WorldWideScience

Sample records for Uranium-Molybdenum Fuels

  1. Corrosion Evaluation of RERTR Uranium Molybdenum Fuel

    Energy Technology Data Exchange (ETDEWEB)

    A K Wertsching

    2012-09-01

    As part of the National Nuclear Security Agency (NNSA) mandate to replace the use of highly enriched uranium (HEU) fuel for low enriched uranium (LEU) fuel, research into the development of LEU fuel for research reactors has been active since the late 1970’s. Originally referred to as the Reduced Enrichment for Research and Test Reactor (RERTR) program the new effort named Global Threat Reduction Initiative (GTRI) is nearing the goal of replacing the standard aluminum clad dispersion highly enriched uranium aluminide fuel with a new LEU fuel. The five domestic high performance research reactors undergoing this conversion are High Flux Isotope reactor (HFIR), Advanced Test Reactor (ATR), National Institute of Standards and Technology (NIST) Reactor, Missouri University Research Reactor (MURR) and the Massachusetts Institute of Technology Reactor II (MITR-II). The design of these reactors requires a higher neutron flux than other international research reactors, which to this point has posed unique challenges in the design and development of the new mandated LEU fuel. The new design utilizes a monolithic fuel configuration in order to obtain sufficient 235U within the LEU stoichoimetry to maintain the fission reaction within the domestic test reactors. The change from uranium aluminide dispersion fuel type to uranium molybdenum (UMo) monolithic configuration requires examination of possible corrosion issues associated with the new fuel meat. A focused analysis of the UMo fuel under potential corrosion conditions, within the ATR and under aqueous storage indicates a slow and predictable corrosion rate. Additional corrosion testing is recommended for the highest burn-up fuels to confirm observed corrosion rate trends. This corrosion analysis will focus only on the UMo fuel and will address corrosion of ancillary components such as cladding only in terms of how it affects the fuel. The calculations and corrosion scenarios are weighted with a conservative bias to provide additional confidence with the results. The actual corrosion rates of UMo fuel is very likely to be lower than assumed within this report which can be confirmed with additional testing.

  2. Fabrication results of gamma uranium-molybdenum alloys fuels

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Fabio Branco Vaz de; Carvalho, Elita F. Urano de [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Centro do Combustivel Nuclear], e-mail: fabio@ipen.br; Riella, Humberto Gracher [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Quimica], e-mail: riella@enq.ufsc.br

    2009-07-01

    This paper describes the results on the development of the technology of the fabrication of the gamma uranium molybdenum alloys in IPEN-CNEN-SP, and presents some of their more recent experimental results. The importance of this class of fuels relies on the fact that they are the fuels considered to be loaded in the first Brazilian Multipurpose Reactor, RMB, stated as one of the tasks in the Nuclear Brazilian Plan, PNB. The study of {gamma} UMo fuels started with their preparation by the arc and induction melting technique, followed by thermal treatment to the obtention of a better degree of homogenization, under argon atmosphere at 1000 deg C. Additions of Mo varied from 5 to 10% weight. Samples of both classes of fuels were characterized mainly by X-ray diffraction, density, SEM and optical microscopy with image analysis, The main results of the alloy's production and an emphasis of the use of XRD data in the gamma-UMo powder obtention process are presented and emphasized here. The results enabled us to study future methodologies to avoid most of the problems encountered in the recent technological approach to the fabrication of the alloys of UMo, which will lead to the production of materials with best efficiency and quality. (author)

  3. Irradiation performance of uranium-molybdenum alloy dispersion fuels

    International Nuclear Information System (INIS)

    The U-Mo-Al dispersion fuels of Material Test Reactors (MTR) are analyzed in terms of their irradiation performance. The irradiation performance aspects are associated to the neutronic and thermal hydraulics aspects to propose a new core configuration to the IEA-R1 reactor of IPEN-CNEN/SP using U-Mo-Al fuels. Core configurations using U-10Mo-Al fuels with uranium densities variable from 3 to 8 gU/cm3 were analyzed with the computational programs Citation and MTRCR-IEA R1. Core configurations for fuels with uranium densities variable from 3 to 5 gU/cm3 showed to be adequate to use in IEA-R1 reactor e should present a stable in reactor performance even at high burn-up. (author)

  4. CONCEPTUAL PROCESS DESCRIPTION FOR THE MANUFACTURE OF LOW-ENRICHED URANIUM-MOLYBDENUM FUEL

    Energy Technology Data Exchange (ETDEWEB)

    Daniel M. Wachs; Curtis R. Clark; Randall J. Dunavant

    2008-02-01

    The National Nuclear Security Agency Global Threat Reduction Initiative (GTRI) is tasked with minimizing the use of high-enriched uranium (HEU) worldwide. A key component of that effort is the conversion of research reactors from HEU to low-enriched uranium (LEU) fuels. The GTRI Convert Fuel Development program, previously known as the Reduced Enrichment for Research and Test Reactors program was initiated in 1978 by the United States Department of Energy to develop the nuclear fuels necessary to enable these conversions. The program cooperates with the research reactors’ operators to achieve this goal of HEU to LEU conversion without reduction in reactor performance. The programmatic mandate is to complete the conversion of all civilian domestic research reactors by 2014. These reactors include the five domestic high-performance research reactors (HPRR), namely: the High Flux Isotope Reactor at the Oak Ridge National Laboratory, the Advanced Test Reactor at the Idaho National Laboratory, the National Bureau of Standards Reactor at the National Institute of Standards and Technology, the Missouri University Research Reactor at the University of Missouri–Columbia, and the MIT Reactor-II at the Massachusetts Institute of Technology. Characteristics for each of the HPRRs are given in Appendix A. The GTRI Convert Fuel Development program is currently engaged in the development of a novel nuclear fuel that will enable these conversions. The fuel design is based on a monolithic fuel meat (made from a uranium-molybdenum alloy) clad in Al-6061 that has shown excellent performance in irradiation testing. The unique aspects of the fuel design, however, necessitate the development and implementation of new fabrication techniques and, thus, establishment of the infrastructure to ensure adequate fuel fabrication capability. A conceptual fabrication process description and rough estimates of the total facility throughput are described in this document as a basis for establishing preconceptual fabrication facility designs.

  5. Properties of low content uranium-molybdenum alloys which may be used as nuclear fuels

    International Nuclear Information System (INIS)

    Metallurgical properties are given in this report of uranium-molybdenum alloys containing 0,5 to 3 per cent of molybdenum. Since some of these alloys are used in EDF power reactors are given: briefly the operating conditions imposed on nuclear fuels: maximum temperature, temperature gradient and external pressure. In the first part are considered the structural properties of the alloys correlation with the phase transformation kinetics; a description is given of the effects of certain physico-metallurgical factors on the morphology and the crystalline structure of the materials: - solidification conditions and the heredity of the ? structure, - cooling rate at the transformation points, - whether or not the intermediate ? ? ? transformation is suppressed In the second part we show how a knowledge of the phase transformation processes has made it possible to define the optimum preparation conditions for these materials in the form of fuel tubes intended for the EDF reactors: casting conditions, controlled cooling treatments, weldability. In the third part we study the thermal, stability during the long duration high temperature treatments and the cycles in the two zones of the diagram ? + ?; ? + ? the effects of the morphology (in particular the two types of ? pseudo-grains observed) and of the cooling rate during the transformation point transitions are described. In the fourth part are discussed the mechanical properties: resistance to a tractive force, resistance to creep, resilience. These properties can also be affected by the ? structure heredity and by the cooling rate to which the alloy has been subjected. In conclusion we discuss the reasons which led to the choice of some of these alloys for the first EDF reactors in particular the advantages of their high creep resistance between 450 and 600 deg C for use in the form of tubes subjected to an external pressure. (authors)

  6. Qualification of uranium-molybdenum alloy fuel - conclusions of an international workshop

    International Nuclear Information System (INIS)

    Thirty-one participants representing 21 reactors, fuel developers, fuel fabricators, and fuel reprocessors in 11 countries discussed the requirements for qualification of U-MO alloy fuel at a workshop held at Argonne National Laboratory on January 17--18, 2000. Consensus was reached that the qualification plans of the US RERTR program and the French U-Mo fuel development program are valid. The items to be addressed during qualification are summarized in the paper

  7. Development of a high density fuel based on uranium-molybdenum alloys with high compatibility in high temperatures

    International Nuclear Information System (INIS)

    This work has as its objective the development of a high density and low enriched nuclear fuel based on the gamma-UMo alloys, for utilization where it is necessary satisfactory behavior in high temperatures, considering its utilization as dispersion. For its accomplishment, it was started from the analysis of the RERTR ('Reduced Enrichment for Research and Test Reactors') results and some theoretical works involving the fabrication of gamma-uranium metastable alloys. A ternary addition is proposed, supported by the properties of binary and ternary uranium alloys studied, having the objectives of the gamma stability enhancement and an ease to its powder fabrication. Alloys of uranium-molybdenum were prepared with 5 to 10% Mo addition, and 1 and 3% of ternary, over a gamma U7Mo binary base alloy. In all the steps of its preparation, the alloys were characterized with the traditional techniques, to the determination of its mechanical and structural properties. To provide a process for the alloys powder obtention, its behavior under hydrogen atmosphere were studied, in thermo analyser-thermo gravimeter equipment. Temperatures varied from the ambient up to 1000 deg C, and times from 15 minutes to 16 hours. The results validation were made in a semi-pilot scale, where 10 to 50 g of powders of some of the alloys studied were prepared, under static hydrogen atmosphere. Compatibility studies were conducted by the exposure of the alloys under oxygen and aluminum, to the verification of possible reactions by means of differential thermal analysis. The alloys were exposed to a constant heat up to 1000 deg C, and their performances were evaluated in terms of their reaction resistance. On the basis of the results, it was observed that ternary additions increases the temperatures of the reaction with aluminum and oxidation, in comparison with the gamma UMo binaries. A set of conditions to the hydration of the alloys were defined, more restrictive in terms of temperature, time and pre-treatment to stabilize the gamma structure. The addition of a bit low ternary excess and formation of an intergranular phase, the increase in stability, it was demonstrated that there is not a damage in the formation of their powders.(author)

  8. Irradiation performance of uranium-molybdenum alloy dispersion fuels; Desempenho sob irradiacao de elementos combustiveis do tipo U-Mo

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Cirila Tacconi de

    2005-07-01

    The U-Mo-Al dispersion fuels of Material Test Reactors (MTR) are analyzed in terms of their irradiation performance. The irradiation performance aspects are associated to the neutronic and thermal hydraulics aspects to propose a new core configuration to the IEA-R1 reactor of IPEN-CNEN/SP using U-Mo-Al fuels. Core configurations using U-10Mo-Al fuels with uranium densities variable from 3 to 8 gU/cm{sup 3} were analyzed with the computational programs Citation and MTRCR-IEA R1. Core configurations for fuels with uranium densities variable from 3 to 5 gU/cm{sup 3} showed to be adequate to use in IEA-R1 reactor e should present a stable in reactor performance even at high burn-up. (author)

  9. Conceptual Process for the Manufacture of Low-Enriched Uranium/Molybdenum Fuel for the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sease, J.D.; Primm, R.T. III; Miller, J.H.

    2007-09-30

    The U.S. nonproliferation policy 'to minimize, and to the extent possible, eliminate the use of HEU in civil nuclear programs throughout the world' has resulted in the conversion (or scheduled conversion) of many of the U.S. research reactors from high-enriched uranium (HEU) to low-enriched uranium (LEU). A foil fuel appears to offer the best option for using a LEU fuel in the High Flux Isotope Reactor (HFIR) without degrading the performance of the reactor. The purpose of this document is to outline a proposed conceptual fabrication process flow sheet for a new, foil-type, 19.75%-enriched fuel for HFIR. The preparation of the flow sheet allows a better understanding of the costs of infrastructure modifications, operating costs, and implementation schedule issues associated with the fabrication of LEU fuel for HFIR. Preparation of a reference flow sheet is one of the first planning steps needed in the development of a new manufacturing capacity for low enriched fuels for U.S. research and test reactors. The flow sheet can be used to develop a work breakdown structure (WBS), a critical path schedule, and identify development needs. The reference flow sheet presented in this report is specifically for production of LEU foil fuel for the HFIR. The need for an overall reference flow sheet for production of fuel for all High Performance Research Reactors (HPRR) has been identified by the national program office. This report could provide a starting point for the development of such a reference flow sheet for a foil-based fuel for all HPRRs. The reference flow sheet presented is based on processes currently being developed by the national program for the LEU foil fuel when available, processes used historically in the manufacture of other nuclear fuels and materials, and processes used in other manufacturing industries producing a product configuration similar to the form required in manufacturing a foil fuel. The processes in the reference flow sheet are within the bounds of known technology and are adaptable to the high-volume production required to process {approx} 2.5 to 4 tons of U/Mo and produce {approx}16,000 flat plates for U.S. reactors annually ({approx}10,000 of which are needed for HFIR operations). The reference flow sheet is not intended to necessarily represent the best or the most economical way to manufacture a LEU foil fuel for HFIR but simply represents a 'snapshot' in time of technology and is intended to identify the process steps that will likely be required to manufacture a foil fuel. Changes in some of the process steps selected for the reference flow sheet are inevitable; however, no one step or series of steps dominates the overall flow sheet requirements. A result of conceptualizing a reference flow sheet was the identification of the greater number of steps required for a foil process when compared to the dispersion fuel process. Additionally, in most of the foil processing steps, bare uranium must be handled, increasing the complexity of these processing areas relative to current operations. Based on a likely total cost of a few hundred million dollars for a new facility, it is apparent that line item funding will be necessary and could take as much as 8 to 10 years to complete. The infrastructure cost could exceed $100M.

  10. Spectrographic analysis of uranium-molybdenum alloys

    International Nuclear Information System (INIS)

    A spectrographic method of analysis has been developed for uranium-molybdenum alloys containing up to 10 % Mo. The carrier distillation technique, with gallium oxide and graphite as carriers, is used for the semiquantitative determination of Al, Cr, Fe, Ni and Si, involving the conversion of the samples into oxides. As a consequence of the study of the influence of the molybdenum on the line intensities, it is useful to prepare only one set of standards with 0,6 % MoO3. Total burning excitation is used for calcium, employing two sets of standards with 0,6 and 7.5 MoO3. (Author) 5 refs

  11. Development of a high density fuel based on uranium-molybdenum alloys with high compatibility in high temperatures; Desenvolvimento de um combustivel de alta densidade a base das ligas uranio-molibdenio com alta compatibilidade em altas temperaturas

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Fabio Branco Vaz de

    2008-07-01

    This work has as its objective the development of a high density and low enriched nuclear fuel based on the gamma-UMo alloys, for utilization where it is necessary satisfactory behavior in high temperatures, considering its utilization as dispersion. For its accomplishment, it was started from the analysis of the RERTR ('Reduced Enrichment for Research and Test Reactors') results and some theoretical works involving the fabrication of gamma-uranium metastable alloys. A ternary addition is proposed, supported by the properties of binary and ternary uranium alloys studied, having the objectives of the gamma stability enhancement and an ease to its powder fabrication. Alloys of uranium-molybdenum were prepared with 5 to 10% Mo addition, and 1 and 3% of ternary, over a gamma U7Mo binary base alloy. In all the steps of its preparation, the alloys were characterized with the traditional techniques, to the determination of its mechanical and structural properties. To provide a process for the alloys powder obtention, its behavior under hydrogen atmosphere were studied, in thermo analyser-thermo gravimeter equipment. Temperatures varied from the ambient up to 1000 deg C, and times from 15 minutes to 16 hours. The results validation were made in a semi-pilot scale, where 10 to 50 g of powders of some of the alloys studied were prepared, under static hydrogen atmosphere. Compatibility studies were conducted by the exposure of the alloys under oxygen and aluminum, to the verification of possible reactions by means of differential thermal analysis. The alloys were exposed to a constant heat up to 1000 deg C, and their performances were evaluated in terms of their reaction resistance. On the basis of the results, it was observed that ternary additions increases the temperatures of the reaction with aluminum and oxidation, in comparison with the gamma UMo binaries. A set of conditions to the hydration of the alloys were defined, more restrictive in terms of temperature, time and pre-treatment to stabilize the gamma structure. The addition of a bit low ternary excess and formation of an intergranular phase, the increase in stability, it was demonstrated that there is not a damage in the formation of their powders.(author)

  12. Uranium-Molybdenum Dissolution Flowsheet Studies

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, R. A. [Savannah River Site (SRS), Aiken, SC (United States)

    2007-03-01

    The Super Kukla (SK) Prompt Burst Reactor operated at the Nevada Test Site from 1964 to 1978. The SK material is a uranium-molybdenum (U-Mo) alloy material of 90% U/10% Mo by weight at approximately 20% 235U enrichment. H-Canyon Engineering (HCE) requested that the Savannah River National Lab (SRNL) define a flowsheet for safely and efficiently dissolving the SK material. The objective is to dissolve the material in nitric acid (HNO3) in the H-Canyon dissolvers to a U concentration of 15-20 g/L (3-4 g/L 235U) without the formation of precipitates or the generation of a flammable gas mixture. Testing with SK material validated the applicability of dissolution and solubility data reported in the literature for various U and U-Mo metals. Based on the data, the SK material can be dissolved in boiling 3.0-6.0 M HNO3 to a U concentration of 15-20 g/L and a corresponding Mo concentration of 1.7-2.2 g/L. The optimum flowsheet will use 4.0-5.0 M HNO3 for the starting acid. Any nickel (Ni) cladding associated with the material will dissolve readily. After dissolution is complete, traditional solvent extraction flowsheets can be used to recover and purify the U. Dissolution rates for the SK material are consistent with those reported in the literature and are adequate for H-Canyon processing. When the SK material dissolved at 70-100 o C in 1-6 M HNO3, the reaction bubbled vigorously and released nitrogen oxide (NO) and nitrogen dioxide (NO2) gas. Gas generation tests in 1 M and 2 M HNO3 at 100 o C generated less than 0.1 volume percent hydrogen (H2) gas. It is known that higher HNO3 concentrations are less favorable for H2 production. All tests at 70-100 o C produced sufficient gas to mix the solutions without external agitation. At room temperature in 5 M HNO3, the U-Mo dissolved slowly and the U-laden solution sank to the bottom of the dissolution vessel because of its greater density. The effect of the density difference insures that the SK material cannot dissolve and concentrate within the charge bundles. Solubility behavior of the SK material during dissolution at 70 o C reflected data reported in the literature for 100 o C. When solutions containing solids at 70 o C were heated to 105 o C, the solids dissolved. After 21 days, the samples that had been heated closely resembled the non-heated ones with respect to solids content. Super-saturated solutions of U-Mo have been produced which can be stable for more than 10 days, but these conditions are outside of the bounds of the recommended flowsheet. It is not known how the different dissolution pathways affect solution stability, but the results agree with the fact that solubility should not be affected by the dissolution pathway. Therefore, the literature data should be used as the bounding condition for solubility. Dissolution of the SK material consumed 2.8-8.0 moles of acid per mole of metal dissolved, which agrees with behavior reported elsewhere for U and U-Mo metals. The acid consumption values confirmed that a starting acid concentration in the dissolver of 4.0-5.0 M HNO3 will allow H-Canyon Operations to avoid adjusting the feed from the dissolver prior to solvent extraction while providing maximum operating margin for avoiding precipitate formation.

  13. Crystal structures of cerium molybdenum and uranium molybdenum heteropoly acids

    International Nuclear Information System (INIS)

    Structure of the cerium molybdenum anion [CeMo12O42]8-, for which a high coordination number of the central atom (12) and combination of MoO6 octahedra along the faces are characteristic, was given for the first time in a brief communication for the example of the salt (NH4)2H6[CeMo12O42].12H2O. Later the crystal structures of the copper salt of uranium molybdenum acid and its complexes with Er3+ and Th4+ anions were determined. This work is devoted to the x-ray structural study of the cerium molybdenum (CMA) and uranium molybdenum (UMA) heteropoly acids (HPA). A short distance between oxygen atoms of two neighboring polyanions has been found, which allows the suggestion of the presence of a hydrogen bond between them. Distribution of the water molecules in the crystals of the acids is statistical

  14. New Phase in the System Uranium-Molybdenum-Silicon

    International Nuclear Information System (INIS)

    During the investigation of the ternary system uranium-molybdenum-silicon, a new phase with the composition U4Mo5-Si3 was formed. Structure determination exclusively based on the powder data showed that the particular phase belongs to the hexagonal system. Space group P6/mmc or one of the sub-groups is indicated. Unit cell dimensions were found to be a = 5.370A, c = 8 . 582A. A comparison of calculated and observed intensities shows close resemblance to the structure of the Laves phases of the C14-type. (author)

  15. Multipurpose recovery techniques of uranium-molybdenum intergrown ores at abroad

    International Nuclear Information System (INIS)

    The multipurpose separation and recovery techniques of the uranium-molybdenum inter-grown ores at abroad are summarized, which include acid curing, pressure alkaline leaching as well as methods of ion exchange, extraction, active carbon absorption and precipitation at industry, and their state of research development. (authors)

  16. Application of ion exchange technology to the dump leaching of hydrothermal volcanic uranium-molybdenum ore

    International Nuclear Information System (INIS)

    Taking Shangmajiazi hydrothermal volcanic type uranium-molybdenum ore dump leaching as an example, this paper expounds the principle and application of ion exchange technology employed in extracting uranium from leaching liquor, compares two kinds leaching liquor, and briefly presents mechanism and treatment of the poisoning of resin molybdenum. All these are significant for developing similar ore-deposit. (authors)

  17. Basic design of a rotating disk centrifugal atomizer for uranium-molybdenum alloys

    International Nuclear Information System (INIS)

    One of the most used techniques to produce metallic powders is the centrifugal atomization with a rotating disk. This process is employ to fabricate ductile metallic particles of uranium-molybdenum alloys (typically U- 7 % Mo, by weight) for nuclear fuel elements for research and testing reactors. These alloys exhibit a face-centered cubic structure (? phase) which is stable above 700 C degrees and can be retained at room temperature. The rotating disk centrifugal atomization allows a rapid solidification of spherical metallic droplets of about 40 to 100 ?m, considered adequate to manufacture nuclear fuel elements. Besides the thermo-physical properties of both the alloy and the cooling gas, the main parameters of the process are the radius of the disk (R), the diameter of the atomization chamber (D), the disk rotation speed (?), the liquid volume flow rate (Q) and the superheating of the liquid (?T). In this work, they were applied approximate analytical models to estimate the optimal geometrical and operative parameters to obtain spherical metallic powder of U- 7 % Mo alloy. Three physical phenomena were considerate: the liquid metal flow along the surface of the disk, the fragmentation and spheroidization of the droplets and the cooling and solidification of the droplets. The principal results are the more suitable gas is helium; R ? 20 mm; D ? 1 m; ? 20,000 - 50,000 rpm; Q ? 4 - 10 cm3/s; ?T ? 100 - 200 C degrees. By applying the relevant non-dimensional parameters governing the main physical phenomena, the conclusion is that the more appropriate non-radioactive metal to simulate the atomization of U- 7 % Mo is gold

  18. Environmental impact study report, Ben Lomond uranium-molybdenum project, Northern Queensland

    International Nuclear Information System (INIS)

    A significant uranium-molybdenum mineralisation has been discovered in Northern Queensland, west of Townsville. Granting of a mining lease is subject to the compilation and acceptance of an environmental impact study report. The report describes the proposed mining and milling project, the existing environment and the impact of the proposal on the environment. Two main environmental safeguards incorporated into the project are a comprehensive water management scheme and a progressive site rehabilitation

  19. Spectrographic analysis of uranium-molybdenum alloys; Analisis espectrografico de aleaciones uranio-molibdeno

    Energy Technology Data Exchange (ETDEWEB)

    Roca, M.

    1967-07-01

    A spectrographic method of analysis has been developed for uranium-molybdenum alloys containing up to 10 % Mo. The carrier distillation technique, with gallium oxide and graphite as carriers, is used for the semiquantitative determination of Al, Cr, Fe, Ni and Si, involving the conversion of the samples into oxides. As a consequence of the study of the influence of the molybdenum on the line intensities, it is useful to prepare only one set of standards with 0,6 % MoO{sub 3}. Total burning excitation is used for calcium, employing two sets of standards with 0,6 and 7.5 MoO{sub 3}. (Author) 5 refs.

  20. Surface engineering of low enriched uranium-molybdenum

    Science.gov (United States)

    Leenaers, A.; Van den Berghe, S.; Detavernier, C.

    2013-09-01

    Recent attempts to qualify the LEU(Mo) dispersion plate fuel with Si addition to the Al matrix up to high power and burn-up have not yet been successful due to unacceptable fuel plate swelling at a local burn-up above 60% 235U. The root cause of the failures is clearly related directly to the formation of the U(Mo)-Al(Si) interaction layer. Excessive formation of these layers around the fuel kernels severely weakens the local mechanical integrity and eventually leads to pillowing of the plate. In 2008, SCK·CEN has launched the SELENIUM U(Mo) dispersion fuel development project in an attempt to find an alternative way to reduce the interaction between U(Mo) fuel kernels and the Al matrix to a significantly low level: by applying a coating on the U(Mo) kernels. Two fuel plates containing 8gU/cc U(Mo) coated with respectively 600 nm Si and 1000 nm ZrN in a pure Al matrix were manufactured. These plates were irradiated in the BR2 reactor up to a maximum heat flux of 470 W/cm2 until a maximum local burn-up of approximately 70% 235U (˜50% plate average) was reached. Awaiting the PIE results, the advantages of applying a coating are discussed in this paper through annealing experiments and TRIM (the Transport of Ions in Matter) calculations.

  1. Surface engineering of low enriched uranium–molybdenum

    Energy Technology Data Exchange (ETDEWEB)

    Leenaers, A., E-mail: aleenaer@sckcen.be [Nuclear Materials Science Institute, SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Van den Berghe, S. [Nuclear Materials Science Institute, SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Detavernier, C. [Department of Solid State Sciences, Ghent University, Krijgslaan 281/S1, 9000 Ghent (Belgium)

    2013-09-15

    Recent attempts to qualify the LEU(Mo) dispersion plate fuel with Si addition to the Al matrix up to high power and burn-up have not yet been successful due to unacceptable fuel plate swelling at a local burn-up above 60% {sup 235}U. The root cause of the failures is clearly related directly to the formation of the U(Mo)–Al(Si) interaction layer. Excessive formation of these layers around the fuel kernels severely weakens the local mechanical integrity and eventually leads to pillowing of the plate. In 2008, SCK·CEN has launched the SELENIUM U(Mo) dispersion fuel development project in an attempt to find an alternative way to reduce the interaction between U(Mo) fuel kernels and the Al matrix to a significantly low level: by applying a coating on the U(Mo) kernels. Two fuel plates containing 8gU/cc U(Mo) coated with respectively 600 nm Si and 1000 nm ZrN in a pure Al matrix were manufactured. These plates were irradiated in the BR2 reactor up to a maximum heat flux of 470 W/cm{sup 2} until a maximum local burn-up of approximately 70% {sup 235}U (?50% plate average) was reached. Awaiting the PIE results, the advantages of applying a coating are discussed in this paper through annealing experiments and TRIM (the Transport of Ions in Matter) calculations.

  2. PURIFICATION OF URANIUM FROM URANIUM/MOLYBDENUM ALLOY

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, R; Ann Visser, A; James Laurinat, J

    2007-10-15

    The Savannah River Site will recycle a nuclear fuel comprised of 90% uranium-10% molybdenum by weight. The process flowsheet calls for dissolution of the material in nitric acid to a uranium concentration of 15-20 g/L without the formation of precipitates. The dissolution will be followed by separation of uranium from molybdenum using solvent extraction with 7.5% tributylphosphate in n-paraffin. Testing with the fuel validated dissolution and solubility data reported in the literature. Batch distribution coefficient measurements were performed for the extraction, strip and wash stages with particular focus on the distribution of molybdenum.

  3. Relationship between uranium-molybdenum, fluorite and gold deposits within provinces of continental volcanicity

    International Nuclear Information System (INIS)

    The article gives a comparative description of and the age relationships between uranium-molybdenum, gold and fluorite mineralizations in the areas of development of adhesite-diorite and liparite-granite vulcanoplutonic formations, which are most fully and intensively manifest in the intra-anticlinal and median blocks of folded regions in the final stages of geosynclinal development or during the final stages of tectono-magmatic activation. These formations usually fill vulcano-tectonic depression structures - overlaid troughs and inherited delections. The geological and geochemical data are evidence of the close temporal link between the hydrothermal process of ore formation and the type and scale of manifestations of the vulcano-plutonic magmatism that is responsible for the general geochemical features of the ores of deposits of various types. The formation of gold, fluorite and uranium-molybdenum deposits occurred immediately after the completion of effusive and intrusive magmatism during a single metallogenic cycle. The spatial distribution of the ore fields and deposits depends chiefly on the peculiarities of the tectonic make-up of the depression structures, and also on the type and scale of the manifestations of vulcano-plutonic magmatism. (B.Ya.)

  4. SASSE MODELING OF A URANIUM MOLYBDENUM SEPARATION FLOWSHEET

    Energy Technology Data Exchange (ETDEWEB)

    Laurinat, J

    2007-05-31

    H-Canyon Engineering (HCE) is evaluating the feasibility of processing material from the Super Kukla Prompt Burst Reactor, which operated at the Nevada Test Site from 1964 to 1978. This material is comprised of 90 wt % uranium (U) (at approximately 20% 235U enrichment) alloyed with 10 wt % molybdenum (Mo). The objective is to dissolve the material in nitric acid (HNO{sub 3}) in the H-Canyon dissolvers and then to process the dissolved material through H-Canyon First and Second Cycle solvent extraction. The U product from Second Cycle will be sent to the highly enriched uranium (HEU) blend down program. In the blend down program, enriched U from the 1EU product stream will be blended with natural U at a ratio of 1 part enriched U per 3.5 parts natural U to meet a reactor fuel specification of 4.95% 235U before being shipped for use by the Tennessee Valley Authority (TVA) in its nuclear plants. The TVA specification calls for <200 mg Mo/g U (200 ppm). Since natural U has about 10 mg Mo/g U, the required purity of the 1EU product prior to blending is about 800 mg Mo/g U, allowing for uncertainties. HCE requested that the Savannah River National Laboratory (SRNL) define a flowsheet for the safe and efficient processing of the U-10Mo material. This report presents a computational model of the solvent extraction portion of the proposed flowsheet. The two main objectives of the computational model are to demonstrate that the Mo impurity requirement can be met and to show that the solvent feed rates in the proposed flowsheet, in particular to 1A and 1D Banks, are adequate to prevent refluxing of U and thereby ensure nuclear criticality safety. SASSE (Spreadsheet Algorithm for Stagewise Solvent Extraction), a Microsoft Excel spreadsheet that supports Argonne National Laboratory's proprietary AMUSE (Argonne Model for Universal Solvent Extraction) code, was selected to model the U/Mo separation flowsheet. SASSE spreadsheet models of H-Canyon First and Second Cycle solvent extraction show that a standard unirradiated fuel flowsheet is capable of separating U from Mo in dissolved solutions of a U/Mo alloy. The standard unirradiated fuel flowsheet is used, except for increases in solvent feed rates to prevent U refluxing and thereby ensure nuclear criticality safety and substitution of higher HNO{sub 3} concentrations for aluminum nitrate (Al(NO{sub 3})){sub 3} in the feed to 1A Bank. (Unlike Savanah River Site (SRS) fuels, the U/Mo material contains no aluminum (Al). As a result, higher HNO3 concentrations are required in the 1AF to provide the necessary salting.) The TVA limit for the final blended product is 200 {micro}g Mo/g U, which translates to approximately 800 mg Mo/g U for the Second Cycle product solution. SASSE calculations give a Mo impurity level of 4 {micro}g Mo/g U in the Second Cycle product solution, conservatively based on Mo organic-to-aqueous distributions measured during minibank testing for previous processing of Piqua reactor fuel. The calculated impurity level is slightly more than two orders of magnitude lower than the required level. The Piqua feed solution contained a significant concentration of Al(NO{sub 3}){sub 3}, which is not present in the feed solution for the proposed flowsheet. Measured distribution data indicate that, without Al(NO{sub 3}){sub 3} or other salting agents present, Mo extracts into the organic phase to a much lesser extent, so that the overall U/Mo separation is better and the Mo impurities in the Second Cycle product drop to negligible concentrations. The 1DF U concentration of 20 g/L specified by the proposed flowsheet requires an increased 1DX organic feed rate to satisfy H-Canyon Double Contingency Analysis (DCA) guidelines for the prevention of U refluxing. The ranges for the 1AX, 1BS, and 1DX organic flow rates in the proposed flowsheet are set so that the limiting ratios of organic/aqueous flow rates exactly meet the minimum values specified by the DCA.

  5. SASSE MODELING OF A URANIUM MOLYBDENUM SEPARATION FLOWSHEET

    International Nuclear Information System (INIS)

    H-Canyon Engineering (HCE) is evaluating the feasibility of processing material from the Super Kukla Prompt Burst Reactor, which operated at the Nevada Test Site from 1964 to 1978. This material is comprised of 90 wt % uranium (U) (at approximately 20% 235U enrichment) alloyed with 10 wt % molybdenum (Mo). The objective is to dissolve the material in nitric acid (HNO3) in the H-Canyon dissolvers and then to process the dissolved material through H-Canyon First and Second Cycle solvent extraction. The U product from Second Cycle will be sent to the highly enriched uranium (HEU) blend down program. In the blend down program, enriched U from the 1EU product stream will be blended with natural U at a ratio of 1 part enriched U per 3.5 parts natural U to meet a reactor fuel specification of 4.95% 235U before being shipped for use by the Tennessee Valley Authority (TVA) in its nuclear plants. The TVA specification calls for 3 concentrations for aluminum nitrate (Al(NO3))3 in the feed to 1A Bank. (Unlike Savanah River Site (SRS) fuels, the U/Mo material contains no aluminum (Al). As a result, higher HNO3 concentrations are required in the 1AF to provide the necessary salting.) The TVA limit for the final blended product is 200 (micro)g Mo/g U, which translates to approximately 800 mg Mo/g U for the Second Cycle product solution. SASSE calculations give a Mo impurity level of 4 (micro)g Mo/g U in the Second Cycle product solution, conservatively based on Mo organic-to-aqueous distributions measured during minibank testing for previous processing of Piqua reactor fuel. The calculated impurity level is slightly more than two orders of magnitude lower than the required level. The Piqua feed solution contained a significant concentration of Al(NO3)3, which is not present in the feed solution for the proposed flowsheet. Measured distribution data indicate that, without Al(NO3)3 or other salting agents present, Mo extracts into the organic phase to a much lesser extent, so that the overall U/Mo separation is better and the Mo impurities in the Second Cycle product drop to negligible concentrations. The 1DF U concentration of 20 g/L specified by the proposed flowsheet requires an increased 1DX organic feed rate to satisfy H-Canyon Double Contingency Analysis (DCA) guidelines for the prevention of U refluxing. The ranges for the 1AX, 1BS, and 1DX organic flow rates in the proposed flowsheet are set so that the limiting ratios of organic/aqueous flow rates exactly meet the minimum values specified by the DCA

  6. Study of ??? and ??? transformations in low content uranium-molybdenum alloys

    International Nuclear Information System (INIS)

    Plots of the TTT graphs corresponding to the ??? and ??? transformations have been established for two uranium-molybdenum alloys containing 1.1 and 2.1 per cent by weight of molybdenum. These TTT curves have the characteristics of the transformations due to germination and growth, however: - they are flat and almost linear in the ??? zone whereas they have the usual C shape in the ??? zone; - the incubation periods for the ??? transformation lengthen rapidly with increasing temperature of transformation; those for the ??? transformation are very short. - the curves for the ??? transformations exhibit no continuous solution at a temperature of 645 C. The beginning of the transformations in the three zones (? + ?), (? + ?), (? + ?') can be represented by a single C-shaped; - the distance between the curves at the beginning and at the end of the ??? transformation gets progressively smaller as the transformation temperature increases. A delay in the transformation has been observed when the alloys have undergone a homogenizing treatment (950 C) which leads to a large-grain ? structure. (author)

  7. Application of comprehensive geophysical and geochemical survey method in the exploration of uranium-molybdenum deposit 460

    International Nuclear Information System (INIS)

    This paper summarized the application effect of geophysical and geochemical survey method in uranium-molybdenum deposit 460. It stress on illustrating the effects of induced current middle gradient, high precision magnetic survey and gravity survey method to identify the distribution features of fracture, volcano structure and sub-rhyolite porphyry. Through verifying the mineralization caused anomaly which measured by activated charcoal, gamma, uranium content and secondary halo in soil with borehole, good prospecting result was achieved. Based on the above application effect, the paper presented some helpful prospection method combination. (authors)

  8. Complex plasmochemical processing of solid fuel

    OpenAIRE

    Vladimir Messerle; Alexander Ustimenko

    2012-01-01

    Technology of complex plasmaochemical processing of solid fuel by Ecibastuz bituminous and Turgay brown coals is presented. Thermodynamic and experimental study of the technology was fulfilled. Use of this technology allows producing of synthesis gas from organic mass of coal and valuable components (technical silicon, ferrosilicon, aluminum and silicon carbide and microelements of rare metals: uranium, molybdenum, vanadium etc.) from mineral mass of coal. Produced a high-calorific synthesis ...

  9. Study of the quenching and subsequent return to room temperature of uranium-chromium, uranium-iron, and uranium-molybdenum alloys containing only small amounts of the alloying element

    International Nuclear Information System (INIS)

    By means of an apparatus which makes possible thermal pre-treatments in vacuo, quenching carried out in a high purity argon atmosphere, and simultaneous recording of time temperature cooling and thermal contraction curves, the author has examined the transformations which occur in uranium-chromium, uranium-iron and uranium-molybdenum alloys during their quenching and subsequent return to room temperature. For uranium-chromium and uranium-iron alloys, the temperature at which the ? ? ? transformation starts varies very little with the rate of cooling. For uranium-molybdenum alloys containing 2,8 atom per cent of Mo, this temperature is lowered by 120 deg. C for a cooling rate of 500 deg. C/mn. The temperature at which the ? ? ? transformation starts is lowered by 170 deg. C for a cooling rate of 500 deg. C/mn in the case of uranium-chromium alloy containing 0,37 atom per cent of Cr. The temperature is little affected in the case of uranium-iron alloys. The addition of chromium or iron makes it possible to conserve the form ? at ordinary temperatures after quenching from the ? and ? regions. The ? phase is particularly unstable and changes into needles of the ? form even at room temperatures according to an autocatalytic transformation law similar to the austenitic-martensitic transformation law in the case of iron. The ? phase obtained by quenching from the ? phase region is more stable than that obtained by quenching from the ? region. Chromium is a more effective stabiliser of the ? phase than is iron. Unfortunately it causes serious surface cracking. The ? ? ? transformation in uranium-chromium alloys has been followed at room temperature by means of micro-cinematography. The author has not observed the direct ? ? ? transformation in uranium-molybdenum alloys containing 2,8 per cent of molybdenum even for cooling rates of up to 2000 deg. C/s. He has however observed the formation of several martensitic structures. (author)

  10. UPDATE ON MONOLITHIC FUEL FABRICATION METHODS

    Energy Technology Data Exchange (ETDEWEB)

    C. R. Clark; J. F. Jue; G. A. Moore; N. P. Hallinan; B. H. Park; D. E. Burkes

    2006-10-01

    Efforts to develop a viable monolithic research reactor fuel plate have continued at Idaho National Laboratory. These efforts have concentrated on both fabrication process refinement and scale-up to produce full sized fuel plates. Progress at INL has led to fabrication of hot isostatic pressed uranium-molybdenum bearing monolithic fuel plates. These miniplates are part of the RERTR-8 miniplate irradiation test. Further progress has also been made on friction stir weld processing which has been used to fabricate full size fuel plates which will be irradiated in the ATR and OSIRIS reactors.

  11. Relation between Gamma Decomposition and Powder Formation of ?-U8Mo Nuclear Fuel Alloys via Hydrogen Embrittlement and Thermal Shock

    OpenAIRE

    Fábio Branco Vaz de Oliveira; Delvonei Alves de Andrade

    2014-01-01

    Gamma uranium-molybdenum alloys have been considered as the fuel phase in plate type fuel elements for material and test reactors (MTR), due to their acceptable performance under irradiation. Regarding their usage as a dispersion phase in aluminum matrix, it is necessary to convert the as cast structure into powder, and one of the techniques considered for this purpose is the hydration-dehydration (HDH). This paper shows that, under specific conditions of heating and cooling, ?-UMo fragmentat...

  12. Development and validation of capabilities to measure thermal properties of layered monolithic U-Mo alloy plate-type fuel

    Energy Technology Data Exchange (ETDEWEB)

    Burkes, Douglas; Casella, Andrew M.; Buck, Edgar C.; Casella, Amanda J.; Edwards, Matthew K.; MacFarlan, Paul J.; Pool, Karl N.; Smith, Frances N.; Steen, Franciska H.

    2014-07-19

    The uranium-molybdenum (U-Mo) alloy in a monolithic form has been proposed as one fuel design capable of converting some of the world’s highest power research reactors from the use of high enriched uranium (HEU) to low enriched uranium (LEU). One aspect of the fuel development and qualification process is to demonstrate appropriate understanding of thermal conductivity behavior of the fuel system as a function of temperature and expected irradiation conditions. The purpose of this paper is to verify and validate the functionality of equipment methods installed in hot cells for eventual measurements on irradiated uranium-molybdenum (U-Mo) monolithic fuel specimens, procedures to operate the equipment, and models to extract the desired thermal properties. The results presented here demonstrate the adequacy of the equipment, procedures and models that have been developed for this purpose based on measurements conducted on surrogate depleted uranium-molybdenum (DU-Mo) alloy samples containing a zirconium diffusion barrier and clad in aluminum alloy 6061 (AA6061). The results are in excellent agreement with thermal property data reported in the literature for similar U-Mo alloys as a function of temperature.

  13. Development and Validation of Capabilities to Measure Thermal Properties of Layered Monolithic U-Mo Alloy Plate-Type Fuel

    Science.gov (United States)

    Burkes, Douglas E.; Casella, Andrew M.; Buck, Edgar C.; Casella, Amanda J.; Edwards, Matthew K.; MacFarlan, Paul J.; Pool, Karl N.; Smith, Frances N.; Steen, Franciska H.

    2014-07-01

    The uranium-molybdenum (U-Mo) alloy in a monolithic form has been proposed as one fuel design capable of converting some of the world's highest power research reactors from the use of high enriched uranium to low enriched uranium. One aspect of the fuel development and qualification process is to demonstrate appropriate understanding of the thermal-conductivity behavior of the fuel system as a function of temperature and expected irradiation conditions. The purpose of this paper is to verify functionality of equipment installed in hot cells for eventual measurements on irradiated uranium-molybdenum (U-Mo) monolithic fuel specimens, refine procedures to operate the equipment, and validate models to extract the desired thermal properties. The results presented here demonstrate the adequacy of the equipment, procedures, and models that have been developed for this purpose based on measurements conducted on surrogate depleted uranium-molybdenum (DU-Mo) alloy samples containing a Zr diffusion barrier and clad in aluminum alloy 6061 (AA6061). The results are in excellent agreement with thermal property data reported in the literature for similar U-Mo alloys as a function of temperature.

  14. Complex plasmochemical processing of solid fuel

    Directory of Open Access Journals (Sweden)

    Vladimir Messerle

    2012-12-01

    Full Text Available Technology of complex plasmaochemical processing of solid fuel by Ecibastuz bituminous and Turgay brown coals is presented. Thermodynamic and experimental study of the technology was fulfilled. Use of this technology allows producing of synthesis gas from organic mass of coal and valuable components (technical silicon, ferrosilicon, aluminum and silicon carbide and microelements of rare metals: uranium, molybdenum, vanadium etc. from mineral mass of coal. Produced a high-calorific synthesis gas can be used for methanol synthesis, as high-grade reducing gas instead of coke, as well as energy gas in thermal power plants.

  15. Recent Accomplishments in the Irradiation Testing of Engineering-Scale Monolithic Fuel Specimens

    Energy Technology Data Exchange (ETDEWEB)

    N.E. Woolstenhulme; D.M. Wachs; M.K. Meyer; H.W. Glunz; R.B. Nielson

    2012-10-01

    The US fuel development team is focused on qualification and demonstration of the uranium-molybdenum monolithic fuel including irradiation testing of engineering-scale specimens. The team has recently accomplished the successful irradiation of the first monolithic multi-plate fuel element assembly within the AFIP-7 campaign. The AFIP-6 MKII campaign, while somewhat truncated by hardware challenges, exhibited successful irradiation of a large-scale monolithic specimen under extreme irradiation conditions. The channel gap and ultrasonic data are presented for AFIP-7 and AFIP-6 MKII, respectively. Finally, design concepts are summarized for future irradiations such as the base fuel demonstration and design demonstration experiment campaigns.

  16. Recent Accomplishments in the Irradiation Testing of Engineering-Scale Monolithic Fuel Specimens

    International Nuclear Information System (INIS)

    The US fuel development team is focused on qualification and demonstration of the uranium-molybdenum monolithic fuel including irradiation testing of engineering-scale specimens. The team has recently accomplished the successful irradiation of the first monolithic multi-plate fuel element assembly within the AFIP-7 campaign. The AFIP-6 MKII campaign, while somewhat truncated by hardware challenges, exhibited successful irradiation of a large-scale monolithic specimen under extreme irradiation conditions. The channel gap and ultrasonic data are presented for AFIP-7 and AFIP-6 MKII, respectively. Finally, design concepts are summarized for future irradiations such as the base fuel demonstration and design demonstration experiment campaigns.

  17. A study of phase transformations processes in 0,5 to 4% mo uranium-molybdenum alloys; Etude des processus des transformations dans les alliages uranium-molybdene de teneur 0,5 a 4% en poids de molybdene

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1959-06-15

    Isothermal and continuous cooling transformations process have been established on uranium-molybdenum alloys containing 0,5 to 4 w% Mo. Transformations process of the {beta} and {gamma} solid solutions are described. These processes depend upon molybdenum concentration. Out of the {beta} solid solution phase appears an eutectoid decomposition of {beta} to ({alpha} + {gamma}) or the formation of a martensitic phase {alpha}''. The {gamma} solid solution shows a decomposition of {gamma} to ({alpha} + {gamma}) or ({alpha} + {gamma}'), or a formation of martensitic phases a' or a'{sub b}. The U-Mo equilibrium diagram is discussed, particularly in low concentrations zones. Limits between domains ({alpha} + {gamma}) and ({beta} + {gamma}), ({beta} + {gamma}) and {gamma}, ({beta} + {gamma}) and {beta}, have been determined. (author) [French] Les processus des transformations isothermes, et au cours de refroidissements continus ont ete etablis sur les alliages uranium-molybdene de 0,5 a 4 % en poids de Mo. Ceci a permis de mettre en evidence les processus des transformations de solutions solides {beta} et {gamma}, differents suivant la teneur en molybdene de l'alliage. Dans le premier cas il y a decomposition eutectoide de {beta} en ({alpha} + {gamma}) ou formations d'une phase martensitique {alpha}''. Dans le second cas il y a decomposition de {gamma} soit en ({alpha} + {gamma}) soit en ({alpha} + {gamma}') suivant la temperature, ou bien formation des phases martensitiques {alpha}' ou {alpha}'{sub b}. Le diagramme d'equilibre, uranium-molybdene est sujet a de nombreuses controverses, en particulier dans la zone des faibles concentrations. Les limites entre les domaines ({alpha} + {gamma}) et ({beta} + {gamma}), ({beta} + {gamma}) et {gamma}, ({beta} + {gamma}) et {beta}, ont ete determinees. (auteur)

  18. Corrosion report for the U-Mo fuel concept

    Energy Technology Data Exchange (ETDEWEB)

    Henager, Charles H. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Bennett, Wendy D. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Doherty, Ann L. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Fuller, E. S. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Hardy, John S. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Omberg, Ronald P. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2014-08-28

    The Fuel Cycle Research and Development (FCRD) program of the Office of Nuclear Energy (NE) has implemented a program to develop a Uranium-Molybdenum (U-Mo) metal fuel for Light Water Reactors (LWR)s. Uranium-Molybdenum fuel has the potential to provide superior performance based on its thermo-physical properties, which includes high thermal conductivity for less stored heat energy. With sufficient development, it may be able to provide the Light Water industry with a melt-resistant accident tolerant fuel with improved safety response. However, the corrosion of this fuel in reactor water environments needs to be further explored and optimized by additional alloying. The Pacific Northwest National Laboratory has been tasked with performing ex-reactor corrosion testing to characterize the performance of U-Mo fuel. This report documents the results of the effort to characterize and develop the U-Mo metal fuel concept for LWRs with regard to corrosion testing. The results of a simple screening test in buffered water at 30°C using surface alloyed U-10Mo is documented and discussed. The screening test was used to guide the selection of several potential alloy improvements that were found and are recommended for further testing in autoclaves to simulate PWR water conditions more closely.

  19. Contribution to the study of remedy solutions to uranium(molybdenum)/aluminium interactions: role of silicon addition to aluminium, study of coupled effects

    International Nuclear Information System (INIS)

    In the project development and qualification program of a nuclear fuel with Low Enriched Uranium for Materials Testing Reactors, the dispersed U(Mo)/Al fuel is being developed due to its excellent stability during irradiation. However, in pile experiments showed that depending on the irradiation conditions (e.g. high burnup or high heat flux), an extensive interaction occurs between the fissile element U(Mo) and the Al based matrix resulting in swelling, which could eventually lead to a fuel plate failure. Among the ways to improve the behavior of the dispersed U(Mo) fuel, the solution now seen as the reference remedy by the entire scientific community is the addition of silicon into the aluminum matrix. In order to provide some understanding and optimizing the solution 'Si additions into Al matrix' under neutron irradiation, an out of pile study is performed on (i) the interaction mechanisms involved in the U(Mo)/Al (Si) system and (ii) the impact of the Si additions into the Al matrix on alternative solutions to the U(Mo)/Al interactions, namely the modification of the ?-U(Mo) fissile compound by adding a third element and/or modifying the interface between the ?-U(Mo) fissile compound and the matrix. This document provides a mechanistic description of the U(7Mo)/Al(Si) interaction for a range of Si content in Al between 2 and 10 wt.%, based on the multi-scale characterization of diffusion couples. The location of the Mo and its role in the reaction mechanisms are demonstrated. The influence of elements X = Y, Cu, Zr, Ti, Cr, on the U (Mo)/Al and U (Mo)/Al (Si) interactions mechanisms was then studied. It is shown that adding a third element to the U(Mo) alloy acts on the second order on diffusion kinetics and (micro)structure of the interaction layer compared to the addition of Si into Al. Finally, an alumina coating which shows a potential interest to improve the performance of the fuel has been developed. (author)

  20. Fuel Thermo-physical Characterization Project: Evaluation of Models to Calculate Thermal Diffusivity of Layered Composites

    Energy Technology Data Exchange (ETDEWEB)

    Burkes, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Casella, Amanda J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gardner, Levi D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Casella, Andrew M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huber, Tanja K. [Technische Universität München, Munich (Germany); Breitkreutz, Harald [Technische Universität München, Munich (Germany)

    2015-02-11

    The Office of Material Management and Minimization Fuel Thermo-physical Characterization Project at Pacific Northwest National Laboratory (PNNL) is tasked with using PNNL facilities and processes to receive irradiated low enriched uranium-molybdenum fuel plate samples and perform analyses in support of the Office of Material Management and Minimization Reactor Conversion Program. This work is in support of the Fuel Development Pillar that is managed by Idaho National Laboratory. A key portion of the scope associated with this project was to measure the thermal properties of fuel segments harvested from plates that were irradiated in the Advanced Test Reactor. Thermal diffusivity of samples prepared from the fuel segments was measured using laser flash analysis. Two models, one developed by PNNL and the other developed by the Technische Universität München (TUM), were evaluated to extract the thermal diffusivity of the uranium-molybdenum alloy from measurements made on the irradiated, layered composites. The experimental data of the “TC” irradiated fuel segment was evaluated using both models considering a three-layer and five-layer system. Both models are in acceptable agreement with one another and indicate that the zirconium diffusion barrier has a minimal impact on the overall thermal diffusivity of the monolithic U-Mo fuel.

  1. Positron annihilation spectroscopy of Uranium Molybdenum alloys

    Science.gov (United States)

    Mukherjee, S.; Sharma, S. K.; Sinha, V.; Pujari, P. K.

    2015-06-01

    Positron annihilation spectroscopy has been carried out on as-cast and heat treated U-Mo alloys with Mo concentration varying from 8-10 wt. %. The positron lifetime data suggest that, upon heat treatment at 900 °C, the bulk lifetime decreases. The chemical surrounding of the positron annihilation sites is similar for the as-cast and heat treated samples suggesting a uniform distribution of Mo around defect sites.

  2. Hot rolling of thick uranium molybdenum alloys

    Energy Technology Data Exchange (ETDEWEB)

    DeMint, Amy L.; Gooch, Jack G.

    2015-11-17

    Disclosed herein are processes for hot rolling billets of uranium that have been alloyed with about ten weight percent molybdenum to produce cold-rollable sheets that are about one hundred mils thick. In certain embodiments, the billets have a thickness of about 7/8 inch or greater. Disclosed processes typically involve a rolling schedule that includes a light rolling pass and at least one medium rolling pass. Processes may also include reheating the rolling stock and using one or more heavy rolling passes, and may include an annealing step.

  3. Measurement of Fission Gas Release from Irradiated U-Mo Monolithic Fuel Samples

    Energy Technology Data Exchange (ETDEWEB)

    Burkes, Douglas; Casella, Amanda J.; Casella, Andrew M.; Luscher, Walter G.; Rice, Francine; Pool, Karl N.

    2015-06-01

    The uranium-molybdenum (U-Mo) alloy in a monolithic form has been proposed as one fuel design capable of converting some of the world’s highest power research reactors from the use of high enriched uranium (HEU) to low enriched uranium (LEU). One aspect of the fuel development and qualification process is to demonstrate appropriate understanding of the extent of fission product release from the fuel under anticipated service environments. An apparatus capable of annealing post-irradiated small-scale samples cut from larger fuel segments according to specified thermal profiles under a controlled atmosphere has been installed into a hot cell. Results show that optimized experimental parameters to investigate fission product release from small samples have been established. Initial measurements conducted on aluminum alloy clad uranium-molybdenum monolithic fuel samples reveal three clear fission gas release events over the temperature range of 30-1050 C. The mechanisms responsible for these events are discussed, and the results have been compared with available information in literature.

  4. Measurement of fission gas release from irradiated U–Mo monolithic fuel samples

    Energy Technology Data Exchange (ETDEWEB)

    Burkes, Douglas E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Casella, Amanda J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Casella, Andrew M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Luscher, Walter G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rice, Francine J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pool, Karl N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-06-01

    The uranium–molybdenum (U-Mo) alloy in a monolithic form has been proposed as one fuel design capable of converting some of the world’s highest power research reactors from the use of high enriched uranium (HEU) to low enriched uranium (LEU). One aspect of the fuel development and qualification process is to demonstrate appropriate understanding of the extent of fission product release from the fuel under anticipated service environments. An apparatus capable of heating post-irradiated small-scale samples cut from larger fuel segments according to specified thermal profiles under a controlled atmosphere has been installed into a hot cell. Results show that optimized experimental parameters to investigate fission product release from small samples have been established. Initial measurements conducted on aluminum alloy clad uranium–molybdenum monolithic fuel samples reveal three clear fission gas release events over the temperature range of 30-1000 °C. The mechanisms responsible for these events are discussed, and the results have been compared with available information in the literature.

  5. Use of ion beams to simulate reaction of reactor fuels with their cladding

    International Nuclear Information System (INIS)

    Processes occurring within reactor cores are not amenable to direct experimental observation. Among major concerns are damage, fission gas accumulation and reaction between the fuel and its cladding all of which lead to swelling. These questions can be investigated through simulation with ion beams. As an example, we discuss the irradiation driven interaction of uranium-molybdenum alloys, intended for use as low-enrichment reactor fuels, with aluminum, which is used as fuel cladding. Uranium-molybdenum coated with a 100 nm thin film of aluminum was irradiated with 3 MeV Kr ions to simulate fission fragment damage. Mixing and diffusion of aluminum was followed as a function of irradiation with RBS and nuclear reaction analysis using the 27Al(p,?)28Si reaction which occurs at a proton energy of 991.9 keV. During irradiation at 150 deg. C, aluminum diffused into the uranium alloy at a irradiation driven diffusion rate of 30 nm2/dpa. At a dose of 90 dpa, uranium diffusion into the aluminum layer resulted in formation of an aluminide phase at the initial interface. The thickness of this phase grew until it consumed the aluminum layer. The rapid diffusion of Al into these reactor fuels may offer explanation of the observation that porosity is not observed in the fuel particles but on their periphery

  6. Design and Testing of Prototypic Elements Containing Monolithic Fuel

    Energy Technology Data Exchange (ETDEWEB)

    N.E. Woolstenhulme; M.K. Meyer; D.M. Wachs

    2011-10-01

    The US fuel development team has performed numerous irradiation tests on small to medium sized specimens containing low enriched uranium fuel designs. The team is now focused on qualification and demonstration of the uranium-molybdenum Base Monolithic Design and has entered the next generation of testing with the design and irradiation of prototypic elements which contain this fuel. The designs of fuel elements containing monolithic fuel, such as AFIP-7 (which is currently under irradiation) and RERTR-FE (which is currently under fabrication), are appropriate progressions relative to the technology life cycle. The culmination of this testing program will occur with the design, fabrication, and irradiation of demonstration products to include the base fuel demonstration and design demonstration experiments. Future plans show that design, fabrication, and testing activities will apply the rigor needed for a demonstration campaign.

  7. Assumptions and Criteria for Performing a Feasability Study of the Conversion of the High Flux Isotope Reactor Core to Use Low-Enriched Uranium Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Primm, R.T., III; Ellis, R.J.; Gehin, J.C.; Moses, D.L.; Binder, J.L.; Xoubi, N. (U. of Cincinnati)

    2006-02-01

    A computational study will be initiated during fiscal year 2006 to examine the feasibility of converting the High Flux Isotope Reactor from highly enriched uranium fuel to low-enriched uranium. The study will be limited to steady-state, nominal operation, reactor physics and thermal-hydraulic analyses of a uranium-molybdenum alloy that would be substituted for the current fuel powder--U{sub 3}O{sub 8} mixed with aluminum. The purposes of this document are to (1) define the scope of studies to be conducted, (2) define the methodologies to be used to conduct the studies, (3) define the assumptions that serve as input to the methodologies, (4) provide an efficient means for communication with the Department of Energy and American research reactor operators, and (5) expedite review and commentary by those parties.

  8. Assumptions and Criteria for Performing a Feasability Study of the Conversion of the High Flux Isotope Reactor Core to Use Low-Enriched Uranium Fuel

    International Nuclear Information System (INIS)

    A computational study will be initiated during fiscal year 2006 to examine the feasibility of converting the High Flux Isotope Reactor from highly enriched uranium fuel to low-enriched uranium. The study will be limited to steady-state, nominal operation, reactor physics and thermal-hydraulic analyses of a uranium-molybdenum alloy that would be substituted for the current fuel powder--U3O8 mixed with aluminum. The purposes of this document are to (1) define the scope of studies to be conducted, (2) define the methodologies to be used to conduct the studies, (3) define the assumptions that serve as input to the methodologies, (4) provide an efficient means for communication with the Department of Energy and American research reactor operators, and (5) expedite review and commentary by those parties

  9. SOLVENT EXTRACTION FOR URANIUM MOLYBDENUM ALLOY DISSOLUTION FLOWSHEET

    Energy Technology Data Exchange (ETDEWEB)

    Visser, A; Robert Pierce, R

    2007-06-07

    H-Canyon Engineering requested the Savannah River National Laboratory (SRNL) to perform two solvent extraction experiments using dissolved Super Kukla (SK) material. The SK material is an uranium (U)-molybdenum (Mo) alloy material of 90% U/10% Mo by weight with 20% 235U enrichment. The first series of solvent extraction tests involved a series of batch distribution coefficient measurements with 7.5 vol % tributylphosphate (TBP)/n-paraffin for extraction from 4-5 M nitric acid (HNO{sub 3}), using 4 M HNO{sub 3}-0.02 M ferrous sulfamate (Fe(SO3NH2)2) scrub, 0.01 M HNO3 strip steps with particular emphasis on the distribution of U and Mo in each step. The second set of solvent extraction tests determined whether the 2.5 wt % sodium carbonate (Na2CO3) solvent wash change frequency would need to be modified for the processing of the SK material. The batch distribution coefficient measurements were performed using dissolved SK material diluted to 20 g/L (U + Mo) in 4 M HNO{sub 3} and 5 M HNO{sub 3}. In these experiments, U had a distribution coefficient greater than 2.5 while at least 99% of the nickel (Ni) and greater than 99.9% of the Mo remained in the aqueous phase. After extraction, scrub, and strip steps, the aqueous U product from the strip contains nominally 7.48 {micro}g Mo/g U, significantly less than the maximum allowable limit of 800 {micro}g Mo/g U. Solvent washing experiments were performed to expose a 2.5 wt % Na2CO3 solvent wash solution to the equivalent of 37 solvent wash cycles. The low Mo batch distribution coefficient in this solvent extraction system yields only 0.001-0.005 g/L Mo extracted to the organic. During the solvent washing experiments, the Mo appears to wash from the organic.

  10. Uranium-Molybdenum particles produced by electro-erosion

    International Nuclear Information System (INIS)

    We have produced spheroidal U-Mo particles by the electro-erosion method using pure water as dielectric. The particles were characterised by optical metallography, scanning electron microscopy, energy dispersive spectrometry (EDS-EDAX) and X-ray diffraction. Spheroidal UO2 particles with a peculiar distribution size were obtained with two distribution centred at 10 and 70 ?m. The obtained particles have central inclusions of U and Mo compounds. (author)

  11. Low-Enriched Uranium Fuel Conversion Activities for the High Flux Isotope Reactor, Annual Report for FY 2011

    Energy Technology Data Exchange (ETDEWEB)

    Renfro, David G [ORNL; Cook, David Howard [ORNL; Freels, James D [ORNL; Griffin, Frederick P [ORNL; Ilas, Germina [ORNL; Sease, John D [ORNL; Chandler, David [ORNL

    2012-03-01

    This report describes progress made during FY11 in ORNL activities to support converting the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum (UMo) alloy. With both radial and axial contouring of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current levels achieved with HEU fuel. Studies are continuing to demonstrate that the fuel thermal safety margins can be preserved following conversion. Studies are also continuing to update other aspects of the reactor steady state operation and accident response for the effects of fuel conversion. Technical input has been provided to Oregon State University in support of their hydraulic testing program. The HFIR conversion schedule was revised and provided to the GTRI program. In addition to HFIR conversion activities, technical support was provided directly to the Fuel Fabrication Capability program manager.

  12. Fabrication and characterization of atomized U-Mo powder dispersed fuel compacts for the RERTR-3 irradiation test

    International Nuclear Information System (INIS)

    The RERTR-3 irradiation test of nano-plates will be conducted in the Advanced Test Reactor(ATR). 49 compacts with a uranium density of 8 gU/cc consist of 7 different atomized uranium-molybdenum alloy powders such as as-atomized U-10Mo, phase decomposed U-10Mo (alpha+gamma), homogenized U-10Mo, U-7Mo, U-6Mo, U-6.1Mo-0.9Ru, and U-6Mo-1.7Os. 25 fuel plates, referred to as nano-plates, were produced with atomized fuel compacts at ANL-W. The relationship between the volume fraction of fuel and the green density of the compacts was established. The relative density of the compacts increases with decreasing volume fraction of fuel powder. The compressibility of comminuted powder compacts was larger than that of the atomized powder compacts due to the fragmentation of comminuted particles. The green strength of comminuted powder compacts is higher than that of the atomized powder compact. This seems to have resulted from the smaller pore size and the larger contact area between the comminuted fuel powders and Al powders. It is suggested that the compacting condition adjustment be required to fabricate the atomized powder compacts having comparable green strength. (author)

  13. Progress in the development of very high density research and test reactor fuels

    International Nuclear Information System (INIS)

    New nuclear fuels are being developed to enable many of the most important research and test reactors worldwide to convert from high enriched uranium (HEU) fuels to low enriched uranium (LEU) fuels without significant loss in performance. The last decade of work has focused on the development of uranium-molybdenum alloy (U-Mo) based fuels and is an international effort that includes the active participation of more than ten national programs. The US RERTR program, under the NNSA's Global Threat Reduction Initiative (GTRI), is in the process of developing both dispersion and monolithic U-Mo fuel designs. While the U-Mo fuel alloy has behaved extremely well under irradiation, initial testing (circa 2003) revealed that the U-Mo fuels dispersed in aluminum had an unexpected tendency toward unstable swelling (pillowing) under high-power conditions. Technical investigations were initiated worldwide at this time by the partner programs to understand this behavior as well as to develop and test remedies. The behavior was corrected by modifying the chemistry of the U-Mo/Al interfaces in both fuel designs. In the dispersion fuel design, this was accomplished by the addition of small amounts of silicon to the aluminum matrix material. Two methods are under development for the monolithic fuel design, which include the application of a thin layer of silicon or a thin zirconium based diffusion barrier at the fuel/clad interface. This paper gives an overview of the current status of U-Mo fuel development, including basic research results, manufacturing aspects, results of the latest irradiations and post irradiation examinations, the approach to fuel performance qualification, and the scale-up and commercialization of fabrication technology. (authors)

  14. Material test reactor fuel research at the BR2 reactor

    International Nuclear Information System (INIS)

    The construction of new, high performance material test reactor or the conversion of such reactors' core from high enriched uranium (HEU) to low enriched uranium (LEU) based fuel requires several fuel qualification steps. For the conversion of high performance reactors, high density dispersion or monolithic fuel types are being developed. The Uranium-Molybdenum fuel system has been selected as reference system for the qualification of LEU fuels. For reactors with lower performance characteristics, or as medium enriched fuel for high performance reactors, uranium silicide dispersion fuel is applied. However, on the longer term, the U-Mo based fuel types may offer a more efficient fuel alternative and-or an easier back-end solution with respect to the silicide based fuels. At the BR2 reactor of the Belgian nuclear research center, SCK-CEN in Mol, several types of fuel testing opportunities are present to contribute to such qualification process. A generic validation test for a selected fuel system is the irradiation of flat plates with representative dimensions for a fuel element. By flexible positioning and core loading, bounding irradiation conditions for fuel elements can be performed in a standard device in the BR2. For fuel element designs with curved plates, the element fabrication method compatibility of the fuel type can be addressed by incorporating a set of prototype fuel plates in a mixed driver fuel element of the BR2 reactor. These generic types of tests are performed directly in the primary coolant flow conditions of the BR2 reactor. The experiment control and interpretation is supported by detailed neutronic and thermal-hydraulic modeling of the experiments. Finally, the BR2 reactor offers the flexibility for irradiation of full size prototype fuel elements, as 200mm diameter irradiation channels are available. These channels allow the accommodation of various types of prototype fuel elements, eventually using a dedicated cooling loop to provide the required thermal and hydraulic conditions. The availability of a comprehensive set of post irradiation examination facilities on site complements the versatile BR2 reactor to provide a set of high performance tools for MTR fuel qualification. (author)

  15. Fuel swelling and interaction layer formation in the SELENIUM Si and ZrN coated U(Mo) dispersion fuel plates irradiated at high power in BR2

    Science.gov (United States)

    Leenaers, A.; Van den Berghe, S.; Koonen, E.; Kuzminov, V.; Detavernier, C.

    2015-03-01

    In the framework of the SELENIUM project two full size flat fuel plates were produced with respectively Si and ZrN coated U(Mo) particles and irradiated in the BR2 reactor at SCK•CEN. Non-destructive analysis of the plates showed that the fuel swelling profiles of both SELENIUM plates were very similar to each other and none of the plates showed signs of pillowing or excessive swelling at the end of irradiation at the highest power position (local maximum 70% 235U). The microstructural analysis showed that the Si coated fuel has less interaction phase formation at low burn-up but at the highest burn-ups, defects start to develop on the IL-matrix interface. The ZrN coated fuel, shows a virtual absence of reaction between the U(Mo) and the Al, up to high fission densities after which the interaction layer formation starts and defects develop in the matrix near the U(Mo) particles. It was found and is confirmed by the SELENIUM (Surface Engineering of Low ENrIched Uranium-Molybdenum) experiment that there are two phenomena at play that need to be controlled: the formation of an interaction layer and swelling of the fuel. As the interaction layer formation occurs at the U(Mo)-matrix interface, applying a diffusion barrier (coating) at that interface should prevent the interaction between U(Mo) and the matrix. The U(Mo) swelling, observed to proceed at an accelerating rate with respect to fission density accumulation, is governed by linear solid state swelling and fission gas bubble swelling due to recrystallization of the fuel. The examination of the SELENIUM fuel plates clearly show that for the U(Mo) dispersion fuel to be qualified, the swelling rate at high burn-up needs to be reduced.

  16. A physical description of fission product behavior fuels for advanced power reactors.

    Energy Technology Data Exchange (ETDEWEB)

    Kaganas, G.; Rest, J.; Nuclear Engineering Division; Florida International Univ.

    2007-10-18

    The Global Nuclear Energy Partnership (GNEP) is considering a list of reactors and nuclear fuels as part of its chartered initiative. Because many of the candidate materials have not been explored experimentally under the conditions of interest, and in order to economize on program costs, analytical support in the form of combined first principle and mechanistic modeling is highly desirable. The present work is a compilation of mechanistic models developed in order to describe the fission product behavior of irradiated nuclear fuel. The mechanistic nature of the model development allows for the possibility of describing a range of nuclear fuels under varying operating conditions. Key sources include the FASTGRASS code with an application to UO{sub 2} power reactor fuel and the Dispersion Analysis Research Tool (DART ) with an application to uranium-silicide and uranium-molybdenum research reactor fuel. Described behavior mechanisms are divided into subdivisions treating fundamental materials processes under normal operation as well as the effect of transient heating conditions on these processes. Model topics discussed include intra- and intergranular gas-atom and bubble diffusion, bubble nucleation and growth, gas-atom re-solution, fuel swelling and ?scion gas release. In addition, the effect of an evolving microstructure on these processes (e.g., irradiation-induced recrystallization) is considered. The uranium-alloy fuel, U-xPu-Zr, is investigated and behavior mechanisms are proposed for swelling in the {alpha}-, intermediate- and {gamma}-uranium zones of this fuel. The work reviews the FASTGRASS kinetic/mechanistic description of volatile ?scion products and, separately, the basis for the DART calculation of bubble behavior in amorphous fuels. Development areas and applications for physical nuclear fuel models are identified.

  17. The reprocessing of irradiated fuels improvement and extension of the solvent extraction process; Le traitement des combustibles irradies amelioration et extension du procede utilisant les solvants

    Energy Technology Data Exchange (ETDEWEB)

    Faugeras, P.; Chesne, A. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1964-07-01

    Improvements made in the conventional tri-butylphosphate process are described, in particular. the concentration and the purification of plutonium by one extraction cycle using tri-butyl-phosphate with reflux; and the use of an apparatus working continuously for precipitating plutonium oxalate, for calcining the oxalate, and for fluorinating the oxide. The modifications proposed for the treatment of irradiated uranium - molybdenum alloys are described, in particular, the dissolution of the fuel, and the concentration of the fission product solutions. The solvent extraction treatment is used also for the plutonium fuels utilized for the fast breeder reactor (Rapsodie) An outline of the process is presented and discussed, as well as the first experimental results and the plans for a pilot plant having a capacity of 1 kg/day. The possible use of tn-lauryl-amine in the plutonium purification cycle is now under consideration for the processing plant at La Hague. The flowsheet for this process and its performance are presented. The possibility of vitrification is considered for the final treatment of the concentrated radioactive wastes from the Marcoule (irradiated uranium) and La Hague (irradiated uranium-molybdenum) Centers. Three possible processes are described and discussed, as well as the results obtained from the operation of the corresponding experimental units using tracers. (authors) [French] On decrit les ameliorations apportees au procede classique utilisant le phosphate tributylique, et notamment la concentration et la purification du plutonium par un cycle d'extraction au tributylphosphate avec reflux, l'utilisation d'un appareillage continu de precipitation d'oxalate de plutonium, de calcination de l'oxalate, et de fluoration de l'oxyde. On presente les modifications envisagees pour le traitement des alliages uranium-molybdene irradies, principalement en ce qui concerne la dissolution du combustible et la concentration des solutions de produits de fission. Le traitement au solvant est egalement utilise pour les combustibles de la pile convertisseuse du plutonium (Rapsodie). On expose et commente le schema du traitement, les premiers resultats experimentaux et le projet d'une installation pilote de 1 kg/jour. L'utilisation de la tn-laurylamine dans le cycle de purification du plutonium est envisagee dans l'usine de traitement de La Hague. On presente le schema adopte et les performances du procede. On envisage la vitrification comme traitement definitif des dechets radioactifs concentres des Centres de Marcoule (uranium-irradie) et La Hague (uranium-molybdene irradie). Trois procedes possibles sont decrits et commentes, ainsi que les resultats d'exploitation des installations correspondantes sur elements traceurs. (auteurs)

  18. Advanced research reactor fuel development

    International Nuclear Information System (INIS)

    The fabrication technology of the U3Si fuel dispersed in aluminum for the localization of HANARO driver fuel has been launches. The increase of production yield of LEU metal, the establishment of measurement method of homogeneity, and electron beam welding process were performed. Irradiation test under normal operation condition, had been carried out and any clues of the fuel assembly breakdown was not detected. The 2nd test fuel assembly has been irradiated at HANARO reactor since 17th June 1999. The quality assurance system has been re-established and the eddy current test technique has been developed. The irradiation test for U3Si2 dispersed fuels at HANARO reactor has been carried out in order to compare the in-pile performance of between the two types of U3Si2 fuels, prepared by both the atomization and comminution processes. KAERI has also conducted all safety-related works such as the design and the fabrication of irradiation rig, the analysis of irradiation behavior, thermal hydraulic characteristics, stress analysis for irradiation rig, and thermal analysis fuel plate, for the mini-plate prepared by international research cooperation being irradiated safely at HANARO. Pressure drop test, vibration test and endurance test were performed. The characterization on powders of U-(5.4 ? 10 wt%) Mo alloy depending on Mo content prepared by rotating disk centrifugal atomization process was carried out in order to investigate the phase stability of the atomized U-Mo alloy system. The ?-U phase stability and the thermal compatibility of atomized U-16at.%Mo and U-14at.%Mo-2at.%X(: Ru, Os) dispersion fuel meats at an elevated temperature have been investigated. The volume increases of U-Mo compatibility specimens were almost the same as or smaller than those of U3Si2. However the atomized alloy fuel exhibited a better irradiation performance than the comminuted alloy. The RERTR-3 irradiation test of nano-plates will be conducted in the Advanced Test Reactor(ATR). 49 compacts with a uranium density of 8 gU/cc consist of 7 different atomized uranium-molybdenum alloy powders. The tensile strength increased and the elongation decreased with increasing the volume fraction of U-10Mo powders in dispersion fuel. The tensile strength was lower and elongation was larger in dispersion fuel using atomized U-10Mo powders than that using comminuted fuel powders. The green strength of the comminuted powder compacts was about twice as large as that of the atomized powder compacts. It is suggested that the compacting condition required to fabricate the atomized powder compacts is over the 350MPa. The comminuted irregular shaped particles and smaller particle size of fuel powders showed improved homogeneity of powder mixture. The homogeneity of powder mixtures increased to a minimum at approximately 0.10 wt% moisture and then decreased with moisture content

  19. Advanced research reactor fuel development

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Kyu; Pak, H. D.; Kim, K. H. [and others

    2000-05-01

    The fabrication technology of the U{sub 3}Si fuel dispersed in aluminum for the localization of HANARO driver fuel has been launches. The increase of production yield of LEU metal, the establishment of measurement method of homogeneity, and electron beam welding process were performed. Irradiation test under normal operation condition, had been carried out and any clues of the fuel assembly breakdown was not detected. The 2nd test fuel assembly has been irradiated at HANARO reactor since 17th June 1999. The quality assurance system has been re-established and the eddy current test technique has been developed. The irradiation test for U{sub 3}Si{sub 2} dispersed fuels at HANARO reactor has been carried out in order to compare the in-pile performance of between the two types of U{sub 3}Si{sub 2} fuels, prepared by both the atomization and comminution processes. KAERI has also conducted all safety-related works such as the design and the fabrication of irradiation rig, the analysis of irradiation behavior, thermal hydraulic characteristics, stress analysis for irradiation rig, and thermal analysis fuel plate, for the mini-plate prepared by international research cooperation being irradiated safely at HANARO. Pressure drop test, vibration test and endurance test were performed. The characterization on powders of U-(5.4 {approx} 10 wt%) Mo alloy depending on Mo content prepared by rotating disk centrifugal atomization process was carried out in order to investigate the phase stability of the atomized U-Mo alloy system. The {gamma}-U phase stability and the thermal compatibility of atomized U-16at.%Mo and U-14at.%Mo-2at.%X(: Ru, Os) dispersion fuel meats at an elevated temperature have been investigated. The volume increases of U-Mo compatibility specimens were almost the same as or smaller than those of U{sub 3}Si{sub 2}. However the atomized alloy fuel exhibited a better irradiation performance than the comminuted alloy. The RERTR-3 irradiation test of nano-plates will be conducted in the Advanced Test Reactor(ATR). 49 compacts with a uranium density of 8 gU/cc consist of 7 different atomized uranium-molybdenum alloy powders. The tensile strength increased and the elongation decreased with increasing the volume fraction of U-10Mo powders in dispersion fuel. The tensile strength was lower and elongation was larger in dispersion fuel using atomized U-10Mo powders than that using comminuted fuel powders. The green strength of the comminuted powder compacts was about twice as large as that of the atomized powder compacts. It is suggested that the compacting condition required to fabricate the atomized powder compacts is over the 350MPa. The comminuted irregular shaped particles and smaller particle size of fuel powders showed improved homogeneity of powder mixture. The homogeneity of powder mixtures increased to a minimum at approximately 0.10 wt% moisture and then decreased with moisture content.

  20. Swelling of U(Mo) dispersion fuel under irradiation - Non-destructive analyses of the SELENIUM plates

    Science.gov (United States)

    Van den Berghe, S.; Parthoens, Y.; Cornelis, G.; Leenaers, A.; Koonen, E.; Kuzminov, V.; Detavernier, C.

    2013-11-01

    Extensive fuel-matrix interactions leading to plate pillowing have caused a severe impediment on the development of a suitable high density low-enriched uranium dispersion fuel for high power applications in research reactors. Surface engineering of the U(Mo) kernel surfaces, where the interaction occurs, is put forward by SCK?CEN as a possible solution in the Surface Engineering of Low ENrIched Uranium Molybdenum fuel (SELENIUM) program. The project involved the construction of a sputter coater, the coating of U(Mo) kernels, the production of fuel plates, the irradiation and post-irradiation examination of 2 plates. The irradiation of 2 distinct (600 nm Si and 1000 nm ZrN coated) full size, flat fuel plates was performed in the BR2 reactor in 2012. The irradiation conditions were: 470 W/cm2 peak Beginning Of Life (BOL) power, with a ˜70% 235U peak burnup. The plates were successfully irradiated and did not show any pillowing at the end of the irradiation. This paper reports the results and interpretation of the non-destructive post-irradiation examinations that were performed on these fuel plates and derives a law for the fuel swelling evolution with burnup for this fuel type. It further reports additional PIE results obtained on fuel plates irradiated in campaigns in the past in order to allow a complete comparison with all results obtained under similar conditions. The fuel swelling is shown to evolve linearly with the fission density, with an increase in swelling rate around 2.5 × 1021 f/cm3, which is associated with the restructuring of the fuel. A further increase in swelling rate is observed at the highest burnups, which is discussed in this article.

  1. Swelling of U(Mo) dispersion fuel under irradiation – Non-destructive analyses of the SELENIUM plates

    Energy Technology Data Exchange (ETDEWEB)

    Van den Berghe, S., E-mail: sven.van.den.berghe@sckcen.be [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, 2400 Mol (Belgium); Parthoens, Y.; Cornelis, G.; Leenaers, A.; Koonen, E.; Kuzminov, V. [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, 2400 Mol (Belgium); Detavernier, C. [University of Ghent, Solid State Sciences, Krijgslaan 281, 9000 Gent (Belgium)

    2013-11-15

    Extensive fuel-matrix interactions leading to plate pillowing have caused a severe impediment on the development of a suitable high density low-enriched uranium dispersion fuel for high power applications in research reactors. Surface engineering of the U(Mo) kernel surfaces, where the interaction occurs, is put forward by SCK?CEN as a possible solution in the Surface Engineering of Low ENrIched Uranium Molybdenum fuel (SELENIUM) program. The project involved the construction of a sputter coater, the coating of U(Mo) kernels, the production of fuel plates, the irradiation and post-irradiation examination of 2 plates. The irradiation of 2 distinct (600 nm Si and 1000 nm ZrN coated) full size, flat fuel plates was performed in the BR2 reactor in 2012. The irradiation conditions were: 470 W/cm{sup 2} peak Beginning Of Life (BOL) power, with a ?70% {sup 235}U peak burnup. The plates were successfully irradiated and did not show any pillowing at the end of the irradiation. This paper reports the results and interpretation of the non-destructive post-irradiation examinations that were performed on these fuel plates and derives a law for the fuel swelling evolution with burnup for this fuel type. It further reports additional PIE results obtained on fuel plates irradiated in campaigns in the past in order to allow a complete comparison with all results obtained under similar conditions. The fuel swelling is shown to evolve linearly with the fission density, with an increase in swelling rate around 2.5 × 10{sup 21} f/cm{sup 3}, which is associated with the restructuring of the fuel. A further increase in swelling rate is observed at the highest burnups, which is discussed in this article.

  2. A cellular automaton method to simulate the microstructure and evolution of low-enriched uranium (LEU) U–Mo/Al dispersion type fuel plates

    International Nuclear Information System (INIS)

    Highlights: • This article presents a cellular automata (CA) algorithm to synthesize the growth of intermetallic interaction layers in U–Mo/Al dispersion fuel. • The method utilizes a 3D representation of the fuel, which is discretized into separate voxels that can change identy based on derived CA rules. • The CA model is compared to ILT measurements for RERTR experimental data. • The primary objective of the model is to synthesize three-dimensional microstructures that can be used in subsequent thermal and mechanical modeling. • The CA model can be used for predictive analysis. For example, it can be used to study the dependence of temperature on interaction layer growth. - Abstract: Low-enriched uranium (LEU) fuel plates for high power materials test reactors (MTR) are composed of nominally spherical uranium–molybdenum (U–Mo) particles within an aluminum matrix. Fresh U–Mo particles typically range between 10 and 100 ?m in diameter, with particle volume fractions up to 50%. As the fuel ages, reaction–diffusion processes cause the formation and growth of interaction layers that surround the fuel particles. The growth rate depends upon the temperature and radiation environment. The cellular automaton algorithm described in this paper can synthesize realistic random fuel-particle structures and simulate the growth of the intermetallic interaction layers. Examples in the present paper pack approximately 1000 particles into three-dimensional rectangular fuel structures that are approximately 1 mm on each side. The computational approach is designed to yield synthetic microstructures consistent with images from actual fuel plates and is validated by comparison with empirical data on actual fuel plates

  3. Nuclear Safety Considerations in Fabrication of Massive, Partially-Enriched Uranium-Molybdenum Reactor Parts

    International Nuclear Information System (INIS)

    Massive metallic components of partially-enriched uranium-235 mixed with 10 wt.% molybdenum have been successfully fabricated at the USAEC Oak Ridge Y-12 Plant for Super Kukla, a prompt burst reactor. Nuclear safety analyses were performed and procedures developed to permit fabrication of the reactor components in the largest single pieces possible within the limitations imposed by criticality and manufacturing capabilities. Metal parts of finished weights up to 268 kg each were cast, machined, inspected and shipped. Nuclear safety problems encountered in the production of approximately 5 tons of these reactor components included considerations of reflected and unreflected massive pieces of uranium metal and alloy, accumulations of machine turnings in various conditions of moderation by hydrogenous liquids and uraniumbearing solutions from plating processes. Although some operational steps were resolved by application of criticality data and established practices for uranium more highly enriched in 235U (? 90%), it was necessary to establish critical parameters for the intermediate 20% enrichment desired and to evaluate the effects of dilution by molybdenum. Calculations to obtain the criticality numbers were made using the Sn reactor transport theory approximation IBM-7090 machine codes DTK and DDK. Hansen-Roach 16 energy group cross-sections were used with appropriate resonance region corrections. Checks against Los Alamos critical experimental data for 28.9, 38.0 and 50.5 % enriched uranium were made to assist in establishing the reliability of the calculations. Each proposed operational step was analysed using the 'double contingency' criterion. On the basis of the analyses, it was possible to devise procedures and equipment to safely allow casting charges of up to 300 kg of uranium metal (60 kg 235U) or 400 kg of alloy (72 kg 235U) in cylindrical crucibles. Especial care was required to prevent inadvertent mixing with either highly enriched uranium or depleted uranium from adjacent working areas. Most of the reactor parts themselves were readily identifiable due to their large size and unique configuration; however, machine turnings, chips and solutions were not sufficiently distinctive for visual identification as 20% enrichment. These materials were accordingly treated as highly enriched (?90%) until proven otherwise by analyses. (author)

  4. Thermal cycling behaviour and thermal stability of uranium-molybdenum alloys of low molybdenum content

    International Nuclear Information System (INIS)

    We have studied the behaviour during thermal cycling of as-cast U-Mo alloys whose molybdenum content varies from 0.5 to 3 per cent; results are given concerning grain stability during extended heat treatments and the effect of treatments combining protracted heating with thermal cycling. The thermal cycling treatments were carried out at 550, 575, 600 and 625 deg C for 1000 cycles; the protracted heating experiments were done at 550, 575, 600 and 625 deg C for 2000 hours (4000 hrs at 625 deg C). The 0.5 per cent alloy resists much better to the thermal cycling than does the non-alloyed uranium. This resistance is, however, much lower than that of alloys containing over l per cent, even at 550 deg C it improves after a heat treatment for grain-refining. Alloys of over 1.1 per cent have a very good resistance to a cycling treatment even at 625 deg C, and this behaviour improves with increasing concentrations up to 3 per cent. An increase in the temperature up to the ?-phase has few disadvantages provided that it is followed by rapid cooling (50 to 100 deg C/min). The ? grain is fine, the ?-phase is of the modular form, and the behaviour during a thermal cycling treatment is satisfactory. If this cooling is slow (15 deg /hr) the ?-grain is coarse and cycling treatment behaviour is identical to that of the 0.5 per cent alloy. The protracted heat treatments showed that the ?-grain exhibits satisfactory stability after 2000 hours at 575, 600 and 625 deg C, and after 4000 hours at 625 deg C. A heat cycling treatment carried out after these tests affects only very little the behaviour of these alloys during cycling. (authors)

  5. Study of transformations by annealing of the body. Centred cubic ? phase of uranium-molybdenum alloys

    International Nuclear Information System (INIS)

    By annealing at different temperatures, we have studied the transformations of the body centred cubic ? phase for two alloys containing 6 and 10 per cent molybdenum by weight respectively. There is a return to the equilibrium state by formation of the stable ? orthorhombic and ? ordered tetragonal phases, following two types of reaction: - pearlite transformation by nucleation and growth from the grain boundaries, preponderant when the annealing takes place at temperature above 400 deg. C, and identical for the two types of alloys. This reaction has already been studied by numerous authors, who have constructed the corresponding TTT curves, - transformation inside the grains of the quenched solid solution when annealing takes place at 400 deg. C or below: 6 per cent alloy - precipitation of fine a phase particles, followed by progressive ordering of the solid solution enriched in molybdenum, 10 per cent alloy - formation of small ordered regions and then a fine a phase precipitate. In the course of this work we have paid particular attention to the study of intragranular reactions after low-temperature annealing, the reactions involved in this case not having been explained up to the present. The ? phase transformation has been studied by means of three techniques: micrography - microhardness tests - X-ray diffraction. (author)

  6. Uranium-molybdenum alloys containing 0,5 to 3 per cent by weight of molybdenum

    International Nuclear Information System (INIS)

    The following properties have been determined in the new cast state of uranium alloys containing 0.5-1-1.8-2 and 3.5 per cent of molybdenum: micro-graphical aspect, crystalline structure, thermal expansion, the mechanical characteristics, behaviour when subjected to cyclic temperature variations, and heat treatment. The transformation curves have been established for continuous cooling at rates varying between 2.5 and 200 deg. C per minute, using a dilatation method for the alloys containing 1.0, 2.0 and 3.0 per cent Mo. T.T.T. curves have been traced for 0.5 and 1.0 per cent Mo alloys and the Ms points determined for alloys containing 2.0 and 3.0 par cent Mo. In this way it has been possible to show the different results of transformation, brought about either by nucleation and diffusion or by shear - the alloy containing 1 per cent Mo, give two martensites ?' and ?'' and the alloys containing 2 and 3 per cent Mo give one martensite with a band structure. (author)

  7. Characterization of poly- and single-crystal uranium–molybdenum alloy thin films

    International Nuclear Information System (INIS)

    Poly- and single-crystal thin films of U–Mo alloys have been grown both on glass and sapphire substrates by ultra-high vacuum magnetron sputtering. X-ray and Electron Backscatter Diffraction data indicate that for single-crystal U1?xMox alloys, the pure cubic uranium ?-phase exists for x ? 0.22 (10 wt.% Mo). Below 10 wt.% Mo concentration, the resulting thin film alloys exhibited a mixed ?–? uranium phase composition. - Highlights: • Poly- and single-crystal of ?-phase U–Mo alloy thin film • Quality and purity of U–Mo alloy thin film samples were examined using surface science techniques. • Experimental methods: X-ray diffraction, Focus ion beam, Scanning electron microscopy

  8. Achievements in technical improvements on comprehensive recovery of uranium, molybdenum and rhenium in Xifeng uranium mill

    International Nuclear Information System (INIS)

    The author reviews achievements in technical improvements and economic benefits of Xifeng Uranium Mill with the help of technical advance strengthening comprehensive recovery and multiple-purpose use of the ore

  9. Achievements in technical improvements on comprehensive recovery of uranium, molybdenum and rhenium in Xifeng uranium mill

    International Nuclear Information System (INIS)

    The author the achievements in technical improvements and economic benefits of Xifeng Uranium Mill with the help of technical advance strengthening comprehensive recovery and multiple-purpose use of the ore

  10. Orientational relationships between phases in the ??? transformations for uranium-molybdenum alloys

    International Nuclear Information System (INIS)

    A crystallographic study has been made of the ? ? ? + ? transformation in the alloy containing 3 per cent by weight of molybdenum using electronic micro-diffraction; it has been possible to establish the orientational relationships governing the germination of the ? phase in the ? phase. One finds: (111)? // (100) ?, (112-bar)? // (010) ?, (11-bar 0)? // (001)?. By choosing a monoclinic lattice containing the same number of atoms as the orthorhombic lattice for defining the ? mother phase, the change in structure has been explained by adding a homogeneous (112-bar)? [111]? shearing deformation to a heterogeneous deformation brought about by slipping of the atoms which are not situated at the nodes of this lattice. The identity of the orientation relationships ?/? and ?/?''b and the loss of coherence ? /? as a function of temperature or of time lead to the conclusion that, in the range studied, the ? ? ? transformation begins with a martensitic process and continues by germination and growth. (author)

  11. Fuel Thermo-physical Characterization Project. Fiscal Year 2014 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Burkes, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Casella, Andrew M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Buck, Edgar C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Casella, Amanda J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Edwards, Matthew K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); MacFarlan, Paul J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pool, Karl N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Slonecker, Bruce D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, Frances N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Steen, Franciska H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-03-15

    The Office of Material Management and Minimization (M3) Reactor Conversion Fuel Thermo-Physical Characterization Project at Pacific Northwest National Laboratory (PNNL) was tasked with using PNNL facilities and processes to receive irradiated low enriched uranium–molybdenum (LEU-Mo) fuel plate samples and perform analysis in support of the M3 Reactor Conversion Program. This work is in support of the M3 Reactor Conversion Fuel Development Pillar that is managed by Idaho National Laboratory. The primary research scope was to determine the thermo-physical properties as a function of temperature and burnup. Work conducted in Fiscal Year (FY) 2014 complemented measurements performed in FY 2013 on four additional irradiated LEU-Mo fuel plate samples. Specifically, the work in FY 2014 investigated the influence of different processing methods on thermal property behavior, the absence of aluminum alloy cladding on thermal property behavior for additional model validation, and the influence of higher operating surface heat flux / more aggressive irradiation conditions on thermal property behavior. The model developed in FY 2013 and refined in FY 2014 to extract thermal properties of the U-Mo alloy from the measurements conducted on an integral fuel plate sample (i.e., U-Mo alloy with a thin Zr coating and clad in AA6061) continues to perform very well. Measurements conducted in FY 2014 on samples irradiated under similar conditions compare well to measurements performed in FY 2013. In general, there is no gross influence of fabrication method on thermal property behavior, although the difference in LEU-Mo foil microstructure does have a noticeable influence on recrystallization of grains during irradiation. Samples irradiated under more aggressive irradiation conditions, e.g., higher surface heat flux, revealed lower thermal conductivity when compared to samples irradiated at moderate surface heat fluxes, with the exception of one sample. This report documents thermal property measurements conducted in FY 2014 and compares results to values obtained from literature and measurements performed in FY 2013, where applicable, along with appropriate discussion.

  12. Design Study for a Low-Enriched Uranium Core for the High Flux Isotope Reactor, Annual report for FY 2009

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, David [ORNL; Freels, James D [ORNL; Ilas, Germina [ORNL; Miller, James Henry [ORNL; Primm, Trent [ORNL; Sease, John D [ORNL; Guida, Tracey [University of Pittsburgh; Jolly, Brian C [ORNL

    2010-02-01

    This report documents progress made during FY 2009 in studies of converting the High Flux Isotope Reactor (HFIR) from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in reactor performance from the current level. Results of selected benchmark studies imply that calculations of LEU performance are accurate. Studies are reported of the application of a silicon coating to surrogates for spheres of uranium-molybdenum alloy. A discussion of difficulties with preparing a fuel specification for the uranium-molybdenum alloy is provided. A description of the progress in developing a finite element thermal hydraulics model of the LEU core is provided.

  13. Uranium molybdenum silicide U3MoSi2 and phase equilibria in the U-Mo-Si system

    International Nuclear Information System (INIS)

    The metallographic and X-ray diffraction data are given for the new ternary silicide U3MoSi2. This compound melts incongruently at approximately 1480 C according to: U3MoSi2?U4MoSi3+U2Mo3Si4+L (L=peritectic liquid). It was verified that molybdenum coexists with U3Si2 predominantly as U3MoSi2. Indexing of the powder pattern showed that U3MoSi2 has a simple cubic structure with lattice parameter a?=10.69 ± 0.01 A. (orig.)

  14. Fuel experience

    International Nuclear Information System (INIS)

    A short survey is given of the criteria and experience on which an assessment of the efficiency and reliability of reactor fuel elements should be based. Among these are the deformation behaviour of the fuel element cans and the fuel itself, outer and inner corrosion of the zircaloy cladding material, fission product release, defect fuel elements, etc. (RB)

  15. Fuel assembly

    International Nuclear Information System (INIS)

    In a BWR type nuclear fuel assembly, if a concentration degree or a plutonium enrichment degree is made uniform for each of fuel rods, power peaks are formed locally, especially, in the fuel rods at the outermost corners to possibly deteriorate the integrity of the fuels. Further, since a fuel assembly is assembled by using a great amount of fuel rods of different types, the production cost is increased and erroneous assembling may possibly be caused. Then, at least one fuel rod with high reactivity such as a mixed oxide fuel rod or a fuel rod of high concentration is disposed at the outermost circumference except for the corners of the fuel assembly. That is, MOX fuel rods with large thermal neutron absorbing cross section are disposed at the outermost circumference of the fuel assembly thereby lowering the power relatively at the corners where the power peaks are easily formed. A fuel assembly with sufficiently low local power peaks and low production cost can be obtained without using various fuel rods of different types. (N.H.)

  16. DESIGN STUDY FOR A LOW-ENRICHED URANIUM CORE FOR THE HIGH FLUX ISOTOPE REACTOR, ANNUAL REPORT FOR FY 2010

    Energy Technology Data Exchange (ETDEWEB)

    Cook, David Howard [ORNL; Freels, James D [ORNL; Ilas, Germina [ORNL; Jolly, Brian C [ORNL; Miller, James Henry [ORNL; Primm, Trent [ORNL; Renfro, David G [ORNL; Sease, John D [ORNL; Pinkston, Daniel [ORNL

    2011-02-01

    This report documents progress made during FY 2010 in studies of converting the High Flux Isotope Reactor (HFIR) from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current level. Studies are reported of support to a thermal hydraulic test loop design, the implementation of finite element, thermal hydraulic analysis capability, and infrastructure tasks at HFIR to upgrade the facility for operation at 100 MW. A discussion of difficulties with preparing a fuel specification for the uranium-molybdenum alloy is provided. Continuing development in the definition of the fuel fabrication process is described.

  17. Fuel cycles

    International Nuclear Information System (INIS)

    AECL publications, from the open literature, on fuels and fuel cycles used in CANDU reactors are listed in this bibliography. The accompanying index is by subject. The bibliography will be brought up to date periodically

  18. Fuel gases

    International Nuclear Information System (INIS)

    This paper gives a brief presentation of the context, perspectives of production, specificities, and the conditions required for the development of NGV (Natural Gas for Vehicle) and LPG-f (Liquefied Petroleum Gas fuel) alternative fuels. After an historical presentation of 80 years of LPG evolution in vehicle fuels, a first part describes the economical and environmental advantages of gaseous alternative fuels (cleaner combustion, longer engines life, reduced noise pollution, greater natural gas reserves, lower political-economical petroleum dependence..). The second part gives a comparative cost and environmental evaluation between the available alternative fuels: bio-fuels, electric power and fuel gases, taking into account the processes and constraints involved in the production of these fuels. (J.S.)

  19. Nuclear fuels

    International Nuclear Information System (INIS)

    Fuel is one of the essential components in a reactor. It is within that fuel that nuclear reactions take place, i.e. fission of heavy atoms, uranium and plutonium. Fuel is at the core of the reactor, but equally at the core of the nuclear system as a whole. Fuel design and properties influence reactor behavior, performance, and safety. Even though it only accounts for a small part of the cost per kilowatt-hour of power provided by current nuclear power plants, good utilization of fuel is a major economic issue. Major advances have yet to be achieved, to ensure longer in-reactor dwell-time, thus enabling fuel to yield more energy; and improve ruggedness. Aside from economics, and safety, such strategic issues as use of plutonium, conservation of resources, and nuclear waste management have to be addressed, and true technological challenges arise. This Monograph surveys current knowledge regarding in-reactor behavior, operating limits, and avenues for R and D. It also provides illustrations of ongoing research work, setting out a few noteworthy results recently achieved. Content: 1 - Introduction; 2 - Water reactor fuel: What are the features of water reactor fuel? 9 (What is the purpose of a nuclear fuel?, Ceramic fuel, Fuel rods, PWR fuel assemblies, BWR fuel assemblies); Fabrication of water reactor fuels (Fabrication of UO2 pellets, Fabrication of MOX (mixed uranium-plutonium oxide) pellets, Fabrication of claddings); In-reactor behavior of UO2 and MOX fuels (Irradiation conditions during nominal operation, Heat generation, and removal, The processes involved at the start of irradiation, Fission gas behavior, Microstructural changes); Water reactor fuel behavior in loss of tightness conditions (Cladding, the first containment barrier, Causes of failure, Consequences of a failure); Microscopic morphology of fuel ceramic and its evolution under irradiation; Migration and localization of fission products in UOX and MOX matrices (The ceramic under irradiation, Bubbles and precipitates, Modeling fuel behavior); Modeling defects and fission products in UO2 ceramic by ab initio computation (Ab initio computation, Point defects in uranium dioxide, Fission products in uranium dioxide, The indispensable coupling of modeling and experiment); Cladding and assembly materials (What is the purpose of cladding?, Zirconium alloys, Claddings: required to exhibit good mechanical strength, Mechanical behavior of irradiated Zr alloys, Claddings: required to prove corrosion resistant); Pellet-cladding interaction (The phenomena involved in pellet-cladding interaction (PCI), Experimental simulation of PCI and the lessons to be drawn from it, The requirement for an experimental basis, Numerical simulation of PCI, Towards a lifting of PCI-related operating constraints); Advanced UO2 and MOX ceramics (Chromium oxide-doped UO2 fuel, Novel MOX microstructures); Mechanical behavior of fuel assemblies (Assembly mechanical behavior in normal operating conditions, Assembly mechanical behavior in accident situations, Fuel in a loss of primary coolant accident (LOCA)); Introduction to LOCA-type accident transients (Overview of thermal-hydraulic and fuel-related aspects, Incidence of LOCA transients on the thermal-metallurgical-mechanical behavior of zirconium-base alloy cladding); Fuel in a reactivity insertion accident (RIA) (Safety criteria); Fuel in a severe accident (The VERCORS analytical program, The Phebus-FP global tests, Control of severe accidents in the EPR reactor); In-core fuel management (Relationships between cycle length, maximum burnup, and batch fraction Enrichment and burnable poisons, The impact of the nature of the fuel used, and its evolution, on the major parameters of core physics, and management Prospects for future trends in core management); Fuel cycle material balances (In-core evolution of materials, Decay heat and potential radiotoxicity, Plutonium management); Long-term behavior of spent fuel (The nature of spent nuclear fuel, Anticipated evolution of fuel in dry storage, Anticipated evolution of fuel in deep geological d

  20. Fossil Fuels.

    Science.gov (United States)

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fossil fuels. Some topics covered are historic facts, development of fuels, history of oil production, current and future trends of the oil industry, refining fossil fuels, and environmental problems. Material in each unit may…

  1. Nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Beauvy, M.; Berthoud, G.; Defranceschi, M.; Ducros, G.; Guerin, Y.; Limoge, Y.; Madic, Ch.; Santarini, G.; Seiler, J.M.; Sollogoub, P.; Vernaz, E.; Guillet, J.L.; Ballagny, A.; Bechade, J.L.; Bonin, B.; Brachet, J.Ch.; Delpech, M.; Dubois, S.; Ferry, C.; Freyss, M.; Gilbon, D.; Grouiller, J.P.; Iracane, D.; Lansiart, S.; Lemoine, P.; Lenain, R.; Marsault, Ph.; Michel, B.; Noirot, J.; Parrat, D.; Pelletier, M.; Perrais, Ch.; Phelip, M.; Pillon, S.; Poinssot, Ch.; Vallory, J.; Valot, C.; Pradel, Ph.; Bonin, B.; Bouquin, B.; Dozol, M.; Lecomte, M.; Vallee, A.; Bazile, F.; Parisot, J.F.; Finot, P.; Roberts, J.F

    2009-07-01

    Fuel is one of the essential components in a reactor. It is within that fuel that nuclear reactions take place, i.e. fission of heavy atoms, uranium and plutonium. Fuel is at the core of the reactor, but equally at the core of the nuclear system as a whole. Fuel design and properties influence reactor behavior, performance, and safety. Even though it only accounts for a small part of the cost per kilowatt-hour of power provided by current nuclear power plants, good utilization of fuel is a major economic issue. Major advances have yet to be achieved, to ensure longer in-reactor dwell-time, thus enabling fuel to yield more energy; and improve ruggedness. Aside from economics, and safety, such strategic issues as use of plutonium, conservation of resources, and nuclear waste management have to be addressed, and true technological challenges arise. This Monograph surveys current knowledge regarding in-reactor behavior, operating limits, and avenues for R and D. It also provides illustrations of ongoing research work, setting out a few noteworthy results recently achieved. Content: 1 - Introduction; 2 - Water reactor fuel: What are the features of water reactor fuel? 9 (What is the purpose of a nuclear fuel?, Ceramic fuel, Fuel rods, PWR fuel assemblies, BWR fuel assemblies); Fabrication of water reactor fuels (Fabrication of UO{sub 2} pellets, Fabrication of MOX (mixed uranium-plutonium oxide) pellets, Fabrication of claddings); In-reactor behavior of UO{sub 2} and MOX fuels (Irradiation conditions during nominal operation, Heat generation, and removal, The processes involved at the start of irradiation, Fission gas behavior, Microstructural changes); Water reactor fuel behavior in loss of tightness conditions (Cladding, the first containment barrier, Causes of failure, Consequences of a failure); Microscopic morphology of fuel ceramic and its evolution under irradiation; Migration and localization of fission products in UOX and MOX matrices (The ceramic under irradiation, Bubbles and precipitates, Modeling fuel behavior); Modeling defects and fission products in UO{sub 2} ceramic by ab initio computation (Ab initio computation, Point defects in uranium dioxide, Fission products in uranium dioxide, The indispensable coupling of modeling and experiment); Cladding and assembly materials (What is the purpose of cladding?, Zirconium alloys, Claddings: required to exhibit good mechanical strength, Mechanical behavior of irradiated Zr alloys, Claddings: required to prove corrosion resistant); Pellet-cladding interaction (The phenomena involved in pellet-cladding interaction (PCI), Experimental simulation of PCI and the lessons to be drawn from it, The requirement for an experimental basis, Numerical simulation of PCI, Towards a lifting of PCI-related operating constraints); Advanced UO{sub 2} and MOX ceramics (Chromium oxide-doped UO{sub 2} fuel, Novel MOX microstructures); Mechanical behavior of fuel assemblies (Assembly mechanical behavior in normal operating conditions, Assembly mechanical behavior in accident situations, Fuel in a loss of primary coolant accident (LOCA)); Introduction to LOCA-type accident transients (Overview of thermal-hydraulic and fuel-related aspects, Incidence of LOCA transients on the thermal-metallurgical-mechanical behavior of zirconium-base alloy cladding); Fuel in a reactivity insertion accident (RIA) (Safety criteria); Fuel in a severe accident (The VERCORS analytical program, The Phebus-FP global tests, Control of severe accidents in the EPR reactor); In-core fuel management (Relationships between cycle length, maximum burnup, and batch fraction Enrichment and burnable poisons, The impact of the nature of the fuel used, and its evolution, on the major parameters of core physics, and management Prospects for future trends in core management); Fuel cycle material balances (In-core evolution of materials, Decay heat and potential radiotoxicity, Plutonium management); Long-term behavior of spent fuel (The nature of spent nuclear fuel, Anticipated evolution of fuel in dry storage, Anticipated evolutio

  2. Fuel assemblies

    International Nuclear Information System (INIS)

    Object: To provide an absorber at the leading end on the introducing side of a fuel assembly thereby restraining flux output density of upper fuel elements at the time of replacing fuel during the operation of reactor. Structure: Upper and lower tie plates and a plurality of fuel pins connected therebetween constitute an integral fuel assembly. A clad tube forming the fuel pin is interiorly filled with a multitude of fuel pellets (for example, 1.5% enriched uranium), opposite ends of which are filled with adiabatic pellets such as alumina (Al2O3). In this case, a neutron absorber, for example, such as boron carbide (B4C) of thickness 10cm, is filled between the adiabatic pellet at the leading end (upper end) in the mounting direction of the fuel assembly and the fuel pellet at the foremost end. When the new fuel assembly constructed as described above is inserted into the central portion of the core where flux output density is highest, axial output distribution at this time is considerably decreased in output peak at the upper part of the fuel element by the action of the absorber, as compared with the prior art. (Kamimura, M.)

  3. Fuel distribution

    Energy Technology Data Exchange (ETDEWEB)

    Tison, R.R.; Baker, N.R.; Blazek, C.F.

    1979-07-01

    Distribution of fuel is considered from a supply point to the secondary conversion sites and ultimate end users. All distribution is intracity with the maximum distance between the supply point and end-use site generally considered to be 15 mi. The fuels discussed are: coal or coal-like solids, methanol, No. 2 fuel oil, No. 6 fuel oil, high-Btu gas, medium-Btu gas, and low-Btu gas. Although the fuel state, i.e., gas, liquid, etc., can have a major impact on the distribution system, the source of these fuels (e.g., naturally-occurring or coal-derived) does not. Single-source, single-termination point and single-source, multi-termination point systems for liquid, gaseous, and solid fuel distribution are considered. Transport modes and the fuels associated with each mode are: by truck - coal, methanol, No. 2 fuel oil, and No. 6 fuel oil; and by pipeline - coal, methane, No. 2 fuel oil, No. 6 oil, high-Btu gas, medium-Btu gas, and low-Btu gas. Data provided for each distribution system include component makeup and initial costs.

  4. Fuel assembly

    International Nuclear Information System (INIS)

    In a fuel assembly for a BWR type reactor, circular cell rings supporting fuel rods are joined and bundled together with adjacent circular rings by spot welding on the like, and contained in a channel box. Vanes are disposed, on the side fuel rod-supporting of the circular rings disposed at the corner and the periphery thereof most remote from the control rod in the channel box. Each of the vanes is disposed obliquely to the longitudinal direction of the fuel rod. A vortex stream of coolants is caused by the vane in the space between the fuel rods. Droplets contained in steams are deposited to a liquid membrane along the fuel rod by centrifugal force by the vortex stream to increase the amount of the flow of the liquid membrane on the surface of the fuel rod. This can promote thermal conduction, to increase thermal margin relative to boiling transient and the improve critical power. (I.N.)

  5. Fuel assembly

    International Nuclear Information System (INIS)

    A fuel assembly used in a FBR type nuclear reactor comprises a plurality of fuel rods and a moderator guide member (water rod). A moderator exit opening/closing mechanism is formed at the upper portion of the moderator guide member for opening and closing a moderator exit. In the initial fuel charging operation cycle to the reactor, the moderator exit is closed by the moderator exit opening/closing mechanism. Then, voids are accumulated at the inner upper portion of the moderator guide member to harden spectrum and a great amount of plutonium is generated and accumulated in the fuel assembly. Further, in the fuel re-charging operation cycle, the moderator guide member is used having the moderator exit opened. In this case, voids are discharged from the moderator guide member to decrease the ratio, and the plutonium accumulated in the initial charging operation cycle is burnt. In this way, the fuel economy can be improved. (I.N.)

  6. Fuel cycle

    International Nuclear Information System (INIS)

    The situation of the nuclear fuel cycle for LWR type reactors in France and in the Federal Republic of Germany was presented in 14 lectures with the aim to compare the state-of-the-art in both countries. In addition to the momentarily changing fuilds of fuel element development and fueling strategies, the situation of reprocessing, made interesting by some recent developmnts, was portrayed and differences in ultimate waste disposal elucidated. (orig.)

  7. Fuel Cells

    DEFF Research Database (Denmark)

    Smith, Anders; Pedersen, Allan Schrøder

    2014-01-01

    Fuel cells have been the subject of intense research and development efforts for the past decades. Even so, the technology has not had its commercial breakthrough yet. This entry gives an overview of the technological challenges and status of fuel cells and discusses the most promising applications of the different types of fuel cells. Finally, their role in a future energy supply with a large share of fluctuating sustainable power sources, e.g., solar or wind, is surveyed.

  8. Fuel assembly

    International Nuclear Information System (INIS)

    Object: To reduce edge flow effect by forming the inner periphery of a hexagonal tube with an arc-shaped groove concentric with a fuel element. Structure: A hexagon tube is provided on its inner wall and in a portion corresponding to a fuel element with a long groove extending in the longitudinally of the hexagon tube and having an arc-shaped profile concentric with the fuel element, whereby the edge flow effect is practically approximated to 1. (Kamimura, M.)

  9. Fuel taxation

    OpenAIRE

    Leicester, A.

    2005-01-01

    In the autumn of 2000, increases in the price of petrol led to fuel protests across Britain. It was argued that high levels of indirect taxation on fuel, which had risen rapidly in each year from 1993 to 1999 (the "escalator", which saw duties on fuel increase by 3 percentage points above inflation between 1993 and 1997, and 6 points between 1997 and 1999), had provoked the protests. Since abandoning the escalator in the 1999 Pre-Budget Report, the Chancellor has not increased fuel duties abo...

  10. Nuclear fuel

    International Nuclear Information System (INIS)

    All stages of nuclear fuel cycle are analysed with respect to the present situation and future perspectives of supply and demand of services; the prices and the unitary cost estimation of these stages for the international fuel market are also mentioned. From the world resources and projections of uranium consumption, medium-and long term analyses are made of fuel availability for several strategies of use of different reactor types. Finally, the cost of nuclear fuel in the generation of electric energy is calculated to be used in the energetic planning of the electric sector. (M.A.)

  11. Candu fuel and fuel cycles

    International Nuclear Information System (INIS)

    A primary rationale for Indonesia to proceed with a nuclear power program is to diversity its energy sources and achieve freedom from future resource constraints. While other considerations, such as economy of power supply, hedging against potential future increases in the price of fossil fuels, fostering the technological development of the Indonesia economy and minimizing greenhouse and other gaseous emissions are important, the strategic resource issue is key. In considering candidate nuclear power technologies upon which to base such a program, a major consideration will be the potential for those technologies to be economically sustained in the face of large future increases in demand for nuclear fuels. The technology or technologies selected should be amenable to evaluation in a rapidly changing technical, economic, resource and environmental policy. The world's proven uranium resources which can be economically recovered represent a fairly modest energy resource if utilization is based on the currently commercialized fuel cycles, even with the use of recovered plutonium in mixed oxide fuels. In the long term, fuel cycles relying solely on the use of light water reactors will encounter increasing fuel supply constraints. Because of its outstanding neutron economy and the flexibility of on-power refueling, CANDU reactors are the most fuel resource efficient commercial reactors and offer the potential for accommodating an almost unlimited variety of advanced and even more fuel efficient cycles. Most of these cycles utilize nuclear fuels which are too low grade to be used in light water reactors, including many products now considered to be waste, such as spent light water reactor fuel and reprocessing products such as recovered uranium. The fuel-cycle flexibility of the CANDU reactor provides a ready path to sustainable energy development in both the short and the long terms. Most of the potential CANDU fuel cycle developments can be accommodated in existing reactor designs, allowing operation today on currently available fuels and switching to other fueling options as market conditions change. This establishes an important freedom from future resource constraints without depending on future commercialization of challenging and expensive technologies such as fast breeder reactors, yet, once these are commercially available, CANDU and fast breeder fuel cycles are complementary and can achieve a highly advantageous synergism. This paper examines the fuel cycle option which CANDU reactor technology can accommodate, including the use of slightly enriched uranium direct use of spent pressurized water reactor fuel in CANDU (dupic), burning recovered uranium, mixed plutonium and uranium oxides or actinides and the use of thorium based fuel cycles. These options provide CANDU reactors with the most flexible fuelling of any reactor type, which are readily adaptable to meeting future variations in energy markets, regardless of what these may be. (author)

  12. Fuel element

    International Nuclear Information System (INIS)

    A nuclear reactor fuel element wherein a stack of nuclear fuel is prevented from displacement within its sheath by a retainer comprising a tube member which is radially expanded into frictional contact with the sheath by means of a captive ball within a tapered bore. (author)

  13. Fuel cells:

    DEFF Research Database (Denmark)

    Sørensen, Bent

    2013-01-01

    A brief overview of the progress in fuel cell applications and basic technology development is presented, as a backdrop for discussing readiness for penetration into the marketplace as a solution to problems of depletion, safety, climate or environmental impact from currently used fossil and nuclear fuel-based energy technologies.

  14. Fuel assembly

    International Nuclear Information System (INIS)

    In a fuel assembly, a fuel rod spacer comprises an outer frame capable of being contained in a channel box, a great number of cells connected with each other and arranged in a raw in the outer frame and having a plurality of inward protrusions, and springs disposed to the walls of the cells in adjacent with each other for urging fuel rods to the side of the inward protrusion. A coolant guide is formed at a portion of the cell so as to direct the flow of coolants to the fuel rod. Centrifugal force is applied by the coolant guide to the coolant stream in the spacer, and droplets having greater weight than steams are scattered to the periphery to be blown to the surface of the fuel rod. The thickness of the liquid membrane on the surface of the fuel rod can be increased to prevent burning loss of the fuel rod and increase the critical power. That is, thermal margin is improved and reactor power is increased by forming a bent portion bent on the side of a region of great flow rate and deforming a portion of a cell so as to direct the stream of the coolants toward the fuel rod. (N.H.)

  15. Maps showing distribution of pH, copper, zinc, fluoride, uranium, molybdenum, arsenic, and sulfate in water, Richfield 1 degree by 2 degrees Quadrangle, Utah

    Science.gov (United States)

    McHugh, J.B.; Miller, W.R.; Ficklin, W.H.

    1984-01-01

    These maps show the regional distribution of copper, zinc, arsenic, molybdenum, uranium, fluoride, sulfate, and pH in surface and ground water from the Richfield 1° x 2° quadrangle. This study supplements (Miller and others, 1984a-j) the regional drainage geochemical study done for the Richfield quadrangle under the U.S. Geological Survey’s Conterminuous United States Mineral Assessment Program (CUSMAP). Regional sampling was designed to define broad geochemical patterns and trends which can be used, along with geologic and geophysical data, to assess the mineral resource potential of the Richfield quadrangle. Analytical data used in compiling this report were published previously (McHugh and others, 1981). The Richfield quadrangle in west-central Utah covers the eastern part of the Pioche-Marysvale igneous and mineral belt that extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 250 km into central Utah. The western two-thirds of the Richfield quadrangle is in the Basin and Range Province, and the eastern third in the High Plateaus of Utah subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of latest Precambrian and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrane into a series of north-trending fault blocks; the uplifted mountain areas were deeply eroded and the resulting debris deposited in the adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed during igneous activity in the middle and late Cenozoic time.

  16. Fuel rods

    International Nuclear Information System (INIS)

    Purpose: To provide a structure capable of measuring, in a non-destructive manner, the releasing amount of nuclear gaseous fission products from spent fuels easily and at a high accuracy. Constitution: In order to confirm the integrity and the design feasibility of a nuclear fuel rod, it is important to accurately determine the amount of gaseous nuclear fission products released from nuclear pellets. In a structure where a plurality of fuel pellets are charged in a fuel cladding tube and retained by an inconel spring, a hollow and no-sealed type spacer tube made of zirconium or the alloy thereof, for example, not containing iron, cobalt, nickel or manganese is formed between the spring and the upper end plug. In the fuel rod of such a structure, by disposing a gamma ray collimator and a gamma ray detector on the extension of the spacer pipe, the gamma rays from the gaseous nuclear fission products accumulated in the spacer pipe can be detected while avoiding the interference with the induction radioactivity from inconel. (Kamimura, M.)

  17. Fuel assembly

    International Nuclear Information System (INIS)

    Object: To permit ready and safe mounting and removal of fuel rods to and from the upper tie plate by fitting a rotary engagement member capable of engaging with the upper tie plate in the tie rod of the fuel rods. Structure: The upper tie plate is raised against a rod spring mounted on a tie rod, thereby preventing the rise of the upper tie plate in a stop section. Then, the rotary engagement member which is in pressure contact with a stopper rotates to bring the check section into engagement in a notched groove formed in the upper tie rod, to thereby render the upper tie plate removable. In this way, the upper tie rod may be removed from the fuel rods without separating various parts provided on the tie rod from the same but by only simple operation of a single part. (Kamimura, M.)

  18. Fuel assembly

    International Nuclear Information System (INIS)

    Object: To form orifices for controlling flow of coolant within an assembly to render outlet temperature of the coolant uniform. Structure: A handling head is disposed at the upper part of a cladding tube for supporting a multitude of fuel rods to form coolant flow passages, and a flow controller (orifice), which varies in sectional area in proportion to the temperature of coolant, is provided interiorly thereof to constitute a fuel assembly. By the provision of such flow controller, the flow controlling may be accomplished, even in case of different heating value of assemblies, to optimize the temperature distribution of coolant. (Kamimura, M.)

  19. Fuel oxygenates

    Energy Technology Data Exchange (ETDEWEB)

    Barcelo, Damia (ed.) [IIQAB-CSIC, Barcelona (Spain)

    2007-07-01

    The state-of-the-art on fuel oxygenates, and in particular of MTBE in groundwater, is presented in this book. Historically, oxygenates like MTBE were developed in the 1970s as octane enhancers to replace toxic additives like lead, which were phased out of gasoline. The presence of oxygenates in gasoline promotes cleaner fuel combustion within the engine, boosts fuel octane values and reduces vehicle emissions. Another relevant oxygenate is ethyl-tertiary-butyl ether (ETBE), which has increasingly replaced MTBE. This book deals mainly with the problems associated with the contamination of groundwater by MTBE and TBA, but ETBE is also considered. The book, written by recognized specialists in the field, is organized in sections covering state-of-the-art analytical methods, including specific isotopic analysis, occurrence in the environment, transport and degradation processes, treatment technologies and human health risks. It offers a unique opportunity not only for scientists who want to get more comprehensive information on this subject but also for policy makers and stakeholders that need to manage real-world environmental problems associated with fuel oxygenate contamination of our groundwater resources. (orig.)

  20. Fuel assembly

    International Nuclear Information System (INIS)

    Stirring means are disposed at the intersection of spacer plates constituting cells of a lattice type spacer. The stirring means stir coolants by utilizing the upwarding stream of them to cause vortex flows. The stirring means comprises four vanes protruded radially from vicinity of the intersection of the spacer plates. Each of the vanes is secured to the spacer plates while being inclined like a screw. Then, the vanes are inclined in the direction opposite to each other between adjacent stirring means, thereby making the directions of the vortex flows opposite to each other. Accordingly, the cortex flows of the coolants accelerate each other. That is, the coolants can efficiently be directed to the fuel rods by a great centrifugal force caused by rotation of the strong vortex flows. This can improve a dry out characteristic of the fuel assembly. (I.N.)

  1. Transport fuel

    DEFF Research Database (Denmark)

    Ronsse, Frederik; Jørgensen, Henning; Schüßler, Ingmar; Gebart, Rikard

    2014-01-01

    Worldwide, the use of transport fuel derived from biomass increased four-fold between 2003 and 2012. Mainly based on food resources, these conventional biofuels did not achieve the expected emission savings and contributed to higher prices for food commod - ities, especially maize and oilseeds. Advanced biofuels based on forest biomass are not yet being produced on a large scale, but are expected to have a better life-cycle emission profile than conventional biofuels. The pathways from feedstock...

  2. Fuel ethanol

    International Nuclear Information System (INIS)

    This paper discusses a review of fuel ethanol imports from Caribbean Basin Initiative countries which was made in response to a requirement in the Omnibus Trade and Competitiveness Act of 1988. The authors' review showed that given current sugar and gasoline prices, it is not economically feasible for CBI ethanol producers to meet the 75-percent local feedstock requirement. At current prices, CBI companies can be competitive with no more than a 10- to 30-percent local feedstock requirement

  3. Fuel assembly

    International Nuclear Information System (INIS)

    In a fuel assembly for a BWR type reactor, a moderator guide tube is disposed at the central axial direction and a hollow guide tube having a cross like-cross section is disposed at the outerside of the moderator guide tube. Moderators flowing down in the moderator guide tube are discharged from a discharge port to the lower periphery of fuel rods, thereby making the flow channel resistance maximum when the reactor core flow rate is minimum. On the other hand, a flow channel resistance body is disposed at the inlet of the moderator guide tube to reduce the flow channel resistance continuously along with increase of the flow rate. At the initial stage of the operation cycle, the flow rate of the moderators introduced from the discharge port to the axial lower portion is decreased and the void ratio at the upper portion is increased to harden spectrum and form and accumulate a great amount of plutonium. On the other hand, at the final stage of the operation, the void ratio at the lower portion is decreased and the plutonium accumulated at the initial stage of operation cycle is burnt. Thus, the flow channel resistance in the moderator guide tube can be continuously controlled by the flow channel resistance body in accordance with the reactor core flow rate to improve the fuel economy. (N.H.)

  4. Transport fuel

    DEFF Research Database (Denmark)

    Ronsse, Frederik; JØrgensen, Henning

    2014-01-01

    Worldwide, the use of transport fuel derived from biomass increased four-fold between 2003 and 2012. Mainly based on food resources, these conventional biofuels did not achieve the expected emission savings and contributed to higher prices for food commod - ities, especially maize and oilseeds. Advanced biofuels based on forest biomass are not yet being produced on a large scale, but are expected to have a better life-cycle emission profile than conventional biofuels. The pathways from feedstock to advanced biofuel are diverse in respect to capacity, technology and final product. Three promising conversion technologies are presented below: pyrolysis, biochemical conversion and gasification

  5. Fuel assembly

    International Nuclear Information System (INIS)

    In a BWR type reactor, a flow rate control element which introduces coolants to the outside of a coolant guide member when neutron fluxes are increased and introduces them to the inside of the coolant guide member when the fluxes are lowered, and a heat generator are disposed at the lower portion of the guide member. Further, a flow channel resistance control mechanism is disposed at the upper portion of the guide member for increasing flow channel resistance when steams are increased and decreasing the resistance when steams are reduced. In an operation mode of providing a power peak at the lower portion of a reactor core, the flow rate control element introduces coolants to the outside of the guide member. The heat generator generates a great amount of steams, the flow channel resistance is increased by the flow channel resistance control mechanism due to the increase of the steams, a great amount of steams is accumulated in the upper portion of the guide member to decrease moderators. Then, a great amount of plutonium is formed and accumulated in the upper portion of the fuel rod by a spectral shift effect. In an operation mode of providing a power peak in the upper portion of the reactor core, coolants are introduced to the inner side of the guide member, then steams are reduced to reduce the flow channel resistance in which more moderators are flown at the inside to burn accumulated plutoniums. (N.H.)

  6. Fuel cells technologies for fuel processing

    CERN Document Server

    Shekhawat, Dushyant, II; Berry, David A, I

    2014-01-01

    Fuel Cells: Technologies for Fuel Processing provides an overview of the most important aspects of fuel reforming to the generally interested reader, researcher, technologist, teacher, student, or engineer. The topics covered include all aspects of fuel reforming: fundamental chemistry, different modes of reforming, catalysts, catalyst deactivation, fuel desulfurization, reaction engineering, novel reforming concepts, thermodynamics, heat and mass transfer issues, system design, and recent research and development. While no attempt is made to describe the fuel cell itself, there is sufficient

  7. Nuclear fuel storage arrangement

    International Nuclear Information System (INIS)

    An arrangement is disclosed for the storage of nuclear reactor fuel assemblies having a section wherein fuel is present and a section wherein fuel is not present. The fuel assemblies are placed in a plurality of elongated cells which are joined together to form a cellular structure. The fuel assemblies are placed within the cells at different elevations so that the fuel-containing section of one fuel assembly is next to the non-fuel-containing sections of each fuel assembly surrounding the first fuel assembly. The vertical staggering of the fuel-containing sections achieves space reductions while maintaining the stored fuel in a subcritical assemblage. 12 claims, 10 figures

  8. Nuclear power fuel cycle

    International Nuclear Information System (INIS)

    Economic problems are discussed of the fuel cycle (cost of the individual parts of the fuel cycle and the share of the fuel cycle in the price of 1 kWh), the technological problems of the fuel cycle (uranium ore mining and processing, uranium isotope enrichment, the manufacture of fuel elements, the building of long-term storage sites for spent fuel, spent fuel reprocessing, liquid and gaseous waste processing), and the ecologic aspects of the fuel cycle. (H.S.)

  9. Fuel processors for fuel cell APU applications

    Science.gov (United States)

    Aicher, T.; Lenz, B.; Gschnell, F.; Groos, U.; Federici, F.; Caprile, L.; Parodi, L.

    The conversion of liquid hydrocarbons to a hydrogen rich product gas is a central process step in fuel processors for auxiliary power units (APUs) for vehicles of all kinds. The selection of the reforming process depends on the fuel and the type of the fuel cell. For vehicle power trains, liquid hydrocarbons like gasoline, kerosene, and diesel are utilized and, therefore, they will also be the fuel for the respective APU systems. The fuel cells commonly envisioned for mobile APU applications are molten carbonate fuel cells (MCFC), solid oxide fuel cells (SOFC), and proton exchange membrane fuel cells (PEMFC). Since high-temperature fuel cells, e.g. MCFCs or SOFCs, can be supplied with a feed gas that contains carbon monoxide (CO) their fuel processor does not require reactors for CO reduction and removal. For PEMFCs on the other hand, CO concentrations in the feed gas must not exceed 50 ppm, better 20 ppm, which requires additional reactors downstream of the reforming reactor. This paper gives an overview of the current state of the fuel processor development for APU applications and APU system developments. Furthermore, it will present the latest developments at Fraunhofer ISE regarding fuel processors for high-temperature fuel cell APU systems on board of ships and aircrafts.

  10. LMFBR fuel component costs

    International Nuclear Information System (INIS)

    A significant portion of the cost of fabricating LMFBR fuels is in the non-fuel components such as fuel pin cladding, fuel assembly ducts and end fittings. The contribution of these to fuel fabrication costs, based on FFTF experience and extrapolated to large LMFBR fuel loadings, is discussed. The extrapolation considers the expected effects of LMFBR development programs in progress on non-fuel component costs

  11. Instrumentation of fuel elements and fuel plates

    International Nuclear Information System (INIS)

    When controlling the behaviour of a reactor or developing a new fuel concept, it is of utmost interest to have the possibility to confirm the thermohydraulic calculations by actual measurements in the fuel elements or in the fuel plates. For years, CERCA has developed the technology and supplied its customers with fuel elements equipped with pressure or temperature measuring devices according to the requirements. Recent customer projects have lead to the development of a new method to introduce thermocouples directly into the fuel plate meat instead of the cladding. The purpose of this paper is to review the various instrumentation possibilities available at CERCA. (author)

  12. Instrumentation of fuel elements and fuel plates

    International Nuclear Information System (INIS)

    When controlling the behaviour of a reactor or developing a new fuel concept, it is of utmost interest to have the possibility to confirm the thermohydraulic calculations by actual measurements in the fuel elements or in the fuel plates. For years, CERCA has developed the technology and supplied its customers with fuel elements equipped with pressure or temperature measuring devices according to the requirements. Recent customer projects have led to the development of a new method to introduce thermocouples directly into the fuel plate meat instead of the cladding. The purpose of this paper is to review the various instrumentation possibilities available at CERCA. (author)

  13. Production and characterization of atomized U-Mo powder by the rotating electrode process

    International Nuclear Information System (INIS)

    In order to produce feedstock fuel powder for irradiation testing, the Idaho National Laboratory has produced a rotating electrode type atomizer to fabricate uranium-molybdenum alloy fuel. Operating with the appropriate parameters, this laboratory-scale atomizer produces fuel in the desired size range for the RERTR dispersion experiments. Analysis of the powder shows a homogenous, rapidly solidified microstructure with fine equiaxed grains. This powder has been used to produce irradiation experiments to further test adjusted matrix U-Mo dispersion fuel. (author)

  14. Fuel Burn Estimation Model

    Science.gov (United States)

    Chatterji, Gano

    2011-01-01

    Conclusions: Validated the fuel estimation procedure using flight test data. A good fuel model can be created if weight and fuel data are available. Error in assumed takeoff weight results in similar amount of error in the fuel estimate. Fuel estimation error bounds can be determined.

  15. Nuclear fuel structure and fuel behaviour

    International Nuclear Information System (INIS)

    The aim of the research has been to produce information on structural properties of nuclear fuel and their effects on the fuel behaviour. The research subjects were new fuel fabrication and quality control methods, the effects of as-fabricated pellets properties on the behaviour of fuel rods, behaviour of cladding materials and irradiated cladding and structural materials. At the Technical Research Centre of Finland (VTT) the nuclear fuel structure and behaviour programme has produced data which have been utilized in procurement, behavioural analysis and surveillance of the fuel used in the Finnish nuclear power stations. In addition to our own research, data on fuel behaviour have been received by participating in the international cooperation projects, such as OECD/Halden, Studsvik-Ramp-programmes, IAEA/BEFAST II and VVER-fuel research projects. The volume of the research work financed by the Finnish Ministry of Trade and Industry (KTM) and the Technical Research Centre of Finland in the years 1987-1989 has been about 8 man years. The report is the summary report of the research work conducted in the KTM-financed nuclear fuel structure and fuel behaviour programme in the years 1987-1989

  16. KMRR fuel design

    International Nuclear Information System (INIS)

    KMRR fuel rod design criteria on fuel swelling, blistering and oxide spallation have been reexamined. Fuel centerline temperature limit of 250deg C in normal operation condition and fuel swelling limit of 12 % at the end of life have been proposed to prevent fuel failure due to excessive fuel swelling. Fuel temperature limit of 485deg C has been proposed to exclude the possibility of fuel failures during transients or under accident condition. Further analyses are needed to decide the fuel cladding temperature limit to preclude the oxide spallation. Design changes in fuel assembly structure and their effects on related systems have been reviewed from a structural integrity viewpoint. The remained works in fuel mechanical design area have been identified and further efforts of fuel design group will be focused on these aspects. (Author)

  17. Reactor fuels and materials

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Gi Sun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-08-15

    This book deals with reactor fuels and materials, introducing elementary knowledge of materials such as interaction between radiation and crystal lattice, damage of the crystal by the radiation and recovery, uranium enrichment and a nuclear fuel reprocessing, metal fuels, uranium silicide fuels, covering material fuels, uranium dioxide fuels, gas cooled reactor materials fast reactor materials, fusion of cell nuclear, control materials of neutron and moderator materials. This books explains how to deal with these materials and how to use them in right way.

  18. Nuclear fuel replacement device

    International Nuclear Information System (INIS)

    A fuel handling arrangement for a liquid metal cooled nuclear reactor having a single rotating plug eccentric to the fuel core and a fuel handling machine radially movable along a slot in the plug with a transfer station disposed outside the fuel core but covered by the eccentric plug and within range of movement of said fuel handling machine to permit transfer of fuel assemblies between the core and the transfer station. (author)

  19. Hydrogen and fuel taxation

    OpenAIRE

    Hansen, Anders Chr.

    2007-01-01

    The competitiveness of hydrogen depends on how it is integrated in the energy tax system in Europe. This paper addresses the competitiveness of hydrogen and fuel cell technology when the taxation of fuels is taken into consideration. The study shows that even if hydrogen is taxed with exactly the same rate as conventional fuels, fuel taxes will amplify the competitiveness of hydrogen and fuel cell technology due to its superior energy efficiency. The higher the fuel taxes the m...

  20. Fuel Reformer Nozzle Development

    Science.gov (United States)

    Lai, Ming-Chia D.

    2003-01-01

    The fellowship work this summer will be in support of the development of a fuel mixer for a liquid fuel reformer that is upstream of a fuel cell. Tasks for the summer shall consist of design of a fuel mixer, setup of the laser diagnostics for determining the degree of fuel mixing, and testing of the fuel mixer. The fuel mixer shall be a venturi section with fuel injected at or near the throat, and an air swirler upstream of the venturi. Data to determine the performance of the mixer shall be taken using a Phase Doppler Particle Analyzer (PDPA).

  1. Fuel manufacturing and utilization

    International Nuclear Information System (INIS)

    The efficient utilisation of nuclear fuel requires manufacturing facilities capable of making advanced fuel types, with appropriate quality control. Once made, the use of such fuels requires a proper understanding of their behaviour in the reactor environment, so that safe operation for the design life can be achieved. The International Atomic Energy Agency supports Member States to improve in-pile fuel performance and management of materials; and to develop advanced fuel technologies for ensuring reliability and economic efficiency of the nuclear fuel cycle. It provides assistance to Member States to support fuel-manufacturing capability, including quality assurance techniques, optimization of manufacturing parameters and radiation protection. The IAEA supports the development fuel modelling expertise in Member States, covering both normal operation and postulated and severe accident conditions. It provides information and support for the operation of Nuclear Power Plant to ensure that the environment and water chemistry is appropriate for fuel operation. The IAEA supports fuel failure investigations, including equipment for failed fuel detection and for post-irradiation examination and inspection, as well as fuel repair, it provides information and support research into the basic properties of fuel materials, including UO2, MOX and zirconium alloys. It further offers guidance on the relationship with back-end requirement (interim storage, transport, reprocessing, disposal), fuel utilization and management, MOX fuels, alternative fuels and advanced fuel technology

  2. AFIP-4 Irradiation Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Danielle M Perez; Misti A Lillo; Gray S. Chang; Glenn A Roth; Nicolas Woolstenhulme; Daniel M Wachs

    2012-01-01

    The Advanced Test Reactor (ATR) Full size plate In center flux trap Position (AFIP) experiment AFIP-4 was designed to evaluate the performance of monolithic uranium-molybdenum (U-Mo) fuels at a scale prototypic of research reactor fuel plates. The AFIP-4 test further examine the fuel/clad interface and its behavior under extreme conditions. After irradiation, fission gas retention measurements will be performed during post irradiation (PIE)1,2. The following report summarizes the life of the AFIP-4 experiment through end of irradiation, including a brief description of the safety analysis, as-run neutronic analysis results, hydraulic testing results, and thermal analysis results.

  3. AFIP-4 Irradiation Summary Report

    International Nuclear Information System (INIS)

    The Advanced Test Reactor (ATR) Full size plate In center flux trap Position (AFIP) experiment AFIP-4 was designed to evaluate the performance of monolithic uranium-molybdenum (U-Mo) fuels at a scale prototypic of research reactor fuel plates. The AFIP-4 test further examine the fuel/clad interface and its behavior under extreme conditions. After irradiation, fission gas retention measurements will be performed during post irradiation (PIE). The following report summarizes the life of the AFIP-4 experiment through end of irradiation, including a brief description of the safety analysis, as-run neutronic analysis results, hydraulic testing results, and thermal analysis results.

  4. AFIP-4 Irradiation Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Danielle M Perez; Misti A Lillo; Gray S. Chang; Glenn A Roth; Nicolas Woolstenhulme; Daniel M Wachs

    2011-09-01

    The Advanced Test Reactor (ATR) Full size plate In center flux trap Position (AFIP) experiment AFIP-4 was designed to evaluate the performance of monolithic uranium-molybdenum (U-Mo) fuels at a scale prototypic of research reactor fuel plates. The AFIP-4 test further examine the fuel/clad interface and its behavior under extreme conditions. After irradiation, fission gas retention measurements will be performed during post irradiation (PIE). The following report summarizes the life of the AFIP-4 experiment through end of irradiation, including a brief description of the safety analysis, as-run neutronic analysis results, hydraulic testing results, and thermal analysis results.

  5. AFIP-6 Irradiation Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Danielle M Perez; M. A. Lillo; G. S. Chang; G. A. Roth; N. E. Woolstenhulme; D. M. Wachs

    2011-09-01

    The Advanced Test Reactor (ATR) Full size plate In center flux trap Position (AFIP) experiment AFIP-6 was designed to evaluate the performance of monolithic uranium-molybdenum (U-Mo) fuels at a length prototypic to that of the ATR fuel plates (45 inches in length). The AFIP-6 test was the first test with plates in a swaged condition with longer fuel zones of approximately 22.5 inches in length1,2. The following report summarizes the life of the AFIP-6 experiment through end of irradiation, including a brief description of the safety analysis, as-run neutronic analysis results, hydraulic testing results, and thermal analysis results.

  6. AFIP-6 Irradiation Summary Report

    International Nuclear Information System (INIS)

    The Advanced Test Reactor (ATR) Full size plate In center flux trap Position (AFIP) experiment AFIP-6 was designed to evaluate the performance of monolithic uranium-molybdenum (U-Mo) fuels at a length prototypic to that of the ATR fuel plates (45 inches in length). The AFIP-6 test was the first test with plates in a swaged condition with longer fuel zones of approximately 22.5 inches in length1,2. The following report summarizes the life of the AFIP-6 experiment through end of irradiation, including a brief description of the safety analysis, as-run neutronic analysis results, hydraulic testing results, and thermal analysis results.

  7. Integrated fuel processor development

    International Nuclear Information System (INIS)

    The Department of Energy's Office of Advanced Automotive Technologies has been supporting the development of fuel-flexible fuel processors at Argonne National Laboratory. These fuel processors will enable fuel cell vehicles to operate on fuels available through the existing infrastructure. The constraints of on-board space and weight require that these fuel processors be designed to be compact and lightweight, while meeting the performance targets for efficiency and gas quality needed for the fuel cell. This paper discusses the performance of a prototype fuel processor that has been designed and fabricated to operate with liquid fuels, such as gasoline, ethanol, methanol, etc. Rated for a capacity of 10 kWe (one-fifth of that needed for a car), the prototype fuel processor integrates the unit operations (vaporization, heat exchange, etc.) and processes (reforming, water-gas shift, preferential oxidation reactions, etc.) necessary to produce the hydrogen-rich gas (reformate) that will fuel the polymer electrolyte fuel cell stacks. The fuel processor work is being complemented by analytical and fundamental research. With the ultimate objective of meeting on-board fuel processor goals, these studies include: modeling fuel cell systems to identify design and operating features; evaluating alternative fuel processing options; and developing appropriate catalysts and materials. Issues and outstanding challenges that need to be overcome in order to develop practical, on-board devices are discussed

  8. Spent fuel management strategies

    International Nuclear Information System (INIS)

    Nuclear fuel cycle is divided into two sections; front end and back end of the fuel cycle. Front end of the fuel cycle, which covers all the activities of the fuel cycle before the fuel goes into the reactor has better developed and well-defined technologies. For storage of the spent fuel which are subjects of the back end of the fuel cycle, the waste management policies are not so well defined. There are three approaches that exist today for management of spent fuel. 1. For once through or open fuel cycles direct disposal of spent fuel in a deep geological repository, 2. For closed fuel cycles reprocessing of spent fuel and recycling of the recovered plutonium and uranium in new mixed oxide (MOX) fuels, 3. The spent fuel is placed in long term interim storage pending a decision as to its ultimate reprocessing or disposal. There are so large scale geological repositories for the final disposal of spent fuel in operation. Studies on suitable site selection, design, construction and licensing take about 30-40 years. Reprocessing, on the other hand, produces plutonium and is therefore under close inspection because of the Non Proliferation Treaty. Today more countries are delaying their final decision about the spent fuel management approach and using the long term interim storage approach

  9. Spent fuel transportation in the fuel cycle

    International Nuclear Information System (INIS)

    In the fuel cycle, it is the spent fuel transportation which offers the most original character against conventional transportation as requiring very special packaging which has to fulfill special safety conditions on public thoroughfares or working centers. Facing safety and economy criteria three parameters intervene in designing such packagings: the mass of the package, its internal and external lay out

  10. Fuel charging machines

    International Nuclear Information System (INIS)

    Purpose: To improve the workability and safety by enabling the machine to check the subcritical state while loading the fuel assembly upon fuel charging. Constitution: A process computer for calculating subcriticality degree is provided in the fuel charging machine, which is connected to a nuclear reactor. When it is judged the state to be subcritical, a fueling-possible signal is sent to the fuel charging machine. On the contrary, when it is not, fueling-stop or other position-selection signal is sent to the fuel charging machine. (J.P.N.)

  11. Nuclear fuel element

    International Nuclear Information System (INIS)

    Description is given of a fuel element devoid of local stresses due to friction between the nuclear fuel and the clad. It comprises a layer of a material with a high lubricating power interposed between an alongated clad and a metal jacket with a small neutron capture cross-section, nuclear fuel partly filling said clad, a fuel-retaining device and caps fixed to both ends of said clad, respectively. This can be applied to fuel elements containing uranium or plutonium compounds

  12. Fuel pattern recognition device

    International Nuclear Information System (INIS)

    The device of the present invention monitors normal fuel exchange upon fuel exchanging operation carried out in a reactor of a nuclear power plant. Namely, a fuel exchanger is movably disposed to the upper portion of the reactor and exchanges fuels. An exclusive computer receives operation signals of the fuel exchanger during operation as inputs, and outputs reactor core fuel pattern information signals to a fuel arrangement diagnosis device. An underwater television camera outputs image signals of a fuel pattern in the reactor core to an image processing device. If there is any change in the image signals for the fuel pattern as a result of the fuel exchange operation of the fuel exchanger, the image processing device outputs the change as image signals to the fuel pattern diagnosis device. The fuel pattern diagnosis device compares the pattern information signals from the exclusive computer with the image signals from the image processing device, to diagnose the result of the fuel exchange operation performed by the fuel exchanger and inform the diagnosis by means of an image display. (I.S.)

  13. Oxy-fuel combustion of solid fuels

    DEFF Research Database (Denmark)

    Toftegaard, Maja Bøg; Brix, Jacob; Jensen, Peter Arendt; Glarborg, Peter; Jensen, Anker Degn

    2010-01-01

    Oxy-fuel combustion is suggested as one of the possible, promising technologies for capturing CO2 from power plants. The concept of oxy-fuel combustion is removal of nitrogen from the oxidizer to carry out the combustion process in oxygen and, in most concepts, recycled flue gas to lower the flame temperature. The flue gas produced thus consists primarily of carbon dioxide and water. Much research on the different aspects of an oxy-fuel power plant has been performed during the last decade. Focu...

  14. BWR fuel performance

    International Nuclear Information System (INIS)

    The General Electric experience base on BWR fuel includes over 29,000 fuel assemblies which contain 1,600,000 fuel rods. Over the last five years, design, process and operating changes have been introduced which have had major effects in improving fuel performance. Monitoring this fuel performance in BWRs has been accomplished through cooperative programs between GE and utilities. Activities such as plant fission product monitoring, fuel sipping and fuel and channel surveillance programs have jointly contributed to the value of this extensive experience base. The systematic evaluation of this data has established well-defined fuel performance trends which provide the assurance and confidence in fuel reliability that only actual operating experience can provide

  15. DIESEL FUEL LUBRICATION

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Jun [ORNL

    2012-01-01

    The diesel fuel injector and pump systems contain many sliding interfaces that rely for lubrication upon the fuels. The combination of the poor fuel lubricity and extremely tight geometric clearance between the plunger and bore makes the diesel fuel injector vulnerable to scuffing damage that severely limits the engine life. In order to meet the upcoming stricter diesel emission regulations and higher engine efficiency requirements, further fuel refinements that will result in even lower fuel lubricity due to the removal of essential lubricating compounds, more stringent operation conditions, and tighter geometric clearances are needed. These are expected to increase the scuffing and wear vulnerability of the diesel fuel injection and pump systems. In this chapter, two approaches are discussed to address this issue: (1) increasing fuel lubricity by introducing effective lubricity additives or alternative fuels, such as biodiesel, and (2) improving the fuel injector scuffing-resistance by using advanced materials and/or surface engineering processes. The developing status of the fuel modification approach is reviewed to cover topics including fuel lubricity origins, lubricity improvers, alternative fuels, and standard fuel lubricity tests. The discussion of the materials approach is focused on the methodology development for detection of the onset of scuffing and evaluation of the material scuffing characteristics.

  16. Nuclear fuel storage

    International Nuclear Information System (INIS)

    A method and apparatus for the storage of fuel in a stainless steel egg crate structure within a storage pool are described. Fuel is initially stored in a checkerboard pattern or in each opening if the fuel is of low enrichment. Additional fuel (or fuel of higher enrichment) is later stored by adding stainless steel angled plates within each opening, thereby forming flux traps between the openings. Still higher enrichment fuel is later stored by adding poison plates either with or without the stainless steel angles. 8 claims

  17. Nuclear fuel management

    International Nuclear Information System (INIS)

    Getting top value from nuclear fuel means combining the latest fuel-assembly technologies with the industry's best practices in managing refueling outages. Prospects for the future viability of uranium as a source of electrical power continue to focus on the fuel source itself. Unlike fossil-fired powerplants, nuclear fuel economics are governed principally by two factors: design details of the nuclear fuel assemblies, and the way they are used in the reactor core. The latter comprises both in-core fuel management and the management of periodic, planned refueling outages, which normally constitute the major O and M cost item for a nuclear plant

  18. Materials for fuel cells

    Directory of Open Access Journals (Sweden)

    Sossina M Haile

    2003-03-01

    Full Text Available Because of their potential to reduce the environmental impact and geopolitical consequences of the use of fossil fuels, fuel cells have emerged as tantalizing alternatives to combustion engines. Like a combustion engine, a fuel cell uses some sort of chemical fuel as its energy source but, like a battery, the chemical energy is directly converted to electrical energy, without an often messy and relatively inefficient combustion step. In addition to high efficiency and low emissions, fuel cells are attractive for their modular and distributed nature, and zero noise pollution. They will also play an essential role in any future hydrogen fuel economy.

  19. Fuel cooling for 9x9 fuel

    International Nuclear Information System (INIS)

    Exxon Nuclear Company currently uses the EXEM/BWR evaluation model for jet pump BWR LOCA-ECCS analysis. This model, which is based upon phenomena-logical representations, was benchmarked against simulated reactor data covering a variety of 7x7 and 8x8 fuel designs. Because of its phenomena-logical base and conservative assumptions and correlations, EXEM/BWR is also considered applicable to 9x9 fuel. In order to experimentally verify EXEM/BWR's applicability to 9x9 fuel, Exxon Nuclear has performed confirmatory refill/reflood tests with 9x9 fuel under prototypic JP-BWR LOCA conditions. The results of these confirmatory tests are reported in this paper

  20. DUPIC fuel compatibility assessment

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok; Rho, G. H.; Park, J. W. [and others

    2000-03-01

    The purpose of this study is to assess the compatibility of DUPIC(Direct Use of Spent PWR Fuel in CANDU Reactors) fuel with the current CANDU 6 reactor, which is one of the technology being developed to utilize the spent PWR fuel in CANDU reactors. The phase 1 study of this project includes the feasibility analysis on applicability of the current core design method, the feasibility analysis on operation of the DUPIC fuel core, the compatibility analysis on individual reactor system, the sensitivity analysis on the fuel composition, and the economic analysis on DUPIC fuel cycle. The results of the validation calculations have confirmed that the current core analysis system is acceptable for the feasibility study of the DUPIC fuel compatibility analysis. The results of core simulations have shown that both natural uranium and DUPIC fuel cores are almost the same from the viewpoint of the operational performance. For individual reactor system including reactively devices, the functional requirements of each system are satisfied in general. However, because of the pronounced power flattening in the DUPIC core, the radiation damage on the critical components increases, which should be investigated more in the future. The DUPIC fuel composition heterogeneity dose not to impose any serious effect on the reactor operation if the fuel composition is adjusted. The economics analysis has been performed through conceptual design studies on the DUPIC fuel fabrication, fuel handling in a plant, and spent fuel disposal, which has shown that the DUPIC fuel cycle is comparable to the once-trough fuel cycle considering uncertainties associated with unit costs of the fuel cycle components. The results of Phase 1 study have shown that it is feasible to use the DUPIC fuel in CANDU reactors without major changes in hardware. However further studies are required to confirm the safety of the reactor under accident condition.

  1. DUPIC fuel compatibility assessment

    International Nuclear Information System (INIS)

    The purpose of this study is to assess the compatibility of DUPIC(Direct Use of Spent PWR Fuel in CANDU Reactors) fuel with the current CANDU 6 reactor, which is one of the technology being developed to utilize the spent PWR fuel in CANDU reactors. The phase 1 study of this project includes the feasibility analysis on applicability of the current core design method, the feasibility analysis on operation of the DUPIC fuel core, the compatibility analysis on individual reactor system, the sensitivity analysis on the fuel composition, and the economic analysis on DUPIC fuel cycle. The results of the validation calculations have confirmed that the current core analysis system is acceptable for the feasibility study of the DUPIC fuel compatibility analysis. The results of core simulations have shown that both natural uranium and DUPIC fuel cores are almost the same from the viewpoint of the operational performance. For individual reactor system including reactively devices, the functional requirements of each system are satisfied in general. However, because of the pronounced power flattening in the DUPIC core, the radiation damage on the critical components increases, which should be investigated more in the future. The DUPIC fuel composition heterogeneity dose not to impose any serious effect on the reactor operation if the fuel composition is adjusted. The economics analysis has been performed through conceptual design studies on the DUPIC fuel fabrication, fuel handling in a plant, and spent fuel disposal, which has shown that the DUPIC fuel cycle is comparable to the once-trough fuel cycle considering uncertainties associated with unit costs of the fuel cycle components. The results of Phase 1 study have shown that it is feasible to use the DUPIC fuel in CANDU reactors without major changes in hardware. However further studies are required to confirm the safety of the reactor under accident condition

  2. Nuclear fuel element

    Energy Technology Data Exchange (ETDEWEB)

    Hosokawa, Takanori.

    1991-10-31

    Since an existent nuclear fuel element with a lower plenum has not resilient member between a nuclear fuel pellet and a nuclear fuel pellet support, axial compression stresses are applied to a lower nuclear fuel pellet by a mechanical interaction between the nuclear fuel pellet and a cladding tube in the central portion of the nuclear fuel element, and axial tension is applied to the cladding tube. Therefore, the fuel pellet is crushed and the crushed pieces are liable to fall to the lower plenum and excess stresses are concentrated to the support. In the present invention, since a resilient member such as a spriung is disposed between the fuel pellet and the fuel pellet support, axial heat expansion and swelling are absorbed to the resilient member even if the mechanical interaction occurs between the fuel pellet and the clading tube in the central portion of the fuel element. Accordingly, the fuel pellet is scarcely cracked and, in addition, no excess stresses are applied to the cladding tube, especially, the fuel pellet support. (T.M.).

  3. Nuclear fuel element

    International Nuclear Information System (INIS)

    Since an existent nuclear fuel element with a lower plenum has not resilient member between a nuclear fuel pellet and a nuclear fuel pellet support, axial compression stresses are applied to a lower nuclear fuel pellet by a mechanical interaction between the nuclear fuel pellet and a cladding tube in the central portion of the nuclear fuel element, and axial tension is applied to the cladding tube. Therefore, the fuel pellet is crushed and the crushed pieces are liable to fall to the lower plenum and excess stresses are concentrated to the support. In the present invention, since a resilient member such as a spriung is disposed between the fuel pellet and the fuel pellet support, axial heat expansion and swelling are absorbed to the resilient member even if the mechanical interaction occurs between the fuel pellet and the clading tube in the central portion of the fuel element. Accordingly, the fuel pellet is scarcely cracked and, in addition, no excess stresses are applied to the cladding tube, especially, the fuel pellet support. (T.M.)

  4. Romanian nuclear fuel program

    International Nuclear Information System (INIS)

    The paper presents and comments the policy adopted in Romania for the production of CANDU-6 nuclear fuel before and after 1990. The CANDU-6 nuclear fuel manufacturing started in Romania in December 1983. Neither AECL nor any Canadian nuclear fuel manufacturer were involved in the Romanian industrial nuclear fuel production before 1990. After January 1990, the new created Romanian Electricity Authority (RENEL) assumed the responsibility for the Romanian Nuclear Power Program. It was RENEL's decision to stop, in June 1990, the nuclear fuel production at the Institute for Nuclear Power Reactors (IRNE) Pitesti. This decision was justified by the Canadian specialists team findings, revealed during a general, but well enough technically founded analysis performed at IRNE in the spring of 1990. All fuel manufactured before June 1990 was quarantined as it was considered of suspect quality. By that time more than 31,000 fuel bundles had already been manufactured. This fuel was stored for subsequent assessment. The paper explains the reasons which provoked this decision. The paper also presents the strategy adopted by RENEL after 1990 regarding the Romanian Nuclear Fuel Program. After a complex program done by Romanian and Canadian partners, in November 1994, AECL issued a temporary certification for the Romanian nuclear fuel plant. During the demonstration manufacturing run, as an essential milestone for the qualification of the Romanian fuel supplier for CANDU-6 reactors, 202 fuel bundles were produced. Of these fuel bundles, 66 were part of the Cernavoda NGS Unit 1 first fuel load (the balance was supplied by Zircatec Precision Industries Inc. ZPI). The industrial nuclear fuel fabrication re-started in Romania in January 1995 under AECL's periodical monitoring. In December 1995, AECL issued a permanent certificate, stating the Romanian nuclear fuel plant as a qualified and authorised CANDU-6 fuel supplier. The re-loading of the Cernavoda NGS Unit 1 started in the middle of January 1997 with fuel produced by the Romanian fuel plant. The quality evaluation of the 'pre-1990' fuel started in April 1996 and was performed by the Nuclear Fuel Plant (FCN) Pitesti, under the supervision of the Nuclear Power Group (GEN) - a distinct department of RENEL. The paper presents the involvement of Romania in the activities related to the Advanced CANDU Fuel Cycle. The future prospect and trend of the Romanian Nuclear Fuel Program are also presented in this paper. (author)

  5. Reformulated diesel fuel

    Science.gov (United States)

    McAdams, Hiramie T [Carrollton, IL; Crawford, Robert W [Tucson, AZ; Hadder, Gerald R [Oak Ridge, TN; McNutt, Barry D [Arlington, VA

    2006-03-28

    Reformulated diesel fuels for automotive diesel engines which meet the requirements of ASTM 975-02 and provide significantly reduced emissions of nitrogen oxides (NO.sub.x) and particulate matter (PM) relative to commercially available diesel fuels.

  6. Future automotive fuels

    International Nuclear Information System (INIS)

    There are several important factors which are fundamental to the choice of alternative automobile fuels: the chain of energetic efficiency of fuels; costs; environmental friendliness; suitability for usual engines or adapting easiness; existing reserves of crude oil, natural gas or the fossil energy sources; and, alternatively, agricultural potentiality. This paper covers all these factors. The fuels dealt with in this paper are alcohol, vegetable oil, gaseous fuel, hydrogen and ammonia fuels. Renewable fuels are the most valuable forms of renewable energy. In addition to that rank, they can contribute to three other problem areas: agricultural surpluses, environmental degradation, and conservation of natural resources. Due to the competitive utilization of biomass for food energy production, bio-fuels should mainly be produced in those countries where an energy shortage is combined with a food surplus. The fuels arousing the most interest are alcohol and vegetable oil, the latter for diesel engines, even in northern countries. (au)

  7. Comprehensive fuel cycle management

    International Nuclear Information System (INIS)

    The comprehensive fuel cycle management system developed by Nuklear-Ingenieur-Service in Hanau is described. The system comprises fuel management, core calculation, special functions, processing and presentation of results, and user communication

  8. EOS Reactor Fuel

    International Science & Technology Center (ISTC)

    Development of the Equations of State for Fuel Compositions, which Take into Account the Microstructure Accumulation Kinetics its Use for Simulation of the Fuel Failure Consequences in Nuclear Reactors of VariousType. (Continuation of the project 003)

  9. Core and fuel development

    International Nuclear Information System (INIS)

    Toshiba has worked on the step-by-step development of cores and fuels for boiling-water reactors (BWRs), introducing them into operating plants to improve core performance. The most significant development in this area has been zirconium liner fuel, which was introduced in 1987 in order to eliminate PCIOMR and to improve fuel economy. Following the introduction of zirconium liner fuel, we are now at the stage of promoting the commercial application of high-burnup STEP-II fuel, which incorporates many design improvements over previous fuels to provide its high-burnup characteristics. In addition to the above, this paper also describes the high technology supporting core and fuel development, such as fuel bundle nuclear design techniques, core operation management systems, three-dimensional core dynamics analysis techniques, and thermal-hydraulics analysis techniques. The results of high-performance core management are also described. (author)

  10. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    This chapter explains the distinction between fissile and fertile materials, examines briefly the processes involved in fuel manufacture and management, describes the alternative nuclear fuel cycles and considers their advantages and disadvantages. Fuel management is usually divided into three stages; the front end stage of production and fabrication, the back end stage which deals with the fuel after it is removed from the reactor (including reprocessing and waste treatment) and the stage in between when the fuel is actually in the reactor. These stages are illustrated and explained in detail. The plutonium fuel cycle and thorium-uranium-233 fuel cycle are explained. The differences between fuels for thermal reactors and fast reactors are explained. (U.K.)

  11. Fuels and auxiliary materials

    International Nuclear Information System (INIS)

    A brief survey is given of the problems of fuels, fuel cans, absorption and moderator materials proceeding from the papers presented at the 1971 4th Geneva Conference on the Peaceful Uses of Nuclear Energy and the 1970 IAEA Conference in New York. Attention is focused on the behaviour of fuel and fuel can materials for thermal and fast reactors during irradiation, radiation stability of absorption materials and the effects of radiation on concrete and on moderator materials. (Z.M.)

  12. Direct hydrocarbon fuel cells

    Science.gov (United States)

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  13. Carbonate fuel cell anodes

    International Nuclear Information System (INIS)

    A molten alkali metal carbonates fuel cell porous anode with a stabilizing agent to maintain porosity and surface area during fuel cell operation is described. A molten alkali carbonates fuel cell having the above stabilized anode and a method for production of such porous anodes are discussed

  14. Cracked fuel mechanics

    International Nuclear Information System (INIS)

    Fuel pellets undergo thermally induced cracking during normal reactor operation. Some fuel performance codes have included models that address the effects of fuel cracking on fuel rod thermal and mechanical behavior. However, models that rely too heavily on continuum mechanics formulations (annular gaps and solid cylindrical pellets) characteristically do not adequately predict cladding axial elongations. Calculations of bamboo ridging generally require many assumptions concerning fuel geometry, and some of the methods used are too complex and expensive to employ on a routine basis. Some of these difficulties originate from a lack of definition of suitable parameters which describe the cracked fuel medium. The methodology is being improved by models that describe cracked fuel behavior utilizing parameters with stronger physical foundations instead of classical continuum formulations. This paper presents a modelling concept and a set of measurable parameters that have been shown to improve the prediction of the mechanical behavior of cracked fuel/cladding systems without added computational expense. The transition from classical annular gap/cylindrical pellet models to modified bulk properties and further to local behavior for cracked fuel systems is discussed. The results of laboratory experiments to verify these modelling parameters are shown. Data are also presented from laboratory experiments on unirradiated and irradiated rods which show that fuel rod mechanical response depends on fuel fragment size. The impact of these data on cracked fuel behavior and failure modelling is also discussed. (author)

  15. Hydrogen and fuel cells

    International Nuclear Information System (INIS)

    This road-map proposes by the Group Total aims to inform the public on the hydrogen and fuel cells. It presents the hydrogen technology from the production to the distribution and storage, the issues as motor fuel and fuel cells, the challenge for vehicles applications and the Total commitments in the domain. (A.L.B.)

  16. DUPIC fuel compatibility assessment

    International Nuclear Information System (INIS)

    In this report, analysis results for the CANDU 6 reactor with DUPIC fuel have been described. Various problems are assessed against the standard natural uranium fuel core such as fuel fabrication, fuel rod and bundle design, in-core loading, in-core fuel management, spent fuel treatment and overall fuel cycle. Some of the results are related to the license and demonstration. From the up to date results, it is known that the DUPIC fuel fabrication is technically feasible and the anticipated in-core problems can be resolved by current technique. Also, the benefit is expected in power distribution and fuel burnup. However, because the CANDU 6 reactor is originally designed for natural uranium fuel, some demerits are found in some field such as radiation damage of the reactor structural material, operational margin decrease by composition heterogeneity, increase in fission product release of accident condition, deterioration of fuel pellet material property. These problems should be resolved technically including design improvement of DUPIC fuel and CANDU 6 reactor. Furthermore, experimental verifications should be performed for reactor physics and thermal hydraulics. This report describes the compatibility with the CANDU 6 reactor, and it should be noted that detail and wide work should be performed for more reliable results

  17. Gelled fuel simulant

    International Nuclear Information System (INIS)

    A relatively stable inert simulant formulation for a hazardous metallized fuel has the density, shear rate and yield stress of the duplicated fuel. This formulation provides inexpensive and safe testing of exploratory hydraulic studies, or testing of the mechanical strength of containers, plumbing, etc., in which the metallized fuels are to be used

  18. CANDU fuel performance

    International Nuclear Information System (INIS)

    The paper presents a review of CANDU fuel performance including a 28-element bundle for Pickering reactors, a 37-element bundle for the Bruce and Darlington reactors, and a 37-element bundle for the CANDU-6 reactors. Special emphasis is given to the analysis of fuel defect formation and propagation and definition of fuel element operating thresholds for normal operation and accident conditions. (author)

  19. Plutonium fuel program

    International Nuclear Information System (INIS)

    A review is presented of the development of the (UPu)C sphere-pac fuel project during 1978. In particular, the problems encountered in obtaining good fuel quality in the fabrication process and their solution is discussed. The development of a fabrication pilot plant is considered, and the post-irradiation examination of fuel pins is presented. (Auth.)

  20. Westinghouse fuel pellet evolution

    International Nuclear Information System (INIS)

    Recognizing fuel reliability, fuel cycle cost and security of supply as key customer expectations, Westinghouse has developed a comprehensive strategy for fuel pellet evolution. It encompasses state of art flawless manufacturing and a superior irradiation behavior as well as standardization across manufacturing facilities

  1. Alternative Fuels Data Center

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    Fact sheet describes the Alternative Fuels Data Center, which provides information, data, and tools to help fleets and other transportation decision makers find ways to reduce petroleum consumption through the use of alternative and renewable fuels, advanced vehicles, and other fuel-saving measures.

  2. Reactor fuel assemblies

    International Nuclear Information System (INIS)

    A description is given of an improved spacer grid for a nuclear fuel assembly comprising fuel rods in a matrix wherein each rod is adapted to be enclosed by a spacer ''cell'' for positioning thereof relative to adjacent rods in the fuel assembly. 7 claims, 12 drawing figures

  3. Fuels from Recycling Systems

    Science.gov (United States)

    Tillman, David A.

    1975-01-01

    Three systems, operating at sufficient scale, produce fuels that may be alternatives to oil and gas. These three recycling systems are: Black Clawson Fiberclaim, Franklin, Ohio; Union Carbide, South Charleston, West Virginia; and Union Electric, St. Louis, Missouri. These produce a wet fuel, a pyrolytic gas, and a dry fuel, respectively. (BT)

  4. Modeling: driving fuel cells

    Directory of Open Access Journals (Sweden)

    Michael Francis

    2002-05-01

    Fuel cells were invented in 1839 by Sir William Grove, a Welsh judge and gentleman scientist, as a result of his experiments on the electrolysis of water. To put it simply, fuel cells are electrochemical devices that take hydrogen gas from fuel, combine it with oxygen from the air, and generate electricity and heat, with water as the only by-product.

  5. Oxy-fuel combustion of solid fuels

    DEFF Research Database (Denmark)

    Toftegaard, Maja BØg; Brix, Jacob

    2010-01-01

    Oxy-fuel combustion is suggested as one of the possible, promising technologies for capturing CO2 from power plants. The concept of oxy-fuel combustion is removal of nitrogen from the oxidizer to carry out the combustion process in oxygen and, in most concepts, recycled flue gas to lower the flame temperature. The flue gas produced thus consists primarily of carbon dioxide and water. Much research on the different aspects of an oxy-fuel power plant has been performed during the last decade. Focus has mainly been on retrofits of existing pulverized-coal-fired power plant units. Green-field plants which provide additional options for improvement of process economics are however likewise investigated. Of particular interest is the change of the combustion process induced by the exchange of carbon dioxide and water vapor for nitrogen as diluent. This paper reviews the published knowledge on the oxy-fuel process and focuses particularly on the combustion fundamentals, i.e. flame temperatures and heat transfer, ignition and burnout, emissions, and fly ash characteristics. Knowledge is currently available regarding both an entire oxy-fuel power plant and the combustion fundamentals. However, several questions remain unanswered and more research and pilot plant testing of heat transfer profiles, emission levels, the optimum oxygen excess and inlet oxygen concentration levels, high and low-temperature fire-side corrosion, ash quality, plant operability, and models to predict NOx and SO3 formation is required.

  6. Internal reforming fuel cell assembly with simplified fuel feed

    Science.gov (United States)

    Farooque, Mohammad (Huntington, CT); Novacco, Lawrence J. (Brookfield, CT); Allen, Jeffrey P. (Naugatuck, CT)

    2001-01-01

    A fuel cell assembly in which fuel cells adapted to internally reform fuel and fuel reformers for reforming fuel are arranged in a fuel cell stack. The fuel inlet ports of the fuel cells and the fuel inlet ports and reformed fuel outlet ports of the fuel reformers are arranged on one face of the fuel cell stack. A manifold sealing encloses this face of the stack and a reformer fuel delivery system is arranged entirely within the region between the manifold and the one face of the stack. The fuel reformer has a foil wrapping and a cover member forming with the foil wrapping an enclosed structure.

  7. Oconee spent fuel rerack

    International Nuclear Information System (INIS)

    Spent fuel storage problems facing electric utilities with nuclear generation are growing more critical as existing spent fuel storage capacity is utilized. Due to the inaccessibility of spent fuel reprocessing plants, alternative temporary solutions such as transfer of spent nuclear fuel to other storage facilities and increasing the capacity of existing storage facilities through reracking are becoming increasingly prevalent. This paper describes the method and installation of new racks for increasing the fuel storage capacity of unit 3 of Duke Power Company's Oconee Nuclear Station near Seneca, South Carolina

  8. Advanced nuclear fuel element

    International Nuclear Information System (INIS)

    It is proposed, in order to improve the properties of a fuel element, to apply a metal lining (zirconium, molybdenum, tungsten, rhenium, niobium, or alloys thereof) between nuclear fuel and outer cladding whose surface facing the fuel has a coating of one (or more) additive. It is possible to use additives increasing the fissile properties of the fuel (239 Pu, 235 U, boron, gadolinium), controlling its thermal properties (getters like SiO2 or SiO2-Al2O3 compounds) or improving its mechanical properties. Three examples for constructing and assembling such a fuel element are described. (ORU)

  9. Nuclear fuel lease accounting

    International Nuclear Information System (INIS)

    The subject of nuclear fuel lease accounting is a controversial one that has received much attention over the years. This has occurred during a period when increasing numbers of utilities, seeking alternatives to traditional financing methods, have turned to leasing their nuclear fuel inventories. The purpose of this paper is to examine the current accounting treatment of nuclear fuel leases as prescribed by the Financial Accounting Standards Board (FASB) and the Federal Energy Regulatory Commission's (FERC's) Uniform System of Accounts. Cost accounting for leased nuclear fuel during the fuel cycle is also discussed

  10. Fuel transfer machine

    International Nuclear Information System (INIS)

    A nuclear fuel transfer machine for transferring fuel assemblies through the fuel transfer tube of a nuclear power generating plant containment structure is described. A conventional reversible drive cable is attached to the fuel transfer carriage to drive it horizontally through the tube. A shuttle carrying a sheave at each end is arranged in parallel with the carriage to also travel into the tube. The cable cooperating with the sheaves permit driving a relatively short fuel transfer carriage a large distance without manually installing sheaves or drive apparatus in the tunnel. 8 claims, 3 figures

  11. Fuel charging machine

    International Nuclear Information System (INIS)

    Purpose: To enable continuous fuel discharging and charging steps in a bwr type reactor by effecting positioning only for once by providing a plurality of fuel assembly grippers and their drives co-axially on a rotatable surface. Constitution: A plurality of fuel assembly grippers and their drives are provided co-axially on a rotatable surface. For example, a gripper A, a drive B, a gripper C and a drive D are arranged co-axially in symmetric positions on a disk rotated on rails by wheels and rotational drives. A new fuel in a fuel pool is gripped by the gripper A and transported above the reactor core. Then, the disk is positioned so that the gripper C can grip the spent fuel in the core, and the fuel to be discharged is gripped and raised by the gripper C. Then the disk is rotated by 1800 and the new fuel in the gripper A is charged into the position from which the old fuel has been discharged and, finally, the discharged fuel is sent to the fuel pool for storage. (Seki, T.)

  12. Automatic fuel number reader

    International Nuclear Information System (INIS)

    Optical and ultrasonic fuel number readers have been developed to realize the efficient and automatic confirmation and verification of fuel numbers, thereby to reduce mental load and radiation exposure of operators who engage in the confirmation and verification task. This task is carried out as a part of the safeguards in spent fuel storage facilities. The optical fuel number imaging device has been designed to illuminate a fuel number which is carved on the top side surface of each PWR fuel assembly and to visualize it with an underwater TV camera. In this research, the prototype periscope of an optical device using a side view mirror has been developed to achieve high speed verification of fuel numbers. An ultrasonic fuel number imaging device has been developed for a supplement of the optical method, when fuel numbers can be hardly recognized due to the deposition of crud and others. The image of a fuel number can be obtained by scanning focused ultrasonic wave on the surface of the fuel number part. In this research, a one-dimensional array type piezoelectric sensor has been developed, which enabled the electronic scanning of focused ultrasonic wave. (K.I.)

  13. Fuel nozzle assembly

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Thomas Edward (Greer, SC); Ziminsky, Willy Steve (Simpsonville, SC); Lacey, Benjamin Paul (Greer, SC); York, William David (Greer, SC); Stevenson, Christian Xavier (Inman, SC)

    2011-08-30

    A fuel nozzle assembly is provided. The assembly includes an outer nozzle body having a first end and a second end and at least one inner nozzle tube having a first end and a second end. One of the nozzle body or nozzle tube includes a fuel plenum and a fuel passage extending therefrom, while the other of the nozzle body or nozzle tube includes a fuel injection hole slidably aligned with the fuel passage to form a fuel flow path therebetween at an interface between the body and the tube. The nozzle body and the nozzle tube are fixed against relative movement at the first ends of the nozzle body and nozzle tube, enabling the fuel flow path to close at the interface due to thermal growth after a flame enters the nozzle tube.

  14. Efficiency of power fuels

    Energy Technology Data Exchange (ETDEWEB)

    Siba, V. (VUPEK, Prague (Czechoslovakia))

    1990-08-01

    Comparatively evaluates two methods for analysis of efficiency of boiler fuels used in power plants in Czechoslovakia: a method developed by the Research Institute for Fuel Use in Prague-Bechovice and a method recommended by the author. The former method analyzes heat emission from an analyzed fuel, fuel consumption necessary for generating heat and the commercial price of the analyzed fuels. Analysis results depend on the price ratio of the fuels. The method recommended by the author considers two indices: the ratio of generated heat to consumed heat and the ratio of generated heat to investment associated with heat generation. The index that combines the two indices is described as a coefficient of fuel efficiency. 3 refs.

  15. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Purpose: To greatly reduce the possibility of fuel can failures thereby increasing the working life of a fuel assembly. Constitution: A plurality of fuel pins each having a spiral wire wound around at a predetermined pitch with both ends of the wire being secured to the upper and the lower portions thereof are disposed to a hexagonal tube at a predetermined direction and at a certain pitch. In this case, the positions for setting the spiral wires to the fuel pin are dispersed at random within a range of ± 30 deg C to the circumferential direction of the fuel pin. This enables to axially disperse the stresses exerted upon swelling expansion to the fuel pin thereby greatly reducing the possibility of fuel can failure as compared with the usual case. (Takahashi, M.)

  16. Fuel pin bundle splitting

    International Nuclear Information System (INIS)

    The patent describes the splitting of a bundle of nuclear fuel pins into smaller bundles, during the dismantling of a fuel element, in preparation for the reprocessing of the spent fuel. The size of the small bundles are such that they are suitable for cropping in an easily maintainable shearing machine. The cropping of fuel pins into short sections exposes the irradiated fuel to be reprocessed. The invention involves feeding a number of blades into the exposed end of a fuel pin bundle. The bundle is forced out of the containing sheath by a ram, and the fuel pins are forced to pass either side of theblades, there by the bundle is sorted into a number of smaller bundles. (U.K.)

  17. Fuel pin extraction

    International Nuclear Information System (INIS)

    The patent describes the extraction of nuclear fuel pins from fuel elements, during the dismantling of the fuel subassemblies in preparation for the reprocessing of spent fuel. The fuel elements comprise a bundle of generally parallel transversely spaced pins contained in a sheath. The invention concerns an extraction element which has a series of pin-receiving openings in one edge. The apparatus also includes a means of locating a fuel pin bundle in a predetermined position. Penetration of the extraction element into the bundle leads to the engagement of a row of fuel pins in the pin-receiving openings, the element is then used to pull that row out of the bundle. (U.K.)

  18. Fuel cell technology

    International Nuclear Information System (INIS)

    Fuel cell technology is receiving significant attention in recent years because of its potential application as a highly efficient electric power generation system with low environmental impact. There are four fuel cell categories that are currently in use or under development: polymer electrolyte membrane fuel cells (SPFC), phosphoric acid fuel cells (PAFC), molten carbonate fuel cells (MCFC) and solid oxide fuel cells (SOFC). The phosphoric acid is the only available technology that has been produced in approaching series production and has already accumulated a significant in-service experience. It is generally accepted that fuel cells are a viable alternative to the use of internal combustion engine and gas turbines for the electric power generation in the range of capacity from a few kW up to tens MW. At high power ranges (above 20 MW) fuel cells have to compete with well-established technologies, such as gas turbines, that have made great gains over the last decade, in term of efficiency, emission performance and capital cost. Presently the cost of fuel cell plants are still high, but the major technology development companies indicate that the prices will be driven down to the required level (1500 $/kW) by 2000, both through technology refinements and increase of production volume. Market analysis indicates that in Italy the fuel cells could find early applications in three primary areas: dispersed-type power by electric utilities, small-scale cogeneration in residential and industrial applications and electric transportation

  19. Fuel safety research 1999

    Energy Technology Data Exchange (ETDEWEB)

    Uetsuka, Hiroshi (ed.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-07-01

    In April 1999, the Fuel Safety Research Laboratory was newly established as a result of reorganization of the Nuclear Safety Research Center, JAERI. The laboratory was organized by combining three laboratories, the Reactivity Accident Laboratory, the Fuel Reliability Laboratory, and a part of the Sever Accident Research Laboratory. Consequently, the Fuel Safety Research Laboratory is now in charge of all the fuel safety research in JAERI. Various types of experimental and analytical researches are conducted in the laboratory by using the unique facilities such as the Nuclear Safety Research Reactor (NSRR), the Japan Material Testing Reactor (JMTR), the Japan Research Reactor 3 (JRR-3) and hot cells in JAERI. The laboratory consists of five research groups corresponding to each research fields. They are; (a) Research group of fuel behavior under the reactivity initiated accident conditions (RIA group). (b) Research group of fuel behavior under the loss-of-coolant accident conditions (LOCA group). (c) Research group of fuel behavior under the normal operation conditions (JMTR/BOCA group). (d) Research group of fuel behavior analysis (FEMAXI group). (e) Research group of FP release/transport behavior from irradiated fuel (VEGA group). This report summarizes the outline of research activities and major outcomes of the research executed in 1999 in the Fuel Safety Research Laboratory. (author)

  20. Fuel cell market applications

    Energy Technology Data Exchange (ETDEWEB)

    Williams, M.C.

    1995-12-31

    This is a review of the US (and international) fuel cell development for the stationary power generation market. Besides DOE, GRI, and EPRI sponsorship, the US fuel cell program has over 40% cost-sharing from the private sector. Support is provided by user groups with over 75 utility and other end-user members. Objectives are to develop and demonstrate cost-effective fuel cell power generation which can initially be commercialized into various market applications using natural gas fuel by the year 2000. Types of fuel cells being developed include PAFC (phosphoric acid), MCFC (molten carbonate), and SOFC (solid oxide); status of each is reported. Potential international applications are reviewed also. Fuel cells are viewed as a force in dispersed power generation, distributed power, cogeneration, and deregulated industry. Specific fuel cell attributes are discussed: Fuel cells promise to be one of the most reliable power sources; they are now being used in critical uninterruptible power systems. They need hydrogen which can be generated internally from natural gas, coal gas, methanol landfill gas, or other fuels containing hydrocarbons. Finally, fuel cell development and market applications in Japan are reviewed briefly.

  1. Diesel fuel filtration system

    International Nuclear Information System (INIS)

    The American nuclear utility industry is subject to tight regulations on the quality of diesel fuel that is stored at nuclear generating stations. This fuel is required to supply safety-related emergency diesel generators--the backup power systems associated with the safe shutdown of reactors. One important parameter being regulated is the level of particulate contamination in the diesel fuel. Carbon particulate is a natural byproduct of aging diesel fuel. Carbon particulate precipitates from the fuel's hydrocarbons, then remains suspended or settles to the bottom of fuel oil storage tanks. If the carbon particulate is not removed, unacceptable levels of particulate contamination will eventually occur. The oil must be discarded or filtered. Having an outside contractor come to the plant to filter the diesel fuel can be costly and time consuming. Time is an even more critical factor if a nuclear plant is in a Limiting Condition of Operation (LCO) situation. A most effective way to reduce both cost and risk is for a utility to build and install its own diesel fuel filtration system. The cost savings associated with designing, fabricating and operating the system inhouse can be significant, and the value of reducing the risk of reactor shutdown because of uncertified diesel fuel may be even higher. This article describes such a fuel filtering system

  2. Fuel related risks; Braenslerisker

    Energy Technology Data Exchange (ETDEWEB)

    Englund, Jessica; Sernhed, Kerstin; Nystroem, Olle; Graveus, Frank (Grontmij AB, (Sweden))

    2012-02-15

    The project, within which this work report was prepared, aimed to complement the Vaermeforsk publication 'Handbook of fuels' on fuel related risks and measures to reduce the risks. The fuels examined in this project where the fuels included in the first version of the handbook from 2005 plus four additional fuels that will be included in the second and next edition of the handbook. Following fuels were included: woodfuels (sawdust, wood chips, powder, briquettes), slash, recycled wood, salix, bark, hardwood, stumps, straw, reed canary grass, hemp, cereal, cereal waste, olive waste, cocoa beans, citrus waste, shea, sludge, forest industrial sludge, manure, Paper Wood Plastic, tyre, leather waste, cardboard rejects, meat and bone meal, liquid animal and vegetable wastes, tall oil pitch, peat, residues from food industry, biomal (including slaughterhouse waste) and lignin. The report includes two main chapters; a general risk chapter and a chapter of fuel specific risks. The first one deals with the general concept of risk, it highlights laws and rules relevant for risk management and it discuss general risks that are related to the different steps of fuel handling, i.e. unloading, storing, processing the fuel, transportation within the facility, combustion and handling of ashes. The information that was used to produce this chapter was gathered through a literature review, site visits, and the project group's experience from risk management. The other main chapter deals with fuel-specific risks and the measures to reduce the risks for the steps of unloading, storing, processing the fuel, internal transportation, combustion and handling of the ashes. Risks and measures were considered for all the biofuels included in the second version in the handbook of fuels. Information about the risks and risk management was gathered through interviews with people working with different kinds of fuels in electricity and heat plants in Sweden. The information from the interviews was supplemented with examples from the literature

  3. Spent fuel storage experience

    International Nuclear Information System (INIS)

    Irradiated nuclear fuel has been stored in water pools at essentially all nuclear reactors, beginning with the earliest plants in 1943. Fuel from water-cooled power reactors is clad either with Zircaloy or with stainless steel. Zircaloy-clad fuel has been stored US pools since 1959. Some experimental stainless-steel-clad fuel was stored for 12 yr in the US before reprocessing. Canadian Zircaloy-clad fuel has been stored since 1962. There has been no evidence that the fuel has degraded during pool storage, based principally on visual observations and radiation monitoring of pool air and water. However, several fuel rods have been subjected to metallographic examination after pool exposures up to 11 yr, also with no evidence that the fuel cladding has degraded in the pool. Canadian fuel stored up to 10 yr was returned to a reactor and performed well. Favorable storage experience also has been indicated for other countries with fuel residence times of 5 to 10 yr. The pool storage environment is high-purity water at 5.3 to 7.5 pH, except for pools for pressurized water reactors, which utilize boric acid pool chemistry at 4.5 to 6.0 pH. Pool water temperatures generally range between 20 and 500C. The favorable storage experience, demonstrated technology, successful handling of fuel with reactor-induced defects, benign storage environments, and corrosion-resistant materials offer sufficient bases to proceed with expanded storage capacities and extended fuel storage until questions regarding fuel reprocessing and final storage of nuclear wastes have been resolved. Some surveillance is justified to detect degradation if it becomes significat. Surveillance programs are already under way in several countries. 1 figure, 6 tables

  4. Nuclear fuel management

    International Nuclear Information System (INIS)

    This book describes how the basic engineering principles involved in the field of nuclear fuel management are translated into practice. Due to the broad nature of the subject, the quantitative discussion is confined to the areas of fuel design and fuel irradiation or utilization. The material is divided into four main parts. Part One consists of three chapters that survey the activities and systems involved in generating electricity from nuclear energy. Part Two consists of four chapters that cover the nuclear analysis aspects of nuclear fuel management. Part Three evaluates the energy generating capability of nuclear fuel. The final three chapters of the book deal with nuclear power economics, in-core fuel management, and plutonium utilization, respectively

  5. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Under the invention the fuel assembly is particularly suitable for liquid metal cooled fast neutron breeder reactors. Hence, according to the invention a fuel assembly cladding includes inward corrugations with respect to the remainder of the cladding according to a recurring pattern determined by the pitch of the metal wire helically wound round the fuel rods of the assembly. The parts of the cladding pressed inwards correspond to the areas in which the wire encircling the peripheral fuel rods is generally located apart from the cladding, thereby reducing the play between the cladding and the peripheral fuel rods situated in these areas. The reduction in the play in turn improves the coolant flow in the internal secondary channels of the fuel assembly to the detriment of the flow in the peripheral secondary channels and thereby establishes a better coolant fluid temperature profile

  6. Nuclear fuel element

    International Nuclear Information System (INIS)

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed. A heat conducting fission product retaining metal liner of a refractory metal is incorporated in the fuel element between the cladding and the nuclear fuel to inhibit mechanical interaction between the nuclear fuel and the cladding, to isolate fission products and nuclear fuel impurities from contacting the cladding, and to improve the axial thermal peaking gradient along the length of the fuel rod. The metal liner can be in the form of a tube or hollow cylindrical column, a foil of single or multiple layers in the shape of a hollow cylindrical column, or a coating on the internal surface of the cladding. Preferred refractory metal materials are molybdenum, tungsten, rhenium, niobium and alloys of the foregoing metals

  7. Nuclear fuel assemblies

    International Nuclear Information System (INIS)

    Reference is made to nuclear fuel assemblies designed for cooling on the 'tube-in-shell' principle in which the fuel is contained by a shell and is cooled by coolant passed through tubes extending through the shell. It has been proposed to employ coated particle fuel as a porous bed on the tube side and the bleed coolant from the tubes into direct contact with the fuel particles. In this way heat is extracted both by direct contact with the fuel and by heat transfer through the coolant tube walls. The system described aims to provide an improved structure of tube and shell for a fuel assembly of this kind and is particularly suitable for use in a gas cooled fast reactor, being able to withstand the neutron flux and high temperature conditions in these reactors. Constructional details are given. (U.K.)

  8. Nuclear reactor fuel element

    International Nuclear Information System (INIS)

    An improvement of the type of suspension of nuclear reactor fuel elements supported by an upper and a lower grid structure is described. In the upper grid, a number of T-shaped grooves are provided, while the fuel rods at the upper end have T-shaped parts with which they are suspended on the nuts. The support at the lower end, too, is facilitated by projecting plugs on the fuel rod, inserted into corresponding recesses of the lower grid. (UWI)

  9. Nuclear fuel elements

    International Nuclear Information System (INIS)

    The uneven axial neutron flux distribution in a nuclear reactor core is used by using fuel rod spacers of low neutron absorption in areas of high neutron flux density and fuel rod spacers of low flow resistance to the coolant in areas of low neutral flux density of the core, where this combination of spacers also offers a higher thermal limit of the bundle of fuel elements. (orig.)

  10. Nuclear fuel financing

    International Nuclear Information System (INIS)

    Fuel financing is only at its beginning. A logical way of developing financing model is a step by step method starting with the financing of pre-payments. The second step will be financing of natural uranium and enrichment services to the point where the finished fuel elements are delivered to the reactor operator. The third step should be the financing of fuel elements during the time the elements are inserted in the reactor. (orig.)

  11. Power Systems Without Fuel

    OpenAIRE

    Taylor, Joshua Adam; Dhople, Sairaj V.; Callaway, Duncan S.

    2015-01-01

    The finiteness of fossil fuels implies that future electric power systems may predominantly source energy from fuel-free renewable resources like wind and solar. Evidently, these power systems without fuel will be environmentally benign, sustainable, and subject to milder failure scenarios. Many of these advantages were projected decades ago with the definition of the soft energy path, which describes a future where all energy is provided by numerous small, simple, and diver...

  12. Fuel safety research 2001

    Energy Technology Data Exchange (ETDEWEB)

    Uetsuka, Hiroshi (ed.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-11-01

    The Fuel Safety Research Laboratory is in charge of research activity which covers almost research items related to fuel safety of water reactor in JAERI. Various types of experimental and analytical researches are being conducted by using some unique facilities such as the Nuclear Safety Research Reactor (NSRR), the Japan Material Testing Reactor (JMTR), the Japan Research Reactor 3 (JRR-3) and the Reactor Fuel Examination Facility (RFEF) of JAERI. The research to confirm the safety of high burn-up fuel and MOX fuel under accident conditions is the most important item among them. The laboratory consists of following five research groups corresponding to each research fields; Research group of fuel behavior under the reactivity initiated accident conditions (RIA group). Research group of fuel behavior under the loss-of-coolant accident conditions (LOCA group). Research group of fuel behavior under the normal operation conditions (JMTR/BOCA group). Research group of fuel behavior analysis (FEMAXI group). Research group of radionuclides release and transport behavior from irradiated fuel under severe accident conditions (VEGA group). The research conducted in the year 2001 produced many important data and information. They are, for example, the fuel behavior data under BWR power oscillation conditions in the NSRR, the data on failure-bearing capability of hydrided cladding under LOCA conditions and the FP release data at very high temperature in steam which simulate the reactor core condition during severe accidents. This report summarizes the outline of research activities and major outcomes of the research executed in 2001 in the Fuel Safety Research Laboratory. (author)

  13. Protocol Fuel Mix reporting

    International Nuclear Information System (INIS)

    The protocol in this document describes a method for an Electricity Distribution Company (EDC) to account for the fuel mix of electricity that it delivers to its customers, based on the best available information. Own production, purchase and sale of electricity, and certificates trading are taken into account. In chapter 2 the actual protocol is outlined. In the appendixes additional (supporting) information is given: (A) Dutch Standard Fuel Mix, 2000; (B) Calculation of the Dutch Standard fuel mix; (C) Procedures to estimate and benchmark the fuel mix; (D) Quality management; (E) External verification; (F) Recommendation for further development of the protocol; (G) Reporting examples

  14. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    After a short introduction about nuclear power in the world, fission physics and the French nuclear power plants, this brochure describes in a digest way the different steps of the nuclear fuel cycle: uranium prospecting, mining activity, processing of uranium ores and production of uranium concentrates (yellow cake), uranium chemistry (conversion of the yellow cake into uranium hexafluoride), fabrication of nuclear fuels, use of fuels, reprocessing of spent fuels (uranium, plutonium and fission products), recycling of energetic materials, and storage of radioactive wastes. (J.S.)

  15. Fuel Cell Demonstration Program

    Energy Technology Data Exchange (ETDEWEB)

    Gerald Brun

    2006-09-15

    In an effort to promote clean energy projects and aid in the commercialization of new fuel cell technologies the Long Island Power Authority (LIPA) initiated a Fuel Cell Demonstration Program in 1999 with six month deployments of Proton Exchange Membrane (PEM) non-commercial Beta model systems at partnering sites throughout Long Island. These projects facilitated significant developments in the technology, providing operating experience that allowed the manufacturer to produce fuel cells that were half the size of the Beta units and suitable for outdoor installations. In 2001, LIPA embarked on a large-scale effort to identify and develop measures that could improve the reliability and performance of future fuel cell technologies for electric utility applications and the concept to establish a fuel cell farm (Farm) of 75 units was developed. By the end of October of 2001, 75 Lorax 2.0 fuel cells had been installed at the West Babylon substation on Long Island, making it the first fuel cell demonstration of its kind and size anywhere in the world at the time. Designed to help LIPA study the feasibility of using fuel cells to operate in parallel with LIPA's electric grid system, the Farm operated 120 fuel cells over its lifetime of over 3 years including 3 generations of Plug Power fuel cells (Lorax 2.0, Lorax 3.0, Lorax 4.5). Of these 120 fuel cells, 20 Lorax 3.0 units operated under this Award from June 2002 to September 2004. In parallel with the operation of the Farm, LIPA recruited government and commercial/industrial customers to demonstrate fuel cells as on-site distributed generation. From December 2002 to February 2005, 17 fuel cells were tested and monitored at various customer sites throughout Long Island. The 37 fuel cells operated under this Award produced a total of 712,635 kWh. As fuel cell technology became more mature, performance improvements included a 1% increase in system efficiency. Including equipment, design, fuel, maintenance, installation, and decommissioning the total project budget was approximately $3.7 million.

  16. Nuclear fuel pin fabrication

    International Nuclear Information System (INIS)

    The patent concerns the loading of fuel pellets into fuel pins for nuclear reactors. The invention provides an improved form of pellet guide device, which reduces or overcomes the problem of dust production while allowing accurate alignment between the pellets and cladding. A fuel pellet stack is fed into a fuel pin by a linear vibrator. The motion of the pellet stack can be reversed in the event of a jam condition arising in the pellet guide - the jam being detected by an I-R camera. (U.K.)

  17. Alternative Fuels Infrastructure Development

    Energy Technology Data Exchange (ETDEWEB)

    Bloyd, Cary N.; Stork, Kevin

    2011-02-01

    This summary reviews the status of alternate transportation fuels development and utilization in Thailand. Thailand has continued to work to promote increased consumption of gasohol especially for highethanol content fuels like E85. The government has confirmed its effort to draw up incentives for auto makers to invest in manufacturing E85-compatible vehicles in the country. An understanding of the issues and experiences associated with the introduction of alternative fuels in other countries can help the US in anticipation potential problems as it introduces new automotive fuels.

  18. Fuel channel performance

    International Nuclear Information System (INIS)

    This paper summarizes the performance of fuel channels in CANDU reactors. The evolution of the overall fuel channel design and the modifications to individual components are described. The main fuel channel component, the pressure tube, is subject from service conditions, to changes in three principal factors, dimensions, properties and composition, each of which can affect performance or life of the tube. The changes that occur are reviewed briefly. The performance of the channels from the view point of operating problems and replacement experience show the relatively low man-rem expenditure associated with fuel channel replacement. The report concludes with an outline of channel design development

  19. ABB high burnup fuel

    International Nuclear Information System (INIS)

    Fuel designed and fabricated by ABB is now operating in 40 PWRs and BWRs in Europe, the United States and Korea. An excellent fuel reliability track record has been established. High burnups are proven for both PWR and BWR. Thermal margin improving features and advanced burnable absorber concepts enable the utilities to adopt demanding duty cycles to meet new economic objectives. In particular we note the excellent reliability record of ABB PWR fuel equipped with GuardianTM debris filter proven to meet the 6 rod-cycles fuel failure goal, and the out-standing operating record of the SVEA 10 x 10 fuel, where ABB is the only vendor to date with batch experience to high burnup. ABB is dedicated to maintain high fuel reliability as well as continually improve and develop a broad line of PWR and BWR products. ABB's development and fuel follow-up activities are performed in close co-operation with its utility customers. This paper provides an overview of recent fuel performance and reliability experience at ABB. Selected development and validation activities for PWR and BWR fuel are presented, for which the ABB test facilities in Windsor (TF-2 loop, mechanical test laboratory) and Vaesteras (FRIGG, BURE) are essential. (authors)

  20. Alternatives for spent fuel

    International Nuclear Information System (INIS)

    During the past year, the National Waste Policy Act (NWPA) of 1982 has been directing the Federal Government's programs in the area of spent fuel and high level wastes. In addition, this legislation has greatly influenced utility spent fuel management planning. Final disposition of spent fuel is provided in the NWPA through geological repositories. The producers of spent fuel are responsible however, for its storage until a repository or federal Monitored Retrievable Storage (MRS) facility is available. There are several alternatives for interim storage of spent fuel prior to final disposition: wet pools, dry casks, dry wells, and dry storage vaults. Spent fuel pool storage is a widely used technology which has demonstrated safe storage of spent fuel for several decades. Pool storage at reactors has been enhanced in the past by the use of high density storage racks. In the future, spent fuel rod consolidation will further increase the capacity of reactor pool storage. Independent spent fuel pool facilities can provide economic storage capacity beyond that provided by the reactor pools. The first design and license application for such a facility meeting current requirements was completed by G/C in mid 1983

  1. Fuel rod leak detector

    Energy Technology Data Exchange (ETDEWEB)

    Womack, R.E.

    1978-08-29

    A typical embodiment of the invention detects leaking fuel rods by means of a radiation detector that measures the concentration of xenon-133 (/sup 133/Xe) within each individual rod. A collimated detector that provides signals related to the energy of incident radiation is aligned with one of the ends of a fuel rod. A statistically significant sample of the gamma radiation (..gamma..-rays) that characterize /sup 133/Xe is accumulated through the detector. The data so accumulated indicates the presence of a concentration of /sup 133/Xe appropriate to a sound fuel rod, or a significantly different concentration that reflects a leaking fuel rod.

  2. Fuel rod leak detector

    International Nuclear Information System (INIS)

    A typical embodiment of the invention detects leaking fuel rods by means of a radiation detector that measures the concentration of xenon-133 (133Xe) within each individual rod. A collimated detector that provides signals related to the energy of incident radiation is aligned with one of the ends of a fuel rod. A statistically significant sample of the gamma radiation (?-rays) that characterize 133Xe is accumulated through the detector. The data so accumulated indicates the presence of a concentration of 133Xe appropriate to a sound fuel rod, or a significantly different concentration that reflects a leaking fuel rod

  3. ITER fuel cycle

    International Nuclear Information System (INIS)

    Resulting from the Conceptual Design Activities (1988-1990) by the parties involved in the International Thermonuclear Experimental Reactor (ITER) project, this document summarizes the design requirements and the Conceptual Design Descriptions for each of the principal subsystems and design options of the ITER Fuel Cycle conceptual design. The ITER Fuel Cycle system provides for the handling of all tritiated water and gas mixtures on ITER. The system is subdivided into subsystems for fuelling, primary (torus) vacuum pumping, fuel processing, blanket tritium recovery, and common processes (including isotopic separation, fuel management and storage, and processes for detritiation of solid, liquid, and gaseous wastes). After an introduction describing system function and conceptual design procedure, a summary of the design is presented including a discussion of scope and main parameters, and the fuel design options for fuelling, plasma chamber vacuum pumping, fuel cleanup, blanket tritium recovery, and auxiliary and common processes. Design requirements are defined and design descriptions are given for the various subsystems (fuelling, plasma vacuum pumping, fuel cleanup, blanket tritium recovery, and auxiliary/common processes). The document ends with sections on fuel cycle design integration, fuel cycle building layout, safety considerations, a summary of the research and development programme, costing, and conclusions. Refs, figs and tabs

  4. Data feature: Fuel procurement

    International Nuclear Information System (INIS)

    This document is a review of the effect of fuel costs on the procurement strategies of a utility and a conjecture that the same strategies may have an effect on the price of fuel. Factors affecting fuel costs are reviewed, and a number of procurement strategies taken to trim fuel costs are reviewed. The major trend is away from long-term enrichment contracts and into such strategies as: (1) Spot market purchases, (2) Inventory reduction, (3) Purchase of CIS material, and (4) Market-related contracts instead of base-escalated contracts

  5. Nuclear fuel quality assurance

    International Nuclear Information System (INIS)

    Full text: Quality assurance is used extensively in the design, construction and operation of nuclear power plants. This methodology is applied to all activities affecting the quality of a nuclear power plant in order to obtain confidence that an item or a facility will perform satisfactorily in service. Although the achievement of quality is the responsibility of all parties participating in a nuclear power project, establishment and implementation of the quality assurance programme for the whole plant is a main responsibility of the plant owner. For the plant owner, the main concern is to achieve control over the quality of purchased products or services through contractual arrangements with the vendors. In the case of purchase of nuclear fuel, the application of quality assurance might be faced with several difficulties because of the lack of standardization in nuclear fuel and the proprietary information of the fuel manufacturers on fuel design specifications and fuel manufacturing procedures. The problems of quality assurance for purchase of nuclear fuel were discussed in detail during the seminar. Due to the lack of generally acceptable standards, the successful application of the quality assurance concept to the procurement of fuel depends on how much information can be provided by the fuel manufacturer to the utility which is purchasing fuel, and in what form and how early this information can be provided. The extent of information transfer is basically set out in the individual vendor-utility contracts, with some indirect influence from the requirements of regulatory bodies. Any conflict that exists appears to come from utilities which desire more extensive control over the product they are buying. There is a reluctance on the part of vendors to permit close insight of the purchasers into their design and manufacturing procedures, but there nevertheless seems to be an increasing trend towards release of more information to the purchasers. It appears that the full application of the quality assurance concept in the purchase of fuel and fuel manufacturing services will depend to a large extent on the availability of fuel specification data. On the part of fuel purchasers, there is an obvious interest in getting as many details of fuel specification as possible in order to be able to establish a proper level of control over the quality of their purchases. On the other hand, if such specifications are set up in advance by the purchasers, there are often complaints by the manufacturers that the specifications were set up without proper regard for the latest technical information on fuel performance and for the realities of manufacturing processes and technical capabilities. This problem may be resolved when fuel design activities are properly meshed with a full quality assurance system. Discussions during the seminar showed that the operation of acceptable quality assurance systems is a well-established practice at most of the fuel manufacturers. The fuel purchaser may monitor such a system through quality assurance programme auditing as agreed to the individual vendor-purchaser contracts. In this way confidence may be obtained in the quality of the purchased product. However, it is considered that the further improvement of the relations between fuel manufacturers and purchasers could be achieved through the following actions undertaken at the international level: (1) standardization of fuel specifications and testing procedures; (2) dissemination of information on fuel specifications and their connections with observed fuel failure rate; (3) Establishment of a standardized quality assurance programme for fuel fabrication; (4) establishment of a central information service to assist utility groups in preparing documents and procedures to be used in quality assurance activities

  6. Orientational relationships between phases in the {gamma}{yields}{alpha} transformations for uranium-molybdenum alloys; Relations d'orientation entre phases dans les transformations {gamma}{yields}{alpha} des alliages uranium-molybdene

    Energy Technology Data Exchange (ETDEWEB)

    Brun, G. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-04-01

    A crystallographic study has been made of the {gamma} {yields} {alpha} + {gamma} transformation in the alloy containing 3 per cent by weight of molybdenum using electronic micro-diffraction; it has been possible to establish the orientational relationships governing the germination of the {alpha} phase in the {gamma} phase. One finds: (111){gamma} // (100) {alpha}, (112-bar){gamma} // (010) {alpha}, (11-bar 0){gamma} // (001){alpha}. By choosing a monoclinic lattice containing the same number of atoms as the orthorhombic lattice for defining the {gamma} mother phase, the change in structure has been explained by adding a homogeneous (112-bar){gamma} [111]{gamma} shearing deformation to a heterogeneous deformation brought about by slipping of the atoms which are not situated at the nodes of this lattice. The identity of the orientation relationships {gamma}/{alpha} and {gamma}/{alpha}''b and the loss of coherence {gamma} /{alpha} as a function of temperature or of time lead to the conclusion that, in the range studied, the {gamma} {yields} {alpha} transformation begins with a martensitic process and continues by germination and growth. (author) [French] Une etude cristallographique de la transformation {gamma} {yields} {alpha} + {gamma} dans l'alliage {alpha} 3 pour cent en poids de Mo, effectuee par microdiffraction electronique a permis d'etablir les relations d'orientation regissant la germination de {alpha} dans {gamma}. On a: (111){gamma} // (100){alpha}, (112-bar){gamma} // (010){alpha}, (11-bar 0){gamma} // (001){alpha}. En choisissant pour decrire la phase mere {gamma} une maille monoclinique contenant le meme nombre d'atomes que la maille orthorhombique {alpha}, le changement de structure a ete explique en superposant a une deformation homogene par cisaillement (112-bar){gamma} [111]{gamma} une deformation heterogene par glissement des atomes non situes aux noeuds de cette maille. L identite des relations d'orientation {gamma}/{alpha} et {gamma} /{alpha}''b et la perte de coherence {gamma}/{alpha} en fonction de la temperature ou du temps conduisent a penser que, dans le domaine etudie, la transformation {gamma} {yields} {alpha} commence par un processus martensitique et se poursuit par germination et croissance. (auteur)

  7. Fuel production for LWRs - MOX fuel aspects

    International Nuclear Information System (INIS)

    Plutonium recycling in Light Water Reactors is today an industrial reality. It is recycled in the form of (U, Pu)O2 fuel pellets (MOX), fabricated to a large extent according to UO2 technology and pellet design. The similarity of physical, chemical, and neutron properties of both fuels also allows MOX fuel to be burnt in nuclear plants originally designed to burn UO2. The industrial processes presently in use or planned are all based on a mechanical blending of UO2 and PuO2 powders. To obtain finely dispersed plutonium and to prevent high local concentration of plutonium, the feed materials are micronised. In the BNFL process, the whole (UO2, PuO2) blend is micronised by attrition milling. According to the MIMAS process, developed by BELGONUCLEAIRE, a primary blend made of UO2 containing about 30% PuO2 is micronised in a ball mill, afterwards this primary blend is mechanically diluted in UO2 to obtain the specified Pu content. After mixing, the (U, Pu)O2 powder is pressed and the pellets are sintered. The sintering cover gas contains moisture and 5 v/o H2. Moisture increases the sintering process and the U-Pu interdiffusion. After sintering and grinding, the pellets are submitted to severe controls to verify conformity with customer specifications (fissile content, Pu distribution, surface condition, chemical purity, density, microstructure). (author)

  8. TRIGA low enrichment fuel

    International Nuclear Information System (INIS)

    Sixty TRIGA reactors have been sold and the earliest of these are now passing twenty years of operation. All of these reactors use the uranium-zirconium hydride fuel (UZrH) which provides certain unique advantages arising out of its large prompt negative temperature coefficient, very low fission product release, and high temperature capability. Eleven of these Sixty reactors are conversions from plate fuel to TRIGA fuel which were made as a result of these advantages. With only a few exceptions, TRIGA reactors have always used low-enriched-uranium (LEU) fuel with an enrichment of 19.9%. The exceptions have either been converted from the standard low-enriched fuel to the 70% enriched FLIP fuel in order to achieve extended lifetime, or are higher powered reactors which were designed for long life using 93%-enriched uranium during the time when the use and export of highly enriched uranium (HEU) was not restricted. The advent of international policies focusing attention on nonproliferation and safeguards made the HEU fuels obsolete. General Atomic immediately undertook a development effort (nearly two years ago) in order to be in a position to comply with these policies for all future export sales and also to provide a low-enriched alternative to fully enriched plate-type fuels. This important work was subsequently partially supported by the U.S. Department of Energy. The laboratory and production tests have shown that higher uranium densities can be achieved to compensate for reducing the enrichment to 20%, and that the fuels maintain the characteristics of the very thoroughly proven standard TRIGA fuels. In May of 1978, General Atomic announced that these fuels were available for TRIGA reactors and for plate-type reactors with power levels up to 15 MW with GA's standard commercial warranty

  9. Reprocessing of nuclear fuels

    International Nuclear Information System (INIS)

    One of the persistent ideas concerning nuclear power is that the fuel costs are negligible. This, of course, is incorrect and, in fact, one of the major problems in the development of economic nuclear power is to get the cost of the fuel cycles down to an acceptable level. The irradiated fuel removed from the nuclear power reactors must be returned as fresh fuel into the system. Aside from the problems of handling and shipping involved in the reprocessing cycles, the two major steps are the chemical separation and the refabrication. The chemical separation covers the processing of the spent fuel to separate and recover the unburned fuel as well as the new fuel produced in the reactor. This includes the decontamination of these materials from other radioactive fission products formed in the reactor. Refabrication involves the working and sheathing of recycled fuel into the shapes and forms required by reactor design and the economics of the fabrication problem determines to a large extent the quality of the material required from the chemical treatment. At present there appear to be enough separating facilities in the United States and the United Kingdom to handle the recycling of fuel from power reactors for the next few years. However, we understand the costs of recycling fuel in these facilities will be high or low depend ing on whether or not the capital costs of the plant are included in the processing cost. Also, the present plants may not be well adapted to carry out the chemical processing of the very wide variety of power reactor fuel elements which are being considered and will continue to be considered over the years to come. (author)

  10. TRIGA low enrichment fuel

    International Nuclear Information System (INIS)

    Sixty TRIGA reactors have been sold and the earliest of these are now passing twenty years of operation. All of these reactors use the uranium zirconium hydride fuel (UZrH) which provides certain unique advantages arising out of its large prompt negative temperature coefficient, very low fission product release, and high temperature capability. Eleven of these Sixty reactors are conversions from plate fuel to TRIGA fuel which were made as a result of these advantages. With only a few exceptions, TRIGA reactors have always used low-enriched uranium (LEU) fuel with an enrichment of 19.9%. The exceptions have either been converted from the standard low-enriched fuel to the 70% enriched FLIP fuel in order to achieve extended lifetime, or are higher powered reactors which were designed for long life using 93%-enriched uranium during the time when the use and export of highly enriched uranium (HEU) was not restricted. The advent of international policies focusing attention on nonproliferation and safeguards made the HEU fuels obsolete. General Atomic immediately undertook a development effort (nearly two years ago) in order to be in a position to comply with these policies for all future export sales and also to provide a low-enriched alternative to fully enriched plate-type fuels. This important work was subsequently partially supported by the U.S. Department of Energy. The laboratory and production tests have shown that higher uranium densities can be achieved to compensate for reducing the enrichment to 20%, and that the fuels maintain the characteristics of the very thoroughly proven standard TRIGA fuels. In May of 1978, General Atomic announced that these fuels were available for TRIGA reactors and for plate-type reactors with power levels up to 15 MW with General Atomic's standard commercial warranty

  11. Fuel safety research 2000

    International Nuclear Information System (INIS)

    In April 1999, the Fuel Safety Research Laboratory was newly established as a part of reorganization of the Nuclear Safety Research Center, JAERI. The new laboratory was organized by combining three pre-existing laboratories, Reactivity Accident Laboratory, Fuel Reliability Laboratory, and a part of Severe Accident Research Laboratory. The Fuel Safety Research Laboratory becomes to be in charge of all fuel safety research in JAERI. Various experimental and analytical researches are conducted in the laboratory by using the unique facilities such as the Nuclear Safety Research Reactor (NSRR), the Japan Material Testing Reactor (JMTR), the Japan Research Reactor 3 (JRR-3) and hot cells in JAERI. The laboratory consists of following five research groups corresponding to each research fields; (a) Research group of fuel behavior under the reactivity initiated accident conditions (RIA group). (b) Research group of fuel behavior under the loss-of-coolant accident conditions (LOCA group). (c) Research group of fuel behavior under the normal operation conditions (JMTR/BOCA group). (d) Research group of fuel behavior analysis (FEMAXI group). (e) Research group of FP release/transport behavior from irradiated fuel (VEGA group). The research activities in year 2000 produced many important data and information. They are, for example, failure of high burnup BWR fuel rod under RIA conditions, data on the behavior of hydrided Zircaloy cladding under LOCA conditions and FP release data from VEGA experiments at very high temperature/pressure condition. This report summarizes the outline of research activities and major outcomes of the research executed in 2000 in the Fuel Safety Research Laboratory. (author)

  12. Fuel assembly insertion system

    International Nuclear Information System (INIS)

    This patent describes a nuclear reactor facility having fuel bundles: a system for the insertion of a fuel bundle into a position where vertically arranged fuel bundles surround and are adjacent the system comprising, in combination, separate and individual centering devices secured to and disposed on top of each fuel bundle adjacent the position. Each such centering device has a generally box-like cap configuration on the upper end of each fuel bundle and includes: a top wall; first and second side walls, each secured along and upper edge to the top wall; a rear plate attached along opposite vertical edges to the first and second side walls; a front inclined wall joined along an upper edge to the top to the wall and attached along opposite vertical edges first and second side walls; pad means secured to the lower edge of the first and second side walls, the front inclined wall and the rear plate for mounting each centering device on top of an associated fuel bundle; pin means carried by at least two of the pad means engageable with an associated aperature for locating and laterally fixing each centering device on top of its respective fuel bundle. Each front inclined wall of each of the centering devices is orientated on top of its respective fuel bundle to slope upwardly and away from the position where upon downward insertion of a fuel bundle any contact between the lower end of the fuel bundle inserted with a front inclined wall of a centering device will laterally deflect the fuel bundle. Each centering device further includes a central socket means secured to the top wall, and an elongated handling pole pivotally attached to the socket

  13. International fuel bank

    International Nuclear Information System (INIS)

    The working group discusses the establishment of an international bank for nuclear fuels. The statements by representatives of seven countries discuss the specific features of a bank of this kind which is set up to facilitate access to nuclear fuels but also to permit a more rigid control in the sense of the non-proliferation philosophy

  14. Fuel design and engineering

    International Nuclear Information System (INIS)

    The essential aspects of the design and engineering of fuel assemblies for LWR reactors are outlined, and the major criteria to be met by the materials used are given. The fuel rods must be mechanically designed to withstand many stresses which are shortly dealt with here. (RB)

  15. Nanofluidic fuel cell

    Science.gov (United States)

    Lee, Jin Wook; Kjeang, Erik

    2013-11-01

    Fuel cells are gaining momentum as a critical component in the renewable energy mix for stationary, transportation, and portable power applications. State-of-the-art fuel cell technology benefits greatly from nanotechnology applied to nanostructured membranes, catalysts, and electrodes. However, the potential of utilizing nanofluidics for fuel cells has not yet been explored, despite the significant opportunity of harnessing rapid nanoscale reactant transport in close proximity to the reactive sites. In the present article, a nanofluidic fuel cell that utilizes fluid flow through nanoporous media is conceptualized and demonstrated for the first time. This transformative concept captures the advantages of recently developed membraneless and catalyst-free fuel cell architectures paired with the enhanced interfacial contact area enabled by nanofluidics. When compared to previously reported microfluidic fuel cells, the prototype nanofluidic fuel cell demonstrates increased surface area, reduced activation overpotential, superior kinetic characteristics, and moderately enhanced fuel cell performance in the high cell voltage regime with up to 14% higher power density. However, the expected mass transport benefits in the high current density regime were constrained by high ohmic cell resistance, which could likely be resolved through future optimization studies.

  16. Fuel rod prepressurization

    International Nuclear Information System (INIS)

    This report describes the technical benefits and safety significance associated with prepressurizing General Electric Boiling Water Reactor (GE BWR) fuel rods with helium to 3 atmospheres. This potential design change results in minor changes to calculated plant safety parameters and is a simple product improvement which should enhance fuel reliability

  17. Nuclear fuel transport flask

    International Nuclear Information System (INIS)

    A nuclear fuel transport flask has a fuel containing compartment which is supplied with decontaminating fluid via inlet passageways and tubes which discharge into the compartment. The outlet from the compartment is via a box and outlet passageways within end cap. The passageways are conveniently situated at the same end of the flask. (author)

  18. Nuclear fuel transportation containers

    International Nuclear Information System (INIS)

    The invention discloses an inner container for a nuclear fuel transportation flask for irradiated fuel elements comprising a cylindrical shell having a dished end closure with a drainage sump and means for flushing out solid matter by way of the sump prior to removing a cover

  19. Nuclear fuel rod

    International Nuclear Information System (INIS)

    Long nuclear fuel rods are subject to high stress at high temperatures. To cope with such influence, it is suggested to provide a fission gas plenum provided with a supporting sleeve at the end of the enclosing tube and to arrange deformation disks between the nuclear fuel pellets at regular intervals. Various designs of such disks are shown. (UWI)

  20. Alternative Fuels in Transportation

    Science.gov (United States)

    Kouroussis, Denis; Karimi, Shahram

    2006-01-01

    The realization of dwindling fossil fuel supplies and their adverse environmental impacts has accelerated research and development activities in the domain of renewable energy sources and technologies. Global energy demand is expected to rise during the next few decades, and the majority of today's energy is based on fossil fuels. Alternative…

  1. Fuel cells for transportation

    International Nuclear Information System (INIS)

    Results of an evaluation of fuel cell applications in city buses, highway buses, consumer vehicles, and delivery vans are briefly reviewed. Results of an economic analysis of the four target vehicles strongly suggest the feasibility of the fuel cell vehicle in the future

  2. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    A nuclear reactor fuel element having a sheath and fuel pellets has a tubular pellet retainer which is inserted in the sheath with zero-insertion load by virtue of being fluted at a flute and is held in the sheath by reforming into an approximately circular shape. (author)

  3. Nuclear fuel assemblies

    International Nuclear Information System (INIS)

    Purpose: To prevent the bending of fuel pins and eliminate the scratching damage resulted to the fuel pins due to mechanical interactions by moderating the tension of wire spacers remarkably developed by the repeating rise and shutdown of the reactor power. Constitution: In a nuclear fuel assembly containing a plurality of fuel pins each spirally wound around at the outer circumference thereof with wire spacers are accommodated in a wrapper tube, a hole is perforated axially to the lower end plug portion formed at the lower end of the fuel pin, a movable member and a biasing mechanism for biasing the movable member are contained in the hole and one end of the wire space is secured to the movable member. Accordingly, bending of the fuel pin caused by the difference in the thermal expansion between the fuel cladding tube and the wire spacer can be overcome. This can eliminate the occurrence of scratching damages to the fuel pins resulted from the mechanical interactions between adjacent pins. (Yoshihara, H.)

  4. Market of fuels

    International Nuclear Information System (INIS)

    An analysis of the market of fuels is made in Colombia, with base in comparisons with other countries of Latin America, leaving of the base of the liberation of the market, from the refinement until the smallest sale in fuels, the effects of this liberation are analyzed in other regions of the continent

  5. Spent nuclear fuel storage

    International Nuclear Information System (INIS)

    When a country becomes self-sufficient in part of the nuclear cycle, as production of fuel that will be used in nuclear power plants for energy generation, it is necessary to pay attention for the best method of storing the spent fuel. Temporary storage of spent nuclear fuel is a necessary practice and is applied nowadays all over the world, so much in countries that have not been defined their plan for a definitive repository, as well for those that already put in practice such storage form. There are two main aspects that involve the spent fuels: one regarding the spent nuclear fuel storage intended to reprocessing and the other in which the spent fuel will be sent for final deposition when the definitive place is defined, correctly located, appropriately characterized as to several technical aspects, and licentiate. This last aspect can involve decades of studies because of the technical and normative definitions at a given country. In Brazil, the interest is linked with the storage of spent fuels that will not be reprocessed. This work analyses possible types of storage, the international panorama and a proposal for future construction of a spent nuclear fuel temporary storage place in the country. (author)

  6. PLATINUM AND FUEL CELLS

    Science.gov (United States)

    Platinum requirements for fuel cell vehicles (FCVS) have been identified as a concern and possible problem with FCV market penetration. Platinum is a necessary component of the electrodes of fuel cell engines that power the vehicles. The platinum is deposited on porous electrodes...

  7. Nuclear fuel manufacture

    International Nuclear Information System (INIS)

    The technologies used to manufacture nuclear fuel from uranium ore are outlined, with particular reference to the light water reactor fuel cycle. Capital and operating cost estimates for the processing stages are given, and the relevance to a developing uranium industry in Australia is discussed

  8. Alternative fuel for automobiles

    Energy Technology Data Exchange (ETDEWEB)

    Editor [Korea Energy Management Corporation, Songnam (Korea)

    1999-05-01

    Recently the developed countries are showing great interest on use of an alternative energy as a fuel for a transport. Korea decided to import 5,000 CNG bus by 2002 and operate in six megalopolis including Seoul. The possibility and problems of using a clean alternative fuel for automobile are discussed.

  9. Nuclear fuel element

    International Nuclear Information System (INIS)

    A nuclear fuel element is disclosed for use in power producing nuclear reactors, comprising a plurality of axially aligned ceramic cylindrical fuel bodies of the sintered type, and a cladding tube of metal or metal alloys, wherein said cladding tube on its cylindrical inner surface is provided with a plurality of slightly protruding spacing elements distributed over said inner surface

  10. Assessment of automotive fuels

    International Nuclear Information System (INIS)

    Energy demand all over the world increases steadily and, within the next decades, is almost completely met by fossil fuels. This poses increasing pressure on oil supply and reserves. Concomitant is the concern about environmental pollution, especially by carbon dioxide from fossil fuel combustion, with the risk of global warming. Environmental well-being requires a modified mix of energy sources to emit less carbon dioxide, starting with a move to natural gas and ending with the market penetration of renewable energies. Efforts should focus on advanced oil and gas production and processing technologies and on regeneratively produced fuels like hydrogen or bio-fuels as well. Within the framework of an industrial initiative in Germany, a process of defining one or two alternative fuels was started, to bring them into the market within the next years. (orig.)

  11. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    A fuel assembly with a fuel channel which surrounds a plurality of fuel rods and which is divided, by means of a stiffening device of cruciform cross-section and four wings, into four sub-channels each of which comprises a bundle of fuel rods. Each fuel channel side has a plurality of stamped, inwardly-directed projections, arranged vertically one after the other, aid projections being welded to one and the same stiffening wing. Each one of the wall portions located between the projections defines, together with two adjacently positioned projections and a portion of the stiffening wing, a communiation opening between two bundles located on on one side each of the stiffening wing. (Author)

  12. Fuel element exchange system

    International Nuclear Information System (INIS)

    In a nuclear reactor which is housed in a round building and which has a reactor pressure vessel in a reactor pool, a fuel element storage pool of arcuate outline, a gate-controlled channel interconnecting the two pools and an operating platform adjacent the pools and an operating platform adjacent the pools, there is provided a fuel element exchange system which has a first fuel element exchange gantry supported on a column disposed in the center of the reactor building and on a rail which is held by the building wall and which is situated above the level of the operating platform, and a second fuel element exchange gantry supported under the first gantry in such a manner that the second gantry may freely pass under the first gantry. There is further provided a fuel element box-stripping machine at the storage pool immediately across from the channel within the operational range of both the first and the second gantries

  13. Why fuel prices differ

    International Nuclear Information System (INIS)

    Fuel taxes differ largely between countries. This paper reviews a number of considerations from the theory of public finance that may explain these differences. Based on a multiple regression model, we find for tax competition in Europe that small countries tend to be more aggressive than large countries by charging lower fuel taxes to attract customers from neighbouring countries. There is strong evidence that fuel is just considered as one of the many sources for government expenditure: as the share of government expenditure in GDP is higher, the fuel tax tends to be higher. No support is found for the hypothesis that fuel taxes are higher in countries where externality problems are more severe (proxied by car density of the country). In this respect, the normative literature on pricing externalities has found little support in the realities of transport policy. (author)

  14. Block fuel element

    International Nuclear Information System (INIS)

    The block consists of fuel elements of moderator material with fuel rods inserted in axle bores. Each element of hexagonal basic form is ribbed in a longitudinal direction and the ribs are seperated from one another by a keyway with a trapeze shaped cross-section. The ribs of the elements grasp in the keyways of neighbouring elements in such a manner that crossing points of a rib of three fuel elements at a time always occurs. The single fuel elements thus latch in and a uniform distribution of the torsion stresses is achieved over the whole core cross-section. Furthermore, an exchange of individual fuel elements is simplified which, e.g., in HTGR is important. (DG)

  15. Methanol commercial aviation fuel

    International Nuclear Information System (INIS)

    Southern California's heavy reliance on petroleum-fueled transportation has resulted in significant air pollution problems within the south Coast Air Basin (Basin) which stem directly from this near total dependence on fossil fuels. To deal with this pressing issue, recently enacted state legislation has proposed mandatory introduction of clean alternative fuels into ground transportation fleets operating within this area. The commercial air transportation sector, however, also exerts a significant impact on regional air quality which may exceed emission gains achieved in the ground transportation sector. This paper addresses the potential, through the implementation of methanol as a commercial aviation fuel, to improve regional air quality within the Basin and the need to flight test and demonstrate methanol as an environmentally preferable fuel in aircraft turbine engines

  16. Extended fuel cycle length

    International Nuclear Information System (INIS)

    Extended fuel cycle length and burnup are currently offered by Framatome and Fragema in order to satisfy the needs of the utilities in terms of fuel cycle cost and of overall systems cost optimization. We intend to point out the consequences of an increased fuel cycle length and burnup on reactor safety, in order to determine whether the bounding safety analyses presented in the Safety Analysis Report are applicable and to evaluate the effect on plant licensing. This paper presents the results of this examination. The first part indicates the consequences of increased fuel cycle length and burnup on the nuclear data used in the bounding accident analyses. In the second part of this paper, the required safety reanalyses are presented and the impact on the safety margins of different fuel management strategies is examined. In addition, systems modifications which can be required are indicated

  17. Fuel cells : emerging markets

    International Nuclear Information System (INIS)

    This presentation highlighted the findings of the 2009 review of the fuel cell industry and emerging markets as they appeared in Fuel Cell Today (FCT), a benchmark document on global fuel cell activity. Since 2008, the industry has seen a 50 per cent increase in fuel cell systems shipped, from 12,000 units to 18,000 units. Applications have increased for backup power for datacentres, telecoms and light duty vehicles. The 2009 review focused on emerging markets which include non-traditional regions that may experience considerable diffusion of fuel cells within the next 5 year forecast period. The 2009 review included an analysis on the United Arab Emirates, Mexico, Brazil and India and reviewed primary drivers, likely applications for near-term adoption, and government and private sector activity in these regions. The presentation provided a forecast of the global state of the industry in terms of shipments as well as a forecast of countries with emerging markets

  18. Hydrogen Fuel Quality

    Energy Technology Data Exchange (ETDEWEB)

    Rockward, Tommy [Los Alamos National Laboratory

    2012-07-16

    For the past 6 years, open discussions and/or meetings have been held and are still on-going with OEM, Hydrogen Suppliers, other test facilities from the North America Team and International collaborators regarding experimental results, fuel clean-up cost, modeling, and analytical techniques to help determine levels of constituents for the development of an international standard for hydrogen fuel quality (ISO TC197 WG-12). Significant progress has been made. The process for the fuel standard is entering final stages as a result of the technical accomplishments. The objectives are to: (1) Determine the allowable levels of hydrogen fuel contaminants in support of the development of science-based international standards for hydrogen fuel quality (ISO TC197 WG-12); and (2) Validate the ASTM test method for determining low levels of non-hydrogen constituents.

  19. Fuel cell water transport

    Science.gov (United States)

    Vanderborgh, Nicholas E. (Los Alamos, NM); Hedstrom, James C. (Los Alamos, NM)

    1990-01-01

    The moisture content and temperature of hydrogen and oxygen gases is regulated throughout traverse of the gases in a fuel cell incorporating a solid polymer membrane. At least one of the gases traverses a first flow field adjacent the solid polymer membrane, where chemical reactions occur to generate an electrical current. A second flow field is located sequential with the first flow field and incorporates a membrane for effective water transport. A control fluid is then circulated adjacent the second membrane on the face opposite the fuel cell gas wherein moisture is either transported from the control fluid to humidify a fuel gas, e.g., hydrogen, or to the control fluid to prevent excess water buildup in the oxidizer gas, e.g., oxygen. Evaporation of water into the control gas and the control gas temperature act to control the fuel cell gas temperatures throughout the traverse of the fuel cell by the gases.

  20. Nuclear fuel activities in Belgium

    International Nuclear Information System (INIS)

    In his presentation on nuclear fuel activities in belgium the author considers the following directions of this work: fuel fabrication, NPP operation, fuel performance, research and development programmes

  1. Agricultural transportation fuels

    International Nuclear Information System (INIS)

    The recommendations on the title subject are focused on the question whether advantages and disadvantages of agricultural fuels compared to fossil fuels justify the Dutch policy promotion of the use of agricultural products as basic materials for agricultural fuels. Attention is paid to energetic, environmental and economical aspects of both fuel types. Four options to apply agricultural transportation fuels are discussed: (1) 10% bio-ethanol in euro-unleaded gasoline for engines of passenger cars, equipped with a three-way catalyst; (2) the substitution of 15% methyl tertiair butyl ether (MTBE) by ethyl tertiair butyl ether (ETBE) as a substituent for lead in unleaded super plus gasoline (Sp 98) for engines of passenger cars, equipped with a three-way catalyst; (3) 50% KME (rapeseed oil ester) in low-sulfur diesel (0.05%S D) for engines of vans without a catalyst; and (4) the substitution of 0.05% S D by bio-ethanol or KME for buses with fuel-adjusted engines, equipped with a catalyst. Also the substitution by liquefied petroleum gas (LPG), compressed natural gas (CNG) or E 95 was investigated in option four. Each of the options investigated can contribute to a reduction of the use of fossil energy and the environmental effects of the use of fossil fuels, although some environmental effects from agricultural fuels must be taken into consideration. It is recommended to seriously pay attention to the promotion of agricultural fuels, not only in the Netherlands, but also in an international context. Policy instruments to be used in the stimulation of the use of such fuels are the existing European Community subsidies on fallow lands, exemption of the European Community energy levy, and the use of tax differentiation. Large-scale demonstration projects must be started to quantify hazardous emissions and to solve still existing technical problems. 8 figs., 3 tabs., refs., 4 appendices

  2. Spent fuel management

    International Nuclear Information System (INIS)

    The production of nuclear electricity results in the generation of spent fuel that requires safe, secure and efficient management. Appropriate management of the resulting spent fuel is a key issue for the steady and sustainable growth of nuclear energy. Currently about 10,000 tonnes heavy metal (HM) of spent fuel are unloaded every year from nuclear power reactors worldwide, of which 8,500 t HM need to be stored (after accounting for reprocessed fuel). This is the largest continuous source of civil radioactive material generated, and needs to be managed appropriately. Member States have referred to storage periods of 100 years and even beyond, and as storage quantities and durations extend, new challenges arise in the institutional as well as in the technical area. The IAEA gives high priority to safe and effective spent fuel management. As an example of continuing efforts, the 2003 International Conference on Storage of Spent Fuel from Power Reactors gathered 125 participants from 35 member states to exchange information on this important subject. With its large number of Member States, the IAEA is well-positioned to gather and share information useful in addressing Member State priorities. IAEA activities on this topic include plans to produce technical documents as resources for a range of priority topics: spent fuel performance assessment and research, burnup credit applications, cask maintenance, cask loading optimization, long term storage requirements including records maintenance, economics, spent fuel treatment, remote technology, and influence of fuel design on spent fuel storage. In addition to broader topics, the IAEA supports coordinated research projects and technical cooperation projects focused on specific needs

  3. MOX fuel at BNFL

    International Nuclear Information System (INIS)

    In 1989, BNFL decided to use the expertise developed for the Fast Reactor project to enter the thermal MOX fuels market with the aim of becoming a world leader in thermal MOX supply and to return the products from its reprocessing business to its customers as MOX fuel. To reach this objective the company developed a two-stage strategy which involved: (a) Constructing a small-scale plant, the MOX Demonstration Facility (MDF), on a short time-scale to produce commercial quality fuel for irradiation in commercial reactors, and (b) Constructing a small-scale plant, the Sellafield MOX Plant (SMP), for bulk fuel supply. MOX production in the MOX Demonstration Facility at Sellafield began in October 1993 and, since that time, the plant has produced more than 10 tonnes of MOX for BNFL's customers. The MDF was constructed to produce LWR MOX fuel, using BNFL's patented Short Binderless Route (SBR) in order to gain operational and irradiation experience to support fuel supply from the 120te/yr Sellafield MOX Plant (SMP). The first fuel from MDF was loaded into the Nordostschweizerische Kraftwerke (NOK) Beznau 1 reactor in July 1994 and since that time the plant has been used continuously to provide more fuel for NOK and other customers. Construction of the SMP commenced in April 1994 against a fast-track programme designed to have the plant producing its first MOX fuel by the end of 1997. The SMP will be the most flexible MOX fabrication plant in the world, capable of producing plant in the world, capable of producing PWR and BWR fuels using the SBR as the basis of the production process. (Author)In 1989, BNFL decided to use the expertise developed for the Fast Reactor project to enter the thermal MOX fuels market with the aim of becoming a world leader in thermal MOX supply and to return the products from its reprocessing business to its customers as MOX fuel. To reach this objective the company developed a two-stage strategy which involved: (a) Constructing a small-scale plant, the MOX Demonstration Facility (MDF), on a short time-scale to produce commercial quality fuel for irradiation in commercial reactors, and (b) Constructing a small-scale plant, the Sellafield MOX Plant (SMP), for bulk fuel supply. MOX production in the MOX Demonstration Facility at Sellafield began in October 1993 and, since that time, the plant has produced more than 10 tonnes of MOX for BNFL's customers. The MDF was constructed to produce LWR MOX fuel, using BNFL's patented Short Binderless Route (SBR) in order to gain operational and irradiation experience to support fuel supply from the 120te/yr Sellafield MOX Plant (SMP). The first fuel from MDF was loaded into the Nordostschweizerische Kraftwerke (NOK) Beznau 1 reactor in July 1994 and since that time the plant has been used continuously to provide more fuel for NOK and other customers. Construction of the SMP commenced in April 1994 against a fast-track programme designed to have the plant producing its first MOX fuel by the end of 1997. The SMP will be the most flexible MOX fabrication plant in the world, capable of producing

  4. Spent fuel workshop'2002

    International Nuclear Information System (INIS)

    This document gathers the transparencies of the presentations given at the 2002 spent fuel workshop: Session 1 - Research Projects: Overview on the IN CAN PROCESSES European project (M. Cowper), Overview on the SPENT FUEL STABILITY European project (C. Poinssot), Overview on the French R and D project on spent fuel long term evolution, PRECCI (C. Poinssot); Session 2 - Spent Fuel Oxidation: Oxidation of uranium dioxide single crystals (F. Garrido), Experimental results on SF oxidation and new modeling approach (L. Desgranges), LWR spent fuel oxidation - effects of burn-up and humidity (B. Hanson), An approach to modeling CANDU fuel oxidation under dry storage conditions (P. Taylor); Session 3 - Spent Fuel Dissolution Experiments: Overview on high burnup spent fuel dissolution studies at FZK/INE (A. Loida), Results on the influence of hydrogen on spent fuel leaching (K. Spahiu), Leaching of spent UO2 fuel under inert and reducing conditions (Y. Albinsson), Fuel corrosion investigation by electrochemical techniques (D. Wegen), A reanalysis of LWR spent fuel flow through dissolution tests (B. Hanson), U-bearing secondary phases formed during fuel corrosion (R. Finch), The near-field chemical conditions and spent fuel leaching (D. Cui), The release of radionuclides from spent fuel in bentonite block (S.S. Kim), Trace actinide behavior in altered spent fuel (E. Buck, B. Hanson); Session 4 - Radiolysis Issues: The effect of radiolysis on UO2 dissolution determined from electrochemical experiments with 238Pu doped UO2 M. Stroess-Gascoyne (F. King, J.S. Betteridge, F. Garisto), doped UO2 studies (V. Rondinella), Preliminary results of static and dynamic dissolution tests with ? doped UO2 in Boom clay conditions (K. Lemmens), Studies of the behavior of UO2 / water interfaces under He2+ beam (C. Corbel), Alpha and gamma radiolysis effects on UO2 alteration in water (C. Jegou), Behavior of Pu-doped pellets in brines (M. Kelm), On the potential catalytic behavior of UO2(s): experimental approach and preliminary results on uranium oxide - water interface (J. Devoy), Preliminary results on studies on radiolysis effects on dissolution of UO2 (E. Ekeroth, M. Jonnson); Session 5 - Modeling of the Spent Fuel Dissolution: tUO2 dissolution and the effect of radiolysis (T. Lundstrom), Prediction of the effect of radiolysis (F. King), Experimental determination and chemical modeling of radiolytic processes at the spent fuel / water interface (E. Cera, J. Bruno, T. Eriksen, M. Grive, L. Duro); Session 6 - Influence of the Potential Evolution prior to the Water Access on IRF: Potential occurrence of ? self-irradiation enhanced-diffusion (H.J. Matzke, T. Petit), Are grain boundaries a stable microstructure? (Y. Guerin), Modeling RN instant release fractions from spent nuclear fuel under repository conditions (C.Poinssot, L. Johnson, P. Lovera). (J.S.)

  5. Alkaline fuel cells applications

    Science.gov (United States)

    Kordesch, Karl; Hacker, Viktor; Gsellmann, Josef; Cifrain, Martin; Faleschini, Gottfried; Enzinger, Peter; Fankhauser, Robert; Ortner, Markus; Muhr, Michael; Aronson, Robert R.

    On the world-wide automobile market technical developments are increasingly determined by the dramatic restriction on emissions as well as the regimentation of fuel consumption by legislation. Therefore there is an increasing chance of a completely new technology breakthrough if it offers new opportunities, meeting the requirements of resource preservation and emission restrictions. Fuel cell technology offers the possibility to excel in today's motive power techniques in terms of environmental compatibility, consumer's profit, costs of maintenance and efficiency. The key question is economy. This will be decided by the costs of fuel cell systems if they are to be used as power generators for future electric vehicles. The alkaline hydrogen-air fuel cell system with circulating KOH electrolyte and low-cost catalysed carbon electrodes could be a promising alternative. Based on the experiences of Kordesch [K. Kordesch, Brennstoffbatterien, Springer, Wien, 1984, ISBN 3-387-81819-7; K. Kordesch, City car with H 2-air fuel cell and lead-battery, SAE Paper No. 719015, 6th IECEC, 1971], who operated a city car hybrid vehicle on public roads for 3 years in the early 1970s, improved air electrodes plus new variations of the bipolar stack assembly developed in Graz are investigated. Primary fuel choice will be a major issue until such time as cost-effective, on-board hydrogen storage is developed. Ammonia is an interesting option. The whole system, ammonia dissociator plus alkaline fuel cell (AFC), is characterised by a simple design and high efficiency.

  6. Integrated fuel management

    International Nuclear Information System (INIS)

    At the Gentilly-2 NPGS, after an integration effort by the owner/operator Hydro-Quebec, the term FUEL MANAGEMENT has taken on a broad definition that encompasses all activities related to the complete fuel cycle. The activities include:planning, Q.A. and administration in the procurement of uranium and fuel bundles, out of core new/spent fuel inventories, in-core fuel management, analysis of fuel performance, and responding to AECB/AIEA accountancy requirement for international safeguards. This paper will describe how personnel involved in the above mentioned activities are organized under a single working unit for peak efficiency. It will also describe the integrated network of computerized systems used by this group. The system links on-site, corporate and outside data banks and programs, thus avoiding errors and the unnecessary, time consuming efforts involved in the duplication or manual input of required data to different computer codes. The decision to adopt integration as the way to better fuel management, and the commitment to pursue it as new ways and means come about, was never regretted and has contributed greatly to the excellent results obtained thus far at Gentilly-s in this area. 2 tabs

  7. Disposal of spent fuel

    International Nuclear Information System (INIS)

    Based on preliminary analyses, spent fuel assemblies are an acceptable form for waste disposal. The following studies appear necessary to bring our knowledge of spent fuel as a final disposal form to a level comparable with that of the solidified wastes from reprocessing: 1. A complete systems analysis is needed of spent fuel disposition from reactor discharge to final isolation in a repository. 2. Since it appears desirable to encase the spent fuel assembly in a metal canister, candidate materials for this container need to be studied. 3. It is highly likely that some ''filler'' material will be needed between the fuel elements and the can. 4. Leachability, stability, and waste-rock interaction studies should be carried out on the fuels. The major disadvantages of spent fuel as a disposal form are the lower maximum heat loading, 60 kW/acre versus 150 kW/acre for high-level waste from a reprocessing plant; the greater long-term potential hazard due to the larger quantities of plutonium and uranium introduced into a repository; and the possibility of criticality in case the repository is breached. The major advantages are the lower cost and increased near-term safety resulting from eliminating reprocessing and the treatment and handling of the wastes therefrom

  8. Fuel element development

    International Nuclear Information System (INIS)

    In capsule irradiation tests the influence was studied which is exerted by high power densities on thin oxide fuel rods. Cladding expansions have been observed which are not attributable to creep but to plastic strains. Power jumps during load cycling resulted in stress to the cladding through fuel pressure due to thermal differential strain. - Changes in geometry of oxide fuel pellets during cycling were investigated theoretically using models. The test group 5b was also studied with a view to plutonium redistribution. A very high plutonium enrichment was found at the central channel, and outer zones nearly free from plutonium soon after the beginning of irradiation, which might be due to the high specific power and central temperature and the high PuO2-content (35%) of the fuel. Two contributions include as subjects the porosity of fuel in the context of structural analyses and creep caused by irradiation. The plutonium content itself does not seem to increase substantially the creep rate. Further results of post-examinations are available from the oxide irradiation tests Mol-7B and DFR-435. The zone of maximum damage of the Mol-7B-rods occurs at the upper end of the fuel column; even here the structure of the rod has essentially remained unchanged. The amount of fuel escaping is not as great as at the damaged points of DFR-435. (orig.)

  9. Microemulsions as diesel fuels

    Energy Technology Data Exchange (ETDEWEB)

    Gillberg, G.; Friberg, S.

    1976-09-01

    The liquid phases in four-component microemulsions are discussed emphasizing the identity association between colloidal solutions and microemulsions. By careful choice of emulsifiers it is possible to provide microemulsions based on diesel oil which exhibit an ignition performance suitable for high speed diesel engines. These microemulsions show a pronounced net benefit in the NO and smoke emissions. The amounts of unburned hydrocarbon and CO in the exhausts do increase but may be reduced by a catalytic afterburner. The emission changes obtained with the microemulsion fuels parallel, to a considerable extent, those reported for gasoline-methanol fuels. For these fuels measurements of emitted amounts of polynuclear-aromatics (PNA) have also been performed and showed that simultaneously with the decrease in soot and NO a decrease in PNA was obtained. It is therefore most plausible that a similar decrease will be observed for the microemulsion fuel. The need for emulsifiers in the microemulsion fuels and the fact that a slight increase in fuel consumption was registered will lead to higher costs for the use of microemulsions as diesel fuels. The utilization is limited to places where the cleaner exhausts regarding soot and NO and most probably PNA will bring considerable savings. Such a case is in mining, where most of the working engines are diesels and in general already equipped with a catalytic afterburner for CO and HC.

  10. Hydrogen vehicle fueling station

    Energy Technology Data Exchange (ETDEWEB)

    Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A. [Los Alamos National Lab., NM (United States)] [and others

    1995-09-01

    Hydrogen fueling stations are an essential element in the practical application of hydrogen as a vehicle fuel, and a number of issues such as safety, efficiency, design, and operating procedures can only be accurately addressed by a practical demonstration. Regardless of whether the vehicle is powered by an internal combustion engine or fuel cell, or whether the vehicle has a liquid or gaseous fuel tank, the fueling station is a critical technology which is the link between the local storage facility and the vehicle. Because most merchant hydrogen delivered in the US today (and in the near future) is in liquid form due to the overall economics of production and delivery, we believe a practical refueling station should be designed to receive liquid. Systems studies confirm this assumption for stations fueling up to about 300 vehicles. Our fueling station, aimed at refueling fleet vehicles, will receive hydrogen as a liquid and dispense it as either liquid, high pressure gas, or low pressure gas. Thus, it can refuel any of the three types of tanks proposed for hydrogen-powered vehicles -- liquid, gaseous, or hydride. The paper discusses the fueling station design. Results of a numerical model of liquid hydrogen vehicle tank filling, with emphasis on no vent filling, are presented to illustrate the usefulness of the model as a design tool. Results of our vehicle performance model illustrate our thesis that it is too early to judge what the preferred method of on-board vehicle fuel storage will be in practice -- thus our decision to accommodate all three methods.

  11. Developments in fuel manufacturing

    International Nuclear Information System (INIS)

    BNFL has a long tradition of willingness to embrace technological challenge and a dedication to quality. This paper describes advances in the overall manufacturing philosophy at BNFL's Fuel Business Group and then covers how some new technologies are currently being employed in BNFL Fuel Business Group's flagship oxide complex (OFC), which is currently in its final stages of commissioning. This plant represents a total investment of some Pound 200 million. This paper also describes how these technologies are also being deployed in BNFL's MOX plant now being built at Sellafield and, finally, covers some new processes being developed for advanced fuel manufacture. (author)

  12. Enigma fuel performance code

    International Nuclear Information System (INIS)

    The Enigma fuel performance code has been developed jointly by BNFL and the CEGB's Berkeley Nuclear Laboratories. Its development arose from the need for a code capable of analysing all aspects of light water reactor (LWR) fuel behaviour which would also provide a suitable framework for future submodel development. The submodels incorporated into Enigma reflect the significant progress which has been made in recent years in modelling the important physical processes which determine fuel behaviour. The Enigma code has been subjected to an extensive programme of validation which has demonstrated its suitability for LWR performance analysis. (author)

  13. Fuel rod technology

    International Nuclear Information System (INIS)

    By extensive mechanization and automation of the fuel rod production, also at increasing production numbers, an efficient production shall be secured, simultaneously corresponding to the high quality standard of the fuel rods. The works done up to now concentrated on the lay out of a rough concept for a mechanized production course. Detail-studies were made for the problems of fuel rod humidity, filling and resistance welding. Further promotion of this project and thus further report will be stopped, since the main point of these works is the production technique. (orig.)

  14. Ionic liquids and fuels

    Energy Technology Data Exchange (ETDEWEB)

    Adamova, Gabriela; Ahrens, Maria; Schubert, Thomas J.S. [IoLiTec GmbH, Heilbronn (Germany)

    2013-06-01

    Ionic liquids have drawn a lot of attention in recent years due to their unique physical and chemical properties. They were successfully applied in various processes as catalysts, solvents, electrolytes, lubricants, thermo fluids or plasticizers. In this short review, we would like to show benefits ionic liquids can potentially bring to fuel problematic. The recent scientific development suggests that ionic liquids could be successfully applied in sulfur and mercury removal from hydrocarbons, serve as hypergolic fuels or play crucial role in the synthesis of alternative fuels. (orig.)

  15. Nuclear reactor fuel element

    International Nuclear Information System (INIS)

    A nuclear reactor fuel element is described which is comprised of a plurality of fuel rods disposed in a plurality of spacers in which the tubular casing for each fuel rod is designed without regard to the mechanical stress produced by the spacers and has a reinforced wall thickness adjacent to the spacers which is thicker than the wall thickness of the tubular casing in other areas not adjacent to the spacers. The spacers are arranged in a cicular mesh with a center support rod. 10 claims, 6 drawing figures

  16. Fuel cells. Brennstoffbatterien

    Energy Technology Data Exchange (ETDEWEB)

    Kordesch, K.

    1984-01-01

    Hydrogen/oxygen fuel cells have stood the test in space, but terrestrial applications have been prevented so far by their high cost. The universal use of hydrogen fuel is expected for the 21st century. Alkaline hydrogen/air systems with coal electrodes are assumed to have the best chance of becoming a competitive marketable product. The book describes the production of the electrodes, the testing of the cells, batteries, and systems and the goals for further development; it is addressed to physicists and electrochemists interested in the theoretical fundamentals of fuel cells as well as to the practical engineer. With 119 figs.

  17. Fuel storage tank

    International Nuclear Information System (INIS)

    The stationary fuel storage tank is immersed below the water level in the spent fuel storage pool. In it there is placed a fuel assembly within a cage. Moreover, the storage tank has got a water filling and a gas buffer. The water in the storage tank is connected with the pool water by means of a filter, a surge tank and a water purification facility, temperature and pressure monitoring being performed. In the buffer compartment there are arranged catalysts a glow plugs for recombination of radiolysis products into water. The supply of water into the storage tank is performed through the gas buffer compartment. (DG)

  18. GENUSA Fuel Evolution

    International Nuclear Information System (INIS)

    GNF ENUSA Nuclear Fuel S.A. (GENUSA) was formed in Madrid in May 1996. GENUSA is a corporation organized and existing under the laws of Spain, jointly owned by GNF-A and ENUSA. GENUSA consolidates all European BWR fuel marketing activities of GNF-A and ENUSA, primarily providing marketing and project management. In its standard way of operating, it will obtain engineering, components and conversion from GNF-A and engineering, fabrication and fuel related services from ENUSA. GENUSA's development philosophy over the past decades has been to introduce evolutionary designs, supported by our global experience base, that deliver the performance needed by our customers to meet their operating strategies. GENUSA considers, as one of our strengths, the ever-increasing experience base that provides the foundation for such evolutionary changes. This experience is supported and complemented with an even greater GNF experience. Over the last 40 years, GNF and ENUSA have designed, fabricated, and placed in operation over 144,000 BWR fuel bundles containing over 9.7 million fuel rods. This experience base represents the widest range of operating conditions of any BWR fuel vendor, reflecting varying reactor power densities, operating strategies, and water chemistry environments. It covers operating periods of up to ?10 years and bundle average exposures up to 68 MWd/kgU.. It provides the confirmation of our understanding and ability to model fuel performance behavior, and has been instrumental in the identification and characterization of each encountered failure mechanism. With the knowledge gained from this extensive experience base, mitigating actions have been developed and progressively implemented by GENUSA as part of a continuous program toward improved fuel reliability and performance. GENUSA's evolutionary product introduction strategy has been extremely successful. There has been a continuous stream of new products/processes that were developed to deliver improved performance. Relative to the 8x8 fuel operated in the 1980's, today's designs provide ?25% more efficiency and power capability and twice as much energy. Because of GENUSA's evolutionary design commitment, these product improvements have been successfully rolled out to our customers with no design or fabrication-related performance surprises. Additionally, this has been accomplished with an accompanying steady improvement in fuel reliability. In the past three decades, fuel reliability has improved by approximately three orders of magnitude. That is, the fuel rod leaker rate has been reduced from over five hundred rods per million operating, to less than ten. In past decades, most plants experienced failures each cycle, and fleet-wide failure mechanisms drove reliability statistics. Today, a small minority of our customers' plants experience failures in any cycle, mainly recurrent, low level debris fretting failures in a handful of plants. GENUSA is committed to providing the most robust, and balanced, fuel solutions to our customers based on our extensive experience and technological capabilities. Identifying and successfully mitigating the mechanisms that cause fuel failures has been instrumental in this observed improvement in fuel reliability. GENUSA systematically identified and eliminated mechanisms leading to failure through pool-side and hot cell examinations, and feedback of lessons learned into the design and fabrication of the fuel. Some of the highly successful mitigating actions during this history include: - Improved pellet fabrication in the 1970's to eliminate cladding primary hydride failures; - Corrosion-resistant cladding, with a chemistry and microstructure specifically targeted to protect against crud-induced corrosion (CILC) failures; - Improved cladding and welding fabrication and inspection techniques that assured the hermeticity and quality of the delivered fuel rod; - Tightened pellet missing surface specifications to add PCI margin; - Introduction of a debris filter, applied as a standard feature to 10x10 GE14, and as an optional featu

  19. Nuclear reactor fuel element

    International Nuclear Information System (INIS)

    The fuel element for a BWR known from the patent application DE 2824265 is developed so that the screw only breaks on the expansion shank with reduced diameter if the expansion forces are too great. (HP)

  20. The spent fuel fate

    International Nuclear Information System (INIS)

    The spent fuel is not a waste. It can be upgrade by a reprocessing which extracts all products able to produce energy. The today situation is presented and economically analyzed and future alternatives are discussed. (A.L.B.)

  1. Alternative fuel information sources

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This short document contains a list of more than 200 US sources of information (Name, address, phone number, and sometimes contact) related to the use of alternative fuels in automobiles and trucks. Electric-powered cars are also included.

  2. Fuel cycle studies

    International Nuclear Information System (INIS)

    Programs are being conducted in the following areas: advanced solvent extraction techniques, accident consequences, fuel cycles for nonproliferation, pyrochemical and dry processes, waste encapsulation, radionuclide transport in geologic media, hull treatment, and analytical support for LWBR

  3. Hydrogen as a fuel

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    A panel of the Committee on Advanced Energy Storage Systems of the Assembly of Engineering has examined the status and problems of hydrogen manufacturing methods, hydrogen transmission and distribution networks, and hydrogen storage systems. This examination, culminating at a time when rapidly changing conditions are having noticeable impact on fuel and energy availability and prices, was undertaken with a view to determining suitable criteria for establishing the pace, timing, and technical content of appropriate federally sponsored hydrogen R and D programs. The increasing urgency to develop new sources and forms of fuel and energy may well impact on the scale and timing of potential future hydrogen uses. The findings of the panel are presented. Chapters are devoted to hydrogen sources, hydrogen as a feedstock, hydrogen transport and storage, hydrogen as a heating fuel, automotive uses of hydrogen, aircraft use of hydrogen, the fuel cell in hydrogen energy systems, hydrogen research and development evaluation, and international hydrogen programs.

  4. Packing Nuclear Fuel

    International Science & Technology Center (ISTC)

    Development of Scientific Foundations of the Technology of the Metal Matrix Packing of Leaky Unreprocessible Spent Nuclear Fuel of Different Purpose Reactors for a Long-term Environmentally Safe Storage.

  5. Safety of fuel using

    Energy Technology Data Exchange (ETDEWEB)

    Kondratskyy, O.; Ponomarenko, P.; Vasiliev, O. [Sevastopol Institute of Nuclear Energy and Industry, 99033 Sevastopol (Ukraine)

    2001-07-01

    The research reactor complex IR-100 comprises the 200 KW power nuclear reactor and critical assembly. The reactor fuel rods operate since 1967. The tightness of fuel rod casings now has been determined by using of the coolant radiochemical analysis. Prognosis of the casings tightness change has been carried out as well. The minimum and maximum periods of the fuel rods operation in the future has been determined by the graphic method. In the critical assembly fuel rods the long-lived radioactive fission products are accumulated with time. There is the risk of irradiation of IR-100 personnel and students. The prognosis of the long-lived radioactive isotopes accumulating and increase of emanation has been carried out by graphic-analytical method. (author)

  6. Solid Oxide Fuel Cell

    International Science & Technology Center (ISTC)

    Development and Demonstration of the Advance Technology of New Type Production of Pipe High Temperature Solid Oxide Fuel Cells and Making of Pilot Samples of these Elements for Standard Conditions of Application in Electrochemical Current Sources

  7. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    A fuel assembly of PWR comprises a fuel bundle portion supported by a plurality of support lattices and an upper and lower nozzles each secured to the upper and lower portions. Leaf springs are attached to the four sides of the upper nozzle for preventing rising of the fuel assembly by streams of cooling water by the contact with an upper reactor core plate. The leaf springs are attached to the upper nozzle so that four leaf springs are laminated. The uppermost leaf spring is bent slightly upwardly from the mounted portion and the other leaf springs are extended linearly from the mounted portion without being bent. The mounted portions of the leaf springs are stacked and secured to the upper nozzle by a bolt obliquely relative to the axial line of the fuel assembly. (I.N.)

  8. Spent fuel cask

    International Nuclear Information System (INIS)

    Purpose: In order to ensure safety of a spent fuel cask, a method for strengthening a basket and keeping a interior in the cask at a subcritical state has been described. Constitution: The interior of the hollow cylinder of the cask is partitioned by a lattice-shaped basket accommodating therein a neutron absorption substance. In the thus partitioned chamber there is provided a hollow prismatic bolt, in which spent fuel assemblies are accomodated. The other part of the basket is filled with water, thereby shielding radiation emitted from spent fuel assemblies on one hand and cooling spent fuel assemblies on the other. The filled neutron absorbers are in a powdery or granular state, and diffused rapidly in water when any accident takes place thereby keeping the cask at a subcritical state. (Yoshino, M.)

  9. Fuel cell cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    Wimer, J.G. [Dept. of Energy, Morgantown, WV (United States); Archer, D.

    1995-08-01

    The U.S. Department of Energy`s Morgantown Energy Technology Center (METC) sponsors the research and development of engineered systems which utilize domestic fuel supplies while achieving high standards of efficiency, economy, and environmental performance. Fuel cell systems are among the promising electric power generation systems that METC is currently developing. Buildings account for 36 percent of U.S. primary energy consumption. Cogeneration systems for commercial buildings represent an early market opportunity for fuel cells. Seventeen percent of all commercial buildings are office buildings, and large office buildings are projected to be one of the biggest, fastest-growing sectors in the commercial building cogeneration market. The main objective of this study is to explore the early market opportunity for fuel cells in large office buildings and determine the conditions in which they can compete with alternative systems. Some preliminary results and conclusions are presented, although the study is still in progress.

  10. Nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    This report discusses events and processes that could adversely affect the long-term stability of a nuclear fuel waste disposal vault or the regions of the geosphere and the biosphere to which radionuclides might migrate from such a vault

  11. Structure of Fuel Elements

    International Science & Technology Center (ISTC)

    Study of Structure of Materials Based on U-Pu-Zr alloy, their Thermodynamic Properties and Interaction with Materials of Fuel Element Shell under Quasi-Isothermal Conditions and Conditions of Non-stationary Exposure

  12. Improved CANDU fuel performance

    International Nuclear Information System (INIS)

    The fuel defect rate in CANDU power reactors has been very low (0.06 percent) since 1972. Most defects were caused by power ramping. The two measures taken to reduce the defect rate, by about an order of magnitude, were changes in the fuelling schemes and the introduction of thin coatings of graphite on the inside surface of the Zircaloy fuel cladding. Power ramping tests have demonstrated that graphite layers, and also baked poly-dimethyl-siloxane layers, between the UO2 pellets and Zircaloy cladding increase the tolerance of fuel to power ramps. These designs are termed graphite CANLUB and siloxane CANLUB; fuel performance depends on coating parameters such as thickness and wear resistance and on environmental and thermal conditions during the curing of coatings. (author)

  13. Improved nuclear fuel element

    International Nuclear Information System (INIS)

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed and has a metal liner disposed between the cladding and the nuclear fuel material and a high lubricity material in the form of a coating disposed between the liner and the cladding. The liner preferably has a thickness greater than the longest fission product recoil distance and is composed of a low neutron capture cross-section material. The liner is preferably composed of zirconium, an alloy of zirconium, niobium or an alloy of niobium. The liner serves as a preferential reaction site for volatile impurities and fission products and protects the cladding from contact and reaction with such impurities and fission products. The high lubricity material acts as an interface between the liner and the cladding and reduces localized stresses on the cladding due to fuel expansion and cracking of the fuel

  14. Nuclear fuel elements

    International Nuclear Information System (INIS)

    Purpose: To obtain nuclear fuel elements produced at a reduced cost and capable of load following operation with no stress corrosion cracking even for the continuous operation for a long period of time. Constitution: Solid lublicating members prepared by molding at least one of carbon fibers or graphite fibers into a cylindrical bag-like shape are disposed at least between the nuclear fuel can and the nuclear fuel pellets. This enables to cope with the deformation due to thermal expansion of nuclear fuel pellets with no considerable increase in the cost. Further, the carbon fibers or graphite fibers are nuclear-stable even under high neutron fluxes and show less neutron absorption, they can be used for a long period of time with no embrittlement. (Takahashi, M.)

  15. Solid and Gaseous Fuels.

    Science.gov (United States)

    Schultz, Hyman; And Others

    1989-01-01

    This review covers methods of sampling, analyzing, and testing coal, coke, and coal-derived solids and methods for the chemical, physical, and instrumental analyses of gaseous fuels. The review covers from October 1986, to September 1988. (MVL)

  16. Turning water into fuel

    International Nuclear Information System (INIS)

    A simple inorganic semiconductor could deliver an artificial photosynthesis process that will convert sunlight and water directly into hydrogen and oxygen, thus providing the renewable fuel of the future.

  17. Nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    A fuel assembly construction for liquid metal cooled fast breeder reactors is described in which the sub-assemblies carry a smaller proportion of parasitic material than do conventional sub-assemblies. (U.K.)

  18. Fuel gas from biodigestion

    Science.gov (United States)

    Mcdonald, R. C.; Wolverton, B. C.

    1979-01-01

    Biodigestion apparatus produces fuel gas (primarily methane) for domestic consumption, by anaerobic bacterial digestion of organic matter such as aquatic vegetation. System includes 3,786-1 cylindrical container, mechanical agitator, and simple safe gas collector for short term storage.

  19. Spent fuel reprocessing options

    International Nuclear Information System (INIS)

    The objective of this publication is to provide an update on the latest developments in nuclear reprocessing technologies in the light of new developments on the global nuclear scene. The background information on spent fuel reprocessing is provided in Section One. Substantial global growth of nuclear electricity generation is expected to occur during this century, in response to environmental issues and to assure the sustainability of the electrical energy supply in both industrial and less-developed countries. This growth carries with it an increasing responsibility to ensure that nuclear fuel cycle technologies are used only for peaceful purposes. In Section Two, an overview of the options for spent fuel reprocessing and their level of development are provided. A number of options exist for the treatment of spent fuel. Some, including those that avoid separation of a pure plutonium stream, are at an advanced level of technological maturity. These could be deployed in the next generation of industrial-scale reprocessing plants, while others (such as dry methods) are at a pilot scale, laboratory scale or conceptual stage of development. In Section Three, research and development in support of advanced reprocessing options is described. Next-generation spent fuel reprocessing plants are likely to be based on aqueous extraction processes that can be designed to a country specific set of spent fuel partitioning criteria for recycling of fissile materials to advanced light water reactors or fast spectrum reactors. The physical design of these plants must incorporate effective means for materials accountancy, safeguards and physical protection. Section four deals with issues and challenges related to spent fuel reprocessing. The spent fuel reprocessing options assessment of economics, proliferation resistance, and environmental impact are discussed. The importance of public acceptance for a reprocessing strategy is discussed. A review of modelling tools to support the development of advanced nuclear fuel cycles is also given. As a conclusion, spent fuel reprocessing options have evolved significantly since the start of nuclear energy application. There is a large body of industrial experience in fuel cycle technologies complemented by research and development programs in several countries

  20. HTPEM Fuel Cell Impedance

    DEFF Research Database (Denmark)

    Vang, Jakob Rabjerg

    2014-01-01

    As part of the process to create a fossil free Denmark by 2050, there is a need for the development of new energy technologies with higher efficiencies than the current technologies. Fuel cells, that can generate electricity at higher efficiencies than conventional combustion engines, can potentially play an important role in the energy system of the future. One of the fuel cell technologies, that receives much attention from the Danish scientific community is high temperature proton exchange me...

  1. Bioethanol: fuel or feedstock?

    DEFF Research Database (Denmark)

    Rass-Hansen, Jeppe; Falsig, Hanne; Jørgensen, Betina; Christensen, Claus H.

    2007-01-01

    Increasing amounts of bioethanol are being produced from fermentation of biomass, mainly to counteract the continuing depletion of fossil resources and the consequential escalation of oil prices. Today, bioethanol is mainly utilized as a fuel or fuel additive in motor vehicles, but it could also be used as a versatile feedstock in the chemical industry. Currently the production of carbon-containing commodity chemicals is dependent on fossil resources, and more than 95% of these chemicals are pro...

  2. MICROBIAL FUEL CELL

    DEFF Research Database (Denmark)

    A novel microbial fuel cell construction for the generation of electrical energy. The microbial fuel cell comprises: (i) an anode electrode, (ii) a cathode chamber, said cathode chamber comprising an in let through which an influent enters the cathode chamber, an outlet through which an effluent depart the cathode chamber, a cathode electrode and an electrolyte permeable membrane, wherein both the anode electrode and the cathode chamber are to be submersed into an anaerobic environment to genera...

  3. Fast breeder fuel cycle

    International Nuclear Information System (INIS)

    Basic elements of the ex-reactor part of the fuel cycle (reprocessing, fabrication, waste handling and transportation) are described. Possible technical and proliferation measures are evaluated, including current methods of accountability, surveillance and protection. The reference oxide based cycle and advanced cycles based on carbide and metallic fuels are considered utilizing conventional processes; advanced nonaqueous reprocessing is also considered. This contribution provides a comprehensive data base for evaluation of proliferation risks

  4. Vibrating fuel grapple

    International Nuclear Information System (INIS)

    A reactor refueling method utilizing a vibrating fuel grapple for removing spent fuel assemblies from a reactor core which incorporates a pneumatic vibrator in the grapple head, enabling additional withdrawal capability without exceeding the allowable axial force limit. The only moving part in the vibrator is a steel ball, pneumatically driven by a gas, such as argon, around a track, with centrifugal force created by the ball being transmitted through the grapple to the assembly handling socket

  5. Vibrating fuel grapple

    Energy Technology Data Exchange (ETDEWEB)

    Chertock, A.J.; Fox, J.N.; Weissinger, R.B.

    1982-06-01

    A reactor refueling method utilizing a vibrating fuel grapple for removing spent fuel assemblies from a reactor core which incorporates a pneumatic vibrator in the grapple head, enabling additional withdrawal capability without exceeding the allowable axial force limit. The only moving part in the vibrator is a steel ball, pneumatically driven by a gas, such as argon, around a track, with centrifugal force created by the ball being transmitted through the grapple to the assembly handling socket.

  6. Vibrating fuel grapple. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Chertock, A.J.; Fox, J.N.; Weissinger, R.B.

    A reactor refueling method is described which utilizes a vibrating fuel grapple for removing spent fuel assemblies from a reactor core. It incorporates a pneumatic vibrator in the grapple head which allows additional withdrawal capability without exceeding the allowable axial force limit. The only moving part in the vibrator is a steel ball, pneumatically driven by a gas, such as argon, around a track, with centrifugal force created by the ball being transmitted through the grapple to the assembly handling socket.

  7. Vibrating fuel grapple

    Energy Technology Data Exchange (ETDEWEB)

    Chertock, deceased, Alan J. (late of San Francisco, CA); Fox, Jack N. (San Jose, CA); Weissinger, Robert B. (Santa Clara, CA)

    1982-01-01

    A reactor refueling method utilizing a vibrating fuel grapple for removing spent fuel assemblies from a reactor core which incorporates a pneumatic vibrator in the grapple head, enabling additional withdrawal capability without exceeding the allowable axial force limit. The only moving part in the vibrator is a steel ball, pneumatically driven by a gas, such as argon, around a track, with centrifugal force created by the ball being transmitted through the grapple to the assembly handling socket.

  8. Nuclear fuel elements

    International Nuclear Information System (INIS)

    A nuclear fuel element is described having a cluster of nuclear fuel pins supported in parallel, spaced apart relationship by transverse cellular braces within coaxial, inner and outer sleeves, the inner sleeve being in at least two separate axial lengths, each of the transverse braces having a peripheral portion which is clamped peripherally between the ends of the axial lengths of the inner sleeve. (author)

  9. Scintillator spent fuel monitor

    International Nuclear Information System (INIS)

    A monitor for rapidly measuring the gross gamma-ray flux immediately above spent fuel assemblies in underwater storage racks has been developed. It consists of a plastic scintillator, photomultiplier, collimator, and a small battery-powered electronics package. The crosstalk from an isolated fuel assembly to an adjacent void is only about 2%. The mean difference between the measured gamma-ray flux and the flux estimated from the declared burnup and cooling time with a simple formula is 22%

  10. Fuels for Transportation

    OpenAIRE

    Fredholm, Bertil B; Nordén, Bengt

    2010-01-01

    There is a need to reduce the amount of fossil energy used for transport, both because of the easily available fossil fuel is becoming sparser and because of climate concerns. In this article, the concept of “peak oil” is briefly presented. Second, a practical approach to reduction of fossil fuel use for transport elaborated by two British commissions is presented. A key feature is the introduction of electric cars. This raises the third issue covered in this article: namely, how battery tech...

  11. MICROBIAL FUEL CELL

    DEFF Research Database (Denmark)

    Angelidaki, Irini Technical University of Denmark,

    A novel microbial fuel cell construction for the generation of electrical energy. The microbial fuel cell comprises: (i) an anode electrode, (ii) a cathode chamber, said cathode chamber comprising an in let through which an influent enters the cathode chamber, an outlet through which an effluent depart the cathode chamber, a cathode electrode and an electrolyte permeable membrane, wherein both the anode electrode and the cathode chamber are to be submersed into an anaerobic environment to generate electrical energy.

  12. Canadian fuel development program

    International Nuclear Information System (INIS)

    CANDU power reactor fuel has demonstrated an enviable operational record. More than 99.9% of the bundles irradiated have provided defect-free service. Defect excursions are responsible for the majority of reported defects. In some cases research and development effort is necessary to resolve these problems. In addition, development initiatives are also directed at improvements of the current design or reduction of fueling cost. The majority of the funding for this effort has been provided by COG (CANDU Owners' Group) over the past 10 to 15 years. This paper contains an overview of some key fuel technology programs within COG. The CANDU reactor is unique among the world's power reactors in its flexibility and its ability to use a number of different fuel cycles. An active program of analysis and development, to demonstrate the viability of different fuel cycles in CANDU, has been funded by AECL in parallel with the work on the natural uranium cycle. Market forces and advances in technology have obliged us to reassess and refocus some parts of our effort in this area, and significant success has been achieved in integrating all the Canadian efforts in this area. This paper contains a brief summary of some key components of the advanced fuel cycle program. (Author) 4 figs., tab., 18 refs

  13. Cermet fuel reactors

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, C.L.; Palmer, R.S.; Van Hoomissen, J.E.; Bhattacharyya, S.K.; Barner, J.O.

    1987-09-01

    Cermet fueled nuclear reactors are attractive candidates for high performance space power systems. The cermet fuel consists of tungsten-urania hexagonal fuel blocks characterized by high strength at elevated temperatures, a high thermal conductivity and resultant high thermal shock resistance. Key features of the cermet fueled reactor design are (1) the ability to achieve very high coolant exit temperatures, and (2) thermal shock resistance during rapid power changes, and (3) two barriers to fission product release - the cermet matrix and the fuel element cladding. Additionally, thre is a potential for achieving a long operating life because of (1) the neutronic insensitivity of the fast-spectrum core to the buildup of fission products and (2) the utilization of a high strength refractory metal matrix and structural materials. These materials also provide resistance against compression forces that potentially might compact and/or reconfigure the core. In addition, the neutronic properties of the refractory materials assure that the reactor remains substantially subcritical under conditions of water immersion. It is concluded that cermet fueled reactors can be utilized to meet the power requirements for a broad range of advanced space applications. 4 refs., 4 figs., 3 tabs.

  14. Thorium fuel cycles

    International Nuclear Information System (INIS)

    Almost every type of reactor has been associated at one time or another with a proposal to utilize a thorium fuel cycle. Commercial-scale experience with the use of thorium fuel cycles has however been extremely limited to date. Thorium cycles offer the attraction of good fissile material utilization in thermal reactors, thorium could in principle have commercial attractions in this application. However, the U-Pu fast reactor cycle, has even better fissile material utilization. Thorium is inferior to depleted uranium as a fertile material in fast reactors. The article considers in detail the use of thorium fuel cycles both in thermal and fast reactors, and the parameters governing the choice between thorium-based and uranium-based cycles in these various applications. All stages of a thorium fuel cycle, including the mining of ore, conversion, and the reprocessing and fabrication of 233U fuels must be taken into account when assessing its merits. In the unlikely event that thorium reprocessing were available, while for some reason 238U-plutonium reprocessing were not, then the HTR, HWR and LWR would all be possible candidates for thorium-based thermal reactor fuel cycles. (author)

  15. Motor Fuel Excise Taxes

    Energy Technology Data Exchange (ETDEWEB)

    2015-09-01

    A new report from the National Renewable Energy Laboratory (NREL) explores the role of alternative fuels and energy efficient vehicles in motor fuel taxes. Throughout the United States, it is common practice for federal, state, and local governments to tax motor fuels on a per gallon basis to fund construction and maintenance of our transportation infrastructure. In recent years, however, expenses have outpaced revenues creating substantial funding shortfalls that have required supplemental funding sources. While rising infrastructure costs and the decreasing purchasing power of the gas tax are significant factors contributing to the shortfall, the increased use of alternative fuels and more stringent fuel economy standards are also exacerbating revenue shortfalls. The current dynamic places vehicle efficiency and petroleum use reduction polices at direct odds with policies promoting robust transportation infrastructure. Understanding the energy, transportation, and environmental tradeoffs of motor fuel tax policies can be complicated, but recent experiences at the state level are helping policymakers align their energy and environmental priorities with highway funding requirements.

  16. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    The object of the invention is to provide a nuclear fuel assembly capable of improving the critical power characteristics by improving the conduction property at a position where the critical thermal flux ratio (CPR) in the vertical direction of a reactor core. That is, it is noted in this invention that the thermal conductivity of the reactor core can be improved by making the flow of coolant into unsteady flows in a nuclear fuel assembly. Particularly, means for making the portion upper stream to the spacers into unsteady flow where the thermal conductivity is worsened to likely cause boiling transition. In the fuel assembly, spacers are disposed between upper and lower ends for arranging a plurality of fuel rods and coolants for immersing the fuel rods and the spacers flow from below to above. An unsteady flow promoter is disposed at the upper stream to the spacer between the fuel rods. The coolant after being formed into the unsteady flow upon passing through the unsteady flow promoter is directed to the spacer. At the upstream of the spacer, the thermal conductivity is improved and the value for the critical thermal flow flux can be improved with the coolant made into the unsteady flow. (K.M.)

  17. Fuel development in France

    International Nuclear Information System (INIS)

    Fuel used in an ADS for transmutation in a fast spectrum can be described as a highly innovative concept in comparison with fuel used in a critical core. ADS fuel is not fertile, i.e. there is no uranium, so as to improve the transmutation performance. It necessarily contains a high concentration of Am+Cm actinides (about 45%–70%) and plutonium (30%–55%) whose isotopic vector consists of 80%–90% of even isotopes 238Pu, 240Pu and 242Pu, 10%–20% of odd isotopes 239Pu and 241Pu. Table 4.22 provides a list of Actinides compounds and their properties. This unusual fuel composition results in high gamma and neutron emissions during its fabrication, as well as degraded core performance. This is due to: 1) the thermal and thermodynamic properties of the minor actinide (MA) compounds which are poorer than those of major actinides, 2) the volatility of the americium species, and 3) the significant production of helium during irradiation. Furthermore, we still have very little information on the in-pile behaviour of these compounds. A relatively comprehensive review of the minor actinides likely to be considered for the composition of ADS fuels was carried out under the CAPRA-CADRA project, and then under the Fuel Fabrication and Processing Working Group to meet the Technical Working Group requirements for the elaboration of a European ADS development plan

  18. Nuclear fuel element

    International Nuclear Information System (INIS)

    Object: To decrease troubles in breakage of fuel by preventing movement of fuel pellets prior to charging load into reactor and by enabling the fuel pellets to be extended axially after charging of load into the reactor. Structure: The clad tube is interiorly filled with a plurality of pellets, upper and lower ends of which are sealed by end plugs. A sealing container is provided at the portion located at the upper part of the fuel element. This sealing container is of the bellows type, at the upper part of which is formed with an opening, which is filled with low melting point metal after gases have been sealed into the sealing container. Prior to charging load into the reactor, the bellows type sealing container is urged to bear on the fuel pellets under the force of pressure gases to restrain movement of the pellets, whereas when the reactor is charged with load and then used at an operating temperature, the low melting point metal is dissolved to open the opening, and as a consequence the sealing container is shrunk to lose its spring effect, thus allowing the fuel pellets to be expanded axially. (Kamimura, M.)

  19. Nalco Fuel Tech

    Energy Technology Data Exchange (ETDEWEB)

    Michalak, S.

    1995-12-31

    The Nalco Fuel Tech with its seat at Naperville (near Chicago), Illinois, is an engineering company working in the field of technology and equipment for environmental protection. A major portion of NALCO products constitute chemical materials and additives used in environmental protection technologies (waste-water treatment plants, water treatment, fuel modifiers, etc.). Basing in part on the experience, laboratories and RD potential of the mother company, the Nalco Fuel Tech Company developed and implemented in the power industry a series of technologies aimed at the reduction of environment-polluting products of fuel combustion. The engineering solution of Nalco Fuel Tech belong to a new generation of environmental protection techniques developed in the USA. They consist in actions focused on the sources of pollutants, i.e., in upgrading the combustion chambers of power engineering plants, e.g., boilers or communal and/or industrial waste combustion units. The Nalco Fuel Tech development and research group cooperates with leading US investigation and research institutes.

  20. Liquid fuel concept benefits

    International Nuclear Information System (INIS)

    There are principle drawbacks of any kind of solid nuclear fuel listed and analyzed in the first part of the paper. One of the primary results of the analyses performed shows that the solid fuel concept, which was to certain degree advantageous in the first periods of a nuclear reactor development and operation, has guided this branch of a utilization of atomic nucleus energy to a death end. On the background of this, the liquid fuel concept and its benefits are introduced and briefly described in the first part of the paper, too. As one of the first realistic attempts to utilize the advantages of liquid fuels, the reactor/blanket system with molten fluoride salts in the role of fuel and coolant simultaneously, as incorporated in the accelerator-driven transmutation technology (ADTT) being proposed and currently having been under development in the Los Alamos National Laboratory, will be studied both theoretically and experimentally. There is a preliminary design concept of an experimental assembly LA-O briefly introduced in the paper which is under preparation in the Czech Republic for such a project. Finally, there will be another very promising concept of a small low power ADTT system introduced which is characterized by a high level of safety and economical efficiency. In the conclusion, the overall survey of principal benefits which may be expected by introducing liquid nuclear fuel in nuclear power and research reactor systems is given and critically analyzed. 7 refs, 4 figs

  1. Alternative Fuels: Research Progress

    Directory of Open Access Journals (Sweden)

    Maher A.R. Sadiq Al-Baghdadi

    2013-01-01

    Full Text Available Chapter 1: Pollutant Emissions and Combustion Characteristics of Biofuels and Biofuel/Diesel Blends in Laminar and Turbulent Gas Jet Flames. R. N. Parthasarathy, S. R. Gollahalli Chapter 2: Sustainable Routes for The Production of Oxygenated High-Energy Density Biofuels from Lignocellulosic Biomass. Juan A. Melero, Jose Iglesias, Gabriel Morales, Marta Paniagua Chapter 3: Optical Investigations of Alternative-Fuel Combustion in an HSDI Diesel Engine. T. Huelser, M. Jakob, G. Gruenefeld, P. Adomeit, S. Pischinger Chapter 4: An Insight into Biodiesel Physico-Chemical Properties and Exhaust Emissions Based on Statistical Elaboration of Experimental Data. Evangelos G. Giakoumis Chapter 5: Biodiesel: A Promising Alternative Energy Resource. A.E. Atabani Chapter 6: Alternative Fuels for Internal Combustion Engines: An Overview of the Current Research. Ahmed A. Taha, Tarek M. Abdel-Salam, Madhu Vellakal Chapter 7: Investigating the Hydrogen-Natural Gas Blends as a Fuel in Internal Combustion Engine. ?lker YILMAZ Chapter 8: Conversion of Bus Diesel Engine into LPG Gaseous Engine; Method and Experiments Validation. M. A. Jemni , G. Kantchev , Z. Driss , R. Saaidia , M. S. Abid Chapter 9: Predicting the Combustion Performance of Different Vegetable Oils-Derived Biodiesel Fuels. Qing Shu, ChangLin Yu Chapter 10: Production of Gasoline, Naphtha, Kerosene, Diesel, and Fuel Oil Range Fuels from Polypropylene and Polystyrene Waste Plastics Mixture by Two-Stage Catalytic Degradation using ZnO. Moinuddin Sarker, Mohammad Mamunor Rashid

  2. Articulate fuel assembly

    International Nuclear Information System (INIS)

    An articulated fuel assembly for the core of a fast spectrum reactor comprising an elongated shroud enclosing a cluster of fuel pins, a support foot assembly supporting the fuel assembly in the reactor core and an articulating connector link joining the support foot assembly and the lower end of the elongated shroud is described. The upper end of the elongated shroud and the support foot assembly are adapted to be fixedly restrained against lateral movement when the assembly is placed in the reactor core. The articulating connector link is such as to permit free lateral deflection of the lower end of the shroud relative to the upper end of the shroud and the foot assembly. Such an arrangement icreases the reliability of the fuel assembly and safely accommodates the physical distortions in the fuel assemblies caused by neutron induced swelling of the members and thermally induced expansions thereof by reducing stresses in the structural parts of the assembly and by insuring a negative reactivity for the core as the lower ends of the fuel assemblies are laterally displaced. 4 claims, 4 figures

  3. Fuel cladding tubes and fuel elements

    International Nuclear Information System (INIS)

    Purpose: To enable non-destructive measurement for the thickness of zirconium barriers. Constitution: Regions capable of non-destructive inspection are provided at the boundary between a fuel cladding tube made of zirconium alloy and the zirconium barrier lined to the inner circumference surface of the tube. As the regions being capable of distinguishing by ultrasonic wave reflection, solid materials, for example, non-metal materials different from that for the tube and the barrier are placed or gaps are provided at the boundary between the zirconium alloy cladding tube and the zirconium barrier. Since ultrasonic waves are reflected at each of the boundaries by the presence of these regions, thickness of the zirconium barrier can be measured in a non-destructive manner from either the inner or the outer surface of the tube. (Yoshino, Y.)

  4. Fuel thermal behaviour

    International Nuclear Information System (INIS)

    The interest in the thermal behaviour of the fuel mainly comes from the safety criterion which prohibit any fuel melting in the pins. Due to the gap lying between fuel and cladding, the highest temperatures are most probably occurring at Beginning Of Life (BOL) before completion of the central hole formation and before any substantial gap closure has taken place. However it cannot be ruled out that after some burn up the thermal transfer between fuel and cladding becomes worse than it was at BOL Then if the power does not decrease the maximum temperature might become higher than at (BOL). In order to get an overall experimental validation of our thermal calculations we need to cover the entire range of the pin life. Actually the method cannot be the same for BOL and end of life (EOL). For BOL it is possible to get a direct thermal measure through thermocouples, but this method is no longer practical after some days due to the failure of the thermocouples under neutrons flux at the temperatures of interest. This failure may happen before or after complete gap closure is reached and the rate of gap closure is especially meaningful for the BOL thermal behaviour. Another aspect of the thermal behaviour is the statistical one which may be obtained by the post-irradiation examination of the fuel microstructure, although it is not a proper way to get the absolute temperatures in the fuel, it is one of the most direct ones to have an insight in fuel thermal dispersion at BOL and over-heating at EOL

  5. Hydrogen-enriched fuels

    Energy Technology Data Exchange (ETDEWEB)

    Roser, R. [NRG Technologies, Inc., Reno, NV (United States)

    1998-08-01

    NRG Technologies, Inc. is attempting to develop hardware and infrastructure that will allow mixtures of hydrogen and conventional fuels to become viable alternatives to conventional fuels alone. This commercialization can be successful if the authors are able to achieve exhaust emission levels of less than 0.03 g/kw-hr NOx and CO; and 0.15 g/kw-hr NMHC at full engine power without the use of exhaust catalysts. The major barriers to achieving these goals are that the lean burn regimes required to meet exhaust emissions goals reduce engine output substantially and tend to exhibit higher-than-normal total hydrocarbon emissions. Also, hydrogen addition to conventional fuels increases fuel cost, and reduces both vehicle range and engine output power. Maintaining low emissions during transient driving cycles has not been demonstrated. A three year test plan has been developed to perform the investigations into the issues described above. During this initial year of funding research has progressed in the following areas: (a) a cost effective single-cylinder research platform was constructed; (b) exhaust gas speciation was performed to characterize the nature of hydrocarbon emissions from hydrogen-enriched natural gas fuels; (c) three H{sub 2}/CH{sub 4} fuel compositions were analyzed using spark timing and equivalence ratio sweeping procedures and finally; (d) a full size pick-up truck platform was converted to run on HCNG fuels. The testing performed in year one of the three year plan represents a baseline from which to assess options for overcoming the stated barriers to success.

  6. Alkaline fuel cells applications

    Energy Technology Data Exchange (ETDEWEB)

    Kordesch, K.; Gsellmann, J.; Cifrain, M. [Institute for Chemical Technology of Inorganic Materials, Technical University Graz (Australia); Hacker, V.; Faleschini, G.; Enzinger, P.; Fankhauser, R.; Ortner, M.; Muhr, M. [Innovative Energy Technology, Institute of High Voltage Engineering, Technical University Garz (Australia); Aronson, R.R. [Electric Auto Corporation (EAC), Fort Lauderdale, FL (United States)

    2000-03-01

    On the world-wide automobile market technical developments are increasingly determined by the dramatic restriction on emissions as well as the regimentation of fuel consumption by legislation. Therefore there is an increasing chance of a completely new technology breakthrough if it offers new opportunities, meeting the requirements of resource preservation and emission restrictions. Fuel cell technology offers the possibility to excel in today's motive power techniques in terms of environmental compatibility, consumer's profit, costs of maintenance and efficiency. The key question is economy. This will be decided by the cost of fuel cell systems if they are to be used as power generators for future electric vehicles. The alkaline hydrogen-air fuel cell system with circulating KOH electrolyte and low-cost catalysed carbon electrodes could be a promising alternative. Based on the experiences of Kordesch [K. Kordesch, Brennstoffbatterien, Springer, Wien, 1984, ISBN 3-387-81819-7; K. Kordesch, City car with H{sub 2}-air fuel cell and lead-battery, SAE Paper No. 719015, 6th IECEC, 1971], who operated a city car hybrid vehicle on public roads for 3 years in the early 1970s, improved air electrodes plus new variations of the bipolar stack assembly developed in Graz are investigated. Primary fuel choice will be a major issue until such time as cost-effective, on-board hydrogen storage is developed. Ammonia is an interesting option. The whole system, ammonia dissociator plus alkaline fuel cell (AFC), is characterised by a simple design and high efficiency. (orig.)

  7. Biodegradation of biodiesel fuels

    International Nuclear Information System (INIS)

    Biodiesel fuel test substances Rape Ethyl Ester (REE), Rape Methyl Ester (RME), Neat Rape Oil (NR), Say Methyl Ester (SME), Soy Ethyl Ester (SEE), Neat Soy Oil (NS), and proportionate combinations of RME/diesel and REE/diesel were studied to test the biodegradability of the test substances in an aerobic aquatic environment using the EPA 560/6-82-003 Shake Flask Test Method. A concurrent analysis of Phillips D-2 Reference Diesel was also performed for comparison with a conventional fuel. The highest rates of percent CO2 evolution were seen in the esterified fuels, although no significant difference was noted between them. Ranges of percent CO2 evolution for esterified fuels were from 77% to 91%. The neat rape and neat soy oils exhibited 70% to 78% CO2 evolution. These rates were all significantly higher than those of the Phillips D-2 reference fuel which evolved from 7% to 26% of the organic carbon to CO2. The test substances were examined for BOD5 and COD values as a relative measure of biodegradability. Water Accommodated Fraction (WAF) was experimentally derived and BOD5 and COD analyses were carried out with a diluted concentration at or below the WAF. The results of analysis at WAF were then converted to pure substance values. The pure substance BOD5 and COD values for test substances were then compared to a control substance, Phillips D-2 Reference fuel. No significant difference was noted for COD values between test substances and the control fuel. (p > 0.20). The D-2 control substance was significantly lower than all test substances for BCD, values at p 5 value

  8. Reformer Fuel Injector

    Science.gov (United States)

    Suder, Jennifer L.

    2004-01-01

    Today's form of jet engine power comes from what is called a gas turbine engine. This engine is on average 14% efficient and emits great quantities of green house gas carbon dioxide and air pollutants, Le. nitrogen oxides and sulfur oxides. The alternate method being researched involves a reformer and a solid oxide fuel cell (SOFC). Reformers are becoming a popular area of research within the industry scale. NASA Glenn Research Center's approach is based on modifying the large aspects of industry reforming processes into a smaller jet fuel reformer. This process must not only be scaled down in size, but also decrease in weight and increase in efficiency. In comparison to today's method, the Jet A fuel reformer will be more efficient as well as reduce the amount of air pollutants discharged. The intent is to develop a 10kW process that can be used to satisfy the needs of commercial jet engines. Presently, commercial jets use Jet-A fuel, which is a kerosene based hydrocarbon fuel. Hydrocarbon fuels cannot be directly fed into a SOFC for the reason that the high temperature causes it to decompose into solid carbon and Hz. A reforming process converts fuel into hydrogen and supplies it to a fuel cell for power, as well as eliminating sulfur compounds. The SOFC produces electricity by converting H2 and CO2. The reformer contains a catalyst which is used to speed up the reaction rate and overall conversion. An outside company will perform a catalyst screening with our baseline Jet-A fuel to determine the most durable catalyst for this application. Our project team is focusing on the overall research of the reforming process. Eventually we will do a component evaluation on the different reformer designs and catalysts. The current status of the project is the completion of buildup in the test rig and check outs on all equipment and electronic signals to our data system. The objective is to test various reformer designs and catalysts in our test rig to determine the most efficient configuration to incorporate into the specific compact jet he1 reformer test rig. Additional information is included in the original extended abstract.

  9. Fuel quality globally

    Energy Technology Data Exchange (ETDEWEB)

    Szalkowska, Urszula [Hart Energy, International Fuel Quality Center, Brussels (Belgium). Europe and Africa

    2013-06-01

    The main drivers behind the use of specific energy sources in the transport sector are always related with capabilities to use the region's own resources thus limiting its dependence on imported products. This is followed by the state of technological development enabling a stable production of fuels, or alternatively a decent economic situation enabling purchases of energy for transport (as well as other sectors). Only if these conditions are met can other drivers come into the picture - ensuring a safe and affordable transport system, where passenger cars are seen as the last, most prestigious means of transportation. Their increasing number, triggering exhaust emissions elevation, provokes air quality problems that must be addressed by relevant fuel quality and vehicle emission related policy, which in-tum translates into requirements for fuel and vehicle producers. Each region of the world is in a different stage of the development of its energy strategy, which is reflected in their regulations governing fuel quality and actual quality of fuels placed in the market. This presentation addresses key features characterizing each of the regions with major drivers behind them and possible future changes. (orig.)

  10. Liquid fuel from biomass

    International Nuclear Information System (INIS)

    Various options for Danish production of liquid motor fuels from biomass have been studied in the context of the impact of EEC new common agricultural policy on prices and production quantities of crops, processes and production economy, restraints concerning present and future markets in Denmark, environmental aspects, in particular substitution of fossil fuels in the overall production and end-use, revenue loss required to assure competition with fossil fuels and national competence in business, industry and research. The options studied are rapeseed oil and derivates, ethanol, methanol and other thermo-chemical conversion products. The study shows that the combination of fuel production and co-generation of heat and electricity carried out with energy efficiency and utilization of surplus electricity is important for the economics under Danish conditions. Considering all aspects, ethanol production seems most favorable but in the long term, pyrolyses with catalytic cracking could be an interesting option. The cheapest source of biomass in Denmark is straw, where a considerable amount of the surplus could be used. Whole crop harvested wheat on land otherwise set aside to be fallow could also be an important source for ethanol production. Most of the options contribute favorably to reductions of fossil fuel consumption, but variations are large and the substitution factor is to a great extent dependent on the individual case. (AB) (32 refs.)

  11. Spacers for fuel assemblies

    International Nuclear Information System (INIS)

    Purpose: To increase hydraulic stability margin by decreasing the fluid pressure loss of spacers for fuel assemblies and increasing critical thermal power. Constitution: A flow channel changing phase is formed at the upstream end, using a cell-type spacer, which gradually moves the stream of coolant away from the fuel rods. Furthermore, a flow channel changing phase is formed at the downstream end which gradually moves the stream of coolant closer to the fuel rod. In consequence, on the upstream side, the stream of coolant is gradually contracted by the flow channel changing phase, and therefore a flow contraction loss is held to a very little value. Furthermore, on the downstream side, the coolant flow channel is gradually increased and therefore a flow expansion loss can be held to a very little value. Thus, the fluidity loss of the coolant can be largely reduced, resulting in decreased coolant circulating pump load, improved efficiency during rated operation, and assured integrity of fuel rods during abnormal transient change. Furthermore, the lifetime of the fuel rods can be prolonged. (Horiuchi, T.)

  12. Bio-fuels

    International Nuclear Information System (INIS)

    This report presents an overview of the technologies which are currently used or presently developed for the production of bio-fuels in Europe and more particularly in France. After a brief history of this production since the beginning of the 20. century, the authors describe the support to agriculture and the influence of the Common Agricultural Policy, outline the influence of the present context of struggle against the greenhouse effect, and present the European legislative context. Data on the bio-fuels consumption in the European Union in 2006 are discussed. An overview of the evolution of the activity related to bio-fuels in France, indicating the locations of ethanol and bio-diesel production facilities, and the evolution of bio-fuel consumption, is given. The German situation is briefly presented. Production of ethanol by fermentation, the manufacturing of ETBE, the bio-diesel production from vegetable oils are discussed. Second generation bio-fuels are then presented (cellulose enzymatic processing), together with studies on thermochemical processes and available biomass resources

  13. Liquid fuels -- petroleum

    Energy Technology Data Exchange (ETDEWEB)

    Salusinszky, A.L.; Baddams, H.W.; Harry, J.; Nicklin, D.; Rumsey, T.; Shedden, I.; Shiels, G.

    1983-05-01

    In the past five years Australia's transport fuel outlook has changed substantially. On the supply side of the balance the assessment of the known indigenous crude oil fields has improved to such an extent that peak production instead of declining from 1980, as was expected, can now be maintained at least to the middle of this decade. Furthermore, with the intensified exploration activity, which doubled in the last five years, there is at least a fifty percent chance that further discoveries will permit to maintain present production level until about 1990. On the other side of the balance the growth of demand for transport fuels has slowed down. The reason is mostly the introduction of world price parity, also advocated in the original Institute Task Force report. The higher motor fuels prices caused a switch to smaller cars and it is expected that this trend will continue. However with a break in the price trend in 1981 motor fuels demand may take off again. This may strain existing refinery capacity, particularly after the introduction of lead-free petrol, unless engine technology development will reduce petrol consumption of cars. At present Australia imports about 30% of its crude oil requirements. However due to the ''lightness'' of indigenous crudes, about 80% of the transport fuel production is based on indigenous crude. This portion could be further increased if the Australian refineries installed additional catalytic cracking capacity.

  14. Nuclear fuel handling apparatus

    International Nuclear Information System (INIS)

    A fuel handling machine for a liquid metal cooled nuclear reactor in which a retractable handling tube and gripper are lowered into the reactor to withdraw a spent fuel assembly into the handling tube. The handling tube containing the fuel assembly immersed in liquid sodium is then withdrawn completely from the reactor into the outer barrel of the handling machine. The machine is then used to transport the spent fuel assembly directly to a remotely located decay tank. The fuel handling machine includes a decay heat removal system which continuously removes heat from the interior of the handling tube and which is capable of operating at its full cooling capacity at all times. The handling tube is supported in the machine from an articulated joint which enables it to readily align itself with the correct position in the core. An emergency sodium supply is carried directly by the machine to provide make up in the event of a loss of sodium from the handling tube during transport to the decay tank. 5 claims, 32 drawing figures

  15. Nuclear fuel control in fuel fabrication plants

    International Nuclear Information System (INIS)

    The basic control problems of measuring uranium and of the environment inside and outside nuclear fuel fabrication plants are reviewed, excluding criticality prevention in case of submergence. The occurrence of loss scraps in fabrication and scrap-recycling, the measuring error, the uranium going cut of the system, the confirmation of the presence of lost uranium and the requirement of the measurement control for safeguard make the measurement control very complicated. The establishment of MBA (material balance area) and ICA (item control area) can make clearer the control of inventories, the control of loss scraps and the control of measuring points. Besides the above basic points, the following points are to be taken into account: 1) the method of confirmation of inventories, 2) the introduction of reliable NDT instruments for the rapid check system for enrichment and amount of uranium, 3) the introduction of real time system, and 4) the clarification of MUF analysis and its application to the reliability check of measurement control system. The environment control includes the controls of the uranium concentration in factory atmosphere, the surface contamination, the space dose rate, the uranium concentration in air and water discharged from factories, and the uranium in liquid wastes. The future problems are the practical restudy of measurement control under NPT, the definite plan of burglary protection and the realization of the disposal of solid wastes. (Iwakiri, K.)

  16. Spent Fuel in Chile

    International Nuclear Information System (INIS)

    The government has made a complete and serious study of many different aspects and possible road maps for nuclear electric power with strong emphasis on safety and energy independence. In the study, the chapter of SFM has not been a relevant issue at this early stage due to the fact that it has been left for later implementation stage. This paper deals with the options Chile might consider in managing its Spent Fuel taking into account foreign experience and factors related to safety, economics, public acceptance and possible novel approaches in spent fuel treatment. The country’s distinctiveness and past experience in this area taking into account that Chile has two research reactors which will have an influence in the design of the Spent Fuel option. (author)

  17. Fuel Element Technical Manual

    Energy Technology Data Exchange (ETDEWEB)

    Burley, H.H. [ed.

    1956-08-01

    It is the purpose of the Fuel Element Technical Manual to Provide a single document describing the fabrication processes used in the manufacture of the fuel element as well as the technical bases for these processes. The manual will be instrumental in the indoctrination of personnel new to the field and will provide a single data reference for all personnel involved in the design or manufacture of the fuel element. The material contained in this manual was assembled by members of the Engineering Department and the Manufacturing Department at the Hanford Atomic Products Operation between the dates October, 1955 and June, 1956. Arrangement of the manual. The manual is divided into six parts: Part I--introduction; Part II--technical bases; Part III--process; Part IV--plant and equipment; Part V--process control and improvement; and VI--safety.

  18. Particle fuel bed tests

    International Nuclear Information System (INIS)

    Gas-cooled reactors, using packed beds of small diameter coated fuel particles have been proposed for compact, high-power systems. The particulate fuel used in the tests was 800 microns in diameter, consisting of a thoria kernel coated with 200 microns of pyrocarbon. Typically, the bed of fuel particles was contained in a ceramic cylinder with porous metallic frits at each end. A dc voltage was applied to the metallic frits and the resulting electric current heated the bed. Heat was removed by passing coolant (helium or hydrogen) through the bed. Candidate frit materials, rhenium, nickel, zirconium carbide, and zirconium oxide were unaffected, while tungsten and tungsten-rhenium lost weight and strength. Zirconium-carbide particles were tested at 2000 K in H2 for 12 hours with no visible reaction or weight loss

  19. Fuel cells in transportation

    Energy Technology Data Exchange (ETDEWEB)

    Erdmann, G. [Technische Univ., Berlin (Germany); Hoehlein, B. [Research Center Juelich (Germany)

    1996-12-01

    A promising new power source for electric drive systems is the fuel cell technology with hydrogen as energy input. The worldwide fuel cell development concentrates on basic research efforts aiming at improving this new technology and at developing applications that might reach market maturity in the very near future. Due to the progress achieved, the interest is now steadily turning to the development of overall systems such as demonstration plants for different purposes: electricity generation, drive systems for road vehicles, ships and railroads. This paper does not present results concerning the market potential of fuel cells in transportation but rather addresses some questions and reflections that are subject to further research of both engineers and economists. Some joint effort of this research will be conducted under the umbrella of the IEA Implementing Agreement 026 - Annex X, but there is a lot more to be done in this challenging but also promising fields. (EG) 18 refs.

  20. Fuel cells flows study

    International Nuclear Information System (INIS)

    Fuel cells are energy converters, which directly and continuously produce electricity from paired oxidation reduction-reactions: In most cases, the reactants are oxygen and hydrogen with water as residue. There are several types of fuel cells using various electrolytes and working at different temperatures. Proton Exchange Membrane Fuel Cells are, in particular, studied in the GESTEAU facility. PEMFC performance is chiefly limited by two thermal-hydraulic phenomena: the drying of membranes and the flooding of gas distributors. Up to now, work has been focused on water flooding of gas channels. This has showed the influence of flow type on the electrical behaviour of the cells and the results obtained have led to proposals for new duct geometries. (authors)

  1. Nuclear fuel element

    International Nuclear Information System (INIS)

    A nuclear fuel element comprises an elongated tube having upper and lower end plugs fixed to both ends thereof and nuclear fuel pellets contained within the tube. The fuel pellets are held against the lower end plug by a spring which is supported by a setting structure. The setting structure is maintained at a proper position at the middle of the tube by a wedge effect caused by spring force exerted by the spring against a set of balls coacting with a tapered member of the setting structure thereby wedging the balls against the inner wall of the tube, and the setting structure is moved free by pushing with a push bar against the spring force so as to release the wedge effect

  2. Taxing carbon in fuels

    International Nuclear Information System (INIS)

    It is argued that both the Climate Change Levy and the fuel duty tax are outdated even before they are implemented. Apparently, the real problems are not in the bringing of road fuels into the scope of the Climate Change Levy but in introducing reforms to improve integration of greenhouse gases and taxation. Both fuel duty and the Levy are aimed at maximising efficiency and reducing air pollution. The system as it stands does not take into account the development of a market where the management and trading of carbon and greenhouse gases may jeopardise the competitiveness of UK businesses. It is argued that an overhaul of climate and emissions-related law is necessary. The paper is presented under the sub-headings of (i) a fixation on energy; (ii) no focus on CO2; (iii) carbon markets - beyond the levy and (iv) tax structure. (UK)

  3. Nuclear fuel element

    International Nuclear Information System (INIS)

    Object: To form a gas atmosphere in fuel rods into an oxide atmosphere during the operation of reactor to always cover the surface within a clad tube with an oxide film thereby avoiding occurrence of hydrogen brittleness of zircalloy clad tube and stress corrosion cracking thereof. Structure: In a nuclear fuel element wherein a zircalloy clad tube is interiorly filled with uranium oxide sintered pellets, sintered solid oxide pellets, which discharge oxygen at high temperatures, are disposed at the end of fuel pellets. The aforesaid solid oxide is selected from at least one kind of oxide of UO3, CuO, Co3O4, V2O5, Mn2O3. (Kawakami, Y.)

  4. CANDU fuel channels

    International Nuclear Information System (INIS)

    The service life of CANDU fuel channels is determined by the component that has to withstand the most severe conditions, the Zr-2.5Nb pressure tube. The latest fuel channels are expected to have a lifetime of over 30 years. The properties that control service life are fracture and deformation. For fracture, a defence-in-depth approach is used - preventing crack initiation and invoking leak-before-break. Confidence in the serviceability of fuel channels is based on current knowledge of the state of health of the components evaluated by surveillance. Degradation of properties with service is slow, allowing sufficient time to judge and act when end-of-life is reached. Methods for improving the properties of components are outlined. (author)

  5. Fuel cycle based safeguards

    International Nuclear Information System (INIS)

    In NPT safeguards the same model approach and absolute-quantity inspection goals are applied at present to all similar facilities, irrespective of the State's fuel cycle. There is a continuing interest and activity on the part of the IAEA in new NPT safeguards approaches that more directly address a State's nuclear activities as a whole. This fuel cycle based safeguards system is expected to a) provide a statement of findings for the entire State rather than only for individual facilities; b) allocate inspection efforts so as to reflect more realistically the different categories of nuclear materials in the different parts of the fuel cycle and c) provide more timely and better coordinated information on the inputs, outputs and inventories of nuclear materials in a State. (orig./RF)

  6. Fuel-coolant interactions

    International Nuclear Information System (INIS)

    An important aspect of nuclear fuel behaviour that impacts on the fuel cycle is the interaction of the cladding with the coolant. In particular, the accumulation of deposited crud (corrosion products transported in the reactor coolant) on fuel element surfaces can severely hamper fuel performance by impeding heat transfer and promoting cladding corrosion, both of which may lead to fuel defects and the release of fission products and actinides to the primary coolant systems. Crud deposition is therefore an important consideration in reactor operation; it not only leads to poor performance and radiation field growth by exacerbating fuel defects but also serves as the source of radionuclides such as Co-60 which are major contaminants of out-reactor components. Furthermore, the sequestering of boron from the coolant by fuel deposits in PWRs can give rise to control problems as reactor flux characteristics are modified. As utilities apply the ALARA principle (As Low As Reasonably) to the management of occupational radiation doses and at the same time endeavour to optimise the fuel cycle, it becomes clear that an understanding of the mechanisms involved in coolant-cladding interactions is vital. There are several mechanisms of interest here. The source of crud is the fundamental corrosion process accruing on surfaces of the coolant system and the interaction of that process with local regimes of coolant flow. Accordingly, differences in the chemical and physical condition of the coolant across the reactor core and the steam generators are important factors in CANDUs and PWRs determining release of corrosion products from surfaces, while similar processes along the feedtrain influence crud levels in the reactor coolant in BWRs. The nature of suspended crud, which is determined by the materials of construction of the various components of the coolant system and the chemistry control of the coolant itself, determines the interaction with fuel cladding. Thus, crud in CANDUs is dominated by iron oxide (magnetite Fe3O4) because of the large proportion of carbon steel in the circuit, while in PWRs crud is an iron-nickel oxide (nickel ferrite - NiFe2O4 or a variant) because of the presence of stainless steel and nickel alloys. The more oxidizing nature of BWR coolant causes a higher phase of iron oxide to occur, so that haematite (Fe2O3) becomes a constituent of deposits in BWRs. The deposition of the suspended crud of fuel surfaces is influenced by the electrostatic charge on the particles themselves and on the fuel surface. The chemistry regime-oxidizing nature, alkalinity, boron concentration, etc.-determines those surface charges. The forces arising from the thermalhydraulic conditions in the core and the physical properties of the crud (such as particle size) then interact with the surface forces to determine the deposition characteristics. Besides the deposition of suspended material, the deposition of corrosion products from solution can occur and in fact may dominate in CANDUs and PWRs where the solubility of oxides relatively high. In that case, it is important to tailor the coolant chemistry to minimize the solubility and to ensure that the change of solubility with temperature is not such as to promote massive precipitation in the core. Even then, adsorption-desorption at fuel surfaces of ions such as Co2+ will lead to a level of system activation that depends on the indigenous corrosion film on the cladding surface

  7. Strategy of fuel management

    International Nuclear Information System (INIS)

    The management of nuclear fuels in PWR type reactors has been adapted to improve the safety and the competitiveness of brackets. The economic optimum, at the park level, depends on many parameters, variable with time and in function of them, we favour the annual campaigns and the economy won on the cost of cycle, or long campaigns with benefit on availability. The reduction of the number of stopping improves the availability, limits the doses integrated by the personnel of intervention and reduces the number of incidents during the stopping. An other determining factor is connected to the policy of closed cycle with the the principle of equality between the reprocessing flux and the valorization of reprocessed fuels: plutonium and reprocessed uranium. The progress of fuel have allowed significant improvements in the managements of cores. With the safety, the aim is also to keep if not improve the competitiveness of the Nuclear park by valorizing the matter coming from reprocessing. (N.C.)

  8. HTGR fuel cycle

    International Nuclear Information System (INIS)

    In the spring of 1987, the HTGR fuel cycle project has been existing for ten years, and for this reason a status seminar has been held on May 12, 1987 in the Juelich Nuclear Research Center, that gathered the participants in this project for a discussion on the state of the art in HTGR fuel element development, graphite development, and waste management. The papers present an overview of work performed so far and an outlook on future tasks and goals, and on taking stock one can say that the project has been very successful so far: The HTGR fuel element now available meets highest requirements and forms the basis of today's HTGR safety philosophy; research work on graphite behaviour in a high-temperature reactor has led to complete knowledge of the temperature or neutron-induced effects, and with the concept of direct ultimate waste disposal, the waste management problem has found a feasible solution. (orig./GL)

  9. Spent fuel pyroprocessing demonstration

    International Nuclear Information System (INIS)

    A major element of the shutdown of the US liquid metal reactor development program is managing the sodium-bonded spent metallic fuel from the Experimental Breeder Reactor-II to meet US environmental laws. Argonne National Laboratory has refurbished and equipped an existing hot cell facility for treating the spent fuel by a high-temperature electrochemical process commonly called pyroprocessing. Four products will be produced for storage and disposal. Two high-level waste forms will be produced and qualified for disposal of the fission and activation products. Uranium and transuranium alloys will be produced for storage pending a decision by the US Department of Energy on the fate of its plutonium and enriched uranium. Together these activities will demonstrate a unique electrochemical treatment technology for spent nuclear fuel. This technology potentially has significant economic and technical advantages over either conventional reprocessing or direct disposal as a high-level waste option

  10. Method of reactor fueling

    International Nuclear Information System (INIS)

    Purpose: To decrease the cost and shorten the working time by saving fueling neutron detectors and their components. Method: Incore drive tubes for the neutron source range monitor (SRM) and intermediate range monitor (IRM) are disposed respectively within in a reactor core and a SRM detector assembly is inserted to the IRM incore drive tube which is most nearest to the neutron source upon reactor fueling. The reactor core reactivity is monitored by the SRM detector assembly. The SRM detector asesembly inserted into the IRM drive tube is extracted at the time of charging fuels up to the frame connecting the SRM and, thereafter, IRM detection assembly is inserted into the IRM drive tube and the SRM detector assembly is inserted into the SRM drive tube respectively for monitoring the reactor core. (Sekiya, K.)

  11. Fuel efficient car technology

    Energy Technology Data Exchange (ETDEWEB)

    Poulton, M.L.

    1997-12-31

    This book presents a wide range of measures to reduce fuel consumption of passenger cars and to varying degrees they have been developed and proven under programmes of research world wide. Some do not require extensive engineering changes such as additional spoilers, skirts and air dams. Other measures may require a significant redesign of the vehicle to accommodate them; in these cases only brand new designs can demonstrate very best efficiencies. Some of these include weight reduction, new transmissions and aerodynamics. Some technologies, such as new designs of engines and combustion systems, can contrive to very significant fuel consumption reductions, but generally require substantial further research and development. (author)

  12. Plutonium fuel program

    International Nuclear Information System (INIS)

    The work of the Project-Fuel Development reached the apex of its current programme during the course of the year. Notable success was recorded in the area of irradiation testing with the completion of the examination of the MFBS-7 irradiation. The irradiation group also prepared the seventh Filos experiment and this, as well as the DIDO-III test, began irradiation at the end of the year. Consideration was given and plans prepared for a revised pin filling line for bundle tests. Work also began on the conceptual design study for a pilot production line having a nominal capacity of 500 kg fuel per year. (Auth.)

  13. Direct fuel cell

    Science.gov (United States)

    Baker, B. S.

    An evaluation is made of the development status and performance characteristics of advanced electrical generation systems employing hydrocarbons, especially methane, to directly fuel a molten carbonate fuel cell (MCFC). Methane has been successfully used in multicell stacks; since the effective endothermal conversion of methane to hydrogen is sustained by the stack's waste heat, there is no need to supply further heat through the combustion of the anode exhaust. It is in principle possible to reach 100 percent system efficiency in such a simple, atmospheric pressure MCFC without a bottoming cycle, since there is negligible entropy change for methane oxidation. An electricity output cost of $1300/kW-hr is projected.

  14. Nuclear reactor fuel rod

    International Nuclear Information System (INIS)

    The fuel rod consists of a can with at least one end cap and a plenum spring between this cap and the fuel. To prevent the hazard that a eutectic mixture is formed during welding of the end cap, a thermal insulation is added between the end cap and plenum spring. It consists of a comical extension of the end cap with a terminal disc against which the spring is supported. The end cap, the extension, and the disc may be formed by one or several pieces. If the disc is separated from the other parts it may be manufactured from chrome steel or VA steel. (DG)

  15. Nuclear fuel subassembly

    International Nuclear Information System (INIS)

    A nuclear fuel sub-assembly is described which comprises a bundle of fuel pins provided with helical spacers and located within a shroud for the coolant. The sub-channels at the periphery of the bundle are restricted in order that the rate of flow matches the heat transfer surfaces in all sub-channels. For this purpose the spacers of the outer pins project radially by an extent smaller than the spacers of the inner pins. In addition longitudinal ribs may be provided in the outer sub-channels

  16. Nuclear Fuel Reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Harold F. McFarlane; Terry Todd

    2013-11-01

    Reprocessing is essential to closing nuclear fuel cycle. Natural uranium contains only 0.7 percent 235U, the fissile (see glossary for technical terms) isotope that produces most of the fission energy in a nuclear power plant. Prior to being used in commercial nuclear fuel, uranium is typically enriched to 3–5% in 235U. If the enrichment process discards depleted uranium at 0.2 percent 235U, it takes more than seven tonnes of uranium feed to produce one tonne of 4%-enriched uranium. Nuclear fuel discharged at the end of its economic lifetime contains less one percent 235U, but still more than the natural ore. Less than one percent of the uranium that enters the fuel cycle is actually used in a single pass through the reactor. The other naturally occurring isotope, 238U, directly contributes in a minor way to power generation. However, its main role is to transmute into plutoniumby neutron capture and subsequent radioactive decay of unstable uraniumand neptuniumisotopes. 239Pu and 241Pu are fissile isotopes that produce more than 40% of the fission energy in commercially deployed reactors. It is recovery of the plutonium (and to a lesser extent the uranium) for use in recycled nuclear fuel that has been the primary focus of commercial reprocessing. Uraniumtargets irradiated in special purpose reactors are also reprocessed to obtain the fission product 99Mo, the parent isotope of technetium, which is widely used inmedical procedures. Among the fission products, recovery of such expensive metals as platinum and rhodium is technically achievable, but not economically viable in current market and regulatory conditions. During the past 60 years, many different techniques for reprocessing used nuclear fuel have been proposed and tested in the laboratory. However, commercial reprocessing has been implemented along a single line of aqueous solvent extraction technology called plutonium uranium reduction extraction process (PUREX). Similarly, hundreds of types of reactor fuels have been irradiated for different purposes, but the vast majority of commercial fuel is uranium oxide clad in zirconium alloy tubing. As a result, commercial reprocessing plants have relatively narrow technical requirements for used nuclear that is accepted for processing.

  17. Alternate fusion fuels workshop

    International Nuclear Information System (INIS)

    The workshop was organized to focus on a specific confinement scheme: the tokamak. The workshop was divided into two parts: systems and physics. The topics discussed in the systems session were narrowly focused on systems and engineering considerations in the tokamak geometry. The workshop participants reviewed the status of system studies, trade-offs between d-t and d-d based reactors and engineering problems associated with the design of a high-temperature, high-field reactor utilizing advanced fuels. In the physics session issues were discussed dealing with high-beta stability, synchrotron losses and transport in alternate fuel systems. The agenda for the workshop is attached

  18. Transferring shoreham's nuclear fuel

    International Nuclear Information System (INIS)

    The transport of irradiated fuel from the decommissioned Shoreham nuclear power plant in New York to the Limerick reactor in Pennsylvania is described. Emphasis is placed on public relations efforts of both power companies to win the acceptance of citizen groups and local and state officials. Political opposition was avoided by including officials in the planning process before details were presented to the media and the general public. More than 20 shipments of irradiated fuel were made by a truck-barge-rail system

  19. Nuclear fuel cycle

    International Nuclear Information System (INIS)

    Nuclear fuel supply is viewed as a buyer's market of assured medium-term stability. Even on a long-term basis, no shortage is envisaged for all conceivable expansion schedules. The conversion and enrichment facilities developed since the mid-seventies have done much to stabilize the market, owing to the fact that one-sided political decisions by the USA can be counteracted efficiently. In view of the uncertainties concerning realistic nuclear waste management strategies, thermal recycling and mixed oxide fuel elements might increase their market share in the future. Capacities are being planned accordingly. (orig.)

  20. Alternate fusion fuels workshop

    Energy Technology Data Exchange (ETDEWEB)

    1981-06-01

    The workshop was organized to focus on a specific confinement scheme: the tokamak. The workshop was divided into two parts: systems and physics. The topics discussed in the systems session were narrowly focused on systems and engineering considerations in the tokamak geometry. The workshop participants reviewed the status of system studies, trade-offs between d-t and d-d based reactors and engineering problems associated with the design of a high-temperature, high-field reactor utilizing advanced fuels. In the physics session issues were discussed dealing with high-beta stability, synchrotron losses and transport in alternate fuel systems. The agenda for the workshop is attached.

  1. Fabrication of Pu fuels

    International Nuclear Information System (INIS)

    COMMOX, created to promote and commercialize mixed oxide fuels for light water reactors rests its action on the available capacities at the Dessel BELGONUCLEAIRE fabrication plant and at the CEA Fabrication Complex of Cadarache (CFCa). The specific constraints of plutonium-fuel fabrication are reviewed: radiotoxicity of Pu, safety-criticality, accountancy of fissile materials, Am241. Then, this paper presents the different stages of the fabrication process and the experience acquired with the difficulties met during campaigns. The MELOX fabrication plant (capacity of 100 to 120 t/year) should start its production in 1993-1994

  2. Nuclear fuel element cladding

    International Nuclear Information System (INIS)

    Composite cladding for a nuclear fuel element containing fuel pellets is formed with a zirconium metal barrier layer bonded to the inside surface of a zirconium alloy tube. The composite tube is sized by a cold working tube reduction process and is heat treated after final reduction to provide complete recrystallization of the zirconium metal barrier layer and a fine-grained microstructure. The zirconium alloy tube is stress-relieved but is not fully recrystallized. The crystallographic structure of the zirconium metal barrier layer may be improved by compressive deformation such as shot-peening. (author)

  3. Fuel cell engineering

    CERN Document Server

    Sundmacher

    2012-01-01

    Fuel cells are attractive electrochemical energy converters featuring potentially very high thermodynamic efficiency factors. The focus of this volume of Advances in Chemical Engineering is on quantitative approaches, particularly based on chemical engineering principles, to analyze, control and optimize the steady state and dynamic behavior of low and high temperature fuel cells (PEMFC, DMFC, SOFC) to be applied in mobile and stationary systems. * Updates and informs the reader on the latest research findings using original reviews * Written by leading industry experts and scholars * Review

  4. Fuel cell generator with fuel electrodes that control on-cell fuel reformation

    Science.gov (United States)

    Ruka, Roswell J. (Pittsburgh, PA); Basel, Richard A. (Pittsburgh, PA); Zhang, Gong (Murrysville, PA)

    2011-10-25

    A fuel cell for a fuel cell generator including a housing including a gas flow path for receiving a fuel from a fuel source and directing the fuel across the fuel cell. The fuel cell includes an elongate member including opposing first and second ends and defining an interior cathode portion and an exterior anode portion. The interior cathode portion includes an electrode in contact with an oxidant flow path. The exterior anode portion includes an electrode in contact with the fuel in the gas flow path. The anode portion includes a catalyst material for effecting fuel reformation along the fuel cell between the opposing ends. A fuel reformation control layer is applied over the catalyst material for reducing a rate of fuel reformation on the fuel cell. The control layer effects a variable reformation rate along the length of the fuel cell.

  5. Solid Oxide Fuel Cell

    DEFF Research Database (Denmark)

    The solid oxide fuel cell comprising a metallic support material, an active anode layer consisting of a good hydrocarbon cracking catalyst, an electrolyte layer, an active cathode layer, and a transition layer consisting of preferably a mixture of LSM and a ferrite to the cathode current collector with means being provided for preventing diffusion between the metallic support and the active anode.

  6. Contracting for nuclear fuels

    International Nuclear Information System (INIS)

    This paper deals with uranium sales contracts, i.e. with contractual arrangements in the first steps of the fuel cycle, which cover uranium production and conversion. The various types of contract are described and, where appropriate, their underlying business philosophy and their main terms and conditions. Finally, the specific common features of such contracts are reviewed. (NEA)

  7. Failed fuel position detector

    International Nuclear Information System (INIS)

    Purpose: To enable the detection of failed fuel position by a device without using a pump or the like when sending tag gases concentrated in a concentration device to an analyzer. Constitution: In the state where fuel failures are not generated, FFDL maintains an absorption bed to a cryogenic temperature by a cooling system. When fuel failure are detected by FFD, primary argon gases contained tag gases are caused to flow into the absorption bed where they are adsorbed and maintained. Then, after the concentration of the tag gases, the inside of the reserve tank and the relevant systems are evacuated and the absorption bed is heated by the heater of the absorption tower put into a closed loop to thereby desorb the tag gases adsorbed and concentrated on the activated carbons. Pressure increase caused by the heating upon desorption is detected and the desorbed tag gases are sent to the reserve tank using the increased pressure. The tag gases are sufficiently mixed into a uniform concentration in the reserve tank and then sent to an analyzer for the detection of the failed fuel position. (Aizawa, K.)

  8. Uruguay minerals fuels

    International Nuclear Information System (INIS)

    In this report the bases for the development of the necessary works of prospection are exposed on mineral fuels of Uruguay. We have taken the set from: coal, lutitas bituminous, uranium, petroleum and disturbs. In all the cases we have talked about to the present state of the knowledge and to the works that we considered necessary to develop in each case

  9. Production of nuclear fuel

    International Nuclear Information System (INIS)

    The grain size of uranium dioxide contained in nuclear fuel pellets is increased by heating the pellets at a temperature of at least 20000C for at least four hours in atmosphere containing hydrogen and having an oxygen potential high enough to guarantee stoichiometry or hyperstoichiometry of the uranium dioxide. The oxygen potential should not exceed -50K cal per mole O2. (author)

  10. Fuel development studies

    International Nuclear Information System (INIS)

    This paper describes the main lines of the studies carried out to develop the Fast Neutron Fuel Element, from the ''SPX1-first load'' version, to progress to high performance which will be required for the project 1500 and for the fast neutron series

  11. Fuel failure detection device

    International Nuclear Information System (INIS)

    Purpose: To improve the accuracy for the fuel failure detection and operation efficiency by disposing coolant circulation path and ion capturing means and detecting gamma-rays in captured ions. Constitution: A cap attached with an air pipe, sampling pipe and coolant discharge pipe is disposed to the upper portion of a fuel assembly. A coolant circulation path is formed between the sampling pipe and the discharge pipe, and a circulation pump, ion capturing means and gamma-detector for the captured ions are disposed in the circulation path. The ion capturing means may be ion exchange filters or combination of a cationic exchange resin column and an anionic exchange resin column. According to this device, gamma-ray detection can be conducted to concentrated nuclear fission products by circulating a great amount of coolants. Accordingly, the accuracy for the fuel failure detection can be improved not depending on the failed portions of fuel rods. In addition, the detection operation can be conducted efficiently. (Horiuchi, T.)

  12. Insurance and fuel transport

    International Nuclear Information System (INIS)

    The fuel transport insurance in Brazil is analysed. There are some special and additional clauses that can be included or excluded, according to the contracting parts and because of some rules, conventions and treaties they are obliged to insert certain conditions, in view of the nature of the transported material and the risks resulting from it. (A.L.S.L.)

  13. Experience on fuel recycling

    International Nuclear Information System (INIS)

    The plutonium of the second generation out of the KNK-reactor will be converted at the fuel fabrication by ALKEM by the Au/PuC process. The preliminary tests for the fabrication have been finished and two batches were converted. Up to now the results show no principal difficulties. (orig.)

  14. Liquid Fuels from Microalgae

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D. A.; Sprague, S.

    1987-08-01

    The goal of the DOE/SERI Aquatic Species Program is to develop the technology to produce gasoline and diesel fuels from microalgae. Microalgae can accumulate large quantities of lipids and can thrive in high salinity water, which currently has no other use.

  15. The closed fuel cycle

    International Nuclear Information System (INIS)

    Available in abstract form only. Full text of publication follows: The fast growth of the world's economy coupled with the need for optimizing use of natural resources, for energy security and for climate change mitigation make energy supply one of the 21. century most daring challenges. The high reliability and efficiency of nuclear energy, its competitiveness in an energy market undergoing a new oil shock are as many factors in favor of the 'renaissance' of this greenhouse gas free energy. Over 160,000 tHM of LWR1 and AGR2 Used Nuclear Fuel (UNF) have already been unloaded from the reactor cores corresponding to 7,000 tons discharged per year worldwide. By 2030, this amount could exceed 400,000 tHM and annual unloading 14,000 tHM/year. AREVA believes that closing the nuclear fuel cycle through the treatment and recycling of Used Nuclear Fuel sustains the worldwide nuclear power expansion. It is an economically sound and environmentally responsible choice, based on the preservation of natural resources through the recycling of used fuel. It furthermore provides a safe and secure management of wastes while significantly minimizing the burden left to future generations. (authors)

  16. Residential fuel quality

    Energy Technology Data Exchange (ETDEWEB)

    Santa, T. [Santa Fuel, Inc., Bridgeport, CT (United States)

    1997-09-01

    This report details progress made in improving the performance of No. 2 heating oil in residential applications. Previous research in this area is documented in papers published in the Brookhaven Oil Heat Technology Conference Proceedings in 1993, 1994 and 1996. By way of review we have investigated a number of variables in the search for improved fuel system performance. These include the effect of various additives designed to address stability, dispersion, biotics, corrosion and reaction with metals. We have also investigated delivery methods, filtration, piping arrangements and the influence of storage tank size and location. As a result of this work Santa Fuel Inc. in conjunction with Mobile Oil Corporation have identified an additive package which shows strong evidence of dramatically reducing the occurrence of fuel system failures in residential oil burners. In a broad market roll-out of the additized product we have experienced a 29% reduction in fuel related service calls when comparing the 5 months ending January 1997 to the same period ending January 1996.

  17. Biomass fuels and health

    International Nuclear Information System (INIS)

    This paper focuses on the health hazards of fuelwood and dung use by the rural poor. The paper discusses methods of quantifying biomass based pollution. This paper also discusses cleaner fuels and deals with ways in which conventional solid biofuels could be made cleaner through conversion technologies and through the promotion of such energy forms as biogas. (author). 109 refs., 6 figs., 4 tabs

  18. Nuclear fuel transport flasks

    International Nuclear Information System (INIS)

    A nuclear fuel transport flask has a surrounding structure carrying inwardly directed heat transfer fins additional to the normal outwardly directed heat transfer fins on the main body of the flask. The additional fins can be interleaved with the main fins, and the structure carrying the additional fins can either be a shroud or an open framework. (author)

  19. WWER spent fuel storage

    International Nuclear Information System (INIS)

    Selection criteria for PAKS NPP dry storage system are outlined. They include the following: fuel temperature in storage; sub-criticality assurance (avoidance of criticality for fuel in the unirradiated condition without having to take credit for burn-up); assurance of decay heat removal; dose uptake to the operators and public; protection of environment; volume of waste produced during operation and decommissioning; physical protection of stored irradiated fuel assemblies; IAEA safeguards assurance; storage system versus final disposal route; cost of construction and extent of technology transfer to Hungarian industry. Several available systems are evaluated against these criteria, and as a result the GEC ALSTHOM Modular Vault Dry Store (MVDS) system has been selected. The MVDS is a passively cooled dry storage facility. Its most important technical, safety, licensing and technology transfer characteristics are outlined. On the basis of the experience gained some key questions and considerations related to the East European perspective in the field of spent fuel storage are discussed. 8 figs

  20. Spent fuel dissolution mechanisms

    International Nuclear Information System (INIS)

    This study is a literature survey on the dissolution mechanisms of spent fuel under disposal conditions. First, the effects of radiolysis products on the oxidative dissolution mechanisms and rates of UO2 are discussed. These effects have mainly been investigated by using electrochemical methods. Then the release mechanisms of soluble radionuclides and the dissolution of the UO2 matrix including the actinides, are treated. Experimental methods have been developed for measuring the grain-boundary inventories of radionuclides. The behaviour of cesium, strontium and technetium in leaching tests shows different trends. Comparison of spent fuel leaching data strongly suggests that the release of 90Sr into the leachant can be used as a measure of the oxidation/dissolution of the fuel matrix. Approaches to the modelling UO2, dissolution are briefly discussed in the next chapter. Lastly, the use of natural material, uraninite, in the evaluation of the long-term performance of spent fuel is discussed. (orig.). (81 ref., 37 figs., 8 tabs.)

  1. Quality management for fuel

    International Nuclear Information System (INIS)

    The quality management of the Goesgen nuclear power station is described. Special attention is paid to controls on the suppliers of fuel. This comprises the planning, completion and control of the major steps taken by the supplier. Examples for quality management are presented. 5 figs., 1 tab., 4 refs

  2. Nuclear fuel cycle studies

    International Nuclear Information System (INIS)

    For the metal-matrix encapsulation of radioactive waste, brittle-fracture, leach-rate, and migration studies are being conducted. For fuel reprocessing, annular and centrifugal contactors are being tested and modeled. For the LWBR proof-of-breeding project, the full-scale shear and the prototype dissolver were procured and tested. 5 figures

  3. Biohydrogen, membranes, fuel cell.

    Czech Academy of Sciences Publication Activity Database

    Pientka, Zbyn?k; Bleha, Miroslav; Bélafi-Bakó, K.; Žitka, Jan; Marešová, Helena; Maršálek, Jaroslav; Kyslík, Pavel

    Vol. 2. Praha : Czech Society of Chemical Engineering, 2008. s. 337. ISBN 978-80-02-02049-3. [International Congress of Chemical and Process Engineering /18./. 24.08.2008-28.08.2008, Prague] Institutional research plan: CEZ:AV0Z40500505 Keywords : hydrogen production * fuel cell Subject RIV: CD - Macromolecular Chemistry

  4. Winters fuels report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-27

    The outlook for distillate fuel oil this winter is for increased demand and a return to normal inventory patterns, assuming a resumption of normal, cooler weather than last winter. With industrial production expected to grow slightly from last winter`s pace, overall consumption is projected to increase 3 percent from last winter, to 3.4 million barrels per day during the heating season (October 1, 1995-March 31, 1996). Much of the supply win come from stock drawdowns and refinery production. Estimates for the winter are from the Energy Information Administration`s (EIA) 4th Quarter 1995 Short-Tenn Energy Outlook (STEO) Mid-World Oil Price Case forecast. Inventories in place on September 30, 1995, of 132 million barrels were 9 percent below the unusually high year-earlier level. Inventories of high-sulfur distillate fuel oil, the principal type used for heating, were 13 percent lower than a year earlier. Supply problems are not anticipated because refinery production and the ready availability of imports should be adequate to meet demand. Residential heating off prices are expected to be somewhat higher than last winter`s, as the effects of lower crude oil prices are offset by lower distillate inventories. Heating oil is forecast to average $0.92 per gallon, the highest price since the winter of 1992-93. Diesel fuel (including tax) is predicted to be slightly higher than last year at $1.13 per gallon. This article focuses on the winter assessment for distillate fuel oil, how well last year`s STEO winter outlook compared to actual events, and expectations for the coming winter. Additional analyses include regional low-sulfur and high-sulfur distillate supply, demand, and prices, and recent trends in distillate fuel oil inventories.

  5. Bio-fuels - biohazard

    International Nuclear Information System (INIS)

    Politicians have a clear explanation for growing commodity prices. It is all the fault of speculators. It is easy to point the finger at an imaginary enemy. It is more difficult and from the point of view of a political career suicidal to admit one's mistakes. And there are reasons for remorse. According to studies prepared by the OECD and the World Bank bio-fuels are to be blame for high food prices. The bio-fuel boom that increases the demand for agro-commodities has been created by politicians offering generous subsidies. And so farming products do not end up on the table, but in the fuel tanks of cars in the form of additives. And their only efficiency is that they make food more expensive. The first relevant indication that environmentalist tendencies in global politics have resulted in shortages and food price increases can be found in a confidential report prepared by the World Bank. Parts of the report were leaked to the media last month. According to this information growing bio-fuel production has resulted in a food price increase by 75%. The theory that this development was caused by speculators and Chinese and Indian demand received a serious blow. And the OECD report definitely contradicted the excuse used by the politicians. According to the report one of the main reasons for growing food prices are generously subsidized bio-fuels. Their share of the increase of demand for agro-commodities in 2005 -2007 was 60% according to the study. (author)

  6. Nuclear fuels supply

    International Nuclear Information System (INIS)

    This study program was carried out by the EEI Policy Committee on Nuclear Power with assistance from the Tennessee Valley Authority and certain members of the American Public Power Association. The Enrichment and Processing Group of the Japanese Electric Utility Industry became a co-sponsor of the program. Conclusions are: (1) the U.S. is now significantly dependent on nuclear power for generation of electricity; (2) demand for electricity is expected to continue to grow, with nuclear power to make an increasing contribution; (3) nuclear fuels must be supplied in amounts required to sustain the current and prospective demand; (4) assurance of supply of nuclear fuels for the power plants now in operation or committed is generally satisfactory for the short term (1975 to 1980) and less satisfactory but manageable for the near term (1975 to 1985); (5) supply for the longer term (1985-on) depends on the near-term deficiencies being corrected and timely decisions made on long lead-time items; (6) supply operations that should be accorded the highest priority in the near term are uranium exploration, mining and milling, enrichment and spent fuel storage; (7) it is urgent that a nationally acceptable radioactive waste management plan be implemented and reprocessing and recycle of uranium and plutonium be demonstrated; (8) problems of nuclear fuels supply are technically solvable; present difficulties stem principally from the impact of open issues of public policy on regulatory decision making; and (9) utilities should plan to act to: (a) assure a maximum of viable competitive private sector supply operations and (b) more effectively impact on U.S. Government decision making on nuclear fuels supply

  7. Future fuel cycles

    International Nuclear Information System (INIS)

    A fuel cycle must offer both financial and resource savings if it is to be considered for introduction into Ontario's nuclear system. The most promising alternative CANDU fuel cycles are examined in the context of both of these factors over a wide range of installed capacity growth rates and economic assumptions, in order to determine which fuel cycle, or cycles, should be introduced, and when. It is concluded that the optimum path for the long term begins with the prompt introduction of the low-enriched-uranium fuel cycle. For a wide range of conditions, this cycle remains the optimum throughout the very long term. Conditions of rapid nuclear growth and very high uranium price escalation rates warrant the supersedure of the low-enriched-uranium cycle by either a plutonium-topped thorium cycle or plutonium recycle, beginning between 2010 and 2025. It is also found that the uranium resource position is sound in terms of both known resources and production capability. Moreover, introduction of the low-enriched-uranium fuel cycle and 1250 MWe reactor units will assure the economic viability of nuclear power until at least 2020, even if uranium prices increase at a rate of 3.5% above inflation. The interrelationship between these two conclusions lies in the tremendous incentive for exploration which will occur if the real uranium price escalation rate is high. From a competitive viewpoint, nuclear power can withstand increases in the price of uranium. However, such increases will likely further expand the resource base, making nuclear an even more reliable energy source. (auth)

  8. Winters fuels report

    International Nuclear Information System (INIS)

    The outlook for distillate fuel oil this winter is for increased demand and a return to normal inventory patterns, assuming a resumption of normal, cooler weather than last winter. With industrial production expected to grow slightly from last winter's pace, overall consumption is projected to increase 3 percent from last winter, to 3.4 million barrels per day during the heating season (October 1, 1995-March 31, 1996). Much of the supply win come from stock drawdowns and refinery production. Estimates for the winter are from the Energy Information Administration's (EIA) 4th Quarter 1995 Short-Tenn Energy Outlook (STEO) Mid-World Oil Price Case forecast. Inventories in place on September 30, 1995, of 132 million barrels were 9 percent below the unusually high year-earlier level. Inventories of high-sulfur distillate fuel oil, the principal type used for heating, were 13 percent lower than a year earlier. Supply problems are not anticipated because refinery production and the ready availability of imports should be adequate to meet demand. Residential heating off prices are expected to be somewhat higher than last winter's, as the effects of lower crude oil prices are offset by lower distillate inventories. Heating oil is forecast to average $0.92 per gallon, the highest price since the winter of 1992-93. Diesel fuel (including tax) is predicted to be slightly higher than last year at $1.13 per gallon. This article focuses on the winter assessment for distillate fuel oil, how well last year's STEO winter outlook compared to actual events, and expectations for the coming winter. Additional analyses include regional low-sulfur and high-sulfur distillate supply, demand, and prices, and recent trends in distillate fuel oil inventories

  9. www.FuelEconomy.gov

    Data.gov (United States)

    U.S. Environmental Protection Agency — FuelEconomy.gov provides comprehensive information about vehicles' fuel economy. The official U.S. government site for fuel economy information, it is operated by...

  10. Isoprenoid based alternative diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Taek Soon; Peralta-Yahya, Pamela; Keasling, Jay D.

    2015-08-18

    Fuel compositions are provided comprising a hydrogenation product of a monocyclic sesquiterpene (e.g., hydrogenated bisabolene) and a fuel additive. Methods of making and using the fuel compositions are also disclosed. ##STR00001##

  11. Safety analysis of MOX fuels by fuel performance code

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Motoe [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-12-01

    Performance of plutonium rick mixed oxide fuels specified for the Reduced-Moderation Water Reactor (RMWR) has been analysed by modified fuel performance code. Thermodynamic properties of these fuels up to 120 GWd/t burnup have not been measured and estimated using existing uranium fuel models. Fission product release, pressure rise inside fuel rods and mechanical loads of fuel cans due to internal pressure have been preliminarily assessed based on assumed axial power distribution history, which show the integrity of fuel performance. Detailed evaluation of fuel-cladding interactions due to thermal expansion or swelling of fuel pellets due to high burnup will be required for safety analysis of mixed oxide fuels. Thermal conductivity and swelling of plutonium rich mixed oxide fuels shall be taken into consideration. (T. Tanaka)

  12. Low contaminant formic acid fuel for direct liquid fuel cell

    Science.gov (United States)

    Masel, Richard I. (Champaign, IL); Zhu, Yimin (Urbana, IL); Kahn, Zakia (Palatine, IL); Man, Malcolm (Vancouver, CA)

    2009-11-17

    A low contaminant formic acid fuel is especially suited toward use in a direct organic liquid fuel cell. A fuel of the invention provides high power output that is maintained for a substantial time and the fuel is substantially non-flammable. Specific contaminants and contaminant levels have been identified as being deleterious to the performance of a formic acid fuel in a fuel cell, and embodiments of the invention provide low contaminant fuels that have improved performance compared to known commercial bulk grade and commercial purified grade formic acid fuels. Preferred embodiment fuels (and fuel cells containing such fuels) including low levels of a combination of key contaminants, including acetic acid, methyl formate, and methanol.

  13. PWR fuel localization in Korea

    International Nuclear Information System (INIS)

    The Korean Government in 1981 established a PWR fuel development plan aimed at supplying domestically designed and manufactured fuel assemblies starting from 1989. Hence Korea Atomic Energy Research Institute (KAERI) and Korea Nuclear Fuel Co. Ltd. were designated to implement the PWR Fuel Localization Project with an experienced foreign partner (Siemens/KWU). To reduce fuel costs, KAERI is carrying out an ambitious long-term R + D program, developing the Korea Advanced Fuel Assembly. 1 fig

  14. Alternative Fuels in Cement Production

    DEFF Research Database (Denmark)

    Larsen, Morten Boberg

    2007-01-01

    The substitution of alternative for fossil fuels in cement production has increased significantly in the last decade. Of these new alternative fuels, solid state fuels presently account for the largest part, and in particular, meat and bone meal, plastics and tyre derived fuels (TDF) accounted for the most significant alternative fuel energy contributors in the German cement industry. Solid alternative fuels are typically high in volatile content and they may differ significantly in physical and...

  15. FUEL CELLS IN ENERGY PRODUCTION

    OpenAIRE

    Huang, Xiaoyu

    2011-01-01

    The purpose of this thesis is to study fuel cells. They convert chemical energy directly into electrical energy with high efficiency and low emmission of pollutants. This thesis provides an overview of fuel cell technology.The basic working principle of fuel cells and the basic fuel cell system components are introduced in this thesis. The properties, advantages, disadvantages and applications of six different kinds of fuel cells are introduced. Then the efficiency of each fuel cell is p...

  16. Metallic fuel design development

    International Nuclear Information System (INIS)

    This report describes the R and D results of the ''Metallic Fuel Design Development'' project that performed as a part of 'Nuclear Research and Development Program' during the '97 - '98 project years. The objectives of this project are to perform the analysis of thermo-mechanical and irradiation behaviors, and preliminary conceptual design for the fuel system of the KALIMER liquid metal reactor. The following are the major results that obtained through the project. The preliminary design requirements and design criteria which are necessary in conceptual design stage, are set up. In the field of fuel pin design, the pin behavior analysis, failure probability prediction, and sensitivity analysis are performed under the operation conditions of steady-state and transient accidents. In the area of assembly duct analysis; 1) KAFACON-2D program is developed to calculate an array configuration of inner shape of assembly duct, 2) Stress-strain analysis are performed for the components of assembly such as, handling socket, mounting rail and wire wrap, 3) The BDI program is developed to analyze mechanical interaction between pin bundle and duct, 4) a vibration analysis is performed to understand flow-induced vibration of assembly duct, 5) The NUBOW-2D, which is bowing and deformation analysis code for assembly duct, is modified to be operated in KALIMER circumstance, and integrity evaluation of KALIMER core assembly is carried out using the modified NUBOW-2D and the CRAMP code in U.K., and 6) The KALIMER assembly duct is manufactured to be used in flow test. In the area of non-fuel assembly, such as control, reflector, shielding, GEM and USS, the states-of-the-arts and the major considerations in designing are evaluated, and the design concepts are derived. The preliminary design description and their design drawing of KALIMER fuel system are prepared based upon the above mentioned evaluation and analysis. The achievement of conceptual design technology on metallic fuel system up to date is expected to be used continuously in the basic technology development of liquid metal reactor in Korea. (author)

  17. Nuclear Fuel Cycle Objectives

    International Nuclear Information System (INIS)

    One of the IAEA's statutory objectives is to 'seek to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world'. One way this objective is achieved is through the publication of a range of technical series. Two of these are the IAEA Nuclear Energy Series and the IAEA Safety Standards Series. According to Article III.A.6 of the IAEA Statute, the safety standards establish 'standards of safety for protection of health and minimization of danger to life and property'. The safety standards include the Safety Fundamentals, Safety Requirements and Safety Guides. These standards are written primarily in a regulatory style, and are binding on the IAEA for its own programmes. The principal users are the regulatory bodies in member States and other national authorities. The IAEA Nuclear Energy Series comprises reports designed to encourage and assist R and D on, and application of, nuclear energy for peaceful uses. This includes practical examples to be used by owners and operators of utilities in member States, implementing organizations, academia and government officials, among others. This information is presented in guides, reports on technology status and advances, and best practices for peaceful uses of nuclear energy based on inputs from international experts. The IAEA Nuclear Energy Series complements the IAEA Safety Standards Series. The Nuclear Energy Basic Principles is the highest level publication in the IAEA Nuclear Energy Series, and describes the rationale and vision for the peaceful uses of nuclear energy. It presents eight Basic Principles on which nuclear energy systems should be based to fulfil nuclear energy's potential to help meet growing global energy needs. The Nuclear Energy Series Objectives are the second level publications. They describe what needs to be considered and the specific goals to be achieved at different stages of implementation, all of which are consistent with the Basic Principles. The four Objectives publications include Nuclear General Objectives, Nuclear Power Objectives, Nuclear Fuel Cycle Objectives, and Radioactive Waste management and Decommissioning Objectives. This publication sets out the objectives that need to be achieved in the area of the nuclear fuel cycle to ensure that the Nuclear Energy Basic Principles are satisfied. Within each of these four Objectives publications, the individual topics that make up each area are addressed. The five topics included in this publication are: resources; fuel engineering and performance; spent fuel management and reprocessing; fuel cycles; and the research reactor nuclear fuel cycle

  18. Metallic fuel design development

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Woan; Kang, H. Y.; Lee, B. O. and others

    1999-04-01

    This report describes the R and D results of the ''Metallic Fuel Design Development'' project that performed as a part of 'Nuclear Research and Development Program' during the '97 - '98 project years. The objectives of this project are to perform the analysis of thermo-mechanical and irradiation behaviors, and preliminary conceptual design for the fuel system of the KALIMER liquid metal reactor. The following are the major results that obtained through the project. The preliminary design requirements and design criteria which are necessary in conceptual design stage, are set up. In the field of fuel pin design, the pin behavior analysis, failure probability prediction, and sensitivity analysis are performed under the operation conditions of steady-state and transient accidents. In the area of assembly duct analysis; 1) KAFACON-2D program is developed to calculate an array configuration of inner shape of assembly duct, 2) Stress-strain analysis are performed for the components of assembly such as, handling socket, mounting rail and wire wrap, 3) The BDI program is developed to analyze mechanical interaction between pin bundle and duct, 4) a vibration analysis is performed to understand flow-induced vibration of assembly duct, 5) The NUBOW-2D, which is bowing and deformation analysis code for assembly duct, is modified to be operated in KALIMER circumstance, and integrity evaluation of KALIMER core assembly is carried out using the modified NUBOW-2D and the CRAMP code in U.K., and 6) The KALIMER assembly duct is manufactured to be used in flow test. In the area of non-fuel assembly, such as control, reflector, shielding, GEM and USS, the states-of-the-arts and the major considerations in designing are evaluated, and the design concepts are derived. The preliminary design description and their design drawing of KALIMER fuel system are prepared based upon the above mentioned evaluation and analysis. The achievement of conceptual design technology on metallic fuel system up to date is expected to be used continuously in the basic technology development of liquid metal reactor in Korea. (author)

  19. Nuclear fuel pellet loading apparatus

    International Nuclear Information System (INIS)

    An automatic apparatus for loading a predetermined amount of nuclear fuel pellets into a nuclear fuel element to be used in a nuclear reactor is described. The apparatus consists of a vibratory bed capable of supporting corrugated trays containing rows of nuclear fuel pellets and arranged in alignment with the open ends of several nuclear fuel elements. A sweep mechanism is arranged above the trays and serves to sweep the rows of fuel pellets onto the vibratory bed and into the fuel element. A length detecting system, in conjunction with a pellet stopping mechanism, is also provided to assure that a predetermined amount of nuclear fuel pellets are loaded into each fuel element

  20. Nitride fuel development in Japan

    International Nuclear Information System (INIS)

    Nitride fuel for ADS has been developed by Japan Atomic Energy Agency (JAEA) under a double strata fuel cycle concept. In this case the nitride fuel contains MA elements as a principal component and is diluted by inert materials in place of U, which is totally different from the fuel for power reactors. So the fuel fabrication manner, fuel properties and irradiation behaviour have to be investigated in detail as well as the treatment of spent fuel. Through the experimental R&D, technical feasibility of nitride fuel cycle for the transmutation of MA will be demonstrated

  1. Direct Methanol Fuel Cell, DMFC

    Directory of Open Access Journals (Sweden)

    Amornpitoksuk, P.

    2003-09-01

    Full Text Available Direct Methanol Fuel Cell, DMFC is a kind of fuel cell using methanol as a fuel for electric producing. Methanol is low cost chemical substance and it is less harmful than that of hydrogen fuel. From these reasons it can be commercial product. The electrocatalytic reaction of methanol fuel uses Pt-Ru metals as the most efficient catalyst. In addition, the property of membrane and system designation are also effect to the fuel cell efficient. Because of low power of methanol fuel cell therefore, direct methanol fuel cell is proper to use for the energy source of small electrical devices and vehicles etc.

  2. Operando fuel cell spectroscopy

    Science.gov (United States)

    Kendrick, Ian Michael

    The active state of a catalyst only exists during catalysis (1) provided the motivation for developing operando spectroscopic techniques. A polymer electrolyte membrane fuel cell (PEMFC) was designed to interface with commercially available instruments for acquisition of infrared spectra of the catalytic surface of the membrane electrode assembly (MEA) during normal operation. This technique has provided insight of the complex processes occurring at the electrode surface. Nafion, the solid electrolyte used in most modern-day polymer electrolyte membrane fuel cells (PEMFC), serves many purposes in fuel cell operation. However, there is little known of the interface between Nafion and the electrode surface. Previous studies of complex Stark tuning curves of carbon monoxide on the surface of a platinum electrode were attributed the co-adsorption of bisulfite ions originating from the 0.5M H2SO4 electrolyte used in the study(2). Similar tuning curves obtained on a fuel cell MEA despite the absence of supplemental electrolytes suggest the adsorption of Nafion onto platinum (3). The correlation of spectra obtained using attenuated total reflectance spectroscopy (ATR) and polarization modulated IR reflection-absorption spectroscopy (PM-IRRAS) to a theoretical spectrum generated using density functional theory (DFT) lead to development of a model of Nafion and platinum interaction which identified participation of the SO3- and CF3 groups in Nafion adsorption. The use of ethanol as a fuel stream in proton exchange membrane fuel cells provides a promising alternative to methanol. Relative to methanol, ethanol has a greater energy density, lower toxicity and can be made from the fermentation of biomass(4). Operando IR spectroscopy was used to study the oxidation pathway of ethanol and Stark tuning behavior of carbon monoxide on Pt, Ru, and PtRu electrodes. Potential dependent products such as acetaldehyde, acetic acid and carbon monoxide are identified as well as previously unobserved peaks corresponding to adsorbed ethanol. A modification to the operando fuel cell design allowed for acquisition of Raman spectra. A confocal Raman microscope enabled characterization of the MEA through depth profiling. The potential dependent peaks of an Fe-N x/C catalyst were identified and compared to the theoretical spectra of the proposed active sites. It was determined that oxygen adsorbed onto iron/iron oxide carbon nanostructures were responsible for the experimentally obtained peaks. This finding was supported by additional Raman studies carried out on a catalyst with these active sites removed through peroxide treatments. 1 Topsoe, H., Developments in operando studies and in situ characterization of heterogeneous catalysts. Journal of Catalysis, 2003. 216(1-2): p. 155-164. 2 Stamenkovic, V., et al., Vibrational properties of CO at the Pt(111)-solution interface: the anomalous stark-tuning slope. Journal of Physical Chemistry B, 2005. 109(2): p. 678-680. 3 Kendrick, I., et al., Elucidating the Ionomer-Electrified Metal Interface. J. Am. Chem. Soc., 2010. 132(49): p. 17611-17616. 4 Lamy, C. and Leger, J.M., FUEL-CELLS - APPLICATION TO ELECTRIC VEHICLES. Journal De Physique Iv, 1994. 4(C1): p. 253-281.

  3. Fuel formula for lighters

    Energy Technology Data Exchange (ETDEWEB)

    Iwayama, I.; Iwayama, A.

    1982-04-10

    A fuel formula that includes a homogenous mixture of benzine, aromatic ether oils, perfume and other perfuming agents, as well as the lowest possible aliphatic alcohol as a component solvent, surfactant, and possibly, a soluble pigment that colors the formula an appropriate color. This formula is used as an aromatic fuel for cigarette lights. The ether oils can be musk, amber, camomille, lavender, mint, anise, rose, camphor, and other aromatic oils; the perfuming agents are: geraniol, linalool, menthol, camphor, benzyl or phenetyl alcohols, phenylacetaldehyde, vanillin, coumarin, and so forth; the pigments are: beta-carotene, sudan dyes, etc.; the low aliphatic alcohols are EtOH, iso-PrOH. Example: 70 parts benzine, 10 parts EtOH, 15 parts oxide mezithylene and 5 parts borneol form a clear liquid that has a camphor aroma when it is lit.

  4. Nuclear fuel cladding system

    International Nuclear Information System (INIS)

    The invention provides an elongated slender fuel element of cylindrical form having a locally flexible metallic sheath, a plurality of close-fitting nuclear fuel pellets in end-to-end stacked array therein, having longitudinal expansion relief provision in the ends of at least some pellets to substantially preclude differential axial expansion between pellet and sheath in operation, and a low-shear lining layer composed of siloxane lacquer or graphite interposed between the pellets and the sheath at the peripheral adjoining surfaces thereof to facilitate peripheral distribution of stresses in the sheath to reduce the likelihood of rupture failures extending longitudinally of the sheath due to a concentration of peripheral sheath expansion stresses

  5. Spent fuel shipping casks

    International Nuclear Information System (INIS)

    The reply includes a list specifying the spent fuel tasks that have been licensed for shipment in the FRG by the Federal Radiation Protection Office. This list of permits forms part of the 'Directory of National Competent Authorities' Approval Certificates For Package Design and Shipment of Radioactive Material, 1990 Edition', IAEA-TECDOC-552, Vienna 1990. Applications for approval of some further casks are under review. In accordance with the IAEA recommendations for the safe transport of radioactive substances, which have been fully and authentically incorporated into the German regulations for the carriage of dangerous goods, spent fuel casks licensed for shipments have to be of the type B(U). Proof of safety of type B casks under accident conditions is given by design testing within the framework of the approval and licensing procedure subject to the traffic safety regulations. (orig./HSCH)

  6. BIODIESEL – ALTERNATIVE FUEL

    Directory of Open Access Journals (Sweden)

    Darko Kiš

    2006-06-01

    Full Text Available A limited quantity of oil, the purchase of which also involves major expenses has become an important factor for intensive search and use of alternative fuels. Biodiesel is used in diesel engines, and is manufactured from vegetable oils, animal fats and recycled edible oils. The production and use of biodiesel are very important not only because of its economic and strategic connotations but also because of its environmental advantages. Favourable conditions in Croatia give good opportunities for a self-sufficient oil rape production, possibility for its intensification and employment of a number of people in both the agricultural production and biodiesel production plants. This paper presents a survey of the biodiesel fuel production, the characteristics and impacts it has on the biodiesel engine features as well as its impact on the environment.

  7. Heating subsurface formations by oxidizing fuel on a fuel carrier

    Energy Technology Data Exchange (ETDEWEB)

    Costello, Michael; Vinegar, Harold J.

    2012-10-02

    A method of heating a portion of a subsurface formation includes drawing fuel on a fuel carrier through an opening formed in the formation. Oxidant is supplied to the fuel at one or more locations in the opening. The fuel is combusted with the oxidant to provide heat to the formation.

  8. Design Package for Fuel Retrieval System Fuel Handling Tool Modification

    Energy Technology Data Exchange (ETDEWEB)

    TEDESCHI, D.J.

    2000-03-27

    This is a design package that contains the details for a modification to a tool used for moving fuel elements during loading of MCO Fuel Baskets for the Fuel Retrieval System. The tool is called the fuel handling tool (or stinger). This document contains requirements, development design information, tests, and test reports.

  9. Automotive fuel efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Abelson, P.H.

    1992-09-11

    For at least the remainder of this century, the United States faces a growing dependence on imported oil. Costs are substantial, and they will mount. In June 1992, net imports provided nearly 50% of supplies, and their cost was $4.3 billion. Cost of net imports of motor vehicles and parts amounted to $3.0 billion. The two items combined totaled more than the negative trade balance of $6.6 billion. The light-duty highway fleet alone accounted for 38.2% of U.S. oil consumption in 1988. Correspondingly, the fleet was a substantial emitter of air pollutants - NO{sub x}, CO, and nonmethane hydrocarbons. In addition, it was a major source of CO{sub 2}. The twin problems of oil imports and pollution would be ameliorated if the fuel economy if cars and trucks could be improved and their emissions were also reduced. In principle, the mileage of US automobiles could be substantially improved. But on purchasing a car, U.S. buyers rank fuel efficiency eight when making their choice. They are attracted to options that lower mileage. Consumers also tend to prefer large cars over small ones for reasons of safety. Increasingly, buyers are purchasing light trucks and vans that have inferior fuel efficiency. As a result of the above trends, the average mileage of the US automotive fleet has been diminishing. As long as fuel is available at comparatively low prices and there is no federal requirement for better mileage, improvement is unlikely. Moreover, even if improvements were mandated, change would be slow.

  10. Hydraulic fuel hold down

    International Nuclear Information System (INIS)

    A nuclear reactor has a seal plate dividing the vessel into an upper high pressure plenum and a lower low pressure or outlet plenum. A piston is located at the seal plate with its upper surface exposed to the high pressure and its lower surface exposed to the lower pressure. A push rod attached to the piston extends downwardly in butting relationship with fuel assemblies to hold them down

  11. Automotive fuel efficiency

    International Nuclear Information System (INIS)

    For at least the remainder of this century, the United States faces a growing dependence on imported oil. Costs are substantial, and they will mount. In June 1992, net imports provided nearly 50% of supplies, and their cost was $4.3 billion. Cost of net imports of motor vehicles and parts amounted to $3.0 billion. The two items combined totaled more than the negative trade balance of $6.6 billion. The light-duty highway fleet alone accounted for 38.2% of U.S. oil consumption in 1988. Correspondingly, the fleet was a substantial emitter of air pollutants - NOx, CO, and nonmethane hydrocarbons. In addition, it was a major source of CO2. The twin problems of oil imports and pollution would be ameliorated if the fuel economy if cars and trucks could be improved and their emissions were also reduced. In principle, the mileage of US automobiles could be substantially improved. But on purchasing a car, U.S. buyers rank fuel efficiency eight when making their choice. They are attracted to options that lower mileage. Consumers also tend to prefer large cars over small ones for reasons of safety. Increasingly, buyers are purchasing light trucks and vans that have inferior fuel efficiency. As a result of the above trends, the average mileage of the US automotive fleet has been diminishing. As long as fuel is available at comparatively low prices and there is no federal requirement for better mileage, improvement is unlikely. Moreover, even if improvements were mandated, change would be slow

  12. Fuel element store

    International Nuclear Information System (INIS)

    The spherical fuel elements are stored dry in cans. The cans themselves are stacked in parallel storage shafts, which are combined into a rectangular storage space. The storage space is made earthquake-proof by surrounding it with concrete. It consists of a ceiling assembled from several steel parts, which is connected to the floor by support elements. A cooling air ventilation station supplies the individual storage shaft and therefore the cans with cooling air via incoming and outgoing pipes. (DG)

  13. Alternative Fuels: Research Progress

    OpenAIRE

    Maher A.R. Sadiq Al-Baghdadi

    2014-01-01

    Chapter 1: Pollutant Emissions and Combustion Characteristics of Biofuels and Biofuel/Diesel Blends in Laminar and Turbulent Gas Jet Flames. R. N. Parthasarathy, S. R. Gollahalli Chapter 2: Sustainable Routes for The Production of Oxygenated High-Energy Density Biofuels from Lignocellulosic Biomass. Juan A. Melero, Jose Iglesias, Gabriel Morales, Marta Paniagua Chapter 3: Optical Investigations of Alternative-Fuel Combustion in an HSDI Diesel Engine. T. Huelser, M. Jakob, G. Gr...

  14. Alternative fuel cycles

    International Nuclear Information System (INIS)

    Uranium resource utilization and economic considerations provide incentives to study alternative fuel cycles as future options to the PHWR natural uranium cycle. Preliminary studies to define the most favourable alternatives and their possible introduction dates are discussed. The important and uncertain components which influence option selection are reviewed, including nuclear capacity growth, uranium availability and demand, economic potential, and required technological developments. Finally, a summary of Ontario Hydro's program to further assess cycle selection and define development needs is given. (auth)

  15. Fuel channel life management

    International Nuclear Information System (INIS)

    Pressure tubes in Canadian CANDU plants are approaching their nominal operating life (210k EFPH). Re-tubing operations are already in progress at several units. Multi-unit stations in Ontario are of a very similar age and most will reach their nominal operating lives during the next 5 to 8 years. These operating lives are typically limited by the fuel channels - particularly the pressure tubes. One concern is the implications of these multi-unit stations requiring concurrent re-tube operations thereby taxing scarce refurbishment resources. As a result, utilities are considering continued operation to provide greater planning flexibility, increased value from their existing assets and extended time frames for planning re-tube operations. This will enable utilities to capitalize on the useful life of the fuel channels, manage the refurbishment resources and minimize adverse effects on Ontario's electricity supply. Fuel Channel Life Management involves a combination of 'knowing your asset' through condition monitoring (inspection and sampling), understanding degradation mechanisms through research and development leading to updated assessment methodologies and strategic maintenance activities. This type of approach will provide the required confidence to long term fuel channel performance such that informed decisions can be made for business planning. Uncertainties stem primarily from ageing related degradation mechanisms that affect pressure tubes. Hence program areas include degradation management and determining the impact that degradation mechanisms have on structural integrity and nuclear safety requirements. This paper provides a review of key degradation management issues, the process being followed in Ontario to deal with these issues and important considerations to address. (author)

  16. Industrial Fuel Flexibility Workshop

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2006-09-01

    On September 28, 2006, in Washington, DC, ITP and Booz Allen Hamilton conducted a fuel flexibility workshop with attendance from various stakeholder groups. Workshop participants included representatives from the petrochemical, refining, food and beverage, steel and metals, pulp and paper, cement and glass manufacturing industries; as well as representatives from industrial boiler manufacturers, technology providers, energy and waste service providers, the federal government and national laboratories, and developers and financiers.

  17. Catalysts for Fuel Cells.

    Czech Academy of Sciences Publication Activity Database

    Bílek, J.; Dokoupil, A.; Vognar, J.; Vondrák, Ji?í; Novák, V.

    Brno : University of Technology Brno, 2005, s. 105-107. ISBN 80-214-2944-5. [International Conference on Advanced Batteries and Accumulators /6./. Brno (CZ), 05.06.2005-09.06.2005] R&D Projects: GA MŽP(CZ) SN/3/171/05; GA AV ?R(CZ) KJB4813302 Institutional research plan: CEZ:AV0Z40320502 Keywords : catalysts * alkaline fuel cells Subject RIV: CA - Inorganic Chemistry

  18. Encapsulating spent nuclear fuel

    International Nuclear Information System (INIS)

    A system is described for encapsulating spent nuclear fuel discharged from nuclear reactors in the form of rods or multi-rod assemblies. The rods are completely and contiguously enclosed in concrete in which metallic fibres are incorporated to increase thermal conductivity and polymers to decrease fluid permeability. This technique provides the advantage of acceptable long-term stability for storage over the conventional underwater storage method. Examples are given of suitable concrete compositions. (UK)

  19. Nuclear Fuel Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Deborah J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-10-28

    These slides will be presented at the training course “International Training Course on Implementing State Systems of Accounting for and Control (SSAC) of Nuclear Material for States with Small Quantity Protocols (SQP),” on November 3-7, 2014 in Santa Fe, New Mexico. The slides provide a basic overview of the Nuclear Fuel Cycle. This is a joint training course provided by NNSA and IAEA.

  20. Fuel storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Donakowski, T.D.; Tison, R.R.

    1979-08-01

    Storage technologies are characterized for solid, liquid, and gaseous fuels. Emphasis is placed on storage methods applicable to Integrated Community Energy Systems based on coal. Items discussed here include standard practice, materials and energy losses, environmental effects, operating requirements, maintenance and reliability, and cost considerations. All storage systems were found to be well-developed and to represent mature technologies; an exception may exist for low-Btu gas storage, which could have materials incompatability.

  1. Uranium dioxide Caramel fuel

    International Nuclear Information System (INIS)

    The work performed in France on Caramel fuels for research reactors reflects the reality of a program based on non proliferation criteria, as they have already appeared several years ago. This work actually includes the following different aspects: identification of the non proliferation criterion defining this action; determination of the economical and technical goals to be reached; realization of research and development studies finalized in a full scale demonstration; transposition to an industrial and commercial level

  2. 2009 Fuel Cell Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, Bill [Breakthrough Technologies Inst., Washington, DC (United States); Gangi, Jennifer [Breakthrough Technologies Inst., Washington, DC (United States); Curtin, Sandra [Breakthrough Technologies Inst., Washington, DC (United States); Delmont, Elizabeth [Breakthrough Technologies Inst., Washington, DC (United States)

    2010-11-01

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general.

  3. Integral nuclear fuel element assembly

    International Nuclear Information System (INIS)

    In a heavy water-moderated plutonium-uranium breeder reactor a low moderator-fuel ratio is desirable in order to increase the breeding ratio; however, fuel element spacing must be carefully controlled to provide good moderator flow and prevent the formation of hot spots on the fuel element surfaces. A fuel assembly made in accordance with this invention utilizes longitudinally-finned fuel pin cladding tubes arranged to form an integral fuel assembly by brazing together the continuous or interrupted fins of one fuel pin to the fins of other fuel pins. Alternatively, the fins of some fuel pins may be connected directly to the tubular section of other fuel pins. In another embodiment of this invention, the core is fabricated from a solid material having passages suited for coolant flow and fuel retention

  4. Fuel thermal behavior

    International Nuclear Information System (INIS)

    In order to get an overall experimental validation of our thermal calculations we need to cover the entire range of the pin life. Actually the method cannot be the same for the beginning of life (B.O.L.) and end of life. For B.O.L. it is possible to get a direct thermal measure through thermocouples, but this method is no longer practicable after some days due to the failure of the thermocouple under neutrons flux at the temperatures of interest. This failure may happen before or after complete gap closure is reached and the rate of gap closure is especially meaningful for the B.O.L. thermal behaviour. An other aspect of the thermal behaviour is the statistical one which may be got thanks to the post-irradiation examination of the fuel microstructure; although it is not a proper means to get the absolute temperatures in the fuel it is one of the most direct ones to have an insight in fuel thermal dispersion at B.O.L. and over-heating at end of live

  5. Fast breeder fuel cycle

    International Nuclear Information System (INIS)

    This contribution is prepared for the answer to the questionnaire of working group 5, subgroup B. B.1. is the short review of the fast breeder fuel cycles based on the reference large commercial Japanese LMFBR. The LMFBRs are devided into two types. FBR-A is the reactor to be used before 2000, and its burnup and breeding ratio are relatively low. The reference fuel cycle requirement is calculated based on the FBR-A. FBR-B is the one to be used after 2000, and its burnup and breeding ratio are relatively high. B.2. is basic FBR fuel reprocessing scheme emphasizing the differences with LWR reprocessing. This scheme is based on the conceptual design and research and development work on the small scale LMFBR reprocessing facility of Japan. The facility adopts a conventional PUREX process except head end portions. The report also describes the effects of technical modifications of conventional reprocessing flow sheets, and the problems to be solved before the adoption of these alternatives

  6. Fuels from microalgae

    Energy Technology Data Exchange (ETDEWEB)

    1989-06-01

    Many species of aquatic plants can provide a source of renewable energy. Some species of microalgae, in particular, produce lipids -- oils that can be extracted and converted to a diesel fuel substitute or to gasoline. Since 1979 the Aquatic Species Program element of the Biofuels Program, has supported fundamental and applied research to develop the technology for using this renewable energy resource. This document, produced by the Solar Technical Information Program, provides an overview of the DOE/SERI Aquatic Species Program element. Chapter 1 is an introduction to the program and to the microalgae. Chapter 2 is an overview of the general principles involved in making fuels from microalgae. It also outlines the technical challenges to producing economic, high-energy transportation fuels. Chapter 3 provides an overview of the Algal Production and Economic Model (APEM). This model was developed by researchers within the program to identify aspects of the process critical to performance with the greatest potential to reduce costs. The analysis using this model has helped direct research sponsored by the program. Finally, Chapter 4 provides an overview of the Aquatic Species Program and describes current research. 28 refs., 17 figs.

  7. Ethanol fuels in Brazil

    International Nuclear Information System (INIS)

    The largest alternative transportation fuels program in the world today is Brazil's Proalcool Program. About 6.0 million metric tons of oil equivalent (MTOE) of ethanol, derived mainly from sugar cane, were consumed as transportation fuels in 1991 (equivalent to 127,000 barrels of crude oil per day). Total primary energy consumed by the Brazilian economy in 1991 was 184.1 million MTOE, and approximately 4.3 million vehicles -- about one third of the total vehicle fleet or about 40 percent of the total car population -- run on hydrous or open-quotes neatclose quotes ethanol at the azeotropic composition (96 percent ethanol, 4 percent water, by volume). Additional transportation fuels available in the country are diesel and gasoline, the latter of which is defined by three grades. Gasoline A (regular, leaded gas)d has virtually been replaced by gasoline C, a blend of gasoline and up to 22 percent anhydrous ethanol by volume, and gasoline B (premium gasoline) has been discontinued as a result of neat ethanol market penetration

  8. Ammonia as a suitable fuel for fuel cells

    Directory of Open Access Journals (Sweden)

    ShanwenTao

    2014-08-01

    Full Text Available Ammonia, an important basic chemical, is produced at a scale of 150 million tons per year. Half of hydrogen produced in chemical industry is used for ammonia production. Ammonia containing 17.5wt% hydrogen is an ideal carbon-free fuel for fuel cells. Compared to hydrogen, ammonia has many advantages. In this mini-review, the suitability of ammonia as fuel for fuel cells, the development of different types of fuel cells using ammonia as the fuel and the potential applications of ammonia fuel cells are briefly reviewed.

  9. Ammonia as a suitable fuel for fuel cells

    OpenAIRE

    ShanwenTao

    2014-01-01

    Ammonia, an important basic chemical, is produced at a scale of 150 million tons per year. Half of hydrogen produced in chemical industry is used for ammonia production. Ammonia containing 17.5wt% hydrogen is an ideal carbon-free fuel for fuel cells. Compared to hydrogen, ammonia has many advantages. In this mini-review, the suitability of ammonia as fuel for fuel cells, the development of different types of fuel cells using ammonia as the fuel and the potential applications of ammonia fuel c...

  10. Ammonia as a Suitable Fuel for Fuel Cells

    OpenAIRE

    Lan, Rong; Tao, Shanwen

    2014-01-01

    Ammonia, an important basic chemical, is produced at a scale of 150 million tons per year. Half of hydrogen produced in chemical industry is used for ammonia production. Ammonia containing 17.5 wt% hydrogen is an ideal carbon-free fuel for fuel cells. Compared to hydrogen, ammonia has many advantages. In this mini-review, the suitability of ammonia as fuel for fuel cells, the development of different types of fuel cells using ammonia as the fuel and the potential applications of ammonia fuel ...

  11. Alternate fuels; Combustibles alternos

    Energy Technology Data Exchange (ETDEWEB)

    Romero Paredes R, Hernando; Ambriz G, Juan Jose [Universidad Autonoma Metropolitana. Iztapalapa (Mexico)

    2003-07-01

    In the definition and description of alternate fuels we must center ourselves in those technological alternatives that allow to obtain compounds that differ from the traditional ones, in their forms to be obtained. In this article it is tried to give an overview of alternate fuels to the conventional derivatives of petroleum and that allow to have a clear idea on the tendencies of modern investigation and the technological developments that can be implemented in the short term. It is not pretended to include all the tendencies and developments of the present world, but those that can hit in a relatively short term, in accordance with agreed with the average life of conventional fuels. Nevertheless, most of the conversion principles are applicable to the spectrum of carbonaceous or cellulosic materials which are in nature, are cultivated or wastes of organic origin. Thus one will approach them in a successive way, the physical, chemical and biological conversions that can take place in a production process of an alternate fuel or the same direct use of the fuel such as burning the sweepings derived from the forests. [Spanish] En la definicion y descripcion de combustibles alternos nos debemos centrar en aquellas alternativas tecnologicas que permitan obtener compuestos que difieren de los tradicionales, al menos en sus formas de ser obtenidos. En este articulo se pretende dar un panorama de los combustibles alternos a los convencionales derivados del petroleo y que permita tener una idea clara sobre las tendencias de la investigacion moderna y los desarrollos tecnologicos que puedan ser implementados en el corto plazo. No se pretende abarcar todas las tendencias y desarrollos del mundo actual, sino aquellas que pueden impactar en un plazo relativamente corto, acordes con la vida media de los combustibles convencionales. Sin embargo, la mayor parte de los principios de conversion son aplicables al espectro de materiales carbonaceos o celulosicos los cuales se encuentran en la naturaleza, se cultivan o son desperdicios de origen organico. Asi se abordara de manera sucesiva las conversiones fisicas, quimicas y biologicas que pueden tener lugar en un proceso de produccion de un combustible alterno o mismo su uso directo como lo seria el quemar basura derivada de los bosques.

  12. Organic fuel cells and fuel cell conducting sheets

    Science.gov (United States)

    Masel, Richard I. (Champaign, IL); Ha, Su (Champaign, IL); Adams, Brian (Savoy, IL)

    2007-10-16

    A passive direct organic fuel cell includes an organic fuel solution and is operative to produce at least 15 mW/cm.sup.2 when operating at room temperature. In additional aspects of the invention, fuel cells can include a gas remover configured to promote circulation of an organic fuel solution when gas passes through the solution, a modified carbon cloth, one or more sealants, and a replaceable fuel cartridge.

  13. Sustainability of Fossil Fuels

    Science.gov (United States)

    Lackner, K. S.

    2002-05-01

    For a sustainable world economy, energy is a bottleneck. Energy is at the basis of a modern, technological society, but unlike materials it cannot be recycled. Energy or more precisely "negentropy" (the opposite of entropy) is always consumed. Thus, one either accepts the use of large but finite resources or must stay within the limits imposed by dilute but self-renewing resources like sunlight. The challenge of sustainable energy is exacerbated by likely growth in world energy demand due to increased population and increased wealth. Most of the world still has to undergo the transition to a wealthy, stable society with the near zero population growth that characterizes a modern industrial society. This represents a huge unmet demand. If ten billion people were to consume energy like North Americans do today, world energy demand would be ten times higher. In addition, technological advances while often improving energy efficiency tend to raise energy demand by offering more opportunity for consumption. Energy consumption still increases at close to the 2.3% per year that would lead to a tenfold increase over the course of the next century. Meeting future energy demands while phasing out fossil fuels appears extremely difficult. Instead, the world needs sustainable or nearly sustainable fossil fuels. I propose the following definition of sustainable under which fossil fuels would well qualify: The use of a technology or resource is sustainable if the intended and unintended consequences will not force its abandonment within a reasonable planning horizon. Of course sustainable technologies must not be limited by resource depletion but this is only one of many concerns. Environmental impacts, excessive land use, and other constraints can equally limit the use of a technology and thus render it unsustainable. In the foreseeable future, fossil fuels are not limited by resource depletion. However, environmental concerns based on climate change and other environmental effects of injecting excess carbon into the environment need to be eliminated before fossil fuels can be considered sustainable. Sustainable fossil fuel use would likely rely on abundant, low-grade hydrocarbons like coal, tar, and shale. It would require a closed cycle approach in which carbon is extracted from the ground, processed for its energy content, and returned into safe and stable sinks for permanent disposal. Such sequestration technologies already exist and more advanced approaches that could maintain access to fossil energy for centuries are on the drawing boards. I will review these options and outline a pathway towards a zero emission fossil fuel based economy that could provide energy at prices comparable to those of today for several centuries. A successful implementation will depend not only on technological advances but also on the development of economic institutions that allow one to pay for the required carbon management. If done correctly the markets will decide whether renewable energy, or sustainable fossil energy provides a better choice.

  14. Automotive Fuel and Exhaust Systems.

    Science.gov (United States)

    Irby, James F.; And Others

    Materials are provided for a 14-hour course designed to introduce the automotive mechanic to the basic operations of automotive fuel and exhaust systems incorporated on military vehicles. The four study units cover characteristics of fuels, gasoline fuel system, diesel fuel systems, and exhaust system. Each study unit begins with a general…

  15. Seventh Edition Fuel Cell Handbook

    Energy Technology Data Exchange (ETDEWEB)

    NETL

    2004-11-01

    Provides an overview of fuel cell technology and research projects. Discusses the basic workings of fuel cells and their system components, main fuel cell types, their characteristics, and their development status, as well as a discussion of potential fuel cell applications.

  16. Advanced Fuels Campaign 2012 Accomplishments

    Energy Technology Data Exchange (ETDEWEB)

    Not Listed

    2012-11-01

    The Advanced Fuels Campaign (AFC) under the Fuel Cycle Research and Development (FCRD) program is responsible for developing fuels technologies to support the various fuel cycle options defined in the DOE Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. The fiscal year 2012 (FY 2012) accomplishments are highlighted below. Kemal Pasamehmetoglu is the National Technical Director for AFC.

  17. Automotive Fuel Processor Development and Demonstration with Fuel Cell Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nuvera Fuel Cells

    2005-04-15

    The potential for fuel cell systems to improve energy efficiency and reduce emissions over conventional power systems has generated significant interest in fuel cell technologies. While fuel cells are being investigated for use in many applications such as stationary power generation and small portable devices, transportation applications present some unique challenges for fuel cell technology. Due to their lower operating temperature and non-brittle materials, most transportation work is focusing on fuel cells using proton exchange membrane (PEM) technology. Since PEM fuel cells are fueled by hydrogen, major obstacles to their widespread use are the lack of an available hydrogen fueling infrastructure and hydrogen's relatively low energy storage density, which leads to a much lower driving range than conventional vehicles. One potential solution to the hydrogen infrastructure and storage density issues is to convert a conventional fuel such as gasoline into hydrogen onboard the vehicle using a fuel processor. Figure 2 shows that gasoline stores roughly 7 times more energy per volume than pressurized hydrogen gas at 700 bar and 4 times more than liquid hydrogen. If integrated properly, the fuel processor/fuel cell system would also be more efficient than traditional engines and would give a fuel economy benefit while hydrogen storage and distribution issues are being investigated. Widespread implementation of fuel processor/fuel cell systems requires improvements in several aspects of the technology, including size, startup time, transient response time, and cost. In addition, the ability to operate on a number of hydrocarbon fuels that are available through the existing infrastructure is a key enabler for commercializing these systems. In this program, Nuvera Fuel Cells collaborated with the Department of Energy (DOE) to develop efficient, low-emission, multi-fuel processors for transportation applications. Nuvera's focus was on (1) developing fuel processor subsystems (fuel reformer, CO cleanup, and exhaust cleanup) that were small enough to integrate on a vehicle and (2) evaluating the fuel processor system performance for hydrogen production, efficiency, thermal integration, startup, durability and ability to integrate with fuel cells. Nuvera carried out a three-part development program that created multi-fuel (gasoline, ethanol, natural gas) fuel processing systems and investigated integration of fuel cell / fuel processor systems. The targets for the various stages of development were initially based on the goals of the DOE's Partnership for New Generation Vehicles (PNGV) initiative and later on the Freedom Car goals. The three parts are summarized below with the names based on the topic numbers from the original Solicitation for Financial Assistance Award (SFAA).

  18. EPRI fuel cladding integrity program

    Energy Technology Data Exchange (ETDEWEB)

    Yang, R. [Electric Power Research Institute, Palo Alto, CA (United States)

    1997-01-01

    The objectives of the EPRI fuel program is to supplement the fuel vendor research to assure that utility economic and operational interests are met. To accomplish such objectives, EPRI has conducted research and development efforts to (1) reduce fuel failure rates and mitigate the impact of fuel failures on plant operation, (2) provide technology to extend burnup and reduce fuel cycle cost. The scope of R&D includes fuel and cladding. In this paper, only R&D related to cladding integrity will be covered. Specific areas aimed at improving fuel cladding integrity include: (1) Fuel Reliability Data Base; (2) Operational Guidance for Defective Fuel; (3) Impact of Water Chemistry on Cladding Integrity; (4) Cladding Corrosion Data and Model; (5) Cladding Mechanical Properties; and (6) Transient Fuel Cladding Response.

  19. Lignite Fuel Enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Charles Bullinger; Nenad Sarunac

    2010-03-31

    Pulverized coal power plants which fire lignites and other low-rank high-moisture coals generally operate with reduced efficiencies and increased stack emissions due to the impacts of high fuel moisture on stack heat loss and pulverizer and fan power. A process that uses plant waste heat sources to evaporate a portion of the fuel moisture from the lignite feedstock in a moving bed fluidized bed dryer (FBD) was developed in the U.S. by a team led by Great River Energy (GRE). The demonstration was conducted with Department of Energy (DOE) funding under DOE Award Number DE-FC26-04NT41763. The objectives of GRE's Lignite Fuel Enhancement project were to demonstrate reduction in lignite moisture content by using heat rejected from the power plant, apply technology at full scale at Coal Creek Station (CCS), and commercialize it. The Coal Creek Project has involved several stages, beginning with lignite drying tests in a laboratory-scale FBD at the Energy Research Center (ERC) and development of theoretical models for predicting dryer performance. Using results from these early stage research efforts, GRE built a 2 ton/hour pilot-scale dryer, and a 75 ton/hour prototype drying system at Coal Creek Station. Operated over a range of drying conditions, the results from the pilot-scale and prototype-scale dryers confirmed the performance of the basic dryer design concept and provided the knowledge base needed to scale the process up to commercial size. Phase 2 of the GRE's Lignite Fuel Enhancement project included design, construction and integration of a full-scale commercial coal drying system (four FBDs per unit) with Coal Creek Units 1 and 2 heat sources and coal handling system. Two series of controlled tests were conducted at Coal Creek Unit 1 with wet and dried lignite to determine effect of dried lignite on unit performance and emissions. Wet lignite was fired during the first, wet baseline, test series conducted in September 2009. The second test series was performed in March/April 2010 after commercial coal drying system was commissioned. Preliminary tests with dried coal were performed in March/April 2010. During the test Unit 2 was in outage and, therefore, test unit (Unit 1) was carrying entire station load and, also, supplying all auxiliary steam extractions. This resulted in higher station service, lower gross power output, and higher turbine cycle heat rate. Although, some of these effects could be corrected out, this would introduce uncertainty in calculated unit performance and effect of dried lignite on unit performance. Baseline tests with dried coal are planned for second half of 2010 when both units at Coal Creek will be in service to establish baseline performance with dried coal and determine effect of coal drying on unit performance. Application of GRE's coal drying technology will significantly enhance the value of lignite as a fuel in electrical power generation power plants. Although existing lignite power plants are designed to burn wet lignite, the reduction in moisture content will increase efficiency, reduce pollution and CO{sub 2} emissions, and improve plant economics. Furthermore, the efficiency of ultra supercritical units burning high-moisture coals will be improved significantly by using dried coal as a fuel. To date, Great River Energy has had 63 confidentiality agreements signed by vendors and suppliers of equipment and 15 utilities. GRE has had agreements signed from companies in Canada, Australia, China, India, Indonesia, and Europe.

  20. Gas fuels and environment

    International Nuclear Information System (INIS)

    Environment protection is one of the major concerns for public and local authorities worldwide. Automotive transports are in a large part responsible of the daily pollution of urban areas. Gaseous fuels can notably contribute to a reduction of this pollution. This paper is divided into three parts. The first part analyses the reasons and components of pollution in the transport sector: increasing use of private cars with respect to public transport systems for short distance travels, preponderance of road transport for long distance goods delivery, increase of air traffic for passengers and freight transports. For the air pollution itself, three levels are considered: the local CO, VOC (volatile organic compounds), SO2, NOx and particulates concentration, the regional pollution which corresponds to spatially diluted pollutants over a wider zone (acid rain and photochemical pollution), and the worldwide pollution with the greenhouse effect and the high altitude ozone problem. The vehicles noise in another important source of urban pollution. The second part of the paper analyses the environmental advantages of gaseous fuels and compares the combustion properties and the pollutants and noise emissions from natural gas for vehicles and LPG with respect to the classical liquid fuels used for private cars and trucks. The third part of the paper is devoted to the US Clean Air Act which regroups the actions developed since 1970 to fight against the photochemical p 1970 to fight against the photochemical pollution and the 'smog' phenomena. Its historical evolution is summarized: the creation of the Environment Protection Agency (EPA), the norms for air quality (NAAQS) and the 1990's eleven amendments about the classification of States pollution, the pollutants emission norms and the development of clean vehicles. (J.S.)Environment protection is one of the major concerns for public and local authorities worldwide. Automotive transports are in a large part responsible of the daily pollution of urban areas. Gaseous fuels can notably contribute to a reduction of this pollution. This paper is divided into three parts. The first part analyses the reasons and components of pollution in the transport sector: increasing use of private cars with respect to public transport systems for short distance travels, preponderance of road transport for long distance goods delivery, increase of air traffic for passengers and freight transports. For the air pollution itself, three levels are considered: the local CO, VOC (volatile organic compounds), SO2, NOx and particulates concentration, the regional pollution which corresponds to spatially diluted pollutants over a wider zone (acid rain and photochemical pollution), and the worldwide pollution with the greenhouse effect and the high altitude ozone problem. The vehicles noise in another important source of urban pollution. The second part of the paper analyses the environmental advantages of gaseous fuels and compares the combustion properties and the pollutants and noise emissions from natural gas for vehicles and LPG with respect to the classical liquid fuels used for private cars and trucks. The third part of the paper is devoted to the US Clean Air Act which regroups the actions developed since 1970 to fight against the photochemical

  1. Sulphur-free Fuel

    International Nuclear Information System (INIS)

    The Mongstad refinery operated by Statoil will be able to produce petrol and diesel oil with virtually no sulphur in 2003. That is two years before such fuel becomes compulsory in the European Union. Work is already under way on the site of the new desulphurization plant. According to Statoil's plans the facility will be ready in the first quarter of 2003. Mongstad will then supply automotive fuels with a sulphur content of only 10 parts per million (ppm). Sulphur forms a natural component in crude oil feedstock, and current European standards permit petrol to contain 150 ppm of this substance. It will cost Statoil NOK 0.12-0.13 per litre to meet the 10 ppm requirement. The Norwegian government should reduce its environment duty by a corresponding amount from the first day the refinery can deliver to the new standard. Most petrol from Mongstad contains up to 150 ppm. The EU is expected to require that 10-ppm petrol should be available in 2005, and become the sole standard in 2008. Germany has approved a cut of DEM 0.03 (about NOK 0.13) per litre in excise duty on petrol and diesel oil containing 10 ppm sulphur from 1 January 2003. If no market develops for this type of petrol in Norway, it could be exported to Germany and other countries which have reduced excise duty. The Norwegian Minister for the Environment will look at ways to change the legislation so that a market for this cleaner fuel will develop also in Norway

  2. Electricity as Transportation ``Fuel''

    Science.gov (United States)

    Tamor, Michael

    2013-04-01

    The personal automobile is a surprisingly efficient device, but its place in a sustainable transportation future hinges on its ability use a sustainable fuel. While electricity is widely expected to be such a ``fuel,'' the viability of electric vehicles rests on the validity of three assumptions. First, that the emissions from generation will be significantly lower than those from competing chemical fuels whether `renewable' or fossil. Second, that advances in battery technology will deliver adequate range and durability at an affordable cost. Third, that most customers will accept any functional limitations intrinsic to electrochemical energy storage. While the first two are subjects of active research and vigorous policy debate, the third is treated virtually as a given. Popular statements to the effect that ``because 70% of all daily travel is accomplished in less than 100 miles, mass deployment of 100 mile EVs will electrify 70% of all travel'' are based on collections of one-day travel reports such as the National Household Travel Survey, and so effectively ignore the complexities of individual needs. We have analyzed the day-to-day variations of individual vehicle usage in multiple regions and draw very different conclusions. Most significant is that limited EV range results in a level of inconvenience that is likely to be unacceptable to the vast majority of vehicle owners, and for those who would accept that inconvenience, battery costs must be absurdly low to achieve any economic payback. In contrast, the plug-in hybrid (PHEV) does not suffer range limitations and delivers economic payback for most users at realistic battery costs. More importantly, these findings appear to be universal in developed nations, with labor market population density being a powerful predictor of personal vehicle usage. This ``scalable city'' hypothesis may prove to a powerful predictor of the evolution of transportation in the large cities of the developing world.

  3. Intelligent fuel feeding and control system for heterogeneous fuels

    Energy Technology Data Exchange (ETDEWEB)

    Joronen, T.; Lehto, J.; Nylund, M. [Metso Automation, Tampere (Finland)

    2004-07-01

    The world's largest bio-fuel fired boiler, Alholmens Kraft CFB boiler at Pietarsaari, Finland is designed to operate with any fuel mixture between 100% coal and 100% biofuel. The paper describes a project to develop a new and intelligent fuel feeding system at the plant. The design of the fuel feeding system is described, along with the fuel master controller, the novel fuel power compensator, and the advanced fuel feeding control system. Results of implementing the system and benefits of the process are discussed. The project showed that the demonstrated intelligent fuel feeding system improves the performance of the boiler when heterogeneous fuels are utilised. 6 refs., 15 figs., 2 tabs.

  4. Solar Fuels: Vision and Concepts

    OpenAIRE

    Styring, Stenbjörn

    2012-01-01

    The world needs new, environmentally friendly and renewable fuels to allow an exchange from fossil fuels. The fuel must be made from cheap and ‘endless’ resources that are available everywhere. The new research area on solar fuels, which are made from solar energy and water, aims to meet this demand. The paper discusses why we need a solar fuel and why electricity is not enough; it proposes solar energy as the major renewable energy source to feed from. The present research strategies, involv...

  5. Nuclear Fuel Fabrication in Romania

    International Nuclear Information System (INIS)

    This paper briefly describes the evolution of nuclear fuel manufacturing in Romania. Commercial production at Nuclear Fuel Plant – Pitesti (NFP) has started in 1995, in connection with commissioning of the first CANDU unit at Cernavoda NPP. Since then, more than 110, 000 CANDU fuel bundles have been delivered to the plant. As defective fuel represents less than 0.09% from the total, the fuel performance is very good. (author)

  6. Spent-fuel-storage alternatives

    International Nuclear Information System (INIS)

    The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed

  7. Outlook for alternative transportation fuels

    Energy Technology Data Exchange (ETDEWEB)

    Gushee, D.E. [Univ. of Illinois, Chicago, IL (United States)

    1996-12-31

    This presentation provides a brief review of regulatory issues and Federal programs regarding alternative fuel use in automobiles. A number of U.S. DOE initiatives and studies aimed at increasing alternative fuels are outlined, and tax incentives in effect at the state and Federal levels are discussed. Data on alternative fuel consumption and alternative fuel vehicle use are also presented. Despite mandates, tax incentives, and programs, it is concluded alternative fuels will have minimal market penetration. 7 refs., 5 tabs.

  8. Deep desulfurization of hydrocarbon fuels

    Science.gov (United States)

    Song, Chunshan (State College, PA); Ma, Xiaoliang (State College, PA); Sprague, Michael J. (Calgary, CA); Subramani, Velu (State College, PA)

    2012-04-17

    The invention relates to processes for reducing the sulfur content in hydrocarbon fuels such as gasoline, diesel fuel and jet fuel. The invention provides a method and materials for producing ultra low sulfur content transportation fuels for motor vehicles as well as for applications such as fuel cells. The materials and method of the invention may be used at ambient or elevated temperatures and at ambient or elevated pressures without the need for hydrogen.

  9. Light water reactor fuel cycle

    International Nuclear Information System (INIS)

    The current state is described of the introduction in the world, of the technologies of light water reactor fuel cycle with emphasis on the technology of nuclear fuel production, spent fuel management, and radioactive waste processing and disposal. The basic technical and economic parameters are systematically classified of the individual stages of the fuel cycle and the overall developmental trends are outlined of providing fuel cycle services. (B.S.)

  10. Progress of the DUPIC Fuel Compatibility Analysis (IV) - Fuel Performance

    International Nuclear Information System (INIS)

    This study describes the mechanical compatibility of the direct use of spent pressurized water reactor (PWR) fuel in Canada deuterium uranium (CANDU) reactors (DUPIC) fuel, when it is loaded into a CANDU reactor. The mechanical compatibility can be assessed for the fuel management, primary heat transport system, fuel channel, and the fuel handling system in the reactor core by both the experimental and analytic methods. Because the physical dimensions of the DUPIC fuel bundle adopt the CANDU flexible (CANFLEX) fuel bundle design which has already been demonstrated for a commercial use in CANDU reactors, the experimental compatibility analyses focused on the generation of material property data and the irradiation tests of the DUPIC fuel, which are used for the computational analysis. The intermediate results of the mechanical compatibility analysis have shown that the integrity of the DUPIC fuel is mostly maintained under the high power and high burnup conditions even though some material properties like the thermal conductivity is a little lower compared to the uranium fuel. However it is required to slightly change the current DUPIC fuel design to accommodate the high internal pressure of the fuel element. It is also strongly recommended to perform more irradiation tests of the DUPIC fuel to accumulate a database for the demonstration of the DUPIC fuel performance in the CANDU reactor

  11. Nuclear reactor fuel element

    International Nuclear Information System (INIS)

    The fuel element box for a BWR is situated with a corner bolt on the inside in one corner of its top on the top side of the top plate. This corner bolt is screwed down with a bolt with a corner part which is provided with leaf springs outside on two sides, where the bolt has a smaller diameter and an expansion shank. The bolt is held captive to the bolt head on the top and the holder on the bottom of the corner part. The holder is a locknut. If the expansion forces are too great, the bolt can only break at the expansion shank. (HP)

  12. 24-month fuel cycles

    International Nuclear Information System (INIS)

    Twenty-four month reload cycles can potentially lessen total power generation costs. While 24-month cores increase purchased fuel costs, the longer cycles reduce the number of refueling outages and thus enhance plant availability; men-rem exposure to site personnel and other costs associated with reload core design and licensing are also reduced. At dual unit sites an operational advantage can be realized by refueling each plant alternately on a 1-year offset basis. This results in a single outage per site per year which can be scheduled for off-peak periods or when replacement power costs are low

  13. Fuels for Thought!

    Directory of Open Access Journals (Sweden)

    Clifford Louime

    2009-07-01

    Full Text Available When it comes to the marketing of the bioenergy brand, one of the catchiest slogans out these days is “25 by ‘25”. Adopted and supported by industries, academia and government agencies alike, this organization simply aims to supply 25 percent of our energy from renewable resources by the year 2025. By focusing its future efforts on wind, solar and biomass resources, the “25 by 25” initiative is expected to create new jobs, develop novel technologies, help mitigate the effects of global warming and reduce our dependence on fossil fuels. [...

  14. Fueling by liquid jets

    International Nuclear Information System (INIS)

    Maintenance of steady-state burn in tokamak fusion reactors will require a reliable method for fueling them during operation. The injection of high-velocity dense-phase DT is one solution under investigation. The eventual requirements are not known precisely but the next series of experiments in tokamak devices (e.g., Doublet III, PDX) could use millimeter size particles with velocities of the order of 2000 m/s. This paper presents results on the feasibility of a high-pressure injection system to meet these objectives

  15. Nuclear fuel supplies

    International Nuclear Information System (INIS)

    When the International Atomic Energy Agency was set up nearly three years ago, it was widely believed that it would soon become a world bank or broker for the supply of nuclear fuel. Some observers now seem to feel that this promise has been rather slow to come to fruition. A little closer analysis would, however, show that the promise can be fulfilled only in a certain objective context, and to the extent that this context exists, the development of the Agency's role has been commensurate with the actual needs of the situation

  16. Nuclear fuel recycling system

    International Nuclear Information System (INIS)

    In the processes of nuclear fuel manufacture, scrap material such as uncontaminated reject powder and reject pellets, which would previously have been reprocessed chemially in conversion of the uranium values by dissolution into liquid form, is now mechanically reduced by crushing in a substantially inert atmosphere and converted to a slurry having between about 70 to 85 weight per cent solids, and then attrition milled utilizing scrap sintered UO2 pellets as the reducing medium. Grinding swarf generated during the centerless grinding of UO2 pellets may also be recycled provided it is sufficiently pure

  17. Carbonate fuel cell anodes

    Science.gov (United States)

    Donado, Rafael A. (Chicago, IL); Hrdina, Kenneth E. (Glenview, IL); Remick, Robert J. (Bolingbrook, IL)

    1993-01-01

    A molten alkali metal carbonates fuel cell porous anode of lithium ferrite and a metal or metal alloy of nickel, cobalt, nickel/iron, cobalt/iron, nickel/iron/aluminum, cobalt/iron/aluminum and mixtures thereof wherein the total iron content including ferrite and iron of the composite is about 25 to about 80 percent, based upon the total anode, provided aluminum when present is less than about 5 weight percent of the anode. A process for production of the lithium ferrite containing anode by slipcasting.

  18. Fuel performance in water storage

    International Nuclear Information System (INIS)

    Westinghouse Idaho Nuclear Company operates the Idaho Chemical Processing Plant (ICPP) at the Idaho National Engineering Laboratory (INEL) for the Department of Energy (DOE). A variety of different types of fuels have been stored there since the 1950's prior to reprocessing for uranium recovery. In April of 1992, the DOE decided to end fuel reprocessing, changing the mission at ICPP. Fuel integrity in storage is now viewed as long term until final disposition is defined and implemented. Thus, the condition of fuel and storage equipment is being closely monitored and evaluated to ensure continued safe storage. There are four main areas of fuel storage at ICPP: an original underwater storage facility (CPP-603), a modern underwater storage facility (CPP-666), and two dry fuel storage facilities. The fuels in storage are from the US Navy, DOE (and its predecessors the Energy Research and Development Administration and the Atomic Energy Commission), and other research programs. Fuel matrices include uranium oxide, hydride, carbide, metal, and alloy fuels. In the underwater storage basins, fuels are clad with stainless steel, zirconium, and aluminum. Also included in the basin inventory is canned scrap material. The dry fuel storage contains primarily graphite and aluminum type fuels. A total of 55 different fuel types are currently stored at the Idaho Chemical Processing Plant. The corrosion resistance of the barrier material is of primary concern in evaluating the integrity of the fuel in long term water storage. The barrier material is either the fuel cladding (if not canned) or the can material

  19. Development of PEM fuel cell technology at international fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, D.J.

    1996-04-01

    The PEM technology has not developed to the level of phosphoric acid fuel cells. Several factors have held the technology development back such as high membrane cost, sensitivity of PEM fuel cells to low level of carbon monoxide impurities, the requirement to maintain full humidification of the cell, and the need to pressurize the fuel cell in order to achieve the performance targets. International Fuel Cells has identified a hydrogen fueled PEM fuel cell concept that leverages recent research advances to overcome major economic and technical obstacles.

  20. 75 FR 79964 - Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard Program

    Science.gov (United States)

    2010-12-21

    ...2060-AQ31 Regulation of Fuels and Fuel Additives...such a revision would improve the clarity of the regulations...qualification of eligible fuel volumes that could be...a batch of renewable fuel to EMTS, as proposed...annual effect on the economy of $100 million or...

  1. Fuel cell technology program

    Science.gov (United States)

    1973-01-01

    A fuel cell technology program was established to advance the state-of-the-art of hydrogen-oxygen fuel cells using low temperature, potassium hydroxide electrolyte technology as the base. Program tasks are described consisting of baseline cell design and stack testing, hydrogen pump design and testing, and DM-2 powerplant testing and technology extension efforts. A baseline cell configuration capable of a minimum of 2000 hours of life was defined. A 6-cell prototype stack, incorporating most of the scheme cell features, was tested for a total of 10,497 hours. A 6-cell stack incorporating all of the design features was tested. The DM-2 powerplant with a 34 cell stack, an accessory section packaged in the basic configuration anticipated for the space shuttle powerplant and a powerplant control unit, was defined, assembled, and tested. Cells were used in the stack and a drag-type hydrogen pump was installed in the accessory section. A test program was established, in conjunction with NASA/JSC, based on space shuttle orbiter mission. A 2000-hour minimum endurance test and a 5000-hour goal were set and the test started on August 8, 1972. The 2000-hour milestone was completed on November 3, 1972. On 13 March 1973, at the end of the thirty-first simulated seven-day mission and 5072 load hours, the test was concluded, all goals having been met. At this time, the DM-2 was in excellent condition and capable of additional endurance.

  2. Winter fuels report

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-13

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s, as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6-10 day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  3. Spent fuel interim storage

    International Nuclear Information System (INIS)

    The official inauguration of the spent fuel interim storage took place on Monday July 28, 2003 at Cernavoda NNP. The inaugural event was attended by local and central public authority representatives, a Canadian Government delegation as well as newsmen from local and central mass media and numerous specialists from Cernavoda NPP compound. Mr Andrei Grigorescu, State Secretary with the Economy and Commerce Ministry, underlined in his talk the importance of this objective for the continuous development of nuclear power in Romania as well as for Romania's complying with the EU practice in this field. Also the excellent collaboration between the Canadian contractor AECL and the Romanian partners Nuclear Montaj, CITON, UTI, General Concret in the accomplishment of this unit at the planned terms and costs. On behalf of Canadian delegation, spoke Minister Don Boudria. He underlined the importance which the Canadian Government affords to the cooperation with Romania aiming at specific objectives in the field of nuclear power such as the Cernavoda NPP Unit 2 and spent fuel interim storage. After traditional cutting of the inaugural ribbon by the two Ministers the festivities continued on the Cernavoda NPP Compound with undersigning the documents regarding the project completion and a press conference

  4. Hydrogen fuel. Production

    International Nuclear Information System (INIS)

    Hydrogen is a highly energetic and non-toxic gas capable to generate heat by direct combustion with water and nitrogen oxides as residues, and to generate electricity through fuel cells with water as unique residue. Hydrogen is, like electricity, an energy vector because it does not exist at the free state in nature but always in a combined state, mainly in water and hydrocarbons. This article treats of hydrogen production. Producing hydrogen requires to extract it from its compounds using an energy consuming chemical or physico-chemical process: 1 - exploited or directly exploitable processes: from fossil fuels (vapo-reforming, partial oxidation), derived methods (auto-thermal reforming, methanol reforming, water vapor pyrolysis and plasma reforming, small-scale hydrogen generation), water electrolysis; 2 - processes under study: water dissociation using a nuclear reactor (high temperature electrolysis, thermochemical cycles), water photo-electrolysis, thermochemical biomass transformation, production by photosynthetic microorganisms; 3 - purification; 4 - environmental impact: CO2 capture and storage, hydrogen as best auxiliary of renewable energy sources. (J.S.)

  5. Improved nuclear fuel element

    International Nuclear Information System (INIS)

    The invention is of a nuclear fuel element which comprises a central core of a body of nuclear fuel material selected from the group consisting of compounds of uranium, plutonium, thorium and mixtures thereof, and an elongated composite cladding container comprising a zirconium alloy tube containing constituents other than zirconium in an amount greater than about 5000 parts per million by weight and an undeformed metal barrier of moderate purity zirconium bonded to the inside surface of the alloy tube. The container encloses the core so as to leave a gap between the container and the core during use in a nuclear reactor. The metal barrier is of moderate purity zirconium with an impurity level on a weight basis of at least 1000ppm and less than 5000ppm. Impurity levels of specific elements are given. Variations of the invention are also specified. The composite cladding reduces chemical interaction, minimizes localized stress and strain corrosion and reduces the likelihood of a splitting failure in the zirconium alloy tube. Other benefits are claimed. (U.K.)

  6. Winter fuels report

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-04

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition, underground storage, and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil price comparisons for the United States and selected cities; and US total heating degree-days by city. This report will be published weekly by the EIA starting the first week in October 1990 and will continue until the first week in April 1991. The data will also be available electronically after 5:00 p.m. on Thursday during the heating season through the EIA Electronic Publication System (EPUB). 12 tabs.

  7. Engines, fuels and pollution

    International Nuclear Information System (INIS)

    The article points out the close relationship among engines, fuels and polluting emissions, and outlines an overall picture of future trends. The technical trade literature shows that diesel engines may undergo strong future development, due to their more favourable energy converting and less polluting characteristics. With regard to petrol injection engines, their improved construction under extremely close tolerances will result in a severe tightening-up of fuel specifications (with or without lead), so as to prevent the deposition of residues at the inlet (manifolds, injectors, valves, and combustion chamber), and their ensuing adverse effects on vehicle handling especially during the 'warm-up' stage. Recent checkups and tests run in the USA have evidenced that automotive engine-derived pollution in towns is in fact considerably more severe than that derived from mathematical models based on 'average emission factors' determined on a laboratory scale (roller bench tests, vaporization tests etc.). The entire body of regulations issued so far becomes questionable, and supplementary studies based on road-tests have been proposed. The paper's discussion is concluded with statistical data showing traffic pollution caused by VOCs (volatile organic compounds)

  8. HTGR spent fuel composition and fuel element block flow

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, C.J.; Holder, N.D.; Pierce, V.H.; Robertson, M.W.

    1976-07-01

    The High-Temperature Gas-Cooled Reactor (HTGR) utilizes the thorium-uranium fuel cycle. Fully enriched uranium fissile material and thorium fertile material are used in the initial reactor core and for makeup fuel in the recycle core loadings. Bred /sup 233/U and unburned /sup 235/U fissile materials are recovered from spent fuel elements, refabricated into recycle fuel elements, and used as part of the recycle core loading along with the makeup fuel elements. A typical HTGR employs a 4-yr fuel cycle with approximately one-fourth of the core discharged and reloaded annually. The fuel element composition, including heavy metals, impurity nuclides, fission products, and activation products, has been calculated for discharged spent fuel elements and for reload fresh fuel and recycle fuel elements for each cycle over the life of a typical HTGR. Fuel element compositions are presented for the conditions of equilibrium recycle. Data describing compositions for individual reloads throughout the reactor life are available in a detailed volume upon request. Fuel element block flow data have been compiled based on a forecast HTGR market. Annual block flows are presented for each type of fuel element discharged from the reactors for reprocessing and for refabrication.

  9. Factors controlling metal fuel lifetime

    International Nuclear Information System (INIS)

    The reliability of metal fuel elements is determined by a fuel burnup at which a statistically predicted number of fuel breaches would occur, the number of breaches determined by the amount of free fission gas which a particular reactor design can tolerate. The reliability is therefore measured using experimentally determined breach statistics, or by modelling fuel element behavior and those factors which contribute to cladding breach. The factors are fuel/cladding mechanical and chemical interactions, fission gas pressure, fuel phase transformations involving volume changes, and fission product effects on cladding integrity. Experimental data for EBR-II fuel elements has shown that the primary, and perhaps the only significant factor affecting metal fuel reliability, is the pressure-induced stresses caused by fission gas release. Other metal fuel/cladding systems may perform similarly

  10. Dry Process Fuel Performance Evaluation

    International Nuclear Information System (INIS)

    The objective of the project is to establish the performance evaluation system of DUPIC fuel during the Phase II R and D. In order to fulfil this objectives, irradiation test of DUPIC fuel was carried out in HANARO using the non-instrumented and SPND-instrumented rig. Also, the analysis on the in-reactor behavior analysis of DUPIC fuel, out-pile test using simulated DUPIC fuel as well as performance and integrity assessment in a commercial reactor were performed during this Phase. The R and D results of the Phase II are summarized as follows : - Performance evaluation of DUPIC fuel via irradiation test in HANARO - Post irradiation examination of irradiated fuel and performance analysis - Development of DUPIC fuel performance code (modified ELESTRES) considering material properties of DUPIC fuel - Irradiation behavior and integrity assessment under the design power envelope of DUPIC fuel - Foundamental technology development of thermal/mechanical performance evaluation using ANSYS (FEM package)

  11. Dry Process Fuel Performance Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Myung Seung; Song, K. C.; Moon, J. S. and others

    2005-04-15

    The objective of the project is to establish the performance evaluation system of DUPIC fuel during the Phase II R and D. In order to fulfil this objectives, irradiation test of DUPIC fuel was carried out in HANARO using the non-instrumented and SPND-instrumented rig. Also, the analysis on the in-reactor behavior analysis of DUPIC fuel, out-pile test using simulated DUPIC fuel as well as performance and integrity assessment in a commercial reactor were performed during this Phase. The R and D results of the Phase II are summarized as follows : - Performance evaluation of DUPIC fuel via irradiation test in HANARO - Post irradiation examination of irradiated fuel and performance analysis - Development of DUPIC fuel performance code (modified ELESTRES) considering material properties of DUPIC fuel - Irradiation behavior and integrity assessment under the design power envelope of DUPIC fuel - Foundamental technology development of thermal/mechanical performance evaluation using ANSYS (FEM package)

  12. Motor fuel prices in Turkey

    International Nuclear Information System (INIS)

    The world's most expensive motor fuel (gasoline, diesel and LPG) is sold most likely in the Republic of Turkey. This paper investigates the key issues related to the motor fuel prices in Turkey. First of all, the paper analyses the main reason behind high prices, namely motor fuel taxes in Turkey. Then, it estimates the elasticity of motor fuel demand in Turkey using an econometric analysis. The findings indicate that motor fuel demand in Turkey is quite inelastic and, therefore, not responsive to price increases caused by an increase in either pre-tax prices or taxes. Therefore, fuel market in Turkey is open to opportunistic behavior by firms (through excessive profits) and the government (through excessive taxes). Besides, the paper focuses on the impact of high motor fuel prices on road transport associated activities, including the pattern of passenger transportation, motorization rate, fuel use, total kilometers traveled and CO2 emissions from road transportation. The impact of motor fuel prices on income distribution in Turkey and Turkish public opinion about high motor fuel prices are also among the subjects investigated in the course of the study. - Highlights: • The key issues (e.g. taxes) related to motor fuel prices in Turkey are explored. • Their impact on transport activities and income distribution is also investigated. • An econometric analysis is performed to estimate motor fuel demand in Turkey. • Motor fuel demand in Turkey is found to be quite inelastic. • Turkish fuel market is open to opportunistic behavior by firms and the government

  13. CO2-neutral fuels

    Science.gov (United States)

    Goede, A. P. H.

    2015-08-01

    The need for storage of renewable energy (RE) generated by photovoltaic, concentrated solar and wind arises from the fact that supply and demand are ill-matched both geographically and temporarily. This already causes problems of overcapacity and grid congestion in countries where the fraction of RE exceeds the 20% level. A system approach is needed, which focusses not only on the energy source, but includes conversion, storage, transport, distribution, use and, last but not least, the recycling of waste. Furthermore, there is a need for more flexibility in the energy system, rather than relying on electrification, integration with other energy systems, for example the gas network, would yield a system less vulnerable to failure and better adapted to requirements. For example, long-term large-scale storage of electrical energy is limited by capacity, yet needed to cover weekly to seasonal demand. This limitation can be overcome by coupling the electricity net to the gas system, considering the fact that the Dutch gas network alone has a storage capacity of 552 TWh, sufficient to cover the entire EU energy demand for over a month. This lecture explores energy storage in chemicals bonds. The focus is on chemicals other than hydrogen, taking advantage of the higher volumetric energy density of hydrocarbons, in this case methane, which has an approximate 3.5 times higher volumetric energy density. More importantly, it allows the ready use of existing gas infrastructure for energy storage, transport and distribution. Intermittent wind electricity generated is converted into synthetic methane, the Power to Gas (P2G) scheme, by splitting feedstock CO2 and H2O into synthesis gas, a mixture of CO and H2. Syngas plays a central role in the synthesis of a range of hydrocarbon products, including methane, diesel and dimethyl ether. The splitting is accomplished by innovative means; plasmolysis and high-temperature solid oxygen electrolysis. A CO2-neutral fuel cycle is established by powering the conversion step by renewable energy and recapturing the CO2 emitted after combustion, ultimately from the surrounding air to cover emissions from distributed source. Carbon Capture and Utilisation (CCU) coupled to P2G thus creates a CO2-neutral energy system based on synthetic hydrocarbon fuel. It would enable a circular economy where the carbon cycle is closed by recovering the CO2 emitted after reuse of synthetic hydrocarbon fuel. The critical step, technically as well as economically, is the conversion of feedstock CO2/H2O into syngas rather than the capture of CO2 from ambient air.

  14. A fuel composition

    Energy Technology Data Exchange (ETDEWEB)

    Kiiti, M.; Masayasu, Kh.

    1984-06-22

    A fuel composition (Km) is proposed which is produced by supplementing a hydrocarbon mixture of two components from a group of water, alcohol or water and alcohol, a solid hydrocarbon (Uv) and a liquid hydrocarbon with a modified vinylacetate resin (MVS), which includes 50 to 90 molecular percent hydrophobic groups and or ion groups and is characterized by a mean degree of saponification of less than or equal to 95 molecular percent (preferably 0 to 60 molecular percent) and a mean degree of polymerization of less than or equal to 1,500 (preferably less than or equal to 1,000). The additive may also be polyvinylacetate resin (PVAS) which is characterized by a mean degree of saponification of less than or equal to 80 molecular percent (preferably 20 to 60 molecular percent) and a mean degree of polymerization of less than or equal to 1,500 (preferably 50 to 1,000). The composition maintains stability and fluidity for a long period of time with storage at low temperatures. MeOH, EtOH, PrOH, BuOH, coal, bitumen, coal tar, gasoline, jet and diesel fuels and A, B and C heavy crude oil (preferably with a boiling point of less than or equal to 200 degrees) are used as the components of the composition. Compounds produced through copolymerization of vinylacetate and vinyl monomers, which contain alkyl and phenyl hydrophobic groups, as well as residues of carbonic, sulfonic and phosphoric acids, NO2-anion, SO3-anion, NH4-cation and other ion groups, are used as the modified vinylacetate resin. The modified vinylacetate resin is added in a volume of 0.005 to 5 percent and the polyvinylacetate resin is added in a volume of 5 to 90 percent. Example. One hundred parts of diesel fuel is mixed with 5 parts MeOH and 0.4 parts dodecene copolymer (25 molecular percent) and vinylacetate (50 molecular percent) in a steel (St) vessel at 18 to 20 degrees.

  15. CO2-neutral fuels

    Directory of Open Access Journals (Sweden)

    Goede A. P. H.

    2015-01-01

    Full Text Available The need for storage of renewable energy (RE generated by photovoltaic, concentrated solar and wind arises from the fact that supply and demand are ill-matched both geographically and temporarily. This already causes problems of overcapacity and grid congestion in countries where the fraction of RE exceeds the 20% level. A system approach is needed, which focusses not only on the energy source, but includes conversion, storage, transport, distribution, use and, last but not least, the recycling of waste. Furthermore, there is a need for more flexibility in the energy system, rather than relying on electrification, integration with other energy systems, for example the gas network, would yield a system less vulnerable to failure and better adapted to requirements. For example, long-term large-scale storage of electrical energy is limited by capacity, yet needed to cover weekly to seasonal demand. This limitation can be overcome by coupling the electricity net to the gas system, considering the fact that the Dutch gas network alone has a storage capacity of 552 TWh, sufficient to cover the entire EU energy demand for over a month. This lecture explores energy storage in chemicals bonds. The focus is on chemicals other than hydrogen, taking advantage of the higher volumetric energy density of hydrocarbons, in this case methane, which has an approximate 3.5 times higher volumetric energy density. More importantly, it allows the ready use of existing gas infrastructure for energy storage, transport and distribution. Intermittent wind electricity generated is converted into synthetic methane, the Power to Gas (P2G scheme, by splitting feedstock CO2 and H2O into synthesis gas, a mixture of CO and H2. Syngas plays a central role in the synthesis of a range of hydrocarbon products, including methane, diesel and dimethyl ether. The splitting is accomplished by innovative means; plasmolysis and high-temperature solid oxygen electrolysis. A CO2-neutral fuel cycle is established by powering the conversion step by renewable energy and recapturing the CO2 emitted after combustion, ultimately from the surrounding air to cover emissions from distributed source. Carbon Capture and Utilisation (CCU coupled to P2G thus creates a CO2-neutral energy system based on synthetic hydrocarbon fuel. It would enable a circular economy where the carbon cycle is closed by recovering the CO2 emitted after reuse of synthetic hydrocarbon fuel. The critical step, technically as well as economically, is the conversion of feedstock CO2/H2O into syngas rather than the capture of CO2 from ambient air.

  16. Fuel rod distance measuring device for nuclear fuel assembly

    International Nuclear Information System (INIS)

    The present invention provides a device for electrically measuring the distance between fuel rods of a nuclear fuel assembly comprising a plurality of fuel rods arranged in parallel with each other each at a distance by using an eddy current test sensor. A carriage can move in the longitudinal direction of the fuel assembly and has a position detection function. The eddy current test sensor is disposed, to the carriage, movably in the lateral direction of the nuclear fuel assembly. The signals sent from the sensor and the position signals sent from the position detector are calculated. The device having such a constitution can scan all of the surfaces of the fuel assembly to be measured by the sensor capable of measuring the gaps between fuel rods quantitatively and mechanically, the carriage, and the laterally driven device. As a result, measurement for the gap of fuel rods with positional reproducibility at a high accuracy can be attained. (I.S.)

  17. Preliminary Neutronics Analysis Of Fuel Pebble With Thorium Fuel Cycle

    International Nuclear Information System (INIS)

    A new fuel pebble was designed based on Thorium fuel cycle. 231Pa has been added into fuel pebble for obtaining the minimum reactivity swing. The results show that the new designed pebble fuel with 7.0 % 233U enrichment adding 3.2% 231Pa, the keff is to be controlled up to 65 GWd/t; the other design with 8.0 % 233U enrichment requires 3.9% 231Pa, the keff therefore is remain up to 80 GWd/t. About 95% of loaded 231Pa in fuel pebble is depleted after 120 GWd/t. The results imply that it is optimistic to design the fuel pebble with 233U, 231Pa and 232Th; but some effects such as fuel temperature effect, distribution of TRISO particle in pebble fuel, etc. are required to investigate. (author)

  18. Emergency fuels utilization guidebook. Alternative Fuels Utilization Program

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    The basic concept of an emergency fuel is to safely and effectively use blends of specification fuels and hydrocarbon liquids which are free in the sense that they have been commandeered or volunteered from lower priority uses to provide critical transportation services for short-duration emergencies on the order of weeks, or perhaps months. A wide variety of liquid hydrocarbons not normally used as fuels for internal combustion engines have been categorized generically, including limited information on physical characteristics and chemical composition which might prove useful and instructive to fleet operators. Fuels covered are: gasoline and diesel fuel; alcohols; solvents; jet fuels; kerosene; heating oils; residual fuels; crude oils; vegetable oils; gaseous fuels.

  19. Proton exchange membrane fuel cells

    CERN Document Server

    Qi, Zhigang

    2013-01-01

    Preface Proton Exchange Membrane Fuel CellsFuel CellsTypes of Fuel CellsAdvantages of Fuel CellsProton Exchange Membrane Fuel CellsMembraneCatalystCatalyst LayerGas Diffusion MediumMicroporous LayerMembrane Electrode AssemblyPlateSingle CellStackSystemCell Voltage Monitoring Module (CVM)Fuel Supply Module (FSM)Air Supply Module (ASM)Exhaust Management Module (EMM)Heat Management Module (HMM)Water Management Module (WMM)Internal Power Supply Module (IPM)Power Conditioning Module (PCM)Communications Module (COM)Controls Module (CM)SummaryThermodynamics and KineticsTheoretical EfficiencyVoltagePo

  20. Fuel assembly configuration image analyzer

    International Nuclear Information System (INIS)

    Neutron irradiation inside an operating nuclear reactor changes the dimensions of the reactor fuel assembly and its components. For example, irradiation can lengthen the fuel assembly and fuel rods, and change the gap between fuel rods. Mitsubishi Heavy Industries, Ltd. and Mitsubishi Nuclear Fuel Co., Ltd. have jointly developed a new, computer-assisted system to measure such changes. Using this system, a fuel assembly can be videotaped with underwater cameras and its dimensions precisely analyzed through efficient processing and automatic measurement of the video images. (author)

  1. Irradiation experience with FRAMATOME fuel

    International Nuclear Information System (INIS)

    This program principally consists of: - monitoring of the reactor coolant activity due to fission and corrosion products, - on-site non-destructive examinations (visual, dimensional, gamma spectrometry, etc.) on irradiated fuel assemblies, - on-site and hot cell examinations on removable fuel rods. Additional tests are also in progress in order to improve models used in fuel rod and fuel assembly design and to verify the technical limits of fuel operation with respect to power ramp, daily load follow, load regulation, etc. The objective of this paper is to review the behavior of FRAMATOME fuel in power reactors

  2. Device for locating defective fuel

    International Nuclear Information System (INIS)

    A method and apparatus for locating defective nuclear fuel elements is disclosed. Fuel elements that are to be tested are enclosed in a test chamber, filled with water. Air is pumped or pulled into the chamber, entering through a gas sparger at the bottom of the chamber and displacing a portion of the water above the fuel element. This reduces the pressure in the vessel, forms an air pocket above the fuel element and purges the water surrounding the fuel element of fission gases released from defective fuel elements. The activity of sample gas drawn from the chamber is continuously monitored to indicate fission gas content

  3. Reprocessing and fuel fabrication systems

    International Nuclear Information System (INIS)

    The study of alternative fuel cycles was initiated to identify a fuel cycle with inherent technical resistance to proliferation; however, other key features such as resource use, cost, and development status are major elements in a sound fuel cycle strategy if there is no significant difference in proliferation resistance. Special fuel reprocessing techniques such as coprocessing or spiking provide limited resistance to diversion. The nuclear fuel cycle system that will be most effective may be more dependent on the institutional agreements that can be implemented to supplement the technical controls of fuel cycle materials

  4. Fuel element skeleton

    International Nuclear Information System (INIS)

    In order to achieve sufficient rigidity for the fuel element skeleton of a LWR, a nonyielding mechanical joint independent of the material used is arranged between the control rod guide tubes and the spacer grid. For this purpose, hollow or solid pins are welded to the outer surface of the guide tubes. They consist, e.g., of the same material as the guide tubes. The pins are supported above and below in tongues with boreholes for holding fixtures, in slots, or in openings on projections curved outward of, e.g., diametrally opposed mesh walls. This kind of joint is especially suited for control rod guide tubes made of zirconium or zirconium alloys and a spacer grid of arbitrary shape made of steel. (DG)

  5. Fuel rod reprocessing plant

    International Nuclear Information System (INIS)

    A plant for the reprocessing of fuel rods for a nuclear reactor comprises a plurality of rectangular compartments desirably arranged on a rectangular grid. Signal lines, power lines, pipes, conduits for instrumentation, and other communication lines leave a compartment just below its top edges. A vehicle access zone permits overhead and/or mobile cranes to remove covers from compartments. The number of compartments is at least 25% greater than the number of compartments used in the initial design and operation of the plant. Vacant compartments are available in which replacement apparatus can be constructed. At the time of the replacement of a unit, the piping and conduits are altered to utilize the substitute equipment in the formerly vacant compartment, and it is put on stream prior to dismantling old equipment from the previous compartment. Thus the downtime for the reprocessing plant for such a changeover is less than in a traditional reprocessing plant

  6. Reactor fuel assembly

    International Nuclear Information System (INIS)

    A nuclear reactor fuel assembly having a lower end fitting and actuating means interacting therewith for holding the assembly down on the core support stand against the upward flow of coolant. Locking means for interacting with projections on the support stand are carried by the lower end fitting and are actuated by the movement of an actuating rod operated from above the top of the assembly. In one embodiment of the invention the downward movement of the actuating rod forces a latched spring to move outward into locking engagement with a shoulder on the support stand projections. In another embodiment, the actuating rod is rotated to effect the locking between the end fitting and the projection. (author)

  7. A fuel composition

    Energy Technology Data Exchange (ETDEWEB)

    Kiiti, M.; Masayasu, Kh.

    1984-06-22

    A fuel composition is proposed on the basis of a hydrocarbon mixture of at least tow components from a group which includes water, alcohol or a water and alcohol mixture, a solid hydrocarbon (Uv) and a liquid hydrocarbon, to which are added a graft polymer or, possibly, polyvinylacetate resin. The graft polymer is formed by grafting a monomer which includes at least one hydrophobic group from a group which includes vinyl ester of saturated carbonic acid, acrylether of carbonic acid, alkylvinyl ether, alkaryl ether and alkyl ether of ethylene unsaturated carbonic acid or alpha-olefin, to vinylacetate resin. The polyvinylacetate resin has a degree of saponification of less than or equal to 80 molecular percent and a mean degree of polymerization of less than or equal to 1,500. The composition maintains stability and fluidity during long term storage at low temperatures.

  8. Tritium fuel cycle system

    International Nuclear Information System (INIS)

    In a tritium fuel cycle system, off-gases containing helium-3 formed by ?-decay of tritium, helium-4 formed by nuclear fusion reaction of deuterium and tritium, and helium-4 formed by nuclear reaction of lithium contained in breeding materials or coolants and neutrons are recovered by a helium gas recovering system through an exhaustion system. A helium gas recycling system controls temperature/pressure of the helium-containing gases, cools and sends them to a blanket. The helium-containing gases recover, as coolants, thermal energy of neutrons in the branket and, further, generate tritium, as the breeding materials, by nuclear reaction of helium-3 and neutrons. The helium-containing gases dissipate heat in a heat exchange system, and are sent to the helium gas recovering system, again passing through an exhaustion system and an exhausting/purifying system, to reproduce tritium and in addition, the helium-containing gases themselves can cool the fusion reactor. (N.H.)

  9. Microbial fuel cells

    Science.gov (United States)

    Nealson, Kenneth H; Pirbazari, Massoud; Hsu, Lewis

    2013-04-09

    A microbial fuel cell includes an anode compartment with an anode and an anode biocatalyst and a cathode compartment with a cathode and a cathode biocatalyst, with a membrane positioned between the anode compartment and the cathode compartment, and an electrical pathway between the anode and the cathode. The anode biocatalyst is capable of catalyzing oxidation of an organic substance, and the cathode biocatalyst is capable of catalyzing reduction of an inorganic substance. The reduced organic substance can form a precipitate, thereby removing the inorganic substance from solution. In some cases, the anode biocatalyst is capable of catalyzing oxidation of an inorganic substance, and the cathode biocatalyst is capable of catalyzing reduction of an organic or inorganic substance.

  10. Fusion fuel blanket technology

    International Nuclear Information System (INIS)

    The fusion blanket surrounds the burning hydrogen core of a fusion reactor. It is in this blanket that most of the energy released by the nuclear fusion of deuterium-tritium is converted into useful product, and where tritium fuel is produced to enable further operation of the reactor. As fusion research turns from present short-pulse physics experiments to long-burn engineering tests in the 1990's, energy removal and tritium production capabilities become important. This technology will involve new materials, conditions and processes with applications both to fusion and beyond. In this paper, we introduce features of proposed blanket designs and update and status of international research. In focusing on the Canadian blanket technology program, we discuss the aqueous lithium salt blanket concept, and the in-reactor tritium recovery test program

  11. Boiler fuel from waste.

    Science.gov (United States)

    Finch, T A; Lowe, C J

    1986-05-01

    This article describes a unique, self-initiated scheme for the installation of a new boiler at Chorley and District Hospital fueled by waste. The system described is applicable to smaller sites and, since it answers many of the traditional incineration/heat recovery problems, the principle employed is relevant for all sizes of plant. Several Regional Health Authorities have already visited the site and shown a high degree of interest in this pilot project, Terry Finch, the Works Officer, previously worked for Preston Health Authority. He won the Institute of Hospital Engineering's Energy Conservation Competition in 1980. Chris Lowe has worked in hospitals in Chorley for over twelve years and has contributed to many innovative projects throughout that time. PMID:10278901

  12. Accident Tolerant Fuel Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Curtis Smith; Heather Chichester; Jesse Johns; Melissa Teague; Michael Tonks; Robert Youngblood

    2014-09-01

    Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). Consequently, the ability to better characterize and quantify safety margin holds the key to improved decision making about light water reactor design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margins management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. The purpose of the Risk Informed Safety Margin Characterization (RISMC) Pathway research and development (R&D) is to support plant decisions for risk-informed margins management by improving economics and reliability, and sustaining safety, of current NPPs. Goals of the RISMC Pathway are twofold: (1) Develop and demonstrate a risk-assessment method coupled to safety margin quantification that can be used by NPP decision makers as part of their margin recovery strategies. (2) Create an advanced “RISMC toolkit” that enables more accurate representation of NPP safety margin. In order to carry out the R&D needed for the Pathway, the Idaho National Laboratory is performing a series of case studies that will explore methods- and tools-development issues, in addition to being of current interest in their own right. One such study is a comparative analysis of safety margins of plants using different fuel cladding types: specifically, a comparison between current-technology Zircaloy cladding and a notional “accident-tolerant” (e.g., SiC-based) cladding. The present report begins the process of applying capabilities that are still under development to the problem of assessing new fuel designs. The approach and lessons learned from this case study will be included in future Technical Basis Guides produced by the RISMC Pathway. These guides will be the mechanism for developing the specifications for RISMC tools and for defining how plant decision makers should propose and evaluate margin recovery strategies.

  13. Accident tolerant fuel analysis

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Curtis [Idaho National Laboratory; Chichester, Heather [Idaho National Laboratory; Johns, Jesse [Texas A& M University; Teague, Melissa [Idaho National Laboratory; Tonks, Michael Idaho National Laboratory; Youngblood, Robert [Idaho National Laboratory

    2014-09-01

    Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). Consequently, the ability to better characterize and quantify safety margin holds the key to improved decision making about light water reactor design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margins management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. The purpose of the Risk Informed Safety Margin Characterization (RISMC) Pathway research and development (R&D) is to support plant decisions for risk-informed margins management by improving economics and reliability, and sustaining safety, of current NPPs. Goals of the RISMC Pathway are twofold: (1) Develop and demonstrate a risk-assessment method coupled to safety margin quantification that can be used by NPP decision makers as part of their margin recovery strategies. (2) Create an advanced ''RISMC toolkit'' that enables more accurate representation of NPP safety margin. In order to carry out the R&D needed for the Pathway, the Idaho National Laboratory is performing a series of case studies that will explore methods- and tools-development issues, in addition to being of current interest in their own right. One such study is a comparative analysis of safety margins of plants using different fuel cladding types: specifically, a comparison between current-technology Zircaloy cladding and a notional ''accident-tolerant'' (e.g., SiC-based) cladding. The present report begins the process of applying capabilities that are still under development to the problem of assessing new fuel designs. The approach and lessons learned from this case study will be included in future Technical Basis Guides produced by the RISMC Pathway. These guides will be the mechanism for developing the specifications for RISMC tools and for defining how plant decision makers should propose and evaluate margin recovery strategies.

  14. Accident tolerant fuel analysis

    International Nuclear Information System (INIS)

    Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). Consequently, the ability to better characterize and quantify safety margin holds the key to improved decision making about light water reactor design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margins management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. The purpose of the Risk Informed Safety Margin Characterization (RISMC) Pathway research and development (R&D) is to support plant decisions for risk-informed margins management by improving economics and reliability, and sustaining safety, of current NPPs. Goals of the RISMC Pathway are twofold: (1) Develop and demonstrate a risk-assessment method coupled to safety margin quantification that can be used by NPP decision makers as part of their margin recovery strategies. (2) Create an advanced ''RISMC toolkit'' that enables more accurate representation of NPP safety margin. In order to carry out the R&D needed for the Pathway, the Idaho National Laboratory is performing a series of case studies that will explore methods- and tools-development issues, in addition to being of current interest in their own right. One such study is a comparative analysis of safety margins of plants using different fuel cladding types: specifically, a comparison between current-technology Zircaloy cladding and a notional ''accident-tolerant'' (e.g., SiC-based) cladding. The present report begins the process of applying capabilities that are still under development to the problem of assessing new fuel designs. The approach and lessons learned from this case study will be included in future Technical Basis Guides produced by the RISMC Pathway. These guides will be the mechanism for developing the specifications for RISMC tools and for defining how plant decision makers should propose and evaluate margin recovery strategies.

  15. Fuel and fuel blending components from biomass derived pyrolysis oil

    Science.gov (United States)

    McCall, Michael J.; Brandvold, Timothy A.; Elliott, Douglas C.

    2012-12-11

    A process for the conversion of biomass derived pyrolysis oil to liquid fuel components is presented. The process includes the production of diesel, aviation, and naphtha boiling point range fuels or fuel blending components by two-stage deoxygenation of the pyrolysis oil and separation of the products.

  16. Blending biodiesel in fishing boat fuels for improved fuel characteristics

    Directory of Open Access Journals (Sweden)

    Cherng-YuanLin

    2014-02-01

    Full Text Available Biodiesel is a renewable, clean, alternative energy source with advantages such as excellent lubricity, superior biodegradability and high combustion efficiency. Biodiesel is considered for mixing with fishing boat fuels to adjust their fuel characteristics so that toxic pollutants and greenhouse-effect gas emissions from such shipping might be reduced. The effects of blending fishing boat fuels A and B with various weight proportions of biodiesel are experimentally investigated in this study. The results show that biodiesel blending can significantly improve the inferior fuel properties of both fishing boat fuels and particularly fuel B. The flash points of both of these fuels increases significantly with the addition of biodiesel and thus enhances the safety of transporting and storing these blended fuels. The flash point of fishing boat fuel B even increases by 16% with 25 wt% biodiesel blending. The blending of biodiesel with no sulfur content is found to be one of the most effective ways to reduce the high sulfur content of fishing boat fuel, resulting in a reduction in the emission of sulfur oxides. The addition of only 25 wt% biodiesel decreased the sulfur content of the fishing boat fuel by 37%. The high kinematic viscosity of fishing boat fuel B was also observed to be reduced by 63% with the blending of just 25 wt% biodiesel. However, biodiesel blending caused a slight decrease in heating value around 1% to 4.5%.

  17. EMISSIONS AND FUEL ECONOMY OF FEDERAL ALTERNATIVELY FUELED FLEET VEHICLES

    Science.gov (United States)

    This paper presents results from a study designed to investigate the effects of automobile fuels on emissions and fuel economy. The study is part of a larger program mandated by the Alternative Motor Fuels Act of 1988 that requires the Department of Energy (DOE), in cooperation w...

  18. Fabrication of CANDU dupic fuel

    International Nuclear Information System (INIS)

    An important new fuel cycle that exploits the synergism between CANDU and pressurized-water reactors (PWRs) is the Direct Use of spent PWR Fuel in CANDU (DUPIC). In this fuel cycle, spent PWR fuel is reconfigured, using only dry processing techniques, to make it compatible with a CANDU reactor. The dry processing technique is inherently simpler than wet chemical processing techniques used for recycling spent fuel. Actinides and fission products are retained in the fuel, so that DUPIC fuel is highly radioactive, affording the fuel cycle a high degree of proliferation resistance. AECL's project to develop the fuel cycle has now progressed to the stage of fabricating DUPIC fuel elements for irradiation testing in a research reactor. The goal of this phase of the project is to demonstrate that the DUPIC fuel cycle is technically feasible. A major part of the technical feasibility study is demonstration of the irradiation performance of DUPIC fuel under CANDU conditions. Spent PWR fuel has been subjected to the oxidation and reduction of oxide fuels (OREOX) process, and the resulting powder has been fabricated into CANDU-quality pellets. The DUPIC pellets have been loaded into fuel elements for irradiation testing in the NRU research reactor at the Chalk River Laboratories. The fabrication stages included spent fuel decladding, powder production using the OREOX process, powder milling (to improve sinterability), pellet pressing, sintering, centreless grinding, element loading and element welding. This paper details the fabrication of the DUPIC pellets and elements and initial results of their characterization. The equipment used for fabrication of the DUPIC fuel elements is described, and the irradiation plan for these elements is also outlined. (author)

  19. Nuclear fuel pellet loading machine

    International Nuclear Information System (INIS)

    A nuclear fuel pellet loading machine is described including an inclined rack mounted on a base and having parallel spaced grooves on its upper surface arranged to support fuel rods. A fuel pellet tray is adapted to be placed on a table spaced from the rack, the tray having columns of fuel pellets which are in alignment with the open ends of fuel rods located in the rack grooves. A transition plate is mounted between the fuel rod rack and the fuel pellet tray to receive and guide the pellets into the open ends of the fuel rods. The pellets are pushed into the fuel rods by a number of mechanical fingers mounted on a motor operated block which is moved along the pellet tray length by a drive screw driven by the motor. To facilitate movement of the pellets in the fuel rods the rack is mounted on a number of spaced vibrators which vibrate the fuel rods during fuel pellet insertion. A pellet sensing device movable into an end of each fuel rod indicates to an operator when each rod has been charged with the correct number of pellets

  20. Fuel Handbook[Wood and other renewable fuels

    Energy Technology Data Exchange (ETDEWEB)

    Stroemberg, Birgitta [TPS Termiska Processer AB, Nykoeping (SE)] (ed.)

    2006-03-15

    This handbook on renewable fuels is intended for power and heat producers in Sweden. This fuel handbook provides, from a plant owner's perspective, a method to evaluate different fuels on the market. The fuel handbook concerns renewable fuels (but does not include household waste) that are available on the Swedish market today or fuels that have potential to be available within the next ten years. The handbook covers 26 different fuels. Analysis data, special properties, operating experiences and literature references are outlined for each fuel. [Special properties, operating experiences and literature references are not included in this English version] The handbook also contains: A proposed methodology for introduction of new fuels. A recommendation of analyses and tests to perform in order to reduce the risk of problems is presented. [The recommendation of analyses and tests is not included in the English version] A summary of relevant laws and taxes for energy production, with references to relevant documentation. [Only laws and taxes regarding EU are included] Theory and background to evaluate a fuel with respect to combustion, ash and corrosion properties and methods that can be used for such evaluations. Summary of standards, databases and handbooks on biomass fuels and other solid fuels, and links to web sites where further information about the fuels can be found. The appendices includes: A methodology for trial firing of fuels. Calculations procedures for, amongst others, heating value, flue gas composition, key number and free fall velocity [Free fall velocity is not included in the English version]. In addition, conversion routines between different units for a number of different applications are provided. Fuel analyses are presented in the appendix. (The report is a translation of parts of the report VARMEFORSK--911 published in 2005)

  1. Hydrogen production for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Stobbe, E.R. [ECN Fuel Cell Technology, Petten (Netherlands)

    2005-03-01

    Presented in the form of overhead sheets attention is paid to the production of hydrogen for use in fuel cells, focusing on fuel cell applications; hydrogen production for PEMFC; requirements; desulphurisation; reforming; and gas cleanup.

  2. Fuel Cell Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    The Fuel Cell Technical Team promotes the development of a fuel cell power system for an automotive powertrain that meets the U.S. DRIVE Partnership (United States Driving Research and Innovation for Vehicle efficiency and Energy sustainability) goals.

  3. Nuclear fuel assembly and process

    International Nuclear Information System (INIS)

    Rupture of boiling water reactor nuclear fuel cladding resulting from embrittlement caused by fission product cadmium is prevented by adding the stoichiometrically equivalent amount of CuFe2O4 or CuTi03 to the fuel

  4. Spent fuel storage. Facts booklet

    International Nuclear Information System (INIS)

    In October 1977, the Department of Energy (DOE) announced a spent nuclear fuel policy where the Government would, under certain conditions, take title to and store spent nuclear fuel from commercial power reactors. The policy is intended to provide spent fuel storage until final disposition is available. DOE has programs for providing safe, long-term disposal of nuclear waste. The spent fuel storage program is one element of waste management and compliments the disposal program. The costs for spent fuel services are to be fully recovered by the Government from the utilities. This will allow the utilities to confidently consider the costs for disposition of spent fuel in their rate structure. The United States would also store limited amounts of foreign spent fuel to meet nonproliferation objectives. This booklet summarizes information on many aspects of spent fuel storage

  5. AFIP-6 Characterization Summary Report

    International Nuclear Information System (INIS)

    The AFIP-6 (ATR Full-size-plate In center flux trap Position) Characterization Summary Report outlines the fresh fuel characterization efforts performed during the AFIP-6 experiment. The AFIP-6 experiment was designed to evaluate the performance of monolithic uranium-molybdenum (U-Mo) fuels at a scale prototypic of Advanced Test Reactor (ATR) fuel plates (45-inches long). The AFIP-6 test was the first test with plates that were swaged into the rails of the assembly. This test served to examine the effects of a plate in a swaged condition with longer fuel zones (22.5-inches long), that were centered in the plate. AFIP-6 test plates employed a zirconium interlayer that was co-rolled with the fuel foil. Previous mini-plate and AFIP irradiation experiments performed in ATR have demonstrated the stable behavior of the interface between the U-Mo fuel and the zirconium interlayer.

  6. AFIP-6 Characterization Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Dennis D. Keiser

    2011-12-01

    The AFIP-6 (ATR Full-size-plate In center flux trap Position) Characterization Summary Report outlines the fresh fuel characterization efforts performed during the AFIP-6 experiment. The AFIP-6 experiment was designed to evaluate the performance of monolithic uranium-molybdenum (U-Mo) fuels at a scale prototypic of Advanced Test Reactor (ATR) fuel plates (45-inches long). The AFIP-6 test was the first test with plates that were swaged into the rails of the assembly. This test served to examine the effects of a plate in a swaged condition with longer fuel zones (22.5-inches long), that were centered in the plate. AFIP-6 test plates employed a zirconium interlayer that was co-rolled with the fuel foil. Previous mini-plate and AFIP irradiation experiments performed in ATR have demonstrated the stable behavior of the interface between the U-Mo fuel and the zirconium interlayer.

  7. Carbon fuel particles used in direct carbon conversion fuel cells

    Science.gov (United States)

    Cooper, John F.; Cherepy, Nerine

    2012-10-09

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  8. LMFBR fuel assembly design for HCDA fuel dispersal

    Science.gov (United States)

    Lacko, Robert E. (North Huntingdon, PA); Tilbrook, Roger W. (Monroeville, PA)

    1984-01-01

    A fuel assembly for a liquid metal fast breeder reactor having an upper axial blanket region disposed in a plurality of zones within the fuel assembly. The characterization of a zone is dependent on the height of the axial blanket region with respect to the active fuel region. The net effect of having a plurality of zones is to establish a dispersal flow path for the molten materials resulting during a core meltdown accident. Upward flowing molten material can escape from the core region and/or fuel assembly without solidifying on the surface of fuel rods due to the heat sink represented by blanket region pellets.

  9. Microbial fuel cell treatment of fuel process wastewater

    Science.gov (United States)

    Borole, Abhijeet P; Tsouris, Constantino

    2013-12-03

    The present invention is directed to a method for cleansing fuel processing effluent containing carbonaceous compounds and inorganic salts, the method comprising contacting the fuel processing effluent with an anode of a microbial fuel ell, the anode containing microbes thereon which oxidatively degrade one or more of the carbonaceous compounds while producing electrical energy from the oxidative degradation, and directing the produced electrical energy to drive an electrosorption mechanism that operates to reduce the concentration of one or more inorganic salts in the fuel processing effluent, wherein the anode is in electrical communication with a cathode of the microbial fuel cell. The invention is also directed to an apparatus for practicing the method.

  10. Dual-fuel diesel engines

    CERN Document Server

    Karim, Ghazi A

    2015-01-01

    This book offers an integrated and balanced discussion of the different types of gaseous fuels that can be used within dual fuel diesel engines. It presents a comprehensive and well-integrated review of the relevant fundamentals and practices of the operation of gas-fueled diesel engines of the dual fuel type in their variety of sizes and fields of application. The book highlights both positive features and potential challenges, providing an outline of measures for optimizing performance and overcoming issues.

  11. Improved fuel rod support means

    International Nuclear Information System (INIS)

    A fuel bundle for a nuclear reactor having a plurality of fuel rods supported between spaced tie plates, wherein coolant flows through said tie plates and past said fuel rods, characterized by: an end plug disposed between an end of each fuel rod and the adjacent tie plate, and means defining a passage for the flow of coolant through the interface between said end plug and said tie plates to minimize crud buildup at said interface

  12. Nuclear reactor fuel element splitter

    International Nuclear Information System (INIS)

    A method and apparatus are disclosed for removing nuclear fuel from a clad fuel element. The fuel element is power driven past laser beams which simultaneously cut the cladding lengthwise into at least two longitudinal pieces. The axially cut lengths of cladding are then separated, causing the nuclear fuel contained therein to drop into a receptacle for later disposition. The cut lengths of cladding comprise nuclear waste which is disposed of in a suitable manner. 6 claims, 10 drawing figures

  13. Fuel characteristics required for LWR fuel rod calculations

    Science.gov (United States)

    De Meulemeester, E.

    1982-04-01

    BELGONUCLEAIRE gradually increasing in-reactor experience has enabled to assess the relative importance of attributes defined in specifications and drawings for both UO 2 and MO 2 fuels. On the basis of that experience, design codes have been benchmarked and were thereafter applied to cover the range of parameters and irradiation histories to be encountered or evaluated. To illustrate the effects of fuel characteristics on fuel behaviour, sensitivity calculations were performed on the basis of actual fuel irradiated in BWR's (DODEWAARD, GARIGLANO and OYSTER CREEK) and PWR's (BR3, DOEL, SENA, TIHANGE and MAINE YANKEE). The major characteristics are : fuel structure, UO 2 versus mixed oxide fuel; fuel accomodation (depending on the fuel microstructure and chemical composition); fuel density and densification stability; open porosity; pellet end geometry; pellet L/D ratio, gap size. Although the influence of the various parameters is not additive, these examples enable to determine the relative influence of each characteristic and to conclude to what accuracy it should be measured (in demo fuel) or controlled (in production fuel).

  14. Inert matrix fuel in dispersion type fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Savchenko, A.M. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation)]. E-mail: sav@bochvar.ru; Vatulin, A.V. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Morozov, A.V. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Sirotin, V.L. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Dobrikova, I.V. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Kulakov, G.V. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Ershov, S.A. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Kostomarov, V.P. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Stelyuk, Y.I. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation)

    2006-06-30

    The advantages of using inert matrix fuel (IMF) as a dispersion fuel in an aluminium alloy matrix are considered, in particular, low temperatures in the fuel centre, achievable high burn-ups, serviceability in transients and an environmentally friendly process of fuel rod fabrication. Two main versions of IMF are under development at A.A. Bochvar Institute, i.e. heterogeneous or isolated distribution of plutonium. The out-of-pile results on IMF loaded with uranium dioxide as plutonium simulator are presented. Fuel elements with uranium dioxide composition fabricated at A.A. Bochvar Institute are currently under MIR tests (RIAR, Dimitrovgrad). The fuel elements reached a burn-up of 88 MW d kg{sup -1} (equivalent to the burn up of the standard uranium dioxide pelletized fuel) without loss of leak-tightness of the cladding. The feasibility of fabricating IMF of these particular types with plutonium dioxide is considered with a view to in-pile irradiation.

  15. ALTERNATIVE FUELS FOR DIESEL ENGINES

    Directory of Open Access Journals (Sweden)

    Jacek Caban

    2013-12-01

    Full Text Available This paper presents the development and genesis of the use of alternative fuels in internal combustion ignition engines. Based on the analysis of the literature, this article shows various alternative fuels used in Poland and all over the world. Furthermore, this article describes the research directions for alternative fuels use in road transport powered by diesel engines.

  16. Automotive gas turbine fuel control

    Science.gov (United States)

    Gold, H. (inventor)

    1978-01-01

    A fuel control system is reported for automotive-type gas turbines and particulary advanced gas turbines utilizing variable geometry components to improve mileage and reduce pollution emission. The fuel control system compensates for fuel density variations, inlet temperature variations, turbine vane actuation, acceleration, and turbine braking. These parameters are utilized to control various orifices, spool valves and pistons.

  17. Burnable absorber coated nuclear fuel

    International Nuclear Information System (INIS)

    A nuclear fuel body which is at least partially covered by a burnable neutron absorber layer is provided with a hydrophobic overcoat generally covering the burnable absorber layer and bonded directly to it. In a method for providing a UO2 fuel pellet with a zirconium diboride burnable poison layer, the fuel body is provided with an intermediate niobium layer. (author)

  18. Fuel cell report to congress

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2003-02-28

    This report describes the status of fuel cells for Congressional committees. It focuses on the technical and economic barriers to the use of fuel cells in transportation, portable power, stationary, and distributed power generation applications, and describes the need for public-private cooperative programs to demonstrate the use of fuel cells in commercial-scale applications by 2012. (Department of Energy, February 2003).

  19. Commercialization of fuel-cells

    Energy Technology Data Exchange (ETDEWEB)

    Penner, S.S.; Appleby, A.J.; Baker, B.S.; Bates, J.L.; Buss, L.B.; Dollard, W.J.; Farris, P.J.; Gillis, E.A.; Gunsher, J.A.; Khandkar, A.; Krumpelt, M.; O' Sullivan, J.B.; Runte, G.; Savinell, R.F.; Selman, J.R.; Shores, D.A.; Tarman, P.

    1995-03-01

    This report is an abbreviated version of the ''Report of the DOE Advanced Fuel Cell Commercialization Working Group (AFC2WG),'' released January 1995. We describe fuel-cell commercialization for stationary power applications of phosphoric acid, molten carbonate, solid oxide, and polymer electrolyte membrane fuel cells.

  20. ARPA advanced fuel cell development

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, L.H.

    1995-08-01

    Fuel cell technology is currently being developed at the Advanced Research Projects Agency (ARPA) for several Department of Defense applications where its inherent advantages such as environmental compatibility, high efficiency, and low noise and vibration are overwhelmingly important. These applications range from man-portable power systems of only a few watts output (e.g., for microclimate cooling and as direct battery replacements) to multimegawatt fixed base systems. The ultimate goal of the ARPA program is to develop an efficient, low-temperature fuel cell power system that operates directly on a military logistics fuel (e.g., DF-2 or JP-8). The absence of a fuel reformer will reduce the size, weight, cost, and complexity of such a unit as well as increase its reliability. In order to reach this goal, ARPA is taking a two-fold, intermediate time-frame approach to: (1) develop a viable, low-temperature proton exchange membrane (PEM) fuel cell that operates directly on a simple hydrocarbon fuel (e.g., methanol or trimethoxymethane) and (2) demonstrate a thermally integrated fuel processor/fuel cell power system operating on a military logistics fuel. This latter program involves solid oxide (SOFC), molten carbonate (MCFC), and phosphoric acid (PAFC) fuel cell technologies and concentrates on the development of efficient fuel processors, impurity scrubbers, and systems integration. A complementary program to develop high performance, light weight H{sub 2}/air PEM and SOFC fuel cell stacks is also underway. Several recent successes of these programs will be highlighted.