WorldWideScience

Sample records for Uranium-Molybdenum Fuels

  1. FY16 Status Report for the Uranium-Molybdenum Fuel Concept

    International Nuclear Information System (INIS)

    Bennett, Wendy D.; Doherty, Ann L.; Henager, Charles H.; Lavender, Curt A.; Montgomery, Robert O.; Omberg, Ronald P.; Smith, Mark T.; Webster, Ryan A.

    2016-01-01

    The Fuel Cycle Research and Development program of the Office of Nuclear Energy has implemented a program to develop a Uranium-Molybdenum metal fuel for light water reactors. Uranium-Molybdenum fuel has the potential to provide superior performance based on its thermo-physical properties. With sufficient development, it may be able to provide the Light Water Reactor industry with a melt-resistant, accident-tolerant fuel with improved safety response. The Pacific Northwest National Laboratory has been tasked with extrusion development and performing ex-reactor corrosion testing to characterize the performance of Uranium-Molybdenum fuel in both these areas. This report documents the results of the fiscal year 2016 effort to develop the Uranium-Molybdenum metal fuel concept for light water reactors.

  2. FY16 Status Report for the Uranium-Molybdenum Fuel Concept

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Wendy D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Doherty, Ann L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Henager, Charles H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Montgomery, Robert O. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Omberg, Ronald P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, Mark T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Webster, Ryan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-22

    The Fuel Cycle Research and Development program of the Office of Nuclear Energy has implemented a program to develop a Uranium-Molybdenum metal fuel for light water reactors. Uranium-Molybdenum fuel has the potential to provide superior performance based on its thermo-physical properties. With sufficient development, it may be able to provide the Light Water Reactor industry with a melt-resistant, accident-tolerant fuel with improved safety response. The Pacific Northwest National Laboratory has been tasked with extrusion development and performing ex-reactor corrosion testing to characterize the performance of Uranium-Molybdenum fuel in both these areas. This report documents the results of the fiscal year 2016 effort to develop the Uranium-Molybdenum metal fuel concept for light water reactors.

  3. Irradiation behavior of uranium-molybdenum dispersion fuel: Fuel performance data from RERTR-1 and RERTR-2

    International Nuclear Information System (INIS)

    Meyer, M.K.; Clark, C.R.; Hayes, S.L.; Strain, R.V.; Hofman, G.L.; Snelgrove, J.L.; Park, J.M.; Kim, K.H.

    1999-01-01

    This paper presents quantitative data on the irradiation behavior of uranium-molybdenum fuels from the low temperature RERTR-1 and -2 experiments. Fuel swelling measurements of U-Mo fuels at ∼40% and ∼70% burnup are presented. The rate of fuel-matrix interaction layer growth is estimated. Microstructures of fuel in the pre- and postirradiation condition were compared. Based on these data, a qualitative picture of the evolution of the U-Mo fuel microstructure during irradiation has been developed. Estimates of uranium-molybdenum fuel swelling and fuel-matrix interaction under high-power research reactor operating conditions are presented. (author)

  4. Development, preparation and characterization of uranium molybdenum alloys for dispersion fuel application

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, V.P. [Metallic Fuels Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)], E-mail: vedsinha@barc.gov.in; Prasad, G.J.; Hegde, P.V.; Keswani, R.; Basak, C.B.; Pal, S.; Mishra, G.P. [Metallic Fuels Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2009-04-03

    Most of the research and test reactors worldwide have undergone core conversion from high enriched uranium base fuel to low enriched uranium base fuel under the Reduced Enrichment for Research and Test Reactor (RERTR) program, which was launched in the late 1970s to reduce the risk of nuclear proliferation. To realize this goal, high density uranium compounds and {gamma}-stabilized uranium alloy powder were identified. In Metallic Fuels Division of BARC, R and D efforts are on to develop these high density uranium base alloys. This paper describes the preparation flow sheet for different compositions of Uranium and molybdenum alloys by an innovative powder processing route with uranium and molybdenum metal powders as starting materials. The same composition of U-Mo alloys were also fabricated by conventional method i.e. ingot metallurgy route. The U-Mo alloys prepared by both the methods were then characterized by XRD for phase analysis. The photomicrographs of alloys with different compositions prepared by powder metallurgy and ingot metallurgy routes are also included in the paper. The paper also covers the comparison of properties of the alloys prepared by powder metallurgy and ingot metallurgy routes.

  5. Development, preparation and characterization of uranium molybdenum alloys for dispersion fuel application

    International Nuclear Information System (INIS)

    Sinha, V.P.; Prasad, G.J.; Hegde, P.V.; Keswani, R.; Basak, C.B.; Pal, S.; Mishra, G.P.

    2009-01-01

    Most of the research and test reactors worldwide have undergone core conversion from high enriched uranium base fuel to low enriched uranium base fuel under the Reduced Enrichment for Research and Test Reactor (RERTR) program, which was launched in the late 1970s to reduce the risk of nuclear proliferation. To realize this goal, high density uranium compounds and γ-stabilized uranium alloy powder were identified. In Metallic Fuels Division of BARC, R and D efforts are on to develop these high density uranium base alloys. This paper describes the preparation flow sheet for different compositions of Uranium and molybdenum alloys by an innovative powder processing route with uranium and molybdenum metal powders as starting materials. The same composition of U-Mo alloys were also fabricated by conventional method i.e. ingot metallurgy route. The U-Mo alloys prepared by both the methods were then characterized by XRD for phase analysis. The photomicrographs of alloys with different compositions prepared by powder metallurgy and ingot metallurgy routes are also included in the paper. The paper also covers the comparison of properties of the alloys prepared by powder metallurgy and ingot metallurgy routes

  6. Production of molybdenum-99 by heterogeneous and homogeneous uranium fueled reactors

    International Nuclear Information System (INIS)

    Carlin, G.E.; Bonin, H.W.

    2012-01-01

    The use of radioisotopes for various procedures in the health care industry has become one of the most important practices in medicine. At the forefront of the medical isotope list is molybdenum-99 and its daughter isotope technetium-99m, which encompass over 80% of radiopharmaceutical procedures. Fission of uranium-235 to produce molybdenum-99 is the most widely used method for producing this radioisotope. The heterogeneous reactor and the aqueous homogeneous reactor are looked at here with emphasis on the use of low enriched uranium as the fuel source. Methods of technetium-99m generation and its medical use are also reviewed. (author)

  7. Production of molybdenum-99 by heterogeneous and homogeneous uranium fueled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Carlin, G.E.; Bonin, H.W., E-mail: george.carlin@rmc.ca, E-mail: bonin-h@rmc.ca [Royal Military College of Canada, Kingston, Ontario (Canada)

    2012-07-01

    The use of radioisotopes for various procedures in the health care industry has become one of the most important practices in medicine. At the forefront of the medical isotope list is molybdenum-99 and its daughter isotope technetium-99m, which encompass over 80% of radiopharmaceutical procedures. Fission of uranium-235 to produce molybdenum-99 is the most widely used method for producing this radioisotope. The heterogeneous reactor and the aqueous homogeneous reactor are looked at here with emphasis on the use of low enriched uranium as the fuel source. Methods of technetium-99m generation and its medical use are also reviewed. (author)

  8. Behavior of molybdenum in mixed-oxide fuel

    International Nuclear Information System (INIS)

    Giacchetti, G.; Sari, C.

    1976-01-01

    Metallic molybdenum, Mo--Ru--Rh--Pd alloys, barium, zirconium, and tungsten were added to uranium and uranium--plutonium oxides by coprecipitation and mechanical mixture techniques. This material was treated in a thermal gradient similar to that existing in fuel during irradiation to study the behavior of molybdenum in an oxide matrix as a function of the O/(U + Pu) ratio and some added elements. Result of ceramographic and microprobe analysis shows that when the overall O/(U + Pu) ratio is less than 2, molybdenum and Mo--Ru--Rh--Pd alloy inclusions are present in the uranium--plutonium oxide matrix. If the O/(U + Pu) ratio is greater than 2, molybdenum oxidizes to MoO 2 , which is gaseous at a temperature approximately 1000 0 C. Molybdenum oxide vapor reacts with barium oxide and forms a compound that exists as a liquid phase in the columnar grain region. Molybdenum oxide also reacts with tungsten oxide (tungsten is often present as an impurity in the fuel) and forms a compound that contains approximately 40 wt percent of actinide metals. The apparent solubility of molybdenum in uranium and uranium--plutonium oxides, determined by electron microprobe, was found to be less than 250 ppM both for hypo- and hyperstoichiometric fuels

  9. Low-enriched uranium-molybdenum fuel plate development

    International Nuclear Information System (INIS)

    Wiencek, T.C.; Prokofiev, I.G.

    2000-01-01

    To examine the fabricability of low-enriched uranium-molybdenum powders, full-size 450 x 60 x 0.5-mm (17.7 x 2.4 x 0.020-in.) fuel zone test plates loaded to 6 g U/cm 3 were produced. U-10 wt.% Mo powders produced by two methods, centrifugal atomization and grinding, were tested. These powders were supplied at no cost to Argonne National Laboratory by the Korean Atomic Energy Research Institute and Atomic Energy of Canada Limited, respectively. Fuel homogeneity indicated that both of the powders produced acceptable fuel plates. Operator skill during loading of the powder into the compacting die and fuel powder morphology were found to be important when striving to achieve homogeneous fuel distribution. Smaller, 94 x 22 x 0.6-mm (3.7 x 0.87 x 0.025-in.) fuel zone, test plates were fabricated using U-10 wt.% Mo foil disks instead of a conventional powder metallurgy compact. Two fuel plates of this type are currently undergoing irradiation in the RERTR-4 high-density fuel experiment in the Advanced Test Reactor. (author)

  10. Effect of molybdenum addition on metastability of cubic γ-uranium

    International Nuclear Information System (INIS)

    Sinha, V.P.; Hegde, P.V.; Prasad, G.J.; Dey, G.K.; Kamath, H.S.

    2010-01-01

    Over the years U 3 Si 2 compound dispersed in aluminium matrix has been used successfully as the potential low enriched uranium (LEU 235 ) base dispersion fuel for use in new research and test reactors and also for converting high enriched uranium (HEU > 85%U 235 ) cores to LEU for most of the existing research and test reactors world over, though maximum 4.8 g U cm -3 density is achievable with U 3 Si 2 -Al dispersion fuel. To achieve a uranium density of 8.0-9.0 g U cm -3 in dispersion fuel with aluminium as matrix material, it is required to use γ-stabilized uranium metal powders. At Bhabha Atomic Research Centre (BARC), R and D efforts are on to develop these high density uranium base alloys. This paper describes the alloying behaviour of uranium with varying amount of molybdenum. The U-Mo alloys with different molybdenum content have been prepared by using an induction melting furnace with uranium and molybdenum metal pellets as starting materials. U-Mo alloys with different molybdenum content were characterized by X-ray diffraction (XRD) for phase identification and lattice parameter measurements. The optical microstructure of different U-Mo alloy composition has also been discussed in this paper. Quantitative image analysis was also carried out to determine the amount of various phases in each composition.

  11. Progress in irradiation performance of experimental uranium - Molybdenum dispersion fuel

    International Nuclear Information System (INIS)

    Hofman, Gerard L.; Meyer, Mitchell K.

    2002-01-01

    High-density dispersion fuel experiment, RERTR-4, was removed from the Advanced Test Reactor (ATR) after reaching a peak U-235 burnup of ∼80% and is presently undergoing postirradiation examination at the ANL alpha-gamma hot cells. This test consists of 32 mini fuel plates of which 27 were fabricated with nominally 6 and 8 g cm -3 atomized and machined uranium alloy powders containing 7 wt% and 10 wt% molybdenum. In addition, two miniplates containing solid U-10 wt% Mo foils and three containing 6 g cm -3 U 3 Si 2 are part of the test. The results of the postirradiation examination and analysis of RERTR-4 in conjunction with data from previous tests performed to lower burnup will be presented. (author)

  12. Recovery of uranium and molybdenum from a carbonate type uranium-molybdenum ore

    International Nuclear Information System (INIS)

    Zhou Genmao; Zeng Yijun; Tang Baobin; Meng Shu; Xu Guolong

    2014-01-01

    Based on the results of process mineralogical research of a carbonate type uranium-molybdenum ore, leaching behaviors of the uranium-molybdenum ore were studied by alkali agitation leaching, conventional alkali column leaching and alkali curing column leaching processes. The results showed that using the alkali curing column leaching process, the leaching rate of molybdenum increased to more than 90%, and the leaching rate of uranium was about 85%, Compared with the conventional alkali column leaching process, the leaching time of the alkali curing column leaching process decreased by 60 days. (authors)

  13. CONCEPTUAL PROCESS DESCRIPTION FOR THE MANUFACTURE OF LOW-ENRICHED URANIUM-MOLYBDENUM FUEL

    Energy Technology Data Exchange (ETDEWEB)

    Daniel M. Wachs; Curtis R. Clark; Randall J. Dunavant

    2008-02-01

    The National Nuclear Security Agency Global Threat Reduction Initiative (GTRI) is tasked with minimizing the use of high-enriched uranium (HEU) worldwide. A key component of that effort is the conversion of research reactors from HEU to low-enriched uranium (LEU) fuels. The GTRI Convert Fuel Development program, previously known as the Reduced Enrichment for Research and Test Reactors program was initiated in 1978 by the United States Department of Energy to develop the nuclear fuels necessary to enable these conversions. The program cooperates with the research reactors’ operators to achieve this goal of HEU to LEU conversion without reduction in reactor performance. The programmatic mandate is to complete the conversion of all civilian domestic research reactors by 2014. These reactors include the five domestic high-performance research reactors (HPRR), namely: the High Flux Isotope Reactor at the Oak Ridge National Laboratory, the Advanced Test Reactor at the Idaho National Laboratory, the National Bureau of Standards Reactor at the National Institute of Standards and Technology, the Missouri University Research Reactor at the University of Missouri–Columbia, and the MIT Reactor-II at the Massachusetts Institute of Technology. Characteristics for each of the HPRRs are given in Appendix A. The GTRI Convert Fuel Development program is currently engaged in the development of a novel nuclear fuel that will enable these conversions. The fuel design is based on a monolithic fuel meat (made from a uranium-molybdenum alloy) clad in Al-6061 that has shown excellent performance in irradiation testing. The unique aspects of the fuel design, however, necessitate the development and implementation of new fabrication techniques and, thus, establishment of the infrastructure to ensure adequate fuel fabrication capability. A conceptual fabrication process description and rough estimates of the total facility throughput are described in this document as a basis for

  14. Molybdenum from uranium solutions

    International Nuclear Information System (INIS)

    Gardner, H.E.

    1981-01-01

    A method of removing molybdenum from a uranium bearing solution is claimed. It comprises adding sufficient reactive lead compound to supply at least 90 percent of the stoichiometric quantity of lead ion required to fully react with the molybdenum present to form insoluble lead molybdate and continuing the reaction with agitation until the desired percentage of the molybdenum present has reacted with the lead ion

  15. Separation of uranium from molybdenum by alkyl phosphoric acid extraction

    Energy Technology Data Exchange (ETDEWEB)

    Zhongshi, Li

    1986-08-01

    The regularities of separation of uranium from molybdenum by alkyl phosphoric acid extraction are described. Two parameters, i.e., density ratio of uranium to molybdenum in organic phase at first stage and density of uranium in raffinate at last stage are presented. The relationship between these parameters and purity of molybdenum and uranium products is given. The method of adjusting and controlling these parameters in experiments and production is worked out. The technical key problem in comprehensive utilization of sedimentary type uranium ore containing molybdenum with close concentration of these to elements has been solved.

  16. Uranium and Molybdenum extraction from a Cerro Solo deposit ore

    International Nuclear Information System (INIS)

    Becquart, Elena T.; Arias, Maria J.; Fuente, Juan C. de la; Misischia, Yamila A.; Santa Cruz, Daniel E.; Tomellini, Guido C.

    2009-01-01

    Cerro Solo, located in Chubut, Argentina, is a sandstone type uranium-molybdenum deposit. Good recovery of both elements can be achieved by acid leaching of the ore but the presence of molybdenum in pregnant liquors is an inconvenient to uranium separation and purification. A two steps process is developed. A selective alkaline leaching of the ore with sodium hydroxide allows separating and recovering of molybdenum and after solid-liquid separation, the ore is acid leached to recover uranium. Several samples averaging 0,2% uranium and 0,1% molybdenum with variable U/Mo ratio have been used and in both steps, leaching and oxidant reagents concentration, temperature and residence time in a stirred tank leaching have been studied. In alkaline leaching molybdenum recoveries greater than 96% are achieved, with 1% uranium extraction. In acid leaching up to 93% of the uranium is extracted and Mo/U ratio in solvent extraction feed is between 0,013 and 0,025. (author)

  17. Irradiation performance of uranium-molybdenum alloy dispersion fuels

    International Nuclear Information System (INIS)

    Almeida, Cirila Tacconi de

    2005-01-01

    The U-Mo-Al dispersion fuels of Material Test Reactors (MTR) are analyzed in terms of their irradiation performance. The irradiation performance aspects are associated to the neutronic and thermal hydraulics aspects to propose a new core configuration to the IEA-R1 reactor of IPEN-CNEN/SP using U-Mo-Al fuels. Core configurations using U-10Mo-Al fuels with uranium densities variable from 3 to 8 gU/cm 3 were analyzed with the computational programs Citation and MTRCR-IEA R1. Core configurations for fuels with uranium densities variable from 3 to 5 gU/cm 3 showed to be adequate to use in IEA-R1 reactor e should present a stable in reactor performance even at high burn-up. (author)

  18. Alkaline elution of uranium and molybdenum and their recovery

    International Nuclear Information System (INIS)

    Song Wenlan; Wu Peisheng; Zhao Pinzhi; Tao Dening; Xie Chaoyan

    1987-01-01

    The uranium and molybdenum can be simultaneously eluted by using eluant (NH 4 ) 2 CO 3 + (NH 4 ) 2 SO 4 from resin loaded uranium and molybdenum. The ADU is precipitated from eluant by volatilization of ammonia. The molybdenum is extracted by TFA-TBP-kerosene from the filtrate at pH 3.0-3.2 with molybdenum extraction > 98%. Uranium is nearly not extracted. The precipitation of Mo is reached by sulphuric acid after stripping and the ammonium multimolybdate is obtained. This process can give the total recovery more than 99% for U and 90% for Mo. Because of the use of sulphate salt system, the hazard of NO 3 - can be avoided

  19. Using molybdenum depleted in 95Mo in UMo fuel

    International Nuclear Information System (INIS)

    Bakker, K.; Wijtsma, F.; Bos, A.; Mol, C.; Rakhorst, H.; Bretscher, M.; Hofman, G.; Snelgrove, J.

    2002-01-01

    In recent years significant interest was gained in UMo fuel to be used in Material Test Reactors. This interest was induced by the fact that UMo fuel is mechanically stable, even at high uranium concentrations and high U-burnup. These properties are required in order to use Low Enriched Uranium (LEU) and still be able to achieve high flux and burnup values and, thus, to facilitate the conversion from High Enriched Uranium (HEU) to LEU. Neutronics computations have shown that, although the Mo concentration in UMo fuel is not very high (about 5 - 10w%), the neutron absorption cross sections of natural Mo are sufficiently high to have a considerable negative impact on the reactivity of this UMo fuel. In the present research the neutron absorption cross sections of natural Mo are discussed and the option to reduce the cross section of molybdenum by depleting the Mo in 95 Mo is described. Finally the economic consequences of using Mo depleted in 95 Mo are briefly discussed

  20. Molybdenum-UO2 cermet irradiation at 1145 K.

    Science.gov (United States)

    Mcdonald, G.

    1971-01-01

    Two molybdenum-uranium dioxide cermet fuel pins with molybdenum clad were fission-heated in a forced-convection helium coolant for sufficient time to achieve 5.3% burnup. The cermet core contained 20 wt % of 93.2% enriched uranium dioxide. The results were as follows: there was no visible change in the appearance of the molybdenum clad during irradiation; the maximum increase in diameter of the fuel pins was 0.8%; there was no migration of uranium dioxide along grain boundaries and no evident interaction between molybdenum and uranium dioxide; and, finally, approximately 12% of the fission gas formed was released from the cermet core into the gas plenum.

  1. Molybdenum-base cermet fuel development

    International Nuclear Information System (INIS)

    Gurwell, W.E.; Moss, R.W.; Pilger, J.P.; White, G.D.

    1987-07-01

    Development of a multimegawatt (MMW) space nuclear power system requires identification and resolution of several technical feasibility issues before selecting one or more promising system concepts. Demonstration of reactor fuel fabrication technology is required for cermet-fueled reactor concepts. MMW reactor fuel development activity at Pacific Northwest Laboratory (PNL) is focused on producing a molybdenum-matrix uranium-nitride (UN) fueled cermet. This cermet is to have a high matrix density (≥95%) for high strength and high thermal conductance coupled with a high particle (UN) porosity (∼25%) for retention of released fission gas at high burnup. Fabrication process development involves the use of porous TiN microspheres as surrogate fuel material until porous UN microspheres become available. Process development has been conducted in the areas of microsphere synthesis, particle sealing/coating, and high-energy-rate forming (HERF) and vacuum hot press consolidation techniques. This paper summarizes the status of these activities

  2. Recovery of uranium from sulphate solutions containing molybdenum

    International Nuclear Information System (INIS)

    Weir, D.R.; Genik-Sas-Berezowsky, R.M.

    1983-01-01

    A process for recovering uranium from a sulphate solution containing dissolved uranium and molybdenum includes reacting the solution with ammonia (pH 8 to 10), the pH of the original solution must not exceed 5.5 and after the addition of ammonia the pH must not be in the vicinity of 7 for a significant time. The resultant uranium precipitate is relatively uncontaminated by molybdenum. The precipitate is then separated from the remaining solution while the pH is maintained within the stated range

  3. A model for recovery of scrap monolithic uranium molybdenum fuel by electrorefining

    Science.gov (United States)

    Van Kleeck, Melissa A.

    The goal of the Reduced Enrichment for Research and Test Reactors program (RERTR) is toreduce enrichment at research and test reactors, thereby decreasing proliferation risk at these facilities. A new fuel to accomplish this goal is being manufactured experimentally at the Y12 National Security Complex. This new fuel will require its own waste management procedure,namely for the recovery of scrap from its manufacture. The new fuel is a monolithic uraniummolybdenum alloy clad in zirconium. Feasibility tests were conducted in the Planar Electrode Electrorefiner using scrap U-8Mo fuel alloy. These tests proved that a uranium product could be recovered free of molybdenum from this scrap fuel by electrorefining. Tests were also conducted using U-10Mo Zr clad fuel, which confirmed that product could be recovered from a clad version of this scrap fuel at an engineering scale, though analytical results are pending for the behavior of Zr in the electrorefiner. A model was constructed for the simulation of electrorefining the scrap material produced in the manufacture of this fuel. The model was implemented on two platforms, Microsoft Excel and MatLab. Correlations, used in the model, were developed experimentally, describing area specific resistance behavior at each electrode. Experiments validating the model were conducted using scrap of U-10Mo Zr clad fuel in the Planar Electrode Electrorefiner. The results of model simulations on both platforms were compared to experimental results for the same fuel, salt and electrorefiner compositions and dimensions for two trials. In general, the model demonstrated behavior similar to experimental data but additional refinements are needed to improve its accuracy. These refinements consist of a function for surface area at anode and cathode based on charge passed. Several approximations were made in the model concerning areas of electrodes which should be replaced by a more accurate function describing these areas.

  4. Experiment on bio-leaching of associated molybdenum and uranium ore

    International Nuclear Information System (INIS)

    Zheng Ying; Fan Baotuan; Liu Jian; Meng Yunsheng; Liu Chao

    2007-01-01

    Column leaching experiment results on associated molybdenum uranium ore by bacteria (T. f) are introduced. The ore are leached for 210 days using bacteria domesticated to tolerate molybdenum, the leaching of uranium is of 98% and leaching of molybdenum is of 41%. Sulphuric acid produced by bio-oxidation of sulfides in ore can meet the demand of ore leaching. (authors)

  5. Recovering and recycling uranium used for production of molybdenum-99

    Science.gov (United States)

    Reilly, Sean Douglas; May, Iain; Copping, Roy; Dale, Gregory Edward

    2017-12-12

    A processes for recycling uranium that has been used for the production of molybdenum-99 involves irradiating a solution of uranium suitable for forming fission products including molybdenum-99, conditioning the irradiated solution to one suitable for inducing the formation of crystals of uranyl nitrate hydrates, then forming the crystals and a supernatant and then separating the crystals from the supernatant, thus using the crystals as a source of uranium for recycle. Molybdenum-99 is recovered from the supernatant using an adsorbent such as alumina. Another process involves irradiation of a solid target comprising uranium, forming an acidic solution from the irradiated target suitable for inducing the formation of crystals of uranyl nitrate hydrates, then forming the crystals and a supernatant and then separating the crystals from the supernatant, thus using the crystals as a source of uranium for recycle. Molybdenum-99 is recovered from the supernatant using an adsorbent such as alumina.

  6. Set up of Uranium-Molybdenum powder production (HMD process)

    International Nuclear Information System (INIS)

    Lopez, Marisol; Pasqualini, Enrique E.; Gonzalez, Alfredo G.

    2003-01-01

    Powder metallurgy offers different alternatives for the production of Uranium-Molybdenum (UMo) alloy powder in sizes smaller than 150 microns. This powder is intended to be used as a dispersion fuel in an aluminum matrix for research, testing and radioisotopes production reactors (MTR). A particular process of massive hydriding the UMo alloy in gamma phase has been developed. This work describes the final adjustments of process variables to obtain UMo powder by hydriding-milling-de hydriding (HMD) and its capability for industrial scaling up. (author)

  7. Molybdenum solubility in aluminium nitrate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Heres, X.; Sans, D.; Bertrand, M.; Eysseric, C. [CEA, Centre de Marcoule, Nuclear Energy Division, DRCP, BP 17171, 30207 Bagnols-sur-Ceze Cedex (France); Brackx, E.; Domenger, R.; Excoffier, E. [CEA, Centre de Marcoule, Nuclear Energy Division, DTEC, BP 17171, 30207 Bagnols-sur-Ceze Cedex (France); Valery, J.F. [AREVA-NC, DOR/RDP, Paris - La Defense (France)

    2016-07-01

    For over 60 years, research reactors (RR or RTR for research testing reactors) have been used as neutron sources for research, radioisotope production ({sup 99}Mo/{sup 99m}Tc), nuclear medicine, materials characterization, etc... Currently, over 240 of these reactors are in operation in 56 countries. They are simpler than power reactors and operate at lower temperature (cooled to below 100 C. degrees). The fuel assemblies are typically plates or cylinders of uranium alloy and aluminium (U-Al) coated with pure aluminium. These fuels can be processed in AREVA La Hague plant after batch dissolution in concentrated nitric acid and mixing with UOX fuel streams. The aim of this study is to accurately measure the solubility of molybdenum in nitric acid solution containing high concentrations of aluminium. The higher the molybdenum solubility is, the more flexible reprocessing operations are, especially when the spent fuels contain high amounts of molybdenum. To be most representative of the dissolution process, uranium-molybdenum alloy and molybdenum metal powder were dissolved in solutions of aluminium nitrate at the nominal dissolution temperature. The experiments showed complete dissolution of metallic elements after 30 minutes long stirring, even if molybdenum metal was added in excess. After an induction period, a slow precipitation of molybdic acid occurs for about 15 hours. The data obtained show the molybdenum solubility decreases with increasing aluminium concentration. The solubility law follows an exponential relation around 40 g/L of aluminium with a high determination coefficient. Molybdenum solubility is not impacted by the presence of gadolinium, or by an increasing concentration of uranium. (authors)

  8. Microstructural evolution of a uranium-10 wt.% molybdenum alloy for nuclear reactor fuels

    International Nuclear Information System (INIS)

    Clarke, A.J.; Clarke, K.D.; McCabe, R.J.; Necker, C.T.; Papin, P.A.; Field, R.D.; Kelly, A.M.; Tucker, T.J.; Forsyth, R.T.; Dickerson, P.O.; Foley, J.C.; Swenson, H.; Aikin, R.M.; Dombrowski, D.E.

    2015-01-01

    Low-enriched uranium-10 wt.% molybdenum (LEU-10wt.%Mo) is of interest for the fabrication of monolithic fuels to replace highly-enriched uranium (HEU) dispersion fuels in high performance research and test reactors around the world. In this work, depleted uranium-10 wt.%Mo (DU-10wt.%Mo) is used to simulate the solidification and microstructural evolution of LEU-10wt.%Mo. Electron backscatter diffraction (EBSD) and complementary electron probe microanalysis (EPMA) reveal significant microsegregation present in the metastable γ-phase after solidification. Homogenization is performed at 800 and 1000 °C for times ranging from 1 to 32 h to explore the time–temperature combinations that will reduce the extent of microsegregation, as regions of higher and lower Mo content may influence local mechanical properties and provide preferred regions for γ-phase decomposition. We show for the first time that EBSD can be used to qualitatively assess microstructural evolution in DU-10wt.%Mo after homogenization treatments. Complementary EPMA is used to quantitatively confirm this finding. Homogenization at 1000 °C for 2–4 h may the regions that contain 8 wt.% Mo or lower, whereas homogenization at 1000 °C for longer than 8 h effectively saturates Mo chemical homogeneity, but results in substantial grain growth. The appropriate homogenization time will depend upon additional microstructural considerations, such as grain growth and intended subsequent processing. Higher carbon LEU-10wt.%Mo generally contains more inclusions within the grains and at grain boundaries after solidification. The effect of these inclusions on microstructural evolution (e.g. grain growth) during homogenization and as potential γ-phase decomposition nucleation sites is unclear, but likely requires additional study.

  9. Microstructural evolution of a uranium-10 wt.% molybdenum alloy for nuclear reactor fuels

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, A.J., E-mail: aclarke@lanl.gov; Clarke, K.D.; McCabe, R.J.; Necker, C.T.; Papin, P.A.; Field, R.D.; Kelly, A.M.; Tucker, T.J.; Forsyth, R.T.; Dickerson, P.O.; Foley, J.C.; Swenson, H.; Aikin, R.M.; Dombrowski, D.E.

    2015-10-15

    Low-enriched uranium-10 wt.% molybdenum (LEU-10wt.%Mo) is of interest for the fabrication of monolithic fuels to replace highly-enriched uranium (HEU) dispersion fuels in high performance research and test reactors around the world. In this work, depleted uranium-10 wt.%Mo (DU-10wt.%Mo) is used to simulate the solidification and microstructural evolution of LEU-10wt.%Mo. Electron backscatter diffraction (EBSD) and complementary electron probe microanalysis (EPMA) reveal significant microsegregation present in the metastable γ-phase after solidification. Homogenization is performed at 800 and 1000 °C for times ranging from 1 to 32 h to explore the time–temperature combinations that will reduce the extent of microsegregation, as regions of higher and lower Mo content may influence local mechanical properties and provide preferred regions for γ-phase decomposition. We show for the first time that EBSD can be used to qualitatively assess microstructural evolution in DU-10wt.%Mo after homogenization treatments. Complementary EPMA is used to quantitatively confirm this finding. Homogenization at 1000 °C for 2–4 h may the regions that contain 8 wt.% Mo or lower, whereas homogenization at 1000 °C for longer than 8 h effectively saturates Mo chemical homogeneity, but results in substantial grain growth. The appropriate homogenization time will depend upon additional microstructural considerations, such as grain growth and intended subsequent processing. Higher carbon LEU-10wt.%Mo generally contains more inclusions within the grains and at grain boundaries after solidification. The effect of these inclusions on microstructural evolution (e.g. grain growth) during homogenization and as potential γ-phase decomposition nucleation sites is unclear, but likely requires additional study.

  10. A Nuclear Reactor and Chemical Processing Design for Production of Molybdenum-99 with Crystalline Uranyl Nitrate Hexahydrate Fuel

    Science.gov (United States)

    Stange, Gary Michael

    Medical radioisotopes are used in tens of millions of procedures every year to detect and image a wide variety of maladies and conditions in the human body. The most widely-used diagnostic radioisotope is technetium-99m, a metastable isomer of technetium-99 that is generated by the radioactive decay of molybdenum-99. For a number of reasons, the supply of molybdenum-99 has become unreliable and the techniques used to produce it have become unattractive. This has spurred the investigation of new technologies that avoid the use of highly enriched uranium to produce molybdenum-99 in the United States, where approximately half of the demand originates. The first goal of this research is to develop a critical nuclear reactor design powered by solid, discrete pins of low enriched uranium. Analyses of single-pin heat transfer and whole-core neutronics are performed to determine the required specifications. Molybdenum-99 is produced directly in the fuel of this reactor and then extracted through a series of chemical processing steps. After this extraction, the fuel is left in an aqueous state. The second goal of this research is to describe a process by which the uranium may be recovered from this spent fuel solution and reconstituted into the original fuel form. Fuel recovery is achieved through a crystallization step that generates solid uranyl nitrate hexahydrate while leaving the majority of fission products and transuranic isotopes in solution. This report provides background information on molybdenum-99 production and crystallization chemistry. The previously unknown thermal conductivity of the fuel material is measured. Following this is a description of the modeling and calculations used to develop a reactor concept. The operational characteristics of the reactor core model are analyzed and reported. Uranyl nitrate crystallization experiments have also been conducted, and the results of this work are presented here. Finally, a process flow scheme for uranium

  11. Extraction of molybdenum with TBP-dodecane mixture in nitric medium. Application to uranium refining

    International Nuclear Information System (INIS)

    Donnet, Louis

    1993-01-01

    Uranium ores may contain high quantities of molybdenum which represents an undesirable impurity in the uranium conversion process. Thus it is necessary to check carefully its extraction and its stripping during the purification step. The purpose of this study was to investigate the molybdenum behaviour during this step. We have developed a radiochemical method for the determination of the molybdenum concentration in each phase. This method used gamma radiation of technetium 99m issued from molybdenum 99 disintegration. After a systematic study of all the extraction parameters, we have proposed mechanisms accounting for molybdenum extraction and we have calculated the constants for the different equilibria. In particular, we have furnished new data concerning the extraction of polymerised molybdenum species with tri butyl phosphate. We have also determined the polymerization constants of molybdenum in the aqueous phase. The influence of uranium and phosphate ions on the molybdenum behaviour during the extraction and stripping has been investigated. We have shown that the extraction of molybdenum was not modified by uranium but improved in the presence of phosphate ions. In the general case, we have shown that uranium, phosphate ions and the ageing of the solvent have an unfavourable effect on stripping. We have explained this result by the evolution of the complex in the organic phase to an un-stripped polymeric form. In conclusion, our study has allowed to explain the behaviour of molybdenum during the purification process, and the role of impurities present in the industrial solutions. It would serve as a guide to improve the exploitation for a better molybdenum-uranium separation. (author) [fr

  12. Recovery of uranium and molybdenum elements from gebel gattar raw material, eastern desert, Egypt. Vol. 3

    Energy Technology Data Exchange (ETDEWEB)

    El-Hazek, N T; Mahdy, M A; Mahmoud, H M.K. [Nuclear Materials Authority, Cairo, (Egypt)

    1996-03-01

    G. Gatter uranium mineralizations are located along the faults and fracture zones crossing G.Gattar granitic pluton and long the contact of the pluton with the hammamat sediments. Also, molybdenum id presented in more than one mode of occurrence. The molybdenum mineralization treated in this work is the dessimenated type. The uranium and molybdenum raw material was subjected to series of leaching experiments including acid and alkaline agitation, alkaline percolation, and acid heap leaching techniques. Recovery of uranium and molybdenum was achieved by anion-exchange method followed by their elution by acidified sodium chloride. Uranium precipitation was performed in the form of ammonium diuranate (Yellow Cake). On the other hand molybdenum was precipitated in the form of molybdenum oxide. A tentative flowsheet for the extraction of both uranium and molybdenum is proposed and discussed. 13 figs., 3 tabs.

  13. Recovery of uranium and molybdenum elements from gebel gattar raw material, eastern desert, Egypt. Vol. 3

    International Nuclear Information System (INIS)

    El-Hazek, N.T.; Mahdy, M.A.; Mahmoud, H.M.K.

    1996-01-01

    G. Gatter uranium mineralizations are located along the faults and fracture zones crossing G.Gattar granitic pluton and long the contact of the pluton with the hammamat sediments. Also, molybdenum id presented in more than one mode of occurrence. The molybdenum mineralization treated in this work is the dessimenated type. The uranium and molybdenum raw material was subjected to series of leaching experiments including acid and alkaline agitation, alkaline percolation, and acid heap leaching techniques. Recovery of uranium and molybdenum was achieved by anion-exchange method followed by their elution by acidified sodium chloride. Uranium precipitation was performed in the form of ammonium diuranate (Yellow Cake). On the other hand molybdenum was precipitated in the form of molybdenum oxide. A tentative flowsheet for the extraction of both uranium and molybdenum is proposed and discussed. 13 figs., 3 tabs

  14. Properties of low content uranium-molybdenum alloys which may be used as nuclear fuels

    International Nuclear Information System (INIS)

    Lehmann, J.; Decours, J.

    1964-01-01

    Metallurgical properties are given in this report of uranium-molybdenum alloys containing 0,5 to 3 per cent of molybdenum. Since some of these alloys are used in EDF power reactors are given: briefly the operating conditions imposed on nuclear fuels: maximum temperature, temperature gradient and external pressure. In the first part are considered the structural properties of the alloys correlation with the phase transformation kinetics; a description is given of the effects of certain physico-metallurgical factors on the morphology and the crystalline structure of the materials: - solidification conditions and the heredity of the γ structure, - cooling rate at the transformation points, - whether or not the intermediate γ → β transformation is suppressed In the second part we show how a knowledge of the phase transformation processes has made it possible to define the optimum preparation conditions for these materials in the form of fuel tubes intended for the EDF reactors: casting conditions, controlled cooling treatments, weldability. In the third part we study the thermal, stability during the long duration high temperature treatments and the cycles in the two zones of the diagram α + γ; β + γ the effects of the morphology (in particular the two types of α pseudo-grains observed) and of the cooling rate during the transformation point transitions are described. In the fourth part are discussed the mechanical properties: resistance to a tractive force, resistance to creep, resilience. These properties can also be affected by the γ structure heredity and by the cooling rate to which the alloy has been subjected. In conclusion we discuss the reasons which led to the choice of some of these alloys for the first EDF reactors in particular the advantages of their high creep resistance between 450 and 600 deg C for use in the form of tubes subjected to an external pressure. (authors) [fr

  15. Spectrographic analysis of uranium-molybdenum alloys

    International Nuclear Information System (INIS)

    Roca, M.

    1967-01-01

    A spectrographic method of analysis has been developed for uranium-molybdenum alloys containing up to 10 % Mo. The carrier distillation technique, with gallium oxide and graphite as carriers, is used for the semiquantitative determination of Al, Cr, Fe, Ni and Si, involving the conversion of the samples into oxides. As a consequence of the study of the influence of the molybdenum on the line intensities, it is useful to prepare only one set of standards with 0,6 % MoO 3 . Total burning excitation is used for calcium, employing two sets of standards with 0,6 and 7.5 MoO 3 . (Author) 5 refs

  16. Regularities of the vertical distribution of uranium-molybdenum mineralization

    International Nuclear Information System (INIS)

    Konstantinov, V.M.; Kazantsev, V.V.; Protasov, V.N.

    1980-01-01

    The geological structure of one of ore fields of the uranium-molybdenum formation pertaining to the northern framing of a large volcano-tectonic depression is studied. The main uranium deposits are related to necks formed by neck facies of brown liparites. Three zones are singled out within the limits of the ore field. In the upper one there are small ore bodies with a low uranium content represented by phenolite-chlorite, pitchblende 3-coffinite 3-jordizite and calcinite-sulphide associations, in the middle one - the main ore bodies formed by pitchblende 1-chlorite, molybdenite 2 (jordizite)-pitchblende 2-hydromica, coffinite 2-pyrite associations; in the lower one-thin veinlets formed by coffinite-molybdenite 1-chlorite, brannerite-pyrite and pitchblende 1-chlorite associations. Dimensions of the ore deposits depend on the neck sizes: in small necks the middle zone and, rarely, the lower one are of the industrial interest; in the large ones - the upper middle and, probably, lower ones. The regularities found can be extended to other deposits of the uranium-molybdenum formation [ru

  17. Formation conditions for regenerated uranium blacks in uranium-molybdenum deposits

    International Nuclear Information System (INIS)

    Skvortsova, K.V.; Sychev, I.V.; Modnikov, I.S.; Zhil'tsova, I.G.

    1980-01-01

    Formation conditions of regenerated uranium blacks in the zone of incomplete oxidation and cementation of uranium-molybdenum deposit have been studied. Mixed and regenerated blacks were differed from residual ones by the method of determining excess quantity of lead isotope (Pb 206 ) in ores. Determined were the most favourable conditions for formation of regenerated uranium blacks: sheets of brittle and permeable volcanic rocks characterized by heterogeneous structure of a section, by considerable development of gentle interlayer strippings and zones of hydrothermal alteration; predominance of reduction conditions in a media over oxidation ones under limited oxygen access and other oxidating agents; the composition of hypogenic ores characterized by optimum correlations of uranium minerals, sulfides and carbonates affecting violations of pH in oxidating solutions in the range of 5-6; the initial composition of ground water resulting from climatic conditions of the region and the composition of ore-bearing strata and others. Conditions unfavourable for the formation of regenerated uranium blacks are shown

  18. Molybdenum isotope fractionation during acid leaching of a granitic uranium ore

    Science.gov (United States)

    Migeon, Valérie; Bourdon, Bernard; Pili, Eric; Fitoussi, Caroline

    2018-06-01

    As an attempt to prevent illicit trafficking of nuclear materials, it is critical to identify the origin and transformation of uranium materials from the nuclear fuel cycle based on chemical and isotope tracers. The potential of molybdenum (Mo) isotopes as tracers is considered in this study. We focused on leaching, the first industrial process used to release uranium from ores, which is also known to extract Mo depending on chemical conditions. Batch experiments were performed in the laboratory with pH ranging from 0.3 to 5.5 in sulfuric acid. In order to span a large range in uranium and molybdenum yields, oxidizers such as nitric acid, hydrogen peroxide and manganese dioxide were also added. An enrichment in heavy Mo isotopes is produced in the solution during leaching of a granitic uranium ore, when Mo recovery is not quantitative. At least two Mo reservoirs were identified in the ore: ∼40% as Mo oxides soluble in water or sulfuric acid, and ∼40% of Mo hosted in sulfides soluble in nitric acid or hydrogen peroxide. At pH > 1.8, adsorption and/or precipitation processes induce a decrease in Mo yields with time correlated with large Mo isotope fractionations. Quantitative models were used to evaluate the relative importance of the processes involved in Mo isotope fractionation: dissolution, adsorption, desorption, precipitation, polymerization and depolymerization. Model best fits are obtained when combining the effects of dissolution/precipitation, and adsorption/desorption onto secondary minerals. These processes are inferred to produce an equilibrium isotope fractionation, with an enrichment in heavy Mo isotopes in the liquid phase and in light isotopes in the solid phase. Quantification of Mo isotope fractionation resulting from uranium leaching is thus a promising tool to trace the origin and transformation of nuclear materials. Our observations of Mo leaching are also consistent with observations of natural Mo isotope fractionation taking place during

  19. Deposit of molybdenum associated with uranium in Pena Blanca, Mexico

    International Nuclear Information System (INIS)

    Reyes-Cortes, M.

    1985-01-01

    The uranium-molybdenum deposits are in the Sierra Pena Blanca, 45 km north of the city of Chihuahua. The largest amounts of uranium-molybdenum ore are found in the area of Las Margaritas-Puerto III. The ratio of molybdenum mineralization to uranium is 2:1 in this area and the deposits are distributed at depths of 55-100 m in ignimbritic rocks of the so called Escuadra Formation. This volcanic unit consists of an altered crystalline-lithic ash-flow tuff of Oligocene age. The molybdenum mineral occurs as powellite (CaMoO 4 ) and is found predominantly in two size ranges: phenocrysts 0.1-20 mm in diameter are abundant in the upper part of the deposit, while a material which varies between cryptocrystalline and amorphous predominates in the lower part. This latter material can easily be identified inside the mine by its strong orange fluorescence; it is also easy to recover by leaching. In contrast, the metallurgical process of recovery by leaching of the phenocrystalline portion of the powellite has so far presented problems. Powellite is generally found in association with carnotite, margaritasite and uranophane, and its mineralization consists of disseminated lumps, druses, crustifications and veins; frequently, it partially replaces the phenocrysts of argillized feldspars of the Escuadra Formation. Fractured and brecciated zones with intense oxidation of jarosite, haematite, limonite and goethite sometimes show high U-Mo concentrations; on other occasions the concentration is found with alunite at the contact between the ignimbrite and the layers of argillized vitrophyre. The mineralizations of fluorite, pyrite, jarosite, alunite and opal are indicative of hydrothermal deposition, possibly at low temperature with supergene or geothermal alterations. (author)

  20. Analysis of prospecting effect of polonium survey and geoelectric survey extracted uranium and molybdenum in the south of Shengyuan volcanic basin

    International Nuclear Information System (INIS)

    Jin Hehai

    2007-01-01

    Polonium survey and geoelectric survey extracted uranium and molybdenum show that compound anomaly with sharp anomaly peak of the curve of polonium-210, uranium, molybdenum appears along many survey lines in Bakou area, Shengyuan volcanic basin, which may reflect the enrichment of uranium and molybdenum in rock formation and soil layer. By contrasting the anomaly curve to that above the buried uranium deposit, it is recognized that compound anomaly is closely related to the uranium mineralization condition in the area and some favourable sites for uranium metallogeny have been predicated. (authors)

  1. Recovery of uranium from an irradiated solid target after removal of molybdenum-99 produced from the irradiated target

    Science.gov (United States)

    Reilly, Sean Douglas; May, Iain; Copping, Roy; Dale, Gregory Edward

    2017-10-17

    A process for minimizing waste and maximizing utilization of uranium involves recovering uranium from an irradiated solid target after separating the medical isotope product, molybdenum-99, produced from the irradiated target. The process includes irradiating a solid target comprising uranium to produce fission products comprising molybdenum-99, and thereafter dissolving the target and conditioning the solution to prepare an aqueous nitric acid solution containing irradiated uranium. The acidic solution is then contacted with a solid sorbent whereby molybdenum-99 remains adsorbed to the sorbent for subsequent recovery. The uranium passes through the sorbent. The concentrations of acid and uranium are then adjusted to concentrations suitable for crystallization of uranyl nitrate hydrates. After inducing the crystallization, the uranyl nitrate hydrates are separated from a supernatant. The process results in the purification of uranyl nitrate hydrates from fission products and other contaminants. The uranium is therefore available for reuse, storage, or disposal.

  2. Low-Enriched Uranium Fuel Conversion Activities for the High Flux Isotope Reactor, Annual Report for FY 2011

    Energy Technology Data Exchange (ETDEWEB)

    Renfro, David G [ORNL; Cook, David Howard [ORNL; Freels, James D [ORNL; Griffin, Frederick P [ORNL; Ilas, Germina [ORNL; Sease, John D [ORNL; Chandler, David [ORNL

    2012-03-01

    This report describes progress made during FY11 in ORNL activities to support converting the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum (UMo) alloy. With both radial and axial contouring of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current levels achieved with HEU fuel. Studies are continuing to demonstrate that the fuel thermal safety margins can be preserved following conversion. Studies are also continuing to update other aspects of the reactor steady state operation and accident response for the effects of fuel conversion. Technical input has been provided to Oregon State University in support of their hydraulic testing program. The HFIR conversion schedule was revised and provided to the GTRI program. In addition to HFIR conversion activities, technical support was provided directly to the Fuel Fabrication Capability program manager.

  3. Low-Enriched Uranium Fuel Conversion Activities for the High Flux Isotope Reactor, Annual Report for FY 2011

    International Nuclear Information System (INIS)

    Renfro, David G.; Cook, David Howard; Freels, James D.; Griffin, Frederick P.; Ilas, Germina; Sease, John D.; Chandler, David

    2012-01-01

    This report describes progress made during FY11 in ORNL activities to support converting the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum (UMo) alloy. With both radial and axial contouring of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current levels achieved with HEU fuel. Studies are continuing to demonstrate that the fuel thermal safety margins can be preserved following conversion. Studies are also continuing to update other aspects of the reactor steady state operation and accident response for the effects of fuel conversion. Technical input has been provided to Oregon State University in support of their hydraulic testing program. The HFIR conversion schedule was revised and provided to the GTRI program. In addition to HFIR conversion activities, technical support was provided directly to the Fuel Fabrication Capability program manager.

  4. Study of the quenching and subsequent return to room temperature of uranium-chromium, uranium-iron, and uranium-molybdenum alloys containing only small amounts of the alloying element

    International Nuclear Information System (INIS)

    Delaplace, J.

    1960-09-01

    By means of an apparatus which makes possible thermal pre-treatments in vacuo, quenching carried out in a high purity argon atmosphere, and simultaneous recording of time temperature cooling and thermal contraction curves, the author has examined the transformations which occur in uranium-chromium, uranium-iron and uranium-molybdenum alloys during their quenching and subsequent return to room temperature. For uranium-chromium and uranium-iron alloys, the temperature at which the γ → β transformation starts varies very little with the rate of cooling. For uranium-molybdenum alloys containing 2,8 atom per cent of Mo, this temperature is lowered by 120 deg. C for a cooling rate of 500 deg. C/mn. The temperature at which the β → α transformation starts is lowered by 170 deg. C for a cooling rate of 500 deg. C/mn in the case of uranium-chromium alloy containing 0,37 atom per cent of Cr. The temperature is little affected in the case of uranium-iron alloys. The addition of chromium or iron makes it possible to conserve the form β at ordinary temperatures after quenching from the β and γ regions. The β phase is particularly unstable and changes into needles of the α form even at room temperatures according to an autocatalytic transformation law similar to the austenitic-martensitic transformation law in the case of iron. The β phase obtained by quenching from the β phase region is more stable than that obtained by quenching from the γ region. Chromium is a more effective stabiliser of the β phase than is iron. Unfortunately it causes serious surface cracking. The β → α transformation in uranium-chromium alloys has been followed at room temperature by means of micro-cinematography. The author has not observed the direct γ → α transformation in uranium-molybdenum alloys containing 2,8 per cent of molybdenum even for cooling rates of up to 2000 deg. C/s. He has however observed the formation of several martensitic structures. (author) [fr

  5. Ion exchange resin fouling of molybdenum in recovery uranium processess

    International Nuclear Information System (INIS)

    Zhang Guowei; Zhao Guirong

    1990-09-01

    The relationship between anion exchange resin fouling and molybdic acid polymerization was studied. By using potentiometer titration and laser-Raman spectroscopy the relationship of molybdic acid polymerization and the pH value of solution or the molybdenum concentration was determined. It was shown that as the concentration of initial molybdenum in solution decreases from 0.2 mol/L to 0.5 mmol/L, the pH value of starting polymerization decreased from 6.5 to 4.5. The experimental results show that the fouling of 201 x 7 resin in the acidic solution is mainly caused by the adsorbing of Mo 3 O 26 4- ion and occupying the exchange radical site of the resin. Under the leaching conditions the molybdenum and phosphate existing in the leaching liquor can form 12-molybdo-phosphate ion. It also leads to resin fouling. The molybdenum on the fouled resin can synergically be desorbed by mixed desorbents containing ammonium hydroxide and ammonium sulfate. The desorbed resin can be used for uranium adsorption and the desorbed molybdenum can be recovered by ion exchange method

  6. Production of uranium-molybdenum particles by spark-erosion

    International Nuclear Information System (INIS)

    Cabanillas, E.D.; Lopez, M.; Pasqualini, E.E.; Cirilo Lombardo, D.J.

    2004-01-01

    With the spark-erosion method we have produced spheroidal particles of an uranium-molybdenum alloy using pure water as dielectric. The particles were characterized by optical metallography, scanning electron microscopy, energy dispersive spectrometry and X-ray diffraction. Mostly spherical particles of UO 2 with a distinctive size distribution with peaks centered at 70 and 10 μm were obtained. The particles have central inclusions of U and Mo compounds

  7. Production of uranium-molybdenum particles by spark-erosion

    Energy Technology Data Exchange (ETDEWEB)

    Cabanillas, E.D. E-mail: cabanill@cnea.gov.ar; Lopez, M.; Pasqualini, E.E.; Cirilo Lombardo, D.J

    2004-01-01

    With the spark-erosion method we have produced spheroidal particles of an uranium-molybdenum alloy using pure water as dielectric. The particles were characterized by optical metallography, scanning electron microscopy, energy dispersive spectrometry and X-ray diffraction. Mostly spherical particles of UO{sub 2} with a distinctive size distribution with peaks centered at 70 and 10 {mu}m were obtained. The particles have central inclusions of U and Mo compounds.

  8. Solvent-extraction and purification of uranium(VI) and molybdenum(VI) by tertiary amines from acid leach solutions

    International Nuclear Information System (INIS)

    La Gamma, Ana M.G.; Becquart, Elena T.; Chocron, Mauricio

    2008-01-01

    Considering international interest in the yellow-cake price, Argentina is seeking to exploit new uranium ore bodies and processing plants. A study of similar plants would suggest that solvent- extraction with Alamine 336 is considered the best method for the purification and concentration of uranium present in leaching solutions. In order to study the purification of these leach liquors, solvent-extraction tests under different conditions were performed with simulated solutions which containing molybdenum and molybdenum-uranium mixtures. Preliminary extraction tests carried out on mill acid-leaching liquors are also presented. (authors)

  9. Characterization of the uranium--2 weight percent molybdenum alloy

    International Nuclear Information System (INIS)

    Hemperly, V.C.

    1976-01-01

    The uranium-2 wt percent molybdenum alloy was prepared, processed, and age hardened to meet a minimum 930-MPa yield strength (0.2 percent) with a minimum of 10 percent elongation. These mechanical properties were obtained with a carbon level up to 300 ppM in the alloy. The tensile-test ductility is lowered by the humidity of the laboratory atmosphere

  10. Hot rolling of thick uranium molybdenum alloys

    Science.gov (United States)

    DeMint, Amy L.; Gooch, Jack G.

    2015-11-17

    Disclosed herein are processes for hot rolling billets of uranium that have been alloyed with about ten weight percent molybdenum to produce cold-rollable sheets that are about one hundred mils thick. In certain embodiments, the billets have a thickness of about 7/8 inch or greater. Disclosed processes typically involve a rolling schedule that includes a light rolling pass and at least one medium rolling pass. Processes may also include reheating the rolling stock and using one or more heavy rolling passes, and may include an annealing step.

  11. Extraction and selective stripping of uranium and molybdenum in sulfate solution using amines

    International Nuclear Information System (INIS)

    Sialino, E.; Mignot, C.; Michel, P.; Vial, J.

    1977-01-01

    The uranium solutions issued from leaching of AKOUTA ores and containing lot of molybdenum are purified using solvent extraction. During the first test run precipitation of complexes such as amine phosphomolybdate was observed. It was pointed out that the precipitation could be prevented if the molybdenum is oxidized in the feed prior to solvent extraction. Informations on the basic studies carried out to ensure the reliability of the process are given in the complete paper

  12. Reprocessability of molybdenum and magnesia based inert matrix fuels

    Directory of Open Access Journals (Sweden)

    Ebert Elena L.

    2015-12-01

    Full Text Available This work focuses on the reprocessability of metallic 92Mo and ceramic MgO, which is under investigation for (Pu,MA-oxide (MA = minor actinide fuel within a metallic 92Mo matrix (CERMET and a ceramic MgO matrix (CERCER. Magnesium oxide and molybdenum reference samples have been fabricated by powder metallurgy. The dissolution of the matrices was studied as a function of HNO3 concentration (1-7 mol/L and temperature (25-90°C. The rate of dissolution of magnesium oxide and metallic molybdenum increased with temperature. While the MgO rate was independent of the acid concentration (1-7 mol/L, the rate of dissolution of Mo increased with acid concentration. However, the dissolution of Mo at high temperatures and nitric acid concentrations was accompanied by precipitation of MoO3. The extraction of uranium, americium, and europium in the presence of macro amounts of Mo and Mg was studied by three different extraction agents: tri-n-butylphosphate (TBP, N,Nʹ-dimethyl-N,Nʹ-dioctylhexylethoxymalonamide (DMDOHEMA, and N,N,N’,N’- -tetraoctyldiglycolamide (TODGA. With TBP no extraction of Mo and Mg occurred. Both matrix materials are partly extracted by DMDOHEMA. Magnesium is not extracted by TODGA (D < 0.1, but a weak extraction of Mo is observed at low Mo concentration.

  13. Moderator configuration options for a low-enriched uranium fueled Kilowatt-class Space Nuclear Reactor

    International Nuclear Information System (INIS)

    King, Jeffrey C.; Mencarini, Leonardo de Holanda; Guimaraes, Lamartine N. F.

    2015-01-01

    The Brazilian Air Force, through its Institute for Advanced Studies (Instituto de Estudos Avancados, IEAv/DCTA), and the Colorado School of Mines (CSM) are studying the feasibility of a space nuclear reactor with a power of 1-5 kW e and fueled with Low-Enriched Uranium (LEU). This type of nuclear reactor would be attractive to signatory countries of the Non-Proliferation Treaty (NPT) or commercial interests. A LEU-fueled space reactor would avoid the security concerns inherent with Highly Enriched Uranium (HEU) fuel. As an initial step, the HEU-fueled Kilowatt Reactor Using Stirling Technology (KRUSTY) designed by the Los Alamos National Laboratory serves as a basis for a similar reactor fueled with LEU fuel. Using the computational code MCNP6 to predict the reactor neutronics performance, the size of the resulting reactor fueled with 19.75 wt% enriched uranium-10 wt% molybdenum alloy fuel is adjusted to match the excess reactivity of KRUSTY. Then, zirconium hydride moderator is added to the core to reduce the size of the reactor. This work presents the preliminary results of the computational modeling, with special emphasis on the comparison between homogeneous and heterogeneous moderator systems, in terms of the core diameter required to meet a specific multiplication factor (k eff = 1.035). This comparison illustrates the impact of moderator configuration on the size and performance of a LEU-fueled kilowatt-class space nuclear reactor. (author)

  14. Moderator configuration options for a low-enriched uranium fueled Kilowatt-class Space Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    King, Jeffrey C., E-mail: kingjc@mines.edu [Nuclear Science and Engineering Program, Colorado School of Mines (CSM), Golden, CO (United States); Mencarini, Leonardo de Holanda; Guimaraes, Lamartine N. F., E-mail: guimaraes@ieav.cta.br, E-mail: mencarini@ieav.cta.br [Instituto de Estudos Avancados (IEAV), Sao Jose dos Campos, SP (Brazil). Divisao de Energia Nuclear

    2015-07-01

    The Brazilian Air Force, through its Institute for Advanced Studies (Instituto de Estudos Avancados, IEAv/DCTA), and the Colorado School of Mines (CSM) are studying the feasibility of a space nuclear reactor with a power of 1-5 kW{sub e} and fueled with Low-Enriched Uranium (LEU). This type of nuclear reactor would be attractive to signatory countries of the Non-Proliferation Treaty (NPT) or commercial interests. A LEU-fueled space reactor would avoid the security concerns inherent with Highly Enriched Uranium (HEU) fuel. As an initial step, the HEU-fueled Kilowatt Reactor Using Stirling Technology (KRUSTY) designed by the Los Alamos National Laboratory serves as a basis for a similar reactor fueled with LEU fuel. Using the computational code MCNP6 to predict the reactor neutronics performance, the size of the resulting reactor fueled with 19.75 wt% enriched uranium-10 wt% molybdenum alloy fuel is adjusted to match the excess reactivity of KRUSTY. Then, zirconium hydride moderator is added to the core to reduce the size of the reactor. This work presents the preliminary results of the computational modeling, with special emphasis on the comparison between homogeneous and heterogeneous moderator systems, in terms of the core diameter required to meet a specific multiplication factor (k{sub eff} = 1.035). This comparison illustrates the impact of moderator configuration on the size and performance of a LEU-fueled kilowatt-class space nuclear reactor. (author)

  15. Determination of U (Ⅵ) content in uranium molybdenum ores

    International Nuclear Information System (INIS)

    Wang Haisheng; Ding Hongfang

    2014-01-01

    Potentionmetric titration is established to determine U (Ⅵ) in uranium molybdenum ores. In the closed condition, U (Ⅵ) is leached by carbonate solution. U (Ⅵ) is reduced to U (Ⅳ) by ferrous sulfate in phosphoric acid. The exess ferrous sulfate is oxidized by sodium nitrite. urea decompose the exess sodium nitrite. U (Ⅳ) is titrated by ammonium metavanadate standard solution with potentionmetric titration. The precision is better than 5%, The recovery rate is 97.2%∼101.9%. (authors)

  16. Development of a high density fuel based on uranium-molybdenum alloys with high compatibility in high temperatures

    International Nuclear Information System (INIS)

    Oliveira, Fabio Branco Vaz de

    2008-01-01

    This work has as its objective the development of a high density and low enriched nuclear fuel based on the gamma-UMo alloys, for utilization where it is necessary satisfactory behavior in high temperatures, considering its utilization as dispersion. For its accomplishment, it was started from the analysis of the RERTR ('Reduced Enrichment for Research and Test Reactors') results and some theoretical works involving the fabrication of gamma-uranium metastable alloys. A ternary addition is proposed, supported by the properties of binary and ternary uranium alloys studied, having the objectives of the gamma stability enhancement and an ease to its powder fabrication. Alloys of uranium-molybdenum were prepared with 5 to 10% Mo addition, and 1 and 3% of ternary, over a gamma U7Mo binary base alloy. In all the steps of its preparation, the alloys were characterized with the traditional techniques, to the determination of its mechanical and structural properties. To provide a process for the alloys powder obtention, its behavior under hydrogen atmosphere were studied, in thermo analyser-thermo gravimeter equipment. Temperatures varied from the ambient up to 1000 deg C, and times from 15 minutes to 16 hours. The results validation were made in a semi-pilot scale, where 10 to 50 g of powders of some of the alloys studied were prepared, under static hydrogen atmosphere. Compatibility studies were conducted by the exposure of the alloys under oxygen and aluminum, to the verification of possible reactions by means of differential thermal analysis. The alloys were exposed to a constant heat up to 1000 deg C, and their performances were evaluated in terms of their reaction resistance. On the basis of the results, it was observed that ternary additions increases the temperatures of the reaction with aluminum and oxidation, in comparison with the gamma UMo binaries. A set of conditions to the hydration of the alloys were defined, more restrictive in terms of temperature, time and

  17. Use of molybdenum as a structural material of fuel elements for improving nuclear reactors safety

    Energy Technology Data Exchange (ETDEWEB)

    Shmelev, Anatoly N.; Kulikov, Gennady G.; Kozhahmet, Bauyrzhan K.; Kulikov, Evgeny G.; Apse, Vladimir A. [National Research Nuclear Univ., Moscow (Russian Federation). Moscow Engineering Physics Institute (MEPhI)

    2016-12-15

    Main purpose of the study is justifying the use of molybdenum as a structural material of fuel elements for improving the safety of nuclear reactors. Particularity of the used molybdenum is that its isotopic composition corresponds to molybdenum, which is obtained as tailing during operation of the separation cascade for producing a material for medical diagnostics of cancer. The following results were obtained: A method for reducing the thermal constant of fuel elements for light water and fast reactors by using dispersion fuel in cylindrical fuel rods containing, for example, granules of metallic U-Mo-alloy into Mo-matrix was proposed; the necessity of molybdenum enrichment by weakly absorbing isotopes was shown; total use of isotopic molybdenum will be more than 50 %.

  18. Uranium production in thorium/denatured uranium fueled PWRs

    International Nuclear Information System (INIS)

    Arthur, W.B.

    1977-01-01

    Uranium-232 buildup in a thorium/denatured uranium fueled pressurized water reactor, PWR(Th), was studied using a modified version of the spectrum-dependent zero dimensional depletion code, LEOPARD. The generic Combustion Engineering System 80 reactor design was selected as the reactor model for the calculations. Reactors fueled with either enriched natural uranium and self-generated recycled uranium or uranium from a thorium breeder and self-generated recycled uranium were considered. For enriched natural uranium, concentrations of 232 U varied from about 135 ppM ( 232 U/U weight basis) in the zeroth generation to about 260 ppM ( 232 U/U weight basis) at the end of the fifth generation. For the case in which thorium breeder fuel (with its relatively high 232 U concentration) was used as reactor makeup fuel, concentrations of 232 U varied from 441 ppM ( 232 U/U weight basis) at discharge from the first generation to about 512 ppM ( 232 U/U weight basis) at the end of the fifth generation. Concentrations in freshly fabricated fuel for this later case were 20 to 35% higher than the discharge concentration. These concentrations are low when compared to those of other thorium fueled reactor types (HTGR and MSBR) because of the relatively high 238 U concentration added to the fuel as a denaturant. Excellent agreement was found between calculated and existing experimental values. Nevertheless, caution is urged in the use of these values because experimental results are very limited, and the relevant nuclear data, especially for 231 Pa and 232 U, are not of high quality

  19. UO2 fuel pellets fabrication via Spark Plasma Sintering using non-standard molybdenum die

    Science.gov (United States)

    Papynov, E. K.; Shichalin, O. O.; Mironenko, A. Yu; Tananaev, I. G.; Avramenko, V. A.; Sergienko, V. I.

    2018-02-01

    The article investigates spark plasma sintering (SPS) of commercial uranium dioxide (UO2) powder of ceramic origin into highly dense fuel pellets using non-standard die instead of usual graphite die. An alternative and formerly unknown method has been suggested to fabricate UO2 fuel pellets by SPS for excluding of typical problems related to undesirable carbon diffusion. Influence of SPS parameters on chemical composition and quality of UO2 pellets has been studied. Also main advantages and drawbacks have been revealed for SPS consolidation of UO2 in non-standard molybdenum die. The method is very promising due to high quality of the final product (density 97.5-98.4% from theoretical, absence of carbon traces, mean grain size below 3 μm) and mild sintering conditions (temperature 1100 ºC, pressure 141.5 MPa, sintering time 25 min). The results are interesting for development and probable application of SPS in large-scale production of nuclear ceramic fuel.

  20. DESIGN STUDY FOR A LOW-ENRICHED URANIUM CORE FOR THE HIGH FLUX ISOTOPE REACTOR, ANNUAL REPORT FOR FY 2010

    Energy Technology Data Exchange (ETDEWEB)

    Cook, David Howard [ORNL; Freels, James D [ORNL; Ilas, Germina [ORNL; Jolly, Brian C [ORNL; Miller, James Henry [ORNL; Primm, Trent [ORNL; Renfro, David G [ORNL; Sease, John D [ORNL; Pinkston, Daniel [ORNL

    2011-02-01

    This report documents progress made during FY 2010 in studies of converting the High Flux Isotope Reactor (HFIR) from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current level. Studies are reported of support to a thermal hydraulic test loop design, the implementation of finite element, thermal hydraulic analysis capability, and infrastructure tasks at HFIR to upgrade the facility for operation at 100 MW. A discussion of difficulties with preparing a fuel specification for the uranium-molybdenum alloy is provided. Continuing development in the definition of the fuel fabrication process is described.

  1. Criticality safety evaluation for the Advanced Test Reactor enhanced low enriched uranium fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Montierth, Leland M. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-07-19

    The Global Threat Reduction Initiative (GTRI) convert program is developing a high uranium density fuel based on a low enriched uranium (LEU) uranium-molybdenum alloy. Testing of prototypic GTRI fuel elements is necessary to demonstrate integrated fuel performance behavior and scale-up of fabrication techniques. GTRI Enhanced LEU Fuel (ELF) elements based on the ATR-Standard Size elements (all plates fueled) are to be fabricated for testing in the Advanced Test Reactor (ATR). While a specific ELF element design will eventually be provided for detailed analyses and in-core testing, this criticality safety evaluation (CSE) is intended to evaluate a hypothetical ELF element design for criticality safety purposes. Existing criticality analyses have analyzed Standard (HEU) ATR elements from which controls have been derived. This CSE documents analysis that determines the reactivity of the hypothetical ELF fuel elements relative to HEU ATR elements and whether the existing HEU ATR element controls bound the ELF element. The initial calculations presented in this CSE analyzed the original ELF design, now referred to as Mod 0.1. In addition, as part of a fuel meat thickness optimization effort for reactor performance, other designs have been evaluated. As of early 2014 the most current conceptual designs are Mk1A and Mk1B, that were previously referred to as conceptual designs Mod 0.10 and Mod 0.11, respectively. Revision 1 evaluates the reactivity of the ATR HEU Mark IV elements for a comparison with the Mark VII elements.

  2. Criticality safety evaluation for the Advanced Test Reactor enhanced low enriched uranium fuel elements

    International Nuclear Information System (INIS)

    Montierth, Leland M.

    2016-01-01

    The Global Threat Reduction Initiative (GTRI) convert program is developing a high uranium density fuel based on a low enriched uranium (LEU) uranium-molybdenum alloy. Testing of prototypic GTRI fuel elements is necessary to demonstrate integrated fuel performance behavior and scale-up of fabrication techniques. GTRI Enhanced LEU Fuel (ELF) elements based on the ATR-Standard Size elements (all plates fueled) are to be fabricated for testing in the Advanced Test Reactor (ATR). While a specific ELF element design will eventually be provided for detailed analyses and in-core testing, this criticality safety evaluation (CSE) is intended to evaluate a hypothetical ELF element design for criticality safety purposes. Existing criticality analyses have analyzed Standard (HEU) ATR elements from which controls have been derived. This CSE documents analysis that determines the reactivity of the hypothetical ELF fuel elements relative to HEU ATR elements and whether the existing HEU ATR element controls bound the ELF element. The initial calculations presented in this CSE analyzed the original ELF design, now referred to as Mod 0.1. In addition, as part of a fuel meat thickness optimization effort for reactor performance, other designs have been evaluated. As of early 2014 the most current conceptual designs are Mk1A and Mk1B, that were previously referred to as conceptual designs Mod 0.10 and Mod 0.11, respectively. Revision 1 evaluates the reactivity of the ATR HEU Mark IV elements for a comparison with the Mark VII elements.

  3. Highlighting micrographic structures of uranium alloys containing 0.5 to 10 per cent wt molybdenum

    International Nuclear Information System (INIS)

    Laniesse, J.; Bouleau, M.

    1959-02-01

    The authors report a study which aimed at determining for different uranium molybdenum alloys and with respect to their molybdenum content a polishing method which allows a relatively simple grain examination in the as-cast condition, an as perfect as possible resolution of eutectic decompositions, and the appropriate conditions to highlight structures (beta-alpha and gamma-alpha martensite transformations, beta phase retention and decomposition, transient structures, eutectoid decomposition, and so on). Alloys differ by their molybdenum content: from 0.5 to 1 per cent wt, 1.5 to 3 per cent wt, 5 to 10 per cent wt

  4. Irradiation performance of uranium-molybdenum alloy dispersion fuels; Desempenho sob irradiacao de elementos combustiveis do tipo U-Mo

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Cirila Tacconi de

    2005-07-01

    The U-Mo-Al dispersion fuels of Material Test Reactors (MTR) are analyzed in terms of their irradiation performance. The irradiation performance aspects are associated to the neutronic and thermal hydraulics aspects to propose a new core configuration to the IEA-R1 reactor of IPEN-CNEN/SP using U-Mo-Al fuels. Core configurations using U-10Mo-Al fuels with uranium densities variable from 3 to 8 gU/cm{sup 3} were analyzed with the computational programs Citation and MTRCR-IEA R1. Core configurations for fuels with uranium densities variable from 3 to 5 gU/cm{sup 3} showed to be adequate to use in IEA-R1 reactor e should present a stable in reactor performance even at high burn-up. (author)

  5. Mechanical properties of depleted uranium-2 w/o molybdenum alloy

    International Nuclear Information System (INIS)

    Deel, O.L.; Burian, R.J.

    1979-01-01

    The primary objective of this program is to develop data and techniques for determining the dynamic impact response of radioactive-material shipping-container systems for environmental control and safety overview and assessment. One phase of this program is the dynamic testing of 1/8-, 1/4-, and 1/2-scale models of uranium-shielded truck casks. These linearly scaled models are fabricated from the same materials typically used in full-size prototype casks. In order to analytically evaluate the results of dynamic tests, it is necessary to know the mechanical properties of the materials of construction. Since the properties of cast uranium--molybdenum alloys vary significantly with casting and heat-treating techniques, it is necessary to fully characterize the mechanical properties of the uranium used in the model tests. This report presents the results of these studies. The uranium alloy exhibited a tensile strength equal to or greater than that reported by others. As indicated by the percentage of elongation and reduction in area, the ductility was lower. Comparative data for the other mechanical properties measured were not found in the literature

  6. Chromatographic retention of molybdenum, titanium and uranium complexes for removal of some interferences in inductively-coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Jiang, S.-J.; Palmieri, M.D.; Fritz, J.S.; Houk, R.S.; Iowa State Univ., of Science and Technology, Ames

    1987-01-01

    Complexes of molybdenum(VI) or titanium(IV) with N-methylfurohydroxamic acid (N-MFHA) are retained on a column packed with polystyrene/divinylbenzene. At the pH values chosen, copper, zinc and cadmium are washed rapidly through the column and are detected by inductively-coupled plasma mass spectrometry without interference from metal oxide ions of titanium or molybdenum. Detection limits are 1 to 2 μg l -1 , and analyte recoveries are essentially 100%. The resin capacity for the titanium and molybdenum complexes is sufficient for several hundred injections, and the complexes can be readily washed from the column. Uranium(VI) also forms a stable complex with N-MFHA, and ionization interference caused by excess of uranium can be avoided by chromatographic removal of the uranium complex. Various other potentially interfering elements with aqueous oxidation states of +4 or higher (e.g. Sn, W, Hf or Zr) could also be separated by this technique. 33 refs.; 4 figs.; 3 tabs

  7. Spectrographic analysis of uranium-molybdenum alloys; Analisis espectrografico de aleaciones uranio-molibdeno

    Energy Technology Data Exchange (ETDEWEB)

    Roca, M

    1967-07-01

    A spectrographic method of analysis has been developed for uranium-molybdenum alloys containing up to 10 % Mo. The carrier distillation technique, with gallium oxide and graphite as carriers, is used for the semiquantitative determination of Al, Cr, Fe, Ni and Si, involving the conversion of the samples into oxides. As a consequence of the study of the influence of the molybdenum on the line intensities, it is useful to prepare only one set of standards with 0,6 % MoO{sub 3}. Total burning excitation is used for calcium, employing two sets of standards with 0,6 and 7.5 MoO{sub 3}. (Author) 5 refs.

  8. Investigation of the uranium-molybdenum diffusion in body centered {gamma} solid solutions; Etude de la diffusion uranium-molybdene dans la solution solide {gamma} cubique centree

    Energy Technology Data Exchange (ETDEWEB)

    Adda, Y; Mairy, C; Bouchet, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Philibert, J [IRSID, 78 - Saint-Germain-en-Laye (France)

    1958-07-01

    The body centered {gamma} phase uranium-molybdenum intermetallic diffusion has been studied by different technical methods: micrography, electronic microanalyser, microhardness. The values of several numbers of penetration coefficients are given, and their physical significations has been discussed. The diffusion coefficients, the frequency factor and activation energies has been determined for each concentration. After determination of the Kirkendall effect in this system, we calculated the intrinsic diffusion coefficient of uranium and molybdenum. (author) [French] La dilution intermetallique uranium-molybdene, en phase {gamma} cubique centree, a ete etudiee au moyen de differentes techniques: micrographie, microsonde electronique, microdurete. Les valeurs d'un certain nombre de coefficients de penetration sont donnees et leur signification physique discutee. Les coefficients de diffusion, les facteurs de frequence et les energies d'activation ont ete determines pour chaque concentration. Apres avoir mis en evidence un effet Kirkendall dans ce systeme, on a calcule les coefficients de diffusion intrinseques de l'uranium et du molybdene. (auteur)

  9. Molybdenum-99-producing 37-element fuel bundle neutronically and thermal-hydraulically equivalent to a standard CANDU fuel bundle

    Energy Technology Data Exchange (ETDEWEB)

    Nichita, E., E-mail: Eleodor.Nichita@uoit.ca; Haroon, J., E-mail: Jawad.Haroon@uoit.ca

    2016-10-15

    Highlights: • A 37-element fuel bundle modified for {sup 99}Mo production in CANDU reactors is presented. • The modified bundle is neutronically and thermal-hydraulically equivalent to the standard bundle. • The modified bundle satisfies all safety criteria satisfied by the standard bundle. - Abstract: {sup 99m}Tc, the most commonly used radioisotope in diagnostic nuclear medicine, results from the radioactive decay of {sup 99}Mo which is currently being produced at various research reactors around the globe. In this study, the potential use of CANDU power reactors for the production of {sup 99}Mo is investigated. A modified 37-element fuel bundle, suitable for the production of {sup 99}Mo in existing CANDU-type reactors is proposed. The new bundle is specifically designed to be neutronically and thermal-hydraulically equivalent to the standard 37-element CANDU fuel bundle in normal, steady-state operation and, at the same time, be able to produce significant quantities of {sup 99}Mo when irradiated in a CANDU reactor. The proposed bundle design uses fuel pins consisting of a depleted-uranium centre surrounded by a thin layer of low-enriched uranium. The new molybdenum-producing bundle is analyzed using the lattice transport code DRAGON and the diffusion code DONJON. The proposed design is shown to produce 4081 six-day Curies of {sup 99}Mo activity per bundle when irradiated in the peak-power channel of a CANDU core, while maintaining the necessary reactivity and power rating limits. The calculated {sup 99}Mo yield corresponds to approximately one third of the world weekly demand. A production rate of ∼3 bundles per week can meet the global demand of {sup 99}Mo.

  10. Separation of fission Molybdenum for production of technetium generator

    International Nuclear Information System (INIS)

    Bayat, L.; Shaham, V.; Davarkha, R.

    2002-01-01

    There are two basically different methods for Mo-99 productions: Activation of Mo-99 contained at about 24% in natural isotopic mixtures. Mo-98 enriched targets are irradiated in high-flux reactors in order to achieve the highest possible specific activity of the product. Idolisation of fission molybdenum from irradiated nuclear fuel targets which have undergone short-term cooling. Maximum fission yield can be attained by irradiation of uranium-235 with the highest possible enrichment. On account of its approximately 1000 times higher specific activity. Fission molybdenum has almost replaced worldwide the product fabricated by activation. However, fission molybdenum-99 production has as its prerequisite a suitably advanced technology by which the production process taking place under high activity conditions can be controlled. An integral part of the process consist in the retention of the fission gases the recycling of non-consumed fuel and the treatment of the waste streams arising. This publication will deal with the individual steps in the process

  11. Development and Validation of Capabilities to Measure Thermal Properties of Layered Monolithic U-Mo Alloy Plate-Type Fuel

    Science.gov (United States)

    Burkes, Douglas E.; Casella, Andrew M.; Buck, Edgar C.; Casella, Amanda J.; Edwards, Matthew K.; MacFarlan, Paul J.; Pool, Karl N.; Smith, Frances N.; Steen, Franciska H.

    2014-07-01

    The uranium-molybdenum (U-Mo) alloy in a monolithic form has been proposed as one fuel design capable of converting some of the world's highest power research reactors from the use of high enriched uranium to low enriched uranium. One aspect of the fuel development and qualification process is to demonstrate appropriate understanding of the thermal-conductivity behavior of the fuel system as a function of temperature and expected irradiation conditions. The purpose of this paper is to verify functionality of equipment installed in hot cells for eventual measurements on irradiated uranium-molybdenum (U-Mo) monolithic fuel specimens, refine procedures to operate the equipment, and validate models to extract the desired thermal properties. The results presented here demonstrate the adequacy of the equipment, procedures, and models that have been developed for this purpose based on measurements conducted on surrogate depleted uranium-molybdenum (DU-Mo) alloy samples containing a Zr diffusion barrier and clad in aluminum alloy 6061 (AA6061). The results are in excellent agreement with thermal property data reported in the literature for similar U-Mo alloys as a function of temperature.

  12. Conversion of research and test reactors to low enriched uranium fuel: technical overview and program status

    International Nuclear Information System (INIS)

    Roglans-Ribas, J.

    2008-01-01

    Many of the nuclear research and test reactors worldwide operate with high enriched uranium fuel. In response to worries over the potential use of HEU from research reactors in nuclear weapons, the U.S Department of Energy (DOE) initiated a program - the Reduced Enrichment for Research and Test Reactors (RERTR) - in 1978 to develop the technology necessary to reduce the use of HEU fuel by converting research reactors to low enriched uranium (LEU) fuel. The Reactor Conversion program is currently under the DOE's National Nuclear Security Administration's Global Threat Reduction Initiative (GTRI). 55 of the 129 reactors included in the scope have been already converted to LEU fuel or have shutdown prior to conversion. The major technical activities of the Conversion Program include: (1) the development of advanced LEU fuels; (2) conversion analysis and conversion support; and (3) technology development for the production of Molybdenum-99 (Mo 99 ) with LEU targets. The paper provides an overview of the status of the program, the technical challenges and accomplishments, and the role of international collaborations in the accomplishment of the Conversion Program objectives. Nuclear research and test reactors worldwide have been in operation for over 60 years. Many of these facilities operate with high enriched uranium fuel. In response to increased worries over the potential use of HEU from research reactors in the manufacturing of nuclear weapons, the U.S Department of Energy (DOE) initiated a program - the Reduced Enrichment for Research and Test Reactors (RERTR) - in 1978 to develop the technology necessary to reduce the use of HEU fuel in research reactors by converting them to low enriched uranium (LEU) fuel. The reactor conversion program was initially focused on U.S.-supplied reactors, but in the early 1990s it expanded and began to collaborate with Russian institutes with the objective of converting Russian supplied reactors to the use of LEU fuel.

  13. Procedure for Uranium-Molybdenum Density Measurements and Porosity Determination

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakaran, Ramprashad [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Devaraj, Arun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Joshi, Vineet V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-08-13

    The purpose of this document is to provide guidelines for preparing uranium-molybdenum (U-Mo) specimens, performing density measurements, and computing sample porosity. Typical specimens (solids) will be sheared to small rectangular foils, disks, or pieces of metal. A mass balance, solid density determination kit, and a liquid of known density will be used to determine the density of U-Mo specimens using the Archimedes principle. A standard test weight of known density would be used to verify proper operation of the system. By measuring the density of a U-Mo sample, it is possible to determine its porosity.

  14. Development of metal fuel and study of construction materials (I-IV), Part II

    International Nuclear Information System (INIS)

    Mihajlovic, A.

    1965-11-01

    The studies were devoted to problems related to application of metal uranium as fuel in heavy water reactors. Influence of thermal treatment on material texture and recrystallization of cast uranium was investigated. Structural changes of uranium alloys with molybdenum and niobium were tested during different heat treatments. A review of the possibilities for using metal uranium fuel in heavy water reactors is included

  15. Copper, zinc, molybdenum and uranium distribution in bottom sediments of the Black Sea

    International Nuclear Information System (INIS)

    Zhorov, V.A.; Sovga, E.E.; Solov'eva, L.B.; Oguslavskij, P.G.; Babinets, A.E.; AN Ukrainskoj SSR, Kiev. Inst. Geologicheskikh Nauk)

    1983-01-01

    The results of investigations of bottom sediments of the Black Sea by four expeditions aboard scientific ships ''Academician Vernadsky'', ''Michael Lomonosov'', ''Academician Vavilov'' in 1972-1978, are presented. 70 columns of bottom sediments are studied, about 200 samples are analyzed for Cu, Zn, Mo and U using chemical methods with photometric ending. Charts of Cu, Zn, Mo and U distribution in modern, ancient Black Sea and neoeuxenic sediments of the basin are prepared. Preferable uranium concentration in modern sediments, copper and molybdenum - in sapropelic muds of ancient Black Sea sediments and zinc - in neoeuxenic layers, is shown. Uranium geochemical behaviour is determined by physico-chemical regime of the basin, the presence of restoring situation which promotes the formation of uranium sorption-active forms in the upper layer of modern sediments. Neither sapropelite (organic matter), nor the peculiarities of lithological composition of sediments affect uranium behaviour

  16. Assumptions and Criteria for Performing a Feasability Study of the Conversion of the High Flux Isotope Reactor Core to Use Low-Enriched Uranium Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Primm, R.T., III; Ellis, R.J.; Gehin, J.C.; Moses, D.L.; Binder, J.L.; Xoubi, N. (U. of Cincinnati)

    2006-02-01

    A computational study will be initiated during fiscal year 2006 to examine the feasibility of converting the High Flux Isotope Reactor from highly enriched uranium fuel to low-enriched uranium. The study will be limited to steady-state, nominal operation, reactor physics and thermal-hydraulic analyses of a uranium-molybdenum alloy that would be substituted for the current fuel powder--U{sub 3}O{sub 8} mixed with aluminum. The purposes of this document are to (1) define the scope of studies to be conducted, (2) define the methodologies to be used to conduct the studies, (3) define the assumptions that serve as input to the methodologies, (4) provide an efficient means for communication with the Department of Energy and American research reactor operators, and (5) expedite review and commentary by those parties.

  17. Assumptions and Criteria for Performing a Feasability Study of the Conversion of the High Flux Isotope Reactor Core to Use Low-Enriched Uranium Fuel

    International Nuclear Information System (INIS)

    Primm, R.T. III; Ellis, R.J.; Gehin, J.C.; Moses, D.L.; Binder, J.L.; Xoubi, N.

    2006-01-01

    A computational study will be initiated during fiscal year 2006 to examine the feasibility of converting the High Flux Isotope Reactor from highly enriched uranium fuel to low-enriched uranium. The study will be limited to steady-state, nominal operation, reactor physics and thermal-hydraulic analyses of a uranium-molybdenum alloy that would be substituted for the current fuel powder--U 3 O 8 mixed with aluminum. The purposes of this document are to (1) define the scope of studies to be conducted, (2) define the methodologies to be used to conduct the studies, (3) define the assumptions that serve as input to the methodologies, (4) provide an efficient means for communication with the Department of Energy and American research reactor operators, and (5) expedite review and commentary by those parties

  18. Fabrication and characterisation of uranium, molybdenum, chromium, niobium and aluminium; Dobijanje i karakterizacija legura uranijuma sa molibdenom, hromom, niobijumom i aluminijumom

    Energy Technology Data Exchange (ETDEWEB)

    Sofrenovic, R; Isailovic, M; Kotur, Z [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1965-11-15

    This paper describes fabrication of binary uranium alloys by melting and casting. The following alloys with nominal composition were obtained by melting in the vacuum furnace: uranium with niobium contents from 0.5%- 4.0% and uranium with molybdenum contents from 0.4% - 1.2%. Uranium alloys with chromium content from 0.4% - 1.2% and uranium alloy with 0.12% of aluminium were obtained by vacuum induction furnace (electric arc melting)

  19. Relationship between uranium-molybdenum, fluorite and gold deposits within provinces of continental volcanicity

    International Nuclear Information System (INIS)

    Modnikov, I.S.; Skvortsova, K.V.; Chesnokov, L.V.

    1974-01-01

    The article gives a comparative description of and the age relationships between uranium-molybdenum, gold and fluorite mineralizations in the areas of development of adhesite-diorite and liparite-granite vulcanoplutonic formations, which are most fully and intensively manifest in the intra-anticlinal and median blocks of folded regions in the final stages of geosynclinal development or during the final stages of tectono-magmatic activation. These formations usually fill vulcano-tectonic depression structures - overlaid troughs and inherited delections. The geological and geochemical data are evidence of the close temporal link between the hydrothermal process of ore formation and the type and scale of manifestations of the vulcano-plutonic magmatism that is responsible for the general geochemical features of the ores of deposits of various types. The formation of gold, fluorite and uranium-molybdenum deposits occurred immediately after the completion of effusive and intrusive magmatism during a single metallogenic cycle. The spatial distribution of the ore fields and deposits depends chiefly on the peculiarities of the tectonic make-up of the depression structures, and also on the type and scale of the manifestations of vulcano-plutonic magmatism. (B.Ya.)

  20. Hydrothermal uranium deposits containing molybdenum and fluorite in the Marysvale volcanic field, west-central Utah

    Science.gov (United States)

    Cunningham, C.G.; Rasmussen, J.D.; Steven, T.A.; Rye, R.O.; Rowley, P.D.; Romberger, S.B.; Selverstone, J.

    1998-01-01

    Uranium deposits containing molybdenum and fluorite occur in the Central Mining Area, near Marysvale, Utah, and formed in an epithermal vein system that is part of a volcanic/hypabyssal complex. They represent a known, but uncommon, type of deposit; relative to other commonly described volcanic-related uranium deposits, they are young, well-exposed and well-documented. Hydrothermal uranium-bearing quartz and fluorite veins are exposed over a 300 m vertical range in the mines. Molybdenum, as jordisite (amorphous MoS2, together with fluorite and pyrite, increase with depth, and uranium decreases with depth. The veins cut 23-Ma quartz monzonite, 20-Ma granite, and 19-Ma rhyolite ash-flow tuff. The veins formed at 19-18 Ma in a 1 km2 area, above a cupola of a composite, recurrent, magma chamber at least 24 ?? 5 km across that fed a sequence of 21- to 14-Ma hypabyssal granitic stocks, rhyolite lava flows, ash-flow tuffs, and volcanic domes. Formation of the Central Mining Area began when the intrusion of a rhyolite stock, and related molybdenite-bearing, uranium-rich, glassy rhyolite dikes, lifted the fractured roof above the stock. A breccia pipe formed and relieved magmatic pressures, and as blocks of the fractured roof began to settle back in place, flat-lying, concave-downward, 'pull-apart' fractures were formed. Uranium-bearing, quartz and fluorite veins were deposited by a shallow hydrothermal system in the disarticulated carapace. The veins, which filled open spaces along the high-angle fault zones and flat-lying fractures, were deposited within 115 m of the ground surface above the concealed rhyolite stock. Hydrothermal fluids with temperatures near 200??C, ??18OH2O ~ -1.5, ?? -1.5, ??DH2O ~ -130, log fO2 about -47 to -50, and pH about 6 to 7, permeated the fractured rocks; these fluids were rich in fluorine, molybdenum, potassium, and hydrogen sulfide, and contained uranium as fluoride complexes. The hydrothermal fluids reacted with the wallrock resulting in

  1. Economic analysis of thorium-uranium fuel cycle introduced into PWRs

    International Nuclear Information System (INIS)

    Fan Li; Sun Qian

    2014-01-01

    Using PWR of Daya Bay Unit l as the reference reactor, a validated computer code was used to calculate the fuel cycle costs for uranium fuel cycle and thorium-uranium fuel cycle over the following 20 0perational years respectively. The calculation results show that the thorium-uranium fuel cycle is economically competitive with the uranium fuel cycle when reprocessing mode is adopted. For thorium-uranium fuel cycle, if the price of natural uranium is higher than 120 $ /pound U_3O_8, the fuel cycle cost of the direct disposal mode is greater than that of the reprocessing mode. Therefore, when the uranium price may maintain a high level long-termly, adopting reprocessing mode will benefit the economic advantage for the thorium-uranium fuel cycle introduced into PWRs. (authors)

  2. Present state and problems of uranium fuel fabrication businesses

    International Nuclear Information System (INIS)

    Yuki, Akio

    1981-01-01

    The businesses of uranium fuel fabrication converting uranium hexafluoride to uranium dioxide powder and forming fuel assemblies are the field of most advanced industrialization among nuclear fuel cycle industries in Japan. At present, five plants of four companies engage in this business, and their yearly sales exceeded 20 billion yen. All companies are planning the augmentation of installation capacity to meet the growth of nuclear power generation. The companies of uranium fuel fabrication make the nuclear fuel of the specifications specified by reactor manufacturers as the subcontractors. In addition to initially loaded fuel, the fuel for replacement is required, therefore the demand of uranium fuel is relatively stable. As for the safety of enriched uranium flowing through the farbicating processes, the prevention of inhaling uranium powder by workers and the precaution against criticality are necessary. Also the safeguard measures are imposed so as not to convert enriched uranium to other purposes than peacefull ones. The strict quality control and many times of inspections are carried out to insure the soundness of nuclear fuel. The growth of the business of uranium fuel fabrication and the regulation of the businesses by laws are described. As the problems for the future, the reduction of fabrication cost, the promotion of research and development and others are pointed out. (Kako, I.)

  3. Conceptual Process for the Manufacture of Low-Enriched Uranium/Molybdenum Fuel for the High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Sease, J.D.; Primm, R.T. III; Miller, J.H.

    2007-01-01

    The U.S. nonproliferation policy 'to minimize, and to the extent possible, eliminate the use of HEU in civil nuclear programs throughout the world' has resulted in the conversion (or scheduled conversion) of many of the U.S. research reactors from high-enriched uranium (HEU) to low-enriched uranium (LEU). A foil fuel appears to offer the best option for using a LEU fuel in the High Flux Isotope Reactor (HFIR) without degrading the performance of the reactor. The purpose of this document is to outline a proposed conceptual fabrication process flow sheet for a new, foil-type, 19.75%-enriched fuel for HFIR. The preparation of the flow sheet allows a better understanding of the costs of infrastructure modifications, operating costs, and implementation schedule issues associated with the fabrication of LEU fuel for HFIR. Preparation of a reference flow sheet is one of the first planning steps needed in the development of a new manufacturing capacity for low enriched fuels for U.S. research and test reactors. The flow sheet can be used to develop a work breakdown structure (WBS), a critical path schedule, and identify development needs. The reference flow sheet presented in this report is specifically for production of LEU foil fuel for the HFIR. The need for an overall reference flow sheet for production of fuel for all High Performance Research Reactors (HPRR) has been identified by the national program office. This report could provide a starting point for the development of such a reference flow sheet for a foil-based fuel for all HPRRs. The reference flow sheet presented is based on processes currently being developed by the national program for the LEU foil fuel when available, processes used historically in the manufacture of other nuclear fuels and materials, and processes used in other manufacturing industries producing a product configuration similar to the form required in manufacturing a foil fuel. The processes in the reference flow sheet are within the

  4. Conceptual Process for the Manufacture of Low-Enriched Uranium/Molybdenum Fuel for the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sease, J.D.; Primm, R.T. III; Miller, J.H.

    2007-09-30

    The U.S. nonproliferation policy 'to minimize, and to the extent possible, eliminate the use of HEU in civil nuclear programs throughout the world' has resulted in the conversion (or scheduled conversion) of many of the U.S. research reactors from high-enriched uranium (HEU) to low-enriched uranium (LEU). A foil fuel appears to offer the best option for using a LEU fuel in the High Flux Isotope Reactor (HFIR) without degrading the performance of the reactor. The purpose of this document is to outline a proposed conceptual fabrication process flow sheet for a new, foil-type, 19.75%-enriched fuel for HFIR. The preparation of the flow sheet allows a better understanding of the costs of infrastructure modifications, operating costs, and implementation schedule issues associated with the fabrication of LEU fuel for HFIR. Preparation of a reference flow sheet is one of the first planning steps needed in the development of a new manufacturing capacity for low enriched fuels for U.S. research and test reactors. The flow sheet can be used to develop a work breakdown structure (WBS), a critical path schedule, and identify development needs. The reference flow sheet presented in this report is specifically for production of LEU foil fuel for the HFIR. The need for an overall reference flow sheet for production of fuel for all High Performance Research Reactors (HPRR) has been identified by the national program office. This report could provide a starting point for the development of such a reference flow sheet for a foil-based fuel for all HPRRs. The reference flow sheet presented is based on processes currently being developed by the national program for the LEU foil fuel when available, processes used historically in the manufacture of other nuclear fuels and materials, and processes used in other manufacturing industries producing a product configuration similar to the form required in manufacturing a foil fuel. The processes in the reference flow sheet are

  5. Obtention of uranium-molybdenum alloy ingots microstructure and phase characterization

    Energy Technology Data Exchange (ETDEWEB)

    Pedrosa, Tercio A.; Braga, Daniel M.; Paula, Joao Bosco de; Brina, Jose Giovanni M.; Ferraz, Wilmar B., E-mail: tap@cdtn.b, E-mail: bragadm@cdtn.b, E-mail: jbp@cdtn.b, E-mail: jgmb@cdtn.b, E-mail: ferrazw@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The replacement of high enriched uranium (U-{sup 235} > 85 wt%) by low enriched uranium (U-{sup 235} < 20 wt%) nuclear fuels in research and test reactors is being implemented as an initiative of the Reduced Enrichment for Research and Test Reactors (RERTR) program, conceived in the USA since mid-70s, in order to avoid nuclear weapons proliferation. Such replacement implies in the use of compounds or alloys with higher uranium densities. Several uranium alloys that fill this requirement has been investigated since then. Among these alloys, U-Mo presents great application potential due to its physical properties and good behavior during irradiation, which makes it an important option as a nuclear fuel material for the Brazilian Multipurpose Reactor - RMB. The development of the plate-type nuclear fuel based on U-Mo alloys is being performed at the Nuclear Technology Development Centre (CDTN) and also at the Institute of Energetic and Nuclear Research - IPEN. U-{sup 10}Mo ingots were melted in an induction furnace with protective argon atmosphere. The microstructure of the ingots were characterized through optical and scanning electronic microscopy in the as cast and heat treated conditions. Energy Dispersive Spectrometry and X-Ray Diffraction were used as characterization techniques for elemental analysis and phases determination. It was confirmed the presence of metastable gamma-phase in the as cast condition, surrounded by hypereutectoid alpha-phase (uranium-rich phase), as well as a pearlite-like constituent, composed by alternated lamellas of U{sub 2}Mo compound and alpha-phase, in the heat treated condition. (author)

  6. Impact of fuel fabrication and fuel management technologies on uranium management

    International Nuclear Information System (INIS)

    Arnsberger, P.L.; Stucker, D.L.

    1994-01-01

    Uranium utilization in commercial pressurized water reactors is a complex function of original NSSS design, utility energy requirements, fuel assembly design, fuel fabrication materials and fuel fabrication materials and fuel management optimization. Fuel design and fabrication technologies have reacted to the resulting market forcing functions with a combination of design and material changes. The technologies employed have included ever-increasing fuel discharge burnup, non-parasitic structural materials, burnable absorbers, and fissile material core zoning schemes (both in the axial and radial direction). The result of these technological advances has improved uranium utilization by roughly sixty percent from the infancy days of nuclear power to present fuel management. Fuel management optimization technologies have also been developed in recent years which provide fuel utilization improvements due to core loading pattern optimization. This paper describes the development and impact of technology advances upon uranium utilization in modern pressurized water reactors. 10 refs., 3 tabs., 10 figs

  7. Contribution to the study of the fission-gas release in metallic nuclear fuels

    International Nuclear Information System (INIS)

    Kryger, B.

    1969-10-01

    In order to study the effect of an external pressure on the limitation of swelling due to fission-gas precipitation, some irradiations have been carried out at burn-ups of about 35.000 MWd/ton, and at average sample temperatures of 575 Celsius degrees, of non-alloyed uranium and uranium 8 per cent molybdenum gained in a thick stainless steel can. A cylindrical central hole allows a fuel swelling from 20 to 33 per cent according to the experiment. After irradiation, the uranium samples showed two types of can rupture: one is due to the fuel swelling, and the other, to the pressure of the fission gases, released through a network of microcracks. The cans of the uranium-molybdenum samples are all undamaged and it is shown that the gas release occurs by interconnection of the bubbles for swelling values higher than those obtained in the case of uranium. For each type of fuel, a swelling-fission gas release relationship is established. The results suggest that good performances with a metallic fuel intended for use in fast reactor conditions can be obtained. (author) [fr

  8. Slightly enriched uranium fuel for a PHWR

    International Nuclear Information System (INIS)

    Notari, C.; Marajofsky, A.

    1997-01-01

    An improved fuel element design for a PHWR using slightly enriched uranium fuel is presented. It maintains the general geometric disposition of the currently used in the argentine NPP's reactors, replacing the outer ring of rods by rods containing annular pellets. Power density reduction is achieved with modest burnup losses and the void volume in the pellets can be used to balance these two opposite effects. The results show that with this new design, the fuel can be operated at higher powers without violating thermohydraulic limits and this means an improvement in fuel management flexibility, particularly in the transition from natural uranium to slightly enriched uranium cycle. (author)

  9. The uranium-plutonium breeder reactor fuel cycle

    International Nuclear Information System (INIS)

    Salmon, A.; Allardice, R.H.

    1979-01-01

    All power-producing systems have an associated fuel cycle covering the history of the fuel from its source to its eventual sink. Most, if not all, of the processes of extraction, preparation, generation, reprocessing, waste treatment and transportation are involved. With thermal nuclear reactors more than one fuel cycle is possible, however it is probable that the uranium-plutonium fuel cycle will become predominant; in this cycle the fuel is mined, usually enriched, fabricated, used and then reprocessed. The useful components of the fuel, the uranium and the plutonium, are then available for further use, the waste products are treated and disposed of safely. This particular thermal reactor fuel cycle is essential if the fast breeder reactor (FBR) using plutonium as its major fuel is to be used in a power-producing system, because it provides the necessary initial plutonium to get the system started. In this paper the authors only consider the FBR using plutonium as its major fuel, at present it is the type envisaged in all, current national plans for FBR power systems. The corresponding fuel cycle, the uranium-plutonium breeder reactor fuel cycle, is basically the same as the thermal reactor fuel cycle - the fuel is used and then reprocessed to separate the useful components from the waste products, the useful uranium and plutonium are used again and the waste disposed of safely. However the details of the cycle are significantly different from those of the thermal reactor cycle. (Auth.)

  10. Design Study for a Low-Enriched Uranium Core for the High Flux Isotope Reactor, Annual Report for FY 2008

    Energy Technology Data Exchange (ETDEWEB)

    Primm, Trent [ORNL; Chandler, David [ORNL; Ilas, Germina [ORNL; Miller, James Henry [ORNL; Sease, John D [ORNL; Jolly, Brian C [ORNL

    2009-03-01

    This report documents progress made during FY 2008 in studies of converting the High Flux Isotope Reactor (HFIR) from highly enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in reactor performance from the current level. Results of selected benchmark studies imply that calculations of LEU performance are accurate. Scoping experiments with various manufacturing methods for forming the LEU alloy profile are presented.

  11. Measurement of enriched uranium and uranium-aluminum fuel materials with the AWCC

    International Nuclear Information System (INIS)

    Krick, M.S.; Menlove, H.O.; Zick, J.; Ikonomou, P.

    1985-05-01

    The active well coincidence counter (AWCC) was calibrated at the Chalk River Nuclear Laboratories (CRNL) for the assay of 93%-enriched fuel materials in three categories: (1) uranium-aluminum billets, (2) uranium-aluminum fuel elements, and (3) uranium metal pieces. The AWCC was a standard instrument supplied to the International Atomic Energy Agency under the International Safeguards Project Office Task A.51. Excellent agreement was obtained between the CRNL measurements and previous Los Alamos National Laboratory measurements on similar mockup fuel material. Calibration curves were obtained for each sample category. 2 refs., 8 figs., 15 tabs

  12. Obtention of uranium-molybdenum alloy ingots technique to avoid carbon contamination

    Energy Technology Data Exchange (ETDEWEB)

    Pedrosa, Tercio A.; Paula, Joao Bosco de; Reis, Sergio C.; Brina, Jose Giovanni M.; Faeda, Kelly Cristina M.; Ferraz, Wilmar B., E-mail: tap@cdtn.b, E-mail: jbp@cdtn.b, E-mail: jgmb@cdtn.b, E-mail: ferrazw@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The replacement of high enriched uranium (U{sup 235} > 85 wt%) by low enriched uranium (U{sup 235} < 20wt%) nuclear fuels in research and test reactors is being implemented as an initiative of the Reduced Enrichment for Research and Test Reactors (RERTR) program, conceived in the USA since mid-70s, in order to avoid nuclear weapons proliferation. Such replacement implies in the use of compounds or alloys with higher uranium densities. Among the several uranium alloys investigated since then, U-Mo presents great application potential due to its physical properties and good behavior during irradiation, which makes it an important option as a nuclear fuel material for the Brazilian Multipurpose Reactor - RMB. The development of the plate-type nuclear fuel based on U-Mo alloy is being performed at the Nuclear Technology Development Centre (CDTN) and also at IPEN. The carbon contamination of the alloy is one of the great concerns during the melting process. It was observed that U-Mo alloy is more critical considering carbon contamination when using graphite crucibles. Alternative melting technique was implemented at CDTN in order to avoid carbon contamination from graphite crucible using Yttria stabilized ZrO{sub 2} crucibles. Ingots with low carbon content and good internal quality were obtained. (author)

  13. Study on microstructure change of Uranium nitride coated U-7wt%Mo powder by heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Woo Hyoung; Park, Jae Soon; Lee, Hae In; Kim, Woo Jeong; Yang, Jae Ho; Park, Jong Man [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-10-15

    Uranium-molybdenum alloy particle dispersion fuel in an aluminum matrix with a high uranium density has been developed for a high performance research reactor in the RERTR program. In order to retard the fuel-matrix interaction in U-Mo/Al dispersion fuel in which the U-Mo fuel particles were dispersed in Al matrix, nitride layer coated U-Mo fuel particle has been designed and techniques to fabricate nitride-layer coated U-7wt%Mo particles have been developed in our lab. In this study, uranium nitride coated U-Mo particle has heat treatment for several times and degree. And we suggested for interaction layer remedy in U-Mo dispersion fuel. We investigate effect of heat treatment interaction layer evolution on uranium nitride coated U-Mo powder. The EDS and XRD analysis to investigate the phase evolution in uranium nitride coated layer is also a part of the present work

  14. Potential health hazard of nuclear fuel waste and uranium ore

    International Nuclear Information System (INIS)

    Mehta, K.; Sherman, G.R.; King, S.G.

    1991-06-01

    The variation of the radioactivity of nuclear fuel waste (used fuel and fuel reprocessing waste) with time, and the potential health hazard (or inherent radiotoxicity) resulting from its ingestion are estimated for CANDU (Canada Deuterium Uranium) natural-uranium reactors. Four groups of radionuclides in the nuclear fuel waste are considered: actinides, fission products, activation products of zircaloy, and activation products of fuel impurities. Contributions from each of these groups to the radioactivity and to the potential health hazard are compared and discussed. The potential health hazard resulting from used fuel is then compared with that of uranium ore, mine tailings and refined uranium (fresh fuel) on the basis of equivalent amounts of uranium. The computer code HAZARD, specifically developed for these computations, is described

  15. Concept Feasibility Report for Electroplating Zirconium onto Uranium Foil - Year 2

    Energy Technology Data Exchange (ETDEWEB)

    Coffey, Greg W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Meinhardt, Kerry D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Joshi, Vineet V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pederson, Larry R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burkes, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-03-01

    The Fuel Fabrication Capability within the U.S. High Performance Research Reactor Conversion Program is funded through the National Nuclear Security Administration (NNSA) NA-26 (Office of Material Management and Minimization). An investigation was commissioned to determine the feasibility of using electroplating techniques to apply a coating of zirconium onto depleted uranium/molybdenum alloy (U-10Mo). Electroplating would provide an alternative method to the existing process of hot roll-bonding zirconium foil onto the U-10Mo fuel foil during the fabrication of fuel elements for high-performance research reactors. The objective of this research was to develop a reproducible and scalable plating process that will produce a uniform, 25 μm thick zirconium metal coating on U-10Mo foil. In previous work, Pacific Northwest National Laboratory (PNNL) established a molten salt electroplating apparatus and protocol to plate zirconium metal onto molybdenum foil (Coffey 2015). During this second year of the research, PNNL furthered this work by moving to the U-10Mo alloy system (90 percent uranium:10 percent molybdenum). The original plating apparatus was disassembled and re-assembled in a laboratory capable of handling low-level radioactive materials. Initially, the work followed the previous year’s approach, and the salt bath composition was targeted at the eutectic composition (LiF:NaF:ZrF4 = 26:37:37 mol%). Early results indicated that the formation of uranium fluoride compounds would be problematic. Other salt bath compositions were investigated in order to eliminate the uranium fluoride production (LiF:NaF = 61:39 mol% and LiF:NaF:KF = 46.5:11.5:42 mol% ). Zirconium metal was used as the crucible for the molten salt. Three plating methods were used—isopotential, galvano static, and pulsed plating. The molten salt method for zirconium metal application provided high-quality plating on molybdenum in PNNL’s previous work. A key advantage of this approach is that

  16. Influence of a doping by Al stainless steel on kinetics and character of interaction with the metallic nuclear fuel

    Science.gov (United States)

    Nikitin, S. N.; Shornikov, D. P.; Tarasov, B. A.; Baranov, V. G.

    2016-04-01

    Metallic nuclear fuel is a perspective kind of fuel for fast reactors. In this paper we conducted a study of the interaction between uranium-molybdenum alloy and ferritic- martensitic steels with additions of aluminum at a temperature of 700 ° C for 25 hours. The rate constants of the interaction layer growth at 700 °C is about 2.8.10-14 m2/s. It is established that doping Al stainless steel leads to decrease in interaction with uranium-molybdenum alloys. The phase composition of the interaction layer is determined.

  17. Determination of molybdenum in uranium by differential pulse polarography

    International Nuclear Information System (INIS)

    Purwanto, A.; Iswani, G.S.

    1996-01-01

    The separation an determination of Mo (VI) in uranium dioxid (UO 2 ) samples by polarography method were studied. The determination of Mo(VI) was based on electrochemistry reduction of molybdenum (VI) quinolinolate complex (Mo VI O 2 Q 2 ). To decrease the matrix influence, this complex was extracted into chloroform. After chloroform phase was evaporate at room temperature, residues were dissolved with N,N-Dimethyl formamide (DMF). Potential wave reduction of Mo(VI) at -0,48 volt versus Ag/AgCl/KCl saturated in supporting electrolyte buffer acetate 1 M (1M CH 3 COOH-1M CH 3 COONH 4 ). Extraction was done in 0.3 M H 2 SO 4 media at optimum pH of 2.0 and 4 % oxine in 0.5 M H 2 SO 4 was used as complex compound. Extraction two times with 10 ml chloroform for 5 minutes each ratio of organic water was 1:5. This method was used to determine Mo (VI) in concentration range of 4.8 -12 μg in the presence of 200 mg uranium. It was found recovery of Mo (VI) was 95%. Mo (VI) contents in UO 2 samples determined by standard addition was 5.26±0.41 μg/g. (author)

  18. High temperature behavior of metallic inclusions in uranium dioxide

    International Nuclear Information System (INIS)

    Yang, R.L.

    1980-08-01

    The object of this thesis was to construct a temperature gradient furnace to simulate the thermal conditions in the reactor fuel and to study the migration of metallic inclusions in uranium oxide under the influence of temperature gradient. No thermal migration of molybdenum and tungsten inclusions was observed under the experimental conditions. Ruthenium inclusions, however, dissolved and diffused atomically through grain boundaries in slightly reduced uranium oxide. An intermetallic compound (probably URu 3 ) was formed by reaction of Ru and UO/sub 2-x/. The diffusivity and solubility of ruthenium in uranium oxide were measured

  19. Fuel powder production from ductile uranium alloys

    International Nuclear Information System (INIS)

    Clark, C.R.; Meyer, M.K.

    1998-01-01

    Metallic uranium alloys are candidate materials for use as the fuel phase in very-high-density LEU dispersion fuels. These ductile alloys cannot be converted to powder form by the processes routinely used for oxides or intermetallics. Three methods of powder production from uranium alloys have been investigated within the US-RERTR program. These processes are grinding, cryogenic milling, and hydride-dehydride. In addition, a gas atomization process was investigated using gold as a surrogate for uranium. (author)

  20. Comparison of the Environment, Health, And Safety Characteristics of Advanced Thorium- Uranium and Uranium-Plutonium Fuel Cycles

    Science.gov (United States)

    Ault, Timothy M.

    The environment, health, and safety properties of thorium-uranium-based (''thorium'') fuel cycles are estimated and compared to those of analogous uranium-plutonium-based (''uranium'') fuel cycle options. A structured assessment methodology for assessing and comparing fuel cycle is refined and applied to several reference fuel cycle options. Resource recovery as a measure of environmental sustainability for thorium is explored in depth in terms of resource availability, chemical processing requirements, and radiological impacts. A review of available experience and recent practices indicates that near-term thorium recovery will occur as a by-product of mining for other commodities, particularly titanium. The characterization of actively-mined global titanium, uranium, rare earth element, and iron deposits reveals that by-product thorium recovery would be sufficient to satisfy even the most intensive nuclear demand for thorium at least six times over. Chemical flowsheet analysis indicates that the consumption of strong acids and bases associated with thorium resource recovery is 3-4 times larger than for uranium recovery, with the comparison of other chemical types being less distinct. Radiologically, thorium recovery imparts about one order of magnitude larger of a collective occupational dose than uranium recovery. Moving to the entire fuel cycle, four fuel cycle options are compared: a limited-recycle (''modified-open'') uranium fuel cycle, a modified-open thorium fuel cycle, a full-recycle (''closed'') uranium fuel cycle, and a closed thorium fuel cycle. A combination of existing data and calculations using SCALE are used to develop material balances for the four fuel cycle options. The fuel cycle options are compared on the bases of resource sustainability, waste management (both low- and high-level waste, including used nuclear fuel), and occupational radiological impacts. At steady-state, occupational doses somewhat favor the closed thorium option while low

  1. Development of metal fuel and study of construction materials (I-IV), Part II; Razvoj metalnog goriva i ispitivanje konstrukcionih materijala (I-VI deo); II deo

    Energy Technology Data Exchange (ETDEWEB)

    Mihajlovic, A [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1965-11-15

    The studies were devoted to problems related to application of metal uranium as fuel in heavy water reactors. Influence of thermal treatment on material texture and recrystallization of cast uranium was investigated. Structural changes of uranium alloys with molybdenum and niobium were tested during different heat treatments. A review of the possibilities for using metal uranium fuel in heavy water reactors is included.

  2. Vitrification of HLW produced by uranium/molybdenum fuel reprocessing in cogema's cold crucible melter

    International Nuclear Information System (INIS)

    Quang, R. Do; Petitjean, V.; Hollebeque, F.; Pinet, O.; Flament, T.; Prodhomme, A.; Dalcorso, J. P.

    2003-01-01

    The performance of the vitrification process currently used in the La Hague commercial reprocessing plants has been continuously improved during more than ten years of operation. In parallel COGEMA (industrial Operator), the French Atomic Energy Commission (CEA) and SGN (respectively COGEMA's R and D provider and Engineering) have developed the cold crucible melter vitrification technology to obtain greater operating flexibility, increased plant availability and further reduction of secondary waste generated during operations. The cold crucible is a compact water-cooled melter in which the radioactive waste and the glass additives are melted by direct high frequency induction. The cooling of the melter produces a solidified glass layer that protects the melter's inner wall from corrosion. Because the heat is transferred directly to the melt, high operating temperatures can be achieved with no impact on the melter itself. COGEMA plans to implement the cold crucible technology to vitrify high level liquid waste from reprocessed spent U-Mo-Sn-Al fuel (used in gas cooled reactor). The cold crucible was selected for the vitrification of this particularly hard-to-process waste stream because it could not be reasonably processed in the standard hot induction melters currently used at the La Hague vitrification facilities : the waste has a high molybdenum content which makes it very corrosive and also requires a special high temperature glass formulation to obtain sufficiently high waste loading factors (12% in molybdenum). A special glass formulation has been developed by the CEA and has been qualified through lab and pilot testing to meet standard waste acceptance criteria for final disposal of the U-Mo waste. The process and the associated technologies have been also being qualified on a full-scale prototype at the CEA pilot facility in Marcoule. Engineering study has been integrated in parallel in order to take into account that the Cold Crucible should be installed

  3. Vitrification of HLW Produced by Uranium/Molybdenum Fuel Reprocessing in COGEMA's Cold Crucible Melter

    International Nuclear Information System (INIS)

    Do Quang, R.; Petitjean, V.; Hollebecque, F.; Pinet, O.; Flament, T.; Prod'homme, A.

    2003-01-01

    The performance of the vitrification process currently used in the La Hague commercial reprocessing plants has been continuously improved during more than ten years of operation. In parallel COGEMA (industrial Operator), the French Atomic Energy Commission (CEA) and SGN (respectively COGEMA's R and D provider and Engineering) have developed the cold crucible melter vitrification technology to obtain greater operating flexibility, increased plant availability and further reduction of secondary waste generated during operations. The cold crucible is a compact water-cooled melter in which the radioactive waste and the glass additives are melted by direct high frequency induction. The cooling of the melter produces a solidified glass layer that protects the melter's inner wall from corrosion. Because the heat is transferred directly to the melt, high operating temperatures can be achieved with no impact on the melter itself. COGEMA plans to implement the cold crucible technology to vitrify high level liquid waste from reprocessed spent U-Mo-Sn-Al fuel (used in gas cooled reactor). The cold crucible was selected for the vitrification of this particularly hard-to-process waste stream because it could not be reasonably processed in the standard hot induction melters currently used at the La Hague vitrification facilities : the waste has a high molybdenum content which makes it very corrosive and also requires a special high temperature glass formulation to obtain sufficiently high waste loading factors (12 % in molybdenum). A special glass formulation has been developed by the CEA and has been qualified through lab and pilot testing to meet standard waste acceptance criteria for final disposal of the U-Mo waste. The process and the associated technologies have been also being qualified on a full-scale prototype at the CEA pilot facility in Marcoule. Engineering study has been integrated in parallel in order to take into account that the Cold Crucible should be installed

  4. A spectroscopic study of uranium and molybdenum complexation within the pore channels of hybrid mesoporous silica

    Energy Technology Data Exchange (ETDEWEB)

    Charlot, Alexandre [CEA, DEN, DTDC, SPDE, Laboratoire des Procedes Supercritiques de Separation, Bagnols-sur-Ceze (France); CEA, DEN, DTDC, SPDE, Laboratoire de Developpement des Procedes de Separation, Bagnols-sur-Ceze (France); Dumas, Thomas [CEA, DEN, DTDC, SPDE, Laboratoire d' Interaction Ligands Actinides, Bagnols-sur-Ceze (France); Solari, Pier L. [Synchrotron SOLEIL, L' Orme des Merisiers, Saint-Aubin, Gif-sur-Yvette (France); Cuer, Frederic [CEA, DEN, DTDC, SPDE, Laboratoire de Developpement des Procedes de Separation, Bagnols-sur-Ceze (France); Grandjean, Agnes [CEA, DEN, DTDC, SPDE, Laboratoire des Procedes Supercritiques de Separation, Bagnols-sur-Ceze (France)

    2017-01-18

    To enable the reduction of the environmental impact of nuclear energy generation, in this paper, we link the molecular and macroscopic behaviour of a functionalized material (TR rate at SBA15) used to extract uranium from sulfuric media. Two organic 3-[N,N-di(2-ethylhexyl)carbamoyl]-3-[ethoxy(hydroxy)phosphoryl]propanoic acid (TR) molecules grafted onto the solid are involved in the extraction process and form a 2:1 TR-U complex. FTIR and extended X-ray absorption fine structure (EXAFS) spectroscopic analyses show that the TR-U bond is realized through a phosphonate group in a monodentate fashion below pH 3, in agreement with the macroscopic observations. The first coordination sphere of the uranyl ion is completed by two monodentate sulfate ions and one water molecule. Above pH 3, the TR contribution decreases, and other inner-sphere complexes appear, which is consistent with the increased extraction observed on the macroscopic scale. Molybdenum, a competitor element, reduces the uranium extraction capacity but not its speciation, whereas polyoxomolybdates form inside the pores from the molybdenum in solution. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Evaluation of plutonium, uranium, and thorium use in power reactor fuel cycles

    International Nuclear Information System (INIS)

    Kasten, P.R.; Homan, F.J.

    1977-01-01

    The increased cost of uranium and separative work has increased the attractiveness of plutonium use in both uranium and thorium fuel cycles in thermal reactors. A technology, fuel utilization, and economic evaluation is given for uranium and thorium fuel cycles in various reactor types, along with the use of plutonium and 238 U. Reactors considered are LWRs, HWRs, LWBRs, HTGRs, and FBRs. Key technology factors are fuel irradiation performance and associated physical property values. Key economic factors are unit costs for fuel fabrication and reprocessing, and for refabrication of recycle fuels; consistent cost estimates are utilized. In thermal reactors, the irradiation performance of ceramic fuels appears to be satisfactory. At present costs for uranium ore and separative work, recycle of plutonium with thorium rather than uranium is preferable from fuel utilization and economic viewpoints. Further, the unit recovery cost of plutonium is lower from LWR fuels than from natural-uranium HWR fuels; use of LWR product permits plutonium/thorium fueling to compete with uranium cycles. Converting uranium cycles to thorium cycles increases the energy which can be extracted from a given uranium resource. Thus, additional fuel utilization improvement can be obtained by fueling all thermal reactors with thorium, but this requires use of highly enriched uranium; use of 235 U with thorium is most economic in HTGRs followed by HWRs and then LWRs. Marked improvement in long-term fuel utilization can be obtained through high thorium loadings and short fuel cycle irradiations as in the LWBR, but this imposes significant economic penalties. Similar operating modes are possible in HWRs and HTGRs. In fast reactors, use of the plutonium-uranium cycle gives advantageous fuel resource utilization in both LMFBRs and GCFRs; use of the thorium cycle provides more negative core reactivity coefficients and more flexibility relative to use of recycle fuels containing uranium of less than 20

  6. Radiation damage of uranium

    International Nuclear Information System (INIS)

    Lazarevic, Dj.

    1966-11-01

    Study of radiation damage covered the following: Kinetics of electric resistance of uranium and uranium alloy with 1% of molybdenum dependent on the second phase and burnup rate; Study of gas precipitation and diffusion of bubbles by transmission electron microscopy; Numerical analysis of the influence of defects distribution and concentration on the rare gas precipitation in uranium; study of thermal sedimentation of uranium alloy with molybdenum; diffusion of rare gas in metal by gas chromatography method

  7. Basic design of a rotating disk centrifugal atomizer for uranium-molybdenum alloys

    International Nuclear Information System (INIS)

    Alzari, Silvio

    2001-01-01

    One of the most used techniques to produce metallic powders is the centrifugal atomization with a rotating disk. This process is employ to fabricate ductile metallic particles of uranium-molybdenum alloys (typically U- 7 % Mo, by weight) for nuclear fuel elements for research and testing reactors. These alloys exhibit a face-centered cubic structure (γ phase) which is stable above 700 C degrees and can be retained at room temperature. The rotating disk centrifugal atomization allows a rapid solidification of spherical metallic droplets of about 40 to 100 μm, considered adequate to manufacture nuclear fuel elements. Besides the thermo-physical properties of both the alloy and the cooling gas, the main parameters of the process are the radius of the disk (R), the diameter of the atomization chamber (D), the disk rotation speed (ω), the liquid volume flow rate (Q) and the superheating of the liquid (ΔT). In this work, they were applied approximate analytical models to estimate the optimal geometrical and operative parameters to obtain spherical metallic powder of U- 7 % Mo alloy. Three physical phenomena were considerate: the liquid metal flow along the surface of the disk, the fragmentation and spheroidization of the droplets and the cooling and solidification of the droplets. The principal results are the more suitable gas is helium; R ≅ 20 mm; D ≥ 1 m; ≅ 20,000 - 50,000 rpm; Q ≅ 4 - 10 cm 3 /s; ΔT ≅ 100 - 200 C degrees. By applying the relevant non-dimensional parameters governing the main physical phenomena, the conclusion is that the more appropriate non-radioactive metal to simulate the atomization of U- 7 % Mo is gold [es

  8. The use of atomic absorption spectroscopy to measure arsenic, selenium, molybdenum, and vanadium in water and soil samples from uranium mill tailings sites

    International Nuclear Information System (INIS)

    Hollenbach, M.H.

    1988-01-01

    The Technical Measurements Center (TMC) was established to support the environmental measurement needs of the various DOE remedial action programs. A laboratory intercomparison study conducted by the TMC, using soil and water samples from sites contaminated by uranium mill tailings, indicated large discrepancies in analytical results reported by participating laboratories for arsenic, selenium, molybdenum, and vanadium. The present study was undertaken to investigate the most commonly used analytical techniques for measuring these four elements, ascertain routine and reliable quantification, and assess problems and successes of analysts. Based on a survey of the technical literature, the analytical technique of atomic absorption spectroscopy was selected for detailed study. The application of flame atomic absorption, graphite furnace atomic absorption, and hydride generation atomic absorption to the analysis of tailings-contaminated samples is discussed. Additionally, laboratory sample preparation methods for atomic absorption spectroscopy are presented. The conclusion of this report is that atomic absorption can be used effectively for the determination of arsenic, selenium, molybdenum, and vanadium in water and soil samples if the analyst understands the measurement process and is aware of potential problems. The problem of accurate quantification of arsenic, selenium, molybdenum, and vanadium in water and soil contaminated by waste products from uranium milling operations affects all DOE remedial action programs [Surplus Facilities Management Program (SFMP), Formerly Utilized Site Remedial Action Program (FUSRAP), and Uranium Mill Tailings Remedial Action Program (UMTRAP)], since all include sites where uranium was processed. 96 refs., 9 figs

  9. Study of the quenching and subsequent return to room temperature of uranium-chromium, uranium-iron, and uranium-molybdenum alloys containing only small amounts of the alloying element; Etude de la trempe et du revenu a la temperature ordinaire d'alliages uranium-chrome, uranium-fer et uranium-molybdene, a faible teneur en element d'alliage

    Energy Technology Data Exchange (ETDEWEB)

    Delaplace, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1960-09-15

    By means of an apparatus which makes possible thermal pre-treatments in vacuo, quenching carried out in a high purity argon atmosphere, and simultaneous recording of time temperature cooling and thermal contraction curves, the author has examined the transformations which occur in uranium-chromium, uranium-iron and uranium-molybdenum alloys during their quenching and subsequent return to room temperature. For uranium-chromium and uranium-iron alloys, the temperature at which the {gamma} {yields} {beta} transformation starts varies very little with the rate of cooling. For uranium-molybdenum alloys containing 2,8 atom per cent of Mo, this temperature is lowered by 120 deg. C for a cooling rate of 500 deg. C/mn. The temperature at which the {beta} {yields} {alpha} transformation starts is lowered by 170 deg. C for a cooling rate of 500 deg. C/mn in the case of uranium-chromium alloy containing 0,37 atom per cent of Cr. The temperature is little affected in the case of uranium-iron alloys. The addition of chromium or iron makes it possible to conserve the form {beta} at ordinary temperatures after quenching from the {beta} and {gamma} regions. The {beta} phase is particularly unstable and changes into needles of the {alpha} form even at room temperatures according to an autocatalytic transformation law similar to the austenitic-martensitic transformation law in the case of iron. The {beta} phase obtained by quenching from the {beta} phase region is more stable than that obtained by quenching from the {gamma} region. Chromium is a more effective stabiliser of the {beta} phase than is iron. Unfortunately it causes serious surface cracking. The {beta} {yields} {alpha} transformation in uranium-chromium alloys has been followed at room temperature by means of micro-cinematography. The author has not observed the direct {gamma} {yields} {alpha} transformation in uranium-molybdenum alloys containing 2,8 per cent of molybdenum even for cooling rates of up to 2000 deg. C

  10. PHWR fuel fabrication with imported uranium - procedures and processes

    International Nuclear Information System (INIS)

    Rao, R.V.R.L.V.; Rameswara Rao, A.; Hemantha Rao, G.V.S.; Jayaraj, R.N.

    2010-01-01

    Following the 123 agreement and subsequent agreements with IAEA & NSG, Government of India has entered into bilateral agreements with different countries for nuclear trade. Department of Atomic Energy (DAE), Government of India, has entered into contract with few countries for supply of uranium material for use in the safeguarded PHWRs. Nuclear Fuel Complex (NFC), an industrial unit of DAE, established in the early seventies, is engaged in the production of Nuclear Fuel and Zircaloy items required for Nuclear Power Reactors operating in the country. NFC has placed one of its fuel fabrication facilities (NFC, Block-A, INE-) under safeguards. DAE has opted to procure uranium material in the form of ore concentrate and fuel pellets. Uranium ore concentrate was procured as per the ASTM specifications. Since no international standards are available for PHWR fuel pellets, Specifications have to be finalized based on the present fabrication and operating experience. The process steps have to be modified and fine tuned for handling the imported uranium material especially for ore concentrate. Different transportation methods are to be employed for transportation of uranium material to the facility. Cost of the uranium material imported and the recoveries at various stages of fuel fabrication have impact on the fuel pricing and in turn the unit energy costs. Similarly the operating procedures have to be modified for safeguards inspections by IAEA. NFC has successfully manufactured and supplied fuel bundles for the three 220 MWe safeguarded PHWRs. The paper describes various issues encountered while manufacturing fuel bundles with different types of nuclear material. (author)

  11. Properties of low content uranium-molybdenum alloys which may be used as nuclear fuels; Proprietes des alliages uranium-molybdene de faibles teneurs utilisables comme materiaux combustibles

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, J; Decours, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    Metallurgical properties are given in this report of uranium-molybdenum alloys containing 0,5 to 3 per cent of molybdenum. Since some of these alloys are used in EDF power reactors are given: briefly the operating conditions imposed on nuclear fuels: maximum temperature, temperature gradient and external pressure. In the first part are considered the structural properties of the alloys correlation with the phase transformation kinetics; a description is given of the effects of certain physico-metallurgical factors on the morphology and the crystalline structure of the materials: - solidification conditions and the heredity of the {gamma} structure, - cooling rate at the transformation points, - whether or not the intermediate {gamma} {yields} {beta} transformation is suppressed In the second part we show how a knowledge of the phase transformation processes has made it possible to define the optimum preparation conditions for these materials in the form of fuel tubes intended for the EDF reactors: casting conditions, controlled cooling treatments, weldability. In the third part we study the thermal, stability during the long duration high temperature treatments and the cycles in the two zones of the diagram {alpha} + {gamma}; {beta} + {gamma} the effects of the morphology (in particular the two types of {alpha} pseudo-grains observed) and of the cooling rate during the transformation point transitions are described. In the fourth part are discussed the mechanical properties: resistance to a tractive force, resistance to creep, resilience. These properties can also be affected by the {gamma} structure heredity and by the cooling rate to which the alloy has been subjected. In conclusion we discuss the reasons which led to the choice of some of these alloys for the first EDF reactors in particular the advantages of their high creep resistance between 450 and 600 deg C for use in the form of tubes subjected to an external pressure. (authors) [French] Dans ce rapport

  12. Fuel Cycle Impacts of Uranium-Plutonium Co-extraction

    International Nuclear Information System (INIS)

    Taiwo, Temitope; Szakaly, Frank; Kim, Taek-Kyum; Hill, Robert

    2008-01-01

    A systematic investigation of the impacts of uranium and plutonium co-extraction during fuel separations on reactor performance and fuel cycle has been performed. Proliferation indicators, critical mass and radiation source levels of the separation products or fabricated fuel, were also evaluated. Using LWR-spent-uranium-based MOX fuel instead of natural-uranium-based fuel in a PWR MOX core requires a higher initial plutonium content (∼1%), and results in higher Np-237 content (factor of 5) in the spent fuel, and less consumption of Pu-238 (20%) and Am-241 (14%), indicating a reduction in the effective repository space utilization. Additionally, minor actinides continue to accumulate in the fuel cycle, and thus a separate solution is required for them. Differences were found to be quite smaller (∼0.4% in initial transuranics) between the equilibrium cycles of advanced fast reactor cores using spent and depleted uranium for make-up, in additional to transuranics. The critical masses of the co-extraction products were found to be higher than for weapons-grade plutonium (WG-Pu) and the decay heat and radiation sources of the materials (products) were also found to be generally higher than for WG-Pu in the transuranics content range of 10% to 100% in the heavy-metal. (authors)

  13. Yalina booster subcritical assembly performance with low enriched uranium fuel

    International Nuclear Information System (INIS)

    Talamo, Alberto; Gohar, Yousry

    2011-01-01

    The YALINA Booster facility is a subcritical assembly located in Minsk, Belarus. The facility has special features that result in fast and thermal neutron spectra in different zones. The fast zone of the assembly uses a lead matrix and uranium fuels with different enrichments: 90% and 36%, 36%, or 21%. The thermal zone of the assembly contains 10% enriched uranium fuel in a polyethylene matrix. This study discusses the performance of the three YALINA Booster configurations with the different fuel enrichments. In order to maintain the same subcriticality level in the three configurations, the number of fuel rods in the thermal zone is increased as the uranium fuel enrichment in the fast zone is decreased. The maximum number of fuel rods that can be loaded in the thermal zone is about 1185. Consequently, the neutron multiplication of the configuration with 21% enriched uranium fuel in the fast zone is enhanced by changing the position of the boron carbide and the natural uranium absorber rods, located between the fast and the thermal zones, to form an annular rather than a square arrangement. (author)

  14. Yalina booster subcritical assembly performance with low enriched uranium fuel

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto; Gohar, Yousry, E-mail: alby@anl.gov [Argonne National Laboratory, Lemont, IL (United States)

    2011-07-01

    The YALINA Booster facility is a subcritical assembly located in Minsk, Belarus. The facility has special features that result in fast and thermal neutron spectra in different zones. The fast zone of the assembly uses a lead matrix and uranium fuels with different enrichments: 90% and 36%, 36%, or 21%. The thermal zone of the assembly contains 10% enriched uranium fuel in a polyethylene matrix. This study discusses the performance of the three YALINA Booster configurations with the different fuel enrichments. In order to maintain the same subcriticality level in the three configurations, the number of fuel rods in the thermal zone is increased as the uranium fuel enrichment in the fast zone is decreased. The maximum number of fuel rods that can be loaded in the thermal zone is about 1185. Consequently, the neutron multiplication of the configuration with 21% enriched uranium fuel in the fast zone is enhanced by changing the position of the boron carbide and the natural uranium absorber rods, located between the fast and the thermal zones, to form an annular rather than a square arrangement. (author)

  15. Study of the quenching and subsequent return to room temperature of uranium-chromium, uranium-iron, and uranium-molybdenum alloys containing only small amounts of the alloying element; Etude de la trempe et du revenu a la temperature ordinaire d'alliages uranium-chrome, uranium-fer et uranium-molybdene, a faible teneur en element d'alliage

    Energy Technology Data Exchange (ETDEWEB)

    Delaplace, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1960-09-15

    By means of an apparatus which makes possible thermal pre-treatments in vacuo, quenching carried out in a high purity argon atmosphere, and simultaneous recording of time temperature cooling and thermal contraction curves, the author has examined the transformations which occur in uranium-chromium, uranium-iron and uranium-molybdenum alloys during their quenching and subsequent return to room temperature. For uranium-chromium and uranium-iron alloys, the temperature at which the {gamma} {yields} {beta} transformation starts varies very little with the rate of cooling. For uranium-molybdenum alloys containing 2,8 atom per cent of Mo, this temperature is lowered by 120 deg. C for a cooling rate of 500 deg. C/mn. The temperature at which the {beta} {yields} {alpha} transformation starts is lowered by 170 deg. C for a cooling rate of 500 deg. C/mn in the case of uranium-chromium alloy containing 0,37 atom per cent of Cr. The temperature is little affected in the case of uranium-iron alloys. The addition of chromium or iron makes it possible to conserve the form {beta} at ordinary temperatures after quenching from the {beta} and {gamma} regions. The {beta} phase is particularly unstable and changes into needles of the {alpha} form even at room temperatures according to an autocatalytic transformation law similar to the austenitic-martensitic transformation law in the case of iron. The {beta} phase obtained by quenching from the {beta} phase region is more stable than that obtained by quenching from the {gamma} region. Chromium is a more effective stabiliser of the {beta} phase than is iron. Unfortunately it causes serious surface cracking. The {beta} {yields} {alpha} transformation in uranium-chromium alloys has been followed at room temperature by means of micro-cinematography. The author has not observed the direct {gamma} {yields} {alpha} transformation in uranium-molybdenum alloys containing 2,8 per cent of molybdenum even for cooling rates of up to 2000 deg. C

  16. Uranium-molybdenum alloys containing 0,5 to 3 per cent by weight of molybdenum

    International Nuclear Information System (INIS)

    Lehmann, J.

    1959-01-01

    The following properties have been determined in the new cast state of uranium alloys containing 0.5-1-1.8-2 and 3.5 per cent of molybdenum: micro-graphical aspect, crystalline structure, thermal expansion, the mechanical characteristics, behaviour when subjected to cyclic temperature variations, and heat treatment. The transformation curves have been established for continuous cooling at rates varying between 2.5 and 200 deg. C per minute, using a dilatation method for the alloys containing 1.0, 2.0 and 3.0 per cent Mo. T.T.T. curves have been traced for 0.5 and 1.0 per cent Mo alloys and the Ms points determined for alloys containing 2.0 and 3.0 par cent Mo. In this way it has been possible to show the different results of transformation, brought about either by nucleation and diffusion or by shear - the alloy containing 1 per cent Mo, give two martensites α' and α'' and the alloys containing 2 and 3 per cent Mo give one martensite with a band structure. (author) [fr

  17. Research Establishment progress report 1978 - uranium fuel cycle

    International Nuclear Information System (INIS)

    1978-12-01

    A report of research programs continuing in the following areas is presented: mining and treatment of uranium ores, uranium enrichment, waste treatment, reprocessing and the uranium fuel cycle. Staff responsible for each project are indicated

  18. Corrosion report for the U-Mo fuel concept

    Energy Technology Data Exchange (ETDEWEB)

    Henager, Charles H. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Bennett, Wendy D. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Doherty, Ann L. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Fuller, E. S. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Hardy, John S. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Omberg, Ronald P. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2014-08-28

    The Fuel Cycle Research and Development (FCRD) program of the Office of Nuclear Energy (NE) has implemented a program to develop a Uranium-Molybdenum (U-Mo) metal fuel for Light Water Reactors (LWR)s. Uranium-Molybdenum fuel has the potential to provide superior performance based on its thermo-physical properties, which includes high thermal conductivity for less stored heat energy. With sufficient development, it may be able to provide the Light Water industry with a melt-resistant accident tolerant fuel with improved safety response. However, the corrosion of this fuel in reactor water environments needs to be further explored and optimized by additional alloying. The Pacific Northwest National Laboratory has been tasked with performing ex-reactor corrosion testing to characterize the performance of U-Mo fuel. This report documents the results of the effort to characterize and develop the U-Mo metal fuel concept for LWRs with regard to corrosion testing. The results of a simple screening test in buffered water at 30°C using surface alloyed U-10Mo is documented and discussed. The screening test was used to guide the selection of several potential alloy improvements that were found and are recommended for further testing in autoclaves to simulate PWR water conditions more closely.

  19. Feasibility study on AFR-100 fuel conversion from uranium-based fuel to thorium-based fuel

    Energy Technology Data Exchange (ETDEWEB)

    Heidet, F.; Kim, T.; Grandy, C. (Nuclear Engineering Division)

    2012-07-30

    Although thorium has long been considered as an alternative to uranium-based fuels, most of the reactors built to-date have been fueled with uranium-based fuel with the exception of a few reactors. The decision to use uranium-based fuels was initially made based on the technology maturity compared to thorium-based fuels. As a result of this experience, lot of knowledge and data have been accumulated for uranium-based fuels that made it the predominant nuclear fuel type for extant nuclear power. However, following the recent concerns about the extent and availability of uranium resources, thorium-based fuels have regained significant interest worldwide. Thorium is more abundant than uranium and can be readily exploited in many countries and thus is now seen as a possible alternative. As thorium-based fuel technologies mature, fuel conversion from uranium to thorium is expected to become a major interest in both thermal and fast reactors. In this study the feasibility of fuel conversion in a fast reactor is assessed and several possible approaches are proposed. The analyses are performed using the Advanced Fast Reactor (AFR-100) design, a fast reactor core concept recently developed by ANL. The AFR-100 is a small 100 MW{sub e} reactor developed under the US-DOE program relying on innovative fast reactor technologies and advanced structural and cladding materials. It was designed to be inherently safe and offers sufficient margins with respect to the fuel melting temperature and the fuel-cladding eutectic temperature when using U-10Zr binary metal fuel. Thorium-based metal fuel was preferred to other thorium fuel forms because of its higher heavy metal density and it does not need to be alloyed with zirconium to reduce its radiation swelling. The various approaches explored cover the use of pure thorium fuel as well as the use of thorium mixed with transuranics (TRU). Sensitivity studies were performed for the different scenarios envisioned in order to determine the

  20. Operation of Nuclear Fuel Based on Reprocessed Uranium for VVER-type Reactors in Competitive Nuclear Fuel Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Troyanov, V.; Molchanov, V.; Tuzov, A. [TVEL Corporation, 49 Kashirskoe shosse, Moscow 115409 (Russian Federation); Semchenkov, Yu.; Lizorkin, M. [RRC ' Kurchatov Institute' (Russian Federation); Vasilchenko, I.; Lushin, V. [OKB ' Gidropress' (Russian Federation)

    2009-06-15

    Current nuclear fuel cycle of Russian nuclear power involves reprocessed low-enriched uranium in nuclear fuel production for some NPP units with VVER-type LWR. This paper discusses design and performance characteristics of commercial nuclear fuel based on natural and reprocessed uranium. It presents the review of results of commercial operation of nuclear fuel based on reprocessed uranium on Russian NPPs-unit No.2 of Kola NPP and unit No.2 of Kalinin NPP. The results of calculation and experimental validation of safe fuel operation including necessary isotope composition conformed to regulation requirements and results of pilot fuel operation are also considered. Meeting the customer requirements the possibility of high burn-up achieving was demonstrated. In addition the paper compares the characteristics of nuclear fuel cycles with maximum length based on reprocessed and natural uranium considering relevant 5% enrichment limitation and necessity of {sup 236}U compensation. The expedience of uranium-235 enrichment increasing over 5% is discussed with the aim to implement longer fuel cycles. (authors)

  1. Use of ion beams to simulate reaction of reactor fuels with their cladding

    International Nuclear Information System (INIS)

    Birtcher, R.C.; Baldo, P.

    2006-01-01

    Processes occurring within reactor cores are not amenable to direct experimental observation. Among major concerns are damage, fission gas accumulation and reaction between the fuel and its cladding all of which lead to swelling. These questions can be investigated through simulation with ion beams. As an example, we discuss the irradiation driven interaction of uranium-molybdenum alloys, intended for use as low-enrichment reactor fuels, with aluminum, which is used as fuel cladding. Uranium-molybdenum coated with a 100 nm thin film of aluminum was irradiated with 3 MeV Kr ions to simulate fission fragment damage. Mixing and diffusion of aluminum was followed as a function of irradiation with RBS and nuclear reaction analysis using the 27 Al(p,γ) 28 Si reaction which occurs at a proton energy of 991.9 keV. During irradiation at 150 deg. C, aluminum diffused into the uranium alloy at a irradiation driven diffusion rate of 30 nm 2 /dpa. At a dose of 90 dpa, uranium diffusion into the aluminum layer resulted in formation of an aluminide phase at the initial interface. The thickness of this phase grew until it consumed the aluminum layer. The rapid diffusion of Al into these reactor fuels may offer explanation of the observation that porosity is not observed in the fuel particles but on their periphery

  2. Research on calculation of mixing fraction for natural uranium equivalent fuel

    International Nuclear Information System (INIS)

    Huang Shien; Wang Lianjie; Wei Yanqin; Li Qing; Zheng Jiye

    2013-01-01

    Based on the first-order perturbation theory and reasonable approximations, the calculation method of recycled uranium (RU) and depleted uranium (DU) mixing fraction for natural uranium equivalent (NUE) fuel was studied, so the equivalence between NUE fuel and natural uranium (NU) fuel was assured. The adopted calculation method accurately takes the variation of micro cross sections alone with fuel depletion into account. A computer code named ALPHA was programmed to execute the calculation procedure. Then the ALPHA code and the WIMS-AECL code compose a processing system, which is applicable to the mixing fraction calculation for heavy water reactor NUE fuel. The validation shows that the processing system can accurately calculate the mixing fraction for NUE fuel. (authors)

  3. Uranium Fuel Plant. Applicants environmental report

    International Nuclear Information System (INIS)

    1975-05-01

    The Uranium Fuel Plant, located at the Cimarron Facility, was constructed in 1964 with operations commencing in 1965 in accordance with License No. SNM-928, Docket No. 70-925. The plant has been in continuous operation since the issuance of the initial license and currently possesses contracts extending through 1978, for the production of nuclear fuels. The Uranium Plant is operated in conjunction with the Plutonium Facility, each sharing common utilities and sanitary wastes disposal systems. The operation has had little or no detrimental ecological impact on the area. For the operation of the Uranium Fuel Fabrication Plant, initial equipment provided for the production of UO 2 , UF 4 , uranium metal and recovery of scrap materials. In 1968, the plant was expanded by increasing the UO 2 and pellet facilities by the installation of another complete production line for the production of fuel pellets. In 1969, fabrication facilities were added for the production of fuel elements. Equipment initially installed for the recovery of fully enriched scrap has not been used since the last work was done in 1970. Economically, the plant has benefited the Logan County area, with approximately 104 new jobs with an annual payroll of approximately $1.3 million. In addition, $142,000 is annually paid in taxes to state, local and federal governments, and local purchases amount to approximately $1.3 million. This was all in land that was previously used for pasture land, with a maximum value of approximately 37,000 dollars. Environmental effects of plant operation have been minimal. A monitoring and measurement program is maintained in order to ensure that the ecology of the immediate area is not affected by plant operations

  4. Fabrication procedures for manufacturing high uranium concentration dispersion fuel elements

    International Nuclear Information System (INIS)

    Souza, J.A.B.; Durazzo, M.

    2010-01-01

    IPEN developed and made available for routine production the technology for manufacturing dispersion type fuel elements for use in research reactors. However, the fuel produced at IPEN is limited to the uranium concentration of 3.0 gU/cm 3 by using the U 3 Si 2 -Al dispersion. Increasing the uranium concentration of the fuel is interesting by the possibility of increasing the reactor core reactivity and lifetime of the fuel. It is possible to increase the concentration of uranium in the fuel up to the technological limit of 4.8 gU/cm 3 for the U 3 Si 2 -Al dispersion, which is well placed around the world. This new fuel will be applicable in the new Brazilian-Multipurpose Reactor RMB. This study aimed to develop the manufacturing process of high uranium concentration fuel, redefining the procedures currently used in the manufacture of IPEN. This paper describes the main procedures adjustments that will be necessary. (author)

  5. Fabrication procedures for manufacturing high uranium concentration dispersion fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Jose Antonio Batista de; Durazzo, Michelangelo, E-mail: jasouza@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    IPEN developed and made available for routine production the technology for manufacturing dispersion type fuel elements for use in research reactors. However, the fuel produced at IPEN is limited to the uranium concentration of 3.0 g U/c m3 by using the U{sub 3}Si{sub 2}-Al dispersion. Increasing the uranium concentration of the fuel is interesting by the possibility of increasing the reactor core reactivity and lifetime of the fuel. It is possible to increase the concentration of uranium in the fuel up to the technological limit of 4.8 g U/c m3 for the U{sub 3}Si{sub 2}-Al dispersion, which is well placed around the world. This new fuel will be applicable in the new Brazilian- Multipurpose Reactor RMB. This study aimed to develop the manufacturing process of high uranium concentration fuel, redefining the procedures currently used in the manufacture of IPEN. This paper describes the main procedures adjustments that will be necessary. (author)

  6. Security of supply of uranium as nuclear fuel

    International Nuclear Information System (INIS)

    Guzman Gomez-Selles, L.

    2011-01-01

    When we talk about Sustainability related to nuclear fuel, the first concern that comes to our mind is about the possibility of having guarantees on the uranium supply for a sufficient period of time. In this paper we are going to analyze the last Reserves data published by the OCD's Red Book and also how the Reserve concept in fully linked to the uranium price. Additionally, it is demonstrated how the uranium Security of supply is guaranteed for, at least, the next 100 years. finally, some comments are made regarding other sources of nuclear fuel as it is the uranium coming from the phosphates or the thorium. (Author)

  7. Development of high uranium-density fuels for use in research reactors

    International Nuclear Information System (INIS)

    Ugajin, Mitsuhiro; Akabori, Mitsuo; Itoh, Akinori

    1996-01-01

    The uranium silicide U 3 Si 2 possesses uranium density 11.3 gU/cm 3 with a congruent melting point of 1665degC, and is now successfully in use as a research reactor fuel. Another uranium silicide U 3 Si and U 6 Me-type uranium alloys (Me=Fe,Mn,Ni) have been chosen as new fuel materials because of the higher uranium densities 14.9 and 17.0 gU/cm 3 , respectively. Experiments were carried out to fabricate miniature aluminum-dispersion plate-type and aluminum-clad disk-type fuels by using the conventional picture-frame method and a hot-pressing technique, respectively. These included the above-mentioned new fuel materials as well as U 3 Si 2 . Totally 14 miniplates with uranium densities from 4.0 to 6.3 gU/cm 3 of fuel meat were prepared together with 28 disk-type fuel containing structurally-modified U 3 Si, and subjected to the neutron irradiation in JMTR (Japan Materials Testing Reactor). Some results of postirradiation examinations are presented. (author)

  8. Nuclear fuel cycle head-end enriched uranium purification and conversion into metal

    International Nuclear Information System (INIS)

    Bonini, A.; Cabrejas, J.; Lio, L. de; Dell'Occhio, L.; Devida, C.; Dupetit, G.; Falcon, M.; Gauna, A.; Gil, D.; Guzman, G.; Neuringer, P.; Pascale, A.; Stankevicius, A.

    1998-01-01

    The CNEA (Comision Nacional de Energia Atomica - Argentina) operated two facilities at the Ezeiza Atomic Center which supply purified enriched uranium employed in the production of nuclear fuels. At one of those facilities, the Triple Height Laboratory scraps from the production of MTR type fuel elements (mainly out of specification U 3 O 8 plates or powder) are purified to nuclear grade. The purification is accomplished by a solvent extraction process. The other facility, the Enriched Uranium Laboratory produces 90% enriched uranium metal to be used in Mo 99 production (originally the uranium was used for the manufacture of MTR fuel elements made of aluminium-uranium alloy). This laboratory also provided metallic uranium with a lower enrichment (20%) for a first uranium-silicon testing fuel element, and in the near future it is going to recommence 20% enriched uranium related activities in order to provide the metal for the silicon-based fuel elements production (according to the policy of enrichment reduction for MTR reactors). (author)

  9. Radioactive decay properties of CANDU fuel. Volume 1: the natural uranium fuel cycle

    International Nuclear Information System (INIS)

    Clegg, L.J.; Coady, J.R.

    1977-01-01

    The computer code CANIGEN was used to obtain the mass, activity, decay heat and toxicity of CANDU fuel and its component isotopes. Data are also presented on gamma spectra and neutron emissions. Part 1 presents these data for unirradiated fuel, uranium ore and uranium mill tailings. In Part 2 they have been computed for fuel irradiated to levels of burnup ranging from 140 GJ/kg U to 1150 GJ/kg U. (author)

  10. Metallic uranium as fuel for fast reactors

    International Nuclear Information System (INIS)

    Moura Neto, C. de

    1988-01-01

    This paper presents a first overview of the use of metallic uranium and its alloys as an option for fuel for rapid reactors. Aspects are discussed concerning uranium alloys which present high solubility in the gamma phase. (author)

  11. Research on using depleted uranium as nuclear fuel for HWR

    International Nuclear Information System (INIS)

    Zhang Jiahua; Chen Zhicheng; Bao Borong

    1999-01-01

    The purpose of our work is to find a way for application of depleted uranium in CANDU reactor by using MOX nuclear fuel of depleted U and Pu instead of natural uranium. From preliminary evaluation and calculation, it was shown that MOX nuclear fuel consisting of depleted uranium enrichment tailings (0.25% 235 U) and plutonium (their ratio 99.5%:0.5%) could replace natural uranium in CANDU reactor to sustain chain reaction. The prospects of application of depleted uranium in nuclear energy field are also discussed

  12. The relationship between natural uranium and advanced fuel cycles in CANDU reactors

    International Nuclear Information System (INIS)

    Lane, A.D.; McDonnell, F.N.; Griffiths, J.

    1988-11-01

    CANDU is the most uranium-economic type of thermal power reactor, and is the only type used in Canada. CANDU reactors consume approximately 15% of Canadian uranium production and support a fuel service industry valued at ∼$250 M/a. In addition to their once-through, natural-uranium fuel cycle, CANDU reactors are capable of operating with slightly-enriched uranium (SEU), uranium-plutonium and thorium cycles, more efficiently than other reactors. Only SEU is economically attractive in Canada now, but the other cycles are of interest to countries without indigenous fuel resources. A program is underway to establish the fuel technologies necessary for the use of SEU and the other fuel cycles in CANDU reactors. 22 refs

  13. Improving the neutronic characteristics of a boiling water reactor by using uranium zirconium hydride fuel instead of uranium dioxide fuel

    Energy Technology Data Exchange (ETDEWEB)

    Galahom, Ahmed Abdelghafar [Higher Technological Institute, Ramadan (Egypt)

    2016-06-15

    The present work discusses two different models of boiling water reactor (BWR) bundle to compare the neutronic characteristics of uranium dioxide (UO{sub 2}) and uranium zirconium hydride (UZrH{sub 1.6}) fuel. Each bundle consists of four assemblies. The BWR assembly fueled with UO{sub 2} contains 8 × 8 fuel rods while that fueled with UZrH{sub 1.6} contains 9 × 9 fuel rods. The Monte Carlo N-Particle Transport code, based on the Mont Carlo method, is used to design three dimensional models for BWR fuel bundles at typical operating temperatures and pressure conditions. These models are used to determine the multiplication factor, pin-by-pin power distribution, axial power distribution, thermal neutron flux distribution, and axial thermal neutron flux. The moderator and coolant (water) are permitted to boil within the BWR core forming steam bubbles, so it is important to calculate the reactivity effect of voiding at different values. It is found that the hydride fuel bundle design can be simplified by eliminating water rods and replacing the control blade with control rods. UZrH{sub 1.6} fuel improves the performance of the BWR in different ways such as increasing the energy extracted per fuel assembly, reducing the uranium ore, and reducing the plutonium accumulated in the BWR through burnup.

  14. Basic research on high-uranium density fuels for research and test reactors

    International Nuclear Information System (INIS)

    Ugajin, M.; Itoh, A.; Akabori, M.

    1992-01-01

    High-uranium density fuels, uranium silicides (U 3 Si 2 , U 3 Si) and U 6 Me-type uranium alloys (Me = Fe, Mn, Ni), were prepared and examined metallurgically as low-enriched uranium (LEU) fuels for research and test reactors. Miniature aluminum-dispersion plate-type fuel (miniplate) and aluminum-clad disk-type fuel specimens were fabricated and subjected to the neutron irradiation in JMTR (Japan Materials Testing Reactor). Fuel-aluminum compatibility tests were conducted to elucidate the extent of reaction and to identify reaction products. The relative stability of the fuels in an aluminum matrix was established at 350degC or above. Experiments were also performed to predict the chemical form of the solid fission-products in the uranium silicide (U 3 Si 2 ) simulating a high burnup anticipated for reactor service. (author)

  15. High-uranium-loaded U3O8--Al fuel element development program

    International Nuclear Information System (INIS)

    Martin, M.M.

    1978-01-01

    The High-Uranium-Loaded U 3 O 8 --Al Fuel Development Program supports Argonne National Laboratory efforts to develop high-uranium-density research and test reactor fuel to accommodate use of low-uranium enrichment. The goal is to fuel most research and test reactors with uranium of less than 20% enrichment for the purpose of lowering the potential for diversion of highly-enriched material for nonpeaceful usages

  16. Development of high uranium-density fuels for use in research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ugajin, Mitsuhiro; Akabori, Mitsuo; Itoh, Akinori [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-02-01

    The uranium silicide U{sub 3}Si{sub 2} possesses uranium density 11.3 gU/cm{sup 3} with a congruent melting point of 1665degC, and is now successfully in use as a research reactor fuel. Another uranium silicide U{sub 3}Si and U{sub 6}Me-type uranium alloys (Me=Fe,Mn,Ni) have been chosen as new fuel materials because of the higher uranium densities 14.9 and 17.0 gU/cm{sup 3}, respectively. Experiments were carried out to fabricate miniature aluminum-dispersion plate-type and aluminum-clad disk-type fuels by using the conventional picture-frame method and a hot-pressing technique, respectively. These included the above-mentioned new fuel materials as well as U{sub 3}Si{sub 2}. Totally 14 miniplates with uranium densities from 4.0 to 6.3 gU/cm{sup 3} of fuel meat were prepared together with 28 disk-type fuel containing structurally-modified U{sub 3}Si, and subjected to the neutron irradiation in JMTR (Japan Materials Testing Reactor). Some results of postirradiation examinations are presented. (author)

  17. Uranium for Nuclear Power: Resources, Mining and Transformation to Fuel

    International Nuclear Information System (INIS)

    Hore-Lacy, Ian

    2016-01-01

    Uranium for Nuclear Power: Resources, Mining and Transformation to Fuel discusses the nuclear industry and its dependence on a steady supply of competitively priced uranium as a key factor in its long-term sustainability. A better understanding of uranium ore geology and advances in exploration and mining methods will facilitate the discovery and exploitation of new uranium deposits. The practice of efficient, safe, environmentally-benign exploration, mining and milling technologies, and effective site decommissioning and remediation are also fundamental to the public image of nuclear power. This book provides a comprehensive review of developments in these areas: • Provides researchers in academia and industry with an authoritative overview of the front end of the nuclear fuel cycle • Presents a comprehensive and systematic coverage of geology, mining, and conversion to fuel, alternative fuel sources, and the environmental and social aspects • Written by leading experts in the field of nuclear power, uranium mining, milling, and geological exploration who highlight the best practices needed to ensure environmental safety

  18. The low enriched uranium fuel cycle in Ontario

    International Nuclear Information System (INIS)

    Archinoff, G.H.

    1979-02-01

    Six fuel-cycle strategies for use in CANDU reactors are examined in terms of their uranium-conserving properties and their ease of commercialization for three assumed growth rates of installed nuclear capacity in Ontario. The fuel cycle strategies considered assume the continued use of the natural uranium cycle up to the mid-1990's. At that time, the low-enriched uranium (LEU) cycle is gradually introduced into the existing power generation grid. In the mid-2020's one of four advanced cycles is introduced. The advanced cycles considered are: mixed oxide, intermediate burn-up thorium (Pu topping), intermediate burn-up thorium (U topping), and LMFBR. For comparison purposes an all natural uranium strategy and a natural uranium-LEU strategy (with no advanced cycle) are also included. None of the strategies emerges as a clear, overall best choice. (LL)

  19. Uranium dioxide and beryllium oxide enhanced thermal conductivity nuclear fuel development

    International Nuclear Information System (INIS)

    Andrade, Antonio Santos; Ferreira, Ricardo Alberto Neto

    2007-01-01

    The uranium dioxide is the most used substance as nuclear reactor fuel for presenting many advantages such as: high stability even when it is in contact with water in high temperatures, high fusion point, and high capacity to retain fission products. The conventional fuel is made with ceramic sintered pellets of uranium dioxide stacked inside fuel rods, and presents disadvantages because its low thermal conductivity causes large and dangerous temperature gradients. Besides, the thermal conductivity decreases further as the fuel burns, what limits a pellet operational lifetime. This research developed a new kind of fuel pellets fabricated with uranium dioxide kernels and beryllium oxide filling the empty spaces between them. This fuel has a great advantage because of its higher thermal conductivity in relation to the conventional fuel. Pellets of this kind were produced, and had their thermophysical properties measured by the flash laser method, to compare with the thermal conductivity of the conventional uranium dioxide nuclear fuel. (author) (author)

  20. Irradiation behavior of miniature experimental uranium silicide fuel plates

    International Nuclear Information System (INIS)

    Hofman, G.L.; Neimark, L.A.; Mattas, R.F.

    1983-01-01

    Uranium silicides, because of their relatively high uranium density, were selected as candidate dispersion fuels for the higher fuel densities required in the Reduced Enrichment Research and Test Reactor (RERTR) Program. Irradiation experience with this type of fuel, however, was limited to relatively modest fission densities in the bulk from, on the order of 7 x 10 20 cm -3 , far short of the approximately 20 x 10 20 cm -3 goal established for the RERTR program. The purpose of the irradiation experiments on silicide fuels on the ORR, therefore, was to investigate the intrinsic irradiation behavior of uranium silicide as a dispersion fuel. Of particular interest was the interaction between the silicide particles and the aluminum matrix, the swelling behavior of the silicide particles, and the maximum volume fraction of silicide particles that could be contained in the aluminum matrix

  1. LEU fuel development at CERCA. Status as of October 1997. Preliminary developments of MTR plates with UMo fuel

    International Nuclear Information System (INIS)

    Durand, J.P.; Lavastre, Y.; Grasse, M.

    1997-01-01

    UMo fuels are considered by the RERTR programme because of their higher density as compared to U 3 Si 2 . This paper is focused on the preliminary results about the manufacture feasibility of Uranium/Molybdenum fuel plates carried out by CERCA. A special procedure of casting and heat treatment has been developed in order to get an homogeneous gamma phase of UMo alloy Although U-5%Mo allows to reach densities up to 9.9 U/cm3 with the advanced process developed by CERCA for the high loaded plates, it is not a good candidate on the thermal stability point of view. U-9%Mo alloy seems to gather all the criteria for a good fuel alloy but it is a little less effective on the Uranium density point of view as compared to U-5%Mo alloy. In any case, the preliminary feasibility results are very much encouraging because UMo alloys seem to be compatible with the Aluminium matrix when taking special care while manufacturing. A good compromise could be an intermediate percentage of Molybdenum or the addition of metal traces in order to thermally stabilise 5%Mo. (author)

  2. Transition from uranium to denatured uranium/thorium fuel in an existing PWR

    International Nuclear Information System (INIS)

    Walters, M.A.

    1982-01-01

    The purpose of this research was to determine whether it is possible to make a gradual transition from uranium to denatured uranium/thorium (DUTH) fuel in an existing PWR by adding DUTH assemblies during each scheduled refueling and, if the transition is possible, to develop a general procedure for making it. The feasibility of the transition was established by identifying acceptable refueling schemes for a series of transition cores, and in the process, a method for identifying acceptable schemes evolved. The utility of the method was then demonstrated by applying it to a standard reactor operating under normal conditions. The vehicle used to examine proposed fuel mixtures and to select acceptable ones was a set of one-dimensional computer codes. The core was modeled as a set of five concentric fuel zones with a reflector. Fuel mixtures were proposed and the computer codes were used to determine whether a mixture was acceptable, i.e., whether it had the desired k-effective and flux and power distributions. The parameters allowed to vary in selection of proposed fuel mixtures were enrichment of fresh fuel assemblies, number of uranium and DUTH assemblies added during each refueling, and distribution of fuel in the core. Results of the research showed that a gradual transition is possible. Furthermore, there is a method that allows the identification of fuel mixtures that are likely to be acceptable. It requires the calculation of K-infinity for the entire proposed core and for some of its regions. These values of K-infinity and relationships developed in this research can be used to predict the flux distribution and the final k-effective for the proposed fuel mixture

  3. Choice and utilization of slightly enriched uranium fuel for high performance research reactors

    International Nuclear Information System (INIS)

    Cerles, J.M.; Schwartz, J.P.

    1978-01-01

    Problems relating to the replacement of highly enriched (90% or 93% U 235 ) uranium fuel: by moderately enriched (20% or 40% in U 235 ) metallic uranium fuel and slightly enriched (3% or 8% in U 235 ) uranium oxide fuel are discussed

  4. Radiation damage of uranium; Radijaciono ostecenje urana

    Energy Technology Data Exchange (ETDEWEB)

    Lazarevic, Dj [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1966-11-15

    Study of radiation damage covered the following: Kinetics of electric resistance of uranium and uranium alloy with 1% of molybdenum dependent on the second phase and burnup rate; Study of gas precipitation and diffusion of bubbles by transmission electron microscopy; Numerical analysis of the influence of defects distribution and concentration on the rare gas precipitation in uranium; study of thermal sedimentation of uranium alloy with molybdenum; diffusion of rare gas in metal by gas chromatography method.

  5. Linking fuel design features ampersand plant management to uranium, SWU savings

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This article, contributed by Scott Garrett, Manager of Planning and Uranium Operations for Siemens Power Corporation in Bellevue, Washington, explores the impact of advances in fuel design and fuel management strategies on uranium utilization in the United States. Nuclear plant operators are deriving substantial benefits from these changes, including longer fuel cycle lengths, increased burnup, and added capacity - and experiencing cost savings in both uranium and enrichment services at the same time

  6. Experiments of JRR-4 low-enriched-uranium-silicied fuel core

    International Nuclear Information System (INIS)

    Hirane, Nobuhiko; Ishikuro, Yasuhiro; Nagadomi, Hideki; Yokoo, Kenji; Horiguchi, Hironori; Nemoto, Takumi; Yamamoto, Kazuyoshi; Yagi, Masahiro; Arai, Nobuyoshi; Watanabe, Shukichi; Kashima, Yoichi

    2006-03-01

    JRR-4, a light-water-moderated and cooled, swimming pool type research reactor using high-enriched uranium plate-type fuels had been operated from 1965 to 1996. In order to convert to low-enriched-uranium-silicied fuels, modification work had been carried out for 2 years, from 1996 to 1998. After the modification, start-up experiments were carried out to obtain characteristics of the low-enriched-uranium-silicied fuel core. The measured excess reactivity, reactor shutdown margin and the maximum reactivity addition rate satisfied the nuclear limitation of the safety report for licensing. It was confirmed that conversion to low-enriched-uranium-silicied fuels was carried out properly. Besides, the necessary data for reactor operation were obtained, such as nuclear, thermal hydraulic and reactor control characteristics. This report describes the results of start-up experiments and burnup experiments. The first criticality of low-enriched-uranium-silicied core was achieved on 14th July 1998, and the operation for joint-use has been carried out since 6th October 1998. (author)

  7. Comparison of the radiological impacts of thorium and uranium nuclear fuel cycles

    International Nuclear Information System (INIS)

    Meyer, H.R.; Witherspoon, J.P.; McBride, J.P.; Frederick, E.J.

    1982-03-01

    This report compares the radiological impacts of a fuel cycle in which only uranium is recycled, as presented in the Final Generic Environmental Statement on the Use of Recycle Plutonium in Mixed Oxide Fuel in Light Water Cooled Reactors (GESMO), with those of the light-water breeder reactor (LWBR) thorium/uranium fuel cycle in the Final Environmental Statement, Light Water Breeder Reactor Program. The significant offsite radiological impacts from routine operation of the fuel cycles result from the mining and milling of thorium and uranium ores, reprocessing spent fuel, and reactor operations. The major difference between the impacts from the two fuel cycles is the larger dose commitments associated with current uranium mining and milling operations as compared to thorium mining and milling. Estimated dose commitments from the reprocessing of either fuel type are small and show only moderate variations for specific doses. No significant differences in environmental radiological impact are anticipated for reactors using either of the fuel cycles. Radiological impacts associated with routine releases from the operation of either the thorium or uranium fuel cycles can be held to acceptably low levels by existing regulations

  8. Once-through uranium thorium fuel cycle in CANDU reactors

    International Nuclear Information System (INIS)

    Ozdemir, S.; Cubukcu, E.

    2000-01-01

    In this study, the performance of the once-through uranium-thorium fuel cycle in CANDU reactors is investigated. (Th-U)O 2 is used as fuel in all fuel rod clusters where Th and U are mixed homogeneously. CANDU reactors have the advantage of being capable of employing various fuel cycle options because of its good neutron economy, continuous on line refueling ability and axial fuel replacement possibility. For lattice cell calculations transport code WIMS is used. WIMS cross-section library is modified to achieve precise lattice cell calculations. For various enrichments and Th-U mixtures, criticality, heavy element composition changes, diffusion coefficients and cross-sections are calculate. Reactor core is modeled by using the diffusion code CITATION. We conclude that an overall saving of 22% in natural uranium demand can be achieved with the use of Th cycle. However, slightly enriched U cycle still consumes less natural Uranium and is a lot less complicated. (author)

  9. Uranium-thorium fuel cycle in a very high temperature hybrid system

    International Nuclear Information System (INIS)

    Hernandez, C.R.G.; Oliva, A.M.; Fajardo, L.G.; Garcia, J.A.R.; Curbelo, J.P.; Abadanes, A.

    2011-01-01

    Thorium is a potentially valuable energy source since it is about three to four times as abundant as Uranium. It is also a widely distributed natural resource readily accessible in many countries. Therefore, Thorium fuels can complement Uranium fuels and ensure long term sustainability of nuclear power. The main advantages of the use of a hybrid system formed by a Pebble Bed critical nuclear reactor and two Pebble Bed Accelerator Driven Systems (ADSs) using a Uranium-Thorium (U + Th) fuel cycle are shown in this paper. Once-through and two step U + Th fuel cycle was evaluated. With this goal, a preliminary conceptual design of a hybrid system formed by a Graphite Moderated Gas-Cooled Very High Temperature Reactor and two ADSs is proposed. The main parameters related to the neutronic behavior of the system in a deep burn scheme are optimized. The parameters that describe the nuclear fuel breeding and Minor Actinide stockpile are compared with those of a simple Uranium fuel cycle. (author)

  10. The nuclear fuel cycle, From the uranium mine to waste disposal

    International Nuclear Information System (INIS)

    2002-09-01

    Fuel is a material that can be burnt to provide heat. The most familiar fuels are wood, coal, natural gas and oil. By analogy, the uranium used in nuclear power plants is called 'nuclear fuel', because it gives off heat too, although, in this case, the heat is obtained through fission and not combustion. After being used in the reactor, spent nuclear fuel can be reprocessed to extract recyclable energy material, which is why we speak of the nuclear fuel cycle. This cycle includes all the following industrial operations: - uranium mining, - fuel fabrication, - use in the reactor, - reprocessing the fuel unloaded from the reactor, - waste treatment and disposal. 'The nuclear fuel cycle includes an array of industrial operations, from uranium mining to the disposal of radioactive waste'. Per unit or mass (e.g. per kilo), nuclear fuel supplies far more energy than a fossil fuel (coal or oil). When used in a pressurised water reactor, a kilo of uranium generates 10,000 times more energy than a kilo of coal or oil in a conventional power station. Also, the fuel will remain in the reactor for a long time (several years), unlike conventional fuels, which are burnt up quickly. Nuclear fuel also differs from others in that uranium has to undergo many processes between the time it is mined and the time it goes into the reactor. For the sake of simplicity, the following pages will only look at nuclear fuel used in pressurised water reactors (or PWRs), because nuclear power plants consisting of one or more PWRs are the most widely used around the world. (authors)

  11. Uranium Oxide Rate Summary for the Spent Nuclear Fuel (SNF) Project (OCRWM)

    Energy Technology Data Exchange (ETDEWEB)

    PAJUNEN, A.L.

    2000-09-20

    The purpose of this document is to summarize the uranium oxidation reaction rate information developed by the Hanford Spent Nuclear Fuel (SNF) Project and describe the basis for selecting reaction rate correlations used in system design. The selection basis considers the conditions of practical interest to the fuel removal processes and the reaction rate application during design studies. Since the reaction rate correlations are potentially used over a range of conditions, depending of the type of evaluation being performed, a method for transitioning between oxidation reactions is also documented. The document scope is limited to uranium oxidation reactions of primary interest to the SNF Project processes. The reactions influencing fuel removal processes, and supporting accident analyses, are: uranium-water vapor, uranium-liquid water, uranium-moist air, and uranium-dry air. The correlation selection basis will consider input from all available sources that indicate the oxidation rate of uranium fuel, including the literature data, confirmatory experimental studies, and fuel element observations. Trimble (2000) summarizes literature data and the results of laboratory scale experimental studies. This document combines the information in Trimble (2000) with larger scale reaction observations to describe uranium oxidation rate correlations applicable to conditions of interest to the SNF Project.

  12. Uranium Oxide Rate Summary for the Spent Nuclear Fuel (SNF) Project (OCRWM)

    International Nuclear Information System (INIS)

    PAJUNEN, A.L.

    2000-01-01

    The purpose of this document is to summarize the uranium oxidation reaction rate information developed by the Hanford Spent Nuclear Fuel (SNF) Project and describe the basis for selecting reaction rate correlations used in system design. The selection basis considers the conditions of practical interest to the fuel removal processes and the reaction rate application during design studies. Since the reaction rate correlations are potentially used over a range of conditions, depending of the type of evaluation being performed, a method for transitioning between oxidation reactions is also documented. The document scope is limited to uranium oxidation reactions of primary interest to the SNF Project processes. The reactions influencing fuel removal processes, and supporting accident analyses, are: uranium-water vapor, uranium-liquid water, uranium-moist air, and uranium-dry air. The correlation selection basis will consider input from all available sources that indicate the oxidation rate of uranium fuel, including the literature data, confirmatory experimental studies, and fuel element observations. Trimble (2000) summarizes literature data and the results of laboratory scale experimental studies. This document combines the information in Trimble (2000) with larger scale reaction observations to describe uranium oxidation rate correlations applicable to conditions of interest to the SNF Project

  13. Development of very-high-density low-enriched-uranium fuels

    International Nuclear Information System (INIS)

    Snelgrove, J.L.; Hofman, G.L.; Meyer, M.K.; Trybus, C.L.; Wiencek, T.C.

    1997-01-01

    Following a hiatus of several years and following its successful development and qualification of 4.8 g U cm -3 U 3 Si 2 -Al dispersion fuel for application with low-enriched uranium in research and test reactors, the US Reduced Enrichment for Research and Test Reactors program has embarked on the development of even-higher-density fuels. Our goal is to achieve uranium densities of 8-9 g cm -3 in aluminum-based dispersion fuels. Achieving this goal will require the use of high-density, γ-stabilized uranium alloy powders in conjunction with the most-advanced fuel fabrication techniques. Key issues being addressed are the reaction of the fuel alloys with aluminum and the irradiation behavior of the fuel alloys and any reaction products. Test irradiations of candidate fuels in very-small (micro) plates are scheduled to begin in the Advanced Test Reactor during June, 1997. Initial results are expected to be available in early 1998. We are performing out-of-reactor studies on the phase structure of the candidate alloys on diffusion of the matrix material into the aluminum. In addition, we are modifying our current dispersion fuel irradiation behavior model to accommodate the new fuels. Several international partners are participating in various phases of this work. (orig.)

  14. Geochemical correlations between uranium and other components in U-bearing formations of Ogcheon belt

    International Nuclear Information System (INIS)

    Lee, M.S.; Chon, H.T.

    1980-01-01

    Some components in uranium-bearing formations which consist mainly of black shale, slate and low grade coal-bearing formation of Ogcheon Belt were processed statistically in order to find out the geochemical correlations with uranium. Geochemical enrichment of uranium, vanadium and molybdenum in low grade coal-bearing formations and surrounding rocks is remarkable in the studied area. Geochemical correlation coefficient of uranium and molybdenum in the rocks displays about 0.6 and that of uranium and fixed carbon about 0.4. Uranium and vanadium in uranium-bearing low grade coals denote very high correlation with fixed carbon, which is considered to be responsible for enrichment of metallic elements, especially molybdenum. Close geochemical correlation of uranium-molybdenum couple in the rocks can be applied as a competent exploration guide to low grade uranium deposits of this area. (author)

  15. Uranium plutonium oxide fuels

    International Nuclear Information System (INIS)

    Cox, C.M.; Leggett, R.D.; Weber, E.T.

    1981-01-01

    Uranium plutonium oxide is the principal fuel material for liquid metal fast breeder reactors (LMFBR's) throughout the world. Development of this material has been a reasonably straightforward evolution from the UO 2 used routinely in the light water reactor (LWR's); but, because of the lower neutron capture cross sections and much lower coolant pressures in the sodium cooled LMFBR's, the fuel is operated to much higher discharge exposures than that of a LWR. A typical LMFBR fuel assembly is shown. Depending on the required power output and the configuration of the reactor, some 70 to 400 such fuel assemblies are clustered to form the core. There is a wide variation in cross section and length of the assemblies where the increasing size reflects a chronological increase in plant size and power output as well as considerations of decreasing the net fuel cycle cost. Design and performance characteristics are described

  16. Qualification of uranium-molybdenum alloy fuel - conclusions of an international workshop

    International Nuclear Information System (INIS)

    Snelgrove, J.L.; Languille, A.

    2000-01-01

    Thirty-one participants representing 21 reactors, fuel developers, fuel fabricators, and fuel reprocessors in 11 countries discussed the requirements for qualification of U-Mo alloy fuel at a workshop held at Argonne National Laboratory on January 17-18, 2000. Consensus was reached that the qualification plans of the U.S. RERTR program and the French U-Mo fuel development program are valid. The items to be addressed during qualification are summarized in the paper. (author)

  17. Development of Silicide Coating on Molybdenum Alloy Cladding

    International Nuclear Information System (INIS)

    Lim, Woojin; Ryu, Ho Jin

    2015-01-01

    The molybdenum alloy is considered as one of the accident tolerant fuel (ATF) cladding materials due to its high temperature mechanical properties. However, molybdenum has a weak oxidation resistance at elevated temperatures. To modify the oxidation resistance of molybdenum cladding, silicide coating on the cladding is considered. Molybdenum silicide layers are oxidized to SiO 2 in an oxidation atmosphere. The SiO 2 protective layer isolates the substrate from the oxidizing atmosphere. Pack cementation deposition technique is widely adopted for silicide coating for molybdenum alloys due to its simple procedure, homogeneous coating quality and chemical compatibility. In this study, the pack cementation method was conducted to develop molybdenum silicide layers on molybdenum alloys. It was found that the Mo 3 Si layer was deposited on substrate instead of MoSi 2 because of short holding time. It means that through the extension of holding time, MoSi 2 layer can be formed on molybdenum substrate to enhance the oxidation resistance of molybdenum. The accident tolerant fuel (ATF) concept is to delay the process following an accident by reducing the oxidation rate at high temperatures and to delay swelling and rupture of fuel claddings. The current research for Atf can be categorized into three groups: First, modification of existing zirconium-based alloy cladding by improving the high temperature oxidation resistance and strength. Second, replacing Zirconium based alloys with alternative metallic materials such as refractory elements with high temperature oxidation resistance and strength. Third, designing alternative fuel structures using ceramic and composite systems

  18. In-situ leaching of crownpoint, NM, uranium ore: Part 7 - Laboratory study of chemical agents for molybdenum restoration

    International Nuclear Information System (INIS)

    Strom, E.T.; Vogt, T.C.

    1987-01-01

    One possible drawback to the use of an in-situ leaching to recover uranium is the potential release of previously insoluble chemical species into the formation water. Before a pilot test of in-situ uranium leaching at Crownpoint, NM, was begun, extensive laboratory studies were undertaken to develop chemical methods for treating one possible contaminant, molybdenum (Mo). New Mexico regulations restrict the amount of Mo permissable in formation waters after leaching to less than 1 ppm. Two techniques to restore Mo after leaching were studied with core and pack tests. These studies suggest that if Mo restoration problems occur in the field, the use of precipitating agents such as Ca/sup 2+/ or reducing agents such as Fe/sup 2+/ may be helpful in ameliorating such problems

  19. Quantitative determination of uranium distribution homogeneity in MTR fuel type plates

    International Nuclear Information System (INIS)

    Ferrufino, Felipe Bonito Jaldin

    2011-01-01

    IPEN/CNEN-SP produces the fuel to supply its nuclear research reactor IEA-R1. The fuel is assembled with fuel plates containing an U 3 Si 2 -Al composite meat. A good homogeneity in the uranium distribution inside the fuel plate meat is important from the standpoint of irradiation performance. Considering the lower power of reactor IEA-R1, the uranium distribution in the fuel plate has been evaluated only by visual inspection of radiographs. However, with the possibility of IPEN to manufacture the fuel for the new Brazilian Multipurpose Reactor (RMB), with higher power, it urges to develop a methodology to determine quantitatively the uranium distribution into the fuel. This paper presents a methodology based on X-ray attenuation, in order to quantify the uranium concentration distribution in the meat of the fuel plate by using optical densities in radiographs and comparison with standards. The results demonstrated the inapplicability of the method, considering the current specification for the fuel plates due to the high intrinsic error to the method. However, the study of the errors involved in the methodology, seeking to increase their accuracy and precision, can enable the application of the method to qualify the final product. (author)

  20. Application of the DART Code for the Assessment of Advanced Fuel Behavior

    International Nuclear Information System (INIS)

    Rest, J.; Totev, T.

    2007-01-01

    The Dispersion Analysis Research Tool (DART) code is a dispersion fuel analysis code that contains mechanistically-based fuel and reaction-product swelling models, a one dimensional heat transfer analysis, and mechanical deformation models. DART has been used to simulate the irradiation behavior of uranium oxide, uranium silicide, and uranium molybdenum aluminum dispersion fuels, as well as their monolithic counterparts. The thermal-mechanical DART code has been validated against RERTR tests performed in the ATR for irradiation data on interaction thickness, fuel, matrix, and reaction product volume fractions, and plate thickness changes. The DART fission gas behavior model has been validated against UO 2 fission gas release data as well as measured fission gas-bubble size distributions. Here DART is utilized to analyze various aspects of the observed bubble growth in U-Mo/Al interaction product. (authors)

  1. Romania, producer and consumer of nuclear fuel

    International Nuclear Information System (INIS)

    Iuhas, Tiberius

    1998-01-01

    A historical sketch of the activity of Romanian Rare Metals Enterprises is presented stressing the valorization of rare metals like: - radioactive metals, uranium and thorium; - dispersed rare metals, molybdenum, monazite; - heavy and refractory metals, titanium and zirconium; rare earths, lanthanides and yttrics. The beginning and developing of research in the nuclear field is in closed relation to the existence on the domestic territory of important uranium ores the mining of which begun early in 1954. The exploitation of Baita-Bihor orebody was followed by that at Ciudanovita, Natra and Dobrei ores in Caras-Severin county. Concomitantly with the ore mining, geological research was developed covering vast areas of country's surface and using advanced investigation tools suitable for increasing depths. The next step in the nuclear fuel program was made by building a uranium concentrate (as ammonium or sodium diuranate) plant. Two purification units for processing the uranium concentrate to sintered uranium dioxide powder were completed and commissioned at Feldioara in 1986. The quality of the uranium dioxide product meets the quality standards requirements for CANDU type nuclear fuel as certified in 1994. Currently, part of the fuel load of Cernavoda reactor is fuel element clusters produced by Nuclear Fuel Plant at Pitesti of sintered powder processed at Feldioara. A list of strategic objectives of the Uranium National Company is presented among which: - maintaining the uranium mining and milling activities in close relation with the fuel requirements of Cernavoda NPP; continuing geological research in promising zones, to find new uranium orebodies, easy to mill cost effectively; decreasing the environmental impact in the geological research areas, in mining and transport affected areas and in the processing plants. The fuel demand of current operation of Cernavoda NPP Unit 1 as well as of future Unit 2 after commissioning are and will be satisfied by the

  2. Status of fuel element technology for plate type dispersion fuels with high uranium density

    International Nuclear Information System (INIS)

    Hrovat, M.; Huschka, H.; Koch, K.H.; Nazare, S.; Ondracek, G.

    1983-01-01

    A number of about 20 Material Test and Research Reactors in Germany and abroad is supplied with fuel elements by the company NUKEM. The power of these reactors differs widely ranging from up to about 100 MW. Consequently, the uranium density of the fuel elements in the meat varies considerably depending on the reactor type and is usually within the range from 0.4 to 1.3 g U/cm 3 if HEU is used. In order to convert these reactors to lower uranium enrichment (19.75% 235-U) extensive work is carried out at NUKEM since about two years with the goal to develop fuel elements with high U-density. This work is sponsored by the German Ministry for Research and Technology in the frame of the AF-program. This paper reports on the present state of development for fuel elements with high U-density fuels at NUKEM is reported. The development works were so far concentrated on UAl x , U 3 O 8 and UO 2 fuels which will be described in more detail. In addition fuel plates with new fuels like e.g. U-Si or U-Fe compounds are developed in collaboration with KfK. The required uranium densities for some typical reactors with low, medium, and high power are listed allowing a comparison of HEU and LEU uranium density requirements. The 235-U-content in the case of LEU is raised by 18%. Two different meat thicknesses are considered: Standard thickness of 0.5 mm; and increased thickness of 0.76 mm. From this data compilation the objective follows: in the case of conversion to LEU (19.75% 235-U-enrichment), uranium densities have to be made available up to 24 gU/cm 3 meat for low power level reactors, up to 33 gU/cm 3 meat for medium power level reactors, and between 5.75 and 7.03 g/cm 3 meat for high power level reactors according to this consideration

  3. Process for preparing sintered uranium dioxide nuclear fuel

    International Nuclear Information System (INIS)

    Carter, R.E.

    1975-01-01

    Uranium dioxide is prepared for use as fuel in nuclear reactors by sintering it to the desired density at a temperature less than 1300 0 C in a chemically controlled gas atmosphere comprised of at least two gases which in equilibrium provide an oxygen partial pressure sufficient to maintain the uranium dioxide composition at an oxygen/uranium ratio of at least 2.005 at the sintering temperature. 7 Claims, No Drawings

  4. In-situ leaching of Crownpoint, New Mexico, uranium ore: Part 7 - laboratory study of chemical agents for molybdenum restoration

    International Nuclear Information System (INIS)

    Strom, E.T.; Vogt, T.C.

    1985-01-01

    While in-situ leaching has significant advantages over conventional uranium recovery methods, one possible drawback to its use is the potential release of previously insoluble chemical species into the formation water. Before Mobil began a pilot test of in-situ uranium leaching at Crownpoint, New Mexico, extensive laboratory studies were undertaken to develop chemical methods for treating one possible contaminant, molybdenum (Mo). In-situ production of uranium entails oxidizing uranium from the insoluble +4 oxidation state to the soluble, readily complexed +6 state. However, this process also transforms insoluble Mo +4 compounds such as molybdenite or jordesite, MoS 2 , into the soluble T6 form, molybdate, Mo0 4 2- . New Mexico regulations restrict the amount of Mo permissible in formation waters after leaching to less than one ppm. Conceptually, Mo restoration after leaching can be dealt with in one of two ways. (1) The oxidizing environment can be left unchanged with something added to render the molybdate ion insoluble or (2) the environment can be changed to a reducing one, converting the Mo back to the less soluble +4 oxidation state

  5. Remote Handling Devices for Disposition of Enriched Uranium Reactor Fuel Using Melt-Dilute Process

    International Nuclear Information System (INIS)

    Heckendorn, F.M.

    2001-01-01

    Remote handling equipment is required to achieve the processing of highly radioactive, post reactor, fuel for the melt-dilute process, which will convert high enrichment uranium fuel elements into lower enrichment forms for subsequent disposal. The melt-dilute process combines highly radioactive enriched uranium fuel elements with deleted uranium and aluminum for inductive melting and inductive stirring steps that produce a stable aluminum/uranium ingot of low enrichment

  6. Behavior of metallic uranium-fissium fuel in TREAT transient overpower tests

    International Nuclear Information System (INIS)

    Bauer, T.H.; Klickman, A.E.; Lo, R.K.; Rhodes, E.A.; Robinson, W.R.; Stanford, G.S.; Wright, A.E.

    1986-01-01

    TREAT tests M2, M3, and M4 were performed to obtain information on two key behavior characteristics of fuel under transient overpower accident conditions in metal-fueled fast reactors: the prefailure axial self-extrusion (elongation beyond thermal expansion) of fuel within intact cladding and the margin to cladding breach. Uranium-5 wt% fissium Experimental Breeder Reactor-II driver fuel pins were used for the tests since they were available as suitable stand-ins for the uranium-plutonium-zirconium ternary fuel, which is the reference fuel of the integral fast reactor (IFR) concept. The ternary fuel will be used in subsequent TREAT tests. Preliminary results from tests M2 and M3 were presented earlier. The present report includes significant advances in analysis as well as additional data from test M4. Test results and analysis have led to the development and validation of pin cladding failure and fuel extrusion models for metallic fuel, within reasonable uncertainties for the uranium-fissium alloy. Concepts involved are straightforward and readily extendable to ternary alloys and behavior in full-size reactors

  7. Thermal-hydraulic calculations for KUHFR with reduced enrichment uranium fuel

    International Nuclear Information System (INIS)

    Mishima, Kaichiro; Shibata, Toshikazu.

    1982-01-01

    This report provides the preliminary results of the thermal-hydraulic calculations to study the safety aspects in fueling the KUHFR with reduced enrichment uranium. The calculations were based on what was outlined in the Safety Analysis Report for the KUHFR and the guidebook for research reactor core conversion, IAEA-TECDOC-233, published by the International Atomic Energy Agency. No significant differences in the thermal-hydraulic operating conditions have been found between HEU and MEU fuels. However, in LEU cases, the combination of three factors - larger power peaking with LEU fuel, smaller thermal conductivity of U 3 O 8 -Al fuel with high uranium densities, and thicker fuel meat - resulted in higher maximum fuel and surface temperatures with the LEU oxide fuel. (author)

  8. Fabrication procedures for manufacturing high uranium concentration dispersion fuel elements

    International Nuclear Information System (INIS)

    Souza, Jose Antonio Batista de

    2011-01-01

    IPEN-CNEN/SP developed the technology to produce the dispersion type fuel elements for research reactors and made it available for routine production. Today, the fuel produced in IPEN-CNEN/SP is limited to the uranium concentration of 3.0 gU/cm 3 for U 3 Si 2 -Al dispersion-based and 2.3 gU/cm 3 for U 3 O 8 -Al dispersion. The increase of uranium concentration in fuel plates enables the reactivity of the reactor core reactivity to be higher and extends the fuel life. Concerning technology, it is possible to increase the uranium concentration in the fuel meat up to the limit of 4.8 gU/cm 3 in U 3 Si 2 -Al dispersion and 3.2 gU/cm 3 U 3 O 8 -Al dispersion. These dispersions are well qualified worldwide. This work aims to develop the manufacturing process of both fuel meats with high uranium concentrations, by redefining the manufacturing procedures currently adopted in the Nuclear Fuel Center of IPEN-CNEN/SP. Based on the results, it was concluded that to achieve the desired concentration, it is necessary to make some changes in the established procedures, such as in the particle size of the fuel powder and in the feeding process inside the matrix, before briquette pressing. These studies have also shown that the fuel plates, with a high concentration of U 3 Si 2 -Al, met the used specifications. On the other hand, the appearance of the microstructure obtained from U 3 O 8 -Al dispersion fuel plates with 3.2 gU/cm 3 showed to be unsatisfactory, due to the considerably significant porosity observed. The developed fabrication procedure was applied to U 3 Si 2 production at 4.8 gU/cm 3 , with enriched uranium. The produced plates were used to assemble the fuel element IEA-228, which was irradiated in order to check its performance in the IEA-R1 reactor at IPEN-CNEN/SP. These new fuels have potential to be used in the new Brazilian Multipurpose Reactor - RMB. (author)

  9. Back-end fuel cycle efficiencies with respect to improved uranium utilization

    International Nuclear Information System (INIS)

    Kuczera, B.; Hennies, H.H.

    1983-01-01

    The world-wide nuclear power plant (NPP) capacity is at present 160 GW(e). If one adds the power stations under construction and ordered, a plant capacity of approximately 480 GW(e) is obtained for 1990, with the share of LWRs making up more than 80%. A modern LWR consumes in the open fuel cycle about 4400 metric tonnes of natural uranium per GW(e), assuming a lifetime of 30 years and a load factor of 70%. Considering the natural uranium reserves known at present and exploitable under economic conditions, it can be conveniently estimated that, with the present NPP capacity extension perspective, the natural uranium resources may be exhausted in a few decades. This trend can be counteracted in a flexible manner by various approaches in fuel cycle technology and strategy: (i) by steady further development of the established LWR technology the uranium consumption can be reduced by about 15%; (ii) closing the nuclear fuel cycle on the basis of LWRs (i.e. thermal uranium and plutonium recycling) implies up to 40% savings in natural uranium consumption; (iii) more recent considerations include the advanced pressurized water reactor (APWR). The APWR combines the proven PWR technology with a newly developed tight lattice core with greatly improved conversion characteristics (conversion ratio = 0.90 to 0.95). In terms of uranium utilization, the APWR has an efficiency three to five times higher than a PWR; (iv) Commercial introduction of FBR systems results in an optimal utilization of uranium which, at the same time, guarantees the supply of nuclear fuel well beyond the present century. For a corresponding transition period an energy supply system can be conceived which relies essentially on extended back-end fuel cycle capacities. These would facilitate a symbiosis of PWR, APWR and FBR, characterized by high flexibility with respect to long-term developments on the energy market. (author)

  10. The use of medium enriched uranium fuel for research reactors

    International Nuclear Information System (INIS)

    1979-01-01

    The evaluation described in the present paper concerns the use of medium enriched uranium fuel for our research reactors. The underlying assumptions set up for the evaluation are as follows: (1) At first, the use of alternative fuel should not affect, even to a small extent, research and development programs in nuclear energy utilization, which were described in the previous paper. Hence the use of lower enrichment fuel should not cause any reduction in reactor performances. (2) The fuel cycle cost for operating research reactors with alternative fuel, excepting R and D cost for such fuel, should not increase beyond an acceptable limit. (3) The use of alternative fuel should be satisfactory with respect to non-proliferation purposes, to the almost same degree as the use of 20% enriched uranium fuel

  11. The reduction of organic component content, of molybdenum and coloidal silica in chlorosodium uraniferous eluates

    International Nuclear Information System (INIS)

    Filip, Gheorghe; Panturu, Eugenia; Radulescu, Rozalia; Predescu, Cristian; Filip, Dorin Gheorghe

    2006-01-01

    In this paper, the experimental results obtained at a laboratory facility for molybdenum, silica and organic substances removal from sodium chloride uraniferous eluate solutions are presented. The aim of this study is to obtain uranium yellow cakes having product quality specification, in order to enable their conversion in nuclear grade uranium dioxide. The studied variables were the contents for silica and organic substances at the acidifying and filtration of uranium eluates, residual molybdenum content in refined eluates after adsorption on activated carbon MN+P type. The chemical characterization of uranium concentrate obtained from the refined eluate is presented. (author)

  12. Natural uranium equivalent fuel an innovative design for proven CANDU technology

    Energy Technology Data Exchange (ETDEWEB)

    Pineiro, F.; Ho, K.; Khaial, A.; Boubcher, M.; Cottrell, C.; Kuran, S., E-mail: fabricia.pineiro@candu.com [Candu Energy Inc., Mississauga, ON (Canada); Zhenhua, Z.; Zhiliang, M. [Third Qinshan Nuclear Power Company, Haiyan, Zhejiang (China)

    2015-07-01

    The high neutron economy, on-power refuelling capability and fuel bundle design simplicity in CANDU reactors allow for the efficient utilization of alternative fuels. Candu Energy Inc. (Candu), in collaboration with the Third Qinshan Nuclear Power Company (TQNPC), the China North Nuclear Fuel Corporation (CNNFC), and the Nuclear Power Institute of China (NPIC), has successfully developed an advanced fuel called Natural Uranium Equivalent (NUE). This innovative design consists of a mixture of recycled and depleted uranium, which can be implemented in existing CANDU stations thereby bringing waste products back into the energy stream, increasing fuel resources diversity and reducing fuel costs. (author)

  13. Natural uranium equivalent fuel. An innovative design for proven CANDU technology

    Energy Technology Data Exchange (ETDEWEB)

    Pineiro, F.; Ho, K.; Khaial, A.; Boubcher, M.; Cottrell, C.; Kuran, S. [Candu Energy Inc., Mississauga, Ontario (Canada); Zhenhua, Z.; Zhiliang, M. [Third Qinshan Nuclear Power Co., Haiyan, Zhejiang (China)

    2015-09-15

    The high neutron economy, on-power refuelling capability and fuel bundle design simplicity in CANDU® reactors allow for the efficient utilization of alternative fuels. Candu Energy Inc. (Candu), in collaboration with the Third Qinshan Nuclear Power Company (TQNPC), the China North Nuclear Fuel Corporation (CNNFC), and the Nuclear Power Institute of China (NPIC), has successfully developed an advanced fuel called Natural Uranium Equivalent (NUE). This innovative design consists of a mixture of recycled and depleted uranium, which can be implemented in existing CANDU stations thereby bringing waste products back into the energy stream, increasing fuel resources diversity and reducing fuel costs. (author)

  14. Milling uranium silicide powder for dispersion nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, E.; Silva, D.G.; Souza, J.A.B.; Durazzo, M. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Riella, H.G. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)

    2009-07-01

    Full text: Uranium silicide (U3Si2) is presently considered the best fuel qualified so far in terms of uranium loading and performance. Stability of the U3Si2 fuel with uranium density of 4.8 g/cm3 was confirmed by burnup stability tests performed during the Reduced Enrichment for Research and Test Reactors (RERTR) program. This fuel was chosen to compose the first core of the new Brazilian Multipurpose Research Reactor (RMB), planned to be constructed in the next years. This new reactor will consume bigger quantities of U3Si2 powder, when compared with the small consumption of the IEA-R1 research reactor of IPEN-CNEN/SP, the unique MTR type research reactor operating in the country. At the present time, the milling operation of U3Si2 ingots is made manually. In order to increase the powder production capacity, the manual milling must be replaced by an automated procedure. This paper describes a new milling machine and procedure developed to produce U3Si2 powder with higher efficiency. (author)

  15. Fuel Thermo-physical Characterization Project: Evaluation of Models to Calculate Thermal Diffusivity of Layered Composites

    Energy Technology Data Exchange (ETDEWEB)

    Burkes, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Casella, Amanda J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gardner, Levi D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Casella, Andrew M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huber, Tanja K. [Technische Universität München, Munich (Germany); Breitkreutz, Harald [Technische Universität München, Munich (Germany)

    2015-02-11

    The Office of Material Management and Minimization Fuel Thermo-physical Characterization Project at Pacific Northwest National Laboratory (PNNL) is tasked with using PNNL facilities and processes to receive irradiated low enriched uranium-molybdenum fuel plate samples and perform analyses in support of the Office of Material Management and Minimization Reactor Conversion Program. This work is in support of the Fuel Development Pillar that is managed by Idaho National Laboratory. A key portion of the scope associated with this project was to measure the thermal properties of fuel segments harvested from plates that were irradiated in the Advanced Test Reactor. Thermal diffusivity of samples prepared from the fuel segments was measured using laser flash analysis. Two models, one developed by PNNL and the other developed by the Technische Universität München (TUM), were evaluated to extract the thermal diffusivity of the uranium-molybdenum alloy from measurements made on the irradiated, layered composites. The experimental data of the “TC” irradiated fuel segment was evaluated using both models considering a three-layer and five-layer system. Both models are in acceptable agreement with one another and indicate that the zirconium diffusion barrier has a minimal impact on the overall thermal diffusivity of the monolithic U-Mo fuel.

  16. Preliminary concepts: coordinated safeguards for materials management in a thorium--uranium fuel reprocessing plant

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Barnes, J.W.; Dayem, H.A.; Dietz, R.J.; Shipley, J.P.

    1978-10-01

    This report addresses preliminary concepts for coordinated safeguards materials management in a typical generic thorium--uranium-fueled light-water reactor (LWR) fuels reprocessing plant. The reference facility is designed to recover thorium and uranium from first-generation (denatured 235 U) startup fuels, first-recycle and equilibrium (denatured 233 U) thorium--uranium LWR fuels, and to recover the plutonium generated in the 238 U denaturant as well. 12 figures, 3 tables

  17. Reactivity feedbacks of a material test research reactor fueled with various low enriched uranium dispersion fuels

    International Nuclear Information System (INIS)

    Muhammad, Farhan; Majid, Asad

    2009-01-01

    The reactivity feedbacks of a material test research reactor using various low enriched uranium fuels, having same uranium density were calculated. For this purpose, the original aluminide fuel (UAl x -Al) containing 4.40 gU/cm 3 of an MTR was replaced with silicide (U 3 Si-Al and U 3 Si 2 -Al) and oxide (U 3 O 8 -Al) dispersion fuels having the same uranium density as of the original fuel. Calculations were carried out to find the fuel temperature reactivity feedback, moderator temperature reactivity feedback, moderator density reactivity feedback and moderator void reactivity feedback. Nuclear reactor analysis codes including WIMS-D4 and CITATION were employed to carry out these calculations. It was observed that the magnitudes all the respective reactivity feedbacks from 38 deg. C to 50 deg. C and 100 deg. C, at the beginning of life, of all the fuels were very close to each other. The fuel temperature reactivity feedback of the U 3 O 8 -Al was about 2% more than the original UAl x -Al fuel. The magnitudes of the moderator temperature, moderator density and moderator void reactivity feedbacks of all the fuels, showed very minor variations from the original aluminide fuel.

  18. Separation and recovery method for depleted uranium from spent fuel

    International Nuclear Information System (INIS)

    Imoto, Yoshie; Fujita, Reiko.

    1993-01-01

    Spent oxide fuels are reduced in a molten salt of CaCl 2 -CaF 2 to convert them into metals, then melted in an Fe-U bath disposed in an electrolytic refining vessel and brought into contact with molten Mg, to extract transuranium elements and rare earth elements contained in the Fe-U bath as metals in the molten Mg. Then molten Mg is removed and the residue is brought into contact with KCl-LiCl molten salt and electrolyzed using the Fe-U as an anode. Then, uranium is recovered by deposition on an iron cathode disposed in chloride electrolytes of the electrolytic refining vessel. Uranium and transuranium elements can be thus separated and, for example, depleted uranium for use in blanket fuels can be recovered easily. This can greatly reduce the temporary storage amount of depleted uranium, to eliminate requirement for a large-scaled facility used exclusively for storing uranium and long time management for uranium. (T.M.)

  19. The Fabrication Problem Of U3Si2-Al Fuel With Uranium High Loading

    International Nuclear Information System (INIS)

    Supardjo

    1996-01-01

    The quality of U 3 Si 2 -Al dispersion fuel product is the main aim for each fabricator. Low loading of uranium fuel element is easily fabricated, but with the increased, uranium loading, homogeneity of uranium distribution is difficult to achieve and it always formed white spots, blister, and dogboning in the fuel plates. The problem can be eliminated by the increasing treatment of the fuel/Al powder. The precise selection of fuel/Al particles diameter is needed indeed to make easier in the homogeneous process of powder and the porosities arrangement in the fuel plates. The increasing of uranium loading at constant meat thickness will increase the meat hardness, therefore to withdraw the dogboning forming, the use of harder cladding materials is necessity

  20. Recent irradiation tests of uranium-plutonium-zirconium metal fuel elements

    International Nuclear Information System (INIS)

    Pahl, R.G.; Lahm, C.E.; Villarreal, R.; Hofman, G.L.; Beck, W.N.

    1986-09-01

    Uranium-Plutonium-Zirconium metal fuel irradiation tests to support the ANL Integral Fast Reactor concept are discussed. Satisfactory performance has been demonstrated to 2.9 at.% peak burnup in three alloys having 0, 8, and 19 wt % plutonium. Fuel swelling measurements at low burnup in alloys to 26 wt % plutonium show that fuel deformation is primarily radial in direction. Increasing the plutonium content in the fuel diminishes the rate of fuel-cladding gap closure and axial fuel column growth. Chemical redistribution occurs by 2.1 at.% peak burnup and generally involves the inward migration of zirconium and outward migration of uranium. Fission gas release to the plenum ranges from 46% to 56% in the alloys irradiated to 2.9 at.% peak burnup. No evidence of deleterious fuel-cladding chemical or mechanical interaction was observed

  1. Extending the world's uranium resources through advanced CANDU fuel cycles

    Energy Technology Data Exchange (ETDEWEB)

    De Vuono, Tony; Yee, Frank; Aleyaseen, Val; Kuran, Sermet; Cottrell, Catherine

    2010-09-15

    The growing demand for nuclear power will encourage many countries to undertake initiatives to ensure a self-reliant fuel source supply. Uranium is currently the only fuel utilized in nuclear reactors. There are increasing concerns that primary uranium sources will not be enough to meet future needs. AECL has developed a fuel cycle vision that incorporates other sources of advanced fuels to be adaptable to its CANDU technology.

  2. Assessment of Neutronic Characteristics of Accident-Tolerant Fuel and Claddings for CANDU Reactors

    Directory of Open Access Journals (Sweden)

    Simon Younan

    2018-01-01

    Full Text Available The objective of this study was to evaluate accident-tolerant fuel (ATF concepts being considered for CANDU reactors. Several concepts, including uranium dioxide/silicon carbide (UO2-SiC composite fuel, dense fuels, microencapsulated fuels, and ATF cladding, were modelled in Serpent 2 to obtain reactor physics parameters, including important feedback parameters such as coolant void reactivity and fuel temperature coefficient. In addition, fuel heat transfer was modelled, and a simple accident model was tested on several ATF cases to compare with UO2. Overall, several concepts would require enrichment of uranium to avoid significant burnup penalties, particularly uranium-molybdenum (U-Mo and fully ceramic microencapsulated (FCM fuels. In addition, none of the fuel types have a significant advantage over UO2 in terms of overall accident response or coping time, though U-9Mo fuel melts significantly sooner due to its low melting point. Instead, the different ATF concepts appear to have more modest advantages, such as reduced fission product release upon cladding failure, or reduced hydrogen generation, though a proper risk assessment would be required to determine the magnitude of these advantages to weigh against economic disadvantages. The use of uranium nitride (UN enriched in N15 would increase exit burnup for natural uranium, providing a possible economic advantage depending on fuel manufacturing costs.

  3. Production of Fission Product 99Mo using High-Enriched Uranium Plates in Polish Nuclear Research Reactor MARIA: Technology and Neutronic Analysis

    Directory of Open Access Journals (Sweden)

    Jaroszewicz Janusz

    2014-07-01

    Full Text Available The main objective of 235U irradiation is to obtain the 99mTc isotope, which is widely used in the domain of medical diagnostics. The decisive factor determining its availability, despite its short lifetime, is a reaction of radioactive decay of 99Mo into 99mTc. One of the possible sources of molybdenum can be achieved in course of the 235U fission reaction. The paper presents activities and the calculation results obtained upon the feasibility study on irradiation of 235U targets for production of 99Mo in the MARIA research reactor. Neutronic calculations and analyses were performed to estimate the fission products activity for uranium plates irradiated in the reactor. Results of dummy targets irradiation as well as irradiation uranium plates have been presented. The new technology obtaining 99Mo is based on irradiation of high-enriched uranium plates in standard reactor fuel channel and calculation of the current fission power generation. Measurements of temperatures and the coolant flow in the molybdenum installation carried out in reactor SAREMA system give online information about the current fission power generated in uranium targets. The corrective factors were taken into account as the heat generation from gamma radiation from neighbouring fuel elements as well as heat exchange between channels and the reactor pool. The factors were determined by calibration measurements conducted with aluminium mock-up of uranium plates. Calculations of fuel channel by means of REBUS code with fine mesh structure and libraries calculated by means of WIMS-ANL code were performed.

  4. Mixed Uranium/Refractory Metal Carbide Fuels for High Performance Nuclear Reactors

    International Nuclear Information System (INIS)

    Knight, Travis; Anghaie, Samim

    2002-01-01

    Single phase, solid-solution mixed uranium/refractory metal carbides have been proposed as an advanced nuclear fuel for advanced, high-performance reactors. Earlier studies of mixed carbides focused on uranium and either thorium or plutonium as a fuel for fast breeder reactors enabling shorter doubling owing to the greater fissile atom density. However, the mixed uranium/refractory carbides such as (U, Zr, Nb)C have a lower uranium densities but hold significant promise because of their ultra-high melting points (typically greater than 3700 K), improved material compatibility, and high thermal conductivity approaching that of the metal. Various compositions of (U, Zr, Nb)C were processed with 5% and 10% metal mole fraction of uranium. Stoichiometric samples were processed from the constituent carbide powders, while hypo-stoichiometric samples with carbon-to-metal (C/M) ratios of 0.92 were processed from uranium hydride, graphite, and constituent refractory carbide powders. Processing techniques of cold uniaxial pressing, dynamic magnetic compaction, sintering, and hot pressing were investigated to optimize the processing parameters necessary to produce high density (low porosity), single phase, solid-solution mixed carbide nuclear fuels for testing. This investigation was undertaken to evaluate and characterize the performance of these mixed uranium/refractory metal carbides for high performance, ultra-safe nuclear reactor applications. (authors)

  5. Characterization of molybdenum interfacial crud in a uranium mill that employs tertiary-amine solvent extraction

    International Nuclear Information System (INIS)

    Moyer, B.; McDowell, W.J.

    1983-01-01

    In the present work, samples of a molybdenum-caused green gummy interfacial crud from an operating western US uranium mill have been physically and chemically examined. Formaton of cruds of this description has been a long-standing problem in the use of tertiary amine solvent extraction for the recovery of uranium from low-grade ores (Amex Process). The crud is essentially an organic-continuous dispersion containing about 10 wt % aqueous droplets and about 37 wt % greenish-yellow crystalline solids suspended in kerosene-amine process solvent. The greenish-yellow crystals were found to be a previously unknown double salt of tertiary amine molybdophosphate with three tertiary amine chlorides having the empirical formula (R 3 NH) 3 [PMo 12 O 40 ].3(R 3 NH)Cl. To confirm the identification of the compound, a pure trioctylamine (TOA) analog was synthesized. In laboratory extraction experiments, it was demonstrated that organic-soluble amine molydophosphate forms slowly upon contact of TOA solvent with dilute sulfuric acid solutions containing low concentrations of molybdate and phosphate. If the organic solutions of amine molybdophosphate were then contacted with aqueous NaCl solutions, a greenish-yellow precipitate of (TOAH) 3 [PMo 12 O 40 ].3(TOAH)Cl formed at the interface. The proposed mechanism for the formation of the crud under process conditions involves build up of molybdenum in the solvent, followed by reaction with extracted phosphate to give dissolved amine molybdophosphate. The amine molybdophosphate then co-crystallizes with amine chloride, formed during the stripping cycle, to give the insoluble double salt, which precipitates as a layer of small particles at the interface. The proposed solution to the problem is the use of branched-chain, instead of straight-chain, tertiary amine extractants under the expectation that branching would increase the solubility of the double salt. 2 figures, 5 tables

  6. Utilization of epithermal neutrons for the determination of molybdenum in the presence of uranium

    International Nuclear Information System (INIS)

    Oliveira Melo, M.A.M. de.

    1984-05-01

    Activation analysis by means of selective activation with epithermal neutrons is proposed for the determination of molybdenum in samples when uranium is present. Instrumental activation analysis with epithermal neutrons is advantageous for the determination of elements with large resonance integral, as compared to its thermal neutron activation cross section. The main reason for using this method is the serious interference caused by 99 Mo produced by fission of 235 U. This effect is strongly reduced by using the epicadmium irradiation technique. The filter efficiency has been investigated by irradiation experiments with bare and cadmium-covered samples. A solvent extraction process for uranium, before irradiation, is proposed to reduce sample background. The determination of Mo in leach samples is proposed in order to support the analytical needs of Figueira and Pocos de Caldas Mineral Prospection Programme of Departamento de Tecnologia Mineral from CDTN/NUCLEBRAS (MG,Brazil). The introduction of activation analysis with epithermal neutrons as a routine analytical tool in CDTN is our main goal. This method represents one more opportunity for exploring the analytical facilities available at TRIGA MARK I IPR-R1 nuclear reactor. (Author) [pt

  7. Use of enriched uranium as a fuel in CANDU reactors

    International Nuclear Information System (INIS)

    Zech, H.J.

    1976-08-01

    The use of slightly enriched uranium as a fuel in CANDU-reactors is studied in a simple parametric way. The results show the possibility of 1) about 30% savings in natural uranium consumption 2) about 35% increase in the utilization of the natural uranium 3) a decrease in fuelling costs to about 70 - 80% of the normal case of natural uranium fuelling. (orig.) [de

  8. Loading ion exchange resins with uranium for HTGR fuel kernels

    International Nuclear Information System (INIS)

    Notz, K.J.; Greene, C.W.

    1976-12-01

    Uranium-loaded ion exchange beads provide an excellent starting material in the production of uranium carbide microspheres for nuclear fuel applications. Both strong-acid (sulfonate) and weak-acid (carboxylate) resins can be fully loaded with uranium from a uranyl nitrate solution utilizing either a batch method or a continuous column technique

  9. Study of the molybdenum retention in alumina

    International Nuclear Information System (INIS)

    Wilkinson, Maria V.; Mondino, Angel V.; Manzini, Alberto

    2002-01-01

    The Argentine National Atomic Energy Commission routinely produces 99 Mo by fission of highly enriched uranium contained in targets irradiated in RA-3 reactor. The current process begins with the dissolution of the irradiated target in a basic media, considering the possibility of changing the targets, it could be convenient to dissolve them in acid media. The use of alumina as a first separation step in acid dissolution processes is already known although it is necessary to determine both the type of alumina to be used and the separation conditions. The study of molybdenum retention in alumina was performed at laboratory scale, using Mo-99 as radiotracer. Different kinds of alumina were tried, varying charge solution acidity. Influence of uranium concentration in the loading solution on molybdenum retention was also studied. (author)

  10. Profileration-proof uranium/plutonium and thorium/uranium fuel cycles. Safeguards and non-profileration. 2. rev. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Kessler, G.

    2017-07-01

    A brief outline of the historical development of the proliferation problem is followed by a description of the uranium-plutonium nuclear fuel cycle with uranium enrichment, fuel fabrication, the light-water reactors mainly in operation, and the breeder reactors still under development. The next item discussed is reprocessing of spent fuel with plutonium recycling and the future possibility to incinerate plutonium and the minor actinides: neptunium, americium, and curium. Much attention is devoted to the technical and scientific treatment of the IAEA surveillance concept of the uranium-plutonium fuel cycle. In this context, especially the physically possible accuracy of measuring U/Pu flow in the fuel cycle, and the criticism expressed of the accuracy in measuring the plutonium balance in large reprocessing plants of non-nuclear weapon states are analyzed. The second part of the book initially examines the assertion that reactor-grade plutonium could be used to build nuclear weapons whose explosive yield cannot be predicted accurately, but whose minimum explosive yield is still far above that of chemical explosive charges. Methods employed in reactor physics are used to show that such hypothetical nuclear explosive devices (HNEDs) would attain too high temperatures in the required implosion lenses as a result of the heat generated by the Pu-238 isotope always present in reactor plutonium of current light-water reactors. These lenses would either melt or tend to undergo chemical auto-explosion. Limits to the content of the Pu-238 isotope are determined above which such hypothetical nuclear weapons are not feasible on technical grounds. This situation is analyzed for various possibilities of the technical state of the art of making implosion lenses and various ways of cooling up to the use of liquid helium. The outcome is that, depending on the existing state of the art, reactor-grade plutonium from spent fuel elements of light-water reactors with a burnup of 35 to 58

  11. Research reactor fuel - an update

    International Nuclear Information System (INIS)

    Finlay, M.R.; Ripley, M.I.

    2003-01-01

    In the two years since the last ANA conference there have been marked changes in the research reactor fuel scene. A new low-enriched uranium (LEU) fuel, 'monolithic' uranium molybdenum, has shown such promise in initial trials that it may be suitable to meet the objectives of the Joint Declaration signed by Presidents Bush and Putin to commit to converting all US and Russian research reactors to LEU by 2012. Development of more conventional aluminium dispersion UMo LEU fuel has continued in the meantime and is entering the final qualification stage of multiple full sized element irradiations. Despite this progress, the original 2005 timetable for UMo fuel qualification has slipped and research reactors, including the RRR, may not convert from silicide to UMo fuel before 2007. The operators of the Swedish R2 reactor have been forced to pursue the direct route of qualifying a UMo lead test assembly (LTA) in order to meet spent fuel disposal requirements of the Swedish law. The LTA has recently been fabricated and is expected to be loaded shortly into the R2 reactor. We present an update of our previous ANA paper and details of the qualification process for UMo fuel

  12. Composition and Distribution of Tramp Uranium Contamination on BWR and PWR Fuel Rods

    International Nuclear Information System (INIS)

    Schienbein, Marcel; Zeh, Peter; Hurtado, Antonio; Rosskamp, Matthias; Mailand, Irene; Bolz, Michael

    2012-09-01

    In a joint research project of VGB and AREVA NP GmbH the behaviour of alpha nuclides in nuclear power plants with light water reactors has been investigated. Understanding the source and the behaviour of alpha nuclides is of big importance for planning radiation protection measures for outages and upcoming dismantling projects. Previous publications have shown the correlation between plant specific alpha contamination of the core and the so called 'tramp fuel' or 'tramp uranium' level which is linked to the defect history of fuel assemblies and accordingly the amount of previously washed out fuel from defective fuel rods. The methodology of tramp fuel estimation is based on fission product concentrations in reactor coolant but also needs a good knowledge of tramp fuel composition and in-core distribution on the outer surface of fuel rods itself. Sampling campaigns of CRUD deposits of irradiated fuel assemblies in different NPPs were performed. CRUD analyses including nuclide specific alpha analysis have shown systematic differences between BWR and PWR plants. Those data combined with literature results of fuel pellet investigations led to model improvements showing that a main part of fission products is caused by fission of Pu-239 an activation product of U-238. CRUD investigations also gave a better picture of the in-core composition and distribution of the tramp uranium contamination. It was shown that the tramp uranium distribution in PWR plants is time dependent. Even new fuel assemblies will be notably contaminated after only one cycle of operation. For PWR applies the following logic: the higher the local power the higher the contamination. With increasing burnup the local rod power usually decreases leading to decreasing tramp uranium contamination on the fuel rod surface. This is not applicable for tramp uranium contamination in BWR. CRUD contamination (including the tramp fuel deposits) is much more fixed and is constantly increasing

  13. Fuel balance in nuclear power with fast reactors without a uranium blanket

    International Nuclear Information System (INIS)

    Naumov, V.V.; Orlov, V.V.; Smirnov, V.S.

    1994-01-01

    General aspects related to replacing the uranium blanket of a lead-cooled fast reactor burning uranium-plutonium nitride fuel with a more efficient lead reflector are briefly discussed in the article. A study is very briefly summarized, which showed that a breeding ratio of about 1 and electric power of about 300 MW were achievable. A nuclear fuel balance is performed to estimate the increased consumption of uranium to produce power and the gains achievable by eliminating the uranium blanket. Elimination of the uranium blanket has the advantages of simplifying and improving the fast reactor and eliminating the production of weapons quality plutonium. 3 figs

  14. Occupational safety data and casualty rates for the uranium fuel cycle

    International Nuclear Information System (INIS)

    O'Donnell, F.R.; Hoy, H.C.

    1981-10-01

    Occupational casualty (injuries, illnesses, fatalities, and lost workdays) and production data are presented and used to calculate occupational casualty incidence rates for technologies that make up the uranium fuel cycle, including: mining, milling, conversion, and enrichment of uranium; fabrication of reactor fuel; transportation of uranium and fuel elements; generation of electric power; and transmission of electric power. Each technology is treated in a separate chapter. All data sources are referenced. All steps used to calculate normalized occupational casualty incidence rates from the data are presented. Rates given include fatalities, serious cases, and lost workdays per 100 man-years worked, per 10 12 Btu of energy output, and per other appropriate units of output

  15. Irradiation behavior of experimental miniature uranium silicide fuel plates

    International Nuclear Information System (INIS)

    Hofman, Gerard L.; Neimark, L.A.; Mattas, R.F.

    1983-01-01

    Uranium silicides, because of their relatively high uranium density, were selected as candidate dispersion fuels for the higher fuel densities required in the Reduced Enrichment Research and Test Reactor (RERTR) Program. Irradiation experience with this type of fuel, however, was limited to relatively modest fission densities in the bulk form, on the order of 7 x 10 20 cm -3 , far short of he approximately 20 x 10 20 cm -3 goal established for the RERTR Program. The purpose of the irradiation experiments on silicide fuels in the ORR, therefore, was to investigate the intrinsic irradiation behavior of uranium silicide as a dispersion fuel. Of particular interest was the interaction between the silicide particles and the aluminum matrix, the swelling behavior of the silicide particles, and the maximum volume fraction of silicide particles that could be contained in the aluminum matrix. The first group of experimental 'mini' fuel plates have recently reached the program's goal burnup and are in various stages of examination. Although the results to date indicate some limitations, it appears that within the range of parameters examined thus far the uranium silicide dispersion holds promise for satisfying most of the needs of the RERTR Program. The twelve experimental silicide dispersion fuel plates that were irradiated to approximately their goal exposure show the 30-vol % U 3 Si-Al plates to be in a stage of relatively rapid fission-gas-driven swelling at a fission density of 2 x 10 20 cm -3 . This fuel swelling will likely result in unacceptably large plate-thickness increases. The U 3 Si plates appear to be superior in this respect; however, they, too, are starting to move into the rapid fuel-swelling stage. Analysis of the currently available post irradiation data indicates that a 40-vol % dispersed fuel may offer an acceptable margin to the onset of unstable thickness changes at exposures of 2 x 10 21 fission/cm 3 . The interdiffusion between fuel and matrix

  16. Features of spherical uranium-graphite HTGR fuel elements control

    International Nuclear Information System (INIS)

    Kreindlin, I.I.; Oleynikov, P.P.; Shtan, A.S.

    1985-01-01

    Control features of spherical HTGR uranium-graphite fuel elements with spherical coated fuel particles are mainly determined by their specific construction and fabrication technology. The technology is chiefly based on methods of ceramic fuel (fuel microspheres fabrication) and graphite production practice it is necessary to deal with a lot of problems from determination of raw materials properties to final fuel elements testing. These procedures are described

  17. Features of spherical uranium-graphite HTGR fuel elements control

    Energy Technology Data Exchange (ETDEWEB)

    Kreindlin, I I; Oleynikov, P P; Shtan, A S

    1985-07-01

    Control features of spherical HTGR uranium-graphite fuel elements with spherical coated fuel particles are mainly determined by their specific construction and fabrication technology. The technology is chiefly based on methods of ceramic fuel (fuel microspheres fabrication) and graphite production practice it is necessary to deal with a lot of problems from determination of raw materials properties to final fuel elements testing. These procedures are described.

  18. Sodium-cooled Fast Reactor Cores using Uranium-Free Metallic Fuels for Maximizing TRU Support Ratio

    International Nuclear Information System (INIS)

    You, WuSeung; Hong, Ser Gi

    2014-01-01

    The depleted uranium plays important roles in the SFR burner cores because it substantially contributes to the inherent safety of the core through the negative Doppler coefficient and large delayed neutron. However, the use of depleted uranium as a diluent nuclide leads to a limited value of TRU support ratio due to the generation of TRUs through the breeding. In this paper, we designed sodium cooled fast reactor (SFR) cores having uranium-free fuels 3,4 for maximization of TRU consumption rate. However, the uranium-free fuelled burner cores can be penalized by unacceptably small values of the Doppler coefficient and small delayed neutron fraction. In this work, metallic fuels of TRU-(W or Ni)-Zr are considered to improve the performances of the uranium-free cores. The objective of this work is to consistently compare the neutronic performances of uranium-free sodium cooled fast reactor cores having TRU-Zr metallic fuels added with Ni or W and also to clarify what are the problematic features to be resolved. In this paper, a consistent comparative study of 400MWe sodium cooled burner cores having uranium-based fuels and uranium-free fuels was done to analyze the relative core neutronic features. Also, we proposed a uranium-free metallic fuel based on Nickel. From the results, it is found that tungsten-based uranium-free metallic fuel gives large negative Doppler coefficient due to high resonance of tungsten isotopes but this core has large sodium void worth and small effective delayed neutron fraction while the nickel-based uranium-free metallic fuelled core has less negative Doppler coefficient but smaller sodium void worth and larger effective delayed neutron fraction than the tungsten-based one. On the other hand, the core having TRU-Zr has very high burnup reactivity swing which may be problematic in compensating it using control rods and the least negative Doppler coefficient

  19. Automation of potentiometric titration for the determination of uranium in nuclear fuel materials

    International Nuclear Information System (INIS)

    Kelkar, Anoop; Pandey, Ashish; Kapoor, Y.S.; Kumar, Manish; Singh, Mamta; Fulzele, Ajeet; Prakash, Amrit; Afzal, Mohd; Panakkal, J.P.

    2010-01-01

    Advanced Fuel Fabrication Facility is fabricating various types of mixed oxide fuels, namely for PHWR, BWR, FBTR and PFBR. Precise determination of uranium in MOX fuel sample is important to get desired burn up in the reactor. The modified Davies and Gray method is routinely used for the potentiometric titration of uranium

  20. Isotopic composition and radiological properties of uranium in selected fuel cycles

    International Nuclear Information System (INIS)

    Fleischman, R.M.; Liikala, R.C.

    1975-04-01

    Three major topic areas are discussed: First, the properties of the uranium isotopes are defined relative to their respective roles in the nuclear fuel cycle. Secondly, the most predominant fuel cycles expected in the U. S. are described. These are the Light Water Reactor (LWR), High Temperature Gas Cooled Reactor (HTGR), and Liquid Metal Fast Breeder Reactor (LMFBR) fuel cycles. The isotopic compositions of uranium and plutonium fuels expected for these fuel cycles are given in some detail. Finally the various waste streams from these fuel cycles are discussed in terms of their relative toxicity. Emphasis is given to the high level waste streams from reprocessing of spent fuel. Wastes from the various fuel cycles are compared based on projected growth patterns for nuclear power and its various components. (U.S.)

  1. Development of Nitride Coating Using Atomic Layer Deposition for Low-Enriched Uranium Fuel Powder

    Science.gov (United States)

    Bhattacharya, Sumit

    High-performance research reactors require fuel that operates at high specific power and can withstand high fission density, but at relatively low temperatures. The design of the research reactor fuels is done for efficient heat emission, and consists of assemblies of thin-plates cladding made from aluminum alloy. The low-enriched fuels (LEU) were developed for replacing high-enriched fuels (HEU) for these reactors necessitates a significantly increased uranium density in the fuel to counterbalance the decrease in enrichment. One of the most promising new fuel candidate is U-Mo alloy, in a U-Mo/Al dispersion fuel form, due to its high uranium loading as well as excellent irradiation resistance performance, is being developed extensively to convert from HEU fuel to LEU fuel for high-performance research reactors. However, the formation of an interaction layer (IL) between U-Mo particles and the Al matrix, and the associated pore formation, under high heat flux and high burnup conditions, degrade the irradiation performance of the U-Mo/Al dispersion fuel. From the recent tests results accumulated from the surface engineering of low enriched uranium fuel (SELENIUM) and MIR reactor displayed that a surface barrier coating like physical vapor deposited (PVD) zirconium nitride (ZrN) can significantly reduce the interaction layer. The barrier coating performed well at low burn up but above a fluence rate of 5x 1021 ions/cm2 the swelling reappeared due to formation interaction layer. With this result in mind the objective of this research was to develop an ultrathin ZrN coating over particulate uranium-molybdenum nuclear fuel using a modified savannah 200 atomic layer deposition (ALD) system. This is done in support of the US Department of Energy's (DOE) effort to slow down the interaction at fluence rate and reach higher burn up for high power research reactor. The low-pressure Savannah 200 ALD system is modified to be designed as a batch powder coating system using the

  2. The behaviour under irradiation of molybdenum matrix for inert matrix fuel containing americium oxide (CerMet concept)

    Energy Technology Data Exchange (ETDEWEB)

    D' Agata, E., E-mail: elio.dagata@ec.europa.eu [European Commission, Joint Research Centre, Institute for Energy and Transport, P.O. Box 2, 1755 ZG Petten (Netherlands); Knol, S.; Fedorov, A.V. [Nuclear Research and Consultancy Group, P.O. Box 25, 1755 ZG Petten (Netherlands); Fernandez, A.; Somers, J. [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany); Klaassen, F. [Nuclear Research and Consultancy Group, P.O. Box 25, 1755 ZG Petten (Netherlands)

    2015-10-15

    Americium is a strong contributor to the long term radiotoxicity of high activity nuclear waste. Transmutation by irradiation in nuclear reactors or Accelerator Driven System (ADS, subcritical reactors dedicated to transmutation) of long-lived nuclides like {sup 241}Am is therefore an option for the reduction of radiotoxicity of waste packages to be stored in a repository. In order to safely burn americium in a fast reactor or ADS, it must be incorporated in a matrix that could be metallic (CerMet target) or ceramic (CerCer target). One of the most promising matrix to incorporate Am is molybdenum. In order to address the issues (swelling, stability under irradiation, gas retention and release) of using Mo as matrix to transmute Am, two irradiation experiments have been conducted recently at the High Flux Reactor (HFR) in Petten (The Netherland) namely HELIOS and BODEX. The BODEX experiment is a separate effect test, where the molybdenum behaviour is studied without the presence of fission products using {sup 10}B to “produce” helium, the HELIOS experiment included a more representative fuel target with the presence of Am and fission product. This paper covers the results of Post Irradiation Examination (PIE) of the two irradiation experiments mentioned above where molybdenum behaviour has been deeply investigated as possible matrix to transmute americium (CerMet fuel target). The behaviour of molybdenum looks satisfying at operating temperature but at high temperature (above 1000 °C) more investigation should be performed.

  3. A Preliminary Study on the Reuse of the Recovered Uranium from the Spent CANDU Fuel Using Pyroprocessing

    International Nuclear Information System (INIS)

    Park, C. J.; Na, S. H.; Yang, J. H.; Kang, K. H.; Lee, J. W.

    2009-01-01

    During the pyroprocessing, most of the uranium is gathered in metallic form around a solid cathode during an electro-refining process, which is composed of about 94 weight percent of the spent fuel. In the previous study, a feasibility study has been done to reuse the recovered uranium for the CANDU reactor fuel following the traditional DUPIC (direct use of spent pressurized water reactor fuel into CANDU reactor) fuel fabrication process. However, the weight percent of U-235 in the recovered uranium is about 1 wt% and it is sufficiently re-utilized in a heavy water reactor which uses a natural uranium fuel. The reuse of recovered uranium will bring not only a huge economic profit and saving of uranium resources but also an alleviation of the burden on the management and the disposal of the spent fuel. The research on recycling of recovered uranium was carried out 10 years ago and most of the recovered uranium was assumed to be imported from abroad at that time. The preliminary results showed there is the sufficient possibility to recycle recovered uranium in terms of a reactor's characteristics as well as the fuel performance. However, the spent CANDU fuel is another issue in the storage and disposal problem. At present, most countries are considering that the spent CANDU fuel is disposed directly due to the low enrichment (∼0.5 wt%) of the discharge fissile content and lots of fission products. If mixing the spent CANDU fuel and the spent PWR fuel, the estimated uranium fissile enrichment will be about 0.6 wt% ∼ 1.0 wt% depending on the mixing ratio, which is sufficiently reusable in a CANDU reactor. Therefore, this paper deals with a feasibility study on the recovered uranium of the mixed spent fuel from the pyroprocessing. With the various mixing ratios between the PWR spent fuel and the CANDU spent fuel, a reactor characteristics including the safety parameters of the CANDU reactor was evaluated

  4. Analysis of the Reuse of Uranium Recovered from the Reprocessing of Commercial LWR Spent Fuel

    International Nuclear Information System (INIS)

    DelCul, Guillermo D.; Trowbridge, Lee D.; Renier, John-Paul; Ellis, Ronald James; Williams, Kent Alan; Spencer, Barry B.; Collins, Emory D.

    2009-01-01

    This report provides an analysis of the factors involved in the reuse of uranium recovered from commercial light-water-reactor (LWR) spent fuels (1) by reenrichment and recycling as fuel to LWRs and/or (2) by recycling directly as fuel to heavy-water-reactors (HWRs), such as the CANDU (registered trade name for the Canadian Deuterium Uranium Reactor). Reuse is an attractive alternative to the current Advanced Fuel Cycle Initiative (AFCI) Global Nuclear Energy Partnership (GNEP) baseline plan, which stores the reprocessed uranium (RU) for an uncertain future or attempts to dispose of it as 'greater-than-Class C' waste. Considering that the open fuel cycle currently deployed in the United States already creates a huge excess quantity of depleted uranium, the closed fuel cycle should enable the recycle of the major components of spent fuel, such as the uranium and the hazardous, long-lived transuranic (TRU) actinides, as well as the managed disposal of fission product wastes. Compared with the GNEP baseline scenario, the reuse of RU in the uranium fuel cycle has a number of potential advantages: (1) avoidance of purchase costs of 11-20% of the natural uranium feed; (2) avoidance of disposal costs for a large majority of the volume of spent fuel that is reprocessed; (3) avoidance of disposal costs for a portion of the depleted uranium from the enrichment step; (4) depending on the 235 U assay of the RU, possible avoidance of separative work costs; and (5) a significant increase in the production of 238 Pu due to the presence of 236 U, which benefits somewhat the transmutation value of the plutonium and also provides some proliferation resistance

  5. Mathematical Modeling for the Extraction of Uranium and Molybdenum with Emulsion Liquid Membrane, Including Industrial Application and Cost Evaluation of the Uranium Recovery

    International Nuclear Information System (INIS)

    Kris Tri Basuki

    2008-01-01

    Emulsion liquid membrane systems are double emulsion drops. Two immiscible phases are separated by a third phase which is immiscible with the other two phases. The liquid membrane systems were classified into two types: (1) carrier mediated mass transfer, (2) mass transfer without any reaction involved. Uranium extraction, molybdenum extraction and solvent extraction were used as purposed elements for each type of the membrane systems in the derivation of their mathematical models. Mass transfer in emulsion liquid membrane (ELM) systems has been modeled by several differential and algebraic equations. The models take into account the following : mass transfer of the solute from the bulk external phase to the external phase-membrane interface; an equilibrium reaction between the solute and the carrier to form the solute-carrier complex at the interface; mass transfer by diffusion of the solute-carrier complex in the membrane phase to the membrane-internal phase interface; another equilibrium reaction of the solute-carrier complex to release the solute at the membrane-internal phase interface into the internal phase. Models with or without the consideration of film resistances were developed and compared. The models developed in this study can predict the extraction rate through emulsion liquid membranes theoretically. All parameters required in the models can be determined before an experimental extraction run. Experimental data from literature (uranium extraction) and (molybdenum extraction and solvent extraction) were used to test the models. The agreements between the theoretical predictions and the experimental data were very good. The advantages of emulsion liquid membrane systems over traditional methods were discussed. The models developed in this research can be used directly for the design of emulsion liquid membrane systems. The results of this study represent a very significant step toward the practical applications of the emulsion liquid membrane

  6. Fabrication and use of zircaloy/tantalum-sheathed cladding thermocouples and molybdenum/rhenium-sheathed fuel centerline thermocouples

    International Nuclear Information System (INIS)

    Wilkins, S.C.; Sepold, L.K.

    1985-01-01

    The thermocouples described in this report are zircaloy/tantalum-sheathed and molybdenum/rhenium alloy-sheathed instruments intended for fuel rod cladding and fuel centerline temperature measurements, respectively. Both types incorporate beryllium oxide insulation and tungsten/rhenium alloy thermoelements. These thermocouples, operated at temperatures of 2000 0 C and above, were developed for use in the internationally sponsored Severe Fuel Damage test series in the Power Burst Facility. The fabrication steps for both thermocouple types are described in detail. A laser-welding attachment technique for the cladding-type thermocouple is presented, and experience with alternate materials for cladding and fuel therocouples is discussed

  7. Sustainable and safe energy supply with seawater uranium fueled HTGR and its economy

    International Nuclear Information System (INIS)

    Fukaya, Y.; Goto, M.

    2017-01-01

    Highlights: • We discussed uranium resources with an energy security perspective. • We concluded seawater uranium is preferable for sustainability and energy security. • We evaluated electricity generation cost of seawater uranium fueled HTGR. • We concluded electricity generation with seawater uranium is reasonable. - Abstract: Sustainable and safe energy supply with High Temperature Gas-cooled Reactor (HTGR) fueled by uranium from seawater have been investigated and discussed. From the view point of safety feature of self-regulation with thermal reactor of HTGR, the uranium resources should be inexhaustible. The seawater uranium is expected to be alternative resources to conventional resources because it exists so much in seawater as a solute. It is said that 4.5 billion tons of uranium is dissolved in the seawater, which corresponds to a consumption of approximately 72 thousand years. Moreover, a thousand times of the amount of 4.5 trillion tU of uranium, which corresponds to the consumption of 72 million years, also is included in the rock on the surface of the sea floor, and that is also recoverable as seawater uranium because uranium in seawater is in an equilibrium state with that. In other words, the uranium from seawater is almost inexhaustible natural resource. However, the recovery cost with current technology is still expensive compared with that of conventional uranium. Then, we assessed the effect of increase in uranium purchase cost on the entire electricity generation cost. In this study, the economy of electricity generation of cost of a commercial HTGR was evaluated with conventional uranium and seawater uranium. Compared with ordinary LWR using conventional uranium, HTGR can generate electricity cheaply because of small volume of simple direct gas turbine system compared with water and steam systems of LWR, rationalization by modularizing, and high thermal efficiency, even if fueled by seawater uranium. It is concluded that the HTGR

  8. Fission gas behaviour and interdiffusion layer growth in in-pile and out-of-pile irradiated U-Mo/Al nuclear fuels

    International Nuclear Information System (INIS)

    Zweifel, Tobias

    2014-01-01

    Worldwide, research and test reactors are to convert their fuel from highly towards lower enriched uranium, among them the FRM II. One prospective fuel is an alloy of uranium and molybdenum (abbr. U-Mo). Test irradiations showed an insufficient irradiation behavior of this new fuel due to the growth of an interdiffusion layer (abbr. IDL) between the U-Mo fuel and the surrounding Al matrix. Furthermore, this layer accumulates fission gases. In this work, heavy ion irradiated U-Mo/Al layer systems were studied and compared to in-reactor irradiated fuel to study the fission gas dynamics. It is demonstrated that the gas behavior is identical for both in-reactor and out-of-reactor approaches.

  9. Experience in the development of metal uranium-base nuclear fuel for heavy-water gas-cooled reactors

    International Nuclear Information System (INIS)

    Ashikhmin, V.P.; Vorob'ev, M.A.; Gusarov, M.S.; Davidenko, A.S.; Zelenskij, V.F.; Ivanov, V.E.; Krasnorutskij, V.S.; Petel'guzov, I.A.; Stukalov, A.I.

    1978-01-01

    Investigations were carried out to solve the problem of making the development of radiation-resistant uranium fuel for power reactors including the heavy-water gas-cooled KS-150 reactor. Factors are considered that limit the lifetime of uranium fuel elements, and the ways of suppressing them are discussed. Possible reasons of the insufficient radiation resistance of uranium rod fuel element and the progress attained are analyzed. Some general problems on the fuel manufacture processes are discussed. The main results are presented on the operation of the developed fuel in research reactor loops and the commercial heavy-water KS-150 reactor. The results confirm an exceptionally high radiation resistance of fuel to burn-ups of 1.5-2%. The successful solution of a large number of problems associated with the development of metal uranium fuel provides for new possibilities of using metal uranium in power reactors

  10. Improved locations of reactivity devices in future CANDU reactors fuelled with natural uranium or enriched fuels

    International Nuclear Information System (INIS)

    Boczar, P.G.; Van Dyk, M.T.

    1987-02-01

    A new configuration of reactivity devices is proposed for future CANDU reactors which improves the core characteristics with enriched fuels, while still allowing the use of natural uranium fuel. Physics calculations for this new configuration are presented for four fuel types: natural uranium, mixed plutonium - uranium oxide (MOX) having a burnup of 21 MWd/kg, and slightly enriched uranium (SEU) having burnups of either 21 or 31 MWd/kg

  11. Analysis of the Reuse of Uranium Recovered from the Reprocessing of Commercial LWR Spent Fuel

    Energy Technology Data Exchange (ETDEWEB)

    DelCul, Guillermo Daniel [ORNL; Trowbridge, Lee D [ORNL; Renier, John-Paul [ORNL; Ellis, Ronald James [ORNL; Williams, Kent Alan [ORNL; Spencer, Barry B [ORNL; Collins, Emory D [ORNL

    2009-02-01

    This report provides an analysis of the factors involved in the reuse of uranium recovered from commercial light-water-reactor (LWR) spent fuels (1) by reenrichment and recycling as fuel to LWRs and/or (2) by recycling directly as fuel to heavy-water-reactors (HWRs), such as the CANDU (registered trade name for the Canadian Deuterium Uranium Reactor). Reuse is an attractive alternative to the current Advanced Fuel Cycle Initiative (AFCI) Global Nuclear Energy Partnership (GNEP) baseline plan, which stores the reprocessed uranium (RU) for an uncertain future or attempts to dispose of it as 'greater-than-Class C' waste. Considering that the open fuel cycle currently deployed in the United States already creates a huge excess quantity of depleted uranium, the closed fuel cycle should enable the recycle of the major components of spent fuel, such as the uranium and the hazardous, long-lived transuranic (TRU) actinides, as well as the managed disposal of fission product wastes. Compared with the GNEP baseline scenario, the reuse of RU in the uranium fuel cycle has a number of potential advantages: (1) avoidance of purchase costs of 11-20% of the natural uranium feed; (2) avoidance of disposal costs for a large majority of the volume of spent fuel that is reprocessed; (3) avoidance of disposal costs for a portion of the depleted uranium from the enrichment step; (4) depending on the {sup 235}U assay of the RU, possible avoidance of separative work costs; and (5) a significant increase in the production of {sup 238}Pu due to the presence of {sup 236}U, which benefits somewhat the transmutation value of the plutonium and also provides some proliferation resistance.

  12. Kinetic parameters of a material test research reactor fueled with various low enriched uranium dispersion fuels

    International Nuclear Information System (INIS)

    Muhammad, Farhan; Majid, Asad

    2009-01-01

    The effects of using different low enriched uranium fuels, having same uranium density, on the kinetic parameters of a material test research reactor were studied. For this purpose, the original aluminide fuel (UAl x -Al) containing 4.40 gU/cm 3 of an MTR was replaced with silicide (U 3 Si-Al and U 3 Si 2 -Al) and oxide (U 3 O 8 -Al) dispersion fuels having the same uranium density as of the original fuel. Simulations were carried out to calculate prompt neutron generation time, effective delayed-neutron fraction, core excess reactivity and neutron flux spectrum. Nuclear reactor analysis codes including WIMS-D4 and CITATION were used to carry out these calculations. It was observed that both the silicide fuels had the same prompt neutron generation time 0.02% more than that of the original aluminide fuel, while the oxide fuel had a prompt neutron generation time 0.05% less than that of the original aluminide fuel. The effective delayed-neutron fraction decreased for all the fuels; the decrease was maximum at 0.06% for U 3 Si 2 -Al followed by 0.03% for U 3 Si-Al, and 0.01% for U 3 O 8 -Al fuel. The U 3 O 8 -Al fueled reactor gave the maximum ρ excess at BOL which was 21.67% more than the original fuel followed by U 3 Si-Al which was 2.55% more, while that of U 3 Si 2 -Al was 2.50% more than the original UAl x -Al fuel. The neutron flux of all the fuels was more thermalized, than in the original fuel, in the active fuel region of the core. The thermalization was maximum for U 3 O 8 -Al followed by U 3 Si-Al and then U 3 Si 2 -Al fuel.

  13. Development of a recovery process of scraps resulting from the manufacture of metallic uranium fuels

    International Nuclear Information System (INIS)

    Camilo, Ruth L.; Kuada, Terezinha A.; Forbicini, Christina A.L.G.O.; Cohen, Victor H.; Araujo, Bertha F.; Lobao, Afonso S.T.

    1996-01-01

    The study of the dissolution of natural metallic uranium fuel samples with aluminium cladding is presented, in order to obtain optimized conditions for the system. The aluminium cladding was dissolved in an alkaline solution of Na OH/Na NO 3 and the metallic uranium with HNO 3 . A fumeless dissolution with total recovery of nitrous gases was achieved. The main purpose of this project was the recovery of uranium from scraps resulting from the manufacture of the metallic uranium fuel or other non specified fuels. (author)

  14. Determination of uranium in coated fuel particle compact by potassium fluoride fusion-gravimetric method

    International Nuclear Information System (INIS)

    Ito, Mitsuo; Iso, Shuichi; Hoshino, Akira; Suzuki, Shuichi.

    1992-03-01

    Potassium fluoride-gravimetric method has been developed for the determination of uranium in TRISO type-coated fuel particle compact. Graphite matrix in the fuel compact is burned off by heating it in a platinum crucible at 850degC. The coated fuel particles thus obtained are decomposed by fusion with potassium fluoride at 900degC. The melt was dissolved with sulfuric acid. Uranium is precipitated as ammonium diuranate, by passing ammonia gas through the solution. The resulting precipitate is heated in a muffle furnace at 850degC, to convert uranium into triuranium octoxide. Uranium in the triuranium octoxide was determined gravimetrically. Ten grams of caoted fuel particles were completely decomposed by fusion with 50 g of potassium fluoride at 900degC for 3 hrs. Analytical result for uranium in the fuel compact by the proposed method was 21.04 ± 0.05 g (n = 3), and was in good agreement with that obtained by non-destructive γ-ray measurement method : 21.01 ± 0.07 g (n = 3). (author)

  15. Phenomenology of uranium-plutonium homogenization in nuclear fuels

    International Nuclear Information System (INIS)

    Marin, J.M.

    1988-01-01

    The uranium and plutonium cations distribution in mixed oxide fuels (U 1-y Pu y )O 2 with y ≤ 0.1 has been studied in laboratory with industrial fabrication methods. Our experiences has showed a slow cations migration. In the substoichiometry (UPu)O 2-x the diffusion is in connection with the plutonium valence which is an indicator of the oxidoreduction state of the crystal lattice. The plutonium valence is in connection with the oxygen ion deficit in order to compensate the electrical charge. The oxygen ratio of the solid depends of the oxygen partial pressure prevailing at the time of product elaboration but it can be modified by impurities. These impurities permit to increase or decrease the fuel characteristics and performances. An homogeneity analysis methodology is proposed, its objective is to classify the mixed oxide fuels according to the uranium and plutonium ions distribution [fr

  16. Kinetic and thermodynamic bases to resolve issues regarding conditioning of uranium metal fuels

    International Nuclear Information System (INIS)

    Johnson, A.B.; Ballinger, R.G.; Simpson, K.A.

    1994-12-01

    Numerous uranium - bearing fuels are corroding in fuel storage pools in several countries. At facilities where reprocessing is no longer available, dry storage is being evaluated to preclude aqueous corrosion that is ongoing. It is essential that thermodynamic and kinetic factors are accounted for in transitions of corroding uranium-bearing fuels to dry storage. This paper addresses a process that has been proposed to move Hanford N-Reactor fuel from wet storage to dry storage

  17. Uranium-236 in light water reactor spent fuel recycled to an enriching plant

    International Nuclear Information System (INIS)

    de la Garza, A.

    1977-01-01

    The introduction of 236 U to an enriching plant by recycling spent fuel uranium results in enriched products containing 236 U, a parasitic neutron absorber in reactor fuel. Convenient approximate methodology determines 235 236 U, and total uranium flowsheets with associated separative work requirements in enriching plant operations for use by investigators of the light water reactor fuel cycle not having recourse to specialized multicomponent cascade technology. Application of the methodology has been made to compensation of an enriching plant product for 236 U content and to the value at an enriching plant of spent fuel uranium. The approximate methodology was also confirmed with more exact calculations and with some experience with 236 U in an enriching plant

  18. Possibilities of using metal uranium fuel in heavy water reactors

    International Nuclear Information System (INIS)

    Djuric, B.; Mihajlovic, A.; Drobnjak, Dj.

    1965-11-01

    There are serious economic reasons for using metal uranium in heavy water reactors, because of its high density, i.e. high conversion factor, and low cost of fuel elements production. Most important disadvantages are swelling at high burnup and corrosion risk. Some design concepts and application of improved uranium obtained by alloying are promising for achievement of satisfactory stability of metal uranium under reactor operation conditions [sr

  19. High-Uranium-Loaded U3O8-Al fuel element development program. Part 1

    International Nuclear Information System (INIS)

    Martin, M.M.

    1993-01-01

    The High-Uranium-Loaded U 3 O 8 -Al Fuel Element Development Program supports Argonne National Laboratory efforts to develop high-uranium-density research and test reactor fuel to accommodate use of low-uranium enrichment. The goal is to fuel most research and test reactors with uranium of less than 20% enrichment for the purpose of lowering the potential for diversion of highly-enriched material for nonpeaceful usages. The specific objective of the program is to develop the technological and engineering data base for U 3 O 8 -Al plate-type fuel elements of maximal uranium content to the point of vendor qualification for full scale fabrication on a production basis. A program and management plan that details the organization, supporting objectives, schedule, and budget is in place and preparation for fuel and irradiation studies is under way. The current programming envisions a program of about four years duration for an estimated cost of about two million dollars. During the decades of the fifties and sixties, developments at Oak Ridge National Laboratory led to the use of U 3 O 8 -Al plate-type fuel elements in the High Flux Isotope Reactor, Oak Ridge Research Reactor, Puerto Rico Nuclear Center Reactor, and the High Flux Beam Reactor. Most of the developmental information however applies only up to a uranium concentration of about 55 wt % (about 35 vol % U 3 O 8 ). The technical issues that must be addressed to further increase the uranium loading beyond 55 wt % U involve plate fabrication phenomena of voids and dogboning, fuel behavior under long irradiation, and potential for the thermite reaction between U 3 O 8 and aluminum

  20. Corrosion testing of uranium silicide fuel specimens

    International Nuclear Information System (INIS)

    Bourns, W.T.

    1968-09-01

    U 3 Si is the most promising high density natural uranium fuel for water-cooled power reactors. Power reactors fuelled with this material are expected to produce cheaper electricity than those fuelled with uranium dioxide. Corrosion tests in 300 o C water preceded extensive in-reactor performance tests of fuel elements and bundles. Proper heat-treatment of U-3.9 wt% Si gives a U 3 5i specimen which corrodes at less than 2 mg/cm 2 h in 300 o C water. This is an order of magnitude lower than the maximum corrosion rate tolerable in a water-cooled reactor. U 3 Si in a defected unbonded Zircaloy-2 sheath showed only a slow uniform sheath expansion in 300 o C water. All tests were done under isothermal conditions in an out-reactor loop. (author)

  1. Detailed analysis of uranium silicide dispersion fuel swelling

    International Nuclear Information System (INIS)

    Hofmann, G.L.; Ryu, Woo-Seog

    1991-01-01

    Swelling of U 3 Si and U 3 Si 2 is analyzed. The growth of fission gas bubbles appears to be affected by fission rate, fuel loading, and micro structural change taking place in the fuel compounds during irradiation. Several mechanisms are explored to explain the observations. The present work is aimed at a better understanding of the basic swelling phenomenon in order to accurately model irradiation behavior of uranium silicide dispersion fuel. (orig.)

  2. Feasibility of Low Enriched Uranium Fuel for Space Nuclear Propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Venneri, Paolo; Kim, Yonghee [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2013-05-15

    The purpose of this initial study is to create a baseline with which to perform further analysis and to build a solid understanding of the neutronic characteristics of a solid core for the nuclear thermal rocket. Once consistency with work done at Idaho National Laboratory (INL) is established, this paper will provide a study of other fuel types, such as low and medium-enriched uranium fuels. This paper will examine how the implementation of each fuel type affects the multiplication factor of the reactor, and will then explore different possibilities for alterations needed to accommodate their successful usage. The reactor core analysis was done using the MCNP5 code. While this study has not shown that the SNRE can be easily retrofitted for low-enriched U fuel, it has made a detailed study of the SNRE, and identified the difficulties of the implementation of low-enriched fuels in small nuclear rockets. These difficulties are the need for additional moderation and fuel mass in order to achieve a critical mass. Neither of these is insurmountable. Future work includes finding the best method by which to increase the internal moderation of the reactor balanced with appropriate sizing to prevent neutron leakage. Both of these are currently being studied. This paper will present a study of the Small Nuclear Rocket Engine (SNRE) and the feasibility of using low enriched Uranium (LEU) instead of the traditional high enriched Uranium (HEU) fuels.

  3. Design of high density gamma-phase uranium alloys for LEU dispersion fuel applications

    International Nuclear Information System (INIS)

    Hofman, Gerard L.; Meyer, Mitchell K.; Ray, Allison E.

    1998-01-01

    Uranium alloys are candidates for the fuel phase in aluminium matrix dispersion fuels requiring high uranium loading. Certain uranium alloys have been shown to have good irradiation performance at intermediate burnup. previous studies have shown that acceptable fission gas swelling behavior and fuel-aluminium interaction is possible only if the fuel alloy can be maintained in the high temperature body-centered-cubic γ-phase during fabrication and irradiation, at temperatures at which αU is the equilibrium phase. transition metals in Groups V through VIII are known to allow metastable retention of the gamma phase below the equilibrium isotherm. These metals have varying degrees of effectiveness in stabilizing the gamma phase. Certain alloys are metastable for very long times at the relatively low fuel temperatures seen in research operation. In this paper, the existing data on the gamma stability of binary and ternary uranium alloys is analysed. The mechanism and kinetics of decomposition of the gamma phase are assessed with the help of metal alloy theory. Alloys with the highest possible uranium content, good gamma-phase stability, and good neutronic performance are identified for further metallurgical studies and irradiation tests. Results from theory will be compared with experimentally generated data. (author)

  4. Uranium deposits of the Asian sector of Pacific ocean ore belt

    International Nuclear Information System (INIS)

    Kazanskij, V.I.

    1995-01-01

    Brief description of three basic types of uranium ore deposits in the Asian sector of the Pacific Ocean ore belt, namely uranium-molybdenum vein deposits in the continental volcanic depressions, proper uranium-molybdenum vein deposits in the mesozoic granites and gold-brannerite deposits of the rejuvenated early-proterosoic fractures is given. Schemes of various deposits are presented, petrological and isotope data (K-Ar method) are considered and petro- and oregenesis are analyzed. refs., 9 figs

  5. The uranium fuel cycle at IPEN - Energy and Nuclear Research Institute, SP, Brazil

    International Nuclear Information System (INIS)

    Abrao, Alcidio

    1994-09-01

    This paper summarizes the progress of research concerning the uranium fuel cycle set up at the IPEN, Sao Paulo, from the raw yellow-cake to the uranium hexafluoride. It covers the reconversion of the hexafluoride to ammonium uranyl tricarbonate and the manufacturing of the fuel elements for the swimming pool IEA-R1 reactor. This review extends the coverage of two pilot plants for uranium purification based upon ion exchange, one demonstration unity for the purification of uranyl nitrate by solvent extraction in pulsed columns, the unity of uranium tetrafluoride into moving bed reactors and a second one based upon the wet chemistry via uranium dioxide and aqueous hydrogen fluoride. The paper mentions the pilot plant for the preparation of uranium trioxide by the thermal decomposition of ammonium diuranate and a second unity by the thermal denitration of uranyl nitrate. The paper outlines the fluorine plant and the unity for the hexafluoride preparation, the unity for the conversion of the hexa to the ammonium uranyl tricarbonate and the fabrication of fuel elements for the IEA-R1 reactor. (author)

  6. The reprocessing of irradiated fuels improvement and extension of the solvent extraction process

    International Nuclear Information System (INIS)

    Faugeras, P.; Chesne, A.

    1964-01-01

    Improvements made in the conventional tri-butylphosphate process are described, in particular. the concentration and the purification of plutonium by one extraction cycle using tri-butyl-phosphate with reflux; and the use of an apparatus working continuously for precipitating plutonium oxalate, for calcining the oxalate, and for fluorinating the oxide. The modifications proposed for the treatment of irradiated uranium - molybdenum alloys are described, in particular, the dissolution of the fuel, and the concentration of the fission product solutions. The solvent extraction treatment is used also for the plutonium fuels utilized for the fast breeder reactor (Rapsodie) An outline of the process is presented and discussed, as well as the first experimental results and the plans for a pilot plant having a capacity of 1 kg/day. The possible use of tn-lauryl-amine in the plutonium purification cycle is now under consideration for the processing plant at La Hague. The flowsheet for this process and its performance are presented. The possibility of vitrification is considered for the final treatment of the concentrated radioactive wastes from the Marcoule (irradiated uranium) and La Hague (irradiated uranium-molybdenum) Centers. Three possible processes are described and discussed, as well as the results obtained from the operation of the corresponding experimental units using tracers. (authors) [fr

  7. Behavior of silicon in nitric media. Application to uranium silicides fuels reprocessing

    International Nuclear Information System (INIS)

    Cheroux, L.

    2001-01-01

    Uranium silicides are used in some research reactors. Reprocessing them is a solution for their cycle end. A list of reprocessing scenarios has been set the most realistic being a nitric dissolution close to the classic spent fuel reprocessing. This uranium silicide fuel contains a lot of silicon and few things are known about polymerization of silicic acid in concentrated nitric acid. The study of this polymerization allows to point out the main parameters: acidity, temperature, silicon concentration. The presence of aluminum seems to speed up heavily the polymerization. It has been impossible to find an analytical technique smart and fast enough to characterize the first steps of silicic acid polymerization. However the action of silicic species on emulsions stabilization formed by mixing them with an organic phase containing TBP has been studied, Silicon slows down the phase separation by means of oligomeric species forming complex with TBP. The existence of these intermediate species is short and heating can avoid any stabilization. When non irradiated uranium silicide fuel is attacked by a nitric solution, aluminum and uranium are quickly dissolved whereas silicon mainly stands in solid state. That builds a gangue of hydrated silica around the uranium silicide particulates without preventing uranium dissolution. A small part of silicon passes into the solution and polymerize towards the highly poly-condensed forms, just 2% of initial silicon is still in molecular form at the end of the dissolution. A thermal treatment of the fuel element, by forming inter-metallic phases U-Al-Si, allows the whole silicon to pass into the solution and next to precipitate. The behavior of silicon in spent fuels should be between these two situations. (author)

  8. Potentiometric determination of hexavalent uranium in uranium silicide samples

    International Nuclear Information System (INIS)

    Arlegui, Oscar

    1999-01-01

    The Chilean Nuclear Energy Commission's Department of Nuclear Materials has among its projects the production of fuels elements for nuclear reactors, and, therefore, the Chemical Analysis Laboratory must have a rapid and reliable method for uranium analysis, to control the uranium concentration during each stage of the production process. For this reason the Chilean Nuclear Energy Commission's Chemical Analysis Laboratory has validated a potentiometric method, which is a modification of the Davies and Gray method proposed by A.R. Eberle. This method uses the Potentiometric Titration Technique and is based on the direct and rapid reduction of uranium (VI) to Uranium (IV), in a concentrated phosphoric acid medium, with excess iron (II) used as a reducing agent. In this medium the excess iron (II) selectively oxidizes to iron (III) with nitric acid, using molybdenum (IV) as a catalyzer, the nitrous acid that is produced is eliminated by adding amidosulfuric acid. The solution is diluted with 1M sulfuric acid and the uranium (IV) obtained is titrated potentiometrically with potassium dichromate in the presence of vanadilic sulfate to obtain a better defined final titration point. The samples were softened with hydrochloric acid and nitric acid and later 50 ml were estimated in a 20% sulfuric acid medium. The analytical method was validated by comparing it with Certified Reference Material (C.R.M.) from the New Brunswick Laboratory (NBL), Metallic Uranium, CRM 112-A. The F Test and the T Test show that the value calculated is less than the tabulated value so the result is traceable to the reference material. The quantification limit, sensitivity, precision and accuracy were quantified for the method

  9. Detailed analysis of uranium silicide dispersion fuel swelling

    International Nuclear Information System (INIS)

    Hofman, G.L.; Ryu, Woo-Seog.

    1989-01-01

    Swelling of U 3 Si and U 3 Si 2 is analyzed. The growth of fission gas bubbles appears to be affected by fission rate, fuel loading, and microstructural change taking place in the fuel compounds during irradiation. Several mechanisms are explored to explain the observations. The present work is aimed at a better understanding of the basic swelling phenomenon in order to accurately model irradiation behavior of uranium silicide disperson fuel. 5 refs., 10 figs

  10. Uranium and plutonium distribution in unirradiated mixed oxide fuel from industrial fabrication

    International Nuclear Information System (INIS)

    Hanus, D.; Kleykamp, H.

    1982-01-01

    Different process variants developed in the last few years by the firm ALKEM to manufacture FBR and LWR mixed oxide fuel are given. The uranium and plutonium distribution is determined on the pellets manufactured with the help of the electron beam microprobe. The stepwise improvement of the uranium-plutonium homogeneity in the short-term developed granulate variants and in the long-term developed new processes are illustrated starting with early standard processes for FBR fuel. An almost uniform uranium-plutonium distribution could be achieved for the long-term developed new processes (OKOM, AuPuC). The uranium-plutonium homogeneity are quantified in the pellets manufactured according to the considered process variants with a newly defined quality number. (orig.)

  11. Uranium prospecting in the main Karoo basin in retrospect: V. 1

    International Nuclear Information System (INIS)

    Van der Merwe, P.J.

    1986-12-01

    Prospecting for sandstone-hosted uranium deposits in the Main Karoo Basin started in 1969 and ceased during 1985. Although some farms are still under option, no further exploration in the short term is envisaged. Uranium deposits were located in sediments of the Lower Beaufort Group, and Elliot and Molteno Formations of the Stormberg Group. Reasonable Assured and Estimated Additional Resources recoverable at less than $130/kg U amount to 31 211 t U. The Southern Karoo region has the largest share with 93 % of the resources. The 4 major orebodies east of Beaufort West, i.e. Rystkuil and its extensions, Haanekuil, Kareepoort and De Pannen contain 50 % of the Southern Karoo's resources. These four deposits also contain 60 % of the molybdenum resources, and constitute the single most viable mining district in the Main Karoo Basin. The economic viability of the four orebodies mentioned above was investigated and, at a uranium price of R78,05/kg U and a molybdenum price of R13,08/kg Mo in 1985 money terms, the DCFROR yield is 16,3 % after tax. These deposits have a life of 20 years at an annual production rate of 800 t uranium and approximately 600 t molybdenum. The molybdenum production is sufficient to supply the country's current needs. Taking cognisance of the fact 89 % of the revenue is generated by uranium and the current oversupply of uranium on the world markets, it is unlikely that these deposits would be exploited in the short to medium term, unless an urgent need for a domestic molybdenum source arises

  12. Fuel loading and homogeneity analysis of HFIR design fuel plates loaded with uranium silicide fuel

    International Nuclear Information System (INIS)

    Blumenfeld, P.E.

    1995-08-01

    Twelve nuclear reactor fuel plates were analyzed for fuel loading and fuel loading homogeneity by measuring the attenuation of a collimated X-ray beam as it passed through the plates. The plates were identical to those used by the High Flux Isotope Reactor (HFIR) but were loaded with uranium silicide rather than with HFIR's uranium oxide fuel. Systematic deviations from nominal fuel loading were observed as higher loading near the center of the plates and underloading near the radial edges. These deviations were within those allowed by HFIR specifications. The report begins with a brief background on the thermal-hydraulic uncertainty analysis for the Advanced Neutron Source (ANS) Reactor that motivated a statistical description of fuel loading and homogeneity. The body of the report addresses the homogeneity measurement techniques employed, the numerical correction required to account for a difference in fuel types, and the statistical analysis of the resulting data. This statistical analysis pertains to local variation in fuel loading, as well as to ''hot segment'' analysis of narrow axial regions along the plate and ''hot streak'' analysis, the cumulative effect of hot segment loading variation. The data for all twelve plates were compiled and divided into 20 regions for analysis, with each region represented by a mean and a standard deviation to report percent deviation from nominal fuel loading. The central regions of the plates showed mean values of about +3% deviation, while the edge regions showed mean values of about -7% deviation. The data within these regions roughly approximated random samplings from normal distributions, although the chi-square (χ 2 ) test for goodness of fit to normal distributions was not satisfied

  13. Corrosion testing of uranium silicide fuel specimens

    Energy Technology Data Exchange (ETDEWEB)

    Bourns, W T

    1968-09-15

    U{sub 3}Si is the most promising high density natural uranium fuel for water-cooled power reactors. Power reactors fuelled with this material are expected to produce cheaper electricity than those fuelled with uranium dioxide. Corrosion tests in 300{sup o}C water preceded extensive in-reactor performance tests of fuel elements and bundles. Proper heat-treatment of U-3.9 wt% Si gives a U{sub 3}5i specimen which corrodes at less than 2 mg/cm{sup 2} h in 300{sup o}C water. This is an order of magnitude lower than the maximum corrosion rate tolerable in a water-cooled reactor. U{sub 3}Si in a defected unbonded Zircaloy-2 sheath showed only a slow uniform sheath expansion in 300{sup o}C water. All tests were done under isothermal conditions in an out-reactor loop. (author)

  14. The determination of uranium distribution homogeneity in the fuel plates with the uranium loading of 4.80 and 5.20 g/cm3 by X-Ray attenuation

    International Nuclear Information System (INIS)

    Supardjo; Rojak, A.; Boybul; Suyoto; Datam, A. S.

    2000-01-01

    The calibration of X-Ray intensity of the U 3 Si 2 -AI fuel plates with the uranium loading between 3.60 up to 5.20 g/cm 3 and varied thickness of AIMgSi1 reference block have been performed. The measurement with changing variable slit diameter and energy of X-Ray attenuation, are produced enough representative X-Ray intensity at 18 mm slit diameter and energy of 43 kV. From the correlation of X-ray intensities vs variation of uranium loading in the fuel plates and thickness of the AIMgSi1 materials, the equivalence of thickness of the AIMgSi1 block to the uranium loading of fuel plates are determined. By assuming that the tolerance of the homogeneity measurement is + 20 % from normal thickness staircase of the AIMgSi1 standard could be determined and than together with fuel plate were scanned to determine the uranium homogeneity. The test result on the U 3 Si 2 -AI fuel plates with uranium loading of 4.80 and 5.20 g/cm 3 (each 4 fuel plates) indicated that uranium distribution in the fuel plates is relatively homogeneous, with each maximum deviation being 6.30 % and 6.90%. It is showed that measurement method is relatively good, easy, and fast so that this method is suitable to control the uranium homogeneity in the fuel plate. (author)

  15. Babcock and Wilcox plate fabrication experience with uranium silicide spherical fuel

    International Nuclear Information System (INIS)

    Todd, Lawrence E.; Pace, Brett W.

    1996-01-01

    This report is written to present the fuel fabrication experience of Babcock and Wilcox using atomized spherical uranium silicide powder. The intent is to demonstrate the ability to fabricate fuel plates using spherical powder and to provide useful information proceeding into the next phase of work using this type of fuel. The limited quantity of resources- spherical powder and time, did not allow for much process optimizing in this work scope. However, the information contained within provides optimism for the future of spherical uranium silicide fuel plate fabrication at Babcock and Wilcox.The success of assembling fuel elements with spherical powder will enable Babcock and Wilcox to reduce overall costs to its customers while still maintaining our reputation for providing high quality research and test reactor products. (author)

  16. Prospect of Uranium Silicide fuel element with hypostoichiometric (Si ≤3.7%)

    International Nuclear Information System (INIS)

    Suripto, A.; Sardjono; Martoyo

    1996-01-01

    An attempt to obtain high uranium-loading in silicide dispersion fuel element using the fabrication technology applicable nowadays can reach Uranium-loading slightly above 5 gU/cm 3 . It is difficult to achieve a higher uranium-loading than that because of fabricability constraints. To overcome those difficulties, the use of uranium silicide U 3 Si based is considered. The excess of U is obtained by synthesising U 3 Si 2 in Si-hypostoichiometric stage, without applying heat treatment to the ingot as it can generate undesired U 3 Si. The U U will react with the matrix to form U al x compound, that its pressure is tolerable. This experiment is to consider possibilities of employing the U 3 Si 2 as nuclear fuel element which have been performed by synthesising U 3 Si 2 -U with the composition of 3.7 % weigh and 3 % weigh U. The ingot was obtained and converted into powder form which then was fabricated into experimental plate nuclear fuel element. The interaction between free U and Al-matrix during heat-treatment is the rolling phase of the fuel element was observed. The study of the next phase will be conducted later

  17. Natural uranium fueled light water moderated breeding hybrid power reactors

    International Nuclear Information System (INIS)

    Greenspan, E.; Schneider, A.; Misolovin, A.; Gilai, D.; Levin, P.

    The feasibility of fission-fusion hybrid reactors based on breeding light water thermal fission systems is investigated. The emphasis is on fuel-self-sufficient (FSS) hybrid power reactors that are fueled with natural uranium. Other LWHRs considered include FSS-LWHRs that are fueled with spent fuel from LWRs, and LWHRs which are to supplement LWRs to provide a tandem LWR-LWHR power economy that is fuel-self-sufficient

  18. Natural uranium metallic fuel elements: fabrication and operating experience

    International Nuclear Information System (INIS)

    Hammad, F.H.; Abou-Zahra, A.A.; Sharkawy, S.W.

    1980-01-01

    The main reactor types based on natural uranium metallic fuel element, particularly the early types, are reviewed in this report. The reactor types are: graphite moderated air cooled, graphite moderated gas cooled and heavy water moderated reactors. The design features, fabrication technology of these reactor fuel elements and the operating experience gained during reactor operation are described and discussed. The interrelation between operating experience, fuel design and fabrication was also discussed with emphasis on improving fuel performance. (author)

  19. Peroxo complexes of molybdenum(VI), tungsten(VI), uranium(VI), zirconium(IV) and thorium(IV) ions containing tridentate Schiff bases derived from salicylaldehyde and amino acids

    International Nuclear Information System (INIS)

    Tarafder, M.T.H.; Khan, A.R.

    1997-01-01

    The synthesis of peroxo complexes of molybdenum(VI), tungsten(VI), uranium(VI), zirconium(IV), thorium(IV) and their possible oxygen transfer reactions is presented. An attempt has also been made to study the size of the metal ions and the electronic effect derived from the tridentate Schiff bases on the v 1 (O-O) mode of the complexes in their IR spectra

  20. Reduction of uranium in disposal conditions of spent nuclear fuel

    International Nuclear Information System (INIS)

    Myllykylae, E.

    2008-02-01

    This literature study is a summary of publications, in which the reduction of uranium by iron has been investigated in anaerobic groundwater conditions or in aqueous solution in general. The basics of the reduction phenomena and the oxidation states, complexes and solubilities of uranium and iron in groundwaters are discussed as an introduction to the subject, as well as, the Finnish disposal concept of spent nuclear fuel. The spent fuel itself mainly (∼96 %) consists of a sparingly soluble uranium(IV) dioxide, UO 2 (s), which is stable phase in the anticipated reducing disposal conditions. If spent fuel gets in contact with groundwater, oxidizing conditions might be induced by the radiolysis of water, or by the intrusion of oxidizing glacial melting water. Under these conditions, the oxidation and dissolution of uranium dioxide to more soluble U(VI) species could occur. This could lead to the mobilization of uranium and other components of spent fuel matrix including fission products and transuranium elements. The reduction of uranium back to oxidation state U(IV) can be considered as a favourable immobilization mechanism in a long-term, leading to precipitation due to the low solubility of U(IV) species. The cast iron insert of the disposal canister and its anaerobic corrosion products are the most important reductants under disposal conditions, but dissolved ferrous iron may also function as reductant. Other iron sources in the buffer or near-field rock, are also considered as possible reductants. The reduction of uranium is a very challenging phenomenon to investigate. The experimental studies need e.g. well-controlled anoxic conditions and measurements of oxidation states. Reduction and other simultaneous phenomena are difficult to distinghuish. The groundwater conditions (pH, Eh and ions) influence on the prevailing complexes of U and Fe and on forming corrosion products of iron and, thus they determine also the redox chemistry. The partial reduction of

  1. An investigation on fuel meats extruded with atomized U-10wt% Mo powder for uranium high-density dispersion fuel

    International Nuclear Information System (INIS)

    Kim, Chang-Kyu; Kim, Ki-Hwan; Park, Jong-Man; Lee, Don-Bae; Sohn, Dong-Seong

    1997-01-01

    The RERTR program has been making an effort to develop dispersion fuels with uranium densities of 8 to 9 g U/cm3 for research and test reactors. Using atomized U-10wt%Mo powder, fuel meats have been fabricated successfully up to 55 volume % of fuel powder. The uranium density of an extruded meat with a 55 volume % of fuel powder was obtained to be 7.7 g/cm3. A relatively high porosity of 7.3% was formed due to cracking of particles, presumably induced by the impingement among agglomerated particles. Tensile test results indicated that the strength of fuel meats with 55% volume fraction decreased some and a little of ductility was maintained. Examination on the fracture surface revealed that some U-10%Mo particles appeared to be broken by the tensile force in brittle rupture mode. The increase of broken particles in high fuel fraction is considered to be induced mainly by the impingement among agglomerated particles. Uranium loading density is assumed to be improved through the development of the better homogeneous dispersion technology. (author)

  2. Radiological and environmental safety aspects of uranium fuel fabrication plants at Nuclear Fuel Complex, Hyderabad

    International Nuclear Information System (INIS)

    Viswanathan, S.; Surya Rao, B.; Lakshmanan, A.R.; Krishna Rao, T.

    1991-01-01

    Nuclear Fuel Complex, Hyderabad manufactures uranium dioxide fuel assemblies for PHWRs and BWRs operating in India. Starting materials are magnesium diuranate received from UCIL, Jaduguda and imported UF. Both of these are converted to UO 2 pellets by identical chemical processes and mechanical compacting. Since the uranium handled here is free of daughter product activities, external radiation is not a problem. Inhalation of airborne U compounds is one of the main source of exposure. Engineered protective measures like enclosures around U bearing powder handling equipment and local exhausts reduce worker's exposure. Installation of pre-filters, wet rotoclones and electrostatic precipitators in the ventillation system reduces the release of U into the environment. The criticality hazard in handling slightly enriched uranium is very low due to the built-in control based on geometry and inventory. Where airborne uranium is significant, workers are provided with protective respirators. The workers are regularly monitored for external exposure and also for internal exposure. The environmental releases from the NFC facility is well controlled. Soil, water and air from the NFC environment are routinely collected and analysed for all the possible pollutants. The paper describes the Health Physics experience during the last five years on occupational exposures and on environmental surveillance which reveals the high quality of safety observed in our nuclear fuel fabricating installations. (author). 4 refs., 6 tabs

  3. Progress in developing very-high-density low-enriched-uranium fuels

    International Nuclear Information System (INIS)

    Snelgrove, J.L.; Hofman, G.L.; Meyer, M.K.; Hayes, S.L.; Wiencek, T.C.; Strain, R.V.

    1999-01-01

    Preliminary results from the postirradiation examinations of microplates irradiated in the RERTR-1 and -2 experiments in the ATR have shown several binary and ternary U-Mo alloys to be promising candidates for use in aluminum-based dispersion fuels with uranium densities up to 8 to 9 g/cm 3 . Ternary alloys of uranium, niobium, and zirconium performed poorly, however, both in terms of fuel/matrix reaction and fission-gas-bubble behavior, and have been dropped from further study. Since irradiation temperatures achieved in the present experiments (approximately 70 deg. C) are considerably lower than might be experienced in a high-performance reactor, a new experiment is being planned with beginning-of-cycle temperatures greater than 200 deg. C in 8-g U/cm 3 fuel. (author)

  4. Conversion of the University of Missouri-Rolla Reactor from high-enriched uranium to low-enriched uranium fuel

    International Nuclear Information System (INIS)

    Bolon, A.E.; Straka, M.; Freeman, D.W.

    1997-01-01

    The objectives of this project were to convert the UMR Reactor fuel from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel and to ship the HEU fuel back to the Department of Energy Savannah River Site. The actual core conversion was completed in the summer of 1992. The HEU fuel was offloaded to an onsite storage pit where it remained until July, 1996. In July, 1996, the HEU fuel was shipped to the DOE Savannah River Site. The objectives of the project have been achieved. DOE provided the following funding for the project. Several papers were published regarding the conversion project and are listed in the Attachment. In retrospect, the conversion project required much more time and effort than originally thought. Several difficulties were encountered including the unavailability of a shipping cask for several years. The authors are grateful for the generous funding provided by DOE for this project but wish to point out that much of their efforts on the conversion project went unfunded

  5. Uranium transport to solid electrodes in pyrochemical reprocessing of nuclear fuel

    International Nuclear Information System (INIS)

    Tomczuk, Z.; Ackerman, J.P.; Wolson, R.D.; Miller, W.E.

    1992-01-01

    A unique pyrochemical process developed for the separation of metallic nuclear fuel from fission products by electrotransport through molten LiCl-KCl eutectic salt to solid and liquid metal cathodes. The process allow for recovery and reuse of essentially all of the actinides in spent fuel from the integral fast reactor (IFR) and disposal of wastes in satisfactory forms. Electrotransport is used to minimize reagent consumption and, consequently, waste volume. In particular, electrotransport to solid cathodes is used for recovery of an essentially pure uranium product in the presence of other actinides; removal of pure uranium is used to adjust the electrolyte composition in preparation for recovery of a plutonium-rich mixture with uranium in liquid cadmium cathodes. This paper presents experiments that delineate the behavior of key actinide and rare-earth elements during electrotransport to a solid electrode over a useful range of PuCl 3 /UCl 3 ratios in the electrolyte, a thermodynamic basis for that behavior, and a comparison of the observed behavior with that calculated from a thermodynamic model. This work clearly established that recovery of nearly pure uranium can be a key step in the overall pyrochemical-fuel-processing strategy for the IFR

  6. NEUTRONICS STUDIES OF URANIUM-BASED FULLY CERAMIC MICRO-ENCAPSULATED FUEL FOR PWRs

    Energy Technology Data Exchange (ETDEWEB)

    George, Nathan M [ORNL; Maldonado, G Ivan [ORNL; Terrani, Kurt A [ORNL; Gehin, Jess C [ORNL; Godfrey, Andrew T [ORNL

    2012-01-01

    This study evaluates the core neutronics and fuel cycle characteristics that result from employing uranium-based fully ceramic micro-encapsulated (FCM) fuel in a pressurized water reactor (PWR). Specific PWR bundle designs with FCM fuel have been developed, which by virtue of their TRISO particle based elements, are expected to safely reach higher fuel burnups while also increasing the tolerance to fuel failures. The SCALE 6.1 code package, developed and maintained at ORNL, was the primary software employed to model these designs. Analysis was performed using the SCALE double-heterogeneous (DH) fuel modeling capabilities. For cases evaluated with the NESTLE full-core three-dimensional nodal simulator, because the feature to perform DH lattice physics branches with the SCALE/TRITON sequence is not yet available, the Reactivity-Equivalent Physical Transformation (RPT) method was used as workaround to support the full core analyses. As part of the fuel assembly design evaluations, fresh feed lattices were modeled to analyze the within-assembly pin power peaking. Also, a color-set array of assemblies was constructed to evaluate power peaking and power sharing between a once-burned and a fresh feed assembly. In addition, a parametric study was performed by varying the various TRISO particle design features; such as kernel diameter, coating layer thicknesses, and packing fractions. Also, other features such as the selection of matrix material (SiC, Zirconium) and fuel rod dimensions were perturbed. After evaluating different uranium-based fuels, the higher physical density of uranium mononitride (UN) proved to be favorable, as the parametric studies showed that the FCM particle fuel design will need roughly 12% additional fissile material in comparison to that of a standard UO2 rod in order to match the lifetime of an 18-month PWR cycle. Neutronically, the FCM fuel designs evaluated maintain acceptable design features in the areas of fuel lifetime, temperature

  7. The life of some metallic uranium based fuel elements; Duree de vie de quelques combustibles a base d'uranium metal

    Energy Technology Data Exchange (ETDEWEB)

    Stohr, J A; Englander, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    Description of some theoretical and experimental data concerning the design and most economic preparation of metallic uranium based fuel elements, which are intended to produce an energy of 3 kW days/g of uranium in a thermal reactor, at a sufficiently high mean temperature. Experimental results obtained by testing by analogy or by actually trying out fuel elements obtained by alloying uranium with other metals in proportions such that the resistance to deformation of the alloy produced is much higher than that of pure metallic uranium and that the thermal utilisation factor is only slightly different from that of the uranium. (author) [French] Description de quelques donnees theoriques et experimentales concernant la conception et la preparation la plus economique d'elements combustibles a base d'uranium metallique naturel, destines a degager dans un reacteur thermique une energie de l'ordre de 3 kWj/g d'uranium a une temperature moyenne suffisamment elevee. Resultats experimentaux acquis par tests analogiques ou reels sur combustibles obtenus par alliage de l'uranium avec des elements metalliques en proportions telles que la resistance a la deformation soit bien superieure a celle de l'uranium metal pur et que le facteur propre d'utilisation thermique n ne soit que peu affecte. (auteur)

  8. Extraction of Uranium Using Nitrogen Dioxide and Carbon Dioxide for Spent Fuel Reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Kayo Sawada; Daisuke Hirabayashi; Youichi Enokida [EcoTopia Science Institute, Nagoya University, Nagoya, 464-8603 (Japan)

    2008-07-01

    For the reprocessing of spent nuclear fuels, a new method to extract actinides from spent fuel using highly compressed gases, nitrogen dioxide and carbon dioxide was proposed. Uranium extraction from broken pieces, whose average grain size was 5 mm, of uranium dioxide pellet with nitrogen dioxide and carbon dioxide was demonstrated in the present study. (authors)

  9. The SLOWPOKE-2 reactor with low enrichment uranium oxide fuel

    International Nuclear Information System (INIS)

    Townes, B.M.; Hilborn, J.W.

    1985-06-01

    A SLOWPOKE-2 reactor core contains less than 1 kg of highly enriched uranium (HEU) and the proliferation risk is very low. However, to overcome proliferation concerns a new low enrichment uranium (LEU) fuelled reactor core has been designed. This core contains approximately 180 fuel elements based on the Zircaloy-4 clad UOsub(2) CANDU fuel element, but with a smaller outside diameter. The physics characteristics of this new reactor core ensure the inherent safety of the reactor under all conceivable conditions and thus the basic SLOWPOKE safety philosophy which permits unattended operation is not affected

  10. Irradiation of TZM: Uranium dioxide fuel pin at 1700 K

    Science.gov (United States)

    Mcdonald, G. E.

    1973-01-01

    A fuel pin clad with TZM and containing solid pellets of uranium dioxide was fission heated in a static helium-cooled capsule at a maximum surface temperature of 1700 K for approximately 1000 hr and to a total burnup of 2.0 percent of the uranium-235. The results of the postirradiation examination indicated: (1) A transverse, intergranular failure of the fuel pin occurred when the fuel pin reached 2.0-percent burnup. This corresponds to 1330 kW-hr/cu cm, where the volume is the sum of the fuel, clad, and void volumes in the fuel region. (2) The maximum swelling of the fuel pin was less than 1.5 percent on the fuel-pin diameter. (3) There was no visible interaction between the TZM clad and the UO2. (4) Irradiation at 1700 K produced a course-grained structure, with an average grain diameter of 0.02 centimeter and with some of the grains extending one-half of the thickness of the clad. (5) Below approximately 1500 K, the irradiation of the clad produced a moderately fine-grained structure, with an average grain diameter of 0.004 centimeter.

  11. Radioactive decay properties of CANDU fuel. Volume 1: the natural uranium fuel cycle

    International Nuclear Information System (INIS)

    Clegg, L.J.; Coady, J.R.

    1977-01-01

    The two books of Volume 1 comprise the first in a three-volume series of compilations on the radioactive decay propertis of CANDU fuel and deal with the natural uranium fuel cycle. Succeeding volumes will deal with fuel cycles based on plutonium recycle and thorium. In Volume 1 which is divided into three parts, the computer code CANIGEN was used to obtain the mass, activity, decay heat and toxicity of CANDU fuel and its component isotopes. Data are also presented on gamma spectra and neutron emissions. Part 3 contains the data relating to the plutonium product and the high level wastes produced during fuel reprocessing. (author)

  12. Method of producing thermally stable uranium carbonitrides

    International Nuclear Information System (INIS)

    Ugajin, M.; Takahashi, I.

    1975-01-01

    A thermally stable uranium carbonitride can be produced by adding tungsten and/or molybdenum in the amount of 0.2 wt percent or more, preferably 0.5 wt percent or more, to a pure uranium carbonitride. (U.S.)

  13. Analysis of fuel cycles with natural uranium; Analiza gorivnih ciklusa sa prirodnim uranom

    Energy Technology Data Exchange (ETDEWEB)

    Stojanovic, A [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1965-05-15

    A method was developed and a computer code was written for analysis of fuel cycles and it was applied for heavy water and graphite moderated power reactors. Among a variety of possibilities, three methods which enable best utilization of natural uranium and plutonium production were analyzed. Analysis has shown that reprocessing of irradiated uranium and plutonium utilization in the same or similar type of reactor could increase significantly utilization of natural uranium. Increase of burnup is limited exclusively by costs of reprocessing, plutonium extraction and fabrication of new fuel elements.

  14. Possibility of using metal uranium fuel in heavy water reactors

    International Nuclear Information System (INIS)

    Djuric, B.; Mihajlovic, A.; Drobnjak, Dj.

    1965-01-01

    The review of metal uranium properties including irradiation in the reactor core lead to the following conclusions. Using metal uranium in the heavy water reactors would be favourable from economic point of view for ita high density, i.e. high conversion factor and low cost of fuel elements fabrication. Most important constraint is swelling during burnup and corrosion

  15. Method of chemical reprocessing of irradiated nuclear fuels (especially fuels containing uranium)

    International Nuclear Information System (INIS)

    Koch, G.

    1975-01-01

    The invention deals with a method for the extraction especially of fast breeder fuels of high burn-up. A quaternary ammonium nitrate of high molecular weight is put into an organic diluting medium as extraction agent, corresponding to the general formula NRR'R''R'''NO 3 where R,R' and R'' are aliphatic radicals, R''' a methyl radical and the sum of the C atoms is greater than 16. After the extraction of the aqueous nitric acid containing nuclear fuel solution with this extracting agent, uranium, plutonium (or also thorium) can be found to a very high percentage in the organic phase and can be practically quantitatively back-extracted by means of diluted nitric acid, sulphuric acid or acetic acid. By using 30 volume percent tricapryl methyl ammonium nitrate in diethyl benzene for example, a distribution coefficient of 10.3 is obtained for uranium. (RB/LH) [de

  16. PWR core design, neutronics evaluation and fuel cycle analysis for thorium-uranium breeding recycle

    International Nuclear Information System (INIS)

    Bi, G.; Liu, C.; Si, S.

    2012-01-01

    This paper was focused on core design, neutronics evaluation and fuel cycle analysis for Thorium-Uranium Breeding Recycle in current PWRs, without any major change to the fuel lattice and the core internals, but substituting the UOX pellet with Thorium-based pellet. The fuel cycle analysis indicates that Thorium-Uranium Breeding Recycle is technically feasible in current PWRs. A 4-loop, 193-assembly PWR core utilizing 17 x 17 fuel assemblies (FAs) was taken as the model core. Two mixed cores were investigated respectively loaded with mixed reactor grade Plutonium-Thorium (PuThOX) FAs and mixed reactor grade 233 U-Thorium (U 3 ThOX) FAs on the basis of reference full Uranium oxide (UOX) equilibrium-cycle core. The UOX/PuThOX mixed core consists of 121 UOX FAs and 72 PuThOX FAs. The reactor grade 233 U extracted from burnt PuThOX fuel was used to fabrication of U 3 ThOX for starting Thorium-. Uranium breeding recycle. In UOX/U 3 ThOX mixed core, the well designed U 3 ThOX FAs with 1.94 w/o fissile uranium (mainly 233 U) were located on the periphery of core as a blanket region. U 3 ThOX FAs remained in-core for 6 cycles with the discharged burnup achieving 28 GWD/tHM. Compared with initially loading, the fissile material inventory in U 3 ThOX fuel has increased by 7% via 1-year cooling after discharge. 157 UOX fuel assemblies were located in the inner of UOX/U 3 ThOX mixed core refueling with 64 FAs at each cycle. The designed UOX/PuThOX and UOX/U 3 ThOX mixed core satisfied related nuclear design criteria. The full core performance analyses have shown that mixed core with PuThOX loading has similar impacts as MOX on several neutronic characteristic parameters, such as reduced differential boron worth, higher critical boron concentration, more negative moderator temperature coefficient, reduced control rod worth, reduced shutdown margin, etc.; while mixed core with U 3 ThOX loading on the periphery of core has no visible impacts on neutronic characteristics compared

  17. Development of metal uranium fuel and testing of construction materials (I-VI); Part I

    International Nuclear Information System (INIS)

    Mihajlovic, A.

    1965-11-01

    This project includes the following tasks: Study of crystallisation of metal melt and beta-alpha transforms in uranium and uranium alloys; Study of the thermal treatment influence on phase transformations and texture in uranium alloys; Radiation damage of metal uranium; Project related to irradiation of metal uranium in the reactor; Development of fuel element for nuclear reactors

  18. Uranium loss from BISO-coated weak-acid-resin HTGR fuel

    International Nuclear Information System (INIS)

    Pearson, R.L.; Lindemer, T.B.

    1977-02-01

    Recycle fuel for the High-Temperature Gas-Cooled Reactor (HTGR) contains a weak-acid-resin (WAR) kernel, which consists of a mixture of UC 2 , UO 2 , and free carbon. At 1900 0 C, BISO-coated WAR UC 2 or UC 2 -UO 2 kernels lose a significant portion of their uranium in several hundred hours. The UC 2 decomposes and uranium diffuses through the pyrolytic coating. The rate of escape of the uranium is dependent on the temperature and the surface area of the UC 2 , but not on a temperature gradient. The apparent activation energy for uranium loss, ΔH, is approximately 90 kcal/mole. Calculations indicate that uranium loss from the kernel would be insignificant under conditions to be expected in an HTGR

  19. Penetrate-leach dissolution of zirconium-clad uranium and uranium dioxide fuels

    International Nuclear Information System (INIS)

    Harmon, H.D.

    1975-01-01

    A new decladding-dissolution process was developed for zirconium-clad uranium metal and UO 2 fuels. The proposed penetrate-leach process consists of penetrating the zirconium cladding with Alniflex solution (2M HF--1M HNO 3 --1M Al(NO 3 ) 3 --0.1M K 2 Cr 2 O 7 ) and of leaching the exposed core with 10M HNO 3 . Undissolved cladding pieces are discarded as solid waste. Periodic HF and HNO 3 additions, efficient agitation, and in-line zirconium analyses are required for successful control of ZrF 4 and/or AlF 3 precipitation during the cladding-penetration step. Preliminary solvent extraction studies indicated complete recovery of uranium with 30 vol. percent tributyl phosphate (TBP) from both Alniflex solution and blended Alniflex-HNO 3 leach solutions. With 7.5 vol. percent TBP, high extractant/feed flow ratios and low scrub flows are required for satisfactory uranium recovery from Alniflex solution. Modified waste-handling procedures may be required for Alniflex waste, because it cannot be evaporated before neutralization and large quantities of solids are generated on neutralization. The effect of unstable UZr 3 (epsilon phase of uranium-zirconium system) on the safety of penetrate-leach dissolution was investigated

  20. Destruction of plutonium using non-uranium fuels in pressurized water reactor peripheral assemblies

    International Nuclear Information System (INIS)

    Chodak, P. III

    1996-05-01

    This thesis examines and confirms the feasibility of using non-uranium fuel in a pressurized water reactor (PWR) radial blanket to eliminate plutonium of both weapons and civilian origin. In the equilibrium cycle, the periphery of the PWR is loaded with alternating fresh and once burned non-uranium fuel assemblies, with the interior of the core comprised of conventional three batch UO 2 assemblies. Plutonium throughput is such that there is no net plutonium production: production in the interior is offset by destruction in the periphery. Using this approach a 50 MT WGPu inventory could be eliminated in approximately 400 reactor years of operation. Assuming all other existing constraints were removed, the 72 operating US PWRs could disposition 50 MT of WGPu in 5.6 years. Use of a low fissile loading plutonium-erbium inert-oxide-matrix composition in the peripheral assemblies essentially destroys 100% of the 239 Pu and ≥90% total Pu over two 18 month fuel cycles. Core radial power peaking, reactivity vs EFPD profiles and core average reactivity coefficients were found to be comparable to standard PWR values. Hence, minimal impact on reload licensing is anticipated. Examination of potential candidate fuel matrices based on the existing experience base and thermo-physical properties resulted in the recommendation of three inert fuel matrix compositions for further study: zirconia, alumina and TRISO particle fuels. Objective metrics for quantifying the inherent proliferation resistance of plutonium host waste and fuel forms are proposed and were applied to compare the proposed spent WGPu non-uranium fuel to spent WGPu MOX fuels and WGPu borosilicate glass logs. The elimination disposition option spent non-uranium fuel product was found to present significantly greater barriers to proliferation than other plutonium disposal products

  1. Destruction of plutonium using non-uranium fuels in pressurized water reactor peripheral assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Chodak, III, Paul [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    1996-05-01

    This thesis examines and confirms the feasibility of using non-uranium fuel in a pressurized water reactor (PWR) radial blanket to eliminate plutonium of both weapons and civilian origin. In the equilibrium cycle, the periphery of the PWR is loaded with alternating fresh and once burned non-uranium fuel assemblies, with the interior of the core comprised of conventional three batch UO2 assemblies. Plutonium throughput is such that there is no net plutonium production: production in the interior is offset by destruction in the periphery. Using this approach a 50 MT WGPu inventory could be eliminated in approximately 400 reactor years of operation. Assuming all other existing constraints were removed, the 72 operating US PWRs could disposition 50 MT of WGPu in 5.6 years. Use of a low fissile loading plutonium-erbium inert-oxide-matrix composition in the peripheral assemblies essentially destroys 100% of the 239Pu and ≥90% {sub total}Pu over two 18 month fuel cycles. Core radial power peaking, reactivity vs EFPD profiles and core average reactivity coefficients were found to be comparable to standard PWR values. Hence, minimal impact on reload licensing is anticipated. Examination of potential candidate fuel matrices based on the existing experience base and thermo-physical properties resulted in the recommendation of three inert fuel matrix compositions for further study: zirconia, alumina and TRISO particle fuels. Objective metrics for quantifying the inherent proliferation resistance of plutonium host waste and fuel forms are proposed and were applied to compare the proposed spent WGPu non-uranium fuel to spent WGPu MOX fuels and WGPu borosilicate glass logs. The elimination disposition option spent non-uranium fuel product was found to present significantly greater barriers to proliferation than other plutonium disposal products.

  2. Modeling Thermal and Stress Behavior of the Fuel-clad Interface in Monolithic Fuel Mini-plates

    International Nuclear Information System (INIS)

    Miller, Gregory K.; Medvedev, Pavel G.; Burkes, Douglas E.; Wachs, Daniel M.

    2010-01-01

    As part of the Global Threat Reduction Initiative, a fuel development and qualification program is in process with the objective of qualifying very high density low enriched uranium fuel that will enable the conversion of high performance research reactors with operational requirements beyond those supported with currently available low enriched uranium fuels. The high density of the fuel is achieved by replacing the fuel meat with a single monolithic low enriched uranium-molybdenum fuel foil. Doing so creates differences in the mechanical and structural characteristics of the fuel plate because of the planar interface created by the fuel foil and cladding. Furthermore, the monolithic fuel meat will dominate the structural properties of the fuel plate rather than the aluminum matrix, which is characteristic of dispersion fuel types. Understanding the integrity and behavior of the fuel-clad interface during irradiation is of great importance for qualification of the new fuel, but can be somewhat challenging to determine with a single technique. Efforts aimed at addressing this problem are underway within the fuel development and qualification program, comprised of modeling, as-fabricated plate characterization, and post-irradiation examination. An initial finite element analysis model has been developed to investigate worst-case scenarios for the basic monolithic fuel plate structure, using typical mini-plate irradiation conditions in the Advanced Test Reactor. Initial analysis shows that the stress normal to the fuel-clad interface dominates during irradiation, and that the presence of small, rounded delaminations at the interface is not of great concern. However, larger and/or fuel-clad delaminations with sharp corners can create areas of concern, as maximum principal cladding stress, strain, displacement, and peak fuel temperature are all significantly increased. Furthermore, stresses resulting from temperature gradients that cause the plate to bow or buckle in

  3. Fabrication of high-uranium-loaded U/sub 3/O/sub 8/-Al developmental fuel plates

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, G.L.; Martin, M.M.

    1980-12-01

    A common plate-type fuel for research and test reactors is U/sub 3/O/sub 8/ dispersed in aluminum and clad with an aluminum alloy. There is an impetus to reduce the /sup 235/U enrichment from above 90% to below 20% for these fuels to lessen the risk of diversion of the uranium for nonpeaceful uses. Thus, the uranium content of the fuel plates has to be increased to maintain the performance of the reactors. This paper describes work at ORNL to determine the maximal uranium loading for these fuels that can be fabricated with commercially proven materials and techniques and that can be expected to perform satisfactorily in service.

  4. Optimization of fuel cycle strategies with constraints on uranium availability

    International Nuclear Information System (INIS)

    Silvennoinen, P.; Vira, J.; Westerberg, R.

    1982-01-01

    Optimization of nuclear reactor and fuel cycle strategies is studied under the influence of reduced availability of uranium. The analysis is separated in two distinct steps. First, the global situation is considered within given high and low projections of the installed capacity up to the year 2025. Uranium is regarded as an exhaustible resource whose production cost would increase proportionally to increasing cumulative exploitation. Based on the estimates obtained for the uranium cost, a global strategy is derived by splitting the installed capacity between light water reactor (LWR) once-through, LWR recycle, and fast breeder reactor (FBR) alternatives. In the second phase, the nuclear program of an individual utility is optimized within the constraints imposed from the global scenario. Results from the global scenarios indicate that in a reference case the uranium price would triple by the year 2000, and the price escalation would continue throughout the planning period. In a pessimistic growth scenario where the global nuclear capacity would not exceed 600 GW(electric) in 2025, the uranium price would almost double by 2000. In both global scenarios, FBRs would be introduced, in the reference case after 2000 and in the pessimistic case after 2010. In spite of the increases in the uranium prices, the levelized power production cost would increase only by 45% up to 2025 in the utility case provided that the plutonium is incinerated as a substitute fuel

  5. Irradiation experiment conceptual design parameters for MURR LEU U-Mo fuel conversion

    International Nuclear Information System (INIS)

    Stillman, J.; Feldman, E.; Stevens, J.; Wilson, E.

    2013-03-01

    This report contains the results of reactor design and performance calculations for conversion of the University of Missouri Research Reactor (MURR) from the use of highly-enriched uranium (HEU) fuel to the use of low-enriched uranium (LEU) fuel. The analyses were performed by staff members of the Global Threat Reduction Initiative (GTRI) Reactor Conversion Program at the Argonne National Laboratory (ANL) and the MURR Facility. The core conversion to LEU is being performed with financial support from the U. S. government. In the framework of its non-proliferation policies, the international community presently aims to minimize the amount of nuclear material available that could be used for nuclear weapons. In this geopolitical context most research and test reactors, both domestic and international, have started a program of conversion to the use of LEU fuel. A new type of LEU fuel based on an alloy of uranium and molybdenum (U-Mo) is expected to allow the conversion of U.S. domestic high performance reactors like MURR. This report presents the nominal steady-state irradiation conditions of a key set of plates containing peak irradiation parameters found in MURR cores fueled with the LEU monolithic U-Mo alloy fuel with 10 wt% Mo.

  6. Quantification of the effect of in-situ generated uranium metal on the experimentally determined O/U ratio of a sintered uranium dioxide fuel pellet

    International Nuclear Information System (INIS)

    Narasimha Murty, B.; Bharati Misra, U.; Yadav, R.B.; Srivastava, R.K.

    2005-01-01

    This paper describes quantitatively the effect of in-situ generated uranium metal (that could be formed due to the conducive manufacturing conditions) in a sintered uranium dioxide fuel pellet on the experimentally determined O/U ratio using analytical methods involving dissolution of the pellet material. To quantify the effect of in-situ generated uranium metal in the fuel pellet, a mathematical expression is derived for the actual O/U ratio in terms of the O/U ratio as determined by an experiment involving dissolution of the material and the quantity of uranium metal present in the uranium dioxide pellet. The utility of this derived mathematical expression is demonstrated by tabulating the calculated actual O/U ratios for varying amounts of uranium metal (from 5 to 95% in 5% intervals) and different O/U ratio values (from 2.001 to 2.015 in 0.001 intervals). This paper brings out the necessity of care to be exercised while interpreting the experimentally determined O/U ratio and emphasizes the fact that it is always safer to produce the nuclear fuel with oxygen to uranium ratios well below the specified maximum limit of 2.015. (author)

  7. Advanced fuel cycles: a rationale and strategy for adopting the low-enriched-uranium fuel cycle

    International Nuclear Information System (INIS)

    James, R.A.

    1980-01-01

    A two-year study of alternatives to the natural uranium fuel cycle in CANDU reactors is summarized. The possible advanced cycles are briefly described. Selection criteria for choosing a cycle for development include resource utilization, economics, ease of implementaton, and social acceptability. It is recommended that a detailed study should be made with a view to the early implementation of the low-enriched uranium cycle. (LL)

  8. Processing of irradiated, enriched uranium fuels at the Savannah River Plant

    Energy Technology Data Exchange (ETDEWEB)

    Hyder, M L; Perkins, W C; Thompson, M C; Burney, G A; Russell, E R; Holcomb, H P; Landon, L F

    1979-04-01

    Uranium fuels containing /sup 235/U at enrichments from 1.1% to 94% are processed and recovered, along with neptunium and plutonium byproducts. The fuels to be processed are dissolved in nitric acid. Aluminum-clad fuels are disssolved using a mercury catalyst to give a solution rich in aluminum. Fuels clad in more resistant materials are dissolved in an electrolytic dissolver. The resulting solutions are subjected to head-end treatment, including clarification and adjustment of acid and uranium concentration before being fed to solvent extraction. Uranium, neptunium, and plutonium are separated from fission products and from one another by multistage countercurrent solvent extraction with dilute tri-n-butyl phosphate in kerosene. Nitric acid is used as the salting agent in addition to aluminum or other metal nitrates present in the feed solution. Nuclear safety is maintained through conservative process design and the use of monitoring devices as secondary controls. The enriched uranium is recovered as a dilute solution and shipped off-site for further processing. Neptunium is concentrated and sent to HB-Line for recovery from solution. The relatively small quantities of plutonium present are normally discarded in aqueous waste, unless the content of /sup 238/Pu is high enough to make its recovery desirable. Most of the /sup 238/Pu can be recovered by batch extraction of the waste solution, purified by counter-current solvent extraction, and converted to oxide in HB-Line. By modifying the flowsheet, /sup 239/Pu can be recovered from low-enriched uranium in the extraction cycle; neptunium is then not recovered. The solvent is subjected to an alkaline wash before reuse to remove degraded solvent and fission products. The aqueous waste is concentrated and partially deacidified by evaporation before being neutralized and sent to the waste tanks; nitric acid from the overheads is recovered for reuse.

  9. Processing of irradiated, enriched uranium fuels at the Savannah River Plant

    International Nuclear Information System (INIS)

    Hyder, M.L.; Perkins, W.C.; Thompson, M.C.; Burney, G.A.; Russell, E.R.; Holcomb, H.P.; Landon, L.F.

    1979-04-01

    Uranium fuels containing 235 U at enrichments from 1.1% to 94% are processed and recovered, along with neptunium and plutonium byproducts. The fuels to be processed are dissolved in nitric acid. Aluminum-clad fuels are disssolved using a mercury catalyst to give a solution rich in aluminum. Fuels clad in more resistant materials are dissolved in an electrolytic dissolver. The resulting solutions are subjected to head-end treatment, including clarification and adjustment of acid and uranium concentration before being fed to solvent extraction. Uranium, neptunium, and plutonium are separated from fission products and from one another by multistage countercurrent solvent extraction with dilute tri-n-butyl phosphate in kerosene. Nitric acid is used as the salting agent in addition to aluminum or other metal nitrates present in the feed solution. Nuclear safety is maintained through conservative process design and the use of monitoring devices as secondary controls. The enriched uranium is recovered as a dilute solution and shipped off-site for further processing. Neptunium is concentrated and sent to HB-Line for recovery from solution. The relatively small quantities of plutonium present are normally discarded in aqueous waste, unless the content of 238 Pu is high enough to make its recovery desirable. Most of the 238 Pu can be recovered by batch extraction of the waste solution, purified by counter-current solvent extraction, and converted to oxide in HB-Line. By modifying the flowsheet, 239 Pu can be recovered from low-enriched uranium in the extraction cycle; neptunium is then not recovered. The solvent is subjected to an alkaline wash before reuse to remove degraded solvent and fission products. The aqueous waste is concentrated and partially deacidified by evaporation before being neutralized and sent to the waste tanks; nitric acid from the overheads is recovered for reuse

  10. Processing used nuclear fuel with nanoscale control of uranium and ultrafiltration

    Energy Technology Data Exchange (ETDEWEB)

    Wylie, Ernest M.; Peruski, Kathryn M.; Prizio, Sarah E. [Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556 (United States); Bridges, Andrea N.A.; Rudisill, Tracy S.; Hobbs, David T. [Savannah River National Laboratory, Aiken, SC 29808 (United States); Phillip, William A. [Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556 (United States); Burns, Peter C., E-mail: pburns@nd.edu [Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556 (United States); Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556 (United States)

    2016-05-15

    Current separation and purification technologies utilized in the nuclear fuel cycle rely primarily on liquid–liquid extraction and ion-exchange processes. Here, we report a laboratory-scale aqueous process that demonstrates nanoscale control for the recovery of uranium from simulated used nuclear fuel (SIMFUEL). The selective, hydrogen peroxide induced oxidative dissolution of SIMFUEL material results in the rapid assembly of persistent uranyl peroxide nanocluster species that can be separated and recovered at moderate to high yield from other process-soluble constituents using sequestration-assisted ultrafiltration. Implementation of size-selective physical processes like filtration could results in an overall simplification of nuclear fuel cycle technology, improving the environmental consequences of nuclear energy and reducing costs of processing. - Highlights: • Nanoscale control in irradiated fuel reprocessing. • Ultrafiltration to recover uranyl cage clusters. • Alternative to solvent extraction for uranium purification.

  11. IAEA Activities on Uranium Resources and Production, and Databases for the Nuclear Fuel Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Ganguly, C.; Slezak, J. [Divison of Nuclear Fuel Cycle and Waste Technology, International Atomic Energy Agency, Vienna (Austria)

    2014-05-15

    In recent years rising expectation for nuclear power has led to a significant increase in the demand for uranium and in turn dramatic increases in uranium exploration, mining and ore processing activities worldwide. Several new countries, often with limited experience, have also embarked on these activities. The ultimate goal of the uranium raw material industry is to provide an adequate supply of uranium that can be delivered to the market place at a competitive price by environmentally sound, mining and milling practices. The IAEA’s programme on uranium raw material encompass all aspects of uranium geology and deposits, exploration, resources, supply and demand, uranium mining and ore processing, environmental issues in the uranium production cycle and databases for the uranium fuel cycle. Radiological safety and environmental protection are major challenges in uranium mines and mills and their remediation. The IAEA has revived its programme for the Uranium Production Site Appraisal Team (UPSAT) to assist Member States to improve operational and safety performances at uranium mines and mill sites. The present paper summarizes the ongoing activities of IAEA on uranium raw material, highlighting the status of global uranium resources, their supply and demand, the IAEA database on world uranium deposit (UDEPO) and nuclear fuel cycle information system (NFCIS), recent IAEA Technical Meetings (TM) and related ongoing Technical Cooperation (TC) projects. (author)

  12. Uranium chloride extraction of transuranium elements from LWR fuel

    International Nuclear Information System (INIS)

    Miller, W.E.; Ackerman, J.P.; Battles, J.E.; Johnson, T.R.; Pierce, R.D.

    1992-01-01

    A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels containing rare earth and noble metal fission products as well as other fission products is disclosed. The oxide fuel is reduced with Ca metal in the presence of Ca chloride and a U-Fe alloy which is liquid at about 800 C to dissolve uranium metal and the noble metal fission product metals and transuranium actinide metals and rare earth fission product metals leaving Ca chloride having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein. The Ca chloride and CaO and the fission products contained therein are separated from the U-Fe alloy and the metal values dissolved therein. The U-Fe alloy having dissolved therein reduced metals from the spent nuclear fuel is contacted with a mixture of one or more alkali metal or alkaline earth metal halides selected from the class consisting of alkali metal or alkaline earth metal and Fe or U halide or a combination thereof to transfer transuranium actinide metals and rare earth metals to the halide salt leaving the uranium and some noble metal fission products in the U-Fe alloy and thereafter separating the halide salt and the transuranium metals dissolved therein from the U-Fe alloy and the metals dissolved therein. 1 figure

  13. Uranium resource utilization improvements in the once-through PWR fuel cycle

    International Nuclear Information System (INIS)

    Matzie, R.A.

    1980-04-01

    In support of the Nonproliferation Alternative Systems Assessment Program (NASAP), Combustion Engineering, Inc. performed a comprehensive analytical study of potential uranium utilization improvement options that can be backfit into existing PWRs operating on the once-through uranium fuel cycle. A large number of potential improvement options were examined as part of a preliminary survey of candidate options. The most attractive of these, from the standpoint of uranium utilization improvement, economic viability, and ease of implementation, were then selected for detailed analysis and were included in a single composite improvement case. This composite case represents an estimate of the total savings in U 3 O 8 consumption that can be achieved in current-design PWRs by implementing improvements which can be developed and demonstrated in the near term. The improvement options which were evaluated in detail and included in the composite case were a new five-batch, extended-burnup fuel management scheme, low-leakage fuel management, modified lattice designs, axial blankets, reinsertion of initial core batches, and end-of-cycle stretchout

  14. Thermal cycling behaviour and thermal stability of uranium-molybdenum alloys of low molybdenum content

    International Nuclear Information System (INIS)

    Decours, J.; Fabrique, B.; Peault, O.

    1963-01-01

    We have studied the behaviour during thermal cycling of as-cast U-Mo alloys whose molybdenum content varies from 0.5 to 3 per cent; results are given concerning grain stability during extended heat treatments and the effect of treatments combining protracted heating with thermal cycling. The thermal cycling treatments were carried out at 550, 575, 600 and 625 deg C for 1000 cycles; the protracted heating experiments were done at 550, 575, 600 and 625 deg C for 2000 hours (4000 hrs at 625 deg C). The 0.5 per cent alloy resists much better to the thermal cycling than does the non-alloyed uranium. This resistance is, however, much lower than that of alloys containing over l per cent, even at 550 deg C it improves after a heat treatment for grain-refining. Alloys of over 1.1 per cent have a very good resistance to a cycling treatment even at 625 deg C, and this behaviour improves with increasing concentrations up to 3 per cent. An increase in the temperature up to the γ-phase has few disadvantages provided that it is followed by rapid cooling (50 to 100 deg C/min). The α grain is fine, the γ-phase is of the modular form, and the behaviour during a thermal cycling treatment is satisfactory. If this cooling is slow (15 deg /hr) the α-grain is coarse and cycling treatment behaviour is identical to that of the 0.5 per cent alloy. The protracted heat treatments showed that the α-grain exhibits satisfactory stability after 2000 hours at 575, 600 and 625 deg C, and after 4000 hours at 625 deg C. A heat cycling treatment carried out after these tests affects only very little the behaviour of these alloys during cycling. (authors) [fr

  15. Development of IAEA safeguards at low enrichment uranium fuel fabrication plants

    International Nuclear Information System (INIS)

    Badawy, I.

    1988-01-01

    In this report the nuclear material at low enrichment uranium fuel fabrication plants under IAEA safeguards is studied. The current verification practices of the nuclear material and future improvements are also considered. The problems met during the implementation of the the verification measures of the nuclear material - particularly for the fuel assemblies are discussed. The additional verification activities as proposed for future improvements are also discussed including the physical inventory verification and the verification of receipts and shipments. It is concluded that the future development of the present IAEA verification practices at low enrichment uranium fuel fabrication plants would necessitate the application of quantitative measures of the nuclear material and the implementation of advanced measurement techniques and instruments. 2 fig., 4 tab

  16. Radionuclide compositions of spent fuel and high level waste for the uranium and plutonium fuelled PWR

    International Nuclear Information System (INIS)

    Fairclough, M.P.; Tymons, B.J.

    1985-06-01

    The activities of a selection of radionuclides are presented for three types of reactor fuel of interest in radioactive waste management. The fuel types are for a uranium 'burning' PWR, a plutonium 'burning' PWR using plutonium recycled from spent uranium fuel and a plutonium 'burning' PWR using plutonium which has undergone multiple recycle. (author)

  17. How can Korea secure uranium enrichment and spent fuel reprocessing rights?

    International Nuclear Information System (INIS)

    Roh, Seungkook; Kim, Wonjoon

    2014-01-01

    South Korea is heavily dependent on energy resources from other countries and nuclear energy accounts for 31% of Korea's electric power generation as a major energy. However, Korea has many limitations in uranium enrichment and spent fuel reprocessing under the current Korea-U.S. nuclear agreement, although they are economically and politically important to Korea due to a significant problems in nuclear fuel storages. Therefore, in this paper, we first examine those example countries – Japan, Vietnam, and Iran – that have made nuclear agreements with the U.S. or have changed their agreements to allow the enrichment of uranium and the reprocessing of spent fuel. Then, we analyze those countries' nuclear energy policies and review their strategic repositioning in the relationship with the U.S. We find that a strong political stance for peaceful usage of nuclear energy including the legislation of nuclear laws as was the case of Japan. In addition, it is important for Korea to acquire advanced technological capability such as sodium-cooled fast reactor (SFR) because SFR technologies require plutonium to be used as fuel rather than uranium-235. In addition, Korea needs to leverage its position in nuclear agreement between China and the U.S. as was the case of Vietnam

  18. Evaluation of bioassay program at uranium fuel fabrication plants

    International Nuclear Information System (INIS)

    Biggs, D.

    1981-03-01

    Results of a comprehensive study of urinalysis, lung burden and personal air sample measurements for workers at a uranium fuel fabrication plant are presented. Correlations between measurements were found and regression models used to explain the relationship between lung burden, daily intakes and urinary excretions of uranium. Assuming the ICRP lung model, the lung burden histories of ten workers were used to estimate the amounts in each of the long-term compartments of the lung. Estimates of the half lives of each compartment and of the maximum relative contributions to the urine from each compartment are given. These values were then used to predict urinary excretions from the long-term compartments for workers at another fuel fabrication plant. The standard error of estimate compared well with the daily variation in urinary excretion. (author)

  19. IRRADIATION PERFORMANCE OF U-Mo MONOLITHIC FUEL

    Directory of Open Access Journals (Sweden)

    M.K. MEYER

    2014-04-01

    Full Text Available High-performance research reactors require fuel that operates at high specific power to high fission density, but at relatively low temperatures. Research reactor fuels are designed for efficient heat rejection, and are composed of assemblies of thin-plates clad in aluminum alloy. The development of low-enriched fuels to replace high-enriched fuels for these reactors requires a substantially increased uranium density in the fuel to offset the decrease in enrichment. Very few fuel phases have been identified that have the required combination of very-high uranium density and stable fuel behavior at high burnup. UMo alloys represent the best known tradeoff in these properties. Testing of aluminum matrix U-Mo aluminum matrix dispersion fuel revealed a pattern of breakaway swelling behavior at intermediate burnup, related to the formation of a molybdenum stabilized high aluminum intermetallic phase that forms during irradiation. In the case of monolithic fuel, this issue was addressed by eliminating, as much as possible, the interfacial area between U-Mo and aluminum. Based on scoping irradiation test data, a fuel plate system composed of solid U-10Mo fuel meat, a zirconium diffusion barrier, and Al6061 cladding was selected for development. Developmental testing of this fuel system indicates that it meets core criteria for fuel qualification, including stable and predictable swelling behavior, mechanical integrity to high burnup, and geometric stability. In addition, the fuel exhibits robust behavior during power-cooling mismatch events under irradiation at high power.

  20. Irradiation performance of U-Mo monolithic fuel

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, M. K.; Gan, J.; Jue, J. F.; Keiser, D. D.; Perez, E.; Robinson, A.; Wachs, D. M.; Woolstenhulme, N. [Idaho National Laboratory, Idaho (Korea, Republic of); Kim, Y.S.; Hofman, G. L. [Argonne National Laboratory, Lemont (United States)

    2014-04-15

    High-performance research reactors require fuel that operates at high specific power to high fission density, but at relatively low temperatures. Research reactor fuels are designed for efficient heat rejection, and are composed of assemblies of thin-plates clad in aluminum alloy. The development of low-enriched fuels to replace high-enriched fuels for these reactors requires a substantially increased uranium density in the fuel to offset the decrease in enrichment. Very few fuel phases have been identified that have the required combination of very-high uranium density and stable fuel behavior at high burnup. U-Mo alloys represent the best known tradeoff in these properties. Testing of aluminum matrix U-Mo aluminum matrix dispersion fuel revealed a pattern of breakaway swelling behavior at intermediate burnup, related to the formation of a molybdenum stabilized high aluminum intermetallic phase that forms during irradiation. In the case of monolithic fuel, this issue was addressed by eliminating, as much as possible, the interfacial area between U-Mo and aluminum. Based on scoping irradiation test data, a fuel plate system composed of solid U-10Mo fuel meat, a zirconium diffusion barrier, and Al6061 cladding was selected for development. Developmental testing of this fuel system indicates that it meets core criteria for fuel qualification, including stable and predictable swelling behavior, mechanical integrity to high burnup, and geometric stability. In addition, the fuel exhibits robust behavior during power-cooling mismatch events under irradiation at high power.

  1. Microstructural characteristics of DU-xMo alloys with x = 7-12 wt%

    International Nuclear Information System (INIS)

    Burkes, Douglas E.; Hartmann, Thomas; Prabhakaran, Ramprashad; Jue, J.-F.

    2009-01-01

    Microstructural, phase, and impurity analyses of six depleted uranium-molybdenum alloys were obtained using optical metallography, X-ray diffraction, and carbon/nitrogen/oxygen determination. Uranium-molybdenum alloy foils are currently under investigation for the conversion of high-power research reactors using high-enriched uranium fuel to accommodate the use of low-enriched uranium fuel. Understanding basic microstructural behavior of these foils is an important consideration in determining the impact of fabrication processes and in anticipating performance of the foils in a reactor. Average grain diameter decreased with increasing molybdenum content. Lattice parameter decreased with increasing molybdenum content, and no significant degree of phase decomposition or crystallographic ordering was caused by processing and post-processing conditions employed in this study. Impurity concentration, specifically carbon, inhibited the degree of microstructural recrystallization but did not appear to impact other microstructural traits, such as γ-phase retention or lattice parameter.

  2. Research reactor core conversion from the use of highly enriched uranium to the use of low enriched uranium fuels guidebook

    International Nuclear Information System (INIS)

    1980-08-01

    In view of the proliferation concerns caused by the use of highly enriched uranium (HEU) and in anticipation that the supply of HEU to research and test reactors will be more restricted in the future, this document has been prepared to assist reactor operators in determining whether conversion to the use of low enriched uranium (LEU) fuel designs is technically feasible for their specific reactor, and to assist in making a smooth transition to the use of LEU fuel designs where appropriate

  3. Uranium requirements for advanced fuel cycles in expanding nuclear power systems

    International Nuclear Information System (INIS)

    Banerjee, S.; Tamm, H.

    1978-01-01

    When considering advanced fuel cycle strategies in rapidly expanding nuclear power systems, equilibrium analyses do not apply. A computer simulation that accounts for system delay times and fissile inventories has been used to study the effects of different fuel cycles and different power growth rates on uranium consumption. The results show that for a given expansion rate of installed capacity, the main factors that affect resource requirements are the fissile inventory needed to introduce the advanced fuel cycle and the conversion (or breeding) ratio. In rapidly expanding systems, the effect of fissile inventory dominates, whereas in slowly expanding systems, conversion or breeding ratio dominates. Heavy-water-moderated and -cooled reactors, with their high conversion ratios, appear to be adaptable vehicles for accommodating fuel cycles covering a wide range of initial fissile inventories. They are therefore particularly suitable for conserving uranium over a wide range of nuclear power system expansion rates

  4. Contribution to the study of nuclear fuel materials with a metallic uranium base

    International Nuclear Information System (INIS)

    Englander, M.

    1957-11-01

    In a power reactor destined to supply industrially recoverable thermal energy, the most economical source of heat still consists of natural metallic uranium. However, the nuclear fuel material, most often employed in the form of rods of 20 to 40 mm diameter, is subjected to a series of stresses which lead to irreversible distortions usually incompatible with the substructure of the reactor. As a result the fuel material must possess at the outset a certain number of qualities which must be determined. Investigations have therefore been carried out, first on the technological characters peculiar to each of the three allotropic phases of pure uranium metal, and on their interactions on the stabilisation of the material which consists of either cast uranium or uranium pile-treated in the γ phase. (author) [fr

  5. Studies on the safety and transmutation behaviour of innovative fuels for light water reactors

    International Nuclear Information System (INIS)

    Schitthelm, Oliver

    2012-01-01

    Nuclear power plants contribute a substantial part to the energy demand in industry. Today the most common fuel cycle uses enriched uranium which produces plutonium due to its 238 U content. With respect to the long-term waste disposal Plutonium is an issue due to its heat production and radiotoxicity. This thesis consists of three main parts. In the first part the development and validation of a new code package MCBURN for spatial high resolution burnup simulations is presented. In the second part several innovative uranium-free and plutonium-burning fuels are evaluated on assembly level. Candidates for these fuels are a thorium/plutonium fuel and an inert matrix fuel consisting of plutonium dispersed in an enriched molybdenum matrix. The performance of these fuels is evaluated against existing MOX and enriched uranium fuels considering the safety and transmutation behaviour. The evaluation contains the boron efficiency, the void coefficient, the doppler coefficient and the net balances of every radionuclide. In the third part these innovative fuels are introduced into a German KONVOI reactor core. Considering todays approved usage of MOX fuels a partial loading of one third of innovative fuels and two third of classical uranium fuels was analysed. The efficiency of the plutonium depletion is determined by the ratio of the production of higher isotopes compared to the plutonium depletion. Todays MOX-fuels transmutate about 25% to 30% into higher actinides as Americium or Curium. In uranium-free fuels this ratio is about 10% due to the lack of additional plutonium production. The analyses of the reactor core have shown that one third of MOX fuel is not capable of a net reduction of plutonium. On the other hand a partial loading with thorium/plutonium fuel incinerates about half the amount of plutonium produced by an uranium only core. If IMF is used the ratio increases to about 75%. Considering the safety behavior all fuels have shown comparable results.

  6. Radiation protection training at uranium hexafluoride and fuel fabrication plants

    International Nuclear Information System (INIS)

    Brodsky, A.; Soong, A.L.; Bell, J.

    1985-05-01

    This report provides general information and references useful for establishing or operating radiation safety training programs in plants that manufacture nuclear fuels, or process uranium compounds that are used in the manufacture of nuclear fuels. In addition to a brief summary of the principles of effective management of radiation safety training, the report also contains an appendix that provides a comprehensive checklist of scientific, safety, and management topics, from which appropriate topics may be selected in preparing training outlines for various job categories or tasks pertaining to the uranium nuclear fuels industry. The report is designed for use by radiation safety training professionals who have the experience to utilize the report to not only select the appropriate topics, but also to tailor the specific details and depth of coverage of each training session to match both employee and management needs of a particular industrial operation. 26 refs., 3 tabs

  7. Development of the uranium recovery process from rejected fuel plates in the fabrication of MTR type nuclear fuel

    International Nuclear Information System (INIS)

    Fleming Rubio, Peter Alex

    2010-01-01

    The current work was made in Conversion laboratory belonging to Chilean Nuclear Energy Commission, CCHEN. This is constituted by the development of three hydrometallurgical processes, belonging to the recovery of uranium from fuel plates based on uranium silicide (U_3Si_2) process, for nuclear research reactors MTR (Material Testing Reactor) type, those that come from the Fuel Elements Manufacture Plant, PEC. In the manufacturing process some of these plates are subjected to destructive tests by quality requirement or others are rejected for non-compliance with technical specifications, such as: lack of homogenization of the dispersion of uraniferous compound in the meat, as well as the appearance of the defects, such as blisters, so-called "dog bone", "fish tail", "remote islands", among others. Because the uranium used is enriched in 19.75% U_2_3_5 isotope, which explains the high value in the market, it must be recovered for reuse, returning to the production line of fuel elements. The uranium silicide, contained in the plates, is dispersed in an aluminum matrix and covered with plates and frames of ASTM 6061 Aluminum, as a sandwich coating, commonly referred to as 'meat' (sandwich meat). As aluminum is the main impurity, the process begins with this metal dissolution, present in meat and plates, by NaOH reaction, followed by a vacuum filtration, washing and drying, obtaining a powder of uranium silicide, with a small impurities percentage. Then, the crude uranium silicide reacts with a solution of hydrofluoric acid, dissolving the silicon and simultaneously precipitating UF_4 by reaction with HNO_3, obtaining an impure UO_2(NO_3)_2 solution. The experimental work was developed and implemented at laboratory scale for the three stages pertaining to the uranium recovery process, determining for each one the optimum operation conditions: temperature, molarity or concentration, reagent excess, among others (author)

  8. Study on reprocessing of uranium-thorium fuel with solvent extraction for HTGR

    International Nuclear Information System (INIS)

    Jiao Rongzhou; He Peijun; Liu Bingren; Zhu Yongjun

    1992-08-01

    A single cycle process by solvent extraction with acid feed solution is suggested. The purpose is to reprocess uranium-thorium fuel elements which are of high burn-up and rich of 232 U from HTGR (high temperature gas cooled reactor). The extraction cascade tests have been completed. The recovery of uranium and thorium is greater than 99.6%. By this method, the requirement, under remote control to re-fabricate fuel elements, of decontamination factors for Cs, Sr, Zr-Nb and Ru has been reached

  9. Glances on uranium. From uranium in the earth to electric power

    International Nuclear Information System (INIS)

    Valsardieu, C.

    1995-01-01

    This book is a technical, scientific and historical analysis of the nuclear fuel cycle from the origin of uranium in the earth and the exploitation of uranium ores to the ultimate storage of radioactive wastes. It comprises 6 chapters dealing with: 1) the different steps of uranium history (discovery, history of uranium chemistry, the radium era, the physicists and the structure of matter, the military uses, the nuclear power, the uranium industry and economics), 2) the uranium in nature (nuclear structure, physical-chemical properties, radioactivity, ores, resources, cycle, deposits), 3) the sidelights on uranium history (mining, prospecting, experience, ore processing, resources, reserves, costs), 4) the uranium in the fuel cycle, energy source and industrial product (fuel cycle, fission, refining, enrichment, fuel processing and reprocessing, nuclear reactors, wastes management), 5) the other energies in competition and the uranium market (other uranium uses, fossil fuels and renewable energies, uranium market), and 6) the future of uranium (forecasting, ecology, economics). (J.S.)

  10. All heavy metals closed-cycle analysis on water-cooled reactors of uranium and thorium fuel cycle systems

    International Nuclear Information System (INIS)

    Permana, Sidik; Sekimoto, Hiroshi; Waris, Abdul; Takaki, Naoyuki

    2009-01-01

    Uranium and Thorium fuels as the basis fuel of nuclear energy utilization has been used for several reactor types which produce trans-uranium or trans-thorium as 'by product' nuclear reaction with higher mass number and the remaining uranium and thorium fuels. The utilization of recycled spent fuel as world wide concerns are spent fuel of uranium and plutonium and in some cases using recycled minor actinide (MA). Those fuel schemes are used for improving an optimum nuclear fuel utilization as well to reduce the radioactive waste from spent fuels. A closed-cycle analysis of all heavy metals on water-cooled cases for both uranium and thorium fuel cycles has been investigated to evaluate the criticality condition, breeding performances, uranium or thorium utilization capability and void reactivity condition. Water-cooled reactor is used for the basic design study including light water and heavy water-cooled as an established technology as well as commercialized nuclear technologies. A developed coupling code of equilibrium fuel cycle burnup code and cell calculation of SRAC code are used for optimization analysis with JENDL 3.3 as nuclear data library. An equilibrium burnup calculation is adopted for estimating an equilibrium state condition of nuclide composition and cell calculation is performed for calculating microscopic neutron cross-sections and fluxes in relation to the effect of different fuel compositions, different fuel pin types and moderation ratios. The sensitivity analysis such as criticality, breeding performance, and void reactivity are strongly depends on moderation ratio and each fuel case has its trend as a function of moderation ratio. Heavy water coolant shows better breeding performance compared with light water coolant, however, it obtains less negative or more positive void reactivity. Equilibrium nuclide compositions are also evaluated to show the production of main nuclides and also to analyze the isotopic composition pattern especially

  11. Powder Metallurgy of Uranium Alloy Fuels for TRU-Burning Reactors Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    McDeavitt, Sean M

    2011-04-29

    outlining the beginning of the materials processing setup. Also included within this section is a thesis proposal by Jeff Hausaman. Appendix C contains the public papers and presentations introduced at the 2010 American Nuclear Society Winter Meeting. Appendix A—MSNE theses of David Garnetti and Grant Helmreich and proposal by Jeff Hausaman A.1 December 2009 Thesis by David Garnetti entitled “Uranium Powder Production Via Hydride Formation and Alpha Phase Sintering of Uranium and Uranium-Zirconium Alloys for Advanced Nuclear Fuel Applications” A.2 September 2009 Presentation by David Garnetti (same title as document in Appendix B.1) A.3 December 2010 Thesis by Grant Helmreich entitled “Characterization of Alpha-Phase Sintering of Uranium and Uranium-Zirconium Alloys for Advanced Nuclear Fuel Applications” A.4 October 2010 Presentation by Grant Helmreich (same title as document in Appendix B.3) A.5 Thesis Proposal by Jeffrey Hausaman entitled “Hot Extrusion of Alpha Phase Uranium-Zirconium Alloys for TRU Burning Fast Reactors” Appendix B—External presentations introduced at the 2010 ANS Winter Meeting B.1 J.S. Hausaman, D.J. Garnetti, and S.M. McDeavitt, “Powder Metallurgy of Alpha Phase Uranium Alloys for TRU Burning Fast Reactors,” Proceedings of 2010 ANS Winter Meeting, Las Vegas, Nevada, USA, November 7-10, 2010 B.2 PowerPoint Presentation Slides from C.1 B.3 G.W. Helmreich, W.J. Sames, D.J. Garnetti, and S.M. McDeavitt, “Uranium Powder Production Using a Hydride-Dehydride Process,” Proceedings of 2010 ANS Winter Meeting, Las Vegas, Nevada, USA, November 7-10, 2010 B.4. PowerPoint Presentation Slides from C.3 B.5 Poster Presentation from C.3 Appendix C—Fuel cycle research and development undergraduate materials and poster presentation C.1 Poster entitled “Characterization of Alpha-Phase Sintering of Uranium and Uranium-Zirconium Alloys” presented at the Fuel Cycle Technologies Program Annual Meeting C.2 April 2011 Honors Undergraduate Thesis

  12. Powder Metallurgy of Uranium Alloy Fuels for TRU-Burning Reactors Final Technical Report

    International Nuclear Information System (INIS)

    McDeavitt, Sean M.

    2011-01-01

    beginning of the materials processing setup. Also included within this section is a thesis proposal by Jeff Hausaman. Appendix C contains the public papers and presentations introduced at the 2010 American Nuclear Society Winter Meeting. Appendix A - MSNE theses of David Garnetti and Grant Helmreich and proposal by Jeff Hausaman A.1 December 2009 Thesis by David Garnetti entitled 'Uranium Powder Production Via Hydride Formation and Alpha Phase Sintering of Uranium and Uranium-Zirconium Alloys for Advanced Nuclear Fuel Applications' A.2 September 2009 Presentation by David Garnetti (same title as document in Appendix B.1) A.3 December 2010 Thesis by Grant Helmreich entitled 'Characterization of Alpha-Phase Sintering of Uranium and Uranium-Zirconium Alloys for Advanced Nuclear Fuel Applications' A.4 October 2010 Presentation by Grant Helmreich (same title as document in Appendix B.3) A.5 Thesis Proposal by Jeffrey Hausaman entitled 'Hot Extrusion of Alpha Phase Uranium-Zirconium Alloys for TRU Burning Fast Reactors' Appendix B - External presentations introduced at the 2010 ANS Winter Meeting B.1 J.S. Hausaman, D.J. Garnetti, and S.M. McDeavitt, 'Powder Metallurgy of Alpha Phase Uranium Alloys for TRU Burning Fast Reactors,' Proceedings of 2010 ANS Winter Meeting, Las Vegas, Nevada, USA, November 7-10, 2010 B.2 PowerPoint Presentation Slides from C.1 B.3 G.W. Helmreich, W.J. Sames, D.J. Garnetti, and S.M. McDeavitt, 'Uranium Powder Production Using a Hydride-Dehydride Process,' Proceedings of 2010 ANS Winter Meeting, Las Vegas, Nevada, USA, November 7-10, 2010 B.4. PowerPoint Presentation Slides from C.3 B.5 Poster Presentation from C.3 Appendix C - Fuel cycle research and development undergraduate materials and poster presentation C.1 Poster entitled 'Characterization of Alpha-Phase Sintering of Uranium and Uranium-Zirconium Alloys' presented at the Fuel Cycle Technologies Program Annual Meeting C.2 April 2011 Honors Undergraduate Thesis by William Sames, Research Fellow

  13. Enhanced CANDU6: Reactor and fuel cycle options - Natural uranium and beyond

    International Nuclear Information System (INIS)

    Ovanes, M.; Chan, P. S. W.; Mao, J.; Alderson, N.; Hopwood, J. M.

    2012-01-01

    The Enhanced CANDU 6 R (ECo R ) is the updated version of the well established CANDU 6 family of units incorporating improved safety characteristics designed to meet or exceed Generation III nuclear power plant expectations. The EC6 retains the excellent neutron economy and fuel cycle flexibility that are inherent in the CANDU reactor design. The reference design is based on natural uranium fuel, but the EC6 is also able to utilize additional fuel options, including the use of Recovered Uranium (RU) and Thorium based fuels, without requiring major hardware upgrades to the existing control and safety systems. This paper outlines the major changes in the EC6 core design from the existing C6 design that significantly enhance the safety characteristics and operating efficiency of the reactor. The use of RU fuel as a transparent replacement fuel for the standard 37-el NU fuel, and several RU based advanced fuel designs that give significant improvements in fuel burnup and inherent safety characteristics are also discussed in the paper. In addition, the suitability of the EC6 to use MOX and related Pu-based fuels will also be discussed. (authors)

  14. Irradiation performance of helium-bonded uranium--plutonium carbide fuel elements

    International Nuclear Information System (INIS)

    Latimer, T.W.; Petty, R.L.; Kerrisk, J.F.; DeMuth, N.S.; Levine, P.J.; Boltax, A.

    1979-01-01

    The current irradiation program of helium-bonded uranium--plutonium carbide elements is achieving its original goals. By August 1978, 15 of the original 171 helium-bonded elements had reached their goal burnups including one that had reached the highest burnup of any uranium--plutonium carbide element in the U.S.--12.4 at.%. A total of 66 elements had attained burnups over 8 at.%. Only one cladding breach had been identified at that time. In addition, the systematic and coordinated approach to the current steady-state irradiation tests is yielding much needed information on the behavior of helium-bonded carbide fuel elements that was not available from the screening tests (1965 to 1974). The use of hyperstoichiometric (U,Pu)C containing approx. 10 vol% (U,Pu) 2 C 3 appears to combine lower swelling with only a slightly greater tendency to carburize the cladding than single-phase (U,Pu)C. The selected designs are providing data on the relationship between the experimental parameters of fuel density, fuel-cladding gap size, and cladding type and various fuel-cladding mechanical interaction mechanisms

  15. Conversion of highly enriched uranium in thorium-232 based oxide fuel for light water reactors: MOX-T fuel

    Energy Technology Data Exchange (ETDEWEB)

    Vapirev, E I; Jordanov, T; Christoskov, I [Sofia Univ. (Bulgaria). Fizicheski Fakultet

    1994-12-31

    The idea of conversion of highly enriched uranium (HEU) from warheads without mixing it with natural uranium as well as the utilization of plutonium as fuel component is discussed. A nuclear fuel which is a mixture of 4% {sup 235}U (HEU) as a fissile isotope and 96 % {sup 232}Th (ThO{sub 2}) as a non-fissile isotope in a mixed oxide with thorium fuel is proposed. It is assumed that plutonium can also be used in the proposed fuel in a mixture with {sup 235}U. The following advantages of the use of HEU in LWRs in mixed {sup 235}U - Th fuel are pointed out: (1) No generation of long-living plutonium and americium isotopes (in case of reprocessing the high level radioactive wastes will contain only fission fragments and uranium); (2) The high conversion ratio of Th extends the expected burnup by approximately 1/3 without higher initial enrichment (the same initial enrichment simplifies the problem for compensation of the excess reactivity in the beginning with burnable poison and boric acid); (3) The high conversion ratio of Th allows the fuel utilization with less initial enrichment (by approx. 1/3) for the same burnup; thus less excess reactivity has to be compensated after reloading; in case of fuel reprocessing all fissile materials ({sup 235}U + {sup 233}U) could be chemically extracted. Irrespectively to the optimistic expectations outlined, further work including data on optimal loading and reloading schemes, theoretical calculations of thermal properties of {sup 235}U + Th fuel rods, manufacturing of several test fuel assemblies and investigations of their operational behaviour in a reactor core is still needed. 1 fig., 7 refs.

  16. Discharge Burnup Evaluation of Natural Uranium Loaded CANFLEX-43 Fuel Bundle

    International Nuclear Information System (INIS)

    Roh, Gyu Hong; Kim, Yong Hee; Kim, Won Young; Park, Joo Hwan

    2009-11-01

    Using WIMS-AECL code, which is 2-dimensional lattice core used in CANDU physics calculation, the discharge burnup of the natural uranium loaded CANFLEX-43 fuel bundle was evaluated by comparing the discharge burnup of standard 37 element fuel bundle. When the discharge burnup of the standard 37 element fuel is 7,200 MWd/MTU, that of the CANFLEX 43 fuel bundle was evaluated as 7,077 MWd/MTU, by applying the same lattice conditions for both fuel bundles

  17. Ultrasonic measurement of elastic moduli of 17-4 pH stainless steel and uranium -2 molybdenum from -400C to 8000C

    International Nuclear Information System (INIS)

    Gieske, J.H.

    1980-10-01

    Young's Modulus, shear modulus, and Poisson's ratio for 17-4 pH stainless steel and uranium -2 molybdenum are calculated from ultrasonic longitudinal and shear velocities determined from -40 0 C to 800 0 C. The ultrasonic velocities were determined at elevated temperatures using a through-transmission buffer rod arrangement. An indium-gallium slurry bond was used as an ultrasonic couplant between Cupernickel 10 alloy buffer rods and the specimen. Microstructural changes and phase transitions in the specimens are evident from the temperature dependence of the ultrasonic data. 10 figures, 3 tables

  18. Analytical methods associated with the recovery of uranium

    International Nuclear Information System (INIS)

    Dixon, K.

    1983-01-01

    This report summarizes various approaches made to the analysis of materials arising from the processing of Karoo deposits for uranium. These materials include head and residue samples, aqueous solutions and organic solvents and, finally, the precipitated cakes of the elements recovered, i.e. uranium, molybdenum, and arsenic. Analysis was required for these elements and also vanadium, carbon, sulphur, and carbonate in the head and residue samples. The concentration of uranium, molybdenum, and arsenic, other than in the precipitated cakes, ranges from 1 to 2000μg/g, and that of carbon, sulphur, and carbonate from 0,1 to 5 per cent. The analysis of cakes necessitates the determination of silver, arsenic, iron, copper, calcium, magnesium, manganese, molybdenum, lead, tin, titanium, and vanadium within the range 1 to 1000μg/g, and of sodium and silica within the range 10 to 20 000μg/g. The methods used include combustion methods for carbon, sulphur, and carbonate, and atomic-absorption, X-ray-fluorescence, and emission methods for the other analytes. The accuracy of the analysis is within 10 per cent

  19. A study of phase transformations processes in 0,5 to 4% mo uranium-molybdenum alloys; Etude des processus des transformations dans les alliages uranium-molybdene de teneur 0,5 a 4% en poids de molybdene

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1959-06-15

    Isothermal and continuous cooling transformations process have been established on uranium-molybdenum alloys containing 0,5 to 4 w% Mo. Transformations process of the {beta} and {gamma} solid solutions are described. These processes depend upon molybdenum concentration. Out of the {beta} solid solution phase appears an eutectoid decomposition of {beta} to ({alpha} + {gamma}) or the formation of a martensitic phase {alpha}''. The {gamma} solid solution shows a decomposition of {gamma} to ({alpha} + {gamma}) or ({alpha} + {gamma}'), or a formation of martensitic phases a' or a'{sub b}. The U-Mo equilibrium diagram is discussed, particularly in low concentrations zones. Limits between domains ({alpha} + {gamma}) and ({beta} + {gamma}), ({beta} + {gamma}) and {gamma}, ({beta} + {gamma}) and {beta}, have been determined. (author) [French] Les processus des transformations isothermes, et au cours de refroidissements continus ont ete etablis sur les alliages uranium-molybdene de 0,5 a 4 % en poids de Mo. Ceci a permis de mettre en evidence les processus des transformations de solutions solides {beta} et {gamma}, differents suivant la teneur en molybdene de l'alliage. Dans le premier cas il y a decomposition eutectoide de {beta} en ({alpha} + {gamma}) ou formations d'une phase martensitique {alpha}''. Dans le second cas il y a decomposition de {gamma} soit en ({alpha} + {gamma}) soit en ({alpha} + {gamma}') suivant la temperature, ou bien formation des phases martensitiques {alpha}' ou {alpha}'{sub b}. Le diagramme d'equilibre, uranium-molybdene est sujet a de nombreuses controverses, en particulier dans la zone des faibles concentrations. Les limites entre les domaines ({alpha} + {gamma}) et ({beta} + {gamma}), ({beta} + {gamma}) et {gamma}, ({beta} + {gamma}) et {beta}, ont ete determinees. (auteur)

  20. The Cigar Lake uranium deposit: Analog information for Canada's nuclear fuel waste disposal concept

    International Nuclear Information System (INIS)

    Cramer, J.J.

    1995-05-01

    The Cigar Lake uranium deposit, located in northern Saskatchewan, has many features that parallel those being considered within the Canadian concept for disposal of nuclear fuel waste. The study of these natural structures and processes provides valuable insight toward the eventual design and site selection of a nuclear fuel waste repository. The main feature of this analog is the absence of any indication on the surface of the rich uranium ore 450 m below. This shows that the combination of natural barriers has been effective in isolating the uranium ore from the surface environment. More specifically, the deposit provides analog information relevant to the stability of UO 2 fuel waste, the performance of clay-based and general aspects of water-rock interaction. The main geotechnical studies on this deposit focus on the evolution of groundwater compositions in the deposit and on their redox chemistry with respect to the uranium, iron and sulphide systems. This report reviews and summarizes the analog information and data from the Cigar Lake analog studies for the processes and scenarios expected to occur in the disposal system for used nuclear fuel proposed in Canada. (author). 45 refs., 10 figs

  1. A coalescence model for uranium exploration

    International Nuclear Information System (INIS)

    Stuart-Williams, V.; Taylor, C.M.

    1983-01-01

    Uranium mineralization was found in the Pristerognathus-Diictodon Assemblage Zone of the Teekloof Formation, Beaufort Group, west of Beaufort West, Cape Province, South Africa. All the anomalies can be related to a single mineralization model. Mineralization is found at the termination of a silt parting between two coalescing sandstones and lies in the lower sandstone as an inclined zone dipping downflow from the termination of the silt parting. The existence of primary Eh-pH gradient is indicated by a uranium-molybdenum zonation, the molybdenum lying above the uranium mineralization. The upper sandstone was an oxidizing fluvial channel in an arid environment through which uranyl carbonate was being transported in solution. Carbonaceous material undergoing anaerobic bacterial breakdown generated a weakly reducing fluid in the lower sandstone. Carbonaceous material at the REDOX front developed between the two mixing fluids at the point of sandstone coalescence reduced uranyl carbonates in solution. Once reduced the uranium minerals remained stable because the conditions in the REDOX front were only very weakly oxidizing. As floodplain aggradation continued, the upper sandstone was buried and the entire sandstone couplet became reducing, permanently stabilizing the uranium mineralization

  2. Nuclear fuel cycle, nuclear fuel makes the rounds: choosing a closed fuel cycle, nuclear fuel cycle processes, front-end of the fuel cycle: from crude ore to enriched uranium, back-end of the fuel cycle: the second life of nuclear fuel, and tomorrow: multiple recycling while generating increasingly less waste

    International Nuclear Information System (INIS)

    Philippon, Patrick

    2016-01-01

    France has opted for a policy of processing and recycling spent fuel. This option has already been deployed commercially since the 1990's, but will reach its full potential with the fourth generation. The CEA developed the processes in use today, and is pursuing research to improve, extend, and adapt these technologies to tomorrow's challenges. France has opted for a 'closed cycle' to recycle the reusable materials in spent fuel (uranium and plutonium) and optimise ultimate waste management. France has opted for a 'closed' nuclear fuel cycle. Spent fuel is processed to recover the reusable materials: uranium and plutonium. The remaining components (fission products and minor actinides) are the ultimate waste. This info-graphic shows the main steps in the fuel cycle currently implemented commercially in France. From the mine to the reactor, a vast industrial system ensures the conversion of uranium contained in the ore to obtain uranium oxide (UOX) fuel pellets. Selective extraction, purification, enrichment - key scientific and technical challenges for the teams in the Nuclear Energy Division (DEN). The back-end stages of the fuel cycle for recycling the reusable materials in spent fuel and conditioning the final waste-forms have reached maturity. CEA teams are pursuing their research in support of industry to optimise these processes. Multi-recycle plutonium, make even better use of uranium resources and, over the longer term, explore the possibility of transmuting the most highly radioactive waste: these are the challenges facing future nuclear systems. (authors)

  3. Vapor corrosion of aluminum cladding alloys and aluminum-uranium fuel materials in storage environments

    International Nuclear Information System (INIS)

    Lam, P.; Sindelar, R.L.; Peacock, H.B. Jr.

    1997-04-01

    An experimental investigation of the effects of vapor environments on the corrosion of aluminum spent nuclear fuel (A1 SNF) has been performed. Aluminum cladding alloys and aluminum-uranium fuel alloys have been exposed to environments of air/water vapor/ionizing radiation and characterized for applications to degradation mode analysis for interim dry and repository storage systems. Models have been developed to allow predictions of the corrosion response under conditions of unlimited corrodant species. Threshold levels of water vapor under which corrosion does not occur have been identified through tests under conditions of limited corrodant species. Coupons of aluminum 1100, 5052, and 6061, the US equivalent of cladding alloys used to manufacture foreign research reactor fuels, and several aluminum-uranium alloys (aluminum-10, 18, and 33 wt% uranium) were exposed to various controlled vapor environments in air within the following ranges of conditions: Temperature -- 80 to 200 C; Relative Humidity -- 0 to 100% using atmospheric condensate water and using added nitric acid to simulate radiolysis effects; and Gamma Radiation -- none and 1.8 x 10 6 R/hr. The results of this work are part of the body of information needed for understanding the degradation of the A1 SNF waste form in a direct disposal system in the federal repository. It will provide the basis for data input to the ongoing performance assessment and criticality safety analyses. Additional testing of uranium-aluminum fuel materials at uranium contents typical of high enriched and low enriched fuels is being initiated to provide the data needed for the development of empirical models

  4. Irradiation Experiment Conceptual Design Parameters for NBSR Fuel Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N. R. [Brookhaven National Lab. (BNL), Upton, NY (United States). Nuclear Science and Technology Dept.; Brown, N. R. [Brookhaven National Lab. (BNL), Upton, NY (United States). Nuclear Science and Technology Dept.; Baek, J. S [Brookhaven National Lab. (BNL), Upton, NY (United States). Nuclear Science and Technology Dept.; Hanson, A. L. [Brookhaven National Lab. (BNL), Upton, NY (United States). Nuclear Science and Technology Dept.; Cuadra, A. [Brookhaven National Lab. (BNL), Upton, NY (United States). Nuclear Science and Technology Dept.; Cheng, L. Y. [Brookhaven National Lab. (BNL), Upton, NY (United States). Nuclear Science and Technology Dept.; Diamond, D. J. [Brookhaven National Lab. (BNL), Upton, NY (United States). Nuclear Science and Technology Dept.

    2014-04-30

    It has been proposed to convert the National Institute of Standards and Technology (NIST) research reactor, known as the NBSR, from high-enriched uranium (HEU) fuel to low-Enriched uranium (LEU) fuel. The motivation to convert the NBSR to LEU fuel is to reduce the risk of proliferation of special nuclear material. This report is a compilation of relevant information from recent studies related to the proposed conversion using a metal alloy of LEU with 10 w/o molybdenum. The objective is to inform the design of the mini-plate and full-size-Plate irradiation experiments that are being planned. This report provides relevant dimensions of the fuel elements, and the following parameters at steady state: average and maximum fission rate density and fission density, fuel temperature distribution for the plate with maximum local temperature, and two-dimensional heat flux profiles of fuel plates with high power densities. The latter profiles are given for plates in both the inner and outer core zones and for cores with both fresh and depleted shim arms (reactivity control devices). A summary of the methodology to obtain these results is presented. Fuel element tolerance assumptions and hot channel factors used in the safety analysis are also given.

  5. Plasmachemical synthesis and evaluation of the thermal conductivity of metal-oxide compounds "Molybdenum-uranium dioxide"

    Science.gov (United States)

    Kotelnikova, Alexandra A.; Karengin, Alexander G.; Mendoza, Orlando

    2018-03-01

    The article represents possibility to apply oxidative and reducing plasma for plasma-chemical synthesis of metal-oxide compounds «Mo‒UO2» from water-salt mixtures «molybdic acid‒uranyl nitrate» and «molybdic acid‒ uranyl acetate». The composition of water-salt mixture was calculated and the conditions ensuring plasma-chemical synthesis of «Mo‒UO2» compounds were determined. Calculations were carried out at atmospheric pressure over a wide range of temperatures (300-4000 K), with the use of various plasma coolants (air, hydrogen). The heat conductivity coefficients of metal-oxide compounds «Mo‒UO2» consisting of continuous component (molybdenum matrix) are calculated. Inclusions from ceramics in the form of uranium dioxide were ordered in the matrix. Particular attention is paid to methods for calculating the coefficients of thermal conductivity of these compounds with the use of different models. Calculated results were compared with the experimental data.

  6. Radiological considerations in the design of Reprocessing Uranium Plant (RUP) of Fast Reactor Fuel Cycle Facility (FRFCF), Kalpakkam

    International Nuclear Information System (INIS)

    Chandrasekaran, S.; Rajagopal, V.; Jose, M.T.; Venkatraman, B.

    2012-01-01

    A Fast Reactor Fuel Cycle Facility (FRFCF) being planned at Indira Gandhi Centre for Atomic Research, Kalpakkam is an integrated facility with head end and back end of fuel cycle plants co-located in a single place, to meet the refuelling needs of the prototype fast breeder reactor (PFBR). Reprocessed uranium oxide plant (RUP) is one such plant in FRFCF to built to meet annual requirements of UO 2 for fabrication of fuel sub-assemblies (FSAs) and radial blanket sub-assemblies (RSAs) for PFBR. RUP receives reprocessed uranium oxide powder (U 3 O 8 ) from fast reactor fuel reprocessing plant (FRP) of FRFCF. Unlike natural uranium oxide plant, RUP has to handle reprocessed uranium oxide which is likely to have residual fission products activity in addition to traces of plutonium. As the fuel used for PFBR is recycled within these plants, formation of higher actinides in the case of plutonium and formation of higher levels of 232 U in the uranium product would be a radiological problem to be reckoned with. The paper discussed the impact of handling of multi-recycled reprocessed uranium in RUP and the radiological considerations

  7. Molybdenum-UO2 cerment irradiation at 1145 K

    Science.gov (United States)

    Mcdonald, G.

    1971-01-01

    Two molybdenum-UO2 cermet fuel pins were fission heated in a helium-cooled loop at a temperature of 1145 K and to a total burnup of 5.3 % of the U-235. After irradiation the fuel pins were measured to check dimensional stability, punctured at the plenums to determine fission gas release, and examined metallographically to determine the effect of irradiation. Burnup was determined in several sections of the fuel pin. The results of the postirradiation examination indicated: (1) There was no visible change in the fuel pins on irradiation under the above conditions. (2) The maximum swelling of the fuel pins was less than 1%. (3) There was no migration of UO2 and no visible interaction between the molybdenum and the UO2. (4) Approximately 12% of the fission gas formed was released from the cermet cone into the gas plenum.

  8. Mixing of Al into uranium silicides reactor fuels

    International Nuclear Information System (INIS)

    Ding, F.R.; Birtcher, R.C.; Kestel, B.J.; Baldo, P.M.

    1996-11-01

    SEM observations have shown that irradiation induced interaction of the aluminum cladding with uranium silicide reactor fuels strongly affects both fission gas and fuel swelling behaviors during fuel burn-up. The authors have used ion beam mixing, by 1.5 MeV Kr, to study this phenomena. RBS and the 27 Al(p, γ) 28 Si resonance nuclear reaction were used to measure radiation induced mixing of Al into U 3 Si and U 3 Si 2 after irradiation at 300 C. Initially U mixes into the Al layer and Al mixes into the U 3 Si. At a low dose, the Al layer is converted into UAl 4 type compound while near the interface the phase U(Al .93 Si .07 ) 3 grows. Under irradiation, Al diffuses out of the UAl 4 surface layer, and the lower density ternary, which is stable under irradiation, is the final product. Al mixing into U 3 Si 2 is slower than in U 3 Si, but after high dose irradiation the Al concentration extends much farther into the bulk. In both systems Al mixing and diffusion is controlled by phase formation and growth. The Al mixing rates into the two alloys are similar to that of Al into pure uranium where similar aluminide phases are formed

  9. Preliminary Accident Analyses for Conversion of the Massachusetts Institute of Technology Reactor (MITR) from Highly Enriched to Low Enriched Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Floyd E. [Argonne National Lab. (ANL), Argonne, IL (United States); Olson, Arne P. [Argonne National Lab. (ANL), Argonne, IL (United States); Wilson, Erik H. [Argonne National Lab. (ANL), Argonne, IL (United States); Sun, Kaichao S. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Newton, Jr., Thomas H. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Hu, Lin-wen [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2013-09-30

    The Massachusetts Institute of Technology Reactor (MITR-II) is a research reactor in Cambridge, Massachusetts designed primarily for experiments using neutron beam and in-core irradiation facilities. It delivers a neutron flux comparable to current LWR power reactors in a compact 6 MW core using Highly Enriched Uranium (HEU) fuel. In the framework of its non-proliferation policies, the international community presently aims to minimize the amount of nuclear material available that could be used for nuclear weapons. In this geopolitical context most research and test reactors, both domestic and international, have started a program of conversion to the use of LEU fuel. A new type of LEU fuel based on an alloy of uranium and molybdenum (U-Mo) is expected to allow the conversion of U.S. domestic high performance reactors like MITR. This report presents the preliminary accident analyses for MITR cores fueled with LEU monolithic U-Mo alloy fuel with 10 wt% Mo. Preliminary results demonstrate adequate performance, including thermal margin to expected safety limits, for the LEU accident scenarios analyzed.

  10. Analysis of irradiated U-7wt%Mo dispersion fuel microstructures using automated image processing

    Energy Technology Data Exchange (ETDEWEB)

    Collette, R. [Colorado School of Mines, Nuclear Science and Engineering Program, 1500 Illinois St, Golden, CO 80401 (United States); King, J., E-mail: kingjc@mines.edu [Colorado School of Mines, Nuclear Science and Engineering Program, 1500 Illinois St, Golden, CO 80401 (United States); Buesch, C. [Oregon State University, 1500 SW Jefferson St., Corvallis, OR 97331 (United States); Keiser, D.D.; Williams, W.; Miller, B.D.; Schulthess, J. [Nuclear Fuels and Materials Division, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States)

    2016-07-15

    The High Performance Research Reactor Fuel Development (HPPRFD) program is responsible for developing low enriched uranium (LEU) fuel substitutes for high performance reactors fueled with highly enriched uranium (HEU) that have not yet been converted to LEU. The uranium-molybdenum (U-Mo) fuel system was selected for this effort. In this study, fission gas pore segmentation was performed on U-7wt%Mo dispersion fuel samples at three separate fission densities using an automated image processing interface developed in MATLAB. Pore size distributions were attained that showed both expected and unexpected fission gas behavior. In general, it proved challenging to identify any dominant trends when comparing fission bubble data across samples from different fuel plates due to varying compositions and fabrication techniques. The results exhibited fair agreement with the fission density vs. porosity correlation developed by the Russian reactor conversion program. - Highlights: • Automated image processing is used to extract fission gas bubble data from irradiated U−Mo fuel samples. • Verification and validation tests are performed to ensure the algorithm's accuracy. • Fission bubble parameters are predictably difficult to compare across samples of varying compositions. • The 2-D results suggest the need for more homogenized fuel sampling in future studies. • The results also demonstrate the value of 3-D reconstruction techniques.

  11. Determination of uranium metal concentration in irradiated fuel storage basin sludge using selective dissolution

    International Nuclear Information System (INIS)

    Delegard, C.H.; Sinkov, S.I.; Chenault, J.W.; Schmidt, A.J.; Pool, K.N.; Welsh, T.L.

    2014-01-01

    Irradiated uranium metal fuel was stored underwater in the K East and K West storage basins at the US Department of Energy Hanford Site. The uranium metal under damaged cladding reacted with water to generate hydrogen gas, uranium oxides, and spalled uranium metal particles which intermingled with other particulates to form sludge. While the fuel has been removed, uranium metal in the sludge remains hazardous. An expeditious routine method to analyze 0.03 wt% uranium metal in the presence of >30 wt% total uranium was needed to support safe sludge management and processing. A selective dissolution method was designed based on the rapid uranium oxide dissolution but very low uranium metal corrosion rates in hot concentrated phosphoric acid. The uranium metal-bearing heel from the phosphoric acid step then is rinsed before the uranium metal is dissolved in hot concentrated nitric acid for analysis. Technical underpinnings of the selective dissolution method, including the influence of sludge components, were investigated to design the steps and define the reagents, quantities, concentrations, temperatures, and times within the selective dissolution analysis. Tests with simulant sludge proved the technique feasible. Tests with genuine sludge showed a 0.0028 ± 0.0037 wt% (at one standard deviation) uranium metal analytical background, a 0.011 wt% detection limit, and a 0.030 wt% quantitation limit in settled (wet) sludge. In tests using genuine K Basin sludge spiked with uranium metal at concentrations above the 0.030 wt% ± 25 % (relative) quantitation limit, uranium metal recoveries averaged 99.5 % with a relative standard deviation of 3.5 %. (author)

  12. Development of very high-density low-enriched uranium fuels

    International Nuclear Information System (INIS)

    Snelgrove, J.L.; Hofman, G.L.; Trybus, C.L.; Wiencek, T.C.

    1997-02-01

    The RERTR program has recently begun an aggressive effort to develop dispersion fuels for research and test reactors with uranium densities of 8 to 9 g U/cm 3 , based on the use of γ-stabilized uranium alloys. Fabrication development teams and facilities are being put into place and preparations for the first irradiation test are in progress. The first screening irradiations are expected to begin in late April 1997 and first results should be available by end of 1997. Discussions with potential international partners in fabrication development and irradiation testing have begun

  13. Uranium Enrichment Determination of the InSTEC Sub Critical Ensemble Fuel by Gamma Spectrometry

    International Nuclear Information System (INIS)

    Borrell Munnoz, Jose L.; LopezPino, Neivy; Diaz Rizo, Oscar; D'Alessandro Rodriguez, Katia; Padilla Cabal, Fatima; Arbelo Penna, Yunieski; Garcia Rios, Aczel R.; Quintas Munn, Ernesto L.; Casanova Diaz, Amaya O.

    2009-01-01

    Low background gamma spectrometry was applied to analyze the uranium enrichment of the nuclear fuel used in the InSTEC Sub Critical ensemble. The enrichment was calculated by two variants: an absolute method using the Monte Carlo method to simulated detector volumetric efficiency, and an iterative procedure without using standard sources. The results confirm that the nuclear fuel of the ensemble is natural uranium without any additional degree of enrichment. (author)

  14. An overview of the regulation of uranium mining, milling, refining and fuel fabrication

    International Nuclear Information System (INIS)

    Smythe, W.D.

    1980-07-01

    The mining, milling, refining and fabrication of uranium into nuclear fuel are activities that have in common the handling of natural uranium. The occupational and environmental hazards resulting from these activities vary widely. Uranium presents a radiological hazard throughout, but the principal culprit is radium which creates an occupational hazard in the mine and mill and an environmental hazard in the waste products produced in both the mill and the refinery. The chemicals used in both these latter processes also present hazards. Fuel fabrication presents the least potential for occupational and environmental hazards. The Canadian Atomic Energy Control Board licenses eight plants, and one plant for the extraction of uranium from phosphoric acid. The licensing process is characterised by approval in stages, the placing of the burden of proof on the applicant, inspection at all stages, and joint review by all regulatory agencies involved

  15. Neutronics Studies Of Uranium-Based Fully Ceramic Micro-Encapsulated Fuel For PWRs

    International Nuclear Information System (INIS)

    Maldonado, G. Ivan; Gehin, Jess C.

    2012-01-01

    This study evaluates the core neutronics and fuel cycle characteristics that result from employing uranium-based fully ceramic micro-encapsulated (FCM) fuel in a pressurized water reactor (PWR). Specific PWR bundle designs with FCM fuel have been developed, which by virtue of their TRISO particle based elements, are expected to safely reach higher fuel burnups while also increasing the tolerance to fuel failures. The SCALE 6.1 code package, developed and maintained at ORNL, was the primary software employed to model these designs. Analysis was performed using the SCALE double-heterogeneous (DH) fuel modeling capabilities. For cases evaluated with the NESTLE full-core three-dimensional nodal simulator, because the feature to perform DH lattice physics branches with the SCALE/TRITON sequence is not yet available, the Reactivity-Equivalent Physical Transformation (RPT) method was used as workaround to support the full core analyses. As part of the fuel assembly design evaluations, fresh feed lattices were modeled to analyze the within-assembly pin power peaking. Also, a color-set array of assemblies was constructed to evaluate power peaking and power sharing between a once-burned and a fresh feed assembly. In addition, a parametric study was performed by varying the various TRISO particle design features; such as kernel diameter, coating layer thicknesses, and packing fractions. Also, other features such as the selection of matrix material (SiC, Zirconium) and fuel rod dimensions were perturbed. After evaluating different uranium-based fuels, the higher physical density of uranium mononitride (UN) proved to be favorable, as the parametric studies showed that the FCM particle fuel design will need roughly 12% additional fissile material in comparison to that of a standard UO2 rod in order to match the lifetime of an 18-month PWR cycle. Neutronically, the FCM fuel designs evaluated maintain acceptable design features in the areas of fuel lifetime, temperature

  16. Criticality safety considerations for MSRE fuel drain tank uranium aggregation

    International Nuclear Information System (INIS)

    Hollenbach, D.F.; Hopper, C.M.

    1997-01-01

    This paper presents the results of a preliminary criticality safety study of some potential effects of uranium reduction and aggregation in the Molten Salt Reactor Experiment (MSRE) fuel drain tanks (FDTs) during salt removal operations. Since the salt was transferred to the FDTs in 1969, radiological and chemical reactions have been converting the uranium and fluorine in the salt to UF 6 and free fluorine. Significant amounts of uranium (at least 3 kg) and fluorine have migrated out of the FDTs and into the off-gas system (OGS) and the auxiliary charcoal bed (ACB). The loss of uranium and fluorine from the salt changes the chemical properties of the salt sufficiently to possibly allow the reduction of the UF 4 in the salt to uranium metal as the salt is remelted prior to removal. It has been postulated that up to 9 kg of the maximum 19.4 kg of uranium in one FDT could be reduced to metal and concentrated. This study shows that criticality becomes a concern when more than 5 kg of uranium concentrates to over 8 wt% of the salt in a favorable geometry

  17. A cellular automaton method to simulate the microstructure and evolution of low-enriched uranium (LEU) U–Mo/Al dispersion type fuel plates

    Energy Technology Data Exchange (ETDEWEB)

    Drera, Saleem S., E-mail: saleem.drera@gmail.com [Mechanical Engineering, Colorado School of Mines, Golden, CO 80401 (United States); Hofman, Gerard L. [Argonne National Laboratory, Chicago, IL 60439 (United States); Kee, Robert J. [Mechanical Engineering, Colorado School of Mines, Golden, CO 80401 (United States); King, Jeffrey C. [Metallurgical and Materials Engineering, Colorado School of Mines, Golden, CO 80401 (United States)

    2014-10-15

    Highlights: • This article presents a cellular automata (CA) algorithm to synthesize the growth of intermetallic interaction layers in U–Mo/Al dispersion fuel. • The method utilizes a 3D representation of the fuel, which is discretized into separate voxels that can change identy based on derived CA rules. • The CA model is compared to ILT measurements for RERTR experimental data. • The primary objective of the model is to synthesize three-dimensional microstructures that can be used in subsequent thermal and mechanical modeling. • The CA model can be used for predictive analysis. For example, it can be used to study the dependence of temperature on interaction layer growth. - Abstract: Low-enriched uranium (LEU) fuel plates for high power materials test reactors (MTR) are composed of nominally spherical uranium–molybdenum (U–Mo) particles within an aluminum matrix. Fresh U–Mo particles typically range between 10 and 100 μm in diameter, with particle volume fractions up to 50%. As the fuel ages, reaction–diffusion processes cause the formation and growth of interaction layers that surround the fuel particles. The growth rate depends upon the temperature and radiation environment. The cellular automaton algorithm described in this paper can synthesize realistic random fuel-particle structures and simulate the growth of the intermetallic interaction layers. Examples in the present paper pack approximately 1000 particles into three-dimensional rectangular fuel structures that are approximately 1 mm on each side. The computational approach is designed to yield synthetic microstructures consistent with images from actual fuel plates and is validated by comparison with empirical data on actual fuel plates.

  18. High-uranium-loaded U3O8-Al fuel element development program [contributed by N.M. Martin, ORNL

    International Nuclear Information System (INIS)

    Martin, M.M.

    1993-01-01

    The High-Uranium-Loaded U 3 O 8 -Al Fuel Element Development Program supports Argonne National Laboratory efforts to develop high-uranium-density research and test reactor fuel to accommodate use of low-uranium enrichment. The goal is to fuel most research and test reactors with uranium of less than 20% enrichment for the purpose of lowering the potential for diversion of highly-enriched material for nonpeaceful usages. The specific objective of the program is to develop the technological and engineering data base for U 3 O 8 -Al plate-type fuel elements of maximal uranium content to the point of vendor qualification for full scale fabrication on a production basis. A program and management plan that details the organization, supporting objectives, schedule, and budget is in place and preparation for fuel and irradiation studies is under way. The current programming envisions a program of about four years duration for an estimated cost of about two million dollars. During the decades of the fifties and sixties, developments at Oak Ridge National Laboratory led to the use of U 3 O 8 -Al plate-type fuel elements in the High Flux Isotope Reactor, Oak Ridge Research Reactor, Puerto Rico Nuclear Center Reactor, and the High Flux Beam Reactor. Most of the developmental information however applies only up to a uranium concentration of about 55 wt % (about 35 vol % U 3 O 8 ). The technical issues that must be addressed to further increase the uranium loading beyond 55 wt % involve plate fabrication phenomena of voids and dogboning, fuel behavior under long irradiation, and potential for the thermite reaction between U 3 O 8 and aluminum. (author)

  19. Evolution of microstructure of U-Mo alloys in as cast and sintered forms

    International Nuclear Information System (INIS)

    Sinha, V.P.; Hegde, P.V.; Prasad, G.J.; Kamath, H.S.; Dey, G.K.

    2009-01-01

    Over the years U 3 Si 2 compound dispersed in aluminium matrix has been successfully used as potential Low Enriched Uranium (LEU 235 ) base dispersion fuel in new research and test reactors and also for converting High Enriched Uranium (HEU > 85% U 235 ) cores to LEU in most of the existing research and test reactors. The maximum density achievable with U 3 Si 2 -AI dispersion fuel is around 4.8 g U cm -3 . To achieve a uranium density of 8.0 to 9.0 g U cm -3 in dispersion fuel with aluminium as matrix material, it is required to use γ-stabilized uranium metal powders. At Metallic Fuels Division, R and D efforts are on to develop these high density uranium alloys. Molybdenum plays a crucial role in metastabilising the γ-phase of uranium at room temperature which is very much evident when we see the microstructures of different U-Mo alloys with varying molybdenum concentration as solute atom. The paper describes the role of molybdenum in imparting metastability in U-Mo alloys from their microstructures in as cast and sintered forms. The paper also covers the role of tailored microstructure in U-Mo alloy for the purpose of hydriding and dehydriding treatment to generate alloy powders. (author)

  20. Uranium savings on a once through PWR fuel cycle

    International Nuclear Information System (INIS)

    Cupo, J.V.

    1980-01-01

    A number of alternatives which have the greatest potential for near term savings with minimum plant and fuel modifications have been examined at Westinghouse as part of continued internal assessment and part of NASAP study conducted for DOE pertaining to uranium utilization in a once through PWR fuel cycle. The alternatives which could be retrofitted to existing reactors were examined in more detail in the evaluation since they would have the greater near term impact on U savings

  1. Gas Generation from K East Basin Sludges and Irradiated Metallic Uranium Fuel Particles Series III Testing

    International Nuclear Information System (INIS)

    Schmidt, Andrew J.; Delegard, Calvin H.; Bryan, Samuel A.; Elmore, Monte R.; Sell, Rachel L.; Silvers, Kurt L.; Gano, Susan R.; Thornton, Brenda M.

    2003-01-01

    The path forward for managing of Hanford K Basin sludge calls for it to be packaged, shipped, and stored at T Plant until final processing at a future date. An important consideration for the design and cost of retrieval, transportation, and storage systems is the potential for heat and gas generation through oxidation reactions between uranium metal and water. This report, the third in a series (Series III), describes work performed at the Pacific Northwest National Laboratory (PNNL) to assess corrosion and gas generation from irradiated metallic uranium particles (fuel particles) with and without K Basin sludge addition. The testing described in this report consisted of 12 tests. In 10 of the tests, 4.3 to 26.4 g of fuel particles of selected size distribution were placed into 60- or 800-ml reaction vessels with 0 to 100 g settled sludge. In another test, a single 3.72-g fuel fragment (i.e., 7150-mm particle) was placed in a 60 ml reaction vessel with no added sludge. The twelfth test contained only sludge. The fuel particles were prepared by crushing archived coupons (samples) from an irradiated metallic uranium fuel element. After loading the sludge materials (whether fuel particles, mixtures of fuel particles and sludge, or sludge-only) into reaction vessels, the solids were covered with an excess of K Basin water, the vessels closed and connected to a gas measurement manifold, and the vessels back-flushed with inert neon cover gas. The vessels were then heated to a constant temperature. The gas pressures and temperatures were monitored continuously from the times the vessels were purged. Gas samples were collected at various times during the tests, and the samples analyzed by mass spectrometry. Data on the reaction rates of uranium metal fuel particles with water as a function of temperature and particle size were generated. The data were compared with published studies on metallic uranium corrosion kinetics. The effects of an intimate overlying sludge layer

  2. Development of Advanced High Uranium Density Fuels for Light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, James [Univ. of Wisconsin, Madison, WI (United States); Butt, Darryl [Boise State Univ., ID (United States); Meyer, Mitchell [Idaho National Lab. (INL), Idaho Falls, ID (United States); Xu, Peng [Westinghouse Electric Corporation, Pittsburgh, PA (United States)

    2016-02-15

    This work conducts basic materials research (fabrication, radiation resistance, thermal conductivity, and corrosion response) on U3Si2 and UN, two high uranium density fuel forms that have a high potential for success as advanced light water reactor (LWR) fuels. The outcome of this proposed work will serve as the basis for the development of advance LWR fuels, and utilization of such fuel forms can lead to the optimization of the fuel performance related plant operating limits such as power density, power ramp rate and cycle length.

  3. MUICYCL and MUIFAP: models tracking minor uranium isotopes in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Blum, S.R.; McLaren, R.A.

    1979-10-01

    Two computer programs have been written to provide information on the buildup of minor uranium isotopes in the nuclear fuel cycle. The Minor Uranium Isotope Cycle Program, MUICYCL, tracks fuel through a multiyear campaign cycle of enrichment, reactor burnup, reprocessing, enrichment, etc. MUICYCL facilities include preproduction stockpiles, U 235 escalation, and calculation of losses. The Minor Uranium Isotope Flowsheet Analyzer Program, MUIFAP, analyzes one minor isotope in one year of an enrichment operation. The formulation of the enrichment cascade, reactors, and reprocessing facility is presented. Input and output descriptions and sample cases are presented. The programs themselves are documented by short descriptions of each routine, flowcharts, definitions of common blocks and variables, and internal documentation. The programs are written in FORTRAN for use in batch mode

  4. Biamperometric estimation of uranium in input KMP samples of spent fuel reprocessing plant: field experience

    International Nuclear Information System (INIS)

    Gurba, P.B.; Dhakras, S.P.; Chaugule, G.A.; Venugopal, A.K.; Singh, R.K.; Bajpai, D.D.; Nair, P.R.; Xavier, Mary; Aggarwal, S.K.

    2000-01-01

    Feasibility of simple, precise and accurate biamperometric determination of uranium at about 0.1 mg level was earlier established using simulated uranium standards. To evaluate the usefulness of this method for accurate determination of uranium in spent fuel dissolver solution samples, analytical work was carried out

  5. Development of a high density fuel based on uranium-molybdenum alloys with high compatibility in high temperatures; Desenvolvimento de um combustivel de alta densidade a base das ligas uranio-molibdenio com alta compatibilidade em altas temperaturas

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Fabio Branco Vaz de

    2008-07-01

    This work has as its objective the development of a high density and low enriched nuclear fuel based on the gamma-UMo alloys, for utilization where it is necessary satisfactory behavior in high temperatures, considering its utilization as dispersion. For its accomplishment, it was started from the analysis of the RERTR ('Reduced Enrichment for Research and Test Reactors') results and some theoretical works involving the fabrication of gamma-uranium metastable alloys. A ternary addition is proposed, supported by the properties of binary and ternary uranium alloys studied, having the objectives of the gamma stability enhancement and an ease to its powder fabrication. Alloys of uranium-molybdenum were prepared with 5 to 10% Mo addition, and 1 and 3% of ternary, over a gamma U7Mo binary base alloy. In all the steps of its preparation, the alloys were characterized with the traditional techniques, to the determination of its mechanical and structural properties. To provide a process for the alloys powder obtention, its behavior under hydrogen atmosphere were studied, in thermo analyser-thermo gravimeter equipment. Temperatures varied from the ambient up to 1000 deg C, and times from 15 minutes to 16 hours. The results validation were made in a semi-pilot scale, where 10 to 50 g of powders of some of the alloys studied were prepared, under static hydrogen atmosphere. Compatibility studies were conducted by the exposure of the alloys under oxygen and aluminum, to the verification of possible reactions by means of differential thermal analysis. The alloys were exposed to a constant heat up to 1000 deg C, and their performances were evaluated in terms of their reaction resistance. On the basis of the results, it was observed that ternary additions increases the temperatures of the reaction with aluminum and oxidation, in comparison with the gamma UMo binaries. A set of conditions to the hydration of the alloys were defined, more restrictive in terms of temperature

  6. Uranium recovery from waste of the nuclear fuel cycle plants at IPEN-CNEN/SP, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Antonio A.; Ferreira, Joao C.; Zini, Josiane; Scapin, Marcos A.; Carvalho, Fatima Maria Sequeira de, E-mail: afreitas@ipen.b, E-mail: jcferrei@ipen.b, E-mail: jzini@ipen.b, E-mail: mascapin@ipen.b, E-mail: fatimamc@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Sodium diuranate (DUS) is a uranium concentrate produced in monazite industry with 80% typical average grade of U{sup 3}O{sup 8}, containing sodium, silicon, phosphorus, thorium and rare earths as main impurities. Purification of such concentrate was achieved at the nuclear fuel cycle pilot plants of uranium at IPEN by nitric dissolution and uranium extraction into an organic phase using TBP/Varsol, while the aqueous phase retains impurities and a small quantity of non extracted uranium; both can be recovered later by precipitation with sodium hydroxide. Then the residual sodium diuranate goes to a long term storage at a safeguards deposit currently reaching 20 tonnes. This work shows how uranium separation and purification from such bulk waste can be achieved by ion exchange chromatography, aiming at decreased volume and cost of storage, minimization of environmental impacts and reduction of occupational doses. Additionally, the resulting purified uranium can be reused in nuclear fuel cycle.(author)

  7. Initiation of depleted uranium oxide and spent fuel testing for the spent fuel sabotage aerosol ratio program

    Energy Technology Data Exchange (ETDEWEB)

    Molecke, M.A.; Gregson, M.W.; Sorenson, K.B. [Sandia National Labs. (United States); Billone, M.C.; Tsai, H. [Argonne National Lab. (United States); Koch, W.; Nolte, O. [Fraunhofer Inst. fuer Toxikologie und Experimentelle Medizin (Germany); Pretzsch, G.; Lange, F. [Gesellschaft fuer Anlagen- und Reaktorsicherheit (Germany); Autrusson, B.; Loiseau, O. [Inst. de Radioprotection et de Surete Nucleaire (France); Thompson, N.S.; Hibbs, R.S. [U.S. Dept. of Energy (United States); Young, F.I.; Mo, T. [U.S. Nuclear Regulatory Commission (United States)

    2004-07-01

    We provide a detailed overview of an ongoing, multinational test program that is developing aerosol data for some spent fuel sabotage scenarios on spent fuel transport and storage casks. Experiments are being performed to quantify the aerosolized materials plus volatilized fission products generated from actual spent fuel and surrogate material test rods, due to impact by a high energy density device, HEDD. The program participants in the U.S. plus Germany, France, and the U.K., part of the international Working Group for Sabotage Concerns of Transport and Storage Casks, WGSTSC have strongly supported and coordinated this research program. Sandia National Laboratories, SNL, has the lead role for conducting this research program; test program support is provided by both the U.S. Department of Energy and Nuclear Regulatory Commission. WGSTSC partners need this research to better understand potential radiological impacts from sabotage of nuclear material shipments and storage casks, and to support subsequent risk assessments, modeling, and preventative measures. We provide a summary of the overall, multi-phase test design and a description of all explosive containment and aerosol collection test components used. We focus on the recently initiated tests on ''surrogate'' spent fuel, unirradiated depleted uranium oxide, and forthcoming actual spent fuel tests. The depleted uranium oxide test rodlets were prepared by the Institut de Radioprotection et de Surete Nucleaire, in France. These surrogate test rodlets closely match the diameter of the test rodlets of actual spent fuel from the H.B. Robinson reactor (high burnup PWR fuel) and the Surry reactor (lower, medium burnup PWR fuel), generated from U.S. reactors. The characterization of the spent fuels and fabrication into short, pressurized rodlets has been performed by Argonne National Laboratory, for testing at SNL. The ratio of the aerosol and respirable particles released from HEDD-impacted spent

  8. Setting for technological control of vibropacked uranium-plutonium fuel pins

    International Nuclear Information System (INIS)

    Golushko, V.V.; Semenov, A.L.; Chukhlova, O.P.; Kuznetsov, A.M.; Korchkov, Yu.N.; Kandrashina, T.A.

    1991-01-01

    Scanning set-up providing for control of fuel pins by quality of fuel distribution in them is described. The gamma absorption method of fuel density measurement and the method of its own radiation registration are applied. Scintillation detection blocks are used in the measuring equipment mainly consisting of standard CAMAC blocks. Automation of measurements is performed on the basis of the computer complex MERA-60. A complex of programs for automation of the procedures under way is developed, when the facility operates within the test production line of vibroracked uranium-plutonium fuel pins. 6 refs.; 4 figs.; 1 tabs

  9. Uranium Resource Availability Analysis of Four Nuclear Fuel Cycle Options

    International Nuclear Information System (INIS)

    Youn, S. R.; Lee, S. H.; Jeong, M. S.; Kim, S. K.; Ko, W. I.

    2013-01-01

    Making the national policy regarding nuclear fuel cycle option, the policy should be established in ways that nuclear power generation can be maintained through the evaluation on the basis of the following aspects. To establish the national policy regarding nuclear fuel cycle option, that must begin with identification of a fuel cycle option that can be best suited for the country, and the evaluation work for that should be proceeded. Like all the policy decision, however, a certain nuclear fuel cycle option cannot be superior in all aspects of sustain ability, environment-friendliness, proliferation-resistance, economics, technologies, which make the comparison of the fuel cycle options very complicated. For such a purpose, this paper set up four different fuel cycle of nuclear power generation considering 2nd Comprehensive Nuclear Energy Promotion Plan(CNEPP), and analyzed material flow and features in steady state of all four of the fuel cycle options. As a result of an analysis on material flow of each nuclear fuel cycle, it was analyzed that Pyro-SFR recycling is most effective on U resource availability among four fuel cycle option. As shown in Figure 3, OT cycle required the most amount of U and Pyro-SFR recycle consumed the least amount of U. DUPIC recycling, PWR-MOX recycling, and Pyro-SFR recycling fuel cycle appeared to consumed 8.2%, 12.4%, 39.6% decreased amount of uranium respectively compared to OT cycle. Considering spent fuel can be recycled as potential energy resources, U and TRU taken up to be 96% is efficiently used. That is, application period of limited uranium natural resources can be extended, and it brings a great influence on stable use of nuclear energy

  10. The use of uranium isotopes and the U/Th ratio to evaluate the fingerprint of plants following uranium releases from fuel cycle settlements

    International Nuclear Information System (INIS)

    Pourcelot, L.; Boulet, B.; Cariou, N.

    2015-01-01

    This paper uses data from the environmental monitoring of fuel cycle settlements. It aims to evaluate uranium released into the terrestrial environment. Measurement of uranium isotopes in terrestrial plants allows illustrating the consequences of chronic and incidental releases of depleted uranium into the atmosphere. However, such an analytical approach reaches its limits when natural uranium is released. Indeed, distinguishing natural uranium from releases and uranium from the radiological background is difficult. For this reason, we propose normalizing uranium activity measured in plants taken in the surroundings of nuclear sites with respect to 232 Th, considering that the source of this latter is the background. (authors)

  11. RA-3 core with uranium silicide fuel elements

    International Nuclear Information System (INIS)

    Abbate, Maximo J.; Sbaffoni, Maria M.

    2000-01-01

    Following on with studies on uranium silicide fuel elements, this paper reports some comparisons between the use of standard ECN [U 3 O 8 ] fuel elements and type P-06 [from U 3 Si 2 ] fuel elements in the RA-3 core.The first results showed that the calculated overall mean burn up is in agreement with that reported for the facility, which gives more confidence to the successive ones. Comparing the mentioned cores, the silicide one presents several advantages such as: -) a mean burn up increase of 18 %; -) an extraction burn up increase of 20 %; -) 37.4 % increase in full power days, for mean burn up. All this is meritorious for this fuel. Moreover, grouped and homogenized libraries were prepared for CITVAP code that will be used for planning experiments and other bidimensional studies. Preliminary calculations were also performed. (author)

  12. Reoxidation of uranium in electrolytically reduced simulated oxide fuel during residual salt distillation

    International Nuclear Information System (INIS)

    Eun-Young Choi; Jin-Mok Hur; Min Ku Jeon; University of Science and Technology, Yuseong-gu, Daejeon

    2017-01-01

    We report that residual salt removal by high-temperature distillation causes partial reoxidation of uranium metal to uranium oxide in electrolytically reduced simulated oxide fuel. Specifically, the content of uranium metal in the above product decreases with increasing distillation temperatures, which can be attributed to reoxidation by Li 2 O contained in residual salt (LiCl). Additionally, we estimate the fractions of Li 2 O reacted with uranium metal under these conditions, showing that they decrease with decreasing temperature, and calculate some thermodynamic parameters of the above reoxidation. (author)

  13. Development of very-high-density low-enriched uranium fuels

    International Nuclear Information System (INIS)

    Snegrove, J.L.; Hofmann, G.L.; Trybus, C.L.; Wiencek, T.C.

    1997-01-01

    The RERTR (=Reduced Enrichment for Research and Test Reactors) program has begun an aggressive effort to develop dispersion fuels for research and test reactors with uranium densities of 8 to 9 g U/cm 3 , based on the use of γ-stabilized uranium alloys. Fabrication development teams and facilities are being put into place, and preparations for the first irradiation test are in progress. The first screening irradiations are expected to begin in late April 1997 and the first results should be available by the end of 1997. Discussions with potential international partners in fabrication development and irradiation testing have begun. (author)

  14. Volatile behaviour of enrichment uranium in the total nuclear fuel price

    International Nuclear Information System (INIS)

    Arnaiz, J.; Inchausti, J. M.; Tarin, F.

    2004-01-01

    In this article the historical high volatile behaviour of the total nuclear fuel price is evaluated quantitatively and it is concluded that it has been due mainly to the fluctuations of the price of the principal components of enriched uranium (concentrates and enrichment). In order to avoid the negative effects of this volatiles behaviour as far as possible, a basic strategy in the uranium procurement activities is recommended (union of buyers, diversification of supplier, stock management, optimisation of contract portfolio and suitable currency management that guarantees a reliable uranium supply at reasonable prices. These guidelines are those that ENUSA has been following on behalf of the Spanish Utilities in the Commission of Uranium Procurement (CAU in Spanish). (Author) 11 refs

  15. An Advanced Sodium-Cooled Fast Reactor Core Concept Using Uranium-Free Metallic Fuels for Maximizing TRU Burning Rate

    Directory of Open Access Journals (Sweden)

    Wuseong You

    2017-12-01

    Full Text Available In this paper, we designed and analyzed advanced sodium-cooled fast reactor cores using uranium-free metallic fuels for maximizing burning rate of transuranics (TRU nuclides from PWR spent fuels. It is well known that the removal of fertile nuclides such as 238U from fuels in liquid metal cooled fast reactor leads to the degradation of important safety parameters such as the Doppler coefficient, coolant void worth, and delayed neutron fraction. To resolve the degradation of the Doppler coefficient, we considered adding resonant nuclides to the uranium-free metallic fuels. The analysis results showed that the cores using uranium-free fuels loaded with tungsten instead of uranium have a significantly lower burnup reactivity swing and more negative Doppler coefficients than the core using uranium-free fuels without resonant nuclides. In addition, we considered the use of axially central B4C absorber region and moderator rods to further improve safety parameters such as sodium void worth, burnup reactivity swing, and the Doppler coefficient. The results of the analysis showed that the final design core can consume ~353 kg per cycle and satisfies self-controllability under unprotected accidents. The fuel cycle analysis showed that the PWR–SFR coupling fuel cycle option drastically reduces the amount of waste going to repository and the SFR burner can consume the amount of TRUs discharged from 3.72 PWRs generating the same electricity.

  16. Complex plasmochemical processing of solid fuel

    Directory of Open Access Journals (Sweden)

    Vladimir Messerle

    2012-12-01

    Full Text Available Technology of complex plasmaochemical processing of solid fuel by Ecibastuz bituminous and Turgay brown coals is presented. Thermodynamic and experimental study of the technology was fulfilled. Use of this technology allows producing of synthesis gas from organic mass of coal and valuable components (technical silicon, ferrosilicon, aluminum and silicon carbide and microelements of rare metals: uranium, molybdenum, vanadium etc. from mineral mass of coal. Produced a high-calorific synthesis gas can be used for methanol synthesis, as high-grade reducing gas instead of coke, as well as energy gas in thermal power plants.

  17. Present situation of unused uranium fuel in Tokyo Institute of Technology

    International Nuclear Information System (INIS)

    Obara, T.; Ogawa, M.

    2008-01-01

    Present situation of unused enriched uranium fuel in Tokyo Institute of Technology is described. The fuels were for sub-critical experiments. There is no special facility for transportation in the site. But there is no technical problem for it. One of the important issues to be done is a duty by national regulation against nuclear disaster. (author)

  18. Solvent extraction of uranium and molybdenum in sulfuric media

    International Nuclear Information System (INIS)

    Duarte Neto, J.

    1980-01-01

    A Solvent extraction process for recovering the uranium and molibdenum from the sulfuric acid solution produced from Figueira ores was developed. The leach solution contains molibdenum with a mean ratio Mo/U = 35%. THe solvent used was a terciary amine-Alamine 336, modified with tridecanol in querosine. An investigation was made to evaluate the variables affecting the extraction and stripping of uranium and molibdenum. The Alamine 336 showed a significant extraction power for uranium and molibdenum. In the stripping step of uranium using acidified sodium cloride it was observed the presence of an insoluble amine-molibdenum-arsenic complex. (author) [pt

  19. Development of an environmentally friendly protective coating for the depleted uranium-0.75 wt% titanium alloy

    International Nuclear Information System (INIS)

    Roeper, Donald F.; Chidambaram, Devicharan; Clayton, Clive R.; Halada, Gary P.; Derek Demaree, J.

    2006-01-01

    Molybdenum oxide-based conversion coatings have been formed on the surface of the depleted uranium-0.75 wt% titanium alloy using either concentrated nitric acid or fluorides for surface activation prior to coating formation. The acid-activated surface forms a coating that offers corrosion protection after a period of aging, when uranium species have migrated to the surface. X-ray photoelectron spectroscopy (XPS) revealed that the protective coating is primarily a polymolybdate bound to a uranyl ion. Rutherford backscattering spectroscopy (RBS) on the acid-activated coatings also shows uranium dioxide migrating to the surface. The fluoride-activated surface does not form a protective coating and there are no uranium species on the surface as indicated by XPS. The coating on the fluoride-activated samples has been found to contain a mixture of molybdenum oxides of which the main component is molybdenum trioxide and a minor component of an Mo(V) oxide

  20. Neutronics conceptual design of the innovative research reactor core using uranium molybdenum fuel

    International Nuclear Information System (INIS)

    Tukiran S; Surian Pinem; Tagor MS; Lily S; Jati Susilo

    2012-01-01

    The multipurpose of research reactor utilization make many countries build the new research reactor. Trend of this reactor for this moment is multipurpose reactor type with a compact core to get high neutron flux at the low or medium level of power. The research newest. Reactor in Indonesia right now is already 25 year old. Therefore, it is needed to design a new research reactor, called innovative research reactor (IRR) and then as an alternative to replace the old research reactor. The aim of this research is to get the optimal configuration of equilibrium core with the acceptance criteria are minimum thermal neutron flux is 2.5E14 n/cm 2 s at the power level of 20 MW (minimum), length of cycle of more than 40 days, and the most efficient of using fuel in the core. Neutronics design has been performed for new fuel of U-9Mo-AI with various fuel density and reflector. Design calculation has been performed using WIMSD-5B and BATAN-FUEL computer codes. The calculation result of the conceptual design shows four core configurations namely 5x5, 5x7, 6x5 and 6x6. The optimalization result for equilibrium core of innovative research reactor is the 5x5 configuration with 450 gU fuel loading, berilium reflector, maximum thermal neutron flux at reflector is 3.33E14 n/cm 2 sand length of cycle is 57 days is the most optimal of IRR. (author)

  1. Current status of production and supply of molybdenum-99 and 99Mo/99mTc generators in Indonesia

    International Nuclear Information System (INIS)

    Mutalib, A.

    2003-01-01

    Production of high-specific activity molybdenum-99 and 99 Mo/ 99m Tc Generators in Indonesia commenced when a new production facility supported by the presence of a 30 MW multipurpose reactor (RSG-GAS) was established in Serpong in 1990. This report describes the current production and supply of molybdenum-99m devoted mainly to fulfill the domestic demands in supplying 99 Mo/ 99m Tc Generators. Recent development on the use of LEU (Low Enriched Uranium) targets for replacing current HEU (High Enriched Uranium) targets in the production of 99 Mo will be reviewed briefly. (author)

  2. 78 FR 23312 - Uranium Enrichment Fuel Cycle Inspection Reports Regarding Louisiana Energy Services, National...

    Science.gov (United States)

    2013-04-18

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 70-3103; NRC-2010-0264] Uranium Enrichment Fuel Cycle Inspection Reports Regarding Louisiana Energy Services, National Enrichment Facility, Eunice, New Mexico..., National Enrichment Facility in Eunice, New Mexico, and has authorized the introduction of uranium...

  3. Statistical model for forecasting uranium prices to estimate the nuclear fuel cycle cost

    International Nuclear Information System (INIS)

    Kim, Sung Ki; Ko, Won Il; Nam, Hyoon; Kim, Chul Min; Chung, Yang Hon; Bang, Sung Sig

    2017-01-01

    This paper presents a method for forecasting future uranium prices that is used as input data to calculate the uranium cost, which is a rational key cost driver of the nuclear fuel cycle cost. In other words, the statistical autoregressive integrated moving average (ARIMA) model and existing engineering cost estimation method, the so-called escalation rate model, were subjected to a comparative analysis. When the uranium price was forecasted in 2015, the margin of error of the ARIMA model forecasting was calculated and found to be 5.4%, whereas the escalation rate model was found to have a margin of error of 7.32%. Thus, it was verified that the ARIMA model is more suitable than the escalation rate model at decreasing uncertainty in nuclear fuel cycle cost calculation

  4. Statistical model for forecasting uranium prices to estimate the nuclear fuel cycle cost

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Ki; Ko, Won Il; Nam, Hyoon [Nuclear Fuel Cycle Analysis, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Chul Min; Chung, Yang Hon; Bang, Sung Sig [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2017-08-15

    This paper presents a method for forecasting future uranium prices that is used as input data to calculate the uranium cost, which is a rational key cost driver of the nuclear fuel cycle cost. In other words, the statistical autoregressive integrated moving average (ARIMA) model and existing engineering cost estimation method, the so-called escalation rate model, were subjected to a comparative analysis. When the uranium price was forecasted in 2015, the margin of error of the ARIMA model forecasting was calculated and found to be 5.4%, whereas the escalation rate model was found to have a margin of error of 7.32%. Thus, it was verified that the ARIMA model is more suitable than the escalation rate model at decreasing uncertainty in nuclear fuel cycle cost calculation.

  5. Selective arsenical purification of substances during an alkaline treatment process of an uranium and/or molybdenum bearing ore by means of a magnesium compound

    International Nuclear Information System (INIS)

    Maurel, Pierre; Lamerant, J.M.; Pallez, Francois.

    1983-01-01

    The ores is digested by means of an aqueous liquor of sodium or potassium carbonate and/or bicarbonate, the digestion being carried out under conditions of concentrations, temperatures and pressures bringing about the solubilization of the uranium and/or molybdenum and the arsenic present in the core. A solid phase suspension is lifted from a liquid phase and the phases are separated. The arsenic solubilized during the digestion is extracted as magnesium arsenate by treatment of the medium containing the arsenic by means of a magnesium compound [fr

  6. Challenges in the front end of the uranium fuel cycle

    International Nuclear Information System (INIS)

    Seitz, Ken

    2010-01-01

    The long-term fundamentals for nuclear remain strong. Climate change and clean air concerns remain high on the agenda of national energy policies, as both developing and developed economies pursue a strategy of energy diversity and energy security. A global industry of 435 reactors is expected to grow to more than 639 reactors within the next 20 years with the potential for even more rapid expansion. This nuclear generating capacity relies on an international fuel cycle that can ensure stable and secure supply for decades to come. As the first step in the fuel cycle, the uranium industry has received various price signals over the past 5 decades, from the birth of an industry with strong demand and stock pile building and the associated robust pricing and new production stimulation, to an industry in decline and a period marked by liquidation of large inventories, to the recent resurgence of nuclear and the associated uranium price signals. In many ways, understanding the current uranium environment and the outlook for the industry requires some understanding of these phases of nuclear. The global nuclear fleet today needs about 65,000 tonnes of uranium per year to meet reactor feed requirements. Primary production meets about two thirds of this requirement while the remainder is drawn from secondary supply. Secondary supply can essentially be described as stockpiles of previously produced uranium. However, secondary supplies are finite and more primary production will be needed. From a long-term perspective, there is no question that there are sufficient uranium resources to support the nuclear industry for many years to come. The IAEA's 'Red Book' estimates that more than 5 million tonnes of known resources could potentially be developed at today's prices. This is enough to supply the global reactor fleet for almost 80 years at current usage rates. Recently higher uranium prices have resulted in some production increases although the rate of growth has been held

  7. Biological processes for concentrating trace elements from uranium mine waters. Technical completion report

    International Nuclear Information System (INIS)

    Brierley, C.L.; Brierley, J.A.

    1981-12-01

    Waste water from uranium mines in the Ambrosia Lake district near Grants, New Mexico, USA, contains uranium, selenium, radium and molybdenum. The Kerr-McGee Corporation has a novel treatment process for waters from two mines to reduce the concentrations of the trace contaminants. Particulates are settled by ponding, and the waters are passed through an ion exchange resin to remove uranium; barium chloride is added to precipitate sulfate and radium from the mine waters. The mine waters are subsequently passed through three consecutive algae ponds prior to discharge. Water, sediment and biological samples were collected over a 4-year period and analyzed to assess the role of biological agents in removal of inorganic trace contaminants from the mine waters. Some of the conclusions derived from this study are: (1) The concentrations of soluble uranium, selenium and molybdenum were not diminished in the mine waters by passage through the series of impoundments which constituted the mine water treatment facility. Uranium concentrations were reduced but this was due to passage of the water through an ion exchange column. (2) The particulate concentrations of the mine water were reduced at least ten-fold by passage of the waters through the impoundments. (3) The sediments were anoxic and enriched in uranium, molybdenum and selenium. The deposition of particulates and the formation of insoluble compounds were proposed as mechanisms for sediment enrichment. (4) The predominant algae of the treatment ponds were the filamentous Spirogyra and Oscillatoria, and the benthic alga, Chara. (5) Adsorptive processes resulted in the accumulation of metals in the algae cells. (6) Stimulation of sulfate reduction by the bacteria resulted in retention of molybdenum, selenium, and uranium in sediments. 1 figure, 16 tables

  8. DUCTILE URANIUM FUEL FOR NUCLEAR REACTORS AND METHOD OF MAKING

    Science.gov (United States)

    Zegler, S.T.

    1963-11-01

    The fabrication process for a ductile nuclear fuel alloy consisting of uranium, fissium, and from 0.25 to 1.0 wt% of silicon or aluminum or from 0.25 to 2 wt% of titanium or yttrium is presented. (AEC)

  9. Material test reactor fuel research at the BR2 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Dyck, Steven Van; Koonen, Edgar; Berghe, Sven van den [Institute for Nuclear Materials Science, SCK-CEN, Boeretang, Mol (Belgium)

    2012-03-15

    The construction of new, high performance material test reactor or the conversion of such reactors' core from high enriched uranium (HEU) to low enriched uranium (LEU) based fuel requires several fuel qualification steps. For the conversion of high performance reactors, high density dispersion or monolithic fuel types are being developed. The Uranium-Molybdenum fuel system has been selected as reference system for the qualification of LEU fuels. For reactors with lower performance characteristics, or as medium enriched fuel for high performance reactors, uranium silicide dispersion fuel is applied. However, on the longer term, the U-Mo based fuel types may offer a more efficient fuel alternative and-or an easier back-end solution with respect to the silicide based fuels. At the BR2 reactor of the Belgian nuclear research center, SCK-CEN in Mol, several types of fuel testing opportunities are present to contribute to such qualification process. A generic validation test for a selected fuel system is the irradiation of flat plates with representative dimensions for a fuel element. By flexible positioning and core loading, bounding irradiation conditions for fuel elements can be performed in a standard device in the BR2. For fuel element designs with curved plates, the element fabrication method compatibility of the fuel type can be addressed by incorporating a set of prototype fuel plates in a mixed driver fuel element of the BR2 reactor. These generic types of tests are performed directly in the primary coolant flow conditions of the BR2 reactor. The experiment control and interpretation is supported by detailed neutronic and thermal-hydraulic modeling of the experiments. Finally, the BR2 reactor offers the flexibility for irradiation of full size prototype fuel elements, as 200mm diameter irradiation channels are available. These channels allow the accommodation of various types of prototype fuel elements, eventually using a dedicated cooling loop to provide the

  10. Absorption spectra and cyclic voltammograms of uranium species in molten lithium molybdate-sodium molybdate eutectic at 550 C

    International Nuclear Information System (INIS)

    Nagai, T.; Fukushima, M.; Myochin, M.; Uehara, A.; Fujii, T.; Yamana, H.; Sato, N.

    2011-01-01

    Absorption spectra of uranium species dissolved in molten lithium molybdate.sodium molybdate eutectic of 0.51Li 2 MoO 4 -0.49Na 2 MoO 4 mixture at 550 C were measured by UV/Vis/NIR spectrophotometry, and their redox reactions were investigated by cyclic voltammetry. We found that the major ions of uranium species dissolved in the melt were uranyl penta-valent. After purging dry oxygen gas into the melt, pentavalent species were oxidized to the uranyl hexa-valent. In the cyclic voltammetry of the melt without uranium species, it was confirmed that the lithium-sodium molybdenum oxide compounds were deposited on the working electrode at the negative potential and the lithium molybdenum oxide compounds were deposited on the counter electrode at positive potential. When UO 2 was dissolved into the melt, the reductive reaction of the uranium species was observed at the reductive potential of the pure melt. This suggests that the uranium species dissolved in the melts could be recovered as mixed uranium-molybdenum oxides by electrolysis. (orig.)

  11. Accident Analyses for Conversion of the University of Missouri Research Reactor (MURR) from Highly-Enriched to Low-Enriched Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Stillman, J. A. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Div., Research and Test Reactor Dept.; Feldman, E. E. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Div., Research and Test Reactor Dept.; Wilson, E. H. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Div., Research and Test Reactor Dept.; Foyto, L. P. [Univ. of Missouri, Columbia, MO (United States). Research Reactor; Kutikkad, K. [Univ. of Missouri, Columbia, MO (United States). Research Reactor; McKibben, J. C. [Univ. of Missouri, Columbia, MO (United States). Research Reactor; Peters, N. J. [Univ. of Missouri, Columbia, MO (United States). Research Reactor; Cowherd, W. M. [Univ. of Missouri, Columbia, MO (United States). College of Engineering, Nuclear Engineering Program; Rickman, B. [Univ. of Missouri, Columbia, MO (United States). College of Engineering, Nuclear Engineering Program

    2014-12-01

    This report contains the results of reactor accident analyses for the University of Missouri Research Reactor (MURR). The calculations were performed as part of the conversion from the use of highly-enriched uranium (HEU) fuel to the use of low-enriched uranium (LEU) fuel. The analyses were performed by staff members of the Global Threat Reduction Initiative (GTRI) Reactor Conversion Program at the Argonne National Laboratory (ANL), the MURR Facility, and the Nuclear Engineering Program – College of Engineering, University of Missouri-Columbia. The core conversion to LEU is being performed with financial support from the U. S. government. This report contains the results of reactor accident analyses for the University of Missouri Research Reactor (MURR). The calculations were performed as part of the conversion from the use of highly-enriched uranium (HEU) fuel to the use of low-enriched uranium (LEU) fuel. The analyses were performed by staff members of the Global Threat Reduction Initiative (GTRI) Reactor Conversion Program at the Argonne National Laboratory (ANL), the MURR Facility, and the Nuclear Engineering Program – College of Engineering, University of Missouri-Columbia. The core conversion to LEU is being performed with financial support from the U. S. government. In the framework of non-proliferation policies, the international community presently aims to minimize the amount of nuclear material available that could be used for nuclear weapons. In this geopolitical context most research and test reactors, both domestic and international, have started a program of conversion to the use of LEU fuel. A new type of LEU fuel based on an alloy of uranium and molybdenum (U-Mo) is expected to allow the conversion of U.S. domestic high performance reactors like MURR. This report presents the results of a study of core behavior under a set of accident conditions for MURR cores fueled with HEU U-Alx dispersion fuel or LEU monolithic U-Mo alloy fuel with 10 wt% Mo

  12. Separation and Recovery of Uranium Metal from Spent Light Water Reactor Fuel via Electrolytic Reduction and Electrorefining

    International Nuclear Information System (INIS)

    Herrmann, S.D.; Li, S.X.

    2010-01-01

    A series of bench-scale experiments was performed in a hot cell at Idaho National Laboratory to demonstrate the separation and recovery of uranium metal from spent light water reactor (LWR) oxide fuel. The experiments involved crushing spent LWR fuel to particulate and separating it from its cladding. Oxide fuel particulate was then converted to metal in a series of six electrolytic reduction runs that were performed in succession with a single salt loading of molten LiCl - 1 wt% Li2O at 650 C. Analysis of salt samples following the series of electrolytic reduction runs identified the diffusion of select fission products from the spent fuel to the molten salt electrolyte. The extents of metal oxide conversion in the post-test fuel were also quantified, including a nominal 99.7% conversion of uranium oxide to metal. Uranium metal was then separated from the reduced LWR fuel in a series of six electrorefining runs that were performed in succession with a single salt loading of molten LiCl-KCl-UCl3 at 500 C. Analysis of salt samples following the series of electrorefining runs identified additional partitioning of fission products into the molten salt electrolyte. Analyses of the separated uranium metal were performed, and its decontamination factors were determined.

  13. Replacement of highly enriched uranium by medium or low-enriched uranium in fuels for research reactors

    International Nuclear Information System (INIS)

    Schwartz, J.P.

    To exclude the possibility of an explosive use of the uranium obtained from an elementary chemical process, one needs to use a fuel less enriched than 20 weight percent in U 235 . This goal can be reached by two ways: 1. The low density fuels, i.e. U or U 3 O 8 /Al fuels. One has to increase their U content from 1.3 g U/cm 3 presently qualified under normal operation conditions. Several manufacturers such as CERCA in France developed these fuels with a near-term objective of about 2 g U/cm 3 and a long-term objective of 3 g U/cm 3 . 2. The high density fuels. They are the UO 2 Caramel plate type fuels now under consideration, and U 3 Si and UMo as a long-term potential

  14. Gaseous oxygen and hydrogen embrittlements of the uranium-10 weight % molybdenum alloy

    International Nuclear Information System (INIS)

    Corcos, Jean.

    1979-07-01

    The stress corrosion of an Uranium-10 weight % Molybdenum alloy in high purity gaseous oxygen and hydrogen was studied. Tests were performed with fracture-mechanic specimens, fatigue precracked and carried out in tension with a constant sustained load. The experimental procedure enabled to determine the S.C. morphology during the test, and its kinetics. Tests in gaseous oxygen were performed with p02=0.15 MPa from 0 0 C to 100 0 C, and at 20 0 C for p02=0.15, 0.15.10 -2 and 0.15.10 -4 MPa. Two kinetic laws are proposed. Cracking is transgranular with a quasi-clivage type, and occurs on the (1 1 1) planes of the matrix. Tests in gaseous hydrogen were performed with pH2=0.15 MPa from - 50 0 C to + 135 0 C; for all the tests, even those under no exterior load, there is a failure by S.C. and macroscopic hydruration occurs. We propose a kinetic law, which may display that the hydruration phenomenon rules the S.C. propagation. We have performed the identification of the hydride, as well as the study of the precipitation. These phenomena don't occur with pH2=0.15.10 -2 MPa. The embrittlement is thought to be due to a formation-failure cycle of an hydride precipitate at the crack tip [fr

  15. Fabrication of Uranium Oxycarbide Kernels for HTR Fuel

    International Nuclear Information System (INIS)

    Barnes, Charles; Richardson, Clay; Nagley, Scott; Hunn, John; Shaber, Eric

    2010-01-01

    Babcock and Wilcox (B and W) has been producing high quality uranium oxycarbide (UCO) kernels for Advanced Gas Reactor (AGR) fuel tests at the Idaho National Laboratory. In 2005, 350-(micro)m, 19.7% 235U-enriched UCO kernels were produced for the AGR-1 test fuel. Following coating of these kernels and forming the coated-particles into compacts, this fuel was irradiated in the Advanced Test Reactor (ATR) from December 2006 until November 2009. B and W produced 425-(micro)m, 14% enriched UCO kernels in 2008, and these kernels were used to produce fuel for the AGR-2 experiment that was inserted in ATR in 2010. B and W also produced 500-(micro)m, 9.6% enriched UO2 kernels for the AGR-2 experiments. Kernels of the same size and enrichment as AGR-1 were also produced for the AGR-3/4 experiment. In addition to fabricating enriched UCO and UO2 kernels, B and W has produced more than 100 kg of natural uranium UCO kernels which are being used in coating development tests. Successive lots of kernels have demonstrated consistent high quality and also allowed for fabrication process improvements. Improvements in kernel forming were made subsequent to AGR-1 kernel production. Following fabrication of AGR-2 kernels, incremental increases in sintering furnace charge size have been demonstrated. Recently small scale sintering tests using a small development furnace equipped with a residual gas analyzer (RGA) has increased understanding of how kernel sintering parameters affect sintered kernel properties. The steps taken to increase throughput and process knowledge have reduced kernel production costs. Studies have been performed of additional modifications toward the goal of increasing capacity of the current fabrication line to use for production of first core fuel for the Next Generation Nuclear Plant (NGNP) and providing a basis for the design of a full scale fuel fabrication facility.

  16. recovery of enriched uranium from waste solution obtained from fuel fabrication laboratories

    International Nuclear Information System (INIS)

    Othman, S.H.A.

    2003-01-01

    reversed-phase partition chromatography is shown to be a convenient and applicable method for the quantitative recovery of uranium (19.7% enriched with 235 U) from highly impure solution . the processing of uranium compounds for atomic energy project especially in FMPP(Egyptian fuel manufacture pilot plant) gives rise to a variety of wastes in which the uranium content is of considerable importance. the recovery of uranium from concentrated mother liquors produced from ADU (ammonium diuranate ) precipitation, as well as those due to ADU washing is studied in this work. column of poly-trifluoro-monochloro-ethilene (Kel-F) supporting tri-n-butyl-phosphate (TBP) retains uranium .impurities are eluted with 6.5 M HCl, and the uranium is eluted with water and the recovery of uranium is better than 94%. A mathematical model was suggested to stimulate the sorption process of uranium ions (or any other ion ) by column of solvent impregnated resin containing organic extractant (the same as the previous column) . An excellent agreement was founded between the experimental results and the mathematical model

  17. Determination of uranium traces in fuel cans of nuclear reactors

    International Nuclear Information System (INIS)

    Acosta L, C.E.; Benavides M, A.M.; Sanchez P, L.A.; Nava S, G.F.

    1997-01-01

    The objective of this work is to quantify the uranium content that as impurity can be found in zircon and zircaloy alloys which are used in the construction of fuel cans. The determination of this serves as a quality control measure due to that the increment of uranium content in alloy, diminishing the corrosion resistance. The fluorimetric method was used to do this determination. It is a very sensitive, reliable, rapid method also high reproducibility and repeatability as well as low detection limits (0.25 mg/kg). (Author)

  18. Comparison of low enriched uranium (UAlx-Al and U-Ni) targets with different geometries for the production of molybdenum-99 in the RMB (Brazilian multipurpose reactor)

    International Nuclear Information System (INIS)

    Domingos, Douglas B.; Silva, Antonio T. e; Joao, Thiago G.; Silva, Jose Eduardo R. da; Angelo, Gabriel; Fedorenko, Giuliana G.; Nishiyama, Pedro J.B. de O.

    2011-01-01

    The Brazilian Multipurpose Reactor (RMB), now in the conception design phase, is being designed in Brazil to attend the demand of radiopharmaceuticals in the country and conduct researches in various areas. The new reactor, planned for 30 MW, will replace the IEA-R1 reactor of IPEN-CNEN/SP. Low enriched uranium ( 235 U) UAl x dispersed in Al (plate geometry) and metallic uranium foil targets (plate and cylinder geometries) are being considered for production of Molybdenum-99 ( 99 Mo) by fission. Neutronic and thermal-hydraulics calculations were performed to compare the production of 99 Mo for these targets in the RMB. For the neutronic calculations were utilized the computer codes Hammer-Technion, Citation and Scale and for the thermal-hydraulics calculations were utilized the computer code MTRCR-IEAR1 and ANSYS CFX. (author)

  19. Melting temperature of uranium - plutonium mixed oxide fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Tetsuya; Hirosawa, Takashi [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1997-08-01

    Fuel melting temperature is one of the major thermodynamical properties that is used for determining the design criteria on fuel temperature during irradiation in FBR. In general, it is necessary to evaluate the correlation of fuel melting temperature to confirm that the fuel temperature must be kept below the fuel melting temperature during irradiation at any conditions. The correlations of the melting temperature of uranium-plutonium mixed oxide (MOX) fuel, typical FBR fuel, used to be estimated and formulized based on the measured values reported in 1960`s and has been applied to the design. At present, some experiments have been accumulated with improved experimental techniques. And it reveals that the recent measured melting temperatures does not agree well to the data reported in 1960`s and that some of the 1960`s data should be modified by taking into account of the recent measurements. In this study, the experience of melting temperature up to now are summarized and evaluated in order to make the fuel pin design more reliable. The effect of plutonium content, oxygen to metal ratio and burnup on MOX fuel melting was examined based on the recent data under the UO{sub 2} - PuO{sub 2} - PuO{sub 1.61} ideal solution model, and then formulized. (J.P.N.)

  20. Melting temperature of uranium - plutonium mixed oxide fuel

    International Nuclear Information System (INIS)

    Ishii, Tetsuya; Hirosawa, Takashi

    1997-08-01

    Fuel melting temperature is one of the major thermodynamical properties that is used for determining the design criteria on fuel temperature during irradiation in FBR. In general, it is necessary to evaluate the correlation of fuel melting temperature to confirm that the fuel temperature must be kept below the fuel melting temperature during irradiation at any conditions. The correlations of the melting temperature of uranium-plutonium mixed oxide (MOX) fuel, typical FBR fuel, used to be estimated and formulized based on the measured values reported in 1960's and has been applied to the design. At present, some experiments have been accumulated with improved experimental techniques. And it reveals that the recent measured melting temperatures does not agree well to the data reported in 1960's and that some of the 1960's data should be modified by taking into account of the recent measurements. In this study, the experience of melting temperature up to now are summarized and evaluated in order to make the fuel pin design more reliable. The effect of plutonium content, oxygen to metal ratio and burnup on MOX fuel melting was examined based on the recent data under the UO 2 - PuO 2 - PuO 1.61 ideal solution model, and then formulized. (J.P.N.)

  1. Fracture toughness of WWER Uranium dioxide fuel pellets with various grain size

    International Nuclear Information System (INIS)

    Sivov, R.; Novikov, V.; Mikheev, E.; Fedotov, A.

    2015-01-01

    Uranium dioxide fuel pellets with grain sizes 13, 26, and 33 μm for WWER were investigated in the present work in order to determine crack formation and the fracture toughness.The investigation of crack formation in uranium oxide fuel pellets of the WWER-types showed that Young’s modulus and the microhardness of polycrystalline samples increase with increasing grain size, while the fracture toughness decreases. Characteristically, radial Palmqvist cracks form on the surface of uranium dioxide pellets for loads up to 1 kg. Transgranular propagation of cracks over distances several-fold larger than the length of the imprint diagonal is observed in pellets with large grains and small intragrain pores. Intergranular propagation of cracks along grain boundaries with branching occurs in pellets with small grains and low pore concentration on the grain boundaries. Blunting on large pores and at breaks in direction does not permit the cracks to reach a significant length

  2. Evaluation of spectral shift controlled reactors operating on the uranium fuel cycle. Final report

    International Nuclear Information System (INIS)

    Matzie, R.A.; Sider, F.M.

    1979-08-01

    The performance of the spectral shift controlled reactor (SSCR) operating on uranium fuel cycles was evaluated and compared with the conventional pressurized water reactor (PWR). In order to analyze the SSCR, the PSR design methodology was extended to include systems moderated by mixtures of light water and heavy water and these methods were validated by comparison with experimental results. Once the design methods had been formulated, the resouce requirements and power costs were determined for the uranium-fueled SSCR. The ore requirements of the UO 2 once-through fuel cycle and the UO 2 fuel cycle with self-generated recycle (SGR) of plutonium were found to be 10% and 19% less than those of similarly fueled PWRs, respectively. A fuel cycle optimization study was performed for the UO 2 once-through SSCR and the SGR SSCR. By individually altering lattice parameters, discharge exposure or number of in-core batches, savings of less than 8% in resource requirements and less than 1% in power costs were obtained

  3. The measurements of critical mass with uranium fuel elements and thorium rods

    International Nuclear Information System (INIS)

    Yao Zhiquan; Chen Zhicheng; Yao Zewu; Ji Huaxiang; Bao Borong; Zhang Jiahua

    1991-01-01

    The critical experiments with uranium elements and Thorium rods have been performed in zero power reactor at Shanghai Institute of Nuclear Research. The critical masses have been measured in various U/Th ratios. The fuels are 3% 235 U-enriched uranium. The Thorium rods are made from power of ThF 4 . Ratios of calculated values to experimental values are nearly constant at 0.995

  4. Status of the atomized uranium silicide fuel development at KAERI

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C.K.; Kim, K.H.; Park, H.D.; Kuk, I.H. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-08-01

    While developing KMRR fuel fabrication technology an atomizing technique has been applied in order to eliminate the difficulties relating to the tough property of U{sub 3}Si and to take advantage of the rapid solidification effect of atomization. The comparison between the conventionally comminuted powder dispersion fuel and the atomized powder dispersion fuel has been made. As the result, the processes, uranium silicide powdering and heat treatment for U{sub 3}Si transformation, become simplified. The workability, the thermal conductivity and the thermal compatibility of fuel meat have been investigated and found to be improved due to the spherical shape of atomized powder. In this presentation the overall developments of atomized U{sub 3}Si dispersion fuel and the planned activities for applying the atomizing technique to the real fuel fabrication are described.

  5. Fabrication of uranium carbide/beryllium carbide/graphite experimental-fuel-element specimens

    International Nuclear Information System (INIS)

    Muenzer, W.A.

    1978-01-01

    A method has been developed for fabricating uranium carbide/beryllium carbide/graphite fuel-element specimens for reactor-core-meltdown studies. The method involves milling and blending the raw materials and densifying the resulting blend by conventional graphite-die hot-pressing techniques. It can be used to fabricate specimens with good physical integrity and material dispersion, with densities of greater than 90% of the theoretical density, and with a uranium carbide particle size of less than 10 μm

  6. Swiss R and D on uranium-free LWR fuels for plutonium incineration

    International Nuclear Information System (INIS)

    Stanculescu, A.; Chawla, R.; Degueldre, C.; Kasemeyer, U.; Ledergerber, G.; Paratte, J.M.

    1999-01-01

    The most efficient way to enhance the plutonium consumption in LWRs is to eliminate plutonium production altogether. This requirement leads to fuel concepts in which the uranium is replaced by an inert matrix. The inert matrix material studied at PSI is zirconium oxide. For reactivity control reasons, adding a burnable poison to this fuel proves to be necessary. The studies performed at PSI have identified erbium oxide as the most suitable candidate for this purpose. With regard to material technology aspects, efforts have concentrated on the evaluation of fabrication feasibility and on the determination of the physicochemical properties of the chosen single phase zirconium/ erbium/plutonium oxide material stabilised as a cubic solution by yttrium. The results to-date, obtained for inert matrix samples containing thorium or cerium as plutonium substitute, confirm the robustness and stability of this material. With regard to reactor physics aspects, our studies indicate the feasibility of uranium-free, plutonium-fuelled cores having operational characteristics quite similar to those of conventional UO 2 -fuelled ones, and much higher plutonium consumption rates, as compared to 100% MOX loadings. The safety features of such cores, based on results obtained from static neutronics calculations, show no cliff edges. However, the need for further detailed transient analyses is clearly recognised. Summarising, PSI's studies indicate the feasibility of a uranium-free plutonium fuel to be considered in 'maximum plutonium consumption LWRs' operating in a 'once-through' mode. With regard to reactor physics, future efforts will concentrate on strengthening the safety case of uranium-free cores, as well as on improving the integral data base for validation of the neutronics calculations. Material technology studies will be continued to investigate the physico-chemical properties of the inert matrix fuel containing plutonium and will focus on the planning and evaluation of

  7. Management and Handling of Rejected Fuel of MTR Type and Process Effluents Contained Uranium at FEPI

    International Nuclear Information System (INIS)

    Ghaib Widodo; Bambang Herutomo

    2007-01-01

    Research Reactor Fuel Element Production Installation (FEPI) - Serpong has performed management and handling of all kinds of rejected fuel material during production (solids, liquids, and gases) and process effluents contained uranium. The methods that has been implemented are precipitation, absorption, evaporation, electrolysis, and electrodialysis. By these methods will finally be obtained forms of product which can be used directly as fuel material feed and solid/liquid radioactive waste that fulfil the requirements (uranium contents < 50 ppm) to be send to Radioactive Waste Management Installation. (author)

  8. Nondestructive assay of special nuclear material for uranium fuel-fabrication facilities

    International Nuclear Information System (INIS)

    Smith, H.A. Jr.; Schillebeeckx, P.

    1997-01-01

    A high-quality materials accounting system and effective international inspections in uranium fuel-fabrication facilities depend heavily upon accurate nondestructive assay measurements of the facility's nuclear materials. While item accounting can monitor a large portion of the facility inventory (fuel rods, assemblies, storage items), the contents of all such items and mass values for all bulk materials must be based on quantitative measurements. Weight measurements, combined with destructive analysis of process samples, can provide highly accurate quantitative information on well-characterized and uniform product materials. However, to cover the full range of process materials and to provide timely accountancy data on hard-to-measure items and rapid verification of previous measurements, radiation-based nondestructive assay (NDA) techniques play an important role. NDA for uranium fuel fabrication facilities relies on passive gamma spectroscopy for enrichment and U isotope mass values of medium-to-low-density samples and holdup deposits; it relies on active neutron techniques for U-235 mass values of high-density and heterogeneous samples. This paper will describe the basic radiation-based nondestructive assay techniques used to perform these measurements. The authors will also discuss the NDA measurement applications for international inspections of European fuel-fabrication facilities

  9. Adapting the deep burn in-core fuel management strategy for the gas turbine - modular helium reactor to a uranium-thorium fuel

    International Nuclear Information System (INIS)

    Talamo, Alberto; Gudowski, Waclaw

    2005-01-01

    In 1966, Philadelphia Electric has put into operation the Peach Bottom I nuclear reactor, it was the first high temperature gas reactor (HTGR); the pioneering of the helium-cooled and graphite-moderated power reactors continued with the Fort St. Vrain and THTR reactors, which operated until 1989. The experience on HTGRs lead General Atomics to design the gas turbine - modular helium reactor (GT-MHR), which adapts the previous HTGRs to the generation IV of nuclear reactors. One of the major benefits of the GT-MHR is the ability to work on the most different types of fuels: light water reactors waste, military plutonium, MOX and thorium. In this work, we focused on the last type of fuel and we propose a mixture of 40% thorium and 60% uranium. In a uranium-thorium fuel, three fissile isotopes mainly sustain the criticality of the reactor: 235 U, which represents the 20% of the fresh uranium, 233 U, which is produced by the transmutation of fertile 232 Th, and 239 Pu, which is produced by the transmutation of fertile 238 U. In order to compensate the depletion of 235 U with the breeding of 233 U and 239 Pu, the quantity of fertile nuclides must be much larger than that one of 235 U because of the small capture cross-section of the fertile nuclides, in the thermal neutron energy range, compared to that one of 235 U. At the same time, the amount of 235 U must be large enough to set the criticality condition of the reactor. The simultaneous satisfaction of the two above constrains induces the necessity to load the reactor with a huge mass of fuel; that is accomplished by equipping the fuel pins with the JAERI TRISO particles. We start the operation of the reactor with loading fresh fuel into all the three rings of the GT-MHR and after 810 days we initiate a refueling and shuffling schedule that, in 9 irradiation periods, approaches the equilibrium of the fuel composition. The analysis of the k eff and mass evolution, reaction rates, neutron flux and spectrum at the

  10. Effects of high density dispersion fuel loading on the kinetic parameters of a low enriched uranium fueled material test research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Muhammad, Farhan [Department of Nuclear Engineering, Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, Islamabad 45650 (Pakistan)], E-mail: mfarhan_73@yahoo.co.uk; Majid, Asad [Department of Nuclear Engineering, Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, Islamabad 45650 (Pakistan)

    2008-09-15

    The effects of using high density low enriched uranium on the neutronic parameters of a material test research reactor were studied. For this purpose, the low density LEU fuel of an MTR was replaced with high density LEU fuels currently being developed under the RERTR program. Since the alloying elements have different cross-sections affecting the reactor in different ways, therefore fuels U-Mo (9 w/o) which contain the same elements in same ratio were selected for analysis. Simulations were carried out to calculate core excess reactivity, neutron flux spectrum, prompt neutron generation time, effective delayed neutron fraction and feedback coefficients including Doppler feedback coefficient, and reactivity coefficients for change of water density and temperature. Nuclear reactor analysis codes including WIMS-D4 and CITATION were employed to carry out these calculations. It is observed that the excess reactivity at the beginning of life does not increase as the uranium density of fuel. Both the prompt neutron generation time and the effective delayed neutron fraction decrease as the uranium density increases. The absolute value of Doppler feedback coefficient increases while the absolute values of reactivity coefficients for change of water density and temperature decrease.

  11. Effects of high density dispersion fuel loading on the kinetic parameters of a low enriched uranium fueled material test research reactor

    International Nuclear Information System (INIS)

    Muhammad, Farhan; Majid, Asad

    2008-01-01

    The effects of using high density low enriched uranium on the neutronic parameters of a material test research reactor were studied. For this purpose, the low density LEU fuel of an MTR was replaced with high density LEU fuels currently being developed under the RERTR program. Since the alloying elements have different cross-sections affecting the reactor in different ways, therefore fuels U-Mo (9 w/o) which contain the same elements in same ratio were selected for analysis. Simulations were carried out to calculate core excess reactivity, neutron flux spectrum, prompt neutron generation time, effective delayed neutron fraction and feedback coefficients including Doppler feedback coefficient, and reactivity coefficients for change of water density and temperature. Nuclear reactor analysis codes including WIMS-D4 and CITATION were employed to carry out these calculations. It is observed that the excess reactivity at the beginning of life does not increase as the uranium density of fuel. Both the prompt neutron generation time and the effective delayed neutron fraction decrease as the uranium density increases. The absolute value of Doppler feedback coefficient increases while the absolute values of reactivity coefficients for change of water density and temperature decrease

  12. Progress in the development of very high density research and test reactor fuels

    Energy Technology Data Exchange (ETDEWEB)

    Wachs, D.M. [Idaho National Laboratory, P.O. Box 2528, Idaho Falls, Idaho 83415 (United States)

    2009-06-15

    New nuclear fuels are being developed to enable many of the most important research and test reactors worldwide to convert from high enriched uranium (HEU) fuels to low enriched uranium (LEU) fuels without significant loss in performance. The last decade of work has focused on the development of uranium-molybdenum alloy (U-Mo) based fuels and is an international effort that includes the active participation of more than ten national programs. The US RERTR program, under the NNSA's Global Threat Reduction Initiative (GTRI), is in the process of developing both dispersion and monolithic U-Mo fuel designs. While the U-Mo fuel alloy has behaved extremely well under irradiation, initial testing (circa 2003) revealed that the U-Mo fuels dispersed in aluminum had an unexpected tendency toward unstable swelling (pillowing) under high-power conditions. Technical investigations were initiated worldwide at this time by the partner programs to understand this behavior as well as to develop and test remedies. The behavior was corrected by modifying the chemistry of the U-Mo/Al interfaces in both fuel designs. In the dispersion fuel design, this was accomplished by the addition of small amounts of silicon to the aluminum matrix material. Two methods are under development for the monolithic fuel design, which include the application of a thin layer of silicon or a thin zirconium based diffusion barrier at the fuel/clad interface. This paper gives an overview of the current status of U-Mo fuel development, including basic research results, manufacturing aspects, results of the latest irradiations and post irradiation examinations, the approach to fuel performance qualification, and the scale-up and commercialization of fabrication technology. (authors)

  13. The uranium and thorium separation in the chemical reprocessing of the irradiated fuel of thorium and uranium mixed oxides

    International Nuclear Information System (INIS)

    Oliveira, E.F. de.

    1984-09-01

    A bibliographic research has been carried out for reprocessing techniques of irradiated thorium fuel from nuclear reactors. The Thorex/Hoechst process has been specially considered to establish a method for reprocessing thorium-uranium fuel from PWR. After a series of cold tests performed in laboratory it was possible to set the behavior of several parameters affecting the Thorex/Hoechst process. Some comments and suggestions are presented for modifications in the process flosheet conditions. A discussion is carried out for operational conditions such as the aqueous to organic flow ratio the acidity of strip and scrub solutions in the process steps for thorium and uranium recovery. The operation diagrams have been constructed using equilibrium experimental data which correspond to conditions observed in laboratory. (Author) [pt

  14. Study of uranium (VI) in carbonate solution by potentiometric titrations and ion-exchange

    International Nuclear Information System (INIS)

    Billon, A.

    1968-04-01

    The present work is devoted to the fixation of uranium (VI) on the conventional anion-exchange resin Dowex 2 X 8 in carbonate and hydrogen-carbonate media. Both media were successfully used for the recuperation of uranium (VI) from very dilute solutions. Equilibrium constant of the exchange [UO 2 (CO 3 ) 3 4+ ] S + 2 [CO 3 2- ] R ↔ [UO 2 (CO 3 ) 3 4- ] R + 2[CO 3 2- ] S is determined for carbonate concentration range 0.1 M to 0.6 M from partition curves. A markedly increase in the relative fixation of uranium results with: - increasing free carbonate concentration of the solution, - decreasing uranium concentration. A study in the same conditions of the fixation of molybdenum has made it possible to separate the latter from uranium by elution, the carbonate concentration being molar. It is suggested a possibility of separation on a larger scale, based upon molybdenum displacement by uranium in hydrogen-carbonate medium. (author) [fr

  15. Study of the transformation of uranium-niobium alloys with low niobium concentrations, tempered from the gamma and beta + gamma 1 regions and then annealed at different temperatures. Comparison with uranium-molybdenum alloys (1963); Etude des transformations des alliages uranium-niobium a faible teneur en niobium trempes depuis les domaines gamma et beta + gamma 1 puis revenus a differentes temperatures. Comparaison avec les alliages uranium-molybdene (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Collot, C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-09-15

    The author shows that uranium-niobium alloys, like uranium-molybdenum alloys, tempered from the gamma region, give a martensitic phase with a structure deriving from that of alpha uranium by a slight contraction parallel to the axis [001], The critical cooling rate allowing the formation of this martensite is 80 deg. C/s at 750 deg. C. Retention of the beta phase of uranium-niobium alloys is particularly difficult, the critical retention rate being 700 deg. C/s at 668 deg. C for an alloy containing 2.5 at. per cent of Nb. This beta phase is completely converted to the alpha phase at room temperature in about 6 hours. The TTT curves of this beta alloy are effectively reduced to the lower branch of the lower 'C'. The beta phase conversion law is expressed as: 1-x = exp. (kt){sup n} x being the degree of progression of the conversion, t the time, n an exponent no-varying with temperature and having approximately the value 2 for the alloy considered, k an increasing function of temperature. The activation energy of conversion is of the order of 14,600 cal/mole. Niobium is much less active than molybdenum as a stabiliser of beta uranium. (author) [French] Dans ce travail l'auteur montre que les alliages uranium-niobium, comme d'ailleurs les alliages uranium-molybdene, trempes depuis le domaine gamma, donnent une phase martensitique dont la structure derive de celle de l'uranium alpha par une legere contraction parallele de l'axe [001]. La vitesse critique de refroidissement permettant la formation de cette martensite est de 80 deg. C/s a 750 deg. C. La retention de la phase beta des alliages uranium-niobium est particulierement delicate car la vitesse critique de retention est de 700 deg. C/s a 668 deg. C pour l'alliage a 2,5 at. pour cent de Nb. Cette phase beta se transforme completement en phase alpha a la temperature ordinaire en 6 heures environ. Les courbes TTT de cet alliage de structure beta se reduisent pratiquement a la branche inferieure du 'C' inferieur. La

  16. Behavior of silicon in nitric media. Application to uranium silicides fuels reprocessing; Comportement du silicium en milieu nitrique. Application au retraitement des combustibles siliciures d'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Cheroux, L

    2001-07-01

    Uranium silicides are used in some research reactors. Reprocessing them is a solution for their cycle end. A list of reprocessing scenarios has been set the most realistic being a nitric dissolution close to the classic spent fuel reprocessing. This uranium silicide fuel contains a lot of silicon and few things are known about polymerization of silicic acid in concentrated nitric acid. The study of this polymerization allows to point out the main parameters: acidity, temperature, silicon concentration. The presence of aluminum seems to speed up heavily the polymerization. It has been impossible to find an analytical technique smart and fast enough to characterize the first steps of silicic acid polymerization. However the action of silicic species on emulsions stabilization formed by mixing them with an organic phase containing TBP has been studied, Silicon slows down the phase separation by means of oligomeric species forming complex with TBP. The existence of these intermediate species is short and heating can avoid any stabilization. When non irradiated uranium silicide fuel is attacked by a nitric solution, aluminum and uranium are quickly dissolved whereas silicon mainly stands in solid state. That builds a gangue of hydrated silica around the uranium silicide particulates without preventing uranium dissolution. A small part of silicon passes into the solution and polymerize towards the highly poly-condensed forms, just 2% of initial silicon is still in molecular form at the end of the dissolution. A thermal treatment of the fuel element, by forming inter-metallic phases U-Al-Si, allows the whole silicon to pass into the solution and next to precipitate. The behavior of silicon in spent fuels should be between these two situations. (author)

  17. Metallography of pitted aluminum-clad, depleted uranium fuel

    International Nuclear Information System (INIS)

    Nelson, D.Z.; Howell, J.P.

    1994-01-01

    The storage of aluminum-clad fuel and target materials in the L-Disassembly Basin at the Savannah River Site for more than 5 years has resulted in extensive pitting corrosion of these materials. In many cases the pitting corrosion of the aluminum clad has penetrated in the uranium metal core, resulting in the release of plutonium, uranium, cesium-137, and other fission product activity to the basin water. In an effort to characterize the extent of corrosion of the Mark 31A target slugs, two unirradiated slug assemblies were removed from basin storage and sent to the Savannah River Technology Center for evaluation. This paper presents the results of the metallography and photographic documentation of this evaluation. The metallography confirmed that pitting depths varied, with the deepest pit found to be about 0.12 inches (3.05 nun). Less than 2% of the aluminum cladding was found to be breached resulting in less than 5% of the uranium surface area being affected by corrosion. The overall integrity of the target slug remained intact

  18. Thermal compatibility of U-2wt.%Mo and U-10wt.%Mo fuel prepared by centrifugal atomization for high density research reactor fuels

    International Nuclear Information System (INIS)

    Kim Ki Hwan; Lee Don Bae; Kim Chang Kyu; Kuk Il Hyun; Hofman, G.E.

    1997-01-01

    Research on the intermetallic compounds of uranium was revived in 1978 with the decision by the international research reactor community to develop proliferation-resistant fuels. The reduction of 93% 235 U (HEU) to 20% 235 U (LEU) necessitates the use of higher U-loading fuels to accommodate the addition 238 U in the LEU fuels. While the vast majority of reactors can be satisfied with U 3 Si 2 -Al dispersion fuel, several high performance reactors require high loadings of up to 8-9 g U cm -3 . Consequently, in the renewed fuel development program of the Reduced Enrichment for Research and Test Reactors (RERTR) Program, attention has shifted to high density uranium alloys. Early irradiation experiments with uranium alloys showed promise of acceptable irradiation behavior, if these alloys can be maintained in their cubic γ-U crystal structure. It has been reported that high density atomized U-Mo powders prepared by rapid cooling have metastable isotropic γ-U phase saturated with molybdenum, and good γ-U phase stability, especially in U-10wt.%Mo alloy fuel. If the alloy has good thermal compatibility with aluminium, and this metastable gamma phase can be maintained during irradiation, U-Mo alloy would be a prime candidate for dispersion fuel for research reactors. In this paper, U-2w.%Mo and U-10w.%Mo alloy powder which have high density (above 15 g-U/cm 3 ), are prepared by centrifugal atomization. The U-Mo alloy fuel meats are made into rods extruding the atomized powders. The characteristics related to the thermal compatibility of U-2w.%Mo and U-10w.%Mo alloy fuel meat at 400 o C for time up to 2000 hours are examined. (author)

  19. Determining the minimum required uranium carbide content for HTGR UCO fuel kernels

    International Nuclear Information System (INIS)

    McMurray, Jacob W.; Lindemer, Terrence B.; Brown, Nicholas R.; Reif, Tyler J.; Morris, Robert N.; Hunn, John D.

    2017-01-01

    Highlights: • The minimum required uranium carbide content for HTGR UCO fuel kernels is calculated. • More nuclear and chemical factors have been included for more useful predictions. • The effect of transmutation products, like Pu and Np, on the oxygen distribution is included for the first time. - Abstract: Three important failure mechanisms that must be controlled in high-temperature gas-cooled reactor (HTGR) fuel for certain higher burnup applications are SiC layer rupture, SiC corrosion by CO, and coating compromise from kernel migration. All are related to high CO pressures stemming from O release when uranium present as UO 2 fissions and the O is not subsequently bound by other elements. In the HTGR kernel design, CO buildup from excess O is controlled by the inclusion of additional uranium apart from UO 2 in the form of a carbide, UC x and this fuel form is designated UCO. Here general oxygen balance formulas were developed for calculating the minimum UC x content to ensure negligible CO formation for 15.5% enriched UCO taken to 16.1% actinide burnup. Required input data were obtained from CALPHAD (CALculation of PHAse Diagrams) chemical thermodynamic models and the Serpent 2 reactor physics and depletion analysis tool. The results are intended to be more accurate than previous estimates by including more nuclear and chemical factors, in particular the effect of transmuted Pu and Np oxides on the oxygen distribution as the fuel kernel composition evolves with burnup.

  20. Design of an equilibrium nucleus of a BWR type reactor based in a Thorium-Uranium fuel

    International Nuclear Information System (INIS)

    Francois, J.L.; Nunez C, A.

    2003-01-01

    In this work the design of the reactor nucleus of boiling water using fuel of thorium-uranium is presented. Starting from an integral concept based in a type cover-seed assemble is carried out the design of an equilibrium reload for the nucleus of a reactor like that of the Laguna Verde Central and its are analyzed some of the main design variables like the cycle length, the reload fraction, the burnt fuel, the vacuum distribution, the generation of lineal heat, the margin of shutdown, as well as a first estimation of the fuel cost. The results show that it is feasible to obtain an equilibrium reload, comparable to those that are carried out in the Laguna Verde reactors, with a good behavior of those analyzed variables. The cost of the equilibrium reload designed with the thorium-uranium fuel is approximately 2% high that the uranium reload producing the same energy. It is concluded that it is convenient to include burnable poisons, type gadolinium, in the fuel with the end of improving the reload design, the fuel costs and the margin of shutdown. (Author)

  1. Molybdenum, molybdenum oxides, and their electrochemistry.

    Science.gov (United States)

    Saji, Viswanathan S; Lee, Chi-Woo

    2012-07-01

    The electrochemical behaviors of molybdenum and its oxides, both in bulk and thin film dimensions, are critical because of their widespread applications in steels, electrocatalysts, electrochromic materials, batteries, sensors, and solar cells. An important area of current interest is electrodeposited CIGS-based solar cells where a molybdenum/glass electrode forms the back contact. Surprisingly, the basic electrochemistry of molybdenum and its oxides has not been reviewed with due attention. In this Review, we assess the scattered information. The potential and pH dependent active, passive, and transpassive behaviors of molybdenum in aqueous media are explained. The major surface oxide species observed, reversible redox transitions of the surface oxides, pseudocapacitance and catalytic reduction are discussed along with carefully conducted experimental results on a typical molybdenum glass back contact employed in CIGS-based solar cells. The applications of molybdenum oxides and the electrodeposition of molybdenum are briefly reviewed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The compatibility of stainless steels with particles and powders of uranium carbide and low-sulphur UCS fuels

    International Nuclear Information System (INIS)

    Venter, S.

    1978-05-01

    Slightly hyperstoichiometric (U,Pu)C is a potential nuclear fuel for fast breeder reactors. The excess carbon above the stoichiometric amount results in a higher carbon activity in the fuel, and carbon is transferred to the stainless steel cladding, resulting in embrittlement of the cladding. It is with this problem of carbon transfer from the fuel to the cladding that this thesis is concerned. For practical reasons, UC and not (U,Pu)C was used as the fuel. The theory of decarburisation of carbide fuel and the carburisation of stainless steel, the facilities constructed for the project at the Atomic Energy Board, and the experimental techniques used, including preparation of the fuels, are discussed. The effect of a number of variables of uranium carbide fuel on its compatibility behaviour with stainless steels was investigated, as well as the effect om microstructure and type of stainless steel (304, 304 L and 316) on the rate of carburisation. These studies can be briefly summarised under the following headings: powder-particle size; surface oxidation of uranium carbide; preparation temperature of uranium carbide; low sulfur UCS fuels; uranium sulfide and the microstructure and type of steel. The author concludes that: the effect of surface oxidation and particle size must be taken into account when evaluating out-of-pile tests; the possible effects of surface oxidation must be taken into account when considering vibro-compacted carbide fuels; there is no advantage in replacing a fraction of the carbon atoms by sulphur atoms in slightly hyperstoichiometric carbide fuels, and the type and thermo-mechanical treatment of the stainless steel used as cladding material in a fuel pin is not important as far as the rate of carburisation by the fuel is concerned

  3. Conversion of research reactors to low-enrichment uranium fuels

    International Nuclear Information System (INIS)

    Muranaka, R.G.

    1983-01-01

    There are at present approximately 350 research reactors in 52 countries ranging in power from less than 1 watt to 100 Megawatt and over. In the 1970's, many people became concerned about the possibility that some fuels and fuel cycles could provide an easy route to the acquisition of nuclear weapons. Since enrichment to less than 20% is internationally recognized as a fully adequate barrier to weapons usability, certain Member States have moved to minimize the international trade in highly enriched uranium and have established programmes to develop the technical means to help convert research reactors to the use of low-enrichment fuels with minimum penalties. This could involve modifications in the design of the reactor and development of new fuels. As a result of these programmes, it is expected that most research reactors can be converted to the use of low-enriched fuel

  4. Development of Uranium-Carrying Ball method for calibration of fuel element failure detecting systems

    International Nuclear Information System (INIS)

    Liu Yupu; Bao Wanping; Lu Cungang

    1988-01-01

    A Uranium-Carrying Ball method used for the determination of sensitivity, stability of the fuel element failure detecting systems is developed. A special facility for transporting the ball can be carried out by the flow of the cooling water, so that the failure signal can be simulated. Five different types of the Uranium-Carrying Ball have been developed. Type-I to Type-IV may provide failure signal in terms of uranium quantity or exposure area of uranium. Type-V can be used to simulate micro-flaw and examine the detectability of various detective methods for this kind of defect, at the same time it is difficult for the delayed neutron detector to detect micro-flaw. The results of long-time irradiation and washing test show that the working life of the balls is satisfactory. Using the experimentel facility with the balls, detailed study of the capability of various fuel failure detecting systems have been conducted successfully. The operation is easy and safe, the accuracy of this method is higher than that of other methods, the nuclear fuel consumption as well as the radioactive contamination is low. At present, the research on the failure mechanism is being conducted by means of this method

  5. Nuclear energy in Europe: uranium flow modeling and fuel cycle scenario trade-offs from a sustainability perspective.

    Science.gov (United States)

    Tendall, Danielle M; Binder, Claudia R

    2011-03-15

    The European nuclear fuel cycle (covering the EU-27, Switzerland and Ukraine) was modeled using material flow analysis (MFA).The analysis was based on publicly available data from nuclear energy agencies and industries, national trade offices, and nongovernmental organizations. Military uranium was not considered due to lack of accessible data. Nuclear fuel cycle scenarios varying spent fuel reprocessing, depleted uranium re-enrichment, enrichment assays, and use of fast neutron reactors, were established. They were then assessed according to environmental, economic and social criteria such as resource depletion, waste production, chemical and radiation emissions, costs, and proliferation risks. The most preferable scenario in the short term is a combination of reduced tails assay and enrichment grade, allowing a 17.9% reduction of uranium demand without significantly increasing environmental, economic, or social risks. In the long term, fast reactors could theoretically achieve a 99.4% decrease in uranium demand and nuclear waste production. However, this involves important costs and proliferation risks. Increasing material efficiency is not systematically correlated with the reduction of other risks. This suggests that an overall optimization of the nuclear fuel cycle is difficult to obtain. Therefore, criteria must be weighted according to stakeholder interests in order to determine the most sustainable solution. This paper models the flows of uranium and associated materials in Europe, and provides a decision support tool for identifying the trade-offs of the alternative nuclear fuel cycles considered.

  6. Evaluation of the uranium market and its consequences in the strategy of a nuclear fuel supplier that is also a uranium producer

    International Nuclear Information System (INIS)

    Esteves, R.G.

    2005-01-01

    On January 2005, the uranium spot market price reached the value of $21.00/lbU3O8. One month before, at the end of December, the average price was $20.70/lbU3O8 and in November the spot price registered $20.50. When we review this abstract, on July 2005, the price has reached $30.00/lbU3O8. In 1984, the uranium spot price dropped below the twenties and remained so reaching meanwhile even one-digit values, even considering that the uranium offer in this period was always below the demand. The main reason for that distortion in the market was and still is, the interference of the developing countries governments after the end of the cold war The Industrias Nucleares do Brasil - INB is in an odd situation in the market of fuel suppliers due to being also a uranium producer and in short future will also be an enrichment services supplier. This peculiar position brings additional advantages due to the flexibility to play with the uranium costs versus tail assay to optimize its nuclear fuel costs. That odd position, equivalent only in the market to AREVA, allows INB to exchange uranium by SWU and vice versa according to its uranium cost (not market sell price) and in the future to the SWU's costs obtaining a better margin that can not be reached by other fuel suppliers. In the first part of this paper it is evaluated, based on the recent market information, the consequences in the 2004 uranium spot price, expected to be more emphasized during 2005. This paper also evaluate the market mechanisms for expecting the price to cross the $40/lbU3O8 in short time The market supply mechanisms used up to now to fulfil the market deficit may be interrupted in case the developing countries governments stop the availability of the non civil uranium reserves from its stockpile. Different hypotheses for supplying the primary uranium deficit in this last case are analyzed in this work and evaluated its consequences. The solution of reducing the actual tails assay used aiming at

  7. Some Thermodynamic Features of Uranium-Plutonium Nitride Fuel in the Course of Burnup

    Science.gov (United States)

    Rusinkevich, A. A.; Ivanov, A. S.; Belov, G. V.; Skupov, M. V.

    2017-12-01

    Calculation studies on the effect of carbon and oxygen impurities on the chemical and phase compositions of nitride uranium-plutonium fuel in the course of burnup are performed using the IVTANTHERMO code. It is shown that the number of moles of UN decreases with increasing burnup level, whereas UN1.466, UN1.54, and UN1.73 exhibit a considerable increase. The presence of oxygen and carbon impurities causes an increase in the content of the UN1.466, UN1.54 and UN1.73 phases in the initial fuel by several orders of magnitude, in particular, at a relatively low temperature. At the same time, the presence of impurities abruptly reduces the content of free uranium in unburned fuel. Plutonium in the considered system is contained in form of Pu, PuC, PuC2, Pu2C3, and PuN. Plutonium carbides, as well as uranium carbides, are formed in small amounts. Most of the plutonium remains in the form of nitride PuN, whereas unbound Pu is present only in the areas with a low burnup level and high temperatures.

  8. Hydrotreatment activities of supported molybdenum nitrides and carbides

    Energy Technology Data Exchange (ETDEWEB)

    Dolce, G.M.; Savage, P.E.; Thompson, L.T. [University of Michigan, Ann Arbor, MI (United States). Dept. of Chemical Engineering

    1997-05-01

    The growing need for alternative sources of transportation fuels encourages the development of new hydrotreatment catalysts. These catalysts must be active and more hydrogen efficient than the current commercial hydrotreatment catalysts. Molybdenum nitrides and carbides are attractive candidate materials possessing properties that are comparable or superior to those of commercial sulfide catalysts. This research investigated the catalytic properties of {gamma}-Al{sub 2}O{sub 3}-supported molybdenum nitrides and carbides. These catalysts were synthesized via temperature-programmed reaction of supported molybdenum oxides with ammonia or methane/hydrogen mixtures. Phase constituents and compositions were determined by X-ray diffraction, elemental analysis, and neutral activation analysis. Oxygen chemisorption was used to probe the surface properties of the catalysts. Specific activities of the molybdenum nitrides and carbides were competitive with those of a commercial sulfide catalyst for hydrodenitrogenation (HDN), hydrodesulfurization (HDS), and hydrodeoxygenation (HDO). For HDN and HDS, the catalytic activity on a molybdenum basis was a strong inverse function of the molybdenum loading. Product distributions of the HDN, HDO and HDS of a variety of heteroatom compounds indicated that several of the nitrides and carbides were more hydrogen efficient than the sulfide catalyst. 35 refs., 8 figs., 7 tabs.

  9. Review of some past and present powder metallurgy programs at the Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Sheinberg, H.

    1977-01-01

    Powder metallurgy programs at LASL are reviewed. Topics covered include: KIWI reactor fuel elements; Phoebus reactor fuel elements, criticality control and poison plate material, structural composites for fuel element supports, and heat shields for fuel element supports; thermionic emitter reactor uranium carbide--zirconium carbide fuel pins, and molybdenum--uranium oxide fuel pins; laser and electron beam fusion targets; and current work in MHD components

  10. The manufacture of MTR fuel elements and Mo99 production targets at Dounreay

    International Nuclear Information System (INIS)

    Gibson, J.

    1997-01-01

    Uranium/aluminium alloy elements have been produced at Dounreay for nearly 40 years. In April 1990 the two DIDO-type reactors operated by the United Kingdom Atomic Energy Authority (UKAEA) at Harwell were closed, with the result that a large portion of the then current customer base disappeared and, to satisfy the needs of the evolving market, the decision was taken to invest over 1m pounds in new equipment for the manufacture of dispersed fuels and molybdenum production targets. (author)

  11. Development and fabrication of seamless Aluminium finned clad tubes for metallic uranium fuel rods for research reactor

    International Nuclear Information System (INIS)

    Singh, A.K.; Hussain, M.M.; Jayachandran, N.K.; Abdulla, K.K.

    2012-01-01

    Natural uranium metal or its alloy is used as fuel in nuclear reactors. Usually fuel is clad with compatible material to prevent its direct contact with coolant which prevents spread of activity. One of the methods of producing fuel for nuclear reactor is by co-drawing finished uranium rods with aluminum clad tube to develop intimate contact for effective heat removal during reactor operation. Presently seam welded Aluminium tubes are used as clad for Research Reactor fuel. The paper will highlight entire fabrication process followed for the fabrication of seamless Aluminium finned tubes along with relevant characterisation results

  12. Specific features of the WWER Uranium-Gadolinium fuel behavior at BOL

    International Nuclear Information System (INIS)

    Shcheglov, A.; Proselkov, V.; Volkov, B.

    2013-01-01

    The calculated-experimental analysis of the WWER fuel behavior with 5%wt of gadolinium oxide at the beginning of life (BOL) is presented. The results are based on the data on fuel centerline temperature measurements, gas media pressure inside the cladding and fuel elongation obtained during irradiation of the test fuel rods in HBWR (Halden). Computer analysis of experimental data is performed with TOPRA-2, version 2 code. It is shown that specific features of the uranium-gadolinium fuel behavior at the early of life is due to presence of burnable absorber influencing the average linear heat rating, radial power distribution and lower thermal conductivity. In particular, the analysis of “late” relocation effect on the maximum Gd fuel temperature is presented. (authors)

  13. Recycling of reprocessed uranium

    International Nuclear Information System (INIS)

    Randl, R.P.

    1987-01-01

    Since nuclear power was first exploited in the Federal Republic of Germany, the philosophy underlying the strategy of the nuclear fuel cycle has been to make optimum use of the resource potential of recovered uranium and plutonium within a closed fuel cycle. Apart from the weighty argument of reprocessing being an important step in the treatment and disposal of radioactive wastes, permitting their optimum ecological conditioning after the reprocessing step and subsequent storage underground, another argument that, no doubt, carried weight was the possibility of reducing the demand of power plants for natural uranium. In recent years, strategies of recycling have emerged for reprocessed uranium. If that energy potential, too, is to be exploited by thermal recycling, it is appropriate to choose a slightly different method of recycling from the one for plutonium. While the first generation of reprocessed uranium fuel recycled in the reactor cuts down natural uranium requirement by some 15%, the recycling of a second generation of reprocessed, once more enriched uranium fuel helps only to save a further three per cent of natural uranium. Uranium of the second generation already carries uranium-232 isotope, causing production disturbances, and uranium-236 isotope, causing disturbances of the neutron balance in the reactor, in such amounts as to make further fabrication of uranium fuel elements inexpedient, even after mixing with natural uranium feed. (orig./UA) [de

  14. Conversion and standardization of university reactor fuels using low-enrichment uranium - options and costs

    International Nuclear Information System (INIS)

    Harris, D.R.; Matos, J.E.; Young, H.H.

    1985-01-01

    The highly-enriched uranium (HEU) fuel used in twenty United States university reactors can be viewed as contributing to the risk of theft or diversion of weapons-useable material. The US Nuclear Regulatory Commission has issued a policy statement expressing its concern and has published a proposed rule on limiting the use of HEU in NRC-licensed non-power reactors. The fuel options, functional impacts, licensing, and scheduling of conversion and standardization of these reactor fuels to use of low-enrichment uranium (LEU) have been assessed. The university reactors span a wide range in form and function, from medium-power intense neutron sources where HEU fuel may be required, to low-power training and research facilities where HEU fuel is unnecessary. Conversion provides an opportunity to standardize university reactor fuels and improve reactor utilization in some cases. The entire program is estimated to cost about $10 million and to last about five years. Planning for conversion and standardization is facilitated by the US Department of Energy. 20 refs., 1 tab

  15. Conversion and standardization of university reactor fuels using low-enrichment uranium - Options and costs

    International Nuclear Information System (INIS)

    Harris, D.R.; Matos, J.E.; Young, H.H.

    1985-01-01

    The highly-enriched uranium (HEU) fuel used in twenty United States university reactors can be viewed as contributing to the risk of theft or diversion of weapons-useable material. The U.S. Nuclear Regulatory Commission has issued a policy statement expressing its concern and has published a proposed rule on limiting the use of HEU in NRC-licensed non-power reactors. The fuel options, functional impacts, licensing, and scheduling of conversion and standardization of these reactor fuels to use of low-enrichment uranium (LEU) have been assessed. The university reactors span a wide range in form and function, from medium-power intense neutron sources where HEU fuel may be required, to low-power training and research facilities where HEU fuel is unnecessary. Conversion provides an opportunity to standardize university reactor fuels and improve reactor utilization in some cases. The entire program is estimated to cost about $10 million and to last about five years. Planning for conversion and standardization is facilitated by the U.S. Department of Energy. (author)

  16. Postirradiation analysis of experimental uranium-silicide dispersion fuel plates

    International Nuclear Information System (INIS)

    Hofman, G.L.; Neimark, L.A.

    1985-01-01

    Low-enriched uranium silicide dispersion fuel plates were irradiated to maximum burnups of 96% of 235 U. Fuel plates containing 33 v/o U 3 Si and U 3 Si 2 behaved very well up to this burnup. Plates containing 33 v/o U 3 Si-Al pillowed between 90 and 96% burnup of the fissile atoms. More highly loaded U 3 Si-Al plates, up to 50 v/o were found to pillow at lower burnups. Plates containing 40 v/o U 3 Si showed an increase swelling rate around 85% burnup. 5 refs., 10 figs

  17. Contribution to the study of the fission-gas release in metallic nuclear fuels; Contribution a l'etude du degagement des gaz de fission dans les combustibles nucleaires metalliques

    Energy Technology Data Exchange (ETDEWEB)

    Kryger, B [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1969-10-01

    In order to study the effect of an external pressure on the limitation of swelling due to fission-gas precipitation, some irradiations have been carried out at burn-ups of about 35.000 MWd/ton, and at average sample temperatures of 575 Celsius degrees, of non-alloyed uranium and uranium 8 per cent molybdenum gained in a thick stainless steel can. A cylindrical central hole allows a fuel swelling from 20 to 33 per cent according to the experiment. After irradiation, the uranium samples showed two types of can rupture: one is due to the fuel swelling, and the other, to the pressure of the fission gases, released through a network of microcracks. The cans of the uranium-molybdenum samples are all undamaged and it is shown that the gas release occurs by interconnection of the bubbles for swelling values higher than those obtained in the case of uranium. For each type of fuel, a swelling-fission gas release relationship is established. The results suggest that good performances with a metallic fuel intended for use in fast reactor conditions can be obtained. (author) [French] Afin d'etudier l'effet d'une pression exterieure sur la limitation du gonflement due a la precipitation des gaz de fission, on a irradie a des taux de combustion d'environ 35.000 MWj/t et a des temperatures moyennes de 575 degres des echantillons d'uranium non allie et d'uranium-molybdene 8 pour cent contenus dans une gaine en acier inoxydable epaisse. Un trou cylindrique central permet au combustible de gonfler librement de 20 a 33 pour cent suivant les cas. Apres irradiation les echantillons d'uranium presentent deux types de ruptures de gaine: l'une due au gonflement du combustible, l'autre a la pression des gaz degages, ce degagement des gaz etant provoque par un reseau de micro-fissures. Les gaines des echantillons d'alliage uranium-molybdene sont toutes intactes et l'on montre que le relachement des gaz opere par interconnexion des bulles pour des valeurs de gonflement plus elevees que dans

  18. Air Shipment of Highly Enriched Uranium Spent Nuclear Fuel from Romania

    Energy Technology Data Exchange (ETDEWEB)

    K. J. Allen; I. Bolshinsky; L. L. Biro; M. E. Budu; N. V. Zamfir; M. Dragusin

    2010-07-01

    Romania safely air shipped 23.7 kilograms of Russian origin highly enriched uranium (HEU) spent nuclear fuel from the VVR S research reactor at Magurele, Romania, to the Russian Federation in June 2009. This was the world’s first air shipment of spent nuclear fuel transported in a Type B(U) cask under existing international laws without special exceptions for the air transport licenses. This shipment was coordinated by the Russian Research Reactor Fuel Return Program (RRRFR), part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), in cooperation with the Romania National Commission for Nuclear Activities Control (CNCAN), the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), and the Russian Federation State Corporation Rosatom. The shipment was transported by truck to and from the respective commercial airports in Romania and the Russian Federation and stored at a secure nuclear facility in Russia where it will be converted into low enriched uranium. With this shipment, Romania became the 3rd country under the RRRFR program and the 14th country under the GTRI program to remove all HEU. This paper describes the work, equipment, and approvals that were required to complete this spent fuel air shipment.

  19. Air Shipment of Highly Enriched Uranium Spent Nuclear Fuel from Romania

    International Nuclear Information System (INIS)

    Allen, K.J.; Bolshinsky, I.; Biro, L.L.; Budu, M.E.; Zamfir, N.V.; Dragusin, M.

    2010-01-01

    Romania safely air shipped 23.7 kilograms of Russian-origin highly enriched uranium (HEU) spent nuclear fuel from the VVR-S research reactor at Magurele, Romania, to the Russian Federation in June 2009. This was the world's first air shipment of spent nuclear fuel transported in a Type B(U) cask under existing international laws without special exceptions for the air transport licenses. This shipment was coordinated by the Russian Research Reactor Fuel Return Program (RRRFR), part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), in cooperation with the Romania National Commission for Nuclear Activities Control (CNCAN), the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), and the Russian Federation State Corporation Rosatom. The shipment was transported by truck to and from the respective commercial airports in Romania and the Russian Federation and stored at a secure nuclear facility in Russia where it will be converted into low enriched uranium. With this shipment, Romania became the 3. country under the RRRFR program and the 14. country under the GTRI program to remove all HEU. This paper describes the work, equipment, and approvals that were required to complete this spent fuel air shipment. (authors)

  20. Assessment of uranium dioxide fuel performance with the addition of beryllium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Muniz, Rafael O.R.; Abe, Alfredo; Gomes, Daniel S.; Silva, Antonio T., E-mail: romuniz@usp.br, E-mail: ayabe@ipen.br, E-mail: danieldesouza@gmail.com, E-mail: teixeira@ipen.br [Instituto de Pesquisas Energética s e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Giovedi, Claudia, E-mail: claudia.giovedi@labrisco.usp.br [Universidade de Sao Paulo (LabRisco/USP), Sao Paulo, SP (Brazil). Lab. de Análise, Avaliação e Gerenciamento de Risco; Aguiar, Amanda A., E-mail: amanda.abati.aguiar@gmail.com [Centro Tecnológico da Marinha em São Paulo (CTMSP), São Paulo, SP (Brazil)

    2017-07-01

    The Fukushima Daiichi accident in 2011 pointed the problem related to the hydrogen generation under accident scenarios due to the oxidation of zirconium-based alloys widely used as fuel rod cladding in water-cooled reactors. This problem promoted research programs aiming the development of accident tolerant fuels (ATF) which are fuels that under accident conditions could keep longer its integrity enabling the mitigation of the accident effects. In the framework of the ATF program, different materials have been studied to be applied as cladding to replace zirconium-based alloy; also efforts have been made to improve the uranium dioxide thermal conductivity doping the fuel pellet. This paper evaluates the addition of beryllium oxide (BeO) to the uranium dioxide in order to enhance the thermal conductivity of the fuel pellet. Investigations performed in this area considering the addition of 10% in volume of BeO, resulting in the UO{sub 2}-BeO fuel, have shown good results with the improvement of the fuel thermal conductivity and the consequent reduction of the fuel temperatures under irradiation. In this paper, two models obtained from open literature for the thermal conductivity of UO{sub 2}- BeO fuel were implemented in the FRAPCON 3.5 code and the results obtained using the modified code versions were compared. The simulations were carried out using a case available in the code documentation related to a typical pressurized water reactor (PWR) fuel rod irradiated under steady state condition. The results show that the fuel centerline temperatures decrease with the addition of BeO, when compared to the conventional UO{sub 2} pellet, independent of the model applied. (author)

  1. The improvement of technology for high-uranium-density Al-base dispersion fuel plates

    International Nuclear Information System (INIS)

    Shouhui, Dai; Rongxian, Sun; Hejian, Mao; Baosheng, Zhao; Changgen, Yin

    1987-01-01

    An improved rolling process was developed for manufacturing Al-base dispersion fuel plates. When the fuel content in the meat increased up to 50 vol%, the non-uniformity of uranium is not more than ± 7.2%, and the minimum cladding thickness is not less than 0.32 mm. (Author)

  2. Study of the behaviour of cesium fission product in uranium dioxide by the ab initio method

    International Nuclear Information System (INIS)

    Gupta, Florence

    2008-01-01

    The knowledge of the behaviour of fission products in the nuclear fuel is very important for safety considerations and for understanding the evolution of the fuel properties under irradiation. In this work, we focussed mainly on the behaviour of caesium in UO 2 through ab initio studies of its solubility at point defects in the matrix, its diffusion and its contribution to the formation of solid phases in the fuel. The role of electronic correlation effects of the f electrons of uranium on these properties and on the description of the defect free crystal, is assessed. The formation energies of the main point defects are calculated and their concentration as a function of fuel stoichiometry and temperature is estimated. The migration barriers and migration paths for the self-diffusion of oxygen and uranium vacancies and oxygen interstitials in UO 2 are discussed. The solubility of Cs is found to be very low in UO 2 in agreement with experimental findings. The most favourable trapping sites are determined as a function of oxygen concentration in the fuel. Our results show that in the hyper-stoichiometric regime, the diffusion of Cs from its most favourable trapping site is limited by the uranium vacancy diffusion mechanism. We also considered the formation of the main solid phases of caesium resulting from its oxidation (Cs 2 O, Cs 2 O 2 , CsO 2 ) and from its interaction with the fuel (Cs 2 UO 4 ), with molybdenum (Cs 2 MoO 4 ) and with the zirconium of the clad (Cs 2 ZrO 3 ), since the formation of such phases, their solubility and their interdependence will affect the release of caesium. (author)

  3. Low-Enriched Uranium Fuel Design with Two-Dimensional Grading for the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ilas, Germina [ORNL; Primm, Trent [ORNL

    2011-05-01

    An engineering design study of the conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel is ongoing at Oak Ridge National Laboratory. The computational models developed during fiscal year 2010 to search for an LEU fuel design that would meet the requirements for the conversion and the results obtained with these models are documented and discussed in this report. Estimates of relevant reactor performance parameters for the LEU fuel core are presented and compared with the corresponding data for the currently operating HEU fuel core. The results obtained indicate that the LEU fuel design would maintain the current performance of the HFIR with respect to the neutron flux to the central target region, reflector, and beam tube locations under the assumption that the operating power for the reactor fueled with LEU can be increased from the current value of 85 MW to 100 MW.

  4. Use of TRIGA flip fuel for improved in-core irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Whittemore, W L [General Atomic Co., San Diego, CA (United States)

    1974-07-01

    Use of standard TRIGA fuel (20% enriched uranium) in a reactor provides a suitable facility for in-core irradiations. However, large numbers of in-core samples irradiated for long periods (many months) can be handled more economically with a TRIGA loaded with FLIP fuel. As an example, ten or more in-core thermionic devices (each worth 50 to 80 cents with respect to a water-filled position) were irradiated in the Mark III TRIGA at General Atomic Company for 18 months with only a modest change in excess reactivity due to core burnup. A core loading of FLIP fuel has been added to the General Atomic Mark F reactor in order to provide numerous in-core irradiation sites for the production of radioisotopes. Since the worth of a 500-gram sample of a molybdenum compound (used for the production of {sup 99}Mo) is about 25 to 50 cents with respect to a water-filled position, use of a FLIP- TRIGA core will permit the irradiation of more than 5 kilograms of a molybdenum compound. A procedure is under development for the production of {sup 99}Mo with relatively high specific activity. Several techniques to concentrate {sup 99}Mo have been tested experimentally. The results will be reported. (author)

  5. Adapting the deep burn in-core fuel management strategy for the gas turbine - modular helium reactor to a uranium-thorium fuel

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto [Department of Nuclear and Reactor Physics, Royal Institute of Technology, Roslagstullsbacken 21, S-10691, Stockholm (Sweden)]. E-mail: alby@neutron.kth.se; Gudowski, Waclaw [Department of Nuclear and Reactor Physics, Royal Institute of Technology, Roslagstullsbacken 21, S-10691, Stockholm (Sweden)

    2005-11-15

    In 1966, Philadelphia Electric has put into operation the Peach Bottom I nuclear reactor, it was the first high temperature gas reactor (HTGR); the pioneering of the helium-cooled and graphite-moderated power reactors continued with the Fort St. Vrain and THTR reactors, which operated until 1989. The experience on HTGRs lead General Atomics to design the gas turbine - modular helium reactor (GT-MHR), which adapts the previous HTGRs to the generation IV of nuclear reactors. One of the major benefits of the GT-MHR is the ability to work on the most different types of fuels: light water reactors waste, military plutonium, MOX and thorium. In this work, we focused on the last type of fuel and we propose a mixture of 40% thorium and 60% uranium. In a uranium-thorium fuel, three fissile isotopes mainly sustain the criticality of the reactor: {sup 235}U, which represents the 20% of the fresh uranium, {sup 233}U, which is produced by the transmutation of fertile {sup 232}Th, and {sup 239}Pu, which is produced by the transmutation of fertile {sup 238}U. In order to compensate the depletion of {sup 235}U with the breeding of {sup 233}U and {sup 239}Pu, the quantity of fertile nuclides must be much larger than that one of {sup 235}U because of the small capture cross-section of the fertile nuclides, in the thermal neutron energy range, compared to that one of {sup 235}U. At the same time, the amount of {sup 235}U must be large enough to set the criticality condition of the reactor. The simultaneous satisfaction of the two above constrains induces the necessity to load the reactor with a huge mass of fuel; that is accomplished by equipping the fuel pins with the JAERI TRISO particles. We start the operation of the reactor with loading fresh fuel into all the three rings of the GT-MHR and after 810 days we initiate a refueling and shuffling schedule that, in 9 irradiation periods, approaches the equilibrium of the fuel composition. The analysis of the k {sub eff} and mass

  6. Review of consequences of uranium hydride formation in N-Reactor fuel elements stored in the K-Basins

    Energy Technology Data Exchange (ETDEWEB)

    Weber, J.W.

    1994-09-28

    The 105-K Basins on the Hanford site are used to store uranium fuel elements and assemblies irradiated in and discharged from N Reactor. The storage cylinders in KW Basin are known to have some broken N reactor fuel elements in which the exposed uranium is slowly reacting chemically with water in the cylinder. The products of these reactions are uranium oxide, hydrogen, and potentially some uranium hydride. The purpose of this report is to document the results f the latest review of potential, but highly unlikely accidents postulated to occur as closed cylinders containing N reactor fuel assemblies are opened under water in the KW basin and as a fuel assembly is raised from the basin in a shipping cask for transportation to the 327 Building for examination as part of the SNF Characterization Program. The postulated accidents reviews in this report are considered to bound all potential releases of radioactivity and hydrogen. These postulated accidents are: (1) opening and refill of a cylinder containing significant amounts of hydrogen and uranium hydride; and (2) draining of the single element can be used to keep the fuel element submerged in water after the cask containing the can and element is lifted from the KW Basin. Analysis shows the release of radioactivity to the site boundary is significantly less than that allowed by the K Basin Safety Evaluation. Analysis further shows there would be no damage to the K Basin structure nor would there be injury to personnel for credible events.

  7. Estimates of future demand for uranium and nuclear fuel cycle services

    Energy Technology Data Exchange (ETDEWEB)

    Krymm, R; Woite, G [International Atomic Energy Agency, Division of Nuclear Power and Reactors, Economic Studies Section, Vienna (Austria)

    1976-07-01

    As a review of forecasts made over the last few years amply demonstrates, projections of nuclear power capacity on a country, regional or world basis are subject to uncertainties. It summarizes the evolution of estimates made in the recent past, should provide a sobering reminder of the advisability of relying on ranges rather than on single figures. Although they are derived from a relatively narrow range of assumptions for nuclear power capacity, the alternative estimates of demands for uranium and nuclear-fuel-cycle services differ by about 50%. If plausible variations in breeder penetration, load factors, tails assays and fuel performance were taken into account, a ratio of 2 between maximum and minimum possible demands for the 2000 could easily be approached. Thus, for instance, a 15% (instead of 5%) breeder penetration by the year 2000 would decrease annual natural uranium demand by about 10%, a drop of load factor from 0.7 to 0.6 would drop the demand by another 10%, a decrease in tail assay from 0.25% to 0.2% would drop the demand by 8%. These momentous uncertainties, characteristic of medium- and long-term demand projections, offer a sharp contrast to the inflexibility of short-term requirements. Once a nuclear plant is ordered, the demand for the fuel services required for its core and for its replacement loadings is practically fixed (subject to minor trade-offs) and it can only be delayed in time by accepting exceedingly heavy additional costs. The demand for uranium can be characterized as being uncertain in the future and inelastic in the present. It faces sources of supply which, with the exception of fabrication and conversion facilities, are characterized by long planning times, lengthy prospecting and construction times, and above all by heavy capital investments. This combination offers an almost ideal framework for instability and wild price fluctuations if consumers and suppliers operate independently seeking temporary guidance in their

  8. Estimates of future demand for uranium and nuclear fuel cycle services

    International Nuclear Information System (INIS)

    Krymm, R.; Woite, G.

    1976-01-01

    As a review of forecasts made over the last few years amply demonstrates, projections of nuclear power capacity on a country, regional or world basis are subject to uncertainties. It summarizes the evolution of estimates made in the recent past, should provide a sobering reminder of the advisability of relying on ranges rather than on single figures. Although they are derived from a relatively narrow range of assumptions for nuclear power capacity, the alternative estimates of demands for uranium and nuclear-fuel-cycle services differ by about 50%. If plausible variations in breeder penetration, load factors, tails assays and fuel performance were taken into account, a ratio of 2 between maximum and minimum possible demands for the 2000 could easily be approached. Thus, for instance, a 15% (instead of 5%) breeder penetration by the year 2000 would decrease annual natural uranium demand by about 10%, a drop of load factor from 0.7 to 0.6 would drop the demand by another 10%, a decrease in tail assay from 0.25% to 0.2% would drop the demand by 8%. These momentous uncertainties, characteristic of medium- and long-term demand projections, offer a sharp contrast to the inflexibility of short-term requirements. Once a nuclear plant is ordered, the demand for the fuel services required for its core and for its replacement loadings is practically fixed (subject to minor trade-offs) and it can only be delayed in time by accepting exceedingly heavy additional costs. The demand for uranium can be characterized as being uncertain in the future and inelastic in the present. It faces sources of supply which, with the exception of fabrication and conversion facilities, are characterized by long planning times, lengthy prospecting and construction times, and above all by heavy capital investments. This combination offers an almost ideal framework for instability and wild price fluctuations if consumers and suppliers operate independently seeking temporary guidance in their

  9. Studies on the safety and transmutation behaviour of innovative fuels for light water reactors; Untersuchungen zum Sicherheits- und Transmutationsverhalten innovativer Brennstoffe fuer Leichtwasserreaktoren

    Energy Technology Data Exchange (ETDEWEB)

    Schitthelm, Oliver

    2012-07-01

    Nuclear power plants contribute a substantial part to the energy demand in industry. Today the most common fuel cycle uses enriched uranium which produces plutonium due to its {sup 238}U content. With respect to the long-term waste disposal Plutonium is an issue due to its heat production and radiotoxicity. This thesis consists of three main parts. In the first part the development and validation of a new code package MCBURN for spatial high resolution burnup simulations is presented. In the second part several innovative uranium-free and plutonium-burning fuels are evaluated on assembly level. Candidates for these fuels are a thorium/plutonium fuel and an inert matrix fuel consisting of plutonium dispersed in an enriched molybdenum matrix. The performance of these fuels is evaluated against existing MOX and enriched uranium fuels considering the safety and transmutation behaviour. The evaluation contains the boron efficiency, the void coefficient, the doppler coefficient and the net balances of every radionuclide. In the third part these innovative fuels are introduced into a German KONVOI reactor core. Considering todays approved usage of MOX fuels a partial loading of one third of innovative fuels and two third of classical uranium fuels was analysed. The efficiency of the plutonium depletion is determined by the ratio of the production of higher isotopes compared to the plutonium depletion. Todays MOX-fuels transmutate about 25% to 30% into higher actinides as Americium or Curium. In uranium-free fuels this ratio is about 10% due to the lack of additional plutonium production. The analyses of the reactor core have shown that one third of MOX fuel is not capable of a net reduction of plutonium. On the other hand a partial loading with thorium/plutonium fuel incinerates about half the amount of plutonium produced by an uranium only core. If IMF is used the ratio increases to about 75%. Considering the safety behavior all fuels have shown comparable results.

  10. Low enriched uranium foil targets with different geometries for the production of Molybdenum-99 in the BMR (Brazilian Multipurpose Reactor)

    International Nuclear Information System (INIS)

    Domingos, Douglas B.; Silva, Antonio T. e; Joao, Thiago G.; Muniz, Rafael O.R.; Coelho, Talita S.

    2011-01-01

    A new research reactor is being planned in Brazil to take care of the demand of radiopharmaceuticals in the country and conduct research in various areas. This new reactor, the Brazilian Multipurpose Reactor (RMB), planned for 30 MW, is now in the conception design phase. Two low enriched ( 235 U) metallic uranium foil targets (cylinder and plate geometries) are being considered for production of Molybdenum-99 ( 99 Mo) by fission. Neutronic and thermal-hydraulics calculations were performed to compare the production of 99 Mo for these targets in the RMB and to determine the temperatures achieved in the targets. For the neutronic calculations were utilized the computer codes HAMMER-TECHNION, CITATION and SCALE and for the thermal-hydraulics calculations were utilized the computer codes MTRCR-IEA-R1 and ANSYS CFX. (author)

  11. Fuel component of electricity generation cost for the BN-800 reactor with MOX fuel and uranium oxide fuel with increasing of fuel burnup and removing of radial breeding blanket

    International Nuclear Information System (INIS)

    Raskach, A.

    2001-01-01

    Nowadays there are two completed design concepts of Nuclear Power Plants (NPPs) with the BN-800 type reactors developed with due regard for advanced safety requirements. One of them is the design of the fourth unit of the Beloyarsk Nuclear Power Plant; the other one is the design of three units of the South Ural Nuclear Power Plant. The both concepts are to use mixed oxide fuel (MOX fuel) based on civil plutonium. Studies on any project include economical analyses and cost of fuel is an essential parameter. In the course of the design works on the both projects such evaluations were done. For BN-800 on the Beloyarsk site nuclear fuel costs were taken from actual expenses of the BN-600 reactor and converted to rated thermal power and design capacity factor of the BN-800 and then increased by 20% in connection with turning to MOX fuel. Then this methodology was rewarding, but the ratio of uranium fuel and MOX fuel costs might change for the last years. For the project of three units of the South Ural Nuclear Power Plant nuclear fuel expenses were calculated from the data on a MOX fuel fabrication production facility (Complex-300). However, investigations performed recently shown that the methodology of economical assessments should be revised, as well as design and technology of MOX fuel fabrication at Complex-300 should be revised to meet all the existing safety requirements. Excepting there is a great bulk of civil plutonium to be reproduced, now we came up against the problem to utilize the exceeding ex-weapons plutonium that obviously can be used for MOX fuel fabrication as well. Construction of the MOX fuel fabrication facility - Complex-300 - was started in 1983. Its design output was planned to provide simultaneously 4 fast reactors of the BN-800 type with MOX fuel. By now about 50% of construction works (taking into account auxiliary buildings and arrangements) and 20% of installation works have been done at Complex-300. Along this, first works to construct

  12. Failure mechanisms for compacted uranium oxide fuel cores

    International Nuclear Information System (INIS)

    Berghaus, D.G.; Peacock, H.B.

    1980-01-01

    Tension, compression, and shear tests were performed on test specimens of aluminum-clad, compacted powder fuel cores to determine failure mechanisms of the core material. The core, which consists of 70% uranium oxide in an aluminum matrix, frequently fails during post-extrusion drawing. Tests were conducted to various strain levels up to failure of the core. Sections were made of tested specimens to microscopically study initiation of failure. Two failure modes wee observed. Tensile failure mode is initiated by prior tensile failure of uranium oxide particles with the separation path strongly influenced by the arrangement of particles. Delamination mode consists of the separation of laminae formed during extrusion of tubes. Separation proceeds from fine cracks formed parallel to the laminae. Tensile failure mode was experienced in tension and shear tests. Delamination mode was produced in compression tests

  13. Feasibility of Producing Molybdenum-99 on a Small Scale Using Fission of Low Enriched Uranium or Neutron Activation of Natural Molybdenum

    International Nuclear Information System (INIS)

    2015-01-01

    This publication documents the work performed within the IAEA coordinated research project (CRP) on Developing Techniques for Small Scale Indigenous Molybdenum-99 Production Using LEU Fission or Neutron Activation. The project allowed participating institutions to receive training and information on aspects necessary for starting production of molybdenum-99 ( 99 Mo) on a small scale, that is, to become national level producers of this medical isotope. Stable production of 99Mo is one of the most pressing issues facing the nuclear community at present, because the medical isotope technetium-99m ( 99m Tc), which decays from 99 Mo, is one of the most widely used radionuclides in diagnostic imaging and treatment around the world. In the past five years, there have been widespread shortages of 99 Mo owing to the limited number of producers, many of which use ageing facilities. To assist in stabilizing the production of 99Mo, and to promote the use of production methods that do not rely on the use of highly enriched uranium (HEU), the IAEA initiated the abovementioned CRP on small scale 99Mo production using low enriched uranium (LEU) fission or neutron activation methods. The intention was to enable participating institutions to gain the knowledge necessary to become national level producers of 99Mo in the event of further global shortages. Some of the institutions that participated in the CRP have continued their work on 99 Mo production, and are enlisting the assistance of other CRP members and the IAEA’s technical cooperation programme to set up a small scale production capability. In total, the CRP was active for six years, and concluded in December 2011. During the CRP, fourteen IAEA Member States took part; four research coordination meetings were held, and four workshops were held on operational aspects of 99 Mo production, LEU target fabrication and waste management. Most participants carried out work related to the entire production process, from target

  14. Fracture characteristics of uranium alloys by scanning electron microscopy

    International Nuclear Information System (INIS)

    Koger, J.W.; Bennett, R.K. Jr.

    1976-10-01

    The fracture characteristics of uranium alloys were determined by scanning electron microscopy. The fracture mode of stress-corrosion cracking (SCC) of uranium-7.5 weight percent niobium-2.5 weight percent zirconium (Mulberry) alloy, uranium--niobium alloys, and uranium--molybdenum alloys in aqueous chloride solutions is intergranular. The SCC fracture surface of the Mulberry alloy is characterized by very clean and smooth grain facets. The tensile-overload fracture surfaces of these alloys are characteristically ductile dimple. Hydrogen-embrittlement failures of the uranium alloys are brittle and the fracture mode is transgranular. Fracture surfaces of the uranium-0.75 weight percent titanium alloys are quasi cleavage

  15. Natural Transmutation of Actinides via the Fission Reaction in the Closed Thorium-Uranium-Plutonium Fuel Cycle

    Science.gov (United States)

    Marshalkin, V. Ye.; Povyshev, V. M.

    2017-12-01

    It is shown for a closed thorium-uranium-plutonium fuel cycle that, upon processing of one metric ton of irradiated fuel after each four-year campaign, the radioactive wastes contain 54 kg of fission products, 0.8 kg of thorium, 0.10 kg of uranium isotopes, 0.005 kg of plutonium isotopes, 0.002 kg of neptunium, and "trace" amounts of americium and curium isotopes. This qualitatively simplifies the handling of high-level wastes in nuclear power engineering.

  16. Method to evaluate covariance data for the thorium-uranium fuel cycle

    International Nuclear Information System (INIS)

    Kawano, T.; Chadwick, M.B.

    2003-01-01

    This power point presentation gives an overview about the evaluation strategy for the experimental data for the thorium-uranium fuel cycle. Uncertainties, error propagation and calculation methods are outlined. Covariance evaluation tools and computer codes have been developed and results are presented

  17. Nuclear reactor fuel structure containing uranium alloy wires embedded in a metallic matrix plate

    Science.gov (United States)

    Travelli, Armando

    1988-01-01

    A flat or curved plate structure, to be used as fuel in a nuclear reactor, comprises elongated fissionable wires or strips embedded in a metallic continuous non-fissionable matrix plate. The wires or strips are made predominantly of a malleable uranium alloy, such as uranium silicide, uranium gallide or uranium germanide. The matrix plate is made predominantly of aluminum or an aluminum alloy. The wires or strips are located in a single row at the midsurface of the plate, parallel with one another and with the length dimension of the plate. The wires or strips are separated from each other, and from the surface of the plate, by sufficient thicknesses of matrix material, to provide structural integrity and effective fission product retention, under neutron irradiation. This construction makes it safely feasible to provide a high uranium density, so that the uranium enrichment with uranium 235 may be reduced below about 20%, to deter the reprocessing of the uranium for use in nuclear weapons.

  18. Neutronic and thermal hydraulic analysis for production of fission molybdenum-99 at Pakistan Research Reactor-1

    Energy Technology Data Exchange (ETDEWEB)

    Mushtaq, A. [Isotope Production Division, Pakistan Institute of Nuclear Science and Technology, P.O. Nilore, Islamabad (Pakistan)], E-mail: mushtaqa@pinstech.org.pk; Iqbal, Massod; Bokhari, Ishtiaq Hussain; Mahmood, Tariq; Mahmood, Tayyab; Ahmad, Zahoor; Zaman, Qamar [Nuclear Engineering Division, Pakistan Institute of Nuclear Science and Technology, P.O. Nilore, Islamabad (Pakistan)

    2008-02-15

    Neutronic and thermal hydraulic analysis for the fission molybdenum-99 production at PARR-1 has been performed. Low enriched uranium foil (<20% {sup 235}U) will be used as target material. Annular target designed by ANL (USA) will be irradiated in PARR-1 for the production of 100 Ci of molybdenum-99 at the end of irradiation, which will be sufficient to prepare required {sup 99}Mo/{sup 99m}Tc generators at PINSTECH and its supply in the country. Neutronic and thermal hydraulic analysis were performed using various codes. Data shows that annular targets can be safely irradiated in PARR-1 for production of required amount of fission molybdenum-99.

  19. Repository emplacement costs for Al-clad high enriched uranium spent fuel

    International Nuclear Information System (INIS)

    McDonell, W.R.; Parks, P.B.

    1994-01-01

    A range of strategies for treatment and packaging of Al-clad high-enriched uranium (HEU) spent fuels to prevent or delay the onset of criticality in a geologic repository was evaluated in terms of the number of canisters produced and associated repository costs incurred. The results indicated that strategies in which neutron poisons were added to consolidated forms of the U-Al alloy fuel generally produced the lowest number of canisters and associated repository costs. Chemical processing whereby the HEU was removed from the waste form was also a low cost option. The repository costs generally increased for isotopic dilution strategies, because of the substantial depleted uranium added. Chemical dissolution strategies without HEU removal were also penalized because of the inert constituents in the final waste glass form. Avoiding repository criticality by limiting the fissile mass content of each canister incurred the highest repository costs

  20. Standard method of test for atom percent fission in uranium fuel - radiochemical method

    International Nuclear Information System (INIS)

    Anon.

    The determination of the U at. % fission that has occurred in U fuel from an analysis of the 137 Cs ratio to U ratio after irradiation is described. The method is applicable to high-density, clad U fuels (metal, alloys, or ceramic compounds) in which no separation of U and Cs has occurred. The fuels are best aged for several months after irradiation in order to reduce the 13-day 136 Cs activity. The fuel is dissolved and diluted to produce a solution containing a final concentration of U of 100 to 1000 mg U/l. The 137 Cs concentration is determined by ASTM method E 320, for Radiochemical Determination of Cesium-137 in Nuclear Fuel Solutions, and the U concentration is determined by ASTM method E 267, for Determination of Uranium and Plutonium Concentrations and Isotopic Abundances, ASTM method E 318, for Colorimetric Determination of Uranium by Controlled-Potential Coulometry. Calculations are given for correcting the 137 Cs concentration for decay during and after irradiation. The accuracy of this method is limited, not only by the experimental errors with which the fission yield and the half-life of 137 Cs are known

  1. Quality assurance in the manufacture of metallic uranium fuel for research reactors

    International Nuclear Information System (INIS)

    Shah, B.K.; Kumar, Arbind; Nanekar, P.P.; Vaidya, P.R.

    2009-01-01

    Two Research Reactors viz. CIRUS and DHRUVA are operating at Trombay since 1960 and 1985 respectively. Cirus is a 40 MWth reactor using heavy water as moderator and light water as coolant. Dhruva is a 100 MWth reactor using heavy water as moderator and coolant. The maximum neutron flux of these reactors are 6.7 x 10 13 n/cm 2 /s (Cirus) and 1.8 x 10 14 n/cm 2 /s (Dhruva). Both these reactors are used for basic research, R and D in reactor technology, isotope production and operator training. Fuel material for these reactors is natural uranium metallic rods claded in finned aluminium (99.5%) tubes. This presentation will discuss various issues related to fabrication quality assurance and reactor behavior of metallic uranium fuel used in research reactors

  2. RECOVERY OF URANIUM FROM ZIRCONIUM-URANIUM NUCLEAR FUELS

    Science.gov (United States)

    Gens, T.A.

    1962-07-10

    An improvement was made in a process of recovering uranium from a uranium-zirconium composition which was hydrochlorinated with gsseous hydrogen chloride at a temperature of from 350 to 800 deg C resulting in volatilization of the zirconium, as zirconium tetrachloride, and the formation of a uranium containing nitric acid insoluble residue. The improvement consists of reacting the nitric acid insoluble hydrochlorination residue with gaseous carbon tetrachloride at a temperature in the range 550 to 600 deg C, and thereafter recovering the resulting uranium chloride vapors. (AEC)

  3. How much uranium

    International Nuclear Information System (INIS)

    Kenward, M.

    1976-01-01

    Comment is made on the latest of a series of reports on world uranium resources from the OECD's Nuclear Energy Agency and the UN's International Atomic Energy Agency (Uranium resources, production and demand (including other nuclear fuel cycle data), published by the Organisation for Economic Cooperation and Development, Paris). The report categories uranium reserves by their recovery cost and looks at power demand and the whole of the nuclear fuel cycle, including uranium enrichment and spent fuel reprocessing. The effect that fluctuations in uranium prices have had on exploration for new uranium resources is considered. It is stated that increased exploration is essential considering the long lead times involved but that thanks to today's higher prices there are distinct signs that prospecting activities are increasing again. (U.K.)

  4. Development of CERMET fuels for minor actinides transmutation

    International Nuclear Information System (INIS)

    Haas, D.; Fernandez, A.; Naestren, C.; Staicu, D.; Somers, J.; Maschek, W.; Chen, X.

    2006-01-01

    The sub-critical Accelerator Driven System (ADS) is now being considered as a potential means to burn long-lived transuranium nuclides. The preferred fuel for such a fast neutron reactor is uranium-free, highly enriched with plutonium and minor actinides. Requirements for ADS transmutation fuels are linked with the core design and safety parameters, the fuel properties and the ease of reprocessing. This study concerns the properties of metals as matrices, with the particular case of Mo. To improve the neutronic characteristics, enriched molybdenum (Mo-92) is required. To overcome the high enrichment cost, it is proposed to recover the matrix by pellet dissolution, and to recycle it for further use. Irradiation programmes are also planned to examine the in-reactor properties of the material. Based on the current status of the research, the results are promising, but irradiation results are still missing. (authors)

  5. Method of fabricating a uranium-bearing foil

    Science.gov (United States)

    Gooch, Jackie G [Seymour, TN; DeMint, Amy L [Kingston, TN

    2012-04-24

    Methods of fabricating a uranium-bearing foil are described. The foil may be substantially pure uranium, or may be a uranium alloy such as a uranium-molybdenum alloy. The method typically includes a series of hot rolling operations on a cast plate material to form a thin sheet. These hot rolling operations are typically performed using a process where each pass reduces the thickness of the plate by a substantially constant percentage. The sheet is typically then annealed and then cooled. The process typically concludes with a series of cold rolling passes where each pass reduces the thickness of the plate by a substantially constant thickness amount to form the foil.

  6. Technological study of electrochemical uranium fuel reprocessing in fused chloride bath

    International Nuclear Information System (INIS)

    Fernandes, Damaris

    2002-01-01

    This study is applied to metallic fuels recycling, concerning advanced reactor concept, which was proposed and tested in LMR type reactors. Conditions for electrochemical non-irradiated uranium fuel reprocessing in fused chloride bath in laboratory scale were established. Experimental procedures and parameters for dehydration treatment of LiCl-KCl eutectic mixture and for electrochemical study of U 3+ /U system in LiCl-KCl were developed and optimized. In the voltammetric studies many working electrodes were tested. As auxiliary electrodes, graphite and stainless steels crucibles were verified, with no significant impurities inclusions in the system. Ag/AgCl in Al 2 O 3 with 1 w% in AgCl were used as reference electrode. The experimental set up developed for electrolyte treatment as well as for the study of the system U 3+ /U in LiCl-KCl showed to be adequate and efficient. Thermogravimetric Techniques, Scanning Electron Microscopy with Energy Dispersive X-Ray Spectrometry and cyclic voltametry showed an efficient dehydration method by using HCl gas and than argon flux for 12 h. Scanning Electron Microscopy, with Energy Dispersive X-Ray Spectrometry and Inductively Coupled Plasma Emission Spectrometry and DC Arc Emission Spectrometry detected the presence of uranium in the cadmium phase. X-ray Diffraction and also Inductively Coupled Plasma Emission Spectrometry and DC Arc Emission Spectrometry were used for uranium detection in the salt phase. The obtained results for the system U 3+ /U in LiCl-KCl showed the viability of the electrochemical reprocessing process based on the IFR advanced fuel cycle. (author)

  7. Uranium oxide fuel cycle analysis in VVER-1000 with VISTA simulation code

    Science.gov (United States)

    Mirekhtiary, Seyedeh Fatemeh; Abbasi, Akbar

    2018-02-01

    The VVER-1000 Nuclear power plant generates about 20-25 tons of spent fuel per year. In this research, the fuel transmutation of Uranium Oxide (UOX) fuel was calculated by using of nuclear fuel cycle simulation system (VISTA) code. In this simulation, we evaluated the back end components fuel cycle. The back end component calculations are Spent Fuel (SF), Actinide Inventory (AI) and Fission Product (FP) radioisotopes. The SF, AI and FP values were obtained 23.792178 ton/y, 22.811139 ton/y, 0.981039 ton/y, respectively. The obtained value of spent fuel, major actinide, and minor actinide and fission products were 23.8 ton/year, 22.795 ton/year, 0.024 ton/year and 0.981 ton/year, respectively.

  8. Conversion of highly enriched uranium in thorium-232 based oxide fuel for light water reactors: MOX-T fuel

    Energy Technology Data Exchange (ETDEWEB)

    Vapirev, E; Jordanov, T; Khristoskov, I [Sofia Univ. (Bulgaria). Fizicheski Fakultet

    1996-12-31

    The possibility of using highly enriched uranium available from military inventories for production of mixed oxide fuel (MOX) has been proposed. The fuel is based on U-235 dioxide as fissile isotope and Th-232 dioxide as a non-fissile isotope. It is shown that although the fuel conversion coefficient to U-233 is expected to be less than 1, the proposed fuel has several important advantages resulting in cost reduction of the nuclear fuel cycle. The expected properties of MOX fuel (cross-sections, generated chains, delayed neutrons) are estimated. Due to fuel generation the initial enrichment is expected to be 1% less for production of the same energy. In contrast to traditional fuel no long living actinides are generated which reduces the disposal and reprocessing cost. 7 refs.

  9. Transport of high enriched uranium fresh fuel from Yugoslavia to the Russian federation

    OpenAIRE

    Pešić Milan P.; Šotić Obrad; Hopwood William H.Jr

    2002-01-01

    This paper presents the relevant data related to the recent shipment (August 2002) of fresh highly enriched uranium fuel elements from Yugoslavia back to the Russian Federation for uranium down blending. In this way, Yugoslavia gave its contribution to the Reduced Enrichment for Research and Test Reactors (RERTR) Program and to the world's joint efforts to prevent possible terrorist actions against nuclear material potentially usable for the production of nuclear weapons.

  10. Do we soon run out of uranium? Long-term concepts of nuclear fuel supply

    International Nuclear Information System (INIS)

    Prasser, Horst-Michael

    2008-01-01

    The extension of the worldwide light water reactor fleet will cause the demand for uranium to grow. The static reach of identified resources might soon fall below the life time of new nuclear power plants which are usually designed for 60 years of operation, if the exploration of new uranium deposits will stop resulting in exploitable resources. The article discusses, if, as frequently claimed, the energy consumption in the uranium mines renders impossible to secure the nuclear fuel supply in the long term. (orig.)

  11. Measurement of disequilibrium in uranium and geochemical cartography by XRF field measurements for uranium exploration in a roll-front context (Mongolia)

    International Nuclear Information System (INIS)

    Andre, G.; Licht, A.

    2009-01-01

    Exploration studies in the South-eastern Mongolia revealed uranium mineralisation associated with a roll-front development in sands and clays of the Sainshand formation (late Cretaceous). The authors report a field measurement campaign performed with a portable X-ray fluorescence apparatus which allows on-site analysis of 30 species including uranium. This on-site analysis of uranium contents quickly characterizes the equilibrium state of new sectors. Visualization of disequilibria informs on the genesis and on the evolution of the deposit. The tracking of elements like selenium, vanadium and molybdenum helps the understanding of uranium trap or release mechanisms

  12. Radiation protection of workers in uranium mining, ore processing and fuel fabrication in India

    International Nuclear Information System (INIS)

    Khan, A. H.; Jha, G.; Jha, S.; Srivastava, G. K.; Sadasivan, S.; Raj, Venkat

    2002-01-01

    Low grade of uranium ore mined from three underground mines is processed in a mill at Jaduguda in eastern India to recover uranium concentrate in the form of yellow cake. This concentrate is further processed at the Nuclear Fuel Complex at Hyderabad, in southern India, to produce fuel for use in nuclear power plants. Radiation protection of workers is given due importance at all stages of these operations. Dedicated Health Physics Units and Environmental Survey Laboratories established at each site regularly carry out in-plant and environmental surveillance to keep radiation exposure of workers and the members of public within the limits prescribed by the regulatory body. The limits set by the national regulatory body are based on the international standards suggested by the ICRP and the IAEA. In the uranium mines external gamma radiation, radon and airborne activity due to radioactive dust is monitored. Similarly, in the uranium mill and the fuel fabrication plant gamma radiation and airborne radioactivity due to long-lived α -emitters are monitored. Personal dosimeters are also issued to workers. The total radiation exposure of workers from external and internal sources is evaluated from the personal monitoring and area monitoring data. It has been observed that the total radiation dose to workers has been well below 20 mSv.y 1 at all stages of operations. Adequate ventilation is provided during mining, ore processing and fuel fabrication operations to keep the concentrations of airborne radioactivity well below the derived limits. Workers use personal protective appliances, where necessary, as a supplementary means of control. The monitoring methodologies, results and control measures are presented in the paper

  13. Radiation protection of workers in uranium mining, ore processing and fuel fabrication in India

    International Nuclear Information System (INIS)

    Khan, A.H.; Jha, G.; Jha, S.; Srivastava, G.K.; Sadasivan, S.; Venkat Raj, V.

    2002-01-01

    Full text: Low grade of uranium ore mined from three underground mines is processed in a mill at Jaduguda in eastern India to recover uranium concentrate in the form of yellow cake. This concentrate is further processed at the Nuclear Fuel Complex at Hyderabad, in southern India, to produce fuel for use in nuclear power plants. Radiation protection of workers is given due importance at all stages of these operations. Dedicated Health Physics Units and Environmental Survey Laboratories established at each site regularly carry out in-plant and environmental surveillance to keep radiation exposure of workers and the members of public within the limits prescribed by the regulatory body. The limits set by the national regulatory body are based on the international standards suggested by the ICRP and the IAEA. In the uranium mines external gamma radiation, radon and airborne activity due to radioactive dust is monitored. Similarly, in the uranium mill and the fuel fabrication plant gamma radiation and airborne radioactivity due to long-lived a- emitters are monitored. Personal dosimeters are also issued to workers. The total radiation exposure of workers from external and internal sources is evaluated from the personal monitoring and area monitoring data. It has been observed that the total radiation dose to workers has been well below 20 mSvy -1 at all stages of operations. Adequate ventilation is provided during mining, ore processing and fuel fabrication operations to keep the concentrations of airborne radioactivity well below the derived limits. Workers use personal protective appliances, where necessary, as a supplementary means of control. The monitoring methodologies, results and control measures are presented in the paper

  14. Radiotoxicity study of a boiling water reactor core design based on a thorium-uranium fuel concept

    International Nuclear Information System (INIS)

    Nunez C, A.; Espinosa P, G.

    2007-01-01

    Full text: The innovative design of a Boiling Water Reactor (BWR) equilibrium core using the thorium-uranium (blanket-seed) concept in the same integrated fuel assembly is presented in this paper. The lattice design uses the thorium conversion capability to 233 U in a BWR spectrum. A core design was developed to achieve an equilibrium cycle of one effective full power year in a standard BWR. A comparison of the toxicity of the spent fuel showed that toxicity is lower in the thorium cycle than other commercial fuels as UO 2 and MOX (uranium and plutonium) in case of the one-through cycle for LWR. (Author)

  15. Uranium density reduction on fuel element side plates assessment

    International Nuclear Information System (INIS)

    Rios, Ilka A.; Andrade, Delvonei A.; Domingos, Douglas B.; Umbehaun, Pedro E.

    2011-01-01

    During operation of IEA-R1 research reactor, located at Instituto de Pesquisas Energeticas e Nucleares, IPEN - CNEN/SP, an abnormal oxidation on some fuel elements was noted. It was also verified, among the possible causes of the problem, that the most likely one was insufficient cooling of the elements in the core. One of the propositions to solve or minimize the problem is to reduce uranium density on fuel elements side plates. In this paper, the influence of this change on neutronic and thermal hydraulic parameters for IEA-R1 reactor is verified by simulations with the codes HAMMER and CITATION. Results are presented and discussed. (author)

  16. Uranium density reduction on fuel element side plates assessment

    Energy Technology Data Exchange (ETDEWEB)

    Rios, Ilka A. [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil); Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Andrade, Delvonei A.; Domingos, Douglas B.; Umbehaun, Pedro E. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    During operation of IEA-R1 research reactor, located at Instituto de Pesquisas Energeticas e Nucleares, IPEN - CNEN/SP, an abnormal oxidation on some fuel elements was noted. It was also verified, among the possible causes of the problem, that the most likely one was insufficient cooling of the elements in the core. One of the propositions to solve or minimize the problem is to reduce uranium density on fuel elements side plates. In this paper, the influence of this change on neutronic and thermal hydraulic parameters for IEA-R1 reactor is verified by simulations with the codes HAMMER and CITATION. Results are presented and discussed. (author)

  17. Study on the dimensional instability of metallic uranium subject to thermal alternation

    International Nuclear Information System (INIS)

    Gentile, E.F.

    1976-01-01

    Methalographic properties of metallic uranium submitted to a thermal cycle are studied. Microstructures heat treatment and methods utilized are presented. Dimensional instability of uranium is the main subject of the study and it is seen that it is strongly reduced in the presence of molybdenum [pt

  18. High loading uranium plate

    International Nuclear Information System (INIS)

    Wiencek, T.C.; Domagala, R.F.; Thresh, H.R.

    1990-01-01

    Two embodiments of a high uranium fuel plate are disclosed which contain a meat comprising structured uranium compound confined between a pari of diffusion bonded ductile metal cladding plates uniformly covering the meat, the meat hiving a uniform high fuel loading comprising a content of uranium compound greater than about 45 Vol. % at a porosity not greater than about 10 Vol. %. In a first embodiment, the meat is a plurality of parallel wires of uranium compound. In a second embodiment, the meat is a dispersion compact containing uranium compound. The fuel plates are fabricated by a hot isostatic pressing process

  19. Reactivity change measurements on plutonium-uranium fuel elements in hector experimental techniques and results

    International Nuclear Information System (INIS)

    Tattersall, R.B.; Small, V.G.; MacBean, I.J.; Howe, W.D.

    1964-08-01

    The techniques used in making reactivity change measurements on HECTOR are described and discussed. Pile period measurements were used in the majority of oases, though the pile oscillator technique was used occasionally. These two methods are compared. Flux determinations were made in the vicinity of the fuel element samples using manganese foils, and the techniques used are described and an error assessment made. Results of both reactivity change and flux measurements on 1.2 in. diameter uranium and plutonium-uranium alloy fuel elements are presented, these measurements being carried out in a variety of graphite moderated lattices at temperatures up to 450 deg. C. (author)

  20. Caramel, uranium oxide fuel plates for water cooled reactors

    International Nuclear Information System (INIS)

    Bussy, Pierre; Delafosse, Jacques; Lestiboudois, Guy; Cerles, J.-M.; Schwartz, J.-P.

    1979-01-01

    The fuel is composed of thin plates assembled parallel to each other to form bundles or assemblies. Each plate is composed of a pavement of uranium oxide pellets, insulated from each other by a zircaloy cladding. The 235 U enrichment does not exceed 8%. The range of uses for this fuel extends from electric power generating reactors to irradiation reactors for research work. A parametric study in test loops has made it possible to determine the operating limits of this thick fuel, without bursting. The resulting diagram gives the permissible power densities, with and without cycling for specific burn-ups beyond 50,000 MWd/t. The thinnest plates were also irradiated in total in the form of advance assemblies irradiated in the core of the OSIRIS pile prior to its transformation. This transformation and the operation of this reactor with a core of 'Caramel' elements is the main trial experiment of this fuel [fr

  1. Fabrication and testing of uranium nitride fuel for space power reactors

    Science.gov (United States)

    Matthews, R. B.; Chidester, K. M.; Hoth, C. W.; Mason, R. E.; Petty, R. L.

    1988-02-01

    Uranium nitride fuel was selected for previous space power reactors because of its attractive thermal and physical properties; however, all UN fabrication and testing activities were terminated over ten years ago. An accelerated irradiation test, SP-1, was designed to demonstrate the irradiation performance of Nb-1 Zr clad UN fuel pins for the SP-100 program. A carbothermic-reduction/nitriding process was developed to synthesize UN powders. These powders were fabricated into fuel pellets by conventional cold-pressing and sintering. The pellets were loaded into Nb-1 Zr cladding tubes, irradiated in a fast-test reactor, and destructively examined after 0.8 at% burnup. Preliminary postirradiation examination (PIE) results show that the fuel pins behaved as designed. Fuel swelling, fission-gas release, and microstructural data are presented, and suggestions to enhance the reliability of UN fuel pins are discussed.

  2. DUSCOBS - a depleted-uranium silicate backfill for transport, storage, and disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Pope, R.B.; Ashline, R.C.; DeHart, M.D.; Childs, K.W.; Tang, J.S.

    1995-01-01

    A Depleted Uranium Silicate COntainer Backfill System (DUSCOBS) is proposed that would use small, isotopically-depleted uranium silicate glass beads as a backfill material inside storage, transport, and repository waste packages containing spent nuclear fuel (SNF). The uranium silicate glass beads would fill all void space inside the package including the coolant channels inside SNF assemblies. Based on preliminary analysis, the following benefits have been identified. DUSCOBS improves repository waste package performance by three mechanisms. First, it reduces the radionuclide releases from SNF when water enters the waste package by creating a local uranium silicate saturated groundwater environment that suppresses (1) the dissolution and/or transformation of uranium dioxide fuel pellets and, hence, (2) the release of radionuclides incorporated into the SNF pellets. Second, the potential for long-term nuclear criticality is reduced by isotopic exchange of enriched uranium in SNF with the depleted uranium (DU) in the glass. Third, the backfill reduces radiation interactions between SNF and the local environment (package and local geology) and thus reduces generation of hydrogen, acids, and other chemicals that degrade the waste package system. In addition, the DUSCOBS improves the integrity of the package by acting as a packing material and ensures criticality control for the package during SNF storage and transport. Finally, DUSCOBS provides a potential method to dispose of significant quantities of excess DU from uranium enrichment plants at potential economic savings. DUSCOBS is a new concept. Consequently, the concept has not been optimized or demonstrated in laboratory experiments

  3. Development of ISA procedure for uranium fuel fabrication and enrichment facilities

    International Nuclear Information System (INIS)

    Yamate, Kazuki; Arakawa, Tomoyuki; Yamashita, Masahiro; Sasaki, Noriaki; Hirano, Mitsumasa

    2011-01-01

    The integrated safety analysis (ISA) procedure has been developed to apply risk-informed regulation to uranium fuel fabrication and enrichment facilities. The major development efforts are as follows: (a) preparing the risk level matrix as an index for items-relied-on-for-safety (IROFS) identification, (b) defining requirements of IROFS, and (c) determining methods of IROFS importance based on the results of risk- and scenario-based analyses. For the risk level matrix, the consequence and likelihood categories have been defined by taking into account the Japanese regulatory laws, rules, and safety standards. The trial analyses using the developed procedure have been performed for several representative processes of the reference uranium fuel fabrication and enrichment facilities. This paper presents the results of the ISA for the sintering process of the reference fabrication facility. The results of the trial analyses have demonstrated the applicability of the procedure to the risk-informed regulation of these facilities. (author)

  4. Physicochemical characteristics of uranium microparticles collected at nuclear fuel cycle plants

    International Nuclear Information System (INIS)

    Kaurov, G.; Stebelkov, V.; Kolesnikov, O.; Frolov, D.

    2001-01-01

    Any industrial process is accompanied by appearance of some quantity of microparticles of processed matter in the environment in immediate proximity to the manufacturing object. These particles can be transferred in atmosphere and can be collected at some distances from the plant. The determination of characteristics of industrial dust microparticles at nuclear fuel cycle plants (form, size, structure of surface, elemental composition, isotopic composition, presence of fission products, presence of activation products) in conjunction with the ability to connect these characteristics with certain nuclear manufacturing processes can become the main technical method of detecting of undeclared nuclear activity. Systematization of the experimental data on morphology, elemental and isotopic composition of uranium microparticles, collected at nuclear fuel cycle plants, is given. The purpose of this work is to establish the relationship between morphological characteristics of uranium dust microparticles and types of nuclear manufacture and to define the reference attributes of the most informative microparticles

  5. The prospect of uranium nitride (UN) and mixed nitride fuel (UN-PuN) for pressurized water reactor

    International Nuclear Information System (INIS)

    Syarifah, Ratna Dewi; Suud, Zaki

    2015-01-01

    Design study of small Pressurized Water Reactors (PWRs) core loaded with uranium nitride fuel (UN) and mixed nitride fuel (UN-PuN), Pa-231 as burnable poison, and Americium has been performed. Pa-231 known as actinide material, have large capture cross section and can be converted into fissile material that can be utilized to reduce excess reactivity. Americium is one of minor actinides with long half life. The objective of adding americium is to decrease nuclear spent fuel in the world. The neutronic analysis results show that mixed nitride fuel have k-inf greater than uranium nitride fuel. It is caused by the addition of Pu-239 in mixed nitride fuel. In fuel fraction analysis, for uranium nitride fuel, the optimum volume fractions are 45% fuel fraction, 10% cladding and 45% moderator. In case of UN-PuN fuel, the optimum volume fractions are 30% fuel fraction, 10% cladding and 60% coolant/ moderator. The addition of Pa-231 as burnable poison for UN fuel, enrichment U-235 5%, with Pa-231 1.6% has k-inf more than one and excess reactivity of 14.45%. And for mixed nitride fuel, the lowest value of reactivity swing is when enrichment (U-235+Pu) 8% with Pa-231 0.4%, the excess reactivity value 13,76%. The fuel pin analyze for the addition of Americium, the excess reactivity value is lower than before, because Americium absorb the neutron. For UN fuel, enrichment U-235 8%, Pa-231 1.6% and Am 0.5%, the excess reactivity is 4.86%. And for mixed nitride fuel, when enrichment (U-235+Pu) 13%, Pa-231 0.4% and Am 0.1%, the excess reactivity is 11.94%. For core configuration, it is better to use heterogeneous than homogeneous core configuration, because the radial power distribution is better

  6. The prospect of uranium nitride (UN) and mixed nitride fuel (UN-PuN) for pressurized water reactor

    Science.gov (United States)

    Syarifah, Ratna Dewi; Suud, Zaki

    2015-09-01

    Design study of small Pressurized Water Reactors (PWRs) core loaded with uranium nitride fuel (UN) and mixed nitride fuel (UN-PuN), Pa-231 as burnable poison, and Americium has been performed. Pa-231 known as actinide material, have large capture cross section and can be converted into fissile material that can be utilized to reduce excess reactivity. Americium is one of minor actinides with long half life. The objective of adding americium is to decrease nuclear spent fuel in the world. The neutronic analysis results show that mixed nitride fuel have k-inf greater than uranium nitride fuel. It is caused by the addition of Pu-239 in mixed nitride fuel. In fuel fraction analysis, for uranium nitride fuel, the optimum volume fractions are 45% fuel fraction, 10% cladding and 45% moderator. In case of UN-PuN fuel, the optimum volume fractions are 30% fuel fraction, 10% cladding and 60% coolant/ moderator. The addition of Pa-231 as burnable poison for UN fuel, enrichment U-235 5%, with Pa-231 1.6% has k-inf more than one and excess reactivity of 14.45%. And for mixed nitride fuel, the lowest value of reactivity swing is when enrichment (U-235+Pu) 8% with Pa-231 0.4%, the excess reactivity value 13,76%. The fuel pin analyze for the addition of Americium, the excess reactivity value is lower than before, because Americium absorb the neutron. For UN fuel, enrichment U-235 8%, Pa-231 1.6% and Am 0.5%, the excess reactivity is 4.86%. And for mixed nitride fuel, when enrichment (U-235+Pu) 13%, Pa-231 0.4% and Am 0.1%, the excess reactivity is 11.94%. For core configuration, it is better to use heterogeneous than homogeneous core configuration, because the radial power distribution is better.

  7. Dry uranium tetrafluoride process preparation using the uranium hexafluoride reconversion process effluents

    International Nuclear Information System (INIS)

    Silva Neto, Joao Batista da

    2008-01-01

    It is a well known fact that the use of uranium tetrafluoride allows flexibility in the production of uranium suicide and uranium oxide fuel. To its obtention there are two conventional routes, the one which reduces uranium from the UF 6 hydrolysis solution with stannous chloride, and the hydro fluorination of a solid uranium dioxide. In this work we are introducing a third and a dry way route, mainly utilized to the recovery of uranium from the liquid effluents generated in the uranium hexafluoride reconversion process, at IPEN/CNEN-SP. Working in the liquid phase, this route comprises the recuperation of ammonium fluoride by NH 4 HF 2 precipitation. Working with the solid residues, the crystallized bifluoride is added to the solid UO 2 , which comes from the U mini plates recovery, also to its conversion in a solid state reaction, to obtain UF 4 . That returns to the process of metallic uranium production unity to the U 3 Si 2 obtention. This fuel is considered in IPEN CNEN/SP as the high density fuel phase for IEA-R1m reactor, which will replace the former low density U 3 Si 2 -Al fuel. (author)

  8. Recent status and future aspect of plate type fuel element technology with high uranium density at NUKEM

    International Nuclear Information System (INIS)

    Hrovat, M.F.; Hassel, H.-W.

    1983-01-01

    According to the present state of development full size test fuel elements with UAl x , U 3 O 8 , and U 3 Si 2 fuel were fabricated at Nukem in production scale. The maximum uranium densities amount to 1.8 g/cc for UAI x , 2.9 g/cc for U 3 O 8 , and 4.76 g/cc for U 3 Si 2 . The irradiation performance of these fuel elements is good: Up to the end of September 1982 the following burnups were achieved: 73% with UA1 x , 60% with U 3 O 8 , 39% with U 3 Si 2 ; no defects could be detected. For an economical fuel element production with reduced 235-U enrichment chemical uranium recycling methods were developed allowing immediate scrap recovery at minimum waste generation. In addition test plates with UAl x and U 3 O 8 fuel were successfully irradiated in the ORR up to a burnup of 75 %. The relatively high uranium meat densities of these test plates amount to 2.2 g/cc for UAI x , and 3.14 g/cc for U 3 O 8 fuel. Apart from plates with standard geometry also plates with increased meat thickness were inserted. (author)

  9. Transport of high enriched uranium fresh fuel from Yugoslavia to the Russian federation

    Directory of Open Access Journals (Sweden)

    Pešić Milan P.

    2002-01-01

    Full Text Available This paper presents the relevant data related to the recent shipment (August 2002 of fresh highly enriched uranium fuel elements from Yugoslavia back to the Russian Federation for uranium down blending. In this way, Yugoslavia gave its contribution to the Reduced Enrichment for Research and Test Reactors (RERTR Program and to the world's joint efforts to prevent possible terrorist actions against nuclear material potentially usable for the production of nuclear weapons.

  10. Chemical states of fission products in irradiated uranium-plutonium mixed oxide fuel

    International Nuclear Information System (INIS)

    Kurosaki, Ken; Uno, Masayoshi; Yamanaka, Shinsuke

    1999-01-01

    The chemical states of fission products (FPs) in irradiated uranium-plutonium mixed oxide (MOX) fuel for the light water reactor (LWR) were estimated by thermodynamic equilibrium calculations on system of fuel and FPs by using ChemSage program. A stoichiometric MOX containing 6.1 wt. percent PuO 2 was taken as a loading fuel. The variation of chemical states of FPs was calculated as a function of oxygen potential. Some pieces of information obtained by the calculation were compared with the results of the post-irradiation examination (PIE) of UO 2 fuel. It was confirmed that the multicomponent and multiphase thermodynamic equilibrium calculation between fuel and FPs system was an effective tool for understanding the behavior of FPs in fuel. (author)

  11. Wastes and waste management in the uranium fuel cycle for light water reactors

    International Nuclear Information System (INIS)

    Costello, J.M.

    1975-08-01

    The manufacturing processes in the uranium fuel cycle for light water reactors have been described with particular reference to the chemical and radiological wastes produced and the waste management procedures employed. The problems and possible solutions of ultimate disposal of high activity fission products and transuranium elements from reprocessing of irradiated fuel have been reviewed. Quantities of wastes arising in each stage of the fuel cycle have been summarised. Wastes arising from reactor operation have been described briefly. (author)

  12. Uranium/fuel cycle 74, New Orleans, Louisiana, 17--20 March 1974. Program report

    International Nuclear Information System (INIS)

    1974-01-01

    The highlight of papers presented at the conference are summarized. The sessions covered uranium raw material, transportation of spent fuel and radioactive waste, plutonium recycle, waste management, and safeguards. (U.S.)

  13. Low enriched uranium foil targets with different geometries for the production of Molybdenum-99 in the BMR (Brazilian Multipurpose Reactor)

    Energy Technology Data Exchange (ETDEWEB)

    Domingos, Douglas B.; Silva, Antonio T. e; Joao, Thiago G.; Muniz, Rafael O.R.; Coelho, Talita S., E-mail: teixeira@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    A new research reactor is being planned in Brazil to take care of the demand of radiopharmaceuticals in the country and conduct research in various areas. This new reactor, the Brazilian Multipurpose Reactor (RMB), planned for 30 MW, is now in the conception design phase. Two low enriched (<20% {sup 235}U) metallic uranium foil targets (cylinder and plate geometries) are being considered for production of Molybdenum-99 ({sup 99}Mo) by fission. Neutronic and thermal-hydraulics calculations were performed to compare the production of {sup 99}Mo for these targets in the RMB and to determine the temperatures achieved in the targets. For the neutronic calculations were utilized the computer codes HAMMER-TECHNION, CITATION and SCALE and for the thermal-hydraulics calculations were utilized the computer codes MTRCR-IEA-R1 and ANSYS CFX. (author)

  14. Modelling transient energy release from molten fuel coolant interaction debris

    International Nuclear Information System (INIS)

    Fletcher, D.F.

    1984-05-01

    A simple model of transient energy release in a Molten Fuel Coolant Interaction is presented. A distributed heat transfer model is used to examine the effect of heat transfer coefficient, time available for rapid energy heat transfer and particle size on transient energy release. The debris is assumed to have an Upper Limit Lognormal distribution. Model predictions are compared with results from the SUW series of experiments which used thermite-generated uranium dioxide molybdenum melts released below the surface of a pool of water. Uncertainties in the physical principles involved in the calculation of energy transfer rates are discussed. (author)

  15. Uranium, resources, production and demand including other nuclear fuel cycle data

    International Nuclear Information System (INIS)

    1975-12-01

    The uranium reserves exploitable at a cost below 15 dollars/lb U 3 O 8 , are 210,000 tonnes. While present uranium production capacities amount to 26,000 tonnes uranium per year, plans have been announced which would increase this capacity to 44,000 tonnes by 1978. Given an appropriate economic climate, annual capacities of 60,000 tonnes and 87,000 tonnes could be attained by 1980 and 1985, respectively, based on presently known reserves. However, in order to maintain or increase such a capacity beyond 1985, substantial additional resources would have to be identified. Present annual demand for natural uranium amounts to 18,000 tonnes and is expected to establish itself at 50,000 tonnes by 1980 and double this figure by 1985. Influences to increase this demand in the medium term could come from shortages in other fuel cycle capacities, i.e. enrichment (higher tails assays) and reprocessing (no uranium and plutonium recycle). However, the analysis of the near term uranium supply and demand situation does not necessarily indicate a prolongation of the current tight uranium market. Concerning the longer term, the experts believe that the steep increase in uranium demand foreseen in the eighties, according to present reactor programmes, with doubling times of the order of 6 to 7 years, will pose formidable problems for the uranium industry. For example, in order to provide reserves sufficient to support the required production rates, annual additions to reserves must almost triple within the next 15 years. Efforts to expand world-wide exploration levels to meet this challenge would be facilitated if a co-ordinated approach were adopted by the nuclear industry as a whole

  16. Method for the chemical reprocessing of irradiated nuclear fuels, in particular nuclear fuels containing uranium

    International Nuclear Information System (INIS)

    Koch, G.

    1976-01-01

    In the chemical processing of irradiated uranium-containing nuclear fuels which are hydrolyzed with aqueous nitric acid, a suggestion is made to use as quaternary ammonium nitrate trialkyl-methyl ammonium nitrates as extracting agent, in which the sum of C atoms is greater than 16. In the illustrated examples, tricaprylmethylammonium nitrate, trilaurylmethylammonium nitrate and tridecylmethylammonium nitrate are named. (HPH/LH) [de

  17. Uranium

    International Nuclear Information System (INIS)

    Hamdoun, N.A.

    2007-01-01

    The article includes a historical preface about uranium, discovery of portability of sequential fission of uranium, uranium existence, basic raw materials, secondary raw materials, uranium's physical and chemical properties, uranium extraction, nuclear fuel cycle, logistics and estimation of the amount of uranium reserves, producing countries of concentrated uranium oxides and percentage of the world's total production, civilian and military uses of uranium. The use of depleted uranium in the Gulf War, the Balkans and Iraq has caused political and environmental effects which are complex, raising problems and questions about the effects that nuclear compounds left on human health and environment.

  18. Nuclear fuel technology - Determination of uranium in solutions, uranium hexafluoride and solids - Part 2: Iron(II) reduction/cerium(IV) oxidation titrimetric method

    International Nuclear Information System (INIS)

    2004-01-01

    This first edition of ISO 7097-1 together with ISO 7097-2:2004 cancels and replaces ISO 7097:1983, which has been technically revised, and ISO 9989:1996. ISO 7097 consists of the following parts, under the general title Nuclear fuel technology - Determination of uranium in solutions, uranium hexafluoride and solids: Part 1: Iron(II) reduction/potassium dichromate oxidation titrimetric method; Part 2: Iron(II) reduction/cerium(IV) oxidation titrimetric method. This part 2. of ISO 7097 describes procedures for determination of uranium in solutions, uranium hexafluoride and solids. The procedures described in the two independent parts of this International Standard are similar: this part uses a titration with cerium(IV) and ISO 7097-1 uses a titration with potassium dichromate

  19. Nuclear fuel technology - Determination of uranium in solutions, uranium hexafluoride and solids - Part 1: Iron(II) reduction/potassium dichromate oxidation titrimetric method

    International Nuclear Information System (INIS)

    2004-01-01

    This first edition of ISO 7097-1 together with ISO 7097-2:2004 cancels and replaces ISO 7097:1983, which has been technically revised, and ISO 9989:1996. ISO 7097 consists of the following parts, under the general title Nuclear fuel technology - Determination of uranium in solutions, uranium hexafluoride and solids: Part 1: Iron(II) reduction/potassium dichromate oxidation titrimetric method; Part 2: Iron(II) reduction/cerium(IV) oxidation titrimetric method. This part 1. of ISO 7097 describes procedures for the determination of uranium in solutions, uranium hexafluoride and solids. The procedures described in the two independent parts of this International Standard are similar: this part uses a titration with potassium dichromate and ISO 7097-2 uses a titration with cerium(IV)

  20. Comparison of low enriched uranium (UAl{sub x}-Al and U-Ni) targets with different geometries for the production of molybdenum-99 in the RMB (Brazilian multipurpose reactor)

    Energy Technology Data Exchange (ETDEWEB)

    Domingos, Douglas B.; Silva, Antonio T. e; Joao, Thiago G.; Silva, Jose Eduardo R. da; Angelo, Gabriel; Fedorenko, Giuliana G., E-mail: teixeira@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Nishiyama, Pedro J.B. de O., E-mail: pedro.julio@ctmsp.mar.mil.b [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil)

    2011-07-01

    The Brazilian Multipurpose Reactor (RMB), now in the conception design phase, is being designed in Brazil to attend the demand of radiopharmaceuticals in the country and conduct researches in various areas. The new reactor, planned for 30 MW, will replace the IEA-R1 reactor of IPEN-CNEN/SP. Low enriched uranium (<20% {sup 235}U) UAl{sub x} dispersed in Al (plate geometry) and metallic uranium foil targets (plate and cylinder geometries) are being considered for production of Molybdenum-99 ({sup 99}Mo) by fission. Neutronic and thermal-hydraulics calculations were performed to compare the production of {sup 99}Mo for these targets in the RMB. For the neutronic calculations were utilized the computer codes Hammer-Technion, Citation and Scale and for the thermal-hydraulics calculations were utilized the computer code MTRCR-IEAR1 and ANSYS CFX. (author)

  1. The effect of strain rate and temperature on the tensile behaviour of uranium 2 w/o molybdenum

    International Nuclear Information System (INIS)

    Harding, J.; Boyd, G.A.C.

    1983-01-01

    This report describes the uniaxial tensile behaviour of uranium 2 w/o molybdenum alloy over a wide range of temperature and strain rate. Specimen blanks taken from co-reduced and extruded U 2 w/o Mo rods were given one of two heat treatments. Longitudinal tensile test pieces, taken from these blanks at near surface locations were tested in the temperature range -150 deg C to +100 deg C at strain rates from quasistatic (10 -4 s -1 ) to 10 3 s -1 . To achieve this range of testing rates three machines were required: an Instron screw driven machine for rates up to 0.1 s -1 , a second specially constructed hydraulic machine for the range 0.1 s -1 to 50 s -1 and a drop weight machine for the highest strain rates. The ways in which the mechanical properties - elongation to fracture, flow stresses and ultimate tensile stress - vary with both temperature and strain rate are presented and discussed for material in both heat treatment conditions. (author)

  2. Possibilities for recycling of weapon-grade uranium and plutonium and its peaceful use as reactor fuel

    International Nuclear Information System (INIS)

    Floeter, W.

    2000-01-01

    At present 90% of the energy production is based on fossil fuels. Since March 1999, however, the peaceful use of weapon-grade uranium as reactor fuel is being discussed politically. Partners of this discussion is a group of some private western companies on one side and a state-owned company of the Russian Federation (GUS) on the other. Main topic of the deal besides the winning of electrical energy is the useful disposal of the surplus on weapon-grade material of both leading nations. According to the deal, about 160,000 t of Russian uranium, expressed as natural uranium U 3 O 8 , would be processed during the next 15 years. Proven processes would be applied. Those methods are being already used in Russian facilities at low capacity rates. There are shortages in the production of low enriched uranium (LEU), because of the low capacity rates in the old facilities. The capacity should be increased by a factor of ten, but there is not enough money available in Russia for financing the remodeling of the plants. Financing should therefore probably be provided by the western clients of this deal. The limited amount of uranium produced could be furnised to the uranium market without major difficulties for the present suppliers of natural uranium. The discussions regarding the security of the details of the deal - however - are not yet finalized. (orig.) [de

  3. Model for the behaviour of thorium and uranium fuels at pelletization

    International Nuclear Information System (INIS)

    Ferreira Neto, Ricardo Alberto

    2000-11-01

    In this work, a model for the behaviour of thorium-uranium-mixed oxide microspheres in the pelletizing process is presented. This model was developed in a program whose objective was to demonstrate the viability of producing fissile material through the utilization of thorium in pressurized water reactors. This is important because it allows the saving of the strategic uranium reserves, and makes it possible the nuclear utilization of the large brazilian thorium reserves. The objective was to develop a model for optimizing physical properties of the microspheres, such as density, fracture strength and specific surface, so as to produce fuel pellets with microstructure, density, open porosity and impurity content, in accordance with the fuel specification. And, therefore, to adjust the sol-gel processing parameters in order to obtain these properties, and produce pellets with an optimized microstructure, adequate to a stable behaviour under irradiation. The model made it clear that to achieve this objective, it is necessary to produce microspheres with density and specific surface as small as possible. By changing the sol-gel processing parameters, microspheres with the desired properties were produced, and the model was experimentally verified by manufacturing fuel pellets with optimized microstructures, density, open porosity and impurity content, meeting the specifications for this new nuclear fuel for pressurized water reactors. Furthermore it was possible to obtain mathematical expressions that enables to calculate from the microspheres properties and the utilized compaction pressure, the sinter density that will be obtained in the sintered pellet and the necessary compaction pressure to reach the sintered density specified for the fuel. (author)

  4. Influence of uranium hydride oxidation on uranium metal behaviour

    International Nuclear Information System (INIS)

    Patel, N.; Hambley, D.; Clarke, S.A.; Simpson, K.

    2013-01-01

    This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, if sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)

  5. Influence of uranium hydride oxidation on uranium metal behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Patel, N.; Hambley, D. [National Nuclear Laboratory (United Kingdom); Clarke, S.A. [Sellafield Ltd (United Kingdom); Simpson, K.

    2013-07-01

    This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, if sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)

  6. Uranium recovering from slags generated in the metallic uranium by magnesiothermic reduction

    International Nuclear Information System (INIS)

    Fornarolo, F.; Carvalho, E.F. Urano de; Durazzo, M.; Riella, H.G.

    2008-01-01

    The Nuclear Fuel Center of IPEN/CNEN-SP has recent/y concluded a program for developing the fabrication technology of the nuclear fuel based on the U 3 Si 2 -Al dispersion, which is being used in the IEA-R1 research reactor. The uranium silicide (U 3 Si 2 ) fuel production starts with the uranium hexafluoride (UF 6 ) processing and uranium tetrafluoride (UF 4 ) precipitation. Then, the UF 4 is converted to metallic uranium by magnesiothermic reduction. The UF 4 reduction by magnesium generates MgF 2 slag containing considerable concentrations of uranium, which could reach 20 wt%. The uranium contained in that slag should be recovered and this work presents the results obtained in recovering the uranium from that slag. The uranium recovery is accomplished by acidic leaching of the calcined slag. The calcination transforms the metallic uranium in U 3 O 8 , promoting the pulverization of the pieces of metallic uranium and facilitating the leaching operation. As process variables, have been considered the nitric molar concentration, the acid excess regarding the stoichiometry and the leaching temperature. As result, the uranium recovery reached a 96% yield. (author)

  7. The behaviour of molybdenum dialkyldithiocarbamate friction modifier additives

    International Nuclear Information System (INIS)

    Graham, Jocelyn Claire Herries

    2001-01-01

    In recent years there has been growing concern to produce energy-efficient lubricated components and modem engine oil specifications require lubricants to demonstrate fuel efficiency in standardised engine tests. One important method of producing low friction and thus fuel-efficient lubricants is to use oil-soluble, molybdenum-containing, friction modifier additives. In optimal conditions these additives are able to produce very low friction coefficients, in the range 0.045 to 0.075 in boundary lubrication conditions. Very little is known about the chemical and physical mechanisms by which oil soluble molybdenum additives form low friction films in tribological contacts. Information about their activity could lead to optimal use of these additives in lubricants and, therefore, more efficient engine running. The work outlined in this thesis investigated the behaviour of oil-soluble molybdenum additives and showed that these additives were able to effectively reduce friction in the absence of other additives such as ZnDTP. Their activity was shown to be highly concentration and temperature dependent and was also found to be sensitive to the roughness of the contacting surfaces. Raman spectroscopy was used to analyse the chemical nature of molybdenum-containing reaction films and found that friction reduction indubitably arises from the local formation of platelets (diameter 30-50 nm) of MoS 2 . The formation of MoS 2 -rich films was found to occur only during direct asperity-asperity rubbing of the contacting surfaces (this type of contact being especially prevalent in pure sliding contacts). At elevated temperatures and in the presence of oxidising gases the consumption of MoDTC was monitored. MoDTC concentration dropped until the total value fell below a critical level to reduce friction. The study showed that decay rate of molybdenum-containing species was reduced by the addition of peroxide-decomposing antioxidants. (author)

  8. Status of the natural and enriched uranium market: the basic economical factor for the development of the fuel cycle

    International Nuclear Information System (INIS)

    Nochev, T.

    1999-01-01

    Status of the Natural and Enriched Uranium Market - the Basic. Economical Factor for the Development of the Fuel Cycle An overview of the status of the natural and enriched uranium market has been performed and it offers a possibility to estimate the changes and tendencies, the knowledge of which is needed in negotiations about the fresh fuel. The simplified financial analysis presented here demonstrates the economical profitability of the storage of the spent fuel making now the allocations for the future reprocessing

  9. Refining of crude uranium by solvent extraction for production of nuclear pure uranium metal

    International Nuclear Information System (INIS)

    Gupta, S.K.; Manna, S.; Singha, M.; Hareendran, K.N.; Chowdhury, S.; Satpati, S.K.; Kumar, K.

    2007-01-01

    Uranium is the primary fuel material for any nuclear fission energy program. Natural uranium contains only 0.712% of 235 U as fissile constituent. This low concentration of fissile isotope in natural uranium calls for a very high level of purity, especially with respect to neutron poisons like B, Cd, Gd etc. before it can be used as nuclear fuel. Solvent extraction is a widely used technique by which crude uranium is purified for reactor use. Uranium metal plant (UMP), BARC, Trombay is engaged in refining of uranium concentrate for production of nuclear pure uranium metal for fabrication of fuel for research reactors. This paper reviews some of the fundamental aspects of this refining process with some special references to UMP, BARC. (author)

  10. Establishing a Cost Basis for Converting the High Flux Isotope Reactor from High Enriched to Low Enriched Uranium Fuel

    International Nuclear Information System (INIS)

    Primm, Trent; Guida, Tracey

    2010-01-01

    Under the auspices of the Global Threat Reduction Initiative Reduced Enrichment for Research and Test Reactors Program, the National Nuclear Security Administration/Department of Energy (NNSA/DOE) has, as a goal, to convert research reactors worldwide from weapons grade to non-weapons grade uranium. The High Flux Isotope Reactor (HFIR) at Oak Ridge National Lab (ORNL) is one of the candidates for conversion of fuel from high enriched uranium (HEU) to low enriched uranium (LEU). A well documented business model, including tasks, costs, and schedules was developed to plan the conversion of HFIR. Using Microsoft Project, a detailed outline of the conversion program was established and consists of LEU fuel design activities, a fresh fuel shipping cask, improvements to the HFIR reactor building, and spent fuel operations. Current-value costs total $76 million dollars, include over 100 subtasks, and will take over 10 years to complete. The model and schedule follows the path of the fuel from receipt from fuel fabricator to delivery to spent fuel storage and illustrates the duration, start, and completion dates of each subtask to be completed. Assumptions that form the basis of the cost estimate have significant impact on cost and schedule.

  11. DEVELOPMENT OF HIGH-DENSITY U/AL DISPERSION PLATES FOR MO-99 PRODUCTION USING ATOMIZED URANIUM POWDER

    OpenAIRE

    RYU, HO JIN; KIM, CHANG KYU; SIM, MOONSOO; PARK, JONG MAN; LEE, JONG HYUN

    2013-01-01

    Uranium metal particle dispersion plates have been proposed as targets for Molybdenum-99 (Mo-99) production to improve the radioisotope production efficiency of conventional low enriched uranium targets. In this study, uranium powder was produced by centrifugal atomization, and miniature target plates containing uranium particles in an aluminum matrix with uranium densities up to 9 g-U/cm3 were fabricated. Additional heat treatment was applied to convert the uranium particles into UAlx compou...

  12. Recovery of enriched Uranium (20% U-235) from wastes obtained in the preparation of fuel elements for argonaut type reactors

    International Nuclear Information System (INIS)

    Uriarte, A.; Ramos, L.; Estrada, J.; del Val, J. L.

    1962-01-01

    Results obtained with the two following installations for recovering enriched uranium (20% U-235) from wastes obtained in the preparation of fuel elements for Argonaut type reactors are presented. Ion exchange unit to recover uranium form mother liquors resulting from the precipitation ammonium diuranate (ADU) from UO 2 F 2 solutions. Uranium recovery unit from solid wastes from the process of manufacture of fuel elements, consisting of a) waste dissolution, and b) extraction with 10% (v/v) TBP. (Author) 9 refs

  13. Recovery of enriched Uranium (20% U-235) from wastes obtained in the preparation of fuel elements for argonaut type reactors

    Energy Technology Data Exchange (ETDEWEB)

    Uriarte, A; Ramos, L; Estrada, J; Val, J L. del

    1962-07-01

    Results obtained with the two following installations for recovering enriched uranium (20% U-235) from wastes obtained in the preparation of fuel elements for Argonaut type reactors are presented. Ion exchange unit to recover uranium form mother liquors resulting from the precipitation ammonium diuranate (ADU) from UO{sub 2}F{sub 2} solutions. Uranium recovery unit from solid wastes from the process of manufacture of fuel elements, consisting of a) waste dissolution, and b) extraction with 10% (v/v) TBP. (Author) 9 refs.

  14. Uranium accountability for ATR fuel fabrication. Part I. A description of the existing system

    International Nuclear Information System (INIS)

    Dolan, C.A.; Nieschmidt, E.B.; Vegors, S.H. Jr.; Wagner, E.P. Jr.

    1977-06-01

    An evaluation of the materials accountability program at the Atomics International fuel fabrication facility in Canoga Park, California, with regard to the fabrication of highly enriched uranium fuel for the Advanced Test Reactor is presented. An analysis is given of the existing standards program, the existing measurements program and the existing statistical analysis procedures. In addition a short discussion is given of our evaluation of the safeguards procedures at Atomics International together with suggestions for possible modifications and improvements. Appendices of this report contain a rather complete description of the Atomics International plant and the flow of highly enriched uranium through the plant as well as the principal documents used for material accountability records

  15. Production of fusion radionuclides: Molybdenum-99/ Iodine - 131 and Xenon-133

    International Nuclear Information System (INIS)

    Barrachina, M.; Carrillo, D.

    1982-01-01

    This report presents a new radiochemical method for industrial production of the radionuclides: molybdenum-99, iodine-131 and xenon-133. The above mentioned method based on the alkaline metathesis reaction of irradiated uranium (IV) fluoride, presents the best characteristics for the proposed objective. The study deals with the analysis of that reaction and the separation and purification processes. (Author) 71 refs

  16. Uranium, its impact on the national and global energy mix; and its history, distribution, production, nuclear fuel-cycle, future, and relation to the environment

    Science.gov (United States)

    Finch, Warren Irvin

    1997-01-01

    The many aspects of uranium, a heavy radioactive metal used to generate electricity throughout the world, are briefly described in relatively simple terms intended for the lay reader. An adequate glossary of unfamiliar terms is given. Uranium is a new source of electrical energy developed since 1950, and how we harness energy from it is explained. It competes with the organic coal, oil, and gas fuels as shown graphically. Uranium resources and production for the world are tabulated and discussed by country and for various energy regions in the United States. Locations of major uranium deposits and power reactors in the United States are mapped. The nuclear fuel-cycle of uranium for a typical light-water reactor is illustrated at the front end-beginning with its natural geologic occurrence in rocks through discovery, mining, and milling; separation of the scarce isotope U-235, its enrichment, and manufacture into fuel rods for power reactors to generate electricity-and at the back end-the reprocessing and handling of the spent fuel. Environmental concerns with the entire fuel cycle are addressed. The future of the use of uranium in new, simplified, 'passively safe' reactors for the utility industry is examined. The present resource assessment of uranium in the United States is out of date, and a new assessment could aid the domestic uranium industry.

  17. Uranium recovery from slags of metallic uranium

    International Nuclear Information System (INIS)

    Fornarolo, F.; Frajndlich, E.U.C.; Durazzo, M.

    2006-01-01

    The Center of the Nuclear Fuel of the Institute of Nuclear Energy Research - IPEN finished the program of attainment of fuel development for research reactors the base of Uranium Scilicet (U 3 Si 2 ) from Hexafluoride of Uranium (UF 6 ) with enrichment 20% in weight of 235 U. In the process of attainment of the league of U 3 Si 2 we have as Uranium intermediate product the metallic one whose attainment generates a slag contend Uranium. The present work shows the results gotten in the process of recovery of Uranium in slags of calcined slags of Uranium metallic. Uranium the metallic one is unstable, pyrophoricity and extremely reactive, whereas the U 3 O 8 is a steady oxide of low chemical reactivity, what it justifies the process of calcination of slags of Uranium metallic. The calcination of the Uranium slag of the metallic one in oxygen presence reduces Uranium metallic the U 3 O 8 . Experiments had been developed varying it of acid for Uranium control and excess, nitric molar concentration gram with regard to the stoichiometric leaching reaction of temperature of the leaching process. The 96,0% income proves the viability of the recovery process of slags of Uranium metallic, adopting it previous calcination of these slags in nitric way with low acid concentration and low temperature of leaching. (author)

  18. Standard test method for analysis of isotopic composition of uranium in nuclear-grade fuel material by quadrupole inductively coupled plasma-mass spectrometry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2000-01-01

    1.1 This test method is applicable to the determination of the isotopic composition of uranium (U) in nuclear-grade fuel material. The following isotopic weight percentages are determined using a quadrupole inductively coupled plasma-mass spectrometer (Q-ICP-MS): 233U, 234U, 235U, 236U, and 238U. The analysis can be performed on various material matrices after acid dissolution and sample dilution into water or dilute nitric (HNO3) acid. These materials include: fuel product, uranium oxide, uranium oxide alloys, uranyl nitrate (UNH) crystals, and solutions. The sample preparation discussed in this test method focuses on fuel product material but may be used for uranium oxide or a uranium oxide alloy. Other preparation techniques may be used and some references are given. Purification of the uranium by anion-exchange extraction is not required for this test method, as it is required by other test methods such as radiochemistry and thermal ionization mass spectroscopy (TIMS). This test method is also described i...

  19. The technique for determination of surface contamination by uranium on U3Si2-Al plate-type fuel elements

    International Nuclear Information System (INIS)

    Li Shulan; He Fengqi; Wang Qingheng; Han Jingquan

    1993-04-01

    The NDT method for determining the surface contamination by uranium on U 3 Si 2 -Al plate-type fuel elements, the process of standard specimen preparation and the graduation curve are described. The measurement results of U 3 Si 2 -Al plate-type fuel elements show that the alpha counting method to measure the surface contamination by uranium on fuel plate is more reliable. The UB-1 type surface contamination meter, which was recently developed, has many advantages such as high sensitivity to determine the uranium pollution, short time in measuring, convenience for operation, and the minimum detectable amount of uranium is 5 x 10 -10 g/cm 2 . The measuring device is controlled by a microcomputer. Besides data acquisition and processing, it has functions of statistics, output data on terminal or to printer and alarm. The procedures of measurement are fully automatic. All of these will meet the measuring needs in batch process

  20. Use of depleted uranium silicate glass to minimize release of radionuclides from spent nuclear fuel waste packages

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1996-01-01

    A Depleted Uranium Silicate Container Backfill System (DUSCOBS) is proposed that would use small, isotopically-depleted uranium silicate glass beads as a backfill material inside repository waste packages containing spent nuclear fuel (SNF). The uranium silicate glass beads would fill the void space inside the package including the coolant channels inside SNF assemblies. Based on preliminary analysis, the following benefits have been identified. DUSCOBS improves repository waste package performance by three mechanisms. First, it reduces the radionuclide releases from SNF when water enters the waste package by creating a local uranium silicate saturated groundwater environment that suppresses (a) the dissolution and/or transformation of uranium dioxide fuel pellets and, hence, (b) the release of radionuclides incorporated into the SNF pellets. Second, the potential for long-term nuclear criticality is reduced by isotopic exchange of enriched uranium in SNF with the depleted uranium (DU) in the glass. Third, the backfill reduces radiation interactions between SNF and the local environment (package and local geology) and thus reduces generation of hydrogen, acids, and other chemicals that degrade the waste package system. Finally, DUSCOBS provides a potential method to dispose of significant quantities of excess DU from uranium enrichment plants at potential economic savings. DUSCOBS is a new concept. Consequently, the concept has not been optimized or demonstrated in laboratory experiments

  1. Uranium and plutonium determinations for evaluation of high burnup fuel performance

    International Nuclear Information System (INIS)

    Heinrich, R.R.; Popek, R.J.; Bowers, D.L.; Essling, A.M.; Callis, E.L.; Persiani, P.J.

    1985-01-01

    Purpose of this work is to experimentally test computational methods being developed for reactor fuel operation. Described are the analytical techniques used in the determination of uranium and plutonium compositions on PWR fuel that has spanned five power cycles, culminating in 55,000 to 57,000 MWd/T burnup. Analyses have been performed on ten samples excised from selected sections of the fuel rods. Hot cell operations required the separation of fuel from cladding and the comminution of the fuel. These tasks were successfully accomplished using a SpectroMil, a ball pestle impact grinding and blending instrument manufactured by Chemplex Industries, Inc., Eastchester, New York. The fuel was dissolved using strong mineral acids and bomb dissolution techniques. Separation of the fuel from fission products was done by solvent (hexone) extraction. Fuel isotopic compositions and assays were determined by the mass spectrometric isotope dilution (MSID) method using NBS standards SRM-993 and SRM-996. Alpha spectrometry was used to determine the 238 Pu composition. Relative correlations of composition with burnup were obtained by gamma-ray spectrometry of selected fission products in the dissolved fuel

  2. Analysis of fuel cycles with natural uranium, Phase I; Analiza gorivnih ciklusa sa prirodnim uranom, I faza

    Energy Technology Data Exchange (ETDEWEB)

    Stojadinovic, A; Zivkovic, Z; Raisic, N [Institute of Nuclear Sciences Boris Kidric, Laboratorija za fiziku i dinamiku reaktora, Vinca, Beograd (Serbia and Montenegro)

    1964-12-15

    This paper contains analyses of fuel cycles with natural uranium for the following cases: plutonium recycling is not done; recycling of plutonium and irradiated uranium with the condition of equal multiplication factor at the beginning of each cycle; and recycling of plutonium only.

  3. Safety analysis report of uranium dioxide fuel laboratory, Nuclear Research Centre Inchas, Egypt

    International Nuclear Information System (INIS)

    Abdel-Azim, M.S.; Abdel-Halim, A.

    1987-07-01

    In the Nuclear Research Center Inchas a uranium dioxide fuel laboratory is planned and built by the AEA Cairo (Atomic Energy Authority). The layout of this fuel lab and the programmatical contents are subject to the bilaterial cooperation between Egypt and the Federal Republic of Germany. In this report the safety analysis as basic items for the approval procedure are started in detail. (orig.) [de

  4. Determination of niobium, tantalum, and uranium in tantalite-columbite ores by X-ray fluorescence spectrometry; Application de la spectrometrie de fluorescence de rayos X a la determination de niobium, tantale et uranium dans niobiotantalites

    Energy Technology Data Exchange (ETDEWEB)

    Latorre, O; Bermudez Polonio, J

    1964-07-01

    A simple and quick procedure is carried out to determine niobium, tantalum and uranium employing the internal standard technique; zinc as internal standard for tantalum and molybdenum for niobium and uranium were selected. Some inter element effects were studied and the ratios. (Author)

  5. NSRR experiment with un-irradiated uranium-zirconium hydride fuel. Design, fabrication process and inspection data of test fuel rod

    Energy Technology Data Exchange (ETDEWEB)

    Sasajima, Hideo; Fuketa, Toyoshi; Ishijima, Kiyomi; Kuroha, Hiroshi; Ikeda, Yoshikazu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Aizawa, Keiichi

    1998-08-01

    An experiment plan is progressing in the Nuclear Safety Research Reactor (NSRR) to perform pulse-irradiation with uranium-zirconium hydride (U-ZrH{sub x}) fuel. This fuel is widely used in the training research and isotope production reactor of GA (TRIGA). The objectives of the experiment are to determine the fuel rod failure threshold and to investigate fuel behavior under simulated reactivity initiated accident (RIA) conditions. This report summarizes design, fabrication process and inspection data of the test fuel rods before pulse-irradiation. The experiment with U-ZrH{sub x} fuel will realize precise safety evaluation, and improve the TRIGA reactor performance. The data to be obtained in this program will also contribute development of next-generation TRIGA reactor and its safety evaluation. (author)

  6. Analysis of intergranular fission-gas bubble-size distributions in irradiated uranium-molybdenum alloy fuel

    Energy Technology Data Exchange (ETDEWEB)

    Rest, J. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)], E-mail: jrest@anl.gov; Hofman, G.L.; Kim, Yeon Soo [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)

    2009-04-15

    An analytical model for the nucleation and growth of intra and intergranular fission-gas bubbles is used to characterize fission-gas bubble development in low-enriched U-Mo alloy fuel irradiated in the advanced test reactor in Idaho as part of the Reduced Enrichment for Research and Test Reactor (RERTR) program. Fuel burnup was limited to less than {approx}7.8 at.% U in order to capture the fuel-swelling stage prior to irradiation-induced recrystallization. The model couples the calculation of the time evolution of the average intergranular bubble radius and number density to the calculation of the intergranular bubble-size distribution based on differential growth rate and sputtering coalescence processes. Recent results on TEM analysis of intragranular bubbles in U-Mo were used to set the irradiation-induced diffusivity and re-solution rate in the bubble-swelling model. Using these values, good agreement was obtained for intergranular bubble distribution compared against measured post-irradiation examination (PIE) data using grain-boundary diffusion enhancement factors of 15-125, depending on the Mo concentration. This range of enhancement factors is consistent with values obtained in the literature.

  7. Analysis of intergranular fission-gas bubble-size distributions in irradiated uranium-molybdenum alloy fuel

    Science.gov (United States)

    Rest, J.; Hofman, G. L.; Kim, Yeon Soo

    2009-04-01

    An analytical model for the nucleation and growth of intra and intergranular fission-gas bubbles is used to characterize fission-gas bubble development in low-enriched U-Mo alloy fuel irradiated in the advanced test reactor in Idaho as part of the Reduced Enrichment for Research and Test Reactor (RERTR) program. Fuel burnup was limited to less than ˜7.8 at.% U in order to capture the fuel-swelling stage prior to irradiation-induced recrystallization. The model couples the calculation of the time evolution of the average intergranular bubble radius and number density to the calculation of the intergranular bubble-size distribution based on differential growth rate and sputtering coalescence processes. Recent results on TEM analysis of intragranular bubbles in U-Mo were used to set the irradiation-induced diffusivity and re-solution rate in the bubble-swelling model. Using these values, good agreement was obtained for intergranular bubble distribution compared against measured post-irradiation examination (PIE) data using grain-boundary diffusion enhancement factors of 15-125, depending on the Mo concentration. This range of enhancement factors is consistent with values obtained in the literature.

  8. Minimization of the fission product waste by using thorium based fuel instead of uranium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Galahom, A. Abdelghafar, E-mail: Agalahom@yahoo.com

    2017-04-01

    This research discusses the neutronic characteristics of VVER-1200 assembly fueled with five different fuel types based on thorium. These types of fuel based on mixing thorium as a fertile material with different fissile materials. The neutronic characteristics of these fuels are investigated by comparing their neutronic characteristics with the conventional uranium dioxide fuel using the MCNPX code. The objective of this study is to reduce the production of long-lived actinides, get rid of plutonium component and to improve the fuel cycle economy while maintaining acceptable values of the neutronic safety parameters such as moderator temperature coefficient, Doppler coefficient and effective delayed neutrons (β). The thorium based fuel has a more negative Doppler coefficient than uranium dioxide fuel. The moderator temperature coefficient (MTC) has been calculated for the different proposed fuels. Also, the fissile inventory ratio has been calculated at different burnup step. The use of Th-232 as a fertile material instead of U-238 in a nuclear fuel is the most promising fuel in VVER-1200 as it is the ideal solution to avoid the production of more plutonium components and long-lived minor actinides. The reactor grade plutonium accumulated in light water reactor with burnup can be recycled by mixing it with Th-232 to fuel the VVER-1200 assembly. The concentrations of Xe-135 and Sm-151 have been investigated, due to their high thermal neutron absorption cross section.

  9. Data base for a CANDU-PHW operating on a once-through, natural uranium fuel cycle

    International Nuclear Information System (INIS)

    1979-07-01

    This report, prepared for INFCE, describes a standard 600 MW(e) CANDU-PHW reactor operating on a once-through natural uranium fuel cycle. Subsequently, data are given for an extrapolated 1000 MW(e) design (the nominal capacity adopted for the INFCE study) operating on the same fuel cycle. (author)

  10. Nonproliferation and safeguards aspects of fuel cycle programs in reduction of excess separated plutonium and high-enriched uranium

    International Nuclear Information System (INIS)

    Persiani, P.J.

    1995-01-01

    The purpose of this preliminary investigation is to explore alternatives and strategies aimed at the gradual reduction of the excess inventories of separated plutonium and high-enriched uranium (HEU) in the civilian nuclear power industry. The study attempts to establish a technical and economic basis to assist in the formation of alternative approaches consistent with nonproliferation and safeguards concerns. Reference annual mass flows and inventories for a representative 1,400 Mwe Pressurized Water Reactor (PWR) fuel cycle have been investigated for three cases: the 100 percent uranium oxide UO 2 fuel loading once through cycle, and the 33 percent mixed oxide MOX loading configuration for a first and second plutonium recycle. The analysis addresses fuel cycle developments; plutonium and uranium inventory and flow balances; nuclear fuel processing operations; UO 2 once-through and MOX first and second recycles; and the economic incentives to draw-down the excess separated plutonium stores. The preliminary analysis explores several options in reducing the excess separated plutonium arisings and HEU, and the consequences of the interacting synergistic effects between fuel cycle processes and isotopic signatures of nuclear materials on nonproliferation and safeguards policy assessments

  11. Uranium in the Bunter sediments of the Polish area

    International Nuclear Information System (INIS)

    Saldan, M.; Strzelecki, R.

    1980-01-01

    Uranium mineralization occurring in the Triassic sediments in the Polish area is discussed. Systematic work conducted for over ten years revealed the presence of uranium mineralization in the following geological units: Peribaltic syneclize, Fore-Sudetic monocline, Zary pericline and Pomerania trough. Out of three uranium-bearing horizons which can be correlated with each other two (the lower and the middle) are connected with the Middle Bunter, while the upper horizon is related to the Upper Bunter. Mineralization was found in sandstones, conglomerates, mudstones and claystones and, in the Fore-Sudetic monocline, also in carbonates. Among uranium minerals uranium black and coffinite were identified. In addition to uranium, increased vanadium, selenium and molybdenum contents were found in the sandstones. Some of the uranium-bearing horizons are of economic value. (author)

  12. On the use of thermal NF3 as the fluorination and oxidation agent in treatment of used nuclear fuels

    Science.gov (United States)

    Scheele, Randall; McNamara, Bruce; Casella, Andrew M.; Kozelisky, Anne

    2012-05-01

    This paper presents results of our investigation on the use of nitrogen trifluoride as a fluorination or fluorination/oxidation agent for separating valuable constituents from used nuclear fuels by exploiting the different volatilities of the constituent fission product and actinide fluorides. Our thermodynamic calculations show that nitrogen trifluoride has the potential to produce volatile fission product and actinide fluorides from oxides and metals that can form volatile fluorides. Simultaneous thermogravimetric and differential thermal analyses show that the oxides of lanthanum, cerium, rhodium, and plutonium are fluorinated but do not form volatile fluorides when treated with nitrogen trifluoride at temperatures up to 550 °C. However, depending on temperature, volatile fluorides or oxyfluorides can form from nitrogen trifluoride treatment of the oxides of niobium, molybdenum, ruthenium, tellurium, uranium, and neptunium. Thermoanalytical studies demonstrate near-quantitative separation of uranium from plutonium in a mixed 80% uranium and 20% plutonium oxide. Our studies of neat oxides and metals suggest that the reactivity of nitrogen trifluoride may be adjusted by temperature to selectively separate the major volatile fuel constituent uranium from minor volatile constituents, such as Mo, Tc, Ru and from the non-volatile fuel constituents based on differences in their reaction temperatures and kinetic behaviors. This reactivity is novel with respect to that reported for other fluorinating reagents F2, BrF5, ClF3.

  13. Trace metal assay of uranium silicide fuel

    International Nuclear Information System (INIS)

    Kulkarni, M.J.; Argekar, A.A.; Thulasidas, S.K.; Dhawale, B.A.; Rajeswari, B.; Adya, V.C.; Purohit, P.J.; Neelam, G.; Bangia, T.R.; Page, A.G.; Sastry, M.D.; Iyer, R.H.

    1994-01-01

    A comprehensive trace metal assay of uranium silicide, a fuel for nuclear research reactors that employs low-enrichment uranium, is carried out by atomic spectrometry. Of the list of specification elements, 21 metallic elements are determined by a direct current (dc) arc carrier distillation technique; the rare earths yttrium and zirconium are chemically separated from the major matrix followed by a dc arc/inductively coupled argon plasma (ICP) excitation technique in atomic emission spectrometry (AES); silver is determined by electrothermal atomization-atomic absorption spectrometry (ETA-AAS) without prior chemical separation of the major matrix. Gamma radioactive tracers are used to check the recovery of rare earths during the chemical separation procedure. The detection limits for trace metallics vary in the 0.1- to 40-ppm range. The precision of the determinations as evaluated from the analysis of the synthetic sample with intermediate range analyte concentration is better than 25% relative standard deviation (RSD) for most of the elements employing dc arc-AES, while that for silver determination by ETS-AAS is 10% RSD. The precision of the determinations for four crucially important rare earths by ICP-AES is better than 3% RSD

  14. Fabrication procedures for manufacturing high uranium concentration dispersion fuel elements; Procedimentos de fabricacao de elementos combustiveis a base de dispersoes com alta concentracao de uranio

    Energy Technology Data Exchange (ETDEWEB)

    Souza, J.A.B.; Durazzo, M., E-mail: jasouza@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2010-07-01

    IPEN developed and made available for routine production the technology for manufacturing dispersion type fuel elements for use in research reactors. However, the fuel produced at IPEN is limited to the uranium concentration of 3.0 gU/cm{sup 3} by using the U{sub 3}Si{sub 2}-Al dispersion. Increasing the uranium concentration of the fuel is interesting by the possibility of increasing the reactor core reactivity and lifetime of the fuel. It is possible to increase the concentration of uranium in the fuel up to the technological limit of 4.8 gU/cm{sup 3} for the U{sub 3}Si{sub 2}-Al dispersion, which is well placed around the world. This new fuel will be applicable in the new Brazilian-Multipurpose Reactor RMB. This study aimed to develop the manufacturing process of high uranium concentration fuel, redefining the procedures currently used in the manufacture of IPEN. This paper describes the main procedures adjustments that will be necessary. (author)

  15. Process for recovery of plutonium from fabrication residues of mixed fuels consisting of uranium oxide and plutonium oxide

    International Nuclear Information System (INIS)

    Heremanns, R.H.; Vandersteene, J.J.

    1983-01-01

    The invention concerns a process for recovery of plutonium from fabrication residues of mixed fuels consisting of uranium oxide and plutonium oxide in the form of PuO 2 . Mixed fuels consisting of uranium oxide and plutonium oxide are being used more and more. The plants which prepare these mixed fuels have around 5% of the total mass of fuels as fabrication residue, either as waste or scrap. In view of the high cost of plutonium, it has been attempted to recover this plutonium from the fabrication residues by a process having a purchase price lower than the price of plutonium. The problem is essentially to separate the plutonium, the uranium and the impurities. The residues are fluorinated, the UF 6 and PuF 6 obtained are separated by selective absorption of the PuF 6 on NaF at a temperature of at least 400 0 C, the complex obtained by this absorption is dissolved in nitric acid solution, the plutonium is precipitated in the form of plutonium oxalate by adding oxalic acid, and the precipitated plutonium oxalate is calcined

  16. Uranium conversion

    International Nuclear Information System (INIS)

    Oliver, Lena; Peterson, Jenny; Wilhelmsen, Katarina

    2006-03-01

    FOI, has performed a study on uranium conversion processes that are of importance in the production of different uranium compounds in the nuclear industry. The same conversion processes are of interest both when production of nuclear fuel and production of fissile material for nuclear weapons are considered. Countries that have nuclear weapons ambitions, with the intention to produce highly enriched uranium for weapons purposes, need some degree of uranium conversion capability depending on the uranium feed material available. This report describes the processes that are needed from uranium mining and milling to the different conversion processes for converting uranium ore concentrate to uranium hexafluoride. Uranium hexafluoride is the uranium compound used in most enrichment facilities. The processes needed to produce uranium dioxide for use in nuclear fuel and the processes needed to convert different uranium compounds to uranium metal - the form of uranium that is used in a nuclear weapon - are also presented. The production of uranium ore concentrate from uranium ore is included since uranium ore concentrate is the feed material required for a uranium conversion facility. Both the chemistry and principles or the different uranium conversion processes and the equipment needed in the processes are described. Since most of the equipment that is used in a uranium conversion facility is similar to that used in conventional chemical industry, it is difficult to determine if certain equipment is considered for uranium conversion or not. However, the chemical conversion processes where UF 6 and UF 4 are present require equipment that is made of corrosion resistant material

  17. Thermal stress relieving of dilute uranium alloys

    International Nuclear Information System (INIS)

    Eckelmeyer, K.H.

    1981-01-01

    The kinetics of thermal stress relieving of uranium - 2.3 wt % niobium, uranium - 2.0 wt % molybdenum, and uranium - 0.75 wt % titanium are reported and discussed. Two temperature regimes of stress relieving are observed. In the low temperature regime (T 0 C) the process appears to be controlled by an athermal microplasticity mechanism which can be completely suppressed by prior age hardening. In the high temperature regime (300 0 C 0 C) the process appears to be controlled by a classical diffusional creep mechanism which is strongly dependent on temperature and time. Stress relieving is accelerated in cases where it occurs simultaneously with age hardening. The potential danger of residual stress induced stress corrosion cracking of uranium alloys is discussed

  18. Criticality safety studies for plutonium–uranium metal fuel pin fabrication facility

    International Nuclear Information System (INIS)

    Stephen, Neethu Hanna; Reddy, C.P.

    2013-01-01

    Highlights: ► Criticality safety limits for PUMP-F facility is identified. ► The fissile mass which can be handled safely during alloy preparation is 10.5 kg. ► The number of fuel slugs which can be handled safely during injection casting is 53. ► The number of fuel slugs which can be handled safely after fuel fabrication is 71. - Abstract: This study focuses on the criticality safety during the fabrication of fast reactor metal fuel pins comprising of the fuel type U–15Pu, U–19Pu and U–19Pu–6Zr in the Plutonium–Uranium Metal fuel Pin fabrication Facility (PUMP-F). Maximum amount of fissile mass which can be handled safely during master alloy preparation, Injection casting and fuel slug preparation following fuel pin fabrication were identified and fixed based on this study. In the induction melting furnace, the fissile mass can be limited to 10.5 kg. During fuel slug preparation and fuel pin fabrication, fuel slugs and pins were arranged in hexagonal and square lattices to identify the most reactive configuration. The number of fuel slugs which can be handled safely after injection casting can be fixed to be 53, whereas after fuel fabrication it is 71

  19. Calculation of oxygen distribution in uranium-plutonium oxide fuels during irradiation (programme CODIF)

    International Nuclear Information System (INIS)

    Moreno, A.; Sari, C.

    1978-01-01

    Radial gradients of oxygen to metal ratio, O/M, in uranium-plutonium oxide fuel pins, during irradiation and at the end of life, have been calculated on the basis of solid-state thermal diffusion using measured values of the heat of transport. A detailed computer model which includes the calculation of temperature profiles and the variation of the average O/M ratio as a function of burn-up is given. Calculations show that oxygen profiles are affected by the isotopic composition of the fuel, by the temperature profiles and by fuel-cladding interactions

  20. World nuclear fuel supply and demand prospects until 2030. Analysis of demand change factor of natural uranium and uranium separation work and its influence

    International Nuclear Information System (INIS)

    Murakami, Tomoko

    2007-01-01

    World nuclear power generation continues to spread gently until 2030 from the viewpoint of increase of the electricity demand around Asia, stable energy supply and anti-global warming measure, and the natural uranium demand is predicted to be increased from about 67 ktU in 2004 to 80-100 ktU in 2030. Steps of conversion/separation/reconversion/molding processing of the natural uranium are necessary for nuclear fuel, and the separation work of those is important because it needs high technology. There is a relation of the trade-off through the tale density (0.3% as a standard) between natural uranium and separation work demand. Therefore an analysis was performed of the influence on natural uranium and separation work demand by the change of the tale density and the influence on natural uranium supply and demand prospects by the recovery uranium use. In conclusion it was very likely that the supply and demand of separation work was tight at 0.2%-0.1% as for the cost of most suitable tale density which would appear earlier than natural uranium one and that the recovery uranium could become the backup of the natural uranium. (T. Tanaka)