WorldWideScience

Sample records for vestibular neuronitis

  1. Vestibular Neuronitis

    ... Prevent Painful Swimmer's Ear Additional Content Medical News Vestibular Neuronitis By Lawrence R. Lustig, MD NOTE: This ... Drugs Herpes Zoster Oticus Meniere Disease Purulent Labyrinthitis Vestibular Neuronitis Vestibular neuronitis is a disorder characterized by ...

  2. Vestibular efferent neurons project to the flocculus

    Shinder, M. E.; Purcell, I. M.; Kaufman, G. D.; Perachio, A. A.

    2001-01-01

    A bilateral projection from the vestibular efferent neurons, located dorsal to the genu of the facial nerve, to the cerebellar flocculus and ventral paraflocculus was demonstrated. Efferent neurons were double-labeled by the unilateral injections of separate retrograde tracers into the labyrinth and into the floccular and ventral parafloccular lobules. Efferent neurons were found with double retrograde tracer labeling both ipsilateral and contralateral to the sites of injection. No double labeling was found when using a fluorescent tracer with non-fluorescent tracers such as horseradish peroxidase (HRP) or biotinylated dextran amine (BDA), but large percentages of efferent neurons were found to be double labeled when using two fluorescent substances including: fluorogold, microruby dextran amine, or rhodamine labeled latex beads. These data suggest a potential role for vestibular efferent neurons in modulating the dynamics of the vestibulo-ocular reflex (VOR) during normal and adaptive conditions.

  3. Vestibular convergence patterns in vestibular nuclei neurons of alert primates

    Dickman, J. David; Angelaki, Dora E.

    2002-01-01

    Sensory signal convergence is a fundamental and important aspect of brain function. Such convergence may often involve complex multidimensional interactions as those proposed for the processing of otolith and semicircular canal (SCC) information for the detection of translational head movements and the effective discrimination from physically congruent gravity signals. In the present study, we have examined the responses of primate rostral vestibular nuclei (VN) neurons that do not exhibit any eye movement-related activity using 0.5-Hz translational and three-dimensional (3D) rotational motion. Three distinct neural populations were identified. Approximately one-fourth of the cells exclusively encoded rotational movements (canal-only neurons) and were unresponsive to translation. The canal-only central neurons encoded head rotation in SCC coordinates, exhibited little orthogonal canal convergence, and were characterized with significantly higher sensitivities to rotation as compared to primary SCC afferents. Another fourth of the neurons modulated their firing rates during translation (otolith-only cells). During rotations, these neurons only responded when the axis of rotation was earth-horizontal and the head was changing orientation relative to gravity. The remaining one-half of VN neurons were sensitive to both rotations and translations (otolith + canal neurons). Unlike primary otolith afferents, however, central neurons often exhibited significant spatiotemporal (noncosine) tuning properties and a wide variety of response dynamics to translation. To characterize the pattern of SCC inputs to otolith + canal neurons, their rotational maximum sensitivity vectors were computed using exclusively responses during earth-vertical axis rotations (EVA). Maximum sensitivity vectors were distributed throughout the 3D space, suggesting strong convergence from multiple SCCs. These neurons were also tested with earth-horizontal axis rotations (EHA), which would activate

  4. Otolith-Canal Convergence In Vestibular Nuclei Neurons

    Dickman, J. David; Si, Xiao-Hong

    2002-01-01

    The current final report covers the period from June 1, 1999 to May 31, 2002. The primary objective of the investigation was to determine how information regarding head movements and head position relative to gravity is received and processed by central vestibular nuclei neurons in the brainstem. Specialized receptors in the vestibular labyrinths of the inner ear function to detect angular and linear accelerations of the head, with receptors located in the semicircular canals transducing rotational head movements and receptors located in the otolith organs transducing changes in head position relative to gravity or linear accelerations of the head. The information from these different receptors is then transmitted to central vestibular nuclei neurons which process the input signals, then project the appropriate output information to the eye, head, and body musculature motor neurons to control compensatory reflexes. Although a number of studies have reported on the responsiveness of vestibular nuclei neurons, it has not yet been possible to determine precisely how these cells combine the information from the different angular and linear acceleration receptors into a correct neural output signal. In the present project, rotational and linear motion stimuli were separately delivered while recording responses from vestibular nuclei neurons that were characterized according to direct input from the labyrinth and eye movement sensitivity. Responses from neurons receiving convergent input from the semicircular canals and otolith organs were quantified and compared to non-convergent neurons.

  5. Neurons excitability changes in rat medial vestibular nucleus following vestibular neurectomy

    金麟毅

    2008-01-01

    Intrinsic excitabilities of acutely isolated medial vestibular nucleus (MVN) neurons of rats with normal labyrinth and with undergoingvestibular compensation from 30 min to 24 h after unilateral vestibular deafferentation (UVD) were compared. In control rats, proportions of type A andB cells were 30 and 70%, respectively, however, the proportion of type A cells increased following UVD. Bursting discharge and irregular firingpatterns were recorded from 2 to 12 h post UVD. The spontaneous discharge rate of neurons in the ipsilesional MVN increased significantly at 2 hpost-UVD and remained high until 12 h post-UVD in both type A and type B cells. Mter-hyperpolarization (AHP) of the MVN neurons decreasedsignificantly from 2 h post-UVD in both types of cells. These results suggest that the early stage of vestibular compensation after peripheralneurectomy is associated with an increase in intrinsic excitability due to reduction of AHP in MVN neurons.

  6. Control of hair cell excitability by vestibular primary sensory neurons.

    Brugeaud, Aurore; Travo, Cécile; Demêmes, Danielle; Lenoir, Marc; Llorens, Jordi; Puel, Jean-Luc; Chabbert, Christian

    2007-01-01

    In the rat utricle, synaptic contacts between hair cells and the nerve fibers arising from the vestibular primary neurons form during the first week after birth. During that period, the sodium-based excitability that characterizes neonate utricle sensory cells is switched off. To investigate whether the establishment of synaptic contacts was responsible for the modulation of the hair cell excitability, we used an organotypic culture of rat utricle in which the setting of synapses was prevente...

  7. Convergence of limb, visceral, and vertical semicircular canal or otolith inputs onto vestibular nucleus neurons

    Jian, B. J.; Shintani, T.; Emanuel, B. A.; Yates, B. J.

    2002-01-01

    The major goal of this study was to determine the patterns of convergence of non-labyrinthine inputs from the limbs and viscera onto vestibular nucleus neurons receiving signals from vertical semicircular canals or otolith organs. A secondary aim was to ascertain whether the effects of non-labyrinthine inputs on the activity of vestibular nucleus neurons is affected by bilateral peripheral vestibular lesions. The majority (72%) of vestibular nucleus neurons in labyrinth-intact animals whose firing was modulated by vertical rotations responded to electrical stimulation of limb and/or visceral nerves. The activity of even more vestibular nucleus neurons (93%) was affected by limb or visceral nerve stimulation in chronically labyrinthectomized preparations. Some neurons received non-labyrinthine inputs from a variety of peripheral sources, including antagonist muscles acting at the same joint, whereas others received inputs from more limited sources. There was no apparent relationship between the spatial and dynamic properties of a neuron's responses to tilts in vertical planes and the non-labyrinthine inputs that it received. These data suggest that non-labyrinthine inputs elicited during movement will modulate the processing of information by the central vestibular system, and may contribute to the recovery of spontaneous activity of vestibular nucleus neurons following peripheral vestibular lesions. Furthermore, some vestibular nucleus neurons with non-labyrinthine inputs may be activated only during particular behaviors that elicit a specific combination of limb and visceral inputs.

  8. Infrared laser stimulation of retinal and vestibular neurons

    Bardin, Fabrice; Bec, Jean-Michel; Albert, Emmanuelle S.; Hamel, Christian; Dupeyron, Gérard; Chabbert, Christian; Marc, Isabelle; Dumas, Michel

    2011-03-01

    The study of laser-neuron interaction has gained interest over the last few years not only for understanding of fundamental mechanisms but also for medical applications such as prosthesis because of the non-invasive characteristic of the laser stimulation. Several authors have shown that near infrared lasers are able to stimulate neurons. It is suggested that a thermal gradient induced by the absorption of the laser radiation on cells is the primary effect but the exact mechanism remains unclear. We show in this work that infrared laser radiations provide a possible way for stimulating retinal and vestibular ganglion cells. We describe relevant physical characteristics allowing safe and reproducible neuron stimulations by single infrared pulses. Calcium fluorescence imaging and electrophysiological recordings have been used to measure ionic exchanges at the neuron membrane. The stimulation system is based on a pulsed laser diode beam of a few mW. Effects of three different wavelengths (from 1470 to 1875 nm) and stimulation durations have been investigated. Variations of the stimulation energy thresholds suggest that the main physical parameter is the water optical absorption. Measurements of the temperature at the cell membrane show that a constant temperature rise is required to stimulate neurons, suggesting a photothermal process.

  9. Synaptic plasticity in medial vestibular nucleus neurons: comparison with computational requirements of VOR adaptation.

    John R W Menzies

    Full Text Available BACKGROUND: Vestibulo-ocular reflex (VOR gain adaptation, a longstanding experimental model of cerebellar learning, utilizes sites of plasticity in both cerebellar cortex and brainstem. However, the mechanisms by which the activity of cortical Purkinje cells may guide synaptic plasticity in brainstem vestibular neurons are unclear. Theoretical analyses indicate that vestibular plasticity should depend upon the correlation between Purkinje cell and vestibular afferent inputs, so that, in gain-down learning for example, increased cortical activity should induce long-term depression (LTD at vestibular synapses. METHODOLOGY/PRINCIPAL FINDINGS: Here we expressed this correlational learning rule in its simplest form, as an anti-Hebbian, heterosynaptic spike-timing dependent plasticity interaction between excitatory (vestibular and inhibitory (floccular inputs converging on medial vestibular nucleus (MVN neurons (input-spike-timing dependent plasticity, iSTDP. To test this rule, we stimulated vestibular afferents to evoke EPSCs in rat MVN neurons in vitro. Control EPSC recordings were followed by an induction protocol where membrane hyperpolarizing pulses, mimicking IPSPs evoked by flocculus inputs, were paired with single vestibular nerve stimuli. A robust LTD developed at vestibular synapses when the afferent EPSPs coincided with membrane hyperpolarization, while EPSPs occurring before or after the simulated IPSPs induced no lasting change. Furthermore, the iSTDP rule also successfully predicted the effects of a complex protocol using EPSP trains designed to mimic classical conditioning. CONCLUSIONS: These results, in strong support of theoretical predictions, suggest that the cerebellum alters the strength of vestibular synapses on MVN neurons through hetero-synaptic, anti-Hebbian iSTDP. Since the iSTDP rule does not depend on post-synaptic firing, it suggests a possible mechanism for VOR adaptation without compromising gaze-holding and VOR

  10. Monoclonal L-citrulline immunostaining reveals nitric oxide-producing vestibular neurons

    Holstein, G. R.; Friedrich, V. L. Jr; Martinelli, G. P.

    2001-01-01

    Nitric oxide is an unstable free radical that serves as a novel messenger molecule in the central nervous system (CNS). In order to understand the interplay between classic and novel chemical communication systems in vestibular pathways, the staining obtained using a monoclonal antibody directed against L-citrulline was compared with the labeling observed using more traditional markers for the presence of nitric oxide. Brainstem tissue from adult rats was processed for immunocytochemistry employing a monoclonal antibody directed against L-citrulline, a polyclonal antiserum against neuronal nitric oxide synthase, and/or NADPH-diaphorase histochemistry. Our findings demonstrate that L-citrulline can be fixed in situ by vascular perfusion, and can be visualized in fixed CNS tissue sections by immunocytochemistry. Further, the same vestibular regions and cell types are labeled by NADPH-diaphorase histochemistry, by the neuronal nitric oxide synthase antiserum, and by our anti-L-citrulline antibody. Clusters of L-citrulline-immunoreactive neurons are present in subregions of the vestibular nuclei, including the caudal portion of the inferior vestibular nucleus, the magnocellular portion of the medial vestibular nucleus, and the large cells in the ventral tier of the lateral vestibular nucleus. NADPH-diaphorase histochemical staining of these neurons clearly demonstrated their multipolar, fusiform and globular somata and long varicose dendritic processes. These results provide support for the suggestion that nitric oxide serves key roles in both vestibulo-autonomic and vestibulo-spinal pathways.

  11. Restricted loss of olivocochlear but not vestibular efferent neurons in the senescent gerbil (Meriones unguiculatus

    Susanne eRadtke-Schuller

    2015-02-01

    Full Text Available Degeneration of hearing and vertigo are symptoms of age-related auditory and vestibular disorders reflecting multifactorial changes in the peripheral and central nervous system whose interplay remains largely unknown. Originating bilaterally in the brain stem, vestibular and auditory efferent cholinergic projections exert feedback control on the peripheral sensory organs, and modulate sensory processing. We studied age-related changes in the auditory and vestibular efferent systems by evaluating number of cholinergic efferent neurons in young adult and aged gerbils, and in cholinergic trigeminal neurons serving as a control for efferents not related to the inner ear. We observed a significant loss of olivocochlear neurons in aged compared to young adult animals, whereas the overall number of lateral superior olive cells was not reduced in aging. Although the loss of lateral and medial olivocochlear neurons was uniform and equal on both sides of the brain, there were frequency-related differences within the lateral olivocochlear neurons, where the decline was larger in the medial limb of the superior olivary nucleus (high frequency representation than in the lateral limb (middle-to-low frequency representation. In contrast, neither the number of vestibular efferent neurons, nor the population of motor trigeminal neurons were significantly reduced in the aged animals. These observations suggest differential effects of aging on the respective cholinergic efferent brainstem systems.

  12. Plasticity of Scarpa’s ganglion neurons as a possible basis for functional restoration within vestibular endorgans

    SophieGaboyard-Niay

    2012-01-01

    In a previous study (Brugeaud et al., 2007), we observed spontaneous restoration of the vestibular function in young adult rodents following excitotoxic injury of the neuronal network of vestibular endorgans. The functional restoration was supported by a repair of synaptic contacts between hair cells and primary vestibular neurons. This process was observed in 2/3 of the animals studied and occurred within five days following the synapse insult. To assess whether structural plasticity is a fu...

  13. Plasticity of Scarpa’s Ganglion Neurons as a Possible Basis for Functional Restoration within Vestibular Endorgans

    Travo, Cécile; Gaboyard-Niay, Sophie; Chabbert, Christian

    2012-01-01

    In a previous study, we observed spontaneous restoration of vestibular function in young adult rodents following excitotoxic injury of the neuronal connections within vestibular endorgans. The functional restoration was supported by a repair of synaptic contacts between hair cells and primary vestibular neurons. This process was observed in 2/3 of the animals studied and occurred within 5 days following the synaptic damage. To assess whether repair capacity is a fundamental trait of vestibula...

  14. Integrative responses of neurons in nucleus tractus solitarius to visceral afferent stimulation and vestibular stimulation in vertical planes

    Sugiyama, Yoichiro; Suzuki, Takeshi; DeStefino, Vincent J.; Yates, Bill J.

    2011-01-01

    Anatomical studies have demonstrated that the vestibular nuclei project to nucleus tractus solitarius (NTS), but little is known about the effects of vestibular inputs on NTS neuronal activity. Furthermore, lesions of NTS abolish vomiting elicited by a variety of different triggering mechanisms, including vestibular stimulation, suggesting that emetic inputs may converge on the same NTS neurons. As such, an emetic stimulus that activates gastrointestinal (GI) receptors could alter the respons...

  15. Plasticity of Scarpa’s ganglion neurons as a possible basis for functional restoration within vestibular endorgans

    SophieGaboyard-Niay

    2012-06-01

    Full Text Available In a previous study (Brugeaud et al., 2007, we observed spontaneous restoration of the vestibular function in young adult rodents following excitotoxic injury of the neuronal network of vestibular endorgans. The functional restoration was supported by a repair of synaptic contacts between hair cells and primary vestibular neurons. This process was observed in 2/3 of the animals studied and occurred within five days following the synapse insult. To assess whether structural plasticity is a fundamental trait of altered vestibular endorgans and to decipher the cellular mechanisms that support such a repair process, we studied the neuronal regeneration and synaptogenesis in co-cultures of vestibular epithelia and Scarpa’s ganglion from young and adult rodents. We demonstrate that under specific culture conditions, primary vestibular neurons from young mice or rats exhibit robust ability to regenerate nervous processes. When co-cultured with vestibular epithelia, primary vestibular neurons were able to establish de novo contacts with hair cells. Under the present paradigm, these contacts displayed morphological features of immature synaptic contacts. This reparative capacity remained in older mice although to a lesser extent. Identifying the basic mechanisms underlying the repair process may provide a basis for novel therapeutic strategies to restore mature and functional vestibular synaptic contacts following damage or loss.

  16. Convergent properties of vestibular-related brain stem neurons in the gerbil

    Kaufman, G. D.; Shinder, M. E.; Perachio, A. A.

    2000-01-01

    Three classes of vestibular-related neurons were found in and near the prepositus and medial vestibular nuclei of alert or decerebrate gerbils, those responding to: horizontal translational motion, horizontal head rotation, or both. Their distribution ratios were 1:2:2, respectively. Many cells responsive to translational motion exhibited spatiotemporal characteristics with both response gain and phase varying as a function of the stimulus vector angle. Rotationally sensitive neurons were distributed as Type I, II, or III responses (sensitive to ipsilateral, contralateral, or both directions, respectively) in the ratios of 4:6:1. Four tested factors shaped the response dynamics of the sampled neurons: canal-otolith convergence, oculomotor-related activity, rotational Type (I or II), and the phase of the maximum response. Type I nonconvergent cells displayed increasing gains with increasing rotational stimulus frequency (0.1-2.0 Hz, 60 degrees /s), whereas Type II neurons with convergent inputs had response gains that markedly decreased with increasing translational stimulus frequency (0.25-2.0 Hz, +/-0.1 g). Type I convergent and Type II nonconvergent neurons exhibited essentially flat gains across the stimulus frequency range. Oculomotor-related activity was noted in 30% of the cells across all functional types, appearing as burst/pause discharge patterns related to the fast phase of nystagmus during head rotation. Oculomotor-related activity was correlated with enhanced dynamic range compared with the same category that had no oculomotor-related response. Finally, responses that were in-phase with head velocity during rotation exhibited greater gains with stimulus frequency increments than neurons with out-of-phase responses. In contrast, for translational motion, neurons out of phase with head acceleration exhibited low-pass characteristics, whereas in-phase neurons did not. Data from decerebrate preparations revealed that although similar response types could

  17. A model for the characterization of the spatial properties in vestibular neurons

    Angelaki, D. E.; Bush, G. A.; Perachio, A. A.

    1992-01-01

    Quantitative study of the static and dynamic response properties of some otolith-sensitive neurons has been difficult in the past partly because their responses to different linear acceleration vectors exhibited no "null" plane and a dependence of phase on stimulus orientation. The theoretical formulation of the response ellipse provides a quantitative way to estimate the spatio-temporal properties of such neurons. Its semi-major axis gives the direction of the polarization vector (i.e., direction of maximal sensitivity) and it estimates the neuronal response for stimulation along that direction. In addition, the semi-minor axis of the ellipse provides an estimate of the neuron's maximal sensitivity in the "null" plane. In this paper, extracellular recordings from otolith-sensitive vestibular nuclei neurons in decerebrate rats were used to demonstrate the practical application of the method. The experimentally observed gain and phase dependence on the orientation angle of the acceleration vector in a head-horizontal plane was described and satisfactorily fit by the response ellipse model. In addition, the model satisfactorily fits neuronal responses in three-dimensions and unequivocally demonstrates that the response ellipse formulation is the general approach to describe quantitatively the spatial properties of vestibular neurons.

  18. Muscarinic receptor subtypes differentially control synaptic input and excitability of cerebellum-projecting medial vestibular nucleus neurons.

    Zhu, Yun; Chen, Shao-Rui; Pan, Hui-Lin

    2016-04-01

    Neurons in the vestibular nuclei have a vital function in balance maintenance, gaze stabilization, and posture. Although muscarinic acetylcholine receptors (mAChRs) are expressed and involved in regulating vestibular function, it remains unclear how individual mAChR subtypes regulate vestibular neuronal activity. In this study, we determined which specific subtypes of mAChRs control synaptic input and excitability of medial vestibular nucleus (MVN) neurons that project to the cerebellum. Cerebellum-projecting MVN neurons were labeled by a fluorescent retrograde tracer and then identified in rat brainstem slices. Quantitative PCR analysis suggested that M2 and M3 were the possible major mAChR subtypes expressed in the MVN. The mAChR agonist oxotremorine-M significantly reduced the amplitude of glutamatergic excitatory post-synaptic currents evoked by stimulation of vestibular primary afferents, and this effect was abolished by the M2-preferring antagonist AF-DX 116. However, oxotremorine-M had no effect on GABA-mediated spontaneous inhibitory post-synaptic currents of labeled MVN neurons. Furthermore, oxotremorine-M significantly increased the firing activity of labeled MVN neurons, and this effect was blocked by the M3-preferring antagonist J104129 in most neurons tested. In addition, AF-DX 116 reduced the onset latency and prolonged the excitatory effect of oxotremorine-M on the firing activity of labeled MVN neurons. Our findings suggest that M3 is the predominant post-synaptic mAChR involved in muscarinic excitation of cerebellum-projecting MVN neurons. Pre-synaptic M2 mAChR regulates excitatory glutamatergic input from vestibular primary afferents, which in turn influences the excitability of cerebellum-projecting MVN neurons. This new information has important therapeutic implications for treating vestibular disorders with mAChR subtype-selective agents. Medial vestibular nucleus (MVN) neurons projecting to the cerebellum are involved in balance control. We

  19. Effects of galvanic vestibular stimulation on postural limb reflexes and neurons of spinal postural network

    Hsu, L.-J.; Zelenin, P. V.; Orlovsky, G.N.; Deliagina, T. G.

    2012-01-01

    Quadrupeds maintain the dorsal side up body orientation due to the activity of the postural control system driven by limb mechanoreceptors. Binaural galvanic vestibular stimulation (GVS) causes a lateral body sway toward the anode. Previously, we have shown that this new position is actively stabilized, suggesting that GVS changes a set point in the reflex mechanisms controlling body posture. The aim of the present study was to reveal the underlying neuronal mechanisms. Experiments were perfo...

  20. Cat vestibular neurons that exhibit different responses to active and passive yaw head rotations

    Robinson, F. R.; Tomko, D. L.

    1987-01-01

    Neurons in the vestibular nuclei were recorded in alert cats during voluntary yaw rotations of the head and during the same rotations delivered with a turntable driven from a record of previous voluntary movements. During both voluntary and passive rotations, 35 percent (6/17) of neurons tested responded at higher rates or for a larger part of the movement during voluntary movements than during the same rotations delivered with the turntable. Neck sensory input was evaluated separately in many of these cells and can account qualitatively for the extra firing present during active movement.

  1. [Vestibular compensation studies]. [Vestibular Compensation and Morphological Studies

    Perachio, Adrian A. (Principal Investigator)

    1996-01-01

    The following topics are reported: neurophysiological studies on MVN neurons during vestibular compensation; effects of spinal cord lesions on VNC neurons during compensation; a closed-loop vestibular compensation model for horizontally canal-related MVN neurons; spatiotemporal convergence in VNC neurons; contributions of irregularly firing vestibular afferents to linear and angular VOR's; application to flight studies; metabolic measures in vestibular neurons; immediate early gene expression following vestibular stimulation; morphological studies on primary afferents, central vestibular pathways, vestibular efferent projection to the vestibular end organs, and three-dimensional morphometry and imaging.

  2. Inputs from regularly and irregularly discharging vestibular nerve afferents to secondary neurons in squirrel monkey vestibular nuclei. III. Correlation with vestibulospinal and vestibuloocular output pathways

    Boyle, R.; Goldberg, J. M.; Highstein, S. M.

    1992-01-01

    1. A previous study measured the relative contributions made by regularly and irregularly discharging afferents to the monosynaptic vestibular nerve (Vi) input of individual secondary neurons located in and around the superior vestibular nucleus of barbiturate-anesthetized squirrel monkeys. Here, the analysis is extended to more caudal regions of the vestibular nuclei, which are a major source of both vestibuloocular and vestibulospinal pathways. As in the previous study, antidromic stimulation techniques are used to classify secondary neurons as oculomotor or spinal projecting. In addition, spinal-projecting neurons are distinguished by their descending pathways, their termination levels in the spinal cord, and their collateral projections to the IIIrd nucleus. 2. Monosynaptic excitatory postsynaptic potentials (EPSPs) were recorded intracellularly from secondary neurons as shocks of increasing strength were applied to Vi. Shocks were normalized in terms of the threshold (T) required to evoke field potentials in the vestibular nuclei. As shown previously, the relative contribution of irregular afferents to the total monosynaptic Vi input of each secondary neuron can be expressed as a %I index, the ratio (x100) of the relative sizes of the EPSPs evoked by shocks of 4 x T and 16 x T. 3. Antidromic stimulation was used to type secondary neurons as 1) medial vestibulospinal tract (MVST) cells projecting to spinal segments C1 or C6; 2) lateral vestibulospinal tract (LVST) cells projecting to C1, C6; or L1; 3) vestibulooculo-collic (VOC) cells projecting both to the IIIrd nucleus and by way of the MVST to C1 or C6; and 4) vestibuloocular (VOR) neurons projecting to the IIIrd nucleus but not to the spinal cord. Most of the neurons were located in the lateral vestibular nucleus (LV), including its dorsal (dLV) and ventral (vLV) divisions, and adjacent parts of the medial (MV) and descending nuclei (DV). Cells receiving quite different proportions of their direct inputs

  3. Reconsidering the role of neuronal intrinsic properties and neuromodulation in vestibular homeostasis

    Mathieu eBeraneck

    2012-02-01

    Full Text Available The sensorimotor transformations performed by central vestibular neurons (2°VN constantly adapt as the animal faces conflicting sensory information or sustains injuries. In order to ensure the homeostasis of vestibular-related functions, neural changes could in part rely on the regulation of 2°VN intrinsic properties. Here, we review evidence which demonstrates modulation and plasticity of 2°VN intrinsic properties. We first present partition of rodents 2°VN into distinct subtypes, namely type A and type B. Then, we focus on the respective properties of each type and their putative roles in vestibular functions. The intrinsic properties of 2°VN can be swiftly modulated by a wealth of neuromodulators, to adapt rapidly, for example, to temporary changes of the ecophysiological surroundings. To illustrate how intrinsic excitability can rapidly be modified in physiological conditions and therefore be targeted in the clinic, we present the modulation of vestibular reflexes in relation to the neuromodulatory fluctuation of the sleep/wake cycle. On the other hand, intrinsic properties can also be slowly yet deeply modified in response to major perturbations as is the case following a unilateral labyrinthectomy (UL. We revisit the experimental evidence which demonstrate that drastic alterations of the 2°VN intrinsic properties occur following UL, however with a slow dynamic, more on par with the compensation of dynamic deficits than static ones. Data are interpreted in the framework of a distributed process which progress from the global, large scale coping mechanisms (e.g. changes in behavioural strategies to the local, small scale ones (e.g. changes in intrinsic properties. Within this framework, the compensation of dynamic deficits improves with time as deeper modifications are engraved within the finer parts of the vestibular-related networks. Finally, we propose perspectives and working hypotheses to pave the way for future research aiming at

  4. Two-dimensional spatiotemporal coding of linear acceleration in vestibular nuclei neurons

    Angelaki, D. E.; Bush, G. A.; Perachio, A. A.

    1993-01-01

    Response properties of vertical (VC) and horizontal (HC) canal/otolith-convergent vestibular nuclei neurons were studied in decerebrate rats during stimulation with sinusoidal linear accelerations (0.2-1.4 Hz) along different directions in the head horizontal plane. A novel characteristic of the majority of tested neurons was the nonzero response often elicited during stimulation along the "null" direction (i.e., the direction perpendicular to the maximum sensitivity vector, Smax). The tuning ratio (Smin gain/Smax gain), a measure of the two-dimensional spatial sensitivity, depended on stimulus frequency. For most vestibular nuclei neurons, the tuning ratio was small at the lowest stimulus frequencies and progressively increased with frequency. Specifically, HC neurons were characterized by a flat Smax gain and an approximately 10-fold increase of Smin gain per frequency decade. Thus, these neurons encode linear acceleration when stimulated along their maximum sensitivity direction, and the rate of change of linear acceleration (jerk) when stimulated along their minimum sensitivity direction. While the Smax vectors were distributed throughout the horizontal plane, the Smin vectors were concentrated mainly ipsilaterally with respect to head acceleration and clustered around the naso-occipital head axis. The properties of VC neurons were distinctly different from those of HC cells. The majority of VC cells showed decreasing Smax gains and small, relatively flat, Smin gains as a function of frequency. The Smax vectors were distributed ipsilaterally relative to the induced (apparent) head tilt. In type I anterior or posterior VC neurons, Smax vectors were clustered around the projection of the respective ipsilateral canal plane onto the horizontal head plane. These distinct spatial and temporal properties of HC and VC neurons during linear acceleration are compatible with the spatiotemporal organization of the horizontal and the vertical/torsional ocular responses

  5. Spatiotemporal processing of linear acceleration: primary afferent and central vestibular neuron responses

    Angelaki, D. E.; Dickman, J. D.

    2000-01-01

    -pass" filter properties exhibit semicircular canal-like dynamics during head tilts might have important consequences for the conclusions of previous studies of sensory convergence and sensorimotor transformations in central vestibular neurons.

  6. Spatiotemporal processing of linear acceleration: primary afferent and central vestibular neuron responses

    Angelaki, D. E.; Dickman, J. D.

    2000-01-01

    Spatiotemporal convergence and two-dimensional (2-D) neural tuning have been proposed as a major neural mechanism in the signal processing of linear acceleration. To examine this hypothesis, we studied the firing properties of primary otolith afferents and central otolith neurons that respond exclusively to horizontal linear accelerations of the head (0.16-10 Hz) in alert rhesus monkeys. Unlike primary afferents, the majority of central otolith neurons exhibited 2-D spatial tuning to linear acceleration. As a result, central otolith dynamics vary as a function of movement direction. During movement along the maximum sensitivity direction, the dynamics of all central otolith neurons differed significantly from those observed for the primary afferent population. Specifically at low frequencies (frequency. "Flat" neurons were characterized by relatively flat gains and constant phase lags (approximately 20-55 degrees ). A few neurons ("low-pass") were characterized by decreasing gain and phase as a function of frequency. The response dynamics of central otolith neurons suggest that the approximately 90 degrees phase lags observed at low frequencies are not the result of a neural integration but rather the effect of nonminimum phase behavior, which could arise at least partly through spatiotemporal convergence. Neither afferent nor central otolith neurons discriminated between gravitational and inertial components of linear acceleration. Thus response sensitivity was indistinguishable during 0.5-Hz pitch oscillations and fore-aft movements. The fact that otolith-only central neurons with "high-pass" filter properties exhibit semicircular canal-like dynamics during head tilts might have important consequences for the conclusions of previous studies of sensory convergence and sensorimotor transformations in central vestibular neurons.

  7. Fos expression in neurons of the rat vestibulo-autonomic pathway activated by sinusoidal galvanic vestibular stimulation

    Gay R Holstein

    2012-02-01

    Full Text Available The vestibular system sends projections to brainstem autonomic nuclei that modulate heart rate and blood pressure in response to changes in head and body position with regard to gravity. Consistent with this, binaural sinusoidal galvanic vestibular stimulation (sGVS in humans causes vasoconstriction in the legs, while low frequency (0.02-0.04 Hz sGVS causes a rapid drop in heart rate and blood pressure in anesthetized rats. We have hypothesized that these responses occur through activation of vestibulo-sympathetic pathways. In the present study, c-Fos protein expression was examined in neurons of the vestibular nuclei and rostral ventrolateral medullary region (RVLM that were activated by low frequency sGVS. We found c-Fos-labeled neurons in the spinal, medial and superior vestibular nuclei (SpVN, MVN and SVN, respectively and the parasolitary nucleus. The highest density of c-Fos-positive vestibular nuclear neurons was observed in MVN, where immunolabeled cells were present throughout the rostro-caudal extent of the nucleus. C-Fos expression was concentrated in the parvocellular region and largely absent from magnocellular MVN. C-Fos-labeled cells were scattered throughout caudal SpVN, and the immunostained neurons in SVN were restricted to a discrete wedge-shaped area immediately lateral to the IVth ventricle. Immunofluorescence localization of c-Fos and glutamate revealed that approximately one third of the c-Fos-labeled vestibular neurons showed intense glutamate-like immunofluorescence, far in excess of the stain reflecting the metabolic pool of cytoplasmic glutamate. In the RVLM, which receives a direct projection from the vestibular nuclei and sends efferents to preganglionic sympathetic neurons in the spinal cord, we observed an approximately 3-fold increase in c-Fos labeling in the sGVS-activated rats. We conclude that localization of c-Fos protein following sGVS is a reliable marker for sGVS-activated neurons of the vestibulo

  8. ELECTROPHYSIOLOGICAL PROPERTIES OF MORPHOLOGICALLY-IDENTIFIED MEDIAL VESTIBULAR NUCLEUS NEURONS PROJECTING TO THE ABDUCENS NUCLEUS IN THE CHICK EMBRYO

    Gottesman-Davis, Adria; Shao, Mei; Hirsch, June C.; Peusner, Kenna D.

    2010-01-01

    Neurons in the medial vestibular nucleus (MVN) show a wide range of axonal projection pathways, intrinsic firing properties, and responses to head movements. To determine whether MVN neurons participating in the vestibulocular reflexes (VOR) have distinctive electrophysiological properties related to their output pathways, a new preparation was devised using transverse brain slices containing the chicken MVN and abducens nucleus. Biocytin Alexa Fluor was injected extracellularly into the abdu...

  9. Response of pontomedullary reticulospinal neurons to vestibular stimuli in vertical planes. Role in vertical vestibulospinal reflexes of the decerebrate cat

    Bolton, P. S.; Goto, T.; Schor, R. H.; Wilson, V. J.; Yamagata, Y.; Yates, B. J.

    1992-01-01

    1. To investigate the neural substrate of vestibulospinal reflexes in decerebrate cats, we studied the responses of pontomedullary reticulospinal neurons to natural stimulation of the labyrinth in vertical planes. Our principal aim was to determine whether reticulospinal neurons that terminate in, or are likely to give off collaterals to, the upper cervical segments had properties similar to those of the vestibulocollic reflex (VCR). 2. Antidromic stimulation was used to determine whether the neurons projected to the neck, lower cervical, thoracic, or lumbar levels. Dynamics of the responses of spontaneously firing neurons were studied with sinusoidal stimuli delivered at 0.05-1 Hz and aligned to the plane of body rotation, that produced maximal modulation of the neuron (response vector orientation). Each neuron was assigned a vestibular input classification of otolith, vertical canal, otolith + canal, or spatial-temporal convergence (STC). 3. We found, in agreement with previous studies, that the largest fraction of pontomedullary reticulospinal neurons projected to the lumbar cord, and that only a small number ended in the neck segments. Neurons projecting to all levels of the spinal cord had similar responses to labyrinth stimulation. 4. Reticulospinal neurons that received only vertical canal inputs were rare (1 of 67 units). Most reticulospinal neurons (48%) received predominant otolith inputs, 18% received otolith + canal input, and only 9% had STC behavior. These data are in sharp contrast to the results of our previous studies of vestibulospinal neurons. A considerable portion of vestibulospinal neurons receives vertical canal input (38%), fewer receive predominantly otolith input (22%), whereas the proportion that have otolith + canal input or STC behavior is similar to our present reticulospinal data. 5. The response vector orientations of our reticulospinal neurons, particularly those with canal inputs (canal, otolith + canal, STC) were predominantly in

  10. Firing behavior of vestibular neurons during active and passive head movements: vestibulo-spinal and other non-eye-movement related neurons

    McCrea, R. A.; Gdowski, G. T.; Boyle, R.; Belton, T.; Peterson, B. W. (Principal Investigator)

    1999-01-01

    The firing behavior of 51 non-eye movement related central vestibular neurons that were sensitive to passive head rotation in the plane of the horizontal semicircular canal was studied in three squirrel monkeys whose heads were free to move in the horizontal plane. Unit sensitivity to active head movements during spontaneous gaze saccades was compared with sensitivity to passive head rotation. Most units (29/35 tested) were activated at monosynaptic latencies following electrical stimulation of the ipsilateral vestibular nerve. Nine were vestibulo-spinal units that were antidromically activated following electrical stimulation of the ventromedial funiculi of the spinal cord at C1. All of the units were less sensitive to active head movements than to passive whole body rotation. In the majority of cells (37/51, 73%), including all nine identified vestibulo-spinal units, the vestibular signals related to active head movements were canceled. The remaining units (n = 14, 27%) were sensitive to active head movements, but their responses were attenuated by 20-75%. Most units were nearly as sensitive to passive head-on-trunk rotation as they were to whole body rotation; this suggests that vestibular signals related to active head movements were cancelled primarily by subtraction of a head movement efference copy signal. The sensitivity of most units to passive whole body rotation was unchanged during gaze saccades. A fundamental feature of sensory processing is the ability to distinguish between self-generated and externally induced sensory events. Our observations suggest that the distinction is made at an early stage of processing in the vestibular system.

  11. Mechanisms of Sustained High Firing Rates in Two Classes of Vestibular Nucleus Neurons: Differential Contributions of Resurgent Na, Kv3, and BK Currents

    Gittis, Aryn H.; Moghadam, Setareh H.; du Lac, Sascha

    2010-01-01

    To fire at high rates, neurons express ionic currents that work together to minimize refractory periods by ensuring that sodium channels are available for activation shortly after each action potential. Vestibular nucleus neurons operate around high baseline firing rates and encode information with bidirectional modulation of firing rates up to several hundred Hz. To determine the mechanisms that enable these neurons to sustain firing at high rates, ionic currents were measured during firing ...

  12. THE COMPARATIVE CHARACTERISTICS OF BACKGROUND IMPULSE ACTIVITY OF IPSI- AND CONTRALATERAL MEDIAL VESTIBULAR NUCLUS NEURONS IN LABYRINTHECTOMIZED RATS

    S.H.Sarkisyan

    2011-02-01

    Full Text Available The background neuronal impulse activity of right and left medial vestibular nuclei of rats was carried out in norm and after unilateral labyrinthectomy (UL on 2-d, 7-th, 12-th and 17-th days. It was shown by computer analysis, that characteristics of both nuclei neurons impulse activity in the control group have revealled primery asymmetry of the average freguency of variation (accordingly 16,6±1,7 Hz; and 23,6±1,5 Hz; p<0,01. It is shown that on 7-th day following UL value of the average frequency corresponded to source (16,6±1,2 Hz and 23,6±1,7Hz.We discussed particularities of the process to compensations and functional importance got result.

  13. Selective Expression of β Tubulin Isotypes in Gerbil Vestibular Sensory Epithelia and Neurons

    Perry, Brian; Jensen–Smith, Heather C.; Ludueña, Richard F.; Hallworth, Richard

    2003-01-01

    The seven mammalian isotypes of β tubulin are strikingly similar in amino acid sequence. The differences in isotypic sequence, although small, are nonetheless conserved in evolution, which suggests that they may confer distinct functional roles. If so, such roles should be reflected in the selective expression of isotypes by cell type, or even in the sorting of isotypes to within-cell pools. Hair cells of the vestibular sensory epithelia each possess a kinocilium, a microtubule-based organell...

  14. Neuronal classification and marker gene identification via single-cell expression profiling of brainstem vestibular neurons subserving cerebellar learning

    Kodama, Takashi; Guerrero, Shiloh; Shin, Minyoung; Moghadam, Seti; Faulstich, Michael; du Lac, Sascha

    2012-01-01

    Identification of marker genes expressed in specific cell types is essential for the genetic dissection of neural circuits. Here we report a new strategy for classifying heterogeneous populations of neurons into functionally distinct types and for identifying associated marker genes. Quantitative single-cell expression profiling of genes related to neurotransmitters and ion channels enables functional classification of neurons; transcript profiles for marker gene candidates identify molecular...

  15. VESTIBULAR REHABILITATION

    Maksim Valer'evich Zamergrad

    2009-06-01

    Full Text Available Vestibular disorders are a frequent abnormality that physicians of various specialties have to encounter. Vestibular and equilibrium disorders are particularly common in elderly patients. In this case they are frequently a cause of falls and various injuries. Vestibular rehabilitation is the most important component of treatment for vestibular and equilibrium disorders. The paper considers the basic mechanisms of vestibular compensation, discusses vestibular rehabilitation procedures by doing routine exercises and by using various biofeedback crunches. In particular, it describes the principle of operation of a posturography platform, a SwayStar system for the diagnosis and therapy of vestibular disorders, and a Brainport device for vestibular rehabilitation. The current methods for drug stimulation of vestibular compensation are discussed. Vestibular rehabilitation used in the complex therapy of equilibrium disorders is stressed to considerably enhance therapeutic effectiveness, to cause a reduction in the risk of falls, and to increase quality of life in patients with vestibular disorders

  16. Modelling the firing pattern of bullfrog vestibular neurons responding to naturalistic stimuli

    Paulin, M. G.; Hoffman, L. F.

    1999-01-01

    We have developed a neural system identification method for fitting models to stimulus-response data, where the response is a spike train. The method involves using a general nonlinear optimisation procedure to fit models in the time domain. We have applied the method to model bullfrog semicircular canal afferent neuron responses during naturalistic, broad-band head rotations. These neurons respond in diverse ways, but a simple four parameter class of models elegantly accounts for the various types of responses observed. c1999 Elsevier Science B.V. All rights reserved.

  17. Uptake of gentamicin by vestibular efferent neurons and superior olivary complex after transtympanic administration in guinea pigs

    Zhang, Yi-Bo; Zhang, Ru; Zhang, Wei-Feng; Peter S. Steyger; Dai, Chun-Fu

    2011-01-01

    Transtympanic administration of gentamicin is a widely accepted and effective approach for treating patients with intractable vertigo. Previous studies have demonstrated the uptake, distribution and effects of gentamicin in peripheral vestibular and cochlear structures after transtympanic injection. However, little is known about whether transtympanically administered gentamicin is trafficked into more central auditory and vestibular structures and its effect on these structures. In this stud...

  18. Vestibular migraine

    Lempert, Thomas; Olesen, Jes; Furman, Joseph;

    2012-01-01

    This paper presents diagnostic criteria for vestibular migraine, jointly formulated by the Committee for Classification of Vestibular Disorders of the Bárány Society and the Migraine Classification Subcommittee of the International Headache Society (IHS). The classification includes vestibular...... migraine and probable vestibular migraine. Vestibular migraine will appear in an appendix of the third edition of the International Classification of Headache Disorders (ICHD) as a first step for new entities, in accordance with the usual IHS procedures. Probable vestibular migraine may be included...... in a later version of the ICHD, when further evidence has been accumulated. The diagnosis of vestibular migraine is based on recurrent vestibular symptoms, a history of migraine, a temporal association between vestibular symptoms and migraine symptoms and exclusion of other causes of vestibular symptoms...

  19. Model Vestibular Nuclei Neurons Can Exhibit a Boosting Nonlinearity Due to an Adaptation Current Regulated by Spike-Triggered Calcium and Calcium-Activated Potassium Channels

    Schneider, Adam D.

    2016-01-01

    In vitro studies have previously found a class of vestibular nuclei neurons to exhibit a bidirectional afterhyperpolarization (AHP) in their membrane potential, due to calcium and calcium-activated potassium conductances. More recently in vivo studies of such vestibular neurons were found to exhibit a boosting nonlinearity in their input-output tuning curves. In this paper, a Hodgkin-Huxley (HH) type neuron model, originally developed to reproduce the in vitro AHP, is shown to produce a boosting nonlinearity similar to that seen in vivo for increased the calcium conductance. Indicative of a bifurcation, the HH model is reduced to a generalized integrate-and-fire (IF) model that preserves the bifurcation structure and boosting nonliearity. By then projecting the neuron model’s phase space trajectories into 2D, the underlying geometric mechanism relating the AHP and boosting nonlinearity is revealed. Further simplifications and approximations are made to derive analytic expressions for the steady steady state firing rate as a function of bias current, μ, as well as the gain (i.e. its slope) and the position of its peak at μ = μ*. Finally, although the boosting nonlinearity has not yet been experimentally observed in vitro, testable predictions indicate how it might be found. PMID:27427914

  20. Spatial coordination by descending vestibular signals. 2. Response properties of medial and lateral vestibulospinal tract neurons in alert and decerebrate cats.

    Iwamoto, Y; Perlmutter, S I; Baker, J F; Peterson, B W

    1996-02-01

    neurons, particularly those with MADs close to the roll axis, may be involved in the vestibular-limb reflex. The combination of vertical and ipsilateral horizontal canal input on many secondary MVST neurons suggests a contribution to the vestibulocollic reflex. However, in contrast to most neck muscles, very few neurons had maximum vertical responses near pitch. PMID:8721157

  1. Fos expression in neurons of the rat vestibulo-autonomic pathway activated by sinusoidal galvanic vestibular stimulation

    GayRHolstein

    2012-01-01

    The vestibular system sends projections to brainstem autonomic nuclei that modulate heart rate and blood pressure in response to changes in head and body position with regard to gravity. Consistent with this, binaural sinusoidal galvanic vestibular stimulation (sGVS) in humans causes vasoconstriction in the legs, while low frequency (0.02-0.04 Hz) sGVS causes a rapid drop in heart rate and blood pressure in anesthetized rats. We have hypothesized that these responses occur through activation ...

  2. Vestibular Hyperacusis

    ... is a Top Rated Nonprofit! Volunteer. Donate. Review. Vestibular Hyperacusis Are you sensitive to certain sounds? Hyperacusis ... parade to a person with hyperacusis. Cochlear vs. vestibular hyperacusis With cochlear hyperacusis, subjects feel ear pain, ...

  3. Fos Expression in Neurons of the Rat Vestibulo-Autonomic Pathway Activated by Sinusoidal Galvanic Vestibular Stimulation

    Holstein, Gay R.; Friedrich Jr., Victor L.; Martinelli, Giorgio P.; Ogorodnikov, Dmitri; Yakushin, Sergei B.; Cohen, Bernard

    2012-01-01

    The vestibular system sends projections to brainstem autonomic nuclei that modulate heart rate and blood pressure in response to changes in head and body position with regard to gravity. Consistent with this, binaural sinusoidally modulated galvanic vestibular stimulation (sGVS) in humans causes vasoconstriction in the legs, while low frequency (0.02–0.04 Hz) sGVS causes a rapid drop in heart rate and blood pressure in anesthetized rats. We have hypothesized that these responses occur through...

  4. Heterotrimeric guanosine triphosphate-binding protein-coupled modulatory actions of motilin on K+ channels and postsynaptic γ-aminobutyric acid receptors in mouse medial vestibular nuclear neurons.

    Todaka, Hiroshi; Tatsukawa, Tetsuya; Hashikawa, Tsutomu; Yanagawa, Yuchio; Shibuki, Katsuei; Nagao, Soichi

    2013-02-01

    Some central nervous system neurons express receptors of gastrointestinal hormones, but their pharmacological actions are not well known. Previous anatomical and unit recording studies suggest that a group of cerebellar Purkinje cells express motilin receptors, and motilin depresses the spike discharges of vestibular nuclear neurons that receive direct cerebellar inhibition in rats or rabbits. Here, by the slice-patch recording method, we examined the pharmacological actions of motilin on the mouse medial vestibular nuclear neurons (MVNs), which play an important role in the control of ocular reflexes. A small number of MVNs, as well as cerebellar floccular Purkinje cells, were labeled with an anti-motilin receptor antibody. Bath application of motilin (0.1 μm) decreased the discharge frequency of spontaneous action potentials in a group of MVNs in a dose-dependent manner (K(d) , 0.03 μm). The motilin action on spontaneous action potentials was blocked by apamin (100 nm), a blocker of small-conductance Ca(2+) -activated K(+) channels. Furthermore, motilin enhanced the amplitudes of inhibitory postsynaptic currents (IPSCs) and miniature IPSCs, but did not affect the frequencies of miniature IPSCs. Intracellular application of pertussis toxin (PTx) (0.5 μg/μL) or guanosine triphosphate-γ-S (1 mm) depressed the motilin actions on both action potentials and IPSCs. Only 30% of MVNs examined on slices obtained from wild-type mice, but none of the GABAergic MVNs that were studied on slices obtained from vesicular γ-aminobutyric acid transporter-Venus transgenic mice, showed such a motilin response on action potentials and IPSCs. These findings suggest that motilin could modulate small-conductance Ca(2+) -activated K(+) channels and postsynaptic γ-aminobutyric acid receptors through heterotrimeric guanosine triphosphate-binding protein-coupled receptor in a group of glutamatergic MVNs. PMID:23136934

  5. Activation of µ-opioid receptors inhibits calcium-currents in the vestibular afferent neurons of the rat through a cAMP dependent mechanism

    Enrique Soto

    2014-03-01

    Full Text Available Opioid receptors are expressed in the vestibular endorgans (afferent neurons and hair cells and are activated by the efferent system, which modulates the discharge of action potentials in the vestibular afferent neurons (VANs. In mammals, the VANs mainly express the µ opioid-receptor, but the function of the opioid receptor activation and the cellular mechanisms by which they exert their actions in these neurons are poorly studied. To determine the actions of the µ opioid receptor (MOR and the cell signaling mechanisms in the VANs, we made perforated patch-clamp recordings of VANs that were obtained from postnatal days 7 to 10 (P7-10 rats and then maintained in primary culture. The MOR agonist [D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO inhibited the total voltage-gated outward current; this effect was prevented by the perfusion of a Ca2+-free extracellular solution. We then studied the voltage-gated calcium current (Ica and found that DAMGO Met-enkephalin or endomorphine-1 inhibited the ICa in a dose-response fashion. The effects of DAMGO were prevented by the MOR antagonist (CTAP or by the pertussis toxin (PTX. The use of specific calcium channel blockers showed that MOR activation inhibited the T-, L- and N-type ICa. The use of various enzyme activators and inhibitors and of cAMP analogs allowed us to demonstrate that the MOR acts through a cAMP dependent signaling mechanism. In the current clamp experiments, MOR activation increased the duration and decreased the amplitude of the action potentials and modulated the discharge to the current injection. Pre-incubation with PTX occluded all MOR activation effects observed in the current clamp experiments.\tWe conclude that MOR activation inhibits the T-, L- and N-type ICa through the activation of a Gi/o protein that involves a decrease in AC-cAMP-PKA activity. The modulation of ICa may have an impact on the synaptic integration, excitability and neurotransmitter release from the VANs.

  6. ACTIVITY OF THE SUPERIOR VESTIBULAR NUCLEI NEURONS AT STIMULATION OF HYPOTHALAMIC PARAVENTRICULAR AND SUPRAOPTIC NUCLEI IN CONDITIONS OF UNILATERAL LABYRINTHECTOMY COMBINED WITH VIBRATION EXPOSURE

    S.H. Sarkisyan

    2010-05-01

    Full Text Available We studied the frequency changes of single neuronal spike activity flow from superior vestibular nucleus (SVN, evoked on high frequency stimulation (HFS of paraventricular (PV and supraoptic (SO nuclei of hypothalamus in Albino rats in conditions of unilateral labyrinthectomy (UL combined with many days of vibration exposure (VE. Programmed mathematical on-linе analysis was used. In normal conditions, at bilateral stimulation of PV and SO nuclei the tetanic potentiation (TP prevaled. After UL in control at uninjured side TP and posttetanic potentiation (PTP were recorded; on injured side, on the whole, along with variability of initial background activity of SVN neurons, an exiguity of components and of the repeatability of poststimulus excitatory and inhibitory manifestations of SVN neurons’ activity were recorded. Combined action of UL and VE at intact side evoked tetanic depression on ipsilateral stimulation of PV and SO nuclei; on injured side the stimulation of the same nuclei evoked TP and PTP, which achieved normal levels. The results of histochemical investigation in analogous experimental conditions confirmed the electrophysiological data, which allowed us concluding about protective effect of VE.

  7. Molecular aging of the mammalian vestibular system.

    Brosel, Sonja; Laub, Christoph; Averdam, Anne; Bender, Andreas; Elstner, Matthias

    2016-03-01

    Dizziness and imbalance frequently affect the elderly and contribute to falls and frailty. In many geriatric patients, clinical testing uncovers a dysfunction of the vestibular system, but no specific etiology can be identified. Neuropathological studies have demonstrated age-related degeneration of peripheral and central vestibular neurons, but the molecular mechanisms are poorly understood. In contrast, recent studies into age-related hearing loss strongly implicate mitochondrial dysfunction, oxidative stress and apoptotic cell death of cochlear hair cells. While some data suggest that analogous biological pathomechanisms may underlie vestibular dysfunction, actual proof is missing. In this review, we summarize the available data on the molecular causes of vestibular dysfunction. PMID:26739358

  8. What galvanic vestibular stimulation actually activates

    IanSCurthoys

    2012-01-01

    In a recent paper in Frontiers Cohen et al. (2012) asked “What does galvanic vestibular stimulation actually activate?” and concluded that galvanic vestibular stimulation (GVS) causes predominantly otolithic behavioural responses. In this Perspective paper we show that such a conclusion does not follow from the evidence. The evidence from neurophysiology is very clear: galvanic stimulation activates primary otolithic neurons as well as primary semicircular canal neurons (Kim and Curthoys,...

  9. Balance (or Vestibular) Rehabilitation

    ... for the Public / Hearing and Balance Balance (or Vestibular) Rehabilitation Audiologic (hearing), balance, and medical diagnostic tests help indicate whether you are a candidate for vestibular (balance) rehabilitation. Vestibular rehabilitation is an individualized balance ...

  10. Rehabilitation in vestibular system diseases

    Maksim Valeryevich Zamergrad

    2013-01-01

    Vestibular rehabilitation is an important component of combination treatment in a patient with vertigo. Vestibular rehabilitation is indicated for different diseases of the central or peripheral vestibular system. The goal of vestibular rehabilitation is to ensure gaze stabilization, to train postural stability, and to reduce subjective vertigo. Vestibular rehabilitation is based on the stimulation of vestibular adaptation, sensory substitution, and habituation. Vestibular suppressants, inade...

  11. CONTRIBUTION OF THE AUDIOLOGICAL AND VESTIBULAR ASSESSMENT TO THE DIFFERENTIAL AND ETIOLOGICAL DIAGNOSIS OF PERIPHERIC VESTIBULAR SYNDROMES

    Loreta Ungureanu

    2012-09-01

    Full Text Available Scope of the study: Vestibular pathology is a complex one, requiring a minute clinical evaluation, as well as numerous paraclinical investigations. The present study analyzes the contribution of the modern methods of vestibular and auditive investigation to the diagnosis of dizziness. Materials and method: The results of the investigations performed on 84 patients with peripheric vestibular syndrome, on whom a complete audiological and vestibular assessment had been also made, have been retrospectively analyzed. Results: Anamnestic data and the results of evaluation permitted classification of peripheric vestibular pathology according to topo-lesional and etiological criteria. The most frequently diagnosed diseases were: benign paroxysmal positional vertigo, Ménière syndrome and vestibular neuronitis. Conclusions: Testing of the vestibulo-ocular and vestibulo-spinal reflexes through videonystagmoscopy and, respectively, computerized dynamic posturography, besides tonal vocal audiometry and precocious auditive potentials, is especially important for a positive diagnosis and etiological differentiation of vestibular syndromes.

  12. Peripheral Vestibular System Disease in Vestibular Schwannomas

    Møller, Martin Nue; Hansen, Søren; Caye-Thomasen, Per

    2015-01-01

    that this may be caused by both cochlear and retrocochlear mechanisms. Multiple mechanisms may also be at play in the case of dizziness, which may broaden perspectives of therapeutic approach. This study presents a systematic and detailed assessment of vestibular histopathology in temporal bones from patients...... with VS. METHODS: Retrospective analysis of vestibular system histopathology in temporal bones from 17 patients with unilateral VS. The material was obtained from The Copenhagen Temporal Bone Collection. RESULTS: Vestibular schwannomas were associated with atrophy of the vestibular ganglion, loss of fiber...... density of the peripheral vestibular nerve branches, and atrophy of the neuroepithelium of the vestibular end organs. In cases with small tumors, peripheral disease occurred only in the tissue structures innervated by the specific nerve from which the tumor originated. CONCLUSION: Vestibular schwannomas...

  13. Rehabilitation in vestibular system diseases

    Maksim Valeryevich Zamergrad

    2013-03-01

    Full Text Available Vestibular rehabilitation is an important component of combination treatment in a patient with vertigo. Vestibular rehabilitation is indicated for different diseases of the central or peripheral vestibular system. The goal of vestibular rehabilitation is to ensure gaze stabilization, to train postural stability, and to reduce subjective vertigo. Vestibular rehabilitation is based on the stimulation of vestibular adaptation, sensory substitution, and habituation. Vestibular suppressants, inadequate mobility, anxiety, and depression decelerate vestibular compensation whereas early activation, mobility, and betaserc use accelerate it.

  14. Procedures for restoring vestibular disorders

    Walther, Leif Erik

    2005-09-01

    Full Text Available This paper will discuss therapeutic possibilities for disorders of the vestibular organs and the neurons involved, which confront ENT clinicians in everyday practice. Treatment of such disorders can be tackled either symptomatically or causally. The possible strategies for restoring the body's vestibular sense, visual function and co-ordination include medication, as well as physical and surgical procedures. Prophylactic or preventive measures are possible in some disorders which involve vertigo (bilateral vestibulopathy, kinetosis, height vertigo, vestibular disorders when diving (Tables 1 and 2. Glucocorticoid and training therapy encourage the compensation of unilateral vestibular loss. In the case of a bilateral vestibular loss, it is important to treat the underlying disease (e.g. Cogan's disease. Although balance training does improve the patient's sense of balance, it will not restore it completely.In the case of Meniere's disease, there are a number of medications available to either treat bouts or to act as a prophylactic (e.g. dimenhydrinate or betahistine. In addition, there are non-ablative (sacculotomy as well as ablative surgical procedures (e.g. labyrinthectomy, neurectomy of the vestibular nerve. In everyday practice, it has become common to proceed with low risk therapies initially. The physical treatment of mild postural vertigo can be carried out quickly and easily in outpatients (repositioning or liberatory maneuvers. In very rare cases it may be necessary to carry out a semicircular canal occlusion. Isolated disturbances of the otolith function or an involvement of the otolith can be found in roughly 50% of labyrinth disturbances. A specific surgical procedure to selectively block the otolith organs is currently being studied. When an external perilymph fistula involving loss of perilymph is suspected, an exploratory tympanotomy involving also the round and oval window niches must be carried out. A traumatic rupture of the

  15. Electrical vestibular stimulation after vestibular deafferentation and in vestibular schwannoma.

    Swee Tin Aw

    Full Text Available BACKGROUND: Vestibular reflexes, evoked by human electrical (galvanic vestibular stimulation (EVS, are utilized to assess vestibular function and investigate its pathways. Our study aimed to investigate the electrically-evoked vestibulo-ocular reflex (eVOR output after bilateral and unilateral vestibular deafferentations to determine the characteristics for interpreting unilateral lesions such as vestibular schwannomas. METHODS: EVOR was recorded with dual-search coils as binocular three-dimensional eye movements evoked by bipolar 100 ms-step at EVS intensities of [0.9, 2.5, 5.0, 7.5, 10.0] mA and unipolar 100 ms-step at 5 mA EVS intensity. Five bilateral vestibular deafferented (BVD, 12 unilateral vestibular deafferented (UVD, four unilateral vestibular schwannoma (UVS patients and 17 healthy subjects were tested with bipolar EVS, and five UVDs with unipolar EVS. RESULTS: After BVD, bipolar EVS elicited no eVOR. After UVD, bipolar EVS of one functioning ear elicited bidirectional, excitatory eVOR to cathodal EVS with 9 ms latency and inhibitory eVOR to anodal EVS, opposite in direction, at half the amplitude with 12 ms latency, exhibiting an excitatory-inhibitory asymmetry. The eVOR patterns from UVS were consistent with responses from UVD confirming the vestibular loss on the lesion side. Unexpectedly, unipolar EVS of the UVD ear, instead of absent response, evoked one-third the bipolar eVOR while unipolar EVS of the functioning ear evoked half the bipolar response. CONCLUSIONS: The bidirectional eVOR evoked by bipolar EVS from UVD with an excitatory-inhibitory asymmetry and the 3 ms latency difference between normal and lesion side may be useful for detecting vestibular lesions such as UVS. We suggest that current spread could account for the small eVOR to 5 mA unipolar EVS of the UVD ear.

  16. Vestibular Disorders Association

    ... How do I know if I have a vestibular disorder?" Find out more about the symptoms of ... find a doctor with a special interest in vestibular disorders." Click here to search our provider directory. ...

  17. Types of Vestibular Disorders

    ... CANVAS is an easy to remember acronym for cerebellar ataxia, neuropathy, and vestibular areflexia. There are only a ... the requisite combination of two rare clinical findings (cerebellar ataxia and vestibular areflexia), and the very common peripheral ...

  18. Differential central projections of vestibular afferents in pigeons

    Dickman, J. D.; Fang, Q.

    1996-01-01

    The question of whether a differential distribution of vestibular afferent information to central nuclear neurons is present in pigeons was studied using neural tracer compounds. Discrete tracing of afferent fibers innervating the individual semicircular canal and otolith organs was produced by sectioning individual branches of the vestibular nerve that innervate the different receptor organs and applying crystals of horseradish peroxidase, or a horseradish peroxidase/cholera toxin mixture, or a biocytin compound for neuronal uptake and transport. Afferent fibers and their terminal distributions within the brainstem and cerebellum were visualized subsequently. Discrete areas in the pigeon central nervous system that receive primary vestibular input include the superior, dorsal lateral, ventral lateral, medial, descending, and tangential vestibular nuclei; the A and B groups; the intermediate, medial, and lateral cerebellar nuclei; and the nodulus, the uvula, and the paraflocculus. Generally, the vertical canal afferents projected heavily to medial regions in the superior and descending vestibular nuclei as well as the A group. Vertical canal projections to the medial and lateral vestibular nuclei were observed but were less prominent. Horizontal canal projections to the superior and descending vestibular nuclei were much more centrally located than those of the vertical canals. A more substantial projection to the medial and lateral vestibular nuclei was seen with horizontal canal afferents compared to vertical canal fibers. Afferents innervating the utricle and saccule terminated generally in the lateral regions of all vestibular nuclei in areas that were separate from the projections of the semicircular canals. In addition, utricular fibers projected to regions in the vestibular nuclei that overlapped with the horizontal semicircular canal terminal fields, whereas saccular afferents projected to regions that received vertical canal fiber terminations. Lagenar

  19. Specific vestibular exercises in the treatment of vestibular neuritis

    Komazec Zoran; Lemajić Slobodanka N.

    2004-01-01

    Introduction Vestibular neuritis rapidly damages unilateral vestibular periphery, inducing severe balance disorders. In most cases, such vestibular imbalance is gradually restored to within the normal level after clinical therapies. This successive clinical recovery occurs due to regeneration of vestibular periphery and/or accomplishment of central vestibular compensation. Rehabilitation The program of vestibular rehabilitation presents a major achievement in the field of treatment of balance...

  20. Surgical Procedures for Vestibular Dysfunction

    ... Rated Nonprofit! Volunteer. Donate. Review. Surgical Procedures for Vestibular Dysfunction When is surgery necessary? When medical treatment ... organ (cochlea) is also sacrificed with this procedure. Vestibular nerve section A vestibular nerve section is a ...

  1. What galvanic vestibular stimulation actually activates

    Ian S Curthoys

    2012-07-01

    Full Text Available In a recent paper in Frontiers Cohen et al. (2012 asked What does galvanic vestibular stimulation actually activate? and concluded that galvanic vestibular stimulation (GVS causes predominantly otolithic behavioural responses. In this Perspective paper we show that such a conclusion does not follow from the evidence. The evidence from neurophysiology is very clear: galvanic stimulation activates primary otolithic neurons as well as primary semicircular canal neurons (Kim and Curthoys, 2004. Irregular neurons are activated at lower currents. The answer to what behaviour is activated depends on what is measured and how it is measured, including not just technical details, such as the frame rate of video, but the exact experimental context in which the measurement took place (visual fixation vs total darkness. Both canal and otolith dependent responses are activated by GVS.

  2. Vestibular perception following acute unilateral vestibular lesions.

    Sian Cousins

    Full Text Available Little is known about the vestibulo-perceptual (VP system, particularly after a unilateral vestibular lesion. We investigated vestibulo-ocular (VO and VP function in 25 patients with vestibular neuritis (VN acutely (2 days after onset and after compensation (recovery phase, 10 weeks. Since the effect of VN on reflex and perceptual function may differ at threshold and supra-threshold acceleration levels, we used two stimulus intensities, acceleration steps of 0.5°/s(2 and velocity steps of 90°/s (acceleration 180°/s(2. We hypothesised that the vestibular lesion or the compensatory processes could dissociate VO and VP function, particularly if the acute vertiginous sensation interferes with the perceptual tasks. Both in acute and recovery phases, VO and VP thresholds increased, particularly during ipsilesional rotations. In signal detection theory this indicates that signals from the healthy and affected side are still fused, but result in asymmetric thresholds due to a lesion-induced bias. The normal pattern whereby VP thresholds are higher than VO thresholds was preserved, indicating that any 'perceptual noise' added by the vertigo does not disrupt the cognitive decision-making processes inherent to the perceptual task. Overall, the parallel findings in VO and VP thresholds imply little or no additional cortical processing and suggest that vestibular thresholds essentially reflect the sensitivity of the fused peripheral receptors. In contrast, a significant VO-VP dissociation for supra-threshold stimuli was found. Acutely, time constants and duration of the VO and VP responses were reduced - asymmetrically for VO, as expected, but surprisingly symmetrical for perception. At recovery, VP responses normalised but VO responses remained shortened and asymmetric. Thus, unlike threshold data, supra-threshold responses show considerable VO-VP dissociation indicative of additional, higher-order processing of vestibular signals. We provide evidence of

  3. Vestibular Compensation in Unilateral Patients Often Causes Both Gain and Time Constant Asymmetries in the VOR.

    Ranjbaran, Mina; Katsarkas, Athanasios; Galiana, Henrietta L

    2016-01-01

    The vestibulo-ocular reflex (VOR) is essential in our daily life to stabilize retinal images during head movements. Balanced vestibular functionality secures optimal reflex performance which otherwise can be distorted by peripheral vestibular lesions. Luckily, vestibular compensation in different neuronal sites restores VOR function to some extent over time. Studying vestibular compensation gives insight into the possible mechanisms for plasticity in the brain. In this work, novel experimental analysis tools are employed to reevaluate the VOR characteristics following unilateral vestibular lesions and compensation. Our results suggest that following vestibular lesions, asymmetric performance of the VOR is not only limited to its gain. Vestibular compensation also causes asymmetric dynamics, i.e., different time constants for the VOR during leftward or rightward passive head rotation. Potential mechanisms for these experimental observations are provided using simulation studies. PMID:27065839

  4. Specific vestibular exercises in the treatment of vestibular neuritis

    Komazec Zoran

    2004-01-01

    Full Text Available Introduction Vestibular neuritis rapidly damages unilateral vestibular periphery, inducing severe balance disorders. In most cases, such vestibular imbalance is gradually restored to within the normal level after clinical therapies. This successive clinical recovery occurs due to regeneration of vestibular periphery and/or accomplishment of central vestibular compensation. Rehabilitation The program of vestibular rehabilitation presents a major achievement in the field of treatment of balance disorders. Vestibular compensation is associated with central sensory reintegration and bilaterally equalizes the vestibular tonus over a period of time. Material and methods In this retrospective study of a series of cases authors present their results in 58 patients undergoing a program of vestibular rehabilitation. Patients were divided into two groups. Thirty patients were in group I, and 28 in group II. Specific vestibular exercises were conducted in group I, and non-specific exercises in group II. Analysis of effects of vestibular compensation was made due electronystagmography. Results Results were satisfactory in both groups of patients. Absence of spontaneous nystagmus was detected in 83.3% of patients in group I (specific vestibular exercises and in 53.5% of patients in group II (non-specific exercises, with an average treatment time of up to 2 months. Harmonization of pendular stimulation was detected in 83.3% and 60.7% of patients in groups I and II, respectively. Conclusion Early physiotherapeutic vestibular rehabilitation supports the vestibular compensation mechanism. At the same time vestibular rehabilitation may prevent panic disorder caused by hyperventilation syndrome.

  5. Vestibular pathways involved in cognition

    Martin Hitier

    2014-01-01

    Recent discoveries have emphasized the role of the vestibular system in cognitive processes such as memory, spatial navigation and bodily self-consciousness. A precise understanding of the vestibular pathways involved is essential to understand the consequences of vestibular diseases for cognition, as well as develop therapeutic strategies to facilitate recovery. The knowledge of the “vestibular cortical projections areas”, defined as the cortical areas activated by vestibular stimulation, ha...

  6. Vestibular control of body orientation in lamprey

    Pavlova, Elena

    2004-01-01

    Maintenance of body orientation (postural control) is a vital motor function of the brain. The general goal of this project was to understand the organization and operation of neuronal networks responsible for postural control. The lamprey (a lower vertebrate) was used as a model animal. The postural control system in the lamprey, driven by vestibular input, maintains a definite orientation of the longitudinal body axis in relation to horizon (pitch angle) and the dorsal-sid...

  7. Computational Approaches to Vestibular Research

    Ross, Muriel D.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    The Biocomputation Center at NASA Ames Research Center is dedicated to a union between computational, experimental and theoretical approaches to the study of neuroscience and of life sciences in general. The current emphasis is on computer reconstruction and visualization of vestibular macular architecture in three-dimensions (3-D), and on mathematical modeling and computer simulation of neural activity in the functioning system. Our methods are being used to interpret the influence of spaceflight on mammalian vestibular maculas in a model system, that of the adult Sprague-Dawley rat. More than twenty 3-D reconstructions of type I and type II hair cells and their afferents have been completed by digitization of contours traced from serial sections photographed in a transmission electron microscope. This labor-intensive method has now been replace d by a semiautomated method developed in the Biocomputation Center in which conventional photography is eliminated. All viewing, storage and manipulation of original data is done using Silicon Graphics workstations. Recent improvements to the software include a new mesh generation method for connecting contours. This method will permit the investigator to describe any surface, regardless of complexity, including highly branched structures such as are routinely found in neurons. This same mesh can be used for 3-D, finite volume simulation of synapse activation and voltage spread on neuronal surfaces visualized via the reconstruction process. These simulations help the investigator interpret the relationship between neuroarchitecture and physiology, and are of assistance in determining which experiments will best test theoretical interpretations. Data are also used to develop abstract, 3-D models that dynamically display neuronal activity ongoing in the system. Finally, the same data can be used to visualize the neural tissue in a virtual environment. Our exhibit will depict capabilities of our computational approaches and

  8. A Recipe for Bidirectional Motor Learning: Using Inhibition to Cook Plasticity in the Vestibular Nuclei

    Medina, Javier F.

    2010-01-01

    In this issue of Neuron, McElvain et al. demonstrate for the first time plasticity at the synapse between vestibular nerve afferents and their postsynaptic targets in the medial vestibular nuclei. This new type of plasticity, which is gated by inhibition, is well suited to drive motor learning during adaptation of the vestibulo-ocular reflex.

  9. Distinct vestibular effects on early and late somatosensory cortical processing in humans

    C. Pfeiffer; M. van Elk; F. Bernasconi; O. Blanke

    2016-01-01

    In non-human primates several brain areas contain neurons that respond to both vestibular and somatosensory stimulation. In humans, vestibular stimulation activates several somatosensory brain regions and improves tactile perception. However, less is known about the spatio-temporal dynamics of such

  10. Vestibular Schwannoma (Acoustic Neuroma) and Neurofibromatosis

    ... Home » Health Info » Hearing, Ear Infections, and Deafness Vestibular Schwannoma (Acoustic Neuroma) and Neurofibromatosis On this page: ... more information about vestibular schwannomas? What is a vestibular schwannoma (acoustic neuroma)? Inner ear with vestibular schwannoma ( ...

  11. Vestibular compensation: the neuro-otologist's best friend.

    Lacour, Michel; Helmchen, Christoph; Vidal, Pierre-Paul

    2016-04-01

    Why vestibular compensation (VC) after an acute unilateral vestibular loss is the neuro-otologist's best friend is the question at the heart of this paper. The different plasticity mechanisms underlying VC are first reviewed, and the authors present thereafter the dual concept of vestibulo-centric versus distributed learning processes to explain the compensation of deficits resulting from the static versus dynamic vestibular imbalance. The main challenges for the plastic events occurring in the vestibular nuclei (VN) during a post-lesion critical period are neural protection, structural reorganization and rebalance of VN activity on both sides. Data from animal models show that modulation of the ipsilesional VN activity by the contralateral drive substitutes for the normal push-pull mechanism. On the other hand, sensory and behavioural substitutions are the main mechanisms implicated in the recovery of the dynamic functions. These newly elaborated sensorimotor reorganizations are vicarious idiosyncratic strategies implicating the VN and multisensory brain regions. Imaging studies in unilateral vestibular loss patients show the implication of a large neuronal network (VN, commissural pathways, vestibulo-cerebellum, thalamus, temporoparietal cortex, hippocampus, somatosensory and visual cortical areas). Changes in gray matter volume in these multisensory brain regions are structural changes supporting the sensory substitution mechanisms of VC. Finally, the authors summarize the two ways to improve VC in humans (neuropharmacology and vestibular rehabilitation therapy), and they conclude that VC would follow a "top-down" strategy in patients with acute vestibular lesions. Future challenges to understand VC are proposed. PMID:27083885

  12. Angiogenesis in vestibular schwannomas

    Møller, Martin Nue; Werther, Kim; Nalla, Amarnadh;

    2010-01-01

    Vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs) are potent mediators of tumor angiogenesis. It has been demonstrated that vestibular schwannoma VEGF expression correlates with tumor growth pattern, whereas knowledge on the expression of MMPs is lacking. This study...

  13. [Therapy of vestibular vertigo].

    Hamann, K F

    1993-05-01

    The non-surgical treatment of vestibular disorders must be based on current knowledge of vestibular pathophysiology. It is generally accepted that after vestibular lesions a self-repair mechanism exists that allows a more or less complete recovery. In cases of persisting vestibular complaints the physician's duty consists in stimulation of these pre-existing mechanisms. This can be done by physical exercises, as has been recommended since the work of Cawthorne and Cooksey in 1946. This concept is meanwhile supported by modern neurophysiological research. This article describes a short training program consisting of exercises for fixation during rotations, smooth pursuit, optokinetic nystagmus and motor learning mechanisms. Physical exercises can be reinforced by nootropic drugs. PMID:8335490

  14. Vertigo and vestibular rehabilitation.

    Konnur M

    2000-01-01

    The role of rehabilitation in the management of vertigo is limited to a very specific group of conditions. An Occupational therapist who is a part of the multidisciplinary team treating the vertiginous patient, with the knowledge of physiology and therapeutic benefit of vestibular rehabilitation can widen the rehabilitation spectrum for various diseases producing vertigo and dysequilibrium, to resolve or minimise these symptoms. The present article reviews the need for vestibular rehabilitati...

  15. Vestibular function testing.

    Lang, E E

    2010-06-01

    Vestibular symptoms of vertigo, dizziness and dysequilibrium are common complaints which can be disabling both physically and psychologically. Routine examination of the ear nose and throat and neurological system are often normal in these patients. An accurate history and thorough clinical examination can provide a diagnosis in the majority of patients. However, in a subgroup of patients, vestibular function testing may be invaluable in arriving at a correct diagnosis and ultimately in the optimal treatment of these patients.

  16. Deregulated genes in sporadic vestibular schwannomas

    Cayé-Thomasen, Per; Helweg-Larsen, Rehannah Holga Andrea; Stangerup, Sven-Eric;

    2010-01-01

    In search of genes associated with vestibular schwannoma tumorigenesis, this study examines the gene expression in human vestibular nerve versus vestibular schwannoma tissue samples using microarray technology.......In search of genes associated with vestibular schwannoma tumorigenesis, this study examines the gene expression in human vestibular nerve versus vestibular schwannoma tissue samples using microarray technology....

  17. Glutamate and GABA in Vestibulo-Sympathetic Pathway Neurons.

    Holstein, Gay R; Friedrich, Victor L; Martinelli, Giorgio P

    2016-01-01

    The vestibulo-sympathetic reflex (VSR) actively modulates blood pressure during changes in posture. This reflex allows humans to stand up and quadrupeds to rear or climb without a precipitous decline in cerebral perfusion. The VSR pathway conveys signals from the vestibular end organs to the caudal vestibular nuclei. These cells, in turn, project to pre-sympathetic neurons in the rostral and caudal ventrolateral medulla (RVLM and CVLM, respectively). The present study assessed glutamate- and GABA-related immunofluorescence associated with central vestibular neurons of the VSR pathway in rats. Retrograde FluoroGold tract tracing was used to label vestibular neurons with projections to RVLM or CVLM, and sinusoidal galvanic vestibular stimulation (GVS) was employed to activate these pathways. Central vestibular neurons of the VSR were identified by co-localization of FluoroGold and cFos protein, which accumulates in some vestibular neurons following galvanic stimulation. Triple-label immunofluorescence was used to co-localize glutamate- or GABA- labeling in the identified VSR pathway neurons. Most activated projection neurons displayed intense glutamate immunofluorescence, suggestive of glutamatergic neurotransmission. To support this, anterograde tracer was injected into the caudal vestibular nuclei. Vestibular axons and terminals in RVLM and CVLM co-localized the anterograde tracer and vesicular glutamate transporter-2 signals. Other retrogradely-labeled cFos-positive neurons displayed intense GABA immunofluorescence. VSR pathway neurons of both phenotypes were present in the caudal medial and spinal vestibular nuclei, and projected to both RVLM and CVLM. As a group, however, triple-labeled vestibular cells with intense glutamate immunofluorescence were located more rostrally in the vestibular nuclei than the GABAergic neurons. Only the GABAergic VSR pathway neurons showed a target preference, projecting predominantly to CVLM. These data provide the first

  18. Glutamate and GABA in vestibulo-sympathetic pathway neurons

    Gay R Holstein

    2016-02-01

    Full Text Available The vestibulo-sympathetic reflex actively modulates blood pressure during changes in posture. This reflex allows humans to stand up and quadrupeds to rear or climb without a precipitous decline in cerebral perfusion. The vestibulo-sympathetic reflex pathway conveys signals from the vestibular end organs to the caudal vestibular nuclei. These cells, in turn, project to pre-sympathetic neurons in the rostral and caudal ventrolateral medulla (RVLM and CVLM, respectively. The present study assessed glutamate- and GABA-related immunofluorescence associated with central vestibular neurons of the vestibulo-sympathetic reflex pathway in rats. Retrograde FluoroGold tract tracing was used to label vestibular neurons with projections to RVLM or CVLM, and sinusoidal galvanic vestibular stimulation was employed to activate these pathways. Central vestibular neurons of the vestibulo-sympathetic reflex were identified by co-localization of FluoroGold and cFos protein, which accumulates in some vestibular neurons following galvanic stimulation. Triple-label immunofluorescence was used to co-localize glutamate- or GABA- labeling in the identified vestibulo-sympathetic reflex pathway neurons. Most activated projection neurons displayed intense glutamate immunofluorescence, suggestive of glutamatergic neurotransmission. To support this, anterograde tracer was injected into the caudal vestibular nuclei. Vestibular axons and terminals in RVLM and CVLM co-localized the anterograde tracer and vesicular glutamate transporter-2 signals. Other retrogradely-labeled cFos-positive neurons displayed intense GABA immunofluorescence. Vestibulo-sympathetic reflex pathway neurons of both phenotypes were present in the caudal medial and spinal vestibular nuclei, and projected to both RVLM and CVLM. As a group, however, triple-labeled vestibular cells with intense glutamate immunofluorescence were located more rostrally in the vestibular nuclei than the GABAergic neurons. Only the

  19. Vestibular Rehabilitation Outcomes in the Elderly with Chronic Vestibular Dysfunction

    Bayat, Arash; Pourbakht, Akram; Saki, Nader; Zainun, Zuraida; Nikakhlagh, Soheila; Mirmomeni, Golshan

    2012-01-01

    Background Chronic vestibular dysfunction is a frustrating problem in the elderly and can have a tremendous impact on their life, but only a few studies are available. Vestibular rehabilitation therapy (VRT) is an important therapeutic option for the neuro-otologist in treating patients with significant balance deficits. Objectives The purpose of this study was to assess the effect of vestibular rehabilitation on dizziness in elderly patients with chronic vestibular dysfunction. Materials and...

  20. Vestibular rehabilitation with visual stimuli in peripheral vestibular disorders

    Andréa Manso; Mauricio Malavasi Ganança; Heloisa Helena Caovilla

    2016-01-01

    ABSTRACT INTRODUCTION: Visual stimuli can induce vestibular adaptation and recovery of body balance. OBJECTIVE: To verify the effect of visual stimuli by digital images on vestibular and body balance rehabilitation of peripheral vestibular disorders. METHODS: Clinical, randomized, prospective study. Forty patients aged between 23 and 63 years with chronic peripheral vestibular disorders underwent 12 sessions of rehabilitation with visual stimuli using digital video disk (DVD) (experimental...

  1. Vestibular modulation of spatial perception.

    Ferrè, Elisa R.; Longo, Matthew R.; Fiori, Federico; Haggard, Patrick

    2013-01-01

    Vestibular inputs make a key contribution to the sense of one’s own spatial location. While the effects of vestibular stimulation on visuo-spatial processing in neurological patients have been extensively described, the normal contribution of vestibular inputs to spatial perception remains unclear. To address this issue, we used a line bisection task to investigate the effects of galvanic vestibular stimulation (GVS) on spatial perception, and on the transition between near and far space. Bri...

  2. Vestibular modulation of spatial perception

    Elisa Raffaella Ferre; Matthew Longo; Federico Fiori

    2013-01-01

    Vestibular inputs make a key contribution to the sense of one’s own spatial location. While the effects of vestibular stimulation on visuo-spatial processing in neurological patients have been extensively described, the normal contribution of vestibular inputs to spatial perception remains unclear. To address this issue, we used a line bisection task to investigate the effects of galvanic vestibular stimulation (GVS) on spatial perception, and on the transition between near and far space. ...

  3. Optimal duration of therapy in the recovery period of vestibular diseases

    M. V. Zamergrad

    2014-01-01

    Full Text Available Dizziness is a common symptom in neurological and general medical practice. In most cases it is caused by diseases of the central or peripheral vestibular system. The most common vestibular system diseases include benign paroxysmal postural vertigo, dizziness, Meniere's disease, vestibular neuronitis, and cerebrovascular diseases. One of the main treatments for the diseases accompanied by dizziness is vestibular rehabilitation that is a complex of exercises, the goal of which is to stimulate vestibular compensation. Adequate vestibular compensation allows a patient to get rid of dizziness and unsteadiness even though vestibular system injury is irreversible. Some medications are able to enhance the efficiency of vestibular rehabilitation. At the same time, the optimal duration of treatment for the most common vestibular disorders has not beenadequately explored. The paper gives the results of an observational program, whose purpose was to determine the optimal duration of vestibular rehabilitation in combination with the use of tanakan in patients with non-progressive unilateral peripheral vestibular disorder.Patients and methods. Data on 46 patients aged 19 to 70 years who underwent vestibular rehabilitation and took tanakan for vertigo caused by vestibular neuronitis (n = 44, labyrinthitis (n =1, or Ramsay Hunt syndrome (n = 1 were analyzed. All the patients were examined four times. The symptoms were recorded and the histories of disease were considered. The degree of vestibular disorders, including vertigo, was assessed when collecting complaints. The symptoms of vertigo were objectivized using its vertigo rating scale and five-point subjective rating scale for vertigo. All the patients underwent standard somatic and neurological examinations and videonystagmography. During the first visit after diagnosis, vestibular exercises were chosen for the patients and tanakan was used in a dose of 40 mg thrice daily to accelerate

  4. Modulation of memory by vestibular lesions and galvanic vestibular stimulation

    Paul eSmith

    2010-11-01

    Full Text Available For decades it has been speculated that there is a close association between the vestibular system and spatial memories constructed by areas of the brain such as the hippocampus. While many animal studies have been conducted which support this relationship, only in the last 10 years have detailed quantitative studies been carried out in patients with vestibular disorders. The majority of these studies suggest that complete bilateral vestibular loss results in spatial memory deficits that are not simply due to vestibular reflex dysfunction, while the effects of unilateral vestibular damage are more complex and subtle. Very recently, reports have emerged that sub-threshold, noisy galvanic vestibular stimulation can enhance memory in humans, although this has not been investigated for spatial memory as yet. These studies add to the increasing evidence that suggests a connection between vestibular sensory information and memory in humans.

  5. Vestibular tributaries to the vein of the vestibular aqueduct

    Hansen, Jesper Marsner; Qvortrup, Klaus; Friis, Morten

    2010-01-01

    CONCLUSION: The vein of the vestibular aqueduct drains blood from areas extensively lined by vestibular dark cells (VDCs). A possible involvement in the pathogenesis of an impaired endolymphatic homeostasis can be envisioned at the level of the dark cells area. OBJECTIVES: The aim of this study...... was to investigate the vascular relationship between the vein of the vestibular aqueduct and the vestibular apparatus, with focus on the VDCs. METHODS: Sixteen male Wistar rats were divided into groups of 6 and 10. In the first group, 2 µm thick sections including the vein of the vestibular aqueduct, utricle...... relation to the VDCs in the utricle and the crista ampullaris of the lateral semicircular canal in the vestibular apparatus. One major vein emanated from these networks, which emptied into the vein of the vestibular aqueduct. Veins draining the saccule and the common crus of the superior and posterior...

  6. Computational Approaches to Vestibular Research

    Ross, Muriel D.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    The Biocomputation Center at NASA Ames Research Center is dedicated to a union between computational, experimental and theoretical approaches to the study of neuroscience and of life sciences in general. The current emphasis is on computer reconstruction and visualization of vestibular macular architecture in three-dimensions (3-D), and on mathematical modeling and computer simulation of neural activity in the functioning system. Our methods are being used to interpret the influence of spaceflight on mammalian vestibular maculas in a model system, that of the adult Sprague-Dawley rat. More than twenty 3-D reconstructions of type I and type II hair cells and their afferents have been completed by digitization of contours traced from serial sections photographed in a transmission electron microscope. This labor-intensive method has now been replace d by a semiautomated method developed in the Biocomputation Center in which conventional photography is eliminated. All viewing, storage and manipulation of original data is done using Silicon Graphics workstations. Recent improvements to the software include a new mesh generation method for connecting contours. This method will permit the investigator to describe any surface, regardless of complexity, including highly branched structures such as are routinely found in neurons. This same mesh can be used for 3-D, finite volume simulation of synapse activation and voltage spread on neuronal surfaces visualized via the reconstruction process. These simulations help the investigator interpret the relationship between neuroarchitecture and physiology, and are of assistance in determining which experiments will best test theoretical interpretations. Data are also used to develop abstract, 3-D models that dynamically display neuronal activity ongoing in the system. Finally, the same data can be used to visualize the neural tissue in a virtual environment. Our exhibit will depict capabilities of our computational approaches and

  7. Computational Approaches to Vestibular Research

    Ross, Muriel D.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    The Biocomputation Center at NASA Ames Research Center is dedicated to a union between computational, experimental and theoretical approaches to the study of neuroscience and of life sciences in general. The current emphasis is on computer reconstruction and visualization of vestibular macular architecture in three-dimensions (3-D), and on mathematical modeling and computer simulation of neural activity in the functioning system. Our methods are being used to interpret the influence of spaceflight on mammalian vestibular maculas in a model system, that of the adult Sprague-Dawley rat. More than twenty 3-D reconstructions of type I and type II hair cells and their afferents have been completed by digitization of contours traced from serial sections photographed in a transmission electron microscope. This labor-intensive method has now been replace d by a semiautomated method developed in the Biocomputation Center in which conventional photography is eliminated. All viewing, storage and manipulation of original data is done using Silicon Graphics workstations. Recent improvements to the software include a new mesh generation method for connecting contours. This method will permit the investigator to describe any surface, regardless of complexity, including highly branched structures such as are routinely found in neurons. This same mesh can be used for 3-D, finite volume simulation of synapse activation and voltage spread on neuronal surfaces visualized via the reconstruction process. These simulations help the investigator interpret the relationship between neuroarchitecture and physiology, and are of assistance in determining which experiments will best test theoretical interpretations. Data are also used to develop abstract, 3-D models that dynamically display neuronal activity ongoing in the system. Finally, the same data can be used to visualize the neural tissue in a virtual environment. Our exhibit will depict capabilities of our computational approaches and

  8. Computational Approaches to Vestibular Research

    Ross, Muriel D.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    The Biocomputation Center at NASA Ames Research Center is dedicated to a union between computational, experimental and theoretical approaches to the study of neuroscience and of life sciences in general. The current emphasis is on computer reconstruction and visualization of vestibular macular architecture in three-dimensions (3-D), and on mathematical modeling and computer simulation of neural activity in the functioning system. Our methods are being used to interpret the influence of spaceflight on mammalian vestibular maculas in a model system, that of the adult Sprague-Dawley rat. More than twenty 3-D reconstructions of type I and type II hair cells and their afferents have been completed by digitization of contours traced from serial sections photographed in a transmission electron microscope. This labor-intensive method has now been replace d by a semiautomated method developed in the Biocomputation Center in which conventional photography is eliminated. All viewing, storage and manipulation of original data is done using Silicon Graphics workstations. Recent improvements to the software include a new mesh generation method for connecting contours. This method will permit the investigator to describe any surface, regardless of complexity, including highly branched structures such as are routinely found in neurons. This same mesh can be used for 3-D, finite volume simulation of synapse activation and voltage spread on neuronal surfaces visualized via the reconstruction process. These simulations help the investigator interpret the relationship between neuroarchitecture and physiology, and are of assistance in determining which experiments will best test theoretical interpretations. Data are also used to develop abstract, 3-D models that dynamically display neuronal activity ongoing in the system. Finally, the same data can be used to visualize the neural tissue in a virtual environment. Our exhibit will depict capabilities of our computational approaches and

  9. Medication (for Vestibular Disorders)

    ... Desorden Vestibular/Vértigo - En Español הפרעות וסטיבולריות Paid Advertisement Disclaimer Information on this website is not intended ... vertigo the patient will have a sensation of false or distorted self-motion. Are the patient’s symptoms ...

  10. Modulation of Memory by Vestibular Lesions and Galvanic Vestibular Stimulation

    PaulSmith

    2010-01-01

    For decades it has been speculated that there is a close association between the vestibular system and spatial memories constructed by areas of the brain such as the hippocampus. While many animal studies have been conducted which support this relationship, only in the last 10 years have detailed quantitative studies been carried out in patients with vestibular disorders. The majority of these studies suggest that complete bilateral vestibular loss results in spatial memory deficits that are ...

  11. Enlarged Vestibular Aqueducts and Childhood Hearing Loss

    ... Health Info » Hearing, Ear Infections, and Deafness Enlarged Vestibular Aqueducts and Childhood Hearing Loss On this page: ... more information about enlarged vestibular aqueducts? What are vestibular aqueducts? The inner ear Credit: NIH Medical Arts ...

  12. Spatial Cognition, Body Representation and Affective Processes: The Role of Vestibular Information beyond Ocular Reflexes and Control of Posture

    Fred W Mast

    2014-05-01

    Full Text Available A growing number of studies in humans demonstrate the involvement of vestibular information in tasks that are seemingly remote from well-known functions such as space constancy or postural control. In this review article we point out three emerging streams of research highlighting the importance of vestibular input: 1 Spatial Cognition: Modulation of vestibular signals can induce specific changes in spatial cognitive tasks like mental imagery and the processing of numbers. This has been shown in studies manipulating body orientation (changing the input from the otoliths, body rotation (changing the input from the semicircular canals, in clinical findings with vestibular patients, and in studies carried out in microgravity. There is also an effect in the reverse direction; top-down processes can affect perception of vestibular stimuli. 2 Body Representation: Numerous studies demonstrate that vestibular stimulation changes the representation of body parts, and sensitivity to tactile input or pain. Thus, the vestibular system plays an integral role in multisensory coordination of body representation. 3 Affective Processes and Disorders: Studies in psychiatric patients and patients with a vestibular disorder report a high comorbidity of vestibular dysfunctions and psychiatric symptoms. Recent studies investigated the beneficial effect of vestibular stimulation on psychiatric disorders, and how vestibular input can change mood and affect. These three emerging streams of research in vestibular science are – at least in part – associated with different neuronal core mechanisms. Spatial transformations draw on parietal areas, body representation is associated with somatosensory areas, and affective processes involve insular and cingulate cortices, all of which receive vestibular input. Even though a wide range of different vestibular cortical projection areas has been ascertained, their functionality still is scarcely understood.

  13. Audiologic diagnostics of vestibular schwannoma

    Komazec Zoran

    2004-01-01

    Full Text Available Introduction Vestibular schwannoma (acoustic neuroma is a rare, but important cause of sensorineural hearing loss. Patients with asymmetric hearing loss, or unilateral tinnitus should be evaluated expeditiously, to prevent further neurological damage. Audiologic diagnostics Audiologic diagnostics represents the basic diagnosis for early detection of vestibular schwannoma. Patients with vestibular schwannomas may present with a variety of clinical features, including retrocochlear pattern of sensorineural hearing loss. Supraliminary audiometry, tympano- metry, stapedius reflex and otoacoustic emissions as well as vestibular response to caloric testing are methods for selection of patients with suspicion of this tumor. Conclusion The golden standard for audiologic diagnostics of vestibular schwannoma is BAEP (Brainstem Auditory Evoked Potentials. Patients with pathological findings of BAEP should undergo MRI of the posterior fossa. Gadolinium-enhanced magnetic resonance imaging is the best and final tool for making a diagnosis of vestibular schwannoma.

  14. Perspectival Structure and Vestibular Processing

    Alsmith, Adrian John Tetteh

    2015-01-01

    I begin by contrasting a taxonomic approach to the vestibular system with the structural approach I take in the bulk of this commentary. I provide an analysis of perspectival structure. Employing that analysis and following the structural approach, I propose three lines of empirical investigation...... to selectively manipulate and measure vestibular processing and perspectival structure. The hope is that this serves to indicate how interdisciplinary research on vestibular processing might advance our understanding of the structural features of conscious experience....

  15. Vestibular compensation and vestibular rehabilitation. Current concepts and new trends.

    Deveze, A; Bernard-Demanze, L; Xavier, F; Lavieille, J-P; Elziere, M

    2014-01-01

    The aim of this review is to present the current knowledge of the mechanisms underlying the vestibular compensation and demonstrating how the vestibular rehabilitation is conducted to help the recovery of balance function. Vestibular rehabilitation is based on improving the natural phenomenon called vestibular compensation that occurs after acute vestibular disturbance or chronic and gradual misbalance. Central compensation implies three main mechanisms namely adaptation, substitution and habituation. The compensation, aided by the rehabilitation aimed to compensate and/or to correct the underused or misused of the visual, proprioceptive and vestibular inputs involved in the postural control. As the strategy of equilibration is not corrected, the patient is incompletely cured and remains with inappropriate balance control with its significance on the risk of fall and impact on quality of life. The vestibular rehabilitation helps to correct inappropriate strategy of equilibrium or to accelerate a good but slow compensation phenomenon. Nowadays, new tools are more and more employed for the diagnosis of vestibular deficit (that may include various sources of impairment), the assessment of postural deficit, the control of the appropriate strategy as well to facilitate the efficiency of the rehabilitation especially in elderly people. PMID:24502905

  16. Development and organization of polarity-specific segregation of primary vestibular afferent fibers in mice

    Maklad, Adel; Kamel, Suzan; Wong, Elaine; Fritzsch, Bernd

    2010-01-01

    A striking feature of vestibular hair cells is the polarized arrangement of their stereocilia as the basis for their directional sensitivity. In mammals, each of the vestibular end organs is characterized by a distinct distribution of these polarized cells. We utilized the technique of post-fixation transganglionic neuronal tracing with fluorescent lipid soluble dyes in embryonic and postnatal mice to investigate whether these polarity characteristics correlate with the pattern of connections...

  17. The vestibular implant: Quo vadis?

    Raymond eVan De Berg

    2011-08-01

    Full Text Available AbstractObjective: to assess the progress of the development of the vestibular implant and its feasibility short-term. Data sources: a search was performed in Pubmed, Medline and Embase. Key words used were vestibular prosth* and vestibular implant. The only search limit was language: English or Dutch. Additional sources were medical books, conference lectures and our personal experience with per-operative vestibular stimulation in patients selected for cochlear implantation.Study selection: all studies about the vestibular implant and related topics were included and evaluated by two reviewers. No study was excluded since every study investigated different aspects of the vestibular implant. Data extraction and synthesis: data was extracted by the first author from selected reports, supplemented by additional information, medical books conference lectures. Since each study had its own point of interest with its own outcomes, it was not possible to compare data of different studies. Conclusion: to use a basic vestibular implant in humans seems feasible in the very near future. Investigations show that electric stimulation of the canal nerves induces a nystagmus which corresponds to the plane of the canal which is innervated by the stimulated nerve branch. The brain is able to adapt to a higher baseline stimulation, while still reacting on a dynamic component. The best response will be achieved by a combination of the optimal stimulus (stimulus profile, stimulus location, precompensation, complemented by central vestibular adaptation. The degree of response will probably vary between individuals, depending on pathology and their ability to adapt.

  18. True incidence of vestibular schwannoma?

    Stangerup, Sven-Eric; Tos, Mirko; Thomsen, Jens;

    2010-01-01

    The incidence of diagnosed sporadic unilateral vestibular schwannomas (VS) has increased, due primarily to more widespread access to magnetic resonance imaging.......The incidence of diagnosed sporadic unilateral vestibular schwannomas (VS) has increased, due primarily to more widespread access to magnetic resonance imaging....

  19. Childhood Vestibular Disorders: A Tutorial

    Mehta, Zarin; Stakiw, Daria B.

    2004-01-01

    There is a growing body of evidence that childhood disorders affecting the vestibular system, although rare, do exist. Describing symptoms associated with the vestibular mechanism for children may be difficult, resulting in misdiagnosing or under-diagnosing these conditions. The pathophysiology, symptoms, and management options of the more common…

  20. Hypervascular vestibular Schwannoma: A case report

    Most vestibular schwannoma is hypovascular with well known poor tumor staining in cerebral angiography. However, hypervascular vestibular schwannoma might be observed as a rare subtype with increased risk of bleeding during surgery. Multimodal imaging features which represent hypervascularity of the tumor can be observed in hypervascular vestibular schwannoma. Here we report a case of hypervascular vestibular schwannoma with brief literature review.

  1. Hypervascular vestibular Schwannoma: A case report

    Kim, Ja Young; Yu, In Kyu [Dept. of Radiology, Eulji University Hospital, Daejeon (Korea, Republic of)

    2014-11-15

    Most vestibular schwannoma is hypovascular with well known poor tumor staining in cerebral angiography. However, hypervascular vestibular schwannoma might be observed as a rare subtype with increased risk of bleeding during surgery. Multimodal imaging features which represent hypervascularity of the tumor can be observed in hypervascular vestibular schwannoma. Here we report a case of hypervascular vestibular schwannoma with brief literature review.

  2. Vestibular disease in dogs and cats.

    Rossmeisl, John H

    2010-01-01

    The vestibular system is the major sensory (special proprioceptive) system that, along with the general proprioceptive and visual systems, maintains balance. Clinical signs of vestibular disease include asymmetric ataxia, head tilt, and pathologic nystagmus. Neuroanatomic localization of observed vestibular signs to either the peripheral or central components of the vestibular system is paramount to the management of the patient with vestibular dysfunction, as the etiology, diagnostic approaches, and prognoses are dependent on the neuroanatomic diagnosis. This article reviews functional vestibular neuroanatomy as well as the diagnosis and treatment of common causes of small animal vestibular disease. PMID:19942058

  3. Vestibular Rehabilitation Outcomes in the Elderly with Chronic Vestibular Dysfunction

    Bayat, Arash; Pourbakht, Akram; Saki, Nader; Zainun, Zuraida; Nikakhlagh, Soheila; Mirmomeni, Golshan

    2012-01-01

    Background Chronic vestibular dysfunction is a frustrating problem in the elderly and can have a tremendous impact on their life, but only a few studies are available. Vestibular rehabilitation therapy (VRT) is an important therapeutic option for the neuro-otologist in treating patients with significant balance deficits. Objectives The purpose of this study was to assess the effect of vestibular rehabilitation on dizziness in elderly patients with chronic vestibular dysfunction. Materials and Methods A total of 33 patients older than 60 years with chronic vestibular dysfunction were studied. Clinical and objective vestibular tests including videonystagmography (VNG) and dizziness handicap inventory (DHI) were carried out at their first visit, 2 weeks, and 8 weeks post-VRT. The VRT exercises were performed according to Cawthorne and Cooksey protocols. Results Oculomotor assessments were within normal limits in all patients. Nineteen patients (57.57%) showed abnormal canal paralysis on caloric testing which at follow-up sessions; CP values were decreased remarkably after VRT exercises. We found a significant improvement between pre-VRT and post-VRT total DHI scores (P < 0.001). This improvement was most prominent in functional subscore. Conclusions Our study demonstrated that VRT is an effective therapeutic method for elderly patients with chronic vestibular dysfunction. PMID:23396380

  4. Input/output properties of the lateral vestibular nucleus

    Boyle, R.; Bush, G.; Ehsanian, R.

    2004-01-01

    This article is a review of work in three species, squirrel monkey, cat, and rat studying the inputs and outputs from the lateral vestibular nucleus (LVN). Different electrophysiological shock paradigms were used to determine the synaptic inputs derived from thick to thin diameter vestibular nerve afferents. Angular and linear mechanical stimulations were used to activate and study the combined and individual contribution of inner ear organs and neck afferents. The spatio-temporal properties of LVN neurons in the decerebrated rat were studied in response to dynamic acceleration inputs using sinusoidal linear translation in the horizontal head plane. Outputs were evaluated using antidromic identification techniques and identified LVN neurons were intracellularly injected with biocytin and their morphology studied.

  5. Presbivértigo: ejercicios vestibulares Presbivertigo: vestibular exercises

    Esther Bernal Valls; Víctor Faus Cuñat; Raquel Bernal Valls

    2006-01-01

    El uso de ejercicios en el tratamiento de pacientes con déficit vestibular crónico está incrementándose de forma notable, lo que evidencia que se trata de un procedimiento que resulta beneficioso para este tipo de pacientes. Los buenos resultados que se obtienen sugieren que los ejercicios vestibulares dan lugar a una estabilidad postural y a una disminución de la sensación de desequilibrio.The use of exercises in the treatment of patients with vestibular deficits is increasing in a represent...

  6. Effects of caloric vestibular stimulation on serotoninergic system in the media vestibular nuclei of guinea pigs

    MA Fu-rong; LIU Jun-xiu; LI Xue-pei; MAO Jian-jun; ZHANG Qun-dan; JIA Hong-bo; MAO Lan-quan; ZHAO Rui

    2007-01-01

    Background Anatomic and electrophysiological studies have revealed that the neurons located in the media vestibular nuclei (MVN) receive most of the sensory vestibular input coming from the ipsilateral labyrinth and the responses of MVN neurons to caloric stimulation directly reflect changes in primary vestibular afferent activity. The aim of this study was to clarify the intrinsic characteristics of serotonin (5-hydroxytryptamine, 5-HT) release in the MVN during the period of vertigo induced by caloric stimulation.Methods We used an in vivo microdialysis technique to examine the effects of caloric stimulation on the serotoninergic system in MVN. Twenty four guinea pigs were randomly divided into the groups of irrigation of the ear canal with hot water (n=6), ice water (n=6) and 37℃ water (n=4), and the groups of irrigation of the auricle with hot water (n=4) and ice water (n=4), according to different caloric vestibular stimulation. We examined the animal's caloric nystagmus with a two-channel electronystagmographic recorder (ENG), and meanwhile examine serotonin (5-hydroxytryptamine, 5-HT) level in the MVN with microdialysis technique after caloric stimulation. Results In the caloric test the hot water (44℃) irrigation of the right external auditory canal induced horizontal nystagmus towards the right side lasting about 60 seconds and the ice water irrigation of the right external auditory canal induced it towards the left side lasting for about 90 seconds. No nystagmus was induced by 37℃ water irrigation of the external ear canal. Therefore, it was used as a negative control stimulation to the middle ear. The MVN 5-HT levels significantly increased in the first 5-minute collecting interval and increased to 254% and 189% of the control group in the second collecting interval in response to caloric vestibular stimulation with ice water and hot water respectively. The serotonin release was not distinctly changed by the irrigation of the auricle with ice water

  7. Presbivértigo: ejercicios vestibulares Presbivertigo: vestibular exercises

    Esther Bernal Valls

    2006-12-01

    Full Text Available El uso de ejercicios en el tratamiento de pacientes con déficit vestibular crónico está incrementándose de forma notable, lo que evidencia que se trata de un procedimiento que resulta beneficioso para este tipo de pacientes. Los buenos resultados que se obtienen sugieren que los ejercicios vestibulares dan lugar a una estabilidad postural y a una disminución de la sensación de desequilibrio.The use of exercises in the treatment of patients with vestibular deficits is increasing in a representative way, what evidences this is a profitable process for this kind of patients. The good results suggest that vestibular exercises permit a postural stability and a decrease in the perception of disequilibrium.

  8. Vestibular rehabilitation with visual stimuli in peripheral vestibular disorders

    Andréa Manso

    2016-04-01

    Full Text Available ABSTRACT INTRODUCTION: Visual stimuli can induce vestibular adaptation and recovery of body balance. OBJECTIVE: To verify the effect of visual stimuli by digital images on vestibular and body balance rehabilitation of peripheral vestibular disorders. METHODS: Clinical, randomized, prospective study. Forty patients aged between 23 and 63 years with chronic peripheral vestibular disorders underwent 12 sessions of rehabilitation with visual stimuli using digital video disk (DVD (experimental group or Cawthorne-Cooksey exercises (control group. The Dizziness Handicap Inventory (DHI, dizziness analog scale, and the sensitized Romberg static balance and one-leg stance tests were applied before and after the intervention. RESULTS: Before and after the intervention, there was no difference between the experimental and control groups (p > 0.005 regarding the findings of DHI, dizziness analog scale, and static balance tests. After the intervention, the experimental and control groups showed lower values (p < 0.05 in the DHI and the dizziness analog scale, and higher values (p < 0.05 in the static balance tests in some of the assessed conditions. CONCLUSION: The inclusion of visual stimuli by digital images on vestibular and body balance rehabilitation is effective in reducing dizziness and improving quality of life and postural control in individuals with peripheral vestibular disorders.

  9. Stereotactic radiotherapy for vestibular schwannoma

    Muzevic, Dario; Legcevic, Jelena; Splavski, Bruno;

    2014-01-01

    BACKGROUND: Vestibular schwannomas (acoustic neuromas) are common benign tumours that arise from the Schwann cells of the vestibular nerve. Management options include observation with neuroradiological follow-up, microsurgical resection and stereotactic radiotherapy. OBJECTIVES: To assess...... the effect of stereotactic radiotherapy compared to observation, microsurgical resection, any other treatment modality, or a combination of two or more of the above approaches for vestibular schwannoma. SEARCH METHODS: We searched the Cochrane Central Register of Controlled Trials; PubMed; EMBASE; CINAHL...... resection or any other possible treatment or combination of treatments in patients with a cerebellopontine angle tumour up to 3 cm in diameter, presumed to be a vestibular schwannoma. DATA COLLECTION AND ANALYSIS: We used the standard methodological procedures expected by The Cochrane Collaboration. MAIN...

  10. Vestibular reflexes of otolith origin

    Wilson, Victor J.

    1988-01-01

    The vestibular system and its role in the maintenance of posture and in motion sickness is investigated using cats as experimental subjects. The assumption is that better understanding of the physiology of vestibular pathways is not only of intrinsic value, but will help to explain and eventually alleviate the disturbances caused by vestibular malfunction, or by exposure to an unusual environment such as space. The first project deals with the influence on the spinal cord of stimulation of the vestibular labyrinth, particularly the otoliths. A second was concerned with the properties and neural basis of the tonic neck reflex. These two projects are related, because vestibulospinal and tonic neck reflexes interact in the maintenance of normal posture. The third project began with an interest in mechanisms of motion sickness, and eventually shifted to a study of central control of respiratory muscles involved in vomiting.

  11. Enlarged Vestibular Aqueduct Syndrome (EVAS)

    ... referred to as EVA syndrome (EVA). CAUSES During fetal development, the vestibular aqueduct starts out as a wide ... in early gestation, or EVA results from aberrant development later in fetal and postnatal life. It is believed that an ...

  12. Vestibular pathways involved in cognition

    Martin Hitier

    2014-07-01

    Full Text Available Recent discoveries have emphasized the role of the vestibular system in cognitive processes such as memory, spatial navigation and bodily self-consciousness. A precise understanding of the vestibular pathways involved is essential to understand the consequences of vestibular diseases for cognition, as well as develop therapeutic strategies to facilitate recovery. The knowledge of the “vestibular cortical projections areas”, defined as the cortical areas activated by vestibular stimulation, has dramatically increased over the last several years from both anatomical and functional points of view. Four major pathways have been hypothesized to transmit vestibular information to the vestibular cortex: 1 the vestibulo-thalamo-cortical pathway, which probably transmits spatial information about the environment via the parietal, entorhinal and perirhinal cortices to the hippocampus and is associated with spatial representation and self-versus object motion distinctions; 2 the pathway from the dorsal tegmental nucleus via the lateral mammillary nucleus, the anterodorsal nucleus of the thalamus to the entorhinal cortex, which transmits information for estimations of the head direction; 3 the pathway via the nucleus reticularis pontis oralis, the supramammillary nucleus and the medial septum to the hippocampus, which transmits information supporting hippocampal theta rhythm and memory; and 4 a possible pathway via the cerebellum, and the ventral lateral nucleus of the thalamus (perhaps to the parietal cortex, which transmits information for spatial learning. Finally a new pathway is hypothesized via the basal ganglia, potentially involved in spatial learning and spatial memory. From these pathways, progressively emerges the anatomical network of vestibular cognition.

  13. Atypical Manifestation of Vestibular Schwannoma

    Webster, Guilherme

    2013-09-01

    Full Text Available Introduction: Vestibular schwannoma (also known as acoustic neuroma is a benign tumor whose cells are derived from Schwann sheaths, which commonly occurs from the vestibular portion of the eighth cranial nerve. Furthermore, vestibular schwannomas account for ∼8% of intracranial tumors in adults and 80 to 90% of tumors of the cerebellopontine angle. Its symptoms are varied, but what stands out most is a unilateral sensorineural hearing loss, with a low index of speech recognition. Objective: Describe an atypical manifestation of vestibular schwannoma. Case Report: The 46-year-old woman had vertigo and binaural hearing loss and fullness, with ear, nose, and throat examination suggestive of cochlear injury. After 6 months, the patient developed worsening of symptoms and onset of right unilateral tinnitus. In further exams the signs of cochlear damage remained, except for the vestibular test (hyporeflexia. Magnetic resonance imaging showed an expansive lesion in the right cerebellopontine angle. Discussion: This report warns about the atypical manifestations of vestibular schwannoma, which must always be remembered in investigating and diagnosing hearing loss.

  14. Processing of vestibular inputs by the medullary lateral tegmental field of conscious cats: implications for generation of motion sickness

    McCall, Andrew A.; Moy, Jennifer D.; DeMayo, William M.; Puterbaugh, Sonya R.; Miller, Daniel J.; Catanzaro, Michael F.

    2013-01-01

    The dorsolateral reticular formation of the caudal medulla, the lateral tegmental field (LTF), participates in generating vomiting. LTF neurons exhibited complex responses to vestibular stimulation in decerebrate cats, indicating that they received converging inputs from a variety of labyrinthine receptors. Such a convergence pattern of vestibular inputs is appropriate for a brain region that participates in generating motion sickness. Since responses of brainstem neurons to vestibular stimulation can differ between decerebrate and conscious animals, the current study examined the effects of whole-body rotations in vertical planes on the activity of LTF neurons in conscious felines. Wobble stimuli, fixed-amplitude tilts, the direction of which moves around the animal at a constant speed, were used to determine the response vector orientation, and also to ascertain whether neurons had spatial–temporal convergence (STC) behavior (which is due to the convergence of vestibular inputs with different spatial and temporal properties). The proportion of LTF neurons with STC behavior in conscious animals (25 %) was similar to that in decerebrate cats. Far fewer neurons in other regions of the feline brainstem had STC behavior, confirming findings that many LTF neurons receive converging inputs from a variety of labyrinthine receptors. However, responses to vertical plane vestibular stimulation were considerably different in decerebrate and conscious felines for LTF neurons lacking STC behavior. In decerebrate cats, most LTF neurons had graviceptive responses to rotations, similar to those of otolith organ afferents. However, in conscious animals, the response properties were similar to those of semicircular canal afferents. These differences show that higher centers of the brain that are removed during decerebration regulate the labyrinthine inputs relayed to the LTF, either by gating connections in the brainstem or by conveying vestibular inputs directly to the region

  15. Differential diagnosis and treatment of vestibular vertigo

    Vladimir Anatolyevich Parfenov

    2010-06-01

    Full Text Available Vertigo is a common complaint that leads patients to visit physicians of various specialties. Diseases resulting in vestibular vertigo are very diverse and may be caused by lesion of both the central parts of the vestibular system and the peripheral vestibular apparatus. In many cases, its diagnosis can be made from complaints and a history of disease and special bedside tests requiring no sophisticated equipment. Management of vestibular vertigo should aim at treating the underlying disease; vestibular dilators as symptomatic therapy can be effective for several days. Vestibular exercises the efficiency of which can be enhanced by betahistine and other drugs accelerating vestibular compensation should be further needed. Data on the efficacy of betaver (betahistine in patients with vestibular vertigo are given.

  16. Galvanic stimulation of the vestibular periphery in guinea pigs during passive whole body rotation and self-generated head movement

    Shanidze, N.; Lim, K.; Dye, J.; King, W. M.

    2012-01-01

    Irregular vestibular afferents exhibit significant phase leads with respect to angular velocity of the head in space. This characteristic and their connectivity with vestibulospinal neurons suggest a functionally important role for these afferents in producing the vestibulo-collic reflex (VCR). A goal of these experiments was to test this hypothesis with the use of weak galvanic stimulation of the vestibular periphery (GVS) to selectively activate or suppress irregular afferents during passiv...

  17. Habituation of vestibular responses: An overview

    Collins, W. E.

    1973-01-01

    An historical survey of vestibular habituation experiments has been undertaken. Methodological problems are presented briefly, and the influence of arousal on vestibular responses is detailed. Data obtained from animals and from man are treated separately. At least for man, the term habituation may be better defined by a dynamic change in the form of vestibular responses than by a simple response reduction.

  18. Vestibular schwannoma surgery and headache.

    Levo, H; Blomstedt, G; Pyykkö, I

    2000-01-01

    The aim of the study was to evaluate aetiological factors for postoperative headache after vestibular schwannoma (VS) surgery with respect to asymmetric activation of vestibular reflexes. After surgery, 27 VS patients with persistent postoperative headache, 16 VS patients without headache and 9 healthy controls were examined. The vestibular, cervicocollic and cervicospinal reflexes were evaluated to study whether asymmetric activation of vestibular reflexes could cause headache. The effect of neck muscle and occipital nerve anaesthesia and the effect of sumatriptan on headache were also evaluated. The vestibular function of VS patients with headache did not differ from that of VS patients without headache, but was abnormal when compared to that of normal controls. The cervicospinal and cervicocollic reflexes did not differ in the patient groups. Injection of lidocaine around the operation scar gave pain relief to two patients, and one of them had occipital nerve entrapment. Infiltration of lidocaine deep in the neck muscles in the vicinity of the C2 root did not alleviate headache, but caused vertigo. Nine patients with musculogenic headache got pain relief from supportive neck collars, and two patients with cervicobrachial syndrome got pain relief from manual neck traction. The study shows that asymmetric activation of cervicocollic reflexes does not seem to be the reason for headache. Headache seems to be linked to neuropathic pain, allegedly caused by trigeminal irritation of the inner ear and the posterior fossa, which has recently been linked to vascular pain. PMID:10908966

  19. Vestibular modulation of spatial perception

    Elisa Raffaella Ferre

    2013-10-01

    Full Text Available Vestibular inputs make a key contribution to the sense of one’s own spatial location. While the effects of vestibular stimulation on visuo-spatial processing in neurological patients have been extensively described, the normal contribution of vestibular inputs to spatial perception remains unclear. To address this issue, we used a line bisection task to investigate the effects of galvanic vestibular stimulation (GVS on spatial perception, and on the transition between near and far space. Brief left-anodal and right-cathodal GVS or right-anodal and left-cathodal GVS were delivered. A sham stimulation condition was also included. Participants bisected lines of different lengths at six distances from the body using a laser pointer. Consistent with previous results, our data showed an overall shift in bisection bias from left to right as viewing distance increased. This pattern suggests leftward bias in near space, and rightward bias in far space. GVS induced strong polarity dependent effects in spatial perception, broadly consistent with those previously reported in patients: left-anodal and right-cathodal GVS induced a leftward bisection bias, while right-anodal and left-cathodal GVS reversed this effect, and produced bisection bias toward the right side of the space. Interestingly, the effects of GVS were comparable in near and far space. We speculate that vestibular-induced biases in space perception may optimize gathering of information from different parts of the environment.

  20. Vestibular modulation of spatial perception.

    Ferrè, Elisa R; Longo, Matthew R; Fiori, Federico; Haggard, Patrick

    2013-01-01

    Vestibular inputs make a key contribution to the sense of one's own spatial location. While the effects of vestibular stimulation on visuo-spatial processing in neurological patients have been extensively described, the normal contribution of vestibular inputs to spatial perception remains unclear. To address this issue, we used a line bisection task to investigate the effects of galvanic vestibular stimulation (GVS) on spatial perception, and on the transition between near and far space. Brief left-anodal and right-cathodal GVS or right-anodal and left-cathodal GVS were delivered. A sham stimulation condition was also included. Participants bisected lines of different lengths at six distances from the body using a laser pointer. Consistent with previous results, our data showed an overall shift in the bisection bias from left to right as viewing distance increased. This pattern suggests leftward bias in near space, and rightward bias in far space. GVS induced strong polarity dependent effects in spatial perception, broadly consistent with those previously reported in patients: left-anodal and right-cathodal GVS induced a leftward bisection bias, while right-anodal and left-cathodal GVS reversed this effect, and produced bisection bias toward the right side of the space. Interestingly, the effects of GVS were comparable in near and far space. We speculate that vestibular-induced biases in space perception may optimize gathering of information from different parts of the environment. PMID:24133440

  1. Antagonistic otolith-visual units in cat vestibular nuclei

    Daunton, Nancy G.; Christensen, Carol A.

    1992-01-01

    The nature of neural coding of visual (Vis) and vestibular (Vst) information on translational motion in the region of the vestibular nuclei was investigated using extracellular single-unit recordings in alert adult cats. Responses were recorded and averaged over 60 cycles of stimulation in the vertical and horizontal planes, which included the Vst (movement of the animal in the dark), Vis (movement within lighted visual surround), and combined Vis and Vst (movement of the animal within the lighted stationary visual surround). Data are reported on responses to stimulations along the axis showing maximal sensitivity. A small number of units were identified that showed an antagonistic relationship between their Vis and Vst responses (since they were maximally excited by Vis and by Vst stimulations in the same direction). Results suggest that antagonistic units may belong to an infrequently encountered, but functionally distinct, class of neurons.

  2. Development and organization of polarity-specific segregation of primary vestibular afferent fibers in mice.

    Maklad, Adel; Kamel, Suzan; Wong, Elaine; Fritzsch, Bernd

    2010-05-01

    A striking feature of vestibular hair cells is the polarized arrangement of their stereocilia as the basis for their directional sensitivity. In mammals, each of the vestibular end organs is characterized by a distinct distribution of these polarized cells. We utilized the technique of post-fixation transganglionic neuronal tracing with fluorescent lipid soluble dyes in embryonic and postnatal mice to investigate whether these polarity characteristics correlate with the pattern of connections between the endorgans and their central targets; the vestibular nuclei and cerebellum. We found that the cerebellar and brainstem projections develop independently from each other and have a non-overlapping distribution of neurons and afferents from E11.5 on. In addition, we show that the vestibular fibers projecting to the cerebellum originate preferentially from the lateral half of the utricular macula and the medial half of the saccular macula. In contrast, the brainstem vestibular afferents originate primarily from the medial half of the utricular macula and the lateral half of the saccular macula. This indicates that the line of hair cell polarity reversal within the striola region segregates almost mutually exclusive central projections. A possible interpretation of this feature is that this macular organization provides an inhibitory side-loop through the cerebellum to produce synergistic tuning effects in the vestibular nuclei. The canal cristae project to the brainstem vestibular nuclei and cerebellum, but the projection to the vestibulocerebellum originates preferentially from the superior half of each of the cristae. The reason for this pattern is not clear, but it may compensate for unequal activation of crista hair cells or may be an evolutionary atavism reflecting a different polarity organization in ancestral vertebrate ears. PMID:20424840

  3. Negative emotional stimuli enhance vestibular processing.

    Preuss, Nora; Ellis, Andrew W; Mast, Fred W

    2015-08-01

    Recent studies have shown that vestibular stimulation can influence affective processes. In the present study, we examined whether emotional information can also modulate vestibular perception. Participants performed a vestibular discrimination task on a motion platform while viewing emotional pictures. Six different picture categories were taken from the International Affective Picture System: mutilation, threat, snakes, neutral objects, sports, and erotic pictures. Using a Bayesian hierarchical approach, we were able to show that vestibular discrimination improved when participants viewed emotionally negative pictures (mutilation, threat, snake) when compared to neutral/positive objects. We conclude that some of the mechanisms involved in the processing of vestibular information are also sensitive to emotional content. Emotional information signals importance and mobilizes the body for action. In case of danger, a successful motor response requires precise vestibular processing. Therefore, negative emotional information improves processing of vestibular information. PMID:26098730

  4. Ion channels in mammalian vestibular afferents may set regularity of firing

    Eatock, Ruth Anne; Xue, Jingbing; Kalluri, Radha

    2008-01-01

    Rodent vestibular afferent neurons offer several advantages as a model system for investigating the significance and origins of regularity in neuronal firing interval. Their regularity has a bimodal distribution that defines regular and irregular afferent classes. Factors likely to be involved in setting firing regularity include the morphology and physiology of the afferents’ contacts with hair cells, which may influence the averaging of synaptic noise and the afferents’ intrinsic electrical...

  5. Pre-operative vestibular pattern and balance compensation after vestibular schwannoma surgery.

    Parietti-Winkler, C; Gauchard, G C; Simon, C; Perrin, P P

    2011-01-13

    This longitudinal study aimed to assess the sensorimotor balance strategies before and after vestibular schwannoma (VS) surgery according to the degree of pre-operative vestibular lesion. Thirty-eight VS patients were split in three groups according to caloric vestibular test results before surgery; nine had a symmetrical vestibular response (vestibular normoreflexy), 19 with a decreased response of more than 20% of the affected side (vestibular hyporeflexy) and 10 with an absent caloric response on the side of the affected labyrinth (vestibular areflexy). They underwent pendular rotary vestibular testing (RVT), allowing to evaluate gain and directional preponderance of the vestibulo-ocular reflex, and a sensory organisation test (SOT), evaluating balance control in six conditions (C1 to C6). These tests were performed shortly before, and 8 and 90 days after surgery. Directional preponderance performances of patients with vestibular normoreflexy or hyporeflexy followed a classical time-course with a huge asymmetry just after surgery and a recovery to pre-operative performances at 90 days; patients with vestibular areflexy were relatively stable in time. Variation in SOT performances of patients with vestibular normoreflexy, especially in the more complex C4 to C6, followed a classical time-course with an important postural degradation just after surgery and a recovery to pre-operative performances at 90 days. Patients with vestibular areflexy showed no balance degradation just after surgery and a marked increase in performances at 90 days after surgery, especially in C5 and C6. Performances of patients with vestibular hyporeflexy were intermediate, close to performances of patients with vestibular normoreflexy before surgery and close to performances of patients with vestibular areflexy at 8 and 90 days after surgery. Pre-operative vestibular function alteration triggers an adaptive process, characterized by a restoration of the symmetry of the vestibular nuclei

  6. Vestibular afferent responses to microrotational stimuli

    Myers, Steven F.; Lewis, Edwin R.

    1991-01-01

    Intracellular microelectrode recording/labeling techniques were used to investigate vestibular afferent responses in the bullfrog, to very small amplitude (less than 5 deg p-p) sinusoidal rotations in the vertical plane over the frequency range of 0.063-4 Hz. Robust responses to peak accelerations as low as 0.031 deg/sec per sec were obtained from units subsequently traced to either the central portion of the anterior canal crista or the striolar region of the utricle. All of these microrotationally sensitive afferent neurons had irregular resting discharge rates, and the majority had transfer ratios (relative to rotational velocity) of 1-40 spikes/sec per deg/sec. Individual utricular afferent velocity transfer ratios were nearly constant over the frequency range of 0.125-4 Hz. Canal units displayed decreasing response transfer ratios as stimulus frequencies increased. These findings indicate that, although utricular striolar and central crista afferent velocity transfer ratios to microrotations were very similar, utricular striolar afferent neurons were more faithful sensors of very small amplitude rotational velocity in the vertical plane.

  7. Distributive characteristics of projection from vestibular nuclei to nucleus raphe magnus in rats

    Jingyu Sun; Yulin Dong; Fuxing Zhang; Jianhua Qiu; Yunqing Li

    2007-01-01

    BACKGROUND: Morphological studies have confirmed that vestibular nuclei accepts serotoninergic projections from nucleus raphe magnus, nucleus raphes pallidus, etc. But it is still unclear whether there is bi-directional association between vestibular nuclei and nucleus raphe magnus.OBJECTIVE: To observe the characteristics of projective fibers from vestibular nuclei to nucleus raphe magnus using tetramethyl rhodamine (TMR) in rats, so as to provide more sufficient morphological evidence of neural association from vestibular nuclei. DESIGN: An observational experiment. SETTING: Department of Anatomy (K.K. Leung Brain Research Center), the Fourth Military Medical University of Chinese PLA. MATERIALS: Eighteen male SD rats of clean degree, weighing 250-280 g, were provided by the Experimental Animal Center of the Fourth Military Medical University of Chinese PLA. METHODS: The experiments were carried out in the laboratory of Department of Anatomy (K.K. Leung Brain Research Center), the Fourth Military Medical University of Chinese PLA from September 2006 to January 2007. All the rats were anesthetized with intraperitoneal injection of pentobarbital sodium, then according to the coordinates on the rat brain atlas, 0.1 μL TMR (100 g/L) was injected into nucleus raphes magnus via the tip of glass microtubule by means of microinjection. Seven days later, the rats were anesthetized, then perfused and fixed to remove brain, and then frozen coronal brain sections were prepared.The retrogradely labeled neurons in the injected and projected sites were observed under fluorescence microscope. Light filters with evoked wave length of 540-553 nm and emission wave length≥1 580 nm were selected to observe the orange TMR-labeled neurons. All the sections were observed and counted under the fluorescence microscope.MAIN OUTCOME MEASURES: Characteristics and number of retrogradely labeled neurons at different sites of nuclei. RESULTS: Totally 18 SD rats were enrolled, 9 of them were

  8. Age-Related Neurochemical Changes in the Vestibular Nuclei.

    Smith, Paul F

    2016-01-01

    There is evidence that the normal aging process is associated with impaired vestibulo-ocular reflexes (VOR) and vestibulo-spinal reflexes, causing reduced visual acuity and postural instability. Nonetheless, the available evidence is not entirely consistent, especially with respect to the VOR. Some recent studies have reported that VOR gain can be intact even above 80 years of age. Similarly, although there is evidence for age-related hair cell loss and neuronal loss in Scarpa's ganglion and the vestibular nucleus complex (VNC), it is not entirely consistent. Whatever structural and functional changes occur in the VNC as a result of aging, either to cause vestibular impairment or to compensate for it, neurochemical changes must underlie them. However, the neurochemical changes that occur in the VNC with aging are poorly understood because the available literature is very limited. This review summarizes and critically evaluates the available evidence relating to the noradrenaline, serotonin, dopamine, glutamate, GABA, glycine, and nitric oxide neurotransmitter systems in the aging VNC. It is concluded that, at present, it is difficult, if not impossible, to relate the neurochemical changes observed to the function of specific VNC neurons and whether the observed changes are the cause of a functional deficit in the VNC or an effect of it. A better understanding of the neurochemical changes that occur during aging may be important for the development of potential drug treatments for age-related vestibular disorders. However, this will require the use of more sophisticated methodology such as in vivo microdialysis with single neuron recording and perhaps new technologies such as optogenetics. PMID:26973593

  9. Effects of Visceral Inputs on the Processing of Labyrinthine Signals by the Inferior and Caudal Medial Vestibular Nuclei: Ramifications for the Production of Motion Sickness

    Arshian, Milad S.; Puterbaugh, Sonya R.; Miller, Daniel J.; Catanzaro, Michael F.; Hobson, Candace E.; McCall, Andrew A.; Yates, Bill J.

    2013-01-01

    Neurons located in the caudal aspect of the vestibular nucleus complex have been shown to receive visceral inputs, and project to brainstem regions that participate in generating emesis, such as nucleus tractus solitarius and the “vomiting region” in the lateral tegmental field (LTF). Consequently, it has been hypothesized that neurons in the caudal vestibular nuclei participate in triggering motion sickness, and that visceral inputs to the vestibular nucleus complex can affect motion sickness susceptibility. To obtain supporting evidence for this hypothesis, we determined the effects of intragastric infusion of copper sulfate (CuSO4) on responses of neurons in the inferior and caudal medial vestibular nuclei to rotations in vertical planes. CuSO4 readily elicits nausea and emesis by activating gastrointestinal afferents. Infusion of CuSO4 produced a >30% change in spontaneous firing rate of approximately one-third of neurons in the caudal aspect of the vestibular nucleus complex. These changes in firing rate developed over several minutes, presumably in tandem with the emetic response. The gains of responses to vertical vestibular stimulation of a larger fraction (approximately two-thirds) of caudal vestibular nucleus neurons were altered over 30% by administration of copper sulfate. The response gains of some units went up, and others went down, and there was no significant relationship with concurrent spontaneous firing rate change. These findings support the notion that the effects of visceral inputs on motion sickness susceptibility are mediated in part through the caudal vestibular nuclei. However, our previous studies showed that infusion of CuSO4 produced larger changes in responses to vestibular stimulation of LTF neurons, as well as parabrachial nucleus neurons that are believed to participate in generating nausea. Thus, integrative effects of gastrointestinal inputs on the processing of labyrinthine inputs must occur at brain sites that participate

  10. The vestibular control of balance after stroke

    Marsden, J. F.; Playford, E. D.; Day, B. L.

    2005-01-01

    Objectives: To examine vestibular control of balance in those who recovered the ability to stand after middle cerebral artery (MCA) stroke.Methods: Sixteen patients with MCA stroke were compared with 10 age matched controls. Two additional patients were studied with isolated corticospinal tract lesions, one each at the level of the pons and medulla. Vestibular evoked postural responses were obtained using galvanic vestibular stimulation (GVS) while patients stood with their eyes closed and he...

  11. Complications of Microsurgery of Vestibular Schwannoma

    Jan Betka; Eduard Zvěřina; Zuzana Balogová; Oliver Profant; Jiří Skřivan; Josef Kraus; Jiří Lisý; Josef Syka; Martin Chovanec

    2014-01-01

    Background. The aim of this study was to analyze complications of vestibular schwannoma (VS) microsurgery. Material and Methods. A retrospective study was performed in 333 patients with unilateral vestibular schwannoma indicated for surgical treatment between January 1997 and December 2012. Postoperative complications were assessed immediately after VS surgery as well as during outpatient followup. Results. In all 333 patients microsurgical vestibular schwannoma (Koos grade 1: 12, grade 2: 34...

  12. Visual mental imagery during caloric vestibular stimulation

    Mast, Fred W.; Merfeld, Daniel M.; Kosslyn, Stephen M.

    2006-01-01

    We investigated high-resolution mental imagery and mental rotation, while the participants received caloric vestibular stimulation. High-resolution visual mental imagery tasks have been shown to activate early visual cortex, which is deactivated by vestibular input. Thus, we predicted that vestibular stimulation would disrupt high-resolution mental imagery; this prediction was confirmed. In addition, mental rotation tasks have been shown to activate posterior parietal cortex, which is also en...

  13. A vestibular phenotype for Waardenburg syndrome?

    Black, F. O.; Pesznecker, S. C.; Allen, K.; Gianna, C.

    2001-01-01

    OBJECTIVE: To investigate vestibular abnormalities in subjects with Waardenburg syndrome. STUDY DESIGN: Retrospective record review. SETTING: Tertiary referral neurotology clinic. SUBJECTS: Twenty-two adult white subjects with clinical diagnosis of Waardenburg syndrome (10 type I and 12 type II). INTERVENTIONS: Evaluation for Waardenburg phenotype, history of vestibular and auditory symptoms, tests of vestibular and auditory function. MAIN OUTCOME MEASURES: Results of phenotyping, results of vestibular and auditory symptom review (history), results of vestibular and auditory function testing. RESULTS: Seventeen subjects were women, and 5 were men. Their ages ranged from 21 to 58 years (mean, 38 years). Sixteen of the 22 subjects sought treatment for vertigo, dizziness, or imbalance. For subjects with vestibular symptoms, the results of vestibuloocular tests (calorics, vestibular autorotation, and/or pseudorandom rotation) were abnormal in 77%, and the results of vestibulospinal function tests (computerized dynamic posturography, EquiTest) were abnormal in 57%, but there were no specific patterns of abnormality. Six had objective sensorineural hearing loss. Thirteen had an elevated summating/action potential (>0.40) on electrocochleography. All subjects except those with severe hearing loss (n = 3) had normal auditory brainstem response results. CONCLUSION: Patients with Waardenburg syndrome may experience primarily vestibular symptoms without hearing loss. Electrocochleography and vestibular function tests appear to be the most sensitive measures of otologic abnormalities in such patients.

  14. Vestibular Function Research aboard Spacelab

    Mah, R. W.; Daunton, N. G.

    1978-01-01

    NASA is planning to perform a series of Vestibular Function Research (VFR) investigations on the early STS missions to investigate those neurosensory and related physiological processes believed to be associated with the space flight nausea syndrome. The first flight is scheduled for the 1981 Spacelab III Mission in which four frog specimens, mounted on a frog tilting/centrifuge device, will be subjected to periodic acceleration stimuli and periods of artificial gravity. The vestibular nerve firing responses of each frog specimen will be monitored through implanted neutral bouyancy microelectrodes and transmitted to the ground for quick analysis during the flight. The experimentation will be directed at investigating: (1) adaptation to weightlessness; (2) response to acceleration stimuli; (3) response to artificial gravity (in a weightlessness environment) and (4) readaptation to earth's gravity upon return.

  15. Effects of Weightlessness on Vestibular Development: Summary of Research on NIH.R1

    Fritzsch, Bernd; Bruce, L. L.

    1998-01-01

    In our original application we proposed to investigate the effects of gravity on the formation of connections between the gravity receptors of the ear and the brain in rat pups raised in space beginning at an age before these connections are made until near the time of birth, when they are to some extent functional. We used the neuronal tracer, Dil, which could be applied to tissue obtained immediately after landing of the space shuttle, thus minimizing changes due to the earth's gravity. We hoped to determine whether the vestibular system develops in two phases, as do other sensory systems (such as the visual system). In these other systems the first phase of development is controlled genetically and the second phase is controlled by environmental stimulation. Our data collected strongly supports the idea that the vestibular system has these same two phases of development. The tissue obtained from the NIH.R1 experiment was of exceptionally high quality for our analysis. Therefore, we expanded our investigation into the ultrastructural effects of microgravity on vestibular development. For the sake of clarity we will subdivide our summary into two categories: (1) analysis of the branching pattern of axons between the vestibular nerve and the gravistatic receptors of the ear in flight and control animals, and (2) analysis of the branching pattern of axons between the vestibular nerve and the brain in flight and control animals.

  16. [Vestibular influences on human locomotion: results obtained using galvanic vestibular stimulation].

    Stolbkov, Iu K; Gerasimenko, Iu P

    2014-06-01

    Locomotion is the most important mode of our movement in space. The role of the vestibular system during human locomotion is not well studied, mainly due to problems associated with its isolation stimulation. It is difficult to stimulate this system in isolation during locomotion because the real movement of the head to activate the vestibular end-organs inevitably leads to the activation of other sensory inputs. Galvanic stimulation is not a natural way to stimulate the vestibular system, but it has the advantage providing an isolated stimulation of the vestibular inputs. This technique is relatively novel in the examination of vestibular contributions during human locomotion. In our review we consider the current data regarding the effect of vestibular signals on human locomotion by using galvanic vestibular stimulation. PMID:25665394

  17. Projection neurons of the vestibulo-sympathetic reflex pathway.

    Holstein, Gay R; Friedrich, Victor L; Martinelli, Giorgio P

    2014-06-15

    Changes in head position and posture are detected by the vestibular system and are normally followed by rapid modifications in blood pressure. These compensatory adjustments, which allow humans to stand up without fainting, are mediated by integration of vestibular system pathways with blood pressure control centers in the ventrolateral medulla. Orthostatic hypotension can reflect altered activity of this neural circuitry. Vestibular sensory input to the vestibulo-sympathetic pathway terminates on cells in the vestibular nuclear complex, which in turn project to brainstem sites involved in the regulation of cardiovascular activity, including the rostral and caudal ventrolateral medullary regions (RVLM and CVLM, respectively). In the present study, sinusoidal galvanic vestibular stimulation was used to activate this pathway, and activated neurons were identified through detection of c-Fos protein. The retrograde tracer Fluoro-Gold was injected into the RVLM or CVLM of these animals, and immunofluorescence studies of vestibular neurons were conducted to visualize c-Fos protein and Fluoro-Gold concomitantly. We observed activated projection neurons of the vestibulo-sympathetic reflex pathway in the caudal half of the spinal, medial, and parvocellular medial vestibular nuclei. Approximately two-thirds of the cells were ipsilateral to Fluoro-Gold injection sites in both the RVLM and CVLM, and the remainder were contralateral. As a group, cells projecting to the RVLM were located slightly rostral to those with terminals in the CVLM. Individual activated projection neurons were multipolar, globular, or fusiform in shape. This study provides the first direct demonstration of the central vestibular neurons that mediate the vestibulo-sympathetic reflex. PMID:24323841

  18. Swimming behaviour and calcium incorporation into inner ear otoliths of fish after vestibular nerve transection

    Edelmann, E.; Anken, R. H.; Rahmann, H.

    2004-01-01

    Previous investigations on neonate swordtail fish (Xiphophorus helleri) revealed that otolithic calcium incorporation (visualized using the calcium tracer alizarin complexone) and thus otolith growth had ceased after nerve transection, supporting a hypothesis according to which the gravity-dependent otolith growth is regulated neuronally. Subsequent investigations on larval cichlid fish (Oreochromis mossambicus) yielded contrasting results, repeatedly depending on the particular batch of cichlids investigated. Like most neonate swordtails, Type I cichlids revealed a stop of calcium incorporation after unilateral vestibular nerve transection. Their behaviour after transection was normal, and the otolithic calcium incorporation in controls of the same batch was symmetric. In Type II cichlids, however, vestibular nerve transection had no effect on otolithic calcium incorporation. They behaved kinetotically after transection (this kind of kinetosis was qualitatively similar to the swimming behaviour exhibited by larval cichlids during microgravity in the course of parabolic aircraft flights). The otolithic calcium incorporation in control animals was asymmetric. These results show that the effects of vestibular nerve transection as well as the efficacy of the mechanism, which regulates otolith growth/otolithic calcium incorporation, are - depending on the particular batch of animals - genetically predispositioned. In conclusion, the regulation of otolithic calcium incorporation is guided neuronally, in part via the vestibular nerve and, in part, via a further pathway, which remains to be addressed in the course of future investigations.

  19. Epidemiology and natural history of vestibular schwannomas

    Stangerup, Sven-Eric; Caye-Thomasen, Per

    2012-01-01

    This article describes various epidemiologic trends for vestibular schwannomas over the last 35 years, including a brief note on terminology. Additionally, it provides information on the natural history of tumor growth and hearing level following the diagnosis of a vestibular schwannoma...

  20. Task, muscle and frequency dependent vestibular control of posture

    Forbes, P.A.; Siegmund, G.P.; Schouten, A.C.; Blouin, J.S.

    2015-01-01

    The vestibular system is crucial for postural control; however there are considerable differences in the task dependence and frequency response of vestibular reflexes in appendicular and axial muscles. For example, vestibular reflexes are only evoked in appendicular muscles when vestibular informati

  1. BRN 3.1 Knockouts Affect the Vestibular, Autonomic, and Circadian Rhythm Responses to 2G Exposure

    Murakami, D. M.; Erkman, L.; Rosenfeld, M. G.; Fuller, C. A.

    1999-01-01

    Our previous studies have demonstrated that 2G exposure via centrifugation significantly attenuated the daily mean and circadian rhythm amplitude of rat body temperature (Tb), heart rate, and activity (Act). In addition, 2G exposure activates neural responses in several vestibular, autonomic, and circadian nuclei. Although we have characterized the effect of 2G on an animal's physiological, neuronal, and behavioral responses, it will be important to understand the underlying neural and physiological mechanisms that mediate those responses. For example, the vestibular responses, proprioceptive feedback, or fluid shifts may be the critical factors that mediate the responses to 2G. As a first step to understand the relative importance of these different response pathways to altered gravitational fields, this study examined the contribution of the vestibular system by utilizing an animal model from molecular biology. Brain 3.1 (Bm 3.1) is a POU domain homeobox gene involved in the normal development of the vestibular and auditory system. Brn 3.1 deletion results in a loss of hair cells in the otoliths, semicircular canals, and cochlea. As a result mice with a Brn 3.1 deletion do not have a functioning vestibular or auditory system. The BRN 3.1 knockout mouse could be a very useful animal model for isolating the role of the vestibular system in mediating the physiological responses to 2G exposure. Therefore, this study compared the effect of 2G exposure via centrifugation between Brn 3.1 knockout (KO) versus Wildtype (W) mice.

  2. Effects of vibrotactile vestibular substitution on vestibular rehabilitation - preliminary study,

    Cibele Brugnera

    2015-12-01

    Full Text Available ABSTRACT INTRODUCTION: Some patients with severe impairment of body balance do not obtain adequate improvement from vestibular rehabilitation (VR. OBJECTIVE: To evaluate the effectiveness of Vertiguard(tm biofeedback equipment as a sensory substitution (SS of the vestibular system in patients who did not obtain sufficient improvement from VR. METHODS: This was a randomized prospective clinical study. Thirteen patients without satisfactory response to conventional VR were randomized into a study group (SG, which received the vibrotactile stimulus from Vertiguard(tm for ten days, and a control group (CG, which used equipment without the stimulus. For pre- and post-treatment assessment, the Sensory Organization Test (SOT protocol of the Computerized Dynamic Posturography (CDP and two scales of balance self-perception, Activities-specific Balance Confidence (ABC and Dizziness Handicap Inventory (DHI, were used. RESULTS: After treatment, only the SG showed statistically significant improvement in C5 (p = 0.007 and C6 (p = 0.01. On the ABC scale, there was a significant difference in the SG (p= 0.04. The DHI showed a significant difference in CG and SG with regard to the physical aspect, and only in the SG for the functional aspect (p = 0.04. CONCLUSION: The present findings show that sensory substitution using the vibrotactile stimulus of the Vertiguard(tm system helped with the integration of neural networks involved in maintaining posture, improving the strategies used in the recovery of body balance.

  3. Effects of microgravity on vestibular development and function in rats: genetics and environment

    Ronca, A. E.; Fritzsch, B.; Alberts, J. R.; Bruce, L. L.

    2000-01-01

    Our anatomical and behavioral studies of embryonic rats that developed in microgravity suggest that the vestibular sensory system, like the visual system, has genetically mediated processes of development that establish crude connections between the periphery and the brain. Environmental stimuli also regulate connection formation including terminal branch formation and fine-tuning of synaptic contacts. Axons of vestibular sensory neurons from gravistatic as well as linear acceleration receptors reach their targets in both microgravity and normal gravity, suggesting that this is a genetically regulated component of development. However, microgravity exposure delays the development of terminal branches and synapses in gravistatic but not linear acceleration-sensitive neurons and also produces behavioral changes. These latter changes reflect environmentally controlled processes of development.

  4. Glutamate and GABA in Vestibulo-Sympathetic Pathway Neurons

    Holstein, Gay R.; Friedrich, Victor L. Jr.; Martinelli, Giorgio P.

    2016-01-01

    The vestibulo-sympathetic reflex (VSR) actively modulates blood pressure during changes in posture. This reflex allows humans to stand up and quadrupeds to rear or climb without a precipitous decline in cerebral perfusion. The VSR pathway conveys signals from the vestibular end organs to the caudal vestibular nuclei. These cells, in turn, project to pre-sympathetic neurons in the rostral and caudal ventrolateral medulla (RVLM and CVLM, respectively). The present study assessed glutamate- and ...

  5. Influence of cochlear implantation on vestibular function.

    Chen, Xiulan; Chen, Xiaohua; Zhang, Fan; Qin, Zhaobing

    2016-07-01

    Conclusion Vestibular function in patients can be damaged following cochlear implantation. Therefore, assessing the pre-operative vestibular status, carefully choosing the side of implantation, and preserving function by using minimally invasive surgical techniques are important. Objectives The aim of this study was to assess the influence of cochlear implantation on vestibular function in patients with severe and profound sensorineural hearing loss, and to analyze a possible correlation between the changes in vestibular testing and post-operative vestibular symptoms. Methods Thirty-four patients were evaluated for vestibular function using the cervical and ocular vestibular-evoked myogenic potentials (cVEMP and oVEMP, respectively), and 29 patients underwent caloric tests pre-operatively and 4 weeks post-operatively. Results Before surgery, the cVEMPs were recorded bilaterally in 22 patients, unilaterally in eight patients, and absent bilaterally in four patients. The oVEMPs were recorded bilaterally in 19 patients, unilaterally in six patients, and absent bilaterally in nine patients. After implantation, the cVEMPs were absent in 10 patients and the oVEMPs were absent in seven patients on the implanted side. Caloric tests demonstrated canal paresis in 17 patients, and normal responses were recorded in 12 of the 29 patients pre-operatively. There was a significant decrease post-implantation in the ear implanted, with the exception of two patients. Two patients presented with vertigo and another two patients reported slight unsteadiness post-operatively, but all symptoms resolved within 7 days. The impaired vestibular function did not correlate with vestibular symptoms, age, or gender. Function on the contralateral side remained unaffected. PMID:27008103

  6. Progress toward development of a multichannel vestibular prosthesis for treatment of bilateral vestibular deficiency.

    Fridman, Gene Y; Della Santina, Charles C

    2012-11-01

    This article reviews vestibular pathology and the requirements and progress made in the design and construction of a vestibular prosthesis. Bilateral loss of vestibular sensation is disabling. When vestibular hair cells are injured by ototoxic medications or other insults to the labyrinth, the resulting loss of sensory input disrupts vestibulo-ocular reflexes (VORs) and vestibulo-spinal reflexes that normally stabilize the eyes and body. Affected individuals suffer poor vision during head movement, postural instability, chronic disequilibrium, and cognitive distraction. Although most individuals with residual sensation compensate for their loss over time, others fail to do so and have no adequate treatment options. A vestibular prosthesis analogous to cochlear implants but designed to modulate vestibular nerve activity during head movement should improve quality of life for these chronically dizzy individuals. We describe the impact of bilateral loss of vestibular sensation, animal studies supporting feasibility of prosthetic vestibular stimulation, the current status of multichannel vestibular sensory replacement prosthesis development, and challenges to successfully realizing this approach in clinical practice. In bilaterally vestibular-deficient rodents and rhesus monkeys, the Johns Hopkins multichannel vestibular prosthesis (MVP) partially restores the three-dimensional (3D) VOR for head rotations about any axis. Attempts at prosthetic vestibular stimulation of humans have not yet included the 3D eye movement assays necessary to accurately evaluate VOR alignment, but these initial forays have revealed responses that are otherwise comparable to observations in animals. Current efforts now focus on refining electrode design and surgical technique to enhance stimulus selectivity and preserve cochlear function, optimizing stimulus protocols to improve dynamic range and reduce excitation-inhibition asymmetry, and adapting laboratory MVP prototypes into devices

  7. Restoration of 3D Vestibular Sensation in Rhesus Monkeys Using a Multichannel Vestibular Prosthesis

    Dai, Chenkai; Fridman, Gene Y.; Davidovics, Natan; Chiang, Bryce; Ahn, Joong Ho; DELLA SANTINA, CHARLES C.

    2011-01-01

    Profound bilateral loss of vestibular hair cell function can cause chronically disabling loss of balance and inability to maintain stable vision during head and body movements. We have previously shown that chinchillas rendered bilaterally vestibular-deficient via intratympanic administration of the ototoxic antibiotic gentamicin regain a more nearly normal 3-dimensional vestibulo-ocular reflex (3D VOR) when head motion information sensed by a head-mounted multichannel vestibular prosthesis (...

  8. Migration of R28 Retinal Precursor Cells into Cochlear and Vestibular Organs

    DING Dalian; Gail Seigel; Richard Salvi

    2006-01-01

    Damaged hair cells and neurons in the inner ear generally can not be replaced in mammals. The loss of these cells causes permanent functional disorders in both the cochlear and vestibular systems. Transplantation of retinal precursor cells, R28 cells, into inner ear tissue may help replace missing cells. The aim of the current project was to induce R28 cell transdifferentiation into cochlear and vestibular cell types under culture conditions. The first part was related to R28 cell labeling with DiI fluorescence that would help identify and track R28 cells. The second part involved co-culturing R28 cells in cochlear and vestibular organotropic cultures or isolated spiral ganglion neurons. The results suggest that R28 cells have the potential to differentiate into supporting cell types and spiral ganglion neurons in serum free medium, probably under the influence of diffusible signals from inner ear tissues. This information is useful for future efforts in inducing stem cell differentiation in the inner ear to replace lost sensory and neural cells.

  9. Changes in Histamine Receptors (H1, H2, and H3 Expression in Rat Medial Vestibular Nucleus and Flocculus after Unilateral Labyrinthectomy: Histamine Receptors in Vestibular Compensation.

    Liuqing Zhou

    Full Text Available Vestibular compensation is the process of behavioral recovery following peripheral vestibular lesion. In clinics, the histaminergic medicine is the most widely prescribed for the treatment of vertigo and motion sickness, however, the molecular mechanisms by which histamine modulates vestibular function remain unclear. During recovery from the lesion, the modulation of histamine receptors in the medial vestibular nucleus (MVN and the flocculus may play an important role. Here with the means of quantitative real-time PCR, western blotting and immunohistochemistry, we studied the expression of histamine receptors (H1, H2, and H3 in the bilateral MVN and the flocculus of rats on the 1st, 3rd, and 7th day following unilateral labyrinthectomy (UL. Our results have shown that on the ipsi-lesional flocculus the H1, H2 and H3 receptors mRNA and the protein increased significantly on the 1st and 3rd day, with compare of sham controls and as well the contralateral side of UL. However, on the 7th day after UL, this expression returned to basal levels. Furthermore, elevated mRNA and protein levels of H1, H2 and H3 receptors were observed in the ipsi-lesional MVN on the 1st day after UL compared with sham controls and as well the contralateral side of UL. However, this asymmetric expression was absent by the 3rd post-UL. Our findings suggest that the upregulation of histamine receptors in the MVN and the flocculus may contribute to rebalancing the spontaneous discharge in bilateral MVN neurons during vestibular compensation.

  10. Sensory Dissociation in Vestibular Function Assessment

    Tolmachev Ivan

    2016-01-01

    Full Text Available The project aims to create а solution to the problem of early diagnostics of neurodegenerative disorders, accompanied by imbalance, and to develop rehabilitation methods for patients with vestibular disorders. The balanced upright position is a result of interaction between vestibular system, skeleton and muscles, visual, and proprioceptive systems. Postural abnormalities are caused by morphological or functional alteration of the components of the equilibrioception system. These disorders weaken the ability of the central nervous system to process vestibular, visual and proprioceptive signals, which are responsible for the sense of balance. Moreover, it also decreases the plasticity of the nervous system, resulting in adaptation disfunctionality. Unfortunately, premorbid detection of vestibular dysfunctions is quite a complicated test because available methods to evaluate postural reflexes have low sensitivity and specifity. Consequently, the development of methods to assess functional state of the equilibrioception system becoming viable in order to detect neurodegenerative disorders as early as possible, to control treatment and rehabilitation procedures.

  11. Outcome analysis of individualized vestibular rehabilitation protocols

    Black, F. O.; Angel, C. R.; Pesznecker, S. C.; Gianna, C.

    2000-01-01

    OBJECTIVE: To determine the outcome of vestibular rehabilitation protocols in subjects with peripheral vestibular disorders compared with normal and abnormal control subjects. STUDY DESIGN: Prospective study using repeated measure, matched control design. Subjects were solicited consecutively according to these criteria: vestibular disorder subjects who had abnormal results of computerized dynamic posturography (CDP) sensory organization tests (SOTs) 5 and 6 and underwent rehabilitation; vestibular disorder subjects who had abnormal results of SOTs 5 and 6 and did not undergo rehabilitation; and normal subjects (normal SOTs). SETTING: Tertiary neurotology clinic. SUBJECTS: Men and women over age 18 with chronic vestibular disorders and chief complaints of unsteadiness, imbalance, and/or motion intolerance, and normal subjects. INTERVENTIONS: Pre- and post-rehabilitation assessment included CDP, vestibular disability, and activities of daily living questionnaires. Individualized rehabilitation plans were designed and implemented to address the subject's specific complaints and functional deficits. Supervised sessions were held at weekly intervals, and self-administered programs were devised for daily home use. MAIN OUTCOME MEASURES: CDP composite and SOT scores, number of falls on CDP, and self-assessment questionnaire results. RESULTS: Subjects who underwent rehabilitation (Group A) showed statistically significant improvements in SOTs, overall composite score, and reduction in falls compared with abnormal (Group B) control groups. Group A's performances after rehabilitation were not significantly different from those of normal subjects (Group C) in SOTs 3 through 6, and close to normal on SOTs 1 and 2. Subjects in Group A also reported statistically significant symptomatic improvement. CONCLUSIONS: Outcome measures of vestibular protocol physical therapy confirmed objective and subjective improvement in subjects with chronic peripheral vestibular disorders. These

  12. Vestibular schwannoma: role of conservative management

    Suryanarayanan, R.; Ramsden, R. T.; Saeed, S R; Aggarwal, R.; King, A. T.; Rutherford, S A.; Evans, D G; Gillespie, J. E.

    2010-01-01

    Objective: To assess the outcome of conservative management of vestibular schwannoma.Study design: Observational study. Setting: Tertiary referral centre.Patients: Four hundred and thirty-six patients with vestibular schwannoma (490 tumours), including 327 sporadic tumours and 163 tumours in 109 patients with neurofibromatosis type two.Main outcome measures: The relationship of tumour growth to tumour size at presentation, and to certain demographic features.Results: The initial tumour size w...

  13. Sensory Dissociation in Vestibular Function Assessment

    Tolmachev Ivan; Brazovsky Konstantin; Schadenko Sergey; Korzhenkova Ekaterina

    2016-01-01

    The project aims to create а solution to the problem of early diagnostics of neurodegenerative disorders, accompanied by imbalance, and to develop rehabilitation methods for patients with vestibular disorders. The balanced upright position is a result of interaction between vestibular system, skeleton and muscles, visual, and proprioceptive systems. Postural abnormalities are caused by morphological or functional alteration of the components of the equilibrioception system. These disorders we...

  14. Current treatment options in vestibular migraine

    Mark Obermann

    2014-12-01

    Full Text Available Approximately 1% of the general population in western industrialized countries suffers from vestibular migraine. However, it remains widely unknown and often under diagnosed even despite the recently published diagnostic criteria for vestibular migraine. Treatment trials that specialize on vestibular migraine are scarce and systematic randomized controlled clinical trials are only now emerging.This review summarizes the knowledge on the currently available treatment options that were tested specifically for vestibular migraine and gives an evidence-based, informed treatment recommendation with all its limitations.To date only two randomized controlled treatment trials provide limited evidence for the use of rizatriptan and zolmitriptan for the treatment of vestibular migraine attacks because of methodological shortcommings. There is an on-going a multicenter randomized placebo-controlled trial testing metoprolol 95 mg vs. placebo (PROVEMIG-trial. Therefore, the therapeutic recommendations for the prophylactic treatment of vestibular migraine are currently widely based on the guidelines of migraine with and without aura as well as expert opinion.

  15. Interactive Healthcare Systems in the Home: Vestibular Rehabilitation

    Aarhus, Rikke; Grönvall, Erik; Larsen, Simon Bo

    2010-01-01

    Vestibular dysfunction is a balance disorder, causing dizziness that provokes discomfort and fall situations. This paper discusses early results from a project that aims to develop assistive technologies to support home-based rehabilitation for elderly affected by Vestibular dysfunction....

  16. PLCγ-activated signalling is essential for TrkB mediated sensory neuron structural plasticity

    Rocha-Sanchez Sonia M

    2010-10-01

    Full Text Available Abstract Background The vestibular system provides the primary input of our sense of balance and spatial orientation. Dysfunction of the vestibular system can severely affect a person's quality of life. Therefore, understanding the molecular basis of vestibular neuron survival, maintenance, and innervation of the target sensory epithelia is fundamental. Results Here we report that a point mutation at the phospholipase Cγ (PLCγ docking site in the mouse neurotrophin tyrosine kinase receptor TrkB (Ntrk2 specifically impairs fiber guidance inside the vestibular sensory epithelia, but has limited effects on the survival of vestibular sensory neurons and growth of afferent processes toward the sensory epithelia. We also show that expression of the TRPC3 cation calcium channel, whose activity is known to be required for nerve-growth cone guidance induced by brain-derived neurotrophic factor (BDNF, is altered in these animals. In addition, we find that absence of the PLCγ mediated TrkB signalling interferes with the transformation of bouton type afferent terminals of vestibular dendrites into calyces (the largest synaptic contact of dendrites known in the mammalian nervous system on type I vestibular hair cells; the latter are normally distributed in these mutants as revealed by an unaltered expression pattern of the potassium channel KCNQ4 in these cells. Conclusions These results demonstrate a crucial involvement of the TrkB/PLCγ-mediated intracellular signalling in structural aspects of sensory neuron plasticity.

  17. From ear to uncertainty: vestibular contributions to cognitive function

    Paul F. Smith; Zheng, Yiwen

    2013-01-01

    In addition to the deficits in the vestibulo-ocular and vestibulo-spinal reflexes that occur following vestibular dysfunction, there is substantial evidence that vestibular loss also causes cognitive disorders, some of which may be due to the reflexive deficits and some of which are related to the role that ascending vestibular pathways to the limbic system and neocortex play in spatial orientation. In this review we summarize the evidence that vestibular loss causes cognitive disorders, espe...

  18. From ear to uncertainty: Vestibular contributions to cognitive function.

    Paul Smith

    2013-01-01

    In addition to the deficits in the vestibulo-ocular and vestibulo-spinal reflexes that occur following vestibular dysfunction, there is substantial evidence that vestibular loss also causes cognitive disorders, some of which may be due to the reflexive deficits and some of which are related to the role that ascending vestibular pathways to the limbic system and cortex play in spatial orientation. In this review we summarise the evidence that vestibular loss causes cognitive disorders, especia...

  19. Tests of walking balance for screening vestibular disorders

    Cohen, Helen S.; Mulavara, Ajitkumar P.; Peters, Brian T.; Sangi-Haghpeykar, Haleh; Bloomberg, Jacob J.

    2012-01-01

    Few reliable tests are available for screening people rapidly for vestibular disorders although such tests would be useful for a variety of testing situations. Balance testing is widely performed but of unknown value for screening. The goal of this study was to determine the value of tests of walking balance for screening people with vestibular impairments. We tested three groups of patients with known vestibular impairments: benign paroxysmal positional vertigo, unilateral vestibular weaknes...

  20. Complications of Microsurgery of Vestibular Schwannoma

    Jan Betka

    2014-01-01

    Full Text Available Background. The aim of this study was to analyze complications of vestibular schwannoma (VS microsurgery. Material and Methods. A retrospective study was performed in 333 patients with unilateral vestibular schwannoma indicated for surgical treatment between January 1997 and December 2012. Postoperative complications were assessed immediately after VS surgery as well as during outpatient followup. Results. In all 333 patients microsurgical vestibular schwannoma (Koos grade 1: 12, grade 2: 34, grade 3: 62, and grade 4: 225 removal was performed. The main neurological complication was facial nerve dysfunction. The intermediate and poor function (HB III–VI was observed in 124 cases (45% immediately after surgery and in 104 cases (33% on the last followup. We encountered disordered vestibular compensation in 13%, permanent trigeminal nerve dysfunction in 1%, and transient lower cranial nerves (IX–XI deficit in 6%. Nonneurological complications included CSF leakage in 63% (lateral/medial variant: 99/1%, headache in 9%, and intracerebral hemorrhage in 5%. We did not encounter any case of meningitis. Conclusions. Our study demonstrates that despite the benefits of advanced high-tech equipment, refined microsurgical instruments, and highly developed neuroimaging technologies, there are still various and significant complications associated with vestibular schwannomas microsurgery.

  1. Sensorial countermeasures for vestibular spatial disorientation.

    Paillard, Aurore C; Quarck, Gaëlle; Denise, Pierre

    2014-05-01

    Spatial disorientation is defined as an erroneous body orientation perceived by pilots during flights. Limits of the vestibular system provoke frequent spatial disorientation mishaps. Although vestibular spatial disorientation is experienced frequently in aviation, there is no intuitive countermeasure against spatial disorientation mishaps to date. The aim of this review is to describe the current sensorial countermeasures and to examine future leads in sensorial ergonomics for vestibular spatial disorientation. This work reviews: 1) the visual ergonomics, 2) the vestibular countermeasures, 3) the auditory displays, 4) the somatosensory countermeasures, and, finally, 5) the multisensory displays. This review emphasizes the positive aspects of auditory and somatosensory countermeasures as well as multisensory devices. Even if some aspects such as sensory conflict and motion sickness need to be assessed, these countermeasures should be taken into consideration for ergonomics work in the future. However, a recent development in aviation might offer new and better perspectives: unmanned aerial vehicles. Unmanned aerial vehicles aim to go beyond the physiological boundaries of human sensorial systems and would allow for coping with spatial disorientation and motion sickness. Even if research is necessary to improve the interaction between machines and humans, this recent development might be incredibly useful for decreasing or even stopping vestibular spatial disorientation. PMID:24834571

  2. Functional stochastic resonance in human baroreflex induced by 1/f-type noisy galvanic vestibular stimulation

    Soma, Rika; Kwak, Shin; Yamamoto, Yoshiharu

    2003-05-01

    We hypothesized that 1/f noise is more beneficial than the conventional white noise in optimizing the brain's response to a weak input signal, and showed that externally added 1/f noise outperforms white noise in sensitizing human baroreflex centers in the brain. We examined the compensatory heart rate response to weak periodic signal introduced at the venous blood pressure receptor, while adding either 1/f or white noise with the same variance to the brain stem by electrically stimulating the bilateral vestibular afferents cutaneously. This stochastic galvanic vestibular stimulation, activating the vestibulo-sympathetic pathway in the brain stem, optimized covariance between weak input signals and the heart rate responses both with 1/f and white noise. Further, the optimal noise level with 1/f noise was significantly lower than that with white noise, suggesting the functional benefit of 1/f noise for the neuronal information transfer in the brain.

  3. Eye movement and vestibular dysfunction in mitochondrial A3243G mutation.

    Kim, Sung-Hee; Akbarkhodjaeva, Ziyoda Abdulkhaevna; Jung, Ileok; Kim, Ji-Soo

    2016-07-01

    Studying eye movements and vestibular function would provide insights into brain networks that are vulnerable in mitochondrial disorders. We sought eye movement and vestibular abnormalities in three Korean patients with a mitochondrial A3243G point mutation. The patients suffered from vertigo and imbalance during the stroke-like and seizure episodes from lesions involving the posterior cerebral cortex, which were accompanied by bilateral saccadic hypermetria and horizontal gaze-evoked nystagmus. Furthermore, two patients showed bilateral impairments of the vestibulo-ocular reflex during head impulses for the horizontal and posterior canals on both sides in the absence of caloric paresis. Cerebellar atrophy was prominent on MRIs in two patients and was less marked in the other patient. These findings imply that the cerebellum is susceptible to neuronal energy deficiency due to mitochondrial A3243G point mutation. PMID:27075643

  4. Can a finding of cervical vestibular evoked myogenic potentials contribute to vestibular migraine diagnostics?

    Tihana Vešligaj

    2016-02-01

    Full Text Available Aim To investigate differences in vestibular evoked myogenic potentials (VEMP results with patients suffering from vestibular migraine and healthy people, taking into consideration values of threshold and latency of occurrence of the characteristic wave complex, size of amplitude, and interaural amplitude ratio. According to the results, determine the importance and usefulness of VEMP in vestibular migraine diagnostics. Methods A total number of 62 subjects were included in the study, 32 of them belonging to a group of patients suffering from vestibular migraine (VM, while other 30 were in a control group of healthy subjects. Information was collected during the diagnostic evaluation. General and otoneurological history of patients and bedside tests, audiological results, videonystagmography and cervical vestibular evoked myogenic potentials (cVEMP were made. Results There was a difference in an interaural ratio of amplitudes in the experimental and control groups, but it was not found to be clinically significant. By ToneBurst 500 Hz method, the interaural amplitude ratio higher than 35% was measured in 46.97% subjects, while the response was totally unilaterally missing in 28.8% patients. Conclusion Even the sophisticated method as cVEMP does not give the ultimate result confirming the vestibular migraine diagnosis, and neither do other diagnostic methods. cVEMP result can contribute to the completion of full mosaic of vestibular migraine diagnostics.

  5. Spontaneous shrinkage of vestibular schwannoma

    Romani, Rossana; Pollock, Jonathan

    2016-01-01

    Background: “Watch, wait, and rescan” (WWR) has an established place as a successful management option for a significant proportion of vestibular schwannomas (VS) as an alternative to microsurgical removal or stereotactic radiotherapy. VS may grow slowly and continuously, followed by stagnation or even shrinkage. We present two case reports of spontaneous shrinkage of VS along with a review of the literature. Case Description: A 29-year-old female presented with a progressive history of visual blurring and intermittent diplopia over 2 months. A 29 mm of maximum intracranial diameter (ICD) VS with secondary obstructive hydrocephalus was diagnosed. The patient underwent a ventriculo-peritoneal shunt with resolution of her symptoms and opted for initial WWR management. Interval scanning between 2007 and 2014 showed progressive reduction in the maximum ICD together with reduction in the degree of central tumor enhancement. Maximum ICD at most recent follow up was 22 mm. A 28-year-old female was referred with right sensorineural deafness. A right VS of maximum ICD of 27 mm was diagnosed. Initial WWR management was planned after discussion. Serial imaging showed an initial increase in the size of the tumor followed by progressive reduction in size. The most recent follow up showed a maximum ICD of 20 mm. Conclusion: Early WWR management can be associated with spontaneous shrinkage of VS over time. Prospective clinical study of larger numbers of such cases using the UK VS database may help to identify predictive factors for the spontaneous regression of VS. PMID:27280055

  6. Vestibular Schwannoma or acoustic neuroma

    Hekmatara M

    1997-04-01

    Full Text Available Vestibular schwannoma is the most common tumor of the posterior fossa of the skull. Patients referred with the primary otologic symptoms such as hearing loss, tinnitus, vertigo, imbalance, and the cranial nerve palsy. Thirty-three patients were operated and treated by a team of otolaryngologist and neurosurgeon, anudiometrist, and internist. Patients'chiefcomplaint was due to 94% hearing loss and 27% tinnitus. They scarcely complain of vertigo. If a patient refers with the palsy or paralysis of facial nerve preoperation, we must think of the facial nerve schwannoma or hemangioma or congential cholestoma or malignant metastases rather than acoustic neuroma. The best way for preoperative diagnosis is audiometry, ABR (Auditory Brain Response, and SDS (speech discrimination score with 90% success, but computer Tomography (CT scan and MRI (Magnetic Resonance Image are the valuable anatomic diagnostic radiographic devices. The best method of operation is translabirynthine approach (TLA, since it has the advantages such as an easy access to nerve paths and being the nearest path to CPA (Cerebellopontine Angle. Physicians ought to talk to patients about the importance of the microscopic surgery, surgical methods, and their probable diverse effects such as hearing loss, facial nerve palsy, and intracranial problems.

  7. Optical nerve stimulation for a vestibular prosthesis

    Harris, David M.; Bierer, Steven M.; Wells, Jonathon D.; Phillips, James O.

    2009-02-01

    Infrared Nerve Stimulation (INS) offers several advantages over electrical stimulation, including more precise spatial selectivity and improved surgical access. In this study, INS and electrical stimulation were compared in their ability to activate the vestibular branch of the VIIIth nerve, as a potential way to treat balance disorders. The superior and lateral canals of the vestibular system of Guinea pigs were identified and approached with the aid of precise 3-D reconstructions. A monopolar platinum stimulating electrode was positioned near the ampullae of the canals, and biphasic current pulses were used to stimulate vestibular evoked potentials and eye movements. Thresholds and input/output functions were measured for various stimulus conditions. A short pulsed diode laser (Capella, Lockheed Martin-Aculight, Inc., Bothell WA) was placed in the same anatomical position and various stimulus conditions were evaluated in their ability to evoke similar potentials and eye movements.

  8. The nucleus of the optic tract. Its function in gaze stabilization and control of visual-vestibular interaction

    Cohen, B.; Reisine, H.; Yokota, J. I.; Raphan, T.

    1992-01-01

    1. Electrical stimulation of the nucleus of the optic tract (NOT) induced nystagmus and after-nystagmus with ipsilateral slow phases. The velocity characteristics of the nystagmus were similar to those of the slow component of optokinetic nystagmus (OKN) and to optokinetic after-nystagmus (OKAN), both of which are produced by velocity storage in the vestibular system. When NOT was destroyed, these components disappeared. This indicates that velocity storage is activated from the visual system through NOT. 2. Velocity storage produces compensatory eye-in-head and head-on-body movements through the vestibular system. The association of NOT with velocity storage implies that NOT helps stabilize gaze in space during both passive motion and active locomotion in light with an angular component. It has been suggested that "vestibular-only" neurons in the vestibular nuclei play an important role in generation of velocity storage. Similarities between the rise and fall times of eye velocity during OKN and OKAN to firing rates of vestibular-only neurons suggest that these cells may receive their visual input through NOT. 3. One NOT was injected with muscimol, a GABAA agonist. Ipsilateral OKN and OKAN were lost, suggesting that GABA, which is an inhibitory transmitter in NOT, acts on projection pathways to the brain stem. A striking finding was that visual suppression and habituation of contralateral slow phases of vestibular nystagmus were also abolished after muscimol injection. The latter implies that NOT plays an important role in producing visual suppression of the VOR and habituating its time constant. 4. Habituation is lost after nodulus and uvula lesions and visual suppression after lesions of the flocculus and paraflocculus. We postulate that the disappearance of vestibular habituation and of visual suppression of vestibular responses after muscimol injections was due to dysfacilitation of the prominent NOT-inferior olive pathway, inactivating climbing fibers from

  9. RECORDING OF VESTIBULAR EVOKED MYOGENIC POTENTIALS

    A. A. Sazgar

    2006-05-01

    Full Text Available It has been shown recently that loud clicks evoke myogenic potentials in the tonically contracting sternocleidomastoid muscles. Studies have suggested that these potentials are of vestibular origin, especially of the saccule and inferior vestibular nerve. A pilot study was undertaken in our hospital to record vestibular evoked myogenic potentials (VEMP for the first time in Iran. Eighteen healthy volunteers (32 ears without history of otologic or vestibular disorders were subjected to the VEMP test. Twenty-one patients (26 ears with unilateral (6 patients and bilateral (5 patients high frequency sensorineural hearing loss with unknown etiology, acoustic neuroma (1 patient, Meniere’s disease (4 patients and unilateral low frequency sensorineural hearing loss without vestibular complaint (5 patients were also enrolled in this study. VEMP response to clicks was obtained from 84.4% of ears of healthy subjects. These subjects demonstrated short latency waves to click stimuli during tonic neck flexor activation. Mean latencies of first positive (p13 and first negative (n23 potentials in healthy subjects were 12.45 ± 1.9 ms and 20.8 ± 3.5 ms, respectively. Median latencies of these two potentials were 12.1 and 19.3 ms, respectively. We could record VEMP in 5 patients with unilateral and all patients with high and low frequency sensorineural hearing loss without vestibular complaint. In the patient with acoustic neuroma VEMP was absent on the affected side. This technique may offer a new method to evaluate otolith and sacculocollic pathways in human.

  10. Recovery of vestibular function following hair cell destruction by streptomycin

    Jones, T. A.; Nelson, R. C.

    1992-01-01

    Can the vestibular periphery of warm-blooded vertebrates recover functionally from severe sensory hair cell loss? Recent findings in birds suggest a mechanism for recovery but in fact no direct functional evidence has been reported. We produced vestibular hair cell lesions using the ototoxic agent streptomycin sulfate (600 mg/kg/day, 8 days, chicks, Gallus domesticus). Compound action potentials of the vestibular nerve were used as a direct measure of peripheral vestibular function. Vestibular thresholds, neural activation latencies and amplitudes were documented. Eight days of drug treatment elevated thresholds significantly (P morphologies including activation latencies and amplitudes required an additional 6-8 weeks.

  11. Outcome after translabyrinthine surgery for vestibular schwannomas

    Springborg, Jacob Bertram; Fugleholm, Kåre; Poulsgaard, Lars;

    2012-01-01

    The objective of this article is to study the outcome after translabyrinthine surgery for vestibular schwannomas, with special focus on the facial nerve function. The study design is a case series from a national centralized database and it is set in two University Hospitals in Denmark. Participa......The objective of this article is to study the outcome after translabyrinthine surgery for vestibular schwannomas, with special focus on the facial nerve function. The study design is a case series from a national centralized database and it is set in two University Hospitals in Denmark...

  12. Vestibular schwannoma: anatomical, medical and surgical perspective

    Ashfaq Ul Hassan

    2013-06-01

    Full Text Available The term "acoustic" is a misnomer, as the tumor rarely arises from the acoustic (or cochlear division of the vestibulocochlear nerve. The correct medical term is vestibular schwannoma, because it involves the vestibular portion of the 8th cranial nerve. They are benign, rather rare tumors. They expand in size and grow larger; they can push against the brain. While the tumor does not actually invade the brain, the pressure of the tumor can displace brain tissue. [Int J Res Med Sci 2013; 1(3.000: 178-182

  13. From ear to uncertainty: Vestibular contributions to cognitive function.

    Paul eSmith

    2013-11-01

    Full Text Available In addition to the deficits in the vestibulo-ocular and vestibulo-spinal reflexes that occur following vestibular dysfunction, there is substantial evidence that vestibular loss also causes cognitive disorders, some of which may be due to the reflexive deficits and some of which are related to the role that ascending vestibular pathways to the limbic system and cortex play in spatial orientation. In this review we summarise the evidence that vestibular loss causes cognitive disorders, especially spatial memory deficits, in animals and humans and critically evaluate the evidence that these deficits are not due to hearing loss, problems with motor control, oscillopsia or anxiety and depression. We review the evidence that vestibular lesions affect head direction and place cells as well as the emerging evidence that artificial activation of the vestibular system, using galvanic vestibular stimulation, can modulate cognitive function.

  14. From ear to uncertainty: vestibular contributions to cognitive function.

    Smith, Paul F; Zheng, Yiwen

    2013-01-01

    In addition to the deficits in the vestibulo-ocular and vestibulo-spinal reflexes that occur following vestibular dysfunction, there is substantial evidence that vestibular loss also causes cognitive disorders, some of which may be due to the reflexive deficits and some of which are related to the role that ascending vestibular pathways to the limbic system and neocortex play in spatial orientation. In this review we summarize the evidence that vestibular loss causes cognitive disorders, especially spatial memory deficits, in animals and humans and critically evaluate the evidence that these deficits are not due to hearing loss, problems with motor control, oscillopsia or anxiety and depression. We review the evidence that vestibular lesions affect head direction and place cells as well as the emerging evidence that artificial activation of the vestibular system, using galvanic vestibular stimulation (GVS), can modulate cognitive function. PMID:24324413

  15. Vestibular migraine: diagnosis challenges and need for targeted treatment.

    Barbosa, Felipe; Villa, Thaís Rodrigues

    2016-05-01

    Approximately 1% of the general population suffers from vestibular migraine. Despite the recently published diagnostic criteria, it is still underdiagnosed condition. The exact neural mechanisms of vestibular migraine are still unclear, but the variability of symptoms and clinical findings both during and between attacks suggests an important interaction between trigeminal and vestibular systems. Vestibular migraine often begins several years after typical migraine and has a variable clinical presentation. In vestibular migraine patients, the neurological and neurotological examination is mostly normal and the diagnosis will be based in the patient clinical history. Treatment trials that specialize on vestibular migraine are scarce and therapeutic recommendations are based on migraine guidelines. Controlled studies on the efficacy of pharmacologic interventions in the treatment of vestibular migraine should be performed. PMID:27191239

  16. Determining the direction of vestibular-evoked balance responses using stochastic vestibular stimulation

    Mian, O. S.; Day, B. L.

    2009-01-01

    As a tool for investigating vestibulo-motor function, stochastic vestibular stimulation (SVS) has some advantages over galvanic vestibular stimulation. However, there is no technique currently available for extracting direction information from SVS-evoked motor responses. It is essential to be able to measure the direction of response if one wishes to investigate the operation of key spatial transformation processes in the brain. Here we describe and validate a technique for determining the d...

  17. Galvanic vestibular stimulation: a novel modulatory countermeasure for vestibular-associated movement disorders

    Rizzo-Sierra, Carlos V; Alexander Gonzalez-Castaño; Leon-Sarmiento, Fidias E

    2014-01-01

    Motion sickness or kinetosis is the result of the abnormal neural output originated by visual, proprioceptive and vestibular mismatch, which reverses once the dysfunctional sensory information becomes coherent. The space adaptation syndrome or space sickness relates to motion sickness; it is considered to be due to yaw, pith, and roll coordinates mismatch. Several behavioural and pharmacological measures have been proposed to control these vestibular-associated movement disorders with no succ...

  18. Asymmetry of balance responses to monaural galvanic vestibular stimulation in subjects with vestibular schwannoma ☆

    Welgampola, M. S.; Ramsay, E.; Gleeson, M. J.; Day, B. L.

    2013-01-01

    Objective We investigated the potential of galvanic vestibular stimulation (GVS) to quantify lateralised asymmetry of the vestibulospinal pathways by measuring balance responses to monaural GVS in 10 subjects with vestibular schwannoma and 22 healthy control subjects. Methods Subjects standing without vision were stimulated with 3 s, 1 mA direct current stimuli delivered monaurally. The mean magnitude and direction of the evoked balance responses in the horizontal plane were measured from gro...

  19. Loss of Afferent Vestibular Input Produces Central Adaptation and Increased Gain of Vestibular Prosthetic Stimulation.

    Phillips, Christopher; Shepherd, Sarah J; Nowack, Amy; Nie, Kaibao; Kaneko, Chris R S; Rubinstein, Jay T; Ling, Leo; Phillips, James O

    2016-02-01

    Implanted vestibular neurostimulators are effective in driving slow phase eye movements in monkeys and humans. Furthermore, increases in slow phase velocity and electrically evoked compound action potential (vECAP) amplitudes occur with increasing current amplitude of electrical stimulation. In intact monkeys, protracted intermittent stimulation continues to produce robust behavioral responses and preserved vECAPs. In lesioned monkeys, shorter duration studies show preserved but with somewhat lower or higher velocity behavioral responses. It has been proposed that such changes are due to central adaptive changes in the electrically elicited vestibulo-ocular reflex (VOR). It is equally possible that these differences are due to changes in the vestibular periphery in response to activation of the vestibular efferent system. In order to investigate the site of adaptive change in response to electrical stimulation, we performed transtympanic gentamicin perfusions to induce rapid changes in vestibular input in monkeys with long-standing stably functioning vestibular neurostimulators, disambiguating the effects of implantation from the effects of ototoxic lesion. Gentamicin injection was effective in producing a large reduction in natural VOR only when it was performed in the non-implanted ear, suggesting that the implanted ear contributed little to the natural rotational response before injection. Injection of the implanted ear produced a reduction in the vECAP responses in that ear, suggesting that the intact hair cells in the non-functional ipsilateral ear were successfully lesioned by gentamicin, reducing the efficacy of stimulation in that ear. Despite this, injection of both ears produced central plastic changes that resulted in a dramatically increased slow phase velocity nystagmus elicited by electrical stimulation. These results suggest that loss of vestibular afferent activity, and a concurrent loss of electrically elicited vestibular input, produces an

  20. Nonneuronal cells regulate synapse formation in the vestibular sensory epithelium via erbB-dependent BDNF expression

    Gómez-Casati, Maria E; MURTIE, JOSHUA C.; Rio, Carlos; Stankovic, Konstantina; Liberman, M. Charles; Corfas, Gabriel

    2010-01-01

    Recent studies indicate that molecules released by glia can induce synapse formation. However, what induces glia to produce such signals, their identity, and their in vivo relevance remain poorly understood. Here we demonstrate that supporting cells of the vestibular organ—cells that have many characteristics of glia—promote synapse formation only when induced by neuron-derived signals. Furthermore, we identify BDNF as the synaptogenic signal produced by these nonneuronal cells. Mice in which...

  1. Vestibular Dysfunctions in Cochlear Implant Patients; A Vestibular Evoked Myogenic Potential Study

    Masoud Motasaddi Zarandy

    2011-12-01

    Full Text Available Background and Aim: Vestibular evoked myogenic potential in response to click or short tone burst stimuli have been used as a clinical test for distinguish saccule and inferior vestibular nerve diseases. Different studies show that cochlear implant could have inverse effects on vestibular structures. We aimed to investigate vestibular evoked myogenic potential in unilateral cochlear implanted individuals in compare to normal individuals.Methods: Thirty-three unilateral cochlear implanted patients (mean age 19.96 years and 30 normal hearing individuals (mean age 24-27 years as control group were enrolled in this cross- sectional study. Absolute latencies and amplitudes of myogenic potential responses were measured and compared in both groups.Results: Myogenic potential recorded in both ears of all controls were normal. No response could be recorded in 16 patients (48.48% from both ears. In three patients, responses were recorded in both ears though the amplitude of waves was reduced in implanted ear. Unilateral response could be recorded in 14 patients only in their non-implanted ear.Conclusion: Vestibular evoked myogenic potential test is a useful tool for assessing saccular function in cochlear implant patients. Damages of osseous spiral lamina and basilar membrane after cochlear implantation could result in dysfunctions of vestibular organs specially saccule. It seems that saccule could be easily damaged after cochlear implantation. This would cause absence or reduced amplitudes in myogenic potential.

  2. Cervical vestibular evoked myogenic potentials in children

    Alcione Botelho Pereira

    2015-08-01

    Full Text Available INTRODUCTION: Cervical vestibular evoked myogenic potential is a test used in neurotological examination. It verifies the integrity of vestibular function through a muscular response evoked by an acoustic stimulation which activates the saccular macula. Normal standards in adults have been established, however, there are few published data on the normal responses in children.OBJECTIVE: To establish normal standards for vestibular myogenic responses in children without neurotological complaints.METHODS: This study's design is a cohort with cross-sectional analysis. The sample consisted of 30 subjects, 15 females (50% and 15 males (50%.RESULTS: The age of the subjects ranged between 8 and 13 years, with a mean of 10.2 (± 1.7. P1 peak showed an average latency of 17.26 (± 1.78 ms and a mean amplitude of 49.34 (± 23.07 µV, and the N2 peak showed an average latency of 24.78 (± 2.18 ms and mean amplitude of 66.23 (± 36.18 µV. P1-N2 mean amplitude was 115.6 (± 55.7 µV. There were no statistically significant differences when comparing by gender or by laterality.CONCLUSION: We established normal values of cervical myogenic vestibular responses in children between 8 and 13 years without neurotological complaints.

  3. Perspectives in vestibular diagnostics and therapy [

    Ernst, Arneborg

    2012-04-01

    Full Text Available [english] Vestibular diagnostics and therapy ist the mirror of technological, scientific and socio-economics trends as are other fields of clinical medicine. These trends have led to a substantial diversification of the field of neurotology.The improvements in diagnostics have been characterized by the introduction of new receptor testing tools (e.g., VEMPs, progress in imaging (e.g., the endolymphatic hydrops and in the description of central-vestibular neuroplasticity. The etiopathology of vestibular disorders has been updated by geneticists (e.g., the description of the COCH gene mutations, the detection of structural abnormalities (e.g., dehiscence syndromes and related disorders (e.g. migraine-associated vertigo. The therapeutic options were extended by re-evaluation of techniques known a long time ago (e.g., saccus exposure, the development of new approaches (e.g., dehiscence repair and the introduction of new drug therapy concepts (e.g., local drug delivery. Implantable, neuroprosthetic solutions have not yet reached experimental safety and validity and are still far away. However, externally worn neuroprosthetic solution were introduced in the rehab of vestibular disorders (e.g., VertiGuard system.These and related trends point into a medical future which is characterized by presbyvertigo as classical sign of the demographic changes ahead, by shortage of financial resources and a medico-legally over-regulated, even hostile environment for physicians in clinical medicine.

  4. Response to Vestibular Sensory Events in Autism

    Kern, Janet K.; Garver, Carolyn R.; Grannemann, Bruce D.; Trivedi, Madhukar H.; Carmody, Thomas; Andrews, Alonzo A.; Mehta, Jyutika A.

    2007-01-01

    The purpose of this study was to examine the response to vestibular sensory events in persons with autism. The data for this study was collected as part of a cross-sectional study that examined sensory processing (using the Sensory Profile) in 103 persons with autism, 3-43 years of age, compared to age- and gender-matched community controls. The…

  5. Vestibular stimulation leads to distinct hemodynamic patterning

    Kerman, I. A.; Emanuel, B. A.; Yates, B. J.

    2000-01-01

    Previous studies demonstrated that responses of a particular sympathetic nerve to vestibular stimulation depend on the type of tissue the nerve innervates as well as its anatomic location. In the present study, we sought to determine whether such precise patterning of vestibulosympathetic reflexes could lead to specific hemodynamic alterations in response to vestibular afferent activation. We simultaneously measured changes in systemic blood pressure and blood flow (with the use of Doppler flowmetry) to the hindlimb (femoral artery), forelimb (brachial artery), and kidney (renal artery) in chloralose-urethane-anesthetized, baroreceptor-denervated cats. Electrical vestibular stimulation led to depressor responses, 8 +/- 2 mmHg (mean +/- SE) in magnitude, that were accompanied by decreases in femoral vasoconstriction (23 +/- 4% decrease in vascular resistance or 36 +/- 7% increase in vascular conductance) and increases in brachial vascular tone (resistance increase of 10 +/- 6% and conductance decrease of 11 +/- 4%). Relatively small changes (vasoconstriction in all three beds. These data suggest that vestibular inputs lead to a complex pattern of cardiovascular changes that is distinct from that which occurs in response to activation of other types of somatic afferents.

  6. Cell Death, Neuronal Plasticity and Functional Loading in the Development of the Central Nervous System

    Keefe, J. R.

    1985-01-01

    Research on the precise timing and regulation of neuron production and maturation in the vestibular and visual systems of Wistar rats and several inbred strains of mice (C57B16 and Pallid mutant) concentrated upon establishing a timing baseline for mitotic development of the neurons of the vestibular nuclei and the peripheral vestibular sensory structures (maculae, cristae). This involved studies of the timing and site of neuronal cell birth and preliminary studies of neuronal cell death in both central and peripheral elements of the mammalian vestibular system. Studies on neuronal generation and maturation in the retina were recently added to provide a mechanism for more properly defining the in utero' developmental age of the individual fetal subject and to closely monitor potential transplacental effects of environmentally stressed maternal systems. Information is given on current efforts concentrating upon the (1) perinatal period of development (E18 thru P14) and (2) the role of cell death in response to variation in the functional loading of the vestibular and proprioreceptive systems in developing mammalian organisms.

  7. Vestibular loss and balance training cause similar changes in human cerebral white matter fractional anisotropy.

    Nadine Hummel

    Full Text Available Patients with bilateral vestibular loss suffer from severe balance deficits during normal everyday movements. Ballet dancers, figure skaters, or slackliners, in contrast, are extraordinarily well trained in maintaining balance for the extreme balance situations that they are exposed to. Both training and disease can lead to changes in the diffusion properties of white matter that are related to skill level or disease progression respectively. In this study, we used diffusion tensor imaging (DTI to compare white matter diffusivity between these two study groups and their age- and sex-matched controls. We found that vestibular patients and balance-trained subjects show a reduction of fractional anisotropy in similar white matter tracts, due to a relative increase in radial diffusivity (perpendicular to the main diffusion direction. Reduced fractional anisotropy was not only found in sensory and motor areas, but in a widespread network including long-range connections, limbic and association pathways. The reduced fractional anisotropy did not correlate with any cognitive, disease-related or skill-related factors. The similarity in FA between the two study groups, together with the absence of a relationship between skill or disease factors and white matter changes, suggests a common mechanism for these white matter differences. We propose that both study groups must exert increased effort to meet their respective usual balance requirements. Since balance training has been shown to effectively reduce the symptoms of vestibular failure, the changes in white matter shown here may represent a neuronal mechanism for rehabilitation.

  8. Swimming Behavior and Calcium Incorporation into inner Ear Otoliths of Fish after vestibular Nerve Transection

    Edelmann, E.; Anken, R.; Rahmann, H.

    Previous investigations on neonate swordtail fish (Xiphophorus helleri) revealed that otolithic calcium incorporation (visualized using the calcium-tracer alizarin- complexone) and thus otolith growth had ceased after nerve transection, supporting a hypothesis according to which the gravity-dependent otolith growth is regulated neuronally. Subsequent investigations on larval cichlid fish (Oreochromis mossambicus) yielded contrasting results, repeatedly depending on the particular batch of cichlids investigated: Like neonate swordtails, type I cichlids revealed a stop of calcium incorporation after unilateral vestibular nerve transection. Their behaviour after transection was normal and the otolithic calcium incorporation in controls of the same batch was symmetrical. In type II cichlids, however, vestibular nerve transection had no effect on otolithic calcium incorporation. They behaved kinetotically after transection (this kind of kinetosis was qualitatively similar to the swimming behaviour exhibited by larval cichlids during microgravity in the course of parabolic aircraft flights). The otolithic calcium incorporation in control animals was asymmetrical. These results stongly suggest that the effects of vestibular nerve transection as well as the efficacy of the mechanism, which regulates otolith growth/otolithic calcium incorporation, are - depending on the particular batch of animals - genetically predispositioned. Thus, it is assumed that the mechanisms regulating otolith growth and equlibibrium differ in the two types of cichlid fish. This work was financially supported by the German Aerospace Center (DLR) e.V. (FKZ: 50 WB 9997).

  9. Calyx and dimorphic neurons of mouse Scarpa's ganglion express histamine H3 receptors

    Zucca Gianpiero

    2009-06-01

    Full Text Available Abstract Background Histamine-related drugs are commonly used in the treatment of vertigo and related vestibular disorders. The site of action of these drugs however has not been elucidated yet. Recent works on amphibians showed that histamine H3 receptor antagonists, e.g. betahistine, inhibit the afferent discharge recorded from the vestibular nerve. To assess the expression of H3 histamine receptors in vestibular neurons, we performed mRNA RT-PCR and immunofluorescence experiments in mouse Scarpa's ganglia. Results RT-PCR analysis showed the presence of H3 receptor mRNA in mouse ganglia tissue. H3 protein expression was found in vestibular neurons characterized by large and roundish soma, which labeled for calretinin and calbindin. Conclusion The present results are consistent with calyx and dimorphic, but not bouton, afferent vestibular neurons expressing H3 receptors. This study provides a molecular substrate for the effects of histamine-related antivertigo drugs acting on (or binding to H3 receptors, and suggest a potential target for the treatment of vestibular disorders of peripheral origin.

  10. Functional and anatomic alterations in the gentamicin-damaged vestibular system in the guinea pig

    Oei, MLYM; Segenhout, HM; Dijk, T; Stokroos, [No Value; van der Want, TJL; Albers, FWJ

    2004-01-01

    Hypothesis: The purpose of this study was to investigate the expected functional and morphologic effect of gentamicin on the vestibular system simultaneously by measurement of vestibular evoked potentials and electron microscopic evaluation. Background: Vestibular short-latency evoked potentials to

  11. Exhibition of Stochastic Resonance in Vestibular Perception

    Galvan-Garza, R. C.; Clark, T. K.; Merfeld, D. M.; Bloomberg, J. J.; Oman, C. M.; Mulavara, A. P.

    2016-01-01

    Astronauts experience sensorimotor changes during spaceflight, particularly during G-transitions. Post flight sensorimotor changes include spatial disorientation, along with postural and gait instability that may degrade operational capabilities of the astronauts and endanger the crew. A sensorimotor countermeasure that mitigates these effects would improve crewmember safety and decrease risk. The goal of this research is to investigate the potential use of stochastic vestibular stimulation (SVS) as a technology to improve sensorimotor function. We hypothesize that low levels of SVS will improve sensorimotor perception through the phenomenon of stochastic resonance (SR), when the response of a nonlinear system to a weak input signal is enhanced by the application of a particular nonzero level of noise. This study aims to advance the development of SVS as a potential countermeasure by 1) demonstrating the exhibition of stochastic resonance in vestibular perception, a vital component of sensorimotor function, 2) investigating the repeatability of SR exhibition, and 3) determining the relative contribution of the semicircular canals (SCC) and otolith (OTO) organs to vestibular perceptual SR. A constant current stimulator was used to deliver bilateral bipolar SVS via electrodes placed on each of the mastoid processes, as previously done. Vestibular perceptual motion recognition thresholds were measured using a 6-degree of freedom MOOG platform and a 150 trial 3-down/1-up staircase procedure. In the first test session, we measured vestibular perceptual thresholds in upright roll-tilt at 0.2 Hz (SCC+OTO) with SVS ranging from 0-700 µA. In a second test session a week later, we re-measured roll-tilt thresholds with 0, optimal (from test session 1), and 1500 µA SVS levels. A subset of these subjects, plus naive subjects, participated in two additional test sessions in which we measured thresholds in supine roll-rotation at 0.2 Hz (SCC) and upright y-translation at 1 Hz

  12. Characterization of pulse amplitude and pulse rate modulation for a human vestibular implant during acute electrical stimulation

    Nguyen, T. A. K.; DiGiovanna, J.; Cavuscens, S.; Ranieri, M.; Guinand, N.; van de Berg, R.; Carpaneto, J.; Kingma, H.; Guyot, J.-P.; Micera, S.; Perez Fornos, A.

    2016-08-01

    Objective. The vestibular system provides essential information about balance and spatial orientation via the brain to other sensory and motor systems. Bilateral vestibular loss significantly reduces quality of life, but vestibular implants (VIs) have demonstrated potential to restore lost function. However, optimal electrical stimulation strategies have not yet been identified in patients. In this study, we compared the two most common strategies, pulse amplitude modulation (PAM) and pulse rate modulation (PRM), in patients. Approach. Four subjects with a modified cochlear implant including electrodes targeting the peripheral vestibular nerve branches were tested. Charge-equivalent PAM and PRM were applied after adaptation to baseline stimulation. Vestibulo-ocular reflex eye movement responses were recorded to evaluate stimulation efficacy during acute clinical testing sessions. Main results. PAM evoked larger amplitude eye movement responses than PRM. Eye movement response axes for lateral canal stimulation were marginally better aligned with PRM than with PAM. A neural network model was developed for the tested stimulation strategies to provide insights on possible neural mechanisms. This model suggested that PAM would consistently cause a larger ensemble firing rate of neurons and thus larger responses than PRM. Significance. Due to the larger magnitude of eye movement responses, our findings strongly suggest PAM as the preferred strategy for initial VI modulation.

  13. Galvanic vestibular stimulation impairs cell proliferation and neurogenesis in the rat hippocampus but not spatial memory.

    Zheng, Yiwen; Geddes, Lisa; Sato, Go; Stiles, Lucy; Darlington, Cynthia L; Smith, Paul F

    2014-05-01

    Galvanic vestibular stimulation (GVS) is a method of activating the peripheral vestibular system using direct current that is widely employed in clinical neurological testing. Since movement is recognized to stimulate hippocampal neurogenesis and movement is impossible without activation of the vestibular system, we speculated that activating the vestibular system in rats while minimizing movement, by delivering GVS under anesthesia, would affect hippocampal cell proliferation and neurogenesis, and spatial memory. Compared with the sham control group, the number of cells incorporating the DNA replication marker, bromodeoxyuridine (BrdU), was significantly reduced in the bilateral hippocampi in both the cathode left-anode right and cathode right-anode left stimulation groups (P ≤ 0.0001). The majority of the BrdU(+ve) cells co-expressed Ki-67, a marker for the S phase of the cell cycle, suggesting that these BrdU(+ve) cells were still in the cell cycle; however, there was no significant difference in the degree of co-labeling between the two stimulation groups. Single labeling for doublecortin (DCX), a marker of immature neurons, showed that while there was no significant difference between the different groups in the number of DCX(+ve) cells in the right dentate gryus, in the left dentate gyrus there was a significant decrease in the cathode left-anode right group compared with the sham controls (P ≤ 0.03). Nonetheless, when animals were tested in place recognition, object exploration and Morris water maze tasks, there were no significant differences between the GVS groups and the sham controls. These results suggest that GVS can have striking effects on cell proliferation and possibly neurogenesis in the hippocampus, without affecting spatial memory. PMID:24449222

  14. Vestibular hypersensitivity to clicks is characteristic of the Tullio phenomenon

    Colebatch, J; Day, B.; Bronstein, A; Davies, R.; Gresty, M.; Luxon, L; Rothwell, J

    1998-01-01

    OBJECTIVES—The frequency of pathologically reduced click thresholds for vestibular activation was explored in patients with the Tullio phenomenon (sound induced vestibular activation).
METHODS—Seven patients (eight affected ears) with symptoms of oscillopsia and unsteadiness in response to loud external sounds or to the patient's own voice were examined. In all but one patient, vestibular hypersensitivity to sound was confirmed by the fact that eye movements could be produced b...

  15. How vestibular stimulation interacts with illusory hand ownership

    Lopez, Christophe; Lenggenhager, Bigna; Blanke, Olaf

    2010-01-01

    Artificial stimulation of the peripheral vestibular system has been shown to improve ownership of body parts in neurological patients, suggesting vestibular contributions to bodily self-consciousness. Here, we investigated whether galvanic vestibular stimulation (GVS) interferes with the mechanisms underlying ownership, touch, and the localization of one's own hand in healthy participants by using the "rubber hand illusion" paradigm. Our results show that left anodal GVS increases illusory ow...

  16. Reversible tobramycin-induced bilateral high-frequency vestibular toxicity.

    Walsh, R M; Bath, A P; Bance, M L

    2000-01-01

    We report an unusual case of tobramycin-induced bilateral high-frequency vestibular toxicity with subsequent clinical and objective evidence of functional recovery. In those patients with a clinical presentation suggestive of aminoglycoside-induced bilateral vestibular toxicity (ataxia and oscillopsia) and normal low-frequency (ENG-caloric) responses, high-frequency rotation chair testing should be performed to exclude a high-frequency vestibular deficit. PMID:10810261

  17. Influence of temperature on the sound-evoked vestibular potential.

    Wit, H P; Dijkgraaf, E

    1985-01-01

    The sound-evoked vestibular potential, measured with gross electrodes after fenestration of a lateral semicircular canal in pigeons, is delayed with respect to the acoustic stimulus. The influence of temperature of the vestibular system on this delay can most easily be explained by assuming chemically mediated transmission to take place between vestibular hair cells and their primary afferents. The possibility of electrotonic transmission, however, cannot be excluded. PMID:3878654

  18. Interactions between Stress and Vestibular Compensation – A Review

    MayankBDutia; YouganSaman; DorisBamiou

    2012-01-01

    Elevated levels of stress and anxiety often accompany vestibular dysfunction, while conversely complaints of dizziness and loss of balance are common in patients with panic and other anxiety disorders. The interactions between stress and vestibular function, and plasticity have been investigated both in animal models and in clinical studies. Evidence from animal studies indicates that vestibular symptoms are effective in activating the stress axis, and that the acute stress response is import...

  19. Periosteal Pedicle Flap Harvested during Vestibular Extension for Root Coverage

    Shubham Kumar

    2015-01-01

    Full Text Available Root exposure along with inadequate vestibular depth is a common clinical finding. Treatment option includes many techniques to treat such defects for obtaining predictable root coverage. Normally, the vestibular depth is increased first followed by a second surgery for root coverage. The present case report describes a single-stage technique for vestibular extension and root coverage in a single tooth by using the Periosteal Pedicle Flap (PPF. This technique involves no donor site morbidity and allows for reflection of sufficient amount of periosteal flap tissue with its own blood supply at the surgical site, thus increasing the chances of success of root coverage with simultaneous increase in vestibular depth.

  20. Clinical application of vestibular evoked myogenic potential (VEMP).

    Murofushi, Toshihisa

    2016-08-01

    The author reviewed clinical aspects of vestibular evoked myogenic potentials (VEMPs). Now two types of VEMPs are available. The first one is cervical VEMP, which is recorded in the sternocleidomastoid muscle and predominantly reflects sacculo-collic reflex. The other is ocular VEMP, which is usually recorded below the lower eye lid and predominantly reflects utriculo-ocular reflex. VEMPs play important roles not only for assessment of common vestibular diseases but also for establishment of new clinical entities. Clinical application in Meniere's disease, vestibular neuritis, benign paroxysmal positional vertigo, vestibular migraine, idiopathic otolithic vertigo, and central vertigo/dizziness was reviewed. PMID:26791591

  1. Experiment M131. Human vestibular function

    Graybiel, A.; Miller, E. F., II; Homick, J. L.

    1977-01-01

    The lower susceptibility to vestibular stimulation aloft, compared with that on ground under experimental conditions, is attributed to a precondition, namely, either there is no need to adapt, or, as exemplified by the Skylab 3 pilot, adaptation to weightlessness is achieved. Findings in some of the astronauts emphasize the distinction between two categories of vestibular side effects: immediate reflex phenomena (illusions, sensations of turning, etc.), and delayed epiphenomena that include the constellation of symptoms and syndromes comprising motion sickness. The drug combinations 1-scopolamine and d-amphetamine and promethazine hydrochloride and ephedrine sulfate are effective in prevention and treatment of motion sickness. It is concluded that prevention of motion sickness in any stressful motion environment involves selection, adaptation, and the use of drugs.

  2. Vestibular Facilitation of Optic Flow Parsing

    MacNeilage, Paul R.; Zhou Zhang; DeAngelis, Gregory C.; Angelaki, Dora E.

    2012-01-01

    Simultaneous object motion and self-motion give rise to complex patterns of retinal image motion. In order to estimate object motion accurately, the brain must parse this complex retinal motion into self-motion and object motion components. Although this computational problem can be solved, in principle, through purely visual mechanisms, extra-retinal information that arises from the vestibular system during self-motion may also play an important role. Here we investigate whether combining ve...

  3. Repeat Gamma Knife surgery for vestibular schwannomas

    Sarah Lonneville; Carine Delbrouck; Cécile Renier; Daniel Devriendt; Nicolas Massager

    2015-01-01

    Background: Gamma Knife (GK) surgery is a recognized treatment option for the management of small to medium-sized vestibular schwannoma (VS) associated with high-tumor control and low morbidity. When a radiosurgical treatment fails to stop tumor growth, repeat GK surgery can be proposed in selected cases. Methods : A series of 27 GK retreatments was performed in 25 patients with VS; 2 patients underwent three procedures. The median time interval between GK treatments was 45 months. The me...

  4. Complications of microsurgery of vestibular schwannoma

    Betka, J.; Zvěřina, E.; Balogová, Zuzana; Profant, Oliver; Skřivan, J.; Kraus, J.; Lisý, J.; Syka, Josef; Chovanec, M.

    2014-01-01

    Roč. 2014, May 28 (2014), s. 315952. ISSN 2314-6133 R&D Projects: GA MZd NT12459 Grant ostatní: GA MZd(CZ) NT11543; GA MŠk(CZ) UNCE 204013; GA UK(CZ) SVV 266513; GA MŠk(CZ) Prvouk-P27/LF1/1 Institutional support: RVO:68378041 Keywords : acoustic neurona surgery * tumor surgery * vestibular schwannomas Subject RIV: FF - HEENT, Dentistry Impact factor: 1.579, year: 2014

  5. Vestibular evoked myogenic potentials: an overview Potencial evocado miogênico vestibular: uma visão geral

    Renato Cal; Fayez Bahmad Jr.

    2009-01-01

    The vestibular evoked myogenic potential (VEMP) test is a relatively new diagnostic tool that is in the process of being investigated in patients with specific vestibular disorders. Briefly, the VEMP is a biphasic response elicited by loud clicks or tone bursts recorded from the tonically contracted sternocleidomastoid muscle, being the only resource available to assess the function of the saccule and the lower portion of the vestibular nerve. AIM: In this review, we shall highlight the histo...

  6. How the vestibular system interacts with somatosensory perception: A sham-controlled study with galvanic vestibular stimulation

    Ferre E.R.; Day B.L.; Bottini G.; Haggard P.

    2013-01-01

    The vestibular system has widespread interactions with other sensory modalities. Here we investigate whether vestibular stimulation modulates somatosensory function, by assessing the ability to detect faint tactile stimuli to the fingertips of the left and right hand with or without galvanic vestibular stimulation (GVS). We found that left anodal and right cathodal GVS, significantly enhanced sensitivity to mild shocks on either hand, without affecting response bias. There was no such effect ...

  7. Galvanic vestibular stimulation: a novel modulatory countermeasure for vestibular-associated movement disorders.

    Rizzo-Sierra, Carlos V; Gonzalez-Castaño, Alexander; Leon-Sarmiento, Fidias E

    2014-01-01

    Motion sickness or kinetosis is the result of the abnormal neural output originated by visual, proprioceptive and vestibular mismatch, which reverses once the dysfunctional sensory information becomes coherent. The space adaptation syndrome or space sickness relates to motion sickness; it is considered to be due to yaw, pith, and roll coordinates mismatch. Several behavioural and pharmacological measures have been proposed to control these vestibular-associated movement disorders with no success. Galvanic vestibular stimulation has the potential of up-regulating disturbed sensory-motor mismatch originated by kinetosis and space sickness by modulating the GABA-related ion channels neural transmission in the inner ear. It improves the signal-to-noise ratio of the afferent proprioceptive volleys, which would ultimately modulate the motor output restoring the disordered gait, balance and human locomotion due to kinetosis, as well as the spatial disorientation generated by gravity transition. PMID:24637984

  8. Galvanic vestibular stimulation: a novel modulatory countermeasure for vestibular-associated movement disorders

    Carlos V. Rizzo-Sierra

    2014-01-01

    Full Text Available Motion sickness or kinetosis is the result of the abnormal neural output originated by visual, proprioceptive and vestibular mismatch, which reverses once the dysfunctional sensory information becomes coherent. The space adaptation syndrome or space sickness relates to motion sickness; it is considered to be due to yaw, pith, and roll coordinates mismatch. Several behavioural and pharmacological measures have been proposed to control these vestibular-associated movement disorders with no success. Galvanic vestibular stimulation has the potential of up-regulating disturbed sensory-motor mismatch originated by kinetosis and space sickness by modulating the GABA-related ion channels neural transmission in the inner ear. It improves the signal-to-noise ratio of the afferent proprioceptive volleys, which would ultimately modulate the motor output restoring the disordered gait, balance and human locomotion due to kinetosis, as well as the spatial disorientation generated by gravity transition.

  9. The vestibular system does not modulate fusimotor drive to muscle spindles in relaxed leg muscles of subjects in a near-vertical position.

    Knellwolf, T P; Hammam, E; Macefield, V G

    2016-05-01

    It has been shown that sinusoidal galvanic vestibular stimulation (sGVS) has no effect on the firing of spontaneously active muscle spindles in either relaxed or voluntarily contracting human leg muscles. However, all previous studies have been conducted on subjects in a seated position. Given that independent vestibular control of muscle spindle firing would be more valuable during postural threat, we tested the hypothesis that this modulation would become apparent for subjects in a near-vertical position. Unitary recordings were made from 18 muscle spindle afferents via tungsten microelectrodes inserted percutaneously into the common peroneal nerve of awake human subjects laying supine on a motorized tilt table. All recorded spindle afferents were spontaneously active at rest, and each increased its firing rate during a weak static contraction. Sinusoidal bipolar binaural galvanic vestibular stimulation (±2 mA, 100 cycles) was applied to the mastoid processes at 0.8 Hz. This continuous stimulation produced a sustained illusion of "rocking in a boat" or "swinging in a hammock." The subject was then moved into a near-vertical position (75°), and the stimulation repeated. Despite robust vestibular illusions, none of the fusimotor-driven spindles exhibited phase-locked modulation of firing during sinusoidal GVS in either position. We conclude that this dynamic vestibular stimulus was insufficient to modulate the firing of fusimotor neurons in the near-vertical position. However, this does not mean that the vestibular system cannot modulate the sensitivity of muscle spindles via fusimotor neurons in free unsupported standing, when reliance on proprioceptive feedback is higher. PMID:26936989

  10. Disrupting Vestibular Activity Disrupts Body Ownership.

    Hoover, Adria E N; Harris, Laurence R

    2015-01-01

    People are more sensitive at detecting asynchrony between a self-generated movement and visual feedback concerning that movement when the movement is viewed from a first-person perspective. We call this the 'self-advantage' and interpret it as an objective measure of self. Here we ask if disruption of the vestibular system in healthy individuals affects the self-advantage. Participants performed finger movements while viewing their hand in a first-person ('self') or third-person ('other') perspective and indicated which of two periods (one with minimum delay and the other with an added delay of 33-264 ms) was delayed. Their sensitivity to the delay was calculated from the psychometric functions obtained. During the testing, disruptive galvanic vestibular stimulation (GVS) was applied in five-minute blocks interleaved with five minutes of no stimulation for a total of 40 min. We confirmed the self-advantage under no stimulation (31 ms). In the presence of disruptive GVS this advantage disappeared and there was no longer a difference in performance between perspectives. The threshold delay for the 'other' perspective was not affected by the GVS. These results suggest that an intact vestibular signal is required to distinguish 'self' from 'other' and to maintain a sense of body ownership. PMID:26595957

  11. MRI in a quiescent vestibular schwannoma

    Vestibular schwannomas are benign neoplasms that take origin from Schwann cells, the majority arise from the vestibular branch of VIII cranial nerve. Unilateral sensorineural hearing loss is the most common symptom referred by patients who suffer this disease. With the advent and increasing use of MRI the diagnosis of this intra labyrinthine tumor has become more frequent. Paramagnetic contrast gadolinium has precise indication in the study protocol of this pathology. The high sensitivity of this method allows an early diagnosis. In patients with low auditory loss an excision of intra labyrinthine small tumors can offer a better therapeutic chance. We report a case of a 25 years old woman with progressive hearing loss. MRI with gadolinium enhancement demonstrated an intra vestibular schwannoma. In a follow-up control after 5 years MRI revealed no significant changes in tumor size or signal intensity. 3-D volumetric reconstruction offered complimentary information about this 'quiescent' schwannoma. Considering the tumoral behavior (without growth within five years) and the degree of hearing loss no invasive therapy was performed. (author)

  12. Imaging Finding in 222 Patients with Vestibular

    A. Zahiri

    2008-01-01

    Full Text Available Background/Objective: Vestibular Schwannoma is the most common cranial schwannoma with gradually produce sensorineural deafness. In this study we observed the effect of Gamma Knife therapy for control of this type of schwannoma."nPatients and Methods: We observed imaging findings of 250 patients with vestibular schwannoma from September 2003 to October 2007. We performed the Gamma Knife with C model (Elekta Company for the treatment and control of the tumor."nResults: The minimum age of our patients was 14 years and maximum age was 90 years. Twenty six patients was N.F.2, and female to male ratio was 2/1. The most common imaging finding was loss of central contrast enhancement in contrast MRI beginning after nine months after Gamma Knife. Loss of volume and cystic changes were other imaging findings and regrowth of tumor was seen in same case. After three years follow up, tumor control, tumor regression, and tumor enlargement were seen in 85%, 10%, and 5% of our patients respectively."nConclusion: Gamma Knife should be considered as a suitable treatment option for the treatment of Vestibular Schwannoma.

  13. Can Electrical Vestibular Noise Be Used for the Treatment of Brain Diseases?

    Yamamoto, Yoshiharu; Soma, Rika; Struzik, Zbigniew R.; Kwak, Shin

    2005-11-01

    The therapy currently available for the treatment of degenerative neurological diseases is far from satisfactory, and a novel therapeutic strategy, especially for pharmacologically unresponsive patients, would be welcomed. The vestibular nerves are known to influence neuronal circuits in the medullary cardiovascular areas and, through the cerebellar vermis, the basal ganglia and the limbic system. By means of noisy galvanic vestibular stimulation (GVS), it may now be possible to ameliorate blunted responsiveness of degenerated neuronal circuits in the brains of multiple system atrophy (MSA) and/or Parkinson's disease (PD) patients, through a mechanism known as stochastic resonance. We evaluate the effect of 24-hour noisy GVS on long-term heart rate dynamics in seven MSA patients, and on daytime locomotor activity dynamics in twelve patients with either PD or levodopa unresponsive parkinsonism. Short-range heart rate variability and long-range anti-correlation of trunk activity are significantly increased by the noisy GVS compared with sham stimulation, suggestive of improved autonomic and motor responsiveness. The noisy GVS is effective in boosting the neuro-degenerative brains of MSA and/or PD patients, including those unresponsive to standard levodopa therapy.

  14. Head movements evoked in alert rhesus monkey by vestibular prosthesis stimulation: implications for postural and gaze stabilization.

    Diana E Mitchell

    Full Text Available The vestibular system detects motion of the head in space and in turn generates reflexes that are vital for our daily activities. The eye movements produced by the vestibulo-ocular reflex (VOR play an essential role in stabilizing the visual axis (gaze, while vestibulo-spinal reflexes ensure the maintenance of head and body posture. The neuronal pathways from the vestibular periphery to the cervical spinal cord potentially serve a dual role, since they function to stabilize the head relative to inertial space and could thus contribute to gaze (eye-in-head + head-in-space and posture stabilization. To date, however, the functional significance of vestibular-neck pathways in alert primates remains a matter of debate. Here we used a vestibular prosthesis to 1 quantify vestibularly-driven head movements in primates, and 2 assess whether these evoked head movements make a significant contribution to gaze as well as postural stabilization. We stimulated electrodes implanted in the horizontal semicircular canal of alert rhesus monkeys, and measured the head and eye movements evoked during a 100 ms time period for which the contribution of longer latency voluntary inputs to the neck would be minimal. Our results show that prosthetic stimulation evoked significant head movements with latencies consistent with known vestibulo-spinal pathways. Furthermore, while the evoked head movements were substantially smaller than the coincidently evoked eye movements, they made a significant contribution to gaze stabilization, complementing the VOR to ensure that the appropriate gaze response is achieved. We speculate that analogous compensatory head movements will be evoked when implanted prosthetic devices are transitioned to human patients.

  15. A study of whirlin isoforms in the mouse vestibular system suggests potential vestibular dysfunction in DFNB31-deficient patients.

    Mathur, Pranav Dinesh; Vijayakumar, Sarath; Vashist, Deepti; Jones, Sherri M; Jones, Timothy A; Yang, Jun

    2015-12-15

    The DFNB31 gene plays an indispensable role in the cochlea and retina. Mutations in this gene disrupt its various isoforms and lead to non-syndromic deafness, blindness and deaf-blindness. However, the known expression of Dfnb31, the mouse ortholog of DFNB31, in vestibular organs and the potential vestibular-deficient phenotype observed in one Dfnb31 mutant mouse (Dfnb31(wi/wi)) suggest that DFNB31 may also be important for vestibular function. In this study, we find that full-length (FL-) and C-terminal (C-) whirlin isoforms are expressed in the vestibular organs, where their stereociliary localizations are similar to those of developing cochlear inner hair cells. No whirlin is detected in Dfnb31(wi/wi) vestibular organs, while only C-whirlin is expressed in Dfnb31(neo/neo) vestibular organs. Both FL- and C-whirlin isoforms are required for normal vestibular stereociliary growth, although they may play slightly different roles in the central and peripheral zones of the crista ampullaris. Vestibular sensory-evoked potentials demonstrate severe to profound vestibular deficits in Dfnb31(neo/neo) and Dfnb31(wi/wi) mice. Swimming and rotarod tests demonstrate that the two Dfnb31 mutants have balance problems, with Dfnb31(wi/wi) mice being more affected than Dfnb31(neo/neo) mice. Because Dfnb31(wi/wi) and Dfnb31(neo/neo) mice faithfully recapitulate hearing and vision symptoms in patients, our findings of vestibular dysfunction in these Dfnb31 mutants raise the question of whether DFNB31-deficient patients may acquire vestibular as well as hearing and vision loss. PMID:26420843

  16. Long-term hearing preservation in vestibular schwannoma

    Stangerup, Sven-Eric; Thomsen, Jens; Tos, Mirko;

    2010-01-01

    The aim of the present study was to evaluate the long-term hearing during "wait and scan" management of vestibular schwannomas.......The aim of the present study was to evaluate the long-term hearing during "wait and scan" management of vestibular schwannomas....

  17. Vestibular papillomatosis: An important differential diagnosis of vulvar papillomas.

    Ozkur, Ezgi; Falay, Tugba; Turgut Erdemir, Asli Vefa; Gurel, Mehmet Salih; Leblebici, Cem

    2016-01-01

    Most authors believe that vestibular papillomatosis (VP) is an anatomical variant of the vestibular mucosa. But VP is sometimes misdiagnosed as genital warts and this can lead to aggressive investigations, therapy, and anxiety in patients. We present a patient with VP. Dermoscopy and reflectance confocal microscopy (RCM) were performed to differentiate VP from other papilomatous diseases of the vulva. PMID:27136629

  18. Vestibular influences on autonomic cardiovascular control in humans

    Biaggioni, I.; Costa, F.; Kaufmann, H.; Robertson, D. (Principal Investigator)

    1998-01-01

    There is substantial evidence that anatomical connections exist between vestibular and autonomic nuclei. Animal studies have shown functional interactions between the vestibular and autonomic systems. The nature of these interactions, however, is complex and has not been fully defined. Vestibular stimulation has been consistently found to reduce blood pressure in animals. Given the potential interaction between vestibular and autonomic pathways this finding could be explained by a reduction in sympathetic activity. However, rather than sympathetic inhibition, vestibular stimulation has consistently been shown to increase sympathetic outflow in cardiac and splanchnic vascular beds in most experimental models. Several clinical observations suggest that a link between vestibular and autonomic systems may also exist in humans. However, direct evidence for vestibular/autonomic interactions in humans is sparse. Motion sickness has been found to induce forearm vasodilation and reduce baroreflex gain, and head down neck flexion induces transient forearm and calf vasoconstriction. On the other hand, studies using optokinetic stimulation have found either very small, variable, or inconsistent changes in heart rate and blood pressure, despite substantial symptoms of motion sickness. Furthermore, caloric stimulation severe enough to produce nystagmus, dizziness, and nausea had no effect on sympathetic nerve activity measured directly with microneurography. No effect was observed on heart rate, blood pressure, or plasma norepinephrine. Several factors may explain the apparent discordance of these results, but more research is needed before we can define the potential importance of vestibular input to cardiovascular regulation and orthostatic tolerance in humans.

  19. Facial myokymia as a presenting symptom of vestibular schwannoma.

    Joseph B

    2002-07-01

    Full Text Available Facial myokymia is a rare presenting feature of a vestibular schwannoma. We present a 48 year old woman with a large right vestibular schwannoma, who presented with facial myokymia. It is postulated that facial myokymia might be due to a defect in the motor axons of the 7th nerve or due to brain stem compression by the tumor.

  20. Electronystagmographic analysis of caloric test parameters in vestibular disorders.

    Szirmai, Agnes; Keller, Balázs

    2013-01-01

    The electronystagmographical analysis of the eye movements provoked by caloric stimulation is an important method in the evaluation and topical diagnostic procedure of several vestibular lesions. The aim of the study was to compare the electronystagmographical results of caloric response in several vestibular disorders. The patients were divided into five groups: right and left unilateral and bilateral peripheral lesions, central vestibular dysfunction, and normal vestibular function. In the normal vestibular system group the average caloric nystagmus SPV in normal vestibular system was 17.4 °/s. In the peripheral lesion groups the average slow phase velocities are decreased in the affected side, as we expected. In the compensated vestibular lesion the average ASPV of caloric nystagmus is also decreased on the unaffected side. This might be caused by the effect of the central adaptive mechanisms. According to our observations, in central dysfunctions the average caloric ASPV and the spontaneous nystagmus ASPV is increased (25.0 °/s). This suggests that in central vestibular lesions the central inhibiting mechanisms of the caloric response are impaired. Our results show that electronystagmographical analysis of spontaneous and caloric nystagmus is very important in the evaluation of dizzy patients. PMID:22298250

  1. Plasticity of histamine H3 receptor expression and binding in the vestibular nuclei after labyrinthectomy in rat

    Karlstedt Kaj

    2004-09-01

    Full Text Available Abstract Background In rat, deafferentation of one labyrinth (unilateral labyrinthectomy results in a characteristic syndrome of ocular and motor postural disorders (e.g., barrel rotation, circling behavior, and spontaneous nystagmus. Behavioral recovery (e.g., diminished symptoms, encompassing 1 week after unilateral labyrinthectomy, has been termed vestibular compensation. Evidence suggesting that the histamine H3 receptor plays a key role in vestibular compensation comes from studies indicating that betahistine, a histamine-like drug that acts as both a partial histamine H1 receptor agonist and an H3 receptor antagonist, can accelerate the process of vestibular compensation. Results Expression levels for histamine H3 receptor (total as well as three isoforms which display variable lengths of the third intracellular loop of the receptor were analyzed using in situ hybridization on brain sections containing the rat medial vestibular nucleus after unilateral labyrinthectomy. We compared these expression levels to H3 receptor binding densities. Total H3 receptor mRNA levels (detected by oligo probe H3X as well as mRNA levels of the three receptor isoforms studied (detected by oligo probes H3A, H3B, and H3C showed a pattern of increase, which was bilaterally significant at 24 h post-lesion for both H3X and H3C, followed by significant bilateral decreases in medial vestibular nuclei occurring 48 h (H3X and H3B and 1 week post-lesion (H3A, H3B, and H3C. Expression levels of H3B was an exception to the forementioned pattern with significant decreases already detected at 24 h post-lesion. Coinciding with the decreasing trends in H3 receptor mRNA levels was an observed increase in H3 receptor binding densities occurring in the ipsilateral medial vestibular nuclei 48 h post-lesion. Conclusion Progressive recovery of the resting discharge of the deafferentated medial vestibular nuclei neurons results in functional restoration of the static postural and

  2. Vestibular schwannoma with contralateral facial pain – case report

    Ghodsi Mohammad

    2003-03-01

    Full Text Available Abstract Background Vestibular schwannoma (acoustic neuroma most commonly presents with ipsilateral disturbances of acoustic, vestibular, trigeminal and facial nerves. Presentation of vestibular schwannoma with contralateral facial pain is quite uncommon. Case presentation Among 156 cases of operated vestibular schwannoma, we found one case with unusual presentation of contralateral hemifacial pain. Conclusion The presentation of contralateral facial pain in the vestibular schwannoma is rare. It seems that displacement and distortion of the brainstem and compression of the contralateral trigeminal nerve in Meckel's cave by the large mass lesion may lead to this atypical presentation. The best practice in these patients is removal of the tumour, although persistent contralateral pain after operation has been reported.

  3. Vestibular disorders following different types of head and neck trauma

    Kolev, Ognyan I.; Sergeeva, Michaela

    2016-01-01

    Summary This review focuses on the published literature on vestibular disorders following different types of head and neck trauma. Current knowledge of the different causes and underlying mechanisms of vestibular disorders, as well as the sites of organic damage, is presented. Non-organic mechanisms are also surveyed. The frequency of occurrence of vestibular symptoms, and of other accompanying subjective complaints, associated with different types of trauma is presented and related to the specific causes. Hypotheses about the pathogenesis of traumatic vestibular disorders are presented, and the knowledge derived from animal experiments is also discussed. We believe this to be a very important topic, since vestibular complaints in traumatic patients often remain undiagnosed or underestimated in clinical practice. This review article aims to suggest directions for additional research and to provide guidance to both the scientific and clinical practice communities. PMID:27358219

  4. Analysis of signal processing in vestibular circuits with a novel light-emitting diodes-based fluorescence microscope.

    Direnberger, Stephan; Banchi, Roberto; Brosel, Sonja; Seebacher, Christian; Laimgruber, Stefan; Uhl, Rainer; Felmy, Felix; Straka, Hans; Kunz, Lars

    2015-05-01

    Optical visualization of neural network activity is limited by imaging system-dependent technical tradeoffs. To overcome these constraints, we have developed a powerful low-cost and flexible imaging system with high spectral variability and unique spatio-temporal precision for simultaneous optical recording and manipulation of neural activity of large cell groups. The system comprises eight high-power light-emitting diodes, a camera with a large metal-oxide-semiconductor sensor and a high numerical aperture water-dipping objective. It allows fast and precise control of excitation and simultaneous low noise imaging at high resolution. Adjustable apertures generated two independent areas of variable size and position for simultaneous optical activation and image capture. The experimental applicability of this system was explored in semi-isolated preparations of larval axolotl (Ambystoma mexicanum) with intact inner ear organs and central nervous circuits. Cyclic galvanic stimulation of semicircular canals together with glutamate- and γ-aminobutyric acid (GABA)-uncaging caused a corresponding modulation of Ca(2+) transients in central vestibular neurons. These experiments revealed specific cellular properties as well as synaptic interactions between excitatory and inhibitory inputs, responsible for spatio-temporal-specific sensory signal processing. Location-specific GABA-uncaging revealed a potent inhibitory shunt of vestibular nerve afferent input in the predominating population of tonic vestibular neurons, indicating a considerable impact of local and commissural inhibitory circuits on the processing of head/body motion-related signals. The discovery of these previously unknown properties of vestibular computations demonstrates the merits of our novel microscope system for experimental applications in the field of neurobiology. PMID:25847143

  5. Neural Network Model of Vestibular Nuclei Reaction to Onset of Vestibular Prosthetic Stimulation

    DiGiovanna, Jack; Nguyen, T. A. K.; Guinand, Nils; Pérez-Fornos, Angelica; Micera, Silvestro

    2016-01-01

    The vestibular system incorporates multiple sensory pathways to provide crucial information about head and body motion. Damage to the semicircular canals, the peripheral vestibular organs that sense rotational velocities of the head, can severely degrade the ability to perform activities of daily life. Vestibular prosthetics address this problem by using stimulating electrodes that can trigger primary vestibular afferents to modulate their firing rates, thus encoding head movement. These prostheses have been demonstrated chronically in multiple animal models and acutely tested in short-duration trials within the clinic in humans. However, mainly, due to limited opportunities to fully characterize stimulation parameters, there is a lack of understanding of “optimal” stimulation configurations for humans. Here, we model possible adaptive plasticity in the vestibular pathway. Specifically, this model highlights the influence of adaptation of synaptic strengths and offsets in the vestibular nuclei to compensate for the initial activation of the prosthetic. By changing the synaptic strengths, the model is able to replicate the clinical observation that erroneous eye movements are attenuated within 30 minutes without any change to the prosthetic stimulation rate. Although our model was only built to match this time point, we further examined how it affected subsequent pulse rate modulation (PRM) and pulse amplitude modulation (PAM). PAM was more effective than PRM for nearly all stimulation configurations during these acute tests. Two non-intuitive relationships highlighted by our model explain this performance discrepancy. Specifically, the attenuation of synaptic strengths for afferents stimulated during baseline adaptation and the discontinuity between baseline and residual firing rates both disproportionally boost PAM. Comodulation of pulse rate and amplitude has been experimentally shown to induce both excitatory and inhibitory eye movements even at high

  6. Experiment M-131 - Human vestibular function.

    Miller, E. F., II; Graybiel, A.

    1973-01-01

    The purpose of the M-131 experiment is to measure responses in astronauts throughout orbital flight that reflect vestibular function and compare them with measurements made before and after flight. Three subtasks require measurement of (1) susceptibility to motion sickness, (2) thresholds of response to stimulation of the semicircular canals, and (3) space perception, viz, visual and nonvisual localization, using external spacecraft and internal morphological frames of reference. Four astronauts will be available for all measurements in Skylab 2 and 3 and two additional astronauts for only the 'static' measurements during the flights.

  7. Human Vestibular Function - Skylab Experiment M131

    1972-01-01

    This set of photographs details Skylab's Human Vestibular Function experiment (M131). This experiment was a set of medical studies designed to determine the effect of long-duration space missions on astronauts' coordination abilities. This experiment tested the astronauts susceptibility to motion sickness in the Skylab environment, acquired data fundamental to an understanding of the functions of human gravity reception under prolonged absence of gravity, and tested for changes in the sensitivity of the semicircular canals. Data from this experiment was collected before, during, and after flight. The Marshall Space Flight Center had program management responsibility for the development of Skylab hardware and experiments.

  8. Reabilitação vestibular na criança: estudo preliminar Vestibular rehabilitation in children: preliminary study

    Roseli S. M. Bittar

    2002-08-01

    Full Text Available Forma de estudo: Clínico prospectivo. Objetivo: O estudo analisa prospectivamente os resultados da Reabilitação Vestibular pelo método de Cawtorne & Cooksey em 22 crianças, portadoras de vestibulopatia periférica, associada ou não a sintomas centrais, com idade média de 8,6 anos. Material e método: Os exames quantitativos da função vestibular utilizados para quantificar a vestibulopatia foram a eletronistagmografia e a prova rotatória pendular decrescente (PRPD, mas a história clínica altamente sugestiva de processo vestibular foi considerada diagnóstica mesmo na presença de exames normais. Resultado: Os resultados apontam a Reabilitação Vestibular como uma opção válida no tratamento das vestibulopatias na infância, uma vez que não houve casos não responsivos ao tratamento.Study design: Clinical prospective. Aim: The authors analyze prospectively 22 children (mean age 8,6 years with vestibulopathy treated with Vestibular Rehabilitation in order to verify its results. Material and methody: Twenty two children with peripheral vestibular disorders associated or not to central symptoms were submitted to vestibular stimulation by the method of Cawthorne & Cooksey. The methods used to quantify the vestibular abnormalities were the electronystagmography and rotational chair testing, but a suggestive history of vestibular disorder was accepted even the exams were normal. Results: All the patients improved and our results suggest that VR is a therapeutic alternative for the treatment of vestibular disorders in the children.

  9. Influence of galvanic vestibular stimulation on egocentric and object-based mental transformations

    Lenggenhager, Bigna; Lopez, Christophe; Blanke, Olaf

    2008-01-01

    The vestibular system analyses angular and linear accelerations of the head that are important information for perceiving the location of one's own body in space. Vestibular stimulation and in particular galvanic vestibular stimulation (GVS) that allow a systematic modification of vestibular signals has so far mainly been used to investigate vestibular influence on sensori-motor integration in eye movements and postural control. Comparatively, only a few behavioural and imaging studies have i...

  10. The human vestibular cortex revealed by coordinate-based activation likelihood estimation meta-analysis

    Lopez, C.; O. Blanke; Mast, F. W.

    2012-01-01

    The vestibular system contributes to the control of posture and eye movements and is also involved in various cognitive functions including spatial navigation and memory. These functions are subtended by projections to a vestibular cortex, whose exact location in the human brain is still a matter of debate (Lopez and Blanke, 2011). The vestibular cortex can be defined as the network of all cortical areas receiving inputs from the vestibular system, including areas where vestibular signals inf...

  11. Passive motion reduces vestibular balance and perceptual responses.

    Fitzpatrick, Richard C; Watson, Shaun R D

    2015-05-15

    With the hypothesis that vestibular sensitivity is regulated to deal with a range of environmental motion conditions, we explored the effects of passive whole-body motion on vestibular perceptual and balance responses. In 10 subjects, vestibular responses were measured before and after a period of imposed passive motion. Vestibulospinal balance reflexes during standing evoked by galvanic vestibular stimulation (GVS) were measured as shear reaction forces. Perceptual tests measured thresholds for detecting angular motion, perceptions of suprathreshold rotation and perceptions of GVS-evoked illusory rotation. The imposed conditioning motion was 10 min of stochastic yaw rotation (0.5-2.5 Hz ≤ 300 deg s(-2) ) with subjects seated. This conditioning markedly reduced reflexive and perceptual responses. The medium latency galvanic reflex (300-350 ms) was halved in amplitude (48%; P = 0.011) but the short latency response was unaffected. Thresholds for detecting imposed rotation more than doubled (248%; P vestibular sensations of rotation evoked by GVS (mean 113 deg for 10 s at 1 mA) by 44% (P vestibular sensory autoregulation exists and that this probably involves central and peripheral mechanisms, possibly through vestibular efferent regulation. We propose that failure of these regulatory mechanisms at different levels could lead to disorders of movement perception and balance control during standing. PMID:25809702

  12. Biomimetic smart sensors for autonomous robotic behavior II: vestibular processing

    Xue, Shuwan; Deligeorges, Socrates; Soloway, Aaron; Lichtenstein, Lee; Gore, Tyler; Hubbard, Allyn

    2009-05-01

    Limited autonomous behaviors are fast becoming a critical capability in the field of robotics as robotic applications are used in more complicated and interactive environments. As additional sensory capabilities are added to robotic platforms, sensor fusion to enhance and facilitate autonomous behavior becomes increasingly important. Using biology as a model, the equivalent of a vestibular system needs to be created in order to orient the system within its environment and allow multi-modal sensor fusion. In mammals, the vestibular system plays a central role in physiological homeostasis and sensory information integration (Fuller et al, Neuroscience 129 (2004) 461-471). At the level of the Superior Colliculus in the brain, there is multimodal sensory integration across visual, auditory, somatosensory, and vestibular inputs (Wallace et al, J Neurophysiol 80 (1998) 1006-1010), with the vestibular component contributing a strong reference frame gating input. Using a simple model for the deep layers of the Superior Colliculus, an off-the-shelf 3-axis solid state gyroscope and accelerometer was used as the equivalent representation of the vestibular system. The acceleration and rotational measurements are used to determine the relationship between a local reference frame of a robotic platform (an iRobot Packbot®) and the inertial reference frame (the outside world), with the simulated vestibular input tightly coupled with the acoustic and optical inputs. Field testing of the robotic platform using acoustics to cue optical sensors coupled through a biomimetic vestibular model for "slew to cue" gunfire detection have shown great promise.

  13. Identification of Neural Networks That Contribute to Motion Sickness through Principal Components Analysis of Fos Labeling Induced by Galvanic Vestibular Stimulation

    Balaban, Carey D.; Sarah W Ogburn; Warshafsky, Susan G.; Abdul Ahmed; Bill J Yates

    2014-01-01

    Motion sickness is a complex condition that includes both overt signs (e.g., vomiting) and more covert symptoms (e.g., anxiety and foreboding). The neural pathways that mediate these signs and symptoms are yet to identified. This study mapped the distribution of c-fos protein (Fos)-like immunoreactivity elicited during a galvanic vestibular stimulation paradigm that is known to induce motion sickness in felines. A principal components analysis was used to identify networks of neurons activate...

  14. Pattern of hair cell loss and delayed peripheral neuron degeneration in inner ear by a high-dose intratympanic gentamicin

    Jintao Yu; Dalian Ding; Fengjun Wang; Haiyan Jiang; Hong Sun; Richard Salvi

    2014-01-01

    To gain insights into the ototoxic effects of aminoglycoside antibiotics (AmAn) and delayed peripheral ganglion neuron death in the inner ear, experimental animal models were widely used with several different approaches including AmAn systemic injections, combination treat-ment of AmAn and diuretics, or local application of AmAn. In these approaches, systemic AmAn treatment alone usually causes incomplete damage to hair cells in the inner ear. Co-administration of diuretic and AmAn can completely destroy the cochlear hair cells, but it is impossible to damage the vestibular system. Only the approach of AmAn local application can selectively eliminate most sensory hair cells in the inner ear. Therefore, AmAn local application is more suitable for studies for complete hair cell destructions in cochlear and vestibular system and the following delayed peripheral ganglion neuron death. In current studies, guinea pigs were unilaterally treated with a high concentration of gentamicin (GM, 40 mg/ml) through the tympanic membrane into the middle ear cavity. Auditory functions and vestibular functions were measured before and after GM treatment. The loss of hair cells and delayed degeneration of ganglion neurons in both cochlear and vestibular system were quantified 30 days or 60 days after treatment. The results showed that both auditory and vestibular functions were completely abolished after GM treatment. The sensory hair cells were totally missing in the cochlea, and severely destroyed in vestibular end-organs. The delayed spiral ganglion neuron death 60 days after the deafening procedure was over 50%. However, no obvious pathological changes were observed in vestibular ganglion neurons 60 days post-treatment. These results indicated that a high concentration of gentamycin delivered to the middle ear cavity can destroy most sensory hair cells in the inner ear that subsequently causes the delayed spiral ganglion neuron degeneration. This model might be useful for studies

  15. Vestibular contributions to a right-hemisphere network for bodily awareness: combining galvanic vestibular stimulation and the "Rubber Hand Illusion".

    Ferrè, Elisa Raffaella; Berlot, Eva; Haggard, Patrick

    2015-03-01

    An altered sense of one's own body is a common consequence of vestibular damage, and also of damage to vestibular networks in the right hemisphere. However, few experimental studies have investigated whether vestibular signals contribute to bodily awareness. We addressed this issue by combining an established experimental model of bodily awareness (Rubber Hand Illusion -RHI) with galvanic vestibular stimulation (GVS) in healthy participants. Brief left anodal and right cathodal GVS (which predominantly activates vestibular networks in the right hemisphere), or right anodal and left cathodal GVS, or sham stimulation were delivered at random, while participants experienced either synchronous or asynchronous visuo-tactile stimulation of a rubber hand and their own hand. The drift in the perceived position of the participant's hand towards the rubber hand was used as a proxy measure of the resulting multisensory illusion of body ownership. GVS induced strong polarity-dependent effects on this measure of RHI: left anodal and right cathodal GVS produced significantly lower proprioceptive drift than right anodal and left cathodal GVS. We suggest that vestibular inputs influence the multisensory weighting functions that underlie bodily awareness: the right hemisphere vestibular projections activated by the left anodal and right cathodal GVS increased the weight of intrinsic proprioceptive signals about hand position, and decreased the weight of visual information responsible for visual capture during the RHI. PMID:25619847

  16. Growth factor treatment enhances vestibular hair cell renewal and results in improved vestibular function

    Kopke, Richard D; Jackson, Ronald L; Li, Geming; Rasmussen, Mark D.; Hoffer, Michael E.; Frenz, Dorothy A.; Costello, Michael; Schultheiss, Peter; Van De Water, Thomas R.

    2001-01-01

    The vestibules of adult guinea pigs were lesioned with gentamicin and then treated with perilymphatic infusion of either of two growth factor mixtures (i.e., GF I or GF II). GF I contained transforming growth factor α (TGFα), insulin-like growth factor type one (IGF-1), and retinoic acid (RA), whereas GF II contained those three factors and brain-derived neurotrophic factor. Treatment with GF I significantly enhanced vestibular hair cell renewal in ototoxin-damaged ...

  17. Reabilitação vestibular em um hospital universitário Vestibular rehabilitation in a university hospital

    Flávia da Silva Tavares; Maria Francisca Colella dos Santos; Keila Alessandra Baraldi Knobel

    2008-01-01

    A Reabilitação Vestibular visa melhorar o equilíbrio global, a qualidade de vida e orientação espacial dos pacientes com tontura. OBJETIVOS: Traçar o perfil dos pacientes atendidos no Ambulatório de Reabilitação Vestibular do Setor de Otoneurologia de um hospital universitário e verificar os resultados obtidos no período de novembro/2000 a dezembro/2004. MATERIAL E MÉTODO: Levantamento de dados contidos nas fichas dos 93 pacientes submetidos à Reabilitação Vestibular no período. FORMA DE ESTU...

  18. Improved results for vestibular schwannoma radiosurgery

    PURPOSE/OBJECTIVE: Treatment techniques in radiosurgery have changed since 1987. We reviewed patients who received radiosurgery for vestibular schwannoma to identify these changes and to investigate any differences in tumor control and complications. MATERIALS and METHODS: One hundred thirty-eight unilateral vestibular schwannoma patients with a minimum follow-up of two years after treatment with gamma knife radiosurgery between 1987 and 1992 were analyzed. The early treatment group consisted of 55 patients treated between 1987-1989 (median: tumor volume 3.63 cc, Dmin 18.1 Gy, Dmax 35.4 Gy, isocenters 2.3, follow-up 50.4 mos.). The later treatment group consisted of 83 patients treated between 1990-1992 (median: tumor volume 3.81 cc, Dmin 16.0 Gy, Dmax 31.6 Gy, isocenters 4.7, follow-up 35.8 mos.) RESULTS: Clinical tumor recurrence requiring surgical intervention occurred in one patient in each group. The overall actuarial clinical tumor control rate was 98%. Slight increases in tumor size (1 to 2 mm) were identified in five other patients not requiring intervention, because of no further tumor growth (n=4) or shrinkage (n=1). This led to an overall radiologic tumor control rate of 92% (not significantly different in either group). Compared to the early treatment group, the incidence of facial neuropathy (temporary or permanent) decreased in the later group (49% vs. 11%, p < 0.0001), as did trigeminal neuropathy (40% vs. 8%, p < 0.0001). Serviceable hearing preservation improved only slightly in the later group (27% vs. 40%, p = 0.70). CONCLUSION: We document a significant decrease in the morbidity of vestibular schwannoma radiosurgery over this time period with no decrease in the high rate of tumor control. This improvement is attributed to a) better conformal dose-planning with stereotactic MRI rather than CT, b) an increase in the number of isocenters used, and c) a reduction in the average dose administered by 2 Gy

  19. Ongoing cell death and immune influences on regeneration in the vestibular sensory organs

    Warchol, M. E.; Matsui, J. I.; Simkus, E. L.; Ogilive, J. M.

    2001-01-01

    Hair cells in the vestibular organs of birds have a relatively short life span. Mature hair cells appear to die spontaneously and are then quickly replaced by new hair cells that arise from the division of epithelial supporting cells. A similar regenerative mechanism also results in hair cell replacement after ototoxic damage. The cellular basis of hair cell turnover in the avian ear is not understood. We are investigating the signaling pathways that lead to hair cell death and the relationship between ongoing cell death and cell production. In addition, work from our lab and others has demonstrated that the avian inner ear contains a resident population of macrophages and that enhanced numbers of macrophages are recruited to sites of hair cells lesions. Those observations suggest that macrophages and their secretory products (cytokines) may be involved in hair cell regeneration. Consistent with that suggestion, we have found that treatment with the anti-inflammatory drug dexamethasone reduces regenerative cell proliferation in the avian ear, and that certain macrophage-secreted cytokines can influence the proliferation of vestibular supporting cells and the survival of statoacoustic neurons. Those results suggest a role for the immune system in the process of sensory regeneration in the inner ear.

  20. Behavioral Assessment of the Aging Mouse Vestibular System

    Tung, Victoria W. K.; Burton, Thomas J.; Dababneh, Edward; Quail, Stephanie L.; Camp, Aaron J.

    2014-01-01

    Age related decline in balance performance is associated with deteriorating muscle strength, motor coordination and vestibular function. While a number of studies show changes in balance phenotype with age in rodents, very few isolate the vestibular contribution to balance under either normal conditions or during senescence. We use two standard behavioral tests to characterize the balance performance of mice at defined age points over the lifespan: the rotarod test and the inclined balance beam test. Importantly though, a custom built rotator is also used to stimulate the vestibular system of mice (without inducing overt signs of motion sickness). These two tests have been used to show that changes in vestibular mediated-balance performance are present over the murine lifespan. Preliminary results show that both the rotarod test and the modified balance beam test can be used to identify changes in balance performance during aging as an alternative to more difficult and invasive techniques such as vestibulo-ocular (VOR) measurements. PMID:25045963

  1. Distinct spontaneous shrinkage of a sporadic vestibular schwannoma

    Huang, Xiaowen; Cayé-Thomasen, Per; Stangerup, Sven-Eric

    2013-01-01

    We present a case with outspoken spontaneous vestibular schwannoma shrinkage and review the related literature. The patient was initially diagnosed with a left-sided, intrameatal vestibular schwannoma, which subsequently grew into the cerebello-pontine angle (CPA), followed by total shrinkage...... of the CPA component without any intervention over a 12-year observation period. The literature on spontaneous tumor shrinkage was retrieved by searching the subject terms "vestibular schwannoma, conservative management" in PubMed/MEDLINE database, without a time limit. Of the published data, the articles...... on "shrinkage" or "negative growth" or "regression" or "involution" of the tumor were selected, and the contents on the rate, extent and mechanism of spontaneous tumor shrinkage were extracted and reviewed. The reported rate of spontaneous shrinkage of vestibular schwannoma is 5-10% of patients managed...

  2. Distinct spontaneous shrinkage of a sporadic vestibular schwannoma.

    Huang, Xiaowen; Caye-Thomasen, Per; Stangerup, Sven-Eric

    2013-04-01

    We present a case with outspoken spontaneous vestibular schwannoma shrinkage and review the related literature. The patient was initially diagnosed with a left-sided, intrameatal vestibular schwannoma, which subsequently grew into the cerebello-pontine angle (CPA), followed by total shrinkage of the CPA component without any intervention over a 12-year observation period. The literature on spontaneous tumor shrinkage was retrieved by searching the subject terms "vestibular schwannoma, conservative management" in PubMed/MEDLINE database, without a time limit. Of the published data, the articles on "shrinkage" or "negative growth" or "regression" or "involution" of the tumor were selected, and the contents on the rate, extent and mechanism of spontaneous tumor shrinkage were extracted and reviewed. The reported rate of spontaneous shrinkage of vestibular schwannoma is 5-10% of patients managed conservatively. Extreme shrinkage of the tumor may occur spontaneously. PMID:22858145

  3. Galvanic Vestibular Stimulation in Hemi-Spatial Neglect

    David Wilkinson; Mohamed Sakel

    2014-01-01

    Hemi-spatial neglect is an attentional disorder in which the sufferer fails to acknowledge or respond to stimuli appearing in contralesional space. In recent years, it has become clear that a measurable reduction in contralesional neglect can occur during galvanic vestibular stimulation, a technique by which transmastoid, small amplitude current induces lateral, attentional shifts via asymmetric modulation of the left and right vestibular nerves. However, it remains unclear whether this reduc...

  4. Postural control adaptation during galvanic vestibular and vibratory proprioceptive stimulation.

    Fransson, Per-Anders; Hafström, Anna; Karlberg, Mikael; Magnusson, Måns; Tjäder, Annika; Johansson, Rolf

    2003-01-01

    he objective for this study was to investigate whether the adaptation of postural control was similar during galvanic vestibular stimulation and during vibratory proprioceptivestimulation of the calf muscles. Healthy subjects were tested during erect stance with eyes open or closed. An analysis method designed to consider the adaptive adjustments was used to evaluate the motion dynamics and the evoked changes of posture and stimulation response.Galvanic vestibular stimulation induced primaril...

  5. Using Galvanic Vestibular Stimulation to Sense Abstract Data

    MÀki-Reinikka, Kasperi; Torniainen, Jari; Alafuzoff, Aleksander; Kotkanen, Henri; Toivanen, Jukka M.

    2013-01-01

    We propose using galvanic vestibular stimulation for presenting abstract data, for instance stock market trends. Using galvanic vestibular stimulation, data is felt directly as a perturbation in the sense of balance. This work is showcased as an art performance, where stock market fluctuations cause a person to maintain or lose balance. We present the artistic and technical principles underlying the performance and describe the technical implementation of a working system. The work shows how ...

  6. Galvanic vestibular stimulation in hemi-spatial neglect

    Wilkinson, David; Zubko, Olga; Sakel, Mohamed; Coulton, Simon; Higgins, Tracy; Pullicino, Patrick

    2014-01-01

    Hemi-spatial neglect is an attentional disorder in which the sufferer fails to acknowledge or respond to stimuli appearing in contralesional space. In recent years, it has become clear that a measurable reduction in contralesional neglect can occur during galvanic vestibular stimulation, a technique by which transmastoid, small amplitude current induces lateral, attentional shifts via asymmetric modulation of the left and right vestibular nerves. However, it remains unclear whether this reduc...

  7. Morphological analysis of the vestibular aqueduct by computerized tomography images

    Objective: In the last two decades, advances in the computerized tomography (CT) field revise the internal and medium ear evaluation. Therefore, the aim of this study is to analyze the morphology and morphometric aspects of the vestibular aqueduct on the basis of computerized tomography images (CTI). Material and method: Computerized tomography images of vestibular aqueducts were acquired from patients (n = 110) with an age range of 1-92 years. Thereafter, from the vestibular aqueducts images a morphometric analysis was performed. Through a computerized image processing system, the vestibular aqueduct measurements comprised of its area, external opening, length and the distance from the vestibular aqueduct to the internal acoustic meatus. Results: The morphology of the vestibular aqueduct may be funnel-shaped, filiform or tubular and the respective proportions were found to be at 44%, 33% and 22% in children and 21.7%, 53.3% and 25% in adults. The morphometric data showed to be of 4.86 mm2 of area, 2.24 mm of the external opening, 4.73 mm of length and 11.88 mm of the distance from the vestibular aqueduct to the internal acoustic meatus, in children, and in adults it was of 4.93 mm2, 2.09 mm, 4.44 mm, and 11.35 mm, respectively. Conclusions: Computerized tomography showed that the vestibular aqueduct presents high morphological variability. The morphometric analysis showed that the differences found between groups of children and adults or between groups of both genders were not statistically significant

  8. Metachronous schwannoma in the colon with vestibular schwannoma

    Jung, Eun-Joo; Han, Hye Seung; Koh, Young-Cho; Cho, Joon; Ryu, Chun-Geun; Paik, Jin Hee; Hwang, Dae-Yong

    2014-01-01

    We experienced a case of vestibular schwannoma and metachronous schwannoma in the colon. A 59-year-old female presented with a 1-month history of hematochezia. She had undergone suboccipital craniectomy resulting in radical subtotal resection, followed by gamma knife radiosurgery for a large left vestibular schwannoma 4 years prior to admission. On preoperative colonoscopy, a huge mass through which the colonoscope could not be passed was detected. CT scans showed colo-colonic intussusception...

  9. Fractionated stereotactic radiotherapy of vestibular schwannomas accelerates hearing loss

    Rasmussen, Rune; Claesson, Magnus; Stangerup, Sven-Eric;

    2012-01-01

    To evaluate long-term tumor control and hearing preservation rates in patients with vestibular schwannoma treated with fractionated stereotactic radiotherapy (FSRT), comparing hearing preservation rates to an untreated control group. The relationship between radiation dose to the cochlea and hear......To evaluate long-term tumor control and hearing preservation rates in patients with vestibular schwannoma treated with fractionated stereotactic radiotherapy (FSRT), comparing hearing preservation rates to an untreated control group. The relationship between radiation dose to the cochlea...

  10. Vestibular impairment in patients with Charcot-Marie-Tooth disease

    Poretti, A.; Palla, A; Tarnutzer, A A; Petersen, J A; Weber, K P; Straumann, D; Jung, H H

    2013-01-01

    OBJECTIVE: This case-control study aimed to determine whether the imbalance in Charcot-Marie-tooth (CMT) disease is caused only by reduced proprioceptive input or whether the involvement of the vestibular nerve is an additional factor. METHODS: Fifteen patients with CMT disease (aged 48 ± 17 years; 8 women) underwent cervical vestibular-evoked myogenic potentials, which reflect otolith-spinal reflex function, and quantitative horizontal search-coil head-impulse testing, which assesses the hi...

  11. Vestibular function in families with inherited autosomal dominant hearing loss

    Street, Valerie A.; Kallman, Jeremy C.; Strombom, Paul D.; Bramhall, Naomi F; Phillips, James O.

    2008-01-01

    The inner ear contains the developmentally related cochlea and peripheral vestibular labyrinth. Given the similar physiology between these two organs, hearing loss and vestibular dysfunction may be expected to occur simultaneously in individuals segregating mutations in inner ear genes. Twenty-two different genes have been discovered that when mutated lead to non-syndromic autosomal dominant hearing loss. A review of the literature indicates that families segregating mutations in 13 of these ...

  12. Morphological analysis of the vestibular aqueduct by computerized tomography images

    Marques, Sergio Ricardo [Morphology and Genetics Department, Sao Paulo Federal University-Paulista Medical School, Disciplina de Anatomia Descritiva e Topografica, Rua Botucatu, 740-Edificio Leitao da Cunha, CEP 04023-900, Vila Clementino, Sao Paulo (Brazil)]. E-mail: sergioanat.morf@epm.br; Smith, Ricardo Luiz [Morphology and Genetics Department, Sao Paulo Federal University-Paulista Medical School, Disciplina de Anatomia Descritiva e Topografica, Rua Botucatu, 740-Edificio Leitao da Cunha, CEP 04023-900, Vila Clementino, Sao Paulo (Brazil); Isotani, Sadao [Institute of Physics, University of Sao Paulo, Sao Paulo (Brazil); Alonso, Luis Garcia [Morphology and Genetics Department, Sao Paulo Federal University-Paulista Medical School, Disciplina de Anatomia Descritiva e Topografica, Rua Botucatu, 740-Edificio Leitao da Cunha, CEP 04023-900, Vila Clementino, Sao Paulo (Brazil); Anadao, Carlos Augusto [Otorhinolaryngology Department, Sao Paulo Federal University-Paulista Medical School, Sao Paulo (Brazil); Prates, Jose Carlos [Morphology and Genetics Department, Sao Paulo Federal University-Paulista Medical School, Disciplina de Anatomia Descritiva e Topografica, Rua Botucatu, 740-Edificio Leitao da Cunha, CEP 04023-900, Vila Clementino, Sao Paulo (Brazil); Lederman, Henrique Manoel [Image Diagnosis Department, Sao Paulo Federal University-Paulista Medical School, Sao Paulo (Brazil)

    2007-01-15

    Objective: In the last two decades, advances in the computerized tomography (CT) field revise the internal and medium ear evaluation. Therefore, the aim of this study is to analyze the morphology and morphometric aspects of the vestibular aqueduct on the basis of computerized tomography images (CTI). Material and method: Computerized tomography images of vestibular aqueducts were acquired from patients (n = 110) with an age range of 1-92 years. Thereafter, from the vestibular aqueducts images a morphometric analysis was performed. Through a computerized image processing system, the vestibular aqueduct measurements comprised of its area, external opening, length and the distance from the vestibular aqueduct to the internal acoustic meatus. Results: The morphology of the vestibular aqueduct may be funnel-shaped, filiform or tubular and the respective proportions were found to be at 44%, 33% and 22% in children and 21.7%, 53.3% and 25% in adults. The morphometric data showed to be of 4.86 mm{sup 2} of area, 2.24 mm of the external opening, 4.73 mm of length and 11.88 mm of the distance from the vestibular aqueduct to the internal acoustic meatus, in children, and in adults it was of 4.93 mm{sup 2}, 2.09 mm, 4.44 mm, and 11.35 mm, respectively. Conclusions: Computerized tomography showed that the vestibular aqueduct presents high morphological variability. The morphometric analysis showed that the differences found between groups of children and adults or between groups of both genders were not statistically significant.

  13. Caloric vestibular stimulation in aphasic syndrome

    David Wilkinson

    2013-12-01

    Full Text Available Caloric vestibular stimulation (CVS is commonly used to diagnose brainstem disorder but its therapeutic application is much less established. Based on the finding that CVS increases blood flow to brain structures associated with language and communication, we assessed whether the procedure has potential to relieve symptoms of post-stroke aphasia. Three participants, each presenting with chronic, unilateral lesions to the left hemisphere, were administered daily CVS for 4 consecutive weeks. Relative to their pre-treatment baseline scores, two of the three participants showed significant improvement on both picture and responsive naming at immediate and one-week follow-up. One of these participants also showed improved sentence repetition, and another showed improved auditory word discrimination. No adverse reactions were reported. These data provide the first, albeit tentative, evidence that CVS may relieve expressive and receptive symptoms of aphasia. A larger, sham-controlled study is now needed to further assess efficacy.

  14. The Moving History of Vestibular Stimulation as a Therapeutic Intervention.

    Grabherr, Luzia; Macauda, Gianluca; Lenggenhager, Bigna

    2015-01-01

    Although the discovery and understanding of the function of the vestibular system date back only to the 19th century, strategies that involve vestibular stimulation were used long before to calm, soothe and even cure people. While such stimulation was classically achieved with various motion devices, like Cox's chair or Hallaran's swing, the development of caloric and galvanic vestibular stimulation has opened up new possibilities in the 20th century. With the increasing knowledge and recognition of vestibular contributions to various perceptual, motor, cognitive, and emotional processes, vestibular stimulation has been suggested as a powerful and non-invasive treatment for a range of psychiatric, neurological and neurodevelopmental conditions. Yet, the therapeutic interventions were, and still are, often not hypothesis-driven as broader theories remain scarce and underlying neurophysiological mechanisms are often vague. We aim to critically review the literature on vestibular stimulation as a form of therapy in various selected disorders and present its successes, expectations, and drawbacks from a historical perspective. PMID:26595961

  15. How the vestibular system interacts with somatosensory perception: a sham-controlled study with galvanic vestibular stimulation.

    Ferrè, Elisa R; Day, Brian L; Bottini, Gabriella; Haggard, Patrick

    2013-08-29

    The vestibular system has widespread interactions with other sensory modalities. Here we investigate whether vestibular stimulation modulates somatosensory function, by assessing the ability to detect faint tactile stimuli to the fingertips of the left and right hand with or without galvanic vestibular stimulation (GVS). We found that left anodal and right cathodal GVS, significantly enhanced sensitivity to mild shocks on either hand, without affecting response bias. There was no such effect with either right anodal and left cathodal GVS or sham stimulation. Further, the enhancement of somatosensory sensitivity following GVS does not strongly depend on the duration of GVS, or the interval between GVS and tactile stimulation. Vestibular inputs reach the somatosensory cortex, increasing the sensitivity of perceptual circuitry. PMID:23827220

  16. Pre-adaptation to noisy Galvanic vestibular stimulation is associated with enhanced sensorimotor performance in novel vestibular environments

    Moore, Steven T.; Hamish MacDougall

    2015-01-01

    Performance on a visuomotor task in the presence of novel vestibular stimulation was assessed in nine healthy subjects. Four subjects had previously been adapted to 120 minutes exposure to noisy Galvanic vestibular stimulation (GVS) over 12 weekly sessions of 10 minutes; the remaining five subjects had never experienced GVS. Subjects were seated in a flight simulator and asked to null the roll motion of a visual bar presented on a screen using a joystick. Both the visual bar and the simulator...

  17. Nitric Oxide Signaling in Hypergravity-Induced Neuronal Plasticity

    Holstein, Gay R.

    2003-01-01

    The goal of this research project was to identify the neurons and circuits in the vestibular nuclei and nucleus prepositus hypoglossi that utilize nitric oxide (NO) for intercellular signaling during gravity-induced plasticity. This objective was pursued using histochemical and immunocytochemical approaches to localize NO-producing neurons and characterize the fine morphology of the cells in ground-based studies of normal rats, rats adapted to hypergravity, and rats adapted to hypergravity and then re-adapted to the 1G environment. NO-producing neurons were identified and studied using four methodologies: i) immunocytochemistry employing polyclonal antibodies directed against neuronal nitric oxide synthase (nNOS), to provide an indication of the capacity of a cell for NO production; ii) immunocytochemistry employing a monoclonal antibody directed against L-citrulline, to provide an indirect index of the enzyme's activity; iii) histochemistry based on the NADPH-diaphorase reaction, for fuI1 cytological visualization of neurons; and iv) double immunofluorescence to co-localize nNOS and L-citrulline in individual vestibular nuclei (VN) and neurons.

  18. Noisy galvanic vestibular stimulation enhances spatial memory in cognitive impairment-induced by intracerebroventricular-streptozotocin administration.

    Adel Ghahraman, Mansoureh; Zahmatkesh, Maryam; Pourbakht, Akram; Seifi, Behjat; Jalaie, Shohreh; Adeli, Soheila; Niknami, Zohreh

    2016-04-01

    There are several anatomical connections between vestibular system and brain areas construct spatial memory. Since subliminal noisy galvanic vestibular stimulation (GVS) has been demonstrated to enhance some types of memory, we speculated that application of noisy GVS may improve spatial memory in a rat model of intracerebroventricular streptozotocin (ICV-STZ)-induced cognitive impairment. Moreover, we attempted to determine the effect of repeated exposure to GVS on spatial memory performance. The spatial memory was assessed using Morris water maze test. The groups received 1 (ICV-STZ/GVS-I) or 5 (ICV-STZ/GVS-II) sessions, each lasting 30 min, of low amplitude noisy GVS, or no GVS at all (Control, ICV-saline, ICV-STZ/noGVS). Hippocampal morphological changes investigated with cresyl violet staining and the immediate early gene product c-Fos, as a neuronal activity marker, was measured. Hippocampal c-Fos positive cells increased in both GVS stimulated groups. We observed significantly improved spatial performance only in ICV-STZ/GVS-II group. Histological evaluation showed normal density in ICV-STZ/GVS-II group whereas degeneration observed in ICV-STZ/GVS-I group similar to ICV-STZ/noGVS. The results showed the improvement of memory impairment after repeated exposure to GVS. This effect may be due in part to frequent activation of the vestibular neurons and the hippocampal regions connected to them. Our current study suggests the potential role of GVS as a practical method to combat cognitive decline induced by sporadic Alzheimer disease. PMID:26892259

  19. Enhancement of Otolith Specific Ocular Responses Using Vestibular Stochastic Resonance

    Fiedler, Matthew; De Dios, Yiri E.; Esteves, Julie; Galvan, Raquel; Wood, Scott; Bloomberg, Jacob; Mulavara, Ajitkumar

    2011-01-01

    Introduction: Astronauts experience disturbances in sensorimotor function after spaceflight during the initial introduction to a gravitational environment, especially after long-duration missions. Our goal is to develop a countermeasure based on vestibular stochastic resonance (SR) that could improve central interpretation of vestibular input and mitigate these risks. SR is a mechanism by which noise can assist and enhance the response of neural systems to relevant, imperceptible sensory signals. We have previously shown that imperceptible electrical stimulation of the vestibular system enhances balance performance while standing on an unstable surface. Methods: Eye movement data were collected from 10 subjects during variable radius centrifugation (VRC). Subjects performed 11 trials of VRC that provided equivalent tilt stimuli from otolith and other graviceptor input without the normal concordant canal cues. Bipolar stochastic electrical stimulation, in the range of 0-1500 microamperes, was applied to the vestibular system using a constant current stimulator through electrodes placed over the mastoid process behind the ears. In the VRC paradigm, subjects were accelerated to 216 deg./s. After the subjects no longer sensed rotation, the chair oscillated along a track at 0.1 Hz to provide tilt stimuli of 10 deg. Eye movements were recorded for 6 cycles while subjects fixated on a target in darkness. Ocular counter roll (OCR) movement was calculated from the eye movement data during periods of chair oscillations. Results: Preliminary analysis of the data revealed that 9 of 10 subjects showed an average increase of 28% in the magnitude of OCR responses to the equivalent tilt stimuli while experiencing vestibular SR. The signal amplitude at which performance was maximized was in the range of 100-900 microamperes. Discussion: These results indicate that stochastic electrical stimulation of the vestibular system can improve otolith specific responses. This will have a

  20. Ocular vestibular evoked myogenic potentials in normal-hearing adults

    Mohammad Kamali

    2012-06-01

    Full Text Available Background and Aim: Ocular vestibular-evoked myogenic potential (oVEMP is a novel vestibular function test. This short-latency response can be recorded through contracting extraocular muscles by high-intensity acoustic stimulation and can be used to evaluate contralateral ocular-vestibular reflex. The aim of this study was to record and compare the amplitude, latency, asymmetry ratio and occurrence percentage of oVEMP (n10 and cervical VEMP (p13 responses in a group of normal adult subjects.Methods: We carried out a cross-sectional study on 20 adult subjects' mean age 22.18 years, SD=2.19 with normal hearing sensitivity and no history of vestibular diseases. oVEMP and cVEMP responses in both ears were recorded using air conducted stimuli 500 Hz short tone burst, 95 dB nHL via insert earphone and compared.Results: cVEMP was recorded in all subjects but oVEMP was absent in two subjects. Mean amplitude and latency were 140.77 μv and 15.56 ms in p13; and 3.18 μv and 9.32 ms in n10. There were statistically significant differences between p13 and n10 amplitudes (p<0.001.Conclusion: This study showed that occurrence percentage and amplitude of oVEMP were less than those of cVEMP. Since these two tests originate from different sections of vestibular nerve, we can consider them as parallel vestibular function tests and utilize them for evaluation of vestibular disorders.

  1. Vestibular Migraine (a.k.a.Migraine Associated Vertigo or [MAV])

    ... is a Top Rated Nonprofit! Volunteer. Donate. Review. Vestibular Migraine (a.k.a. Migraine Associated Vertigo or ... Wackym on his You Tube Channel. Migraine and vestibular dysfunction Approximately 40% of migraine patients have some ...

  2. MR imaging features and clinical value of vestibular aqueduct and endolymphatic sac in patients with large vestibular aqueduct syndrome

    Objective: To investigate MR imaging features of endolymphatic sac and vestibular aqueduct in patients with large vestibular aqueduct syndrome (LVAS) and its correlation with hearing loss. Methods: MR imaging findings of LVAS were analyzed in 31 cases (62 ears) retrospectively. MR imaging features were grouped into 4 types. In the first type, the signals of endolymphatic and vestibular aqueduct were hypointense without any hyperintense area. In the second type, the signals of endolymphatic sac and vestibular were hyperintense which were confined within vestibular fissure. In the third type, the area from vestibular aqueduct backward out of the edge of the petrous bone was hyperintense, but its lower boundary was above posterior semicircular. In the fourth type the area which was hyperintense was below the posterior semicircular. To avoid errors in visual inspection, the hyperintense and hypointense area of endolymphatic and the signal intensity of vestibular aqueduct and cerebrospinal fluid (CSF) were measured. The differences of signal intensity among the vestibular endolymphatic sac between the high-signal areas and low signal areas were compared with paired t-test. The correlation of the endolymphatic sac MRI classification and degree of hearing loss was analyzed by corrected Chi-square test and Spearman correlation analysis. Result: Ten ears belonged to type Ⅰ (moderate hearing loss in 1 ear,severe in 4 ears,profound in 5 ears), 17 ears belonged to type Ⅱ (moderate hearing loss in 1 ear; severe in 5 ears,profound in 11 ears), 23 ears to type Ⅲ (moderate hearing loss in 3 ear, severe in 5 ears, profound in 15 ears) and 12 ears belonged to Ⅳ (mild hearing loss in 1 ear, moderate in 1 ear, severe 3 ear, profound in 7 ears). The boundary between hyperintense and hypointense area was clear, and the signal intensity ratios was 2.02 ± 0.06. The signal ratios of hyperintense and hypointense area to vestibular and CSF were 0.95 ±0.12, 0.49 ±0.10, 0.99 ± 0

  3. Effects of microgravity on vestibular ontogeny: direct physiological and anatomical measurements following space flight (STS-29)

    Jones, T. A.; Fermin, C.; Hester, P. Y.; Vellinger, J.

    1993-01-01

    Does space flight change gravity receptor development? The present study measured vestibular form and function in birds flown as embryos for 5 days in earth orbit (STS-29). No major changes in vestibular gross morphology were found. Vestibular response mean amplitudes and latencies were unaffected by space flight. However, the results of measuring vestibular thresholds were mixed and abnormal responses in 3 of the 8 flight animals raise important questions.

  4. Visuo-spatial memory enhancement by galvanic vestibular stimulation: A preliminary report

    Fatemehsadat Ghaheri; Mansoureh Adel Ghahraman; Farnoush Jarollahi; Shohreh Jalaie

    2014-01-01

    Background and Aim: Navigation information is processed and stored in different brain areas such as hippocampus. Since multiple pathways has been reported between vestibular nuclei and hippocampus and also cognitive dysfunction specifically in spatial memory is induced by vestibular deficits, it can be assumed that vestibular system stimulation ameliorates spatial memory. The aim of study was to evaluate the effect of galvanic vestibular stimulation on normal individual’s spatial memory.Metho...

  5. Can Postural Instability Respond to Galvanic Vestibular Stimulation in Patients with Parkinson’s Disease?

    Hiroshi Kataoka; Yohei Okada; Takao Kiriyama; Yorihiro Kita; Junji Nakamura; Shu Morioka; Koji Shomoto; Satoshi Ueno

    2015-01-01

    Objective Galvanic vestibular stimulation (GVS) activates the vestibular afferents, and these changes in vestibular input exert a strong influence on the subject’s posture or standing balance. In patients with Parkinson’s disease (PD), vestibular dysfunction might contribute to postural instability and gait disorders. Methods Current intensity was increased to 0.7 mA, and the current was applied to the patients for 20 minutes. To perform a sham stimulation, the current intensity was increased...

  6. The Vestibular-Evoked Postural Response of Adolescents with Idiopathic Scoliosis Is Altered

    Jean-Philippe Pialasse; Martin Descarreaux; Pierre Mercier; Jean Blouin; Martin Simoneau

    2015-01-01

    Adolescent idiopathic scoliosis is a multifactorial disorder including neurological factors. A dysfunction of the sensorimotor networks processing vestibular information could be related to spine deformation. This study investigates whether feed-forward vestibulomotor control or sensory reweighting mechanisms are impaired in adolescent scoliosis patients. Vestibular evoked postural responses were obtained using galvanic vestibular stimulation while participants stood with their eyes closed an...

  7. Morphology and electrophysiology of the vestibular organ in the guinea pig

    Oei, Markus Lee Yang Murti

    2003-01-01

    To obtain more information about the anatomy and function of the vestibular organ in normal and pathological conditions, evaluation methods are needed. For experimental purposes, the vestibular organ of the guinea pig is often used as a model for the human vestibular organ. The purpose of the resear

  8. Short latency vestibular evoked potentials in the chicken embryo

    Jones, S. M.; Jones, T. A.

    1996-01-01

    Electrophysiological responses to pulsed linear acceleration stimuli were recorded in chicken embryos incubated for 19 or 20 days (E19/E20). Responses occurred within the first 16 ms following the stimulus onset. The evoked potentials disappeared following bilateral labyrinthectomy, but persisted following cochlear destruction alone, thus demonstrating that the responses were vestibular. Approximately 8 to 10 response peaks could be identified. The first 4 positive and corresponding negative components (early peaks with latencies birds. Mean response threshold for anesthetized embryos was -15.9dBre 1.0 g/ms, which was significantly higher (P birds (-23.0dBre 1.0 g/ms). Latency/intensity functions (that is, slopes) were not significantly different between embryos and 2-week-old animals, but amplitude/intensity functions for embryos were significantly shallower than those for 2-week-old birds (P function that occurs following 19 to 20 days of incubation. The recording of vestibular evoked potentials provides an objective, direct and noninvasive measure of peripheral vestibular function in the embryo and, as such, the method shows promise as an investigative tool. The results of the present study form the definitive basis for using vestibular evoked potentials in the detailed study of avian vestibular ontogeny and factors that may influence it.

  9. Action Representation in Patients with Bilateral Vestibular Impairments

    Demougeot, Laurent; Toupet, Michel; Van Nechel, Christian; Papaxanthis, Charalambos

    2011-01-01

    During mental actions subjects feel themselves performing a movement without any corresponding motor output. Although broad information is available regarding the influence of central lesions on action representation, little is known about how peripheral damages affect mental events. In the current study, we investigated whether lack of vestibular information influences action representation. Twelve healthy adults and twelve patients with bilateral vestibular damage actually performed and mentally simulated walking and drawing. The locomotor paths implied one (first walking task) and four (second walking task) changes in the walking direction. In the drawing task, participants drew on a sheet of paper a path that was similar to that of the second walking task. We recorded and compared between the two groups the timing of actual and mental movements. We found significant temporal discrepancies between actual and mental walking movements in the group of patients. Conversely, drawing actual and drawing mental durations were similar. For the control group, an isochrony between mental and actual movements was observed for the three tasks. This result denotes an inconsistency between action representation and action execution following vestibular damage, which is specific to walking movements, and emphasizes the role of the vestibular system upon mental states of actions. This observation may have important clinical implications. During action planning vestibular patients may overestimate the capacity of their motor system (imaging faster, executing slower) with harmful consequences for their health. PMID:22039548

  10. Neural basis for eye velocity generation in the vestibular nuclei of alert monkeys during off-vertical axis rotation

    Reisine, H.; Raphan, T.; Cohen, B. (Principal Investigator)

    1992-01-01

    Activity of "vestibular only" (VO) and "vestibular plus saccade" (VPS) units was recorded in the rostral part of the medial vestibular nucleus and caudal part of the superior vestibular nucleus of alert rhesus monkeys. By estimating the "null axes" of recorded units (n = 79), the optimal plane of activation was approximately the mean plane of reciprocal semicircular canals, i.e., lateral canals, left anterior-right posterior (LARP) canals or right anterior-left posterior (RALP) canals. All units were excited by rotation in a direction that excited a corresponding ipsilateral semicircular canal. Thus, they all displayed a "type I" response. With the animal upright, there were rapid changes in firing rates of both VO and VPS units in response to steps of angular velocity about a vertical axis. The units were bidirectionally activated during vestibular nystagmus (VN), horizontal optokinetic nystagmus (OKN), optokinetic after-nystagmus (OKAN) and off-vertical axis rotation (OVAR). The rising and falling time constants of the responses to rotation indicated that they were closely linked to velocity storage. There were differences between VPS and VO neurons in that activity of VO units followed the expected time course in response to a stimulus even during periods of drowsiness, when eye velocity was reduced. Firing rates of VPS units, on the other hand, were significantly reduced in the drowsy state. Lateral canal-related units had average firing rates that were linearly related to the bias or steady state level of horizontal eye velocity during OVAR over a range of +/- 60 deg/s. These units could be further divided into two classes according to whether they were modulated during OVAR. Non-modulated units (n = 5) were VO types and all modulated units (n = 5) were VPS types. There was no significant difference between the bias level sensitivities relative to eye velocity of the units with and without modulation (P > 0.05). The modulated units had no sustained change in

  11. Vestibular myogenic and acoustical brainstem evoked potentials in neurological practice

    O. S. Korepina

    2012-01-01

    Full Text Available Along with the inspection of acoustical cortex and brainstem EP in neurologic, otoneurologic and audiologic practice recently start to use so-called vestibular evoked myogenic potentials (VEMP. It is shown, that at ear stimulation by a loud sound and record of sterno-cleidomastoid contraction is possible to estimate function of the inferior vestibular nerve and vestibulospinal pathways, a sacculo-cervical reflex. In article some methodical and clinical questions of application of these kinds are presented. Combine research acoustic brainstem EP and VEMP allows to confirm effectively lesions of acoustical and vestibular ways at brainstem. The conclusion becomes, that this kind of inspection is important for revealing demielinisation and defeats in vestibulospinal tract, that quite often happens at MS, and at estimation of efficiency of treatment

  12. The vein of the vestibular aqueduct with potential pathologic perspectives

    Friis, Morten; Sørensen, Mads Sølvsten; Qvortrup, Klaus

    2008-01-01

    HYPOTHESIS: Pathologic changes around the vein of the vestibular aqueduct (VVA) may cause obstruction to the flow of blood toward the sigmoid sinus. Furthermore, a distal obstruction of this vessel may be responsible for a development of a retrograde flow of blood with concomitant drainage...... of endolymphatic sac (ES) substances to the inner ear. BACKGROUND: The VVA is responsible for the venous drainage of the vestibular apparatus and endolymphatic duct and ES. Previous studies have linked the VVA to Ménière's disease. The aim of the present article was a 3-dimensional perspective study of the VVA...... with its adjacent anatomic structures. METHODS: In 14 rats, the VVA was examined by 3-dimensional reconstruction of 2-microm serial sections, corrosion cast technique, and scanning electron microscopy. RESULTS: From the external aperture of the vestibular aqueduct, the VVA is interposed between the ES...

  13. Normal pressure hydrocephalus after gamma knife radiosurgery for vestibular schwannoma

    Mohammed T

    2010-01-01

    Full Text Available Vestibular schwannomas are not uncommon, and gamma knife radiosurgery is one of the treatment options for symptomatic tumors. Hydrocephalus is a complication of gamma knife treatment of vestibular schwannoma, though the mechanism of the development of hydrocephalus remains controversial. We present an unusual case of normal pressure hydrocephalus (NPH after gamma knife radiosurgery of a vestibular schwannoma in which the timeline of events strongly suggests that gamma knife played a contributory role in the development of the hydrocephalus. This is probably the first case of NPH post radiosurgery with normal cerebrospinal fluid protein. Communicating hydrocephalus should be treated with placement of shunt while non-communicating hydrocephalus can be treated with third ventriculostomy. Frequent monitoring and early intervention post radiosurgery is highly recommended to prevent irreversible cerebral damage.

  14. Modulation of human vestibular reflexes with increased postural threat.

    Horslen, Brian C; Dakin, Christopher J; Inglis, J Timothy; Blouin, Jean-Sébastien; Carpenter, Mark G

    2014-08-15

    Anxiety and arousal have been shown to facilitate human vestibulo-ocular reflexes, presumably through direct neural connections between the vestibular nuclei and emotional processing areas of the brain. However, the effects of anxiety, fear and arousal on balance-relevant vestibular reflexes are currently unknown. The purpose of this study was to manipulate standing height to determine whether anxiety and fear can modulate the direct relationship between vestibular signals and balance reflexes during stance. Stochastic vestibular stimulation (SVS; 2-25 Hz) was used to evoke ground reaction forces (GRF) while subjects stood in both LOW and HIGH surface height conditions. Two separate experiments were conducted to investigate the SVS-GRF relationship, in terms of coupling (coherence and cumulant density) and gain, in the medio-lateral (ML) and antero-posterior (AP) directions. The short- and medium-latency cumulant density peaks were both significantly increased in the ML and AP directions when standing in HIGH, compared to LOW, conditions. Likewise, coherence was statistically greater between 4.3 Hz and 6.7 Hz in the ML, and between 5.5 and 17.7 Hz in the AP direction. When standing in the HIGH condition, the gain of the SVS-GRF relationship was increased 81% in the ML direction, and 231% in the AP direction. The significant increases in coupling and gain observed in both experiments demonstrate that vestibular-evoked balance responses are augmented in states of height-induced postural threat. These data support the possibility that fear or anxiety-mediated changes to balance control are affected by altered central processing of vestibular information. PMID:24973412

  15. Plasticity during vestibular compensation: the role of saccades

    Hamish Gavin MacDougall

    2012-02-01

    Full Text Available This paper is focussed on one major aspect of compensation: the recent behavioural findings concerning oculomotor responses in human vestibular compensation and their possible implications for recovery after unilateral vestibular loss (UVL. New measurement techniques have provided new insights into how patients recover after UVL and have given clues for vestibular rehabilitation. Prior to this it has not been possible to quantify the level of function of all the peripheral vestibular sense organs. Now it is. By using vestibular-evoked myogenic potentials to measure utricular and saccular function and by new video head impulse testing to measure semicircular canal function to natural values of head accelerations. With these new video procedures it is now possible to measure both slow phase eye velocity and also saccades during natural head movements. The present evidence is that there is little or no recovery of slow phase eye velocity responses to natural head accelerations. It is doubtful as to whether the modest changes in slow phase eye velocity to small angular accelerations are functionally effective during compensation. On the other hand it is now clear that saccades can play a very important role in helping patients compensate and return to a normal lifestyle. Preliminary evidence suggests that different patterns of saccadic response may predict how well patients recover. It may be possible to train patients to produce more effective saccadic patterns in the first days after their unilateral loss. Some patients do learn new strategies, new behaviours, to conceal their inadequate VOR but when those strategies are prevented from operating by using passive, unpredictable, high acceleration natural head movements, as in the head impulse test, their vestibular loss can be demonstrated. It is those very strategies which the tests exclude, which may be the cause of their successful compensation.

  16. Visual and proprioceptive interaction in patients with bilateral vestibular loss

    Nicholas J. Cutfield

    2014-01-01

    Full Text Available Following bilateral vestibular loss (BVL patients gradually adapt to the loss of vestibular input and rely more on other sensory inputs. Here we examine changes in the way proprioceptive and visual inputs interact. We used functional magnetic resonance imaging (fMRI to investigate visual responses in the context of varying levels of proprioceptive input in 12 BVL subjects and 15 normal controls. A novel metal-free vibrator was developed to allow vibrotactile neck proprioceptive input to be delivered in the MRI system. A high level (100 Hz and low level (30 Hz control stimulus was applied over the left splenius capitis; only the high frequency stimulus generates a significant proprioceptive stimulus. The neck stimulus was applied in combination with static and moving (optokinetic visual stimuli, in a factorial fMRI experimental design. We found that high level neck proprioceptive input had more cortical effect on brain activity in the BVL patients. This included a reduction in visual motion responses during high levels of proprioceptive input and differential activation in the midline cerebellum. In early visual cortical areas, the effect of high proprioceptive input was present for both visual conditions but in lateral visual areas, including V5/MT, the effect was only seen in the context of visual motion stimulation. The finding of a cortical visuo-proprioceptive interaction in BVL patients is consistent with behavioural data indicating that, in BVL patients, neck afferents partly replace vestibular input during the CNS-mediated compensatory process. An fMRI cervico-visual interaction may thus substitute the known visuo-vestibular interaction reported in normal subject fMRI studies. The results provide evidence for a cortical mechanism of adaptation to vestibular failure, in the form of an enhanced proprioceptive influence on visual processing. The results may provide the basis for a cortical mechanism involved in proprioceptive substitution

  17. Increasing annual incidence of vestibular schwannoma and age at diagnosis

    Stangerup, Sven-Eric; Tos, Mirko; Caye-Thomasen, Per;

    2004-01-01

    During the last 26 years the annual number of diagnosed vestibular schwannomas (VS) has been increasing. The aim of this study is to describe and analyse this increase. Since 1976, 1446 new cases of VS have been diagnosed at the authors' centre. Special focus was on the age at diagnosis, the loca......During the last 26 years the annual number of diagnosed vestibular schwannomas (VS) has been increasing. The aim of this study is to describe and analyse this increase. Since 1976, 1446 new cases of VS have been diagnosed at the authors' centre. Special focus was on the age at diagnosis...

  18. Vestibular migraine: the most frequent entity of episodic vertigo

    Dieterich, Marianne; Obermann, Mark; Celebisoy, Nese

    2016-01-01

    Vestibular migraine (VM) is the most common cause of episodic vertigo in adults as well as in children. The diagnostic criteria of the consensus document of the International Bárány Society for Neuro-Otology and the International Headache Society (2012) combine the typical signs and symptoms of migraine with the vestibular symptoms lasting 5 min to 72 h and exclusion criteria. Although VM accounts for 7 % of patients seen in dizziness clinics and 9 % of patients seen in headache clinics it is...

  19. Effects of conventional versus multimodal vestibular rehabilitation on functional capacity and balance control in older people with chronic dizziness from vestibular disorders: design of a randomized clinical trial

    Ricci Natalia; Aratani Mayra; Caovilla Heloisa; Ganança Fernando

    2012-01-01

    Abstract Background There are several protocols designed to treat vestibular disorders that focus on habituation, substitution, adaptation, and compensation exercises. However, protocols that contemplate not only vestibular stimulation but also other components that are essential to the body balance control in older people are rare. This study aims to compare the effectiveness of two vestibular rehabilitation protocols (conventional versus multimodal) on the functional capacity and body balan...

  20. A quantitative analysis of gait patterns in vestibular neuritis patients using gyroscope sensor and a continuous walking protocol

    Kim, Soo Chan; Kim, Joo Yeon; Lee, Hwan Nyeong; Lee, Hwan Ho; Kwon, Jae Hwan; Kim, Nam beom; Kim, Mi Joo; Hwang, Jong Hyun; Han, Gyu Cheol

    2014-01-01

    Background Locomotion involves an integration of vision, proprioception, and vestibular information. The parieto-insular vestibular cortex is known to affect the supra-spinal rhythm generators, and the vestibular system regulates anti-gravity muscle tone of the lower leg in the same side to maintain an upright posture through the extra-pyramidal track. To demonstrate the relationship between locomotion and vestibular function, we evaluated the differences in gait patterns between vestibular n...

  1. Reabilitação vestibular na criança: estudo preliminar Vestibular rehabilitation in children: preliminary study

    Roseli S. M. Bittar; Maria E. B Pedalini; Ítalo R. T. Medeiros; Marco A. Bottino; Ricardo F. Bento

    2002-01-01

    Forma de estudo: Clínico prospectivo. Objetivo: O estudo analisa prospectivamente os resultados da Reabilitação Vestibular pelo método de Cawtorne & Cooksey em 22 crianças, portadoras de vestibulopatia periférica, associada ou não a sintomas centrais, com idade média de 8,6 anos. Material e método: Os exames quantitativos da função vestibular utilizados para quantificar a vestibulopatia foram a eletronistagmografia e a prova rotatória pendular decrescente (PRPD), mas a história clínica altame...

  2. Development of inner ear afferent connections: forming primary neurons and connecting them to the developing sensory epithelia

    Fritzsch, Bernd

    2003-01-01

    The molecular and cellular origin of the primary neurons of the inner ear, the vestibular and spiral neurons, is reviewed including how they connect to the specific sensory epithelia and what the molecular nature of their survival is. Primary neurons of the ear depend on a single basic Helix-Loop-Helix (bHLH) protein for their formation, neurogenin 1 (ngn1). An immediate downstream gene is the bHLH gene neuronal differentiation (NeuroD). Targeted null mutations of ngn1 results in absence of primary neuron formation; targeted null mutation of NeuroD results in loss of almost all spiral and many vestibular neurons. NeuroD and a later expressed gene, Brn3a, play a role in pathfinding to and within sensory epithelia. The molecular nature of this pathfinding property is unknown. Reduction of hair cells in ngn1 null mutations suggests a clonal relationship with primary neurons. This relationship may play some role in specifying the identity of hair cells and the primary neurons that connect with them. Primary neuron neurites growth to sensory epithelia is initially independent of trophic factors released from developing sensory epithelia, but becomes rapidly dependent on those factors. Null mutations of specific neurotrophic factors lose distinct primary neuron populations which undergo rapid embryonic cell death.

  3. Reabilitação vestibular no tratamento da tontura e do zumbido Vestibular rehabilitation in the treatment of dizziness and tinnitus

    Bianca Simone Zeigelboim

    2008-01-01

    Full Text Available OBJETIVO: Verificar a efetividade dos exercícios de reabilitação vestibular na melhora do zumbido e da tontura por meio de avaliação pré e pós-aplicação do questionário Dizziness Handicap Inventory (DHI e Tinnitus Handicap Inventory (THI, ambos adaptados à população brasileira. MÉTODOS: Avaliaram-se seis pacientes (dois do sexo masculino e quatro do sexo feminino, na faixa etária de 43 a 70 anos. Os pacientes foram submetidos aos seguintes procedimentos: anamnese, inspeção otológica, avaliação vestibular por meio da vectoeletronistagmografia e aplicação dos questionários pré e pós-reabilitação vestibular, utilizando-se o protocolo de Cawthorne e Cooksey. RESULTADOS: a com relação às queixas mais referidas, observou-se desequilíbrio à marcha (83,3%, dor de cabeça (66,6% e depressão (66,6%; b no exame vestibular todos os pacientes apresentaram alteração na prova calórica, sendo a maior freqüência das síndromes vestibulares periféricas irritativas (83,3%; c constataram-se no exame vestibular dois casos de síndrome vestibular periférica irritativa, dois casos de síndrome vestibular periférica irritativa unilateral; um caso de síndrome vestibular periférica irritativa bilateral e um caso de síndrome vestibular periférica deficitária unilateral; d na aplicação do DHI, observou-se melhora nos aspectos: funcional e emocional, mantendo-se inalterado o aspecto físico; e na aplicação do THI, observou-se melhora em todos os aspectos avaliados. CONCLUSÃO: O protocolo utilizado de reabilitação vestibular promoveu diminuição do zumbido e da tontura, melhorando a qualidade de vida dos pacientes.PURPOSE: To verify the effectiveness of vestibular rehabilitation exercises in the improvement of tinnitus and dizziness through an evaluation carried out before and after the administration of the Dizziness Handicap Inventory (DHI and the Tinnitus Handicap Inventory (DHI questionnaires, both adapted to the

  4. Astronauts Conrad and Kerwin practice Human Vestibular Function experiment

    1973-01-01

    Astronaut Charles Conrad Jr., commander of the first manned Skylab mission, checks out the Human Vestibular Function, Experiment M131, during Skylab training at JSC. Scientist-Astronaut Joseph P. Kerwin, science pilot of the mission, goes over a checklist. The two men are in the work and experiments compartment of the crew quarters of the Skylab Orbital Workshop (OWS) trainer at JSC.

  5. Abnormal Tilt Perception During Centrifugation in Patients with Vestibular Migraine.

    Wang, Joanne; Lewis, Richard F

    2016-06-01

    Vestibular migraine (VM), defined as vestibular symptoms caused by migraine mechanisms, is very common but poorly understood. Because dizziness is often provoked in VM patients when the semicircular canals and otolith organs are stimulated concurrently (e.g., tilting the head relative to gravity), we measured tilt perception and eye movements in patients with VM and in migraine and normal control subjects during fixed-radius centrifugation, a paradigm that simultaneously modulates afferent signals from the semicircular canals and otoliths organs. Twenty-four patients (8 in each category) were tested with a motion paradigm that generated an inter-aural centrifugal force of 0.36 G, resulting in a 20° tilt of the gravito-inertial force in the roll plane. We found that percepts of roll tilt developed slower in VM patients than in the two control groups, but that eye movement responses, including the shift in the eye's rotational axis, were equivalent in all three groups. These results demonstrate a change in vestibular perception in VM that is unaccompanied by changes in vestibular-mediated eye movements and suggest that either the brain's integration of canal and otolith signals or the dynamics of otolith responses are aberrant in patients with VM. PMID:26956976

  6. Tests of walking balance for screening vestibular disorders.

    Cohen, Helen S; Mulavara, Ajitkumar P; Peters, Brian T; Sangi-Haghpeykar, Haleh; Bloomberg, Jacob J

    2012-01-01

    Few reliable tests are available for screening people rapidly for vestibular disorders although such tests would be useful for a variety of testing situations. Balance testing is widely performed but of unknown value for screening. The goal of this study was to determine the value of tests of walking balance for screening people with vestibular impairments. We tested three groups of patients with known vestibular impairments: benign paroxysmal positional vertigo, unilateral vestibular weakness, and post-acoustic neuroma resection. We compared them to normal subjects. All subjects were independently ambulatory without gait aids. Subjects were tested on tandem walking (TW) with eyes open and eyes closed for 10 steps, walking with no additional head motions and with augmented head rotations in yaw for 7 m (WwHT), and an obstacle avoidance task, the Functional Mobility Test (FMT). Subjects wore a 3-D motion sensor centered at mid-torso to capture kinematic measures. Patients and normals differed significantly on some behavioral measures, such as the number of steps to perform TW, and on some but not all kinematic measures. ROC analyses, however, were at best only moderate, and failed to find strong differences and cut-points that would differentiate the groups. These findings suggest that although patients and normals differ in performance of these tests in some interesting ways the groups are not sufficiently different on these tests for easy use as screening tests to differentiate the populations. PMID:23000609

  7. Dissociating vestibular and somatosensory contributions to spatial orientation

    Alberts, B.B.G.T.; Selen, L.P.J.; Bertolini, G.; Straumann, D.; Medendorp, W.P.; Tarnutzer, A.A.

    2016-01-01

    Inferring object orientation in the surroundings heavily depends on our internal sense of direction of gravity. Previous research showed that this sense is based on the integration of multiple information sources, including visual, vestibular (otolithic) and somatosensory signals. The individual noi

  8. Socio-demographic distribution of vestibular schwannomas in Denmark

    Stepanidis, Karen; Kessel, Marie; Caye-Thomasen, Per;

    2014-01-01

    CONCLUSION: Vestibular schwannomas (VSs) are diagnosed less frequently in the remote parts of Denmark, whereas the diagnostic age and tumor size is the same across the different socio-demographic areas of Denmark. OBJECTIVE: To determine whether VSs are diagnosed equally often in different socio...

  9. Sociodemographic factors and vestibular schwannoma: a Danish nationwide cohort study

    Schüz, Joachim; Steding-Jessen, Marianne; Hansen, Søren;

    2010-01-01

    Vestibular schwannoma (VS) (or acoustic neuroma) accounts for about 5%-6% of all intracranial tumors; little is known about the etiology. We investigated the association between various sociodemographic indicators and VS in a cohort of 3.26 million Danish residents, with 1087 cases identified in 35...

  10. Vestibular Stimulation and Development of the Small Premature Infant.

    Neal, Mary V.

    This study was designed to explore the effects of vestibular stimulation on the developmental behavior, respiratory functioning, weight and length gains, and morbidity and mortality rates of premature infants. A total of 20 infants participated in this study in 4 groups of 5 infants each. Group A infants were placed in a motorized hammock within…

  11. What is the real incidence of vestibular schwannoma?

    Tos, Mirko; Stangerup, Sven-Eric; Cayé-Thomasen, Per;

    2004-01-01

    OBJECTIVES: To present the incidence of vestibular schwannoma (VS) in Denmark, compare the incidence with that of previous periods, and discuss the real incidence of VS. DESIGN, SETTING, AND PATIENTS: Prospective registration of all diagnosed VS in Denmark, with a population of 5.1 to 5.2 million...

  12. Stimulus Characteristics for Vestibular Stochastic Resonance to Improve Balance Function

    Mulavara, Ajitkumar; Fiedler, Matthew; Kofman, Igor; Peters, Brian; Wood, Scott; Serrado, Jorge; Cohen, Helen; Reschke, Millard; Bloomberg, Jacob

    2010-01-01

    Stochastic resonance (SR) is a mechanism by which noise can enhance the response of neural systems to relevant sensory signals. Studies have shown that imperceptible stochastic vestibular electrical stimulation, when applied to normal young and elderly subjects, significantly improved their ocular stabilization reflexes in response to whole-body tilt as well as balance performance during postural disturbances. The goal of this study was to optimize the amplitude characteristics of the stochastic vestibular signals for balance performance during standing on an unstable surface. Subjects performed a standard balance task of standing on a block of foam with their eyes closed. Bipolar stochastic electrical stimulation was applied to the vestibular system using constant current stimulation through electrodes placed over the mastoid process behind the ears. Amplitude of the signals varied in the range of 0-700 microamperes. Balance performance was measured using a force plate under the foam block, and inertial motion sensors were placed on the torso and head. Balance performance with stimulation was significantly greater (10%-25%) than with no stimulation. The signal amplitude at which performance was maximized was in the range of 100-300 microamperes. Optimization of the amplitude of the stochastic signals for maximizing balance performance will have a significant impact on development of vestibular SR as a unique system to aid recovery of function in astronauts after long-duration space flight or in patients with balance disorders.

  13. Current concepts and future approaches to vestibular rehabilitation.

    Tjernström, Fredrik; Zur, Oz; Jahn, Klaus

    2016-04-01

    Over the last decades methods of vestibular rehabilitation to enhance adaptation to vestibular loss, habituation to changing sensory conditions, and sensory reweighting in the compensation process have been developed. However, the use of these techniques still depends to a large part on the educational background of the therapist. Individualized assessment of deficits and specific therapeutic programs for different disorders are sparse. Currently, vestibular rehabilitation is often used in an unspecific way in dizzy patients irrespective of the clinical findings. When predicting the future of vestibular rehabilitation, it is tempting to foretell advances in technology for assessment and treatment only, but the current intense exchange between clinicians and basic scientists also predicts advances in truly understanding the complex interactions between the peripheral senses and central adaptation mechanisms. More research is needed to develop reliable techniques to measure sensory dependence and to learn how this knowledge can be best used-by playing off the patient's sensory strength or working on the weakness. To be able using the emerging concepts, the neuro-otological community must strive to educate physicians, physiotherapists and nurses to perform the correct examinations for assessment of individual deficits and to look for factors that might impede rehabilitation. PMID:27083886

  14. Increasing annual incidence of vestibular schwannoma and age at diagnosis

    Stangerup, Sven-Eric; Tos, Mirko; Caye-Thomasen, Per;

    2004-01-01

    During the last 26 years the annual number of diagnosed vestibular schwannomas (VS) has been increasing. The aim of this study is to describe and analyse this increase. Since 1976, 1446 new cases of VS have been diagnosed at the authors' centre. Special focus was on the age at diagnosis, the loca...

  15. 前庭神经鞘瘤%Vestibular schwannoma

    焦德让

    2003-01-01

    @@ 前庭神经鞘瘤(vestibular schwannoma,VS)亦称听神经瘤(acoustic neuroma),是颅内较为常见的良性肿瘤之一,约占颅内良性肿瘤的10%,占小脑桥脑角(cerebellopontine angle,CPA)肿瘤的65%~72%.

  16. Static Balance in Patients with Vestibular Impairments: A Preliminary Study

    Talebi, Hossein; Abtahi, Seyed Hamid Reza; Fereshtenejad, Niloofar

    2016-01-01

    Aims. Vestibular system is indicated as one of the most important sensors responsible for static and dynamic postural control. In this study, we evaluated static balance in patients with unilateral vestibular impairments. Materials and Methods. We compared static balance control using Kistler force plate platform between 10 patients with unilateral vestibular impairments and 20 normal counterparts in the same sex ratio and age limits (50 ± 7). We evaluated excursion and velocity of center of pressure (COP) and path length in anteroposterior (AP) and mediolateral (ML) planes with eyes open and with eyes closed. Results. There was no significant difference between COP excursions in ML and AP planes between both groups with eyes open and eyes closed (p value > 0.05). In contrast, the difference between velocity and path length of COP in the mentioned planes was significant between both groups with eyes open and eyes closed (p value < 0.05). Conclusions. The present study showed the static instability and balance of patients with vestibular impairments indicated by the abnormal characteristics of body balance. PMID:27379198

  17. Gaze stabilization and gait performance in vestibular dysfunction

    Whitney, Susan L.; Marchetti, Gregory F.; Pritcher, Miranda; Furman, Joseph M.

    2016-01-01

    Background The gaze stability test (GST) quantifies the ability of a person to recognize a target projected on a personal computer monitor during active head movement. Purpose The purpose of this study was to determine if there was a relationship between clinical measures of walking performance and the GST in patients with vestibular disorders and in healthy subjects. We hypothesized that impairment of the ability to keep objects in focus during active head movement would be correlated with walking performance. Subjects Twenty older asymptomatic adults acted as controls and 12 patients with either unilateral or bilateral vestibular disease participated. Methods The GST quantifies the maximum velocity that a person can move their head in the pitch and yaw planes while retaining the ability to read an optotype that is momentarily projected onto a computer screen. Subjects were scored while performing the Dynamic Gait Index (DGI) and the Timed “Up & Go” (TUG) tests. Results Walking performance on the DGI and TUG were significantly associated with GST results in subjects with vestibular disorders, but not in control subjects. Abnormalities of gait could be identified by GST cutoff values of 658 s_1 in the pitch plane and 638 s_1 in the yaw plane. Discussion/conclusion In older subjects with vestibular disorders, gaze stability, as assessed by the GST, is associated with reduced test scores on measures of gait performance. PMID:18815040

  18. Vestibular factors influencing the biomedical support of humans in space

    Lichtenberg, B. K.

    1988-01-01

    This paper will describe the biomedical support aspects of humans in space with respect to the vestibular system. The vestibular system is thought to be the primary sensory system involved in the short-term effects of space motion sickness although there is increasing evidence that many factors play a role in this complex set of symptoms. There is the possibility that an individual's inner sense of orientation may be strongly coupled with the susceptibility to space motion sickness. A variety of suggested countermeasures for space motion sickness will be described. Although there are no known ground-based tests that can predict space motion sickness, the search should go on. The long term effects of the vestibular system in weightlessness are still relatively unknown. Some preliminary data has shown that the otoconia are irregular in size and distribution following extended periods of weightlessness. The ramifications of this data are not yet known and because the data was obtained on lower order animals, definitive studies and results must wait until the space station era when higher primates can be studied for long durations. This leads us to artificial gravity, the last topic of this paper. The vestibular system is intimately tied to this question since it has been shown on Earth that exposure to a slow rotating room causes motion sickness for some period of time before adaptation occurs. If the artificial gravity is intermittent, will this mean that people will get sick every time they experience it? The data from many astronauts returning to Earth indicates that a variety of sensory illusions are present, especially immediately upon return to a 1-g environment. Oscillopsia or apparent motion of the visual surround upon head motion along with inappropriate eye motions for a given head motion, all indicate that there is much to be studied yet about the vestibular and CNS systems reaction to a sudden application of a steady state acceleration field like 1-g. From

  19. Paciente com cefaleia e síndrome vestibular periférica: relato de caso Patient with headache and peripheral vestibular dysfunction: case report

    Tatiane Maria Rossi

    2009-01-01

    Full Text Available TEMA: a Reabilitação Vestibular constitui-se numa opção de tratamento para pacientes portadores de síndrome vestibular periférica e cefaleia. PROCEDIMENTOS: o paciente, do sexo feminino com 26 anos de idade apresentava síndrome vestibular periférica acompanhada de crises de cefaleia. Foi realizada avaliação e terapia fonoaudiológica com exercícios de habituação vestibular além de fisioterapia e dieta recomendada pelo nutricionista. RESULTADOS: no período de 3 meses com reabilitação vestibular realizada semanalmente observou-se melhora no quadro vertiginoso e da cefaleia da paciente. CONCLUSÕES: evidenciou-se boa eficácia clínica para o tratamento desta paciente através da reabilitação vestibular com exercícios de habituação vestibular. Salienta-se a eficácia da reabilitação para a melhora na qualidade de vida da paciente e minimização das crises de cefaleia.BACKGROUND: vestibular rehabilitation is an option for treating peripheral vestibular syndrome and headache patients. PROCEDURES: the patient is a 29-year old woman and has Peripheral Vestibular Syndrome along with headache attacks. Evaluation and Phonoaudiological therapy with exercises of habituation tests with physical and nutritional therapy were carried out. RESULTS: in 3 month period with weekly vestibular rehabilitation therapy, we observed an improvement in the condition of the patient's vertigo and migraine. CONCLUSIONS: it was evident that the patient's treatment through the rehabilitation test with habituation test exercises had good efficiency. Please note the effectiveness of the rehabilitation for the improvement in the patient's life quality and minimization of headache attacks.

  20. Identification of neural networks that contribute to motion sickness through principal components analysis of fos labeling induced by galvanic vestibular stimulation.

    Balaban, Carey D; Ogburn, Sarah W; Warshafsky, Susan G; Ahmed, Abdul; Yates, Bill J

    2014-01-01

    Motion sickness is a complex condition that includes both overt signs (e.g., vomiting) and more covert symptoms (e.g., anxiety and foreboding). The neural pathways that mediate these signs and symptoms are yet to identified. This study mapped the distribution of c-fos protein (Fos)-like immunoreactivity elicited during a galvanic vestibular stimulation paradigm that is known to induce motion sickness in felines. A principal components analysis was used to identify networks of neurons activated during this stimulus paradigm from functional correlations between Fos labeling in different nuclei. This analysis identified five principal components (neural networks) that accounted for greater than 95% of the variance in Fos labeling. Two of the components were correlated with the severity of motion sickness symptoms, and likely participated in generating the overt signs of the condition. One of these networks included neurons in locus coeruleus, medial, inferior and lateral vestibular nuclei, lateral nucleus tractus solitarius, medial parabrachial nucleus and periaqueductal gray. The second included neurons in the superior vestibular nucleus, precerebellar nuclei, periaqueductal gray, and parabrachial nuclei, with weaker associations of raphe nuclei. Three additional components (networks) were also identified that were not correlated with the severity of motion sickness symptoms. These networks likely mediated the covert aspects of motion sickness, such as affective components. The identification of five statistically independent component networks associated with the development of motion sickness provides an opportunity to consider, in network activation dimensions, the complex progression of signs and symptoms that are precipitated in provocative environments. Similar methodology can be used to parse the neural networks that mediate other complex responses to environmental stimuli. PMID:24466215

  1. Identification of neural networks that contribute to motion sickness through principal components analysis of fos labeling induced by galvanic vestibular stimulation.

    Carey D Balaban

    Full Text Available Motion sickness is a complex condition that includes both overt signs (e.g., vomiting and more covert symptoms (e.g., anxiety and foreboding. The neural pathways that mediate these signs and symptoms are yet to identified. This study mapped the distribution of c-fos protein (Fos-like immunoreactivity elicited during a galvanic vestibular stimulation paradigm that is known to induce motion sickness in felines. A principal components analysis was used to identify networks of neurons activated during this stimulus paradigm from functional correlations between Fos labeling in different nuclei. This analysis identified five principal components (neural networks that accounted for greater than 95% of the variance in Fos labeling. Two of the components were correlated with the severity of motion sickness symptoms, and likely participated in generating the overt signs of the condition. One of these networks included neurons in locus coeruleus, medial, inferior and lateral vestibular nuclei, lateral nucleus tractus solitarius, medial parabrachial nucleus and periaqueductal gray. The second included neurons in the superior vestibular nucleus, precerebellar nuclei, periaqueductal gray, and parabrachial nuclei, with weaker associations of raphe nuclei. Three additional components (networks were also identified that were not correlated with the severity of motion sickness symptoms. These networks likely mediated the covert aspects of motion sickness, such as affective components. The identification of five statistically independent component networks associated with the development of motion sickness provides an opportunity to consider, in network activation dimensions, the complex progression of signs and symptoms that are precipitated in provocative environments. Similar methodology can be used to parse the neural networks that mediate other complex responses to environmental stimuli.

  2. The outermost “dura-like membrane” of vestibular schwannoma

    Tomio, Ryosuke; Yoshida, Kazunari; Kohno, Maya; Kamamoto, Dai; Mikami, Shuji

    2016-01-01

    Background: The membranous structure of vestibular schwannoma is an important factor in its surgical treatment. Herein, we report intraoperative and microscopic findings relating to an outermost dura-like membrane in cases of vestibular schwannoma and the importance of these findings. Methods: Intraoperative findings of 16 cases of vestibular schwannoma treated with an initial surgery were studied with an aim to determine if the cases had a dura-like membrane. Then we studied microscopic findings of the dura-like membrane using hematoxylin and eosin, Masson trichrome, and immunohistochemical staining in 2 cases. Results: The dura-like membrane was observed in 8 out of 16 cases. The average tumor size of the cases that had a dura-like membrane was 30 ± 8.1 mm, and Koos grading 4 was in 7 out of 8 cases, and one was grade 3. In cases without a dura-like membrane, these values were significantly smaller, with an average tumor size of 12.8 ± 5.2 mm, and Koos grading 4 was only in 1 of 8 cases, grade 3 was in 2 cases, and other 5 cases were grade 2. The outermost dura-like membrane enveloped the vestibular schwannoma around the internal acoustic meatus and was continuous with the dura mater. Reactive angiogenesis was observed in the dura mater. Microscopic findings proved its continuity with the dura mater. In one case, the facial nerve was damaged before it was identified during subcapsular dissection. In that case, the dura-like membrane negatively affected our ability to identify the facial nerve. Conclusions: A dura-like membrane sometimes envelops vestibular schwannoma around the internal acoustic meatus. Recognition of this membranous structure is important for the surgical preservation of facial and acoustic nerves. PMID:27453796

  3. Spatial properties of second-order vestibulo-ocular relay neurons in the alert cat.

    Fukushima, K; Perlmutter, S I; Baker, J F; Peterson, B W

    1990-01-01

    Second-order vestibular nucleus neurons which were antidromically activated from the region of the oculomotor nucleus (second-order vestibuloocular relay neurons) were studied in alert cats during whole-body rotations in many horizontal and vertical planes. Sinusoidal rotation elicited sinusoidal modulation of firing rates except during rotation in a clearly defined null plane. Response gain (spike/s/deg/s) varied as a cosine function of the orientation of the cat with respect to a horizontal rotation axis, and phases were near that of head velocity, suggesting linear summation of canal inputs. A maximum activation direction (MAD) was calculated for each cell to represent the axis of rotation in three-dimensional space for which the cell responded maximally. Second-order vestibuloocular neurons divided into 3 non-overlapping populations of MADs, indicating primary canal input from either anterior, posterior or horizontal semicircular canal (AC, PC, HC cells). 80/84 neurons received primary canal input from ipsilateral vertical canals. Of these, at least 6 received input from more than one vertical canal, suggested by MAD azimuths which were sufficiently misaligned with their primary canal. In addition, 21/80 received convergent input from a horizontal canal, with about equal number of type I and type II yaw responses. 4/84 neurons were HC cells; all of them received convergent input from at least one vertical canal. Activity of many vertical second-order vestibuloocular neurons was also related to vertical and/or horizontal eye position. All AC and PC cells that had vertical eye position sensitivity had upward and downward on-directions, respectively. A number of PC cells had MADs centered around the MAD of the superior oblique muscle, and 2/3 AC cells recorded in the superior vestibular nucleus had MADs near that of the inferior oblique. Thus, signals with spatial properties appropriate to activate oblique eye muscles are present at the second-order vestibular

  4. TO ASSESS THE VESTIBULAR AND AUDITORY FUNCTIONS IN PATIENTS WITH DIABETIC NEPHROPATHY IN COMPARISON WITH PATIENTS OF UNCOMPLICATED DIABETES MELLITUS

    Shashikant N

    2015-09-01

    Full Text Available The inner ear dysfunction occurs in diabetes mellitus. The typical hearing loss described is a progressive, bilateral sensori - neural deafness of gradual onset which affects predominantly the higher frequencies. The causes are an angiopathy of the inner ear, neuronal degeneration, and electrolyte imbalance. Although the relationship between diabetes and vestibulo - cochlear dysfunction has been studied by various investi gators, the exact relationship between various complications of diabetes and inner ear dysfunction requires further detailed study. Surprisingly the incidence of hearing loss in diabetes with complications is on the rise, which creates an interest to study the vestibulo - cochlear functions in diabetic nephropathy. This was a prospective study to assess the vestibular and auditory functions in patients with diabetic nephropathy in comparison with patients of uncomplicated diabetes mellitus. The aim of this st udy is to assess the vestibular and auditory functions in patients with diabetic nephropathy in comparison with patients of uncomplicated diabetes mellitus. This study includes 60 patients, 30 patients with uncomplicated diabetes mellitus were categorized in the group I and 30 patients with diabetic nephropathy were categorized in group II.

  5. Current treatment of nasal vestibular stenosis with CO2-laser surgery; prolonged vestibular stenting versus intraoperative mitomycin application. A case series of 3 patients

    Schijndel, O. van; Heerbeek, N. van; Ingels, K.J.A.O.

    2014-01-01

    These case studies describe three cases of unilateral nasal vestibular stenoses caused by chemical cauterization. Each case was treated with CO2-laser surgery together with intraoperative topic application of mitomycin or prolonged vestibular stenting for prevention of restenosis. Two patients recei

  6. Role of the insula and vestibular system in patients with chronic subjective dizziness: An fMRI study using sound-evoked vestibular stimulation

    Iole eIndovina

    2015-12-01

    Full Text Available Chronic subjective dizziness (CSD is a common vestibular disorder characterized by persistent non-vertiginous dizziness, unsteadiness, and heightened sensitivity to motion stimuli that may last for months to years after events that cause acute vestibular symptoms or disrupt balance. CSD is not associated with abnormalities of basic vestibular or oculomotor reflexes. Rather, it is thought to arise from persistent use of high-threat postural control strategies and greater reliance on visual cues for spatial orientation (i.e., visual dependence, long after triggering events resolve. Anxiety-related personality traits confer vulnerability to CSD. Anomalous interactions between the central vestibular system and neural structures related to anxiety may sustain it. Vestibular- and anxiety-related processes overlap in the brain, particularly in the insula and hippocampus. Alterations in activity and connectivity in these brain regions in response to vestibular stimuli may be the neural basis of CSD.We examined this hypothesis by comparing brain activity from 18 patients with CSD and 18 healthy controls measured by functional magnetic resonance imaging during loud short tone bursts, which are auditory stimuli that evoke robust vestibular responses. Relative to controls, patients with CSD showed reduced activations to sound-evoked vestibular stimulation in the parieto-insular vestibular cortex (PIVC including the posterior insula, and in the anterior insula, inferior frontal gyrus, hippocampus, and anterior cingulate cortex. Patients with CSD also showed altered connectivity between the anterior insula and PIVC, anterior insula and middle occipital cortex, hippocampus and PIVC, and anterior cingulate cortex and PIVC.We conclude that reduced activation in PIVC, hippocampus, anterior insula, inferior frontal gyrus, and anterior cingulate cortex, as well as connectivity changes among these regions, may be linked to long-term vestibular symptoms in patients

  7. The Vestibular-Evoked Postural Response of Adolescents with Idiopathic Scoliosis Is Altered.

    Pialasse, Jean-Philippe; Descarreaux, Martin; Mercier, Pierre; Blouin, Jean; Simoneau, Martin

    2015-01-01

    Adolescent idiopathic scoliosis is a multifactorial disorder including neurological factors. A dysfunction of the sensorimotor networks processing vestibular information could be related to spine deformation. This study investigates whether feed-forward vestibulomotor control or sensory reweighting mechanisms are impaired in adolescent scoliosis patients. Vestibular evoked postural responses were obtained using galvanic vestibular stimulation while participants stood with their eyes closed and head facing forward. Lateral forces under each foot and lateral displacement of the upper body of adolescents with mild (n = 20) or severe (n = 16) spine deformation were compared to those of healthy control adolescents (n = 16). Adolescent idiopathic scoliosis patients demonstrated greater lateral displacement and net lateral forces than controls both during and immediately after vestibular stimulation. Altered sensory reweighting of vestibular and proprioceptive information changed balance control of AIS patients during and after vestibular stimulation. Therefore, scoliosis onset could be related to abnormal sensory reweighting, leading to altered sensorimotor processes. PMID:26580068

  8. The Vestibular-Evoked Postural Response of Adolescents with Idiopathic Scoliosis Is Altered.

    Jean-Philippe Pialasse

    Full Text Available Adolescent idiopathic scoliosis is a multifactorial disorder including neurological factors. A dysfunction of the sensorimotor networks processing vestibular information could be related to spine deformation. This study investigates whether feed-forward vestibulomotor control or sensory reweighting mechanisms are impaired in adolescent scoliosis patients. Vestibular evoked postural responses were obtained using galvanic vestibular stimulation while participants stood with their eyes closed and head facing forward. Lateral forces under each foot and lateral displacement of the upper body of adolescents with mild (n = 20 or severe (n = 16 spine deformation were compared to those of healthy control adolescents (n = 16. Adolescent idiopathic scoliosis patients demonstrated greater lateral displacement and net lateral forces than controls both during and immediately after vestibular stimulation. Altered sensory reweighting of vestibular and proprioceptive information changed balance control of AIS patients during and after vestibular stimulation. Therefore, scoliosis onset could be related to abnormal sensory reweighting, leading to altered sensorimotor processes.

  9. A neuroscientific account of how vestibular disorders impair bodily self-consciousness

    Christophe eLopez

    2013-12-01

    Full Text Available The consequences of vestibular disorders on balance, oculomotor control and self-motion perception have been extensively described in humans and animals. More recently, vestibular disorders have been related to cognitive deficits in spatial navigation and memory tasks. Less frequently, abnormal bodily perceptions have been described in patients with vestibular disorders. Altered forms of bodily self-consciousness include distorted body image and body schema, disembodied self-location (out-of-body experience, altered sense of agency, as well as more complex experiences of dissociation and detachment from the self (depersonalization. In this article, I suggest that vestibular disorders create sensory conflict or mismatch in multisensory brain regions, producing perceptual incoherence and abnormal body and self perceptions. This hypothesis is based on recent functional mapping of the human vestibular cortex, showing vestibular projections to the primary and secondary somatosensory cortex and in several multisensory areas found to be crucial for bodily self-consciousness.

  10. Effect of galvanic vestibular stimulation on movement-related cortical potential

    Lee, Jeong-Woo

    2015-01-01

    [Purpose] This study examined the effects of galvanic vestibular stimulation on motion-related cortical potential. [Subjects and Methods] Fourty healthy female adult subjects each received galvanic vestibular stimulation or sham treatment. For galvanic vestibular stimulation, the anode and cathode were applied to the right and left mastoid processes, respectively, for 10 minutes. Motion-related cortical potential was tested pre- and post-treatment. To measure motion-related cortical potential...

  11. The moving history of vestibular stimulation as a therapeutic intervention

    Grabherr, Luzia; Lenggenhager, Bigna; Macauda, Gianluca

    2015-01-01

    Although the discovery and understanding of the function of the vestibular system date back only to the 19th century, strategies that involve vestibular stimulation were used long before to calm, soothe and even cure people. While such stimulation was classically achieved with various motion devices, like Cox’s chair or Hallaran’s swing, the development of caloric and galvanic vestibular stimulation has opened up new possibilities in the 20th century. With the increasing knowledge and recogni...

  12. Modulation of cortical vestibular processing by somatosensory inputs in the posterior insula

    Hashimoto, Teruo; Taoka, Miki; Obayashi, Shigeru; Hara, Yukihiro; Tanaka, Michio; Iriki, Atsushi

    2013-01-01

    Primary objective To study the mechanism of somatosensory-vestibular interactions, this study examined the effects of somatosensory inputs on body sway induced by galvanic vestibular stimulation (GVS) in healthy participants and persons with brain injury in the posterior insula, a region constituting a part of the parietoinsular vestibular cortex. Research design This study adopted an experimental, controlled, repeated measures design. Methods and procedures Participants were 11 healthy indiv...

  13. Evaluation of the chemical model of vestibular lesions induced by arsanilate in rats

    Vignaux, G. [INSERM, ERI27, Caen, F-14000 (France); Univ Caen, Caen, F-14000 (France); Chabbert, C.; Gaboyard-Niay, S.; Travo, C. [INSERM U1051, Institut des Neurosciences de Montpellier, Montpellier, F-34090,France (France); Machado, M.L. [INSERM, ERI27, Caen, F-14000 (France); Univ Caen, Caen, F-14000 (France); Denise, P. [INSERM, ERI27, Caen, F-14000 (France); Univ Caen, Caen, F-14000 (France); CHRU Caen, Explorations Fonctionnelles, Caen, F-14000 (France); Comoz, F. [CHRU Caen, Laboratoire d' anatomopathologie, Caen, F-14000 (France); Hitier, M. [CHRU Caen, Service d' Otorhinolaryngologie, Caen, F-14000,France (France); Landemore, G. [CHRU Caen, Laboratoire d' anatomopathologie, Caen, F-14000 (France); Philoxène, B. [INSERM, ERI27, Caen, F-14000 (France); Univ Caen, Caen, F-14000 (France); CHRU Caen, Explorations Fonctionnelles, Caen, F-14000 (France); Besnard, S., E-mail: besnard-s@phycog.org [INSERM, ERI27, Caen, F-14000 (France); Univ Caen, Caen, F-14000 (France); CHRU Caen, Explorations Fonctionnelles, Caen, F-14000 (France)

    2012-01-01

    Several animal models of vestibular deficits that mimic the human pathology phenotype have previously been developed to correlate the degree of vestibular injury to cognate vestibular deficits in a time-dependent manner. Sodium arsanilate is one of the most commonly used substances for chemical vestibular lesioning, but it is not well described in the literature. In the present study, we used histological and functional approaches to conduct a detailed exploration of the model of vestibular lesions induced by transtympanic injection of sodium arsanilate in rats. The arsanilate-induced damage was restricted to the vestibular sensory organs without affecting the external ear, the oropharynx, or Scarpa's ganglion. This finding strongly supports the absence of diffusion of arsanilate into the external ear or Eustachian tubes, or through the eighth cranial nerve sheath leading to the brainstem. One of the striking observations of the present study is the complete restructuring of the sensory epithelia into a non sensory epithelial monolayer observed at 3 months after arsanilate application. This atrophy resembles the monolayer epithelia observed postmortem in the vestibular epithelia of patients with a history of lesioned vestibular deficits such as labyrinthectomy, antibiotic treatment, vestibular neuritis, or Ménière's disease. In cases of Ménière's disease, aminoglycosides, and platinum-based chemotherapy, vestibular hair cells are destroyed, regardless of the physiopathological process, as reproduced with the arsanilate model of vestibular lesion. These observations, together with those presented in this study of arsanilate vestibular toxicity, suggest that this atrophy process relies on a common mechanism of degeneration of the sensory epithelia.

  14. Determination of the functional status of vestibular apparatus at children aged 5-6 years old.

    Moiseenko E.K.

    2012-02-01

    Full Text Available The physiological methods of determination of the functional state of vestibular analyzer are considered. The indexes of systole and diastole pressure, frequencies of heart-throbs, are chosen. Methods were used before and after standard vestibular irritation. Research was conducted on the base of child's preschool establishment. In it took part 120 children in age 5 - 6 years. Insufficient development of vestibular analyzer is set for children. Selected exercise for the improvement of spatial orientation and statodynamic stability.

  15. Bevacizumab induces regression of vestibular schwannomas in patients with neurofibromatosis type 2†

    Mautner, Victor-Felix; Nguyen, Rosa; Kutta, Hannes; Fuensterer, Carsten; Bokemeyer, Carsten; Hagel, Christian; Friedrich, Reinhard E.; Panse, Jens

    2009-01-01

    Bilateral vestibular schwannomas are the hallmark of neurofibromatosis type 2 (NF2), and these tumors impair hearing and frequently lead to deafness. Neurosurgical intervention, the only established treatment, often damages the vestibular nerve. We report 2 cases in which treatment with bevacizumab (for 3 months in one case and 6 months in the other) induced regression of progressive vestibular schwannomas by more than 40% and substantially improved hearing in the patient treated for 6 months...

  16. A large vestibular schwannoma after recent negative MRI: A case report.

    Muelleman, Thomas J; Lin, James

    2016-01-01

    Vestibular schwannomas are, on average, slowly growing tumors that may remain quiescent for some time before manifesting themselves symptomatically or being found incidentally on imaging. We describe a case of a vestibular schwannoma that grew rapidly and to a large size in a patient who had undergone negative imaging 5 years earlier for unrelated issues. This case highlights the importance of repeat imaging in patients with symptoms concerning for vestibular schwannoma who might have previously undergone negative scans. PMID:27140025

  17. Vergence and Standing Balance in Subjects with Idiopathic Bilateral Loss of Vestibular Function

    Kapoula, Zoï; Gaertner, Chrystal; Yang, Qing; Denise, Pierre; Toupet, Michel

    2013-01-01

    There is a natural symbiosis between vergence and vestibular responses. Deficits in vergence can lead to vertigo, disequilibrium, and postural instability. This study examines both vergence eye movements in patients with idiopathic bilateral vestibular loss, and their standing balance in relation to vergence. Eleven patients participated in the study and 16 controls. Bilateral loss of vestibular function was objectified with many tests; only patients without significant response to caloric te...

  18. Simulation studies of vestibular macular afferent-discharge patterns using a new, quasi-3-D finite volume method

    Ross, M. D.; Linton, S. W.; Parnas, B. R.

    2000-01-01

    A quasi-three-dimensional finite-volume numerical simulator was developed to study passive voltage spread in vestibular macular afferents. The method, borrowed from computational fluid dynamics, discretizes events transpiring in small volumes over time. The afferent simulated had three calyces with processes. The number of processes and synapses, and direction and timing of synapse activation, were varied. Simultaneous synapse activation resulted in shortest latency, while directional activation (proximal to distal and distal to proximal) yielded most regular discharges. Color-coded visualizations showed that the simulator discretized events and demonstrated that discharge produced a distal spread of voltage from the spike initiator into the ending. The simulations indicate that directional input, morphology, and timing of synapse activation can affect discharge properties, as must also distal spread of voltage from the spike initiator. The finite volume method has generality and can be applied to more complex neurons to explore discrete synaptic effects in four dimensions.

  19. Interaction of brain areas of visual and vestibular simultaneous activity with fMRI.

    Della-Justina, Hellen M; Gamba, Humberto R; Lukasova, Katerina; Nucci-da-Silva, Mariana P; Winkler, Anderson M; Amaro, Edson

    2015-01-01

    Static body equilibrium is an essential requisite for human daily life. It is known that visual and vestibular systems must work together to support equilibrium. However, the relationship between these two systems is not fully understood. In this work, we present the results of a study which identify the interaction of brain areas that are involved with concurrent visual and vestibular inputs. The visual and the vestibular systems were individually and simultaneously stimulated, using flickering checkerboard (without movement stimulus) and galvanic current, during experiments of functional magnetic resonance imaging. Twenty-four right-handed and non-symptomatic subjects participated in this study. Single visual stimulation shows positive blood-oxygen-level-dependent (BOLD) responses (PBR) in the primary and associative visual cortices. Single vestibular stimulation shows PBR in the parieto-insular vestibular cortex, inferior parietal lobe, superior temporal gyrus, precentral gyrus and lobules V and VI of the cerebellar hemisphere. Simultaneous stimulation shows PBR in the middle and inferior frontal gyri and in the precentral gyrus. Vestibular- and somatosensory-related areas show negative BOLD responses (NBR) during simultaneous stimulation. NBR areas were also observed in the calcarine gyrus, lingual gyrus, cuneus and precuneus during simultaneous and single visual stimulations. For static visual and galvanic vestibular simultaneous stimulation, the reciprocal inhibitory visual-vestibular interaction pattern is observed in our results. The experimental results revealed interactions in frontal areas during concurrent visual-vestibular stimuli, which are affected by intermodal association areas in occipital, parietal, and temporal lobes. PMID:25300959

  20. Significance of Vestibular Testing on Distinguishing the Nerve of Origin for Vestibular Schwannoma and Predicting the Preservation of Hearing

    Yu-Bo He; Chun-Jiang Yu; Hong-Ming Ji; Yan-Ming Qu; Ning Chen

    2016-01-01

    Background:Determining the nerve of origin for vestibular schwannoma (VS),as a method for predicting hearing prognosis,has not been systematically considered.The vestibular test can be used to investigate the function of the superior vestibular nerve (SVN) and the inferior vestibular nerve (IVN).This study aimed to preoperatively distinguish the nerve of origin for VS patients using the vestibular test,and determine if this correlated with hearing preservation.Methods:A total of 106 patients with unilateral VS were enrolled in this study prospectively.Each patient received a caloric test,vestibular-evoked myogenic potential (VEMP) test,and cochlear nerve function test (hearing) before the operation and 1 week,3,and 6 months,postoperatively.All patients underwent surgical removal of the VS using the suboccipital approach.During the operation,the nerve of tumor origin (SVN or IVN) was identified by the surgeon.Tumor size was measured by preoperative magnetic resonance imaging.Results:The nerve of tumor origin could not be unequivocally identified in 38 patients (38/106,35.80%).These patients were not subsequently evaluated.In 26 patients (nine females,seventeen males),tumors arose from the SVN and in 42 patients (18 females,24 males),tumors arose from the IVN.Comparing with the nerve of origins (SVN and IVN) of tumors,the results of the caloric tests and VEMP tests were significantly different in tumors originating from the SVN and the IVN in our study.Hearing was preserved in 16 of 26 patients (61.54%) with SVN-originating tumors,whereas hearing was preserved in only seven of 42 patients (16.67%) with IVN-originating tumors.Conclusions:Our data suggest that caloric and VEMP tests might help to identify whether VS tumors originate from the SVN or IVN.These tests could also be used to evaluate the residual function of the nerves after surgery.Using this information,we might better predict the preservation of hearing for patients.

  1. Verticality perception during and after galvanic vestibular stimulation.

    Volkening, Katharina; Bergmann, Jeannine; Keller, Ingo; Wuehr, Max; Müller, Friedemann; Jahn, Klaus

    2014-10-01

    The human brain constructs verticality perception by integrating vestibular, somatosensory, and visual information. Here we investigated whether galvanic vestibular stimulation (GVS) has an effect on verticality perception both during and after application, by assessing the subjective verticals (visual, haptic and postural) in healthy subjects at those times. During stimulation the subjective visual vertical and the subjective haptic vertical shifted towards the anode, whereas this shift was reversed towards the cathode in all modalities once stimulation was turned off. Overall, the effects were strongest for the haptic modality. Additional investigation of the time course of GVS-induced changes in the haptic vertical revealed that anodal shifts persisted for the entire 20-min stimulation interval in the majority of subjects. Aftereffects exhibited different types of decay, with a preponderance for an exponential decay. The existence of such reverse effects after stimulation could have implications for GVS-based therapy. PMID:25157799

  2. Galvanic vestibular stimulation for analysis of postural adaptation and stability.

    Johansson, R; Magnusson, M; Fransson, P A

    1995-03-01

    Human postural dynamics was investigated in 12 normal subjects by means of a force platform recording body sway, induced by bipolar transmastoid galvanic stimulation of the vestibular nerve and labyrinth. The model adopted was that of an inverted segmented pendulum, the dynamics of postural control being assumed to be reflected in the stabilizing forces actuated by the feet as a result of complex muscular activity subject to state feedback of body sway and position. Time-series analysis demonstrates that a transfer function from stimulus to sway-force response with specific parameters can be identified. In addition, adaptation to the vestibular stimulus is demonstrated to exist, and we describe this phenomenon using quantification in terms of a postural adaptation time constant in the range of 40-50 s. The results suggest means to evaluate adaptive behavior and postural control in the erect human being which may be useful in the rehabilitation of individuals striving to regain upright stance. PMID:7698784

  3. [Vestibular rehabilitation in patients with relapsing-remitting multiple sclerosis].

    Pavan, Karina; Marangoni, Bruna E M; Schmidt, Kizi B; Cobe, Fernanda A; Matuti, Gabriela S; Nishino, Lúcia K; Thomaz, Rodrigo B; Mendes, Maria Fernanda; Lianza, Sérgio; Tilbery, Charles Peter

    2007-06-01

    Multiple sclerosis (MS) is a demyelinating, inflammatory illness, that attack the white matter of the central nervous system, and abnormal vestibular sensations (vertigo, disequilibrium) are frequent. The vestibular rehabilitation (VR) is determined by mechanisms of adaptations, neural substitutions and compensations. This study evaluated the improvement of the central or peripheral vertigo in patients with relapsing-remitting MS submitted to the VR (exercises of Cawthorne-Cooksey), through the scale of Berg and Dizziness Handicap Inventory (DHI). In this sample of 4 cases the VR, carried through in a period of 2 months, demonstrated the improvement in 3 patients according to the Berg scale and in 2 patients considering that of the DHI. PMID:17607438

  4. Vestibular rehabilitation strategies and factors that affect the outcome.

    Eleftheriadou, Anna; Skalidi, Nikoleta; Velegrakis, Georgios A

    2012-11-01

    Ever since the introduction of Cawthorne-Cooksey exercises, vestibular rehabilitation (VR) has been gaining popularity in the treatment of the dizzy patient. Numerous studies support the effectiveness of VR in improving balance/walking skills, eye-head coordination and the quality of life of the patient. Different rehabilitation protocols have been used to treat patients with peripheral and central vestibular disorders. Assessment of the patients' progress is based on the patients' selfperception of dizziness and their functional skills. Factors such as age, medication, time of onset of vertigo and home based VR have been evaluated on their effect on the rehabilitation's outcome. The aim of this review is to evaluate rehabilitation strategies and discuss the factors that affect the outcome. PMID:22526580

  5. Comparative Transduction Mechanisms of Vestibular Otolith Hair Cells

    Baird, Richard A.

    1994-01-01

    Hair cells in the bullfrog vestibular otolith organs regenerate following aminoglycoside ototoxicity. Hair cells in these organs are differentially sensitive to gentamicin, with saccular hair cells and hair cells in the utricular striola being damaged at lower gentamicin concentrations than hair cells in the utricular extrastriola. Regenerating hair cells in these organs have short hair bundles and can be classified into a number of phenotypes using the same morphological criteria used to identify their mature counterparts. Our studies suggest that some supporting cells can convert, or transdifferentiate,into hair cells without an intervening cell division. By stimulating these processes in humans, clinicians may be able to alleviate human deafness and peripheral vestibular disorders by regenerating and replacing lost hair cells. In vivo and in vitro studies were done on cell proliferation and hair cell regeneration.

  6. Galvanic Vestibular Stimulation Modulates the Electrophysiological Response During Face Processing

    Wilkinson, David T.; Ferguson, Heather J.; Worley, Alan

    2012-01-01

    Although galvanic vestibular stimulation (GVS) is known to affect the speed and accuracy of visual judgments, the underlying electrophysiological response has not been explored. In the present study, we therefore investigated the effect of GVS on the N170 event-related potential, a marker commonly associated with early visual structural encoding. To elicit the waveform, participants distinguished famous from non-famous faces that were presented in either upright or inverted orientation. Relat...

  7. Galvanic Vestibular Stimulation Improves Arm Position Sense in Spatial Neglect

    Schmidt, Lena; Keller, Ingo; Kathrin S. Utz; Artinger, Frank; Stumpf, Oliver; Kerkhoff, Georg

    2014-01-01

    Background. Disturbed arm position sense (APS) is a frequent and debilitating condition in patients with hemiparesis after stroke. Patients with neglect, in particular, show a significantly impaired contralesional APS. Currently, there is no treatment available for this disorder. Galvanic vestibular stimulation (GVS) may ameliorate neglect and extinction by activating the thalamocortical network. Objective. The present study aimed to investigate the immediate effects and aftereffects (AEs; 20...

  8. Galvanic vestibular stimulation in hemi-spatial neglect.

    Wilkinson, David; Zubko, Olga; Sakel, Mohamed; Coulton, Simon; Higgins, Tracy; Pullicino, Patrick

    2014-01-01

    Hemi-spatial neglect is an attentional disorder in which the sufferer fails to acknowledge or respond to stimuli appearing in contralesional space. In recent years, it has become clear that a measurable reduction in contralesional neglect can occur during galvanic vestibular stimulation, a technique by which transmastoid, small amplitude current induces lateral, attentional shifts via asymmetric modulation of the left and right vestibular nerves. However, it remains unclear whether this reduction persists after stimulation is stopped. To estimate longevity of effect, we therefore conducted a double-blind, randomized, dose-response trial involving a group of stroke patients suffering from left-sided neglect (n = 52, mean age = 66 years). To determine whether repeated sessions of galvanic vestibular stimulation more effectively induce lasting relief than a single session, participants received 1, 5, or 10 sessions, each lasting 25 min, of sub-sensory, left-anodal right-cathodal noisy direct current (mean amplitude = 1 mA). Ninety five percent confidence intervals indicated that all three treatment arms showed a statistically significant improvement between the pre-stimulation baseline and the final day of stimulation on the primary outcome measure, the conventional tests of the Behavioral Inattention Test. More remarkably, this change (mean change = 28%, SD = 18) was still evident 1 month later. Secondary analyses indicated an allied increase of 20% in median Barthel Index (BI) score, a measure of functional capacity, in the absence of any adverse events or instances of participant non-compliance. Together these data suggest that galvanic vestibular stimulation, a simple, cheap technique suitable for home-based administration, may produce lasting reductions in neglect that are clinically important. Further protocol optimization is now needed ahead of a larger effectiveness study. PMID:24523679

  9. Galvanic Vestibular Stimulation in Hemi-Spatial Neglect

    David eWilkinson

    2014-01-01

    Full Text Available Hemi-spatial neglect is an attentional disorder in which the sufferer fails to acknowledge or respond to stimuli appearing in contralesional space. In recent years, it has become clear that a measurable reduction in contralesional neglect can occur during galvanic vestibular stimulation, a technique by which transmastoid, small amplitude current induces lateral, attentional shifts via asymmetric modulation of the left and right vestibular nerves. However, it remains unclear whether this reduction persists after stimulation is stopped. To estimate longevity of effect, we therefore conducted a double-blind, randomized, dose-response trial involving a group of stroke patients suffering from left-sided neglect (n=52, mean age=66 years. To determine whether repeated sessions of galvanic vestibular stimulation more effectively induce lasting relief than a single session, participants received 1, 5, or 10 sessions, each lasting 25mins, of sub-sensory, left-anodal right-cathodal noisy direct current (mean amplitude=1mA. Ninety five percent confidence intervals indicated that all three treatment arms showed a statistically significant improvement between the pre-stimulation baseline and the final day of stimulation on the primary outcome measure, the conventional tests of the Behavioural Inattention Test. More remarkably, this change (mean change=28%, SD=18 was still evident 1month later. Secondary analyses indicated an allied increase of 20% in median Barthel Index score, a measure of functional capacity, in the absence of any adverse events or instances of participant non-compliance. Together these data suggest that galvanic vestibular stimulation, a simple, cheap technique suitable for home-based administration, may produce lasting reductions in neglect that are clinically important. Further protocol optimization is now needed ahead of a larger effectiveness study.

  10. Leptomeningeal Carcinomatosis of Gastric Cancer Misdiagnosed as Vestibular Schwannoma

    Kim, Shin-Jae; Kwon, Jeong-taik; Mun, Seog-Kyun; Hong, Young-Ho

    2014-01-01

    Gastric cancer is one of the most common causes of cancer-related death in Asian countries, including Korea. We experienced a case of leptomeningeal carcinomatosis (LC) from gastric cancer that was originally misdiagnosed as vestibular schwannoma based on the similar radiological characteristics. To our knowledge, LC from gastric cancer is very rare. In conclusion, our experience with this case suggests that clinicians should consider the possibility of delayed leptomeningeal metastasis when ...

  11. Alignment of angular velocity sensors for a vestibular prosthesis

    DiGiovanna Jack; Carpaneto Jacopo; Micera Silvestro; Merfeld Daniel M

    2012-01-01

    Abstract Vestibular prosthetics transmit angular velocities to the nervous system via electrical stimulation. Head-fixed gyroscopes measure angular motion, but the gyroscope coordinate system will not be coincident with the sensory organs the prosthetic replaces. Here we show a simple calibration method to align gyroscope measurements with the anatomical coordinate system. We benchmarked the method with simulated movements and obtain proof-of-concept with one healthy subject. The method was r...

  12. Alignment of angular velocity sensors for a vestibular prosthesis.

    Digiovanna, Jack; Carpaneto, Jacopo; Micera, Silvestro; Merfeld, Daniel M

    2012-01-01

    Vestibular prosthetics transmit angular velocities to the nervous system via electrical stimulation. Head-fixed gyroscopes measure angular motion, but the gyroscope coordinate system will not be coincident with the sensory organs the prosthetic replaces. Here we show a simple calibration method to align gyroscope measurements with the anatomical coordinate system. We benchmarked the method with simulated movements and obtain proof-of-concept with one healthy subject. The method was robust to misalignment, required little data, and minimal processing. PMID:22329908

  13. Anatomical and Physiological Considerations in Vestibular Dysfunction and Compensation

    Jones, Sherri M.; Jones, Timothy A.; Mills, Kristal N.; Gaines, G. Christopher

    2009-01-01

    Sensory information from the vestibular, visual, and somatosensory/proprioceptive systems are integrated in the brain in complex ways to produce a final motor output to muscle groups for maintaining gaze, head and body posture, and controlling static and dynamic balance. The balance system is complex, which can make differential diagnosis of dizziness quite challenging. On the other hand, this complex system is organized anatomically in a variety of pathways and some of these pathways have be...

  14. Afferent diversity and the organization of central vestibular pathways

    Jay M Goldberg

    2000-01-01

    This review considers whether the vestibular system includes separate populations of sensory axons innervating individual organs and giving rise to distinct central pathways. There is a variability in the discharge properties of afferents supplying each organ. Discharge regularity provides a marker for this diversity since fibers which differ in this way also differ in many other properties. Postspike recovery of excitability determines the discharge regularity of an afferent and its sensitiv...

  15. Image-guided drainage of cystic vestibular schwannomata.

    Barrett, Chris; Prasad, K S Manjunath; Hill, John; Johnson, Ian; Heaton, Judith M; Crossman, John E; Mendelow, Alexander D

    2010-01-01

    The management of vestibular schwannomata is controversial. Surveillance remains an acceptable option for elderly patients or those with small lesions. Stereoradiosurgery is also an option, while surgery is often preferred in younger patients with larger lesions. In elderly patients with lesions causing brainstem compression, craniotomy is a major undertaking. We report two cases of cystic cerebellopontine angle tumours in patients with co-morbidity, who were managed successfully with image-guided insertion of a cystoperitoneal shunt. PMID:19693430

  16. Magnetic Vestibular Stimulation in Subjects with Unilateral Labyrinthine Disorders

    Bryan Kevin Ward

    2014-03-01

    Full Text Available We recently discovered that static magnetic fields from high-strength MRI machines induce nystagmus in all normal humans, and that a magnetohydrodynamic (MHD Lorentz force, derived from ionic currents in the endolymph and pushing on the cupula, best explains this effect. Individuals with no labyrinthine function have no nystagmus. The influence of magnetic vestibular stimulation (MVS in individuals with unilateral loss of labyrinthine function is unknown and may provide insight into mechanism of MVS. These individuals should experience MVS, but with differences consistent with their residual labyrinthine function. We recorded eye movements in the static magnetic field of a 7T MRI machine in nine individuals with unilateral labyrinthine hypofunction, as determined by head impulse testing and vestibular-evoked myogenic potentials (VEMP. Eye movements were recorded using infrared videooculography. Static head positions were varied in pitch with the body supine, and slow-phase eye velocity (SPV was assessed. All subjects exhibited predominantly horizontal nystagmus after entering the magnet head-first, lying supine. The SPV direction reversed when entering feet-first. Pitching chin-to-chest caused subjects to reach a null point for horizontal SPV. Right unilateral vestibular hypofunction (UVH subjects developed slow-phase-up nystagmus and left UVH subjects, slow-phase-down nystagmus. Vertical and torsional components were consistent with superior semicircular canal excitation or inhibition, respectively, of the intact ear. These findings provide compelling support for the hypothesis that MVS is a result of a Lorentz force and suggest that the function of individual structures within the labyrinth can be assessed with MVS. As a novel method of comfortable and sustained labyrinthine stimulation, MVS can provide new insights into vestibular physiology and pathophysiology.

  17. Vestibular testing in patients with panic disorder and chronic dizziness

    TEGGI, R.; D. Caldirola; BONDI, S.; Perna, G.; L. Bellodi; BUSSI, M.

    2007-01-01

    In order to investigate the relationship between chronic dizziness and vestibular function in patients with panic disorder, in the present study neurotologic findings in 15 patients with panic disorder and chronic dizziness were compared with those in 15 patients with chronic dizziness, without panic disorder. All underwent neurotologic screening for spontaneous, positional and positioning nystagmus with head-shaking and head-thrust tests, an audiometric examination and electronystagmography ...

  18. Current treatment strategy in the management of vestibular schwannoma

    Misra Basant; Purandare Harshad; Ved Rahul; Bagdia Anshul; Mare Pandurang

    2009-01-01

    Background: The changing trends in the management of vestibular schwannoma (VS) in our practice over the last two decades as well as the current status are presented here. Materials and Methods: The observations are based on the experience of 559 consecutive cases of VS operated by the first author between 1987 and 2008, 438 of which were operated by microsurgery and 139 by gamma knife radiosurgery (GKR) (18 of which were previously operated by the authors). A detailed analysis of microsur...

  19. Ruptured Pseudoaneurysm after Gamma Knife Surgery for Vestibular Schwannoma

    MURAKAMI, Mamoru; KAWARABUKI, Kentaro; INOUE, Yasuo; Ohta, Tsutomu

    2015-01-01

    Ruptured aneurysms of anterior inferior cerebellar artery (AICA) after radiotherapy for vestibular schwannoma (VS) are rare, and no definite treatment has been established for distal AICA pseudoaneurysms. We describe a 61-year-old man who underwent Gamma Knife surgery (GKS) for left VS. Follow-up magnetic resonance imaging (MRI) revealed partial regression of the tumor. Twelve years after GKS, he suffered from subarachnoid hemorrhage. Initial angiogram showed no vascular lesions; second left ...

  20. Counteracting Muscle Atrophy using Galvanic Stimulation of the Vestibular System

    Fox, Robert A.; Polyakov, Igor

    1999-01-01

    The unloading of weight bearing from antigravity muscles during space flight produces significant muscle atrophy and is one of the most serious health problems facing the space program. Various exercise regimens have been developed and used either alone or in combination with pharmacological techniques to ameliorate this atrophy, but no effective countermeasure exists for this problem. The research in this project was conducted to evaluate the potential use of vestibular galvanic stimulation (VGS) to prevent muscle atrophy resulting from unloading of weight bearing from antigravity muscles. This approach was developed based on two concepts related to the process of maintaining the status of the anti-gravity neuromuscular system. These two premises are: (1) The "tone," or bias on spinal motorneurons is affected by vestibular projections that contribute importantly to maintaining muscle health and status. (2) VGS can be used to modify the excitability, or 'tone' of motorneuron of antigravity muscles. Thus, the strategy is to use VGS to modify the gain of vestibular projections to antigravity muscles and thereby change the general status of these muscles.

  1. Regional differences in lectin binding patterns of vestibular hair cells

    Baird, Richard A.; Schuff, N. R.; Bancroft, J.

    1994-01-01

    Surface glycoconjugates of hair cells and supporting cells in the vestibular endorgans of the bullfrog were identified using biotinylated lectins with different carbohydrate specificities. Lectin binding in hair cells was consistent with the presence of glucose and mannose (CON A), galactose (RCA-I), N-acetylgalactosamine (VVA), but not fucose (UEA-I) residues. Hair cells in the bullfrog sacculus, unlike those in the utriculus and semicircular canals, did not stain for N-acetylglucosamine (WGA) or N-acetylgalactosamine (VVA). By contrast, WGA and, to a lesser extent, VVA, differentially stained utricular and semicircular canal hair cells, labeling hair cells located in peripheral, but not central, regions. In mammals, WGA uniformly labeled Type 1 hair cells while labeling, as in the bullfrog, Type 2 hair cells only in peripheral regions. These regional variations were retained after enzymatic digestion. We conclude that vestibular hair cells differ in their surface glycoconjugates and that differences in lectin binding patterns can be used to identify hair cell types and to infer the epithelial origin of isolated vestibular hair cells.

  2. Radiosurgical treatment of sporadic vestibular schwannomas: A prospective cohort study

    Objective: To analyze the preliminary experience of radiosurgery for Vestibular Schwannomas at the Pontificia Universidad Catolica de Chile. Material and methods: The first 17 patients with sporadic Vestibular Schwannomas treated by radiosurgery at our institution are reported. The marginal dose used was 12 to 12.5 Gy. prescribed at the 70 or 80 isodose fine. Patients were controlled at 6, 12 and 24 months with magnetic resonance, audiometric study and clinical examination. Results: In all of the 17 patients treated a decrease tumor enhancement on MR was demonstrated. In 16 patients (94%) a pattern of central tumor necrosis was observed during the firs year Actuarial useful hearing was maintained in 62.5% at 2 year after treatment. Facial nerve function was maintained in all of the 15 patients with normal function at treatment (100%). Trigeminal function was maintained in ah of the 14 patients (100%) with previous normal trigeminal function. The mean time to return to work or normal activities was 11.5 days after treatment. Conclusions: These preliminary results are comparable with results published in the literature and reinforce the demonstrate role of radiosurgery in the management of vestibular schwannomas

  3. Reabilitação vestibular em idosos com Parkinson Vestibular rehabilitation in elderly patients with Parkinson

    Jackeline Martins-Bassetto

    2007-06-01

    Full Text Available OBJETIVO: verificar a efetividade dos exercícios de reabilitação vestibular (RV por meio de avaliação pré e pós-aplicação do questionário Dizziness Handicap Inventory (DHI - adaptação brasileira. MÉTODOS: avaliaram-se oito pacientes (três do sexo feminino e cinco do sexo masculino, na faixa etária de 48 a 71 anos, encaminhados da Associação Paranaense de Parkinson para o Laboratório de Otoneurologia da Universidade Tuiuti do Paraná. Os pacientes foram divididos em dois grupos e submetidos aos seguintes procedimentos: anamnese, avaliação otorrinolaringológica, avaliação vestibular por meio da vectoeletronistagmografia (VENG e aplicação do questionário DHI - adaptação brasileira pré e pós RV utilizando-se os protocolos de Cawthorne e Cooksey (grupo A e Herdman (grupo B. RESULTADOS: a conforme as queixas otoneurológicas referidas na anamnese, observou-se a prevalência da tontura (100,0%, tremor (100,0% e desvio de marcha (75,0&; b no exame vestibular, todos os pacientes (100,0% apresentaram alteração, sendo a maior freqüência das síndromes vestibulares periféricas deficitárias (62,5%; c houve melhora significativa dos aspectos funcional (p = 0,020470 e emocional (p = 0,013631 após a realização dos exercícios de RV utilizando-se o protocolo de Cawthorne e Cooksey e do aspecto emocional (p=0,007316 utilizando-se o protocolo de Herdman. CONCLUSÃO: comparando-se os dois protocolos utilizados, verificou-se uma melhora significativa dos pacientes do grupo A, submetidos ao protocolo de Cawthorne e Cooksey (p=0.0231.PURPOSE: to check the effectiveness of vestibular rehabilitation exercises (RV by means of an evaluation of a pre and post application of the Dizziness Handicap Inventory (DHI questionnaire (Brazilian version. METHODS: eight patients were evaluated (three female and five male, in the age group varying from 48 to 71, referred from the Paraná Association of Parkinson to the Otoneurological Laboratory

  4. Improving balance function using vestibular stochastic resonance: optimizing stimulus characteristics.

    Mulavara, Ajitkumar P; Fiedler, Matthew J; Kofman, Igor S; Wood, Scott J; Serrador, Jorge M; Peters, Brian; Cohen, Helen S; Reschke, Millard F; Bloomberg, Jacob J

    2011-04-01

    Stochastic resonance (SR) is a phenomenon whereby the response of a non-linear system to a weak periodic input signal is optimized by the presence of a particular non-zero level of noise. Stochastic resonance using imperceptible stochastic vestibular electrical stimulation, when applied to normal young and elderly subjects, has been shown to significantly improve ocular stabilization reflexes in response to whole-body tilt; improved balance performance during postural disturbances and optimize covariance between the weak input periodic signals introduced via venous blood pressure receptors and the heart rate responses. In our study, 15 subjects stood on a compliant surface with their eyes closed. They were given low-amplitude binaural bipolar stochastic electrical stimulation of the vestibular organs in two frequency ranges of 1-2 and 0-30 Hz over the amplitude range of 0 to ±700 μA. Subjects were instructed to maintain an upright stance during 43-s trials, which consisted of baseline (zero amplitude) and stimulation (non-zero amplitude) periods. Measures of stability of the head and trunk using inertial motion unit sensors attached to these segments and the whole body using a force plate were measured and quantified in the mediolateral plane. Using a multivariate optimization criterion, our results show that the low levels of vestibular stimulation given to the vestibular organs improved balance performance in normal healthy subjects in the range of 5-26% consistent with the stochastic resonance phenomenon. In our study, 8 of 15 and 10 of 15 subjects were responsive for the 1-2- and 0-30-Hz stimulus signals, respectively. The improvement in balance performance did not differ significantly between the stimulations in the two frequency ranges. The amplitude of optimal stimulus for improving balance performance was predominantly in the range of ±100 to ±400 μA. A device based on SR stimulation of the vestibular system might be useful as either a training

  5. Pre-adaptation to noisy Galvanic vestibular stimulation is associated with enhanced sensorimotor performance in novel vestibular environments.

    Moore, Steven T; Dilda, Valentina; Morris, Tiffany R; Yungher, Don A; MacDougall, Hamish G

    2015-01-01

    Performance on a visuomotor task in the presence of novel vestibular stimulation was assessed in nine healthy subjects. Four subjects had previously been adapted to 120 min exposure to noisy Galvanic vestibular stimulation (GVS) over 12 weekly sessions of 10 min; the remaining five subjects had never experienced GVS. Subjects were seated in a flight simulator and asked to null the roll motion of a visual bar presented on a screen using a joystick. Both the visual bar and the simulator cabin were moving in roll with a pseudorandom (sum of sines) waveform that were uncorrelated. The cross correlation coefficient, which ranges from 1 (identical waveforms) to 0 (unrelated waveforms), was calculated for the ideal (perfect nulling of bar motion) and actual joystick input waveform for each subject. The cross correlation coefficient for the GVS-adapted group (0.90 [SD 0.04]) was significantly higher (t[8] = 3.162; p = 0.013) than the control group (0.82 [SD 0.04]), suggesting that prior adaptation to GVS was associated with an enhanced ability to perform the visuomotor task in the presence of novel vestibular noise. PMID:26106308

  6. Pre-adaptation to noisy Galvanic vestibular stimulation is associated with enhanced sensorimotor performance in novel vestibular environments

    Steven T Moore

    2015-06-01

    Full Text Available Performance on a visuomotor task in the presence of novel vestibular stimulation was assessed in nine healthy subjects. Four subjects had previously been adapted to 120 minutes exposure to noisy Galvanic vestibular stimulation (GVS over 12 weekly sessions of 10 minutes; the remaining five subjects had never experienced GVS. Subjects were seated in a flight simulator and asked to null the roll motion of a visual bar presented on a screen using a joystick. Both the visual bar and the simulator cabin were moving in roll with a pseudorandom (sum of sines waveform that were uncorrelated. The cross correlation coefficient, which ranges from 1 (identical waveforms to 0 (unrelated waveforms, was calculated for the ideal (perfect nulling of bar motion and actual joystick input waveform for each subject. The cross correlation coefficient for the GVS-adapted group (0.90 [SD 0.04] was significantly higher (t[8]=3.162; p=0.013 than the control group (0.82 [SD 0.04], suggesting that prior adaptation to GVS was associated with an enhanced ability to perform the visuomotor task in the presence of novel vestibular noise.

  7. Feedforward versus feedback modulation of human vestibular-evoked balance responses by visual self-motion information

    Day, B. L.; Guerraz, M.

    2007-01-01

    Visual information modulates the balance response evoked by a pure vestibular perturbation (galvanic vestibular stimulation, GVS). Here we investigate two competing hypotheses underlying this visual-vestibular interaction. One hypothesis assumes vision acts in a feedforward manner by altering the weight of the vestibular channel of balance control. The other assumes vision acts in a feedback manner through shifts in the retinal image produced by the primary response. In the first experiment w...

  8. Large basolateral processes on type II hair cells comprise a novel processing unit in mammalian vestibular organs

    Pujol, Rémy; Pickett, Sarah B.; Nguyen, Tot Bui; Stone, Jennifer S.

    2014-01-01

    Sensory receptors in the vestibular system (hair cells) encode head movements and drive central motor reflexes that control gaze, body movements, and body orientation. In mammals, type I and II vestibular hair cells are defined by their shape, contacts with vestibular afferent nerves, and membrane conductance. Here, we describe unique morphological features of type II vestibular hair cells in mature rodents (mice and gerbils) and bats. These features are cytoplasmic processes t...

  9. Achados vestibulares em usuários de aparelho de amplificação sonora individual Vestibular findings in hearing aid users

    Fabiane Paulin

    2009-01-01

    Full Text Available OBJETIVO: verificar os achados vestibulares em pacientes com perda auditiva neurossenssorial usuários de aparelho de amplificação sonora individual. MÉTODOS: vinte pacientes, 11 do sexo feminino e nove do sexo masculino, com idades entre 39 e 85 anos, com perda auditiva neurossenssorial bilateral de grau moderado e severo foram atendidos em uma Instituição de Ensino Superior e submetidos a uma anamnese, inspeção otológica, avaliação audiológica, imitanciometria e ao exame vestibular por meio da vectoeletronistagmografia. RESULTADOS: a dos 20 pacientes avaliados, 18 (90% apresentaram queixa de zumbido, 15 (75% queixa de tontura e oito (40% queixa de cefaléia; b houve predomínio de alteração na prova calórica e no sistema vestibular periférico; c o resultado do exame vestibular esteve alterado em 14 pacientes (70%, sendo, oito casos (40% de síndrome vestibular periférica irritativa e seis casos (30% de síndrome vestibular periférica deficitária; d verificou-se diferença significativa entre o resultado do exame vestibular e o tempo de uso do aparelho de amplificação sonora individual; e dos cinco pacientes que não referiram nenhum sintoma vestibular, quatro (80% apresentaram alteração no exame. CONCLUSÃO: ressalta-se a sensibilidade e importância do estudo funcional do sistema do equilíbrio neste tipo de população, uma vez que podem ocorrer alterações na avaliação labiríntica independente da presença de sintomas.PURPOSE: to check vestibular findings in patients with sensoneural hearing loss, hearing aid users. METHODS: 20 patients (eleven females and nine males aging from 39 to 85-year-old with bilateral sensorineural hearing loss, from moderate to severe degrees, were attended in a higher education institution evaluated by medical history, otological inspections, complete basic conventional audiological evaluations, acoustic impedance tests and vectoeletronystagmography. RESULTS: a from the 20 evaluated

  10. Vestibular schwannoma and tuberculoma occurring In collision in the posterior fossa: A case report

    Muzumdar, Dattatraya; Mahore, Amit; Ramdasi, Raghvendra; Bhatjiwale, Mrudul

    2015-01-01

    Highlights • We report a case of a 46 years female found to have vestibular schwannoma and tuberculoma in collision. • Such association of vestibular schwannoma and tuberculomas never been reported. • It must be kept in mind if two different tumors are detected radiologically in patients residing in endemic regions of tuberculosis.

  11. Effect of different modes of therapy on vestibular and balance dysfunction in Parkinson’s disease

    Wafaa Abdel-Hay El-Kholy

    2015-07-01

    Conclusions: Since patients with PD receiving physiotherapy in conjunction with medical treatment showed better control of their vestibular and balance functions, efforts should be directed to start physiotherapy including vestibular rehabilitation as early as possible in order to improve balance, thus increasing independence in daily life activities.

  12. A simple model for the generation of the vestibular evoked myogenic potential (VEMP)

    Wit, HP; Kingma, CM

    2006-01-01

    Objective: To describe the mechanism by which the vestibular evoked myogenic potential is generated. Methods: Vestibular evoked myogenic potential generation is modeled by adding a large number of muscle motor unit action potentials. These action potentials occur randomly in time along a 100 ms long

  13. The effect of changes in perilymphatic K+ on the vestibular evoked potential in the guinea pig

    Kingma, C. M.; Wit, H. P.

    2010-01-01

    To investigate the effect on the functioning of the vestibular system of a rupture of Reissner's membrane, artificial endolymph was injected in scala media of ten guinea pigs and vestibular evoked potentials (VsEPs), evoked by vertical acceleration pulses, were measured. Directly after injection of

  14. The Effect of Galvanic Vestibular Stimulation on Postural Response of Down Syndrome Individuals on the Seesaw

    Carvalho, R. L.; Almeida, G. L.

    2011-01-01

    In order to better understand the role of the vestibular system in postural adjustments on unstable surfaces, we analyzed the effects of galvanic vestibular stimulation (GVS) on the pattern of muscle activity and joint displacements (ankle knee and hip) of eight intellectually normal participants (control group--CG) and eight control group…

  15. Spontaneous tumour shrinkage in 1261 observed patients with sporadic vestibular schwannoma

    Huang, Xiaoshan; Caye-Thomasen, P; Stangerup, S-E

    2013-01-01

    To determine the rate of spontaneous tumour shrinkage in a group of patients with sporadic vestibular schwannoma managed with a 'wait and scan' approach.......To determine the rate of spontaneous tumour shrinkage in a group of patients with sporadic vestibular schwannoma managed with a 'wait and scan' approach....

  16. 78 FR 53700 - Revised Medical Criteria for Evaluating Hearing Loss and Disturbances of Labyrinthine-Vestibular...

    2013-08-30

    ... Labyrinthine-Vestibular Function, 70 FR 19353. The comments we received in response to this ANPRM are available... 6, 1985.\\2\\ \\1\\ 75 FR 30693. \\2\\ 50 FR 50068. On which rules are we inviting comments and... Disturbances of Labyrinthine-Vestibular Function AGENCY: Social Security Administration. ACTION: Advance...

  17. Vestibular stimulation after head injury: effect on reaction times and motor speech parameters

    Engberg, A

    1989-01-01

    Earlier studies by other authors indicate that vestibular stimulation may improve attention and dysarthria in head injured patients. In the present study of five severely head injured patients and five controls, the effect of vestibular stimulation on reaction times (reflecting attention) and some...

  18. 7-Tesla MRI demonstrates absence of structural lesions in patients with vestibular paroxysmia

    Paulus Stefan Rommer

    2015-06-01

    Full Text Available Vestibular parxoysmia is rare vestibular disorder. A neurovascular cross-compression between the vestibulochochlear nerve and an artery seems to be responsible for short attacks of vertigo in this entity. A neurovascular cross-compression can be seen in up to every fourth subject. The significance of these findings is not clear, as not all subjects suffer from symptoms. The aim of the present study was to assess possible structural lesions of the vestibulocochlear nerve by means of high field magnetic resonance imaging (MRI, and whether high field MRI may help to differentiate symptomatic from asymptomatic patients. 7 Tesla MRI was performed in six patients with vestibular paroxysmia and confirmed neurovascular cross-compression seen on 1.5 and 3.0 MRI. No structural abnormalities were detected in any of the patients in 7 Tesla MRI. These findings imply that high field MRI does not help to differentiate between symptomatic and asymptomatic neurovascular cross-compression and that the symptoms of vestibular paroxysmia are not caused by structural nerve lesions. This supports the hypothesis that the nystagmus associated with vestibular paroxysmia has to be conceived pathophysiologically as an excitatory vestibular phenomenon, being not related to vestibular hypofunction. 7 Tesla MRI outperforms conventional MRI in image resolution and may be useful in vestibular disorders.

  19. Intratumoral hemorrhage, vessel density, and the inflammatory reaction contribute to volume increase of sporadic vestibular schwannomas

    de Vries, Maurits; Hogendoorn, Pancras C W; Briaire-de Bruyn, Inge; Malessy, Martijn J. A.; van der Mey, Andel G L

    2012-01-01

    Vestibular schwannomas show a large variation in growth rate, making prediction and anticipation of tumor growth difficult. More accurate prediction of clinical behavior requires better understanding of tumor biological factors influencing tumor progression. Biological processes like intratumoral hemorrhage, cell proliferation, microvessel density, and inflammation were analyzed in order to determine their role in vestibular schwannoma development. Tumor specimens of 67 patients surgically tr...

  20. Three Dimensional Vestibular Ocular Reflex Testing Using a Six Degrees of Freedom Motion Platform

    Dits, J.; Houben, M.M.J.; Steen, J. van der

    2013-01-01

    The vestibular organ is a sensor that measures angular and linear accelerations with six degrees of freedom (6DF). Complete or partial defects in the vestibular organ results in mild to severe equilibrium problems, such as vertigo, dizziness, oscillopsia, gait unsteadiness nausea and/or vomiting. A

  1. Reabilitação vestibular: utilidade clínica em pacientes com esclerose múltipla Vestibular rehabilitation: clinical benefits to patients with multiple sclerosis

    Bianca Simone Zeigelboim

    2010-01-01

    Full Text Available O objetivo desse estudo foi analisar a eficácia do exercício de reabilitação vestibular em dois casos de esclerose múltipla remitente-recorrente. Ambos os casos foram encaminhados do Hospital de Clínicas para o Laboratório de Otoneurologia de uma instituição de ensino e foram submetidos aos seguintes procedimentos: anamnese, inspeção otológica, avaliação vestibular e aplicação do Dizziness Handicap Inventory pré e pós reabilitação vestibular utilizando-se o protocolo de Cawthorne e Cooksey. No primeiro caso, gênero feminino, 35 anos, tempo de doença de seis anos, referiu tontura há três anos, de intensidade moderada de ocorrência frequente, cefaléia, quedas, desvio de marcha à direita e sensação de desmaio (sic. Apresentou no exame labiríntico, síndrome vestibular periférica deficitária bilateral. No segundo caso, gênero feminino, 49 anos, tempo de doença de dois anos, referiu desvio de marcha à direita, dificuldade e/ou dor ao movimento do pescoço, formigamento de extremidade e alteração vocal. Apresentou no exame labiríntico, síndrome vestibular periférica deficitária à direita. Houve melhora significativa em ambos os casos dos aspectos físico, funcional e emocional do Dizziness Handicap Inventory após a realização da reabilitação vestibular. O protocolo utilizado promoveu melhora na qualidade de vida e auxiliou no processo de compensação vestibular.The aim of the present study was to analyze the effectiveness of vestibular rehabilitation exercises in two cases of remittent-recurrent multiple sclerosis. Both cases were referred from the Clinics Hospital to the Laboratory of Otoneurology of the same institution and were submitted to the following procedures: anamnesis, otological inspection, vestibular evaluation, and application of the Dizziness Handicap Inventory before and after vestibular rehabilitation using the Cawthorne and Cooksey protocol. The first case was a 35-year-old female

  2. Percentage of vestibular dysfunction in 361 elderly citizens responding to a newspaper advertisement

    Brandt, Michael Smærup; Grönvall, Erik; Mørch, Marianne Metz;

    2011-01-01

    Percentage of Vestibular Dysfunction in 361 Elderly Citizens Responding to a Newspaper Advertisement. Brandt M, Grönvall E, Henriksen JJ, Larsen SB, Læssøe U, Mørch MM, Damsgaard EM Introduction Elderly patients with vestibular dysfunction have an eight-fold increased risk of falling compared...... to other fall patients. We believe that elderly patients with vestibular dysfunction either don’t consult their GP or have been abandoned by their GP. The aim of this study was to identify the percentage of vestibular dysfunction among elderly citizens with complaints of dizziness responding to a newspaper...... advertisement. Method To recruit elderly citizens with dizziness we advertised in a local newspaper. A telephone interview with the respondents was done by a physiotherapist (PT). If the PT concluded that the reason for the dizziness could be vestibular dysfunction the citizen was invited to further...

  3. Vestibular-somatosensory interactions: effects of passive whole-body rotation on somatosensory detection.

    Elisa Raffaella Ferrè

    Full Text Available Vestibular signals are strongly integrated with information from several other sensory modalities. For example, vestibular stimulation was reported to improve tactile detection. However, this improvement could reflect either a multimodal interaction or an indirect interaction driven by vestibular effects on spatial attention and orienting. Here we investigate whether natural vestibular activation induced by passive whole-body rotation influences tactile detection. In particular, we assessed the ability to detect faint tactile stimuli to the fingertips of the left and right hand during spatially congruent or incongruent rotations. We found that passive whole-body rotations significantly enhanced sensitivity to faint shocks, without affecting response bias. Critically, this enhancement of somatosensory sensitivity did not depend on the spatial congruency between the direction of rotation and the hand stimulated. Thus, our results support a multimodal interaction, likely in brain areas receiving both vestibular and somatosensory signals.

  4. Focal increase of blood flow in the cerebral cortex of man during vestibular stimulation

    Friberg, L; Olsen, T S; Roland, P E;

    1985-01-01

    This study is an attempt to reveal projection areas for vestibular afferents to the human brain. Changes in regional cerebral blood flow (rCBF) were measured over 254 cortical regions during caloric vestibular stimulation with warm water (44 degrees C). rCBF was measured when the external auditory...... meatus was irrigated with water at body temperature as a control to vestibular stimulation. During vestibular stimulation there was only a single cortical area, located in the superior temporal region, which showed a consistent focal activation in the hemisphere contralateral to the stimulated side....... On the rCBF display this area was located in the superior temporal region posterior to the auditory area, probably in the superior temporal gyrus. It is suggested that this area represents the primary projection area of the vestibular nerve and that it is the activation of this area during caloric...

  5. Controlled Vestibular Stimulation, Standardization Of A Physiological Method To Release Stress In College Students.

    Sailesh, Kumar Sai; Mukkadan, J K

    2015-01-01

    The present study was designed to standardize optimal vestibular stimulation and to investigate its impact on anxiety levels in college students. Vestibular stimulation was achieved by swinging on a swing (Back to front direction) and the participants were advised to adjust frequency, duration and intensity, according to comfort. Frequency, intensity and duration were recorded manually. The anxiety status was assessed by using Spielberger state-trait anxiety inventory (STAI) before and after vestibular stimulation. It has been observed that the anxiety status was significantly decreased after vestibular stimulation. There is a need for future study with larger sample size to substantiate the therapeutic validity of vestibular stimulation as a physiological treatment for stress relief and stress related disorders among college students. PMID:27530012

  6. Trimetazidine modulates AMPA/kainate receptors in rat vestibular ganglion neurons.

    DAYANITHI, GOVINDAN; Desmadryl, Gilles; Travo, Cécile; Chabbert, Christian; Sans, Alain

    2007-01-01

    Trimetazidine (1[2,3,4-trimethoxy-benzyl] piperazine, 2 HCl) is an anti-ischemic agent frequently administered as a prophylactic treatment for episodes of angina pectoris and chorioretinal disturbances. It is also employed as a symptomatic treatment of vertigo but its mechanism of action is yet to be defined. Using Fura-2 fluorescence photometry and whole-cell patch-clamp recordings we investigated the effect of trimetazidine on the [Ca(2+)](i) and current responses induced by the application...

  7. Influence of gender on the vestibular evoked myogenic potential Influência do gênero no potencial miogênico evocado vestibular

    Aline Tenório Lins Carnaúba; Vanessa Vieira Farias; Nastassia Santos; Aline Cabral de Oliveira; Renato Glauco de Souza Rodrigues; Pedro de Lemos Menezes

    2011-01-01

    There is no consensus on the relevance of factors that influence gender differences in the behavior of muscles. Some studies have reported a relationship between muscle tension and amplitude of the vestibular evoked myogenic potential; others, that results depend on which muscles are studied or on how much load is applied. AIMS: This study aims to compare vestibular evoked myogenic potential parameters between genders in young individuals. METHODS: Eighty young adults were selected - 40 men a...

  8. Development and Function of the Mouse Vestibular System in the Absence of Gravity Perception

    Wolgemuth, Debra J.

    2005-01-01

    The hypothesis that was tested in this research was that the absence of gravity perception, such as would occur in space, would affect the development and function of the vestibular and central nervous systems. Further, we postulated that these effects would be more significant at specific stages of post-natal development of the animal. We also proposed the use of molecular genetic approaches that would provide important information as to the hierarchy of gene function during the development and subsequent function of the vestibular system. The tilted (tlt) mutant mouse has been characterized as lacking the ability to provide sensory input to the gravity receptors. The tlt/tlt mutant mice were a particularly attractive model for the study of vestibular function since the primary defect was limited to the receptor part of the vestibular system, and there were no detectable abnormal phenotypes in other organ systems. The goal of the proposed studies was to assess immediate and delayed effects of the lack of gravity perception on the vestibular system. Particular attention was paid to characterizing primarily affected periods of vestibular morphogenesis, and to identifying downstream genetic pathways that are altered in the CNS of the tlt/tlt mutant mouse. The specific aims were: (1) to characterize the postnatal morphogenesis of the CNS in the tlt mutant mouse, using detailed morphometric analysis of isolated vestibular ganglia and brain tissue at different stages of postnatal development and assessment of apoptotic cell death; (2) to examine the expression of selected genes implicated by mutational analysis to be important in vestibular development or function by in situ hybridization or immunohistochemistry in the mutant mice; and (3) to identify other genes involved in vestibular development and function, using differential cloning strategies to isolate genes whose expression is changed in the mutant versus normal vestibular system.

  9. Distinct roles of Eps8 in the maturation of cochlear and vestibular hair cells.

    Tavazzani, Elisa; Spaiardi, Paolo; Zampini, Valeria; Contini, Donatella; Manca, Marco; Russo, Giancarlo; Prigioni, Ivo; Marcotti, Walter; Masetto, Sergio

    2016-07-22

    Several genetic mutations affecting the development and function of mammalian hair cells have been shown to cause deafness but not vestibular defects, most likely because vestibular deficits are sometimes centrally compensated. The study of hair cell physiology is thus a powerful direct approach to ascertain the functional status of the vestibular end organs. Deletion of Epidermal growth factor receptor pathway substrate 8 (Eps8), a gene involved in actin remodeling, has been shown to cause deafness in mice. While both inner and outer hair cells from Eps8 knockout (KO) mice showed abnormally short stereocilia, inner hair cells (IHCs) also failed to acquire mature-type ion channels. Despite the fact that Eps8 is also expressed in vestibular hair cells, Eps8 KO mice show no vestibular deficits. In the present study we have investigated the properties of vestibular Type I and Type II hair cells in Eps8-KO mice and compared them to those of cochlear IHCs. In the absence of Eps8, vestibular hair cells show normally long kinocilia, significantly shorter stereocilia and a normal pattern of basolateral voltage-dependent ion channels. We have also found that while vestibular hair cells from Eps8 KO mice show normal voltage responses to injected sinusoidal currents, which were used to mimic the mechanoelectrical transducer current, IHCs lose their ability to synchronize their responses to the stimulus. We conclude that the absence of Eps8 produces a weaker phenotype in vestibular hair cells compared to cochlear IHCs, since it affects the hair bundle morphology but not the basolateral membrane currents. This difference is likely to explain the absence of obvious vestibular dysfunction in Eps8 KO mice. PMID:27132230

  10. Dynamic visual acuity testing for screening patients with vestibular impairments.

    Peters, Brian T; Mulavara, Ajitkumar P; Cohen, Helen S; Sangi-Haghpeykar, Haleh; Bloomberg, Jacob J

    2012-01-01

    Dynamic visual acuity (DVA) may be a useful indicator of the function of the vestibulo-ocular reflex (VOR) but most DVA tests involve active head motion in the yaw plane. During gait the passive, vertical VOR may be more relevant and passive testing would be less likely to elicit compensatory strategies. The goal of this study was to determine if testing dynamic visual acuity during passive vertical motion of the subject would differentiate normal subjects from patients with known vestibular disorders. Subjects, normals and patients who had been diagnosed with either unilateral vestibular weaknesses or were post-acoustic neuroma resections, sat in a chair that could oscillate vertically with the head either free or constrained with a cervical orthosis. They viewed a computer screen 2 m away that showed Landholt C optotypes in one of 8 spatial configurations and which ranged in size from 0.4 to 1.0 logMAR. They were tested while the chair was stationary and while it was moving. Scores were worse for both groups during the dynamic condition compared to the static condition. In the dynamic condition patients' scores were significantly worse than normals' scores. Younger and older age groups differed slightly but significantly; the sample size was too small to examine age differences by decade. The data suggest that many well-compensated patients have dynamic visual acuity that is as good as age-matched normals. Results of ROC analyses were only moderate, indicating that the differences between patients and normals were not strong enough, under the conditions tested, for this test to be useful for screening people to determine if they have vestibular disorders. Modifications of the test paradigm may make it more useful for screening potential patients. PMID:23000614

  11. Yaw and pitch visual-vestibular interaction in weightlessness

    Clement, G.; Wood, S. J.; Reschke, M. F.; Berthoz, A.; Igarashi, M.

    1999-01-01

    Both yaw and pitch visual-vestibular interactions at two separate frequencies of chair rotation (0.2 and 0.8 Hz) in combination with a single velocity of optokinetic stimulus (36 degrees/s) were used to investigate the effects of sustained weightlessness on neural strategies adopted by astronaut subjects to cope with the stimulus rearrangement of spaceflight. Pitch and yaw oscillation in darkness at 0.2 and 0.8 Hz without optokinetic stimulation, and constant velocity linear optokinetic stimulation at 18, 36, and 54 degrees/s presented relative to the head with the subject stationary, were used as controls for the visual-vestibular interactions. The results following 8 days of space flight showed no significant changes in: (1) either the horizontal and vertical vestibulo-ocular reflex (VOR) gain, phase, or bias; (2) the yaw visual-vestibular response (VVR); or (3) the horizontal or vertical optokinetic (OKN) slow phase velocity (SPV). However, significant changes were observed: (1) when during pitch VVR at 0.2 Hz late inflight, the contribution of the optokinetic input to the combined oculomotor response was smaller than during the stationary OKN SPV measurements, followed by an increased contribution during the immediate postflight testing; and (2) when during pitch VVR at 0.8 Hz, the component of the combined oculomotor response due to the underlying vertical VOR was more efficiently suppressed early inflight and less suppressed immediately postflight compared with preflight observations. The larger OKN response during pitch VVR at 0.2 Hz and the better suppression of VOR during pitch VVR at 0.8 Hz postflight are presumably due to the increased role of vision early inflight and immediately after spaceflight, as previously observed in various studies. These results suggest that the subjects adopted a neural strategy to structure their spatial orientation in weightlessness by reweighting visual, otolith, and perhaps tactile/somatic signals.

  12. A CMOS Neural Interface for a Multichannel Vestibular Prosthesis.

    Hageman, Kristin N; Kalayjian, Zaven K; Tejada, Francisco; Chiang, Bryce; Rahman, Mehdi A; Fridman, Gene Y; Dai, Chenkai; Pouliquen, Philippe O; Georgiou, Julio; Della Santina, Charles C; Andreou, Andreas G

    2016-04-01

    We present a high-voltage CMOS neural-interface chip for a multichannel vestibular prosthesis (MVP) that measures head motion and modulates vestibular nerve activity to restore vision- and posture-stabilizing reflexes. This application specific integrated circuit neural interface (ASIC-NI) chip was designed to work with a commercially available microcontroller, which controls the ASIC-NI via a fast parallel interface to deliver biphasic stimulation pulses with 9-bit programmable current amplitude via 16 stimulation channels. The chip was fabricated in the ONSemi C5 0.5 micron, high-voltage CMOS process and can accommodate compliance voltages up to 12 V, stimulating vestibular nerve branches using biphasic current pulses up to 1.45±0.06 mA with durations as short as 10 μs/phase. The ASIC-NI includes a dedicated digital-to-analog converter for each channel, enabling it to perform complex multipolar stimulation. The ASIC-NI replaces discrete components that cover nearly half of the 2nd generation MVP (MVP2) printed circuit board, reducing the MVP system size by 48% and power consumption by 17%. Physiological tests of the ASIC-based MVP system (MVP2A) in a rhesus monkey produced reflexive eye movement responses to prosthetic stimulation similar to those observed when using the MVP2. Sinusoidal modulation of stimulus pulse rate from 68-130 pulses per second at frequencies from 0.1 to 5 Hz elicited appropriately-directed slow phase eye velocities ranging in amplitude from 1.9-16.7 (°)/s for the MVP2 and 2.0-14.2 (°)/s for the MVP2A. The eye velocities evoked by MVP2 and MVP2A showed no significant difference ( t-test, p=0.34), suggesting that the MVP2A achieves performance at least as good as the larger MVP2. PMID:25974945

  13. Interdependence of spatial properties and projection patterns of medial vestibulospinal tract neurons in the cat.

    Perlmutter, S I; Iwamoto, Y; Baker, J F; Peterson, B W

    1998-01-01

    Activity of vestibular nucleus neurons with axons in the ipsi- or contralateral medial vestibulospinal tract was studied in decerebrate cats during sinusoidal, whole-body rotations in many planes in three-dimensional space. Antidromic activation of axon collaterals distinguished between neurons projecting only to neck segments from those with collaterals to C6 and/or oculomotor nucleus. Secondary neurons were identified by monosynaptic activation after labyrinth stimulation. A three-dimensional maximum activation direction vector (MAD) summarized the spatial properties of 151 of 169 neurons. The majority of secondary neurons (71%) terminated above the C6 segment. Of these, 43% had ascending collaterals to the oculomotor nucleus (VOC neurons), and 57% did not (VC neurons). The majority of VOC and VC neurons projected contralaterally and ipsilaterally, respectively. Most C6-projecting neurons could not be activated from oculomotor nucleus (V-C6 neurons) and projected primarily ipsilaterally. All VO-C6 neurons projected contralaterally. The distributions of MADs for secondary neurons with different projection patterns were different. Most VOC (84%) and contralaterally projecting VC (91%) neurons had MADs close to the activation vector of a semicircular canal pair, compared with 54% of ipsilaterally projecting VC (i-VC) and 39% of V-C6 neurons. Many i-VC (44%) and V-C6 (48%) neurons had responses suggesting convergent input from horizontal and vertical canal pairs. Horizontal and vertical gains were comparable for some, making it difficult to assign a primary canal input. MADs consistent with vertical-vertical canal pair convergence were less common. Type II yaw or type II roll responses were seen for 22% of the i-VC neurons, 68% of the V-C6 neurons, and no VOC cells. VO-C6 neurons had spatial properties between those of VOC and V-C6 neurons. These results suggest that secondary VOC neurons convey semicircular canal pair signals to both ocular and neck motor centers

  14. Astronaut Charles Conrad checks out Human Vestibular Function experiment

    1973-01-01

    Astronaut Charles Conrad Jr., commander of the first manned Skylab mission, checks out the Human Vestibular Function, Experiment M131, during Skylab training at JSC. Conrad is in the work and experiments compartment of the crew quarters of the Skylab Orbital Workshop (OWS) trainer at JSC. The reference sphere with a magnetic rod is used by the astronaut to indicate body orientation non-visually. The litter chair in which he is seated can be rotated by a motor at its base or, when not being rotated, can tilt forward, backward or to either side.

  15. Alignment of angular velocity sensors for a vestibular prosthesis

    DiGiovanna Jack

    2012-02-01

    Full Text Available Abstract Vestibular prosthetics transmit angular velocities to the nervous system via electrical stimulation. Head-fixed gyroscopes measure angular motion, but the gyroscope coordinate system will not be coincident with the sensory organs the prosthetic replaces. Here we show a simple calibration method to align gyroscope measurements with the anatomical coordinate system. We benchmarked the method with simulated movements and obtain proof-of-concept with one healthy subject. The method was robust to misalignment, required little data, and minimal processing.

  16. Influence of mobility restriction on habituation of the vestibular apparatus

    Gorgiladze, G. I.; Kazanskaya, G. S.

    1980-01-01

    Test results presented indicate that 30-day hypokinesia did not affect the intensity of nystagmus: velocity of slow phase, total number of jerks, and duration of the reaction in animals were the same as before mobility restriction and did not differ from those of the control group. However, hypokinesia resulted in the disappearance of habituation of the vestibulary system to repeated angular accelerations. The known hypokinetic changes in the endocrine system were studied. It was concluded that reduction in adrenergic function may be the cause of disappearance of vestibular apparatus habituation during hypokinesia.

  17. Diagnosis and Management of Hereditary Meningioma and Vestibular Schwannoma.

    Shaw, Adam

    2016-01-01

    Bilateral vestibular schwannomata and meningiomata are the tumours most commonly associated with neurofibromatosis type II (NF2). These tumours may also be seen in patients with schwannomatosis and familial meningioma, but these phenotypes are usually easy to distinguish. The main diagnostic challenge when managing these tumours is distinguishing between sporadic disease which carries low risk of subsequent tumours or NF2 with its associated morbidities and reduced life expectancy. This chapter outlines some of the diagnostic and management considerations along with associated evidence. PMID:27075346

  18. Multiple Unilateral Vestibular Schwannomas: Segmental NF2 or Sporadic Occurrence?

    Carlson, Matthew L.; Van Gompel, Jamie J.

    2016-01-01

    Objective To report a case of a patient presenting with two separate unilateral vestibular schwannomas (VSs) without other stigmata of neurofibromatosis type 2 (NF2). Study Design This article discusses a case report and review of the literature. Setting Tertiary academic referral center. Participants A 41-year-old female was referred for evaluation of a left-sided 1.8-cm cerebellopontine angle tumor centered on the porus acusticus and a separate ipsilateral 3-mm intracanalicular tumor appear...

  19. Germinoma in the Internal Auditory Canal Mimicking a Vestibular Schwannoma

    Rubén Martín-Hernández

    2014-01-01

    Full Text Available The appearance of a primary germinoma in the central nervous system but not on or near the midline or within the brain is exceptional. It may occur at any age; however, it is rare in patients over 50 years old. Only a handful of cases of germinomas located in the cerebellopontine angle were presented, but to our knowledge, there has been no description of an isolated germinoma in the internal auditory canal. We report a case of germinoma in the internal auditory canal in a 51-year-old man simulating the clinical and radiological characteristics of a vestibular schwannoma.

  20. Manejo de schwannoma vestibular con radiaciones : experiencia del IVO

    Arribas Alpuente, Leoncio Alfonso

    2013-01-01

    A partir de la década de los 70, nace la radiocirugía (RC) como tratamiento alternativo a la cirugía convencional en el tratamiento de los schwannomas vestibulares(SV). Poco a poco dicha técnica, ha ido desbancando a la microcirugía alcanzando cifras del 58 % de tratamientos de RC frente a la cirugía convencional. En el presente estudio analizamos el resultado de 167 tumores tratados con radiaciones (bien con dosis única (RC) o con dosis fraccionada, RT Estereotáctica Fraccionada (RTEF)...

  1. Vestibular-related neuroscience and manned space flight

    Igarashi, Makoto

    1988-01-01

    The effects of weightlessness on the human vestibular system are examined, reviewing the results of recent investigations. The functional, neurophysiological, and neurochemical changes which occur during adaptation to weightlessness are discussed; theoretical models proposed to explain the underlying mechanism are outlined; and particular attention is given to the author's experiments on squirrel monkeys. There, good correlations were found between (1) the recovery of locomotor balance function in the acute compensation phase after unilateral labyrinthectomy and (2) the bilateral imbalance in the optical density of GABA-like immunoreactivity.

  2. Follow-up of vestibular function in bilateral vestibulopathy

    Zingler, Vera C.; Weintz, E.; Jahn, Klaus; Mike, A; Huppert, Doreen; Rettinger, Nicole; BRANDT, THOMAS; Strupp, Michael

    2008-01-01

    Objective: Bilateral vestibulopathy (BV) leads to a bilateral deficit of the vestibulo-ocular reflex and has various aetiologies. The main goal of this study was to determine the frequency and degree of recovery or worsening of vestibular function over time.Methods: 82 patients (59 males, 23 females; mean age at the time of diagnosis 56.3 (SD 17.6) years) were re-examined 51 (36) months after the first examination. All patients underwent a standardised neuro-ophthalmological and neuro-otologi...

  3. Nonlinear high-order mode locking in stochastic sensory neurons

    Rowe, Michael; Afghan, Muhammad; Neiman, Alexander

    2004-03-01

    Excitable systems demonstrate various mode locking regimes when driven by periodic external signals. With noise taken into account, such regimes represent complex nonlinear responses which depend crucially on the frequency and amplitude of the periodic drive as well as on the noise intensity. We study this using a computational model of a stochastic Hodgkin-Huxley neuron in combination with the turtle vestibular sensory system as an experimental model. A bifurcation analysis of the model is performed. Extracellular recordings from primary vestibular afferent neurons with two types of stimuli are used in the experimental study. First, mechanical stimuli applied to the labyrinth allow us to study the responses of the entire system, including transduction by the hair cells and spike generation in the primary afferents. Second, a galvanic stimuli applied directly to an afferent are used to study the responses of afferent spike generator directly. The responses to galvanic stimuli reveal multiple high-order mode locking regimes which are well reproduced in numerical simulation. Responses to mechanical stimulation are characterized by larger variability so that fewer mode-locking regimes can be observed.

  4. Vestibular syndrome in giant anteater (Myrmecophaga tridactyla / Síndrome vestibular em tamanduá-bandeira (Myrmecophaga tridactyla

    Leandro Luís Martins

    2009-10-01

    Full Text Available The vestibular syndrome is a well-defined disease in domestic animals but little known in wild ones. Here this affection of central origin is described in a caquetic adult female giant anteater (Myrmecophaga tridactyla, which presented circling behavior, extensor hypermetry in thoracic limbs, head tilt and spontaneous horizontal and positional vertical nystagmus. The animal received tube feeding twice daily and dexamethasone was given subcutaneous once daily at the dosis of 6mg/kg, with a progressive improvement of health after the second day of treatment. Dose was reduced to a half from fourth to sixth day, and to a quarter on seventh day, when the animal died. On the fifth day, however, circle deambulation had ceased and hypermetry, head tilt and nystagmus were reduced. Treating vestibular syndrome is a challenge in wild animal practice. Treatment is affected by hyporexia and anorexia, making difficult the animals´ health improvement, which generally present muscle atrophy.A síndrome vestibular é uma afecção bem descrita em animais domésticos e pouco relatada em selvagens. Este relato descreveu essa afecção de origem central em uma fêmea adulta de tamanduá-bandeira (Myrmecophaga tridactyla, caquética, apresentando deambulação em círculos, hipermetria extensora nos membros torácicos, desvio da cabeça e nistagmo espontâneo horizontal e posicional vertical. O animal foi alimentado por sonda oral, 2x/dia e instituiu-se tratamento com dexametasona subcutânea na dose 6mg/kg, 1x/dia, com melhora progressiva a partir da segunda administração. A dose foi diminuída pela metade do quarto ao sexto dia, e reduzida novamente à metade no sétimo dia, quando ocorreu óbito. Entretanto, no quinto dia de tratamento, a deambulação em círculos foi interrompida, e a hipermetria, desvio da cabeça e nistagmo diminuídos. O tratamento de animais selvagens com síndrome vestibular é um desafio e é prejudicado pela hiporexia ou anorexia

  5. Spatio-temporal pattern of vestibular information processing after brief caloric stimulation

    Marcelli, Vincenzo [Department of Neuroscience, University of Naples ' Federico II' , Naples (Italy); Esposito, Fabrizio [Department of Neuroscience, University of Naples ' Federico II' , Naples (Italy); Department of Cognitive Neurosciences, University of Maastricht, Maastricht (Netherlands)], E-mail: fabrizio.esposito@unina.it; Aragri, Adriana [Department of Neurological Sciences, Second University of Naples, Naples (Italy); Furia, Teresa; Riccardi, Pasquale [Department of Neuroscience, University of Naples ' Federico II' , Naples (Italy); Tosetti, Michela; Biagi, Laura [I.R.C.S.S. ' Stella Maris' , Pisa (Italy); Marciano, Elio [Department of Neuroscience, University of Naples ' Federico II' , Naples (Italy); Di Salle, Francesco [Department of Cognitive Neurosciences, University of Maastricht, Maastricht (Netherlands); I.R.C.S.S. ' Stella Maris' , Pisa (Italy); Department of Neurosciences, University of Pisa, Pisa (Italy)

    2009-05-15

    Processing of vestibular information at the cortical and subcortical level is essential for head and body orientation in space and self-motion perception, but little is known about the neural dynamics of the brain regions of the vestibular system involved in this task. Neuroimaging studies using both galvanic and caloric stimulation have shown that several distinct cortical and subcortical structures can be activated during vestibular information processing. The insular cortex has been often targeted and presented as the central hub of the vestibular cortical system. Since very short pulses of cold water ear irrigation can generate a strong and prolonged vestibular response and a nystagmus, we explored the effects of this type of caloric stimulation for assessing the blood-oxygen-level-dependent (BOLD) dynamics of neural vestibular processing in a whole-brain event-related functional magnetic resonance imaging (fMRI) experiment. We evaluated the spatial layout and the temporal dynamics of the activated cortical and subcortical regions in time-locking with the instant of injection and were able to extract a robust pattern of neural activity involving the contra-lateral insular cortex, the thalamus, the brainstem and the cerebellum. No significant correlation with the temporal envelope of the nystagmus was found. The temporal analysis of the activation profiles highlighted a significantly longer duration of the evoked BOLD activity in the brainstem compared to the insular cortex suggesting a functional de-coupling between cortical and subcortical activity during the vestibular response.

  6. Left hemispheric dominance of vestibular processing indicates lateralization of cortical functions in rats.

    Best, Christoph; Lange, Elena; Buchholz, Hans-Georg; Schreckenberger, Mathias; Reuss, Stefan; Dieterich, Marianne

    2014-11-01

    Lateralization of cortical functions such as speech dominance, handedness and processing of vestibular information are present not only in humans but also in ontogenetic older species, e.g. rats. In human functional imaging studies, the processing of vestibular information was found to be correlated with the hemispherical dominance as determined by the handedness. It is located mainly within the right hemisphere in right handers and within the left hemisphere in left handers. Since dominance of vestibular processing is unknown in animals, our aim was to study the lateralization of cortical processing in a functional imaging study applying small-animal positron emission tomography (microPET) and galvanic vestibular stimulation in an in vivo rat model. The cortical and subcortical network processing vestibular information could be demonstrated and correlated with data from other animal studies. By calculating a lateralization index as well as flipped region of interest analyses, we found that the vestibular processing in rats follows a strong left hemispheric dominance independent from the "handedness" of the animals. These findings support the idea of an early hemispheric specialization of vestibular cortical functions in ontogenetic older species. PMID:23979449

  7. Spatio-temporal pattern of vestibular information processing after brief caloric stimulation

    Processing of vestibular information at the cortical and subcortical level is essential for head and body orientation in space and self-motion perception, but little is known about the neural dynamics of the brain regions of the vestibular system involved in this task. Neuroimaging studies using both galvanic and caloric stimulation have shown that several distinct cortical and subcortical structures can be activated during vestibular information processing. The insular cortex has been often targeted and presented as the central hub of the vestibular cortical system. Since very short pulses of cold water ear irrigation can generate a strong and prolonged vestibular response and a nystagmus, we explored the effects of this type of caloric stimulation for assessing the blood-oxygen-level-dependent (BOLD) dynamics of neural vestibular processing in a whole-brain event-related functional magnetic resonance imaging (fMRI) experiment. We evaluated the spatial layout and the temporal dynamics of the activated cortical and subcortical regions in time-locking with the instant of injection and were able to extract a robust pattern of neural activity involving the contra-lateral insular cortex, the thalamus, the brainstem and the cerebellum. No significant correlation with the temporal envelope of the nystagmus was found. The temporal analysis of the activation profiles highlighted a significantly longer duration of the evoked BOLD activity in the brainstem compared to the insular cortex suggesting a functional de-coupling between cortical and subcortical activity during the vestibular response.

  8. Role of creatine in sensitivity and function of the auditory and vestibular system

    Vahid Moradi

    2015-02-01

    Full Text Available Background and Aim: Creatine plays an important role in the regulation of cellular energy in high energy demand organs such as the inner ear. It is also believed to play a protective role. This article reviewed the mechanisms and effects of creatine on the auditory and vestibular systems.Recent Findings: Creatine transporters and creatine kinase enzymes are involved in converting creatine to creatine phosphate. Phosphate is a fuel cell available in the cochlear and vestibular hair cells and the protective cells, striavascularis, peripheral and central neural pathways to the auditory cortex. It provides essential ATP for auditory and vestibular system performance. Creatine kinase prevents cochlear damage by regulating the metabolism of energy in marginal layers of the striavascularis and preventing free radical production in stressful situations. It also plays an important role in vestibular compensation. Creatine kinase dysfunction leads to an increase in the threshold of auditory brainstem potentials and a reduction in vestibular performance. The use of creatine improves vestibular evoked myogenic potentials and neurologic symptoms.Conclusion: Creatine and creatine kinase protein is essential for normal hearing and balance function and sensitivity. Creatine kinase deficiency impairs the functioning of these two systems; however, creatine consumption may boost the sensitivity of the vestibular system and neurological performance. Effects of the creatine consumption on the auditory system have not yet been examined.

  9. Can a fixed measure serve as a pertinent diagnostic criterion for large vestibular aqueduct in children?

    A vestibular aqueduct midpoint width greater than 1.50 mm is currently considered to be pathognomonic for a large vestibular aqueduct syndrome. To analyse the diameter of the vestibular aqueduct in children as a function of age and consequently to determine if a fixed measure could serve as a pertinent diagnostic criterion. This was a retrospective study of 200 high-resolution CT scans of the ear in 100 patients aged 0-16 years and from various paediatric medical departments. On each CT scan, the lateral semicircular canal diameter, the vestibular aqueduct midpoint width between the external aperture and common crus, and the vestibular aqueduct external aperture diameter were measured. Spearman's rank test and the Mann-Whitney correlation test were used for an integrated statistical analysis. There was no statistically significant variability in vestibular aqueduct diameter as a function of age or sex of patients. A CT scan threshold value, fixed and independent of age and sex, is thus legitimate for the diagnosis of vestibular aqueduct dilatation. (orig.)

  10. Vestibular Activation Differentially Modulates Human Early Visual Cortex and V5/MT Excitability and Response Entropy

    Guzman-Lopez, Jessica; Arshad, Qadeer; Schultz, Simon R; Walsh, Vincent; Yousif, Nada

    2013-01-01

    Head movement imposes the additional burdens on the visual system of maintaining visual acuity and determining the origin of retinal image motion (i.e., self-motion vs. object-motion). Although maintaining visual acuity during self-motion is effected by minimizing retinal slip via the brainstem vestibular-ocular reflex, higher order visuovestibular mechanisms also contribute. Disambiguating self-motion versus object-motion also invokes higher order mechanisms, and a cortical visuovestibular reciprocal antagonism is propounded. Hence, one prediction is of a vestibular modulation of visual cortical excitability and indirect measures have variously suggested none, focal or global effects of activation or suppression in human visual cortex. Using transcranial magnetic stimulation-induced phosphenes to probe cortical excitability, we observed decreased V5/MT excitability versus increased early visual cortex (EVC) excitability, during vestibular activation. In order to exclude nonspecific effects (e.g., arousal) on cortical excitability, response specificity was assessed using information theory, specifically response entropy. Vestibular activation significantly modulated phosphene response entropy for V5/MT but not EVC, implying a specific vestibular effect on V5/MT responses. This is the first demonstration that vestibular activation modulates human visual cortex excitability. Furthermore, using information theory, not previously used in phosphene response analysis, we could distinguish between a specific vestibular modulation of V5/MT excitability from a nonspecific effect at EVC. PMID:22291031

  11. Ocular Vestibular Evoked Myogenic Potentials Using Head Striker Stimulation

    De Dios, Y. E.; Gadd, N. E.; Kofman, I. S.; Peters, B. T.; Reschke, M. F.; Bloomberg, J. J.; Wood, S. J.; Noohi, F.; Kinnaird, C.; Seidler, R. D.; Mulavara, A. P.

    2016-01-01

    Over the last two decades, several studies have been published on the impact of long-duration (i.e., 22 days or longer) spaceflight on the central nervous system (CNS). In consideration of the health and performance of crewmembers in-flight and post-flight, we are conducting a controlled prospective longitudinal study to investigate the effects of spaceflight on the extent, longevity and neural bases of sensorimotor, cognitive, and neural changes. Multiple studies have demonstrated the effects of spaceflight on the vestibular system. A different approach was taken for ocular VEMP (oVEMP) testing using a head striker system [1]. The oVEMP is generally considered to be a measure of utricle function. The otolithicin put to the inferior oblique muscle is predominately from the utricular macula. Thus, quantitatively, oVEMP tests utricular function. Another practical extension of these relationships is that the oVEMP reflects the superior vestibular nerve function. In this poster we describe the measurement technique used in the spaceflight study.

  12. Vestibular evoked myogenic potentials (VEMPs) in central neurological disorders.

    Venhovens, J; Meulstee, J; Verhagen, W I M

    2016-01-01

    Several types of acoustic stimulation (i.e. tone bursts or clicks), bone-conducted vibration, forehead taps, and galvanic stimulation elicit myogenic potentials. These can be recorded in cervical and ocular muscles, the so called vestibular evoked myogenic potentials (VEMPs). The cervical VEMP (cVEMP) resembles the vestibulo-collic reflex and the responses can be recorded from the ipsilateral sternocleidomastoid muscle. The ocular VEMP resembles the vestibulo-ocular reflex and can be recorded from extra-ocular muscles by a surface electrode beneath the contralateral infraorbital margin. Initially, the literature concerning VEMPs was limited to peripheral vestibular disorders, however, the field of VEMP testing is rapidly expanding, with an increasing focus on central neurological disorders. The current literature concerning VEMP abnormalities in central neurological disorders is critically reviewed, especially regarding the methodological aspects in relation to quality as well as the clinical interpretation of the VEMP results. Suggestions for further research are proposed as well as some clinically useful indications. PMID:25649969

  13. Early diagnosis of acoustic neuroma by the vestibular test

    Haid, T.; Rettinger, G.; Berg, M.; Wigand, M.E.

    1981-11-01

    In a series of 390 cases with suspicion of acoustic neurinomas 78 such tumors could be diagnosed, including 12 early stage neurinomas. This relatively high detection quote of small neurinomas is due to a special diagnostical programme: Every patient with unilateral and sensoneural hearingloss, independent of vertigo anamnesis or of the result of X-rays must be further examined by a vestibular test. All 78 patients with acoustic neuroma had pathological vestibular findings. The positional test turned out to be the most sensitive examination in the early diagnosis of acoustic neuromas and yields a still higher incidence than the thermic test: 95% of the patients with a neuroma showed pathological findings in the positional test. Every patient suffering from an unidentified unilateral and sensoneural hearingloss combined with a pathological result in the positional test must be further checked by a cisternomeatography or computerized tomography using airinsufflation. Every fifth of these patients showed typical signs of an acoustic neuroma in the neuroradiological tests. 68 neuromas are operated today and verfied histologically, 10 patients are still waiting for surgical treatment.

  14. Prevalence of hydrocephalus in 157 patients with vestibular schwannoma

    The purpose of this study was to determine the prevalence of hydrocephalus in patients with vestibular schwannoma. A second objective was to investigate possible etiologies for hydrocephalus in this population by attempting to correlate the incidence and severity of hydrocephalus with tumor volume and extent of fourth ventricular compression. The MRI examinations of 157 adult patients with vestibular schwannoma were retrospectively reviewed. Tumor size was quantified, and the presence of accompanying hydrocephalus was assessed, categorized as communicating type or non-communicating type and then rated as mild, moderate or severe (grades 1-3). Next, the degree of fourth ventricular distortion caused by tumor mass effect was evaluated and categorized as mild, moderate or severe (grades 1-3). Spearman's rank correlation coefficient was used to test the relationships between tumor volume and (1) the extent of fourth ventricular effacement and (2) severity of hydrocephalus. Hydrocephalus was present in 28/157 (18%) cases and was categorized as mild in 11/28 (39%), moderate in 15/28 (54%) and severe in 2/28 (7%). Communicating-type hydrocephalus was present in 17/28 (61%) and non-communicating type in 11/28 (39%). There was a positive correlation between the grade of non-communicating hydrocephalus and tumor volume (r=0.38; P<0.001) and between the severity of fourth ventricular compression and extent of hydrocephalus in this group(r=0.43; P<0.001). (orig.)

  15. Multiple Unilateral Vestibular Schwannomas: Segmental NF2 or Sporadic Occurrence?

    Carlson, Matthew L; Gompel, Jamie J Van

    2016-06-01

    Objective To report a case of a patient presenting with two separate unilateral vestibular schwannomas (VSs) without other stigmata of neurofibromatosis type 2 (NF2). Study Design This article discusses a case report and review of the literature. Setting Tertiary academic referral center. Participants A 41-year-old female was referred for evaluation of a left-sided 1.8-cm cerebellopontine angle tumor centered on the porus acusticus and a separate ipsilateral 3-mm intracanalicular tumor appearing to arise from the superior vestibular nerve. The patient denied a family history of NF2. Neurotologic examination was unremarkable and close review of magnetic resonance imaging did not find any other stigmata of NF2. Results The patient underwent left-sided retrosigmoid craniotomy with gross total resection of both tumors. Final pathology confirmed benign schwannoma. The INI1/SMARCB1 staining pattern did not suggest NF2 or schwannomatosis. Conclusions This is only the third report of a case with multiple unilateral VSs occurring in a patient without other features of NF2. Herein, the authors review the two other reports and discuss potential mechanisms for this rare phenomenon. PMID:27354931

  16. Pathogenesis of vestibular schwannoma in ring chromosome 22

    Debiec-Rychter Maria

    2009-09-01

    Full Text Available Abstract Background Ring chromosome 22 is a rare human constitutional cytogenetic abnormality. Clinical features of neurofibromatosis type 1 and 2 as well as different tumour types have been reported in patients with ring chromosome 22. The pathogenesis of these tumours is not always clear yet. Methods We report on a female patient with a ring chromosome 22 presenting with severe mental retardation, autistic behaviour, café-au-lait macules and facial dysmorphism. Peripheral blood lymphocytes were karyotyped and array CGH was performed on extracted DNA. At the age of 20 years she was diagnosed with a unilateral vestibular schwannoma. Tumour cells were analyzed by karyotyping, array CGH and NF2 mutation analysis. Results Karyotype on peripheral blood lymphocytes revealed a ring chromosome 22 in all analyzed cells. A 1 Mb array CGH experiment on peripheral blood DNA showed a deletion of 5 terminal clones on the long arm of chromosome 22. Genetic analysis of vestibular schwannoma tissue revealed loss of the ring chromosome 22 and a somatic second hit in the NF2 gene on the remaining chromosome 22. Conclusion We conclude that tumours can arise by the combination of loss of the ring chromosome and a pathogenic NF2 mutation on the remaining chromosome 22 in patients with ring chromosome 22. Our findings indicate that patients with a ring 22 should be monitored for NF2-related tumours starting in adolescence.

  17. Endolymphatic hydrops in patients with vestibular migraine and auditory symptoms.

    Gürkov, Robert; Kantner, Claudia; Strupp, Michael; Flatz, W; Krause, Eike; Ertl-Wagner, Birgit

    2014-10-01

    Vertigo patients exhibiting features of vestibular migraine (VM) and Menière's disease (MD) present a difficult diagnostic challenge to the clinician, and the two entities are likely to overlap. The aim of the present study was to investigate the occurrence of endolymphatic hydrops in patients with VM and auditory symptoms. This was an observatory diagnostic study. At an academic interdisciplinary dizziness centre, nineteen consecutive patients with definite or probable VM and auditory symptoms were examined by locally enhanced inner ear MR imaging. MR images were evaluated for the presence of endolymphatic hydrops. Of the 19 included patients, four patients (21 %) demonstrated evidence of cochlear and vestibular endolymphatic hydrops on locally enhanced inner ear MR imaging (three with "definite VM", one with "probable VM"). Locally enhanced inner ear MR imaging may be useful in the diagnostic evaluation of patients with VM and auditory symptoms, as some of these patients have signs of endolymphatic hydrops. Whether these patients suffer from MD only and are misdiagnosed as VM or suffer from both, VM and MD or whether endolymphatic hydrops is a consequence of inner ear damage due to VM are clinically relevant questions that can be evaluated by application of this technique. PMID:24121780

  18. Neuronal Migration Disorders

    ... Enhancing Diversity Find People About NINDS NINDS Neuronal Migration Disorders Information Page Table of Contents (click to ... being done? Clinical Trials Organizations What are Neuronal Migration Disorders? Neuronal migration disorders (NMDs) are a group ...

  19. Motor Neuron Diseases

    ... Awards Enhancing Diversity Find People About NINDS Motor Neuron Diseases Fact Sheet See a list of all ... can I get more information? What are motor neuron diseases? The motor neuron diseases (MNDs) are a ...

  20. Effects of conventional versus multimodal vestibular rehabilitation on functional capacity and balance control in older people with chronic dizziness from vestibular disorders: design of a randomized clinical trial

    Ricci Natalia

    2012-12-01

    Full Text Available Abstract Background There are several protocols designed to treat vestibular disorders that focus on habituation, substitution, adaptation, and compensation exercises. However, protocols that contemplate not only vestibular stimulation but also other components that are essential to the body balance control in older people are rare. This study aims to compare the effectiveness of two vestibular rehabilitation protocols (conventional versus multimodal on the functional capacity and body balance control of older people with chronic dizziness due to vestibular disorders. Methods/design A randomized, single-blind, controlled clinical trial with a 3 months follow-up period will be performed. The sample will be composed of older individuals with a clinical diagnosis of chronic dizziness resulting from vestibular disorders. The subjects will be evaluated at baseline, post-treatment and follow-up. Primary outcomes will be determined in accordance with the Dizziness Handicap Inventory (functional capacity and the Dynamic Gait Index (body balance. Secondary outcomes include dizziness features, functional records, body balance control tests, and psychological information. The older individuals (minimum sample n = 68 will be randomized to either the conventional or multimodal Cawthorne&Cooksey protocols. The protocols will be performed during individual 50-minute sessions, twice a week, for 2 months (a total of 16 sessions. The outcomes of both protocols will be compared according to the intention-to-treat analysis. Discussion Vestibular rehabilitation through the Cawthorne&Cooksey protocol has already proved to be effective. However, the addition of other components related to body balance control has been proposed to improve the rehabilitation of older people with chronic dizziness from vestibular disorders. Trial registration ACTRN12610000018011

  1. Development of Vestibular Stochastic Resonance as a Sensorimotor Countermeasure: Improving Otolith Ocular and Motor Task Responses

    Mulavara, Ajitkumar; Fiedler, Matthew; DeDios,Yiri E.; Galvan, Raquel; Bloomberg, Jacob; Wood, Scott

    2011-01-01

    Astronauts experience disturbances in sensorimotor function after spaceflight during the initial introduction to a gravitational environment, especially after long-duration missions. Stochastic resonance (SR) is a mechanism by which noise can assist and enhance the response of neural systems to relevant, imperceptible sensory signals. We have previously shown that imperceptible electrical stimulation of the vestibular system enhances balance performance while standing on an unstable surface. The goal of our present study is to develop a countermeasure based on vestibular SR that could improve central interpretation of vestibular input and improve motor task responses to mitigate associated risks.

  2. Functional Imaging of Human Vestibular Cortex Activity Elicited by Skull Tap and Auditory Tone Burst

    Noohi, F.; Kinnaird, C.; Wood, S.; Bloomberg, J.; Mulavara, A.; Seidler, R.

    2016-01-01

    The current study characterizes brain activation in response to two modes of vestibular stimulation: skull tap and auditory tone burst. The auditory tone burst has been used in previous studies to elicit either the vestibulo-spinal reflex (saccular-mediated colic Vestibular Evoked Myogenic Potentials (cVEMP)), or the ocular muscle response (utricle-mediated ocular VEMP (oVEMP)). Some researchers have reported that air-conducted skull tap elicits both saccular and utricle-mediated VEMPs, while being faster and less irritating for the subjects. However, it is not clear whether the skull tap and auditory tone burst elicit the same pattern of cortical activity. Both forms of stimulation target the otolith response, which provides a measurement of vestibular function independent from semicircular canals. This is of high importance for studying otolith-specific deficits, including gait and balance problems that astronauts experience upon returning to earth. Previous imaging studies have documented activity in the anterior and posterior insula, superior temporal gyrus, inferior parietal lobule, inferior frontal gyrus, and the anterior cingulate cortex in response to different modes of vestibular stimulation. Here we hypothesized that skull taps elicit similar patterns of cortical activity as the auditory tone bursts, and previous vestibular imaging studies. Subjects wore bilateral MR compatible skull tappers and headphones inside the 3T GE scanner, while lying in the supine position, with eyes closed. Subjects received both forms of the stimulation in a counterbalanced fashion. Pneumatically powered skull tappers were placed bilaterally on the cheekbones. The vibration of the cheekbone was transmitted to the vestibular system, resulting in the vestibular cortical response. Auditory tone bursts were also delivered for comparison. To validate our stimulation method, we measured the ocular VEMP outside of the scanner. This measurement showed that both skull tap and auditory

  3. Telefones celulares: influência nos sistemas auditivo e vestibular Mobile phones: influence on auditory and vestibular systems

    Aracy Pereira Silveira Balbani

    2008-02-01

    Full Text Available Os sistemas de telecomunicações emitem radiofreqüência, uma radiação eletromagnética invisível. Telefones celulares transmitem microondas (450900 MHz no sistema analógico e 1,82,2 GHz no sistema digital, muito próximo à orelha do usuário. Esta energia é absorvida pela pele, orelha interna, nervo vestibulococlear e superfície do lobo temporal. OBJETIVO: Revisar a literatura sobre influência dos telefones celulares na audição e equilíbrio. FORMA DE ESTUDO: Revisão sistemática. METODOLOGIA: Foram pesquisados artigos nas bases Lilacs e Medline sobre a influência dos telefones celulares nos sistemas auditivo e vestibular, publicados de 2000 a 2005, e também materiais veiculados na Internet. RESULTADOS: Os estudos sobre radiação do telefone celular e risco de neurinoma do acústico apresentam resultados contraditórios. Alguns autores não encontram maior probabilidade de aparecimento do tumor nos usuários de celulares, enquanto outros relatam que a utilização de telefones analógicos por 10 anos ou mais aumenta o risco para o tumor. A exposição aguda às microondas emitidas pelo celular não influencia a atividade das células ciliadas externas da cóclea, in vivo e in vitro, a condução elétrica no nervo coclear, nem a fisiologia do sistema vestibular em humanos. As próteses auditivas analógicas são mais suscetíveis à interferência eletromagnética dos telefones celulares digitais. CONCLUSÃO: Não há comprovação de lesão cocleovestibular pelos telefones celulares.Telecommunications systems emit radiofrequency, which is an invisible electromagnetic radiation. Mobile phones operate with microwaves (450900 MHz in the analog service, and 1,82,2 GHz in the digital service very close to the user’s ear. The skin, inner ear, cochlear nerve and the temporal lobe surface absorb the radiofrequency energy. AIM: literature review on the influence of cellular phones on hearing and balance. STUDY DESIGN: systematic

  4. Clinical classification and pathological findings of vestibular schwannoma requiring surgical therapy after stereotactic radiosurgery

    The present study investigated imaging, intraoperative and pathological findings, and surgical indications and timing in 10 patients [5 men, 5 women; mean age, 52.3 years (range, 17-70 years)] with vestibular schwannoma who underwent surgical therapy due to poor radiotherapy-mediated tumor control; these included Gamma Knife (n=8), X-Knife (n=1) and proton beam (n=1) therapies. The mean period from radiotherapy endpoint until surgery was 63.3 months (range, 30-96 months) and patients were classified according to the time elapsed between radiotherapy and surgical therapy [≥2 to <5 years (n=4); ≥5 to <8 years (n=4); or ≥8 years (n=2)]. Surgical indications were classified into two groups: exacerbated or additional neurological symptoms caused by solid tumor component enlargement (n=2); and exacerbated or additional neurological symptoms with extraparenchymal extension of the tumor cyst (n=8). Imaging findings were classified as large cystic (LC; n=8), multi-micro cystic (MC; n=2), or solid component enlargement (SC; n=0) types. Pathological findings revealed no malignant changes in any patient, and primary pathological conditions comprised radiotherapy-induced exacerbation of vascular occlusion and permeability. MC patients presented marked hemosiderosis and recurrent small hemorrhage was predicted. Intraoperative findings included marked adhesions with peripheral neurons and the cerebellum, as well as arachnoid thickening, rendering complete resection difficult. Decompression surgery was relatively straightforward for LC, which presents little bleeding, but it was challenging for MC due to its hemorrhagic nature. SC cases have been previously reported, but were not found in the present study, which had an inclusion criterion of ≥2 years follow-up after radiotherapy. Other than a single case that became malignant, all of the previously reported cases were within 2 years of radiotherapy and transient swelling may have been present. (author)

  5. Evaluation of Cervical Vestibular Evoked Myogenic Potentials in Patients with Migraine.

    Mehmet Tecellioğlu

    2013-12-01

    Full Text Available OBJECTIVE: : Recent studies have shown that in the pathogenesis of migraine, the brain stem may contribute via different mechanisms. Although vestibular evoked myogenic potentials (VEMP testing is mainly used in otologic diseases, it is also used in especially neurological diseases affecting the brain stem such as stroke and multipl sclerosis in the literature. Studies involving VEMP testing in patients with migraine are novel and few in number. The purpose of this study was to evaluate whether VEMP values in patients with migraine provide additional information regarding pathogenesis. METHODS: This study included 52 patients with migraine and 52 control subjects. In both patients and controls, VEMP examination was performed using click stimuli, and all responses were recorded for both portions of the sternocleidomastoid muscle. Latency, amplitude, and threshold values of the p1–n1 wave were compared between the two groups. RESULTS: The amplitude of the left p1 was 4.47±3.52 µv in patients and 6.15±4.79 µv in the controls, and the difference was statistically significant (p: 0.044. On the left, the average difference in the p1–n1 amplitude was 9.04±6.13 µv in patients and 12.03±7.79 µv in the controls; this difference was also statistically significant (p: 0.032. CONCLUSION: The available studies on the pathophysiology of migraine show that the brain stem is particularly affected at the upper part. However, VEMP testing is mainly a technique for assessment of neuronal pathway starting from the saccula-macula and finishing at the sternocleidomastoid muscle in the lower brain stem. In this study, the only significant differences in amplitude were found in left-p1 and p1-n1. The results of our study show that in patients with migraine, neuroanatomical structures in the lower brain stem can be asymmetrically affected.

  6. Premotor neurons encode torsional eye velocity during smooth-pursuit eye movements

    Angelaki, Dora E.; Dickman, J. David

    2003-01-01

    Responses to horizontal and vertical ocular pursuit and head and body rotation in multiple planes were recorded in eye movement-sensitive neurons in the rostral vestibular nuclei (VN) of two rhesus monkeys. When tested during pursuit through primary eye position, the majority of the cells preferred either horizontal or vertical target motion. During pursuit of targets that moved horizontally at different vertical eccentricities or vertically at different horizontal eccentricities, eye angular velocity has been shown to include a torsional component the amplitude of which is proportional to half the gaze angle ("half-angle rule" of Listing's law). Approximately half of the neurons, the majority of which were characterized as "vertical" during pursuit through primary position, exhibited significant changes in their response gain and/or phase as a function of gaze eccentricity during pursuit, as if they were also sensitive to torsional eye velocity. Multiple linear regression analysis revealed a significant contribution of torsional eye movement sensitivity to the responsiveness of the cells. These findings suggest that many VN neurons encode three-dimensional angular velocity, rather than the two-dimensional derivative of eye position, during smooth-pursuit eye movements. Although no clear clustering of pursuit preferred-direction vectors along the semicircular canal axes was observed, the sensitivity of VN neurons to torsional eye movements might reflect a preservation of similar premotor coding of visual and vestibular-driven slow eye movements for both lateral-eyed and foveate species.

  7. Influence of combined visual and vestibular cues on human perception and control of horizontal rotation

    Zacharias, G. L.; Young, L. R.

    1981-01-01

    Measurements are made of manual control performance in the closed-loop task of nulling perceived self-rotation velocity about an earth-vertical axis. Self-velocity estimation is modeled as a function of the simultaneous presentation of vestibular and peripheral visual field motion cues. Based on measured low-frequency operator behavior in three visual field environments, a parallel channel linear model is proposed which has separate visual and vestibular pathways summing in a complementary manner. A dual-input describing function analysis supports the complementary model; vestibular cues dominate sensation at higher frequencies. The describing function model is extended by the proposal of a nonlinear cue conflict model, in which cue weighting depends on the level of agreement between visual and vestibular cues.

  8. [Galvanic vestibular stimulation in physiological and clinical studies in recent years].

    Stolbkov, Iu K; Tomilovskaia, E S; Kozlovskaia, I B; Gerasimenko, Iu P

    2014-01-01

    Galvanic vestibular stimulation is a simple, harmless, noninvasive and low-cost research technique. In spite on a long history, it has been recently found popularity as a research tool. At present occurs of its revival as a research and diagnostic tool. Considerable effects of such stimulation for motor, visual, somatosensory, vestibular and cognitive/emotional function as well as for a range of neurological and psychiatric disorders have been reported. Obviously, any process that is able to extract an information due to head acceleration signals is a candidate on galvanic vestibular stimulation. In this review, we describe the basic physiological mechanisms of action of galvanic vestibular stimulation. We also consider a modern data of its influence on human, obtained in physiological and clinical studies. PMID:25707264

  9. Angiogenesis in vestibular schwannomas: expression of extracellular matrix factors MMP-2, MMP-9, and TIMP-1

    Møller, Martin Nue; Werther, Kim; Nalla, Amarnadh;

    2010-01-01

    Vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs) are potent mediators of tumor angiogenesis. It has been demonstrated that vestibular schwannoma VEGF expression correlates with tumor growth pattern, whereas knowledge on the expression of MMPs is lacking. This study...

  10. Four-pole galvanic vestibular stimulation causes body sway about three axes

    Aoyama, Kazuma; Iizuka, Hiroyuki; Ando, Hideyuki; Maeda, Taro

    2015-01-01

    Galvanic vestibular stimulation (GVS) can be applied to induce the feeling of directional virtual head motion by stimulating the vestibular organs electrically. Conventional studies used a two-pole GVS, in which electrodes are placed behind each ear, or a three-pole GVS, in which an additional electrode is placed on the forehead. These stimulation methods can be used to induce virtual head roll and pitch motions when a subject is looking upright. Here, we proved our hypothesis that there are ...

  11. Short and long-term postural learning to withstand galvanic vestibular perturbations.

    Tjernström, Fredrik; Bagheri, Ali; Fransson, Per-Anders; Magnusson, Måns

    2010-01-01

    We investigated changes of postural responses to repeated bipolar galvanic vestibular stimulation on 5 consecutive days and once again after 3 months. Subjects consisted of 21 healthy volunteers. Except for the first day did the induced torque variance in response to galvanic vestibular stimulation not decrease {within} each test session, but there was a major reduction {from day to day} (p< 0.001) reflecting a continued processing of the postural experience gained during the stimulation. ...

  12. Comparison of Postural Responses to Galvanic Vestibular Stimulation between Pilots and the General Populace

    Yang Yang; Fang Pu; Xiaoning Lv; Shuyu Li; Jing Li; Deyu Li; Minggao Li; Yubo Fan

    2015-01-01

    Galvanic vestibular stimulation (GVS) can be used to study the body's response to vestibular stimuli. This study aimed to investigate whether postural responses to GVS were different between pilots and the general populace. Bilateral bipolar GVS was applied with a constant-current profile to 12 pilots and 12 control subjects via two electrodes placed over the mastoid processes. Both GVS threshold and the center of pressure's trajectory (COP's trajectory) were measured. Position variability of...

  13. Improvement of a face perception deficit via sub-sensory galvanic vestibular stimulation

    Wilkinson, David T.; Ko, Philip; Kilduff, Patrick; McGlinchey, Regina; Milberg, William P.

    2005-01-01

    The remediative effect of galvanic vestibular stimulation (GVS) was investigated in a patient who, following right hemisphere damage, is profoundly unable to recognize faces. We administered a two-alternative forced choice match-to-sample task in which the patient had to choose which of two faces matched a sample face presented directly above, while bipolar, transcutaneous Current was applied to the left and right Vestibular nerves at a level below the patient's sensory threshold. Performance...

  14. Effects of Vestibular Prosthesis Electrode Implantation and Stimulation on Hearing in Rhesus Monkeys

    Dai, Chenkai; Fridman, Gene Y.; Della Santina, Charles C.

    2010-01-01

    To investigate the effects of vestibular prosthesis electrode implantation and activation on hearing in rhesus monkeys, we measured auditory brainstem responses (ABR) and distortion product otoacoustic emissions (DPOAE) in four rhesus monkeys before and after unilateral implantation of vestibular prosthesis electrodes in each of 3 left semicircular canals (SCC). Each of the 3 left SCCs were implanted with electrodes via a transmastoid approach. Right ears, which served as controls, were not s...

  15. [Research advances in molecular mechanisms underlying the different biological behaviors of vestibular schwannoma].

    Wang, Z Y; Yang, J; Wu, H

    2016-06-01

    Current treatment options of vestibular schwannomas should not be limited to conventional surgery because of the variability of tumor growth. Recent studies of vestibular schwannomas suggested that the development of the tumor tended to depend on the shuttle between the nucleus and cytoplasm, and the expression patterns of merlin protein. New drug targets for schwannoma therapies might be identified through future in-depth investigations of the function of merlin, thus contributing to tumor control. PMID:27345892

  16. Use of Virtual Reality Tools for Vestibular Disorders Rehabilitation: A Comprehensive Analysis

    Mathieu Bergeron; Lortie, Catherine L.; Guitton, Matthieu J.

    2015-01-01

    Classical peripheral vestibular disorders rehabilitation is a long and costly process. While virtual reality settings have been repeatedly suggested to represent possible tools to help the rehabilitation process, no systematic study had been conducted so far. We systematically reviewed the current literature to analyze the published protocols documenting the use of virtual reality settings for peripheral vestibular disorders rehabilitation. There is an important diversity of settings and prot...

  17. Change in hearing during 'wait and scan' management of patients with vestibular schwannoma

    Stangerup, Sven-Eric; Caye-Thomasen, P.; Tos, M.;

    2008-01-01

    Aim: To evaluate hearing changes during 'wait and scan' management of patients with vestibular schwannoma. Subjects: Over a 10-year period, 636 patients have prospectively been allocated to 'wait and scan' management, with annual magnetic resonance scanning and audiological examination. Results...... surgery and of radiation therapy with those of 'wait and scan' management, it appears that, in vestibular schwannoma patients with a small tumour and normal speech discrimination, the main indication for active treatment should be established tumour growth Udgivelsesdato: 2008/7...

  18. Need for facial reanimation after operations for vestibular schwannoma: patients perspective

    Tos, Tina; Caye-Thomasen, Per; Stangerup, Sven-Eric;

    2003-01-01

    A total of 779 patients operated on for vestibular schwannoma mostly by the translabyrinthine approach in Denmark during the period 1976-2000 answered a questionnaire about various postoperative consequences. In this paper we describe the patients' facial function evaluated by professionals one...... in Denmark. In conclusion, there seem to be a considerable and unmet need for surgical reanimation of facial function in patients with facial palsy after operations for vestibular schwannoma in Denmark....

  19. Late malignant transformation of vestibular schwannoma in the absence of irradiation

    Bashir, Asma; Poulsgaard, Lars; Broholm, Helle;

    2016-01-01

    Late malignant transformation of vestibular schwannoma (VS) following irradiation has previously been reported 29 times in the literature. Here, the authors report the first late malignant transformation of VS unrelated to neurofibromatosis or radiation exposure. After undergoing a near-total exc......Late malignant transformation of vestibular schwannoma (VS) following irradiation has previously been reported 29 times in the literature. Here, the authors report the first late malignant transformation of VS unrelated to neurofibromatosis or radiation exposure. After undergoing a near...

  20. Effects of high intensity noise on the vestibular system in rats.

    Stewart, Courtney; Yu, Yue; Huang, Jun; Maklad, Adel; Tang, Xuehui; Allison, Jerome; Mustain, William; Zhou, Wu; Zhu, Hong

    2016-05-01

    Some individuals with noise-induced hearing loss (NIHL) also report balance problems. These accompanying vestibular complaints are not well understood. The present study used a rat model to examine the effects of noise exposure on the vestibular system. Rats were exposed to continuous broadband white noise (0-24 kHz) at an intensity of 116 dB sound pressure level (SPL) via insert ear phones in one ear for three hours under isoflurane anesthesia. Seven days after the exposure, a significant increase in ABR threshold (43.3 ± 1.9 dB) was observed in the noise-exposed ears, indicating hearing loss. Effects of noise exposure on vestibular function were assessed by three approaches. First, fluorescein-conjugated phalloidin staining was used to assess vestibular stereocilia following noise exposure. This analysis revealed substantial sensory stereocilia bundle loss in the saccular and utricular maculae as well as in the anterior and horizontal semicircular canal cristae, but not in the posterior semicircular canal cristae. Second, single unit recording of vestibular afferent activity was performed under pentobarbital anesthesia. A total of 548 afferents were recorded from 10 noise-treated rats and 12 control rats. Noise exposure produced a moderate reduction in baseline firing rates of regular otolith afferents and anterior semicircular canal afferents. Also a moderate change was noted in the gain and phase of the horizontal and anterior semicircular canal afferent's response to sinusoidal head rotation (1 and 2 Hz, 45°/s peak velocity). Third, noise exposure did not result in significant changes in gain or phase of the horizontal rotational and translational vestibulo-ocular reflex (VOR). These results suggest that noise exposure not only causes hearing loss, but also causes substantial damage in the peripheral vestibular system in the absence of immediate clinically measurable vestibular signs. These peripheral deficits, however, may lead to vestibular disorders

  1. Menstrual cycle elicits divergent forearm vascular responses to vestibular activation in humans

    Lawrence, Johnathan E.; Klein, Jenna C.; Carter, Jason R.

    2009-01-01

    The menstrual cycle has been reported to alter mean arterial pressure (MAP), but not muscle sympathetic nerve activity (MSNA), during vestibular activation. Specifically, MAP responses to head-down rotation (HDR) are augmented during the midluteal (ML) phase compared to the early follicular (EF) phase in young, eumenorrheic women. The purpose of the present study was to determine if the menstrual cycle influences vestibular-mediated changes in limb blood flow. MSNA, MAP, heart rate, and limb ...

  2. Need for facial reanimation after operations for vestibular schwannoma: patients perspective

    Tos, Tina; Caye-Thomasen, Per; Stangerup, Sven-Eric; Thomsen, Jens; Tos, Mirko

    2003-01-01

    A total of 779 patients operated on for vestibular schwannoma mostly by the translabyrinthine approach in Denmark during the period 1976-2000 answered a questionnaire about various postoperative consequences. In this paper we describe the patients' facial function evaluated by professionals one...... Denmark. In conclusion, there seem to be a considerable and unmet need for surgical reanimation of facial function in patients with facial palsy after operations for vestibular schwannoma in Denmark....

  3. A meta-analysis of treatment of vestibular schwannoma using Gamma Knife radiosurgery

    Rykaczewski, Bartosz; Zabek, Miroslaw

    2014-01-01

    Aim of the study One of the alternative methods of surgical treatment of vestibular schwannoma is Gamma Knife radiosurgery. The purpose of this metaanalysis was to analyze the progress in treatment of vestibular schwannoma using Gamma Knife radiosurgery based on data in the literature of the last five years. Material and methods In the collected English-language literature from the years 2007–2011, contained in 20 scientific journals, clinical articles of many years study at a single center w...

  4. MS-25GAMMA KNIFE RADIOSURGERY FOR VESTIBULAR SCHWANNOMA: ASSESSMENT OF QUALITY AND OUTCOMES

    Straza, Michael; Garcia, Guilherme; Hariri, Benjamin; Patel, Ruchin; Albano, Katherine; Schultz, Christopher; Friedland, David; Bovi, Joseph

    2014-01-01

    OBJECTIVE: To assess and improve quality and outcomes for vestibular schwannoma cases treated with Gamma Knife radiosurgery and determine if a novel assessment of tumor and necrosis volumes correlate with outcomes. METHODS: We performed a retrospective review assessing patients with vestibular schwannoma treated with 12-13Gy from July 2009 to July 2013. A volumetric analysis was performed on a subset of patients. Pre-treatment and follow up MRIs were imported into a medical imaging software (...

  5. Anxiety and depressive disorders in elderly with chronic dizziness of vestibular origin

    Érica Toledo Piza Peluso; Maria Inês Quintana; Fernando Freitas Ganança

    2016-01-01

    ABSTRACT INTRODUCTION: Dizziness is one of the most prevalent symptoms in the elderly. Anxiety and depression are common in dizzy adult patients, but there is scarce information about comorbidity between vestibular disturbances and psychiatric disorders in the aged. OBJECTIVE: To assess the prevalence of anxiety and depression disorders in elderly with chronic dizziness of vestibular origin. METHODS: Transversal study that used the Brazilian version of the Composite International Diagnosti...

  6. Visuo-spatial memory enhancement by galvanic vestibular stimulation: A preliminary report

    Fatemehsadat Ghaheri

    2014-04-01

    Full Text Available Background and Aim: Navigation information is processed and stored in different brain areas such as hippocampus. Since multiple pathways has been reported between vestibular nuclei and hippocampus and also cognitive dysfunction specifically in spatial memory is induced by vestibular deficits, it can be assumed that vestibular system stimulation ameliorates spatial memory. The aim of study was to evaluate the effect of galvanic vestibular stimulation on normal individual’s spatial memory.Methods: In this experimental-interventional study, sixty 18-30-years-old women were randomly allocated in intervention and control groups. Intervention group undergone subthreshold bilateral bipolar galvanic vestibular stimulation and control group received sham stimulation. Stimulation was presented for 15 minutes. Corsi Block Tapping (CBT test scores were compared before and after subthreshold bipolar galvanic vestibular stimulation exposure or no stimulation in each group and between groups.Results: All test parameters were the same in both groups before stimulation (p<0.050. There were significant improvement in block span, total score and learning score in intervention group after galvanic vestibular stimulation (p<0.050, no significant difference in delayed score (p=0.600. Learning score was improved (p=0.003 and delayed score was deteriorated (p=0.010 in control group. Percentages of block span and total score in intervention group were significantly different compared to the other group (p<0.050.Conclusion: Galvanic vestibular stimulation improves short-term and long-term spatial memory. This test may inherently have learning effect that is not influenced by stimulation.

  7. Human Vestibular Function, Rotating Litter Chair - Skylab Experiment M131

    1970-01-01

    This 1970 photograph shows the Rotating Litter Chair, a major component of Skylab's Human Vestibular Function experiment (M131). The experiment was a set of medical studies designed to determine the effect of long-duration space missions on astronauts' coordination abilities. The M131 experiment tested the astronauts susceptibility to motion sickness in the Skylab environment, acquired data fundamental to an understanding of the functions of human gravity reception under prolonged absence of gravity, and tested for changes in the sensitivity of the semicircular canals. Data from this experiment was collected before, during, and after flight. The Marshall Space Flight Center had program management responsibility for the development of Skylab hardware and experiments.

  8. Vestibular Schwannoma Presenting as Oral Dysgeusia: An Easily Missed Diagnosis.

    Brown, Emma; Staines, Konrad

    2016-01-01

    We present a case of a fifty-year-old male patient who was referred to the Oral Medicine Department with a complaint of a salty taste. History taking subsequently revealed that the patient was also experiencing intermittent numbness of his left lower lip, tinnitus, and a feeling of fullness in the left ear. Magnetic resonance imaging was performed which revealed a large vestibular schwannoma affecting the left vestibulocochlear nerve, which was treated surgically. This case shows the importance of taking a detailed history in a patient presenting with an initial complaint of oral dysgeusia. It also highlights the possibility of significant underlying pathology, presenting with initial low level, nonspecific complaints such as an altered taste, and the rationale for imaging patients who report unilateral facial hypoesthesia. PMID:27022490

  9. Vestibular Schwannoma Presenting as Oral Dysgeusia: An Easily Missed Diagnosis

    Emma Brown

    2016-01-01

    Full Text Available We present a case of a fifty-year-old male patient who was referred to the Oral Medicine Department with a complaint of a salty taste. History taking subsequently revealed that the patient was also experiencing intermittent numbness of his left lower lip, tinnitus, and a feeling of fullness in the left ear. Magnetic resonance imaging was performed which revealed a large vestibular schwannoma affecting the left vestibulocochlear nerve, which was treated surgically. This case shows the importance of taking a detailed history in a patient presenting with an initial complaint of oral dysgeusia. It also highlights the possibility of significant underlying pathology, presenting with initial low level, nonspecific complaints such as an altered taste, and the rationale for imaging patients who report unilateral facial hypoesthesia.

  10. Vestibular Schwannoma Presenting as Oral Dysgeusia: An Easily Missed Diagnosis

    Staines, Konrad

    2016-01-01

    We present a case of a fifty-year-old male patient who was referred to the Oral Medicine Department with a complaint of a salty taste. History taking subsequently revealed that the patient was also experiencing intermittent numbness of his left lower lip, tinnitus, and a feeling of fullness in the left ear. Magnetic resonance imaging was performed which revealed a large vestibular schwannoma affecting the left vestibulocochlear nerve, which was treated surgically. This case shows the importance of taking a detailed history in a patient presenting with an initial complaint of oral dysgeusia. It also highlights the possibility of significant underlying pathology, presenting with initial low level, nonspecific complaints such as an altered taste, and the rationale for imaging patients who report unilateral facial hypoesthesia. PMID:27022490

  11. Quantitative Proteomics of Vestibular Schwannoma Cerebrospinal Fluid: A Pilot Study.

    Kazemizadeh Gol, Mohammad Abraham; Lund, Troy C; Levine, Samuel C; Adams, Meredith E

    2016-05-01

    This pilot study aimed to identify candidate proteins for future study that are differentially expressed in vestibular schwannoma (VS) cerebrospinal fluid (CSF) and to compare such proteins with those previously identified in perilymph and specimen secretions. CSF was collected intraoperatively prior to removal of untreated sporadic VS (3 translabyrinthine, 3 middle cranial fossa approaches) and compared with reference CSF samples. After proteolytic digestion and iTRAQ labeling, tandem mass spectrometry with ProteinPilot was used to identify candidate proteins. Of the 237 proteins detected, 13 were dysregulated in ≥3 of the 6 VS patients versus controls, and 13 were dysregulated (12 up, 1 down) in samples from patients with class D versus class B hearing. Four perilymph proteins of interest were dysregulated in ≥1 VS CSF samples. Thus, 26 candidate VS CSF biomarkers were identified that should be considered in future VS biomarker and tumor pathophysiology investigations. PMID:26932958

  12. What can posturography tell us about vestibular function?

    Black, F O

    2001-10-01

    Patients with balance disorders want answers to the following basic questions: (1) What is causing my problem? and (2) What can be done about my problem? Information to fully answer these questions must include status of both sensory and motor components of the balance control systems. Computerized dynamic posturography (CDP) provides quantitative assessment of both sensory and motor components of postural control along with how the sensory inputs to the brain interact. This paper reviews the scientific basis and clinical applications of CDP. Specifically, studies describing the integration of vestibular inputs with other sensory systems for postural control are briefly summarized. Clinical applications, including assessment, rehabilitation, and management are presented. Effects of aging on postural control along with prevention and management strategies are discussed. PMID:11710483

  13. Calcification of vestibular schwannoma: a case report and literature review

    Zhang Yang

    2012-10-01

    Full Text Available Abstract Calcification rarely occurs in vestibular schwannoma (VS, and only seven cases of calcified VS have been reported in the literature. Here, we report a 48-year-old man with VS, who had a history of progressive left-sided hearing loss for 3 years. Neurological examination revealed that he had left-sided hearing loss and left cerebellar ataxia. Magnetic resonance imaging and computerized tomography angiography showed a mass with calcification in the left cerebellopontine angle (CPA. The tumor was successfully removed via suboccipital craniotomy, and postoperative histopathology showed that the tumor was a schwannoma. We reviewed seven cases of calcified VS that were previously reported in the literature, and we analyzed and summarized the characteristics of these tumors, including the calcification, texture, and blood supply. We conclude that calcification in VS is associated with its texture and blood supply, and these characteristics affect the surgical removal of the tumor.

  14. Vestibular Function Research (VFR) experiment. Phase B: Design definition study

    1978-01-01

    The Vestibular Functions Research (VFR) Experiment was established to investigate the neurosensory and related physiological processes believed to be associated with the space flight nausea syndrome and to develop logical means for its prediction, prevention and treatment. The VFR Project consists of ground and spaceflight experimentation using frogs as specimens. The phase B Preliminary Design Study provided for the preliminary design of the experiment hardware, preparation of performance and hardware specification and a Phase C/D development plan, establishment of STS (Space Transportation System) interfaces and mission operations, and the study of a variety of hardware, experiment and mission options. The study consist of three major tasks: (1) mission mode trade-off; (2) conceptual design; and (3) preliminary design.

  15. Reabilitação vestibular: utilidade clínica em pacientes com esclerose múltipla Vestibular rehabilitation: clinical benefits to patients with multiple sclerosis

    Bianca Simone Zeigelboim; Karlin Fabianne Klagenberg; Paulo Breno Noronha Liberalesso

    2010-01-01

    O objetivo desse estudo foi analisar a eficácia do exercício de reabilitação vestibular em dois casos de esclerose múltipla remitente-recorrente. Ambos os casos foram encaminhados do Hospital de Clínicas para o Laboratório de Otoneurologia de uma instituição de ensino e foram submetidos aos seguintes procedimentos: anamnese, inspeção otológica, avaliação vestibular e aplicação do Dizziness Handicap Inventory pré e pós reabilitação vestibular utilizando-se o protocolo de Cawthorne e Cooksey. N...

  16. Vestibular and Non-vestibular Contributions to Eye Movements that Compensate for Head Rotations during Viewing of Near Targets

    Han, Yanning H.; Kumar, Arun N.; Reschke, Millard F.; Somers, Jeffrey T.; Dell'Osso, Louis F.; Leigh, R. John

    2004-01-01

    We studied horizontal eye movements induced by en-bloc yaw rotation, over a frequency range 0.2 - 2.8 Hz, in 10 normal human subjects as th ey monocularly viewed a target located at their near point of focus. We measured gain and phase relationships between eye-in-head velocity and head velocity when the near target was either earth-fixed or head-fixed. During viewing of the earth-fixed near target,median gain was 1.49 (range 1.24 - 1.87) at 0.2 Hz for the group of subjects, but decl ined at higher frequencies, so that at 2.8 Hz median gain was 1.08 (r ange 0.68 - 1.67). During viewing of the head-fixed near target, median gain was 0.03 (range 0.01 - 0.10) at 0.2 Hz for the group of subjec ts, but increased at higher frequencies, so that at 2.8 Hz median gai n was 0.71 (range 0.28 - 0.94). We estimated the vestibular contribution to these responses (vestibulo-ocular reflex gain, Gvor) by applyin g transient head perturbations (peak acceleration> 1,000 deg's(exp 2) ) during sinusoidal rotation under the two viewing conditions. Median Gvor, estimated 0.053 ) at all test frequencies. Since Gvor accounted for only approximately 73% of the overall response gain during viewing of the earth-fixed target, we investigated the relative contributions of non-vestibular factors. When subjects viewed the earth-fixed target under strobe illumination , to eliminate retinal image slip information, the gain of compensato ry eye movements declined compared with viewing in ambient room light . During sum-of-sine head rotations, while viewing the earth-fixed target, to minimize contributions from predictive mechanisms, gain also declined Nonetheless, simple superposition of smooth-pursuit tracking of sinusoidal target motion could not fully account for the overall r esponse at higher frequencies, suggesting other non-vestibular contributions. During binocular viewing conditions when vergence angle was s ignificantly greater than monocular viewing (p < 0.001), this gain of compensatory

  17. Dissociating vestibular and somatosensory contributions to spatial orientation.

    Alberts, Bart B G T; Selen, Luc P J; Bertolini, Giovanni; Straumann, Dominik; Medendorp, W Pieter; Tarnutzer, Alexander A

    2016-07-01

    Inferring object orientation in the surroundings heavily depends on our internal sense of direction of gravity. Previous research showed that this sense is based on the integration of multiple information sources, including visual, vestibular (otolithic), and somatosensory signals. The individual noise characteristics and contributions of these sensors can be studied using spatial orientation tasks, such as the subjective visual vertical (SVV) task. A recent study reported that patients with complete bilateral vestibular loss perform similar as healthy controls on these tasks, from which it was conjectured that the noise levels of both otoliths and body somatosensors are roll-tilt dependent. Here, we tested this hypothesis in 10 healthy human subjects by roll tilting the head relative to the body to dissociate tilt-angle dependencies of otolith and somatosensory noise. Using a psychometric approach, we measured the perceived orientation, and its variability, of a briefly flashed line relative to the gravitational vertical (SVV). Measurements were taken at multiple body-in-space orientations (-90 to 90°, steps of 30°) and head-on-body roll tilts (30° left ear down, aligned, 30° right ear down). Results showed that verticality perception is processed in a head-in-space reference frame, with a systematic SVV error that increased with larger head-in-space orientations. Variability patterns indicated a larger contribution of the otolith organs around upright and a more substantial contribution of the body somatosensors at larger body-in-space roll tilts. Simulations show that these findings are consistent with a statistical model that involves tilt-dependent noise levels of both otolith and somatosensory signals, confirming dynamic shifts in the weights of sensory inputs with tilt angle. PMID:27075537

  18. Fractionated Stereotactic Radiotherapy of Vestibular Schwannomas Accelerates Hearing Loss

    Rasmussen, Rune, E-mail: rune333@gmail.com [Department of Neurosurgery, Rigshospitalet, Copenhagen (Denmark); Claesson, Magnus [Department of Neurosurgery, Rigshospitalet, Copenhagen (Denmark); Stangerup, Sven-Eric [Ear, Nose, and Throat Department, Rigshospitalet, Copenhagen (Denmark); Roed, Henrik [Department of Radiation Oncology, Rigshospitalet, Copenhagen (Denmark); Christensen, Ib Jarle [Finsen Laboratory, Rigshospitalet, Copenhagen (Denmark); Caye-Thomasen, Per [Ear, Nose, and Throat Department, Rigshospitalet, Copenhagen (Denmark); Juhler, Marianne [Department of Neurosurgery, Rigshospitalet, Copenhagen (Denmark)

    2012-08-01

    Objective: To evaluate long-term tumor control and hearing preservation rates in patients with vestibular schwannoma treated with fractionated stereotactic radiotherapy (FSRT), comparing hearing preservation rates to an untreated control group. The relationship between radiation dose to the cochlea and hearing preservation was also investigated. Methods and Materials: Forty-two patients receiving FSRT between 1997 and 2008 with a minimum follow-up of 2 years were included. All patients received 54 Gy in 27-30 fractions during 5.5-6.0 weeks. Clinical and audiometry data were collected prospectively. From a 'wait-and-scan' group, 409 patients were selected as control subjects, matched by initial audiometric parameters. Radiation dose to the cochlea was measured using the original treatment plan and then related to changes in acoustic parameters. Results: Actuarial 2-, 4-, and 10-year tumor control rates were 100%, 91.5%, and 85.0%, respectively. Twenty-one patients had serviceable hearing before FSRT, 8 of whom (38%) retained serviceable hearing at 2 years after FSRT. No patients retained serviceable hearing after 10 years. At 2 years, hearing preservation rates in the control group were 1.8 times higher compared with the group receiving FSRT (P=.007). Radiation dose to the cochlea was significantly correlated to deterioration of the speech reception threshold (P=.03) but not to discrimination loss. Conclusion: FSRT accelerates the naturally occurring hearing loss in patients with vestibular schwannoma. Our findings, using fractionation of radiotherapy, parallel results using single-dose radiation. The radiation dose to the cochlea is correlated to hearing loss measured as the speech reception threshold.

  19. Fractionated Stereotactic Radiotherapy of Vestibular Schwannomas Accelerates Hearing Loss

    Objective: To evaluate long-term tumor control and hearing preservation rates in patients with vestibular schwannoma treated with fractionated stereotactic radiotherapy (FSRT), comparing hearing preservation rates to an untreated control group. The relationship between radiation dose to the cochlea and hearing preservation was also investigated. Methods and Materials: Forty-two patients receiving FSRT between 1997 and 2008 with a minimum follow-up of 2 years were included. All patients received 54 Gy in 27-30 fractions during 5.5-6.0 weeks. Clinical and audiometry data were collected prospectively. From a “wait-and-scan” group, 409 patients were selected as control subjects, matched by initial audiometric parameters. Radiation dose to the cochlea was measured using the original treatment plan and then related to changes in acoustic parameters. Results: Actuarial 2-, 4-, and 10-year tumor control rates were 100%, 91.5%, and 85.0%, respectively. Twenty-one patients had serviceable hearing before FSRT, 8 of whom (38%) retained serviceable hearing at 2 years after FSRT. No patients retained serviceable hearing after 10 years. At 2 years, hearing preservation rates in the control group were 1.8 times higher compared with the group receiving FSRT (P=.007). Radiation dose to the cochlea was significantly correlated to deterioration of the speech reception threshold (P=.03) but not to discrimination loss. Conclusion: FSRT accelerates the naturally occurring hearing loss in patients with vestibular schwannoma. Our findings, using fractionation of radiotherapy, parallel results using single-dose radiation. The radiation dose to the cochlea is correlated to hearing loss measured as the speech reception threshold.

  20. Vestibular impairment in Charcot-Marie-Tooth disease type 4C.

    Pérez-Garrigues, Herminio; Sivera, Rafael; Vílchez, Juan Jesús; Espinós, Carmen; Palau, Francesc; Sevilla, Teresa

    2014-07-01

    Charcot-Marie-Tooth disease type 4C (CMT4C) is a hereditary neuropathy with prominent unsteadiness. The objective of the current study is to determine whether the imbalance in CMT4C is caused only by reduced proprioceptive input or if vestibular nerve involvement is an additional factor. We selected 10 CMT4C patients and 10 age-matched and sex-matched controls. We performed a comprehensive evaluation of the vestibular system, including video Head Impulse Test, bithermal caloric test, galvanic stimulation test and skull vibration-induced nystagmus test. None of the patients experienced dizziness, spontaneous or gaze-evoked nystagmus, but all had significant vestibular impairment when tested when compared to controls. Seven had completely unexcitable vestibular systems and abnormal vestibuloocular reflex. There was no correlation between the degree of vestibulopathy and age or clinical severity. Significant vestibular impairment is a consistent finding in CMT4C and is present early in disease evolution. The profound imbalance that is so disabling in these patients may result from a combination of proprioceptive loss and vestibular neuropathy, and this would modify the recommended rehabilitation strategies. PMID:24614092

  1. Gamma Knife radiosurgery for vestibular schwannoma: case report and review of the literature

    Fairbanks Robert K

    2009-12-01

    Full Text Available Abstract Vestibular schwannomas, also called acoustic neuromas, are benign tumors of the vestibulocochlear nerve. Patients with these tumours almost always present with signs of hearing loss, and many also experience tinnitus, vertigo, and equilibrium problems. Following diagnosis with contrast enhanced MRI, patients may choose to observe the tumour with subsequent scans or seek active treatment in the form of microsurgery, radiosurgery, or radiotherapy. Unfortunately, definitive guidelines for treating vestibular schwannomas are lacking, because of insufficient evidence comparing the outcomes of therapeutic modalities. We present a contemporary case report, describing the finding of a vestibular schwannoma in a patient who presented with dizziness and a "clicking" sensation in the ear, but no hearing deficit. Audible clicking is a symptom that, to our knowledge, has not been associated with vestibular schwannoma in the literature. We discuss the diagnosis and patient's decision-making process, which led to treatment with Gamma Knife radiosurgery. Treatment resulted in an excellent radiographic response and complete hearing preservation. This case highlights an atypical presentation of vestibular schwannoma, associated with audible "clicks" and normal hearing. We also provide a concise review of the available literature on modern vestibular schwannoma treatment, which may be useful in guiding treatment decisions.

  2. Long-term socio-economic impact of vestibular schwannoma for patients under observation and after surgery

    Tos, Tina; Caye-Thomasen, Per; Stangerup, Sven-Eric;

    2003-01-01

    This study describes and compares the long-term socio-economic impact for patients diagnosed with a vestibular schwannoma and either operated on or observed. A consecutive sample of patients diagnosed with vestibular schwannoma in Denmark and either operated on (748 patients) or observed...... on and observed for vestibular schwannoma. However, the negative changes were more frequent among the operated patients, although the differences were surprisingly modest, especially when comparing observed patients with patients operated on for a small tumour....

  3. Reaching with the sixth sense: Vestibular contributions to voluntary motor control in the human right parietal cortex

    Reichenbach, Alexandra; Bresciani, Jean-Pierre; Heinrich H Bülthoff; Thielscher, Axel

    2016-01-01

    The vestibular system constitutes the silent sixth sense: It automatically triggers a variety of vital reflexes to maintain postural and visual stability. Beyond their role in reflexive behavior, vestibular afferents contribute to several perceptual and cognitive functions and also support voluntary control of movements by complementing the other senses to accomplish the movement goal. Investigations into the neural correlates of vestibular contribution to voluntary action in humans are chall...

  4. Betahistine in the treatment of tinnitus in patients with vestibular disorders Betaistina no tratamento do zumbido em pacientes com distúrbios vestibulares

    Maurício Malavasi Ganança

    2011-08-01

    Full Text Available Betahistine is a medicine used to treat vestibular disorders that has also been used to treat tinnitus. AIM: To assess the effects of betahistine on tinnitus in patients with vestibular disorders. MATERIAL AND METHOD: Retrospective data were collected from patient records for individuals presenting with vestibular dysfunction and tinnitus. Patients included had received betahistine 48 mg/day and clinical outcomes were compared with a control group comprising individuals who were unable to receive betahistine due to gastritis, ulcers, pregnancy, asthma or hypersensitivity to the drug. Patients underwent control of any aggravating factors and also standard vestibular exercises as a basis for treatment. The intensity, frequency and duration of tinnitus were assessed on the first day of dosing and after 120 days of treatment. Clinical improvement was defined as a total or partial reduction of tinnitus after treatment. RESULTS: Clinical improvement was observed in 80/262 (30. 5% of patients treated with betahistine and 43/252 (17. 1% of control patients. Betahistine significantly (pA betaistina é um medicamento utilizado no tratamento de distúrbios da função vestibular, que também tem sido utilizado para tratar o zumbido. OBJETIVO: Avaliar o efeito da betaistina sobre o zumbido de pacientes com distúrbios vestibulares. MATERIAL E MÉTODO: Foram coletados dados retrospectivos de pacientes com vestibulopatia e zumbido. Os pacientes incluídos receberam 48 mg/dia de betaistina ao dia e os resultados clínicos foram comparados com os de um grupo controle, que incluiu indivíduos impossibilitados de receber betaistina devido à gastrite, úlceras, gravidez, asma ou hipersensibilidade ao medicamento. Os pacientes realizaram controle de fatores agravantes e exercícios de reabilitação vestibular, como tratamento de base para a vestibulopatia. A intensidade, frequência e duração do zumbido foram avaliadas no primeiro dia e após 120 dias de

  5. Avaliação vestibular em mulheres com disfunção temporomandibular Vestibular evaluation in women with temporomandibular dysfunction

    Bianca Simone Zeigelboim; Ari Leon Jurkiewicz; Jackeline Martins-Bassetto; Karlin Fabianne Klagenberg

    2007-01-01

    OBJETIVO: avaliar o comportamento vestibular em pacientes com disfunção temporomandibular. MÉTODOS: avaliaram-se 27 pacientes do sexo feminino, na faixa etária de 30 a 53 anos, encaminhadas do Centro de Diagnóstico e Tratamento da Articulação Temporomandibular para o Laboratório de Otoneurologia da Universidade Tuiuti do Paraná. Realizaram-se os seguintes procedimentos: anamnese, inspeção otológica e avaliação vestibular por meio da vectoeletronistagmografia. RESULTADOS: as queixas mais freqü...

  6. MORPHO-PHYSIOLOGICAL STUDY OF HYPOTHALAMIC PARAVENTRICULAR AND SUPRAOPTIC NUCLEI PROJECTIONS TO SUPERIOR VESTIBULAR NUCLEUS IN NORM AND IN CONDITIONS OF UNILATERAL LABYRINTHECTOMY

    J.S. Sarkissian

    2010-03-01

    Full Text Available We performed recording of spike activity of neurons of superior vestibular nucleus (SVN evoked on bilateral stimulation (100 Hz, 1 sec of paraventricular (PVN and supraoptic (SON nuclei of hypothalamus in norm and 17 days after unilateral labyrinthectomy (UL. Analysis and recording of impulse activity was performed by means of online software based on several histograms: perievent time, cumulative, frequency and those of averaged ones. Tetanic (TP, posttetanic (PTP potentiation and posttetanic depression (PTD were recorded in norm. PVN and SON stimulation resulted mainly in TP. Following the UL, reactions on stimulation of the same nuclei on intact side were characterized by diversity and dynamics with predominance of TP. On deafferented side, there were prevalence of PTD, tenuity of components and of reproducibility of poststimulus manifestations. The histochemical method of detection Ca2+-dependent acid phosphatase activity after UL revealed neurofibrillar changes, central chromatolysis, up to the absence of reaction in some sections.

  7. Reabilitação vestibular em idosos com Parkinson Vestibular rehabilitation in elderly patients with Parkinson

    Jackeline Martins-Bassetto; Bianca Simone Zeigelboim; Ari Leon Jurkiewicz; Angela Ribas; Marine Raquel Diniz da Rosa

    2007-01-01

    OBJETIVO: verificar a efetividade dos exercícios de reabilitação vestibular (RV) por meio de avaliação pré e pós-aplicação do questionário Dizziness Handicap Inventory (DHI) - adaptação brasileira. MÉTODOS: avaliaram-se oito pacientes (três do sexo feminino e cinco do sexo masculino), na faixa etária de 48 a 71 anos, encaminhados da Associação Paranaense de Parkinson para o Laboratório de Otoneurologia da Universidade Tuiuti do Paraná. Os pacientes foram divididos em dois grupos e submetidos ...

  8. L-citrulline immunostaining identifies nitric oxide production sites within neurons

    Martinelli, G. P. T.; Friedrich, V. L. Jr; Holstein, G. R.

    2002-01-01

    The cellular and subcellular localization of L-citrulline was analyzed in the adult rat brain and compared with that of traditional markers for the presence of nitric oxide synthase. Light, transmission electron, and confocal laser scanning microscopy were used to study tissue sections processed for immunocytochemistry employing a monoclonal antibody against L-citrulline or polyclonal anti-neuronal nitric oxide synthase sera, and double immunofluorescence to detect neuronal nitric oxide synthase and L-citrulline co-localization. The results demonstrate that the same CNS regions and cell types are labeled by neuronal nitric oxide synthase polyclonal antisera and L-citrulline monoclonal antibodies, using both immunocytochemistry and immunofluorescence. Short-term pretreatment with a nitric oxide synthase inhibitor reduces L-citrulline immunostaining, but does not affect neuronal nitric oxide synthase immunoreactivity. In the vestibular brainstem, double immunofluorescence studies show that many, but not all, neuronal nitric oxide synthase-positive cells co-express L-citrulline, and that local intracellular patches of intense L-citrulline accumulation are present in some neurons. Conversely, all L-citrulline-labeled neurons co-express neuronal nitric oxide synthase. Cells expressing neuronal nitric oxide synthase alone are interpreted as neurons with the potential to produce nitric oxide under other stimulus conditions, and the subcellular foci of enhanced L-citrulline staining are viewed as intracellular sites of nitric oxide production. This interpretation is supported by ultrastructural observations of subcellular foci with enhanced L-citrulline and/or neuronal nitric oxide synthase staining that are located primarily at postsynaptic densities and portions of the endoplasmic reticulum. We conclude that nitric oxide is produced and released at focal sites within neurons that are identifiable using L-citrulline as a marker. Copyright 2002 IBRO.

  9. Critical neurological structure sparing radiosurgery of vestibular schwannoma: Dosimetric comparison of different techniques and dose prescription methods

    Shamurailatpam Dayananda Sharma

    2014-01-01

    Conclusion: This dosimetric data provides a guideline for choosing optimum treatment option and scope of inter institutional dosimetric comparison for further improvement in radiosurgery of Vestibular Schwannoma (VS.

  10. N-Acetyl-L-Leucine Accelerates Vestibular Compensation after Unilateral Labyrinthectomy by Action in the Cerebellum and Thalamus

    Lisa Günther; Roswitha Beck; Guoming Xiong; Heidrun Potschka; Klaus Jahn; Peter Bartenstein; Thomas Brandt; Mayank Dutia; Marianne Dieterich; Michael Strupp; Christian la Fougère; Andreas Zwergal

    2015-01-01

    An acute unilateral vestibular lesion leads to a vestibular tone imbalance with nystagmus, head roll tilt and postural imbalance. These deficits gradually decrease over days to weeks due to central vestibular compensation (VC). This study investigated the effects of i.v. N-acetyl-DL-leucine, N-acetyl-L-leucine and N-acetyl-D-leucine on VC using behavioural testing and serial [18F]-Fluoro-desoxyglucose ([18F]-FDG)-μPET in a rat model of unilateral chemical labyrinthectomy (UL). Vestibular beha...

  11. Sympathetic preganglionic efferent and afferent neurons mediated by the greater splanchnic nerve in rabbit

    Torigoe, Yasuhiro; Cernucan, Roxana D.; Nishimoto, Jo Ann S.; Blanks, Robert H. I.

    1985-01-01

    As a part of the study of the vestibular-autonomic pathways involved in motion sickness, the location and the morphology of preganglionic sympathetic neurons (PSNs) projecting via the greater splanchnic nerve were examined. Retrograde labeling of neurons was obtained by application of horseradish peroxidase to the cut end of the greater splanchnic nerve. Labeled PSNs were found, ipsilaterally, within the T1 to T11 spinal cord segments, with the highest density of neurons in T6. Most PSNs were located within the intermediolateral column, but a significant portion also occurred within the lateral funiculus, the intercalated region, and the central autonomic area; the proportion of labeling between the four regions depended on the spinal cord segment.

  12. The effects of the cerebral, cerebellar and vestibular systems on the head stabilization reflex.

    Bademkiran, Fikret; Uludag, Burhanettin; Guler, Ayse; Celebisoy, Nese

    2016-05-01

    The head stabilization reflex (HSR) is a brain stem reflex which appears in the neck muscles in response to sudden head position changes and brings the head to its previous position. The reflex mechanism has not been understood. The afferent fibers come from cervical muscle spindles, vestibular structures, and the accessory nerve, the efferents from the accessory nerve. In this study, we aim to investigate the roles of supraspinal neural structures and the vestibular system on the HSR. The patient group consisted of 86 patients (33 cerebral cortical lesion, 14 cerebellar syndrome and 39 vestibular inexcitability or hypoexcitability); the control group was composed of 32 healthy volunteers. Concentric needle electrodes were inserted into the sternocleidomastoid muscle (SCM) and the accessory nerves were stimulated with the electrical stimulator. A reflex response of about 45-55 ms was obtained from the contralateral SCM muscle. 50 % of cases had bilateral loss whereas 37 % of cases with unilateral cerebellar lesions had an ipsilateral reflex loss. Bilateral HSR loss was detected in 84 % of cases with bilateral cerebellar lesions. Bilateral reflex loss was observed in 70 % of patients with unilateral cortical lesions and 94 % of those with bilateral vestibular dysfunction. Ipsilateral HSR loss was observed in 55 % of cases with unilateral vestibular dysfunction. It was discovered that supraspinal structures and the vestibular system may have an excitatory effect on HSR. This effect may be lost in supra-segmental and vestibular dysfunctions. The localization value of HSR was found to be rather poor in our study. PMID:26732581

  13. Age-related decline in functional connectivity of the vestibular cortical network.

    Cyran, Carolin Anna Maria; Boegle, Rainer; Stephan, Thomas; Dieterich, Marianne; Glasauer, Stefan

    2016-04-01

    In the elderly, major complaints include dizziness and an increasing number of falls, possibly related to an altered processing of vestibular sensory input. In this study, we therefore investigate age-related changes induced by processing of vestibular sensory stimulation. While previous functional imaging studies of healthy aging have investigated brain function during task performance or at rest, we used galvanic vestibular stimulation during functional MRI in a task-free sensory stimulation paradigm to study the effect of healthy aging on central vestibular processing, which might only become apparent during stimulation processing. Since aging may affect signatures of brain function beyond the BOLD-signal amplitude-such as functional connectivity or temporal signal variability-we employed independent component analysis and partial least squares analysis of temporal signal variability. We tested for age-associated changes unrelated to vestibular processing, using a motor paradigm, voxel-based morphometry and diffusion tensor imaging. This allows us to control for general age-related modifications, possibly originating from vascular, atrophic or structural connectivity changes. Age-correlated decreases of functional connectivity and increases of BOLD-signal variability were associated with multisensory vestibular networks. In contrast, no age-related functional connectivity changes were detected in somatosensory networks or during the motor paradigm. The functional connectivity decrease was not due to structural changes but to a decrease in response amplitude. In synopsis, our data suggest that both the age-dependent functional connectivity decrease and the variability increase may be due to deteriorating reciprocal cortico-cortical inhibition with age and related to multimodal vestibular integration of sensory inputs. PMID:25567421

  14. Endolympathic hydrops in patients with vestibular schwannoma: visualization by non-contrast-enhanced 3D FLAIR

    Naganawa, Shinji; Kawai, Hisashi [Nagoya University Graduate School of Medicine, Department of Radiology, Nagoya (Japan); Sone, Michihiko; Nakashima, Tsutomu [Nagoya University Graduate School of Medicine, Department of Otorhinolaryngology, Nagoya (Japan); Ikeda, Mitsuru [Nagoya University School of Health Sciences, Department of Radiological Technology, Nagoya (Japan)

    2011-12-15

    Signal intensity of ipsilateral labyrinthine lymph fluid has been reported to increase in most cases with vestibular schwannoma (VS) on 3D fluid attenuated inversion recovery (FLAIR). The purpose of this study was twofold, (1) to evaluate if endolymphatic space can be recognized in the patients with VS on non-contrast-enhanced 3D-FLAIR images and (2) to know if the vertigo in the patients with VS correlates to vestibular endolymphatic hydrops. From the introduction of 32-channel head coil at 3 T in May 2008 to June 2010, 15 cases with unilateral VS were identified in the radiology report database. The two cases without a significant signal increase on 3D FLAIR were excluded. Resting 13 cases were retrospectively analyzed in regard to the recognition of endolymphatic hydrops in the cochlea and vestibule and to the correlation between the patients' symptoms and endolymphatic hydrops. In all cases, vestibular endolymphatic space can be recognized on non-contrast-enhanced 3D FLAIR. Cochlear endolymphatic space can be identified only in one case with significant hydrops. Vestibular hydrops was identified in four cases. Among these four cases, three had vertigo, and one had no vertigo. In those nine cases without hydrops, two had vertigo, and seven did not have vertigo. No significant correlation between vertigo and vestibular hydrops was found. Vestibular endolymphatic space can be recognized on non-contrast-enhanced 3D FLAIR. In some patients with VS, vestibular hydrops is seen; however, endolymphatic hydrops in the vestibule might not be the only responsible cause of vertigo in the patients with VS. (orig.)

  15. Endolympathic hydrops in patients with vestibular schwannoma: visualization by non-contrast-enhanced 3D FLAIR

    Signal intensity of ipsilateral labyrinthine lymph fluid has been reported to increase in most cases with vestibular schwannoma (VS) on 3D fluid attenuated inversion recovery (FLAIR). The purpose of this study was twofold, (1) to evaluate if endolymphatic space can be recognized in the patients with VS on non-contrast-enhanced 3D-FLAIR images and (2) to know if the vertigo in the patients with VS correlates to vestibular endolymphatic hydrops. From the introduction of 32-channel head coil at 3 T in May 2008 to June 2010, 15 cases with unilateral VS were identified in the radiology report database. The two cases without a significant signal increase on 3D FLAIR were excluded. Resting 13 cases were retrospectively analyzed in regard to the recognition of endolymphatic hydrops in the cochlea and vestibule and to the correlation between the patients' symptoms and endolymphatic hydrops. In all cases, vestibular endolymphatic space can be recognized on non-contrast-enhanced 3D FLAIR. Cochlear endolymphatic space can be identified only in one case with significant hydrops. Vestibular hydrops was identified in four cases. Among these four cases, three had vertigo, and one had no vertigo. In those nine cases without hydrops, two had vertigo, and seven did not have vertigo. No significant correlation between vertigo and vestibular hydrops was found. Vestibular endolymphatic space can be recognized on non-contrast-enhanced 3D FLAIR. In some patients with VS, vestibular hydrops is seen; however, endolymphatic hydrops in the vestibule might not be the only responsible cause of vertigo in the patients with VS. (orig.)

  16. Ocular Vestibular Evoked Myogenic Potentials Using Head Striker Stimulation

    De Dios, Y. E.; Gadd, N. E.; Kofman, I. S.; Peters, B. T.; Reschke, M.; Bloomberg, J. J.; Wood, S. J.; Noohibezanjani, F.; Kinnaird, C.; Seidler, R. D.; Mulavara, A. P.

    2016-01-01

    Introduction: Over the last two decades, several studies have been published on the impact of long-duration (i.e., 22 days or longer) spaceflight on the central nervous system (CNS). In consideration of the health and performance of crewmembers in flight and post-flight, we are conducting a controlled prospective longitudinal study to investigate the effects of spaceflight on the extent, longevity and neural bases of sensorimotor, cognitive, and neural changes. Multiple studies have demonstrated the effects of spaceflight on the vestibular system. One of the supporting tests conducted in this protocol is the Vestibular Evoked Myogenic Potential (VEMP) test that provides a unilateral measure of otolith (saccule and utricle) function. A different approach was taken for ocular VEMP (oVEMP) testing using a head striker system (Wackym et al. 2012). The oVEMP is generally considered to be a measure of utricle function. The the otolithic input to the inferior oblique muscle is predominately from the utricular macula. Thus, quantitatively, oVEMP tests utricular function. Another practical extension of these relationships is that the oVEMP reflects the superior vestibular nerve function. Methods: Ground testing was administered on 16 control subjects and for 8 subjects over four repeated sessions spanning 70 days. The oVEMP was elicitied via a hand held striker by a vibrotactile pulse presented at the rate of 1 Hz for 24 seconds on the side of the head as subjects lay supine on a gurney. Subjects were directed to gaze approximately 25 degrees above straight ahead in semi-darkness. For the oVEMP electromyograms will be recorded with active bipolar electrodes (Delsys Inc., Boston, MA) on the infra-orbital ridge 1 cm below the eyelid with a reference electrode on the below the knee cap. The EMG potentials were amplified; band-pass filtered using a BagnoliTM Desktop EMG System (Delsys Inc., Boston, MA, USA). This EMG signal is sampled at 10 kHz and the data stimulus onset to

  17. Avaliação do efeito da cafeína no teste vestibular Evaluation of the caffeine effect in the vestibular test

    Lilian Felipe

    2005-12-01

    Full Text Available Há controvérsias sobre a interferência da cafeína no teste vestibular. O café é a fonte mais rica em cafeína. Enquanto em alguns serviços os pacientes são orientados a suspender a ingestão de café 24 a 48 horas antes da realização do teste, outros não consideram necessária a suspensão da ingestão dessa bebida. OBJETIVO: Avaliar o efeito da cafeína no resultado do teste vestibular. FORMA DE ESTUDO: clínico com coorte transversal. MATERIAL E MÉTODO: Estudo comparativo, transversal, pareado. O teste vestibular foi realizado em duplicidade, com intervalo máximo de cinco dias entre um e outro exame. No primeiro teste, os pacientes foram orientados a não ingerir café 24 horas antes do exame; no segundo teste, os pacientes foram orientados a beber café como de costume. Todos os participantes tinham indicação clínica de se submeter ao teste vestibular e tinham o hábito de tomar café. RESULTADOS: Participaram do estudo 19 mulheres com idade média de 49,5 anos. O consumo médio de café foi de três xícaras por dia. As queixas de ansiedade e cefaléia foram associadas ao teste realizado com suspensão do café. Não houve diferença estatisticamente significante nos resultados dos exames realizados com e sem ingestão de café. CONCLUSÃO: A ingestão moderada de café não interferiu no resultado do teste vestibular. Considerando ser recomendável que o paciente esteja tranqüilo ao se submeter ao teste vestibular e que a meia-vida da cafeína é de apenas seis horas, sugerimos que a orientação para a suspensão súbita e completa da ingestão moderada de café antes do teste vestibular para os indivíduos habituados à ingestão diária seja reavaliada.Exist controversy about the interference of the caffeine in the vestibular test. Coffee is the richest source of caffeine. While in some services, the patients were orient to suspend the ingestion of caffeine 24 to 48 hours before the vestibular test, other not consider

  18. Properties of cerebellar fastigial neurons during translation, rotation, and eye movements

    Shaikh, Aasef G.; Ghasia, Fatema F.; Dickman, J. David; Angelaki, Dora E.

    2005-01-01

    The most medial of the deep cerebellar nuclei, the fastigial nucleus (FN), receives sensory vestibular information and direct inhibition from the cerebellar vermis. We investigated the signal processing in the primate FN by recording single-unit activities during translational motion, rotational motion, and eye movements. Firing rate modulation during horizontal plane translation in the absence of eye movements was observed in all non-eye-movement-sensitive cells and 26% of the pursuit eye-movement-sensitive neurons in the caudal FN. Many non-eye-movement-sensitive cells recorded in the rostral FN of three fascicularis monkeys exhibited convergence of signals from both the otolith organs and the semicircular canals. At low frequencies of translation, the majority of these rostral FN cells changed their firing rates in phase with head velocity rather than linear acceleration. As frequency increased, FN vestibular neurons exhibited a wide range of response dynamics with most cells being characterized by increasing phase leads as a function of frequency. Unlike cells in the vestibular nuclei, none of the rostral FN cells responded to rotational motion alone, without simultaneously exhibiting sensitivity to translational motion. Modulation during earth-horizontal axis rotation was observed in more than half (77%) of the neurons, although with smaller gains than during translation. In contrast, only 47% of the cells changed their firing rates during earth-vertical axis rotations in the absence of a dynamic linear acceleration stimulus. These response properties suggest that the rostral FN represents a main processing center of otolith-driven information for inertial motion detection and spatial orientation.

  19. Juvenil neuronal ceroid lipofuscinosis

    Ostergaard, J R; Hertz, Jens Michael

    1998-01-01

    Neuronal ceroid-lipofuscinosis is a group of neurodegenerative diseases which are characterized by an abnormal accumulation of lipopigment in neuronal and extraneuronal cells. The diseases can be differentiated into several subgroups according to age of onset, the clinical picture...

  20. Refractory Neuron Circuits

    Sarpeshkar, Rahul; Watts, Lloyd; Mead, Carver

    1992-01-01

    Neural networks typically use an abstraction of the behaviour of a biological neuron, in which the continuously varying mean firing rate of the neuron is presumed to carry information about the neuron's time-varying state of excitation. However, the detailed timing of action potentials is known to be important in many biological systems. To build electronic models of such systems, one must have well-characterized neuron circuits that capture the essential behaviour of real neur...

  1. NEURON and Python

    Michael Hines; Davison, Andrew P.; Eilif Muller

    2009-01-01

    The NEURON simulation program now allows Python to be used, alone or in combination with NEURON's traditional Hoc interpreter. Adding Python to NEURON has the immediate benefit of making available a very extensive suite of analysis tools written for engineering and science. It also catalyzes NEURON software development by offering users a modern programming tool that is recognized for its flexibility and power to create and maintain complex programs. At the same time, nothing is lost because ...

  2. Influences of Vestibular System on Sympathetic Nervous System. Implications for countermeasures.

    Denise, Pr Pierre

    As gravity is a direct and permanent stress on body fluids, muscles and bones, it is not surpris-ing that weightlessness has important effects on cardiovascular and musculo-skeletal systems. However, these harmful effects do not totally result from the removal of the direct stress of gravity on these organs, but are also partially and indirectly mediated by the vestibular sys-tem. Besides its well known crucial role in spatial orientation and postural equilibrium, it is now clear that the vestibular system is also involved in the regulation of other important physi-ological systems: respiratory and cardiovascular systems, circadian regulation, food intake and even bone mineralization. The neuroanatomical substrate for these vestibular-mediated reg-ulations is still poorly defined, but there is much evidence that vestibular system has strong impacts not only on brainstem autonomic centers but on many hypothalamic nuclei as well. As autonomic nervous system controls almost all body organs, bringing into play the vestibular system by hypergravity or microgravity could virtually affects all major physiological func-tions. There is experimental evidence that weightlessness as well as vestibular lesion induce sympathetic activation thus participating in space related physiological alterations. The fact that some effects of weightlessness on biological systems are mediated by the vestibular system has an important implication for using artificial gravity as a countermeasure: artificial gravity should load not only bones and the cardiovascular system but the vestibular system as well. In short-arm centrifuges, the g load at the head level is low because the head is near the axis of rotation. If the vestibular system is involved in cardiovascular deconditioning and bone loss during weightlessness, it would be more effective to significantly stimulate it and thus it would be necessary to place the head off-axis. Moreover, as the otolithic organs are non longer stimu-lated in

  3. Temporoparietal encoding of space and time during vestibular-guided orientation.

    Kaski, Diego; Quadir, Shamim; Nigmatullina, Yuliya; Malhotra, Paresh A; Bronstein, Adolfo M; Seemungal, Barry M

    2016-02-01

    When we walk in our environment, we readily determine our travelled distance and location using visual cues. In the dark, estimating travelled distance uses a combination of somatosensory and vestibular (i.e., inertial) cues. The observed inability of patients with complete peripheral vestibular failure to update their angular travelled distance during active or passive turns in the dark implies a privileged role for vestibular cues during human angular orientation. As vestibular signals only provide inertial cues of self-motion (e.g., velocity, °/s), the brain must convert motion information to distance information (a process called 'path integration') to maintain our spatial orientation during self-motion in the dark. It is unknown, however, what brain areas are involved in converting vestibular-motion signals to those that enable such vestibular-spatial orientation. Hence, using voxel-based lesion-symptom mapping techniques, we explored the effect of acute right hemisphere lesions in 18 patients on perceived angular position, velocity and motion duration during whole-body angular rotations in the dark. First, compared to healthy controls' spatial orientation performance, we found that of the 18 acute stroke patients tested, only the four patients with damage to the temporoparietal junction showed impaired spatial orientation performance for leftward (contralesional) compared to rightward (ipsilesional) rotations. Second, only patients with temporoparietal junction damage showed a congruent underestimation in both their travelled distance (perceived as shorter) and motion duration (perceived as briefer) for leftward compared to rightward rotations. All 18 lesion patients tested showed normal self-motion perception. These data suggest that the cerebral cortical regions mediating vestibular-motion ('am I moving?') and vestibular-spatial perception ('where am I?') are distinct. Furthermore, the congruent contralesional deficit in time (motion duration) and position

  4. Motor Neurons that Multitask

    Goulding, Martyn

    2012-01-01

    Animals use a form of sensory feedback termed proprioception to monitor their body position and modify the motor programs that control movement. In this issue of Neuron, Wen et al. (2012) provide evidence that a subset of motor neurons function as proprioceptors in C. elegans, where B-type motor neurons sense body curvature to control the bending movements that drive forward locomotion.

  5. Central adaptation to repeated galvanic vestibular stimulation: implications for pre-flight astronaut training.

    Dilda, Valentina; Morris, Tiffany R; Yungher, Don A; MacDougall, Hamish G; Moore, Steven T

    2014-01-01

    Healthy subjects (N = 10) were exposed to 10-min cumulative pseudorandom bilateral bipolar Galvanic vestibular stimulation (GVS) on a weekly basis for 12 weeks (120 min total exposure). During each trial subjects performed computerized dynamic posturography and eye movements were measured using digital video-oculography. Follow up tests were conducted 6 weeks and 6 months after the 12-week adaptation period. Postural performance was significantly impaired during GVS at first exposure, but recovered to baseline over a period of 7-8 weeks (70-80 min GVS exposure). This postural recovery was maintained 6 months after adaptation. In contrast, the roll vestibulo-ocular reflex response to GVS was not attenuated by repeated exposure. This suggests that GVS adaptation did not occur at the vestibular end-organs or involve changes in low-level (brainstem-mediated) vestibulo-ocular or vestibulo-spinal reflexes. Faced with unreliable vestibular input, the cerebellum reweighted sensory input to emphasize veridical extra-vestibular information, such as somatosensation, vision and visceral stretch receptors, to regain postural function. After a period of recovery subjects exhibited dual adaption and the ability to rapidly switch between the perturbed (GVS) and natural vestibular state for up to 6 months. PMID:25409443

  6. Effect of galvanic vestibular stimulation on movement-related cortical potential.

    Lee, Jeong-Woo

    2015-06-01

    [Purpose] This study examined the effects of galvanic vestibular stimulation on motion-related cortical potential. [Subjects and Methods] Fourty healthy female adult subjects each received galvanic vestibular stimulation or sham treatment. For galvanic vestibular stimulation, the anode and cathode were applied to the right and left mastoid processes, respectively, for 10 minutes. Motion-related cortical potential was tested pre- and post-treatment. To measure motion-related cortical potential, surface electromyography signals were generated by 50 thumb abductions with electrode application on the abductor pollicis brevis of the left (i.e., non-dominant) hand. [Results] The negative slope cortical potential on the C3 area (i.e., dominant hand) and cortical negative slope and motor potential on the C4 area (i.e., non-dominant hand) showed significant interaction effects. The galvanic vestibular stimulation group showed an increased negative slope amplitude in the C3 area, and increased negative slope and motor potential amplitudes in the C4 area compared to the sham group. [Conclusion] Galvanic vestibular stimulation increases the negative slope and motor potential amplitudes of the homonymous brain cortex area, which controls hand function and motion-related cortical potential, and the negative slope amplitude of the opposite cortical area, thus activating the brain areas for hand function. PMID:26180369

  7. Central adaptation to repeated galvanic vestibular stimulation: implications for pre-flight astronaut training.

    Valentina Dilda

    Full Text Available Healthy subjects (N = 10 were exposed to 10-min cumulative pseudorandom bilateral bipolar Galvanic vestibular stimulation (GVS on a weekly basis for 12 weeks (120 min total exposure. During each trial subjects performed computerized dynamic posturography and eye movements were measured using digital video-oculography. Follow up tests were conducted 6 weeks and 6 months after the 12-week adaptation period. Postural performance was significantly impaired during GVS at first exposure, but recovered to baseline over a period of 7-8 weeks (70-80 min GVS exposure. This postural recovery was maintained 6 months after adaptation. In contrast, the roll vestibulo-ocular reflex response to GVS was not attenuated by repeated exposure. This suggests that GVS adaptation did not occur at the vestibular end-organs or involve changes in low-level (brainstem-mediated vestibulo-ocular or vestibulo-spinal reflexes. Faced with unreliable vestibular input, the cerebellum reweighted sensory input to emphasize veridical extra-vestibular information, such as somatosensation, vision and visceral stretch receptors, to regain postural function. After a period of recovery subjects exhibited dual adaption and the ability to rapidly switch between the perturbed (GVS and natural vestibular state for up to 6 months.

  8. Channeling your inner ear potassium: K(+) channels in vestibular hair cells.

    Meredith, Frances L; Rennie, Katherine J

    2016-08-01

    During development of vestibular hair cells, K(+) conductances are acquired in a specific pattern. Functionally mature vestibular hair cells express different complements of K(+) channels which uniquely shape the hair cell receptor potential and filtering properties. In amniote species, type I hair cells (HCI) have a large input conductance due to a ubiquitous low-voltage-activated K(+) current that activates with slow sigmoidal kinetics at voltages negative to the membrane resting potential. In contrast type II hair cells (HCII) from mammalian and non-mammalian species have voltage-dependent outward K(+) currents that activate rapidly at or above the resting membrane potential and show significant inactivation. A-type, delayed rectifier and calcium-activated K(+) channels contribute to the outward K(+) conductance and are present in varying proportions in HCII. In many species, K(+) currents in HCII in peripheral locations of vestibular epithelia inactivate more than HCII in more central locations. Two types of inward rectifier currents have been described in both HCI and HCII. A rapidly activating K(+)-selective inward rectifier current (IK1, mediated by Kir2.1 channels) predominates in HCII in peripheral zones, whereas a slower mixed cation inward rectifier current (Ih), shows greater expression in HCII in central zones of vestibular epithelia. The implications for sensory coding of vestibular signals by different types of hair cells are discussed. This article is part of a Special Issue entitled . PMID:26836968

  9. Vestibular signal processing in a subject with somatosensory deafferentation: The case of sitting posture

    Teasdale Normand

    2007-08-01

    Full Text Available Abstract Background The vestibular system of the inner ear provides information about head translation/rotation in space and about the orientation of the head with respect to the gravitoinertial vector. It also largely contributes to the control of posture through vestibulospinal pathways. Testing an individual severely deprived of somatosensory information below the nose, we investigated if equilibrium can be maintained while seated on the sole basis of this information. Results Although she was unstable, the deafferented subject (DS was able to remain seated with the eyes closed in the absence of feet, arm and back supports. However, with the head unconsciously rotated towards the left or right shoulder, the DS's instability markedly increased. Small electrical stimulations of the vestibular apparatus produced large body tilts in the DS contrary to control subjects who did not show clear postural responses to the stimulations. Conclusion The results of the present experiment show that in the lack of vision and somatosensory information, vestibular signal processing allows the maintenance of an active sitting posture (i.e. without back or side rests. When head orientation changes with respect to the trunk, in the absence of vision, the lack of cervical information prevents the transformation of the head-centered vestibular information into a trunk-centered frame of reference of body motion. For the normal subjects, this latter frame of reference enables proper postural adjustments through vestibular signal processing, irrespectively of the orientation of the head with respect to the trunk.

  10. Investigations of the Effects of Altered Vestibular System Function on Hindlimb Anti-Gravity Muscles

    Lowery, Mary Sue

    1998-01-01

    Exposure to different gravitational environments, both the microgravity of spaceflight and the hypergravity of centrifugation, result in altered vestibulo-spinal function which can be reversed by reacclimation to earth gravity (2). Control of orientation, posture, and locomotion are functions of the vestibular system which are altered by changes in gravitational environment. Not only is the vestibular system involved with coordination and proprioception, but the gravity sensing portion of the vestibular system also plays a major role in maintaining muscle tone through projections to spinal cord motoneurons that control anti-gravity muscles. I have been involved with investigations of several aspects of the link between vestibular inputs and muscle morphology and function during my work with Dr. Nancy Daunton this summer and the previous summer. We have prepared a manuscript for submission (4) to Aviation, Space, and Environmental Medicine based on work that I performed last summer in Dr. Daunton's lab. Techniques developed for that project will be utilized in subsequent experiments begun in the summer of 1998. I have been involved with the development of a pilot project to test the effects of vestibular galvanic stimulation (VGS) on anti-gravity muscles and in another project testing the effects of the ototoxic drug streptomycin on the otolith-spinal reflex and anti-gravity muscle morphology.

  11. Clinical and Radiographic Factors Predicting Hearing Preservation Rates in Large Vestibular Schwannomas.

    Mendelsohn, Daniel; Westerberg, Brian D; Dong, Charles; Akagami, Ryojo

    2016-06-01

    Objectives Postoperative hearing preservation rates for patients with large vestibular schwannomas range from 0 to 43%. The clinical and radiographic factors predicting hearing preservation in smaller vestibular schwannomas are well described; however, their importance in larger tumors is unclear. We investigated factors predicting hearing preservation in large vestibular schwannomas. Design Retrospective review. Setting Quaternary care academic center. Participants A total of 85 patients with unilateral vestibular schwannomas > 3 cm underwent retrosigmoid resections. Main Outcomes Measures Preoperative and postoperative serviceable hearing rates. Methods Clinical and radiographic data including preoperative and postoperative audiograms, preoperative symptoms, magnetic resonance imaging features, and postoperative facial weakness were analyzed. Results Hearing was preserved in 41% of patients (17 of 42) with preoperative serviceable hearing. Hypertension and diabetes increased the likelihood of preoperative hearing loss. Preoperative tinnitus predicted a lower likelihood of hearing preservation. No radiographic factors predicted hearing preservation; however, larger tumor size, smaller fourth ventricular width, and the presence of a cerebrospinal fluid cleft surrounding the tumor predicted postoperative facial weakness. Conclusion Systemic comorbidities may influence hearing loss preoperatively in patients with large vestibular schwannomas. The absence of tinnitus may reflect hearing reserve and propensity for hearing preservation. Preoperative radiographic features did not predict hearing preservation despite some associations with postoperative facial weakness. PMID:27175312

  12. Effects of modafinil on vestibular function during 24 hour sleep deprivation

    ZHAN Hao; XIE Sujiang; JIA Hongbo; WEI Sihuang; JING Baisheng

    2007-01-01

    The aim of this research was to investigate the effects of modafinil,a new wake-promoting agent,on vestibular function during 24 h sleep deprivation(SD)so as to provide experimental evidence for the rational use of this drug among air crew.Eight young,healthy male volunteers were exposed to two 24 h periods of continuous wakefulness during the crossover experiment.Initially,200 mg dose of modafinil was given.and one week later,a matching placebo was administered.The SD time started from 08:00 of the first day to 08:00 of the second day.Drugs were given at 0:00 on the second day.Vestibular function was tested at 21:00 on the first day and 1,3,5,7 h after drug administration.The accuracy of saccade tracking and gains in visual-vestibular optokinetic reflex(VVOR)and optokinetic nystagmus(OKN)in the placebo group decreased during 24 h SD,especially at 01:00-05:00 on the second day,while OKN gains in the modafinil group increased significantly.There were no significant difierences in the other vestibular functional indices between the modafinil group and placebo group.The 24 h SD can influence vestibular function to a certain degree,but modafinil may improve OKN.

  13. Expression of estrogen and progesterone receptors in vestibular schwannomas and their clinical significance

    Pandey Rakesh

    2009-11-01

    Full Text Available Abstract Objective The objective was to determine the expression of estrogen and progesterone receptors in vestibular schwannomas as well as to determine predictive factors for estrogen and progesterone receptor positivity. Materials and methods The study included 100 cases of vestibular schwannomas operated from January 2006 to June 2009. The clinical details were noted from the medical case files. Formaldehyde-fixed parafiin-embedded archival vestibular schwannomas specimens were used for the immunohistochemical assessment of estrogen and progesterone receptors. Results Neither estrogen nor progesterone receptors could be detected in any of our cases by means of well known immunohistochemical method using well documented monoclonal antibodies. In the control specimens, a strongly positive reaction could be seen. Conclusion No estrogen and progesterone receptor could be found in any of our 100 cases of vestibular schwannomas. Hence our study does not support a causative role of estrogen and progesterone in the growth of vestibular schwannoma as well as hormonal manipulation in the treatment of this tumor.

  14. Vestibular-evoked myogenic potentials in miniature pigs

    Xi Shi; Yan Zhang; Ya Li; Shiwei Qiu; Shili Zhang; Yaohan Li; Na Yuan; Yuehua Qiao; Shiming Yang

    2016-01-01

    Objective:To report detection of vestibular-evoked myogenic potentials (VEMPs) in the miniature pig. Methods:Potentials evoked by 1000 Hz tone bursts were recorded from neck extensor muscles and the masseter muscles in normal adult Bama miniature pigs anesthetized with 3%pentobarbital sodium and Carbachol II. Results:The latency of the first positive wave P from neck extensor muscles was 7.65 ± 0.64 ms, with an amplitude of 1.66 ± 0.34 uv and a rate of successful induction of 75%at 80 dB SPL. The latency of potentials evoked from the masseter muscles was 7.60 ± 0.78 ms, with an amplitude of 1.31 ± 0.28 uv and a rate successful induction of 66%at 80 dB SPL. Conclusion:The latencies and thresholds of VEMPs recorded from the neck extensor muscle and the masseter muscle appear to be comparable in normal adult Bama miniature pigs, although the amplitude recorded from the neck extensor muscle seems to be higher than that from the masseter muscle. However, because of their usually relatively superficial and easily accessible location, as well as their large volume and strong contractions, masseter muscles may be better target muscles for recording myogenic potentials.

  15. Visual afference mediates head and trunk stability in vestibular hypofunction.

    Wei, Shun-Hwa; Chen, Po-Yin; Chen, Hung-Ju; Kao, Chung-Lan; Schubert, Michael C

    2016-07-01

    Humans must maintain head and trunk stability while walking. The purpose of this study was to compare the kinematics of healthy controls and patients with vestibular hypofunction (VH) when walking and making head rotations of different frequencies in both light and dark conditions. We recruited eight individuals with VH and nine healthy control subjects to perform four tasks at their preferred gait speed, being normal walk, walking and making yaw head rotations at 1.5Hz and 2Hz, and walking in the dark and making yaw head rotations at 1.5Hz. Linear kinematics as well as head, trunk, and pelvis angular velocities were captured using the Vicon motion analysis system (Vicon Motion Systems, Oxford, UK). We found no difference in walking velocities for any of the four walking conditions across groups. The lateral displacement of the center of mass was increased in VH patients. In the dark, patients had more head instability in pitch (larger amplitudes and velocities) even though they were walking and making active yaw head rotations. Patients also had a smaller relative phase angle (mean 3.50±standard deviation 2.13°) than controls (mean 10.31±standard deviation 2.70°) (plight. PMID:26976344

  16. Vestibular schwannoma: 825 cases from a 25-year experience

    Bento, Ricardo Ferreira

    2012-01-01

    Full Text Available Introduction: Acoustic nerve tumors have been recognized as a clinico-pathologic entity for at least 200 years, and they represent 90% of cerebellopontine angle diseases. Histologically, the tumors are derived from Schwann cells of the myelin sheath, with smaller tumors consisting of elongated palisade cells, while in large tumors, cystic degeneration can be found in the central areas, possibly due to deficient vascularization. We retrospectively reviewed 825 cases of vestibular schwannomas, reported between January 1984 and August 2006, in which the patients underwent surgery to remove the tumor. Objective: To evaluate signs, symptoms, aspects of clinical diagnosis, including the results of audiological and imaging studies, and surgical techniques and complications. Methods: A retrospective chart review. The medical records of all patients undergoing surgical treatment for schwannoma during the period indicated were reviewed. Results and Conclusion: Hearing loss was the first symptom reported in almost all cases, and tumor size was not proportional to the impairment of the auditory threshold. The surgical techniques allowed safe preservation of facial function. In particular, the retrolabyrinthine route proved useful in small tumors, with 50% preservation of hearing.

  17. Morphology of the Vestibular Utricule in Toadfish, Opsanus Tau

    Bass, L.; Smith, J.; Twombly, A.; Boyle, Richard; Varelas, Ehsanian J.; Johanson, C.

    2003-01-01

    The uticle is an otolith organ in the vertebrate inner ear that provides gravitoinertial acceleration information into the vestibular reflex pathways. The aim of the present study was to provide an anatomical description of this structure in the adult oyster toadfish, and establish a morphological basis for interpretation of subsequent functional studies. Light, scanning electron and transmission electron microscopy were applied to visualize the sensory epithelium and its neural innervation. Electrophysiological techniques were used to identify utricular afferents by their response to translation stimuli. Similar to nerve afferents supplying the semicircular canals and lagena, utricular afferents commonly exhibit a short-latency increase of firing rate in response to electrical activation of the central efferent pathway. Afferents were labeled with biocytin either intraaxonally or with extracellular bulk deposits. Light microscope images of serial thick sections were used to make three-dimensional reconstructions of individual labeled afferents to identify the dendritic morphology with respect to epithelial location. Scanning electron microscopy was used to visualize the surface of the otolith mass facing the otolith membrane, and the hair cell polarization patterns of strioler and extrastriolar regions. Transmission electron micrographs of serial thin sections were compiled to create a three-dimensional reconstruction of the labeled afferent over a segment of its dendritic field and to examine the hair cell-afferent synaptic contacts.

  18. Ocular Motor Function in Patients with Bilateral Vestibular Weakness

    Ghazizadeh Hashemi, Seyyed Amir Hossein; Jafarzadeh, Sadegh; Haddadi Aval, Majid; Hosseinabadi, Reza

    2016-01-01

    Introduction: Patients with bilateral weakness (BW) have many difficulties in gaze stability that interfere with their normal function. The aim of this study was to evaluate ocular motor functions in patients with BW to better understand the problem of gaze instability in these patients. Materials and Methods: Patients were referred from the Otolaryngology Department for Vestibular Assessment to our clinic between November 2014 and March 2015. We assessed ocular motor function (gaze, saccade, and smooth pursuit) in patients over the age of 18 years with BW, as verified by a caloric test. Results: Seventy-eight patients completed all the tests. The mean age of patients was 51.9 (±15.9) years, and 47 (60%) were female. Abnormal results were found in five (6.4%), 32 (41%), and seven (9%) patients with respect to gaze, smooth pursuit, and saccade, respectively. There were positive but relatively weak relationships between age and ocular motor results. Conclusion: Patients with BW suffer from dizziness and unsteadiness. These patients have abnormal function in ocular motor (especially smooth pursuit) tests. The ocular motor dysfunction is responsible for gaze instability in static positions such as standing. PMID:27429945

  19. Ocular Motor Function in Patients with Bilateral Vestibular Weakness

    Seyyed Amir Hossein Ghazizadeh Hashemi

    2016-05-01

    Full Text Available Introduction: Patients with bilateral weakness (BW have many difficulties in gaze stability that interfere with their normal function. The aim of this study was to evaluate ocular motor functions in patients with BW to better understand the problem of gaze instability in these patients.   Materials and Methods: Patients were referred from the Otolaryngology Department for Vestibular Assessment to our clinic between November 2014 and March 2015. We assessed ocular motor function (gaze, saccade, and smooth pursuit in patients over the age of 18 years with BW, as verified by a caloric test.   Results: Seventy-eight patients completed all the tests. The mean age of patients was 51.9 (±15.9 years, and 47 (60% were female. Abnormal results were found in five (6.4%, 32 (41%, and seven (9% patients with respect to gaze, smooth pursuit, and saccade, respectively. There were positive but relatively weak relationships between age and ocular motor results.   Conclusion:  Patients with BW suffer from dizziness and unsteadiness. These patients have abnormal function in ocular motor (especially smooth pursuit tests. The ocular motor dysfunction is responsible for gaze instability in static positions such as standing.

  20. Vestibular impairment in a Dutch DFNA15 family with an L289F mutation in POU4F3.

    Drunen, F.J. van; Pauw, R.J.; Collin, R.W.J.; Kremer, H.; Huygen, P.L.M.; Cremers, C.W.R.J.

    2009-01-01

    Vestibular examination (electronystagmography with rotatory chair and caloric tests) was performed on 18 carriers and 1 phenocopy carrier in a Dutch family with autosomal dominant nonsyndromic DFNA15. This is the second DFNA15 family worldwide to have a novel L289F mutation in POU4F3. Vestibular inv

  1. Long-term socio-economic impact of vestibular schwannoma for patients under observation and after surgery

    Tos, Tina; Caye-Thomasen, Per; Stangerup, Sven-Eric;

    2003-01-01

    This study describes and compares the long-term socio-economic impact for patients diagnosed with a vestibular schwannoma and either operated on or observed. A consecutive sample of patients diagnosed with vestibular schwannoma in Denmark and either operated on (748 patients) or observed by the w...

  2. Huntington's disease (HD): degeneration of select nuclei, widespread occurrence of neuronal nuclear and axonal inclusions in the brainstem.

    Rüb, Udo; Hentschel, Matthias; Stratmann, Katharina; Brunt, Ewout; Heinsen, Helmut; Seidel, Kay; Bouzrou, Mohamed; Auburger, Georg; Paulson, Henry; Vonsattel, Jean-Paul; Lange, Herwig; Korf, Horst-Werner; den Dunnen, Wilfred

    2014-04-01

    Huntington's disease (HD) is a progressive polyglutamine disease that leads to a severe striatal and layer-specific neuronal loss in the cerebral neo-and allocortex. As some of the clinical symptoms (eg, oculomotor dysfunctions) suggested a degeneration of select brainstem nuclei, we performed a systematic investigation of the brainstem of eight clinically diagnosed and genetically confirmed HD patients. This post-mortem investigation revealed a consistent neuronal loss in the substantia nigra, pontine nuclei, reticulotegmental nucleus of the pons, superior and inferior olives, in the area of the excitatory burst neurons for horizontal saccades, raphe interpositus nucleus and vestibular nuclei. Immunoreactive intranuclear neuronal inclusions were present in all degenerated and apparently spared brainstem nuclei and immunoreactive axonal inclusions were observed in all brainstem fiber tracts of the HD patients. Degeneration of brainstem nuclei can account for a number of less well-understood clinical HD symptoms (ie, cerebellar, oculomotor and vestibular symptoms), while the formation of axonal aggregates may represent a crucial event in the cascades of pathological events leading to neurodegeneration in HD. PMID:24779419

  3. Long-term mobile phone use and the risk of vestibular schwannoma: a Danish nationwide cohort study

    Schüz, Joachim; Steding-Jessen, Marianne; Hansen, Søren;

    2011-01-01

    Vestibular schwannomas grow in the region within the brain where most of the energy by radiofrequency electromagnetic fields from using mobile phones is absorbed. The authors used 2 Danish nationwide cohort studies, one a study of all adult Danes subscribing for a mobile phone in 1995 or earlier...... and one on sociodemographic factors and cancer risk, and followed subjects included in both cohorts for occurrence of vestibular schwannoma up to 2006 inclusively. In this study including 2.9 million subjects, a long-term mobile phone subscription of =11 years was not related to an increased vestibular...... schwannoma risk in men (relative risk estimate = 0.87, 95% confidence interval: 0.52, 1.46), and no vestibular schwannoma cases among long-term subscribers occurred in women versus 1.6 expected. Vestibular schwannomas did not occur more often on the right side of the head, although the majority of Danes...

  4. Long-term mobile phone use and the risk of vestibular schwannoma: a Danish nationwide cohort study

    Schüz, Joachim; Steding-Jessen, Marianne; Hansen, Søren;

    2011-01-01

    Vestibular schwannomas grow in the region within the brain where most of the energy by radiofrequency electromagnetic fields from using mobile phones is absorbed. The authors used 2 Danish nationwide cohort studies, one a study of all adult Danes subscribing for a mobile phone in 1995 or earlier...... and one on sociodemographic factors and cancer risk, and followed subjects included in both cohorts for occurrence of vestibular schwannoma up to 2006 inclusively. In this study including 2.9 million subjects, a long-term mobile phone subscription of ≥11 years was not related to an increased vestibular...... schwannoma risk in men (relative risk estimate = 0.87, 95% confidence interval: 0.52, 1.46), and no vestibular schwannoma cases among long-term subscribers occurred in women versus 1.6 expected. Vestibular schwannomas did not occur more often on the right side of the head, although the majority of Danes...

  5. Potenciais miogênicos evocados vestibulares: metodologias de registro em homens e cobaias Vestibular evoked myogenic potential: recording methods in humans and guinea pigs

    Aline Cabral de Oliveira

    2008-10-01

    Full Text Available O potencial miogênico evocado vestibular (VEMP é um teste clínico que avalia a função vestibular através de um reflexo vestíbulo-cervical inibitório captado nos músculos do corpo em resposta à estimulação acústica de alta intensidade. OBJETIVO: Verificar e analisar os diversos métodos de registro dos potenciais miogênicos evocados vestibulares no homem e em cobaias. MATERIAL E MÉTODO: Realizou-se busca eletrônica nas bases de dados MEDLINE, LILACS, SCIELO e COCHRANE. RESULTADOS: Foram verificadas divergências quanto às formas de registro dos potenciais miogênicos evocados vestibulares, relacionadas com os seguintes fatores: posição do paciente no momento do registro, tipo de estímulo sonoro utilizado (clicks ou tone bursts, parâmetros para a promediação dos estímulos (intensidade, freqüência, tempo de apresentação, filtros, ganho de amplificação das respostas e janelas para captação dos estímulos, tipo de fone utilizado e forma de apresentação dos estímulos (monoaural ou binaural, ipsi ou contralateral. CONCLUSÃO: Não existe consenso na literatura quanto ao melhor método de registro dos potenciais evocados miogênicos vestibulares, havendo necessidade de pesquisas mais específicas para comparação entre estes registros e a definição de um modelo padrão para a utilização na prática clínica.The vestibular evoked myogenic potential (VEMP is a clinical test that assess the vestibular function by means of an inhibitory vestibulo-neck reflex, recorded in body muscles in response to high intensity acoustic stimuli. AIM: To check and analyze the different methods used to record VEMPs in humans and in guinea pigs. MATERIALS AND METHODS: We researched the following databases: MEDLINE, LILACS, SCIELO and COCHRANE. RESULTS: we noticed discrepancies in relation to the ways used to record the vestibular evoked myogenic potentials in relation to the following factors: patient position at the time of recording

  6. An allograft mouse model for the study of hearing loss secondary to vestibular schwannoma growth.

    Bonne, Nicolas-Xavier; Vitte, Jérémie; Chareyre, Fabrice; Karapetyan, Gevorg; Khankaldyyan, Vazgen; Tanaka, Karo; Moats, Rex A; Giovannini, Marco

    2016-08-01

    Vestibular schwannoma is a benign neoplasm arising from the Schwann cell sheath of the auditory-vestibular nerve. It most commonly affects both sides in the genetic condition Neurofibromatosis type 2, causing progressive high frequency sensorineural hearing loss. Here, we describe a microsurgical technique and stereotactic coordinates for schwannoma cell grafting in the vestibular nerve region that recapitulates local tumor growth in the cerebellopontine angle and inner auditory canal with resulting hearing loss. Tumor growth was monitored by bioluminescence and MRI in vivo imaging, and hearing assessed by auditory brainstem responses. These techniques, by potentially enabling orthotopic grafting of a variety of cell lines will allow studies on the pathogenesis of tumor-related hearing loss and preclinical drug evaluation, including hearing endpoints, for NF2-related and sporadic schwannomas. PMID:27177628

  7. Exercise gaming – a motivational approach for older adults with vestibular dysfunction

    Brandt, Michael Smærup; Grönvall, Erik; Larsen, Simon Bo;

    2016-01-01

    Purpose The purpose of the study was to identify possible reasons for a modest level of exercise compliance during computer-assisted training for vestibular rehabilitation. Method Qualitative design and analysis of 14 semi-structured interviews with seven participants before and after a period......, but their knowledge and understanding of the training programme were insufficient. The participants asked for a greater variation in the exercises and asked for closer contact with the physiotherapist. When Mitii is used for vestibular rehabilitation, the system has some limitations. Conclusions The modest level...... understanding of the training programme with supplying information on the parts of the vestibular system addressed by the training. Implications for Rehabilitation Computer-assisted technologies should generate feedback on the quality of user performance and inform the patient of the relevance of the exercise...

  8. Exercise gaming - a motivational approach for older adults with vestibular dysfunction

    Smærup, Michael; Grönvall, Erik; Larsen, Simon;

    2016-01-01

    Purpose The purpose of the study was to identify possible reasons for a modest level of exercise compliance during computer-assisted training for vestibular rehabilitation. Method Qualitative design and analysis of 14 semi-structured interviews with seven participants before and after a period......, but their knowledge and understanding of the training programme were insufficient. The participants asked for a greater variation in the exercises and asked for closer contact with the physiotherapist. When Mitii is used for vestibular rehabilitation, the system has some limitations. Conclusions The modest level...... understanding of the training programme with supplying information on the parts of the vestibular system addressed by the training. Implications for Rehabilitation Computer-assisted technologies should generate feedback on the quality of user performance and inform the patient of the relevance of the exercise...

  9. Facial nerve function after vestibular schwannoma surgery following failed conservative management

    Kaltoft, Mikkel; Stangerup, Sven-Eric; Cayé-Thomasen, Per

    2012-01-01

    BACKGROUND:: As only a limited proportion of vestibular schwannomas display growth following diagnosis, an increasing number of patients are managed conservatively. Tumor growth during "wait and scan" may, however, necessitate surgery. In these cases, increased tumor size is likely to increase...... diagnosed with a vestibular schwannoma 20mm extrameatal or smaller were included. 419 patients were operated soon after diagnosis and 959 patients were initially managed conservatively. In the latter group, 161 patients were subsequently operated due to tumor growth. RESULTS:: All conservatively managed...... patients allocated primarily to conservative management, good facial function was found in 97%, which was significantly better than the result for primary operation (87%). CONCLUSION:: Overall, conservative management of small to medium-sized vestibular schwannomas is the best option with regard...

  10. Simultaneous Translabyrinthine Tumor Removal and Cochlear Implantation in Vestibular Schwannoma Patients.

    Kim, Jin Won; Han, Ji Hyuk; Kim, Jin Woong; Moon, In Seok

    2016-11-01

    Refinement of surgical techniques has allowed hearing preservation after tumor resection to be prioritized. Moreover, restoration of hearing after tumor removal can be attempted in patients with bilateral vestibular schwannomas or those with a schwannoma in the only-hearing ear. Cochlear implantation (CI) has emerged as a proper method of acoustic rehabilitation, provided that the cochlear nerve remains intact. Studies of electrical promontory stimulation in patients after vestibular schwannoma resection have demonstrated favorable results. We describe herein two cases of hearing rehabilitation via CI implemented at the time of vestibular schwannoma resection. Tumors were totally removed, and cochlear implant electrodes were successfully inserted in both cases. Also, post operative CI-aided hearing showed improved results. PMID:27593888

  11. Histopathological and ultrastructural analysis of vestibular endorgans in Meniere's disease reveals basement membrane pathology

    McCall Andrew A

    2009-06-01

    Full Text Available Abstract Background We report the systematic analysis of the ultrastructural and cytological histopathology of vestibular endorgans acquired from labyrinthectomy in Meniere's disease. Methods 17 subjects with intractable Meniere's disease and ipsilateral non-serviceable hearing presenting to the Neurotology Clinic from 1997 to 2006 who chose ablative labyrinthectomy (average age = 62 years; range 29–83 years participated. The average duration of symptoms prior to surgery was 7 years (range 1–20 years. Results Nearly all vestibular endorgans demonstrated varying degrees of degeneration. A monolayer of epithelial cells occurred significantly more frequently in the horizontal cristae (12/13 = 92% (p Conclusion Systematic histopathological analysis of the vestibular endorgans from Meniere's disease demonstrated neuroepithelial degeneration which was highly correlated with an associated BM thickening. Other findings included hair cell and supporting cell microvessicles, increased intercellular clear spaces in the stroma, and endothelial cell vacuolization and stromal perivascular BM thickening.

  12. Percentage of vestibular dysfunction in 361 elderly citizens responding to a newspaper advertisement

    Smærup, Michael; Læssøe, Uffe; Damsgaard, Else Marie;

    2011-01-01

    Percentage of Vestibular Dysfunction in 361 Elderly Citizens Responding to a Newspaper Advertisement. Brandt M, Grönvall E, Henriksen JJ, Larsen SB, Læssøe U, Mørch MM, Damsgaard EM Introduction Elderly patients with vestibular dysfunction have an eight-fold increased risk of falling compared...... advertisement. Method To recruit elderly citizens with dizziness we advertised in a local newspaper. A telephone interview with the respondents was done by a physiotherapist (PT). If the PT concluded that the reason for the dizziness could be vestibular dysfunction the citizen was invited to further...... Department, Aarhus University Hospital. Results 361 elderly citizens responded to the advertisement. 8 patients had alcohol problems, 14 had significantly impaired vision, 42 had evidence of orthostatic hypotension, 49 didn’t want to participate, 50 had evidence of Benign Paroxysmal Positional Vertigo (BPPV...

  13. Noisy galvanic vestibular stimulation modulates the amplitude of EEG synchrony patterns.

    Kim, Diana J; Yogendrakumar, Vignan; Chiang, Joyce; Ty, Edna; Wang, Z Jane; McKeown, Martin J

    2013-01-01

    Noisy galvanic vestibular stimulation has been associated with numerous cognitive and behavioural effects, such as enhancement of visual memory in healthy individuals, improvement of visual deficits in stroke patients, as well as possibly improvement of motor function in Parkinson's disease; yet, the mechanism of action is unclear. Since Parkinson's and other neuropsychiatric diseases are characterized by maladaptive dynamics of brain rhythms, we investigated whether noisy galvanic vestibular stimulation was associated with measurable changes in EEG oscillatory rhythms within theta (4-7.5 Hz), low alpha (8-10 Hz), high alpha (10.5-12 Hz), beta (13-30 Hz) and gamma (31-50 Hz) bands. We recorded the EEG while simultaneously delivering noisy bilateral, bipolar stimulation at varying intensities of imperceptible currents - at 10, 26, 42, 58, 74 and 90% of sensory threshold - to ten neurologically healthy subjects. Using standard spectral analysis, we investigated the transient aftereffects of noisy stimulation on rhythms. Subsequently, using robust artifact rejection techniques and the Least Absolute Shrinkage Selection Operator regression and cross-validation, we assessed the combinations of channels and power spectral features within each EEG frequency band that were linearly related with stimulus intensity. We show that noisy galvanic vestibular stimulation predominantly leads to a mild suppression of gamma power in lateral regions immediately after stimulation, followed by delayed increase in beta and gamma power in frontal regions approximately 20-25 s after stimulation ceased. Ongoing changes in the power of each oscillatory band throughout frontal, central/parietal, occipital and bilateral electrodes predicted the intensity of galvanic vestibular stimulation in a stimulus-dependent manner, demonstrating linear effects of stimulation on brain rhythms. We propose that modulation of neural oscillations is a potential mechanism for the previously-described cognitive

  14. Noisy galvanic vestibular stimulation modulates the amplitude of EEG synchrony patterns.

    Diana J Kim

    Full Text Available Noisy galvanic vestibular stimulation has been associated with numerous cognitive and behavioural effects, such as enhancement of visual memory in healthy individuals, improvement of visual deficits in stroke patients, as well as possibly improvement of motor function in Parkinson's disease; yet, the mechanism of action is unclear. Since Parkinson's and other neuropsychiatric diseases are characterized by maladaptive dynamics of brain rhythms, we investigated whether noisy galvanic vestibular stimulation was associated with measurable changes in EEG oscillatory rhythms within theta (4-7.5 Hz, low alpha (8-10 Hz, high alpha (10.5-12 Hz, beta (13-30 Hz and gamma (31-50 Hz bands. We recorded the EEG while simultaneously delivering noisy bilateral, bipolar stimulation at varying intensities of imperceptible currents - at 10, 26, 42, 58, 74 and 90% of sensory threshold - to ten neurologically healthy subjects. Using standard spectral analysis, we investigated the transient aftereffects of noisy stimulation on rhythms. Subsequently, using robust artifact rejection techniques and the Least Absolute Shrinkage Selection Operator regression and cross-validation, we assessed the combinations of channels and power spectral features within each EEG frequency band that were linearly related with stimulus intensity. We show that noisy galvanic vestibular stimulation predominantly leads to a mild suppression of gamma power in lateral regions immediately after stimulation, followed by delayed increase in beta and gamma power in frontal regions approximately 20-25 s after stimulation ceased. Ongoing changes in the power of each oscillatory band throughout frontal, central/parietal, occipital and bilateral electrodes predicted the intensity of galvanic vestibular stimulation in a stimulus-dependent manner, demonstrating linear effects of stimulation on brain rhythms. We propose that modulation of neural oscillations is a potential mechanism for the previously

  15. Gain and phase of perceived virtual rotation evoked by electrical vestibular stimuli.

    Peters, Ryan M; Rasman, Brandon G; Inglis, J Timothy; Blouin, Jean-Sébastien

    2015-07-01

    Galvanic vestibular stimulation (GVS) evokes a perception of rotation; however, very few quantitative data exist on the matter. We performed psychophysical experiments on virtual rotations experienced when binaural bipolar electrical stimulation is applied over the mastoids. We also performed analogous real whole body yaw rotation experiments, allowing us to compare the frequency response of vestibular perception with (real) and without (virtual) natural mechanical stimulation of the semicircular canals. To estimate the gain of vestibular perception, we measured direction discrimination thresholds for virtual and real rotations. Real direction discrimination thresholds decreased at higher frequencies, confirming multiple previous studies. Conversely, virtual direction discrimination thresholds increased at higher frequencies, implying low-pass filtering of the virtual perception process occurring potentially anywhere between afferent transduction and cortical responses. To estimate the phase of vestibular perception, participants manually tracked their perceived position during sinusoidal virtual and real kinetic stimulation. For real rotations, perceived velocity was approximately in phase with actual velocity across all frequencies. Perceived virtual velocity was in phase with the GVS waveform at low frequencies (0.05 and 0.1 Hz). As frequency was increased to 1 Hz, the phase of perceived velocity advanced relative to the GVS waveform. Therefore, at low frequencies GVS is interpreted as an angular velocity signal and at higher frequencies GVS becomes interpreted increasingly as an angular position signal. These estimated gain and phase spectra for vestibular perception are a first step toward generating well-controlled virtual vestibular percepts, an endeavor that may reveal the usefulness of GVS in the areas of clinical assessment, neuroprosthetics, and virtual reality. PMID:25925318

  16. Vestibular-Somatosensory Convergence in Head Movement Control During Locomotion after Long-Duration Space Flight

    Mulavara, Ajitkumar; Ruttley, Tara; Cohen, Helen; Peters, Brian; Miller, Chris; Brady, Rachel; Merkle, Lauren; Bloomberg, Jacob

    2010-01-01

    Exposure to the microgravity conditions of space flight induces adaptive modification in the control of vestibular-mediated reflexive head movement during locomotion after space flight. Space flight causes astronauts to be exposed to somatosensory adaptation in both the vestibular and body load-sensing (BLS) systems. The goal of these studies was to examine the contributions of vestibular and BLS-mediated somatosensory influences on head movement control during locomotion after long-duration space flight. Subjects were asked to walk on a treadmill driven at 1.8 m/s while performing a visual acuity task. Data were collected using the same testing protocol from three independent subject groups; 1) normal subjects before and after exposure to 30 minutes of 40% bodyweight unloaded treadmill walking, 2) bilateral labyrinthine deficient (LD) patients and 3) astronauts who performed the protocol before and after long duration space flight. Motion data from head and trunk segmental motion data were obtained to calculate the angular head pitch (HP) movements during walking trials while subjects performed the visual task, to estimate the contributions of vestibular reflexive mechanisms in HP movements. Results showed that exposure to unloaded locomotion caused a significant increase in HP movements, whereas in the LD patients the HP movements were significantly decreased. Astronaut subjects results showed a heterogeneous response of both increases and decreases in the amplitude of HP movement. We infer that BLS-mediated somatosensory input centrally modulates vestibular input and can adaptively modify head-movement control during locomotion. Thus, space flight may cause a central adaptation mediated by the converging vestibular and body load-sensing somatosensory systems.

  17. Effects of Vestibular Loss on Orthostatic Responses to Tilts in the Pitch Plane

    Wood, Scott J.; Serrador, Jorge M.; Black, F. Owen; Rupert,Angus H.; Schlegel, Todd T.

    2004-01-01

    The purpose of this study was to determine the extent to which vestibular loss might impair orthostatic responses to passive tilts in the pitch plane in human subjects. Data were obtained from six subjects having chronic bilateral vestibular loss and six healthy individuals matched for age, gender, and body mass index. Vestibular loss was assessed with a comprehensive battery including dynamic posturography, vestibulo-ocular and optokinetic reflexes, vestibular evoked myogenic potentials, and ocular counterrolling. Head up tilt tests were conducted using a motorized two-axis table that allowed subjects to be tilted in the pitch plane from either a supine or prone body orientation at a slow rate (8 deg/s). The sessions consisted of three tilts, each consisting of20 min rest in a horizontal position, tilt to 80 deg upright for 10 min, and then return to the horizontal position for 5 min. The tilts were performed in darkness (supine and prone) or in light (supine only). Background music was used to mask auditory orientation cues. Autonomic measurements included beat-to-beat recordings of blood pressure (Finapres), heart rate (ECG), cerebral blood flow velocity in the middle cerebral artery (transcranial Doppler), end tidal CO2, respiratory rate and volume (Respritrace), and stroke volume (impedance cardiography). For both patients and control subjects, cerebral blood flow appeared to exhibit the most rapid adjustment following transient changes in posture. Outside of a greater cerebral hypoperfusion in patients during the later stages of tilt, responses did not differ dramatically between the vestibular loss and control subjects, or between tilts performed in light and dark room conditions. Thus, with the 'exception of cerebrovascular regulation, we conclude that orthostatic responses during slow postural tilts are not substantially impaired in humans following chronic loss of vestibular function, a result that might reflect compensation by nonvisual graviceptor

  18. Sensitivity of Human Visual and Vestibular Cortical Regions to Egomotion-Compatible Visual Stimulation

    Cardin, Velia; Smith, Andrew T.

    2009-01-01

    The analysis and representation of visual cues to self-motion (egomotion) is primarily associated with cortical areas MST, VIP, and (recently) cingulate sulcus visual area (CSv). Various other areas, including visual areas V6 and V6A, and vestibular areas parietoinsular vestibular cortex (PIVC), putative area 2v (p2v), and 3aNv, are also potentially suited to processing egomotion (in some cases based on multisensory cues), but it is not known whether they are in fact involved in this process....

  19. Sinusoidal galvanic vestibular stimulation (sGVS) induces a vasovagal response in the rat

    Cohen, Bernard; Martinelli, Giorgio P.; Ogorodnikov, Dmitri; Xiang, Yongqing; Raphan, Theodore; Holstein, Gay R.; Yakushin, Sergei B.

    2011-01-01

    Blood pressure (BP) and heart rate (HR) were studied in isoflurane-anesthetized Long-Evans rats during sinusoidal galvanic vestibular stimulation (sGVS) and sinusoidal oscillation in pitch to characterize vestibular influences on autonomic control of BP and HR. sGVS was delivered binaurally via Ag/AgCl needle electrodes inserted over the mastoids at stimulus frequencies 0.008–0.4 Hz. Two processes affecting BP and HR were induced by sGVS: 1) a transient drop in BP (≈15–20 mmHg) and HR (≈3 bea...

  20. The role of radiology in the diagnosis and management of vestibular schwannoma

    Sriskandan, N., E-mail: neshe@doctors.org.u [Department of Radiology, Guy' s and St Thomas' NHS Foundation Trust, London (United Kingdom); Connor, S.E.J. [Department of Radiology, Guy' s and St Thomas' NHS Foundation Trust, London (United Kingdom); Department of Neuroradiology, King' s College Hospital NHS Foundation Trust, London (United Kingdom)

    2011-04-15

    The most frequent lesion identified at the cerebellopontine angle cistern and internal auditory meatus (IAM) is the vestibular schwannoma. Radiological features, the role of imaging in screening and follow-up, therapeutic approaches and appearances following treatment will be discussed. Other cerebellopontine angle lesions will be illustrated and an algorithm presented to help in the imaging differential diagnosis. Whilst lesions other than vestibular schwannomas are rarely isolated to the IAM, the key clinical and radiological features that should raise the possibility of alternative neoplastic and inflammatory diseases will be highlighted.