumes a bent geometry when dissolved in D{sub 2}O. The ν{sub CN} modes are modelled as bilinearly coupled anharmonic oscillators with an average coupling constant of 6 cm{sup −1}. This study elucidates the role of the solvent in modulating the molecular geometry and the anharmonic vibrational couplings between the ν{sub CN} modes in cyanide-bridged transition metal mixed valence complexes.

  12. Coupled-cluster sum-frequency generation nonlinear susceptibilities of methyl (CH3) and methylene (CH2) groups.

    Science.gov (United States)

    Tetsassi Feugmo, Conrard Giresse; Liégeois, Vincent; Champagne, Benoît

    2017-11-15

    The first vibrational sum frequency generation (SFG) spectra based on molecular properties calculated at the coupled cluster singles and doubles (CCSD) level of approximation have been simulated for interfacial model alkyl chains, providing benchmark data for comparisons with approximate methods, including density functional theory (DFT). The approach proceeds in three steps. In the first two steps, the molecular spectral properties are determined: the vibrational normal modes and frequencies and then the derivatives of the dipole moment and of the polarizability with respect to the normal coordinates. These derivatives are evaluated with a numerical differentiation approach, of which the accuracy was monitored using Romberg's procedure. Then, in the last step, a three-layer model is employed to evaluate the macroscopic second-order nonlinear optical responses and thereby the simulated SFG spectra of the alkyl interface. Results emphasize the following facts: (i) the dipole and polarizability derivatives calculated at the DFT level with the B3LYP exchange-correlation functional can differ, with respect to CCSD, by as much as ±10 to 20% and ±20 to 50% for the CH 3 and CH 2 vibrations, respectively; (ii) these differences are enhanced when considering the SFG intensities as well as their variations as a function of the experimental configuration (ppp versus ssp) and as a function of the tilt and rotation angles, defining the orientation of the alkyl chain at the interface; (iii) these differences originate from both the vibrational normal coordinates and the Cartesian derivatives of the dipole moment and polarizability; (iv) freezing the successive fragments of the alkyl chain strongly modifies the SFG spectrum and enables highlighting the delocalization effects between the terminal CH 3 group and its neighboring CH 2 units; and finally (v) going from the free chain to the free methyl model, and further to C 3v constraints on leads to large variations of two ratios

  13. Merging symmetry projection methods with coupled cluster theory: Lessons from the Lipkin model Hamiltonian

    Energy Technology Data Exchange (ETDEWEB)

    Wahlen-Strothman, J. M. [Rice Univ., Houston, TX (United States); Henderson, T. H. [Rice Univ., Houston, TX (United States); Hermes, M. R. [Rice Univ., Houston, TX (United States); Degroote, M. [Rice Univ., Houston, TX (United States); Qiu, Y. [Rice Univ., Houston, TX (United States); Zhao, J. [Rice Univ., Houston, TX (United States); Dukelsky, J. [Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain). Inst. de Estructura de la Materia; Scuseria, G. E. [Rice Univ., Houston, TX (United States)

    2018-01-03

    Coupled cluster and symmetry projected Hartree-Fock are two central paradigms in electronic structure theory. However, they are very different. Single reference coupled cluster is highly successful for treating weakly correlated systems, but fails under strong correlation unless one sacrifices good quantum numbers and works with broken-symmetry wave functions, which is unphysical for finite systems. Symmetry projection is effective for the treatment of strong correlation at the mean-field level through multireference non-orthogonal configuration interaction wavefunctions, but unlike coupled cluster, it is neither size extensive nor ideal for treating dynamic correlation. We here examine different scenarios for merging these two dissimilar theories. We carry out this exercise over the integrable Lipkin model Hamiltonian, which despite its simplicity, encompasses non-trivial physics for degenerate systems and can be solved via diagonalization for a very large number of particles. We show how symmetry projection and coupled cluster doubles individually fail in different correlation limits, whereas models that merge these two theories are highly successful over the entire phase diagram. Despite the simplicity of the Lipkin Hamiltonian, the lessons learned in this work will be useful for building an ab initio symmetry projected coupled cluster theory that we expect to be accurate in the weakly and strongly correlated limits, as well as the recoupling regime.

  14. Surprising performance for vibrational frequencies of the distinguishable clusters with singles and doubles (DCSD) and MP2.5 approximations

    Science.gov (United States)

    Kesharwani, Manoj K.; Sylvetsky, Nitai; Martin, Jan M. L.

    2017-11-01

    We show that the DCSD (distinguishable clusters with all singles and doubles) correlation method permits the calculation of vibrational spectra at near-CCSD(T) quality but at no more than CCSD cost, and with comparatively inexpensive analytical gradients. For systems dominated by a single reference configuration, even MP2.5 is a viable alternative, at MP3 cost. MP2.5 performance for vibrational frequencies is comparable to double hybrids such as DSD-PBEP86-D3BJ, but without resorting to empirical parameters. DCSD is also quite suitable for computing zero-point vibrational energies in computational thermochemistry.

  15. The three-cluster structures in 7Li

    International Nuclear Information System (INIS)

    Beck, R.; Krivec, R.; Mihailovic, M.V.; Kernforschungszentrum Karlsruhe G.m.b.H.

    1981-01-01

    A cluster model for the description of light nuclei is investigated which includes the interplay of three-cluster structures with the two-cluster ones and allows molecule-like vibrations of clusters. It is applied to the nucleus 7 Li in order to study the influence of the trhee-cluster structures of the type ( 4 He- 2 H-n) on the low-lying states previously described by two-cluster structures ( 4 He- 3 H) and ( 6 Li-n). An effective central interaction is used in the calculation. The structure of the nucleus 7 Li is described by the two-cluster configuration ( 4 He- 3 H) and the three-cluster configurations ( 4 He- 2 H(Isub(d))-n), with Isub(d) = 0, 1, and the total spin I = 1/2, 3/2. In the wave function of three-cluster structure the pair of values L 1 = 0, L 2 = 1 only is included. The effective nuclear potential V2 of Volkov is used in the calculation. The energy of the ground state described by a single configuration of the two-cluster structure ( 4 He- 3 H) is lowered by 0.66 MeV when this configuration is coupled to two three-cluster configurations and the molecule-like vibration is allowed through solving the Hill-Wheeler equation. Both mechanism have approximately equal effects. The ground-state energy (-38.14 MeV) is 0.3 MeV lower than in the model which describes the 7 Li by a superposition of two-cluster structures ( 4 He- 3 H) and ( 6 Li-n). (orig./HSI)

  16. Folding-type coupling potentials in the context of the generalized rotation-vibration model

    Science.gov (United States)

    Chamon, L. C.; Morales Botero, D. F.

    2018-03-01

    The generalized rotation-vibration model was proposed in previous works to describe the structure of heavy nuclei. The model was successfully tested in the description of experimental results related to the electron-nucleus elastic and inelastic scattering. In the present work, we consider heavy-ion collisions and assume this model to calculate folding-type coupling potentials for inelastic states, through the corresponding transition densities. As an example, the method is applied to coupled-channel data analyses for the α + 70,72,74,76Ge systems.

  17. Comparison of Cluster C personality disorders in couples with ...

    African Journals Online (AJOL)

    Comparison of Cluster C personality disorders in couples with normal divorce. ... Also purposeful sampling was used to select individuals. ... that the personality disorder group C, there is no significant difference between men and women.

  18. Analytical Evaluation of the Nonlinear Vibration of Coupled Oscillator Systems

    DEFF Research Database (Denmark)

    Bayat, M.; Shahidi, M.; Barari, Amin

    2011-01-01

    approximations to the achieved nonlinear differential oscillation equations where the displacement of the two-mass system can be obtained directly from the linear second-order differential equation using the first order of the current approach. Compared with exact solutions, just one iteration leads us to high......We consider periodic solutions for nonlinear free vibration of conservative, coupled mass-spring systems with linear and nonlinear stiffnesses. Two practical cases of these systems are explained and introduced. An analytical technique called energy balance method (EBM) was applied to calculate...

  19. Chromophore-Dependent Intramolecular Exciton-Vibrational Coupling in the FMO Complex: Quantification and Importance for Exciton Dynamics.

    Science.gov (United States)

    Padula, Daniele; Lee, Myeong H; Claridge, Kirsten; Troisi, Alessandro

    2017-11-02

    In this paper, we adopt an approach suitable for monitoring the time evolution of the intramolecular contribution to the spectral density of a set of identical chromophores embedded in their respective environments. We apply the proposed method to the Fenna-Matthews-Olson (FMO) complex, with the objective to quantify the differences among site-dependent spectral densities and the impact of such differences on the exciton dynamics of the system. Our approach takes advantage of the vertical gradient approximation to reduce the computational demands of the normal modes analysis. We show that the region of the spectral density that is believed to strongly influence the exciton dynamics changes significantly in the timescale of tens of nanoseconds. We then studied the impact of the intramolecular vibrations on the exciton dynamics by considering a model of FMO in a vibronic basis and neglecting the interaction with the environment to isolate the role of the intramolecular exciton-vibration coupling. In agreement with the assumptions in the literature, we demonstrate that high frequency modes at energy much larger than the excitonic energy splitting have negligible influence on exciton dynamics despite the large exciton-vibration coupling. We also find that the impact of including the site-dependent spectral densities on exciton dynamics is not very significant, indicating that it may be acceptable to apply the same spectral density on all sites. However, care needs to be taken for the description of the exciton-vibrational coupling in the low frequency part of intramolecular modes because exciton dynamics is more susceptible to low frequency modes despite their small Huang-Rhys factors.

  20. Formation and vibrational structure of Si nano-clusters in ZnO matrix

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Serrano, J. [Universidad Autonoma del Estado de Hidalgo, Hidalgo (Mexico); Pal, U. [Universidad Autonoma de Puebla, Puebla (Mexico); Koshizaki, N.; Sasaki, T. [National Institute of Materials and Chemical Research, Ibaraki (Japan)

    2001-02-01

    We have studied the formation and vibrational structure of Si nano-clusters in ZnO matrix prepared by radio-frequency (r.f.) co-sputtering, and characterized by Transmission Electron Microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS) and Infrared (IR) spectroscopy techniques. The composite films of Si/ZnO were grown o quartz substrates by co-sputtering of Si and ZnO targets. TEM images show a homogeneous distribution of clusters in the matrix with average size varied from 3.7 nm to 34 nm depending on the temperature of annealing. IR absorption measurements revealed the bands correspond to the modes of vibrations of Si{sub 3} in its triangular geometrical structure. By analysing the IR absorption and XPS spectra we found that the nano-clusters consist of a Si{sub 3} core and a SiO{sub x} cap layer. With the increase of annealing temperature, the vibrational states of Si changed from the triplet {sup 3}B1(C2{sub v}) and {sup 3}A'{sub 2}(D{sub 3h}) states to its singlet ground state {sup 1}A{sub 1}(C2{sub v}) and the oxidation state of Si in SiO{sub x} increased. The evolution of the local atomic structure of the Si nano-clusters with the variation of Si content in the film and with the variation of the temperature of annealing are discussed. [Spanish] Se estudia la formacion y estructura vibracional de nano-cumulos de Si en matriz de ZnO preparados por la tecnica de radio-frecuencia (r.f.) co-sputtering, y caracterizados por Microscopia Electronica de Transmision (TEM), Espectroscopia Fotoelectronica de rayos X (XPS) y Espectroscopia de Infrarrojo (IR). Las peliculas compositas de Si/ZnO fueron crecidas sobre sustratos de cuarzo mediante el co-sputtering de blancos de Si y ZnO. Las imagenes de TEM mostraron una distribucion homogenea de cumulos en la matriz con un tamano promedio de 3.7 nm a 34 nm dependiendo de la temperatura de tratamiento. Las mediciones de IR relevaron las bandas correspondientes a los modos de vibracion de Si{sub 3} en su estructura

  1. Linking structure and vibrational mode coupling using high-resolution infrared spectroscopy: A comparison of gauche and trans 1-chloro-2-fluoroethane

    Science.gov (United States)

    Miller, C. Cameron; Stone, Stephen C.; Philips, Laura A.

    1995-01-01

    The high-resolution infrared spectrum of 1-chloro-2-fluoroethane in a molecular beam was collected over the 2975-2994 cm-1 spectral region. The spectral region of 2975-2981 cm-1 contains a symmetric C-H stretching vibrational band of the gauche conformer containing the 35Cl isotope. The spectral region of 2985-2994 cm-1 contains three vibrational bands of the trans conformer. Two of the three bands are assigned as an antisymmetric C-H stretch of each of the two different chlorine isotopes. The third band is assigned as a symmetric C-H stretch of the 35Cl isotope. The gauche conformer of 1-chloro-2-fluoroethane showed doublet patterns similar to those previously observed in 1,2-difluoroethane. The model for 1,2-difluoroethane is further refined in the present work. These refinements suggest that the coupling dark state in 1,2-difluoroethane is composed of 1 quantum C-H bend, 1 quantum C-C stretch, and 12 quanta of torsion. For 1-chloro-2-fluoroethane the dark state could not be identified due to a small data set. The trans conformer of 1-chloro-2-fluoroethane showed no evidence of mode coupling in the three vibrational bands. Including 2-fluoroethanol in this series of molecules, the extent of vibrational mode coupling did not correlate with the density of states available for coupling. Therefore, density of states alone is insufficient to explain the observed trend. A correlation was observed between the degree of intramolecular interaction and vibrational mode coupling.

  2. Study of Baffle Boundary and System Parameters on Liquid-Solid Coupling Vibration of Rectangular Liquid-Storage Structure

    Directory of Open Access Journals (Sweden)

    Wei Jing

    2016-01-01

    Full Text Available In order to study the vibration problem of liquid-solid coupling of rectangular liquid-storage structure with horizontal elastic baffle, ignoring the influence of surface gravity wave, two different velocity potential functions corresponding to the liquid above and below the elastic baffle are assumed; based on the theory of mathematical equation and energy method, the formulas of basic frequency of liquid-solid coupling vibration system are derived, the baffle joined to the tank wall with 3 kinds of boundary conditions, namely, four edges simply supported, two opposite edges clamped and two opposite edges simply supported, and four edges clamped; the influence rules of baffle length-width ratio, the ratio of baffle height to liquid level, baffle elastic modulus, baffle density, baffle thickness, and liquid density on the coupling vibration performance are studied. The results show that the frequency of the clamped boundary is minimum; the influences of baffle length-width ratio and relative height on the basic frequency are much greater than that of the other system parameters; the relation between baffle length-width ratio and the frequency is exponential, while baffle relative height has a parabola relation with the frequency; the larger the baffle length-width ratio, the closer the baffle to the liquid level; the coupling frequency will be reduced more obviously.

  3. Theoretical characterization of the F(2)O(3) molecule by coupled-cluster methods.

    Science.gov (United States)

    Huang, Ming-Ju; Watts, John D

    2010-09-23

    Coupled-cluster calculations with extended basis sets that include noniterative connected triple excitations (CCSD(T)) have been used to study the FOOOF isomer of F(2)O(3). Second-order Moller-Plessett perturbation theory (MP2) and density-functional theory (B3LYP functional) calculations have also been performed for comparison. Two local minima of similar energy, namely, conformers of C(2) and C(s) symmetry have been located. Structures, harmonic vibrational frequencies, and standard enthalpies and free energies of formation have been calculated. The calculated bond lengths of F(2)O(3) are more characteristic of those in F(2)O and a "normal" peroxide than the unusual bond lengths in F(2)O(2). Both conformers have equal F-O and O-O bond lengths, contrary to a recent suggestion of an unsymmetrical structure. The harmonic vibrational frequencies can aid possible identification of gaseous F(2)O(3). The calculated Δ(f)H° and Δ(f)G° are 110 and 173 kJ mol(-1), respectively. These values are based on extrapolation of CCSD(T) results with augmented triple- and quadruple-ζ basis sets and are expected to be within chemical accuracy (i.e., 1 kcal mol(-1) or 4 kJ mol(-1)). F(2)O(3) is calculated to be stable to decomposition to either FO + FOO or F(2) + O(3), but unstable to decomposition to its elements, to F(2)O(2) + (1)/(2)O(2), and to F(2)O + O(2).

  4. Correlation effects beyond coupled cluster singles and doubles approximation through Fock matrix dressing.

    Science.gov (United States)

    Maitra, Rahul; Nakajima, Takahito

    2017-11-28

    We present an accurate single reference coupled cluster theory in which the conventional Fock operator matrix is suitably dressed to simulate the effect of triple and higher excitations within a singles and doubles framework. The dressing thus invoked originates from a second-order perturbative approximation of a similarity transformed Hamiltonian and induces higher rank excitations through local renormalization of individual occupied and unoccupied orbital lines. Such a dressing is able to recover a significant amount of correlation effects beyond singles and doubles approximation, but only with an economic n 5 additional cost. Due to the inclusion of higher rank excitations via the Fock matrix dressing, this method is a natural improvement over conventional coupled cluster theory with singles and doubles approximation, and this method would be demonstrated via applications on some challenging systems. This highly promising scheme has a conceptually simple structure which is also easily generalizable to a multi-reference coupled cluster scheme for treating strong degeneracy. We shall demonstrate that this method is a natural lowest order perturbative approximation to the recently developed iterative n-body excitation inclusive coupled cluster singles and doubles scheme [R. Maitra et al., J. Chem. Phys. 147, 074103 (2017)].

  5. Communication: Time-dependent optimized coupled-cluster method for multielectron dynamics

    Science.gov (United States)

    Sato, Takeshi; Pathak, Himadri; Orimo, Yuki; Ishikawa, Kenichi L.

    2018-02-01

    Time-dependent coupled-cluster method with time-varying orbital functions, called time-dependent optimized coupled-cluster (TD-OCC) method, is formulated for multielectron dynamics in an intense laser field. We have successfully derived the equations of motion for CC amplitudes and orthonormal orbital functions based on the real action functional, and implemented the method including double excitations (TD-OCCD) and double and triple excitations (TD-OCCDT) within the optimized active orbitals. The present method is size extensive and gauge invariant, a polynomial cost-scaling alternative to the time-dependent multiconfiguration self-consistent-field method. The first application of the TD-OCC method of intense-laser driven correlated electron dynamics in Ar atom is reported.

  6. Quantum dynamics of small H2 and D2 clusters in the large cage of structure II clathrate hydrate: Energetics, occupancy, and vibrationally averaged cluster structures

    Science.gov (United States)

    Sebastianelli, Francesco; Xu, Minzhong; Bačić, Zlatko

    2008-12-01

    We report diffusion Monte Carlo (DMC) calculations of the quantum translation-rotation (T-R) dynamics of one to five para-H2 (p-H2) and ortho-D2 (o-D2) molecules inside the large hexakaidecahedral (51264) cage of the structure II clathrate hydrate, which was taken to be rigid. These calculations provide a quantitative description of the size evolution of the ground-state properties, energetics, and the vibrationally averaged geometries, of small (p-H2)n and (o-D2)n clusters, n=1-5, in nanoconfinement. The zero-point energy (ZPE) of the T-R motions rises steeply with the cluster size, reaching 74% of the potential well depth for the caged (p-H2)4. At low temperatures, the rapid increase of the cluster ZPE as a function of n is the main factor that limits the occupancy of the large cage to at most four H2 or D2 molecules, in agreement with experiments. Our DMC results concerning the vibrationally averaged spatial distribution of four D2 molecules, their mean distance from the cage center, the D2-D2 separation, and the specific orientation and localization of the tetrahedral (D2)4 cluster relative to the framework of the large cage, agree very well with the low-temperature neutron diffraction experiments involving the large cage with the quadruple D2 occupancy.

  7. Combining symmetry collective states with coupled-cluster theory: Lessons from the Agassi model Hamiltonian

    Science.gov (United States)

    Hermes, Matthew R.; Dukelsky, Jorge; Scuseria, Gustavo E.

    2017-06-01

    The failures of single-reference coupled-cluster theory for strongly correlated many-body systems is flagged at the mean-field level by the spontaneous breaking of one or more physical symmetries of the Hamiltonian. Restoring the symmetry of the mean-field determinant by projection reveals that coupled-cluster theory fails because it factorizes high-order excitation amplitudes incorrectly. However, symmetry-projected mean-field wave functions do not account sufficiently for dynamic (or weak) correlation. Here we pursue a merger of symmetry projection and coupled-cluster theory, following previous work along these lines that utilized the simple Lipkin model system as a test bed [J. Chem. Phys. 146, 054110 (2017), 10.1063/1.4974989]. We generalize the concept of a symmetry-projected mean-field wave function to the concept of a symmetry projected state, in which the factorization of high-order excitation amplitudes in terms of low-order ones is guided by symmetry projection and is not exponential, and combine them with coupled-cluster theory in order to model the ground state of the Agassi Hamiltonian. This model has two separate channels of correlation and two separate physical symmetries which are broken under strong correlation. We show how the combination of symmetry collective states and coupled-cluster theory is effective in obtaining correlation energies and order parameters of the Agassi model throughout its phase diagram.

  8. The Raman and vibronic activity of intermolecular vibrations in aromatic-containing complexes and clusters

    International Nuclear Information System (INIS)

    Maxton, P.M.; Schaeffer, M.W.; Ohline, S.M.; Kim, W.; Venturo, V.A.; Felker, P.M.

    1994-01-01

    Theoretical and experimental results pertaining to the excitation of intermolecular vibrations in the Raman and vibronic spectra of aromatic-containing, weakly bound complexes and clusters are reported. The theoretical analysis of intermolecular Raman activity is based on the assumption that the polarizability tensor of a weakly bound species is given by the sum of the polarizability tensors of its constituent monomers. The analysis shows that the van der Waals bending fundamentals in aromatic--rare gas complexes may be expected to be strongly Raman active. More generally, it predicts strong Raman activity for intermolecular vibrations that involve the libration or internal rotation of monomer moieties having appreciable permanent polarizability anisotropies. The vibronic activity of intermolecular vibrations in aromatic-rare gas complexes is analyzed under the assumption that every vibronic band gains its strength from an aromatic-localized transition. It is found that intermolecular vibrational excitations can accompany aromatic-localized vibronic excitations by the usual Franck--Condon mechanism or by a mechanism dependent on the librational amplitude of the aromatic moiety during the course of the pertinent intermolecular vibration. The latter mechanism can impart appreciable intensity to bands that are forbidden by rigid-molecule symmetry selection rules. The applicability of such rules is therefore called into question. Finally, experimental spectra of intermolecular transitions, obtained by mass-selective, ionization-detected stimulated Raman spectroscopies, are reported for benzene--X (X=Ar, --Ar 2 , N 2 , HCl, CO 2 , and --fluorene), fluorobenzene--Ar and --Kr, aniline--Ar, and fluorene--Ar and --Ar 2 . The results support the conclusions of the theoretical analyses and provide further evidence for the value of Raman methods in characterizing intermolecular vibrational level structures

  9. Evaluation of aerodynamic characteristics of a coupled fluid-structure system using generalized Bernoulli's principle: An application to vocal folds vibration.

    Science.gov (United States)

    Zhang, Lucy T; Yang, Jubiao

    2016-12-01

    In this work we explore the aerodynamics flow characteristics of a coupled fluid-structure interaction system using a generalized Bernoulli equation derived directly from the Cauchy momentum equations. Unlike the conventional Bernoulli equation where incompressible, inviscid, and steady flow conditions are assumed, this generalized Bernoulli equation includes the contributions from compressibility, viscous, and unsteadiness, which could be essential in defining aerodynamic characteristics. The application of the derived Bernoulli's principle is on a fully-coupled fluid-structure interaction simulation of the vocal folds vibration. The coupled system is simulated using the immersed finite element method where compressible Navier-Stokes equations are used to describe the air and an elastic pliable structure to describe the vocal fold. The vibration of the vocal fold works to open and close the glottal flow. The aerodynamics flow characteristics are evaluated using the derived Bernoulli's principles for a vibration cycle in a carefully partitioned control volume based on the moving structure. The results agree very well to experimental observations, which validate the strategy and its use in other types of flow characteristics that involve coupled fluid-structure interactions.

  10. Numerical simulation of flow-induced vibrations in tube bundles

    International Nuclear Information System (INIS)

    Elisabeth Longatte; Zaky Bendjeddou; Mhamed Souli

    2005-01-01

    Full text of publication follows: In many industrial components mechanical structures like rod cluster control assembly, fuel assembly and heat exchanger tube bundles are submitted to complex flows causing possible vibrations and damage. Fluid forces are usually split into two parts: structure motion independent forces and fluid-elastic forces coupled with tube motion and responsible for possible dynamic instability development leading to possible short term failures through high amplitude vibrations. Most classical fluid force identification methods rely on structure response experimental measurements associated with convenient data processes. Owing to recent improvements in Computational Fluid Dynamics (C.F.D.), numerical fluid force identification is now practicable in the presence of industrial configurations. The present paper is devoted to numerical simulation of flow-induced vibrations of tube bundles submitted to single-phase cross flows by using C.F.D. codes. Direct Numerical Simulation (D.N.S.), Arbitrary Lagrange Euler formulation (A.L.E.) and code coupling process are involved to predict fluid forces responsible for tube bundle vibrations in the presence of fluid structure and fluid-elastic coupling effects. In the presence of strong multi-physics coupling, simulation of flow-induced vibrations requires a fluid structure code coupling process. The methodology consists in solving in the same time thermohydraulics and mechanics problems by using an A.L.E. formulation for the fluid computation. The purpose is to take into account coupling between flow and structure motions in order to be able to capture coupling effects. From a numerical point of view, there are three steps in the computation: the fluid problem is solved on the computational domain; fluid forces acting on the moving tube are estimated; finally they are introduced in the structure solver providing the tube displacement that is used to actualize the fluid computational domain. Specific

  11. Vibrational spectroscopy of NO^+(H_2O)_n: Evidence for the intracluster reaction NO^+(H_2O)_n→H_3O^+(H_2O)_(n-2)(HONO) at n≥4

    OpenAIRE

    Choi, Jong-Ho; Kuwata, Keith T.; Haas, Bernd-Michael; Cao, Yibin; Johnson, Matthew S.; Okumura, Mitchio

    1994-01-01

    Infrared spectra of mass‐selected clusters NO^+(H_2O)_n for n=1 to 5 were recorded from 2700 to 3800 cm^(−1) by vibrational predissociation spectroscopy. Vibrational frequencies and intensities were also calculated for n=1 and 2 at the second‐order Møller–Plesset (MP2) level, to aid in the interpretation of the spectra, and at the singles and doubles coupled cluster (CCSD) level energies of n=1 isomers were computed at the MP2 geometries. The smaller clusters (n=1 to 3) were complexes of H_2O...

  12. Analytical Energy Gradients for Excited-State Coupled-Cluster Methods

    Science.gov (United States)

    Wladyslawski, Mark; Nooijen, Marcel

    The equation-of-motion coupled-cluster (EOM-CC) and similarity transformed equation-of-motion coupled-cluster (STEOM-CC) methods have been firmly established as accurate and routinely applicable extensions of single-reference coupled-cluster theory to describe electronically excited states. An overview of these methods is provided, with emphasis on the many-body similarity transform concept that is the key to a rationalization of their accuracy. The main topic of the paper is the derivation of analytical energy gradients for such non-variational electronic structure approaches, with an ultimate focus on obtaining their detailed algebraic working equations. A general theoretical framework using Lagrange's method of undetermined multipliers is presented, and the method is applied to formulate the EOM-CC and STEOM-CC gradients in abstract operator terms, following the previous work in [P.G. Szalay, Int. J. Quantum Chem. 55 (1995) 151] and [S.R. Gwaltney, R.J. Bartlett, M. Nooijen, J. Chem. Phys. 111 (1999) 58]. Moreover, the systematics of the Lagrange multiplier approach is suitable for automation by computer, enabling the derivation of the detailed derivative equations through a standardized and direct procedure. To this end, we have developed the SMART (Symbolic Manipulation and Regrouping of Tensors) package of automated symbolic algebra routines, written in the Mathematica programming language. The SMART toolkit provides the means to expand, differentiate, and simplify equations by manipulation of the detailed algebraic tensor expressions directly. The Lagrangian multiplier formulation establishes a uniform strategy to perform the automated derivation in a standardized manner: A Lagrange multiplier functional is constructed from the explicit algebraic equations that define the energy in the electronic method; the energy functional is then made fully variational with respect to all of its parameters, and the symbolic differentiations directly yield the explicit

  13. Coupled-Cluster and Configuration-Interaction Calculations for Heavy Nuclei

    International Nuclear Information System (INIS)

    Horoi, M.; Gour, J. R.; Wloch, M.; Lodriguito, M. D.; Brown, B. A.; Piecuch, P.

    2007-01-01

    We compare coupled-cluster (CC) and configuration-interaction (CI) results for 56 Ni obtained in the pf-shell basis, focusing on practical CC approximations that can be applied to systems with dozens or hundreds of correlated fermions. The weight of the reference state and the strength of correlation effects are controlled by the gap between the f 7/2 orbit and the f 5/2 , p 3/2 , p 1/2 orbits. Independent of the gap, the CC method with 1p-1h and 2p-2h clusters and a noniterative treatment of 3p-3h clusters is as accurate as the more demanding CI approach truncated at the 4p-4h level

  14. Near-Edge X-ray Absorption Fine Structure within Multilevel Coupled Cluster Theory.

    Science.gov (United States)

    Myhre, Rolf H; Coriani, Sonia; Koch, Henrik

    2016-06-14

    Core excited states are challenging to calculate, mainly because they are embedded in a manifold of high-energy valence-excited states. However, their locality makes their determination ideal for local correlation methods. In this paper, we demonstrate the performance of multilevel coupled cluster theory in computing core spectra both within the core-valence separated and the asymmetric Lanczos implementations of coupled cluster linear response theory. We also propose a visualization tool to analyze the excitations using the difference between the ground-state and excited-state electron densities.

  15. Three-body interactions in liquid and solid hydrogen: Evidence from vibrational spectroscopy

    Science.gov (United States)

    Hinde, Robert

    2008-03-01

    In the cryogenic low-density liquid and solid phases of H2 and D2, the H2 and D2 molecules retain good rotational and vibrational quantum numbers that characterize their internal degrees of freedom. High-resolution infrared and Raman spectroscopic experiments provide extremely sensitive probes of these degrees of freedom. We present here fully-first-principles calculations of the infrared and Raman spectra of liquid and solid H2 and D2, calculations that employ a high-quality six-dimensional coupled-cluster H2-H2 potential energy surface and quantum Monte Carlo treatments of the single-molecule translational degrees of freedom. The computed spectra agree very well with experimental results once we include three-body interactions among the molecules, interactions which we also compute using coupled-cluster quantum chemical methods. We predict the vibrational spectra of liquid and solid H2 at several temperatures and densities to provide a framework for interpreting recent experiments designed to search for superfluid behavior in small H2 droplets. We also present preliminary calculations of the spectra of mixed H2/D2 solids that show how positional disorder affects the spectral line shapes in these systems.

  16. Kinetics of highly vibrationally excited O2(X) molecules in inductively-coupled oxygen plasmas

    Science.gov (United States)

    Annušová, Adriana; Marinov, Daniil; Booth, Jean-Paul; Sirse, Nishant; Lino da Silva, Mário; Lopez, Bruno; Guerra, Vasco

    2018-04-01

    The high degree of vibrational excitation of O2 ground state molecules recently observed in inductively coupled plasma discharges is investigated experimentally in more detail and interpreted using a detailed self-consistent 0D global kinetic model for oxygen plasmas. Additional experimental results are presented and used to validate the model. The vibrational kinetics considers vibrational levels up to v = 41 and accounts for electron impact excitation and de-excitation (e-V), vibration-to-translation relaxation (V-T) in collisions with O2 molecules and O atoms, vibration-to-vibration energy exchanges (V-V), excitation of electronically excited states, dissociative electron attachment, and electron impact dissociation. Measurements were performed at pressures of 10–80 mTorr (1.33 and 10.67 Pa) and radio frequency (13.56 MHz) powers up to 500 W. The simulation results are compared with the absolute densities in each O2 vibrational level obtained by high sensitivity absorption spectroscopy measurements of the Schumann–Runge bands for O2(X, v = 4–18), O(3 P) atom density measurements by two-photon absorption laser induced fluorescence (TALIF) calibrated against Xe, and laser photodetachment measurements of the O‑ negative ions. The highly excited O2(X, v) distribution exhibits a shape similar to a Treanor-Gordiets distribution, but its origin lies in electron impact e-V collisions and not in V-V up-pumping, in contrast to what happens in all other molecular gases known to date. The relaxation of vibrational quanta is mainly due to V-T energy-transfer collisions with O atoms and to electron impact dissociation of vibrationally excited molecules, e+O2(X, v)→O(3P)+O(3P).

  17. Communication: Biological applications of coupled-cluster frozen-density embedding

    Science.gov (United States)

    Heuser, Johannes; Höfener, Sebastian

    2018-04-01

    We report the implementation of the Laplace-transform scaled opposite-spin (LT-SOS) resolution-of-the-identity second-order approximate coupled-cluster singles and doubles (RICC2) combined with frozen-density embedding for excitation energies and molecular properties. In the present work, we furthermore employ the Hartree-Fock density for the interaction energy leading to a simplified Lagrangian which is linear in the Lagrangian multipliers. This approximation has the key advantage of a decoupling of the coupled-cluster amplitude and multipliers, leading also to a significant reduction in computation time. Using the new simplified Lagrangian in combination with efficient wavefunction models such as RICC2 or LT-SOS-RICC2 and density-functional theory (DFT) for the environment molecules (CC2-in-DFT) enables the efficient study of biological applications such as the rhodopsin and visual cone pigments using ab initio methods as routine applications.

  18. Interference between vibration-to-translation and vibration-to-vibration energy transfer modes in diatomic molecules at high collision energies

    International Nuclear Information System (INIS)

    Shin, H.K.

    1983-01-01

    An explicit time dependent approach for simultaneous VT and VV energy transfer in diatom--diatom collisions is explored using the exponential form of ladder operators in the solution of the Schroedinger equation of motion. The collision of two hydrogen molecules is chosen to illustrate the extent of interference between VT and VV modes among various vibrational states. While vibrational energy transfer processes of nominally VT type can be treated with pure VT mode at low collision energies, the intermode coupling is found to be very important at collision energies of several hω. The occurrence of the coupling appears to be nearly universal in vibrational transitions at such energies. Exceptions to the coupling have been discussed

  19. Recent advances in coupled-cluster methods

    CERN Document Server

    Bartlett, Rodney J

    1997-01-01

    Today, coupled-cluster (CC) theory has emerged as the most accurate, widely applicable approach for the correlation problem in molecules. Furthermore, the correct scaling of the energy and wavefunction with size (i.e. extensivity) recommends it for studies of polymers and crystals as well as molecules. CC methods have also paid dividends for nuclei, and for certain strongly correlated systems of interest in field theory.In order for CC methods to have achieved this distinction, it has been necessary to formulate new, theoretical approaches for the treatment of a variety of essential quantities

  20. Vibrationally induced nuclear quadrupole coupling in the v3 = 1 state of 189OsO4

    International Nuclear Information System (INIS)

    Scappini, F.; Kreiner, W.A.; Frye, J.M.; Oka, T.

    1987-01-01

    Electric nuclear quadrupole hyperfine structure arising from a quadrupolar nucleus at the center of tetrahedral molecules, such as 189 OsO 4 , is symmetry forbidden. However, through vibration--rotation distortion a small nuclear quadrupole coupling is induced. The hyperfine structure due to the vibrationally induced eqQ has been measured for a number of P- and R-branch transitions in the ν 3 fundamental of 189 OsO 4 , by using inverse Lamb dip spectroscopy. Microwave modulation sidebands of CO 2 laser lines have been used as the tunable infrared radiation. From the analysis of the observed hyperfine structure patterns, the values of the scalar and tensor coupling constants have been determined to be chi/sup V//sub s/ = -4.103 +- 0.048 MHz and chi/sup V//sub t/ = -3.090 +- 0.059 MHz

  1. Surprising Performance for Vibrational Frequencies of the Distinguishable Clusters with Singles and Doubles (DCSD) and MP2.5 Approximations

    OpenAIRE

    Kesharwani, Manoj K.; Sylvetsky, Nitai; Martin, Jan M. L.

    2017-01-01

    We show that the DCSD (distinguishable clusters with all singles and doubles) correlation method permits the calculation of vibrational spectra at near-CCSD(T) quality but at no more than CCSD cost, and with comparatively inexpensive analytical gradients. For systems dominated by a single reference configuration, even MP2.5 is a viable alternative, at MP3 cost. MP2.5 performance for vibrational frequencies is comparable to double hybrids such as DSD-PBEP86-D3BJ, but without resorting to empir...

  2. SOPPA and CCSD vibrational corrections to NMR indirect spin-spin coupling constants of small hydrocarbons

    DEFF Research Database (Denmark)

    Faber, Rasmus; Sauer, Stephan P. A.

    2015-01-01

    We present zero-point vibrational corrections to the indirect nuclear spin-spin coupling constants in ethyne, ethene, cyclopropene and allene. The calculations have been carried out both at the level of the second order polarization propagator approximation (SOPPA) employing a new implementation ...

  3. Statistical analysis of activation and reaction energies with quasi-variational coupled-cluster theory

    Science.gov (United States)

    Black, Joshua A.; Knowles, Peter J.

    2018-06-01

    The performance of quasi-variational coupled-cluster (QV) theory applied to the calculation of activation and reaction energies has been investigated. A statistical analysis of results obtained for six different sets of reactions has been carried out, and the results have been compared to those from standard single-reference methods. In general, the QV methods lead to increased activation energies and larger absolute reaction energies compared to those obtained with traditional coupled-cluster theory.

  4. Diagnostics of a crack in a load coupling of a gas turbine using the machine model and the analysis of the shaft vibrations

    Science.gov (United States)

    Pennacchi, Paolo; Vania, Andrea

    2008-07-01

    The diagnostics of malfunctions that can cause catastrophic failures has to be made in early stage in the industrial environment. Often flexible couplings are employed in industrial rotating machines when gearboxes and heavy thermal gradients are present. The hot and cold alignment of these couplings can be very different. Severe misalignments can generate cracks in the stub shafts, which can propagate in operating condition. Owing to the flexural flexibility of the load coupling, the shaft vibrations may be not noticeably affected by some typical symptoms that usually point out the presence of a crack, like twice per revolution harmonics in the vibration spectrum. Anyhow, suitable diagnostic strategies can detect clear fault symptoms, while model-based methods can confirm the occurrence of the shaft bow induced by the progressive yielding of a load coupling due to a crack. This paper shows as a model-based diagnostic methodology would have allowed a crack in a load coupling of a gas turbine to be identified before a serious failure happened by means of the shaft vibration analysis under operating conditions and rated speed. Finally, the vibrations caused by the shaft bow due to the propagation of a crack in the stub shaft of the coupling have been simulated using suitable equivalent excitations, the magnitude and phase of which have been estimated by means of a model-based identification method.

  5. Design and experimental investigation of a magnetically coupled vibration energy harvester using two inverted piezoelectric cantilever beams for rotational motion

    International Nuclear Information System (INIS)

    Zou, Hong-Xiang; Zhang, Wen-ming; Li, Wen-Bo; Wei, Ke-Xiang; Gao, Qiu-Hua; Peng, Zhi-Ke; Meng, Guang

    2017-01-01

    Highlights: • A magnetically coupled two-degree-of-freedom harvester for rotation is proposed. • The electromechanical coupling model is developed and validated experimentally. • The harvester can generate high voltage at low rotating speeds. • The harvester can harvest vibration energy in multiple frequency bands. - Abstract: Energy can be harvested from rotational motion for powering wireless autonomous electronic devices. The paper presents a magnetically coupled two-degree-of-freedom vibration energy harvester for rotary motion applications. The design consists of two inverted piezoelectric cantilever beams whose free ends point to the rotating shaft. The centrifugal force of the inverted cantilever beam is beneficial to producing large amplitude in a low speed range. The electromechanical coupling dynamical model is developed by the energy method from Hamilton’s principle and validated experimentally. The experimental results indicate that the presented harvester is suitable for low speed rotation and can harvest vibration energy in multiple frequency bands. The first and second resonant behaviors of voltage can be obtained at 420 r/min and 550 r/min, and the average output powers are 564 μW and 535.3 μW, respectively.

  6. Validation of vibration-dissociation coupling models in hypersonic non-equilibrium separated flows

    Science.gov (United States)

    Shoev, G.; Oblapenko, G.; Kunova, O.; Mekhonoshina, M.; Kustova, E.

    2018-03-01

    The validation of recently developed models of vibration-dissociation coupling is discussed in application to numerical solutions of the Navier-Stokes equations in a two-temperature approximation for a binary N2/N flow. Vibrational-translational relaxation rates are computed using the Landau-Teller formula generalized for strongly non-equilibrium flows obtained in the framework of the Chapman-Enskog method. Dissociation rates are calculated using the modified Treanor-Marrone model taking into account the dependence of the model parameter on the vibrational state. The solutions are compared to those obtained using traditional Landau-Teller and Treanor-Marrone models, and it is shown that for high-enthalpy flows, the traditional and recently developed models can give significantly different results. The computed heat flux and pressure on the surface of a double cone are in a good agreement with experimental data available in the literature on low-enthalpy flow with strong thermal non-equilibrium. The computed heat flux on a double wedge qualitatively agrees with available data for high-enthalpy non-equilibrium flows. Different contributions to the heat flux calculated using rigorous kinetic theory methods are evaluated. Quantitative discrepancy of numerical and experimental data is discussed.

  7. On the Nonlinear Behavior of the Piezoelectric Coupling on Vibration-Based Energy Harvesters

    Directory of Open Access Journals (Sweden)

    Luciana L. Silva

    2015-01-01

    Full Text Available Vibration-based energy harvesting with piezoelectric elements has an increasing importance nowadays being related to numerous potential applications. A wide range of nonlinear effects is observed in energy harvesting devices and the analysis of the power generated suggests that they have considerable influence on the results. Linear constitutive models for piezoelectric materials can provide inconsistencies on the prediction of the power output of the energy harvester, mainly close to resonant conditions. This paper investigates the effect of the nonlinear behavior of the piezoelectric coupling. A one-degree of freedom mechanical system is coupled to an electrical circuit by a piezoelectric element and different coupling models are investigated. Experimental tests available in the literature are employed as a reference establishing the best matches of the models. Subsequently, numerical simulations are carried out showing different responses of the system indicating that nonlinear piezoelectric couplings can strongly modify the system dynamics.

  8. Femtosecond investigation of electronic and vibrational dynamics of metal nano-objects and local order in glasses

    International Nuclear Information System (INIS)

    Burgin, Julien

    2007-01-01

    In this Ph.D. work we have investigated the electronic and vibrational properties of metallic nano objects as a function of their size, shape and composition, and studied the vibrational modes in glasses, using femtosecond time-resolved spectroscopy. In mono-metallic copper clusters, acceleration of the electron-lattice energy exchanges for sizes smaller than 10 nm has been demonstrated, confirming previous results in gold and silver clusters. The small size regime, i.e., nanoparticles smaller than 2 nm, has been addressed. The results show the limit of the classical confined material approach. In bi-metallic clusters, electron-lattice interaction has been shown to reflect their composition for gold-silver materials, but exhibits a more complex behavior in the case of segregated nickel-silver particles. The impact of shape, structure and environment on the acoustic vibrations of metallic nano-objects has also been studied. Measurements performed in ensemble or pairs of prisms yielded evidence for local fluctuations of their coupling with the substrate. Nano-structuration effects have been demonstrated in nano-columns and segregated components. The vibrational modes associated to local order in glasses have been investigated using a high sensitivity impulsive stimulated Raman scattering technique. The 'defect modes' of normal and densified silica, associated to vibrations of ring structures, have been observed and characterized, yielding information on the evolution of the ring density. Performing similar measurements in germania, we have demonstrated the existence of a vibrational mode due to a similar ring structure and determined its characteristics [fr

  9. Event-based cluster synchronization of coupled genetic regulatory networks

    Science.gov (United States)

    Yue, Dandan; Guan, Zhi-Hong; Li, Tao; Liao, Rui-Quan; Liu, Feng; Lai, Qiang

    2017-09-01

    In this paper, the cluster synchronization of coupled genetic regulatory networks with a directed topology is studied by using the event-based strategy and pinning control. An event-triggered condition with a threshold consisting of the neighbors' discrete states at their own event time instants and a state-independent exponential decay function is proposed. The intra-cluster states information and extra-cluster states information are involved in the threshold in different ways. By using the Lyapunov function approach and the theories of matrices and inequalities, we establish the cluster synchronization criterion. It is shown that both the avoidance of continuous transmission of information and the exclusion of the Zeno behavior are ensured under the presented triggering condition. Explicit conditions on the parameters in the threshold are obtained for synchronization. The stability criterion of a single GRN is also given under the reduced triggering condition. Numerical examples are provided to validate the theoretical results.

  10. Vibration impact acoustic emission technique for identification and analysis of defects in carbon steel tubes: Part B Cluster analysis

    Energy Technology Data Exchange (ETDEWEB)

    Halim, Zakiah Abd [Universiti Teknikal Malaysia Melaka (Malaysia); Jamaludin, Nordin; Junaidi, Syarif [Faculty of Engineering and Built, Universiti Kebangsaan Malaysia, Bangi (Malaysia); Yahya, Syed Yusainee Syed [Universiti Teknologi MARA, Shah Alam (Malaysia)

    2015-04-15

    Current steel tubes inspection techniques are invasive, and the interpretation and evaluation of inspection results are manually done by skilled personnel. Part A of this work details the methodology involved in the newly developed non-invasive, non-destructive tube inspection technique based on the integration of vibration impact (VI) and acoustic emission (AE) systems known as the vibration impact acoustic emission (VIAE) technique. AE signals have been introduced into a series of ASTM A179 seamless steel tubes using the impact hammer. Specifically, a good steel tube as the reference tube and four steel tubes with through-hole artificial defect at different locations were used in this study. The AEs propagation was captured using a high frequency sensor of AE systems. The present study explores the cluster analysis approach based on autoregressive (AR) coefficients to automatically interpret the AE signals. The results from the cluster analysis were graphically illustrated using a dendrogram that demonstrated the arrangement of the natural clusters of AE signals. The AR algorithm appears to be the more effective method in classifying the AE signals into natural groups. This approach has successfully classified AE signals for quick and confident interpretation of defects in carbon steel tubes.

  11. Vibration impact acoustic emission technique for identification and analysis of defects in carbon steel tubes: Part B Cluster analysis

    International Nuclear Information System (INIS)

    Halim, Zakiah Abd; Jamaludin, Nordin; Junaidi, Syarif; Yahya, Syed Yusainee Syed

    2015-01-01

    Current steel tubes inspection techniques are invasive, and the interpretation and evaluation of inspection results are manually done by skilled personnel. Part A of this work details the methodology involved in the newly developed non-invasive, non-destructive tube inspection technique based on the integration of vibration impact (VI) and acoustic emission (AE) systems known as the vibration impact acoustic emission (VIAE) technique. AE signals have been introduced into a series of ASTM A179 seamless steel tubes using the impact hammer. Specifically, a good steel tube as the reference tube and four steel tubes with through-hole artificial defect at different locations were used in this study. The AEs propagation was captured using a high frequency sensor of AE systems. The present study explores the cluster analysis approach based on autoregressive (AR) coefficients to automatically interpret the AE signals. The results from the cluster analysis were graphically illustrated using a dendrogram that demonstrated the arrangement of the natural clusters of AE signals. The AR algorithm appears to be the more effective method in classifying the AE signals into natural groups. This approach has successfully classified AE signals for quick and confident interpretation of defects in carbon steel tubes.

  12. Understanding the Origins of Dipolar Couplings and Correlated Motion in the Vibrational Spectrum of Water.

    Science.gov (United States)

    Heyden, Matthias; Sun, Jian; Forbert, Harald; Mathias, Gerald; Havenith, Martina; Marx, Dominik

    2012-08-16

    The combination of vibrational spectroscopy and molecular dynamics simulations provides a powerful tool to obtain insights into the molecular details of water structure and dynamics in the bulk and in aqueous solutions. Applying newly developed approaches to analyze correlations of charge currents, molecular dipole fluctuations, and vibrational motion in real and k-space, we compare results from nonpolarizable water models, widely used in biomolecular modeling, to ab initio molecular dynamics. For the first time, we unfold the infrared response of bulk water into contributions from correlated fluctuations in the three-dimensional, anisotropic environment of an average water molecule, from the OH-stretching region down to the THz regime. Our findings show that the absence of electronic polarizability in the force field model not only results in differences in dipolar couplings and infrared absorption but also induces artifacts into the correlated vibrational motion between hydrogen-bonded water molecules, specifically at the intramolecular bending frequency. Consequently, vibrational motion is partially ill-described with implications for the accuracy of non-self-consistent, a posteriori methods to add polarizability.

  13. Cluster synchronization modes in an ensemble of coupled chaotic oscillators

    DEFF Research Database (Denmark)

    Belykh, Vladimir N.; Belykh, Igor V.; Mosekilde, Erik

    2001-01-01

    Considering systems of diffusively coupled identical chaotic oscillators, an effective method to determine the possible states of cluster synchronization and ensure their stability is presented. The method, which may find applications in communication engineering and other fields of science...

  14. High resolution spectroscopy of 1,2-difluoroethane in a molecular beam: A case study of vibrational mode-coupling

    Science.gov (United States)

    Mork, Steven W.; Miller, C. Cameron; Philips, Laura A.

    1992-09-01

    The high resolution infrared spectrum of 1,2-difluoroethane (DFE) in a molecular beam has been obtained over the 2978-2996 cm-1 spectral region. This region corresponds to the symmetric combination of asymmetric C-H stretches in DFE. Observed rotational fine structure indicates that this C-H stretch is undergoing vibrational mode coupling to a single dark mode. The dark mode is split by approximately 19 cm-1 due to tunneling between the two identical gauche conformers. The mechanism of the coupling is largely anharmonic with a minor component of B/C plane Coriolis coupling. Effects of centrifugal distortion along the molecular A-axis are also observed. Analysis of the fine structure identifies the dark state as being composed of C-C torsion, CCF bend, and CH2 rock. Coupling between the C-H stretches and the C-C torsion is of particular interest because DFE has been observed to undergo vibrationally induced isomerization from the gauche to trans conformer upon excitation of the C-H stretch.

  15. Forced vibration and wave propagation in mono-coupled periodic structures

    DEFF Research Database (Denmark)

    Ohlrich, Mogens

    1986-01-01

    This paper describes the wave propagation and vibration characteristics of mono-coupled structures which are of spatially periodic nature. The receptance approach to periodic structure theory is applied to study undamped periodic systems with composite structural elements; particular emphasis...... and a general `closed form' solution is found for the forced harmonic response at element junctions. This `junction-receptance' is used to determine-discrete junction mode shapes of a finite system. Finally, the forced response of a finite structure with an internal obstruction is derived as a natural extension...... of the determination of the junction-receptance. The influence of such a disorder is illustrated by a simple example...

  16. Coupled cluster evaluation of the frequency dispersion of the first and second hyperpolarizabilities of water, methanol, and dimethyl ether

    Energy Technology Data Exchange (ETDEWEB)

    Beaujean, Pierre; Champagne, Benoît, E-mail: benoit.champagne@unamur.be [Laboratoire de Chimie Théorique, Unité de Chimie Physique Théorique et Structurale, University of Namur, Rue de Bruxelles 61, B-5000 Namur (Belgium)

    2016-07-28

    The static and dynamic first (β{sub ‖}) and second (γ{sub ‖}) hyperpolarizabilities of water, methanol, and dimethyl ether have been evaluated within the response function approach using a hierarchy of coupled cluster levels of approximation and doubly augmented correlation consistent atomic basis sets. For the three compounds, the electronic β{sub ‖} and γ{sub ‖} values calculated at the CCSD and CC3 levels are in good agreement with gas phase electric field-induced second harmonic generation (EFISHG) measurements. In addition, for dimethyl ether, the frequency dispersion of both properties follows closely recent experimental values [V. W. Couling and D. P. Shelton, J. Chem. Phys. 143, 224307 (2015)] demonstrating the reliability of these methods and levels of approximation. This also suggests that the vibrational contributions to the EFISHG responses of these molecules are small.

  17. Two-dimensional vibrational-electronic spectroscopy

    Science.gov (United States)

    Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira

    2015-10-01

    Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (νCN) and either a ligand-to-metal charge transfer transition ([FeIII(CN)6]3- dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN)5FeIICNRuIII(NH3)5]- dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific νCN modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a wide range of complex molecular, material, and biological systems.

  18. Two-dimensional vibrational-electronic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira, E-mail: mkhalil@uw.edu [Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195 (United States)

    2015-10-21

    Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (ν{sub CN}) and either a ligand-to-metal charge transfer transition ([Fe{sup III}(CN){sub 6}]{sup 3−} dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN){sub 5}Fe{sup II}CNRu{sup III}(NH{sub 3}){sub 5}]{sup −} dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific ν{sub CN} modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a

  19. Triply coupled vibrational band gap in a periodic and nonsymmetrical axially loaded thin-walled Bernoulli-Euler beam including the warping effect

    International Nuclear Information System (INIS)

    Yu Dianlong; Fang Jianyu; Cai Li; Han Xiaoyun; Wen Jihong

    2009-01-01

    The propagation of triply coupled vibrations in a periodic, nonsymmetrical and axially loaded thin-walled Bernoulli-Euler beam composed of two kinds of materials is investigated with the transfer matrix method. The cross-section of the beam lacks symmetrical axes, and bending vibrations in the two perpendicular directions are coupled with torsional vibrations. Furthermore, the effect of warping stiffness is included. The band structures of the periodic beam, both including and excluding the warping effect, are obtained. The frequency response function of the finite periodic beam is simulated with the finite element method. These simulations show large vibration-based attenuation in the frequency range of the gap, as expected. By comparing the band structure of the beam with plane wave expansion method calculations that are available in the literature, one finds that including the warping effect leads to a more accurate simulation. The effects of warping stiffness and axial force on the band structure are also discussed.

  20. Evaluation of aerodynamic characteristics of a coupled fluid-structure system using generalized Bernoulli’s principle: An application to vocal folds vibration

    Science.gov (United States)

    Zhang, Lucy T.; Yang, Jubiao

    2017-01-01

    In this work we explore the aerodynamics flow characteristics of a coupled fluid-structure interaction system using a generalized Bernoulli equation derived directly from the Cauchy momentum equations. Unlike the conventional Bernoulli equation where incompressible, inviscid, and steady flow conditions are assumed, this generalized Bernoulli equation includes the contributions from compressibility, viscous, and unsteadiness, which could be essential in defining aerodynamic characteristics. The application of the derived Bernoulli’s principle is on a fully-coupled fluid-structure interaction simulation of the vocal folds vibration. The coupled system is simulated using the immersed finite element method where compressible Navier-Stokes equations are used to describe the air and an elastic pliable structure to describe the vocal fold. The vibration of the vocal fold works to open and close the glottal flow. The aerodynamics flow characteristics are evaluated using the derived Bernoulli’s principles for a vibration cycle in a carefully partitioned control volume based on the moving structure. The results agree very well to experimental observations, which validate the strategy and its use in other types of flow characteristics that involve coupled fluid-structure interactions. PMID:29527541

  1. Modeling the benefits of an artificial gravity countermeasure coupled with exercise and vibration

    Science.gov (United States)

    Goel, Rahul; Kaderka, Justin; Newman, Dava

    2012-01-01

    The current, system-specific countermeasures to space deconditioning have limited success with the musculoskeletal system in long duration missions. Artificial gravity (AG) that is produced by short radius centrifugation has been hypothesized as an effective countermeasure because it reintroduces an acceleration field in space; however, AG alone might not be enough stimuli to preserve the musculoskeletal system. A novel combination of AG coupled with one-legged squats on a vibrating platform may preserve muscle and bone in the lower limbs to a greater extent than the current exercise paradigm. The benefits of the proposed countermeasure have been analyzed through the development of a simulation platform. Ground reaction force data and motion data were collected using a motion capture system while performing one-legged and two-legged squats in 1-G. The motion was modeled in OpenSim, an open-source software, and inverse dynamics were applied in order to determine the muscle and reaction forces of lower limb joints. Vibration stimulus was modeled by adding a 20 Hz sinusoidal force of 0.5 body weight to the force plate data. From the numerical model in a 1-G acceleration field, muscle forces for quadriceps femoris, plantar flexors and glutei increased substantially for one-legged squats with vibration compared to one- or two-legged squats without vibration. Additionally, joint reaction forces for one-legged squats with vibration also increased significantly compared to two-legged squats with or without vibration. Higher muscle forces and joint reaction forces might help to stimulate muscle activation and bone modeling and thus might reduce musculoskeletal deconditioning. These results indicate that the proposed countermeasure might surpass the performance of the current space countermeasures and should be further studied as a method of mitigating musculoskeletal deconditioning.

  2. Dynamic Model and Vibration Power Flow of a Rigid-Flexible Coupling and Harmonic-Disturbance Exciting System for Flexible Robotic Manipulator with Elastic Joints

    Directory of Open Access Journals (Sweden)

    Yufei Liu

    2015-01-01

    Full Text Available This paper investigates the dynamic of a flexible robotic manipulator (FRM which consists of rigid driving base, flexible links, and flexible joints. With considering the motion fluctuations caused by the coupling effect, such as the motor parameters and mechanism inertias, as harmonic disturbances, the system investigated in this paper remains a parametrically excited system. An elastic restraint model of the FRM with elastic joints (FRMEJ is proposed, which considers the elastic properties of the connecting joints between the flexible arm and the driving base, as well as the harmonic disturbances aroused by the electromechanical coupling effect. As a consequence, the FRMEJ accordingly remains a flexible multibody system which conveys the effects of rigid-flexible couple and electromechanical couple. The Lagrangian function and Hamilton’s principle are used to establish the dynamic model of the FRMEJ. Based on the dynamic model proposed, the vibration power flow is introduced to show the vibration energy distribution. Numerical simulations are conducted to investigate the effect of the joint elasticities and the disturbance excitations, and the influences of the structure parameters and motion parameters on the vibration power flow are studied. The results obtained in this paper contribute to the structure design, motion optimization, and vibration control of FRMs.

  3. Lock threshold deterioration induced by antenna vibration and signal coupling effects in hypersonic vehicle carrier tracking system of Ka band

    Directory of Open Access Journals (Sweden)

    Congying ZHU

    2018-04-01

    Full Text Available The envelope of a hypersonic vehicle is affected by severe fluctuating pressure, which causes the airborne antenna to vibrate slightly. This vibration mixes with the transmitted signals and thus introduces additional multiplicative phase noise. Antenna vibration and signal coupling effects as well as their influence on the lock threshold of the hypersonic vehicle carrier tracking system of the Ka band are investigated in this study. A vibration model is initially established to obtain phase noise in consideration of the inherent relationship between vibration displacement and electromagnetic wavelength. An analytical model of the Phase-Locked Loop (PLL, which is widely used in carrier tracking systems, is established. The coupling effects on carrier tracking performance are investigated and quantitatively analyzed by imposing the multiplicative phase noise on the PLL model. Simulation results show that the phase noise presents a Gaussian distribution and is similar to vibration displacement variation. A large standard deviation in vibration displacement exerts a significant effect on the lock threshold. A critical standard deviation is observed in the PLL of Binary Phase Shift Keying (BPSK and Quadrature Phase Shift Keying (QPSK signals. The effect on QPSK signals is more severe than that on BPSK signals. The maximum tolerable standard deviations normalized by the wavelength of the carrier are 0.04 and 0.02 for BPSK and QPSK signals, respectively. With these critical standard deviations, lock thresholds are increased from −12 and −4 dB to 3 and −2 dB, respectively. Keywords: Antenna vibration, Carrier tracking performance, Lock threshold, Phase locked loop, Tracking Telemetry and Command (TT&C signals

  4. Influence of delayed excitation on vibrations of turbine blades couple

    Directory of Open Access Journals (Sweden)

    Půst L.

    2013-06-01

    Full Text Available In the presented paper, the computational model of the turbine blade couple is investigated with the main attention to the influence two harmonic excitation forces, having the same frequency and amplitude but with moderate delay in time. Time delay between the exciting harmonic forces depends on the revolutions of bladed disk, on the number of blades on a rotating disk and on the number of stator blades. The reduction of resonance vibrations realized by means of dry friction between the shroud blade-heads increases roughly proportional to the difference of stator and rotor blade-numbers and also to the magnitude of dry friction force. From the analysis of blade couple with direct contact it was proved that the increase of friction forces causes decrease of resonance peaks, but the influence of elastic micro-deformations in the contact surfaces (modeled e.g. by the modified Coulomb dry friction law is rather small. Analysis of a blade couple with a friction element shows that the lower number of stator blades has negligible influence on the amplitudes of both blades, but decreases amplitudes of the friction element oscillations. Similarly the increase of friction forces causes a decrease of resonance peaks, but an increase of friction element amplitudes.

  5. Development of New Open-Shell Perturbation and Coupled-Cluster Theories Based on Symmetric Spin Orbitals

    Science.gov (United States)

    Lee, Timothy J.; Arnold, James O. (Technical Monitor)

    1994-01-01

    A new spin orbital basis is employed in the development of efficient open-shell coupled-cluster and perturbation theories that are based on a restricted Hartree-Fock (RHF) reference function. The spin orbital basis differs from the standard one in the spin functions that are associated with the singly occupied spatial orbital. The occupied orbital (in the spin orbital basis) is assigned the delta(+) = 1/square root of 2(alpha+Beta) spin function while the unoccupied orbital is assigned the delta(-) = 1/square root of 2(alpha-Beta) spin function. The doubly occupied and unoccupied orbitals (in the reference function) are assigned the standard alpha and Beta spin functions. The coupled-cluster and perturbation theory wave functions based on this set of "symmetric spin orbitals" exhibit much more symmetry than those based on the standard spin orbital basis. This, together with interacting space arguments, leads to a dramatic reduction in the computational cost for both coupled-cluster and perturbation theory. Additionally, perturbation theory based on "symmetric spin orbitals" obeys Brillouin's theorem provided that spin and spatial excitations are both considered. Other properties of the coupled-cluster and perturbation theory wave functions and models will be discussed.

  6. An assumed mode method and finite element method investigation of the coupled vibration in a flexible-disk rotor system with lacing wires

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shui-Ting; Huang, Hong-Wu [Hunan University, Changsha (China); Chiu, Yi-Jui; Yu, Guo-Fei [Xiamen University of Technology, Xiamen (China); Yang, Chia-Hao [Taipei Chengshih University of Science and Technology, Taipei (China); Jian, Sheng-Rui [I-Shou University, Kaohsiung (China)

    2017-02-15

    The Assumed mode method (AMM) and Finite element method (FEM) were used. Their results were compared to investigate the coupled shaft-torsion, disk-transverse, and blade-bending vibrations in a flexible-disk rotor system. The blades were grouped with a spring. The flexible-disk rotor system was divided into three modes of coupled vibrations: Shaft-disk-blade, disk-blade, and blade-blade. Two new modes of coupled vibrations were introduced, namely, lacing wires-blade and lacing wires-disk-blade. The patterns of change of the natural frequencies and mode shapes of the system were discussed. The results showed the following: first, mode shapes and natural frequencies varied, and the results of the AMM and FEM differed; second, numerical calculation results showed three influencing factors on natural frequencies, namely, the lacing wire constant, the lacing wire location, and the flexible disk; lastly, the flexible disk could affect the stability of the system as reflected in the effect of the rotational speed.

  7. Relativistic coupled-cluster calculations of 20Ne, 40Ar, 84Kr, and 129Xe: Correlation energies and dipole polarizabilities

    International Nuclear Information System (INIS)

    Mani, B. K.; Angom, D.; Latha, K. V. P.

    2009-01-01

    We have carried out a detailed and systematic study of the correlation energies of inert gas atoms Ne, Ar, Kr, and Xe using relativistic many-body perturbation theory and relativistic coupled-cluster theory. In the relativistic coupled-cluster calculations, we implement perturbative triples and include these in the correlation energy calculations. We then calculate the dipole polarizability of the ground states using perturbed coupled-cluster theory.

  8. Pulse-coupled mixed-mode oscillators: Cluster states and extreme noise sensitivity

    Science.gov (United States)

    Karamchandani, Avinash J.; Graham, James N.; Riecke, Hermann

    2018-04-01

    Motivated by rhythms in the olfactory system of the brain, we investigate the synchronization of all-to-all pulse-coupled neuronal oscillators exhibiting various types of mixed-mode oscillations (MMOs) composed of sub-threshold oscillations (STOs) and action potentials ("spikes"). We focus particularly on the impact of the delay in the interaction. In the weak-coupling regime, we reduce the system to a Kuramoto-type equation with non-sinusoidal phase coupling and the associated Fokker-Planck equation. Its linear stability analysis identifies the appearance of various cluster states. Their type depends sensitively on the delay and the width of the pulses. Interestingly, long delays do not imply slow population rhythms, and the number of emerging clusters only loosely depends on the number of STOs. Direct simulations of the oscillator equations reveal that for quantitative agreement of the weak-coupling theory the coupling strength and the noise have to be extremely small. Even moderate noise leads to significant skipping of STO cycles, which can enhance the diffusion coefficient in the Fokker-Planck equation by two orders of magnitude. Introducing an effective diffusion coefficient extends the range of agreement significantly. Numerical simulations of the Fokker-Planck equation reveal bistability and solutions with oscillatory order parameters that result from nonlinear mode interactions. These are confirmed in simulations of the full spiking model.

  9. On the Coupling Time of the Heat-Bath Process for the Fortuin-Kasteleyn Random-Cluster Model

    Science.gov (United States)

    Collevecchio, Andrea; Elçi, Eren Metin; Garoni, Timothy M.; Weigel, Martin

    2018-01-01

    We consider the coupling from the past implementation of the random-cluster heat-bath process, and study its random running time, or coupling time. We focus on hypercubic lattices embedded on tori, in dimensions one to three, with cluster fugacity at least one. We make a number of conjectures regarding the asymptotic behaviour of the coupling time, motivated by rigorous results in one dimension and Monte Carlo simulations in dimensions two and three. Amongst our findings, we observe that, for generic parameter values, the distribution of the appropriately standardized coupling time converges to a Gumbel distribution, and that the standard deviation of the coupling time is asymptotic to an explicit universal constant multiple of the relaxation time. Perhaps surprisingly, we observe these results to hold both off criticality, where the coupling time closely mimics the coupon collector's problem, and also at the critical point, provided the cluster fugacity is below the value at which the transition becomes discontinuous. Finally, we consider analogous questions for the single-spin Ising heat-bath process.

  10. Application of a Light-Front Coupled Cluster Method

    International Nuclear Information System (INIS)

    Chabysheva, S.S.; Hiller, J.R.

    2012-01-01

    As a test of the new light-front coupled-cluster method in a gauge theory, we apply it to the nonperturbative construction of the dressed-electron state in QED, for an arbitrary covariant gauge, and compute the electron's anomalous magnetic moment. The construction illustrates the spectator and Fock-sector independence of vertex and self-energy contributions and indicates resolution of the difficulties with uncanceled divergences that plague methods based on Fock-space truncation. (author)

  11. Coupling analysis of energy conversion in multi-mode vibration structural control using a synchronized switch damping method

    International Nuclear Information System (INIS)

    Ji, Hongli; Qiu, Jinhao; Xia, Pinqi; Inman, Daniel

    2012-01-01

    Modal coupling is an important issue in the analysis and control of structural systems with multi-degrees of freedom (MDOF). In this paper, modal coupling induced by energy conversion in the structural control of an MDOF system using a synchronized switch damping method is investigated theoretically and validated numerically. In the analysis, it is supposed that the voltage on the piezoelectric actuator is switched at the displacement extrema of a given mode. Two types of coupling in energy conversion are considered. The first is whether the switching action based on one mode induces energy conversion of the other modes. The second is whether the vibration of one mode affects the energy conversion of the other modes. The results indicate that the modal coupling in energy conversion is very complicated. In most cases the switching action based on one mode does induce energy conversion of another mode, but the efficiency depends on the frequency ratio of the two modes. The vibration of one mode affects the energy conversion of another mode only when the frequency ratio of the two modes takes some special values. Discussions are also given on the potential application of the theoretical results in the design of an energy harvesting device. (paper)

  12. Nuclear-Mechanical Coupling: Small Amplitude Mechanical Vibrations and High Amplitude Power Oscillations in Nuclear Reactors

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2008-11-01

    The cores of nuclear reactors, including its structural parts and cooling fluids, are complex mechanical systems able to vibrate in a set of normal modes and frequencies, if suitable perturbed. The cyclic variations in the strain state of the core materials may produce changes in density. Changes in density modify the reactivity. Changes in reactivity modify thermal power. Modifications in thermal power produce variations in temperature fields. Variations in temperature produce variations in strain due to thermal-elastic effects. If the variation of the temperature field is fast enough and if the Doppler Effect and other stabilizing prompt effects in the fuel are weak enough, a fast oscillatory instability could be produced, coupled with mechanical vibrations of small amplitude. A recently constructed, simple mathematical model of nuclear reactor kinetics, that improves the one due to A.S. Thompson, is reviewed. It was constructed in order to study, in a first approximation, the stability of the reactor: a nonlinear nuclear-thermal oscillator (that corresponds to reactor point kinetics with thermal-elastic feedback and with frozen delayed neutron effects) is coupled nonlinearly with a linear mechanical-thermal oscillator (that corresponds to the first normal mode of mechanical vibrations excited by thermo-elastic effects). This mathematical model is studied here from the standpoint of mechanical vibrations. It is shown how, under certain conditions, a suitable mechanical perturbation could elicit fast and growing oscillatory instabilities in the reactor power. Applying the asymptotic method due to Krylov, Bogoliubov and Mitropolsky, analytical formulae that may be used in the calculation of the time varying amplitude and phase of the mechanical oscillations are given, as functions of the mechanical, thermal and nuclear parameters of the reactor. The consequences for the mechanical integrity of the reactor are assessed. Some conditions, mainly, but not exclusively

  13. Experimental observation of chimera and cluster states in a minimal globally coupled network

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Joseph D. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States); Department of Physics, University of Maryland, College Park, Maryland 20742 (United States); Bansal, Kanika [Department of Mathematics, University at Buffalo, SUNY Buffalo, New York 14260 (United States); US Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005 (United States); Murphy, Thomas E. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States); Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742 (United States); Roy, Rajarshi [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States); Department of Physics, University of Maryland, College Park, Maryland 20742 (United States); Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742 (United States)

    2016-09-15

    A “chimera state” is a dynamical pattern that occurs in a network of coupled identical oscillators when the symmetry of the oscillator population is broken into synchronous and asynchronous parts. We report the experimental observation of chimera and cluster states in a network of four globally coupled chaotic opto-electronic oscillators. This is the minimal network that can support chimera states, and our study provides new insight into the fundamental mechanisms underlying their formation. We use a unified approach to determine the stability of all the observed partially synchronous patterns, highlighting the close relationship between chimera and cluster states as belonging to the broader phenomenon of partial synchronization. Our approach is general in terms of network size and connectivity. We also find that chimera states often appear in regions of multistability between global, cluster, and desynchronized states.

  14. Role of a Water Network around the Mn4CaO5 Cluster in Photosynthetic Water Oxidation: A Fourier Transform Infrared Spectroscopy and Quantum Mechanics/Molecular Mechanics Calculation Study.

    Science.gov (United States)

    Nakamura, Shin; Ota, Kai; Shibuya, Yuichi; Noguchi, Takumi

    2016-01-26

    Photosynthetic water oxidation takes place at the Mn4CaO5 cluster in photosystem II. Around the Mn4CaO5 cluster, a hydrogen bond network is formed by several water molecules, including four water ligands. To clarify the role of this water network in the mechanism of water oxidation, we investigated the effects of the removal of Ca(2+) and substitution with metal ions on the vibrations of water molecules coupled to the Mn4CaO5 cluster by means of Fourier transform infrared (FTIR) difference spectroscopy and quantum mechanics/molecular mechanics (QM/MM) calculations. The OH stretching vibrations of nine water molecules forming a network between D1-D61 and YZ were calculated using the QM/MM method. On the the calculated normal modes, a broad positive feature at 3200-2500 cm(-1) in an S2-minus-S1 FTIR spectrum was attributed to the vibrations of strongly hydrogen-bonded OH bonds of water involving the vibrations of water ligands to a Mn ion and the in-phase coupled vibration of a water network connected to YZ, while bands in the 3700-3500 cm(-1) region were assigned to the coupled vibrations of weakly hydrogen-bonded OH bonds of water. All the water bands were lost upon Ca(2+) depletion and Ba(2+) substitution, which inhibit the S2 → S3 transition, indicating that a solid water network was broken by these treatments. By contrast, Sr(2+) substitution slightly altered the water bands around 3600 cm(-1), reflecting minor modification in water interactions, consistent with the retention of water oxidation activity with a decreased efficiency. These results suggest that the water network around the Mn4CaO5 cluster plays an essential role in the water oxidation mechanism particularly in a concerted process of proton transfer and water insertion during the S2 → S3 transition.

  15. Hydrodynamical simulations of coupled and uncoupled quintessence models - II. Galaxy clusters

    Science.gov (United States)

    Carlesi, Edoardo; Knebe, Alexander; Lewis, Geraint F.; Yepes, Gustavo

    2014-04-01

    We study the z = 0 properties of clusters (and large groups) of galaxies within the context of interacting and non-interacting quintessence cosmological models, using a series of adiabatic SPH simulations. Initially, we examine the average properties of groups and clusters, quantifying their differences in ΛCold Dark Matter (ΛCDM), uncoupled Dark Energy (uDE) and coupled Dark Energy (cDE) cosmologies. In particular, we focus upon radial profiles of the gas density, temperature and pressure, and we also investigate how the standard hydrodynamic equilibrium hypothesis holds in quintessence cosmologies. While we are able to confirm previous results about the distribution of baryons, we also find that the main discrepancy (with differences up to 20 per cent) can be seen in cluster pressure profiles. We then switch attention to individual structures, mapping each halo in quintessence cosmology to its ΛCDM counterpart. We are able to identify a series of small correlations between the coupling in the dark sector and halo spin, triaxiality and virialization ratio. When looking at spin and virialization of dark matter haloes, we find a weak (5 per cent) but systematic deviation in fifth force scenarios from ΛCDM.

  16. Dynamic interaction of monowheel inclined vehicle-vibration platform coupled system with quadratic and cubic nonlinearities

    Science.gov (United States)

    Zhou, Shihua; Song, Guiqiu; Sun, Maojun; Ren, Zhaohui; Wen, Bangchun

    2018-01-01

    In order to analyze the nonlinear dynamics and stability of a novel design for the monowheel inclined vehicle-vibration platform coupled system (MIV-VPCS) with intermediate nonlinearity support subjected to a harmonic excitation, a multi-degree of freedom lumped parameter dynamic model taking into account the dynamic interaction of the MIV-VPCS with quadratic and cubic nonlinearities is presented. The dynamical equations of the coupled system are derived by applying the displacement relationship, interaction force relationship at the contact position and Lagrange's equation, which are further discretized into a set of nonlinear ordinary differential equations with coupled terms by Galerkin's truncation. Based on the mathematical model, the coupled multi-body nonlinear dynamics of the vibration system is investigated by numerical method, and the parameters influences of excitation amplitude, mass ratio and inclined angle on the dynamic characteristics are precisely analyzed and discussed by bifurcation diagram, Largest Lyapunov exponent and 3-D frequency spectrum. Depending on different ranges of system parameters, the results show that the different motions and jump discontinuity appear, and the coupled system enters into chaotic behavior through different routes (period-doubling bifurcation, inverse period-doubling bifurcation, saddle-node bifurcation and Hopf bifurcation), which are strongly attributed to the dynamic interaction of the MIV-VPCS. The decreasing excitation amplitude and inclined angle could reduce the higher order bifurcations, and effectively control the complicated nonlinear dynamic behaviors under the perturbation of low rotational speed. The first bifurcation and chaotic motion occur at lower value of inclined angle, and the chaotic behavior lasts for larger intervals with higher rotational speed. The investigation results could provide a better understanding of the nonlinear dynamic behaviors for the dynamic interaction of the MIV-VPCS.

  17. Vibration control in smart coupled beams subjected to pulse excitations

    Science.gov (United States)

    Pisarski, Dominik; Bajer, Czesław I.; Dyniewicz, Bartłomiej; Bajkowski, Jacek M.

    2016-10-01

    In this paper, a control method to stabilize the vibration of adjacent structures is presented. The control is realized by changes of the stiffness parameters of the structure's couplers. A pulse excitation applied to the coupled adjacent beams is imposed as the kinematic excitation. For such a representation, the designed control law provides the best rate of energy dissipation. By means of a stability analysis, the performance in different structural settings is studied. The efficiency of the proposed strategy is examined via numerical simulations. In terms of the assumed energy metric, the controlled structure outperforms its passively damped equivalent by over 50 percent. The functionality of the proposed control strategy should attract the attention of practising engineers who seek solutions to upgrade existing damping systems.

  18. Explicitly-correlated ring-coupled-cluster-doubles theory: Including exchange for computations on closed-shell systems

    Energy Technology Data Exchange (ETDEWEB)

    Hehn, Anna-Sophia; Holzer, Christof; Klopper, Wim, E-mail: klopper@kit.edu

    2016-11-10

    Highlights: • Ring-coupled-cluster-doubles approach now implemented with exchange terms. • Ring-coupled-cluster-doubles approach now implemented with F12 functions. • Szabo–Ostlund scheme (SO2) implemented for use in SAPT. • Fast convergence to the limit of a complete basis. • Implementation in the TURBOMOLE program system. - Abstract: Random-phase-approximation (RPA) methods have proven to be powerful tools in electronic-structure theory, being non-empirical, computationally efficient and broadly applicable to a variety of molecular systems including small-gap systems, transition-metal compounds and dispersion-dominated complexes. Applications are however hindered due to the slow basis-set convergence of the electron-correlation energy with the one-electron basis. As a remedy, we present approximate explicitly-correlated RPA approaches based on the ring-coupled-cluster-doubles formulation including exchange contributions. Test calculations demonstrate that the basis-set convergence of correlation energies is drastically accelerated through the explicitly-correlated approach, reaching 99% of the basis-set limit with triple-zeta basis sets. When implemented in close analogy to early work by Szabo and Ostlund [36], the new explicitly-correlated ring-coupled-cluster-doubles approach including exchange has the perspective to become a valuable tool in the framework of symmetry-adapted perturbation theory (SAPT) for the computation of dispersion energies of molecular complexes of weakly interacting closed-shell systems.

  19. Analytical Kinematics and Coupled Vibrations Analysis of Mechanical System Operated by Solar Array Drive Assembly

    Science.gov (United States)

    Sattar, M.; Wei, C.; Jalali, A.; Sattar, R.

    2017-07-01

    To address the impact of solar array (SA) anomalies and vibrations on performance of precision space-based operations, it is important to complete its accurate jitter analysis. This work provides mathematical modelling scheme to approximate kinematics and coupled micro disturbance dynamics of rigid load supported and operated by solar array drive assembly (SADA). SADA employed in analysis provides a step wave excitation torque to activate the system. Analytical investigations into kinematics is accomplished by using generalized linear and Euler angle coordinates, applying multi-body dynamics concepts and transformations principles. Theoretical model is extended, to develop equations of motion (EoM), through energy method (Lagrange equation). The main emphasis is to research coupled frequency response by determining energies dissipated and observing dynamic behaviour of internal vibratory systems of SADA. The disturbance model captures discrete active harmonics of SADA, natural modes and vibration amplifications caused by interactions between active harmonics and structural modes of mechanical assembly. The proposed methodology can help to predict true micro disturbance nature of SADA operating rigid load. Moreover, performance outputs may be compared against actual mission requirements to assess precise spacecraft controller design to meet next space generation stringent accuracy goals.

  20. Vibration-Induced Errors in MEMS Tuning Fork Gyroscopes with Imbalance.

    Science.gov (United States)

    Fang, Xiang; Dong, Linxi; Zhao, Wen-Sheng; Yan, Haixia; Teh, Kwok Siong; Wang, Gaofeng

    2018-05-29

    This paper discusses the vibration-induced error in non-ideal MEMS tuning fork gyroscopes (TFGs). Ideal TFGs which are thought to be immune to vibrations do not exist, and imbalance between two gyros of TFGs is an inevitable phenomenon. Three types of fabrication imperfections (i.e., stiffness imbalance, mass imbalance, and damping imbalance) are studied, considering different imbalance radios. We focus on the coupling types of two gyros of TFGs in both drive and sense directions, and the vibration sensitivities of four TFG designs with imbalance are simulated and compared. It is found that non-ideal TFGs with two gyros coupled both in drive and sense directions (type CC TFGs) are the most insensitive to vibrations with frequencies close to the TFG operating frequencies. However, sense-axis vibrations with in-phase resonant frequencies of a coupled gyros system result in severe error outputs to TFGs with two gyros coupled in the sense direction, which is mainly attributed to the sense capacitance nonlinearity. With increasing stiffness coupled ratio of the coupled gyros system, the sensitivity to vibrations with operating frequencies is cut down, yet sensitivity to vibrations with in-phase frequencies is amplified.

  1. A Coupled User Clustering Algorithm Based on Mixed Data for Web-Based Learning Systems

    Directory of Open Access Journals (Sweden)

    Ke Niu

    2015-01-01

    Full Text Available In traditional Web-based learning systems, due to insufficient learning behaviors analysis and personalized study guides, a few user clustering algorithms are introduced. While analyzing the behaviors with these algorithms, researchers generally focus on continuous data but easily neglect discrete data, each of which is generated from online learning actions. Moreover, there are implicit coupled interactions among the data but are frequently ignored in the introduced algorithms. Therefore, a mass of significant information which can positively affect clustering accuracy is neglected. To solve the above issues, we proposed a coupled user clustering algorithm for Wed-based learning systems by taking into account both discrete and continuous data, as well as intracoupled and intercoupled interactions of the data. The experiment result in this paper demonstrates the outperformance of the proposed algorithm.

  2. Synchronization of Two Non-Identical Coupled Exciters in a Non-Resonant Vibrating System of Linear Motion. Part II: Numeric Analysis

    Directory of Open Access Journals (Sweden)

    Chunyu Zhao

    2009-01-01

    Full Text Available The paper focuses on the quantitative analysis of the coupling dynamic characteristics of two non-identical exciters in a non-resonant vibrating system. The load torque of each motor consists of three items, including the torque of sine effect of phase angles, that of coupling sine effect and that of coupling cosine effect. The torque of frequency capture results from the torque of coupling cosine effect, which is equal to the product of the coupling kinetic energy, the coefficient of coupling cosine effect, and the sine of phase difference of two exciters. The motions of the system excited by two exciters in the same direction make phase difference close to π and that in opposite directions makes phase difference close to 0. Numerical results show that synchronous operation is stable when the dimensionless relative moments of inertia of two exciters are greater than zero and four times of their product is greater than the square of their coefficient of coupling cosine effect. The stability of the synchronous operation is only dependent on the structural parameters of the system, such as the mass ratios of two exciters to the vibrating system, and the ratio of the distance between an exciter and the centroid of the system to the equivalent radius of the system about its centroid.

  3. Fourth-order perturbative extension of the single-double excitation coupled-cluster method

    International Nuclear Information System (INIS)

    Derevianko, Andrei; Emmons, Erik D.

    2002-01-01

    Fourth-order many-body corrections to matrix elements for atoms with one valence electron are derived. The obtained diagrams are classified using coupled-cluster-inspired separation into contributions from n-particle excitations from the lowest-order wave function. The complete set of fourth-order diagrams involves only connected single, double, and triple excitations and disconnected quadruple excitations. Approximately half of the fourth-order diagrams are not accounted for by the popular coupled-cluster method truncated at single and double excitations (CCSD). Explicit formulas are tabulated for the entire set of fourth-order diagrams missed by the CCSD method and its linearized version, i.e., contributions from connected triple and disconnected quadruple excitations. A partial summation scheme of the derived fourth-order contributions to all orders of perturbation theory is proposed

  4. Molecular vibration-activity relationship in the agonism of adenosine receptors.

    Science.gov (United States)

    Chee, Hyun Keun; Oh, S June

    2013-12-01

    The molecular vibration-activity relationship in the receptor-ligand interaction of adenosine receptors was investigated by structure similarity, molecular vibration, and hierarchical clustering in a dataset of 46 ligands of adenosine receptors. The resulting dendrogram was compared with those of another kind of fingerprint or descriptor. The dendrogram result produced by corralled intensity of molecular vibrational frequency outperformed four other analyses in the current study of adenosine receptor agonism and antagonism. The tree that was produced by clustering analysis of molecular vibration patterns showed its potential for the functional classification of adenosine receptor ligands.

  5. Bridging quantum chemistry and nuclear structure theory: Coupled-cluster calculations for closed- and open-shell nuclei

    International Nuclear Information System (INIS)

    Piecuch, Piotr; Wloch, Marta; Gour, Jeffrey R.; Dean, David J.; Papenbrock, Thomas; Hjorth-Jensen, Morten

    2005-01-01

    We review basic elements of the single-reference coupled-cluster theory and discuss large scale ab initio calculations of ground and excited states of 15O, 16O, and 17O using coupled-cluster methods and algorithms developed in quantum chemistry. By using realistic two-body interactions and the renormalized form of the Hamiltonian obtained with a no-core G-matrix approach, we obtain the converged results for 16O and promising preliminary results for 15O and 17O at the level of two-body interactions. The calculated properties other than energies include matter density, charge radius, and charge form factor. The relatively low costs of coupled-cluster calculations, which are characterized by the low-order polynomial scaling with the system size, enable us to probe large model spaces with up to 7 or 8 major oscillator shells, for which non-truncated shell-model calculations for nuclei with A = 15 17 active particles are presently not possible. We argue that the use of coupled-cluster methods and computer algorithms developed by quantum chemists to calculate properties of nuclei is an important step toward the development of accurate and affordable many-body theories that cross the boundaries of various physical sciences

  6. Nonequilibrium dynamics of polariton entanglement in a cluster of coupled traps

    Energy Technology Data Exchange (ETDEWEB)

    Quiroga, L [Departamento de Fisica, Universidad de Los Andes, A.A.4976, Bogota D.C. (Colombia); Tejedor, C, E-mail: lquiroga@uniandes.edu.c [Departamento de Fisica Teorica de la Materia Condensada, Universidad Autonoma de Madrid, Cantoblanco, E-28049, Madrid (Spain)

    2009-05-01

    We study in detail the generation and relaxation of quantum coherences (entanglement) in a system of coupled polariton traps. By exploiting a Lie algebraic based super-operator technique we provide an analytical exact solution for the Markovian dissipative dynamics (Master equation) of such system which is valid for arbitrary cluster size, polariton-polariton interaction strength, temperature and initial state. Based on the exact solution of the Master equation at T = OK, we discuss how dissipation affects the quantum entanglement dynamics of coupled polariton systems.

  7. Modeling and experimental verification of doubly nonlinear magnet-coupled piezoelectric energy harvesting from ambient vibration

    International Nuclear Information System (INIS)

    Zhou, Shengxi; Cao, Junyi; Wang, Wei; Liu, Shengsheng; Lin, Jing

    2015-01-01

    This paper presents a nonlinear doubly magnet-coupled energy harvesting system (DMEHS) which could exhibit co-bistable and monostable dynamic characteristics. Its various characteristic responses induced by the magnetic force can be conveniently obtained using the adjustable horizontal distance between two coupled harvesters in the DMEHS. In the case of appropriate relative positions, the DMEHS appears in a co-bistable structure which is different from the traditional bistable structure. Additionally, both the inclination angle of endmost magnets and the displacement perpendicular to the vibration direction are taken into account to calculate the nonlinear magnetic force in the nonlinear electromechanical equations. The numerical investigations show good agreement with experimental results with respect to the output voltage response. Each harvester without magnetic coupling is tested independently to compare with the DMEHS. Both numerical and experimental results also demonstrate the frequency bandwidth and performance enhancements by changing the horizontal distance between the two coupled harvesters. (paper)

  8. High-accuracy coupled cluster calculations of atomic properties

    Energy Technology Data Exchange (ETDEWEB)

    Borschevsky, A. [School of Chemistry, Tel Aviv University, 69978 Tel Aviv, Israel and Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study, Massey University Auckland, Private Bag 102904, 0745 Auckland (New Zealand); Yakobi, H.; Eliav, E.; Kaldor, U. [School of Chemistry, Tel Aviv University, 69978 Tel Aviv (Israel)

    2015-01-22

    The four-component Fock-space coupled cluster and intermediate Hamiltonian methods are implemented to evaluate atomic properties. The latter include the spectra of nobelium and lawrencium (elements 102 and 103) in the range 20000-30000 cm{sup −1}, the polarizabilities of elements 112-114 and 118, required for estimating their adsorption enthalpies on surfaces used to separate them in accelerators, and the nuclear quadrupole moments of some heavy atoms. The calculations on superheavy elements are supported by the very good agreement with experiment obtained for the lighter homologues.

  9. High-accuracy coupled cluster calculations of atomic properties

    International Nuclear Information System (INIS)

    Borschevsky, A.; Yakobi, H.; Eliav, E.; Kaldor, U.

    2015-01-01

    The four-component Fock-space coupled cluster and intermediate Hamiltonian methods are implemented to evaluate atomic properties. The latter include the spectra of nobelium and lawrencium (elements 102 and 103) in the range 20000-30000 cm −1 , the polarizabilities of elements 112-114 and 118, required for estimating their adsorption enthalpies on surfaces used to separate them in accelerators, and the nuclear quadrupole moments of some heavy atoms. The calculations on superheavy elements are supported by the very good agreement with experiment obtained for the lighter homologues

  10. Toward enabling large-scale open-shell equation-of-motion coupled cluster calculations: triplet states of β-carotene

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Hanshi; Bhaskaran-Nair, Kiran; Apra, Edoardo; Govind, Niranjan; Kowalski, Karol

    2014-10-02

    In this paper we discuss the application of novel parallel implementation of the coupled cluster (CC) and equation-of-motion coupled cluster methods (EOMCC) in calculations of excitation energies of triplet states in beta-carotene. Calculated excitation energies are compared with experimental data, where available. We also provide a detailed description of the new parallel algorithms for iterative CC and EOMCC models involving single and doubles excitations.

  11. On the mechanism of high-temperature superconductivity in hydrogen sulfide at 200 GPa: Transition into superconducting anti-adiabatic state in coupling to H-vibrations

    Directory of Open Access Journals (Sweden)

    Pavol Baňacký

    Full Text Available It has been shown that the adiabatic electronic structure of the superconducting phase of sulfur hydride at 200 GPa is unstable toward the vibration motion of H-atoms. A theoretical study indicates that in coupling to H-vibrations, the system undergoes a transition from adiabatic into a stabilized anti-adiabatic multi-gap superconducting state at a temperature that can reach 203 K. Keywords: Superconductivity of sulfur hydride, Electron–phonon coupling in superconductors, Anti-adiabatic theory of superconductivity

  12. Molecular Vibration-Activity Relationship in the Agonism of Adenosine Receptors

    Directory of Open Access Journals (Sweden)

    Hyun Keun Chee

    2013-12-01

    Full Text Available The molecular vibration-activity relationship in the receptor-ligand interaction of adenosine receptors was investigated by structure similarity, molecular vibration, and hierarchical clustering in a dataset of 46 ligands of adenosine receptors. The resulting dendrogram was compared with those of another kind of fingerprint or descriptor. The dendrogram result produced by corralled intensity of molecular vibrational frequency outperformed four other analyses in the current study of adenosine receptor agonism and antagonism. The tree that was produced by clustering analysis of molecular vibration patterns showed its potential for the functional classification of adenosine receptor ligands.

  13. Applying the Coupled-Cluster Ansatz to Solids and Surfaces in the Thermodynamic Limit

    Science.gov (United States)

    Gruber, Thomas; Liao, Ke; Tsatsoulis, Theodoros; Hummel, Felix; Grüneis, Andreas

    2018-04-01

    Modern electronic structure theories can predict and simulate a wealth of phenomena in surface science and solid-state physics. In order to allow for a direct comparison with experiment, such ab initio predictions have to be made in the thermodynamic limit, substantially increasing the computational cost of many-electron wave-function theories. Here, we present a method that achieves thermodynamic limit results for solids and surfaces using the "gold standard" coupled cluster ansatz of quantum chemistry with unprecedented efficiency. We study the energy difference between carbon diamond and graphite crystals, adsorption energies of water on h -BN, as well as the cohesive energy of the Ne solid, demonstrating the increased efficiency and accuracy of coupled cluster theory for solids and surfaces.

  14. Numerical simulation of an elementary Vortex-Induced-Vibration problem by using fully-coupled fluid solid system computation

    Directory of Open Access Journals (Sweden)

    M Pomarède

    2016-09-01

    Full Text Available Numerical simulation of Vortex-Induced-Vibrations (VIV of a rigid circular elastically-mounted cylinder submitted to a fluid cross-flow has been extensively studied over the past decades, both experimentally and numerically, because of its theoretical and practical interest for understanding Flow-Induced-Vibrations (FIV problems. In this context, the present article aims to expose a numerical study based on fully-coupled fluid-solid computations compared to previously published work [34], [36]. The computational procedure relies on a partitioned method ensuring the coupling between fluid and structure solvers. The fluid solver involves a moving mesh formulation for simulation of the fluid structure interface motion. Energy exchanges between fluid and solid models are ensured through convenient numerical schemes. The present study is devoted to a low Reynolds number configuration. Cylinder motion magnitude, hydrodynamic forces, oscillation frequency and fluid vortex shedding modes are investigated and the “lock-in” phenomenon is reproduced numerically. These numerical results are proposed for code validation purposes before investigating larger industrial applications such as configurations involving tube arrays under cross-flows [4].

  15. Four-cluster chimera state in non-locally coupled phase oscillator systems with an external potential

    International Nuclear Information System (INIS)

    Zhu Yun; Zheng Zhi-Gang; Yang Jun-Zhong

    2013-01-01

    Dynamics of a one-dimensional array of non-locally coupled Kuramoto phase oscillators with an external potential is studied. A four-cluster chimera state is observed for the moderate strength of the external potential. Different from the clustered chimera states studied before, the instantaneous frequencies of the oscillators in a synchronized cluster are different in the presence of the external potential. As the strength of the external potential increases, a bifurcation from the two-cluster chimera state to the four-cluster chimera states can be found. These phenomena are well predicted analytically with the help of the Ott—Antonsen ansatz. (general)

  16. Generalized vibrating potential model for collective excitations in spherical, deformed and superdeformed systems: (1) atomic nuclei, (2) metal clusters

    International Nuclear Information System (INIS)

    Nesterenko, V.O.; Kleinig, W.

    1995-01-01

    The self-consistent vibrating potential model (VPM) is extended for description of Eλ collective excitations in atomic nuclei and metal clusters with practically any kind of static deformation. The model is convenient for a qualitative analysis and provides the RPA accuracy of numerical calculations. The VPM is applied to study Eλ giant resonances in spherical metal clusters and deformed and superdeformed nuclei. It is shown that the deformation splitting of superdeformed nuclei results in a very complicated (''jungle-like'') structure of the resonances, which makes the experimental observation of E2 and E3 giant resonances in superdeformed nuclei quite problematic. Calculations of E1 giant resonance in spherical sodium clusters Na 8 , Na 20 and Na 40 are presented, as a test of the VPM in this field. The results are in qualitative agreement with the experimental data. (orig.)

  17. On the mechanical vibrator-earth contact geometry and its dynamics

    NARCIS (Netherlands)

    Noorlandt, R.P.; Drijkoningen, G.G.

    2016-01-01

    The geometry of the contact between a vibrator and the earth underneath influences the dynamics of the vibrator. Although a vibrator might appear to be well-coupled with the earth on a macroscale, perfect coupling certainly does not occur on the microscale. With the aid of contact mechanical

  18. Coupled-cluster treatment of molecular strong-field ionization

    Science.gov (United States)

    Jagau, Thomas-C.

    2018-05-01

    Ionization rates and Stark shifts of H2, CO, O2, H2O, and CH4 in static electric fields have been computed with coupled-cluster methods in a basis set of atom-centered Gaussian functions with a complex-scaled exponent. Consideration of electron correlation is found to be of great importance even for a qualitatively correct description of the dependence of ionization rates and Stark shifts on the strength and orientation of the external field. The analysis of the second moments of the molecular charge distribution suggests a simple criterion for distinguishing tunnel and barrier suppression ionization in polyatomic molecules.

  19. Balancing Vibrations at Harmonic Frequencies by Injecting Harmonic Balancing Signals into the Armature of a Linear Motor/Alternator Coupled to a Stirling Machine

    Science.gov (United States)

    Holliday, Ezekiel S. (Inventor)

    2014-01-01

    Vibrations at harmonic frequencies are reduced by injecting harmonic balancing signals into the armature of a linear motor/alternator coupled to a Stirling machine. The vibrations are sensed to provide a signal representing the mechanical vibrations. A harmonic balancing signal is generated for selected harmonics of the operating frequency by processing the sensed vibration signal with adaptive filter algorithms of adaptive filters for each harmonic. Reference inputs for each harmonic are applied to the adaptive filter algorithms at the frequency of the selected harmonic. The harmonic balancing signals for all of the harmonics are summed with a principal control signal. The harmonic balancing signals modify the principal electrical drive voltage and drive the motor/alternator with a drive voltage component in opposition to the vibration at each harmonic.

  20. Tensor-decomposed vibrational coupled-cluster theory

    DEFF Research Database (Denmark)

    Madsen, Niels Kristian; Godtliebsen, Ian Heide; Christiansen, Ove

    of different non-linear equation solvers ranging from simple, diagonal quasi-Newton schemes to a full Newton-Raphson method and we find that the conjugate residual with optimal trial vectors (CROP) algorithm has the shortest time-to-solution as well as a small memory requirement. The computational bottelneck...... of any VCC calculation is the calculation of the error vector from a set of trial amplitudes. For high-order VCC methods this shows steep polynomial scaling w.r.t. the size of the moleule and the number of one-mode basis functions. Both the computational cost and the memory requirements of the VCC solver...... equations and the accuracy is adapted in a dynamic way to the step size of the equation solver in order to save computational effort while maintaining the fast convergence rate of the CROP algorithm. Our test calculations show that the CP-VCC method allows for significant reductions of both computational...

  1. An efficient formulation and implementation of the analytic energy gradient method to the single and double excitation coupled-cluster wave function - Application to Cl2O2

    Science.gov (United States)

    Rendell, Alistair P.; Lee, Timothy J.

    1991-01-01

    The analytic energy gradient for the single and double excitation coupled-cluster (CCSD) wave function has been reformulated and implemented in a new set of programs. The reformulated set of gradient equations have a smaller computational cost than any previously published. The iterative solution of the linear equations and the construction of the effective density matrices are fully vectorized, being based on matrix multiplications. The new method has been used to investigate the Cl2O2 molecule, which has recently been postulated as an important intermediate in the destruction of ozone in the stratosphere. In addition to reporting computational timings, the CCSD equilibrium geometries, harmonic vibrational frequencies, infrared intensities, and relative energetics of three isomers of Cl2O2 are presented.

  2. Structural Design Optimization On Thermally Induced Vibration

    International Nuclear Information System (INIS)

    Gu, Yuanxian; Chen, Biaosong; Zhang, Hongwu; Zhao, Guozhong

    2002-01-01

    The numerical method of design optimization for structural thermally induced vibration is originally studied in this paper and implemented in application software JIFEX. The direct and adjoint methods of sensitivity analysis for thermal induced vibration coupled with both linear and nonlinear transient heat conduction is firstly proposed. Based on the finite element method, the structural linear dynamics is treated simultaneously with coupled linear and nonlinear transient heat structural linear dynamics is treated simultaneously with coupled linear and nonlinear transient heat conduction. In the thermal analysis model, the nonlinear heat conduction considered is result from the radiation and temperature-dependent materials. The sensitivity analysis of transient linear and nonlinear heat conduction is performed with the precise time integration method. And then, the sensitivity analysis of structural transient dynamics is performed by the Newmark method. Both the direct method and the adjoint method are employed to derive the sensitivity equations of thermal vibration, and there are two adjoint vectors of structure and heat conduction respectively. The coupling effect of heat conduction on thermal vibration in the sensitivity analysis is particularly investigated. With coupling sensitivity analysis, the optimization model is constructed and solved by the sequential linear programming or sequential quadratic programming algorithm. The methods proposed have been implemented in the application software JIFEX of structural design optimization, and numerical examples are given to illustrate the methods and usage of structural design optimization on thermally induced vibration

  3. Spin-orbit splitted excited states using explicitly-correlated equation-of-motion coupled-cluster singles and doubles eigenvectors

    Science.gov (United States)

    Bokhan, Denis; Trubnikov, Dmitrii N.; Perera, Ajith; Bartlett, Rodney J.

    2018-04-01

    An explicitly-correlated method of calculation of excited states with spin-orbit couplings, has been formulated and implemented. Developed approach utilizes left and right eigenvectors of equation-of-motion coupled-cluster model, which is based on the linearly approximated explicitly correlated coupled-cluster singles and doubles [CCSD(F12)] method. The spin-orbit interactions are introduced by using the spin-orbit mean field (SOMF) approximation of the Breit-Pauli Hamiltonian. Numerical tests for several atoms and molecules show good agreement between explicitly-correlated results and the corresponding values, calculated in complete basis set limit (CBS); the highly-accurate excitation energies can be obtained already at triple- ζ level.

  4. Mode-selective vibrational modulation of charge transport in organic electronic devices

    KAUST Repository

    Bakulin, Artem A.

    2015-08-06

    The soft character of organic materials leads to strong coupling between molecular, nuclear and electronic dynamics. This coupling opens the way to influence charge transport in organic electronic devices by exciting molecular vibrational motions. However, despite encouraging theoretical predictions, experimental realization of such approach has remained elusive. Here we demonstrate experimentally that photoconductivity in a model organic optoelectronic device can be modulated by the selective excitation of molecular vibrations. Using an ultrafast infrared laser source to create a coherent superposition of vibrational motions in a pentacene/C60 photoresistor, we observe that excitation of certain modes in the 1,500–1,700 cm−1 region leads to photocurrent enhancement. Excited vibrations affect predominantly trapped carriers. The effect depends on the nature of the vibration and its mode-specific character can be well described by the vibrational modulation of intermolecular electronic couplings. This presents a new tool for studying electron–phonon coupling and charge dynamics in (bio)molecular materials.

  5. Mode-selective vibrational modulation of charge transport in organic electronic devices

    KAUST Repository

    Bakulin, Artem A.; Lovrincic, Robert; Yu, Xi; Selig, Oleg; Bakker, Huib J.; Rezus, Yves L. A.; Nayak, Pabitra K.; Fonari, Alexandr; Coropceanu, Veaceslav; Bredas, Jean-Luc; Cahen, David

    2015-01-01

    The soft character of organic materials leads to strong coupling between molecular, nuclear and electronic dynamics. This coupling opens the way to influence charge transport in organic electronic devices by exciting molecular vibrational motions. However, despite encouraging theoretical predictions, experimental realization of such approach has remained elusive. Here we demonstrate experimentally that photoconductivity in a model organic optoelectronic device can be modulated by the selective excitation of molecular vibrations. Using an ultrafast infrared laser source to create a coherent superposition of vibrational motions in a pentacene/C60 photoresistor, we observe that excitation of certain modes in the 1,500–1,700 cm−1 region leads to photocurrent enhancement. Excited vibrations affect predominantly trapped carriers. The effect depends on the nature of the vibration and its mode-specific character can be well described by the vibrational modulation of intermolecular electronic couplings. This presents a new tool for studying electron–phonon coupling and charge dynamics in (bio)molecular materials.

  6. Infrared spectroscopy of ionic clusters

    International Nuclear Information System (INIS)

    Price, J.M.

    1990-11-01

    This thesis describes new experiments wherein the infrared vibrational predissociation spectra of a number of mass-selected ionic cluster systems have been obtained and analyzed in the 2600 to 4000 cm -1 region. The species studied include: the hydrated hydronium ions, H 3 O + (H 2 O) 3 -10 , ammoniated ammonium ions, NH 4 + (NH 3 ) 1 -10 and cluster ions involving both water and ammonia around an ammonium ion core, (mixed clusters) NH 4 + (NH 3 ) n (H 2 O) m (n+m=4). In each case, the spectra reveal well resolved structures that can be assigned to transitions arising from the vibrational motions of both the ion core of the clusters and the surrounding neutral solvent molecules. 154 refs., 19 figs., 8 tabs

  7. Static and free-vibration analyses of cracks in thin-shell structures based on an isogeometric-meshfree coupling approach

    Science.gov (United States)

    Nguyen-Thanh, Nhon; Li, Weidong; Zhou, Kun

    2018-03-01

    This paper develops a coupling approach which integrates the meshfree method and isogeometric analysis (IGA) for static and free-vibration analyses of cracks in thin-shell structures. In this approach, the domain surrounding the cracks is represented by the meshfree method while the rest domain is meshed by IGA. The present approach is capable of preserving geometry exactness and high continuity of IGA. The local refinement is achieved by adding the nodes along the background cells in the meshfree domain. Moreover, the equivalent domain integral technique for three-dimensional problems is derived from the additional Kirchhoff-Love theory to compute the J-integral for the thin-shell model. The proposed approach is able to address the problems involving through-the-thickness cracks without using additional rotational degrees of freedom, which facilitates the enrichment strategy for crack tips. The crack tip enrichment effects and the stress distribution and displacements around the crack tips are investigated. Free vibrations of cracks in thin shells are also analyzed. Numerical examples are presented to demonstrate the accuracy and computational efficiency of the coupling approach.

  8. Refined energetic ordering for sulphate-water (n = 3-6) clusters using high-level electronic structure calculations

    Science.gov (United States)

    Lambrecht, Daniel S.; McCaslin, Laura; Xantheas, Sotiris S.; Epifanovsky, Evgeny; Head-Gordon, Martin

    2012-10-01

    This work reports refinements of the energetic ordering of the known low-energy structures of sulphate-water clusters ? (n = 3-6) using high-level electronic structure methods. Coupled cluster singles and doubles with perturbative triples (CCSD(T)) is used in combination with an estimate of basis set effects up to the complete basis set limit using second-order Møller-Plesset theory. Harmonic zero-point energy (ZPE), included at the B3LYP/6-311 + + G(3df,3pd) level, was found to have a significant effect on the energetic ordering. In fact, we show that the energetic ordering is a result of a delicate balance between the electronic and vibrational energies. Limitations of the ZPE calculations, both due to electronic structure errors, and use of the harmonic approximation, probably constitute the largest remaining errors. Due to the often small energy differences between cluster isomers, and the significant role of ZPE, deuteration can alter the relative energies of low-lying structures, and, when it is applied in conjunction with calculated harmonic ZPEs, even alters the global minimum for n = 5. Experiments on deuterated clusters, as well as more sophisticated vibrational calculations, may therefore be quite interesting.

  9. Analyzing the anodic reactions for iron surface with a porous Al2O3 cluster with the scanning vibrating electrode

    Science.gov (United States)

    Eliyan, Faysal Fayez

    2017-09-01

    The Scanning Vibrating Electrode Technique (SVET) was used to analyze the anodic reactions inside and around a porous Al2O3 cluster embedded onto an iron foil. The tests were carried out at -0.7 V vs. Saturated Calomel Electrode, in naturally aerated solutions of 0.1, 0.2, 0.35, and 0.5 M bicarbonate concentration. During 10 h of testing, the SVET showed evidence for a formation of a passive film in and around the cluster, in the scanning area shown in the graphical abstract. In the dilute 0.1 and 0.2 M solutions, the passive films formed slower than those in 0.35 and 0.5 M solutions. In the SVET maps, the passive films showed that they could suppress dissolution to currents comparable to those of slower dissolution under the porous Al2O3 cluster.

  10. A Vibration Control Method for the Flexible Arm Based on Energy Migration

    Directory of Open Access Journals (Sweden)

    Yushu Bian

    2015-01-01

    Full Text Available A vibration control method based on energy migration is proposed to decrease vibration response of the flexible arm undergoing rigid motion. A type of vibration absorber is suggested and gives rise to the inertial coupling between the modes of the flexible arm and the absorber. By analyzing 1 : 2 internal resonance, it is proved that the internal resonance can be successfully created and the exchange of vibration energy is existent. Due to the inertial coupling, the damping enhancement effect is revealed. Via the inertial coupling, vibration energy of the flexible arm can be dissipated by not only the damping of the vibration absorber but also its own enhanced damping, thereby effectively decreasing vibration. Through numerical simulations and analyses, it is proven that this method is feasible in controlling nonlinear vibration of the flexible arm undergoing rigid motion.

  11. Coherent vibrational dynamics

    CERN Document Server

    Lanzani, Guglielmo; De Silvestri, Sandro

    2007-01-01

    Vibrational spectroscopy is a powerful investigation tool for a wide class of materials covering diverse areas in physics, chemistry and biology. The continuous development in the laser field regarding ultrashort pulse generation has led to the possibility of producing light pulses that can follow vibrational motion coupled to the electronic transitions in molecules and solids in real time. Aimed at researchers and graduate students using vibrational spectroscopy, this book provides both introductory chapters as well as more advanced contents reporting on recent progress. It also provides a good starting point for scientists seeking a sound introduction to ultrafast optics and spectroscopic techniques.

  12. A Coupled Hidden Markov Random Field Model for Simultaneous Face Clustering and Tracking in Videos

    KAUST Repository

    Wu, Baoyuan

    2016-10-25

    Face clustering and face tracking are two areas of active research in automatic facial video processing. They, however, have long been studied separately, despite the inherent link between them. In this paper, we propose to perform simultaneous face clustering and face tracking from real world videos. The motivation for the proposed research is that face clustering and face tracking can provide useful information and constraints to each other, thus can bootstrap and improve the performances of each other. To this end, we introduce a Coupled Hidden Markov Random Field (CHMRF) to simultaneously model face clustering, face tracking, and their interactions. We provide an effective algorithm based on constrained clustering and optimal tracking for the joint optimization of cluster labels and face tracking. We demonstrate significant improvements over state-of-the-art results in face clustering and tracking on several videos.

  13. Study on Nonlinear Vibration and Crack Fault of Rotor-bearing-seal Coupling System

    Directory of Open Access Journals (Sweden)

    Yuegang LUO

    2014-02-01

    Full Text Available The nonlinear dynamic model of rotor-bearing-seal system with crack in shaft is set up based on the coupling model of nonlinear oil-film force and Muszyska’s nonlinear seal fluid force. The dynamic vibration characteristics of the rotor-bearing-seal system and the effects of physical and structural parameters of labyrinth seal and crack fault on movement character of the rotor were analyzed. The increases of seal length, seal pressure differential, seal radius and axial velocity are in favor of the stability of the system, and it of seal gap and crack depth are not in favor of the stability of the system.

  14. Electronic and vibrational spectroscopy and vibrationally mediated photodissociation of V+(OCO).

    Science.gov (United States)

    Citir, Murat; Altinay, Gokhan; Metz, Ricardo B

    2006-04-20

    Electronic spectra of gas-phase V+(OCO) are measured in the near-infrared from 6050 to 7420 cm(-1) and in the visible from 15,500 to 16,560 cm(-1), using photofragment spectroscopy. The near-IR band is complex, with a 107 cm(-1) progression in the metal-ligand stretch. The visible band shows clearly resolved vibrational progressions in the metal-ligand stretch and rock, and in the OCO bend, as observed by Brucat and co-workers. A vibrational hot band gives the metal-ligand stretch frequency in the ground electronic state nu3'' = 210 cm(-1). The OCO antisymmetric stretch frequency in the ground electronic state (nu1'') is measured by using vibrationally mediated photodissociation. An IR laser vibrationally excites ions to nu1'' = 1. Vibrationally excited ions selectively dissociate following absorption of a second, visible photon at the nu1' = 1 CO2, due to interaction with the metal. Larger blue shifts observed for complexes with fewer ligands agree with trends seen for larger V+(OCO)n clusters.

  15. Nuclear structure and nuclear reaction aspects of Faessler and Greiner's rotation-vibration coupling theory

    International Nuclear Information System (INIS)

    Aspelund, O.

    In the nuclear structure part, the foundations of Faessler and Greiner's rotation-vibration coupling theory are reviewed, whereafter an alternative derivation of Faessler and Greiner's Hamiltonian is presented. A non-spherical quadrupole phonon number N is defined and used in the matrix elements reported for odd-even/even-odd nuclei. These matrix elements are shown to evince oblate-prolate effects that can be exploited for assessing the signs of quadrupole deformations. In the nuclear reaction part, the wave functions emerging from the structure part are applied in a complete and consistent description of elastic and inelastic particle scattering, one-nucleon transfer, and particle/γ-ray angular correlations. The intentions are to demonstrate that anomolous angular distributions and 1=2 j-effects observed in one-nucleon transfer are interrelated phenomena, that can be satisfactorily explained in terms of the elementary vibrational excitation modes inherent in Faessler and Greiner's theory. The latter is regarded as a non-spherical approach to the theory of the quadrupole component of the nuclear potential energy surface. (Auth.)

  16. Perturbative triples correction for explicitly correlated Mukherjee's state-specific coupled cluster method

    Czech Academy of Sciences Publication Activity Database

    Demel, Ondřej; Kedžuch, S.; Noga, J.; Pittner, Jiří

    2013-01-01

    Roč. 111, 16-17 (2013), s. 2477-2488 ISSN 0026-8976 R&D Projects: GA ČR GPP208/10/P041; GA ČR GAP208/11/2222 Institutional support: RVO:61388955 Keywords : explicitly correlated * coupled cluster * multireference Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.642, year: 2013

  17. Numerical experiment designs: study of the vibrational behaviour of the control rod cluster of a pressurized water reactor

    International Nuclear Information System (INIS)

    Soulier, B.; Bosselut, D.; Regnier, G.

    1997-01-01

    A finite element model has been performed at EDF to simulate the vibrations of control rod cluster assembly and to analyse the wear phenomenon of control rods. A parametrical study bas been performed for a given computer experiment domain with an experimental design method. The building of the computer experiment design is described. The influence of parameters on calculated mean wear power has been determined along rods and responses surfaces have been easily approximated. Systematism and closeness of experiment design technique is underlined. (authors)

  18. Isotopic effects in vibrational relaxation dynamics of H on a Si(100) surface

    Science.gov (United States)

    Bouakline, F.; Lorenz, U.; Melani, G.; Paramonov, G. K.; Saalfrank, P.

    2017-10-01

    In a recent paper [U. Lorenz and P. Saalfrank, Chem. Phys. 482, 69 (2017)], we proposed a robust scheme to set up a system-bath model Hamiltonian, describing the coupling of adsorbate vibrations (system) to surface phonons (bath), from first principles. The method is based on an embedded cluster approach, using orthogonal coordinates for system and bath modes, and an anharmonic phononic expansion of the system-bath interaction up to second order. In this contribution, we use this model Hamiltonian to calculate vibrational relaxation rates of H-Si and D-Si bending modes, coupled to a fully H(D)-covered Si(100)-( 2 × 1 ) surface, at zero temperature. The D-Si bending mode has an anharmonic frequency lying inside the bath frequency spectrum, whereas the H-Si bending mode frequency is outside the bath Debye band. Therefore, in the present calculations, we only take into account one-phonon system-bath couplings for the D-Si system and both one- and two-phonon interaction terms in the case of H-Si. The computation of vibrational lifetimes is performed with two different approaches, namely, Fermi's golden rule, and a generalized Bixon-Jortner model built in a restricted vibrational space of the adsorbate-surface zeroth-order Hamiltonian. For D-Si, the Bixon-Jortner Hamiltonian can be solved by exact diagonalization, serving as a benchmark, whereas for H-Si, an iterative scheme based on the recursive residue generation method is applied, with excellent convergence properties. We found that the lifetimes obtained with perturbation theory, albeit having almost the same order of magnitude—a few hundred fs for D-Si and a couple of ps for H-Si—, are strongly dependent on the discretized numerical representation of the bath spectral density. On the other hand, the Bixon-Jortner model is free of such numerical deficiencies, therefore providing better estimates of vibrational relaxation rates, at a very low computational cost. The results obtained with this model clearly show

  19. Direct observation of vibrational energy dispersal via methyl torsions.

    Science.gov (United States)

    Gardner, Adrian M; Tuttle, William D; Whalley, Laura E; Wright, Timothy G

    2018-02-28

    Explicit evidence for the role of methyl rotor levels in promoting energy dispersal is reported. A set of coupled zero-order vibration/vibration-torsion (vibtor) levels in the S 1 state of para -fluorotoluene ( p FT) are investigated. Two-dimensional laser-induced fluorescence (2D-LIF) and two-dimensional zero-kinetic-energy (2D-ZEKE) spectra are reported, and the assignment of the main features in both sets of spectra reveals that the methyl torsion is instrumental in providing a route for coupling between vibrational levels of different symmetry classes. We find that there is very localized, and selective, dissipation of energy via doorway states, and that, in addition to an increase in the density of states, a critical role of the methyl group is a relaxation of symmetry constraints compared to direct vibrational coupling.

  20. Cluster synchronization in networks of identical oscillators with α-function pulse coupling.

    Science.gov (United States)

    Chen, Bolun; Engelbrecht, Jan R; Mirollo, Renato

    2017-02-01

    We study a network of N identical leaky integrate-and-fire model neurons coupled by α-function pulses, weighted by a coupling parameter K. Studies of the dynamics of this system have mostly focused on the stability of the fully synchronized and the fully asynchronous splay states, which naturally depends on the sign of K, i.e., excitation vs inhibition. We find that there is also a rich set of attractors consisting of clusters of fully synchronized oscillators, such as fixed (N-1,1) states, which have synchronized clusters of sizes N-1 and 1, as well as splay states of clusters with equal sizes greater than 1. Additionally, we find limit cycles that clarify the stability of previously observed quasiperiodic behavior. Our framework exploits the neutrality of the dynamics for K=0 which allows us to implement a dimensional reduction strategy that simplifies the dynamics to a continuous flow on a codimension 3 subspace with the sign of K determining the flow direction. This reduction framework naturally incorporates a hierarchy of partially synchronized subspaces in which the new attracting states lie. Using high-precision numerical simulations, we describe completely the sequence of bifurcations and the stability of all fixed points and limit cycles for N=2-4. The set of possible attracting states can be used to distinguish different classes of neuron models. For instance from our previous work [Chaos 24, 013114 (2014)CHAOEH1054-150010.1063/1.4858458] we know that of the types of partially synchronized states discussed here, only the (N-1,1) states can be stable in systems of identical coupled sinusoidal (i.e., Kuramoto type) oscillators, such as θ-neuron models. Upon introducing a small variation in individual neuron parameters, the attracting fixed points we discuss here generalize to equivalent fixed points in which neurons need not fire coincidently.

  1. Communication: Application of state-specific multireference coupled cluster methods to core-level excitations

    Czech Academy of Sciences Publication Activity Database

    Brabec, Jiří; Bhaskaran-Neir, K.; Govind, N.; Pittner, Jiří

    2012-01-01

    Roč. 137, č. 17 (2012), s. 171101 ISSN 0021-9606 R&D Projects: GA ČR GAP208/11/2222 Institutional support: RVO:61388955 Keywords : coupled cluster calculations * electron correlations * excited states Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.164, year: 2012

  2. Vibrational Fingerprints of Low-Lying PtnP2n (n = 1–5) Cluster Structures from Global Optimization Based on Density Functional Theory Potential Energy Surfaces

    KAUST Repository

    Jedidi, Abdesslem; Li, Rui; Fornasiero, Paolo; Cavallo, Luigi; Carbonniere, Philippe

    2015-01-01

    Vibrational fingerprints of small PtnP2n (n = 1–5) clusters were computed from their low-lying structures located from a global exploration of their DFT potential energy surfaces with the GSAM code. Five DFT methods were assessed from the CCSD(T) wavenumbers of PtP2 species and CCSD relative energies of Pt2P4 structures. The eight first PtnP2n isomers found are reported. The vibrational computations reveal (i) the absence of clear signatures made by overtone or combination bands due to very weak mechanical and electrical anharmonicities and (ii) some significant and recurrent vibrational fingerprints in correlation with the different PP bonding situations in the PtnP2n structures.

  3. Vibrational Fingerprints of Low-Lying PtnP2n (n = 1–5) Cluster Structures from Global Optimization Based on Density Functional Theory Potential Energy Surfaces

    KAUST Repository

    Jedidi, Abdesslem

    2015-11-13

    Vibrational fingerprints of small PtnP2n (n = 1–5) clusters were computed from their low-lying structures located from a global exploration of their DFT potential energy surfaces with the GSAM code. Five DFT methods were assessed from the CCSD(T) wavenumbers of PtP2 species and CCSD relative energies of Pt2P4 structures. The eight first PtnP2n isomers found are reported. The vibrational computations reveal (i) the absence of clear signatures made by overtone or combination bands due to very weak mechanical and electrical anharmonicities and (ii) some significant and recurrent vibrational fingerprints in correlation with the different PP bonding situations in the PtnP2n structures.

  4. Coupled channels description of the α-decay fine structure

    Science.gov (United States)

    Delion, D. S.; Ren, Zhongzhou; Dumitrescu, A.; Ni, Dongdong

    2018-05-01

    We review the coupled channels approach of α transitions to excited states. The α-decaying states are identified as narrow outgoing Gamow resonances in an α-daughter potential. The real part of the eigenvalue corresponds to the Q-value, while the imaginary part determines the half of the total α-decay width. We first review the calculations describing transitions to rotational states treated by the rigid rotator model, in even–even, odd-mass and odd–odd nuclei. It is found that the semiclassical method overestimates the branching ratios to excited 4+ for some even–even α-emitters and fails in explaining the unexpected inversion of branching ratios of some odd-mass nuclei, while the coupled-channels results show good agreement with the experimental data. Then, we review the coupled channels method for α-transitions to 2+ vibrational and transitional states. We present the results of the Coherent State Model that describes in a unified way the spectra of vibrational, transitional and rotational nuclei. We evidence general features of the α-decay fine structure, namely the linear dependence between α-intensities and excitation energy, the linear correlation between the strength of the α-core interaction and spectroscopic factor, and the inverse correlation between the nuclear collectivity, given by electromagnetic transitions, and α-clustering.

  5. Vibration and buckling of orthotropic functionally graded micro-plates on the basis of a re-modified couple stress theory

    Directory of Open Access Journals (Sweden)

    Zihao Yang

    Full Text Available A microstructure-dependent model for the free vibration and buckling analysis of an orthotropic functionally graded micro-plate was proposed on the basis of a re-modified couple stress theory. The macro- and microscopic anisotropy were simultaneously taken into account by introducing two material length scale parameters. The material attributes were assumed to vary continuously through the thickness direction by a power law. The governing equations and corresponding boundary conditions were derived through Hamilton’s principle. The Navier method was used to calculate the natural frequencies and buckling loads of a simply supported micro-plate. The numerical results indicated that the present model predicts higher natural frequencies and critical buckling loads than the classical model, particular when the geometric size of the micro-plates is comparable to the material length scale parameters, i.e., the scale effect is well represented. The scale effect becomes more noticeable as the material length scale parameters increase, the anisotropy weaken or the power law index increases, and vice versa. Keywords: Free vibration, Buckling, Functionally graded materials, Modified couple stress theory, Scale effect

  6. System-Level Coupled Modeling of Piezoelectric Vibration Energy Harvesting Systems by Joint Finite Element and Circuit Analysis

    Directory of Open Access Journals (Sweden)

    Congcong Cheng

    2016-01-01

    Full Text Available A practical piezoelectric vibration energy harvesting (PVEH system is usually composed of two coupled parts: a harvesting structure and an interface circuit. Thus, it is much necessary to build system-level coupled models for analyzing PVEH systems, so that the whole PVEH system can be optimized to obtain a high overall efficiency. In this paper, two classes of coupled models are proposed by joint finite element and circuit analysis. The first one is to integrate the equivalent circuit model of the harvesting structure with the interface circuit and the second one is to integrate the equivalent electrical impedance of the interface circuit into the finite element model of the harvesting structure. Then equivalent circuit model parameters of the harvesting structure are estimated by finite element analysis and the equivalent electrical impedance of the interface circuit is derived by circuit analysis. In the end, simulations are done to validate and compare the proposed two classes of system-level coupled models. The results demonstrate that harvested powers from the two classes of coupled models approximate to theoretic values. Thus, the proposed coupled models can be used for system-level optimizations in engineering applications.

  7. Infrared spectroscopy of ionic clusters

    Energy Technology Data Exchange (ETDEWEB)

    Price, J.M. (California Univ., Berkeley, CA (USA). Dept. of Chemistry Lawrence Berkeley Lab., CA (USA))

    1990-11-01

    This thesis describes new experiments wherein the infrared vibrational predissociation spectra of a number of mass-selected ionic cluster systems have been obtained and analyzed in the 2600 to 4000 cm{sup {minus}1} region. The species studied include: the hydrated hydronium ions, H{sub 3}O{sup +} (H{sub 2}O){sub 3 {minus}10}, ammoniated ammonium ions, NH{sub 4}{sup +}(NH{sub 3}){sub 1 {minus}10} and cluster ions involving both water and ammonia around an ammonium ion core, (mixed clusters) NH{sub 4}{sup +}(NH{sub 3}){sub n}(H{sub 2}O){sub m} (n+m=4). In each case, the spectra reveal well resolved structures that can be assigned to transitions arising from the vibrational motions of both the ion core of the clusters and the surrounding neutral solvent molecules. 154 refs., 19 figs., 8 tabs.

  8. Enhancement of Energy Harvesting Performance by a Coupled Bluff Splitter Body and PVEH Plate through Vortex Induced Vibration near Resonance

    Directory of Open Access Journals (Sweden)

    Wei Ken Chin

    2017-09-01

    Full Text Available Inspired by vortex induced vibration energy harvesting development as a new source of renewable energy, a T-shaped design vibration energy harvester is introduced with the aim of enhancing its performance through vortex induced vibration at near resonance conditions. The T-shaped structural model designed consists of a fixed boundary aluminum bluff splitter body coupled with a cantilever piezoelectric vibration energy harvesters (PVEH plate model which is a piezoelectric bimorph plate made of a brass plate sandwiched between 2 lead zirconate titanate (PZT plates. A 3-dimensional Fluid-Structure Interaction simulation analysis is carried out with Reynolds Stress Turbulence Model under wind speed of 7, 10, 12, 14, 16, 18, 19, 20, 22.5, and 25 m/s. The results showed that with 19 m/s wind speed, the model generates 75.758 Hz of vortex frequency near to the structural model’s natural frequency of 76.9 Hz. Resonance lock-in therefore occurred, generating a maximum displacement amplitude of 2.09 mm or a 49.76% increment relatively in vibrational amplitude. Under the effect of resonance at the PVEH plate’s fundamental natural frequency, it is able to generate the largest normalized power of 13.44 mW/cm3g2.

  9. Vibration Characteristics of Piezoelectric Microbeams Based on the Modified Couple Stress Theory

    Directory of Open Access Journals (Sweden)

    R. Ansari

    2014-01-01

    Full Text Available The vibration behavior of piezoelectric microbeams is studied on the basis of the modified couple stress theory. The governing equations of motion and boundary conditions for the Euler-Bernoulli and Timoshenko beam models are derived using Hamilton’s principle. By the exact solution of the governing equations, an expression for natural frequencies of microbeams with simply supported boundary conditions is obtained. Numerical results for both beam models are presented and the effects of piezoelectricity and length scale parameter are illustrated. It is found that the influences of piezoelectricity and size effects are more prominent when the length of microbeams decreases. A comparison between two beam models also reveals that the Euler-Bernoulli beam model tends to overestimate the natural frequencies of microbeams as compared to its Timoshenko counterpart.

  10. Cluster Synchronization of Diffusively Coupled Nonlinear Systems: A Contraction-Based Approach

    Science.gov (United States)

    Aminzare, Zahra; Dey, Biswadip; Davison, Elizabeth N.; Leonard, Naomi Ehrich

    2018-04-01

    Finding the conditions that foster synchronization in networked nonlinear systems is critical to understanding a wide range of biological and mechanical systems. However, the conditions proved in the literature for synchronization in nonlinear systems with linear coupling, such as has been used to model neuronal networks, are in general not strict enough to accurately determine the system behavior. We leverage contraction theory to derive new sufficient conditions for cluster synchronization in terms of the network structure, for a network where the intrinsic nonlinear dynamics of each node may differ. Our result requires that network connections satisfy a cluster-input-equivalence condition, and we explore the influence of this requirement on network dynamics. For application to networks of nodes with FitzHugh-Nagumo dynamics, we show that our new sufficient condition is tighter than those found in previous analyses that used smooth or nonsmooth Lyapunov functions. Improving the analytical conditions for when cluster synchronization will occur based on network configuration is a significant step toward facilitating understanding and control of complex networked systems.

  11. Vibrations and waves

    CERN Document Server

    Kaliski, S

    2013-01-01

    This book gives a comprehensive overview of wave phenomena in different media with interacting mechanical, electromagnetic and other fields. Equations describing wave propagation in linear and non-linear elastic media are followed by equations of rheological models, models with internal rotational degrees of freedom and non-local interactions. Equations for coupled fields: thermal, elastic, electromagnetic, piezoelectric, and magneto-spin with adequate boundary conditions are also included. Together with its companion volume Vibrations and Waves. Part A: Vibrations this work provides a wealth

  12. A Coupled Hidden Conditional Random Field Model for Simultaneous Face Clustering and Naming in Videos

    KAUST Repository

    Zhang, Yifan

    2016-08-18

    For face naming in TV series or movies, a typical way is using subtitles/script alignment to get the time stamps of the names, and tagging them to the faces. We study the problem of face naming in videos when subtitles are not available. To this end, we divide the problem into two tasks: face clustering which groups the faces depicting a certain person into a cluster, and name assignment which associates a name to each face. Each task is formulated as a structured prediction problem and modeled by a hidden conditional random field (HCRF) model. We argue that the two tasks are correlated problems whose outputs can provide prior knowledge of the target prediction for each other. The two HCRFs are coupled in a unified graphical model called coupled HCRF where the joint dependence of the cluster labels and face name association is naturally embedded in the correlation between the two HCRFs. We provide an effective algorithm to optimize the two HCRFs iteratively and the performance of the two tasks on real-world data set can be both improved.

  13. Vibrational Fingerprints of Low-Lying Pt(n)P(2n) (n = 1-5) Cluster Structures from Global Optimization Based on Density Functional Theory Potential Energy Surfaces.

    Science.gov (United States)

    Jedidi, Abdesslem; Li, Rui; Fornasiero, Paolo; Cavallo, Luigi; Carbonniere, Philippe

    2015-12-03

    Vibrational fingerprints of small Pt(n)P(2n) (n = 1-5) clusters were computed from their low-lying structures located from a global exploration of their DFT potential energy surfaces with the GSAM code. Five DFT methods were assessed from the CCSD(T) wavenumbers of PtP2 species and CCSD relative energies of Pt2P4 structures. The eight first Pt(n)P(2n) isomers found are reported. The vibrational computations reveal (i) the absence of clear signatures made by overtone or combination bands due to very weak mechanical and electrical anharmonicities and (ii) some significant and recurrent vibrational fingerprints in correlation with the different PP bonding situations in the Pt(n)P(2n) structures.

  14. Elastic and inelastic vibrational cross sections for positron scattering by carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Tenfen, W. [Departamento de Física, Universidade Federal da Fronteira Sul, 85770-000, Realeza, Paraná (Brazil); Arretche, F., E-mail: fartch@gmail.com [Departamento de Física, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, Santa Catarina (Brazil); Michelin, S.E.; Mazon, K.T. [Departamento de Física, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, Santa Catarina (Brazil)

    2015-11-01

    The vibrational cross sections of the CO molecule induced by positron impact is the focus of this work. The positron–molecule interaction is represented by the static potential plus a model potential designed to take into account the positron–target correlations. To calculate the vibrational cross sections, we applied the multichannel version of the continued fractions method in the close-coupling scheme. We present vibrational excitation cross sections and elastic ones, for the ground and excited vibrational states. The results are interpreted in terms of the vibrational coupling-scheme used in the scattering model.

  15. Vibration of fuel bundles

    International Nuclear Information System (INIS)

    Chen, S.S.

    1975-06-01

    Several mathematical models have been proposed for calculating fuel rod responses in axial flows based on a single rod consideration. The spacing between fuel rods in liquid metal fast breeder reactors is small; hence fuel rods will interact with one another due to fluid coupling. The objective of this paper is to study the coupled vibration of fuel bundles. To account for the fluid coupling, a computer code, AMASS, is developed to calculate added mass coefficients for a group of circular cylinders based on the potential flow theory. The equations of motion for rod bundles are then derived including hydrodynamic forces, drag forces, fluid pressure, gravity effect, axial tension, and damping. Based on the equations, a method of analysis is presented to study the free and forced vibrations of rod bundles. Finally, the method is applied to a typical LMFBR fuel bundle consisting of seven rods

  16. Electronic and vibrational signatures of the Au102(p-MBA)44 cluster.

    Science.gov (United States)

    Hulkko, Eero; Lopez-Acevedo, Olga; Koivisto, Jaakko; Levi-Kalisman, Yael; Kornberg, Roger D; Pettersson, Mika; Häkkinen, Hannu

    2011-03-23

    Optical absorption of a gold nanocluster of 102 Au atoms protected by 44 para-mercaptobenzoic acid (p-MBA) ligands is measured in the range of 0.05-6.2 eV (mid-IR to UV) by a combination of several techniques for purified samples in solid and solution phases. The results are compared to calculations for a model cluster Au(102)(SMe)(44) based on the time-dependent density functional theory in the linear-response regime and using the known structure of Au(102)(p-MBA)(44). The measured and calculated molar absorption coefficients in the NIR-vis region are comparable, within a factor of 2, in the absolute scale. Several characteristic features are observed in the absorption in the range of 1.5-3.5 eV. The onset of the electronic transitions in the mid-IR region is experimentally observed at 0.45 ± 0.05 eV which compares well with the lowest calculated transition at 0.55 eV. Vibrations in the ligand layer give rise to fingerprint IR features below the onset of low-energy metal-to-metal electronic transitions. Partial exchange of the p-MBA ligand to glutathione does not affect the onset of the electronic transitions, which indicates that the metal core of the cluster is not affected by the ligand exchange. The full spectroscopic characterization of the Au(102)(p-MBA)(44) reported here for the first time gives benchmarks for further studies of manipulation and functionalization of this nanocluster to various applications.

  17. Does quantum mechanics select out regularity and local mode behaviour in nonlinearly coupled vibrational systems?

    International Nuclear Information System (INIS)

    Yurtsever, E.; Brickmann, J.

    1990-01-01

    A two dimensional strongly nonharmonic vibrational system with nonlinear intermode coupling is studied both classically and quantum mechanically. The system was chosen such that there is a low lying transition (in energy) from a region where almost all trajectories move regularly to a region where chaotic dynamics strongly dominates. The corresponding quantum system is far away from the semiclassical limit. The eigenfunctions are calculated with high precision according to a linear variational scheme using conveniently chosen basis functions. It is the aim of this paper to check whether the prediction from semiclassical theory, namely that the measure of classically chaotic trajectories in phase space approaches the measure of irregular states in corresponding energy ranges, holds when the system is not close to the classical limit. It is also the aim to identify individual eigenfunctions with respect to regularity and to differentiate between local and normal vibrational states. It is found that there are quantitative and also qualitative differences between the quantum results and the semiclassical predictions. (orig./HK)

  18. Analytic energy gradients for the coupled-cluster singles and doubles method with the density-fitting approximation

    International Nuclear Information System (INIS)

    Bozkaya, Uğur; Sherrill, C. David

    2016-01-01

    An efficient implementation is presented for analytic gradients of the coupled-cluster singles and doubles (CCSD) method with the density-fitting approximation, denoted DF-CCSD. Frozen core terms are also included. When applied to a set of alkanes, the DF-CCSD analytic gradients are significantly accelerated compared to conventional CCSD for larger molecules. The efficiency of our DF-CCSD algorithm arises from the acceleration of several different terms, which are designated as the “gradient terms”: computation of particle density matrices (PDMs), generalized Fock-matrix (GFM), solution of the Z-vector equation, formation of the relaxed PDMs and GFM, back-transformation of PDMs and GFM to the atomic orbital (AO) basis, and evaluation of gradients in the AO basis. For the largest member of the alkane set (C 10 H 22 ), the computational times for the gradient terms (with the cc-pVTZ basis set) are 2582.6 (CCSD) and 310.7 (DF-CCSD) min, respectively, a speed up of more than 8-folds. For gradient related terms, the DF approach avoids the usage of four-index electron repulsion integrals. Based on our previous study [U. Bozkaya, J. Chem. Phys. 141, 124108 (2014)], our formalism completely avoids construction or storage of the 4-index two-particle density matrix (TPDM), using instead 2- and 3-index TPDMs. The DF approach introduces negligible errors for equilibrium bond lengths and harmonic vibrational frequencies.

  19. Effects of Thermal Lattice Vibration on the Effective Potential of Weak-Coupling Bipolaron in a Quantum Dot

    International Nuclear Information System (INIS)

    Eerdunchaolu; Xiao Xin; Han Chao; Xin Wei; Wuyunqimuge

    2012-01-01

    Based on the Huybrechts' linear-combination operator, effects of thermal lattice vibration on the effective potential of weak-coupling bipolaron in semiconductor quantum dots are studied by using the LLP variational method and quantum statistical theory. The results show that the absolute value of the induced potential of the bipolaron increases with increasing the electron-phonon coupling strength, but decreases with increasing the temperature and the distance of electrons, respectively; the absolute value of the effective potential increases with increasing the radius of the quantum dot, electron-phonon coupling strength and the distance of electrons, respectively, but decreases with increasing the temperature; the temperature and electron-phonon interaction have the important influence on the formation and state properties of the bipolaron: the bipolarons in the bound state are closer and more stable when the electron-phonon coupling strength is larger or the temperature is lower; the confinement potential and coulomb repulsive potential between electrons are unfavorable to the formation of bipolarons in the bound state. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  20. Two- and four-component relativistic generalized-active-space coupled cluster method: implementation and application to BiH.

    Science.gov (United States)

    Sørensen, Lasse K; Olsen, Jeppe; Fleig, Timo

    2011-06-07

    A string-based coupled-cluster method of general excitation rank and with optimal scaling which accounts for special relativity within the four-component framework is presented. The method opens the way for the treatment of multi-reference problems through an active-space inspired single-reference based state-selective expansion of the model space. The evaluation of the coupled-cluster vector function is implemented by considering contractions of elementary second-quantized operators without setting up the amplitude equations explicitly. The capabilities of the new method are demonstrated in application to the electronic ground state of the bismuth monohydride molecule. In these calculations simulated multi-reference expansions with both doubles and triples excitations into the external space as well as the regular coupled-cluster hierarchy up to full quadruples excitations are compared. The importance of atomic outer core-correlation for obtaining accurate results is shown. Comparison to the non-relativistic framework is performed throughout to illustrate the additional work of the transition to the four-component relativistic framework both in implementation and application. Furthermore, an evaluation of the highest order scaling for general-order expansions is presented. © 2011 American Institute of Physics

  1. Vibrational spectroscopy of NO + (H2O)n: Evidence for the intracluster reaction NO + (H2O)n --> H3O + (H2O)n - 2 (HONO) at n => 4

    Science.gov (United States)

    Choi, Jong-Ho; Kuwata, Keith T.; Haas, Bernd-Michael; Cao, Yibin; Johnson, Matthew S.; Okumura, Mitchio

    1994-05-01

    Infrared spectra of mass-selected clusters NO+(H2O)n for n=1 to 5 were recorded from 2700 to 3800 cm-1 by vibrational predissociation spectroscopy. Vibrational frequencies and intensities were also calculated for n=1 and 2 at the second-order Møller-Plesset (MP2) level, to aid in the interpretation of the spectra, and at the singles and doubles coupled cluster (CCSD) level energies of n=1 isomers were computed at the MP2 geometries. The smaller clusters (n=1 to 3) were complexes of H2O ligands bound to a nitrosonium ion NO+ core. They possessed perturbed H2O stretch bands and dissociated by loss of H2O. The H2O antisymmetric stretch was absent in n=1 and gradually increased in intensity with n. In the n=4 clusters, we found evidence for the beginning of a second solvation shell as well as the onset of an intracluster reaction that formed HONO. These clusters exhibited additional weak, broad bands between 3200 and 3400 cm-1 and two new minor photodissociation channels, loss of HONO and loss of two H2O molecules. The reaction appeared to go to completion within the n=5 clusters. The primary dissociation channel was loss of HONO, and seven vibrational bands were observed. From an analysis of the spectrum, we concluded that the n=5 cluster rearranged to form H3O+(H2O)3(HONO), i.e., an adduct of the reaction products.

  2. Calculation of vibrational frequencies through a variational reduced-coupling approach.

    Science.gov (United States)

    Scribano, Yohann; Benoit, David M

    2007-10-28

    In this study, we present a new method to perform accurate and efficient vibrational configuration interaction computations for large molecular systems. We use the vibrational self-consistent field (VSCF) method to compute an initial description of the vibrational wave function of the system, combined with the single-to-all approach to compute a sparse potential energy surface at the chosen ab initio level of theory. A Davidson scheme is then used to diagonalize the Hamiltonian matrix built on the VSCF virtual basis. Our method is applied to the computation of the OH-stretch frequency of formic acid and benzoic acid to demonstrate the efficiency and accuracy of this new technique.

  3. Synchronization of Two Homodromy Rotors Installed on a Double Vibro-Body in a Coupling Vibration System

    Science.gov (United States)

    Fang, Pan; Hou, Yongjun; Nan, Yanghai

    2015-01-01

    A new mechanism is proposed to implement synchronization of the two unbalanced rotors in a vibration system, which consists of a double vibro-body, two induction motors and spring foundations. The coupling relationship between the vibro-bodies is ascertained with the Laplace transformation method for the dynamics equation of the system obtained with the Lagrange’s equation. An analytical approach, the average method of modified small parameters, is employed to study the synchronization characteristics between the two unbalanced rotors, which is converted into that of existence and the stability of zero solutions for the non-dimensional differential equations of the angular velocity disturbance parameters. By assuming the disturbance parameters that infinitely approach to zero, the synchronization condition for the two rotors is obtained. It indicated that the absolute value of the residual torque between the two motors should be equal to or less than the maximum of their coupling torques. Meanwhile, the stability criterion of synchronization is derived with the Routh-Hurwitz method, and the region of the stable phase difference is confirmed. At last, computer simulations are preformed to verify the correctness of the approximate solution of the theoretical computation for the stable phase difference between the two unbalanced rotors, and the results of theoretical computation is in accordance with that of computer simulations. To sum up, only the parameters of the vibration system satisfy the synchronization condition and the stability criterion of the synchronization, the two unbalanced rotors can implement the synchronization operation. PMID:25993472

  4. MD simulation of cluster formation during sputtering

    International Nuclear Information System (INIS)

    Muramoto, T.; Okai, M.; Yamashita, Y.; Yorizane, K.; Yamamura, Y.

    2001-01-01

    The cluster ejection due to cluster impact on a solid surface is studied through molecular dynamics (MD) simulations. Simulations are performed for Cu cluster impacts on the Cu(1 1 1) surface for cluster energy 100 eV/atom, and for clusters of 6, 13, 28 and 55 atoms. Interatomic interactions are described by the AMLJ-EAM potential. The vibration energy spectrum is independent of the incident cluster size and energy. This comes from the fact that sputtered clusters become stable through the successive fragmentation of nascent large sputtered clusters. The vibration energy spectra for large sputtered clusters have a peak, whose energy corresponds to the melting temperature of Cu. The exponent of the power-law fit of the abundance distribution and the total sputtering yield for the cluster impacts are higher than that for the monatomic ion impacts with the same total energy, where the exponent δ is given by Y n ∝n δ and Y n is the yield of sputtered n-atom cluster. The exponent δ follows a unified function of the total sputtering yield, which is a monotonic increase function, and it is nearly equal to δ ∼ -3 for larger yield

  5. Free vibration analysis of embedded magneto-electro-thermo-elastic cylindrical nanoshell based on the modified couple stress theory

    Science.gov (United States)

    Ghadiri, Majid; Safarpour, Hamed

    2016-09-01

    In this paper, size-dependent effect of an embedded magneto-electro-elastic (MEE) nanoshell subjected to thermo-electro-magnetic loadings on free vibration behavior is investigated. Also, the surrounding elastic medium has been considered as the model of Winkler characterized by the spring. The size-dependent MEE nanoshell is investigated on the basis of the modified couple stress theory. Taking attention to the first-order shear deformation theory (FSDT), the modeled nanoshell and its equations of motion are derived using principle of minimum potential energy. The accuracy of the presented model is validated with some cases in the literature. Finally, using the Navier-type method, an analytical solution of governing equations for vibration behavior of simply supported MEE cylindrical nanoshell under combined loadings is presented and the effects of material length scale parameter, temperature changes, external electric potential, external magnetic potential, circumferential wave numbers, constant of spring, shear correction factor and length-to-radius ratio of the nanoshell on natural frequency are identified. Since there has been no research about size-dependent analysis MEE cylindrical nanoshell under combined loadings based on FSDT, numerical results are presented to be served as benchmarks for future analysis of MEE nanoshells using the modified couple stress theory.

  6. Coupled Cluster Studies of Ionization Potentials and Electron Affinities of Single-Walled Carbon Nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Bo; Govind, Niranjan; Apra, Edoardo; Klemm, Michael; Hammond, Jeff R.; Kowalski, Karol

    2017-02-03

    In this paper we apply equation-of-motion coupled cluster (EOMCC) methods in studies of vertical ionization potentials (IP) and electron affinities (EA) for sin- gled walled carbon nanotubes. EOMCC formulations for ionization potentials and electron affinities employing excitation manifolds spanned by single and double ex- citations (IP/EA-EOMCCSD) are used to study IPs and EAs of nanotubes as a function of nanotube length. Several armchair nanotubes corresponding to C20nH20 models with n = 2 - 6 have been used in benchmark calculations. In agreement with previous studies, we demonstrate that the electronegativity of C20nH20 systems remains, to a large extent, independent of nanotube length. We also compare IP/EA- EOMCCSD results with those obtained with the coupled cluster models with single and double excitations corrected by perturbative triples, CCSD(T), and density func- tional theory (DFT) using global and range-separated hybrid exchange-correlation functionals.

  7. Nuclear spin-isospin excitations from covariant quasiparticle-vibration coupling

    Science.gov (United States)

    Robin, Caroline; Litvinova, Elena

    2016-09-01

    Methods based on the relativistic Lagrangian of quantum hadrodynamics and nuclear field theory provide a consistent framework for the description of nuclear excitations, naturally connecting the high- and medium-energy scales of mesons to the low-energy domain of nucleonic collective motion. Applied in the neutral channel, this approach has been quite successful in describing the overall transition strength up to high excitation energies, as well as fine details of the low-lying distribution. Recently, this method has been extended to the description of spin-isospin excitations in open-shell nuclei. In the charge-exchange channel, the coupling between nucleons and collective vibrations generates a time-dependent proton-neutron effective interaction, in addition to the static pion and rho-meson exchange, and introduces complex configurations that induce fragmentation and spreading of the resonances. Such effects have a great impact on the quenching of the strength and on the computing of weak reaction rates that are needed for astrophysics modeling. Gamow-Teller transitions in medium-mass nuclei and associated beta-decay half-lives will be presented. Further developments aiming to include additional ground-state correlations will also be discussed. This work is supported by US-NSF Grants PHY-1404343 and PHY-1204486.

  8. Cartesian coupled coherent states simulations: Ne(n)Br2 dissociation as a test case.

    Science.gov (United States)

    Reed, Stewart K; González-Martínez, Maykel L; Rubayo-Soneira, Jesús; Shalashilin, Dmitrii V

    2011-02-07

    In this article, we describe coupled coherent states (CCS) simulations of vibrational predissociation of weakly bounded complexes. The CCS method is implemented in the Cartesian frame in a manner that is similar to classical molecular dynamics. The calculated lifetimes of the vibrationally excited Ne-Br(2)(ν) complexes agree with experiment and previous calculations. Although the CCS method is, in principle, a fully quantum approach, in practice it typically becomes a semiclassical technique at long times. This is especially true following dissociation events. Consequently, it is very difficult to converge the quantum calculations of the final Br(2) vibrational distributions after predissociation and of the autocorrelation functions. However, the main advantage of the method is that it can be applied with relative ease to determine the lifetimes of larger complexes and, in order to demonstrate this, preliminary results for tetra- and penta-atomic clusters are reported.

  9. Molecular Vibration-Activity Relationship in the Agonism of Adenosine Receptors

    OpenAIRE

    Chee, Hyun Keun; Oh, S. June

    2013-01-01

    The molecular vibration-activity relationship in the receptor-ligand interaction of adenosine receptors was investigated by structure similarity, molecular vibration, and hierarchical clustering in a dataset of 46 ligands of adenosine receptors. The resulting dendrogram was compared with those of another kind of fingerprint or descriptor. The dendrogram result produced by corralled intensity of molecular vibrational frequency outperformed four other analyses in the current study of adenosine ...

  10. Electronic structure of the BiSI cluster

    Energy Technology Data Exchange (ETDEWEB)

    Audzijonis, A. [Department of Physics, Vilnius Pedagogical University, Studentu 39, LT-08106 Vilnius (Lithuania); Gaigalas, G. [Department of Physics, Vilnius Pedagogical University, Studentu 39, LT-08106 Vilnius (Lithuania); Institute of Theoretical Physics and Astronomy, Vilnius University, A. Gostauto 12, LT-01108 Vilnius (Lithuania); Zigas, L. [Department of Physics, Vilnius Pedagogical University, Studentu 39, LT-08106 Vilnius (Lithuania)]. E-mail: kkol@vpu.lt; Pauliukas, A. [Department of Physics, Vilnius Pedagogical University, Studentu 39, LT-08106 Vilnius (Lithuania); Zaltauskas, R. [Department of Physics, Vilnius Pedagogical University, Studentu 39, LT-08106 Vilnius (Lithuania); Cerskus, A. [Department of Physics, Vilnius Pedagogical University, Studentu 39, LT-08106 Vilnius (Lithuania); Narusis, J. [Department of Physics, Vilnius Pedagogical University, Studentu 39, LT-08106 Vilnius (Lithuania); Institute of Theoretical Physics and Astronomy, Vilnius University, A. Gostauto 12, LT-01108 Vilnius (Lithuania); Kvedaravicius, A. [Department of Physics, Vilnius Pedagogical University, Studentu 39, LT-08106 Vilnius (Lithuania)

    2007-03-15

    The energy levels of valence bands (VB) and core levels (CL) of the BiSI crystals have been investigated theoretically. The molecular model of this crystal was used for calculation of VB and CL by the unrestricted Hartree-Fock method using GAMESS program, with Hw and MINI basis set. The molecular cluster consisting of 20 molecules of BiSI was used for calculations of averaged total density of states including atom vibrations. The spectra of averaged total density of states from VB of BiSI cluster has been compared with experimental X-ray photoelectron spectra (XPS) of VB of SbSI crystal. The results clarify that the atomic vibrations is one of possible reasons for the smoother appearance of the experimental XPS. The investigation of vibrational spectrum reveals new experimental information about the reflection spectrum of BiSI crystals. The cluster model calculations have shown that the splitting of the CL in the BiSI may be caused by the photoelectron emission from the atoms at the surface that is in different valence states. The cluster model calculation showed that splitting energy of CL depends on difference of ionic charges of the same atoms at the edges of BiSI cluster.

  11. Electronic structure of the BiSI cluster

    International Nuclear Information System (INIS)

    Audzijonis, A.; Gaigalas, G.; Zigas, L.; Pauliukas, A.; Zaltauskas, R.; Cerskus, A.; Narusis, J.; Kvedaravicius, A.

    2007-01-01

    The energy levels of valence bands (VB) and core levels (CL) of the BiSI crystals have been investigated theoretically. The molecular model of this crystal was used for calculation of VB and CL by the unrestricted Hartree-Fock method using GAMESS program, with Hw and MINI basis set. The molecular cluster consisting of 20 molecules of BiSI was used for calculations of averaged total density of states including atom vibrations. The spectra of averaged total density of states from VB of BiSI cluster has been compared with experimental X-ray photoelectron spectra (XPS) of VB of SbSI crystal. The results clarify that the atomic vibrations is one of possible reasons for the smoother appearance of the experimental XPS. The investigation of vibrational spectrum reveals new experimental information about the reflection spectrum of BiSI crystals. The cluster model calculations have shown that the splitting of the CL in the BiSI may be caused by the photoelectron emission from the atoms at the surface that is in different valence states. The cluster model calculation showed that splitting energy of CL depends on difference of ionic charges of the same atoms at the edges of BiSI cluster

  12. Communication: spin-orbit splittings in degenerate open-shell states via Mukherjee's multireference coupled-cluster theory: a measure for the coupling contribution.

    Science.gov (United States)

    Mück, Leonie Anna; Gauss, Jürgen

    2012-03-21

    We propose a generally applicable scheme for the computation of spin-orbit (SO) splittings in degenerate open-shell systems using multireference coupled-cluster (MRCC) theory. As a specific method, Mukherjee's version of MRCC (Mk-MRCC) in conjunction with an effective mean-field SO operator is adapted for this purpose. An expression for the SO splittings is derived and implemented using Mk-MRCC analytic derivative techniques. The computed SO splittings are found to be in satisfactory agreement with experimental data. Due to the symmetry properties of the SO operator, SO splittings can be considered a quality measure for the coupling between reference determinants in Jeziorski-Monkhorst based MRCC methods. We thus provide numerical insights into the coupling problem of Mk-MRCC theory. © 2012 American Institute of Physics

  13. Biorthogonal moment expansions in coupled-cluster theory: Review of key concepts and merging the renormalized and active-space coupled-cluster methods

    International Nuclear Information System (INIS)

    Shen Jun; Piecuch, Piotr

    2012-01-01

    Graphical abstract: The key ideas behind biorthogonal moment expansions in coupled-cluster theory are discussed. Methods that enable merging active-space and renormalized coupled-cluster approaches are proposed and tested. Abstract: After reviewing recent progress in the area of the development of coupled-cluster (CC) methods for quasi-degenerate electronic states that are characterized by stronger non-dynamical correlation effects, including new generations of single- and multi-reference approaches that can handle bond breaking and excited states dominated by many-electron transitions, and after discussing the key elements of the left-eigenstate completely renormalized (CR) CC and equation-of-motion (EOM) CC methods, and the underlying biorthogonal method of moments of CC (MMCC) equations [P. Piecuch, M. Włoch, J. Chem. Phys. 123 (2005) 224105; P. Piecuch, M. Włoch, J.R. Gour, A. Kinal, Chem. Phys. Lett. 418 (2006) 467; M. Włoch, M.D. Lodriguito, P. Piecuch, J.R. Gour, Mol. Phys. 104 (2006) 2149], it is argued that it is beneficial to merge the CR-CC/EOMCC and active-space CC/EOMCC [P. Piecuch, Mol. Phys. 108 (2010) 2987, and references therein] theories into a single formalism. In order to accomplish this goal, the biorthogonal MMCC theory, which provides compact many-body expansions for the differences between the full configuration interaction and CC or, in the case of excited states, EOMCC energies, obtained using conventional truncation schemes in the cluster operator T and excitation operator R μ , is generalized, so that one can correct the CC/EOMCC energies obtained with arbitrary truncations in T and R μ for the selected many-electron correlation effects of interest. The resulting moment expansions, defining the new, Flexible MMCC (Flex-MMCC) formalism, and the ensuing CC(P; Q) hierarchy, proposed in the present work, enable one to correct energies obtained in the active-space CC and EOMCC calculations, in which one selects higher many

  14. Novel active vibration absorber with magnetorheological fluid

    Energy Technology Data Exchange (ETDEWEB)

    Gerlach, T; Ehrlich, J; Boese, H [Fraunhofer-Institut fuer Silicatforschung ISC, Neunerplatz 2, D-97082 Wuerzburg (Germany)], E-mail: thomas.gerlach@isc.fraunhofer.de

    2009-02-01

    Disturbing vibrations diminish the performance of technical high precision devices significantly. In search of a suitable solution for reducing these vibrations, a novel concept of active vibration reduction was developed which exploits the special properties of magnetorheological fluids. In order to evaluate the concept of such an active vibration absorber (AVA) a demonstrator was designed and manufactured. This demonstrator generates a force which counteracts the motion of the vibrating body. Since the counterforce is generated by a centrifugal exciter, the AVA provides the capability to compensate vibrations even in two dimensions. To control the strength of the force transmitted to the vibrating body, the exciter is based on a tunable MR coupling. The AVA was integrated in an appropriate testing device to investigate its performance. The recorded results show a significant reduction of the vibration amplitudes by an order of magnitude.

  15. Properties of coupled-cluster equations originating in excitation sub-algebras

    Science.gov (United States)

    Kowalski, Karol

    2018-03-01

    In this paper, we discuss properties of single-reference coupled cluster (CC) equations associated with the existence of sub-algebras of excitations that allow one to represent CC equations in a hybrid fashion where the cluster amplitudes associated with these sub-algebras can be obtained by solving the corresponding eigenvalue problem. For closed-shell formulations analyzed in this paper, the hybrid representation of CC equations provides a natural way for extending active-space and seniority number concepts to provide an accurate description of electron correlation effects. Moreover, a new representation can be utilized to re-define iterative algorithms used to solve CC equations, especially for tough cases defined by the presence of strong static and dynamical correlation effects. We will also explore invariance properties associated with excitation sub-algebras to define a new class of CC approximations referred to in this paper as the sub-algebra-flow-based CC methods. We illustrate the performance of these methods on the example of ground- and excited-state calculations for commonly used small benchmark systems.

  16. Modeling of a fluid-loaded smart shell structure for active noise and vibration control using a coupled finite element–boundary element approach

    International Nuclear Information System (INIS)

    Ringwelski, S; Gabbert, U

    2010-01-01

    A recently developed approach for the simulation and design of a fluid-loaded lightweight structure with surface-mounted piezoelectric actuators and sensors capable of actively reducing the sound radiation and the vibration is presented. The objective of this paper is to describe the theoretical background of the approach in which the FEM is applied to model the actively controlled shell structure. The FEM is also employed to model finite fluid domains around the shell structure as well as fluid domains that are partially or totally bounded by the structure. Boundary elements are used to characterize the unbounded acoustic pressure fields. The approach presented is based on the coupling of piezoelectric and acoustic finite elements with boundary elements. A coupled finite element–boundary element model is derived by introducing coupling conditions at the fluid–fluid and fluid–structure interfaces. Because of the possibility of using piezoelectric patches as actuators and sensors, feedback control algorithms can be implemented directly into the multi-coupled structural–acoustic approach to provide a closed-loop model for the design of active noise and vibration control. In order to demonstrate the applicability of the approach developed, a number of test simulations are carried out and the results are compared with experimental data. As a test case, a box-shaped shell structure with surface-mounted piezoelectric actuators and four sensors and an open rearward end is considered. A comparison between the measured values and those predicted by the coupled finite element–boundary element model shows a good agreement

  17. Thermal noise and the incessant vibration of the outer hair cells in the cochlea

    Directory of Open Access Journals (Sweden)

    W. Fritze

    1998-01-01

    Full Text Available The continual exposure of outer hair cells (OHCs to thermal noise causes vibrations in resonant frequency. As these vibrations are backprojected, they should be recordable as audiofrequencies in the outer ear canal. But even though they are likely to be amplified in some areas by clustering in terms of the chaos theory, they cannot be picked up in the outer ear canal by currently available recording technologies. Conditions change in the presence of pathology, e.g. loss of OHCs and fibrous replacement: Clusters grow in size and amplitudes become larger so that the vibrations can be picked up as spontaneous oto-acoustic emissions (SOAEs in the outer ear canal. Efforts are needed to demonstrate the presence of physiological OHC vibrations (emission by incessant vibration, EIV by processing auditory recordings with statistical methods.

  18. Impact Analysis of Roller System Stability for Four-High Mill Horizontal Vibration

    Directory of Open Access Journals (Sweden)

    Xiao-bin Fan

    2016-01-01

    Full Text Available In order to study the hot Compact Strip Production (CSP, four-high mill vibration characteristics, and vibration suppression method, the roller system structure stability was analyzed and calculated at first in the paper. And then, the mill stand gap was measured at field and its influence on roll transverse vibration was analyzed. The drum gear coupling effect on the roller system stability and the automatic balance conditions of the coupling transmission torque were studied; the influence of axial force caused by the roller cross on the system stability was analyzed. Finally, the roller transverse friction chatter vibration mechanics model was established; the simulation analysis was carried out with eliminating mill house-bearing clearance and adding floating support for coupling, respectively. And the characteristics of the roller “jump vibration” were studied. We applied copper gaskets to eliminate or reduce mill house-bearing clearance for suppressing the rolling mill vibration on the spot; the test results show that the roller transverse vibration was suppressed after eliminating clearance.

  19. Vibration of liquid-filled thin shells

    International Nuclear Information System (INIS)

    Kalnins, A.

    1979-01-01

    This paper describes the analysis of free and forced vibration of a thin, axisymmetric shell, which contains some liquid. The axis of symmetry is vertical. Only such vibration is considered which can be produced by a horizontal movement of the base of shell. The objective of this paper is to examine the response of the coupled shell-liquid system for a frequency range lying between zero and the lowest natural sloshing frequency of the liquid. The mass of the liquid is modeled by a stationary and one or more sloshing masses. It is shown how the stationary mass can be incorporated in the vibration analysis of the shell and how to natural frequency of the coupled shell-liquid system can be obtained from a simple formula, if the lowest natural frequency of the shell, plus the stationary mass of the liquid, can be determined. A numerical example is given. (orig.)

  20. Linked cluster expansion in the SU(2) lattice Higgs model at strong gauge coupling

    International Nuclear Information System (INIS)

    Wagner, C.E.M.

    1989-01-01

    A linked cluster expansion is developed for the β=0 limit of the SU(2) Higgs model. This method, when combined with strong gauge coupling expansions, is used to obtain the phase transition surface and the behaviour of scalar and vector masses in the lattice regularized theory. The method, in spite of the low order of truncation of the series applied, gives a reasonable agreement with Monte Carlo data for the phase transition surface and a qualitatively good picture of the behaviour of Higgs, glueball and gauge vector boson masses, in the strong coupling limit. Some limitations of the method are discussed, and an intuitive picture of the different behaviour for small and large bare self-coupling λ is given. (orig.)

  1. Molecular couplings and energy exchange between DNA and water mapped by femtosecond infrared spectroscopy of backbone vibrations

    Directory of Open Access Journals (Sweden)

    Yingliang Liu

    2017-07-01

    Full Text Available Molecular couplings between DNA and water together with the accompanying processes of energy exchange are mapped via the ultrafast response of DNA backbone vibrations after OH stretch excitation of the water shell. Native salmon testes DNA is studied in femtosecond pump-probe experiments under conditions of full hydration and at a reduced hydration level with two water layers around the double helix. Independent of their local hydration patterns, all backbone vibrations in the frequency range from 940 to 1120 cm–1 display a quasi-instantaneous reshaping of the spectral envelopes of their fundamental absorption bands upon excitation of the water shell. The subsequent reshaping kinetics encompass a one-picosecond component, reflecting the formation of a hot ground state of the water shell, and a slower contribution on a time scale of tens of picoseconds. Such results are benchmarked by measurements with resonant excitation of the backbone modes, resulting in distinctly different absorption changes. We assign the fast changes of DNA absorption after OH stretch excitation to structural changes in the water shell which couple to DNA through the local electric fields. The second slower process is attributed to a flow of excess energy from the water shell into DNA, establishing a common heated ground state in the molecular ensemble. This interpretation is supported by theoretical calculations of the electric fields exerted by the water shell at different temperatures.

  2. Computational Fluid Dynamic Analysis of a Vibrating Turbine Blade

    Directory of Open Access Journals (Sweden)

    Osama N. Alshroof

    2012-01-01

    Full Text Available This study presents the numerical fluid-structure interaction (FSI modelling of a vibrating turbine blade using the commercial software ANSYS-12.1. The study has two major aims: (i discussion of the current state of the art of modelling FSI in gas turbine engines and (ii development of a “tuned” one-way FSI model of a vibrating turbine blade to investigate the correlation between the pressure at the turbine casing surface and the vibrating blade motion. Firstly, the feasibility of the complete FSI coupled two-way, three-dimensional modelling of a turbine blade undergoing vibration using current commercial software is discussed. Various modelling simplifications, which reduce the full coupling between the fluid and structural domains, are then presented. The one-way FSI model of the vibrating turbine blade is introduced, which has the computational efficiency of a moving boundary CFD model. This one-way FSI model includes the corrected motion of the vibrating turbine blade under given engine flow conditions. This one-way FSI model is used to interrogate the pressure around a vibrating gas turbine blade. The results obtained show that the pressure distribution at the casing surface does not differ significantly, in its general form, from the pressure at the vibrating rotor blade tip.

  3. Direct assignment of molecular vibrations via normal mode analysis of the neutron dynamic pair distribution function technique

    International Nuclear Information System (INIS)

    Fry-Petit, A. M.; Sheckelton, J. P.; McQueen, T. M.; Rebola, A. F.; Fennie, C. J.; Mourigal, M.; Valentine, M.; Drichko, N.

    2015-01-01

    For over a century, vibrational spectroscopy has enhanced the study of materials. Yet, assignment of particular molecular motions to vibrational excitations has relied on indirect methods. Here, we demonstrate that applying group theoretical methods to the dynamic pair distribution function analysis of neutron scattering data provides direct access to the individual atomic displacements responsible for these excitations. Applied to the molecule-based frustrated magnet with a potential magnetic valence-bond state, LiZn 2 Mo 3 O 8 , this approach allows direct assignment of the constrained rotational mode of Mo 3 O 13 clusters and internal modes of MoO 6 polyhedra. We anticipate that coupling this well known data analysis technique with dynamic pair distribution function analysis will have broad application in connecting structural dynamics to physical properties in a wide range of molecular and solid state systems

  4. Implementation of the multireference Brillouin-Wigner and Mukherjee’s coupled cluster methods with non-iterative triple excitations utilizing reference-level parallelism

    Energy Technology Data Exchange (ETDEWEB)

    Bhaskaran-Nair, Kiran; Brabec, Jiri; Apra, Edoardo; van Dam, Hubertus JJ; Pittner, Jiri; Kowalski, Karol

    2012-09-07

    In this paper we discuss the performance of the non-iterative State-Specific Mul- tireference Coupled Cluster (SS-MRCC) methods accounting for the effect of triply excited cluster amplitudes. The corrections to the Brillouin-Wigner and Mukherjee MRCC models based on the manifold of singly and doubly excited cluster amplitudes (BW-MRCCSD and Mk-MRCCSD, respectively) are tested and compared with the exact full configuration interaction results (FCI) for small systems (H2O, N2, and Be3). For larger systems (naphthyne isomers and -carotene), the non-iterative BW-MRCCSD(T) and Mk-MRCCSD(T) methods are compared against the results obtained with the single reference coupled cluster methods. We also report on the parallel performance of the non-iterative implementations based on the use of pro- cessor groups.

  5. Rayleigh Scattering Density Measurements, Cluster Theory, and Nucleation Calculations at Mach 10

    Science.gov (United States)

    Balla, R. Jeffrey; Everhart, Joel L.

    2012-01-01

    In an exploratory investigation, quantitative unclustered laser Rayleigh scattering measurements of density were performed in the air in the NASA Langley Research Center's 31 in. Mach 10 wind tunnel. A review of 20 previous years of data in supersonic and Mach 6 hypersonic flows is presented where clustered signals typically overwhelmed molecular signals. A review of nucleation theory and accompanying nucleation calculations are also provided to interpret the current observed lack of clustering. Data were acquired at a fixed stagnation temperature near 990Kat five stagnation pressures spanning 2.41 to 10.0 MPa (350 to 1454 psi) using a pulsed argon fluoride excimer laser and double-intensified charge-coupled device camera. Data averaged over 371 images and 210 pixels along a 36.7mmline measured freestream densities that agree with computed isentropic-expansion densities to less than 2% and less than 6% at the highest and lowest densities, respectively. Cluster-free Mach 10 results are compared with previous clustered Mach 6 and condensation-free Mach 14 results. Evidence is presented indicating vibrationally excited oxygen and nitrogen molecules are absorbed as the clusters form, release their excess energy, and inhibit or possibly reverse the clustering process. Implications for delaying clustering and condensation onset in hypersonic and hypervelocity facilities are discussed.

  6. Gold Cluster Diffusion Kinetics on Stoichiometric and Reduced Surfaces of Rutile TiO 2 (110)

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, Nir; Browning, Nigel D.

    2011-06-16

    Gold clusters on rutile TiO2 are known to serve as efficient oxidation catalysts for pollutants and environmental contaminants. However, the mechanism by which highly mobile small clusters migrate and aggregate into larger species relevant to gold’s catalytic activity remains unresolved. We report herein on ab initio simulations of the diffusion of atomic gold clusters up to the trimer on rutile TiO2(110) surfaces. We show that, on the stoichiometric surface, both the dimer and the trimer can exhibit relatively low surface mobility due to high energetic barriers for diffusion out of their energetic minima coupled with low barriers for the reverse motion. On the reduced surface, these clusters can diffuse relatively quickly between energetic minima within the oxygen vacancy site due to the large degree of vibrational entropy in their transition states. Our computed diffusion times provide a point of comparison for future experiments and will aid in development of models of gold cluster island sintering.

  7. Quantum optics meets quantum many-body theory: coupled cluster studies of the Rabi Hamiltonian

    International Nuclear Information System (INIS)

    Davidson, N.J.; Quick, R.M.; Bishop, R.F.; Van der Walt, D.M.

    1998-01-01

    The Rabi Hamiltonian, which describes the interaction of a single mode of electromagnetic radiation with a two level system, is one of the fundamental models of quantum optics. It is also of wider interest as it provides a generic model for the interaction of bosons and fermions. To allow for a systematic analysis of the strong-coupling behaviour, we have applied the coupled cluster method (CCM) to the Rabi Hamiltonian to calculate its spectrum. We find strong evidence for the existence of a somewhat subtle quantum phase transition. (Copyright (1998) World Scientific Publishing Co. Pte. Ltd)

  8. Coupled channel analysis of the 142Ce (α,α)142Ce* reaction: study of a vibrational-rotational transition nucleus

    International Nuclear Information System (INIS)

    Appoloni, C.R.

    1983-01-01

    The angular distribution of the elastic and inelastic scattering of a particles corresponding to the excitation of the low-lying collective states of 142 Ce were measured at an incident energy of 18.0 MeV. The angular distribution of the following excited states were obtained: 641, 1.219, 1.450, 1.536, 1.653, 1.742, 2.004, 2.043, 2.114, 2.125, 2.279, 2.364, 2.542, 2.604 e 3.067 MeV. The angular distributions of the ground state and the first six excited states were analysed within the flamework of the Anharmonic Vibrational and Symmetric Rotational Models, with the Coupled Channel Theory. The Anharmonic Vibrational Model gave the best and most complete description of the experimental data. The wave functions and the deformation parameters of the analysed states were determined. (Author) [pt

  9. The vibrating reed frequency meter: digital investigation of an early cochlear model

    Directory of Open Access Journals (Sweden)

    Andrew Bell

    2015-10-01

    Full Text Available The vibrating reed frequency meter, originally employed by Békésy and later by Wilson as a cochlear model, uses a set of tuned reeds to represent the cochlea’s graded bank of resonant elements and an elastic band threaded between them to provide nearest-neighbour coupling. Here the system, constructed of 21 reeds progressively tuned from 45 to 55 Hz, is simulated numerically as an elastically coupled bank of passive harmonic oscillators driven simultaneously by an external sinusoidal force. To uncover more detail, simulations were extended to 201 oscillators covering the range 1–2 kHz. Calculations mirror the results reported by Wilson and show expected characteristics such as traveling waves, phase plateaus, and a response with a broad peak at a forcing frequency just above the natural frequency. The system also displays additional fine-grain features that resemble those which have only recently been recognised in the cochlea. Thus, detailed analysis brings to light a secondary peak beyond the main peak, a set of closely spaced low-amplitude ripples, rapid rotation of phase as the driving frequency is swept, frequency plateaus, clustering, and waxing and waning of impulse responses. Further investigation shows that each reed’s vibrations are strongly localised, with small energy flow along the chain. The distinctive set of equally spaced ripples is an inherent feature which is found to be largely independent of boundary conditions. Although the vibrating reed model is functionally different to the standard transmission line, its cochlea-like properties make it an intriguing local oscillator model whose relevance to cochlear mechanics needs further investigation.

  10. selective excitation of vibrational modes of polyatomic molecule

    Indian Academy of Sciences (India)

    Abstract. Mode-selective dynamics of triatomic molecule in the electronic ground state under continuous wave laser pulse is investigated for the discrete vibrational bound states. A non-perturbative approach has been used to analyse the vibrational couplings and dynamics of the molecule. Keywords. Polyatomic molecule ...

  11. PREFACE: Vibrations at surfaces Vibrations at surfaces

    Science.gov (United States)

    Rahman, Talat S.

    2011-12-01

    This special issue is dedicated to the phenomenon of vibrations at surfaces—a topic that was indispensible a couple of decades ago, since it was one of the few phenomena capable of revealing the nature of binding at solid surfaces. For clean surfaces, the frequencies of modes with characteristic displacement patterns revealed how surface geometry, as well as the nature of binding between atoms in the surface layers, could be different from that in the bulk solid. Dispersion of the surface phonons provided further measures of interatomic interactions. For chemisorbed molecules on surfaces, frequencies and dispersion of the vibrational modes were also critical for determining adsorption sites. In other words, vibrations at surfaces served as a reliable means of extracting information about surface structure, chemisorption and overlayer formation. Experimental techniques, such as electron energy loss spectroscopy and helium-atom-surface scattering, coupled with infra-red spectroscopy, were continually refined and their resolutions enhanced to capture subtleties in the dynamics of atoms and molecules at surfaces. Theoretical methods, whether based on empirical and semi-empirical interatomic potential or on ab initio electronic structure calculations, helped decipher experimental observations and provide deeper insights into the nature of the bond between atoms and molecules in regions of reduced symmetry, as encountered on solid surfaces. Vibrations at surfaces were thus an integral part of the set of phenomena that characterized surface science. Dedicated workshops and conferences were held to explore the variety of interesting and puzzling features revealed in experimental and theoretical investigations of surface vibrational modes and their dispersion. One such conference, Vibrations at Surfaces, first organized by Harald Ibach in Juelich in 1980, continues to this day. The 13th International Conference on Vibrations at Surfaces was held at the University of

  12. The outbreak of SARS mirrored by bibliometric mapping: Combining bibliographic coupling with the complete link cluster method

    Directory of Open Access Journals (Sweden)

    Bo Jarneving

    2007-01-01

    Full Text Available In this study a novel method of science mapping is presented which combines bibliographic coupling, as a measure of document-document similarity, with an agglomerative hierarchical cluster method. The focus in this study is on the mapping of so called ‘core documents’, a concept presented first in 1995 by Glänzel and Czerwon. The term ‘core document’ denote documents that have a central position in the research front in terms of many and strong bibliographic coupling links. The identification and mapping of core documents usually requires a large multidisciplinary research setting and in this study the 2003 volume of the Science Citation Index was applied. From this database, a sub-set of core documents reporting on the outbreak of SARS in 2002 was chosen for the demonstration of the application of this mapping method. It was demonstrated that the method, in this case, successfully identified interpretable research themes and that iterative clustering on two subsequent levels of cluster agglomeration may provide with useful and current information.

  13. Study on Fluid-Induced Vibration Power Harvesting of Square Columns under Different Attack Angles

    Directory of Open Access Journals (Sweden)

    Meng Zhang

    2017-01-01

    Full Text Available A model of the flow-vibration-electrical circuit multiphysical coupling system for solving square column vortex-induced vibration piezoelectric energy harvesting (VIVPEH is proposed in this paper. The quasi steady state theory is adopted to describe the fluid solid coupling process of vortex-induced vibration based on the finite volume method coupled Gauss equation. The vibrational response and the quasi steady state form of the output voltage are solved by means of the matrix coefficient method and interactive computing. The results show that attack angles play an important role in the performance of square column VIVPEH, of which α=45° is a relatively ideal attack angle of square column VIVPEH.

  14. Nodeless vibrational amplitudes and quantum nonadiabatic dynamics in the nested funnel for a pseudo Jahn-Teller molecule or homodimer

    Science.gov (United States)

    Peters, William K.; Tiwari, Vivek; Jonas, David M.

    2017-11-01

    The nonadiabatic states and dynamics are investigated for a linear vibronic coupling Hamiltonian with a static electronic splitting and weak off-diagonal Jahn-Teller coupling through a single vibration with a vibrational-electronic resonance. With a transformation of the electronic basis, this Hamiltonian is also applicable to the anti-correlated vibration in a symmetric homodimer with marginally strong constant off-diagonal coupling, where the non-adiabatic states and dynamics model electronic excitation energy transfer or self-exchange electron transfer. For parameters modeling a free-base naphthalocyanine, the nonadiabatic couplings are deeply quantum mechanical and depend on wavepacket width; scalar couplings are as important as the derivative couplings that are usually interpreted to depend on vibrational velocity in semiclassical curve crossing or surface hopping theories. A colored visualization scheme that fully characterizes the non-adiabatic states using the exact factorization is developed. The nonadiabatic states in this nested funnel have nodeless vibrational factors with strongly avoided zeroes in their vibrational probability densities. Vibronic dynamics are visualized through the vibrational coordinate dependent density of the time-dependent dipole moment in free induction decay. Vibrational motion is amplified by the nonadiabatic couplings, with asymmetric and anisotropic motions that depend upon the excitation polarization in the molecular frame and can be reversed by a change in polarization. This generates a vibrational quantum beat anisotropy in excess of 2/5. The amplitude of vibrational motion can be larger than that on the uncoupled potentials, and the electronic population transfer is maximized within one vibrational period. Most of these dynamics are missed by the adiabatic approximation, and some electronic and vibrational motions are completely suppressed by the Condon approximation of a coordinate-independent transition dipole between

  15. Mathematical model for cross-flow-induced vibrations of tube rows

    International Nuclear Information System (INIS)

    Chen, S.S.

    1976-09-01

    A mathematical model for flow-induced vibrations in heat exchanger tube banks is presented which includes the effects of vortex shedding, fluidelastic coupling, drag force, and fluid inertia coupling. Once the fluid forces are known, the model can predict the details of complex tube-fluid interactions: (1) natural frequencies and mode shapes of coupled vibrations; (2) critical flow velocities; (3) responses to vortex shedding, drag force, and other types of excitations; and (4) the dominant excitation mechanism at a given flow velocity. The analytical results are in good agreement with the published experimental results

  16. On the accuracy of the MB-pol many-body potential for water: Interaction energies, vibrational frequencies, and classical thermodynamic and dynamical properties from clusters to liquid water and ice

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, Sandeep K.; Straight, Shelby C.; Bajaj, Pushp; Huy Pham, C.; Riera, Marc; Moberg, Daniel R.; Morales, Miguel A.; Knight, Chris; Götz, Andreas W.; Paesani, Francesco

    2016-11-21

    The MB-pol many-body potential has recently emerged as an accurate molecular model for water simulations from the gas to the condensed phase. In this study, the accuracy of MB-pol is systematically assessed across the three phases of water through extensive comparisons with experimental data and high-level ab initio calculations. Individual many-body contributions to the interaction energies as well as vibrational spectra of water clusters calculated with MB-pol are in excellent agreement with reference data obtained at the coupled cluster level. Several structural, thermodynamic, and dynamical properties of the liquid phase at atmospheric pressure are investigated through classical molecular dynamics simulations as a function of temperature. The structural properties of the liquid phase are in nearly quantitative agreement with X-ray diffraction data available over the temperature range from 268 to 368 K. The analysis of other thermodynamic and dynamical quantities emphasizes the importance of explicitly including nuclear quantum effects in the simulations, especially at low temperature, for a physically correct description of the properties of liquid water. Furthermore, both densities and lattice energies of several ice phases are also correctly reproduced by MB-pol. Following a recent study of DFT models for water, a score is assigned to each computed property, which demonstrates the high and, in many respects, unprecedented accuracy of MB-pol in representing all three phases of water. Published by AIP Publishing.

  17. Calculations of non-adiabatic couplings within equation-of-motion coupled-cluster framework: Theory, implementation, and validation against multi-reference methods

    Science.gov (United States)

    Faraji, Shirin; Matsika, Spiridoula; Krylov, Anna I.

    2018-01-01

    We report an implementation of non-adiabatic coupling (NAC) forces within the equation-of-motion coupled-cluster with single and double excitations (EOM-CCSD) framework via the summed-state approach. Using illustrative examples, we compare NAC forces computed with EOM-CCSD and multi-reference (MR) wave functions (for selected cases, we also consider configuration interaction singles). In addition to the magnitude of the NAC vectors, we analyze their direction, which is important for the calculations of the rate of non-adiabatic transitions. Our benchmark set comprises three doublet radical-cations (hexatriene, cyclohexadiene, and uracil), neutral uracil, and sodium-doped ammonia clusters. When the characters of the states agree among different methods, we observe good agreement between the respective NAC vectors, both in the Franck-Condon region and away. In the cases of large discrepancies between the methods, the disagreement can be attributed to the difference in the states' character, which, in some cases, is very sensitive to electron correlation, both within single-reference and multi-reference frameworks. The numeric results confirm that the accuracy of NAC vectors depends critically on the quality of the underlying wave functions. Within their domain of applicability, EOM-CC methods provide a viable alternative to MR approaches.

  18. Study on the Vehicle Dynamic Load Considering the Vehicle-Pavement Coupled Effect

    Science.gov (United States)

    Xu, H. L.; He, L.; An, D.

    2017-11-01

    The vibration of vehicle-pavement interaction system is sophisticated random vibration process and the vehicle-pavement coupled effect was not considered in the previous study. A new linear elastic model of the vehicle-pavement coupled system was established in the paper. The new model was verified with field measurement which could reflect the real vibration between vehicle and pavement. Using the new model, the study on the vehicle dynamic load considering the vehicle-pavement coupled effect showed that random forces (centralization) between vehicle and pavement were influenced largely by vehicle-pavement coupled effect. Numerical calculation indicated that the maximum of random forces in coupled model was 2.4 times than that in uncoupled model. Inquiring the reason, it was found that the main vibration frequency of the vehicle non-suspension system was similar with that of the vehicle suspension system in the coupled model and the resonance vibration lead to vehicle dynamic load increase significantly.

  19. Carbon X-ray absorption spectra of fluoroethenes and acetone: a study at the coupled cluster, density functional, and static-exchange levels of theory.

    Science.gov (United States)

    Fransson, Thomas; Coriani, Sonia; Christiansen, Ove; Norman, Patrick

    2013-03-28

    Near carbon K-edge X-ray absorption fine structure spectra of a series of fluorine-substituted ethenes and acetone have been studied using coupled cluster and density functional theory (DFT) polarization propagator methods, as well as the static-exchange (STEX) approach. With the complex polarization propagator (CPP) implemented in coupled cluster theory, relaxation effects following the excitation of core electrons are accounted for in terms of electron correlation, enabling a systematic convergence of these effects with respect to electron excitations in the cluster operator. Coupled cluster results have been used as benchmarks for the assessment of propagator methods in DFT as well as the state-specific static-exchange approach. Calculations on ethene and 1,1-difluoroethene illustrate the possibility of using nonrelativistic coupled cluster singles and doubles (CCSD) with additional effects of electron correlation and relativity added as scalar shifts in energetics. It has been demonstrated that CPP spectra obtained with coupled cluster singles and approximate doubles (CC2), CCSD, and DFT (with a Coulomb attenuated exchange-correlation functional) yield excellent predictions of chemical shifts for vinylfluoride, 1,1-difluoroethene, trifluoroethene, as well as good spectral features for acetone in the case of CCSD and DFT. Following this, CPP-DFT is considered to be a viable option for the calculation of X-ray absorption spectra of larger π-conjugated systems, and CC2 is deemed applicable for chemical shifts but not for studies of fine structure features. The CCSD method as well as the more approximate CC2 method are shown to yield spectral features relating to π∗-resonances in good agreement with experiment, not only for the aforementioned molecules but also for ethene, cis-1,2-difluoroethene, and tetrafluoroethene. The STEX approach is shown to underestimate π∗-peak separations due to spectral compressions, a characteristic which is inherent to this

  20. Development and Application of Single-Referenced Perturbation and Coupled-Cluster Theories for Excited Electronic States

    Science.gov (United States)

    Lee, Timothy J.; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    Recent work on the development of single-reference perturbation theories for the study of excited electronic states will be discussed. The utility of these methods will be demonstrated by comparison to linear-response coupled-cluster excitation energies. Results for some halogen molecules of interest in stratospheric chemistry will be presented.

  1. Polynomial Similarity Transformation Theory: A smooth interpolation between coupled cluster doubles and projected BCS applied to the reduced BCS Hamiltonian

    Energy Technology Data Exchange (ETDEWEB)

    Degroote, M. [Rice Univ., Houston, TX (United States); Henderson, T. M. [Rice Univ., Houston, TX (United States); Zhao, J. [Rice Univ., Houston, TX (United States); Dukelsky, J. [Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain). Inst. de Estructura de la Materia; Scuseria, G. E. [Rice Univ., Houston, TX (United States)

    2018-01-03

    We present a similarity transformation theory based on a polynomial form of a particle-hole pair excitation operator. In the weakly correlated limit, this polynomial becomes an exponential, leading to coupled cluster doubles. In the opposite strongly correlated limit, the polynomial becomes an extended Bessel expansion and yields the projected BCS wavefunction. In between, we interpolate using a single parameter. The e ective Hamiltonian is non-hermitian and this Polynomial Similarity Transformation Theory follows the philosophy of traditional coupled cluster, left projecting the transformed Hamiltonian onto subspaces of the Hilbert space in which the wave function variance is forced to be zero. Similarly, the interpolation parameter is obtained through minimizing the next residual in the projective hierarchy. We rationalize and demonstrate how and why coupled cluster doubles is ill suited to the strongly correlated limit whereas the Bessel expansion remains well behaved. The model provides accurate wave functions with energy errors that in its best variant are smaller than 1% across all interaction stengths. The numerical cost is polynomial in system size and the theory can be straightforwardly applied to any realistic Hamiltonian.

  2. Assessment of the accuracy of coupled cluster perturbation theory for open-shell systems. I. Triples expansions.

    Science.gov (United States)

    Eriksen, Janus J; Matthews, Devin A; Jørgensen, Poul; Gauss, Jürgen

    2016-05-21

    The accuracy at which total energies of open-shell atoms and organic radicals may be calculated is assessed for selected coupled cluster perturbative triples expansions, all of which augment the coupled cluster singles and doubles (CCSD) energy by a non-iterative correction for the effect of triple excitations. Namely, the second- through sixth-order models of the recently proposed CCSD(T-n) triples series [J. J. Eriksen et al., J. Chem. Phys. 140, 064108 (2014)] are compared to the acclaimed CCSD(T) model for both unrestricted as well as restricted open-shell Hartree-Fock (UHF/ROHF) reference determinants. By comparing UHF- and ROHF-based statistical results for a test set of 18 modest-sized open-shell species with comparable RHF-based results, no behavioral differences are observed for the higher-order models of the CCSD(T-n) series in their correlated descriptions of closed- and open-shell species. In particular, we find that the convergence rate throughout the series towards the coupled cluster singles, doubles, and triples (CCSDT) solution is identical for the two cases. For the CCSD(T) model, on the other hand, not only its numerical consistency, but also its established, yet fortuitous cancellation of errors breaks down in the transition from closed- to open-shell systems. The higher-order CCSD(T-n) models (orders n > 3) thus offer a consistent and significant improvement in accuracy relative to CCSDT over the CCSD(T) model, equally for RHF, UHF, and ROHF reference determinants, albeit at an increased computational cost.

  3. Assessment of the accuracy of coupled cluster perturbation theory for open-shell systems. I. Triples expansions

    Energy Technology Data Exchange (ETDEWEB)

    Eriksen, Janus J., E-mail: janusje@chem.au.dk; Jørgensen, Poul [qLEAP Center for Theoretical Chemistry, Department of Chemistry, Aarhus University, DK-8000 Aarhus C (Denmark); Matthews, Devin A. [The Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712 (United States); Gauss, Jürgen [Institut für Physikalische Chemie, Johannes Gutenberg-Universität Mainz, D-55128 Mainz (Germany)

    2016-05-21

    The accuracy at which total energies of open-shell atoms and organic radicals may be calculated is assessed for selected coupled cluster perturbative triples expansions, all of which augment the coupled cluster singles and doubles (CCSD) energy by a non-iterative correction for the effect of triple excitations. Namely, the second- through sixth-order models of the recently proposed CCSD(T–n) triples series [J. J. Eriksen et al., J. Chem. Phys. 140, 064108 (2014)] are compared to the acclaimed CCSD(T) model for both unrestricted as well as restricted open-shell Hartree-Fock (UHF/ROHF) reference determinants. By comparing UHF- and ROHF-based statistical results for a test set of 18 modest-sized open-shell species with comparable RHF-based results, no behavioral differences are observed for the higher-order models of the CCSD(T–n) series in their correlated descriptions of closed- and open-shell species. In particular, we find that the convergence rate throughout the series towards the coupled cluster singles, doubles, and triples (CCSDT) solution is identical for the two cases. For the CCSD(T) model, on the other hand, not only its numerical consistency, but also its established, yet fortuitous cancellation of errors breaks down in the transition from closed- to open-shell systems. The higher-order CCSD(T–n) models (orders n > 3) thus offer a consistent and significant improvement in accuracy relative to CCSDT over the CCSD(T) model, equally for RHF, UHF, and ROHF reference determinants, albeit at an increased computational cost.

  4. Coupled Hartree-Fock calculation of {sup 13} C shielding tensors in acetylene clusters

    Energy Technology Data Exchange (ETDEWEB)

    Craw, John Simon; Nascimento, Marco Antonio Chaer [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Quimica

    1992-12-31

    The coupled Hartree Fock method has been used to calculate ab-initio carbon magnetic shielding tensors for small clusters of acetylene molecules. The chemical shift increases from the monomer to the dimer and trimer. This is mainly due increased diamagnetism, which is imperfectly cancelled by increased paramagnetism due to loss of axial symmetry. Anisotropic effects are shown to be small in both the dimer the and trimer. (author) 21 refs., 2 tabs.

  5. Spectroscopy of particle-phonon coupled states in $^{133}$Sb by the cluster transfer reaction of $^{132}$Sn on $^{7}$Li

    CERN Multimedia

    We propose to investigate, with MINIBALL coupled to T-REX, the one-valence-proton $^{133}$Sb nucleus by the cluster transfer reaction of $^{132}$Sn on $^{7}$Li. The excited $^{133}$Sb will be populated by transfer of a triton into $^{132}$Sn, followed by the emission of an $\\alpha$-particle (detected in T-REX) and 2 neutrons. The aim of the experiment is to locate states arising from the coupling of the valence proton of $^{133}$Sb to the collective low-lying phonon excitations of $^{132}$Sn (in particular the 3$^−$). According to calculations in the weak-coupling approach, these states lie in the 4$\\, - \\,$5 MeV excitation energy region and in the spin interval 1/2$\\, - \\,$ 19/2, i.e., in the region populated by the cluster transfer reaction. The results will be used to perform advanced tests of different types of nuclear interactions, usually employed in the description of particle-phonon coupled excitations. States arising from couplings of the proton with simpler core excitations, involving few nucleons...

  6. Active control of annular flow-induced vibration of axisymmetric elastic beam by the local gap width control

    International Nuclear Information System (INIS)

    Takada, Shoji; Shintani, Atsuhiko; Ito, Tomohiro; Fujita, Katsuhisa

    2011-01-01

    Flow-induced vibration may occur in the structures such as elastic beams subjected to annular flow in the narrow passage. Once the flow-induced vibration occurs, vibration amplitude becomes larger, consequently it causes a lot of troubles such as fatigue or failure in mechanical structures. In this paper, for the purpose to avoid these troubles, the active control of vibration of an axisymmetric elastic beam subjected to annular flow is investigated. An air-pressured actuator is attached on the surface of the circular cylinder for the vibrational control. As the shape of the actuator changes by control, the gap width in narrow passage changes, which causes the change of the fluid pressure. Therefore, the vibration of the fluid-structure coupled system can be suppressed. The fluid-structure coupled equation based on the Euler-Bernoulli type of partial differential equation and the Navier-Stokes equations is analytically derived including control terms. By applying the optimal control law to the coupled system, the unstable behavior is stabilized. The stability of the coupled system is investigated by eigenvalue analyses of controlled coupled equations. Numerical simulations are performed to investigate the efficiency of the proposed control method. (author)

  7. Vibrational frequency scaling factors for correlation consistent basis sets and the methods CC2 and MP2 and their spin-scaled SCS and SOS variants

    Energy Technology Data Exchange (ETDEWEB)

    Friese, Daniel H., E-mail: daniel.h.friese@uit.no [Centre for Theoretical and Computational Chemistry CTCC, Department of Chemistry, University of Tromsø, N-9037 Tromsø (Norway); Törk, Lisa; Hättig, Christof, E-mail: christof.haettig@rub.de [Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, D-44801 Bochum (Germany)

    2014-11-21

    We present scaling factors for vibrational frequencies calculated within the harmonic approximation and the correlated wave-function methods coupled cluster singles and doubles model (CC2) and Møller-Plesset perturbation theory (MP2) with and without a spin-component scaling (SCS or spin-opposite scaling (SOS)). Frequency scaling factors and the remaining deviations from the reference data are evaluated for several non-augmented basis sets of the cc-pVXZ family of generally contracted correlation-consistent basis sets as well as for the segmented contracted TZVPP basis. We find that the SCS and SOS variants of CC2 and MP2 lead to a slightly better accuracy for the scaled vibrational frequencies. The determined frequency scaling factors can also be used for vibrational frequencies calculated for excited states through response theory with CC2 and the algebraic diagrammatic construction through second order and their spin-component scaled variants.

  8. Communication: Relativistic Fock-space coupled cluster study of small building blocks of larger uranium complexes

    International Nuclear Information System (INIS)

    Tecmer, Paweł; Visscher, Lucas; Severo Pereira Gomes, André; Knecht, Stefan

    2014-01-01

    We present a study of the electronic structure of the [UO 2 ] + , [UO 2 ] 2 + , [UO 2 ] 3 + , NUO, [NUO] + , [NUO] 2 + , [NUN] − , NUN, and [NUN] + molecules with the intermediate Hamiltonian Fock-space coupled cluster method. The accuracy of mean-field approaches based on the eXact-2-Component Hamiltonian to incorporate spin–orbit coupling and Gaunt interactions are compared to results obtained with the Dirac–Coulomb Hamiltonian. Furthermore, we assess the reliability of calculations employing approximate density functionals in describing electronic spectra and quantities useful in rationalizing Uranium (VI) species reactivity (hardness, electronegativity, and electrophilicity)

  9. Communication: Relativistic Fock-space coupled cluster study of small building blocks of larger uranium complexes

    Science.gov (United States)

    Tecmer, Paweł; Severo Pereira Gomes, André; Knecht, Stefan; Visscher, Lucas

    2014-07-01

    We present a study of the electronic structure of the [UO2]+, [UO2]2 +, [UO2]3 +, NUO, [NUO]+, [NUO]2 +, [NUN]-, NUN, and [NUN]+ molecules with the intermediate Hamiltonian Fock-space coupled cluster method. The accuracy of mean-field approaches based on the eXact-2-Component Hamiltonian to incorporate spin-orbit coupling and Gaunt interactions are compared to results obtained with the Dirac-Coulomb Hamiltonian. Furthermore, we assess the reliability of calculations employing approximate density functionals in describing electronic spectra and quantities useful in rationalizing Uranium (VI) species reactivity (hardness, electronegativity, and electrophilicity).

  10. A broadband electromagnetic energy harvester with a coupled bistable structure

    OpenAIRE

    Zhu, Dibin; Beeby, Steve

    2013-01-01

    This paper investigates a broadband electromagnetic energy harvester with a coupled bistable structure. Both analytical model and experimental results showed that the coupled bistable structure requires lower excitation force to trigger bistable operation than conventional bistable structures. A compact electromagnetic vibration energy harvester with a coupled bistable structure was implemented and tested. It was excited under white noise vibrations. Experimental results showed that the coupl...

  11. Examining the impact of harmonic correlation on vibrational frequencies calculated in localized coordinates

    Energy Technology Data Exchange (ETDEWEB)

    Hanson-Heine, Magnus W. D., E-mail: magnus.hansonheine@nottingham.ac.uk [School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)

    2015-10-28

    Carefully choosing a set of optimized coordinates for performing vibrational frequency calculations can significantly reduce the anharmonic correlation energy from the self-consistent field treatment of molecular vibrations. However, moving away from normal coordinates also introduces an additional source of correlation energy arising from mode-coupling at the harmonic level. The impact of this new component of the vibrational energy is examined for a range of molecules, and a method is proposed for correcting the resulting self-consistent field frequencies by adding the full coupling energy from connected pairs of harmonic and pseudoharmonic modes, termed vibrational self-consistent field (harmonic correlation). This approach is found to lift the vibrational degeneracies arising from coordinate optimization and provides better agreement with experimental and benchmark frequencies than uncorrected vibrational self-consistent field theory without relying on traditional correlated methods.

  12. Linear and nonlinear piezoelectric shunting strategies for vibration mitigation

    Directory of Open Access Journals (Sweden)

    Soltani P.

    2014-01-01

    Full Text Available This paper studies linear and nonlinear piezoelectric vibration absorbers that are designed based on the equal-peak method. A comparison between the performance of linear mechanical and electrical tuned vibration absorbers coupled to a linear oscillator is first performed. Nonlinearity is then introduced in the primary oscillator to which a new nonlinear electrical tuned vibration absorber is attached. Despite the frequency-energy dependence of nonlinear oscillations, we show that the nonlinear absorber is capable of effectively mitigating the vibrations of the nonlinear primary system in a large range of forcing amplitudes.

  13. Modeling of coupling mechanism of wireless power transfer system and vibration phenomenon of receiver-coil in three-coil system

    Directory of Open Access Journals (Sweden)

    Suqi Liu

    2017-11-01

    Full Text Available Wireless power transfer (WPT via coupled magnetic resonances has become a focus recently, but the mechanisms responsible for such work are uncertain. We found that WPT system is a self-organization system by utilizing self-organization theory to judge. Firstly, the circuit model was established and transfer characteristic of a system was researched by utilizing circuit theories. Thus, with the introduction of entropy variable S, the energy equation of state can be established from the energy of the transmitter side and the energy of the receiver side. According to the energy equation of state, this paper obtains two equations when the reactance of the transmitter side and the receiver side equate to zero respectively. The vibration phenomenon of the receiver-coil in a three-coil WPT system was predicted and explained. Our findings illuminate the unusual self-organization in the WPT system and explain the vibration phenomenon of the receiver-coil in a three-coil WPT system.

  14. Modeling of coupling mechanism of wireless power transfer system and vibration phenomenon of receiver-coil in three-coil system

    Science.gov (United States)

    Liu, Suqi; Tan, Jianping; Wen, Xue

    2017-11-01

    Wireless power transfer (WPT) via coupled magnetic resonances has become a focus recently, but the mechanisms responsible for such work are uncertain. We found that WPT system is a self-organization system by utilizing self-organization theory to judge. Firstly, the circuit model was established and transfer characteristic of a system was researched by utilizing circuit theories. Thus, with the introduction of entropy variable S, the energy equation of state can be established from the energy of the transmitter side and the energy of the receiver side. According to the energy equation of state, this paper obtains two equations when the reactance of the transmitter side and the receiver side equate to zero respectively. The vibration phenomenon of the receiver-coil in a three-coil WPT system was predicted and explained. Our findings illuminate the unusual self-organization in the WPT system and explain the vibration phenomenon of the receiver-coil in a three-coil WPT system.

  15. Quadratically convergent algorithm for orbital optimization in the orbital-optimized coupled-cluster doubles method and in orbital-optimized second-order Møller-Plesset perturbation theory

    Science.gov (United States)

    Bozkaya, Uǧur; Turney, Justin M.; Yamaguchi, Yukio; Schaefer, Henry F.; Sherrill, C. David

    2011-09-01

    Using a Lagrangian-based approach, we present a more elegant derivation of the equations necessary for the variational optimization of the molecular orbitals (MOs) for the coupled-cluster doubles (CCD) method and second-order Møller-Plesset perturbation theory (MP2). These orbital-optimized theories are referred to as OO-CCD and OO-MP2 (or simply "OD" and "OMP2" for short), respectively. We also present an improved algorithm for orbital optimization in these methods. Explicit equations for response density matrices, the MO gradient, and the MO Hessian are reported both in spin-orbital and closed-shell spin-adapted forms. The Newton-Raphson algorithm is used for the optimization procedure using the MO gradient and Hessian. Further, orbital stability analyses are also carried out at correlated levels. The OD and OMP2 approaches are compared with the standard MP2, CCD, CCSD, and CCSD(T) methods. All these methods are applied to H2O, three diatomics, and the O_4^+ molecule. Results demonstrate that the CCSD and OD methods give nearly identical results for H2O and diatomics; however, in symmetry-breaking problems as exemplified by O_4^+, the OD method provides better results for vibrational frequencies. The OD method has further advantages over CCSD: its analytic gradients are easier to compute since there is no need to solve the coupled-perturbed equations for the orbital response, the computation of one-electron properties are easier because there is no response contribution to the particle density matrices, the variational optimized orbitals can be readily extended to allow inactive orbitals, it avoids spurious second-order poles in its response function, and its transition dipole moments are gauge invariant. The OMP2 has these same advantages over canonical MP2, making it promising for excited state properties via linear response theory. The quadratically convergent orbital-optimization procedure converges quickly for OMP2, and provides molecular properties that

  16. Noniterative Multireference Coupled Cluster Methods on Heterogeneous CPU-GPU Systems

    Energy Technology Data Exchange (ETDEWEB)

    Bhaskaran-Nair, Kiran; Ma, Wenjing; Krishnamoorthy, Sriram; Villa, Oreste; van Dam, Hubertus JJ; Apra, Edoardo; Kowalski, Karol

    2013-04-09

    A novel parallel algorithm for non-iterative multireference coupled cluster (MRCC) theories, which merges recently introduced reference-level parallelism (RLP) [K. Bhaskaran-Nair, J.Brabec, E. Aprà, H.J.J. van Dam, J. Pittner, K. Kowalski, J. Chem. Phys. 137, 094112 (2012)] with the possibility of accelerating numerical calculations using graphics processing unit (GPU) is presented. We discuss the performance of this algorithm on the example of the MRCCSD(T) method (iterative singles and doubles and perturbative triples), where the corrections due to triples are added to the diagonal elements of the MRCCSD (iterative singles and doubles) effective Hamiltonian matrix. The performance of the combined RLP/GPU algorithm is illustrated on the example of the Brillouin-Wigner (BW) and Mukherjee (Mk) state-specific MRCCSD(T) formulations.

  17. Characteristics in Molecular Vibrational Frequency Patterns between Agonists and Antagonists of Histamine Receptors

    Directory of Open Access Journals (Sweden)

    S. June Oh

    2012-06-01

    Full Text Available To learn the differences between the structure-activity relationship and molecular vibration-activity relationship in the ligand-receptor interaction of the histamine receptor, 47 ligands of the histamine receptor were analyzed by structural similarity and molecular vibrational frequency patterns. The radial tree that was produced by clustering analysis of molecular vibrational frequency patterns shows its potential for the functional classification of histamine receptor ligands.

  18. Evaluation of coupling terms between intra- and intermolecular vibrations in coarse-grained normal-mode analysis: Does a stronger acid make a stiffer hydrogen bond?

    Science.gov (United States)

    Houjou, Hirohiko

    2011-10-01

    Using theory of harmonic normal-mode vibration analysis, we developed a procedure for evaluating the anisotropic stiffness of intermolecular forces. Our scheme for coarse-graining of molecular motions is modified so as to account for intramolecular vibrations in addition to relative translational/rotational displacement. We applied this new analytical scheme to four carboxylic acid dimers, for which coupling between intra- and intermolecular vibrations is crucial for determining the apparent stiffness of the intermolecular double hydrogen bond. The apparent stiffness constant was analyzed on the basis of a conjunct spring model, which defines contributions from true intermolecular stiffness and molecular internal stiffness. Consequently, the true intermolecular stiffness was in the range of 43-48 N m-1 for all carboxylic acids studied, regardless of the molecules' acidity. We concluded that the difference in the apparent stiffness can be attributed to differences in the internal stiffness of the respective molecules.

  19. Analytically continued Fock space multi-reference coupled-cluster theory: Application to the shape resonance

    International Nuclear Information System (INIS)

    Pal, Sourav; Sajeev, Y.; Vaval, Nayana

    2006-01-01

    The Fock space multi-reference coupled-cluster (FSMRCC) method is used for the study of the shape resonance energy and width in an electron-atom/molecule collision. The procedure is based upon combining a complex absorbing potential (CAP) with FSMRCC theory. Accurate resonance parameters are obtained by solving a small non-Hermitian eigen-value problem. We study the shape resonances in e - -C 2 H 4 and e - -Mg

  20. Benefits of Spacecraft Level Vibration Testing

    Science.gov (United States)

    Gordon, Scott; Kern, Dennis L.

    2015-01-01

    NASA-HDBK-7008 Spacecraft Level Dynamic Environments Testing discusses the approaches, benefits, dangers, and recommended practices for spacecraft level dynamic environments testing, including vibration testing. This paper discusses in additional detail the benefits and actual experiences of vibration testing spacecraft for NASA Goddard Space Flight Center (GSFC) and Jet Propulsion Laboratory (JPL) flight projects. JPL and GSFC have both similarities and differences in their spacecraft level vibration test approach: JPL uses a random vibration input and a frequency range usually starting at 5 Hz and extending to as high as 250 Hz. GSFC uses a sine sweep vibration input and a frequency range usually starting at 5 Hz and extending only to the limits of the coupled loads analysis (typically 50 to 60 Hz). However, both JPL and GSFC use force limiting to realistically notch spacecraft resonances and response (acceleration) limiting as necessary to protect spacecraft structure and hardware from exceeding design strength capabilities. Despite GSFC and JPL differences in spacecraft level vibration test approaches, both have uncovered a significant number of spacecraft design and workmanship anomalies in vibration tests. This paper will give an overview of JPL and GSFC spacecraft vibration testing approaches and provide a detailed description of spacecraft anomalies revealed.

  1. Feasibility Study of Parallel Finite Element Analysis on Cluster-of-Clusters

    Science.gov (United States)

    Muraoka, Masae; Okuda, Hiroshi

    With the rapid growth of WAN infrastructure and development of Grid middleware, it's become a realistic and attractive methodology to connect cluster machines on wide-area network for the execution of computation-demanding applications. Many existing parallel finite element (FE) applications have been, however, designed and developed with a single computing resource in mind, since such applications require frequent synchronization and communication among processes. There have been few FE applications that can exploit the distributed environment so far. In this study, we explore the feasibility of FE applications on the cluster-of-clusters. First, we classify FE applications into two types, tightly coupled applications (TCA) and loosely coupled applications (LCA) based on their communication pattern. A prototype of each application is implemented on the cluster-of-clusters. We perform numerical experiments executing TCA and LCA on both the cluster-of-clusters and a single cluster. Thorough these experiments, by comparing the performances and communication cost in each case, we evaluate the feasibility of FEA on the cluster-of-clusters.

  2. Distributed bearing fault diagnosis based on vibration analysis

    Science.gov (United States)

    Dolenc, Boštjan; Boškoski, Pavle; Juričić, Đani

    2016-01-01

    Distributed bearing faults appear under various circumstances, for example due to electroerosion or the progression of localized faults. Bearings with distributed faults tend to generate more complex vibration patterns than those with localized faults. Despite the frequent occurrence of such faults, their diagnosis has attracted limited attention. This paper examines a method for the diagnosis of distributed bearing faults employing vibration analysis. The vibrational patterns generated are modeled by incorporating the geometrical imperfections of the bearing components. Comparing envelope spectra of vibration signals shows that one can distinguish between localized and distributed faults. Furthermore, a diagnostic procedure for the detection of distributed faults is proposed. This is evaluated on several bearings with naturally born distributed faults, which are compared with fault-free bearings and bearings with localized faults. It is shown experimentally that features extracted from vibrations in fault-free, localized and distributed fault conditions form clearly separable clusters, thus enabling diagnosis.

  3. The coupled cluster theory of quantum lattice systems

    International Nuclear Information System (INIS)

    Bishop, R.; Xian, Yang

    1994-01-01

    The coupled cluster method is widely recognized nowadays as providing an ab initio method of great versatility, power, and accuracy for handling in a fully microscopic and systematic way the correlations between particles in quantum many-body systems. The number of successful applications made to date within both chemistry and physics is impressive. In this article, the authors review recent extensions of the method which now provide a unifying framework for also dealing with strongly interacting infinite quantum lattice systems described by a Hamiltonian. Such systems include both spin-lattice models (such as the anisotropic Heisenberg or XXZ model) exhibiting interesting magnetic properties, and electron lattice models (such as the tJ and Hubbard models), where the spins or fermions are localized on the sites of a regular lattice; as well as lattice gauge theories [such as the Abelian U(1) model of quantum electrodynamics and non-Abelian SU(n) models]. Illustrative results are given for both the XXZ spin lattice model and U(1) lattice gauge theory

  4. Response of the rf-extraction-wing balcony and floor, and the storage ring to forced and ambient vibration excitation and coupling to tunnel/basemat

    International Nuclear Information System (INIS)

    Jendrzejczyk, J.A.; Wambsganss, M.W.; Smith, R.K.; Rosas-Velez, P.

    1993-08-01

    To ensure successful operation of the APS, vibration of the storage ring quadrupole magnets must be limited to very low levels for frequencies >10 Hz. There will be many sources of vibration, such as pumps, fans, compressors, generators, and other rotating and reciprocating machinery when the APS is operational. In general, such vibration sources are isolated from the structural components and base foundations by vibration dampers and isolators. Pumps are typically mounted on seismic isolators, which are massive bases with response frequencies of <10 Hz, and fans are mounted with elastic-type isolators to minimize vibration coupling. The attenuation of expansion/isolation joints is a very important factor in predicting the response of the storage ring basemat to the various excitation sources. Several 75-hp pumps are located on the balcony of the rf extraction wing, which is close to the storage ring basemat. The pumps per se may prove to be a vibration excitation source of concern. Additional pumps will be placed in the RF extraction building and could add to the vibration levels. If the dynamic unbalance force of the pump motor, and the efficiency of the associated expansion joints were known, one could predict the response of the storage ring basemat. This information would also be useful in determining the placement of additional pumps. This report discusses vibration tests and measurements that were performed on July 28, 1993, in the rf extraction building. The purpose of the investigation was to study the efficiency of two specific expansion joints: (1) the joint that separates a structural column pad from the extraction wing floor, and (2) the joint that separates the extraction wing floor from the roof of the storage ring tunnel. A small electrodynamic exciter, with a maximum RMS force output of ∼0.5 lb at the frequencies of interest, was used

  5. Wave failure at strong coupling in intracellular C a2 + signaling system with clustered channels

    Science.gov (United States)

    Li, Xiang; Wu, Yuning; Gao, Xuejuan; Cai, Meichun; Shuai, Jianwei

    2018-01-01

    As an important intracellular signal, C a2 + ions control diverse cellular functions. In this paper, we discuss the C a2 + signaling with a two-dimensional model in which the inositol 1,4,5-trisphosphate (I P3 ) receptor channels are distributed in clusters on the endoplasmic reticulum membrane. The wave failure at large C a2 + diffusion coupling is discussed in detail in the model. We show that with varying model parameters the wave failure is a robust behavior with either deterministic or stochastic channel dynamics. We suggest that the wave failure should be a general behavior in inhomogeneous diffusing systems with clustered excitable regions and may occur in biological C a2 + signaling systems.

  6. Collective excitations in deformed alkali metal clusters

    International Nuclear Information System (INIS)

    Lipparini, E.; Stringari, S.; Istituto Nazionale di Fisica Nucleare, Povo

    1991-01-01

    A theoretical study of collective excitations in deformed metal clusters is presented. Sum rules are used to study the splittings of the dipole surface plasma resonance originating from the cluster deformation. The vibrating potential model is developed and used to predict the occurrence of a low lying collective mode of orbital magnetic nature. (orig.)

  7. Towards large-scale calculations with State-Specific Multireference Coupled Cluster methods: Studies on dodecane, naphthynes, and polycarbenes

    Czech Academy of Sciences Publication Activity Database

    Brabec, Jiří; Bhaskaran-Neir, K.; Kowalski, K.; Pittner, Jiří; van Dam, H. J. J.

    2012-01-01

    Roč. 542, 23 July (2012), s. 128-133 ISSN 0009-2614 R&D Projects: GA ČR GAP208/11/2222 Institutional support: RVO:61388955 Keywords : multireference Coupled Cluster (MRCC) methods * molecular systems * polycarbenes Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.145, year: 2012

  8. State-to-state time-of-flight measurements of NO scattering from Au(111): direct observation of translation-to-vibration coupling in electronically nonadiabatic energy transfer.

    Science.gov (United States)

    Golibrzuch, Kai; Shirhatti, Pranav R; Altschäffel, Jan; Rahinov, Igor; Auerbach, Daniel J; Wodtke, Alec M; Bartels, Christof

    2013-09-12

    Translational motion is believed to be a spectator degree of freedom in electronically nonadiabatic vibrational energy transfer between molecules and metal surfaces, but the experimental evidence available to support this view is limited. In this work, we have experimentally determined the translational inelasticity in collisions of NO molecules with a single-crystal Au(111) surface-a system with strong electronic nonadiabaticity. State-to-state molecular beam surface scattering was combined with an IR-UV double resonance scheme to obtain high-resolution time-of-flight data. The measurements include vibrationally elastic collisions (v = 3→3, 2→2) as well as collisions where one or two quanta of molecular vibration are excited (2→3, 2→4) or de-excited (2→1, 3→2, 3→1). In addition, we have carried out comprehensive measurements of the effects of rotational excitation on the translational energy of the scattered molecules. We find that under all conditions of this work, the NO molecules lose a large fraction (∼0.45) of their incidence translational energy to the surface. Those molecules that undergo vibrational excitation (relaxation) during the collision recoil slightly slower (faster) than vibrationally elastically scattered molecules. The amount of translational energy change depends on the surface temperature. The translation-to-rotation coupling, which is well-known for v = 0→0 collisions, is found to be significantly weaker for vibrationally inelastic than elastic channels. Our results clearly show that the spectator view of the translational motion in electronically nonadiabatic vibrational energy transfer between NO and Au(111) is only approximately correct.

  9. Online Identification and Verification of the Elastic Coupling Torsional Stiffness

    Directory of Open Access Journals (Sweden)

    Wanyou Li

    2016-01-01

    Full Text Available To analyze the torsional vibration of a diesel engine shaft, the torsional stiffness of the flexible coupling is a key kinetic parameter. Since the material properties of the elastic element of the coupling might change after a long-time operation due to the severe working environment or improper use and the variation of such properties will change dynamic feature of the coupling, it will cause a relative large calculation error of torsional vibration to the shaft system. Moreover, the torsional stiffness of the elastic coupling is difficult to be determined, and it is inappropriate to measure this parameter by disassembling the power unit while it is under normal operation. To solve these problems, this paper comes up with a method which combines the torsional vibration test with the calculation of the diesel shafting and uses the inherent characteristics of shaft torsional vibration to identify the dynamic stiffness of the elastic coupling without disassembling the unit. Analysis results show that it is reasonable and feasible to identify the elastic coupling dynamic torsional stiffness with this method and the identified stiffness is accurate. Besides, this method provides a convenient and practical approach to examine the dynamic behavior of the long running elastic coupling.

  10. General active space commutator-based coupled cluster theory of general excitation rank for electronically excited states: implementation and application to ScH.

    Science.gov (United States)

    Hubert, Mickaël; Olsen, Jeppe; Loras, Jessica; Fleig, Timo

    2013-11-21

    We present a new implementation of general excitation rank coupled cluster theory for electronically excited states based on the single-reference multi-reference formalism. The method may include active-space selected and/or general higher excitations by means of the general active space concept. It may employ molecular integrals over the four-component Lévy-Leblond Hamiltonian or the relativistic spin-orbit-free four-component Hamiltonian of Dyall. In an initial application to ground- and excited states of the scandium monohydride molecule we report spectroscopic constants using basis sets of up to quadruple-zeta quality and up to full iterative triple excitations in the cluster operators. Effects due to spin-orbit interaction are evaluated using two-component multi-reference configuration interaction for assessing the accuracy of the coupled cluster results.

  11. The influence of molecular rotation on vibration--translation energy transfer

    International Nuclear Information System (INIS)

    McKenzie, R.L.

    1977-01-01

    The role of molecular rotations in the exchange of vibrational and translational energy is investigated for collisions between anharmonic diatomic molecules and structureless atoms. A three-dimensional, semiclassical, impact parameter description is applied with emphasis directed towards the influence of rotational coupling on the net rate of vibrational energy transfer summed over all final rotational states. These results are then related to the predictions of an equivalent collinear collision model, and their comparison allows an evaluation of the collinear approximation. The mechanisms of vibrational energy transfer including rotational transitions are shown to be separable into three classes, with the molecules belonging to each class identified first and foremost by their ratio of fundamental vibrational and rotational frequencies, ω/sub e//B/sub e/, and second by the proximity of their initial state to a near-resonant vibration--rotation transition with a small change in angular momentum. While the dynamics of molecules with ω/sub e//B/sub e/ ratios that are comparable to the range of angular momentum transitions having strong coupling are found to require a complete three-dimensional description, the rates of vibrational energy transfer in molecules with large ω/sub e//B/sub e/ ratios appear to be well approximated by a collinear collision model

  12. Ring-like size segregation in vibrated cylinder with a bottleneck

    International Nuclear Information System (INIS)

    Kong Xiangzhao; Hu Maobin; Wu Qingsong; Wu Yonghong

    2005-01-01

    In this Letter, a ring-like segregation pattern of bi-dispersed granular material in a vibrated bottleneck-cylinder is presented. The driving frequency can greatly affect the strength and structure of the convection roll and segregation pattern. The position and height of the ring (cluster of big beads) can be adjusted by altering the vibration frequency. And a heuristic theory is developed to interpret the ring's position dependence on driving frequency

  13. Methods of performing downhole operations using orbital vibrator energy sources

    Science.gov (United States)

    Cole, Jack H.; Weinberg, David M.; Wilson, Dennis R.

    2004-02-17

    Methods of performing down hole operations in a wellbore. A vibrational source is positioned within a tubular member such that an annulus is formed between the vibrational source and an interior surface of the tubular member. A fluid medium, such as high bulk modulus drilling mud, is disposed within the annulus. The vibrational source forms a fluid coupling with the tubular member through the fluid medium to transfer vibrational energy to the tubular member. The vibrational energy may be used, for example, to free a stuck tubular, consolidate a cement slurry and/or detect voids within a cement slurry prior to the curing thereof.

  14. Novel strategy to implement active-space coupled-cluster methods

    Science.gov (United States)

    Rolik, Zoltán; Kállay, Mihály

    2018-03-01

    A new approach is presented for the efficient implementation of coupled-cluster (CC) methods including higher excitations based on a molecular orbital space partitioned into active and inactive orbitals. In the new framework, the string representation of amplitudes and intermediates is used as long as it is beneficial, but the contractions are evaluated as matrix products. Using a new diagrammatic technique, the CC equations are represented in a compact form due to the string notations we introduced. As an application of these ideas, a new automated implementation of the single-reference-based multi-reference CC equations is presented for arbitrary excitation levels. The new program can be considered as an improvement over the previous implementations in many respects; e.g., diagram contributions are evaluated by efficient vectorized subroutines. Timings for test calculations for various complete active-space problems are presented. As an application of the new code, the weak interactions in the Be dimer were studied.

  15. Diagonal Born-Oppenheimer correction for coupled-cluster wave-functions

    Science.gov (United States)

    Shamasundar, K. R.

    2018-06-01

    We examine how geometry-dependent normalisation freedom of electronic wave-functions affects extraction of a meaningful diagonal Born-Oppenheimer correction (DBOC) to the ground-state Born-Oppenheimer potential energy surface (PES). By viewing this freedom as a kind of gauge-freedom, it is shown that DBOC and the resulting associated mass-dependent adiabatic PES are gauge-invariant quantities. A sum-over-states (SOS) formula for DBOC which explicitly exhibits this invariance is derived. A biorthogonal formulation suitable for DBOC computations using standard unnormalised coupled-cluster (CC) wave-functions is presented. This is shown to lead to a biorthogonal version of SOS formula with similar properties. On this basis, different computational schemes for evaluating DBOC using approximate CC wave-functions are derived. One of this agrees with the formula used in the current literature. The connection to adiabatic-to-diabatic transformations in non-adiabatic dynamics is explored and complications arising from biorthogonal nature of CC theory are identified.

  16. Research on vibration suppression of a mistuned blisk by a piezoelectric network

    Directory of Open Access Journals (Sweden)

    Jiuzhou LIU

    2018-02-01

    Full Text Available The work aims to provide a further investigation of the dynamic characteristics of an integral bladed disk (also called ‘blisk’ with a Parallel Piezoelectric Network (PPN. The PPN is constructed by parallelly interconnecting the piezoelectric patches distributed in the blisk. Two kinds of PPN are considered, namely mono-periodic PPN and bi-periodic PPN. The former has a piezoelectric patch in each sector, and the later has one patch every few sectors. The vibration suppression performance of both kinds of PPN has been studied through modal analysis, forced response analysis, and statistical analysis. The research results turn out that the PPN will only affect mechanical frequencies near the electrical frequency clusters slightly, and the bi-periodic PPN will make the nodal diameter spectrum of the modes more complex, but the amplitude corresponding to the new nodal diameter component is much smaller than that of the nodal diameter component corresponding to the mono-periodic system. The mechanical coupling between the blades and the disk plays an important role in the damping effect of the PPN, and it should be paid attention to in applications. The mono-periodic PPN can effectively suppress the amplitude magnification of the forced response induced by the mistuning of the blisk; meanwhile, it can mitigate the vibration localization of the mistuned electromechanical system. If piezoelectric patches are set only in part of the sectors, the bi-periodic PPN still has a vibration suppression ability, but the effect is related to the number and spatial distribution of the piezoelectric patches. Keywords: Amplitude magnification, Bi-periodic, Blisk, Mistuning, Mono-periodic, Parallel piezoelectric network, Statistical analysis, Vibration suppression

  17. Numerical simulation of 900 MW control rods impact friction vibration and wear

    International Nuclear Information System (INIS)

    Jacquart, G.

    1993-12-01

    Impact-friction vibrations and wear have motivated a great research and development program aiming at understanding the impact and vibration behaviour of these components through experimental and numerical works. This report presents a numerical simulation of the vibrations of a single control rod and of a whole control cluster. Excitation sources for this component are due to hydraulic forces and are situated in the lower part of the rods and in the part of the cluster. Some parametric computations have been carried out on a single rod, to evaluate the effect of the lower excitation source. Different excitation levels, different eccentricities or static forces have been computed and compared to measurements on the MAGALY mock-up representing a complete rod cluster. A numerical model for the complete cluster allowed the evaluation of the upper excitation source effects. This source appears to be less powerful than the lower one. These results have been validated by comparison with MAGALY measurements. At last, some computations were performed with a model of the complete cluster, taking into account the both excitation sources. A parametric study on eccentricity and static forces has been carried out. A comparison with MAGALY measurements seems to be fairly fitting, showing that the numerical results are of the right order of magnitude. Through this numerical study, we have shown that numerical simulation of a complete control rod cluster could be lead, and we have obtained some new informations about impact forces and wear rates that need to be confirmed by more computational or experimental works or in-situ measurements. (author). 10 annexes, 11 refs

  18. Bonding in Mercury Molecules Described by the Normalized Elimination of the Small Component and Coupled Cluster Theory

    NARCIS (Netherlands)

    Cremer, Dieter; Kraka, Elfi; Filatov, Michael

    2008-01-01

    Bond dissociation energies (BDEs) of neutral HgX and cationic HgX(+) molecules range from less than a kcal mol(-1) to as much as 60 kcal mol(-1). Using NESCICCCSD(T) [normalized elimination of the small component and coupled-cluster theory with all single and double excitations and a perturbative

  19. Analytical model of internally coupled ears

    DEFF Research Database (Denmark)

    Vossen, Christine; Christensen-Dalsgaard, Jakob; Leo van Hemmen, J

    2010-01-01

    Lizards and many birds possess a specialized hearing mechanism: internally coupled ears where the tympanic membranes connect through a large mouth cavity so that the vibrations of the tympanic membranes influence each other. This coupling enhances the phase differences and creates amplitude...... additionally provides the opportunity to incorporate the effect of the asymmetrically attached columella, which leads to the activation of higher membrane vibration modes. Incorporating this effect, the analytical model can explain measurements taken from the tympanic membrane of a living lizard, for example...

  20. Coupled thermal, structural and vibrational analysis of a hypersonic engine for flight test

    Energy Technology Data Exchange (ETDEWEB)

    Sook-Ying, Ho [Defence Science and Technology Organisation, SA (Australia); Paull, A. [Queensland Univ., Dept. of Mechanical Engineering (Australia)

    2006-07-15

    This paper describes a relatively simple and quick method for implementing aerodynamic heating models into a finite element code for non-linear transient thermal-structural and thermal-structural-vibrational analyses of a Mach 10 generic HyShot scram-jet engine. The thermal-structural-vibrational response of the engine was studied for the descent trajectory from 60 to 26 km. Aerodynamic heating fluxes, as a function of spatial position and time for varying trajectory points, were implemented in the transient heat analysis. Additionally, the combined effect of varying dynamic pressure and thermal loads with altitude was considered. This aero-thermal-structural analysis capability was used to assess the temperature distribution, engine geometry distortion and yielding of the structural material due to aerodynamic heating during the descent trajectory, and for optimising the wall thickness, nose radius of leading edge, etc. of the engine intake. A structural vibration analysis was also performed following the aero-thermal-structural analysis to determine the changes in natural frequencies of the structural vibration modes that occur at the various temperatures associated with the descent trajectory. This analysis provides a unique and relatively simple design strategy for predicting and mitigating the thermal-structural-vibrational response of hypersonic engines. (authors)

  1. Simplified analysis method for vibration of fusion reactor components with magnetic damping

    International Nuclear Information System (INIS)

    Tanaka, Yoshikazu; Horie, Tomoyoshi; Niho, Tomoya

    2000-01-01

    This paper describes two simplified analysis methods for the magnetically damped vibration. One is the method modifying the result of finite element uncoupled analysis using the coupling intensity parameter, and the other is the method using the solution and coupled eigenvalues of the single-degree-of-freedom coupled model. To verify these methods, numerical analyses of a plate and a thin cylinder are performed. The comparison between the results of the former method and the finite element tightly coupled analysis show almost satisfactory agreement. The results of the latter method agree very well with the finite element tightly coupled results because of the coupled eigenvalues. Since the vibration with magnetic damping can be evaluated using these methods without finite element coupled analysis, these approximate methods will be practical and useful for the wide range of design analyses taking account of the magnetic damping effect

  2. Physical model study of neutron noise induced by vibration of reactor internals

    International Nuclear Information System (INIS)

    Liu Jinhui; Gu Fangyu

    1999-01-01

    The author presents a physical model of neutron noise induced by reactor internals vibration in frequency domain. Based on system control theory, the reactor dynamic equations are coupled with random vibration equation, and non-linear terms are also taken into accounted while treating the random vibration. Experiments carried out on a zero-power reactor show that the model can be used to describe dynamic character of neutron noise induced by internals' vibration. The model establishes a method to help to determine internals'vibration features, and to diagnosis anomalies through neutron noise

  3. On the intermolecular vibrational coupling, hydrogen bonding, and librational freedom of water in the hydration shell of mono- and bivalent anions.

    Science.gov (United States)

    Ahmed, Mohammed; Namboodiri, V; Singh, Ajay K; Mondal, Jahur A

    2014-10-28

    The hydration energy of an ion largely resides within the first few layers of water molecules in its hydration shell. Hence, it is important to understand the transformation of water properties, such as hydrogen-bonding, intermolecular vibrational coupling, and librational freedom in the hydration shell of ions. We investigated these properties in the hydration shell of mono- (Cl(-) and I(-)) and bivalent (SO4(2-) and CO3(2-)) anions by using Raman multivariate curve resolution (Raman-MCR) spectroscopy in the OH stretch, HOH bend, and [bend+librational] combination bands of water. Raman-MCR of aqueous Na-salt (NaCl, NaI, Na2SO4, and Na2CO3) solutions provides ion-correlated spectra (IC-spectrum) which predominantly bear the vibrational characteristics of water in the hydration shell of respective anions. Comparison of these IC-spectra with the Raman spectrum of bulk water in different spectral regions reveals that the water is vibrationally decoupled with its neighbors in the hydration shell. Hydrogen-bond strength and librational freedom also vary with the nature of anion: hydrogen-bond strength, for example, decreases as CO3(2-) > SO4(2-) > bulk water ≈ Cl(-) > I(-); and the librational freedom increases as CO3(2-) ≈ SO4(2-) water water in the hydration shell of anions.

  4. Adsorption and Vibrational Study of Folic Acid on Gold Nanopillar Structures Using Surface-enhanced Raman Scattering Spectroscopy

    DEFF Research Database (Denmark)

    Castillo, John J.; Rindzevicius, Tomas; Rozo, Ciro E.

    2015-01-01

    on the nanopillars within the high electromagnetic field areas. The adsorption behaviour of folic acid and the band assignment of the main vibrations together with the optimized geometry of folic acid and folic acid in the presence of a cluster of 10 gold atoms were assessed using the density functional theory (B3......LYP(6-31G(d))) and the scalar relativistic effective core potential with a double-zeta basis set (LANL2DZ). The vibrations obtained from the solid-state folic acid and the folic acid on a gold cluster were in accordance with those observed experimentally. The analysis of the main vibrations indicated...

  5. NUCORE - A system for nuclear structure calculations with cluster-core models

    International Nuclear Information System (INIS)

    Heras, C.A.; Abecasis, S.M.

    1982-01-01

    Calculation of nuclear energy levels and their electromagnetic properties, modelling the nucleus as a cluster of a few particles and/or holes interacting with a core which in turn is modelled as a quadrupole vibrator (cluster-phonon model). The members of the cluster interact via quadrupole-quadrupole and pairing forces. (orig.)

  6. Damage and failure detection of composites using optical fiber vibration sensor

    International Nuclear Information System (INIS)

    Yang, Y. C.; Han, K. S.

    2001-01-01

    An intensity-based optical fiber vibration sensor is applied to detect and evaluate damages and fiber failure of composites. The optical fiber vibration sensor is constructed by placing two cleaved fiber end, one of which is cantilevered in a hollow glass tube. The movement of the cantilevered section lags behind the rest of the sensor in response to an applied vibration and the amount of light coupled between the two fibers is thereby modulated. Vibration characteristics of the optical fiber vibration sensor are investigated. Surface mounted optical fiber vibration sensor is used in tensile and indentation test. Experimental results show that the optical fiber sensor can detect damages and fiber failure of composites correctly

  7. Coupled cluster calculations for static and dynamic polarizabilities of C60

    Science.gov (United States)

    Kowalski, Karol; Hammond, Jeff R.; de Jong, Wibe A.; Sadlej, Andrzej J.

    2008-12-01

    New theoretical predictions for the static and frequency dependent polarizabilities of C60 are reported. Using the linear response coupled cluster approach with singles and doubles and a basis set especially designed to treat the molecular properties in external electric field, we obtained 82.20 and 83.62 Å3 for static and dynamic (λ =1064 nm) polarizabilities. These numbers are in a good agreement with experimentally inferred data of 76.5±8 and 79±4 Å3 [R. Antoine et al., J. Chem. Phys.110, 9771 (1999); A. Ballard et al., J. Chem. Phys.113, 5732 (2000)]. The reported results were obtained with the highest wave function-based level of theory ever applied to the C60 system.

  8. Shock and vibration environments for large shipping containers on rail cars and trucks

    International Nuclear Information System (INIS)

    Magnuson, C.F.; Wilson, L.T.

    1977-06-01

    The purpose of this study was to provide definitions of shock and vibration environment to which fissile material shipping containers may be exposed during normal shipment by truck and rail cars. The definitions of vibration, shock superimposed on vibration and rail coupling shock result from existing data. The dependence of shock environment, from rail coupling operations, on parameters like cargo weight and shock attenuation couplers was also studied using spring-mass models. These studies show that for rail cars equipped with standard draft gear, the cargo response decreases with increased cargo weight until the springs bottom out. For rail cars equipped with shock attenuation couplers, cargo weight has little effect on cargo response. The study also shows the importance of matching couplers and tiedown stiffnesses to decrease the cargo response. Vibration and shock data samples have been obtained during truck shipment of heavy cargo and the data will be presented in subsequent reports. Similar data need to be obtained for rail shipment of heavy cargo and during rail coupling operations with heavy cargo

  9. Coupled Vibration of Unshrouded Centrifugal Compressor Impellers. Part II: Computation of Vibration Behavior

    Directory of Open Access Journals (Sweden)

    Dirk Hagelstein

    2000-01-01

    Full Text Available The increased use of small gas turbines and turbochargers in different technical fields has led to the development of highly-loaded centrifugal compressors with extremely thin blades. Due to high rotational speed and the correspondingly high centrifugal loads, the shape of the impeller hub must also be optimized. This has led to a reduction of the thickness of the impeller disc in the outlet region. The thin parts of the impeller are very sensitive and may be damaged by the excitation of dangerous blade vibrations.

  10. Relativistic Normal Coupled-Cluster Theory for Accurate Determination of Electric Dipole Moments of Atoms: First Application to the ^{199}Hg Atom.

    Science.gov (United States)

    Sahoo, B K; Das, B P

    2018-05-18

    Recent relativistic coupled-cluster (RCC) calculations of electric dipole moments (EDMs) of diamagnetic atoms due to parity and time-reversal violating (P,T-odd) interactions, which are essential ingredients for probing new physics beyond the standard model of particle interactions, differ substantially from the previous theoretical results. It is therefore necessary to perform an independent test of the validity of these results. In view of this, the normal coupled-cluster method has been extended to the relativistic regime [relativistic normal coupled-cluster (RNCC) method] to calculate the EDMs of atoms by simultaneously incorporating the electrostatic and P,T-odd interactions in order to overcome the shortcomings of the ordinary RCC method. This new relativistic method has been applied to ^{199}Hg, which currently has a lower EDM limit than that of any other system. The results of our RNCC and self-consistent RCC calculations of the EDM of this atom are found to be close. The discrepancies between these two results on the one hand and those of previous calculations on the other are elucidated. Furthermore, the electric dipole polarizability of this atom, which has computational similarities with the EDM, is evaluated and it is in very good agreement with its measured value.

  11. Relativistic Normal Coupled-Cluster Theory for Accurate Determination of Electric Dipole Moments of Atoms: First Application to the 199Hg Atom

    Science.gov (United States)

    Sahoo, B. K.; Das, B. P.

    2018-05-01

    Recent relativistic coupled-cluster (RCC) calculations of electric dipole moments (EDMs) of diamagnetic atoms due to parity and time-reversal violating (P ,T -odd) interactions, which are essential ingredients for probing new physics beyond the standard model of particle interactions, differ substantially from the previous theoretical results. It is therefore necessary to perform an independent test of the validity of these results. In view of this, the normal coupled-cluster method has been extended to the relativistic regime [relativistic normal coupled-cluster (RNCC) method] to calculate the EDMs of atoms by simultaneously incorporating the electrostatic and P ,T -odd interactions in order to overcome the shortcomings of the ordinary RCC method. This new relativistic method has been applied to 199Hg, which currently has a lower EDM limit than that of any other system. The results of our RNCC and self-consistent RCC calculations of the EDM of this atom are found to be close. The discrepancies between these two results on the one hand and those of previous calculations on the other are elucidated. Furthermore, the electric dipole polarizability of this atom, which has computational similarities with the EDM, is evaluated and it is in very good agreement with its measured value.

  12. Vibrational polarizabilities of hydrogen-bonded water

    International Nuclear Information System (INIS)

    Torii, Hajime

    2013-01-01

    Highlights: ► Vibrational polarizabilities of hydrogen-bonded water are analyzed theoretically. ► Total vibrational polarizability is (at least) comparable to the electronic one. ► Molecular translations contribute to the vibrational polarizability below 300 cm −1 . ► Intermolecular charge fluxes along H bonds are induced by molecular translations. ► The results are discussed in relation to the observed dielectric properties. - Abstract: The vibrational polarizabilities and the related molecular properties of hydrogen-bonded water are analyzed theoretically, taking the case of (water) 30 clusters as an example case. It is shown that some off-diagonal dipole derivatives are large for the translations of incompletely hydrogen-bonded molecules, and this is reasonably explained by the scheme of intermolecular charge fluxes induced along hydrogen bonds. In total, because of these intermolecular charge fluxes, molecular translations give rise to the vibrational polarizability of 2.8–3.3 a 0 3 per molecule, which is as large as about 40% of the electronic polarizability, mainly in the frequency region below 300 cm −1 . Adding the contributions of the molecular rotations (librations) and the translation–rotation cross term, the total polarizability (electronic + vibrational) at ∼100 cm −1 is slightly larger than the double of that at >4000 cm −1 . The relation of these results to some observed time- and frequency-dependent dielectric properties of liquid water is briefly discussed

  13. The externally corrected coupled cluster approach with four- and five-body clusters from the CASSCF wave function.

    Science.gov (United States)

    Xu, Enhua; Li, Shuhua

    2015-03-07

    An externally corrected CCSDt (coupled cluster with singles, doubles, and active triples) approach employing four- and five-body clusters from the complete active space self-consistent field (CASSCF) wave function (denoted as ecCCSDt-CASSCF) is presented. The quadruple and quintuple excitation amplitudes within the active space are extracted from the CASSCF wave function and then fed into the CCSDt-like equations, which can be solved in an iterative way as the standard CCSDt equations. With a size-extensive CASSCF reference function, the ecCCSDt-CASSCF method is size-extensive. When the CASSCF wave function is readily available, the computational cost of the ecCCSDt-CASSCF method scales as the popular CCSD method (if the number of active orbitals is small compared to the total number of orbitals). The ecCCSDt-CASSCF approach has been applied to investigate the potential energy surface for the simultaneous dissociation of two O-H bonds in H2O, the equilibrium distances and spectroscopic constants of 4 diatomic molecules (F2(+), O2(+), Be2, and NiC), and the reaction barriers for the automerization reaction of cyclobutadiene and the Cl + O3 → ClO + O2 reaction. In most cases, the ecCCSDt-CASSCF approach can provide better results than the CASPT2 (second order perturbation theory with a CASSCF reference function) and CCSDT methods.

  14. Recognition and Matching of Clustered Mature Litchi Fruits Using Binocular Charge-Coupled Device (CCD Color Cameras

    Directory of Open Access Journals (Sweden)

    Chenglin Wang

    2017-11-01

    Full Text Available Recognition and matching of litchi fruits are critical steps for litchi harvesting robots to successfully grasp litchi. However, due to the randomness of litchi growth, such as clustered growth with uncertain number of fruits and random occlusion by leaves, branches and other fruits, the recognition and matching of the fruit become a challenge. Therefore, this study firstly defined mature litchi fruit as three clustered categories. Then an approach for recognition and matching of clustered mature litchi fruit was developed based on litchi color images acquired by binocular charge-coupled device (CCD color cameras. The approach mainly included three steps: (1 calibration of binocular color cameras and litchi image acquisition; (2 segmentation of litchi fruits using four kinds of supervised classifiers, and recognition of the pre-defined categories of clustered litchi fruit using a pixel threshold method; and (3 matching the recognized clustered fruit using a geometric center-based matching method. The experimental results showed that the proposed recognition method could be robust against the influences of varying illumination and occlusion conditions, and precisely recognize clustered litchi fruit. In the tested 432 clustered litchi fruits, the highest and lowest average recognition rates were 94.17% and 92.00% under sunny back-lighting and partial occlusion, and sunny front-lighting and non-occlusion conditions, respectively. From 50 pairs of tested images, the highest and lowest matching success rates were 97.37% and 91.96% under sunny back-lighting and non-occlusion, and sunny front-lighting and partial occlusion conditions, respectively.

  15. Electromagnetic Vibration Energy Harvesting Devices Architectures, Design, Modeling and Optimization

    CERN Document Server

    Spreemann, Dirk

    2012-01-01

    Electromagnetic vibration transducers are seen as an effective way of harvesting ambient energy for the supply of sensor monitoring systems. Different electromagnetic coupling architectures have been employed but no comprehensive comparison with respect to their output performance has been carried out up to now. Electromagnetic Vibration Energy Harvesting Devices introduces an optimization approach which is applied to determine optimal dimensions of the components (magnet, coil and back iron). Eight different commonly applied coupling architectures are investigated. The results show that correct dimensions are of great significance for maximizing the efficiency of the energy conversion. A comparison yields the architectures with the best output performance capability which should be preferably employed in applications. A prototype development is used to demonstrate how the optimization calculations can be integrated into the design–flow. Electromagnetic Vibration Energy Harvesting Devices targets the design...

  16. A broadband electromagnetic energy harvester with a coupled bistable structure

    International Nuclear Information System (INIS)

    Zhu, D; Beeby, S P

    2013-01-01

    This paper investigates a broadband electromagnetic energy harvester with a coupled bistable structure. Both analytical model and experimental results showed that the coupled bistable structure requires lower excitation force to trigger bistable operation than conventional bistable structures. A compact electromagnetic vibration energy harvester with a coupled bistable structure was implemented and tested. It was excited under white noise vibrations. Experimental results showed that the coupled bistable energy harvester can achieve bistable operation with lower excitation amplitude and generate more output power than both conventional bistable and linear energy harvesters under white noise excitation

  17. Modal Vibration Control in Periodic Time-Varying Structures with Focus on Rotor Blade Systems

    DEFF Research Database (Denmark)

    Christensen, Rene Hardam; Santos, Ilmar

    2004-01-01

    of active modal controllers. The main aim is to reduce vibrations in periodic time-varying structures. Special emphasis is given to vibration control of coupled bladed rotor systems. A state feedback modal control law is developed based on modal analysis in periodic time-varying structures. The first step...... in the procedure is a transformation of the model into a time-invariant modal form by applying the modal matrices, which are also periodic time-variant. Due to coupled rotor and blade motions complex vibration modes occur in the modal transformed state space model. This implies that the modal transformed model...

  18. A Coupled Helicopter Rotor/Fuselage Dynamics Model Using Finite Element Multi-body

    Directory of Open Access Journals (Sweden)

    Cheng Qi-you

    2016-01-01

    Full Text Available To develop a coupled rotor/flexible fuselage model for vibration reduction studies, the equation of coupled rotor-fuselage is set up based on the theory of multi-body dynamics, and the dynamic analysis model is established with the software MSC.ADMAS and MSC.NASTRAN. The frequencies and vibration acceleration responses of the system are calculated with the model of coupled rotor-fuselage, and the results are compared with those of uncoupled modeling method. Analysis results showed that compared with uncoupled model, the dynamic characteristic obtained by the model of coupled rotor-fuselage are some different. The intrinsic frequency of rotor is increased with the increase of rotational velocities. The results also show that the flying speed has obvious influence on the vibration acceleration responses of the fuselage. The vibration acceleration response in the vertical direction is much higher at the low speed and high speed flight conditions.

  19. Vibrational properties of organic donor-acceptor molecular crystals: Anthracene-pyromellitic-dianhydride (PMDA) as a case study

    KAUST Repository

    Fonari, A.; Corbin, N. S.; Vermeulen, D.; Goetz, K. P.; Jurchescu, O. D.; McNeil, L. E.; Bredas, Jean-Luc; Coropceanu, V.

    2015-01-01

    We establish a reliable quantum-mechanical approach to evaluate the vibrational properties of donor-acceptor molecular crystals. The anthracene-PMDA (PMDA = pyromellitic dianhydride) crystal, where anthracene acts as the electron donor and PMDA as the electron acceptor, is taken as a representative system for which experimental non-resonance Raman spectra are also reported. We first investigate the impact that the amount of nonlocal Hartree-Fock exchange (HFE) included in a hybrid density functional has on the geometry, normal vibrational modes, electronic coupling, and electron-vibrational (phonon) couplings. The comparison between experimental and theoreticalRaman spectra indicates that the results based on the αPBE functional with 25%-35% HFE are in better agreement with the experimental results compared to those obtained with the pure PBE functional. Then, taking αPBE with 25% HFE, we assign the vibrational modes and examine their contributions to the relaxation energy related to the nonlocal electron-vibration interactions. The results show that the largest contribution (about 90%) is due to electron interactions with low-frequency vibrational modes. The relaxation energy in anthracene-PMDA is found to be about five times smaller than the electronic coupling.

  20. Vibrational properties of organic donor-acceptor molecular crystals: Anthracene-pyromellitic-dianhydride (PMDA) as a case study

    KAUST Repository

    Fonari, A.

    2015-12-10

    We establish a reliable quantum-mechanical approach to evaluate the vibrational properties of donor-acceptor molecular crystals. The anthracene-PMDA (PMDA = pyromellitic dianhydride) crystal, where anthracene acts as the electron donor and PMDA as the electron acceptor, is taken as a representative system for which experimental non-resonance Raman spectra are also reported. We first investigate the impact that the amount of nonlocal Hartree-Fock exchange (HFE) included in a hybrid density functional has on the geometry, normal vibrational modes, electronic coupling, and electron-vibrational (phonon) couplings. The comparison between experimental and theoreticalRaman spectra indicates that the results based on the αPBE functional with 25%-35% HFE are in better agreement with the experimental results compared to those obtained with the pure PBE functional. Then, taking αPBE with 25% HFE, we assign the vibrational modes and examine their contributions to the relaxation energy related to the nonlocal electron-vibration interactions. The results show that the largest contribution (about 90%) is due to electron interactions with low-frequency vibrational modes. The relaxation energy in anthracene-PMDA is found to be about five times smaller than the electronic coupling.

  1. Isotopic labeling as a tool to establish intramolecular vibrational coupling: The reaction of 2-propanol on Mo(110)

    International Nuclear Information System (INIS)

    Uvdal, P.; Wiegand, B.C.; Serafin, J.G.; Friend, C.M.

    1992-01-01

    The reactions of 2-propanol on Mo(110) were investigated using temperature programmed reaction, high resolution electron energy loss, and x-ray photoelectron spectroscopies. 2-Propanol forms 2-propoxide upon adsorption at 120 K on Mo(110). The 2-propoxide intermediate deoxygenates via selective γ C--H bond scission to eliminate propene as well as C--O bond hydrogenolysis to form trace amounts of propane. The C--O bond of 2-propoxide is estimated to be nearly perpendicular to the surface. Selective isotopic labeling was used to establish the coupling between the C--O stretch and modes associated with the hydrocarbon framework. The degree of coupling was strongly affected by bonding to the surface, primarily due to weakening of the C--O bond when 2-propoxide is bound to Mo(110). Selective isotopic labeling was, therefore, essential in making vibrational assignments and in identifying key reaction steps. Only a small kinetic isotope effect was observed during reaction of (CD 3 )(CH 3 )CHOH, consistent with a substantial component of C--O bond breaking in the transition state for propene elimination. Coupling of the C--O stretch to motion of the methyl group is also suggested to be important in the transition state for propene elimination

  2. Energy spectra of vibron and cluster models in molecular and nuclear systems

    Science.gov (United States)

    Jalili Majarshin, A.; Sabri, H.; Jafarizadeh, M. A.

    2018-03-01

    The relation of the algebraic cluster model, i.e., of the vibron model and its extension, to the collective structure, is discussed. In the first section of the paper, we study the energy spectra of vibron model, for diatomic molecule then we derive the rotation-vibration spectrum of 2α, 3α and 4α configuration in the low-lying spectrum of 8Be, 12C and 16O nuclei. All vibrational and rotational states with ground and excited A, E and F states appear to have been observed, moreover the transitional descriptions of the vibron model and α-cluster model were considered by using an infinite-dimensional algebraic method based on the affine \\widehat{SU(1,1)} Lie algebra. The calculated energy spectra are compared with experimental data. Applications to the rotation-vibration spectrum for the diatomic molecule and many-body nuclear clusters indicate that there are solvable models and they can be approximated very well using the transitional theory.

  3. Fast vibrational configuration interaction using generalized curvilinear coordinates and self-consistent basis.

    Science.gov (United States)

    Scribano, Yohann; Lauvergnat, David M; Benoit, David M

    2010-09-07

    In this paper, we couple a numerical kinetic-energy operator approach to the direct-vibrational self-consistent field (VSCF)/vibrational configuration interaction (VCI) method for the calculation of vibrational anharmonic frequencies. By combining this with fast-VSCF, an efficient direct evaluation of the ab initio potential-energy surface (PES), we introduce a general formalism for the computation of vibrational bound states of molecular systems exhibiting large-amplitude motion such as methyl-group torsion. We validate our approach on an analytical two-dimensional model and apply it to the methanol molecule. We show that curvilinear coordinates lead to a significant improvement in the VSCF/VCI description of the torsional frequency in methanol, even for a simple two-mode coupling expansion of the PES. Moreover, we demonstrate that a curvilinear formulation of the fast-VSCF/VCI scheme improves its speed by a factor of two and its accuracy by a factor of 3.

  4. The role of ro-vibrational coupling in the revival dynamics of diatomic molecular wave packets

    International Nuclear Information System (INIS)

    Banerji, J; Ghosh, Suranjana

    2006-01-01

    We study the revival and fractional revivals of a diatomic molecular wave packet of circular states whose weighing coefficients are peaked about a vibrational quantum number ν-bar and a rotational quantum number j-bar. Furthermore, we show that the interplay between the rotational and vibrational motion is determined by a parameter γ =√D/C, where D is the dissociation energy and C is inversely proportional to the reduced mass of the two nuclei. Using I 2 and H 2 as examples, we show, both analytically and visually (through animations), that for γ>>ν-bar, j-bar, the rotational and vibrational time scales are so far apart that the ro-vibrational motion gets decoupled and the revival dynamics depends essentially on one time scale. For γ∼ν-bar, j-bar, on the other hand, the evolution of the wave packet depends crucially on both the rotational and vibrational time scales of revival. In the latter case, an interesting rotational-vibrational fractional revival is predicted and explained

  5. Description of low-lying states in odd-odd deformed nuclei taking account of the coupling with core rotations and vibrations. 1

    International Nuclear Information System (INIS)

    Kvasil, J.; Hrivnacova, I.; Nesterenko, V.O.

    1990-01-01

    The microscopic approach for description of low-lyinig states in deformed odd-odd nuclei is formulated as a generalization of the quasiparticle-phonon model (QPM) with including the rotational degrees of freedom and n-p interaction between external nucleons into the QPM. In comparison with other models, the approach proposed includes all three the most important effects coupling with rotational and vibrational degrees of freedom of doubly-even core and p-n interaction mentioned above even treates them on the microscopic base. 36 refs

  6. Benchmarking fully analytic DFT force fields for vibrational spectroscopy: A study on halogenated compounds

    Science.gov (United States)

    Pietropolli Charmet, Andrea; Cornaton, Yann

    2018-05-01

    This work presents an investigation of the theoretical predictions yielded by anharmonic force fields having the cubic and quartic force constants are computed analytically by means of density functional theory (DFT) using the recursive scheme developed by M. Ringholm et al. (J. Comput. Chem. 35 (2014) 622). Different functionals (namely B3LYP, PBE, PBE0 and PW86x) and basis sets were used for calculating the anharmonic vibrational spectra of two halomethanes. The benchmark analysis carried out demonstrates the reliability and overall good performances offered by hybrid approaches, where the harmonic data obtained at the coupled cluster with single and double excitations level of theory augmented by a perturbational estimate of the effects of connected triple excitations, CCSD(T), are combined with the fully analytic higher order force constants yielded by DFT functionals. These methods lead to reliable and computationally affordable calculations of anharmonic vibrational spectra with an accuracy comparable to that yielded by hybrid force fields having the anharmonic force fields computed at second order Møller-Plesset perturbation theory (MP2) level of theory using numerical differentiation but without the corresponding potential issues related to computational costs and numerical errors.

  7. Dimer and cluster approach for the evaluation of electronic couplings governing charge transport: Application to two pentacene polymorphs

    International Nuclear Information System (INIS)

    Canola, Sofia; Pecoraro, Claudia; Negri, Fabrizia

    2016-01-01

    Hole transport properties are modeled for two polymorphs of pentacene: the single crystal polymorph and the thin film polymorph relevant for organic thin-film transistor applications. Electronic couplings are evaluated in the standard dimer approach but also considering a cluster approach in which the central molecule is surrounded by a large number of molecules quantum-chemically described. The effective electronic couplings suitable for the parametrization of a tight-binding model are derived either from the orthogonalization scheme limited to HOMO orbitals and from the orthogonalization of the full basis of molecular orbitals. The angular dependent mobilities estimated for the two polymorphs using the predicted pattern of couplings display different anisotropy characteristics as suggested from experimental investigations.

  8. Dimer and cluster approach for the evaluation of electronic couplings governing charge transport: Application to two pentacene polymorphs

    Energy Technology Data Exchange (ETDEWEB)

    Canola, Sofia; Pecoraro, Claudia; Negri, Fabrizia

    2016-10-20

    Hole transport properties are modeled for two polymorphs of pentacene: the single crystal polymorph and the thin film polymorph relevant for organic thin-film transistor applications. Electronic couplings are evaluated in the standard dimer approach but also considering a cluster approach in which the central molecule is surrounded by a large number of molecules quantum-chemically described. The effective electronic couplings suitable for the parametrization of a tight-binding model are derived either from the orthogonalization scheme limited to HOMO orbitals and from the orthogonalization of the full basis of molecular orbitals. The angular dependent mobilities estimated for the two polymorphs using the predicted pattern of couplings display different anisotropy characteristics as suggested from experimental investigations.

  9. Vibrational spectroscopy and intramolecular energy transfer in isocyanic acid (HNCO)

    International Nuclear Information System (INIS)

    Coffey, M.J.; Berghout, H.L.; Woods, E. III; Crim, F.F.

    1999-01-01

    Room temperature photoacoustic spectra in the region of the first through the fourth overtones (2ν 1 to 5ν 1 ) and free-jet action spectra of the second through the fourth overtones (3ν 1 to 5ν 1 ) of the N - H stretching vibration permit analysis of the vibrational and rotational structure of HNCO. The analysis identifies the strong intramolecular couplings that control the early stages of intramolecular vibrational energy redistribution (IVR) and gives the interaction matrix elements between the zero-order N - H stretching states and the other zero-order states with which they interact. The experimentally determined couplings and zero-order state separations are consistent with ab initio calculations of East, Johnson, and Allen [J. Chem. Phys. 98, 1299 (1993)], and comparison with the calculation identifies the coupled states and likely interactions. The states most strongly coupled to the pure N - H stretching zero-order states are ones with a quantum of N - H stretching excitation (ν 1 ) replaced by different combinations of N - C - O asymmetric or symmetric stretching excitation (ν 2 or ν 3 ) and trans-bending excitation (ν 4 ). The two strongest couplings of the nν 1 state are to the states (n-1)ν 1 +ν 2 +ν 4 and (n-1)ν 1 +ν 3 +2ν 4 , and sequential couplings through a series of low order resonances potentially play a role. The analysis shows that if the pure N - H stretch zero-order state were excited, energy would initially flow out of that mode into the strongly coupled mode in 100 fs to 700 fs, depending on the level of initial excitation. copyright 1999 American Institute of Physics

  10. Large-scale parallel uncontracted multireference-averaged quadratic coupled cluster: the ground state of the chromium dimer revisited.

    Science.gov (United States)

    Müller, Thomas

    2009-11-12

    The accurate prediction of the potential energy function of the X1Sigmag+ state of Cr2 is a remarkable challenge; large differential electron correlation effects, significant scalar relativistic contributions, the need for large flexible basis sets containing g functions, the importance of semicore valence electron correlation, and its multireference nature pose considerable obstacles. So far, the only reasonable successful approaches were based on multireference perturbation theory (MRPT). Recently, there was some controversy in the literature about the role of error compensation and systematic defects of various MRPT implementations that cannot be easily overcome. A detailed basis set study of the potential energy function is presented, adopting a variational method. The method of choice for this electron-rich target with up to 28 correlated electrons is fully uncontracted multireference-averaged quadratic coupled cluster (MR-AQCC), which shares the flexibility of the multireference configuration interaction (MRCI) approach and is, in addition, approximately size-extensive (0.02 eV in error as compared to the MRCI value of 1.37 eV for two noninteracting chromium atoms). The best estimate for De arrives at 1.48 eV and agrees well with the experimental data of 1.47 +/- 0.056 eV. At the estimated CBS limit, the equilibrium bond distance (1.685 A) and vibrational frequency (459 cm-1) are in agreement with experiment (1.679 A, 481 cm-1). Large basis sets and reference configuration spaces invariably result in huge wave function expansions (here, up to 2.8 billion configuration state functions), and efficient parallel implementations of the method are crucial. Hence, relevant details on implementation and general performance of the parallel program code are discussed as well.

  11. State-selective multireference coupled-cluster theory: In pursuit of property calculation

    International Nuclear Information System (INIS)

    Ghose, K.B.; Piecuch, P.; Pal, S.; Adamowicz, L.

    1996-01-01

    In this work, we examine the efficiency of the recently developed [P. Piecuch et al., J. Chem. Phys. 99, 6732 (1993)] state-selective (SS) multi-reference (MR) coupled-cluster (CC) method for calculation of molecular properties. In our earlier papers, we demonstrated that the SSMRCC method with inclusion of single, double, and internal and semi-internal triple excitations [SSCCSD(T) approach] is capable of providing an accurate description of the ground-state potential energy surfaces. In this paper, we present the dipole moment and polarizability values of the HF molecule at equilibrium and stretched geometries calculated using finite field technique and SSCCSD(T) ansatz. The calculations use double zeta quality basis sets with and without polarization functions. Molecular orbital basis sets include both relaxed and nonrelaxed orbitals. copyright 1996 American Institute of Physics

  12. Experimental Research on Vibrations of Double Harmonic Gear Transmission

    Directory of Open Access Journals (Sweden)

    Sava Ianici

    2017-11-01

    Full Text Available Gears transmission can be important sources of vibration in the mechanical system structures and can have a significant share in the overall vibration level. The current trend of significant increase in powers and speeds transmitted by modern mechanical systems, along with the size reduction, may cause a worsening of the behaviour of transmissions with gears in terms of vibration, especially when the optimization criteria were not respected in the design, execution and installation phase. This paper presents a study of vibrations that occur in a double harmonic gear transmission (DHGT, based on experimental research. The experimental researches revealed that in a double harmonic gear transmission the vibrations are initiated and develop in the multipara harmonics engagement of the teeth and in the kinematic couplings materialized between the wave generator and the flexible toothed wheel. These vibrations are later transmitted by means of the shafts and bearings to the transmission housing, respectively, through the walls of it, propagating in the air.

  13. Robustness of cluster synchronous patterns in small-world networks with inter-cluster co-competition balance

    International Nuclear Information System (INIS)

    Zhang, Jianbao; Ma, Zhongjun; Chen, Guanrong

    2014-01-01

    All edges in the classical Watts and Strogatz's small-world network model are unweighted and cooperative (positive). By introducing competitive (negative) inter-cluster edges and assigning edge weights to mimic more realistic networks, this paper develops a modified model which possesses co-competitive weighted couplings and cluster structures while maintaining the common small-world network properties of small average shortest path lengths and large clustering coefficients. Based on theoretical analysis, it is proved that the new model with inter-cluster co-competition balance has an important dynamical property of robust cluster synchronous pattern formation. More precisely, clusters will neither merge nor split regardless of adding or deleting nodes and edges, under the condition of inter-cluster co-competition balance. Numerical simulations demonstrate the robustness of the model against the increase of the coupling strength and several topological variations

  14. Robustness of cluster synchronous patterns in small-world networks with inter-cluster co-competition balance

    Science.gov (United States)

    Zhang, Jianbao; Ma, Zhongjun; Chen, Guanrong

    2014-06-01

    All edges in the classical Watts and Strogatz's small-world network model are unweighted and cooperative (positive). By introducing competitive (negative) inter-cluster edges and assigning edge weights to mimic more realistic networks, this paper develops a modified model which possesses co-competitive weighted couplings and cluster structures while maintaining the common small-world network properties of small average shortest path lengths and large clustering coefficients. Based on theoretical analysis, it is proved that the new model with inter-cluster co-competition balance has an important dynamical property of robust cluster synchronous pattern formation. More precisely, clusters will neither merge nor split regardless of adding or deleting nodes and edges, under the condition of inter-cluster co-competition balance. Numerical simulations demonstrate the robustness of the model against the increase of the coupling strength and several topological variations.

  15. Robustness of cluster synchronous patterns in small-world networks with inter-cluster co-competition balance

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jianbao [School of Science, Hangzhou Dianzi University, Hangzhou 310018 (China); Ma, Zhongjun, E-mail: mzj1234402@163.com [School of Mathematics and Computing Science, Guilin University of Electronic Technology, Guilin 541004 (China); Chen, Guanrong [Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong (China)

    2014-06-15

    All edges in the classical Watts and Strogatz's small-world network model are unweighted and cooperative (positive). By introducing competitive (negative) inter-cluster edges and assigning edge weights to mimic more realistic networks, this paper develops a modified model which possesses co-competitive weighted couplings and cluster structures while maintaining the common small-world network properties of small average shortest path lengths and large clustering coefficients. Based on theoretical analysis, it is proved that the new model with inter-cluster co-competition balance has an important dynamical property of robust cluster synchronous pattern formation. More precisely, clusters will neither merge nor split regardless of adding or deleting nodes and edges, under the condition of inter-cluster co-competition balance. Numerical simulations demonstrate the robustness of the model against the increase of the coupling strength and several topological variations.

  16. Dynamics of photoprocesses induced by femtosecond infrared radiation in free molecules and clusters of iron pentacarbonyl

    International Nuclear Information System (INIS)

    Kompanets, V. O.; Lokhman, V. N.; Poydashev, D. G.; Chekalin, S. V.; Ryabov, E. A.

    2016-01-01

    The dynamics of photoprocesses induced by femtosecond infrared radiation in free Fe(CO) 5 molecules and their clusters owing to the resonant excitation of vibrations of CO bonds in the 5-μm range has been studied. The technique of infrared excitation and photoionization probing (λ = 400 nm) by femtosecond pulses has been used in combination with time-of-flight mass spectrometry. It has been found that an infrared pulse selectively excites vibrations of CO bonds in free molecules, which results in a decrease in the yield of the Fe(CO) 5 + molecular ion. Subsequent relaxation processes have been analyzed and the results have been interpreted. The time of the energy transfer from excited vibrations to other vibrations of the molecule owing to intramolecular relaxation has been measured. The dynamics of dissociation of [Fe(CO) 5 ] n clusters irradiated by femtosecond infrared radiation has been studied. The time dependence of the yield of free molecules has been measured under different infrared laser excitation conditions. We have proposed a model that well describes the results of the experiment and makes it possible, in particular, to calculate the profile of variation of the temperature of clusters within the “evaporation ensemble” concept. The intramolecular and intracluster vibrational relaxation rates in [Fe(CO) 5 ] n clusters have been estimated.

  17. Self-assembled metal clusters on an alumina nanomesh

    International Nuclear Information System (INIS)

    Buchsbaum, A.

    2012-01-01

    either bcc[110] or bcc[100] orientation, depending on the substrate temperature, and for Co we found random stacking of close-packed planes [fcc (111) and hcp (0001), respectively] on top of the clusters. Pd clusters grow with fcc[111] orientation. The contact angle of the clusters was derived from the measurements; at a deposition temperature of 470 K the contact angle of Co clusters is approx. 75° and for Fe clusters approx. 80° . With increasing deposition temperature the contact angle increases, i.e., the clusters are not in thermodynamic equilibrium. The size of the clusters grown on top of an ideal defect-free oxide is limited to approx. 1000 atoms/cluster. For larger clusters coalescence happens and a continuous film forms. The magnetic properties of the clusters and the Ni3Al(111) substrate have been studied by means of x-ray magnetic circular dichroism (XMCD) and surface magneto-optic Kerr effect (SMOKE). SMOKE measurements show that the Curie temperature of the substrate surface highly depends on the stoichiometry and thereby on the preparation history of the sample. By fitting calculated magnetization curves to the data measured by XMCD the magnetic properties of the clusters could be determined. The anisotropy of Co clusters is less than for hcp bulk Co. This is probably a consequence of random stacking of close-packed Co planes. The anisotropy of Fe clusters is enhanced compared to bulk bcc Fe, as expected for nanoparticles. The easy axis of the clusters is perpendicular to the surface. In order to describe the experimental data by the model two types of clusters with different coupling to the substrate have to be taken into account: clusters with strong AF coupling and predominantly FM coupled clusters which also show a considerable biquadratic contribution to the coupling energy. Basic considerations show that the atoms inside the corner holes mediate FM coupling of the clusters to the substrate. Most probably the coupling energy depends on the atoms

  18. Cluster radioactivity leading to doubly magic 100Sn and 132Sn ...

    Indian Academy of Sciences (India)

    lap region), we used simple power-law interpolation. Proximity potential was first used by Shi and Swiatecki [21] ... consideration. In the present model, assault frequency υ is calculated for each parent– cluster combination, which is associated with zero point vibration energy. For zero point vibration energy Ev, we used the ...

  19. Cluster Randomized Controlled Trial Evaluation of a Gender Equity and Family Planning Intervention for Married Men and Couples in Rural India.

    Directory of Open Access Journals (Sweden)

    Anita Raj

    Full Text Available Despite ongoing recommendations to increase male engagement and gender-equity (GE counseling in family planning (FP services, few such programs have been implemented and rigorously evaluated. This study evaluates the impact of CHARM, a three-session GE+FP counseling intervention delivered by male health care providers to married men, alone (sessions 1&2 and with their wives (session 3 in India.A two-armed cluster randomized controlled trial was conducted with young married couples (N = 1081 couples recruited from 50 geographic clusters (25 clusters randomized to CHARM and a control condition, respectively in rural Maharashtra, India. Couples were surveyed on demographics, contraceptive behaviors, and intimate partner violence (IPV attitudes and behaviors at baseline and 9 &18-month follow-ups, with pregnancy testing at baseline and 18-month follow-up. Outcome effects on contraceptive use and incident pregnancy, and secondarily, on contraceptive communication and men's IPV attitudes and behaviors, were assessed using logistic generalized linear mixed models. Most men recruited from CHARM communities (91.3% received at least one CHARM intervention session; 52.5% received the couple's session with their wife. Findings document that women from the CHARM condition, relative to controls, were more likely to report contraceptive communication at 9-month follow-up (AOR = 1.77, p = 0.04 and modern contraceptive use at 9 and 18-month follow-ups (AORs = 1.57-1.58, p = 0.05, and they were less likely to report sexual IPV at 18-month follow-up (AOR = 0.48, p = 0.01. Men in the CHARM condition were less likely than those in the control clusters to report attitudes accepting of sexual IPV at 9-month (AOR = 0.64, p = 0.03 and 18-month (AOR = 0.51, p = 0.004 follow-up, and attitudes accepting of physical IPV at 18-month follow-up (AOR = 0.64, p = 0.02. No significant effect on pregnancy was seen.Findings demonstrate that men can be engaged in FP programming in

  20. Intermodal resonance of vibrating suspended cables

    NARCIS (Netherlands)

    Rienstra, S.W.

    2010-01-01

    The weakly nonlinear free vibrations of a single suspended cable, or a coupled system of suspended cables, may be classified as gravity modes (no tension variations to leading order) and elasto-gravity modes (tension and vertical displacement equally important). It was found earlier [12] that the

  1. Geminal-spanning orbitals make explicitly correlated reduced-scaling coupled-cluster methods robust, yet simple

    Science.gov (United States)

    Pavošević, Fabijan; Neese, Frank; Valeev, Edward F.

    2014-08-01

    We present a production implementation of reduced-scaling explicitly correlated (F12) coupled-cluster singles and doubles (CCSD) method based on pair-natural orbitals (PNOs). A key feature is the reformulation of the explicitly correlated terms using geminal-spanning orbitals that greatly reduce the truncation errors of the F12 contribution. For the standard S66 benchmark of weak intermolecular interactions, the cc-pVDZ-F12 PNO CCSD F12 interaction energies reproduce the complete basis set CCSD limit with mean absolute error cost compared to the conventional CCSD F12.

  2. Accelerating the coupled-cluster singles and doubles method using the chain-of-sphere approximation

    Science.gov (United States)

    Dutta, Achintya Kumar; Neese, Frank; Izsák, Róbert

    2018-06-01

    In this paper, we present a chain-of-sphere implementation of the external exchange term, the computational bottleneck of coupled-cluster calculations at the singles and doubles level. This implementation is compared to standard molecular orbital, atomic orbital and resolution of identity implementations of the same term within the ORCA package and turns out to be the most efficient one for larger molecules, with a better accuracy than the resolution-of-identity approximation. Furthermore, it becomes possible to perform a canonical CC calculation on a tetramer of nucleobases in 17 days, 20 hours.

  3. MR Damper Controlled Vibration Absorber for Enhanced Mitigation of Harmonic Vibrations

    Directory of Open Access Journals (Sweden)

    Felix Weber

    2016-12-01

    Full Text Available This paper describes a semi-active vibration absorber (SVA concept based on a real-time controlled magnetorheological damper (MR-SVA for the enhanced mitigation of structural vibrations due to harmonic disturbing forces. The force of the MR damper is controlled in real-time to generate the frequency and damping controls according to the behaviour of the undamped vibration absorber for the actual frequency of vibration. As stiffness and damping emulations in semi-active actuators are coupled quantities the control is formulated to prioritize the frequency control by the controlled stiffness. The control algorithm is augmented by a stiffness correction method ensuring precise frequency control when the desired control force is constrained by the semi-active restriction and residual force of the MR damper. The force tracking task is solved by a model-based feed forward with feedback correction. The MR-SVA is numerically and experimentally validated for the primary structure with nominal eigenfrequency and when de-tuning of −10%, −5%, +5% and +10% is present. Both validations demonstrate that the MR-SVA improves the vibration reduction in the primary structure by up to 55% compared to the passive tuned mass damper (TMD. Furthermore, it is shown that the MR-SVA with only 80% of tuned mass leads to approximately the same enhanced performance while the associated increased relative motion amplitude of the tuned mass is more than compensated be the reduced dimensions of the mass. Therefore, the MR-SVA is an appropriate solution for the mitigation of tall buildings where the pendulum mass can be up to several thousands of metric tonnes and space for the pendulum damper is limited.

  4. Meshing Force of Misaligned Spline Coupling and the Influence on Rotor System

    Directory of Open Access Journals (Sweden)

    Guang Zhao

    2008-01-01

    Full Text Available Meshing force of misaligned spline coupling is derived, dynamic equation of rotor-spline coupling system is established based on finite element analysis, the influence of meshing force on rotor-spline coupling system is simulated by numerical integral method. According to the theoretical analysis, meshing force of spline coupling is related to coupling parameters, misalignment, transmitting torque, static misalignment, dynamic vibration displacement, and so on. The meshing force increases nonlinearly with increasing the spline thickness and static misalignment or decreasing alignment meshing distance (AMD. Stiffness of coupling relates to dynamic vibration displacement, and static misalignment is not a constant. Dynamic behaviors of rotor-spline coupling system reveal the following: 1X-rotating speed is the main response frequency of system when there is no misalignment; while 2X-rotating speed appears when misalignment is present. Moreover, when misalignment increases, vibration of the system gets intricate; shaft orbit departs from origin, and magnitudes of all frequencies increase. Research results can provide important criterions on both optimization design of spline coupling and trouble shooting of rotor systems.

  5. Interplay of quasiparticle-vibration coupling and pairing correlations on β-decay half-lives

    Science.gov (United States)

    Niu, Y. F.; Niu, Z. M.; Colò, G.; Vigezzi, E.

    2018-05-01

    The nuclear β-decay half-lives of Ni and Sn isotopes, around the closed shell nuclei 78Ni and 132Sn, are investigated by computing the distribution of the Gamow-Teller strength using the Quasiparticle Random Phase Approximation (QRPA) with quasiparticle-vibration coupling (QPVC), based on ground-state properties obtained by Hartree-Fock-Bogoliubov (HFB) calculations. We employ the effective interaction SkM* and a zero-range effective pairing force. The half-lives are strongly reduced by including the QPVC. We study in detail the effects of isovector (IV) and isoscalar (IS) pairing. Increasing the IV strength tends to increase the lifetime for nuclei in the proximity of, but lighter than, the closed-shell ones in QRPA calculations, while the effect is significantly reduced by taking into account the QPVC. On the contrary, the IS pairing mainly plays a role for nuclei after the shell closure. Increasing its strength decreases the half-lives, and the effect at QRPA and QRPA+QPVC level is comparable. The effect of IS pairing is particularly pronounced in the case of the Sn isotopes, where it turns out to be instrumental to obtain good agreement with experimental data.

  6. Ab initio calculation of a global potential, vibrational energies, and wave functions for HCN/HNC, and a simulation of the (A-tilde)-(X-tilde) emission spectrum

    Science.gov (United States)

    Bowman, Joel M.; Gazdy, Bela; Bentley, Joseph A.; Lee, Timothy J.; Dateo, Christopher E.

    1993-01-01

    A potential energy surface for the HCN/HNC system which is a fit to extensive, high-quality ab initio, coupled-cluster calculations is presented. All HCN and HNC states with energies below the energy of the first delocalized state are reported and characterized. Vibrational transition energies are compared with all available experimental data on HCN and HNC, including high CH-overtone states up to 23,063/cm. A simulation of the (A-tilde)-(X-tilde) stimulated emission pumping (SEP) spectrum is also reported, and the results are compared to experiment. Franck-Condon factors are reported for odd bending states of HCN, with one quantum of vibrational angular momentum, in order to compare with the recent assignment by Jonas et al. (1992), on the basis of axis-switching arguments of a number of previously unassigned states in the SEP spectrum.

  7. Mechanical vibration to electrical energy converter

    Science.gov (United States)

    Kellogg, Rick Allen [Tijeras, NM; Brotz, Jay Kristoffer [Albuquerque, NM

    2009-03-03

    Electromechanical devices that generate an electrical signal in response to an external source of mechanical vibrations can operate as a sensor of vibrations and as an energy harvester for converting mechanical vibration to electrical energy. The devices incorporate a magnet that is movable through a gap in a ferromagnetic circuit, wherein a coil is wound around a portion of the ferromagnetic circuit. A flexible coupling is used to attach the magnet to a frame for providing alignment of the magnet as it moves or oscillates through the gap in the ferromagnetic circuit. The motion of the magnet can be constrained to occur within a substantially linear range of magnetostatic force that develops due to the motion of the magnet. The devices can have ferromagnetic circuits with multiple arms, an array of magnets having alternating polarity and, encompass micro-electromechanical (MEM) devices.

  8. On the discrepancy between theory and experiment for the F-F spin-spin coupling constant of difluoethyne

    DEFF Research Database (Denmark)

    Faber, Rasmus; Sauer, Stephan P. A.

    2012-01-01

    on the choice of one-electron basis set, the choice of correlated wave function method and the inclusion of zero-point vibrational and temperature corrections. All terms of the SSCC have been evaluated at the second-order polarization propagator, SOPPA and SOPPA(CCSD), and coupled cluster singles and doubles...... (CCSD) levels of theory and for the most correlation dependent term, the paramagnetic spin-orbit contribution (PSO), also at the very accurate CC3 level. We ¿nd that in order to get results that are well converged with respect to the basis set, one needs to use special SSCC optimized basis sets...

  9. Formation of Core-Shell Ethane-Silver Clusters in He Droplets.

    Science.gov (United States)

    Loginov, Evgeny; Gomez, Luis F; Sartakov, Boris G; Vilesov, Andrey F

    2017-08-17

    Ethane core-silver shell clusters consisting of several thousand particles have been assembled in helium droplets upon capture of ethane molecules followed by Ag atoms. The composite clusters were studied via infrared laser spectroscopy in the range of the C-H stretching vibrations of ethane. The spectra reveal a splitting of the vibrational bands, which is ascribed to interaction with Ag. A rigorous analysis of band intensities for a varying number of trapped ethane molecules and Ag atoms indicates that the composite clusters consist of a core of ethane that is covered by relatively small Ag clusters. This metastable structure is stabilized due to fast dissipation in superfluid helium droplets of the cohesion energy of the clusters.

  10. Coupled-cluster calculations for ground and excited states of closed- and open-shell nuclei using methods of quantum chemistry

    International Nuclear Information System (INIS)

    Wloch, Marta; Gour, Jeffrey R; Piecuch, Piotr; Dean, David J; Hjorth-Jensen, Morten; Papenbrock, Thomas

    2005-01-01

    We discuss large-scale ab initio calculations of ground and excited states of 16 O and preliminary calculations for 15 O and 17 O using coupled-cluster methods and algorithms developed in quantum chemistry. By using realistic two-body interactions and the renormalized form of the Hamiltonian obtained with a no-core G-matrix approach, we are able to obtain the virtually converged results for 16 O and promising results for 15 O and 17 O at the level of two-body interactions. The calculated properties other than binding and excitation energies include charge radius and charge form factor. The relatively low costs of coupled-cluster calculations, which are characterized by the low-order polynomial scaling with the system size, enable us to probe large model spaces with up to seven or eight major oscillator shells, for which nontruncated shell-model calculations for nuclei with A = 15-17 active particles are presently not possible

  11. A comparison of density functional theory and coupled cluster methods for the calculation of electric dipole polarizability gradients of methane

    DEFF Research Database (Denmark)

    Paidarová, Ivana; Sauer, Stephan P. A.

    2012-01-01

    We have compared the performance of density functional theory (DFT) using five different exchange-correlation functionals with four coupled cluster theory based wave function methods in the calculation of geometrical derivatives of the polarizability tensor of methane. The polarizability gradient...

  12. Anion photoelectron spectroscopy of radicals and clusters

    Energy Technology Data Exchange (ETDEWEB)

    Travis, Taylor R. [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    Anion photoelectron spectroscopy is used to study free radicals and clusters. The low-lying 2Σ and 2π states of C2nH (n = 1--4) have been studied. The anion photoelectron spectra yielded electron affinities, term values, and vibrational frequencies for these combustion and astrophysically relevant species. Photoelectron angular distributions allowed the author to correctly assign the electronic symmetry of the ground and first excited states and to assess the degree of vibronic coupling in C2H and C4H. Other radicals studied include NCN and I3. The author was able to observe the low-lying singlet and triplet states of NCN for the first time. Measurement of the electron affinity of I3 revealed that it has a bound ground state and attachment of an argon atom to this moiety enabled him to resolve the symmetric stretching progression.

  13. Synchronization of Two Non-Identical Coupled Exciters in a Non-Resonant Vibrating System of Linear Motion. Part I: Theoretical Analysis

    Directory of Open Access Journals (Sweden)

    Chunyu Zhao

    2009-01-01

    Full Text Available In this paper an analytical approach is proposed to study the feature of frequency capture of two non-identical coupled exciters in a non-resonant vibrating system. The electromagnetic torque of an induction motor in the quasi-steady-state operation is derived. With the introduction of two perturbation small parameters to average angular velocity of two exciters and their phase difference, we deduce the Equation of Frequency Capture by averaging two motion equations of two exciters over their average period. It converts the synchronization problem of two exciters into that of existence and stability of zero solution for the Equation of Frequency Capture. The conditions of implementing frequency capture and that of stabilizing synchronous operation of two motors have been derived. The concept of torque of frequency capture is proposed to physically explain the peculiarity of self-synchronization of the two exciters. An interesting conclusion is reached that the moments of inertia of the two exciters in the Equation of Frequency Capture reduce and there is a coupling moment of inertia between the two exciters. The reduction of moments of inertia and the coupling moment of inertia have an effect on the stability of synchronous operation.

  14. Control of noise and structural vibration a MATLAB-based approach

    CERN Document Server

    Mao, Qibo

    2013-01-01

    Control of Noise and Structural Vibration presents a MATLAB®-based approach to solving the problems of undesirable noise generation and transmission by structures and of undesirable vibration within structures in response to environmental or operational forces. The fundamentals of acoustics, vibration and coupling between vibrating structures and the sound fields they generate are introduced including a discussion of the finite element method for vibration analysis. Following this, the treatment of sound and vibration control begins, illustrated by example systems such as beams, plates and double plate structures. Sensor and actuator placement is explained as is the idea of modal sensor–actuators. The design of appropriate feedback systems includes consideration of basic stability criteria and robust active structural acoustic control. Single and multi-mode positive position feedback (PPF) control systems are also described in the context of loudspeaker–duct model with non-collocated loudspeaker–microp...

  15. Coupling forces resulting from the type of chain saw used

    Directory of Open Access Journals (Sweden)

    Jolanta Malinowska-Borowska

    2014-03-01

    Full Text Available Introduction. Woodcutters’ working conditions are difficult due to the presence of numerous occupational hazards. Petrol –fuelled chain saws commonly used in forestry produce vibration, which may lead to the development of non-specific disorders in the upper extremities of the chain saw operator, referred to as hand-arm vibration syndrome (HAVS. The magnitude of coupling forces exerted on a vibrating tool handle may affect the severity of HAVS and hand-wrist cumulative trauma disorders. The aim of the presented study was to measure coupling forces exerted by fellers on various chain saws and to find correlation between force magnitude and type of tool used. Material and methods. Coupling forces applied by workers on different types of chain saws were measured by means of a hydro-electronic force meter. All measurements were carried out during the harvesting of wood in real work conditions. Results. Mean force applied by forestry workers on their tools was 44.2 N. Coupling forces registered during cutting wood with small universal chain saws were larger than forces exerted on models characterized by higher power profile. Forces applied on comparable tools produced by various manufacturers also differed. Conclusions. The relationship between coupling forces and power of the chain saw should lead to ergonomic improvements of the tool and vibration-reducing devices. These results can also be used as a recommendation for fellers in a range of using proper machines for different types of cut or types of wood. They may also be applicable to develop more effective methods for assessing vibration exposure risks among woodcutters.

  16. Adaptive vibration isolation system for diesel engine

    Institute of Scientific and Technical Information of China (English)

    YANG Tie-jun; ZHANG Xin-yu; XIAO You-hong; HUANG Jin-e; LIU Zhi-gang

    2004-01-01

    An active two-stage isolation mounting, on which servo-hydraulic system is used as the actuator (secondary vibration source) and a diesel engine is used as primary vibration source, has been built. The upper mass of the mounting is composed of a 495diesel and an electrical eddy current dynamometer. The lower mass is divided into four small masses to which servo-hydraulic actuator and rubber isolators are attached. According to the periodical characteristics of diesel vibration signals, a multi-point adaptive strategy based on adaptive comb filtered algorithm is applied to active multi-direction coupled vibrations control for the engine. The experimental results demonstrate that a good suppression in the effective range of phase compensation in secondary path (within 100Hz) at different operation conditions is achieved, and verify that this strategy is effective. The features of the active system, the development activities carried out on the system and experimental results are discussed in the paper.

  17. Data interpolation for vibration diagnostics using two-variable correlations

    International Nuclear Information System (INIS)

    Branagan, L.

    1991-01-01

    This paper reports that effective machinery vibration diagnostics require a clear differentiation between normal vibration changes caused by plant process conditions and those caused by degradation. The normal relationship between vibration and a process parameter can be quantified by developing the appropriate correlation. The differences in data acquisition requirements between dynamic signals (vibration spectra) and static signals (pressure, temperature, etc.) result in asynchronous data acquisition; the development of any correlation must then be based on some form of interpolated data. This interpolation can reproduce or distort the original measured quantity depending on the characteristics of the data and the interpolation technique. Relevant data characteristics, such as acquisition times, collection cycle times, compression method, storage rate, and the slew rate of the measured variable, are dependent both on the data handling and on the measured variable. Linear and staircase interpolation, along with the use of clustering and filtering, provide the necessary options to develop accurate correlations. The examples illustrate the appropriate application of these options

  18. Vibrational characterization of hexagonal duct core assemblies under various support conditions

    International Nuclear Information System (INIS)

    Bartholf, L.W.; Julyk, L.J.; Ryan, J.A.

    1989-03-01

    Analysis of the dynamic response of advanced Liquid Metal Reactor (LMR) core internals to seismic excitation requires a significant number of simplifying assumptions and idealizations to economically meet the constraints of present-day computer limitations. Fluid coupling and nonlinearities associated with inter-assembly lateral support stiffness and clearances of a large cluster of core internal assemblies are some of the factors that complicate the analytical procedure (Moran, 1976). Well defined test data were needed to quantify these and other uncertainties associated with the use of analytical or numerical computer codes used in the seismic design and analysis of reactor cores. The purpose of the present experimental program was to supplement existing data, such as reported in (Sasaki and Muto, 1983), by developing vibrational characteristics of core assemblies over a range of parameters relative to LMR conceptual designs. The parameters selected for this program were variations in number and location of restraints, restraint-pad to duct-load-pad clearances, and input forcing frequency and g-level. Feature tests were conducted to characterize load pad stiffness and coefficient of restitution, and to calibrate load pads to measure inter-assembly across-flat impact loads. Simulated full-size LMR hexagonal duct core assemblies were used in vibration tests. A single assembly and a row of five assemblies were tested in air to establish modal characteristics and forced response behavior. 2 refs., 7 figs., 1 tab

  19. Synergy between pair coupled cluster doubles and pair density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Garza, Alejandro J.; Bulik, Ireneusz W. [Department of Chemistry, Rice University, Houston, Texas 77251-1892 (United States); Henderson, Thomas M. [Department of Chemistry and Department of Physics and Astronomy, Rice University, Houston, Texas 77251-1892 (United States); Scuseria, Gustavo E. [Department of Chemistry and Department of Physics and Astronomy, Rice University, Houston, Texas 77251-1892 (United States); Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2015-01-28

    Pair coupled cluster doubles (pCCD) has been recently studied as a method capable of accounting for static correlation with low polynomial cost. We present three combinations of pCCD with Kohn–Sham functionals of the density and on-top pair density (the probability of finding two electrons on top of each other) to add dynamic correlation to pCCD without double counting. With a negligible increase in computational cost, these pCCD+DFT blends greatly improve upon pCCD in the description of typical problems where static and dynamic correlations are both important. We argue that—as a black-box method with low scaling, size-extensivity, size-consistency, and a simple quasidiagonal two-particle density matrix—pCCD is an excellent match for pair density functionals in this type of fusion of multireference wavefunctions with DFT.

  20. Free Vibration of Rectangular Plates with Attached Discrete Sprung Masses

    Directory of Open Access Journals (Sweden)

    Ding Zhou

    2012-01-01

    Full Text Available A direct approach is used to derive the exact solution for the free vibration of thin rectangular plates with discrete sprung masses attached. The plate is simply supported along two opposite edges and elastically supported along the two other edges. The elastic support can represent a range of boundary conditions from free to clamped supports. Considering only the compatibility of the internal forces between the plate and the sprung masses, the equations of the coupled vibration of the plate-spring-mass system are derived. The exact expressions for mode and frequency equations of the coupled vibration of the plate and sprung masses are determined. The solutions converge steadily and monotonically to exact values. The correctness and accuracy of the solutions are demonstrated through comparison with published results. A parametric study is undertaken focusing on the plate with one or two sprung masses. The results can be used as a benchmark for further investigation.

  1. Solving Coupled Gross--Pitaevskii Equations on a Cluster of PlayStation 3 Computers

    Science.gov (United States)

    Edwards, Mark; Heward, Jeffrey; Clark, C. W.

    2009-05-01

    At Georgia Southern University we have constructed an 8+1--node cluster of Sony PlayStation 3 (PS3) computers with the intention of using this computing resource to solve problems related to the behavior of ultra--cold atoms in general with a particular emphasis on studying bose--bose and bose--fermi mixtures confined in optical lattices. As a first project that uses this computing resource, we have implemented a parallel solver of the coupled time--dependent, one--dimensional Gross--Pitaevskii (TDGP) equations. These equations govern the behavior of dual-- species bosonic mixtures. We chose the split--operator/FFT to solve the coupled 1D TDGP equations. The fast Fourier transform component of this solver can be readily parallelized on the PS3 cpu known as the Cell Broadband Engine (CellBE). Each CellBE chip contains a single 64--bit PowerPC Processor Element known as the PPE and eight ``Synergistic Processor Element'' identified as the SPE's. We report on this algorithm and compare its performance to a non--parallel solver as applied to modeling evaporative cooling in dual--species bosonic mixtures.

  2. CO2 laser photolysis of clustered ions, (1)

    International Nuclear Information System (INIS)

    Ikezoe, Yasumasa; Soga, Takeshi; Suzuki, Kazuya; Ohno, Shin-ichi.

    1990-09-01

    Vibrational excitation and the following decomposition of cluster ions by CO 2 laser photons are studied. Characteristics of the cluster ion and the CO 2 laser photon are summarized in their relation to the photolysis of cluster ions. An apparatus was installed, which is composed of (1) corona discharge-jet expansion section (formation of cluster ions), (2) CO 2 laser section (photolysis of cluster ions), and (3) mass spectrometer section. Experimental results of ammonia cluster ions were described. Effects of repeller voltage, shape of repellers, and adiabatic cooling are examined on the formation of ammonia cluster ions by corona discharge-jet expansion method. Collisional dissociation of cluster ions was observed at high repeller voltages. Size distribution of the ammonia cluster ion is discussed in connection with the temperature of cluster ions. Intensity of CO 2 laser was related to decomposition yield of cluster ions. (author)

  3. The development of two Broadband Vibration Energy Harvesters (BVEH) with adaptive conversion electronics

    Science.gov (United States)

    Clingman, Dan J.; Thiesen, Jack

    2017-04-01

    Historically, piezoelectric vibration energy harvesters have been limited to operation at a single, structurally resonant frequency. A piezoceramic energy harvester, such as a bimorph beam, operating at structural resonance exchanges energy between dynamic and strain regimes. This energy exchange increases the coupling between piezoceramic deformation and electrical charge generation. Two BVEH mechanisms are presented that exploit strain energy management to reduce inertial forces needed to deform the piezoceramic, thus increasing the coupling between structural and electrical energy conversion over a broadband vibration spectrum. Broadband vibration excitation produces a non-sinusoidal electrical wave form from the BVEH device. An adaptive energy conversion circuit was developed that exploits a buck converter to capture the complex waveform energy in a form easily used by standard electrical components.

  4. Vibrational spectrum of solid picene (C22H14)

    International Nuclear Information System (INIS)

    Joseph, B; Capitani, F; Boeri, L; Malavasi, L; Artioli, G A; Protti, S; Fagnoni, M; Albini, A; Marini, C; Baldassarre, L; Perucchi, A; Lupi, S; Postorino, P; Dore, P

    2012-01-01

    Recently, Mitsuhashi et al observed superconductivity with a transition temperature up to 18 K in potassium doped picene (C 22 H 14 ), a polycyclic aromatic hydrocarbon compound (Mitsuhashi et al 2010 Nature 464 76). Theoretical analysis indicates the importance of electron-phonon coupling in the superconducting mechanisms of these systems, with different emphasis on inter- and intra-molecular vibrations, depending on the approximations used. Here we present a combined experimental and ab initio study of the Raman and infrared spectrum of undoped solid picene, which allows us to unambiguously assign the vibrational modes. This combined study enables the identification of the modes which couple strongly to electrons and hence can play an important role in the superconducting properties of the doped samples. (fast track communication)

  5. A microscopic approach based on particle-vibration coupling: application to charge-exchange transitions and multiplets in odd nuclei

    Directory of Open Access Journals (Sweden)

    Colò Gianluca

    2016-01-01

    Full Text Available In this contribution, we shall describe a formalism that goes beyond the simple time-dependent mean field and is based on particle-vibration coupling (PVC. Such a formalism has been developed with the idea of being self-consistent. It makes use of Skyrme effective forces, and has been used for several applications. We will focus on charge-exchange transitions, namely we will show that our model describes well both the Gamow-Teller giant resonance width, and the low-lying transitions associated with β-decay. In this latter case, including PVC produces a significant improvement of the half-lives obtained at mean-field level, and leads to a good agreement with experimental data. We will end by discussing particle-phonon multiplets in odd nuclei.

  6. Anatomy of an Exciton : Vibrational Distortion and Exciton Coherence in H- and J-Aggregates

    NARCIS (Netherlands)

    Tempelaar, Roel; Stradomska, Anna; Knoester, Jasper; Spano, Frank C.

    2013-01-01

    In organic materials, coupling of electronic excitations to vibrational degrees of freedom results in polaronic excited states. Through numerical calculations, we demonstrate that the vibrational distortion field accompanying such a polaron scales as the product of the excitonic interaction field

  7. On the exponential energy gap law in He--I2 vibrational relaxation

    International Nuclear Information System (INIS)

    Maricq, M.M.

    1990-01-01

    A comparison between coupled states, infinite order sudden, and classical path calculations is used to elucidate the origin of an exponential energy gap law recently observed for vibrational relaxation from highly excited states in the B 0 + u state of I 2 due to collisions with He. All three methods provide relaxation cross sections in good agreement with experiment. Anharmonic effects play an important role, with accurate results obtained with a Morse, but not harmonic, oscillator description of the I * 2 molecule. The nearly exact agreement between rotationally summed coupled states cross sections and the IOSA is consistent with the view that the I * 2 molecule does not rotate significantly during a collision. A closed form solution of the forced harmonic oscillator, valid for highly excited states, predicts a J 2 |Δv| distribution of vibrationally relaxed states at a given collision angle and impact parameter. The vibrationally close coupled-infinite order sudden (VCC-IOSA) results bear this out and show that the observed exponential scaling law arises from a superposition of such distributions over θ and b

  8. Magnetic properties of free alkali and transition metal clusters

    International Nuclear Information System (INIS)

    Heer, W. de; Milani, P.; Chatelain, A.

    1991-01-01

    The Stern-Gerlach deflections of small alkali clusters (N<6) and iron clusters (10< N<500) show that the paramagnetic alkali clusters always have a nondeflecting component, while the iron clusters always deflect in the high field direction. Both of these effects appear to be related to spin relaxation however in the case of alkali clusters it is shown that they are in fact caused by avoided level crossing in the Zeeman diagram. For alkali clusters the relatively weak couplings cause reduced magnetic moments where levels cross. For iron clusters however the total spin is strongly coupled to the molecular framework. Consequently this coupling is responsible for avoided level crossing which ultimately cause the total energy of the cluster to decrease with increasing magnetic field so that the iron clusters will deflect in one direction when introduced in an inhomogeneous magnetic field. Experiment and theory are discussed for both cases. (orig.)

  9. Vibrational relaxation induced population inversions in laser pumped polyatomic molecules

    International Nuclear Information System (INIS)

    Shamah, I.; Flynn, G.; Columbia Univ., New York

    1981-01-01

    Conditions for population inversion in laser pumped polyatomic molecules are described. For systems which exhibit metastable vibrational population distributions, large, long lived inversions are possible even when the vibrational modes are strongly coupled by rapid collisional vibration-vibration (V-V) energy transfer. Overtone states of a hot mode are found to invert with respect to fundamental levels of a cold mode even at V-V steady state. Inversion persists for a V-T/R relaxation time. A gain of 4 m -1 for the 2ν 3 → ν 2 transition in CH 3 F (lambda approx. 15.9 μ) was found assuming a spontaneous emission lifetime of 10 s for this transition. General equations are derived which can be used to determine the magnitude of population inversion in any laser pumped, vibrationally metastable, polyatomic molecule. A discussion of factors controlling the population maxima of different vibrational states in optically pumped, V-V equilibrated metastable polyatomics is also given. (orig./WL)

  10. Vibration modelling and verifications for whole aero-engine

    Science.gov (United States)

    Chen, G.

    2015-08-01

    In this study, a new rotor-ball-bearing-casing coupling dynamic model for a practical aero-engine is established. In the coupling system, the rotor and casing systems are modelled using the finite element method, support systems are modelled as lumped parameter models, nonlinear factors of ball bearings and faults are included, and four types of supports and connection models are defined to model the complex rotor-support-casing coupling system of the aero-engine. A new numerical integral method that combines the Newmark-β method and the improved Newmark-β method (Zhai method) is used to obtain the system responses. Finally, the new model is verified in three ways: (1) modal experiment based on rotor-ball bearing rig, (2) modal experiment based on rotor-ball-bearing-casing rig, and (3) fault simulations for a certain type of missile turbofan aero-engine vibration. The results show that the proposed model can not only simulate the natural vibration characteristics of the whole aero-engine but also effectively perform nonlinear dynamic simulations of a whole aero-engine with faults.

  11. [Measurement of plasma parameters in cluster hexagon pattern discharge by optical emission spectrum].

    Science.gov (United States)

    Dong, Li-Fang; Shen, Zhong-Kai; Li, Xin-Chun; Liu, Liang; Lu, Ning; Shang, Jie

    2012-09-01

    The cluster hexagon pattern was obtained in a dielectric barrier discharge in air/argon for the first time. Three plasma parameters, i. e. the molecular vibrational temperature, the molecular rotational temperature and the average electron energy of individual cluster in cluster hexagon pattern discharge, were studied by changing the air content. The molecular vibrational temperature and the molecular rotational temperature were calculated using the second positive band system of nitrogen molecules (C 3IIu --> B 3IIg) and the first negative band system of nitrogen molecular ions (B 2Sigma(u)+ --> Chi2 Sigma(g)+). The relative intensities of the first negative system of nitrogen molecular ions (391. 4 nm) and nitrogen molecules emission spectrum line (337.1 nm) were analyzed for studying the variations of the electron energy. It was found that the three plasma parameters of individual cluster in cluster hexagon pattern increase with air content increasing from 16% to 24%.

  12. Piezoelectric transducer vibrations in a one-dimensional approximation

    CERN Document Server

    Hilke, H J

    1973-01-01

    The theory of piezoelectric transducer vibrations, which may be treated as one-dimensional, is developed in detail for thin discs vibrating in a pure thickness extensional mode. An effort has been made to obtain relations of general validity, which include losses, and which are in a simple explicit form convenient for practical calculations. The behaviour of transducers is discussed with special attention to their characteristics at the two fundamental frequencies, the so-called parallel and series resonances. Several peculiarities occur when transducers are coupled to media with considerably different acoustic impedances. These peculiarities are discussed and illustrated by numerical results for quartz and PZT 4 piezoelectric discs radiating into water, air and liquid hydrogen. The application of the theory to different types of vibrations is briefly illustrated for thin bars vibrating longitudinally. Short discussions are included on compound transducer systems, and on the properties of thin discs as receiv...

  13. Supersonic copper clusters

    International Nuclear Information System (INIS)

    Powers, D.E.; Hansen, S.G.; Geusic, M.E.; Michalopoulos, D.L.; Smalley, R.E.

    1983-01-01

    Copper clusters ranging in size from 1 to 29 atoms have been prepared in a supersonic beam by laser vaporization of a rotating copper target rod within the throat of a pulsed supersonic nozzle using helium for the carrier gas. The clusters were cooled extensively in the supersonic expansion [T(translational) 1 to 4 K, T(rotational) = 4 K, T(vibrational) = 20 to 70 K]. These clusters were detected in the supersonic beam by laser photoionization with time-of-flight mass analysis. Using a number of fixed frequency outputs of an exciplex laser, the threshold behavior of the photoionization cross section was monitored as a function of cluster size.nce two-photon ionization (R2PI) with mass selective detection allowed the detection of five new electronic band systems in the region between 2690 and 3200 A, for each of the three naturally occurring isotopic forms of Cu 2 . In the process of scanning the R2PI spectrum of these new electronic states, the ionization potential of the copper dimer was determined to be 7.894 +- 0.015 eV

  14. Physical and numerical investigation of the flow induced vibration of the hydrofoil

    Science.gov (United States)

    Wu, Q.; Wang, G. Y.; Huang, B.

    2016-11-01

    The objective of this paper is to investigate the flow induced vibration of a flexible hydrofoil in cavitating flows via combined experimental and numerical studies. The experiments are presented for the modified NACA66 hydrofoil made of POM Polyacetate in the closed-loop cavitation tunnel at Beijing Institute of Technology. The high-speed camera and the single point Laser Doppler Vibrometer are applied to analyze the transient flow structures and the corresponding structural vibration characteristics. The hybrid coupled fluid structure interaction model is conducted to couple the incompressible and unsteady Reynolds Averaged Navier-Stokes solver with a simplified two-degree-of-freedom structural model. The k-ω SST turbulence model with the turbulence viscosity correction and the Zwart cavitation model are introduced to the present simulations. The results showed that with the decreasing of the cavitation number, the cavitating flows display incipient cavitation, sheet cavitation, cloud cavitation and supercavitation. The vibration magnitude increases dramatically for the cloud cavitation and decline for the supercavitation. The cloud cavitation development strongly affects the vibration response, which is corresponding to the periodically developing and shedding of the large-scale cloud cavity. The main frequency of the vibration amplitude is accordance with the cavity shedding frequency and other two frequencies of the vibration amplitude are corresponding to the natural frequencies of the bending and twisting modes.

  15. Vibration monitoring and fault diagnostics of a thermal power plant

    International Nuclear Information System (INIS)

    Hafeez, T.; Ghani, R.; Chohan, G.Y.; Amir, M.

    2003-01-01

    A thermal power plant was monitored from HP-turbine to the generator end. The vibration data at different plant locations was obtained with the help of a data collector/analyzer. The spectra of-all locations generate the symptoms for different problems of moderate and high vibration levels like bent shaft, misalignment in the exciter rotor and three couplings, mechanical looseness on generator and exciter sides. The possible causes of these faults are discussed on the basis of presented vibration spectra in this paper. The faults were later on rectified on the basis of this diagnostics. (author)

  16. Higher-order equation-of-motion coupled-cluster methods for ionization processes.

    Science.gov (United States)

    Kamiya, Muneaki; Hirata, So

    2006-08-21

    Compact algebraic equations defining the equation-of-motion coupled-cluster (EOM-CC) methods for ionization potentials (IP-EOM-CC) have been derived and computer implemented by virtue of a symbolic algebra system largely automating these processes. Models with connected cluster excitation operators truncated after double, triple, or quadruple level and with linear ionization operators truncated after two-hole-one-particle (2h1p), three-hole-two-particle (3h2p), or four-hole-three-particle (4h3p) level (abbreviated as IP-EOM-CCSD, CCSDT, and CCSDTQ, respectively) have been realized into parallel algorithms taking advantage of spin, spatial, and permutation symmetries with optimal size dependence of the computational costs. They are based on spin-orbital formalisms and can describe both alpha and beta ionizations from open-shell (doublet, triplet, etc.) reference states into ionized states with various spin magnetic quantum numbers. The application of these methods to Koopmans and satellite ionizations of N2 and CO (with the ambiguity due to finite basis sets eliminated by extrapolation) has shown that IP-EOM-CCSD frequently accounts for orbital relaxation inadequately and displays errors exceeding a couple of eV. However, these errors can be systematically reduced to tenths or even hundredths of an eV by IP-EOM-CCSDT or CCSDTQ. Comparison of spectroscopic parameters of the FH+ and NH+ radicals between IP-EOM-CC and experiments has also underscored the importance of higher-order IP-EOM-CC treatments. For instance, the harmonic frequencies of the A 2Sigma- state of NH+ are predicted to be 1285, 1723, and 1705 cm(-1) by IP-EOM-CCSD, CCSDT, and CCSDTQ, respectively, as compared to the observed value of 1707 cm(-1). The small adiabatic energy separation (observed 0.04 eV) between the X 2Pi and a 4Sigma- states of NH+ also requires IP-EOM-CCSDTQ for a quantitative prediction (0.06 eV) when the a 4Sigma- state has the low-spin magnetic quantum number (s(z) = 1/2). When the

  17. Vibration of a Coupled Plate/Fluid Interacting System and its implication for Modal Analysis and Vibration Health Monitoring

    Czech Academy of Sciences Publication Activity Database

    Gorman, D. G.; Trendafilova, I.; Mulholland, F.; Horáček, Jaromír

    5-6, - (2006), s. 323-330 ISSN 1660-9336 R&D Projects: GA AV ČR(CZ) IAA2076101 Institutional research plan: CEZ:AV0Z20760514 Keywords : vibrations * vibro-acoustic interaction * structural/acoustic Subject RIV: BI - Acoustics

  18. Small-number statistics near the clustering transition in a compartementalized granular gas

    NARCIS (Netherlands)

    Mikkelsen, René; van der Weele, Ko; van der Meer, Devaraj; van Hecke, Martin; Lohse, Detlef

    2005-01-01

    Statistical fluctuations are observed to profoundly influence the clustering behavior of granular material in a vibrated system consisting of two connected compartments. When the number of particles N is sufficiently large sN<300 is sufficientd, the clustering follows the lines of a standard

  19. Long-Range Vibrational Dynamics Are Directed by Watson-Crick Base Pairing in Duplex DNA.

    Science.gov (United States)

    Hithell, Gordon; Shaw, Daniel J; Donaldson, Paul M; Greetham, Gregory M; Towrie, Michael; Burley, Glenn A; Parker, Anthony W; Hunt, Neil T

    2016-05-05

    Ultrafast two-dimensional infrared (2D-IR) spectroscopy of a 15-mer A-T DNA duplex in solution has revealed structure-dependent vibrational coupling and energy transfer processes linking bases with the sugar-phosphate backbone. Duplex melting induces significant changes in the positions of off-diagonal peaks linking carbonyl and ring-stretching vibrational modes of the adenine and thymine bases with vibrations of the phosphate group and phosphodiester linkage. These indicate that Watson-Crick hydrogen bonding and helix formation lead to a unique vibrational coupling arrangement of base vibrational modes with those of the phosphate unit. On the basis of observations from time-resolved 2D-IR data, we conclude that rapid energy transfer processes occur between base and backbone, mediated by additional modes located on the deoxyribose moiety within the same nucleotide. These relaxation dynamics are insensitive to duplex melting, showing that efficient intramolecular energy relaxation to the solvent via the phosphate groups is the key to excess energy dissipation in both single- and double-stranded DNA.

  20. Vibrational dynamics of aqueous hydroxide solutions probed using broadband 2DIR spectroscopy

    International Nuclear Information System (INIS)

    Mandal, Aritra; Tokmakoff, Andrei

    2015-01-01

    We employed ultrafast transient absorption and broadband 2DIR spectroscopy to study the vibrational dynamics of aqueous hydroxide solutions by exciting the O–H stretch vibrations of the strongly hydrogen-bonded hydroxide solvation shell water and probing the continuum absorption of the solvated ion between 1500 and 3800 cm −1 . We observe rapid vibrational relaxation processes on 150–250 fs time scales across the entire probed spectral region as well as slower vibrational dynamics on 1–2 ps time scales. Furthermore, the O–H stretch excitation loses its frequency memory in 180 fs, and vibrational energy exchange between bulk-like water vibrations and hydroxide-associated water vibrations occurs in ∼200 fs. The fast dynamics in this system originate in strong nonlinear coupling between intra- and intermolecular vibrations and are explained in terms of non-adiabatic vibrational relaxation. These measurements indicate that the vibrational dynamics of the aqueous hydroxide complex are faster than the time scales reported for long-range transport of protons in aqueous hydroxide solutions

  1. Spin-orbit couplings within the equation-of-motion coupled-cluster framework: Theory, implementation, and benchmark calculations

    Energy Technology Data Exchange (ETDEWEB)

    Epifanovsky, Evgeny [Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482 (United States); Department of Chemistry, University of California, Berkeley, California 94720 (United States); Q-Chem Inc., 6601 Owens Drive, Suite 105, Pleasanton, California 94588 (United States); Klein, Kerstin; Gauss, Jürgen [Institut für Physikalische Chemie, Universität Mainz, D-55099 Mainz (Germany); Stopkowicz, Stella [Department of Chemistry, Centre for Theoretical and Computational Chemistry, University of Oslo, N-0315 Oslo (Norway); Krylov, Anna I. [Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482 (United States)

    2015-08-14

    We present a formalism and an implementation for calculating spin-orbit couplings (SOCs) within the EOM-CCSD (equation-of-motion coupled-cluster with single and double substitutions) approach. The following variants of EOM-CCSD are considered: EOM-CCSD for excitation energies (EOM-EE-CCSD), EOM-CCSD with spin-flip (EOM-SF-CCSD), EOM-CCSD for ionization potentials (EOM-IP-CCSD) and electron attachment (EOM-EA-CCSD). We employ a perturbative approach in which the SOCs are computed as matrix elements of the respective part of the Breit-Pauli Hamiltonian using zeroth-order non-relativistic wave functions. We follow the expectation-value approach rather than the response-theory formulation for property calculations. Both the full two-electron treatment and the mean-field approximation (a partial account of the two-electron contributions) have been implemented and benchmarked using several small molecules containing elements up to the fourth row of the periodic table. The benchmark results show the excellent performance of the perturbative treatment and the mean-field approximation. When used with an appropriate basis set, the errors with respect to experiment are below 5% for the considered examples. The findings regarding basis-set requirements are in agreement with previous studies. The impact of different correlation treatment in zeroth-order wave functions is analyzed. Overall, the EOM-IP-CCSD, EOM-EA-CCSD, EOM-EE-CCSD, and EOM-SF-CCSD wave functions yield SOCs that agree well with each other (and with the experimental values when available). Using an EOM-CCSD approach that provides a more balanced description of the target states yields more accurate results.

  2. Actinide chemistry using singlet-paired coupled cluster and its combinations with density functionals

    Science.gov (United States)

    Garza, Alejandro J.; Sousa Alencar, Ana G.; Scuseria, Gustavo E.

    2015-12-01

    Singlet-paired coupled cluster doubles (CCD0) is a simplification of CCD that relinquishes a fraction of dynamic correlation in order to be able to describe static correlation. Combinations of CCD0 with density functionals that recover specifically the dynamic correlation missing in the former have also been developed recently. Here, we assess the accuracy of CCD0 and CCD0+DFT (and variants of these using Brueckner orbitals) as compared to well-established quantum chemical methods for describing ground-state properties of singlet actinide molecules. The f0 actinyl series (UO22+, NpO23+, PuO24+), the isoelectronic NUN, and thorium (ThO, ThO2+) and nobelium (NoO, NoO2) oxides are studied.

  3. Satellite Vibration Testing: Angle optimisation method to Reduce Overtesting

    Science.gov (United States)

    Knight, Charly; Remedia, Marcello; Aglietti, Guglielmo S.; Richardson, Guy

    2018-06-01

    Spacecraft overtesting is a long running problem, and the main focus of most attempts to reduce it has been to adjust the base vibration input (i.e. notching). Instead this paper examines testing alternatives for secondary structures (equipment) coupled to the main structure (satellite) when they are tested separately. Even if the vibration source is applied along one of the orthogonal axes at the base of the coupled system (satellite plus equipment), the dynamics of the system and potentially the interface configuration mean the vibration at the interface may not occur all along one axis much less the corresponding orthogonal axis of the base excitation. This paper proposes an alternative testing methodology in which the testing of a piece of equipment occurs at an offset angle. This Angle Optimisation method may have multiple tests but each with an altered input direction allowing for the best match between all specified equipment system responses with coupled system tests. An optimisation process that compares the calculated equipment RMS values for a range of inputs with the maximum coupled system RMS values, and is used to find the optimal testing configuration for the given parameters. A case study was performed to find the best testing angles to match the acceleration responses of the centre of mass and sum of interface forces for all three axes, as well as the von Mises stress for an element by a fastening point. The angle optimisation method resulted in RMS values and PSD responses that were much closer to the coupled system when compared with traditional testing. The optimum testing configuration resulted in an overall average error significantly smaller than the traditional method. Crucially, this case study shows that the optimum test campaign could be a single equipment level test opposed to the traditional three orthogonal direction tests.

  4. The effects of an inserted linear carbon chain on the vibration of a carbon nanotube

    International Nuclear Information System (INIS)

    Hu, Z L; Guo, X M; Ru, C Q

    2007-01-01

    An elastic string-elastic shell model is developed to study the coupled vibration of a carbon nanowire made of a linear carbon chain (C-chain) inserted inside a carbon nanotube (CNT). It is shown that the vibration of the inserted C-chain is coupled with vibration of the CNT only for vibration modes with circumferential wavenumber n = 1. In other cases, such as axisymmetric modes (n = 0) or higher-order vibration modes with n≥2, total resultant van der Waals (vdW) force acting on the C-chain due to the innermost tube always vanishes, and therefore vibration of the CNT does not cause vibration of the inserted C-chain, although the existence of the C-chain does have an effect on the vibration of the CNT through the chain-CNT vdW forces acting on the innermost tube. The present model predicts that non-coaxial vibration between the C-chain and the innermost tube does not occur due to negligible bending rigidity of the C-chain. In addition, it is found that the C-chain has most significant effect on the lowest frequency associated with the radial vibration mode for circumferential wavenumber 2 (n = 2). In particular, the effect of the C-chain on the axisymmetric radial breathing frequencies (n = 0) predicted by the present model is found to be in reasonable agreement with known experimental and modeling results available in the literature. The present work offers systematic modeling results on the effects of an inserted C-chain on the vibration of CNTs

  5. Ab-initio molecular dynamics studies of magnesium-doped sodium clusters

    International Nuclear Information System (INIS)

    Roethlisberger, U.; Andreoni, W.

    1993-01-01

    Structural, electronic, and vibrational properties of magnesium-doped sodium clusters have been determined using the Car-Parrinello method. It is found that in the energetically preferred structures the magnesium impurity never is located at the centre of the cluster. The validity of spherical jellium models and the effects of temperature are discussed. 9 refs, 3 figs, 1 tab

  6. Electron attachment to molecules and clusters of atmospheric relevance: oxygen and ozone

    International Nuclear Information System (INIS)

    Matejcik, S.; Cicman, P.; Skalny, J.; Kiendler, A.; Stampfli, P.; Maerk, T.D.; Illenberger, E.; Chu, Y.; Stamatovic, A.

    1996-01-01

    Highly monochromatized electrons are used in a crossed beams experiment to investigate electron attachment to oxygen clusters (O 2 )-n at electron energies from approximately zero eV up to 2 eV. At energies close to zero the attachment cross section for the reaction (O 2 ) n + e → O 2 - varies inversely with the electron energy, indicative of s-wave electron capture to (O 2 ) n . Peaks in the attachment cross section present at higher energies can be ascribed to vibrational levels of the oxygen anion. The vibrational spacings observed can be quantitatively accounted for. In addition electron attachment to ozone and mixed oxygen/ozone clusters has been studied in the energy range up to 4 eV. Absolute attachment cross sections for both fragment ions anions, O - and O 2 - , from ozone could be deduced. Moreover, despite the initially large excess of oxygen molecules in the neutral oxygen/ozone clusters the dominant attachment products are un-dissociated cluster ions (O 3 ) m - including the O 3 - monomer while oxygen cluster ions (O 2 ) n appear with comparatively low intensity. (authors)

  7. Dynamical transitions in large systems of mean field-coupled Landau-Stuart oscillators: Extensive chaos and cluster states.

    Science.gov (United States)

    Ku, Wai Lim; Girvan, Michelle; Ott, Edward

    2015-12-01

    In this paper, we study dynamical systems in which a large number N of identical Landau-Stuart oscillators are globally coupled via a mean-field. Previously, it has been observed that this type of system can exhibit a variety of different dynamical behaviors. These behaviors include time periodic cluster states in which each oscillator is in one of a small number of groups for which all oscillators in each group have the same state which is different from group to group, as well as a behavior in which all oscillators have different states and the macroscopic dynamics of the mean field is chaotic. We argue that this second type of behavior is "extensive" in the sense that the chaotic attractor in the full phase space of the system has a fractal dimension that scales linearly with N and that the number of positive Lyapunov exponents of the attractor also scales linearly with N. An important focus of this paper is the transition between cluster states and extensive chaos as the system is subjected to slow adiabatic parameter change. We observe discontinuous transitions between the cluster states (which correspond to low dimensional dynamics) and the extensively chaotic states. Furthermore, examining the cluster state, as the system approaches the discontinuous transition to extensive chaos, we find that the oscillator population distribution between the clusters continually evolves so that the cluster state is always marginally stable. This behavior is used to reveal the mechanism of the discontinuous transition. We also apply the Kaplan-Yorke formula to study the fractal structure of the extensively chaotic attractors.

  8. Vibrational and vibronic coherences in the dynamics of the FMO complex

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaomeng; Kühn, Oliver, E-mail: oliver.kuehn@uni-rostock.de

    2016-12-20

    The coupled exciton–vibrational dynamics of a seven site Frenkel exciton model of the Fenna–Matthews–Olson (FMO) complex is investigated using a Quantum Master Equation approach. Thereby, one vibrational mode per monomer is treated explicitly as being part of the relevant system. Emphasis is put on the comparison of this model with that of a purely excitonic relevant system. Further, the effects of two different approximations to the exciton–vibrational basis are investigated, namely the one- and two-particle description. Analysis of the vibronic and vibrational density matrix in the site basis points to the importance of on- and inter-site coherences for the exciton transfer. Here, one- and two-particle approximations give rise to qualitatively different results.

  9. Vibrationally-resolved Charge Transfer of O^3+ Ions with Molecular Hydrogen

    Science.gov (United States)

    Wang, J. G.; Stancil, P. C.; Turner, A. R.; Cooper, D. L.

    2003-05-01

    Charge transfer processes due to collisions of ground state O^3+ ions with H2 are investigated using the quantum-mechanical molecular-orbital close-coupling (MOCC) method. The MOCC calculations utilize ab initio adiabatic potentials and nonadiabatic radial coupling matrix elements obtained with the spin-coupled valence-bond approach. Vibrationally-resolved cross sections for energies between 0.1 eV/u and 2 keV/u using the infinite order sudden approximation (IOSA), vibrational sudden approximation (VSA), and electronic approximation (EA), but including Frank-Condon factors (the centroid approximation) will be presented. Comparison with existing experimental data for total cross sections shows best agreement with IOSA and discrepancies for VSA and EA. Triplet-singlet cross section ratios obtained with IOSA are found generally to be in harmony with experiment. JGW and PCS acknowledge support from NASA grant 11453.

  10. Investigating the Correspondence Between Transcriptomic and Proteomic Expression Profiles Using Coupled Cluster Models

    International Nuclear Information System (INIS)

    Rogers, Simon; Girolami, Mark; Kolch, Walter; Waters, Katrina M.; Liu, Tao; Thrall, Brian D.; Wiley, H. S.

    2008-01-01

    Modern transcriptomics and proteomics enable us to survey the expression of RNAs and proteins at large scales. While these data are usually generated and analyzed separately, there is an increasing interest in comparing and co-analyzing transcriptome and proteome expression data. A major open question is whether transcriptome and proteome expression is linked and how it is coordinated. Results: Here we have developed a probabilistic clustering model that permits analysis of the links between transcriptomic and proteomic profiles in a sensible and flexible manner. Our coupled mixture model defines a prior probability distribution over the component to which a protein profile should be assigned conditioned on which component the associated mRNA profile belongs to. By providing probabilistic assignments this approach sits between the two extremes of concatenating the data on the assumption that mRNA and protein clusters would have a one-to-one relationship, and independent clustering where the mRNA profile provides no information on the protein profile and vice-versa. We apply this approach to a large dataset of quantitative transcriptomic and proteomic expression data obtained from a human breast epithelial cell line (HMEC) stimulated by epidermal growth factor (EGF) over a series of timepoints corresponding to one cell cycle. The results reveal a complex relationship between transcriptome and proteome with most mRNA clusters linked to at least two protein clusters, and vice versa. A more detailed analysis incorporating information on gene function from the gene ontology database shows that a high correlation of mRNA and protein expression is limited to the components of some molecular machines, such as the ribosome, cell adhesion complexes and the TCP-1 chaperonin involved in protein folding. Conclusions: The dynamic regulation of the transcriptome and proteome in mammalian cells in response to an acute mitogenic stimulus appears largely independent with very little

  11. Experimental synchronization of chaos in a large ring of mutually coupled single-transistor oscillators: Phase, amplitude, and clustering effects

    Energy Technology Data Exchange (ETDEWEB)

    Minati, Ludovico, E-mail: lminati@ieee.org, E-mail: ludovico.minati@unitn.it [MR-Lab, Center for Mind/Brain Science, University of Trento, Italy and Scientific Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (Italy)

    2014-12-01

    In this paper, experimental evidence of multiple synchronization phenomena in a large (n = 30) ring of chaotic oscillators is presented. Each node consists of an elementary circuit, generating spikes of irregular amplitude and comprising one bipolar junction transistor, one capacitor, two inductors, and one biasing resistor. The nodes are mutually coupled to their neighbours via additional variable resistors. As coupling resistance is decreased, phase synchronization followed by complete synchronization is observed, and onset of synchronization is associated with partial synchronization, i.e., emergence of communities (clusters). While component tolerances affect community structure, the general synchronization properties are maintained across three prototypes and in numerical simulations. The clusters are destroyed by adding long distance connections with distant notes, but are otherwise relatively stable with respect to structural connectivity changes. The study provides evidence that several fundamental synchronization phenomena can be reliably observed in a network of elementary single-transistor oscillators, demonstrating their generative potential and opening way to potential applications of this undemanding setup in experimental modelling of the relationship between network structure, synchronization, and dynamical properties.

  12. Experimental synchronization of chaos in a large ring of mutually coupled single-transistor oscillators: Phase, amplitude, and clustering effects

    International Nuclear Information System (INIS)

    Minati, Ludovico

    2014-01-01

    In this paper, experimental evidence of multiple synchronization phenomena in a large (n = 30) ring of chaotic oscillators is presented. Each node consists of an elementary circuit, generating spikes of irregular amplitude and comprising one bipolar junction transistor, one capacitor, two inductors, and one biasing resistor. The nodes are mutually coupled to their neighbours via additional variable resistors. As coupling resistance is decreased, phase synchronization followed by complete synchronization is observed, and onset of synchronization is associated with partial synchronization, i.e., emergence of communities (clusters). While component tolerances affect community structure, the general synchronization properties are maintained across three prototypes and in numerical simulations. The clusters are destroyed by adding long distance connections with distant notes, but are otherwise relatively stable with respect to structural connectivity changes. The study provides evidence that several fundamental synchronization phenomena can be reliably observed in a network of elementary single-transistor oscillators, demonstrating their generative potential and opening way to potential applications of this undemanding setup in experimental modelling of the relationship between network structure, synchronization, and dynamical properties

  13. Spectral methods for study of the G-protein-coupled receptor rhodopsin: I. Vibrational and electronic spectroscopy

    Science.gov (United States)

    Struts, A. V.; Barmasov, A. V.; Brown, M. F.

    2015-05-01

    Here we review the application of modern spectral methods for the study of G-protein-coupled receptors (GPCRs) using rhodopsin as a prototype. Because X-ray analysis gives us immobile snapshots of protein conformations, it is imperative to apply spectroscopic methods for elucidating their function: vibrational (Raman, FTIR), electronic (UV-visible absorption, fluorescence) spectroscopies, and magnetic resonance (electron paramagnetic resonance, EPR), and nuclear magnetic resonance (NMR). In the first of the two companion articles, we discuss the application of optical spectroscopy for studying rhodopsin in a membrane environment. Information is obtained regarding the time-ordered sequence of events in rhodopsin activation. Isomerization of the chromophore and deprotonation of the retinal Schiff base leads to a structural change of the protein involving the motion of helices H5 and H6 in a pH-dependent process. Information is obtained that is unavailable from X-ray crystallography, which can be combined with spectroscopic studies to achieve a more complete understanding of GPCR function.

  14. Engineering Vibrationally Assisted Energy Transfer in a Trapped-Ion Quantum Simulator

    Science.gov (United States)

    Gorman, Dylan J.; Hemmerling, Boerge; Megidish, Eli; Moeller, Soenke A.; Schindler, Philipp; Sarovar, Mohan; Haeffner, Hartmut

    2018-01-01

    Many important chemical and biochemical processes in the condensed phase are notoriously difficult to simulate numerically. Often, this difficulty arises from the complexity of simulating dynamics resulting from coupling to structured, mesoscopic baths, for which no separation of time scales exists and statistical treatments fail. A prime example of such a process is vibrationally assisted charge or energy transfer. A quantum simulator, capable of implementing a realistic model of the system of interest, could provide insight into these processes in regimes where numerical treatments fail. We take a first step towards modeling such transfer processes using an ion-trap quantum simulator. By implementing a minimal model, we observe vibrationally assisted energy transport between the electronic states of a donor and an acceptor ion augmented by coupling the donor ion to its vibration. We tune our simulator into several parameter regimes and, in particular, investigate the transfer dynamics in the nonperturbative regime often found in biochemical situations.

  15. Relaxation dynamics in quantum dissipative systems: The microscopic effect of intramolecular vibrational energy redistribution

    Energy Technology Data Exchange (ETDEWEB)

    Uranga-Piña, L. [Facultad de Física, Universidad de la Habana, San Lázaro y L, Vedado, 10400 Havana (Cuba); Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, D-14195 Berlin (Germany); Tremblay, J. C., E-mail: jean.c.tremblay@gmail.com [Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, D-14195 Berlin (Germany)

    2014-08-21

    We investigate the effect of inter-mode coupling on the vibrational relaxation dynamics of molecules in weak dissipative environments. The simulations are performed within the reduced density matrix formalism in the Markovian regime, assuming a Lindblad form for the system-bath interaction. The prototypical two-dimensional model system representing two CO molecules approaching a Cu(100) surface is adapted from an ab initio potential, while the diatom-diatom vibrational coupling strength is systematically varied. In the weak system-bath coupling limit and at low temperatures, only first order non-adiabatic uni-modal coupling terms contribute to surface-mediated vibrational relaxation. Since dissipative dynamics is non-unitary, the choice of representation will affect the evolution of the reduced density matrix. Two alternative representations for computing the relaxation rates and the associated operators are thus compared: the fully coupled spectral basis, and a factorizable ansatz. The former is well-established and serves as a benchmark for the solution of Liouville-von Neumann equation. In the latter, a contracted grid basis of potential-optimized discrete variable representation is tailored to incorporate most of the inter-mode coupling, while the Lindblad operators are represented as tensor products of one-dimensional operators, for consistency. This procedure results in a marked reduction of the grid size and in a much more advantageous scaling of the computational cost with respect to the increase of the dimensionality of the system. The factorizable method is found to provide an accurate description of the dissipative quantum dynamics of the model system, specifically of the time evolution of the state populations and of the probability density distribution of the molecular wave packet. The influence of intra-molecular vibrational energy redistribution appears to be properly taken into account by the new model on the whole range of coupling strengths. It

  16. Ab initio theoretical calculations of the electronic excitation energies of small water clusters.

    Science.gov (United States)

    Tachikawa, Hiroto; Yabushita, Akihiro; Kawasaki, Masahiro

    2011-12-14

    A direct ab initio molecular dynamics method has been applied to a water monomer and water clusters (H(2)O)(n) (n = 1-3) to elucidate the effects of zero-point energy (ZPE) vibration on the absorption spectra of water clusters. Static ab initio calculations without ZPE showed that the first electronic transitions of (H(2)O)(n), (1)B(1)←(1)A(1), are blue-shifted as a function of cluster size (n): 7.38 eV (n = 1), 7.58 eV (n = 2) and 8.01 eV (n = 3). The inclusion of the ZPE vibration strongly affects the excitation energies of a water dimer, and a long red-tail appears in the range of 6.42-6.90 eV due to the structural flexibility of a water dimer. The ultraviolet photodissociation of water clusters and water ice surfaces is relevant to these results.

  17. Vibrational quasi-degenerate perturbation theory with optimized coordinates: applications to ethylene and trans-1,3-butadiene.

    Science.gov (United States)

    Yagi, Kiyoshi; Otaki, Hiroki

    2014-02-28

    A perturbative extension to optimized coordinate vibrational self-consistent field (oc-VSCF) is proposed based on the quasi-degenerate perturbation theory (QDPT). A scheme to construct the degenerate space (P space) is developed, which incorporates degenerate configurations and alleviates the divergence of perturbative expansion due to localized coordinates in oc-VSCF (e.g., local O-H stretching modes of water). An efficient configuration selection scheme is also implemented, which screens out the Hamiltonian matrix element between the P space configuration (p) and the complementary Q space configuration (q) based on a difference in their quantum numbers (λpq = ∑s|ps - qs|). It is demonstrated that the second-order vibrational QDPT based on optimized coordinates (oc-VQDPT2) smoothly converges with respect to the order of the mode coupling, and outperforms the conventional one based on normal coordinates. Furthermore, an improved, fast algorithm is developed for optimizing the coordinates. First, the minimization of the VSCF energy is conducted in a restricted parameter space, in which only a portion of pairs of coordinates is selectively transformed. A rational index is devised for this purpose, which identifies the important coordinate pairs to mix from others that may remain unchanged based on the magnitude of harmonic coupling induced by the transformation. Second, a cubic force field (CFF) is employed in place of a quartic force field, which bypasses intensive procedures that arise due to the presence of the fourth-order force constants. It is found that oc-VSCF based on CFF together with the pair selection scheme yields the coordinates similar in character to the conventional ones such that the final vibrational energy is affected very little while gaining an order of magnitude acceleration. The proposed method is applied to ethylene and trans-1,3-butadiene. An accurate, multi-resolution potential, which combines the MP2 and coupled-cluster with singles

  18. Vibrational quasi-degenerate perturbation theory with optimized coordinates: Applications to ethylene and trans-1,3-butadiene

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, Kiyoshi, E-mail: kiyoshi.yagi@riken.jp; Otaki, Hiroki [Theoretical Molecular Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2014-02-28

    A perturbative extension to optimized coordinate vibrational self-consistent field (oc-VSCF) is proposed based on the quasi-degenerate perturbation theory (QDPT). A scheme to construct the degenerate space (P space) is developed, which incorporates degenerate configurations and alleviates the divergence of perturbative expansion due to localized coordinates in oc-VSCF (e.g., local O–H stretching modes of water). An efficient configuration selection scheme is also implemented, which screens out the Hamiltonian matrix element between the P space configuration (p) and the complementary Q space configuration (q) based on a difference in their quantum numbers (λ{sub pq} = ∑{sub s}|p{sub s} − q{sub s}|). It is demonstrated that the second-order vibrational QDPT based on optimized coordinates (oc-VQDPT2) smoothly converges with respect to the order of the mode coupling, and outperforms the conventional one based on normal coordinates. Furthermore, an improved, fast algorithm is developed for optimizing the coordinates. First, the minimization of the VSCF energy is conducted in a restricted parameter space, in which only a portion of pairs of coordinates is selectively transformed. A rational index is devised for this purpose, which identifies the important coordinate pairs to mix from others that may remain unchanged based on the magnitude of harmonic coupling induced by the transformation. Second, a cubic force field (CFF) is employed in place of a quartic force field, which bypasses intensive procedures that arise due to the presence of the fourth-order force constants. It is found that oc-VSCF based on CFF together with the pair selection scheme yields the coordinates similar in character to the conventional ones such that the final vibrational energy is affected very little while gaining an order of magnitude acceleration. The proposed method is applied to ethylene and trans-1,3-butadiene. An accurate, multi-resolution potential, which combines the MP2 and

  19. Admixtures of shell and cluster states in 18F

    International Nuclear Information System (INIS)

    Sakuda, Toshimi; Nemoto, Fumiki; Nagata, Sinobu.

    1976-01-01

    The properties of the low-lying T=0 positive-parity levels in 18 F are shown to be well understood by considering admixtures of 2p shell-model states and ''4p-2h'' states with alpha-cluster structures. In order to represent the ''4p-2h'' states, α- 14 N cluster model is introduced. By this model, weak coupling features and coupling between shell and cluster states are well described. The binding energies of the ground 1 + and the lowest 3 + levels are reproduced by the couplings with the ''4p-2h'' cluster states. On the other hand, weak coupling features of ''4p-2h'' cluster states are disturbed to some extent. As a result, the energy spectrum, E2-transition rates and reduced α-widths of all T=0 positive-parity levels below 7 MeV excitation energy are systematically reproduced. (auth.)

  20. Implementation of High-Order Multireference Coupled-Cluster Methods on Intel Many Integrated Core Architecture.

    Science.gov (United States)

    Aprà, E; Kowalski, K

    2016-03-08

    In this paper we discuss the implementation of multireference coupled-cluster formalism with singles, doubles, and noniterative triples (MRCCSD(T)), which is capable of taking advantage of the processing power of the Intel Xeon Phi coprocessor. We discuss the integration of two levels of parallelism underlying the MRCCSD(T) implementation with computational kernels designed to offload the computationally intensive parts of the MRCCSD(T) formalism to Intel Xeon Phi coprocessors. Special attention is given to the enhancement of the parallel performance by task reordering that has improved load balancing in the noniterative part of the MRCCSD(T) calculations. We also discuss aspects regarding efficient optimization and vectorization strategies.

  1. Mechanical core coupling and reactors stability

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2006-01-01

    Structural parts of nuclear reactors are complex mechanical systems, able to vibrate with a set of proper frequencies when suitably excited. Cyclical variations in the strain state of the materials, including density perturbations, are produced. This periodic changes may affect reactor reactivity. But a variation in reactivity affects reactor thermal power, thus modifying the temperature field of the abovementiones materials. If the variation in temperature fields is fast enough, thermal-mechanical coupling may produce fast variations in strain states, and this, at its turn, modifies the reactivity, and so on. This coupling between mechanical vibrations of the structure and the materials of the core, with power oscillations of the reactor, not only may not be excluded a priori, but it seems that it has been present in some stage of the incidents or accidents that happened during the development of nuclear reactor technology. The purpose of the present communication is: (a) To review and generalize some mathematical models that were proposed in order to describe thermal-mechanical coupling in nuclear reactors. (b) To discuss some conditions in which significant instabilities could arise, including large amplitude power oscillations coupled with mechanical vibrations whose amplitudes are too small to be excluded by conventional criteria of mechanical design. Enough Certain aspects of thr physical safety of nuclear power reactors, that are objected by people that opposes to the renaissance of nucleoelectric generation, are discussed in the framework of the mathematical model proposed in this paper [es

  2. Towards a scalable and accurate quantum approach for describing vibrations of molecule–metal interfaces

    Directory of Open Access Journals (Sweden)

    David M. Benoit

    2011-08-01

    Full Text Available We present a theoretical framework for the computation of anharmonic vibrational frequencies for large systems, with a particular focus on determining adsorbate frequencies from first principles. We give a detailed account of our local implementation of the vibrational self-consistent field approach and its correlation corrections. We show that our approach is both robust, accurate and can be easily deployed on computational grids in order to provide an efficient computational tool. We also present results on the vibrational spectrum of hydrogen fluoride on pyrene, on the thiophene molecule in the gas phase, and on small neutral gold clusters.

  3. The analytic gradient with a reduced molecular orbital space for the equation-of-motion coupled-cluster theory: systematic study of the magnitudes and trends in simple molecules

    International Nuclear Information System (INIS)

    Baeck, Kyoung K.; Jeon, Sang Il

    2000-01-01

    The analytic gradient method for the equation-of-motion coupled-cluster singles and doubles (EOM-CCSD) energy has been extended to employ a reduced molecular orbital (MO) space. Not only the innermost core MO s but also some of the outermost virtual MO s can be dropped in the reduced MO space, and a substantial amount of computation time can be reduced without deteriorating the results. In order to study the magnitudes and trends of the effects of the dropped MO s , the geometries and vibrational properties of the ground and excited states of BF, CO, CN, N 2 , AlCl, SiS, P 2 , BCl, AlF, CS, SiO, PN and GeSe are calculated with different sizes of molecular orbital space. The 6-31G and the aug-cc-pVTZ basis sets are employed for all molecules except GeSe for which the 6-311 G and the TZV+f basis sets are used. It is shown that the magnitudes of the drop MO effects are about 0.005 A in bond lengths and about 1% on harmonic frequencies and IR intensities provided that the dropped MO s correspond to (1s), (1s,2s,2p), and (1s,2s,2p,3s,3p) atomic orbitals of the first, the second, and the third row atoms, respectively. The geometries and vibrational properties of the first and the second excited states of HCN and HCN are calculated by using a drastically reduced virtual MO space as well as with the well defined frozen core MO space. The results suggest the possibility of using a very small MO space for qualitative study of valence excited states

  4. Local vibrational modes of the water dimer - Comparison of theory and experiment

    Science.gov (United States)

    Kalescky, R.; Zou, W.; Kraka, E.; Cremer, D.

    2012-12-01

    Local and normal vibrational modes of the water dimer are calculated at the CCSD(T)/CBS level of theory. The local H-bond stretching frequency is 528 cm-1 compared to a normal mode stretching frequency of just 143 cm-1. The adiabatic connection scheme between local and normal vibrational modes reveals that the lowering is due to mass coupling, a change in the anharmonicity, and coupling with the local HOH bending modes. The local mode stretching force constant is related to the strength of the H-bond whereas the normal mode stretching force constant and frequency lead to an erroneous underestimation of the H-bond strength.

  5. Advances in nonlinear vibration analysis of structures. Part-I. Beams

    Indian Academy of Sciences (India)

    Unknown

    element analysis of nonlinear beams under static and dynamic loads. ... linearization, substitution of inplane boundary conditions at element level rather .... Modelling the nonlinear vibration problems using finite elements, albeit with a couple.

  6. Collective vibrations as doorway states in the damping of nuclear motion

    International Nuclear Information System (INIS)

    Broglia, R.A.

    1983-01-01

    The damping of single-particle and giant resonances is studied. Doorway states containing low-lying surface vibrations are found to play a central role in this process. The coupling to these states lead to damping widths consistent with the empirical systematics. It is however not possible to directly relate these two quantities because of the central role played by the correlation between the particles and the hole in the vibration. (Auth.)

  7. Quantum wavepacket ab initio molecular dynamics: an approach for computing dynamically averaged vibrational spectra including critical nuclear quantum effects.

    Science.gov (United States)

    Sumner, Isaiah; Iyengar, Srinivasan S

    2007-10-18

    We have introduced a computational methodology to study vibrational spectroscopy in clusters inclusive of critical nuclear quantum effects. This approach is based on the recently developed quantum wavepacket ab initio molecular dynamics method that combines quantum wavepacket dynamics with ab initio molecular dynamics. The computational efficiency of the dynamical procedure is drastically improved (by several orders of magnitude) through the utilization of wavelet-based techniques combined with the previously introduced time-dependent deterministic sampling procedure measure to achieve stable, picosecond length, quantum-classical dynamics of electrons and nuclei in clusters. The dynamical information is employed to construct a novel cumulative flux/velocity correlation function, where the wavepacket flux from the quantized particle is combined with classical nuclear velocities to obtain the vibrational density of states. The approach is demonstrated by computing the vibrational density of states of [Cl-H-Cl]-, inclusive of critical quantum nuclear effects, and our results are in good agreement with experiment. A general hierarchical procedure is also provided, based on electronic structure harmonic frequencies, classical ab initio molecular dynamics, computation of nuclear quantum-mechanical eigenstates, and employing quantum wavepacket ab initio dynamics to understand vibrational spectroscopy in hydrogen-bonded clusters that display large degrees of anharmonicities.

  8. Improvement Performance of the Filling Step in Injection Mold through Vibration

    Directory of Open Access Journals (Sweden)

    Trejo-Hernández M.

    2012-10-01

    Full Text Available This paper shows the flow improvement in the filling step of the polymer injection process due to the polymer excitation though vibration. This process can be split up into three main steps: filling, pocking and cooling. Several mechanical and aesthetic properties of the finished product can be changed in the filling step. The objective of this investigation is to demonstrate the improvement in the filling mold under vibration without adding chemical products. To reach this result, an experimental mold was designed and manufactured in which a vibration device was coupled; it was possible to demonstrate the vibration advantage through this process. Moreover, a heuristic methodology was proposed for the experiment which shows an improvement in the filling process with frequencies close to 3 Hz.

  9. Fluid-elastic vibration in two-phase cross flow

    International Nuclear Information System (INIS)

    Sasakawa, T.; Serizawa, A.; Kawara, Z.

    2003-01-01

    The present work aims at clarifying the mechanisms of fluid elastic vibration of tube bundles in two-phase cross flow. The experiment is conducted using air-water two-phase flow under atmospheric pressure. The test section is a 1.03m long transparent acrylic square duct with 128 x 128 mm 2 cross section, which consists of 3 rod-rows with 5 rods in each row. The rods are 125mm long aluminum rods with 22 mm in diameter (p/D=1.45). The natural frequency of rod vibration is about 30Hz. The result indicated a diversion of observed trend in vibration behavior depending on two-phase flow patterns either bubbly flow or churn flow. Specifically, in churn flow, the fluid elastic vibration has been observed to occur when the frequency in void fraction fluctuation approached to the natural frequency of the rods, but this was not the case in fluid elastic vibration in bubbly flow. This fact suggests the existence of mechanisms closely coupled with two-phase flow structures depending on the flow patterns, that is, static two-phase character-controlled mechanism in bubbly flow and dynamic character- controlled in churn flow

  10. Similarity transformed equation of motion coupled-cluster theory based on an unrestricted Hartree-Fock reference for applications to high-spin open-shell systems.

    Science.gov (United States)

    Huntington, Lee M J; Krupička, Martin; Neese, Frank; Izsák, Róbert

    2017-11-07

    The similarity transformed equation of motion coupled-cluster approach is extended for applications to high-spin open-shell systems, within the unrestricted Hartree-Fock (UHF) formalism. An automatic active space selection scheme has also been implemented such that calculations can be performed in a black-box fashion. It is observed that both the canonical and automatic active space selecting similarity transformed equation of motion (STEOM) approaches perform about as well as the more expensive equation of motion coupled-cluster singles doubles (EOM-CCSD) method for the calculation of the excitation energies of doublet radicals. The automatic active space selecting UHF STEOM approach can therefore be employed as a viable, lower scaling alternative to UHF EOM-CCSD for the calculation of excited states in high-spin open-shell systems.

  11. Similarity transformed equation of motion coupled-cluster theory based on an unrestricted Hartree-Fock reference for applications to high-spin open-shell systems

    Science.gov (United States)

    Huntington, Lee M. J.; Krupička, Martin; Neese, Frank; Izsák, Róbert

    2017-11-01

    The similarity transformed equation of motion coupled-cluster approach is extended for applications to high-spin open-shell systems, within the unrestricted Hartree-Fock (UHF) formalism. An automatic active space selection scheme has also been implemented such that calculations can be performed in a black-box fashion. It is observed that both the canonical and automatic active space selecting similarity transformed equation of motion (STEOM) approaches perform about as well as the more expensive equation of motion coupled-cluster singles doubles (EOM-CCSD) method for the calculation of the excitation energies of doublet radicals. The automatic active space selecting UHF STEOM approach can therefore be employed as a viable, lower scaling alternative to UHF EOM-CCSD for the calculation of excited states in high-spin open-shell systems.

  12. Flow induced vibrations of piping

    International Nuclear Information System (INIS)

    Gibert, R.J.; Axisa, F.

    1977-01-01

    In order to design the supports of piping systems, estimations of the vibrations induced by the fluid conveyed through the pipes are generally needed. For that purpose it is necessary to calculate the model parameters of liquid containing pipes. In most computer codes, fluid effects are accounted for just by adding the fluid mass to the structure. This may lead to serious errors. This paper presents a method to take into account these effects, by solving a coupled mechanical-acoustical problem: the computer code TEDEL of the C.E.A /D.E.M.T. System, based on the finite-elements method, has been extended to calculate simultaneously the pressure fluctuations in the fluid and the vibrations of the pipe. By this way the mechanical-acoustical coupled eigenmodes of any piping system can be obtained. These eigenmodes are used to determine the response of the system to various sources. Equations have been written in the hypohesis that acoustical wave lengths remain large compared to the diameter of the pipe. The method has been checked by an experiment performed on the GASCOGNE loop at D.E.M.T. The piping system under test consists of a tube with four elbows. The circuit is ended at each extremity by a large vessel which performs acoustical isolation by generating modes for the pressure. Excitation of the circuit is caused by a valve located near the downstream vessel. This provides an efficient localised broad band acoustical source. The comparison between the test results and the calculations has shown that the low frequency resonant characteristics of the pipe and the vibrational amplitude at various flow-rates can be correctly predicted

  13. Role of interlayer coupling in ultra thin MoS2

    KAUST Repository

    Cheng, Yingchun

    2012-01-01

    The effects of interlayer coupling on the vibrational and electronic properties of ultra thin MoS 2 were studied by ab initio calculations. For smaller slab thickness, the interlayer distance is significantly elongated because of reduced interlayer coupling. This explains the anomalous thickness dependence of the lattice vibrations observed by Lee et al. (ACS Nano, 2010, 4, 2695). The absence of interlayer coupling in mono-layer MoS 2 induces a transition from direct to indirect band gap behaviour. Our results demonstrate a strong interplay between the intralayer chemical bonding and the interlayer van-der-Waals interaction. This journal is © 2012 The Royal Society of Chemistry.

  14. Electricity Generation Characteristics of Energy-Harvesting System with Piezoelectric Element Using Mechanical-Acoustic Coupling

    Directory of Open Access Journals (Sweden)

    Hirotarou Tsuchiya

    2016-01-01

    Full Text Available This paper describes the electricity generation characteristics of a new energy-harvesting system with piezoelectric elements. The proposed system is composed of a rigid cylinder and thin plates at both ends. The piezoelectric elements are installed at the centers of both plates, and one side of each plate is subjected to a harmonic point force. In this system, vibration energy is converted into electrical energy via electromechanical coupling between the plate vibration and piezoelectric effect. In addition, the plate vibration excited by the point force induces a self-sustained vibration at the other plate via mechanical-acoustic coupling between the plate vibrations and an internal sound field into the cylindrical enclosure. Therefore, the electricity generation characteristics should be considered as an electromechanical-acoustic coupling problem. The characteristics are estimated theoretically and experimentally from the electric power in the electricity generation, the mechanical power supplied to the plate, and the electricity generation efficiency that is derived from the ratio of both power. In particular, the electricity generation efficiency is one of the most appropriate factors to evaluate a performance of electricity generation systems. Thus, the effect of mechanical-acoustic coupling is principally evaluated by examining the electricity generation efficiency.

  15. bcl::Cluster : A method for clustering biological molecules coupled with visualization in the Pymol Molecular Graphics System.

    Science.gov (United States)

    Alexander, Nathan; Woetzel, Nils; Meiler, Jens

    2011-02-01

    Clustering algorithms are used as data analysis tools in a wide variety of applications in Biology. Clustering has become especially important in protein structure prediction and virtual high throughput screening methods. In protein structure prediction, clustering is used to structure the conformational space of thousands of protein models. In virtual high throughput screening, databases with millions of drug-like molecules are organized by structural similarity, e.g. common scaffolds. The tree-like dendrogram structure obtained from hierarchical clustering can provide a qualitative overview of the results, which is important for focusing detailed analysis. However, in practice it is difficult to relate specific components of the dendrogram directly back to the objects of which it is comprised and to display all desired information within the two dimensions of the dendrogram. The current work presents a hierarchical agglomerative clustering method termed bcl::Cluster. bcl::Cluster utilizes the Pymol Molecular Graphics System to graphically depict dendrograms in three dimensions. This allows simultaneous display of relevant biological molecules as well as additional information about the clusters and the members comprising them.

  16. Carbon Nanotube Tape Vibrating Gyroscope

    Science.gov (United States)

    Tucker, Dennis Stephen (Inventor)

    2016-01-01

    A vibrating gyroscope includes a piezoelectric strip having length and width dimensions. The piezoelectric strip includes a piezoelectric material and carbon nanotubes (CNTs) substantially aligned and polled along the strip's length dimension. A spindle having an axis of rotation is coupled to the piezoelectric strip. The axis of rotation is parallel to the strip's width dimension. A first capacitance sensor is mechanically coupled to the spindle for rotation therewith. The first capacitance sensor is positioned at one of the strip's opposing ends and is spaced apart from one of the strip's opposing faces. A second capacitance sensor is mechanically coupled to the spindle for rotation therewith. The second capacitance sensor is positioned at another of the strip's opposing ends and is spaced apart from another of the strip's opposing faces. A voltage source applies an AC voltage to the piezoelectric strip.

  17. Electron-vibron coupling effects on electron transport via a single-molecule magnet

    Science.gov (United States)

    McCaskey, Alexander; Yamamoto, Yoh; Warnock, Michael; Burzurí, Enrique; van der Zant, Herre S. J.; Park, Kyungwha

    2015-03-01

    We investigate how the electron-vibron coupling influences electron transport via an anisotropic magnetic molecule, such as a single-molecule magnet (SMM) Fe4, by using a model Hamiltonian with parameter values obtained from density-functional theory (DFT). The magnetic anisotropy parameters, vibrational energies, and electron-vibron coupling strengths of the Fe4 are computed using DFT. A giant spin model is applied to the Fe4 with only two charge states, specifically a neutral state with a total spin S =5 and a singly charged state with S =9 /2 , which is consistent with our DFT result and experiments on Fe4 single-molecule transistors. In sequential electron tunneling, we find that the magnetic anisotropy gives rise to new features in the conductance peaks arising from vibrational excitations. In particular, the peak height shows a strong, unusual dependence on the direction as well as magnitude of applied B field. The magnetic anisotropy also introduces vibrational satellite peaks whose position and height are modified with the direction and magnitude of applied B field. Furthermore, when multiple vibrational modes with considerable electron-vibron coupling have energies close to one another, a low-bias current is suppressed, independently of gate voltage and applied B field, although that is not the case for a single mode with a similar electron-vibron coupling. In the former case, the conductance peaks reveal a stronger B -field dependence than in the latter case. The new features appear because the magnetic anisotropy barrier is of the same order of magnitude as the energies of vibrational modes with significant electron-vibron coupling. Our findings clearly show the interesting interplay between magnetic anisotropy and electron-vibron coupling in electron transport via the Fe4. Similar behavior can be observed in transport via other anisotropic magnetic molecules.

  18. Electronic energy transfer through non-adiabatic vibrational-electronic resonance. I. Theory for a dimer

    Science.gov (United States)

    Tiwari, Vivek; Peters, William K.; Jonas, David M.

    2017-10-01

    Non-adiabatic vibrational-electronic resonance in the excited electronic states of natural photosynthetic antennas drastically alters the adiabatic framework, in which electronic energy transfer has been conventionally studied, and suggests the possibility of exploiting non-adiabatic dynamics for directed energy transfer. Here, a generalized dimer model incorporates asymmetries between pigments, coupling to the environment, and the doubly excited state relevant for nonlinear spectroscopy. For this generalized dimer model, the vibrational tuning vector that drives energy transfer is derived and connected to decoherence between singly excited states. A correlation vector is connected to decoherence between the ground state and the doubly excited state. Optical decoherence between the ground and singly excited states involves linear combinations of the correlation and tuning vectors. Excitonic coupling modifies the tuning vector. The correlation and tuning vectors are not always orthogonal, and both can be asymmetric under pigment exchange, which affects energy transfer. For equal pigment vibrational frequencies, the nonadiabatic tuning vector becomes an anti-correlated delocalized linear combination of intramolecular vibrations of the two pigments, and the nonadiabatic energy transfer dynamics become separable. With exchange symmetry, the correlation and tuning vectors become delocalized intramolecular vibrations that are symmetric and antisymmetric under pigment exchange. Diabatic criteria for vibrational-excitonic resonance demonstrate that anti-correlated vibrations increase the range and speed of vibronically resonant energy transfer (the Golden Rule rate is a factor of 2 faster). A partial trace analysis shows that vibronic decoherence for a vibrational-excitonic resonance between two excitons is slower than their purely excitonic decoherence.

  19. Nonlinear laser dynamics induced by frequency shifted optical feedback: application to vibration measurements.

    Science.gov (United States)

    Girardeau, Vadim; Goloni, Carolina; Jacquin, Olivier; Hugon, Olivier; Inglebert, Mehdi; Lacot, Eric

    2016-12-01

    In this article, we study the nonlinear dynamics of a laser subjected to frequency shifted optical reinjection coming back from a vibrating target. More specifically, we study the nonlinear dynamical coupling between the carrier and the vibration signal. The present work shows how the nonlinear amplification of the vibration spectrum is related to the strength of the carrier and how it must be compensated to obtain accurate (i.e., without bias) vibration measurements. The theoretical predictions, confirmed by numerical simulations, are in good agreement with the experimental data. The main motivation of this study is the understanding of the nonlinear response of a laser optical feedback imaging sensor for quantitative phase measurements of small vibrations in the case of strong optical feedback.

  20. Vibration-rotational overtones absorption of solid hydrogens using optoacoustic spectroscopy technique

    International Nuclear Information System (INIS)

    Vieira, M.M.F.

    1985-01-01

    Vibrational-rotational overtones absorption solid hydrogens (H 2 , D 2 , HD) is studied using pulsed laser piezoeletric transducer (PULPIT) optoacoustic spectroscopy is studied. A general downward shift in energy from isolated molecular energies is observed. Studying normal-hydrogen it was observed that the phonon excitations associated with double-molecular transitions are predominantly transverse-optical phonons, whereas the excitations associated with single-molecular transitions are predominantly longitudinal - optical phonons. Multiplet structures were observed for certain double transitions in parahydrogen and orthodeuterium. The HD spectrum, besides presenting the sharp zero-phonon lines and the associated phonon side bands, like H 2 and D 2 , showed also two different features. This observation was common to all the transitions involving pure rotational excitation in H 2 and D 2 , which showed broad linewidths. This, together with some other facts (fluorescence lifetime *approx*10 5 sec; weak internal vibration and lattice coupling), led to the proposition of a mechanism for the fast nonradiative relaxation in solid hydrogens, implied from some observed experimental evidences. This relaxation, due to strong coupling, would happen in two steps: the internal vibration modes would relax to the rotational modes of the molecules, and then this rotational modes would relax to the lattice vibration modes. (Author) [pt

  1. Single-crystal-material-based induced-shear actuation for vibration reduction of helicopters with composite rotor system

    International Nuclear Information System (INIS)

    Pawar, Prashant M; Jung, Sung Nam

    2008-01-01

    In this study, an assessment is made for the helicopter vibration reduction of composite rotor blades using an active twist control concept. Special focus is given to the feasibility of implementing the benefits of the shear actuation mechanism along with elastic couplings of composite blades for achieving maximum vibration reduction. The governing equations of motion for composite rotor blades with surface bonded piezoceramic actuators are obtained using Hamilton's principle. The equations are then solved for dynamic response using finite element discretization in the spatial and time domains. A time domain unsteady aerodynamic theory with free wake model is used to obtain the airloads. A newly developed single-crystal piezoceramic material is introduced as an actuator material to exploit its superior shear actuation authority. Seven rotor blades with different elastic couplings representing stiffness properties similar to stiff-in-plane rotor blades are used to investigate the hub vibration characteristics. The rotor blades are modeled as a box beam with actuator layers bonded on the outer surface of the top and bottom of the box section. Numerical results show that a notable vibration reduction can be achieved for all the combinations of composite rotor blades. This investigation also brings out the effect of different elastic couplings on various vibration-reduction-related parameters which could be useful for the optimal design of composite helicopter blades

  2. Single-crystal-material-based induced-shear actuation for vibration reduction of helicopters with composite rotor system

    Science.gov (United States)

    Pawar, Prashant M.; Jung, Sung Nam

    2008-12-01

    In this study, an assessment is made for the helicopter vibration reduction of composite rotor blades using an active twist control concept. Special focus is given to the feasibility of implementing the benefits of the shear actuation mechanism along with elastic couplings of composite blades for achieving maximum vibration reduction. The governing equations of motion for composite rotor blades with surface bonded piezoceramic actuators are obtained using Hamilton's principle. The equations are then solved for dynamic response using finite element discretization in the spatial and time domains. A time domain unsteady aerodynamic theory with free wake model is used to obtain the airloads. A newly developed single-crystal piezoceramic material is introduced as an actuator material to exploit its superior shear actuation authority. Seven rotor blades with different elastic couplings representing stiffness properties similar to stiff-in-plane rotor blades are used to investigate the hub vibration characteristics. The rotor blades are modeled as a box beam with actuator layers bonded on the outer surface of the top and bottom of the box section. Numerical results show that a notable vibration reduction can be achieved for all the combinations of composite rotor blades. This investigation also brings out the effect of different elastic couplings on various vibration-reduction-related parameters which could be useful for the optimal design of composite helicopter blades.

  3. E x circle epsilon Jahn-Teller anharmonic coupling for an octahedral system

    CERN Document Server

    Avram, N M; Kibler, M R

    2001-01-01

    The coupling between doubly degenerate electronic states and doubly degenerate vibrations is analyzed for an octahedral system on the basis of the introduction of an anharmonic Morse potential for the vibronic part. The vibrations are described by anharmonic coherent states and their linear coupling with the electronic states is considered. The matrix elements of the vibronic interaction are built and the energy levels corresponding to the interaction Hamiltonian are derived.

  4. Enhanced vibration diagnostics using vibration signature analysis

    International Nuclear Information System (INIS)

    Ahmed, S.; Shehzad, K.; Zahoor, Y.; Mahmood, A.; Bibi, A.

    2001-01-01

    Symptoms will appear in equipment, as well as in human beings. when 'suffering from sickness. Symptoms of abnormality in equipment are vibration, noise, deformation, temperature, pressure, electric current, crack, wearing, leakage etc. these are called modes of failure. If the mode of failure is vibration then the vibration signature analysis can be effectively used in order to diagnose the machinery problems. Much valuable information is contained within these vibration 'Spectra' or 'Signatures' but is only of use if the analyst can unlock its 'Secrets'. This paper documents a vibration problem in the motor of a centrifugal pump (Type ETA). It focuses mainly on the roll of modern vibration monitoring system in problem analysis. The problem experienced was the motor unstability and noise due to high vibration. Using enhanced vibration signature data, the problem was analyzed. which suggested that the rotor eccentricity was the cause of excessive noise and vibration in the motor. In conclusion, advanced electronic monitoring and diagnostic systems provide powerful information for machine's condition assessment and problem analysis. Appropriate interpretation and use of this information is important for accurate and effective vibration analysis. (author)

  5. Coupled Boundary and Finite Element Analysis of Vibration from Railway Tunnels

    DEFF Research Database (Denmark)

    Andersen, Lars; Jones, C. J. C.

    2004-01-01

    axis, it is useful to evaluate the potential uses of two-dimensional models before committing to much more costly three-dimensional approaches. The vibration forces in the track due to the passage of a train are by nature three-dimensional and a complete analysis undoubtedly requires a model of three...

  6. Structure Determination of Anionic Metal Clusters via Infrared Resonance Enhanced Multiple Photon Electron Detachment Spectroscopy

    NARCIS (Netherlands)

    Haertelt, M.; Lapoutre, V. J. F.; Bakker, J. M.; Redlich, B.; Harding, D. J.; Fielicke, A.; Meijer, G.

    2011-01-01

    We report vibrational spectra of anionic metal clusters, measured via electron detachment following resonant absorption of multiple infrared photons. To facilitate the sequential absorption of the required large number of photons, the cluster beam interacts with the infrared radiation inside the

  7. Deviations from the Boltzmann distribution in vibrationally excited gas flows

    International Nuclear Information System (INIS)

    Offenhaeuser, F.; Frohn, A.

    1986-01-01

    A new model for the exchange of vibrational energy in one-dimensional flows of CO 2 -H 2 O-N 2 -O 2 -He gas mixtures is presented. In contrast to previous models, the assumption of local Boltzmann distributions for the vibrational degrees of freedom is not required. This generalization was achieved by the assumption that the molecules are harmonic oscillators with one or more degrees of freedom represented by finite numbers of energy levels. The population densities of these energy levels are coupled by a set of rate equations. It is shown that in some cases of molecular gas flow the Boltzmann distribution for the vibrational degrees of freedom may be disturbed. 12 references

  8. Global minimum-energy structure and spectroscopic properties of I2(*-) x n H2O clusters: a Monte Carlo simulated annealing study.

    Science.gov (United States)

    Pathak, Arup Kumar; Mukherjee, Tulsi; Maity, Dilip Kumar

    2010-01-18

    The vibrational (IR and Raman) and photoelectron spectral properties of hydrated iodine-dimer radical-anion clusters, I(2)(*-) x n H(2)O (n=1-10), are presented. Several initial guess structures are considered for each size of cluster to locate the global minimum-energy structure by applying a Monte Carlo simulated annealing procedure including spin-orbit interaction. In the Raman spectrum, hydration reduces the intensity of the I-I stretching band but enhances the intensity of the O-H stretching band of water. Raman spectra of more highly hydrated clusters appear to be simpler than the corresponding IR spectra. Vibrational bands due to simultaneous stretching vibrations of O-H bonds in a cyclic water network are observed for I(2)(*-) x n H(2)O clusters with n > or = 3. The vertical detachment energy (VDE) profile shows stepwise saturation that indicates closing of the geometrical shell in the hydrated clusters on addition of every four water molecules. The calculated VDE of finite-size small hydrated clusters is extrapolated to evaluate the bulk VDE value of I(2)(*-) in aqueous solution as 7.6 eV at the CCSD(T) level of theory. Structure and spectroscopic properties of these hydrated clusters are compared with those of hydrated clusters of Cl(2)(*-) and Br(2)(*-).

  9. Free vibration analysis of elastic structures submerged in an infinite or semi-infinite fluid domain by means of a coupled FE-BE solver

    Science.gov (United States)

    Zheng, Chang-Jun; Bi, Chuan-Xing; Zhang, Chuanzeng; Gao, Hai-Feng; Chen, Hai-Bo

    2018-04-01

    The vibration behavior of thin elastic structures can be noticeably influenced by the surrounding water, which represents a kind of heavy fluid. Since the feedback of the acoustic pressure onto the structure cannot be neglected in this case, a strong coupled scheme between the structural and fluid domains is usually required. In this work, a coupled finite element and boundary element (FE-BE) solver is developed for the free vibration analysis of structures submerged in an infinite fluid domain or a semi-infinite fluid domain with a free water surface. The structure is modeled by the finite element method (FEM). The compressibility of the fluid is taken into account, and hence the Helmholtz equation serves as the governing equation of the fluid domain. The boundary element method (BEM) is employed to model the fluid domain, and a boundary integral formulation with a half-space fundamental solution is used to satisfy the Dirichlet boundary condition on the free water surface exactly. The resulting nonlinear eigenvalue problem (NEVP) is converted into a small linear one by using a contour integral method. Adequate modifications are suggested to improve the efficiency of the contour integral method and avoid missing the eigenfrequencies of interest. The Burton-Miller method is used to filter out the fictitious eigenfrequencies of the boundary integral formulations. Numerical examples are given to demonstrate the accuracy and applicability of the developed eigensolver, and also show that the fluid-loading effect strongly depends on both the water depth and the mode shapes.

  10. Nozzle Flow with Vibrational Nonequilibrium. Ph.D. Thesis

    Science.gov (United States)

    Landry, John Gary

    1995-01-01

    Flow of nitrogen gas through a converging-diverging nozzle is simulated. The flow is modeled using the Navier-Stokes equations that have been modified for vibrational nonequilibrium. The energy equation is replaced by two equations. One equation accounts for energy effects due to the translational and rotational degrees of freedom, and the other accounts for the affects due to the vibrational degree of freedom. The energy equations are coupled by a relaxation time which measures the time required for the vibrational energy component to equilibrate with the translational and rotational energy components. An improved relaxation time is used in this thesis. The equations are solved numerically using the Steger-Warming flux vector splitting method and the Implicit MacCormack method. The results show that uniform flow is produced outside of the boundary layer. Nonequilibrium exists in both the converging and diverging nozzle sections. The boundary layer region is characterized by a marked increase in translational-rotational temperature. The vibrational temperature remains frozen downstream of the nozzle, except in the boundary layer.

  11. Low rank factorization of the Coulomb integrals for periodic coupled cluster theory.

    Science.gov (United States)

    Hummel, Felix; Tsatsoulis, Theodoros; Grüneis, Andreas

    2017-03-28

    We study a tensor hypercontraction decomposition of the Coulomb integrals of periodic systems where the integrals are factorized into a contraction of six matrices of which only two are distinct. We find that the Coulomb integrals can be well approximated in this form already with small matrices compared to the number of real space grid points. The cost of computing the matrices scales as O(N 4 ) using a regularized form of the alternating least squares algorithm. The studied factorization of the Coulomb integrals can be exploited to reduce the scaling of the computational cost of expensive tensor contractions appearing in the amplitude equations of coupled cluster methods with respect to system size. We apply the developed methodologies to calculate the adsorption energy of a single water molecule on a hexagonal boron nitride monolayer in a plane wave basis set and periodic boundary conditions.

  12. Reviving Vibration Energy Harvesting and Self-Powered Sensing by a Triboelectric Nanogenerator

    KAUST Repository

    Chen, Jun

    2017-10-10

    Vibration energy harvesting and sensing is a traditional and growing research field in which various working mechanisms and designs have been developed for an improved performance. Relying on a coupling effect of contact electrification and electrostatic induction, in the past 5 years, triboelectric nanogenerator (TENG) has been applied as a fundamentally new technology to revive the field of vibration energy harvesting and self-powered sensing, especially for low-frequency vibrations such as human motion, automobile, machine, and bridge vibrations. The demonstrated instantaneous energy conversion efficiency of ∼70% and a total efficiency up to 85% distinguished TENG from traditional techniques. In this article, both TENG-enabled vibration energy harvesting and self-powered active sensing are comprehensively reviewed. Moving toward future development, problems pressing for solutions and onward research directions are also posed to deliver a coherent picture.

  13. Quenching vibrations by collisions in cold traps: A quantum study for ...

    Indian Academy of Sciences (India)

    Scattering theory; ion-molecule collisions vibrational quenching. 1. ... Hence, considerable attention has now turned to .... computed spatial features of the interaction potential for .... radial integration of the coupled equation was extended.

  14. Lanczos-driven coupled-cluster damped linear response theory for molecules in polarizable environments

    DEFF Research Database (Denmark)

    List, Nanna Holmgaard; Coriani, Sonia; Kongsted, Jacob

    2014-01-01

    are specifically motivated by a twofold aim: (i) computation of core excitations in realistic surroundings and (ii) examination of the effect of the differential response of the environment upon excitation solely related to the CC multipliers (herein denoted the J matrix) in computations of excitation energies......We present an extension of a previously reported implementation of a Lanczos-driven coupled-cluster (CC) damped linear response approach to molecules in condensed phases, where the effects of a surrounding environment are incorporated by means of the polarizable embedding formalism. We...... and transition moments of polarizable-embedded molecules. Numerical calculations demonstrate that the differential polarization of the environment due to the first-order CC multipliers provides only minor contributions to the solvatochromic shift for all transitions considered. We thus complement previous works...

  15. Manipulation of molecular vibrational motions via pure rotational excitations

    DEFF Research Database (Denmark)

    Shu, Chuan-Cun; Henriksen, Niels Engholm

    2015-01-01

    The coupling between different molecular degrees of freedom plays a decisive role in many quantum phenomena, including electron transfer and energy redistribution. Here, we demonstrate a quantum-mechanical time-dependent simulation to explore how a vibrational motion in a molecule can be affected...

  16. Relativistic Coupled Cluster (RCC) Computation of the Electric Dipole Moment Enhancement Factor of Francium Due to the Violation of Time Reversal Symmetry

    NARCIS (Netherlands)

    Mukherjee, Debashis; Sahoo, B. K.; Nataraj, H. S.; Das, B. P.

    2009-01-01

    A relativistic many-body theory for the electric dipole moment (EDM) of paramagnetic atoms arising from the electric dipole moment of the electron is presented and implemented. The relativistic coupled-cluster method with single and double excitations (RCCSD) using the Dirac-Coulomb Hamiltonian and

  17. Identification of surface species by vibrational normal mode analysis. A DFT study

    Science.gov (United States)

    Zhao, Zhi-Jian; Genest, Alexander; Rösch, Notker

    2017-10-01

    Infrared spectroscopy is an important experimental tool for identifying molecular species adsorbed on a metal surface that can be used in situ. Often vibrational modes in such IR spectra of surface species are assigned and identified by comparison with vibrational spectra of related (molecular) compounds of known structure, e. g., an organometallic cluster analogue. To check the validity of this strategy, we carried out a computational study where we compared the normal modes of three C2Hx species (x = 3, 4) in two types of systems, as adsorbates on the Pt(111) surface and as ligands in an organometallic cluster compound. The results of our DFT calculations reproduce the experimental observed frequencies with deviations of at most 50 cm-1. However, the frequencies of the C2Hx species in both types of systems have to be interpreted with due caution if the coordination mode is unknown. The comparative identification strategy works satisfactorily when the coordination mode of the molecular species (ethylidyne) is similar on the surface and in the metal cluster. However, large shifts are encountered when the molecular species (vinyl) exhibits different coordination modes on both types of substrates.

  18. SU(3) techniques for angular momentum projected matrix elements in multi-cluster problems

    International Nuclear Information System (INIS)

    Hecht, K.T.; Zahn, W.

    1978-01-01

    In the theory of integral transforms for the evaluation of the resonating group kernels needed for cluster model calculations, the evaluation of matrix elements in an angular momentum coupled basis has proved to be difficult for cluster problems involving more than two fragments. For multi-cluster wave functions SU(3) coupling and recoupling techniques can furnish a tool for the practical evaluation matrix elements in an angular momentum coupled basis if the several relative motion harmonic oscillator functions in Bargmann space have simple SU(3) coupling properties. The method is illustrated by a three-cluster problem, such as 12 C = α + α + α, involving three 1 S clusters. 2 references

  19. Quantum dynamics of a vibronically coupled linear chain using a surrogate Hamiltonian approach

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myeong H., E-mail: myeong.lee@warwick.ac.uk; Troisi, Alessandro [Department of Chemistry and Centre for Scientific Computing, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2016-06-07

    Vibronic coupling between the electronic and vibrational degrees of freedom has been reported to play an important role in charge and exciton transport in organic photovoltaic materials, molecular aggregates, and light-harvesting complexes. Explicitly accounting for effective vibrational modes rather than treating them as a thermal environment has been shown to be crucial to describe the effect of vibronic coupling. We present a methodology to study dissipative quantum dynamics of vibronically coupled systems based on a surrogate Hamiltonian approach, which is in principle not limited by Markov approximation or weak system-bath interaction, using a vibronic basis. We apply vibronic surrogate Hamiltonian method to a linear chain system and discuss how different types of relaxation process, intramolecular vibrational relaxation and intermolecular vibronic relaxation, influence population dynamics of dissipative vibronic systems.

  20. Highly vibrationally excited O2 molecules in low-pressure inductively-coupled plasmas detected by high sensitivity ultra-broad-band optical absorption spectroscopy

    Science.gov (United States)

    Foucher, Mickaël; Marinov, Daniil; Carbone, Emile; Chabert, Pascal; Booth, Jean-Paul

    2015-08-01

    Inductively-coupled plasmas in pure O2 (at pressures of 5-80 mTorr and radiofrequency power up to 500 W) were studied by optical absorption spectroscopy over the spectral range 200-450 nm, showing the presence of highly vibrationally excited O2 molecules (up to vʺ = 18) by Schumann-Runge band absorption. Analysis of the relative band intensities indicates a vibrational temperature up to 10,000 K, but these hot molecules only represent a fraction of the total O2 density. By analysing the (11-0) band at higher spectral resolution the O2 rotational temperature was also determined, and was found to increase with both pressure and power, reaching 900 K at 80 mTorr 500 W. These measurements were achieved using a new high-sensitivity ultra-broad-band absorption spectroscopy setup, based on a laser-plasma light source, achromatic optics and an aberration-corrected spectrograph. This setup allows the measurement of weak broadband absorbances due to a baseline variability lower than 2   ×   10-5 across a spectral range of 250 nm.

  1. Consideration of possible mass and velocity corrections to magnetic cluster experiments

    International Nuclear Information System (INIS)

    Liu, Z.Y.; Dowben, P.A.; Popov, A.P.; Pappas, David P.

    2003-01-01

    Gadolinium occurs, in natural abundance, as several isotopes. The possible combinations of different gadolinium isotopes dictates that even for a fixed number of atoms in the cluster, clusters of gadolinium atoms will exhibit a range of masses. This and the expected consequence of the translation energy distributions are explored as possible corrections to Stern-Gerlach cluster beam-deflection experiments. Upon closer inspection of the experimental data, we find that the translation energy plus the vibrational temperature distribution may be inhomogeneous. This could be the origin of a long tail to high deflections in the experimental deflection profiles, at low cluster temperatures, in the magnetic cluster Stern-Gerlach experiments

  2. Modeling and Tuning for Vibration Energy Harvesting using a Piezoelectric Bimorph

    Science.gov (United States)

    Cao, Yongqing

    With the development of wireless sensors and other devices, the need for continuous power supply with high reliability is growing ever more. The traditional battery power supply has the disadvantage of limited duration of continuous power supply capability so that replacement for new batteries has to be done regularly. This can be quite inconvenient and sometimes quite difficult especially when the sensors are located in places not easily accessible such as the inside of a machine or wild field. This situation stimulates the development of renewable power supply which can harvest energy from the environment. The use of piezoelectric materials to converting environment vibration to electrical energy is one of the alternatives of which a broad range of research has been done by many researchers, focusing on different issues. The improvement of efficiency is one of the most important issues in vibration based energy harvesting. For this purpose different methods are devised and more accurate modeling of coupled piezoelectric mechanical systems is investigated. In the current paper, the research is focused on improving voltage generation of a piezoelectric bimorph on a vibration beam, as well as the analytical modeling of the same system. Also an initial study is conducted on the characteristics of the vibration of Zinc oxide (ZnO) nanowire, which is a promising material for its coupled semiconducting and piezoelectric properties. The effect on the voltage generation by different placement of the piezoelectric bimorph on the vibrating beam is investigated. The relation between the voltage output and the curvature is derived which is used to explain the effect of placement on voltage generation. The effect of adding a lumped mass on the modal frequencies of the beam and on the curvature distribution is investigated. The increased voltage output from the piezoelectric bimorph by using appropriately selected mass is proved analytically and also verified by experiment. For

  3. Exploring Solvent Shape and Function Using - and Isomer-Selective Vibrational Spectroscopy

    Science.gov (United States)

    Johnson, Mark

    2010-06-01

    We illustrate the new types of information than can be obtained through isomer-selective ``hole-burning'' spectroscopy carried out in the vibrational manifolds of Ar-tagged cluster ions. Three examples of increasing complexity will be presented where the changes in a solute ion are correlated with different morphologies of a surrounding solvent cage. In the first, we discuss the weak coupling limit where different hydration morphologies lead to small distortions of a covalent ion. We then introduce the more interesting case of the hydrated electron, where different shapes of the water network lead to dramatic changes in the extent of delocalization in the diffuse excess electron cloud. We then turn to the most complex case involving hydration of the nitrosonium ion, where different arrangements of the same number of water molecules span the range in behavior from simple solvation to actively causing a chemical reaction. The latter results are particularly interesting as they provide a microscopic, molecular-level picture of the ``solvent coordinate'' commonly used to describe solvent mediated processes.

  4. Distinct collective states due to trade-off between attractive and repulsive couplings

    Science.gov (United States)

    Sathiyadevi, K.; Chandrasekar, V. K.; Senthilkumar, D. V.; Lakshmanan, M.

    2018-03-01

    We investigate the effect of repulsive coupling together with an attractive coupling in a network of nonlocally coupled oscillators. To understand the complex interaction between these two couplings we introduce a control parameter in the repulsive coupling which plays a crucial role in inducing distinct complex collective patterns. In particular, we show the emergence of various cluster chimera death states through a dynamically distinct transition route, namely the oscillatory cluster state and coherent oscillation death state as a function of the repulsive coupling in the presence of the attractive coupling. In the oscillatory cluster state, the oscillators in the network are grouped into two distinct dynamical states of homogeneous and inhomogeneous oscillatory states. Further, the network of coupled oscillators follow the same transition route in the entire coupling range. Depending upon distinct coupling ranges, the system displays different number of clusters in the death state and oscillatory state. We also observe that the number of coherent domains in the oscillatory cluster state exponentially decreases with increase in coupling range and obeys a power-law decay. Additionally, we show analytical stability for observed solitary state, synchronized state, and incoherent oscillation death state.

  5. Coupled quantum treatment of vibrationally inelastic and vibronic charge transfer in proton-O2 collisions

    International Nuclear Information System (INIS)

    Gianturco, F.A.; Palma, A.; Semprini, E.; Stefani, F.; Baer, M.

    1990-01-01

    A three-dimensional quantum-mechanical study of vibrational, state-resolved differential cross sections (DCS) for the direct inelastic and for the charge-transfer scattering channels has been carried out for the H + +O 2 system. The collision energy considered was E c.m. =23.0 eV, which is the same as that examined by Noll and Toennies in their experiments [J. Chem. Phys. 85, 3313 (1986)]. The scattering treatment employed was the charge-transfer infinite-order sudden approximation (CT IOSA) with the vibrational states correctly expanded over the relevant adiabatic basis for each of the two electronic channels. The state-to-state DCS are found to follow closely the behavior of the experimental quantities, both in the inelastic and the charge-transfer channels. Moreover, a careful comparison between the measured relative probabilities and computed values allows us to test in minute detail the efficiency of the scattering model and the reliability of the potential-energy surfaces employed. It is found that vibrational energy transfer is overestimated in the vibrational inelastic channels while in the charge-transfer inelastic channels the same energy transfer is slightly underestimated by the calculations. The total flux distribution, however, is found to be in very good accord with experiments. Angular distributions are also well reproduced both by the DCS and by the average energy-transfer values. The study of some of the CT IOSA quantities also allows us to establish clearly the importance of nonadiabatic transitions in enhancing vibrational inelasticity in the present system

  6. How Far Does a Receptor Influence Vibrational Properties of an Odorant?

    Science.gov (United States)

    Reese, Anna; List, Nanna Holmgaard; Kongsted, Jacob; Solov'yov, Ilia A

    2016-01-01

    The biophysical mechanism of the sense of smell, or olfaction, is still highly debated. The mainstream explanation argues for a shape-based recognition of odorant molecules by olfactory receptors, while recent investigations suggest the primary olfactory event to be triggered by a vibrationally-assisted electron transfer reaction. We consider this controversy by studying the influence of a receptor on the vibrational properties of an odorant in atomistic details as the coupling between electronic degrees of freedom of the receptor and the vibrations of the odorant is the key parameter of the vibrationally-assisted electron transfer. Through molecular dynamics simulations we elucidate the binding specificity of a receptor towards acetophenone odorant. The vibrational properties of acetophenone inside the receptor are then studied by the polarizable embedding density functional theory approach, allowing to quantify protein-odorant interactions. Finally, we judge whether the effects of the protein provide any indications towards the existing theories of olfaction.

  7. Thermodynamics of small clusters of atoms: A molecular dynamics simulation

    DEFF Research Database (Denmark)

    Damgaard Kristensen, W.; Jensen, E. J.; Cotterill, Rodney M J

    1974-01-01

    The thermodynamic properties of clusters containing 55, 135, and 429 atoms have been calculated using the molecular dynamics method. Structural and vibrational properties of the clusters were examined at different temperatures in both the solid and the liquid phase. The nature of the melting...... transition was investigated, and a number of properties, such as melting temperature, latent heat of melting, and premelting phenomena, were found to vary with cluster size. These properties were also found to depend on the structure of the solid phase. In this phase the configuration of lowest free energy...

  8. Study of coupled-cluster correlations on electromagnetic transitions and hyperfine structure constants of W VI

    International Nuclear Information System (INIS)

    Bhowmik, Anal; Majumder, Sonjoy; Roy, Sourav; Dutta, Narendra Nath

    2017-01-01

    This work presents precise calculations of important electromagnetic transition amplitudes along with details of their many-body correlations using the relativistic coupled-cluster method. Studies of hyperfine interaction constants, useful for plasma diagnostics, with this correlation exhaustive many-body approach, are another important area of this work. The calculated oscillator strengths of allowed transitions, amplitudes of forbidden transitions and lifetimes are compared with the other theoretical results wherever available and they show a good agreement. Hyperfine constants of different isotopes of W VI, presented in this paper, will be helpful in gaining an accurate picture of the abundances of this element in different astronomical bodies. (paper)

  9. X-ray aspects of the DAFT/FADA clusters

    Science.gov (United States)

    Guennou, L.; Durret, F.; Lima Neto, G. B.; Adami, C.

    2012-12-01

    We have undertaken the DAFT/FADA survey with the aim of applying constraints on dark energy based on weak lensing tomography as well as obtaining homogeneous and high quality data for a sample of 91 massive clusters in the redshift range [0.4,0.9] for which there are HST archive data. We have analysed the XMM-Newton data available for 42 of these clusters to derive their X-ray temperatures and luminosities and search for substructures. This study was coupled with a dynamical analysis for the 26 clusters having at least 30 spectroscopic galaxy redshifts in the cluster range. We present preliminary results on the coupled X-ray and dynamical analyses of these clusters.

  10. Mechanism of electron attachment to van der Waals clusters: Application to carbon dioxide clusters

    International Nuclear Information System (INIS)

    Tsukada, M.; Shima, N.; Tsuneyuki, S.; Kageshima, H.; Kondow, T.

    1987-01-01

    A theory on the attachment of very slow electrons to van der Waals clusters was developed on the basis of the electronic structure theory, and was applied to clarify the mechanism of the collisional electron transfer from a high-Rydberg atom to a CO 2 cluster. The strong coupled electron--phonon model is found to afford a reasonable mechanism of the attachment. The equilibrium geometry of (CO 2 )/sub N/ (2≤N≤13) clusters are determined and their vertical affinity levels are obtained by the DV-X α-transition state method. Using this information, as well as some plausible assumptions on the values of the coupling constants, the attachment cross section σ is evaluated as a function of the energy of the incident electron. The theory predicts the existence of the threshold cluster size for the attachment and a sharp decrease of σ with the energy, which are consistent with the experimental results

  11. Coupled-cluster representation of Green function employing modified spectral resolutions of similarity transformed Hamiltonians

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, K., E-mail: karol.kowalski@pnnl.gov; Bhaskaran-Nair, K.; Shelton, W. A. [William R. Wiley Environmental Molecular Sciences Laboratory, Battelle, Pacific Northwest National Laboratory, K8-91, P.O. Box 999, Richland, Washington 99352 (United States)

    2014-09-07

    In this paper we discuss a new formalism for producing an analytic coupled-cluster (CC) Green's function for an N-electron system by shifting the poles of similarity transformed Hamiltonians represented in N − 1 and N + 1 electron Hilbert spaces. Simple criteria are derived for the states in N − 1 and N + 1 electron spaces that are then corrected in the spectral resolution of the corresponding matrix representations of the similarity transformed Hamiltonian. The accurate description of excited state processes within a Green's function formalism would be of significant importance to a number of scientific communities ranging from physics and chemistry to engineering and the biological sciences. This is because the Green's function methodology provides a direct path for not only calculating properties whose underlying origins come from coupled many-body interactions but also provides a straightforward path for calculating electron transport, response, and correlation functions that allows for a direct link with experiment. As a special case of this general formulation, we discuss the application of this technique for Green's function defined by the CC with singles and doubles representation of the ground-state wave function.

  12. Coupled-cluster representation of Green function employing modified spectral resolutions of similarity transformed Hamiltonians

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, K. [William R. Wiley Environmental Molecular Sciences Laboratory, Battelle, Pacific Northwest National Laboratory, K8-91, P.O. Box 999, Richland, Washington 99352, USA; Bhaskaran-Nair, K. [William R. Wiley Environmental Molecular Sciences Laboratory, Battelle, Pacific Northwest National Laboratory, K8-91, P.O. Box 999, Richland, Washington 99352, USA; Shelton, W. A. [William R. Wiley Environmental Molecular Sciences Laboratory, Battelle, Pacific Northwest National Laboratory, K8-91, P.O. Box 999, Richland, Washington 99352, USA

    2014-09-07

    In this paper we discuss a new formalism for producing an analytic coupled-cluster (CC) Green's function for an N-electron system by shifting the poles of similarity transformed Hamiltonians represented in N - 1 and N + 1 electron Hilbert spaces. Simple criteria are derived for the states in N - 1 and N + 1 electron spaces that are then corrected in the spectral resolution of the corresponding matrix representations of the similarity transformed Hamiltonian. The accurate description of excited state processes within a Green's function formalism would be of significant importance to a number of scientific communities ranging from physics and chemistry to engineering and the biological sciences. This is because the Green's function methodology provides a direct path for not only calculating properties whose underlying origins come from coupled many-body interactions but also provides a straightforward path for calculating electron transport, response, and correlation functions that allows for a direct link with experiment. Finally, as a special case of this general formulation, we discuss the application of this technique for Green's function defined by the CC with singles and doubles representation of the ground-state wave function.

  13. Coupled-cluster representation of Green function employing modified spectral resolutions of similarity transformed Hamiltonians

    International Nuclear Information System (INIS)

    Kowalski, K.; Bhaskaran-Nair, K.; Shelton, W. A.

    2014-01-01

    In this paper we discuss a new formalism for producing an analytic coupled-cluster (CC) Green's function for an N-electron system by shifting the poles of similarity transformed Hamiltonians represented in N − 1 and N + 1 electron Hilbert spaces. Simple criteria are derived for the states in N − 1 and N + 1 electron spaces that are then corrected in the spectral resolution of the corresponding matrix representations of the similarity transformed Hamiltonian. The accurate description of excited state processes within a Green's function formalism would be of significant importance to a number of scientific communities ranging from physics and chemistry to engineering and the biological sciences. This is because the Green's function methodology provides a direct path for not only calculating properties whose underlying origins come from coupled many-body interactions but also provides a straightforward path for calculating electron transport, response, and correlation functions that allows for a direct link with experiment. As a special case of this general formulation, we discuss the application of this technique for Green's function defined by the CC with singles and doubles representation of the ground-state wave function

  14. Relaxation processes in optically excites metal clusters; Relaxationsprozesse in optisch angeregten Metallclustern

    Energy Technology Data Exchange (ETDEWEB)

    Stanzel, J.

    2007-08-10

    The present work is concerned with the dynamics of optically excited metal clusters in the gas phase. Small mass-selected gold and tungsten cluster anions (Au{sup -}{sub n}, n=5-8, 14, 20 and W{sup -}{sub n}, n=3-14) are studied using femtosecond time-resolved photoelectron spectroscopy. Depending on the electronic structure in the valence region as well as on the optical excitation energy fundamentally different relaxation processes are observed. In small gold cluster anions excited with 1.56 eV an isolated electronically excited state is populated. The time-dependent measurements are strongly sizedependent and open insights into photoinduced geometry changes of the nuclear framework. Oscillatory vibrational wavepacket motion in Au{sup -}{sub 5}, an extremely longlived ({tau} >90 ns) electronically excited state in Au{sup -}{sub 6} as well as photoinduced melting in Au{sup -}{sub 7} and Au{sup -}{sub 8} is monitored in real time. By increasing the OPTICAL excitation energy to 3.12 eV a completely different scenario is observed. A multitude of electronically excited states can be reached upon optical excitation and as a consequence electronic relaxation processes that take place on a time scale of 1 ps are dominating. This is shown for Au{sup -}{sub 7}, Au{sup -}{sub 14} and Au{sup -}{sub 20}. Compared to gold clusters, tungsten clusters are characterized by a significantly higher electronic density of states in the valence region. Therefore electronic relaxation processes are much more likely and take place on a significantly faster time scale. The fast electronic relaxation processes are distinguished from pure vibrational relaxation. It is shown that already in the four atomic tungsten cluster W{sup -}{sub 4} electronic relaxation processes take place on a time scale of 30 fs. In all investigated tungsten cluster anions (W{sup -}{sub n}, n=3-14) an equilibrium between electronic and vibrational system is reached within around 1 ps after optical excitation which

  15. Direct calculation of the spin stiffness on square, triangular and cubic lattices using the coupled cluster method

    OpenAIRE

    Krüger, S. E.; Darradi, R.; Richter, J.; Farnell, D. J. J

    2006-01-01

    We present a method for the direct calculation of the spin stiffness by means of the coupled cluster method. For the spin-half Heisenberg antiferromagnet on the square, the triangular and the cubic lattices we calculate the stiffness in high orders of approximation. For the square and the cubic lattices our results are in very good agreement with the best results available in the literature. For the triangular lattice our result is more precise than any other result obtained so far by other a...

  16. Clustering of noise-induced oscillations

    DEFF Research Database (Denmark)

    Sosnovtseva, Olga; Fomin, A I; Postnov, D E

    2001-01-01

    The subject of our study is clustering in a population of excitable systems driven by Gaussian white noise and with randomly distributed coupling strength. The cluster state is frequency-locked state in which all functional units run at the same noise-induced frequency. Cooperative dynamics...

  17. Edgewise vibration control of wind turbine blades using roller and liquid dampers

    International Nuclear Information System (INIS)

    Zhang, Z L; Nielsen, S R K

    2014-01-01

    This paper deals with the passive vibration control of edgewise vibrations by means of roller dampers and tuned liquid column dampers (TLCDs). For a rotating blade, the large centrifugal acceleration makes it possible to use roller dampers or TLCDs with rather small masses for effectively suppressing edgewise vibrations. The roller dampers are more volumetrically efficient due to the higher mass density of the steel comparing with the liquid. On the other hand, TLCDs have their advantage that it is easier to specify the optimum damping of the damper by changing the opening ratio of the orifice. In this paper, 2-DOF nonlinear models are suggested for tuning a roller damper or a TLCD attached to a rotating wind turbine blade, ignoring the coupling between the blade and the tower. The decoupled optimization is verified by incorporating the optimized damper into a more sophisticated 13- DOF wind turbine model with due consideration of the coupled blade-tower-drivetrain vibrations, quasi-static aeroelasticity as well as a collective pitch controller. Performances of the dampers are compared in terms of the control efficiency and the practical applications. The results indicate that roller dampers and TLCDs at optimal tuning can effectively suppress the dynamic response of wind turbine blades

  18. Vibrational spectra of halide-water dimers: Insights on ion hydration from full-dimensional quantum calculations on many-body potential energy surfaces

    Science.gov (United States)

    Bajaj, Pushp; Wang, Xiao-Gang; Carrington, Tucker; Paesani, Francesco

    2018-03-01

    Full-dimensional vibrational spectra are calculated for both X-(H2O) and X-(D2O) dimers (X = F, Cl, Br, I) at the quantum-mechanical level. The calculations are carried out on two sets of recently developed potential energy functions (PEFs), namely, Thole-type model energy (TTM-nrg) and many-body energy (MB-nrg), using the symmetry-adapted Lanczos algorithm with a product basis set including all six vibrational coordinates. Although both TTM-nrg and MB-nrg PEFs are derived from coupled-cluster single double triple-F12 data obtained in the complete basis set limit, they differ in how many-body effects are represented at short range. Specifically, while both models describe long-range interactions through the combination of two-body dispersion and many-body classical electrostatics, the relatively simple Born-Mayer functions employed in the TTM-nrg PEFs to represent short-range interactions are replaced in the MB-nrg PEFs by permutationally invariant polynomials to achieve chemical accuracy. For all dimers, the MB-nrg vibrational spectra are in close agreement with the available experimental data, correctly reproducing anharmonic and nuclear quantum effects. In contrast, the vibrational frequencies calculated with the TTM-nrg PEFs exhibit significant deviations from the experimental values. The comparison between the TTM-nrg and MB-nrg results thus reinforces the notion that an accurate representation of both short-range interactions associated with electron density overlap and long-range many-body electrostatic interactions is necessary for a correct description of hydration phenomena at the molecular level.

  19. Flow induced vibrations in a PWR piping system

    International Nuclear Information System (INIS)

    Seligmann, D.C.; Guillou, J.P.

    1995-01-01

    In this paper, we present and industrial study of the dynamic behaviour of the piping system of a French 1300 M We nuclear power plant. High-amplitude vibrations had been noticed on a safeguard system during the periodical operation startup tests. These vibrations, due to acoustical pump sources, cause fatigue-damage and it is therefore necessary to propose an estimation of the service-life of the piping and to propose modification of piping system to reduce vibrations. First, we define a mechanical model readjusted according to gauged vibratory speeds and construct a vibro-acoustic coupled model and a pump-behaviour model as a source of excitation. Second, we simulate a modification of the supports. The influence of this modification is analysed by comparison of the root mean square values of vibratory speeds and the stresses between the initial system and the modified system. 3 refs., 7 figs

  20. Flow induced vibration of secondary piping of LMFBR

    International Nuclear Information System (INIS)

    Gibert, R.J.; Axisa, F.

    1977-01-01

    This paper presents a method for evaluating the characteristics of vibrations caused by internal flow in three-dimensional piping systems conveying high density fluids. The excitation of the circuit is mainly caused by the flow singularities, and it is shown that the problem may be reduced to calculate the response of the circuit to an acoustical pressure discontinuity, localised at each flow singularity. The paper is divided into two main parts: First part is devoted to the theoretical formulation of the coupled acoustical-mechanical problem and to its numerical solution by the french computer code TEDEL. Second part describes an experimental test of the method. The tested piping system consists of a stainless steel tube circuit comprising four 909 bends, conveying water. Vibrations are excited by a half closed gate valve. Satisfactory results are obtained concerning both the frequencies of resonance of the circuit and the level of the vibrations observed