WorldWideScience

Sample records for tunnels electronic resource

  1. Electron tunneling in proteins program.

    Hagras, Muhammad A; Stuchebrukhov, Alexei A

    2016-06-01

    We developed a unique integrated software package (called Electron Tunneling in Proteins Program or ETP) which provides an environment with different capabilities such as tunneling current calculation, semi-empirical quantum mechanical calculation, and molecular modeling simulation for calculation and analysis of electron transfer reactions in proteins. ETP program is developed as a cross-platform client-server program in which all the different calculations are conducted at the server side while only the client terminal displays the resulting calculation outputs in the different supported representations. ETP program is integrated with a set of well-known computational software packages including Gaussian, BALLVIEW, Dowser, pKip, and APBS. In addition, ETP program supports various visualization methods for the tunneling calculation results that assist in a more comprehensive understanding of the tunneling process. © 2016 Wiley Periodicals, Inc. PMID:26990540

  2. Chemically driven electron tunnelling pumps

    Goychuk, I

    2006-01-01

    The simplest mechanism for molecular electron pumps is discussed which is based on nonadiabatic electron tunnelling and nonequilibrium conformational fluctuations. Such fluctuations can be induced, e.g. by random binding of negatively charged ATP molecules to the electron-transferring molecular complex, their subsequent hydrolysis and the products dissociation. The pumping rate can be controlled by the ATP concentration in solution. Depending on the model parameters there may exist a critical ATP concentration for the pump to function. Alternatively, nonequilibrium fluctuations can be induced by externally applied stochastic electric fields. For realistically chosen parameters, the mechanism is shown to be robust and highly efficient.

  3. Electronic tunneling currents at optical frequencies

    Faris, S. M.; Fan, B.; Gustafson, T. K.

    1975-01-01

    Rectification characteristics of nonsuperconducting metal-barrier-metal junctions as deduced from electronic tunneling theory have been observed experimentally for optical frequency irradiation of the junction.

  4. Tunnel magnetoresistance and interfacial electronic state

    Inoue, J; Itoh, H.

    2002-01-01

    We study the relation between tunnel magnetoresistance (TMR) and interfacial electronic states modified by magnetic impurities introduced at the interface of the ferromagnetic tunnel junctions, by making use of the periodic Anderson model and the linear response theory. It is indicated that the TMR ratio is strongly reduced depending on the position of the $d$-levels of impurities, based on reduction in the spin-dependent $s$-electron tunneling in the majority spin state. The results are comp...

  5. Ac electronic tunneling at optical frequencies

    Faris, S. M.; Fan, B.; Gustafson, T. K.

    1974-01-01

    Rectification characteristics of non-superconducting metal-barrier-metal junctions deduced from electronic tunneling have been observed experimentally for optical frequency irradiation of the junction. The results provide verification of optical frequency Fermi level modulation and electronic tunneling current modulation.

  6. Many-electron tunneling in atoms

    Zon, B A

    1999-01-01

    A theoretical derivation is given for the formula describing N-electron ionization of atom by a dc field and laser radiation in tunneling regime. Numerical examples are presented for noble gases atoms.

  7. Numerical studies of electron tunnelling in liquids

    The diffusion equation, derived from Fick's second law, with an added exponential sink term to simulate electron tunnelling, is integrated numerically to determine the rate of electron decay at times greater than 1 ps. The effect of a Coulomb interaction with a charged scavenger is examined and the steady-state rate constant shown to approximate closely to that obtained by combining the separate effects of tunnelling and charge-affected diffusion, which can be expressed analytically. Diffusion in the presence of a charge-induced dipole interaction is investigated for the case of scavenging of localised electrons in alkanes. The rate constant is shown to be dominated by random diffusion and tunnelling and the bias induced by the interaction is of little consequence. The sensitivity of the rate constant to changes in the pre-exponential factor in the sink term is shown to be most favourable at short times. (author)

  8. Electron tunneling across a tunable potential barrier

    We present an experiment where the elementary quantum electron tunneling process should be affected by an independent gate voltage parameter. We have realized nanotransistors where the source and drain electrodes are created by electromigration inducing a nanometer sized gap acting as a tunnel barrier. The barrier potential shape is in first approximation considered trapezoidal. The application of a voltage to the gate electrode close to the barrier region can in principle affect the barrier shape. Simulations of the source drain tunnel current as a function of the gate voltage predict modulations as large as one hundred percent. The difficulty of observing the predicted behaviour in our samples might be due to the peculiar geometry of the realized tunnel junction.

  9. Distribution of tunnelling times for quantum electron transport

    Rudge, Samuel; Kosov, Daniel

    2016-01-01

    In electron transport, the tunnelling time is the time taken for an electron to tunnel out of a system after it has tunnelled in. We define the tunnelling time distribution for quantum processes in a dissipative environment and develop a practical approach for calculating it, where the environment is described by the general Markovian master equation. We illustrate the theory by using the rate equation to compute the tunnelling time distribution for electron transport through a molecular junc...

  10. Electron accelerator for tunneling through hard rock

    Earlier work demonstrated that intense sub-microsecond bursts of energetic electrons cause significant pulverization and spalling of a variety of rock types. The spall debris generally consists of sand, dust, and small flakes. If carried out at rapid repetition rate, this can lead to a promising technique for increasing the speed and reducing the cost of underground excavation of tunnels, mines, and storage spaces. The conceptual design features of a Pulsed Electron Tunnel Excavator capable of tunneling approximately ten times faster than conventional drill/blast methods are presented, with primary emphasis on the electron accelerator and only a brief description of the tunneling aspects. Of several candidate types of accelerators, a linear induction accelerator producing electron pulses (5 MV, 5 kA, 1.0 μs = 25 kJ) at a 360 Hz rate was selected for the conceptual example. This provides the required average electron beam power output of 9 MW. The feasibility of such an accelerator is discussed

  11. Electron accelerator for tunneling through hard rock

    Earlier work demonstrated that intense sub-microsecond bursts of energetic electrons cause significant pulverization and spalling of a variety of rock types. The spall debris generally consists of sand, dust, and small flakes. If carried out at rapid repetition rate, this can lead to a promising technique for increasing the speed and reducing the cost of underground excavation of tunnels, mines, and storage spaces. The conceptual design features of a Pulsed Electron Tunnel Excavator capable of tunneling approximately ten times faster than conventional drill/blast methods are presented with primary emphasis on the electron accelerator and only a brief description of the tunneling aspects. Of several candidate types of accelerators, a linear induction accelerator producing electron pulses (5 MV, 5 kA, 1.0 μs = 25 kJ) at a 360 Hz rate was selected for the conceptual example. This provides the required average electron beam power output of 9 MW. The feasibility of such an accelerator is discussed

  12. Tunneling of electrons through semiconductor superlattices

    C L Roy

    2002-11-01

    The purpose of the present paper is to report a study of tunneling of electrons through semiconductor superlattices (SSL); specially, we have analysed diverse features of transmission coefficient of SSL. The SSL we have considered is Ga0.7Al0.3As–GaAs which has been drawing considerable attention during the recent past on account of some typical features of its band structure. We have indicated how our results would help fabrication of ultra high speed devices.

  13. Mobile Ventilation as a Tactic Resource at Tunnel Fires

    Kumm, Mia; Bergqvist, Anders

    2008-01-01

    An emergency operation in case of a tunnel fire can easily become a complex operation. The objectives are to save people in danger, save the tunnel and its installations as well as vehicles trapped inside the tunnel and also, if it’s possible and necessary, reduce the effects on the environment. The strategy and the tactics in an emergency operation are very much depending on the specific tunnel, the fire behaviour and the resources from the fire brigade. One of the key factors is to ventilat...

  14. Wind Tunnel Management and Resource Optimization: A Systems Modeling Approach

    Jacobs, Derya, A.; Aasen, Curtis A.

    2000-01-01

    Time, money, and, personnel are becoming increasingly scarce resources within government agencies due to a reduction in funding and the desire to demonstrate responsible economic efficiency. The ability of an organization to plan and schedule resources effectively can provide the necessary leverage to improve productivity, provide continuous support to all projects, and insure flexibility in a rapidly changing environment. Without adequate internal controls the organization is forced to rely on external support, waste precious resources, and risk an inefficient response to change. Management systems must be developed and applied that strive to maximize the utility of existing resources in order to achieve the goal of "faster, cheaper, better". An area of concern within NASA Langley Research Center was the scheduling, planning, and resource management of the Wind Tunnel Enterprise operations. Nine wind tunnels make up the Enterprise. Prior to this research, these wind tunnel groups did not employ a rigorous or standardized management planning system. In addition, each wind tunnel unit operated from a position of autonomy, with little coordination of clients, resources, or project control. For operating and planning purposes, each wind tunnel operating unit must balance inputs from a variety of sources. Although each unit is managed by individual Facility Operations groups, other stakeholders influence wind tunnel operations. These groups include, for example, the various researchers and clients who use the facility, the Facility System Engineering Division (FSED) tasked with wind tunnel repair and upgrade, the Langley Research Center (LaRC) Fabrication (FAB) group which fabricates repair parts and provides test model upkeep, the NASA and LARC Strategic Plans, and unscheduled use of the facilities by important clients. Expanding these influences horizontally through nine wind tunnel operations and vertically along the NASA management structure greatly increases the

  15. Site-directed deep electronic tunneling through a molecular network

    Electronic tunneling in a complex molecular network of N(>2) donor/acceptor sites, connected by molecular bridges, is analyzed. The 'deep' tunneling dynamics is formulated using a recursive perturbation expansion, yielding a McConnell-type reduced N-level model Hamiltonian. Applications to models of molecular junctions demonstrate that the donor-bridge contact parameters can be tuned in order to control the tunneling dynamics and particularly to direct the tunneling pathway to either one of the various acceptors

  16. Electron beam instabilities in gyrotron beam tunnels

    Electron beam instabilities occurring in a gyrotron electron beam can induce an energy spread which might significantly deteriorate the gyrotron efficiency. Three types of instabilities are considered to explain the important discrepancy found between the theoretical and experimental efficiency in the case of quasi-optical gyrotrons (QOG): the electron cyclotron maser instability, the Bernstein instability and the Langmuir instability. The low magnetic field gradient in drift tubes of QOG makes that the electron cyclotron maser instability can develop in the drift tube at very low electron beam currents. Experimental measurements show that with a proper choice of absorbing structures in the beam tunnel, this instability can be suppressed. At high beam currents, the electrostatic Bernstein instability can induce a significant energy spread at the entrance of the interaction region. The induced energy spread scales approximately linearly with the electron beam density and for QOG one observes that the beam density is significantly higher than the beam density of an equivalent cylindrical cavity gyrotron. (author) figs., tabs., refs

  17. Spin-polarized Inelastic Electron Tunneling Spectroscopy of Molecular Magnetic Tunnel Junctions

    In this study, we fabricate molecular magnetic tunnel junctions and demonstrate that inelastic electron tunneling spectroscopy technique can be utilized to inspect such junctions to investigate the existence of desired molecular species in the device area. Tunneling magnetoresistance measurements have been carried out and spin-dependent tunneling transport has been observed. Bias-dependence of the tunneling resistance has also been detected. IETS measurements at different magnetic field suggested that the TMR bias-dependence was likely caused by the inelastic scattering due to the molecular vibrations

  18. Giant tunnel-electron injection in nitrogen-doped graphene

    Lagoute, Jerome; Joucken, Frederic; Repain, Vincent;

    2015-01-01

    Scanning tunneling microscopy experiments have been performed to measure the local electron injection in nitrogen-doped graphene on SiC(000) and were successfully compared to ab initio calculations. In graphene, a gaplike feature is measured around the Fermi level due to a phonon-mediated tunneling...... and at carbon sites. Nitrogen doping can therefore be proposed as a way to improve tunnel-electron injection in graphene....

  19. Molecular tips for scanning tunneling microscopy: intermolecular electron tunneling for single-molecule recognition and electronics.

    Nishino, Tomoaki

    2014-01-01

    This paper reviews the development of molecular tips for scanning tunneling microscopy (STM). Molecular tips offer many advantages: first is their ability to perform chemically selective imaging because of chemical interactions between the sample and the molecular tip, thus improving a major drawback of conventional STM. Rational design of the molecular tip allows sophisticated chemical recognition; e.g., chiral recognition and selective visualization of atomic defects in carbon nanotubes. Another advantage is that they provide a unique method to quantify electron transfer between single molecules. Understanding such electron transfer is mandatory for the realization of molecular electronics. PMID:24420248

  20. Distribution of tunnelling times for quantum electron transport

    Rudge, Samuel L.; Kosov, Daniel S.

    2016-03-01

    In electron transport, the tunnelling time is the time taken for an electron to tunnel out of a system after it has tunnelled in. We define the tunnelling time distribution for quantum processes in a dissipative environment and develop a practical approach for calculating it, where the environment is described by the general Markovian master equation. We illustrate the theory by using the rate equation to compute the tunnelling time distribution for electron transport through a molecular junction. The tunnelling time distribution is exponential, which indicates that Markovian quantum tunnelling is a Poissonian statistical process. The tunnelling time distribution is used not only to study the quantum statistics of tunnelling along the average electric current but also to analyse extreme quantum events where an electron jumps against the applied voltage bias. The average tunnelling time shows distinctly different temperature dependence for p- and n-type molecular junctions and therefore provides a sensitive tool to probe the alignment of molecular orbitals relative to the electrode Fermi energy.

  1. Quantum Hall Effect: proposed multi-electron tunneling experiment

    Here we propose a tunneling experiment for the fractional and Integral Quantum Hall Effect. It may demonstrate multi-electron tunneling and may provide information about the nature of the macroscopic quantum states of 2D electronic liquid or solid. (author)

  2. Excitation of plasmonic nanoantennas by nonresonant and resonant electron tunnelling

    Uskov, Alexander V.; Khurgin, Jacob B.; Protsenko, Igor E.; Smetanin, Igor V.; Bouhelier, Alexandre

    2016-07-01

    A rigorous theory of photon emission generated by inelastic electron tunnelling inside the gap of plasmonic nanoantennas is developed. The disappointingly low efficiency of the electrical excitation of surface plasmon polaritons in these structures can be increased by orders of magnitude when a resonant tunnelling structure is incorporated inside the gap. A resonant tunnelling assisted surface plasmon emitter may become a key element in future electrically-driven plasmonic nanocircuits.A rigorous theory of photon emission generated by inelastic electron tunnelling inside the gap of plasmonic nanoantennas is developed. The disappointingly low efficiency of the electrical excitation of surface plasmon polaritons in these structures can be increased by orders of magnitude when a resonant tunnelling structure is incorporated inside the gap. A resonant tunnelling assisted surface plasmon emitter may become a key element in future electrically-driven plasmonic nanocircuits. Electronic supplementary information (ESI) available: Plasmonic mode in nanowires, the probability of stimulated emission in tunnelling through the Fermi's Golden Rule and electron wave functions in tunnelling structures with nonresonant and resonant tunnelling. See DOI: 10.1039/c6nr01931e

  3. "Size-Independent" Single-Electron Tunneling.

    Zhao, Jianli; Sun, Shasha; Swartz, Logan; Riechers, Shawn; Hu, Peiguang; Chen, Shaowei; Zheng, Jie; Liu, Gang-Yu

    2015-12-17

    Incorporating single-electron tunneling (SET) of metallic nanoparticles (NPs) into modern electronic devices offers great promise to enable new properties; however, it is technically very challenging due to the necessity to integrate ultrasmall (<10 nm) particles into the devices. The nanosize requirements are intrinsic for NPs to exhibit quantum or SET behaviors, for example, 10 nm or smaller, at room temperature. This work represents the first observation of SET that defies the well-known size restriction. Using polycrystalline Au NPs synthesized via our newly developed solid-state glycine matrices method, a Coulomb Blockade was observed for particles as large as tens of nanometers, and the blockade voltage exhibited little dependence on the size of the NPs. These observations are counterintuitive at first glance. Further investigations reveal that each observed SET arises from the ultrasmall single crystalline grain(s) within the polycrystal NP, which is (are) sufficiently isolated from the nearest neighbor grains. This work demonstrates the concept and feasibility to overcome orthodox spatial confinement requirements to achieve quantum effects. PMID:26618859

  4. Quantum tunneling and field electron emission theories

    Liang, Shi-Dong

    2013-01-01

    Quantum tunneling is an essential issue in quantum physics. Especially, the rapid development of nanotechnology in recent years promises a lot of applications in condensed matter physics, surface science and nanodevices, which are growing interests in fundamental issues, computational techniques and potential applications of quantum tunneling. The book involves two relevant topics. One is quantum tunneling theory in condensed matter physics, including the basic concepts and methods, especially for recent developments in mesoscopic physics and computational formulation. The second part is the f

  5. Tunneling rates in electron transport through double-barrier molecular junctions in a scanning tunneling microscope

    Nazin, G. V.; S. W. Wu; Ho, W.

    2005-01-01

    The scanning tunneling microscope enables atomic-scale measurements of electron transport through individual molecules. Copper phthalocyanine and magnesium porphine molecules adsorbed on a thin oxide film grown on the NiAl(110) surface were probed. The single-molecule junctions contained two tunneling barriers, vacuum gap, and oxide film. Differential conductance spectroscopy shows that electron transport occurs via vibronic states of the molecules. The intensity of spectral peaks correspondi...

  6. Electron tunnelling through a quantifiable barrier of variable width

    Wyatt, A F G [School of Physics, University of Exeter, Exeter, EX4 4QL (United Kingdom); Bromberger, H; Klier, J; Leiderer, P; Zech, M [Faculty of Physics, University of Konstanz, Konstanz 78457 (Germany)], E-mail: a.f.g.wyatt@exeter.ac.uk

    2009-02-01

    This is the first study of electron tunnelling through a quantifiable barrier of adjustable width. We find quantitative agreement between the measured and calculated tunnelling probability with no adjustable constants. The tunnel barrier is a thin film of {sup 3}He on Cs{sub 1} which it wets. We excite photoelectrons which have to tunnel through the barrier to escape. The image potential must be included in calculating the barrier and hence the tunnelling current. This has been a debatable point until now. We confirm that an electron has a potential of 1.0 eV in liquid 3He for short times before a bubble forms. We show that the thickness of the {sup 3}He is given by thermodynamics for films of thickness at least down to 3 monolayers.

  7. Electron tunnelling through a quantifiable barrier of variable width

    Wyatt, A. F. G.; Bromberger, H.; Klier, J.; Leiderer, P.; Zech, M.

    2009-02-01

    This is the first study of electron tunnelling through a quantifiable barrier of adjustable width. We find quantitative agreement between the measured and calculated tunnelling probability with no adjustable constants. The tunnel barrier is a thin film of 3He on Cs1 which it wets. We excite photoelectrons which have to tunnel through the barrier to escape. The image potential must be included in calculating the barrier and hence the tunnelling current. This has been a debatable point until now. We confirm that an electron has a potential of 1.0 eV in liquid 3He for short times before a bubble forms. We show that the thickness of the 3He is given by thermodynamics for films of thickness at least down to 3 monolayers.

  8. Electron tunnelling through a quantifiable barrier of variable width

    This is the first study of electron tunnelling through a quantifiable barrier of adjustable width. We find quantitative agreement between the measured and calculated tunnelling probability with no adjustable constants. The tunnel barrier is a thin film of 3He on Cs1 which it wets. We excite photoelectrons which have to tunnel through the barrier to escape. The image potential must be included in calculating the barrier and hence the tunnelling current. This has been a debatable point until now. We confirm that an electron has a potential of 1.0 eV in liquid 3He for short times before a bubble forms. We show that the thickness of the 3He is given by thermodynamics for films of thickness at least down to 3 monolayers.

  9. Asymmetric tunable tunneling magnetoresistance in single-electron transistors

    Pirmann, M; Schön, G

    2000-01-01

    We show that the tunneling magnetoresistance (TMR) of a ferromagnetic single-electron transistor in the sequential tunneling regime shows asymmetric Coulomb blockade oscillations as a function of gate voltage if the individual junction-TMRs differ. The relative amplitude of these oscillations grows significantly if the bias voltage is increased, becoming as large as 30% when the bias voltage is comparable to the charging energy of the single-electron transistor. This might be useful for potential applications requiring a tunable TMR.

  10. Scanning Tunneling Spectroscopy on Electron-Boson Interactions in Superconductors

    Schackert, Michael Peter

    2014-01-01

    This thesis describes the experimental study of electron-boson interactions in superconductors by means of inelastic electron tunneling spectroscopy performed with a scanning tunneling microscope (STM) at temperatures below 1 K. This new approach allows the direct measurement of the Eliashberg function of conventional superconductors as demonstrated on lead (Pb) and niobium (Nb). Preparative experiments on unconventional iron-pnictides are presented in the end.

  11. Electron-Photon interaction in resonant tunneling diodes

    Inarrea, Jesus; Aguado, Ramon; Platero, Gloria

    1997-01-01

    We develope a model to describe the transmission coefficient and tunneling current in the presence of photon-electron coupling in a resonant diode. Our model takes into account multiphoton processes as well as the transitions between electronic states with different wave numbers. This is crutial to explain the experimental features observed in the tunneling current through a double barrier which cannot be reproduced with more simplified established models. According to our results, what exper...

  12. Scanning tunneling spectroscopy on electron-boson interactions in superconductors

    Schackert, Michael Peter

    2015-01-01

    This work describes the experimental study of electron-boson interactions in superconductors by means of inelastic electron tunneling spectroscopy performed with a scanning tunneling microscope (STM) at temperatures below 1 K. This new approach allows the direct measurement of the Eliashberg function of conventional superconductors as demonstrated on lead (Pb) and niobium (Nb). Preparative experiments on unconventional iron-pnictides are presented in the end.

  13. Internal Electron Tunneling Enabled Ultrasensitive Position/Force Peapod Sensors.

    Tao, Xinyong; Fan, Zheng; Nelson, Bradley J; Dharuman, Gautham; Zhang, Wenkui; Dong, Lixin; Li, Xiaodong

    2015-11-11

    The electron quantum tunneling effect guarantees the ultrahigh spatial resolution of the scanning tunneling microscope (STM), but there have been no other significant applications of this effect after the invention of STM. Here we report the implementation of electron-tunneling-based high sensitivity transducers using a peapod B4C nanowire, where discrete Ni6Si2B nanorods are embedded in the nanowire in a peapod form. The deformation of the nanowire provides a higher order scaling effect between conductivity and deformation strain, thus allowing the potentials of position and force sensing at the picoscale. PMID:26457662

  14. Single electron tunneling in double and triple quantum wells

    Filikhin, I.; Karoui, A.; Vlahovic, B.

    2016-03-01

    Electron localization and tunneling in laterally distributed double quantum well (DQW) and triple quantum well (TQW) are studied. Triangular configuration for the TQWs as well as various quantum well (QW) shapes and asymmetry are considered. The effect of adding a third well to a DQW is investigated as a weakly coupled system. InAs/GaAs DQWs and TQWs were modeled using single subband effective mass approach with effective potential simulating the strain effect. Electron localization dynamics in DQW and TQW over the whole spectrum is studied by varying the inter-dot distances. The electron tunneling appeared highly sensitive to small violations of the DQW mirror symmetry. We show that the presence of a third dot increases the tunneling in the DQW. The dependence of the tunneling in quantum dot (QD) arrays on inter-dot distances is also discussed.

  15. Electronic thermometry in tunable tunnel junction

    Maksymovych, Petro

    2016-03-15

    A tunable tunnel junction thermometry circuit includes a variable width tunnel junction between a test object and a probe. The junction width is varied and a change in thermovoltage across the junction with respect to the change in distance across the junction is determined. Also, a change in biased current with respect to a change in distance across the junction is determined. A temperature gradient across the junction is determined based on a mathematical relationship between the temperature gradient, the change in thermovoltage with respect to distance and the change in biased current with respect to distance. Thermovoltage may be measured by nullifying a thermoelectric tunneling current with an applied voltage supply level. A piezoelectric actuator may modulate the probe, and thus the junction width, to vary thermovoltage and biased current across the junction. Lock-in amplifiers measure the derivatives of the thermovoltage and biased current modulated by varying junction width.

  16. Electron tunnelling into amorphous germanium and silicon.

    Smith, C. W.; Clark, A. H.

    1972-01-01

    Measurements of tunnel conductance versus bias, capacitance versus bias, and internal photoemission were made in the systems aluminum-oxide-amorphous germanium and aluminium-oxide-amorphous silicon. A function was extracted which expresses the deviation of these systems from the aluminium-oxide-aluminium system.

  17. Single-electron tunneling at room temperature in cobalt nanoparticles

    Graf, H.; Vancea, J.; Hoffmann, H.

    2002-02-01

    We report on the observation of the Coulomb blockade with Coulomb staircases at room temperature in cobalt nanoparticles, with sizes ranging between 1 and 4 nm. A monolayer of these particles is supported by a thin 1-2 nm thick Al2O3 film, deposited on a smooth Au(111) surface. The local electrical transport on isolated Co clusters was investigated with a scanning tunneling microscope (STM). The tunnel contact of the STM tip allowed us to observe single-electron tunneling in the double barrier system STM-tip/Co/Al2O3/Au. Very high values of the Coulomb blockade of up to 1.0 V were reproducibly measured at room temperature on different particles with this setup. The current-voltage characteristics fit well by simulations based on the orthodox theory of single-electron tunneling.

  18. To the theory of coherent resonance tunneling of interacting electrons

    In terms of the model of coherent tunneling of interacting electrons one determined analytical solutions for the Schroedinger equation for a two-barrier structure (a resonance and tunnel diode) with the open boundary conditions. One derived simple expressions for resonance current enabling to analyze the volt-ampere characteristics, hysteresis occurrence conditions and its peculiarities depending on the parameters of a resonance-tunnel diode. Hysteresis is shown to be realized if current is higher than a certain critical value proportional to resonance level width square

  19. Strong Electron Tunneling through a Small Metallic Grain

    Golubev, D. S.; Zaikin, A. D.

    1996-01-01

    Electron tunneling through mesoscopic metallic grains can be treated perturbatively only provided the tunnel junction conductances are sufficiently small. If it is not the case, fluctuations of the grain charge become strong. As a result (i) contributions of all -- including high energy -- charge states become important and (ii) excited charge states become broadened and essentially overlap. At the same time the grain charge remains discrete and the system conductance $e$-periodically depends...

  20. Inelastic electron tunnelling and noise spectroscopies in organic magnetic tunnel junctions with PTCDA barrier

    Aliev, Farkhad; Martinez, Isidoro; Hong, Jhen-Yong; Cascales, Juan Pedro; Andres, Pablo; Lin, Minn-Tsong

    2015-03-01

    The influence of internal barrier dynamics on spin, charge transport and their fluctuations in organic spintronics remains poorly understood. Here we present inelastic electron tunnelling spectroscopy (IETS) and low frequency noise (LFN) studies in magnetic tunnel junctions with thin (1.2-5nm) organic PTCDA barriers in the tunnelling regime at temperatures down to 0.3K. Shot noise is superpoissonian with a Fano factor exceeding in 1.5-2 times the maximum values reported for magnetic tunnel junctions with inorganic barriers, indicating spin dependent bunching in tunneling. IETS results show energy relaxation of tunneling electrons through the excitation of collective (librons) and internal (phonons) vibrational modes of the molecules. The bias dependence of the normalised 1/f noise studied up to 350mV reveals that the excitation of some phonon modes has a strong impact on LFN with over a 10-fold reproducible increase near some specific biases. The dependence of the IETS and LFN anomalies with the relative magnetic alignment of the electrodes will also be discussed.

  1. Casimir-like tunnelling-induced electronic forces

    We study the quantum forces that act between two nearby conductors due to electronic tunnelling. We derive an expression for these forces by calculating the flux of momentum arising from the overlap of evanescent electronic fields. Our result is written in terms of the electronic reflection amplitudes of the conductors and it has the same structure as Lifshitz's formula for the electromagnetically mediated Casimir forces. We evaluate the tunnelling force between two semiinfinite conductors and between two thin films separated by an insulating gap. We discuss some applications of our results

  2. Single electron pump fabricated with ultrasmall normal tunnel junctions

    We have designed and operated a device through which single electrons can be 'pumped' reversibly. It consists of a linear array of three tunnel junctions voltage biased below the Coulomb gap. Phase shifted ac voltages applied to two gates pump one electron per cycle. (orig.)

  3. Thermal electron-tunneling devices as coolers and amplifiers.

    Su, Shanhe; Zhang, Yanchao; Chen, Jincan; Shih, Tien-Mo

    2016-01-01

    Nanoscale thermal systems that are associated with a pair of electron reservoirs have been previously studied. In particular, devices that adjust electron tunnels relatively to reservoirs' chemical potentials enjoy the novelty and the potential. Since only two reservoirs and one tunnel exist, however, designers need external aids to complete a cycle, rendering their models non-spontaneous. Here we design thermal conversion devices that are operated among three electron reservoirs connected by energy-filtering tunnels and also referred to as thermal electron-tunneling devices. They are driven by one of electron reservoirs rather than the external power input, and are equivalent to those coupling systems consisting of forward and reverse Carnot cycles with energy selective electron functions. These previously-unreported electronic devices can be used as coolers and thermal amplifiers and may be called as thermal transistors. The electron and energy fluxes of devices are capable of being manipulated in the same or oppsite directions at our disposal. The proposed model can open a new field in the application of nano-devices. PMID:26893109

  4. Laser induced - tunneling, electron diffraction and molecular orbital imaging

    Full text: Multiphoton ionization in the tunneling limit is similar to tunneling in a scanning tunneling microscope. In both cases an electron wave packet tunnels from a bound (or valence) state to the continuum. I will show that multiphoton ionization provides a route to extend tunneling spectroscopy to the interior of transparent solids. Rotating the laser polarization is the analogue of scanning the STM tip - a means of measuring the crystal symmetry of a solid. In gas phase molecules the momentum spectrum of individual electrons can be measured. I will show that, as we rotate the molecule with respect to the laser polarization, the photoelectron spectrum samples a filter projection of the momentum wave function (the molecular analogue to the band structure) of the ionizing orbital. Some electrons created during multiphoton ionization re-collide with their parent ion. I will show that they diffract, revealing the scattering potential of the ion - the molecular structure. The electron can also interfere with the initial orbital from which it separated, creating attosecond XUV pulses or pulse trains. The amplitude and phase of the radiation contains all information needed to re-construct the image of the orbital (just as a sheared optical interferometer can fully characterize an optical pulse). Strong field methods provide an extensive range of new tools to apply to atomic, molecular and solid-state problems. (author)

  5. Internal switches modulating electron tunneling currents in respiratory complex III.

    Hagras, Muhammad A; Stuchebrukhov, Alexei A

    2016-06-01

    In different X-ray crystal structures of bc1 complex, some of the key residues of electron tunneling pathways are observed in different conformations; here we examine their relative importance in modulating electron transfer and propose their possible gating function in the Q-cycle. The study includes inter-monomeric electron transfer; here we provide atomistic details of the reaction, and discuss the possible roles of inter-monomeric electronic communication in bc1 complex. Binding of natural ligands or inhibitors leads to local conformational changes which propagate through protein and control the conformation of key residues involved in the electron tunneling pathways. Aromatic-aromatic interactions are highly utilized in the communication network since the key residues are aromatic in nature. The calculations show that there is a substantial change of the electron transfer rates between different redox pairs depending on the different conformations acquired by the key residues of the complex. PMID:26874053

  6. Exploring the fractional quantum Hall effect with electron tunneling

    Fradkin, Eduardo

    1999-01-01

    In this talk I present a summary of recent work on tunnel junctions of a fractional quantum Hall fluid and an electron reservoir, a Fermi liquid. I consider first the case of a single point contact. This is a an exactly solvable problem from which much can be learned. I also discuss in some detail how these solvable junction problems can be used to understand many aspects of the recent electron tunneling experiments into edge states. I also give a detailed picture of the unusual behavior of t...

  7. Microwave-induced co-tunneling in single electron tunneling transistors

    Ejrnaes, M.; Savolainen, M.; Manscher, M.;

    2002-01-01

    The influence of microwaves on the co-tunneling in single electron tunneling transistors has been investigated as function of frequency and power in the temperature range from 150 to 500 mK. All 20 low frequency connections and the RF line were filtered, and the whole cryostat was suspended on...... fixed at maximum Coulomb blockade. With the microwave signal applied to one side of the transistor, we find that the conductance increases linearly with T-2 and microwave power. (C) 2002 Elsevier Science B.V. All rights reserved....

  8. Bohmian mechanics and the tunneling time problem for electrons

    The controversial concepts of dwell, transmission, reflection, and arrival times for quantum particles scattered by a potential barrier are discussed for Schroedinger electrons within the framework of Bohm's causal alternative to conventional quantum mechanics. Several other approaches to ''the tunneling time problem'', including the systematic projector approach of Brouard, Sala and Muga, are reviewed from the point of view of Bohmian mechanics. (author)

  9. Scanning tunnelling microscopy: application to field electron emission studies

    The principles of scanning tunnelling microscopy (STM) are extended to the study of field electron emission from metal, semiconducting and semi-insulating materials. A specially designed, high-vacuum STM device called a scanning tunnelling field emission microscope (STFEM) is constructed, and new measuring procedures are developed to examine complex physical properties of emission centres. Providing high bias voltages and fast mapping of large squares, the STFEM allows one to obtain reliable statistical data on surface properties, namely topography, emission intensity, surface potential distribution and local electroconductivity. Results from a study of low-field electron emission from CVD diamond films are described to illustrate the functional capabilities of the new STM device. It was found that the diamond films studied are composed of nanograined phases distinguished by their physical properties. It has also been noted that the low-field electron emission from the studied samples is associated with the interfaces of these phases. (author)

  10. Attosecond correlation dynamics during electron tunnelling from molecules

    Walters, Zachary B; Smirnova, Olga, E-mail: zwalters@gmail.co, E-mail: Olga.Smirnova@mbi-berlin.d [Max-Born-Institut fuer Nichtlineare Optik und Kurzzeitspektroskopie, D-12489 Berlin (Germany)

    2010-08-28

    In this communication, we present an analytical theory of strong-field ionization of molecules, which takes into account the rearrangement of multiple interacting electrons during the ionization process. We show that such rearrangement offers an alternative pathway to the ionization of orbitals more deeply bound than the highest occupied molecular orbital. This pathway is not subject to the full exponential suppression characteristic of direct tunnel ionization from the deeper orbitals. The departing electron produces an 'attosecond correlation pulse' which controls the rearrangement during the tunnelling process. The shape and duration of this pulse are determined by the electronic structure of the relevant states, molecular orientation and laser parameters. (fast track communication)

  11. Inelastic electron tunneling spectroscopy with a dilution refrigerator based scanning tunneling microscope

    This paper presents the design and operations of a compact cryogenic scanning tunneling microscope system combined with a dilution refrigerator. We obtained a minimum temperature of 260 mK at the sample position. Taking advantage of low-temperature measurement for the spectroscopy, inelastic electron tunneling spectroscopy (IETS) at 4.4 K was demonstrated for the octanethiol molecules in a self-assembled monolayer. The spectrum showed many vibrational features as in the case of a high-resolution electron energy loss spectroscopy. We discuss the resolution of the IET signals focusing on its changes with the modulation voltage and the sample temperature. IETS at 260 mK is also presented with similar quality as in the case of 4.4 K, indicating that the vibration-dumping methods for the operation of the dilution refrigerator described in this paper are adequate

  12. Scanning Tunneling Electron Transport into a Kondo Lattice

    Yang, Fu-Bin; Wu, Hua

    2016-05-01

    We theoretically present the results for a scanning tunneling transport between a metallic tip and a Kondo lattice. We calculate the density of states (DOS) and the tunneling current and differential conductance (DC) under different conduction-fermion band hybridization and temperature in the Kondo lattice. It is found that the hybridization strength and temperature give asymmetric coherent peaks in the DOS separated by the Fermi energy. The corresponding current and DC intensity depend on the temperature and quantum interference effect among the c-electron and f-electron states in the Kondo lattice. Supported by the National Natural Science Foundation of China under Grant No. 11547203, and the Research Project of Education Department in Sichuan Province of China under Grant No. 15ZB0457

  13. Inelastic electron tunneling spectroscopy of molecular transport junctions

    Inelastic electron tunneling spectroscopy (IETS) has become a premier analytical tool in the investigation of nano scale and molecular junctions. The IETS spectrum provides invaluable information about the structure, bonding, and orientation of component molecules in the junctions. One of the major advantages of IETS is its sensitivity and resolution at the level of single molecules. This review discusses how IETS is used to study molecular transport junctions and presents an overview of recent experimental studies.

  14. Spin dependent electron transport through a magnetic resonant tunneling diode

    Havu, Paula; Tuomisto, Noora; Vaananen, Riikka; Puska, Martti J.; Nieminen, Risto M.

    2004-01-01

    Electron transport properties in nanostructures can be modeled, for example, by using the semiclassical Wigner formalism or the quantum mechanical Green's functions formalism. We compare the performance and the results of these methods in the case of magnetic resonant-tunneling diodes. We have implemented the two methods within the self-consistent spin-density-functional theory. Our numerical implementation of the Wigner formalism is based on the finite-difference scheme whereas for the Green...

  15. Attosecond control of tunneling ionization and electron trajectories

    Fiess, M; Horvath, B; Wittmann, T; Helml, W; Gagnon, J; Krausz, F; Kienberger, R [Max-Planck-Institute of Quantum Optics, Hans-Kopfermann-Strasse 1, Garching (Germany); Cheng, Y; Zeng, B; Xu, Z [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, PO Box 800-211, Shanghai 201800 (China); Scrinzi, A, E-mail: markus.fiess@mpq.mpg.de [Ludwig-Maximilians-Universitaet Muenchen, Fakultaet fuer Physik, Theresienstrasse 37, 80333 Muenchen (Germany)

    2011-03-15

    We demonstrate the control of electron tunneling in the high-order harmonic generation process and subsequent positive-energy wavepacket propagation until recollision with the unprecedented precision of about 10 attoseconds. This is accomplished with waveforms synthesized from a few-cycle near-infrared pulse and its second harmonic. The presented attosecond control of few-cycle-driven high harmonics permits the generation of tunable isolated attosecond pulses, opening the prospects for a new class of attosecond pump-probe experiments.

  16. First Principles Study of Electron Tunneling through Ice

    Cucinotta, Clotilde S.

    2012-10-25

    With the aim of understanding electrochemical scanning tunnel microscopy experiments in an aqueous environment, we investigate electron transport through ice in the coherent limit. This is done by using the nonequilibrium Greens functions method, implemented within density functional theory, in the self-interaction corrected local density approximation. In particular, we explore different ice structures and different Au electrode surface orientations. By comparing the decay coefficient for different thicknesses to the ice complex band structure, we find that the electron transport occurs via tunneling with almost one-dimensional character. The slow decay of the current with the ice thickness is largely due to the small effective mass of the conduction electrons. Furthermore, we find that the calculated tunneling decay coefficients at the Fermi energy are not sensitive to the structural details of the junctions and are at the upper end of the experimental range for liquid water. This suggests that linear response transport measurements are not capable of distinguishing between different ordered ice structures. However, we also demonstrate that a finite bias measurement may be capable of sorting polar from nonpolar interfaces due to the asymmetry of the current-voltage curves for polar interfaces. © 2012 American Chemical Society.

  17. Thin-film chemical sensors based on electron tunneling

    Khanna, S. K.; Lambe, J.; Leduc, H. G.; Thakoor, A. P.

    1985-01-01

    The physical mechanisms underlying a novel chemical sensor based on electron tunneling in metal-insulator-metal (MIM) tunnel junctions were studied. Chemical sensors based on electron tunneling were shown to be sensitive to a variety of substances that include iodine, mercury, bismuth, ethylenedibromide, and ethylenedichloride. A sensitivity of 13 parts per billion of iodine dissolved in hexane was demonstrated. The physical mechanisms involved in the chemical sensitivity of these devices were determined to be the chemical alteration of the surface electronic structure of the top metal electrode in the MIM structure. In addition, electroreflectance spectroscopy (ERS) was studied as a complementary surface-sensitive technique. ERS was shown to be sensitive to both iodine and mercury. Electrolyte electroreflectance and solid-state MIM electroreflectance revealed qualitatively the same chemical response. A modified thin-film structure was also studied in which a chemically active layer was introduced at the top Metal-Insulator interface of the MIM devices. Cobalt phthalocyanine was used for the chemically active layer in this study. Devices modified in this way were shown to be sensitive to iodine and nitrogen dioxide. The chemical sensitivity of the modified structure was due to conductance changes in the active layer.

  18. Capacitively Coupled Hot-Electron Nanobolometer with SIN Tunnel Junctions

    Kuzmin, Leonid S.; Fominsky, M.; Kalabukhov, A.; Golubev, D.; Tarasov, M.

    2003-02-01

    A capacitively coupled hot-electron nanobolometer (CC-HEB) is the simplest and most effective antenna-coupled bolometer. The bolometer consists of a small absorber connected to the superconducting antenna by tunnel junctions. The tunnel junctions used for high-frequency coupling also give perfect thermal isolation of hot electrons in the small volume of the absorber. The same tunnel junctions are used for temperature measurements and electron cooling. This bolometer does not suffer from the frequency limitations in the submillimeter range due to the high potential barrier of the tunnel junctions as does the microbolometer with Andreev mirrors (A-HEB), which is limited by the superconducting gap. Theoretical analyses show that the two-junction configuration more than doubles the sensitivity of the bolometer in current-biased mode compared to the single-junction configuration used for A-HEB. Another important advantage of CC-HEB is its simple two-layer technology for sample fabrication. Samples were fabricated with an absorber made of a bilayer of Cr and Al to match the impedance of the antenna. Electrodes were made of Al and tunnel junctions were formed over the Al oxide layer. The coupling capacitances of the tunnel junctions, C ≍ 20 fF, in combination with the inductance of the 10 μm absorber create a bandpass filter with a central frequency around 300 GHz. Bolometers are integrated with log-periodic and double-dipole planar antennas made of Au. The temperature response of bolometer structures was measured at temperatures down to 256 mK. In our experiment we observed dV/dT=1.3 mV/K, corresponding to responsivity S=0.2.109 V/W. For amplifier noise Vna=3nV/Hz1/2 at 1 kHz the estimated total noise equivalent power is NEP=1.5.10-17 W/Hz1/2. The intrinsic bolometer self noise Vnbol=0.5 nV/Hz1/2 corresponds to NEP=3.10-18 W/Hz1/2. For microwave evaluation of bolometer sensitivity we used a black body radiation source comprising a thin NiCr stimulator placed on the

  19. Scanning tunneling microscopy and inelastic electron tunneling spectroscopy studies of methyl isocyanide adsorbed on Pt(111)

    A low-temperature scanning tunneling microscope (STM) was used to investigate the adsorption state of a single methyl isocyanide (MeNC) molecule on the Pt(111) surface at 4.7 K. We found that MeNC was resolved as a round-shaped protrusion in the STM image. The STM image of paired MeNC is highly protruded in comparison with that of isolated MeNC due to the charge transfer from Pt to MeNC. Inelastic electron tunneling spectroscopy with the STM system (STM-IETS) was also employed in order to reveal the adsorption state of individual MeNC molecules on Pt(111). The STM-IETS spectrum of MeNC exhibits peaks at 8, 48 and 375 mV. Referring to the vibrational spectra reported previously, we assigned these peaks to the frustrated translation mode, PtC stretching mode and CH3 stretching mode, respectively. The absence of other vibrational modes could be due to a reduction of the elastic tunneling current.

  20. Managing electronic resources a LITA guide

    Weir, Ryan O

    2012-01-01

    Informative, useful, current, Managing Electronic Resources: A LITA Guide shows how to successfully manage time, resources, and relationships with vendors and staff to ensure personal, professional, and institutional success.

  1. Single-electron tunneling and Coulomb charging effects in aysmmetric double-barrier resonant-tunneling diodes

    TEWORDT, M; MARTINMORENO, L; Nicholls, J T; Pepper, M.; Kelly, M J; Law, V.J.; Ritchie, D. A.; Frost, J. E. F.; Jones, G.A.C.

    1993-01-01

    Resonant tunneling is studied in an ultrasmall asymmetric GaAs-AlxGa1-xAs double-barrier diode at low temperatures. In reverse bias, spikelike current-voltage characteristics are observed and assigned to electrons tunneling from zero-dimensional (OD) states in the accumulation layer to OD states in the well. The OD-OD tunneling reflects the single-electron spectrum without Coulomb charging effects. In forward bias, steplike current-voltage characteristics are observed and ascribed to tunnelin...

  2. Electron tunneling in single layer graphene with an energy gap

    Xu Xu-Guang; Zhang Chao; Xu Gong-Jie; Cao Jun-Cheng

    2011-01-01

    When a single layer graphene is epitaxially grown on silicon carbide, it will exhibit a finite energy gap like a conventional semiconductor, and its energy dispersion is no longer linear in momentum in the low energy regime. In this paper, we have investigated the tunneling characteristics through a two-dimensional barrier in a single layer graphene with an energy gap. It is found that when the electron is at a zero angle of incidence, the transmission probability as a function of incidence energy has a gap. Away from the gap the transmission coefficient oscillates with incidence energy which is analogous to that of a conventional semiconductor. The conductance under zero temperature has a gap. The properties of electron transmission may be useful for developing graphene-based nano-electronics.

  3. Scanning electron and tunneling microscopy of palladium-barium emitters

    The results of study of metal-alloyed palladium-barium emitters' of modern very high frequency high-powered electronic vacuum tubes by scanning electron microscopy (SEM) and scanning tunneling microscopy/spectroscopy (STM/STS) are presented. Since the Pd/Ba foil surface is fairly smooth and is not oxidized in air STM/STS investigations are carried out in air in normal laboratory environment. SEM and STM images show that the emitter surface has a complex porous structure. The cathode surface study by STS in tunneling gap modulation mode allowed to take a map of phase distribution with various work function values and high lateral resolution. Obtained images demonstrate the presence of three phases on the Pd/Ba emitter surface, viz. barium-oxygen compounds, intermetallic, and palladium. As it is seen from presented STS image the phase with a low work function value (barium oxides) is concentrated along boundaries of the substance inclusions with work function corresponding to the intemetallic compound Pd5Ba. This supports the model of low work function areas obtained via Ba segregation from the intermetallic compound and oxidation. The presented methods may be used in the Pd/Ba cathode manufacturing process for increasing the yield of electronic devices in microwave tube production and optimize the emitters' characteristics

  4. Band-to-band tunneling distance analysis in the heterogate electron-hole bilayer tunnel field-effect transistor

    Padilla, J. L.; Palomares, A.; Alper, C.; Gámiz, F.; Ionescu, A. M.

    2016-01-01

    In this work, we analyze the behavior of the band-to-band tunneling distance between electron and hole subbands resulting from field-induced quantum confinement in the heterogate electron-hole bilayer tunnel field-effect transistor. We show that, analogously to the explicit formula for the tunneling distance that can be easily obtained in the semiclassical framework where the conduction and valence band edges are allowed states, an equivalent analytical expression can be derived in the presence of field-induced quantum confinement for describing the dependence of the tunneling distance on the body thickness and material properties of the channel. This explicit expression accounting for quantum confinement holds valid provided that the potential wells for electrons and holes at the top and bottom of the channel can be approximated by triangular profiles. Analytical predictions are compared to simulation results showing very accurate agreement.

  5. Probing Nanoscale Electronic and Magnetic Interaction with Scanning Tunneling Spectroscopy

    Bork, Jakob

    tunneling microscope (STM). Especially at low temperatures the Kondo resonance is used to probe magnetic interaction with ferromagnetic islands and between two atoms. The latter showing a crossover between Kondo screened atoms and antiferromagnetically coupled atoms close to the quantum critical point. This...... is related to research in correlated electron materials such as studies of phase transitions in heavy fermion compounds and magnetic interaction in spintronic research. The capping of cobalt islands on Cu(111) with silver is investigated with STM and photoemission spectroscopy. It is shown that at...

  6. Electronic Spin Tunneling in the Binding of Carbon - to Hemoglobin.

    Gerstman, Bernard Scott

    1981-11-01

    A non-adiabatic quantum tunneling process is investigated as the mechanism for effecting the electronic spin change of the hemoglobin's iron upon the binding of carbon monoxide. As the carbon monoxide approaches there is a spin state change in the Fe('2+) from S = 2 to S = 0. The Born -Oppenheimer approximation can be used to separate the recombination of the CO to the iron in the heme at low temperatures into a nuclear tunneling and an electronic tunneling. Based upon the spin change of the Fe as well as the size of the tunneling matrix element and the energy splitting of the two states in the transition region, we assume the reaction to be a non-adiabatic electronic Landau-Zener state to state tunneling. The tunneling involves a spin change of the Fe and thus a spin-orbit interaction is used as the perturbation that couples the S = 2 and S = 0 manifolds. Since the matrix element for the transition is due to spin-orbit coupling the size of the matrix element can be changed, and hence the tunneling rate, by changing the spin magnetic sublevel of the initially CO unbound Fe. This is accomplished by applying a strong magnetic field of approximately 100 000 gauss which will tend to align the Fe spin at low enough temperature. The L vector will be affected only slightly by the external magnetic field since the Zeeman effect on the orbital levels is much smaller (10('-2)) than that of the internal crystal field of the molecule. Hence the crystal field of the heme determines the L quantization axis in each local heme coordinate system. Thus in a random oriented distribution of hemes frozen in place we expect faster CO recombination for those hemes who have their L vector aligned in the direction of the magnetic field than for those hemes whose L vector is perpendicular to the magnetic field. Hemoglobin has a strong absorption band at 436 nm when CO is bound. This absorption is also orientation dependent for the absorption is predominantly for light polarized in the plane

  7. Electron-phonon scattering in molecular electronics: from inelastic electron tunnelling spectroscopy to heating effects

    Gagliardi, Alessio; Frauenheim, Thomas; Niehaus, Thomas A [Bremen Center for Computational Materials Science, University of Bremen, D-28359 Bremen (Germany); Romano, Giuseppe; Pecchia, Alessandro; Di Carlo, Aldo [CNR-INFM Department of Electronics Engineering, University of Rome ' Tor Vergata' , Via del Politecnico 1, 00133 Rome (Italy)], E-mail: gagliard@bccms.uni-bremen.de, E-mail: Gagliardi@Ing.uniroma2.it

    2008-06-15

    In this paper, we investigate dissipation in molecular electronic devices. Dissipation is a crucial quantity which determines the stability and heating of the junction. Moreover, several experimental techniques which use inelastically scattered electrons as probes to investigate the geometry in the junction are becoming fundamental in the field. In order to describe such physical effects, a non-equilibrium Green's function (NEGF) method was implemented to include scattering events between electrons and molecular vibrations in current simulations. It is well known that the final heating of the molecule depends also on the ability of the molecule to relax vibrational quanta into the contact reservoirs. A semi-classical rate equation has been implemented and integrated within the NEGF formalism to include this relaxation. The model is based on two quantities: (i) the rate of emission of phonons in the junction by electron-phonon scattering and (ii) a microscopic approach for the computation of the phonon decay rate, accounting for the dynamical coupling between the vibrational modes localized on the molecule and the contact phonons. The method is applied to investigate inelastic electron tunnelling spectroscopy (IETS) signals in CO molecules on Cu(110) substrates as well as dissipation in C{sub 60} molecules on Cu(110) and Si(100) surfaces. It is found that the mechanisms of energy relaxation are highly mode-specific and depend crucially on the lead electronic structure and junction geometry.

  8. Electron-phonon scattering in molecular electronics: from inelastic electron tunnelling spectroscopy to heating effects

    In this paper, we investigate dissipation in molecular electronic devices. Dissipation is a crucial quantity which determines the stability and heating of the junction. Moreover, several experimental techniques which use inelastically scattered electrons as probes to investigate the geometry in the junction are becoming fundamental in the field. In order to describe such physical effects, a non-equilibrium Green's function (NEGF) method was implemented to include scattering events between electrons and molecular vibrations in current simulations. It is well known that the final heating of the molecule depends also on the ability of the molecule to relax vibrational quanta into the contact reservoirs. A semi-classical rate equation has been implemented and integrated within the NEGF formalism to include this relaxation. The model is based on two quantities: (i) the rate of emission of phonons in the junction by electron-phonon scattering and (ii) a microscopic approach for the computation of the phonon decay rate, accounting for the dynamical coupling between the vibrational modes localized on the molecule and the contact phonons. The method is applied to investigate inelastic electron tunnelling spectroscopy (IETS) signals in CO molecules on Cu(110) substrates as well as dissipation in C60 molecules on Cu(110) and Si(100) surfaces. It is found that the mechanisms of energy relaxation are highly mode-specific and depend crucially on the lead electronic structure and junction geometry

  9. Electron tunneling in tantalum surface layers on niobium

    We have performed electron tunneling measurements on tantalum surface layers on niobium. The tunnel junctions comprise 2000-A-circle Nb base electrodes with 10--100-A-circle in situ--deposited Ta overlayers, an oxide barrier, and Ag, Pb, or Pb-Bi alloy counterelectrodes. The base electrodes were prepared by ion-beam sputter deposition. The characteristics of these junctions have been studied as a function of Ta-layer thickness. These include the critical current, bound-state energy, phonon structure, and oxide barrier shape. We have compared our results for the product I/sub c/R versus tantalum-layer thickness with an extended version of the Gallagher theory which accounts for both the finite mean free path in the Ta overlayers and suppression of the I/sub c/R product due to strong-coupling effects. Excellent fits to the data yield a value of the intrinsic scattering probability for electrons at the Ta/Nb interface of r2 = 0.01. This is consistent with the value expected from simple scattering off the potential step created by the difference between the Fermi energies of Ta and Nb. We have found a universal empirical correlation in average barrier height phi-bar and width s in the form phi-bar = 6 eV/(s-10 A-circle) for measured junctions which holds both for our data and results for available data in the literature for oxide-barrier junctions. The latter are composed of a wide variety of base and counterelectrode materials. These results are discussed in the general context of oxide growth and compared with results for artificial tunnel barriers

  10. Signatures of attosecond electron tunneling dynamics in the evolution of intense few-cycle light pulses

    Serebryannikov, E. E.; Verhoef, A. J.; Mitrofanov, A.; Baltuška, A.; Zheltikov, A. M.

    2009-11-01

    The sensitivity of electron tunneling to the phase of an ionizing light field is shown to manifest itself in detectable features in the spectral and temporal evolution of intense few-cycle light pulses in an ionizing medium. An ultrafast buildup of electron density in the regime of tunneling ionization gives rise to a modulation of a few-cycle field wave form and enhances the short-wavelength part of its spectrum. In a low-pressure gas, the signatures of electron tunneling in the evolution of few-cycle pulses can be isolated from the effects related to atomic nonlinear susceptibilities, giving an access to attosecond electron tunneling dynamics.

  11. Implementing CORAL: An Electronic Resource Management System

    Whitfield, Sharon

    2011-01-01

    A 2010 electronic resource management survey conducted by Maria Collins of North Carolina State University and Jill E. Grogg of University of Alabama Libraries found that the top six electronic resources management priorities included workflow management, communications management, license management, statistics management, administrative…

  12. Electronic Resource Management Systems in Practice

    Grogg, Jill E.

    2008-01-01

    Electronic resource management (ERM) systems have inundated the library marketplace. Both integrated library systems (ILS) vendors and subscription agents are now offering products and service enhancements that claim to help libraries efficiently manage their electronic resources. Additionally, some homegrown and open-source solutions have emerged…

  13. Tunneling electron induced luminescence from porphyrin molecules on monolayer graphene

    Using epitaxially grown graphene on Ru(0001) as a decoupling layer, we investigate the evolution of tunneling electron induced luminescence from different number of layers of porphyrin molecules. Light emission spectra and photon maps, acquired via a combined optical setup with scanning tunneling microscopy (STM), indicate that the electronic decoupling effect of a monolayer (ML) graphene alone is still insufficient for generating molecule-specific emission from both the 1st- and 2nd-layer porphyrin molecules. Nevertheless, interestingly, the plasmonic emission is enhanced for the 1st-layer but suppressed for the 2nd-layer in comparison with the plasmonic emission on the monolayer graphene. Intrinsic intramolecular molecular fluorescence occurs at the 3rd-layer porphyrin. Such molecular thickness is about two MLs thinner than previous reports where molecules were adsorbed directly on metals. These observations suggest that the monolayer graphene does weaken the interaction between molecule and metal substrate and contribute to the reduction of nonradiative decay rates. - Highlights: • Showing molecularly resolved photon maps of graphene and porphyrins on it. • Revealing the influence of spacer thickness on molecular electroluminescence. • Graphene does weaken the interaction between molecules and metal substrate

  14. Tunneling electron induced luminescence from porphyrin molecules on monolayer graphene

    Geng, Feng; Kuang, Yanmin; Yu, Yunjie; Liao, Yuan; Zhang, Yao; Zhang, Yang; Dong, Zhenchao, E-mail: zcdong@ustc.edu.cn

    2015-01-15

    Using epitaxially grown graphene on Ru(0001) as a decoupling layer, we investigate the evolution of tunneling electron induced luminescence from different number of layers of porphyrin molecules. Light emission spectra and photon maps, acquired via a combined optical setup with scanning tunneling microscopy (STM), indicate that the electronic decoupling effect of a monolayer (ML) graphene alone is still insufficient for generating molecule-specific emission from both the 1st- and 2nd-layer porphyrin molecules. Nevertheless, interestingly, the plasmonic emission is enhanced for the 1st-layer but suppressed for the 2nd-layer in comparison with the plasmonic emission on the monolayer graphene. Intrinsic intramolecular molecular fluorescence occurs at the 3rd-layer porphyrin. Such molecular thickness is about two MLs thinner than previous reports where molecules were adsorbed directly on metals. These observations suggest that the monolayer graphene does weaken the interaction between molecule and metal substrate and contribute to the reduction of nonradiative decay rates. - Highlights: • Showing molecularly resolved photon maps of graphene and porphyrins on it. • Revealing the influence of spacer thickness on molecular electroluminescence. • Graphene does weaken the interaction between molecules and metal substrate.

  15. Resonant tunneling of interacting electrons in an AC electric field

    The problem of the effect of electron-electron interaction on the static and dynamic properties of a double-barrier nanostructure (resonant tunneling diode (RTD)) is studied in terms of a coherent tunneling model, which includes a set of Schrödinger and Poisson equations with open boundary conditions. Explicit analytical expressions are derived for dc and ac potentials and reduced (active and reactive) currents in the quasi-classical approximation over a wide frequency range. These expressions are used to analyze the frequency characteristics of RTD. It is shown that the interaction can radically change the form of these expressions, especially in the case of a hysteretic I-V characteristic. In this case, the active current and the ac potentials can increase sharply at both low and high frequencies. For this increase to occur, it is necessary to meet quantum regime conditions and to choose a proper working point in the I-V characteristic of RTD. The possibility of appearance of specific plasma oscillations, which can improve the high-frequency characteristics of RTD, is predicted. It is found that the active current can be comparable with the resonant dc current of RTD

  16. Resonant tunneling of interacting electrons in an AC electric field

    Elesin, V. F., E-mail: VFElesin@mephi.ru [National Research Nuclear University MEPhI (Russian Federation)

    2013-11-15

    The problem of the effect of electron-electron interaction on the static and dynamic properties of a double-barrier nanostructure (resonant tunneling diode (RTD)) is studied in terms of a coherent tunneling model, which includes a set of Schrödinger and Poisson equations with open boundary conditions. Explicit analytical expressions are derived for dc and ac potentials and reduced (active and reactive) currents in the quasi-classical approximation over a wide frequency range. These expressions are used to analyze the frequency characteristics of RTD. It is shown that the interaction can radically change the form of these expressions, especially in the case of a hysteretic I-V characteristic. In this case, the active current and the ac potentials can increase sharply at both low and high frequencies. For this increase to occur, it is necessary to meet quantum regime conditions and to choose a proper working point in the I-V characteristic of RTD. The possibility of appearance of specific plasma oscillations, which can improve the high-frequency characteristics of RTD, is predicted. It is found that the active current can be comparable with the resonant dc current of RTD.

  17. Two-photon Induced Hot Electron Transfer to a Single Molecule in a Scanning Tunneling Microscope

    Wu, Shiwei; Ho, Wilson

    2010-01-01

    The junction of a scanning tunneling microscope (STM) operating in the tunneling regime was irradiated with femtosecond laser pulses. A photo-excited hot electron in the STM tip resonantly tunnels into an excited state of a single molecule on the surface, converting it from the neutral to the anion. The electron transfer rate depends quadratically on the incident laser power, suggesting a two-photon excitation process. This nonlinear optical process is further confirmed by the polarization me...

  18. Electronic Single Molecule Identification of Carbohydrate Isomers by Recognition Tunneling

    Im, JongOne; Liu, Hao; Zhao, Yanan; Sen, Suman; Biswas, Sudipta; Ashcroft, Brian; Borges, Chad; Wang, Xu; Lindsay, Stuart; Zhang, Peiming

    2016-01-01

    Glycans play a central role as mediators in most biological processes, but their structures are complicated by isomerism. Epimers and anomers, regioisomers, and branched sequences contribute to a structural variability that dwarfs those of nucleic acids and proteins, challenging even the most sophisticated analytical tools, such as NMR and mass spectrometry. Here, we introduce an electron tunneling technique that is label-free and can identify carbohydrates at the single-molecule level, offering significant benefits over existing technology. It is capable of analyzing sub-picomole quantities of sample, counting the number of individual molecules in each subset in a population of coexisting isomers, and is quantitative over more than four orders of magnitude of concentration. It resolves epimers not well separated by ion-mobility and can be implemented on a silicon chip. It also provides a readout mechanism for direct single-molecule sequencing of linear oligosaccharides.

  19. Low-frequency noise in single electron tunneling transistor

    Tavkhelidze, A.N.; Mygind, Jesper

    1998-01-01

    The noise in current biased aluminium single electron tunneling (SET) transistors has been investigated in the frequency range of 5 mHz radiation and especially high energy...... photons emitted by the 4.2 K environment from reaching the sample, allows us to study a given background charge configuration for many hours below [approximate] 100 mK. The noise at relatively high frequencies originates from internal (presumably thermal equilibrium) charge fluctuations. For f >= 10 Hz......, we find the same input charge noise, typically QN = 5 × 10–4 e/Hz1/2 at 10 Hz, with and without the HF shielding. At lower frequencies, the noise is due to charge trapping, and the voltage noise pattern superimposed on the V(Vg) curve (voltage across transistor versus gate voltage) strongly depends...

  20. On the Dynamics of Single-Electron Tunneling in Semiconductor Quantum Dots under Microwave Radiation

    Qin, Hua

    2001-01-01

    Efforts are made in this thesis to reveal the dynamics of single-electron tunneling and to realize quantum bits (qubits) in semiconductor quantum dots. At low temperatures, confined single quantum dots and double quantum dots are realized in the twodimensional electron gas (2DEG) of AlGaAs/GaAs heterostructures. For transport studies, quantum dots are coupled to the drain and source contacts via tunnel barriers. Electron-electron interaction in such closed quantum dots leads to...

  1. Tunneling electron induced chemisorption of copper phthalocyanine molecules on the Cu(111) surface

    The adsorption of up to one monolayer (ML) of copper phthalocyanine (CuPc) molecules on a room temperature Cu(111) surface has been studied using scanning tunneling microscopy (STM). Below 1 ML the molecules are in a fluid state and are highly mobile on the surface. At 1 ML coverage the molecules coalesce into a highly ordered 2D crystal phase. At sub-ML coverages, chemisorption of individual CuPc molecules can be induced through exposure to tunneling electrons at a tunneling bias voltage exceeding a threshold value. This tunneling electron induced effect has been exploited to perform molecular STM lithography

  2. Optical Blocking of Electron Tunneling into a Single Self-Assembled Quantum Dot

    Kurzmann, A.; Merkel, B.; Labud, P. A.; Ludwig, A.; Wieck, A. D.; Lorke, A.; Geller, M.

    2016-07-01

    Time-resolved resonance fluorescence (RF) is used to analyze electron tunneling between a single self-assembled quantum dot (QD) and an electron reservoir. In equilibrium, the RF intensity reflects the average electron occupation of the QD and exhibits a gate voltage dependence that is given by the Fermi distribution in the reservoir. In the time-resolved signal, however, we find that the relaxation rate for electron tunneling is, surprisingly, independent of the occupation in the charge reservoir—in contrast to results from all-electrical transport measurements. Using a master equation approach, which includes both the electron tunneling and the optical excitation or recombination, we are able to explain the experimental data by optical blocking, which also reduces the electron tunneling rate when the QD is occupied by an exciton.

  3. Infrared catastrophe and tunneling into strongly correlated electron systems: Beyond the x-ray edge limit

    Patton, Kelly R.; Geller, Michael R.

    2005-01-01

    We develop a nonperturbative method to calculate the electron propagator in low-dimensional and strongly correlated electron systems. The method builds on our earlier work using a Hubbard-Stratonovich transformation to map the tunneling problem to the x-ray edge problem, which accounts for the infrared catastrophe caused by the sudden introduction of a new electron into a conductor during a tunneling event. Here we use a cumulant expansion to include fluctuations about this x-ray edge limit. ...

  4. Coherent electron transparent tunneling through a single barrier within a Fabry-Perot cavity

    Stolle, Jason; Baum, Chaz; Amann, Ryan; Haman, Ryan; Call, Tanner; Li, Wei

    2016-07-01

    Electromagnetic wave and quantum DeBroglie wave have many parallels between each other. We investigate the quantum mechanical counterpart of electromagnetic resonant tunneling through a non-absorbing metal layer. It is confirmed that an electron also has transparent transmission through a single barrier within a Fabry-Perot like cavity. This tunneling structure is actually a distortion of the Fabry-Perot echelon. We find that for a specific resonant electron energy, the cavity length is related to the electron's DeBroglie wavelength; and the single barrier can be located at a series positions with an interval equal to a half of the DeBroglie wavelength, not just at the center of the cavity. This tunneling phenomenon will have novel applications in quantum devices such as the resonant tunneling diode and scanning tunneling microscope. The results of this paper should also have impact on related electromagnetic research and application.

  5. On the formvar vibrational spectrum by electron tunneling

    Inelastic tunnel curents of quasi-holes in Al/Formvar Pb tunnel junctions allowed to identify anharmonic contributions to the phonon spectra of Lead and Formvar. Moreover it has been also possible to ascertain two Formvar eigenmodes of very low energy jointly to their beats

  6. Integrated NIS electron-tunnelling refrigerator/superconducting bolometer

    We describe progress in the development of a close-packed array of bolometers designed for use in photometric applications at millimeter wavelengths from ground-based telescopes. Each bolometer in the array will use a proximity-effect Transition Edge Sensor (TES) sensing element and each will have integrated Normal-Insulator-Superconductor (NIS) refrigerators to cool the bolometer below the thermal reservoir temperature. The NIS refrigerators and acoustic-phonon-mode-isolated bolometers are fabricated on silicon. The radiation absorbing element is mechanically suspended by four legs, whose dimensions are used to control and optimize the thermal conductance of the bolometer. Using the technology developed at NIST, we fabricate NIS refrigerators at the base of each of the suspension legs. The NIS refrigerators remove hot electrons by quantum-mechanical tunneling and are expected to cool the biased (10pW) bolometers to 3He-cooled cryostat operating at ∼280mK. This significantly lower temperature at the bolometer allows the detectors to approach background-limited performance despite the simple cryogenic system

  7. Electronic Single Molecule Measurements with the Scanning Tunneling Microscope

    Im, Jong One

    Richard Feynman said "There's plenty of room at the bottom". This inspired the techniques to improve the single molecule measurements. Since the first single molecule study was in 1961, it has been developed in various field and evolved into powerful tools to understand chemical and biological property of molecules. This thesis demonstrates electronic single molecule measurement with Scanning Tunneling Microscopy (STM) and two of applications of STM; Break Junction (BJ) and Recognition Tunneling (RT). First, the two series of carotenoid molecules with four different substituents were investigated to show how substituents relate to the conductance and molecular structure. The measured conductance by STM-BJ shows that Nitrogen induces molecular twist of phenyl distal substituents and conductivity increasing rather than Carbon. Also, the conductivity is adjustable by replacing the sort of residues at phenyl substituents. Next, amino acids and peptides were identified through STM-RT. The distribution of the intuitive features (such as amplitude or width) are mostly overlapped and gives only a little bit higher separation probability than random separation. By generating some features in frequency and cepstrum domain, the classification accuracy was dramatically increased. Because of large data size and many features, supporting vector machine (machine learning algorithm for big data) was used to identify the analyte from a data pool of all analytes RT data. The STM-RT opens a possibility of molecular sequencing in single molecule level. Similarly, carbohydrates were studied by STM-RT. Carbohydrates are difficult to read the sequence, due to their huge number of possible isomeric configurations. This study shows that STM-RT can identify not only isomers of mono-saccharides and disaccharides, but also various mono-saccharides from a data pool of eleven analytes. In addition, the binding affinity between recognition molecule and analyte was investigated by comparing with

  8. Toward low-power electronics: tunneling phenomena in transition metal dichalcogenides.

    Das, Saptarshi; Prakash, Abhijith; Salazar, Ramon; Appenzeller, Joerg

    2014-02-25

    In this article, we explore, experimentally, the impact of band-to-band tunneling on the electronic transport of double-gated WSe2 field-effect transistors (FETs) and Schottky barrier tunneling of holes in back-gated MoS2 FETs. We show that by scaling the flake thickness and the thickness of the gate oxide, the tunneling current can be increased by several orders of magnitude. We also perform numerical calculations based on Landauer formalism and WKB approximation to explain our experimental findings. Based on our simple model, we discuss the impact of band gap and effective mass on the band-to-band tunneling current and evaluate the performance limits for a set of dichalcogenides in the context of tunneling transistors for low-power applications. Our findings suggest that WTe2 is an excellent choice for tunneling field-effect transistors. PMID:24392853

  9. Fluorescence and phosphorescence from individual C$_{60}$ molecules excited by local electron tunneling

    Ćavar, Elizabeta; Blüm, Marie-Christine; Pivetta, Marina; Patthey, François; Chergui, Majed; Schneider, Wolf-Dieter

    2005-01-01

    Using the highly localized current of electrons tunneling through a double barrier Scanning Tunneling Microscope (STM) junction, we excite luminescence from a selected C$_{60}$ molecule in the surface layer of fullerene nanocrystals grown on an ultrathin NaCl film on Au(111). In the observed luminescence fluorescence and phosphorescence spectra, pure electronic as well as vibronically induced transitions of an individual C$_{60}$ molecule are identified, leading to unambiguous chemical recogn...

  10. Infrared catastrophe and tunneling into strongly correlated electron systems: Perturbative x-ray edge limit

    Patton, Kelly R.; Geller, Michael R.

    2005-01-01

    The tunneling density of states exhibits anomalies (cusps, algebraic suppressions, and pseudogaps) at the Fermi energy in a wide variety of low-dimensional and strongly correlated electron systems. We argue that in many cases these spectral anomalies are caused by an infrared catastrophe in the screening response to the sudden introduction of a new electron into the system during a tunneling event. A nonperturbative functional-integral method is introduced to account for this effect, making u...

  11. Coulomb-mediated electron bunching in tunneling through coupled quantum dots

    Kiesslich, G. [Institut fuer Theoretische Physik, Technische Universitaet Berlin, 10623 Berlin (Germany); School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Schoell, E. [Institut fuer Theoretische Physik, Technische Universitaet Berlin, 10623 Berlin (Germany); Hohls, F.; Haug, R.J. [Institut fuer Festkoerperphysik, Leibniz Universitaet Hannover, 30167 Hannover (Germany)

    2008-07-01

    The recent observation of super-Poissonian shot noise in the tunneling current through two layers of selfassembled quantum dots is analyzed and discussed in terms of a sequential tunneling model for a single weakly coupled quantum dot stack. We demonstrate that the phenomenon of bunching in the electron transfer can be explained by the sole effect of Coulomb interaction between electrons inside the stack. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Bilayer Insulator Tunnel Barriers for Graphene-Based Vertical Hot-electron Transistors

    Vaziri, Sam; Belete, Melkamu; Litta, Eugenio Dentoni; Smith, Anderson; Lupina, Grzegorz; Lemme, Max C.; Östling, Mikael

    2015-01-01

    Vertical graphene-based device concepts that rely on quantum mechanical tunneling are intensely being discussed in literature for applications in electronics and optoelectronics. In this work, the carrier transport mechanisms in semiconductor-insulator-graphene (SIG) capacitors are investigated with respect to their suitability as the electron emitter in vertical graphene base transistors (GBTs). Several dielectric materials as tunnel barriers are compared, including dielectric double layers....

  13. Atomic scale imaging and spectroscopy of individual electron trap states using force detected dynamic tunnelling

    We report the first atomic scale imaging and spectroscopic measurements of electron trap states in completely non-conducting surfaces by dynamic tunnelling force microscopy/spectroscopy. Single electrons are dynamically shuttled to/from individual states in thick films of hafnium silicate and silicon dioxide. The new method opens up surfaces that are inaccessible to the scanning tunnelling microscope for imaging and spectroscopy on an atomic scale.

  14. Bilayer insulator tunnel barriers for graphene-based vertical hot-electron transistors.

    Vaziri, S; Belete, M; Dentoni Litta, E; Smith, A D; Lupina, G; Lemme, M C; Östling, M

    2015-08-14

    Vertical graphene-based device concepts that rely on quantum mechanical tunneling are intensely being discussed in the literature for applications in electronics and optoelectronics. In this work, the carrier transport mechanisms in semiconductor-insulator-graphene (SIG) capacitors are investigated with respect to their suitability as electron emitters in vertical graphene base transistors (GBTs). Several dielectric materials as tunnel barriers are compared, including dielectric double layers. Using bilayer dielectrics, we experimentally demonstrate significant improvements in the electron injection current by promoting Fowler-Nordheim tunneling (FNT) and step tunneling (ST) while suppressing defect mediated carrier transport. High injected tunneling current densities approaching 10(3) A cm(-2) (limited by series resistance), and excellent current-voltage nonlinearity and asymmetry are achieved using a 1 nm thick high quality dielectric, thulium silicate (TmSiO), as the first insulator layer, and titanium dioxide (TiO2) as a high electron affinity second layer insulator. We also confirm the feasibility and effectiveness of our approach in a full GBT structure which shows dramatic improvement in the collector on-state current density with respect to the previously reported GBTs. The device design and the fabrication scheme have been selected with future CMOS process compatibility in mind. This work proposes a bilayer tunnel barrier approach as a promising candidate to be used in high performance vertical graphene-based tunneling devices. PMID:26176739

  15. Tuning the tunneling probability between low-dimensional electron systems by momentum matching

    We demonstrate the possibility to tune the tunneling probability between an array of self- assembled quantum dots and a two-dimensional electron gas (2DEG) by changing the energy imbalance between the dot states and the 2DEG. Contrary to the expectation from Fowler-Nordheim tunneling, the tunneling rate decreases with increasing injection energy. This can be explained by an increasing momentum mismatch between the dot states and the Fermi-circle in the 2DEG. Our findings demonstrate momentum matching as a useful mechanism (in addition to energy conservation, density of states, and transmission probability) to electrically control the charge transfer between quantum dots and an electron reservoir

  16. Electron tunnelling through single azurin molecules can be on/off switched by voltage pulses

    Baldacchini, Chiara [Biophysics and Nanoscience Centre, DEB-CNISM, Università della Tuscia, I-01100 Viterbo (Italy); Institute of Agro-Environmental and Forest Biology, CNR, I-05010 Porano (Italy); Kumar, Vivek; Bizzarri, Anna Rita; Cannistraro, Salvatore, E-mail: cannistr@unitus.it [Biophysics and Nanoscience Centre, DEB-CNISM, Università della Tuscia, I-01100 Viterbo (Italy)

    2015-05-04

    Redox metalloproteins are emerging as promising candidates for future bio-optoelectronic and nano-biomemory devices, and the control of their electron transfer properties through external signals is still a crucial task. Here, we show that a reversible on/off switching of the electron current tunnelling through a single protein can be achieved in azurin protein molecules adsorbed on gold surfaces, by applying appropriate voltage pulses through a scanning tunnelling microscope tip. The observed changes in the hybrid system tunnelling properties are discussed in terms of long-sustained charging of the protein milieu.

  17. Distant electron tunneling controlled by external fields in molecular nano structures

    The influence of stochastic, periodic, and magnetic fields on a long-range electron tunneling in donor - bridge - acceptor and electrode - molecular wire - electrode structures is studied theoretically. The description of a bridge-mediated electron tunneling between donor and acceptor groups is shown to be possible via the introduction of effective transfer rates. The principal distinction in the dependence of low-temperature elastic and inelastic tunnel currents mediated by a molecular wire with bridging paramagnetic ions on an applied magnetic field is considered. The appearance of the field-induced inversion and suppression effects is widely discussed

  18. Modulations of electronic tunneling rates through flexible molecular bridges by a dissipative superexchange mechanism

    Long-range coherent electron transfer between a donor and an acceptor is often assisted by intermediate molecular bridge, via the superexchange tunneling mechanism. The effect of electronic-nuclear coupling intensity on the tunneling rate and mechanism is analyzed using a generalized spin-boson model, in which the two level system, representing the donor and the acceptor is coupled to a dissipative nuclear bath only indirectly, via additional N bridge sites. A Langevin-Schroedinger equation, based on a mean field approximation, is applied in order to study the corresponding many-body dynamics, and the results are supported by numerically exact calculations for a single nuclear bridge mode. At zero temperature and when the electron tunneling is slower than the nuclear motion, the main effect of electronic-nuclear coupling is the dissipation of electronic energy at the bridge into nuclear vibrations. At small coupling intensities, the electronic tunneling rate increases due to this dissipative mechanism, but as the coupling intensity increases the tunneling into the acceptor is suppressed and efficient dissipation leads to electronic trapping (solvation) at the bridge. This analysis agrees with numerous experimental and theoretical studies, emphasizing the importance of the nuclear bridge conformation and the bridge flexibility in controlling the electron transfer rate in donor-bridge-acceptor systems

  19. Using electron-tunneling refrigerators to cool electrons, membranes, and sensors

    Miller, Nathan A.

    Many cryogenic devices require temperatures near 100 mK for optimal performance, such as thin-film, superconducting detectors. Examples include the submillimeter SCUBA camera on the James Clerk Maxwell Telescope, high-resolution X-ray sensors for semiconductor defect analysis, and a planned satellite to search for polarization in the cosmic microwave background. The cost, size, and complexity of refrigerators used to reach 100 mK (dilution and adiabatic demagnetization refrigerators) are significant and alternative technologies are desirable. We demonstrate work on developing a new option for cooling detectors to 100 mK bath temperatures. Solid-state refrigerators based on Normal metal/Insulator/Superconductor (NIS) tunnel junctions can provide cooling from pumped 3He bath temperatures (˜300 mK) to 100 mK. The cooling mechanism is the preferential tunneling of the highest energy (hottest) electrons from the normal metal through the biased tunnel junctions into the superconductor. When NIS refrigerators are combined with a micro-machined membrane, both the electrons and phonons of the membrane can be cooled. We have developed NIS-cooled membranes with both large temperature reductions and large cooling powers. We have shown the first cooling of a bulk material by cooling a neutron transmutation doped (NTD) thermistor. The fabrication of NIS refrigerators can be integrated with existing detector technology. For the first time, we have successfully integrated NIS refrigerators with both mm-wave and X-ray detectors. In particular, we have cooled X-ray detectors by more than 100 mK and have achieved a resolution of cooling platform for microelectronics devices on separate chips.

  20. Negative differential resistance in GaN tunneling hot electron transistors

    Room temperature negative differential resistance is demonstrated in a unipolar GaN-based tunneling hot electron transistor. Such a device employs tunnel-injected electrons to vary the electron energy and change the fraction of reflected electrons, and shows repeatable negative differential resistance with a peak to valley current ratio of 7.2. The device was stable when biased in the negative resistance regime and tunable by changing collector bias. Good repeatability and double-sweep characteristics at room temperature show the potential of such device for high frequency oscillators based on quasi-ballistic transport

  1. Hysteresis phenomena in electron tunneling, induced by surface plasmons

    Kroo, Norbert; Racz, Peter

    2013-01-01

    A high spatial resolution surface plasmon near field scanning tunneling microscope (STM) has been used to study the properties of localized surface plasmons (SPO) in so-called hot spots on a gold surface, where the local electromagnetic field is extremely high. A CW semiconductor laser and a femtosecond Ti:Sa laser were used to excite the plasmons and the SPO excited tunnel current was used as the detector. When scanning the STM from negative to positive bias and reversed, hysteresis in the tunnel signal was found, excluding (or rather minimizing) the role of the presence of a Casimir effect in the process. It was found, however, that a multiple image charge induced double well potential may explain our experimental findings. The stepwise behaviour of the area of the observed hysteresis loops is a new, additional indication of the non-classical properties of the SPOs.

  2. Making sense of the electronic resource marketplace: trends in health-related electronic resources.

    Blansit, B D; Connor, E

    1999-07-01

    Changes in the practice of medicine and technological developments offer librarians unprecedented opportunities to select and organize electronic resources, use the Web to deliver content throughout the organization, and improve knowledge at the point of need. The confusing array of available products, access routes, and pricing plans makes it difficult to anticipate the needs of users, identify the top resources, budget effectively, make sound collection management decisions, and organize the resources effectively and seamlessly. The electronic resource marketplace requires much vigilance, considerable patience, and continuous evaluation. There are several strategies that librarians can employ to stay ahead of the electronic resource curve, including taking advantage of free trials from publishers; marketing free trials and involving users in evaluating new products; watching and testing products marketed to the clientele; agreeing to beta test new products and services; working with aggregators or republishers; joining vendor advisory boards; benchmarking institutional resources against five to eight competitors; and forming or joining a consortium for group negotiating and purchasing. This article provides a brief snapshot of leading biomedical resources; showcases several libraries that have excelled in identifying, acquiring, and organizing electronic resources; and discusses strategies and trends of potential interest to biomedical librarians, especially those working in hospital settings. PMID:10427421

  3. Toward Low-Power Electronics: Tunneling Phenomena in Transition Metal Dichalcogenides

    Das, Saptarshi; Prakash, Abhijith; Salazar, Ramon; Appenzeller, Joerg

    2014-01-01

    In this article, we explore, experimentally, the impact of band-to-band tunneling on the electronic transport of double-gated WSe2 field-effect transistors (FETs) and Schottky barrier tunneling of holes in back-gated MoS2 FETs. We show that by scaling the flake thickness and the thickness of the gate oxide, the tunneling current can be increased by several orders of magnitude. We also perform numerical calculations based on Landauer formalism and WKB approximation to explain our experimental ...

  4. Tunneling electron induced rotation of a copper phthalocyanine molecule on Cu(111)

    Schaffert, J.; Cottin, M. C.; Sonntag, A.; Bobisch, C. A.; Möller, Rolf; Gauyacq, J. P.; Lorente, N.

    2013-01-01

    The rates of a hindered molecular rotation induced by tunneling electrons are evaluated using scattering theory within the sudden approximation. Our approach explains the excitation of copper phthalocyanine molecules (CuPc) on Cu(111) as revealed in a recent measurement of telegraph noise in a scanning tunneling microscopy (STM) experiment [Schaffert \\textit{et al.}, Nat. Mat. {\\bf 12}, 223 (2013)]. A complete explanation of the experimental data is performed by computing the geometry of the ...

  5. Simulation of inelastic electron tunneling spectroscopy of single molecules with functionalized tips

    García-Lekue, Aran; Sánchez-Portal, Daniel; Arnau, Andrés; Frederiksen, T.

    2011-01-01

    The role of the tip in inelastic electron tunneling spectroscopy (IETS) performed with scanning tunneling microscopes (STM) is theoretically addressed via first-principles simulations of vibrational spectra of single carbon monoxide (CO) molecules adsorbed on Cu(111). We show how chemically functionalized STM tips modify the IETS intensity corresponding to adsorbate modes on the sample side. The underlying propensity rules are explained using symmetry considerations for both the vibrational m...

  6. Infrared emission from tunneling electrons: The end of the rainbow in scanning tunneling microscopy

    Boyle, Michael; Mitra, Joy; Dawson, Paul

    2009-01-01

    Electromagnetic radiation originating with localized surface plasmons in the metal-tip/metal-sample nanocavity of a scanning tunneling microscope is demonstrated to extend to a wavelength lambda of at least 1.7 mu m. Progressive spectral extension beyond lambda similar to 1.0 mu m occurs for increasing tip radius above similar to 15 nm, reaching lambda similar to 1.7 mu m for tip radius similar to 100 nm; these observations are corroborated by use of a simple physical model that relates the d...

  7. Imaging Electronic Excitation of NO by Ultrafast Laser Tunneling Ionization

    Endo, Tomoyuki; Matsuda, Akitaka; Fushitani, Mizuho; Yasuike, Tomokazu; Tolstikhin, Oleg I.; Morishita, Toru; Hishikawa, Akiyoshi

    2016-04-01

    Tunneling-ionization imaging of photoexcitation of NO has been demonstrated by using few-cycle near-infrared intense laser pulses (8 fs, 800 nm, 1.1 ×1014 W /cm2 ). The ion image of N+ fragment ions produced by dissociative ionization of NO in the ground state, NO (X2Π ,2 π )→NO+ +e-→N+ +O +e- , exhibits a characteristic momentum distribution peaked at 45° with respect to the laser polarization direction. On the other hand, a broad distribution centered at ˜0 ° appears when the A2Σ+ (3 s σ ) excited state is prepared as the initial state by deep-UV photoexcitation. The observed angular distributions are in good agreement with the corresponding theoretical tunneling ionization yields, showing that the fragment anisotropy reflects changes of the highest-occupied molecular orbital by photoexcitation.

  8. A cryogen-free low temperature scanning tunneling microscope capable of inelastic electron tunneling spectroscopy.

    Zhang, Shuai; Huang, Di; Wu, Shiwei

    2016-06-01

    The design and performance of a cryogen-free low temperature scanning tunneling microscope (STM) housed in ultrahigh vacuum (UHV) are reported. The cryogen-free design was done by directly integrating a Gifford-McMahon cycle cryocooler to a Besocke-type STM, and the vibration isolation was achieved by using a two-stage rubber bellow between the cryocooler and a UHV-STM interface with helium exchange gas cooling. A base temperature of 15 K at the STM was achieved, with a possibility to further decrease by using a cryocooler with higher cooling power and adding additional low temperature stage under the exchange gas interface. Atomically sharp STM images and high resolution dI/dV spectra on various samples were demonstrated. Furthermore, we reported the inelastic tunneling spectroscopy on a single carbon monoxide molecule adsorbed on Ag(110) surface with a cryogen-free STM for the first time. Being totally cryogen-free, the system not only saves the running cost significantly but also enables uninterrupted data acquisitions and variable temperature measurements with much ease. In addition, the system is capable of coupling light to the STM junction by a pair of lens inside the UHV chamber. We expect that these enhanced capabilities could further broaden our views to the atomic-scale world. PMID:27370453

  9. A cryogen-free variable temperature scanning tunneling microscope capable for inelastic electron tunneling spectroscopy

    Zhang, Shuai; Huang, Di; Wu, Shiwei

    While low temperature scanning tunneling microscope (STM) has become an indispensable research tool in surface science, its versatility is yet limited by the shortage or high cost of liquid helium. The makeshifts include the use of alternative cryogen (such as liquid nitrogen) at higher temperature or the development of helium liquefier system usually at departmental or campus wide. The ultimate solution would be the direct integration of a cryogen-free cryocooler based on GM or pulse tube closed cycle in the STM itself. However, the nasty mechanical vibration at low frequency intrinsic to cryocoolers has set the biggest obstacle because of the known challenges in vibration isolation required to high performance of STM. In this talk, we will present the design and performance of our home-built cryogen-free variable temperature STM at Fudan University. This system can obtain atomically sharp STM images and high resolution dI/dV spectra comparable to state-of-the-art low temperature STMs, but with no limitation on running hours. Moreover, we demonstrated the inelastic tunneling spectroscopy (STM-IETS) on a single CO molecule with a cryogen-free STM for the first time.

  10. Luminescence from 3,4,9,10-perylenetetracarboxylic dianhydride on Ag(111) surface excited by tunneling electrons in scanning tunneling microscopy.

    Ino, Daisuke; Yamada, Taro; Kawai, Maki

    2008-07-01

    The electronic excitations induced with tunneling electrons into adlayers of 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) on Ag(111) have been investigated by in situ fluorescence spectroscopy in scanning tunneling microscopy (STM). A minute area of the surface is excited by an electron tunneling process in STM. Fluorescence spectra strongly depend on the coverage of PTCDA on Ag(111). The adsorption of the first PTCDA layer quenches the intrinsic surface plasmon originated from the clean Ag(111). When the second layer is formed, fluorescence spectra are dominated by the signals from PTCDA, which are interpreted as the radiative decay from the manifold of first singlet excited state (S(1)) of adsorbed PTCDA. The fluorescence of PTCDA is independent of the bias polarity. In addition, the fluorescence excitation spectrum agrees with that by optical excitation. Both results indicate that S(1) is directly excited by the inelastic impact scattering of electrons tunneling within the PTCDA adlayer. PMID:18624490

  11. Free online electronic information resources on applied science and technology

    Ghosh, T. B.

    2003-01-01

    The paper discusses free online electronic information resources and different means of collection of the resources. The online electronic information resources on “Applied Science and Technology are compiled and linked at URL: http://www.geocities.com/ghosh_svrec and described the different free Internet resource like online electronic journals, online electronic books, online databases, organizations, virtual libraries on Applied Science and Technology and special page on earthquake inform...

  12. Dynamic tunneling force microscopy for characterizing electronic trap states in non-conductive surfaces

    Wang, R.; Williams, C. C., E-mail: clayton@physics.utah.edu [Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84112 (United States)

    2015-09-15

    Dynamic tunneling force microscopy (DTFM) is a scanning probe technique for real space mapping and characterization of individual electronic trap states in non-conductive films with atomic scale spatial resolution. The method is based upon the quantum mechanical tunneling of a single electron back and forth between a metallic atomic force microscopy tip and individual trap states in completely non-conducting surface. This single electron shuttling is measured by detecting the electrostatic force induced on the probe tip at the shuttling frequency. In this paper, the physical basis for the DTFM method is unfolded through a physical model and a derivation of the dynamic tunneling signal as a function of several experimental parameters is shown. Experimental data are compared with the theoretical simulations, showing quantitative consistency and verifying the physical model used. The experimental system is described and representative imaging results are shown.

  13. Tunneling of electrons via rotor-stator molecular interfaces: combined ab initio and model study

    Petreska, Irina; Pejov, Ljupco; Kocarev, Ljupco

    2015-01-01

    Tunneling of electrons through rotor-stator anthracene aldehyde molecular interfaces is studied with a combined ab initio and model approach. Molecular electronic structure calculated from first principles is utilized to model different shapes of tunneling barriers. Together with a rectangular barrier, we also consider a sinusoidal shape that captures the effects of the molecular internal structure more realistically. Quasiclassical approach with the Simmons' formula for current density is implemented. Special attention is paid on conformational dependence of the tunneling current. Our results confirm that the presence of the side aldehyde group enhances the interesting electronic properties of the pure anthracene molecule, making it a bistable system with geometry dependent transport properties. We also investigate the transition voltage and we show that confirmation dependent field emission could be observed in these molecular interfaces at realistically low voltages. The present study accompanies our previ...

  14. Dynamic tunneling force microscopy for characterizing electronic trap states in non-conductive surfaces

    Dynamic tunneling force microscopy (DTFM) is a scanning probe technique for real space mapping and characterization of individual electronic trap states in non-conductive films with atomic scale spatial resolution. The method is based upon the quantum mechanical tunneling of a single electron back and forth between a metallic atomic force microscopy tip and individual trap states in completely non-conducting surface. This single electron shuttling is measured by detecting the electrostatic force induced on the probe tip at the shuttling frequency. In this paper, the physical basis for the DTFM method is unfolded through a physical model and a derivation of the dynamic tunneling signal as a function of several experimental parameters is shown. Experimental data are compared with the theoretical simulations, showing quantitative consistency and verifying the physical model used. The experimental system is described and representative imaging results are shown

  15. Electronic resource management systems a workflow approach

    Anderson, Elsa K

    2014-01-01

    To get to the bottom of a successful approach to Electronic Resource Management (ERM), Anderson interviewed staff at 11 institutions about their ERM implementations. Among her conclusions, presented in this issue of Library Technology Reports, is that grasping the intricacies of your workflow-analyzing each step to reveal the gaps and problems-at the beginning is crucial to selecting and implementing an ERM. Whether the system will be used to fill a gap, aggregate critical data, or replace a tedious manual process, the best solution for your library depends on factors such as your current soft

  16. Molecular-based electronically switchable tunnel junction devices.

    Collier, C P; Jeppesen, J O; Luo, Y; Perkins, J; Wong, E W; Heath, J R; Stoddart, J F

    2001-12-19

    Solid-state tunnel junction devices were fabricated from Langmuir Blodgett molecular monolayers of a bistable [2]catenane, a bistable [2]pseudorotaxane, and a single-station [2]rotaxane. All devices exhibited a (noncapacitive) hysteretic current-voltage response that switched the device between high- and low-conductivity states, although control devices exhibited no such response. Correlations between the structure and solution-phase dynamics of the molecular and supramolecular systems, the crystallographic domain structure of the monolayer film, and the room-temperature device performance characteristics are reported. PMID:11741428

  17. Probing the longitudinal momentum spread of the electron wave packet at the tunnel exit

    Madsen Lars B.

    2013-03-01

    Full Text Available We present an ellipticity resolved study of momentum distribution arising from strong-field ionization of helium. The influence of the ion potential on the departing electron is considered within a semi-classical model consisting of an initial tunneling step and subsequent classical propagation. We find that the momentum distribution can be explained by including the longitudinal momentum spread of the electron at the exit from the tunnel. Our combined experimental and theoretical study provides an estimate of this momentum spread.

  18. Controlling the Spin Polarization of the Electron Current in a Semimagnetic Resonant-Tunneling Diode

    Beletskii, N. N.; Berman, G. P.; Borysenko, S. A.

    2004-01-01

    The spin filtering effect of the electron current in a double-barrier resonant-tunneling diode (RTD) consisting of ZnMnSe semimagnetic layers has been studied theoretically. The influence of the distribution of the magnesium ions on the coefficient of the spin polarization of the electron current has been investigated. The dependence of the spin filtering degree of the electron current on the external magnetic field and the bias voltage has been obtained. The effect of the total spin polariza...

  19. Electron flux during pericyclic reactions in the tunneling limit: Quantum simulation for cyclooctatetraene

    Graphical abstract: In the limit of coherent tunneling, double bond shifting (DBS) of cyclooctatetraene from a reactant (R) to a product (P) is associated with pericyclic electron fluxes from double to single bonds, corresponding to a pincer-motion-type set of arrows in the Lewis structures, each representing a transfer of 0.19 electrons. - Abstract: Pericyclic rearrangement of cyclooctatetraene proceeds from equivalent sets of two reactants to two products. In the ideal limit of coherent tunneling, these reactants and products may tunnel to each other by ring inversions and by double bond shifting (DBS). We derive simple cosinusoidal or sinusoidal time evolutions of the bond-to-bond electron fluxes and yields during DBS, for the tunneling scenario. These overall yields and fluxes may be decomposed into various contributions for electrons in so called pericyclic, other valence, and core orbitals. Pericyclic orbitals are defined as the subset of valence orbitals which describe the changes of Lewis structures during the pericyclic reaction. The quantum dynamical results are compared with the traditional scheme of fluxes of electrons in pericyclic orbitals, as provided by arrows in Lewis structures.

  20. On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions

    Du, Wei; Wang, Tao; Chu, Hong-Son; Wu, Lin; Liu, Rongrong; Sun, Song; Phua, Wee Kee; Wang, Lejia; Tomczak, Nikodem; Nijhuis, Christian A.

    2016-04-01

    Molecular electronic control over plasmons offers a promising route for on-chip integrated molecular plasmonic devices for information processing and computing. To move beyond the currently available technologies and to miniaturize plasmonic devices, molecular electronic plasmon sources are required. Here, we report on-chip molecular electronic plasmon sources consisting of tunnel junctions based on self-assembled monolayers sandwiched between two metallic electrodes that excite localized plasmons, and surface plasmon polaritons, with tunnelling electrons. The plasmons originate from single, diffraction-limited spots within the junctions, follow power-law distributed photon statistics, and have well-defined polarization orientations. The structure of the self-assembled monolayer and the applied bias influence the observed polarization. We also show molecular electronic control of the plasmon intensity by changing the chemical structure of the molecules and by bias-selective excitation of plasmons using molecular diodes.

  1. Band electron spectrum and thermodynamic properties of the pseudospin-electron model with tunneling splitting of levels

    O.Ya.Farenyuk

    2006-01-01

    Full Text Available The pseudospin-electron model with tunneling splitting of levels is considered. Generalization of dynamic mean-field method for systems with correlated hopping was applied to the investigation of the model. Electron spectra, electron concentrations, average values of pseudospins and grand canonical potential were calculated within the alloy-analogy approximation. Electron spectrum and dependencies of the electron concentrations on chemical potential were obtained. It was shown that in the alloy-analogy approximation, the model possesses the first order phase transition to ferromagnetic state with the change of chemical potential and the second order phase transition with the change of temperature.

  2. Ultralarge area MOS tunnel devices for electron emission

    Thomsen, Lasse Bjørchmar; Nielsen, Gunver; Vendelbo, Søren Bastholm;

    2007-01-01

    A comparative analysis of metal-oxide-semiconductor (MOS) capacitors by capacitance-voltage (C-V) and current-voltage (I-V) characteristics has been employed to characterize the thickness variations of the oxide on different length scales. Ultralarge area (1 cm(2)) ultrathin (similar to 5 nm oxide...... density. Oxide thicknesses have been extracted by fitting a model based on Fermi-Dirac statistics to the C-V characteristics. By plotting I-V characteristics in a Fowler plot, a measure of the thickness of the oxide can be extracted from the tunnel current. These apparent thicknesses show a high degree...... capacitors with different oxide areas ranging from 1 cm(2) to 10 mu m(2), using the slope from Fowler-Nordheim plots of the I-V characteristics as a measure of the oxide thickness, points toward two length scales of oxide thickness variations being similar to 1 cm and similar to 10 mu m, respectively....

  3. Local imaging of high mobility two-dimensional electron systems with virtual scanning tunneling microscopy

    Correlated electron states in high mobility two-dimensional electron systems (2DESs), including charge density waves and microemulsion phases intermediate between a Fermi liquid and Wigner crystal, are predicted to exhibit complex local charge order. Existing experimental studies, however, have mainly probed these systems at micron to millimeter scales rather than directly mapping spatial organization. Scanning probes should be well-suited to study the spatial structure of these states, but high mobility 2DESs are found at buried semiconductor interfaces, beyond the reach of conventional scanning tunneling microscopy. Scanning techniques based on electrostatic coupling to the 2DES deliver important insights, but generally with resolution limited by the depth of the 2DES. In this letter, we present our progress in developing a technique called “virtual scanning tunneling microscopy” that allows local tunneling into a high mobility 2DES. Using a specially designed bilayer GaAs/AlGaAs heterostructure where the tunnel coupling between two separate 2DESs is tunable via electrostatic gating, combined with a scanning gate, we show that the local tunneling can be controlled with sub-250 nm resolution

  4. Local imaging of high mobility two-dimensional electron systems with virtual scanning tunneling microscopy

    Pelliccione, M. [Department of Applied Physics, Stanford University, 348 Via Pueblo Mall, Stanford, California 94305 (United States); Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106 (United States); Bartel, J.; Goldhaber-Gordon, D. [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, California 94305 (United States); Sciambi, A. [Department of Applied Physics, Stanford University, 348 Via Pueblo Mall, Stanford, California 94305 (United States); Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Pfeiffer, L. N.; West, K. W. [Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544 (United States)

    2014-11-03

    Correlated electron states in high mobility two-dimensional electron systems (2DESs), including charge density waves and microemulsion phases intermediate between a Fermi liquid and Wigner crystal, are predicted to exhibit complex local charge order. Existing experimental studies, however, have mainly probed these systems at micron to millimeter scales rather than directly mapping spatial organization. Scanning probes should be well-suited to study the spatial structure of these states, but high mobility 2DESs are found at buried semiconductor interfaces, beyond the reach of conventional scanning tunneling microscopy. Scanning techniques based on electrostatic coupling to the 2DES deliver important insights, but generally with resolution limited by the depth of the 2DES. In this letter, we present our progress in developing a technique called “virtual scanning tunneling microscopy” that allows local tunneling into a high mobility 2DES. Using a specially designed bilayer GaAs/AlGaAs heterostructure where the tunnel coupling between two separate 2DESs is tunable via electrostatic gating, combined with a scanning gate, we show that the local tunneling can be controlled with sub-250 nm resolution.

  5. Probing the longitudinal momentum spread of the electron wave packet at the tunnel exit

    N. Pfeiffer, Adrian; Cirelli, Claudio; S. Landsman, Alexandra;

    2012-01-01

    We present an ellipticity resolved study of momentum distributions arising from strong-field ionization of Helium at constant intensity. The influence of the ion potential on the departing electron is considered within a semi-classical model consisting of an initial tunneling step and subsequent...

  6. Role of tunneling in electron accretion on negatively charged dust particles

    In this Letter the authors have shown that the tunneling of electrons through a potential energy barrier around a negatively charged particle in a dusty plasma must be taken into account in the evaluation of the accretion current. Both the linear and nonlinear screenings have been considered.

  7. Far-infra-red molecular vibrational spectroscopy by inelastic electron tunneling

    In this paper the far infrared vibrational spectrum of polyvinyl-formate is reported as can be obtained by an inelastic electron tunneling experiment. The results here described as compared with those previously known from the current literature show that the afore mentioned technique can improve molecular spectroscopy data both as the covered energy range and resolution

  8. Subterahertz acoustical pumping of electronic charge in a resonant tunneling device.

    Young, E S K; Akimov, A V; Henini, M; Eaves, L; Kent, A J

    2012-06-01

    We demonstrate that controlled subnanosecond bursts of electronic charge can be transferred through a resonant tunneling diode by successive picosecond acoustic pulses. The effect exploits the nonlinear current-voltage characteristics of the device and its asymmetric response to the compressive and tensile components of the strain pulse. This acoustoelectronic pump opens new possibilities for the control of quantum phenomena in nanostructures. PMID:23003634

  9. Electron tunnelling phase time and dwell time through an associated delta potential barrier

    白尔隽; 舒启清

    2005-01-01

    The electron tunnelling phase time τp and dwell time τD through an associated delta potential barrier U(x) = ξδ(x)are calculated and both are in the order of 10-17 - 10-16s. The results show that the dependence of the phase time on the delta barrier parameter ξ can be described by the characteristic length lc = h2/meξ and the characteristic energy Ec = meξ2/H2 of the delta barrier, where me is the electron mass, Ic and Ec are assumed to be the effective width and height of the delta barrier with lcEc= ξ, respectively. It is found that τD reaches its maximum and τD = τP as the energy of the tunnelling electron is equal to Ec/2, i.e. as lc = λDB, λDB is de Broglie wave length of the electron.

  10. Transient localized electron dynamics simulation during femtosecond laser tunnel ionization of diamond

    Highlights: ► A first-principles calculation of nonlinear electron–photon interactions when tunnel ionization dominates is presented. ► TDDFT is applied for the description of transient localized electrons dynamics. ► The relationships among average absorbed energy, Keldysh parameter and laser intensity are revealed. -- Abstract: A real-time and real-space time-dependent density-functional theory (TDDFT) is applied to simulate the nonlinear electron–photon interactions during femtosecond laser processing of diamond when tunnel ionization dominates. The transient localized electron dynamics including the electron excitation, energy absorption and electron density evolution are described in this Letter. In addition, the relationships among average absorbed energy, Keldysh parameter and laser intensity are revealed when the laser frequency is fixed.

  11. Tunnel and pnpn diodes in fast electronics for discrimination and counting devices in nuclear physics

    With a simple apparatus without power supply, the authors measured the rise time of the pulse produced by the fast switching of a tunnel diode. This time was of the order of 0.5 ns. The addition of a source of current made it possible to mount an ultra-fast amplitude-discrimination trigger working at a nanosecond. Problems of power supply and impedance adaptation make this a delicate experiment to perform successfully. It is particularly difficult to get good trigger threshold stability, as this is very sensitive to the supply voltage. At the present stage of the technique, a bi-stable flip-flop utilizing only one tunnel diode does not offer the operational security which would permit its use in nuclear physics. But it is possible to construct bi-stable flip-flops with two tunnel diodes. A system of n tunnel diodes in series, fed by a constant-current generator, presents n potential stable states. It is therefore possible to construct fast scalers of astonishing simplicity. Unfortunately, up until now zeroing has required the use of slower active or passive elements which do not allow full use to be made of the scaler's capacity. Combinations of tunnel diodes make it easy to construct rather complex electronic commutators. To conclude: the difficulty of using tunnel diode circuits lies essentially in problems of power feed and in linking them with other electronic gear. Nevertheless, their very considerable advantages justify intensive study in order to render them simpler to use. With four-layer diodes similar apparatus, but capable of furnishing considerable power, can be constructed. However, they require high voltages to justify their use in electronic tube circuits. (author)

  12. Nature of Asymmetry in the Vibrational Line Shape of Single-Molecule Inelastic Electron Tunneling Spectroscopy with the STM

    Xu, Chen; Chiang, Chi-lun; Han, Zhumin; Ho, W.

    2016-04-01

    Single molecule vibrational spectroscopy and microscopy was demonstrated in 1998 by inelastic electron tunneling with the scanning tunneling microscope. To date, the discussion of its application has mainly focused on the spatial resolution and the spectral energy and intensity. Here we report on the vibrational line shape for a single carbon monoxide molecule that qualitatively exhibits inversion symmetry when it is transferred from the surface to the tip. The dependence of the line shape on the molecule's asymmetric couplings in the tunnel junction can be understood from theoretical simulation and further validates the mechanisms of inelastic electron tunneling.

  13. Electron transport simulation in resonant-tunneling GaN/AlGaN heterostructures

    A numerical method for electron transport calculations in resonant-tunneling GaN/AlGaN heterostructures has been developed on the basis of a self-consistent solution of the Schrödinger and Poisson equations. Dependences of the system’s transmission coefficient on the external field and of the peak current on the ratio between the well and barrier widths have been studied for a double-barrier resonant-tunneling diode. For technical applications, the optimal values of the structure’s parameters have been found.

  14. Sequential mechanism of electron transport in the resonant tunneling diode with thick barriers

    A frequency-dependent impedance analysis (0.1-50 GHz) of an InGaAs/InAlAs-based resonant tunneling diode with a 5-nm-wide well and 5-nm-thick barriers showed that the transport mechanism in such a diode is mostly sequential, rather than coherent, which is consistent with estimates. The possibility of determining the coherent and sequential mechanism fractions in the electron transport through the resonant tunneling diode by its frequency dependence on the impedance is discussed

  15. ZnO(0001) surfaces probed by scanning tunneling spectroscopy: Evidence for an inhomogeneous electronic structure

    Dumont, J.; Hackens, B.; Faniel, S.; Mouthuy, P.-O.; Sporken, R.; Melinte, S.

    2009-09-01

    The stability of the polar Zn-terminated ZnO surface is probed by low-temperature scanning tunneling microscopy and scanning tunneling spectroscopy (STS). Surface states in the bandgap of ZnO are evidenced by STS and their presence is correlated with the local surface corrugation. Very defective surface regions are characterized by a bulk electronic structure showing a wide bandgap while nanometer-scale defect free regions exhibit a narrower bandgap and surface states. We also image atomically resolved (√3 ×√3 )R30° reconstructions on the defect-free areas.

  16. Phonon-assisted resonant tunneling of electrons in graphene-boron nitride transistors

    Vdovin, E.E.; Mishchenko, A.; Greenaway, M. T.; Zhu, M. J.; Ghazaryan, D.; A. Misra; Y. Cao; Morozov, S. V.; Makarovsky, O.; Fromhold, T. M.; Patanè, A.; Slotman, G. J.; Katsnelson, M. I.; Geim, A K; Novoselov, K. S.

    2015-01-01

    We observe a series of sharp resonant features in the differential conductance of graphene-hexagonal boron nitride-graphene tunnel transistors over a wide range of bias voltages between $\\sim$10 and 200 mV. We attribute them to electron tunneling assisted by the emission of phonons of well-defined energy. The bias voltages at which they occur are insensitive to the applied gate voltage and hence independent of the carrier densities in the graphene electrodes, so plasmonic effects can be ruled...

  17. The impact of groundwater discharge to the Hsueh-Shan tunnel on the water resources in northern Taiwan

    Chiu, Yung-Chia; Chia, Yeeping

    2012-12-01

    The Hsueh-Shan tunnel is the fifth longest road tunnel in the world. During the excavation, the tunnel encountered several events of groundwater inrush, causing serious delay of the construction. Data on groundwater discharge to the tunnel were gathered from the monitoring system and their spatial and temporal variations were analyzed. The results of the integrated analysis of groundwater discharge and local precipitation indicated that the discharge increased rapidly when the cumulative rainfall exceeded 85 mm. The groundwater level recession rate after a rainfall event was found to be independent of rainfall intensity. A hydrogeological conceptual model was developed to simulate the long-term groundwater discharge to the tunnel. Sensitivity analysis was first conducted to identify sensitive parameters, and then the calibration process was accomplished by the automated parameter estimation method. The calibrated model was then used to evaluate the potential impact of tunnel excavation on the Feitsui reservoir; the average percentage loss of inflow to the Feitsui reservoir from 2006 to 2010 is estimated to be 1.74 %. The developed model can provide a tool for evaluating the regional hydrogeologic setting and the influence of tunnel construction on water resources.

  18. Hysteresis loops of spin-dependent electronic current in a paramagnetic resonant tunnelling diode

    Nonlinear properties of the spin-dependent electronic transport through a semiconductor resonant tunnelling diode with a paramagnetic quantum well are considered. The spin-dependent Wigner–Poisson model of the electronic transport and the two-current Mott’s formula for the independent spin channels are applied to determine the current–voltage curves of the nanodevice. Two types of the electronic current hysteresis loops are found in the current–voltage characteristics for both the spin components of the electronic current. The physical interpretation of these two types of the electronic current hysteresis loops is given based on the analysis of the spin-dependent electron densities and the potential energy profiles. The differences between the current–voltage characteristics for both the spin components of the electronic current allow us to explore the changes of the spin polarization of the current for different electric fields and determine the influence of the electronic current hysteresis on the spin polarization of the current flowing through the paramagnetic resonant tunnelling diode. (paper)

  19. Hysteresis loops of spin-dependent electronic current in a paramagnetic resonant tunnelling diode

    Wójcik, P.; Spisak, B. J.; Wołoszyn, M.; Adamowski, J.

    2012-11-01

    Nonlinear properties of the spin-dependent electronic transport through a semiconductor resonant tunnelling diode with a paramagnetic quantum well are considered. The spin-dependent Wigner-Poisson model of the electronic transport and the two-current Mott’s formula for the independent spin channels are applied to determine the current-voltage curves of the nanodevice. Two types of the electronic current hysteresis loops are found in the current-voltage characteristics for both the spin components of the electronic current. The physical interpretation of these two types of the electronic current hysteresis loops is given based on the analysis of the spin-dependent electron densities and the potential energy profiles. The differences between the current-voltage characteristics for both the spin components of the electronic current allow us to explore the changes of the spin polarization of the current for different electric fields and determine the influence of the electronic current hysteresis on the spin polarization of the current flowing through the paramagnetic resonant tunnelling diode.

  20. Electronic states in tunneling semiconductor superlattices: Technical progress report for the period September 15, 1987-September 14, 1988

    This research project funded by DOE has concentrated in the systematic study of the effects of a gate voltage on the electronic structure of a tunneling superlattice system. The effects of strong magnetic fields and other various parameters on energy levels of tunneling superlattices have been investigated

  1. Concerted Electronic and Nuclear Fluxes During Coherent Tunnelling in Asymmetric Double-Well Potentials.

    Bredtmann, Timm; Manz, Jörn; Zhao, Jian-Ming

    2016-05-19

    The quantum theory of concerted electronic and nuclear fluxes (CENFs) during coherent periodic tunnelling from reactants (R) to products (P) and back to R in molecules with asymmetric double-well potentials is developed. The results are deduced from the solution of the time-dependent Schrödinger equation as a coherent superposition of two eigenstates; here, these are the two states of the lowest tunnelling doublet. This allows the periodic time evolutions of the resulting electronic and nuclear probability densities (EPDs and NPDs) as well as the CENFs to be expressed in terms of simple sinusodial functions. These analytical results reveal various phenomena during coherent tunnelling in asymmetric double-well potentials, e.g., all EPDs and NPDs as well as all CENFs are synchronous. Distortion of the symmetric reference to a system with an asymmetric double-well potential breaks the spatial symmetry of the EPDs and NPDs, but, surprisingly, the symmetry of the CENFs is conserved. Exemplary application to the Cope rearrangement of semibullvalene shows that tunnelling of the ideal symmetric system can be suppressed by asymmetries induced by rather small external electric fields. The amplitude for the half tunnelling, half nontunnelling border is as low as 0.218 × 10(-8) V/cm. At the same time, the delocalized eigenstates of the symmetric reference, which can be regarded as Schrödinger's cat-type states representing R and P with equal probabilities, get localized at one or the other minima of the asymmetric double-well potential, representing either R or P. PMID:26799383

  2. First-Principles Simulations of Inelastic Electron Tunneling Spectroscopyof Molecular Junctions

    Jiang, Jun; Kula, Mathias; Lu, Wei; Luo, Yi

    2005-01-01

    A generalized Green's function theory is developed to simulate the inelastic electron tunneling spectroscopy (IETS) of molecular junctions. It has been applied to a realistic molecular junction with an octanedithiolate embedded between two gold contacts in combination with the hybrid density functional theory calculations. The calculated spectra are in excellent agreement with recent experimental results. Strong temperature dependence of the experimental IETS spectra is also reproduced. It is...

  3. Spin-dependent electron transport through a magnetic resonant tunneling diode

    Havu, P.; Tuomisto, N.; R. Väänänen; Puska, Martti J.; Nieminen, Risto M.

    2005-01-01

    Electron-transport properties in nanostructures can be modeled, for example, by using the semiclassical Wigner formalism or the quantum-mechanical Green’s function formalism. We compare the performance and the results of these methods in the case of magnetic resonant-tunneling diodes. We have implemented the two methods within the self-consistent spin-density-functional theory. Our numerical implementation of the Wigner formalism is based on the finite-difference scheme whereas for the Green’...

  4. Quantum chaotic tunneling in graphene systems with electron-electron interactions

    Ying, Lei; Wang, Guanglei; Huang, Liang; Lai, Ying-Cheng

    2014-12-01

    An outstanding and fundamental problem in contemporary physics is to include and probe the many-body effect in the study of relativistic quantum manifestations of classical chaos. We address this problem using graphene systems described by the Hubbard Hamiltonian in the setting of resonant tunneling. Such a system consists of two symmetric potential wells separated by a potential barrier, and the geometric shape of the whole domain can be chosen to generate integrable or chaotic dynamics in the classical limit. Employing a standard mean-field approach to calculating a large number of eigenenergies and eigenstates, we uncover a class of localized states with near-zero tunneling in the integrable systems. These states are not the edge states typically seen in graphene systems, and as such they are the consequence of many-body interactions. The physical origin of the non-edge-state type of localized states can be understood by the one-dimensional relativistic quantum tunneling dynamics through the solutions of the Dirac equation with appropriate boundary conditions. We demonstrate that, when the geometry of the system is modified to one with chaos, the localized states are effectively removed, implying that in realistic situations where many-body interactions are present, classical chaos is capable of facilitating greatly quantum tunneling. This result, besides its fundamental importance, can be useful for the development of nanoscale devices such as graphene-based resonant-tunneling diodes.

  5. Using Electronic Resources to Support Problem-Based Learning

    Chang, Chen-Chi; Jong, Ay; Huang, Fu-Chang

    2012-01-01

    Students acquire skills in problem solving and critical thinking through the process as well as team work on problem-based learning courses. Many courses have started to involve the online learning environment and integrate these courses with electronic resources. Teachers use electronic resources in their classes. To overcome the problem of the…

  6. The Role of the Acquisitions Librarian in Electronic Resources Management

    Pomerantz, Sarah B.

    2010-01-01

    With the ongoing shift to electronic formats for library resources, acquisitions librarians, like the rest of the profession, must adapt to the rapidly changing landscape of electronic resources by keeping up with trends and mastering new skills related to digital publishing, technology, and licensing. The author sought to know what roles…

  7. What Faculty Think: A Survey on Electronic Resources

    Jackson, Millie

    2008-01-01

    In the fall of 2007, ebrary surveyed 906 faculty from around the world, asking them how they used electronic resources. This article, focusing on the responses of faculty to a few survey questions, finds some expected and surprising attitudes that faculty have about electronic resources for their own and students' research. (Contains 2 notes.)

  8. Local 2D-2D tunneling in high mobility electron systems

    Pelliccione, Matthew; Sciambi, Adam; Bartel, John; Goldhaber-Gordon, David; Pfeiffer, Loren; West, Ken; Lilly, Michael; Bank, Seth; Gossard, Arthur

    2012-02-01

    Many scanning probe techniques have been utilized in recent years to measure local properties of high mobility two-dimensional (2D) electron systems in GaAs. However, most techniques lack the ability to tunnel into the buried 2D system and measure local spectroscopic information. We report scanning gate measurements on a bilayer GaAs/AlGaAs heterostructure that allows for a local modulation of tunneling between two 2D electron layers. We call this technique Virtual Scanning Tunneling Microscopy (VSTM) [1,2] as the influence of the scanning gate is analogous to an STM tip, except at a GaAs/AlGaAs interface instead of a surface. We will discuss the spectroscopic capabilities of the technique, and show preliminary results of measurements on a high mobility 2D electron system.[1] A. Sciambi, M. Pelliccione et al., Appl. Phys. Lett. 97, 132103 (2010).[2] A. Sciambi, M. Pelliccione et al., Phys. Rev. B 84, 085301 (2011).

  9. Tunneling of electrons via rotor-stator molecular interfaces: Combined ab initio and model study

    Petreska, Irina; Ohanesjan, Vladimir; Pejov, Ljupčo; Kocarev, Ljupčo

    2016-07-01

    Tunneling of electrons through rotor-stator anthracene aldehyde molecular interfaces is studied with a combined ab initio and model approach. Molecular electronic structure calculated from first principles is utilized to model different shapes of tunneling barriers. Together with a rectangular barrier, we also consider a sinusoidal shape that captures the effects of the molecular internal structure more realistically. Quasiclassical approach with the Simmons' formula for current density is implemented. Special attention is paid on conformational dependence of the tunneling current. Our results confirm that the presence of the side aldehyde group enhances the interesting electronic properties of the pure anthracene molecule, making it a bistable system with geometry dependent transport properties. We also investigate the transition voltage and we show that conformation-dependent field emission could be observed in these molecular interfaces at realistically low voltages. The present study accompanies our previous work where we investigated the coherent transport via strongly coupled delocalized orbital by application of Non-equilibrium Green's Function Formalism.

  10. Electron transport through cubic InGaN/AlGaN resonant tunneling diodes

    Yahyaoui, N.; Sfina, N.; Nasrallah, S. Abdi-Ben; Lazzari, J.-L.; Said, M.

    2014-12-01

    We theoretically study the electron transport through a resonant tunneling diode (RTD) based on strained AlxGa1-xN/In0.1Ga0.9N/AlxGa1-xN quantum wells embedded in relaxed n- Al0.15Ga0.85N/strained In0.1Ga0.9N emitter and collector. The aluminum composition in both injector and collector contacts is taken relatively weak; this does not preclude achieving a wide band offset at the border of the pre-confinement wells. The epilayers are assumed with a cubic crystal structure to reduce spontaneous and piezoelectric polarization effects. The resonant tunneling and the thermally activated transfer through the barriers are the two mechanisms of transport taken into account in the calculations based on the Schrödinger, Poisson and kinetic equations resolved self-consistently. Using the transfer matrix formalism, we have analyzed the influence of the double barrier height on the resonant current. With an Al composition in the barriers varying between 30% and 50%, we have found that resonant tunneling dominates over the transport mediated by the thermally activated charge transfer for low applied voltages. It is also found that the designed n-type InGaN/AlGaN RTD with 30% of Al composition in the barriers is a potential candidate for achieving a resonant tunneling diode.

  11. Imaging of Endogenous Metabolites of Plant Leaves by Mass Spectrometry Based on Laser Activated Electron Tunneling

    Huang, Lulu; Tang, Xuemei; Zhang, Wenyang; Jiang, Ruowei; Chen, Disong; Zhang, Juan; Zhong, Hongying

    2016-04-01

    A new mass spectrometric imaging approach based on laser activated electron tunneling (LAET) was described and applied to analysis of endogenous metabolites of plant leaves. LAET is an electron-directed soft ionization technique. Compressed thin films of semiconductor nanoparticles of bismuth cobalt zinc oxide were placed on the sample plate for proof-of-principle demonstration because they can not only absorb ultraviolet laser but also have high electron mobility. Upon laser irradiation, electrons are excited from valence bands to conduction bands. With appropriate kinetic energies, photoexcited electrons can tunnel away from the barrier and eventually be captured by charge deficient atoms present in neutral molecules. Resultant unpaired electron subsequently initiates specific chemical bond cleavage and generates ions that can be detected in negative ion mode of the mass spectrometer. LAET avoids the co-crystallization process of routinely used organic matrix materials with analyzes in MALDI (matrix assisted-laser desorption ionization) analysis. Thus uneven distribution of crystals with different sizes and shapes as well as background peaks in the low mass range resulting from matrix molecules is eliminated. Advantages of LAET imaging technique include not only improved spatial resolution but also photoelectron capture dissociation which produces predictable fragment ions.

  12. Conceptual design for an electron-beam heated hypersonic wind tunnel

    Lipinski, R.J.; Kensek, R.P.

    1997-07-01

    There is a need for hypersonic wind-tunnel testing at about mach 10 and above using natural air and simulating temperatures and pressures which are prototypic of flight at 50 km altitude or below. With traditional wind-tunnel techniques, gas cooling during expansion results in exit temperatures which are too low. Miles, et al., have proposed overcoming this difficulty by heating the air with a laser beam as it expands in the wind-tunnel nozzle. This report discusses an alternative option of using a high-power electron beam to heat the air as it expands. In the e-beam heating concept, the electron beam is injected into the wind-tunnel nozzle near the exit and then is guided upstream toward the nozzle throat by a strong axial magnetic field. The beam deposits most of its power in the dense air near the throat where the expansion rate is greatest. A conceptual design is presented for a large-scale system which achieves Mach 14 for 0.1 seconds with an exit diameter of 2.8 meters. It requires 450 MW of electron beam power (5 MeV at 90 A). The guiding field is 500 G for most of the transport length and increases to 100 kG near the throat to converge the beam to a 1.0-cm diameter. The beam generator is a DC accelerator using a Marx bank (of capacitors) and a diode stack with a hot cathode. 14 refs. 38 figs., 9 tabs.

  13. Single- and multiple-electron dynamics in the strong-field tunneling limit

    Evolution of atomic ionization into the strong-field limit offers the opportunity to study the fundamentals of atom-laser interaction. In this study, we report on high precision measurements of the ion and electron distributions from laser-excited helium and neon atoms which reflect the changing continuum dynamics as the ionization process evolves into the pure tunneling regime. The experiments present evidence of both single- and two-electron ionization. These data provide a direct quantitative test of various theories of strong-field ionization. We show that a relatively simple semiclassical model which includes a description of a field-driven electron elastically rescattering from an accurate ion core potential reproduces the measured electron distributions for both atoms. However, using this model to calculate e-2e inelastic rescattering yields cross sections which are incompatible with the measured two-electron ionization. copyright 1998 The American Physical Society

  14. Three-Dimensional S-Matrix Simulation of Single-Electron Resonant Tunnelling Through Random Ionised Donor States

    Mizuta, Hiroshi

    1998-01-01

    This paper presents a numerical study of single-electron resonant tunnelling (RT) assisted by a few ionised donors in a laterally-confined resonant tunnelling diode (LCRTD). The 3D multi-mode S-matrix simulation is performed newly introducing the scattering potential of discrete impurities. With a few ionised donors being placed, the calculated energy-dependence of the total transmission rate shows new resonances which are donor-configuration dependent. Visualised electron probability density...

  15. Three-dimensional S-matrix simulation of single-electron resonant tunnelling through random ionised donor states

    Hiroshi Mizuta

    1998-01-01

    This paper presents a numerical study of single-electron resonant tunnelling (RT) assisted by a few ionised donors in a laterally-confined resonant tunnelling diode (LCRTD). The 3D multi-mode S-matrix simulation is performed newly introducing the scattering potential of discrete impurities. With a few ionised donors being placed, the calculated energy-dependence of the total transmission rate shows new resonances which are donor-configuration dependent. Visualised electron prob...

  16. Probing flexible conformations in molecular junctions by inelastic electron tunneling spectroscopy

    Mingsen Deng

    2015-01-01

    Full Text Available The probe of flexible molecular conformation is crucial for the electric application of molecular systems. We have developed a theoretical procedure to analyze the couplings of molecular local vibrations with the electron transportation process, which enables us to evaluate the structural fingerprints of some vibrational modes in the inelastic electron tunneling spectroscopy (IETS. Based on a model molecule of Bis-(4-mercaptophenyl-ether with a flexible center angle, we have revealed and validated a simple mathematical relationship between IETS signals and molecular angles. Our results might open a route to quantitatively measure key geometrical parameters of molecular junctions, which helps to achieve precise control of molecular devices.

  17. Probing flexible conformations in molecular junctions by inelastic electron tunneling spectroscopy

    The probe of flexible molecular conformation is crucial for the electric application of molecular systems. We have developed a theoretical procedure to analyze the couplings of molecular local vibrations with the electron transportation process, which enables us to evaluate the structural fingerprints of some vibrational modes in the inelastic electron tunneling spectroscopy (IETS). Based on a model molecule of Bis-(4-mercaptophenyl)-ether with a flexible center angle, we have revealed and validated a simple mathematical relationship between IETS signals and molecular angles. Our results might open a route to quantitatively measure key geometrical parameters of molecular junctions, which helps to achieve precise control of molecular devices

  18. Use of electronic information resources in goverment libraries

    Simona Omahen; Maja Žumer

    2003-01-01

    The article presents the use of electronic information resources in government libraries in Slovenia. It starts with the definition of government libraries and electronic publications. On a selected sample of government libraries, the state of the usage of electronic information resources in government libraries was studied. On the basis of interviews, carried out in five government libraries, it was established that government libraries mostly do not focus on, or even think about, the use of...

  19. Revisiting the inelastic electron tunneling spectroscopy of single hydrogen atom adsorbed on the Cu(100) surface

    Inelastic electron tunneling spectroscopy (IETS) of a single hydrogen atom on the Cu(100) surface in a scanning tunneling microscopy (STM) configuration has been investigated by employing the non-equilibrium Green’s function formalism combined with density functional theory. The electron-vibration interaction is treated at the level of lowest order expansion. Our calculations show that the single peak observed in the previous STM-IETS experiments is dominated by the perpendicular mode of the adsorbed H atom, while the parallel one only makes a negligible contribution even when the STM tip is laterally displaced from the top position of the H atom. This propensity of the IETS is deeply rooted in the symmetry of the vibrational modes and the characteristics of the conduction channel of the Cu-H-Cu tunneling junction, which is mainly composed of the 4s and 4pz atomic orbitals of the Cu apex atom and the 1s orbital of the adsorbed H atom. These findings are helpful for deepening our understanding of the propensity rules for IETS and promoting IETS as a more popular spectroscopic tool for molecular devices

  20. Revisiting the inelastic electron tunneling spectroscopy of single hydrogen atom adsorbed on the Cu(100) surface

    Jiang, Zhuoling; Wang, Hao [Centre for Nanoscale Science and Technology, Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871 (China); Sanvito, Stefano [School of Physics, AMBER and CRANN Institute, Trinity College, Dublin 2 (Ireland); Hou, Shimin, E-mail: smhou@pku.edu.cn [Centre for Nanoscale Science and Technology, Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871 (China); Beida Information Research (BIR), Tianjin 300457 (China)

    2015-12-21

    Inelastic electron tunneling spectroscopy (IETS) of a single hydrogen atom on the Cu(100) surface in a scanning tunneling microscopy (STM) configuration has been investigated by employing the non-equilibrium Green’s function formalism combined with density functional theory. The electron-vibration interaction is treated at the level of lowest order expansion. Our calculations show that the single peak observed in the previous STM-IETS experiments is dominated by the perpendicular mode of the adsorbed H atom, while the parallel one only makes a negligible contribution even when the STM tip is laterally displaced from the top position of the H atom. This propensity of the IETS is deeply rooted in the symmetry of the vibrational modes and the characteristics of the conduction channel of the Cu-H-Cu tunneling junction, which is mainly composed of the 4s and 4p{sub z} atomic orbitals of the Cu apex atom and the 1s orbital of the adsorbed H atom. These findings are helpful for deepening our understanding of the propensity rules for IETS and promoting IETS as a more popular spectroscopic tool for molecular devices.

  1. Revisiting the inelastic electron tunneling spectroscopy of single hydrogen atom adsorbed on the Cu(100) surface

    Jiang, Zhuoling; Wang, Hao; Sanvito, Stefano; Hou, Shimin

    2015-12-01

    Inelastic electron tunneling spectroscopy (IETS) of a single hydrogen atom on the Cu(100) surface in a scanning tunneling microscopy (STM) configuration has been investigated by employing the non-equilibrium Green's function formalism combined with density functional theory. The electron-vibration interaction is treated at the level of lowest order expansion. Our calculations show that the single peak observed in the previous STM-IETS experiments is dominated by the perpendicular mode of the adsorbed H atom, while the parallel one only makes a negligible contribution even when the STM tip is laterally displaced from the top position of the H atom. This propensity of the IETS is deeply rooted in the symmetry of the vibrational modes and the characteristics of the conduction channel of the Cu-H-Cu tunneling junction, which is mainly composed of the 4s and 4pz atomic orbitals of the Cu apex atom and the 1s orbital of the adsorbed H atom. These findings are helpful for deepening our understanding of the propensity rules for IETS and promoting IETS as a more popular spectroscopic tool for molecular devices.

  2. Fabrication of metallic single electron transistors featuring plasma enhanced atomic layer deposition of tunnel barriers

    Karbasian, Golnaz

    The continuing increase of the device density in integrated circuits (ICs) gives rise to the high level of power that is dissipated per unit area and consequently a high temperature in the circuits. Since temperature affects the performance and reliability of the circuits, minimization of the energy consumption in logic devices is now the center of attention. According to the International Technology Roadmaps for Semiconductors (ITRS), single electron transistors (SETs) hold the promise of achieving the lowest power of any known logic device, as low as 1x10-18 J per switching event. Moreover, SETs are the most sensitive electrometers to date, and are capable of detecting a fraction of an electron charge. Despite their low power consumption and high sensitivity for charge detection, room temperature operation of these devices is quite challenging mainly due to lithographical constraints in fabricating structures with the required dimensions of less than 10 nm. Silicon based SETs have been reported to operate at room temperature. However, they all suffer from significant variation in batch-to-batch performance, low fabrication yield, and temperature-dependent tunnel barrier height. In this project, we explored the fabrication of SETs featuring metal-insulator-metal (MIM) tunnel junctions. While Si-based SETs suffer from undesirable effect of dopants that result in irregularities in the device behavior, in metal-based SETs the device components (tunnel barrier, island, and the leads) are well-defined. Therefore, metal SETs are potentially more predictable in behavior, making them easier to incorporate into circuits, and easier to check against theoretical models. Here, the proposed fabrication method takes advantage of unique properties of chemical mechanical polishing (CMP) and plasma enhanced atomic layer deposition (PEALD). Chemical mechanical polishing provides a path for tuning the dimensions of the tunnel junctions, surpassing the limits imposed by electron beam

  3. Tunneling electron induced molecular electroluminescence from individual porphyrin J-aggregates

    We investigate molecular electroluminescence from individual tubular porphyrin J-aggregates on Au(111) by tunneling electron excitations in an ultrahigh-vacuum scanning tunneling microscope (STM). High-resolution STM images suggest a spiral tubular structure for the porphyrin J-aggregate with highly ordered “brickwork”-like arrangements. Such aggregated nanotube is found to behave like a self-decoupled molecular architecture and shows red-shifted electroluminescence characteristics of J-aggregates originated from the delocalized excitons. The positions of the emission peaks are found to shift slightly depending on the excitation sites, which, together with the changes in the observed spectral profiles with vibronic progressions, suggest a limited exciton coherence number within several molecules. The J-aggregate electroluminescence is also found unipolar, occurring only at negative sample voltages, which is presumably related to the junction asymmetry in the context of molecular excitations via the carrier injection mechanism

  4. Mapping the first electronic resonances of a Cu phthalocyanine STM tunnel junction

    Using a low temperature, ultrahigh vacuum scanning tunneling microscope (STM), dI/dV differential conductance maps were recorded at the tunneling resonance energies for a single Cu phthalocyanine molecule adsorbed on an Au(111) surface. We demonstrated that, contrary to the common assumption, such maps are not representative of the molecular orbital spatial expansion, but rather result from their complex superposition captured by the STM tip apex with a superposition weight which generally does not correspond to the native weight used in the standard Slater determinant basis set. Changes in the molecule conformation on the Au(111) surface further obscure the identification between dI/dV conductance maps and the native molecular orbital electronic probability distribution in space.

  5. Nuclear quantum effects of hydrogen bonds probed by tip-enhanced inelastic electron tunneling.

    Guo, Jing; Lü, Jing-Tao; Feng, Yexin; Chen, Ji; Peng, Jinbo; Lin, Zeren; Meng, Xiangzhi; Wang, Zhichang; Li, Xin-Zheng; Wang, En-Ge; Jiang, Ying

    2016-04-15

    We report the quantitative assessment of nuclear quantum effects on the strength of a single hydrogen bond formed at a water-salt interface, using tip-enhanced inelastic electron tunneling spectroscopy based on a scanning tunneling microscope. The inelastic scattering cross section was resonantly enhanced by "gating" the frontier orbitals of water via a chlorine-terminated tip, so the hydrogen-bonding strength can be determined with high accuracy from the red shift in the oxygen-hydrogen stretching frequency of water. Isotopic substitution experiments combined with quantum simulations reveal that the anharmonic quantum fluctuations of hydrogen nuclei weaken the weak hydrogen bonds and strengthen the relatively strong ones. However, this trend can be completely reversed when a hydrogen bond is strongly coupled to the polar atomic sites of the surface. PMID:27081066

  6. Nonlocal and Quantum Tunneling Contributions to Harmonic Generation in Nanostructures: Electron Cloud Screening Effects

    Scalora, Michael; de Ceglia, Domenico; Haus, Joseph W

    2014-01-01

    Our theoretical examination of second and third harmonic generation from metal-based nanostructures predicts that nonlocal and quantum tunneling phenomena can significantly exceed expectations based solely on local, classical electromagnetism. Mindful that the diameter of typical transition metal atoms is approximately 3{\\AA}, we adopt a theoretical model that treats nanometer-size features and/or sub-nanometer size gaps or spacers by taking into account: (i) the limits imposed by atomic size to fulfill the requirements of continuum electrodynamics; (ii) spillage of the nearly-free electron cloud into the surrounding vacuum; and (iii) the increased probability of quantum tunneling as objects are placed in close proximity. Our approach also includes the treatment of bound charges, which add crucial, dynamical components to the dielectric constant that are neglected in the conventional hydrodynamic model, especially in the visible and UV ranges, where interband transitions are important. The model attempts to i...

  7. Tunneling electron induced molecular electroluminescence from individual porphyrin J-aggregates

    Meng, Qiushi; Zhang, Chao; Zhang, Yang, E-mail: zhyangnano@ustc.edu.cn, E-mail: zcdong@ustc.edu.cn; Zhang, Yao; Liao, Yuan; Dong, Zhenchao, E-mail: zhyangnano@ustc.edu.cn, E-mail: zcdong@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2015-07-27

    We investigate molecular electroluminescence from individual tubular porphyrin J-aggregates on Au(111) by tunneling electron excitations in an ultrahigh-vacuum scanning tunneling microscope (STM). High-resolution STM images suggest a spiral tubular structure for the porphyrin J-aggregate with highly ordered “brickwork”-like arrangements. Such aggregated nanotube is found to behave like a self-decoupled molecular architecture and shows red-shifted electroluminescence characteristics of J-aggregates originated from the delocalized excitons. The positions of the emission peaks are found to shift slightly depending on the excitation sites, which, together with the changes in the observed spectral profiles with vibronic progressions, suggest a limited exciton coherence number within several molecules. The J-aggregate electroluminescence is also found unipolar, occurring only at negative sample voltages, which is presumably related to the junction asymmetry in the context of molecular excitations via the carrier injection mechanism.

  8. Tunneling electron induced molecular electroluminescence from individual porphyrin J-aggregates

    Meng, Qiushi; Zhang, Chao; Zhang, Yang; Zhang, Yao; Liao, Yuan; Dong, Zhenchao

    2015-07-01

    We investigate molecular electroluminescence from individual tubular porphyrin J-aggregates on Au(111) by tunneling electron excitations in an ultrahigh-vacuum scanning tunneling microscope (STM). High-resolution STM images suggest a spiral tubular structure for the porphyrin J-aggregate with highly ordered "brickwork"-like arrangements. Such aggregated nanotube is found to behave like a self-decoupled molecular architecture and shows red-shifted electroluminescence characteristics of J-aggregates originated from the delocalized excitons. The positions of the emission peaks are found to shift slightly depending on the excitation sites, which, together with the changes in the observed spectral profiles with vibronic progressions, suggest a limited exciton coherence number within several molecules. The J-aggregate electroluminescence is also found unipolar, occurring only at negative sample voltages, which is presumably related to the junction asymmetry in the context of molecular excitations via the carrier injection mechanism.

  9. Mapping the first electronic resonances of a Cu phthalocyanine STM tunnel junction.

    Soe, W-H; Manzano, C; Wong, H S; Joachim, C

    2012-09-01

    Using a low temperature, ultrahigh vacuum scanning tunneling microscope (STM), dI/dV differential conductance maps were recorded at the tunneling resonance energies for a single Cu phthalocyanine molecule adsorbed on an Au(111) surface. We demonstrated that, contrary to the common assumption, such maps are not representative of the molecular orbital spatial expansion, but rather result from their complex superposition captured by the STM tip apex with a superposition weight which generally does not correspond to the native weight used in the standard Slater determinant basis set. Changes in the molecule conformation on the Au(111) surface further obscure the identification between dI/dV conductance maps and the native molecular orbital electronic probability distribution in space. PMID:22898492

  10. Phonon-Assisted Resonant Tunneling of Electrons in Graphene-Boron Nitride Transistors.

    Vdovin, E E; Mishchenko, A; Greenaway, M T; Zhu, M J; Ghazaryan, D; Misra, A; Cao, Y; Morozov, S V; Makarovsky, O; Fromhold, T M; Patanè, A; Slotman, G J; Katsnelson, M I; Geim, A K; Novoselov, K S; Eaves, L

    2016-05-01

    We observe a series of sharp resonant features in the differential conductance of graphene-hexagonal boron nitride-graphene tunnel transistors over a wide range of bias voltages between 10 and 200 mV. We attribute them to electron tunneling assisted by the emission of phonons of well-defined energy. The bias voltages at which they occur are insensitive to the applied gate voltage and hence independent of the carrier densities in the graphene electrodes, so plasmonic effects can be ruled out. The phonon energies corresponding to the resonances are compared with the lattice dispersion curves of graphene-boron nitride heterostructures and are close to peaks in the single phonon density of states. PMID:27203338

  11. Note: Electron energy spectroscopy mapping of surface with scanning tunneling microscope

    Li, Meng; Xu, Chunkai; Zhang, Panke; Li, Zhean; Chen, Xiangjun

    2016-08-01

    We report a novel scanning probe electron energy spectrometer (SPEES) which combines a double toroidal analyzer with a scanning tunneling microscope to achieve both topography imaging and electron energy spectroscopy mapping of surface in situ. The spatial resolution of spectroscopy mapping is determined to be better than 0.7 ± 0.2 μm at a tip sample distance of 7 μm. Meanwhile, the size of the field emission electron beam spot on the surface is also measured, and is about 3.6 ± 0.8 μm in diameter. This unambiguously demonstrates that the spatial resolution of SPEES technique can be much better than the size of the incident electron beam.

  12. Electron-vibrational effects in the tunnel current through polycentric systems

    Borshch, S. A.; Chibotaru, L. F.; Rousseau-Violet, J.

    1998-04-01

    The conductivity of polynuclear cluster situated between two metallic electrodes is studied within the semiclassical approximation. The conductivity depends on the shape of adiabatic potential surface of `cluster + excess electron' mixed-valence system which is entirely governed by the relationship between the intramolecular electron transfer and the vibronic coupling. The specific cases of dimer and trimer molecules are illustrated through conductivity and current calculations. It is shown that localization→delocalization transitions in mixed-valence clusters are accompanied by more or less abrupt changes in the molecular conductivity. However, the behavior of molecular conductivity and tunnel current is determined not only by the type of electronic distribution but also by the density of accessible electron-vibrational states.

  13. Atomic-scale mapping of electronic structures across heterointerfaces by cross-sectional scanning tunneling microscopy

    Chiu, Ya-Ping; Huang, Bo-Chao; Shih, Min-Chuan; Huang, Po-Cheng; Chen, Chun-Wei

    2015-09-01

    Interfacial science has received much attention recently based on the development of state-of-the-art analytical tools that can create and manipulate the charge, spin, orbital, and lattice degrees of freedom at interfaces. Motivated by the importance of nanoscale interfacial science that governs device operation, we present a technique to probe the electronic characteristics of heterointerfaces with atomic resolution. In this work, the interfacial characteristics of heteroepitaxial structures are investigated and the fundamental mechanisms that pertain in these systems are elucidated through cross-sectional scanning tunneling microscopy (XSTM). The XSTM technique is employed here to directly observe epitaxial interfacial structures and probe local electronic properties with atomic-level capability. Scanning tunneling microscopy and spectroscopy experiments with atomic precision provide insight into the origin and spatial distribution of electronic properties across heterointerfaces. The first part of this report provides a brief description of the cleavage technique and spectroscopy analysis in XSTM measurements. The second part addresses interfacial electronic structures of several model heterostructures in current condensed matter research using XSTM. Topics to be discussed include high-κ‘s/III-V’s semiconductors, polymer heterojunctions, and complex oxide heterostructures, which are all material systems whose investigation using this technique is expected to benefit the research community. Finally, practical aspects and perspectives of using XSTM in interface science are presented.

  14. Submolecular Electronic Mapping of Single Cysteine Molecules by in Situ Scanning Tunneling Imaging

    Zhang, Jingdong; Chi, Qijin; Nazmutdinov, R. R.;

    2009-01-01

    We have used L-Cysteine (Cys) as a model system to study the surface electronic structures of single molecules at the submolecular level in aqueous buffer solution by a combination of electrochemical scanning tunneling microscopy (in situ STM), electrochemistry including voltammetry and chronocou......We have used L-Cysteine (Cys) as a model system to study the surface electronic structures of single molecules at the submolecular level in aqueous buffer solution by a combination of electrochemical scanning tunneling microscopy (in situ STM), electrochemistry including voltammetry and...... contributed mainly from three chemical moieties: thiol (-SH), carboxylic (-COOH), and amine (-NH2) groups. The contrasts of the three subunits depend on the environment (e.g., pH), which affects the electronic structure of adsorbed species. From the DFT computations focused on single molecules, rational...... bulk. The correlation between physical location and electronic contrast of the adsorbed molecules was also revealed by the computational data. The present study shows that cysteine packing in the adlayer on Au(110) from the liquid environment is in contrast to that from the ultrahigh-vacuum environment...

  15. Atomic-scale mapping of electronic structures across heterointerfaces by cross-sectional scanning tunneling microscopy

    Interfacial science has received much attention recently based on the development of state-of-the-art analytical tools that can create and manipulate the charge, spin, orbital, and lattice degrees of freedom at interfaces. Motivated by the importance of nanoscale interfacial science that governs device operation, we present a technique to probe the electronic characteristics of heterointerfaces with atomic resolution. In this work, the interfacial characteristics of heteroepitaxial structures are investigated and the fundamental mechanisms that pertain in these systems are elucidated through cross-sectional scanning tunneling microscopy (XSTM). The XSTM technique is employed here to directly observe epitaxial interfacial structures and probe local electronic properties with atomic-level capability. Scanning tunneling microscopy and spectroscopy experiments with atomic precision provide insight into the origin and spatial distribution of electronic properties across heterointerfaces. The first part of this report provides a brief description of the cleavage technique and spectroscopy analysis in XSTM measurements. The second part addresses interfacial electronic structures of several model heterostructures in current condensed matter research using XSTM. Topics to be discussed include high-κ‘s/III–V’s semiconductors, polymer heterojunctions, and complex oxide heterostructures, which are all material systems whose investigation using this technique is expected to benefit the research community. Finally, practical aspects and perspectives of using XSTM in interface science are presented. (topical review)

  16. High-Efficiency Selective Electron Tunnelling in a Heterostructure Photovoltaic Diode.

    Jia, Chuancheng; Ma, Wei; Gu, Chunhui; Chen, Hongliang; Yu, Haomiao; Li, Xinxi; Zhang, Fan; Gu, Lin; Xia, Andong; Hou, Xiaoyuan; Meng, Sheng; Guo, Xuefeng

    2016-06-01

    A heterostructure photovoltaic diode featuring an all-solid-state TiO2/graphene/dye ternary interface with high-efficiency photogenerated charge separation/transport is described here. Light absorption is accomplished by dye molecules deposited on the outside surface of graphene as photoreceptors to produce photoexcited electron-hole pairs. Unlike conventional photovoltaic conversion, in this heterostructure both photoexcited electrons and holes tunnel along the same direction into graphene, but only electrons display efficient ballistic transport toward the TiO2 transport layer, thus leading to effective photon-to-electricity conversion. On the basis of this ipsilateral selective electron tunnelling (ISET) mechanism, a model monolayer photovoltaic device (PVD) possessing a TiO2/graphene/acridine orange ternary interface showed ∼86.8% interfacial separation/collection efficiency, which guaranteed an ultrahigh absorbed photon-to-current efficiency (APCE, ∼80%). Such an ISET-based PVD may become a fundamental device architecture for photovoltaic solar cells, photoelectric detectors, and other novel optoelectronic applications with obvious advantages, such as high efficiency, easy fabrication, scalability, and universal availability of cost-effective materials. PMID:27183191

  17. Single-electron tunneling by using a two-dimensional Corbino nano-scale disk

    We investigate a single-electron tunneling effect of two-dimensional electron systems formed in the Corbino nano-scale disk. By controlling bias and gate voltages, the transistor using this effect is able to control electrons one by one. The present study focuses on the electronic transmission probability affected by the charging energy in the Corbino-type single-electron transistor. We reformulated the Schrödinger equation for an electron in the Corbino disk in order to consider the effect of the curvature of the disk, taking into account the charging effect on the performance of the Corbino-type single-electron transistor. We formulated the transmission probability of the electron by applying the Wentzel-Kramers-Brillouin (WKB) method. The electron’s energy in the formula of the transmission probability is then associated to the energy eigenvalue of the Schrödinger equation for an electron in an effective confining potential. We numerically solved the Schrödinger equation to evaluate the transmission probability. Our results show that the transmission probability strongly depends on the charging energy stored in the Corbino disk depending on its size

  18. Improving Electronic Resources through Holistic Budgeting

    Kusik, James P.; Vargas, Mark A.

    2009-01-01

    To establish a more direct link between its collections and the educational goals of Saint Xavier University, the Byrne Memorial Library has adopted a "holistic" approach to collection development. This article examines how traditional budget practices influenced the library's selection of resources and describes how holistic collection…

  19. Fabrication of tunnel junction-based molecular electronics and spintronics devices

    Tunnel junction-based molecular devices (TJMDs) are highly promising for realizing futuristic electronics and spintronics devices for advanced logic and memory operations. Under this approach, ∼2.5 nm molecular device elements bridge across the ∼2-nm thick insulator of a tunnel junction along the exposed side edge(s). This paper details the efforts and insights for producing a variety of TJMDs by resolving multiple device fabrication and characterization issues. This study specifically discusses (i) compatibility between tunnel junction test bed and molecular solutions, (ii) optimization of the exposed side edge profile and insulator thickness for enhancing the probability of molecular bridging, (iii) effect of fabrication process-induced mechanical stresses, and (iv) minimizing electrical bias-induced instability after the device fabrication. This research will benefit other researchers interested in producing TJMDs efficiently. TJMD approach offers an open platform to test virtually any combination of magnetic and nonmagnetic electrodes, and promising molecules such as single molecular magnets, porphyrin, DNA, and molecular complexes.

  20. Why and How to Measure the Use of Electronic Resources

    Jean Bernon

    2008-01-01

    A complete overview of library activity implies a complete and reliable measurement of the use of both electronic resources and printed materials. This measurement is based on three sets of definitions: document types, use types and user types. There is a common model of definitions for printed materials, but a lot of questions and technical issues remain for electronic resources. In 2006 a French national working group studied these questions. It relied on the COUNTER standard, but found it ...

  1. Euler European Libraries and Electronic Resources in Mathematical Sciences

    The Euler Project. Karlsruhe

    The European Libraries and Electronic Resources (EULER) Project in Mathematical Sciences provides the EulerService site for searching out "mathematical resources such as books, pre-prints, web-pages, abstracts, proceedings, serials, technical reports preprints) and NetLab (for Internet resources), this outstanding engine is capable of simple, full, and refined searches. It also offers a browse option, which responds to entries in the author, keyword, and title fields. Further information about the Project is provided at the EULER homepage.

  2. Access to electronic resources by visually impaired people

    Jenny Craven

    2003-01-01

    Research into access to electronic resources by visually impaired people undertaken by the Centre for Research in Library and Information Management has not only explored the accessibility of websites and levels of awareness in providing websites that adhere to design for all principles, but has sought to enhance understanding of information seeking behaviour of blind and visually impaired people when using digital resources.

  3. Integrating Electronic Resources into the Library Catalog: A Collaborative Approach.

    Herrera, Gail; Aldana, Lynda

    2001-01-01

    Describes a project at the University of Mississippi Libraries to catalog purchased electronic resources so that access to these resources is available only via the Web-based library catalog. Discusses collaboration between cataloging and systems personnel; and describes the MARC catalog record field that contains the information needed to locate…

  4. Electron tunneling through single self-assembled InAs quantum dots coupled to nanogap electrodes

    We have investigated electronic properties of self-assembled InAs quantum dots (QDs) grown on GaAs surfaces by using metallic Au and Al leads with narrow gaps. The fabricated junctions with Au nanogap electrodes show single electron tunneling behaviors. When coupling between electrons in the QDs and the electrodes is strong, Kondo effect with relatively high Kondo temperature TK of 10-15 K is observed. The samples with superconducting (SC) Al electrodes also exhibit clear Coulomb blockade effects. Furthermore, clear suppression in conductance is observed around VSD=0 V for a voltage range of 4Δ/e at T=40 mK, where Δ is the SC energy gap of Al, demonstrating successful fabrication of the SC-QD-SC junction in the self-assembled InAs QD system. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Electron and hole photoemission detection for band offset determination of tunnel field-effect transistor heterojunctions

    We report experimental methods to ascertain a complete energy band alignment of a broken-gap tunnel field-effect transistor based on an InAs/GaSb hetero-junction. By using graphene as an optically transparent electrode, both the electron and hole barrier heights at the InAs/GaSb interface can be quantified. For a Al2O3/InAs/GaSb layer structure, the barrier height from the top of the InAs and GaSb valence bands to the bottom of the Al2O3 conduction band is inferred from electron emission whereas hole emissions reveal the barrier height from the top of the Al2O3 valence band to the bottom of the InAs and GaSb conduction bands. Subsequently, the offset parameter at the broken gap InAs/GaSb interface is extracted and thus can be used to facilitate the development of predicted models of electron quantum tunneling efficiency and transistor performance

  6. Consecutive Charging of a Molecule-on-Insulator Ensemble Using Single Electron Tunnelling Methods.

    Rahe, Philipp; Steele, Ryan P; Williams, Clayton C

    2016-02-10

    We present the local charge state modification at room temperature of small insulator-supported molecular ensembles formed by 1,1'-ferrocenedicarboxylic acid on calcite. Single electron tunnelling between the conducting tip of a noncontact atomic force microscope (NC-AFM) and the molecular islands is observed. By joining NC-AFM with Kelvin probe force microscopy, successive charge build-up in the sample is observed from consecutive experiments. Charge transfer within the islands and structural relaxation of the adsorbate/surface system is suggested by the experimental data. PMID:26713686

  7. Time and Space Resolved High Harmonic Imaging of Electron Tunnelling from Molecules

    Smirnova, O.

    2009-05-01

    High harmonic generation in intense laser fields carries the promise of combining sub-Angstrom spatial and attosecond temporal resolution of electronic structures and dynamics in molecules, see e.g. [1-3]. High harmonic emission occurs when an electron detached from a molecule by an intense laser field recombines with the parent ion [4]. Similar to Young's double-slit experiment, recombination to several ``lobes'' of the same molecular orbital can produce interference minima and maxima in harmonic intensities [1]. These minima (maxima) carry structural information -- they occur when the de-Broglie wavelength of the recombining electron matches distances between the centers. We demonstrate both theoretically and experimentally that amplitude minima (maxima) in the harmonic spectra can also have dynamical origin, reflecting multi-electron dynamics in the molecule. We use high harmonic spectra to record this dynamics and reconstruct the position of the hole left in the molecule after ionization. Experimental data are consistent with the hole starting in different places as the ionization dynamics changes from tunnelling to the multi-photon regime. Importantly, hole localization and subsequent attosecond dynamics are induced even in the tunnelling limit. Thus, even ``static'' tunnelling induced by a tip of a tunnelling microscope will generate similar attosecond dynamics in a sample. We anticipate that our approach will become standard in disentangling spatial and temporal information from high harmonic spectra of molecules.[4pt] In collaboration with Serguei Patchkovskii, National Research Council, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada; Yann Mairesse, NRC Canada and CELIA, Universit'e Bordeaux I, UMR 5107 (CNRS, Bordeaux 1, CEA), 351 Cours de la Lib'eration, 33405 Talence Cedex, France; Nirit Dudovich, NRC Canada and Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel; David Villeneuve, Paul Corkum, NRC Canada

  8. Scanning tunneling spectroscopy on ZnO(0001) surfaces : evidence for an inhomogeneous electronic structure

    Hackens, B.; Rodrigues, M. S.; Faniel, S.; Mouthuy, P. O.; Melinte, S.; Dumont, J.; Sporken, R.

    2010-03-01

    We performed low temperature (77 K) scanning tunneling microscopy (STM) and spectroscopy (STS) on the polar Zn-terminated ZnO(0001) surface [1]. STM and STS data show that the surface electronic structure strongly depends on the local morphology : we observe a narrow bandgap and surface states in the flat regions, and, in the defective surface regions, a wide bandgap without surface states. We also image atomically-resolved (√3 x√3)R30^o reconstructions in small defect-free areas.[4pt] [1] J. Dumont et al., Appl. Phys. Lett. 95, 132102 (2009).

  9. Building an electronic resource collection a practical guide

    Lee, Stuart D

    2004-01-01

    This practical book guides information professionals step-by-step through building and managing an electronic resource collection. It outlines the range of electronic products currently available in abstracting and indexing, bibliographic, and other services and then describes how to effectively select, evaluate and purchase them.

  10. Uncovering a law of corresponding states for electron tunneling in molecular junctions

    Bâldea, Ioan; Xie, Zuoti; Frisbie, C. Daniel

    2015-06-01

    Laws of corresponding states known so far demonstrate that certain macroscopic systems can be described in a universal manner in terms of reduced quantities, which eliminate specific substance properties. To quantitatively describe real systems, all these laws of corresponding states contain numerical factors adjusted empirically. Here, we report a law of corresponding states deduced analytically for charge transport via tunneling in molecular junctions, which we validate against current-voltage measurements for conducting probe atomic force microscope junctions based on benchmark molecular series (oligophenylenedithiols and alkanedithiols) and electrodes (silver, gold, and platinum), as well as against transport data for scanning tunneling microscope junctions. Two salient features distinguish the present law of corresponding states from all those known previously. First, it is expressed by a universal curve free of empirical parameters. Second, it demonstrates that a universal behavior is not necessarily affected by strong stochastic fluctuations often observed in molecular electronics. An important and encouraging message of this finding is that transport behavior across different molecular platforms can be similar and extraordinarily reproducible.Laws of corresponding states known so far demonstrate that certain macroscopic systems can be described in a universal manner in terms of reduced quantities, which eliminate specific substance properties. To quantitatively describe real systems, all these laws of corresponding states contain numerical factors adjusted empirically. Here, we report a law of corresponding states deduced analytically for charge transport via tunneling in molecular junctions, which we validate against current-voltage measurements for conducting probe atomic force microscope junctions based on benchmark molecular series (oligophenylenedithiols and alkanedithiols) and electrodes (silver, gold, and platinum), as well as against transport data

  11. Coulomb Repulsion Effect in Two-electron Non-adiabatic Tunneling through a One-level redox Molecule

    Medvedev, Igor M.; Kuznetsov, Alexander M.; Ulstrup, Jens

    2009-01-01

    We investigated Coulomb repulsion effects in nonadiabatic (diabatic) two-electron tunneling through a redox molecule with a single electronic level in a symmetric electrochemical contact under ambient conditions, i.e., room temperature and condensed matter environment. The electrochemical contact...

  12. Transverse electron momentum distribution in tunneling and over the barrier ionization by laser pulses with varying ellipticity

    Ivanov, I. A.; A. S. Kheifets; Calvert, J. E.; Goodall, S.; Wang, X.; Han Xu; Palmer, A. J.; Kielpinski, D.; Litvinyuk, I.V.; Sang, R. T.

    2016-01-01

    We study transverse electron momentum distribution in strong field atomic ionization driven by laser pulses with varying ellipticity. We show, both experimentally and theoretically, that the transverse electron momentum distribution in the tunneling and over the barrier ionization regimes evolves in a qualitatively different way when the ellipticity parameter describing polarization state of the driving laser pulse increases.

  13. Resonant tunneling assisted propagation and amplification of plasmons in high electron mobility transistors

    A rigorous theoretical and computational model is developed for the plasma-wave propagation in high electron mobility transistor structures with electron injection from a resonant tunneling diode at the gate. We discuss the conditions in which low-loss and sustainable plasmon modes can be supported in such structures. The developed analytical model is used to derive the dispersion relation for these plasmon-modes. A non-linear full-wave-hydrodynamic numerical solver is also developed using a finite difference time domain algorithm. The developed analytical solutions are validated via the numerical solution. We also verify previous observations that were based on a simplified transmission line model. It is shown that at high levels of negative differential conductance, plasmon amplification is indeed possible. The proposed rigorous models can enable accurate design and optimization of practical resonant tunnel diode-based plasma-wave devices for terahertz sources, mixers, and detectors, by allowing a precise representation of their coupling when integrated with other electromagnetic structures

  14. Superluminescence from an optically pumped molecular tunneling junction by injection of plasmon induced hot electrons

    Kai Braun

    2015-05-01

    Full Text Available Here, we demonstrate a bias-driven superluminescent point light-source based on an optically pumped molecular junction (gold substrate/self-assembled molecular monolayer/gold tip of a scanning tunneling microscope, operating at ambient conditions and providing almost three orders of magnitude higher electron-to-photon conversion efficiency than electroluminescence induced by inelastic tunneling without optical pumping. A positive, steadily increasing bias voltage induces a step-like rise of the Stokes shifted optical signal emitted from the junction. This emission is strongly attenuated by reversing the applied bias voltage. At high bias voltage, the emission intensity depends non-linearly on the optical pump power. The enhanced emission can be modelled by rate equations taking into account hole injection from the tip (anode into the highest occupied orbital of the closest substrate-bound molecule (lower level and radiative recombination with an electron from above the Fermi level (upper level, hence feeding photons back by stimulated emission resonant with the gap mode. The system reflects many essential features of a superluminescent light emitting diode.

  15. Superluminescence from an optically pumped molecular tunneling junction by injection of plasmon induced hot electrons.

    Braun, Kai; Wang, Xiao; Kern, Andreas M; Adler, Hilmar; Peisert, Heiko; Chassé, Thomas; Zhang, Dai; Meixner, Alfred J

    2015-01-01

    Here, we demonstrate a bias-driven superluminescent point light-source based on an optically pumped molecular junction (gold substrate/self-assembled molecular monolayer/gold tip) of a scanning tunneling microscope, operating at ambient conditions and providing almost three orders of magnitude higher electron-to-photon conversion efficiency than electroluminescence induced by inelastic tunneling without optical pumping. A positive, steadily increasing bias voltage induces a step-like rise of the Stokes shifted optical signal emitted from the junction. This emission is strongly attenuated by reversing the applied bias voltage. At high bias voltage, the emission intensity depends non-linearly on the optical pump power. The enhanced emission can be modelled by rate equations taking into account hole injection from the tip (anode) into the highest occupied orbital of the closest substrate-bound molecule (lower level) and radiative recombination with an electron from above the Fermi level (upper level), hence feeding photons back by stimulated emission resonant with the gap mode. The system reflects many essential features of a superluminescent light emitting diode. PMID:26171286

  16. Resonant tunneling assisted propagation and amplification of plasmons in high electron mobility transistors

    Bhardwaj, Shubhendu; Sensale-Rodriguez, Berardi; Xing, Huili Grace; Rajan, Siddharth; Volakis, John L.

    2016-01-01

    A rigorous theoretical and computational model is developed for the plasma-wave propagation in high electron mobility transistor structures with electron injection from a resonant tunneling diode at the gate. We discuss the conditions in which low-loss and sustainable plasmon modes can be supported in such structures. The developed analytical model is used to derive the dispersion relation for these plasmon-modes. A non-linear full-wave-hydrodynamic numerical solver is also developed using a finite difference time domain algorithm. The developed analytical solutions are validated via the numerical solution. We also verify previous observations that were based on a simplified transmission line model. It is shown that at high levels of negative differential conductance, plasmon amplification is indeed possible. The proposed rigorous models can enable accurate design and optimization of practical resonant tunnel diode-based plasma-wave devices for terahertz sources, mixers, and detectors, by allowing a precise representation of their coupling when integrated with other electromagnetic structures.

  17. Resonant tunneling assisted propagation and amplification of plasmons in high electron mobility transistors

    Bhardwaj, Shubhendu [Electrical and Computer Engineering Department, The Ohio State University, Columbus, OH 43212 (United States); Sensale-Rodriguez, Berardi [Electrical and Computer Engineering Department, The University of Utah, Salt Lake City, UT 84112 (United States); Xing, Huili Grace [School of Electrical and Computer Engineering and Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853 (United States); Department of Electrical Engineering, University of Notre Dame, IN 46556 (United States); Rajan, Siddharth [Electrical and Computer Engineering Department and Materials Science Engineering Department, The Ohio State University, Columbus, OH 43212 (United States); Volakis, John L.

    2016-01-07

    A rigorous theoretical and computational model is developed for the plasma-wave propagation in high electron mobility transistor structures with electron injection from a resonant tunneling diode at the gate. We discuss the conditions in which low-loss and sustainable plasmon modes can be supported in such structures. The developed analytical model is used to derive the dispersion relation for these plasmon-modes. A non-linear full-wave-hydrodynamic numerical solver is also developed using a finite difference time domain algorithm. The developed analytical solutions are validated via the numerical solution. We also verify previous observations that were based on a simplified transmission line model. It is shown that at high levels of negative differential conductance, plasmon amplification is indeed possible. The proposed rigorous models can enable accurate design and optimization of practical resonant tunnel diode-based plasma-wave devices for terahertz sources, mixers, and detectors, by allowing a precise representation of their coupling when integrated with other electromagnetic structures.

  18. Inelastic electron tunneling through degenerate and nondegenerate ground state polymeric junctions

    Highlights: • Current–voltage characteristics of two polymeric junctions are studied. • Current is reduced in phonon assistant tunneling regime. • Behavior of current is independent of temperature. • Elastic energy changes current drastically. - Abstract: The inelastic electron transport properties through two polymeric (trans-polyacetylene and polythiophene) molecular junctions are studied using Keldysh nonequilibrium Green function formalism. The Hamiltonian of the polymers is described via Su–Schrieffer–Heeger model and the metallic electrodes are modeled by the wide-band approximation. Results show that the step-like behavior of the current–voltage characteristics is deformed in presence of strong electron–phonon interaction. Also, the magnitude of current is slightly decreased in the phonon assistant electron transport regime. In addition, it is observed that the I–V curves are independent of temperature

  19. Nonequilibrium theory of a hot-electron bolometer with normal metal-insulator-superconductor tunnel junction

    The operation of the hot-electron bolometer with normal metal-insulator-superconductor (NIS) tunnel junction as a temperature sensor is analyzed theoretically. The responsivity and the noise equivalent power (NEP) of the bolometer are obtained numerically for typical experimental parameters. Relatively simple approximate analytical expressions for these values are derived. The time constant of the device is also found. We demonstrate that the effect of the electron cooling by the NIS junction, which serves as a thermometer, can improve the sensitivity. This effect is also useful in the presence of the finite background power load. We discuss the effect of the correlation of the shot noise and the heat flow noise in the NIS junction. [copyright] 2001 American Institute of Physics

  20. Single-molecule electronics: Cooling individual vibrational modes by the tunneling current

    Lykkebo, Jacob; Romano, Giuseppe; Gagliardi, Alessio; Pecchia, Alessandro; Solomon, Gemma C.

    2016-03-01

    Electronic devices composed of single molecules constitute the ultimate limit in the continued downscaling of electronic components. A key challenge for single-molecule electronics is to control the temperature of these junctions. Controlling heating and cooling effects in individual vibrational modes can, in principle, be utilized to increase stability of single-molecule junctions under bias, to pump energy into particular vibrational modes to perform current-induced reactions, or to increase the resolution in inelastic electron tunneling spectroscopy by controlling the life-times of phonons in a molecule by suppressing absorption and external dissipation processes. Under bias the current and the molecule exchange energy, which typically results in heating of the molecule. However, the opposite process is also possible, where energy is extracted from the molecule by the tunneling current. Designing a molecular "heat sink" where a particular vibrational mode funnels heat out of the molecule and into the leads would be very desirable. It is even possible to imagine how the vibrational energy of the other vibrational modes could be funneled into the "cooling mode," given the right molecular design. Previous efforts to understand heating and cooling mechanisms in single molecule junctions have primarily been concerned with small models, where it is unclear which molecular systems they correspond to. In this paper, our focus is on suppressing heating and obtaining current-induced cooling in certain vibrational modes. Strategies for cooling vibrational modes in single-molecule junctions are presented, together with atomistic calculations based on those strategies. Cooling and reduced heating are observed for two different cooling schemes in calculations of atomistic single-molecule junctions.

  1. Single-molecule electronics: Cooling individual vibrational modes by the tunneling current.

    Lykkebo, Jacob; Romano, Giuseppe; Gagliardi, Alessio; Pecchia, Alessandro; Solomon, Gemma C

    2016-03-21

    Electronic devices composed of single molecules constitute the ultimate limit in the continued downscaling of electronic components. A key challenge for single-molecule electronics is to control the temperature of these junctions. Controlling heating and cooling effects in individual vibrational modes can, in principle, be utilized to increase stability of single-molecule junctions under bias, to pump energy into particular vibrational modes to perform current-induced reactions, or to increase the resolution in inelastic electron tunneling spectroscopy by controlling the life-times of phonons in a molecule by suppressing absorption and external dissipation processes. Under bias the current and the molecule exchange energy, which typically results in heating of the molecule. However, the opposite process is also possible, where energy is extracted from the molecule by the tunneling current. Designing a molecular "heat sink" where a particular vibrational mode funnels heat out of the molecule and into the leads would be very desirable. It is even possible to imagine how the vibrational energy of the other vibrational modes could be funneled into the "cooling mode," given the right molecular design. Previous efforts to understand heating and cooling mechanisms in single molecule junctions have primarily been concerned with small models, where it is unclear which molecular systems they correspond to. In this paper, our focus is on suppressing heating and obtaining current-induced cooling in certain vibrational modes. Strategies for cooling vibrational modes in single-molecule junctions are presented, together with atomistic calculations based on those strategies. Cooling and reduced heating are observed for two different cooling schemes in calculations of atomistic single-molecule junctions. PMID:27004879

  2. Two-photon-induced hot-electron transfer to a single molecule in a scanning tunneling microscope

    The junction of a scanning tunneling microscope (STM) operating in the tunneling regime was irradiated with femtosecond laser pulses. A photoexcited hot electron in the STM tip resonantly tunnels into an excited state of a single molecule on the surface, converting it from the neutral to the anion. The electron-transfer rate depends quadratically on the incident laser power, suggesting a two-photon excitation process. This nonlinear optical process is further confirmed by the polarization measurement. Spatial dependence of the electron-transfer rate exhibits atomic-scale variations. A two-pulse correlation experiment reveals the ultrafast dynamic nature of photoinduced charging process in the STM junction. Results from these experiments are important for understanding photoinduced interfacial charge transfer in many nanoscale inorganic-organic structures.

  3. The role of thermal excitation in the tunneling-electron-induced reaction: Dissociation of dimethyl disulfide on Cu(111)

    Motobayashi, Kenta; Kim, Yousoo; Ohara, Michiaki; Ueba, Hiromu; Kawai, Maki

    2016-01-01

    We found a thermally assisted increase in anharmonic coupling between the reaction coordinate and Csbnd H(D) stretch mode for the dissociation of a single dimethyl disulfide molecule on Cu(111) induced by inelastic tunneling electrons from a tip of scanning tunneling microscope (STM). The reaction order, i.e. the number of electrons required for a reaction, changes from two to one at elevated temperature while the Csbnd H(D) stretch mode is excited by tunneling electrons. The detailed reaction mechanism is studied through the quantitative analysis of the non-integer reaction order observed at intermediate temperature, where low energy vibrational mode originated from the hybridized state of molecule and substrate plays a key role.

  4. Incorporation of electron tunnelling phenomenon into 3D Monte Carlo simulation of electrical percolation in graphite nanoplatelet composites

    The percolation threshold problem in insulating polymers filled with exfoliated conductive graphite nanoplatelets (GNPs) is re-examined in this 3D Monte Carlo simulation study. GNPs are modelled as solid discs wrapped by electrically conductive layers of certain thickness which represent half of the electron tunnelling distance. Two scenarios of 'impenetrable' and 'penetrable' GNPs are implemented in the simulations. The percolation thresholds for both scenarios are plotted versus the electron tunnelling distance for various GNP thicknesses. The assumption of successful dispersion and exfoliation, and the incorporation of the electron tunnelling phenomenon in the impenetrable simulations suggest that the simulated percolation thresholds are lower bounds for any experimental study. Finally, the simulation results are discussed and compared with other experimental studies.

  5. Resonant Tunnelling and Storage of Electrons in Si Nanocrystals within a-SiNx/nc-Si/a-SiNx Structures

    WANG Xiang; HUANG Jian; ZHANG Xian-Gao; DING Hong-Lin; YU Lin-Wei; HUANG Xin-Fan; LI Wei; XU Jun; CHEN Kun-Ji

    2008-01-01

    @@ The a-SiNx/nanocrystalline silicon (nc-Si)/a-SiNx sandwiched structures with asymmetric double-barrier are fabricated in a plasma enhanced chemical vapour deposition (PECVD) system on p-type Si substrates. The nc-Si layer in thickness 5nm is fabricated from a hydrogen-diluted silane gas by the layer-by-layer deposition technique. The thicknesses of tunnel and control SiNx layers are 3nm and 20nm,respectively. Frequency-dependent capacitance spectroscopy is used to study the electron tunnelling and the storage in the sandwiched structures.Distinct frequency-dependent capacitance peaks due to electrons tunnelling into the nc-Si dots and capacitance-voltage (C- V) hysteresis characteristic due to electrons storage in the nc-Si dots are observed with the same sample.

  6. A high-frequency response and a nonlinear coherent generation in resonant-tunneling diodes within a broad frequency range with electron-electron interaction

    Within the framework of a sequential quantum mechanical model, the response and the power of a coherent generation have been obtained numerically in a resonant-tunneling diode in a wide range of frequencies with the electron-electron interaction. The quantum regime of generation is shown to be sustained under the electron-electron interaction. Thus, a high-power generation is probable under frequencies exceeding the width of the resonant level

  7. Resonant electron tunneling in single quantum well heterostructure junction of electrodeposited metal semiconductor nanostructures using nuclear track filters

    We report on resonant electron tunneling through a Cu-Se heterostructure junction grown electrochemically in the submicron size pores (0.8 μm) of a nuclear track filter (Polycarbonate). The prominent feature of negative differential resistance (NDR) has been observed in the current-voltage (I-V) characteristic of the so-fabricated array of resonant tunneling diodes (RTDs) even at room temperature, along with a significant peak to valley current ratio (2.5) of the resonance. Tunneling structures of the nanofabricated RTDs around zero bias are also observed at room temperature. Our results show that the low cost and relatively easy electrodeposition method can be a very effective way to prepare resonant quantum tunneling devices, using the pores of nuclear track filters

  8. Resonant electron tunneling in single quantum well heterostructure junction of electrodeposited metal semiconductor nanostructures using nuclear track filters

    Biswas, A.; Avasthi, D.K.; Singh, Benoy K.; Lotha, S.; Singh, J.P.; Fink, D.; Yadav, B.K.; Bhattacharya, B.; Bose, S.K

    1999-05-02

    We report on resonant electron tunneling through a Cu-Se heterostructure junction grown electrochemically in the submicron size pores (0.8 {mu}m) of a nuclear track filter (Polycarbonate). The prominent feature of negative differential resistance (NDR) has been observed in the current-voltage (I-V) characteristic of the so-fabricated array of resonant tunneling diodes (RTDs) even at room temperature, along with a significant peak to valley current ratio (2.5) of the resonance. Tunneling structures of the nanofabricated RTDs around zero bias are also observed at room temperature. Our results show that the low cost and relatively easy electrodeposition method can be a very effective way to prepare resonant quantum tunneling devices, using the pores of nuclear track filters.

  9. Si single electron tunneling transistor with nanoscale floating dot stacked on a Coulomb island by self-aligned process

    Nakajima, Anri; Futatsugi, Toshiro; Kosemura, Kinjiro; Fukano, Tetsu; Yokoyama, Naoki

    1997-07-01

    We fabricated a Si single electron tunneling transistor which has a nanoscale floating dot gate stacked on a Coulomb island by a self-aligned process. This device exhibits drain current (Id) oscillations due to the Coulomb blockade effect and quantized threshold voltage (Vth) shifts resulting from a single electron tunneling from the channel to the floating dot gate. The high on/off current ratio of the Id oscillation combined with the quantized Vth shifts leads to the possibility of developing ultralow power consumption memory.

  10. Why and How to Measure the Use of Electronic Resources

    Jean Bernon

    2008-11-01

    Full Text Available A complete overview of library activity implies a complete and reliable measurement of the use of both electronic resources and printed materials. This measurement is based on three sets of definitions: document types, use types and user types. There is a common model of definitions for printed materials, but a lot of questions and technical issues remain for electronic resources. In 2006 a French national working group studied these questions. It relied on the COUNTER standard, but found it insufficient and pointed out the need for local tools such as web markers and deep analysis of proxy logs. Within the French national consortium COUPERIN, a new working group is testing ERMS, SUSHI standards, Shibboleth authentication, along with COUNTER standards, to improve the counting of the electronic resources use. At this stage this counting is insufficient and its improvement will be a European challenge for the future.

  11. Insights into channel potentials and electron quasi-Fermi potentials for DG tunnel FETs

    Menka; Bulusu, Anand; Dasgupta, S.

    2015-01-01

    A detailed investigation carried out, with the help of extensive simulations using the TCAD device simulator Sentaurus, with the aim of achieving an understanding of the effects of variations in gate and drain potentials on the device characteristics of a silicon double-gate tunnel field effect transistor (Si-DG TFET) is reported in this paper. The investigation is mainly aimed at studying electrical properties such as the electric potential, the electron density, and the electron quasi-Fermi potential in a channel. From the simulation results, it is found that the electrical properties in the channel region of the DG TFET are different from those for a DG MOSFET. It is observed that the central channel potential of the DG TFET is not pinned to a fixed potential even after the threshold is passed (as in the case of the DG MOSFET); instead, it initially increases and later on decreases with increasing gate voltage, and this is also the behavior exhibited by the surface potential of the device. However, the drain current always increases with the applied gate voltage. It is also observed that the electron quasi-Fermi potential (eQFP) decreases as the channel potential starts to decrease, and there are hiphops in the channel eQFP for higher applied drain voltages. The channel regime resistance is also observed for higher gate length, which has a great effect on the I-V characteristics of the DG TFET device. These channel regime electrical properties will be very useful for determining the tunneling current; thus these results may have further uses in developing analytical current models.

  12. Access to electronic resources by visually impaired people

    Jenny Craven

    2003-01-01

    Full Text Available Research into access to electronic resources by visually impaired people undertaken by the Centre for Research in Library and Information Management has not only explored the accessibility of websites and levels of awareness in providing websites that adhere to design for all principles, but has sought to enhance understanding of information seeking behaviour of blind and visually impaired people when using digital resources.

  13. Electronic Resources Security: A look at Unauthorized Users

    Heather Tones White

    2010-01-01

    Much of the literature written on electronic resources security focuses on systematic downloading.  However, when the unauthorized use from two cases of stolen identities at the University of Saskatchewan was studied in more depth, a different pattern emerged.  By analyzing proxy server data, we found that the unauthorized use was coming from all over the world, was focused on science, technology and medical resources, and included both small-scale and excessive downloading.  This article out...

  14. Uncovering a law of corresponding states for electron tunneling in molecular junctions.

    Bâldea, Ioan; Xie, Zuoti; Frisbie, C Daniel

    2015-06-21

    Laws of corresponding states known so far demonstrate that certain macroscopic systems can be described in a universal manner in terms of reduced quantities, which eliminate specific substance properties. To quantitatively describe real systems, all these laws of corresponding states contain numerical factors adjusted empirically. Here, we report a law of corresponding states deduced analytically for charge transport via tunneling in molecular junctions, which we validate against current-voltage measurements for conducting probe atomic force microscope junctions based on benchmark molecular series (oligophenylenedithiols and alkanedithiols) and electrodes (silver, gold, and platinum), as well as against transport data for scanning tunneling microscope junctions. Two salient features distinguish the present law of corresponding states from all those known previously. First, it is expressed by a universal curve free of empirical parameters. Second, it demonstrates that a universal behavior is not necessarily affected by strong stochastic fluctuations often observed in molecular electronics. An important and encouraging message of this finding is that transport behavior across different molecular platforms can be similar and extraordinarily reproducible. PMID:26008991

  15. Practical guide to electronic resources in the humanities

    Dubnjakovic, Ana

    2010-01-01

    From full-text article databases to digitized collections of primary source materials, newly emerging electronic resources have radically impacted how research in the humanities is conducted and discovered. This book, covering high-quality, up-to-date electronic resources for the humanities, is an easy-to-use annotated guide for the librarian, student, and scholar alike. It covers online databases, indexes, archives, and many other critical tools in key humanities disciplines including philosophy, religion, languages and literature, and performing and visual arts. Succinct overviews of key eme

  16. Contribution of the metal/SiO2 interface potential to photoinduced switching in molecular single-electron tunneling junctions

    Photoinduced switching of the Coulomb staircase in molecular single-electron tunneling junctions was previously observed. These junctions consisted of evaporated SiO2 insulator (∼5 nm), with tetrakis-3,5-di-t-butylphenyl-porphyrin (H2-TBPP) molecules as Coulomb islands, sandwiched between top and bottom electrodes. The reversible response and the relaxation time of the photoinduced switching suggest that this phenomenon depends on the properties of the metal/SiO2 interface rather than those of the H2-TBPP molecule or SiO2 tunneling layer. We analyzed the photoinduced switching according to the theory of single-electron tunneling taking into account the discrete molecular energy states and the metal/SiO2 interfacial electrostatic phenomena. We conclude that the main contributor to the photoinduced shift was the electrostatic potential formed through the space-charge exchange at the metal/SiO2 interface

  17. The study of optimal conditions of electrochemical etching of tunnel electron microscopy tungsten tips

    We present the experimental results obtained during the study made in the electrochemical etching of tunneling electron microscopy tungsten tips. The experiments was made using DC and two usual electrolytes: KOH and NaOH. For the tip preparation we used a electrochemical cell with stainless steel cathode and the tungsten wire as anode. the electrodes was introduced in a glass recipient containing the electrolytic solution. We study the effects of applied voltage, polish time, tip length and electrolyte concentration as process relevant parameters. The best condition for tip preparation was obtained with a metallurgical microscope and with a SEM.EDX and Auger analysis was made. The results shown the better tips was made with KOH as electrolyte with a limited concentration range (2-4 normal) and applied voltage (2-6 volts) (Author) 20 refs

  18. Detailed analysis of water structure in a solvent mediated electron tunneling mechanism

    This work aims at describing the water structure characteristics that influence the electron transfer superexchange mechanism by explicitly calculating the solvent mediated conductance between the donor and acceptor in a generic pair. The method employed here is based on the non-equilibrium Green function formalism for calculating the conductance over solvent trajectories previously determined by molecular dynamics methods. A non-exponential dependence of the conductance is observed with respect to the distance between the donor and the acceptor. Local fluctuations of the solvent structure are responsible for the non-monotonic dependence, mainly due to the formation of solvent bridges that act as a molecular wire connecting the sites. This shortcutting phenomenon is observed for certain ranges of distances between the donor and acceptor in the pair. Charge on the sites strongly affects the local solvent structure and causes qualitative changes in the distance dependence of the tunneling probability.

  19. A New XOR Structure Based on Resonant-Tunneling High Electron Mobility Transistor

    Mohammad Javad Sharifi

    2009-01-01

    Full Text Available A new structure for an exclusive-OR (XOR gate based on the resonant-tunneling high electron mobility transistor (RTHEMT is introduced which comprises only an RTHEMT and two FETs. Calculations are done by utilizing a new subcircuit model for simulating the RTHEMT in the SPICE simulator. Details of the design, input, and output values and margins, delay of each transition, maximum operating frequency, static and dynamic power dissipations of the new structure are discussed and calculated and the performance is compared with other XOR gates which confirm that the presented structure has a high performance. Furthermore, to the best of authors' knowledge, it has the least component count in comparison to the existing structures.

  20. Probing the local environment of a single OPE3 molecule using inelastic tunneling electron spectroscopy

    2015-01-01

    Summary We study single-molecule oligo(phenylene ethynylene)dithiol junctions by means of inelastic electron tunneling spectroscopy (IETS). The molecule is contacted with gold nano-electrodes formed with the mechanically controllable break junction technique. We record the IETS spectrum of the molecule from direct current measurements, both as a function of time and electrode separation. We find that for fixed electrode separation the molecule switches between various configurations, which are characterized by different IETS spectra. Similar variations in the IETS signal are observed during atomic rearrangements upon stretching of the molecular junction. Using quantum chemistry calculations, we identity some of the vibrational modes which constitute a chemical fingerprint of the molecule. In addition, changes can be attributed to rearrangements of the local molecular environment, in particular at the molecule–electrode interface. This study shows the importance of taking into account the interaction with the electrodes when describing inelastic contributions to transport through single-molecule junctions. PMID:26885460

  1. Excitation of bond-alternating spin-1/2 Heisenberg chains by tunnelling electrons

    Inelastic electron tunneling spectra (IETS) are evaluated for spin-1/2 Heisenberg chains showing different phases of their spin ordering. The spin ordering is controlled by the value of the two different Heisenberg couplings on the two sides of each of the chain's atoms (bond-alternating chains). The perfect anti-ferromagnetic phase, i.e. a unique exchange coupling, marks a topological quantum phase transition (TQPT) of the bond-alternating chain. Our calculations show that the TQPT is recognizable in the excited states of the chain and hence that IETS is in principle capable of discriminating the phases. We show that perfectly symmetric chains, such as closed rings mimicking infinite chains, yield the same spectra on both sides of the TQPT and IETS cannot reveal the nature of the spin phase. However, for finite size open chains, both sides of the TQPT are associated with different IETS spectra, especially on the edge atoms, thus outlining the transition. (paper)

  2. Probing the local environment of a single OPE3 molecule using inelastic tunneling electron spectroscopy

    Riccardo Frisenda

    2015-12-01

    Full Text Available We study single-molecule oligo(phenylene ethynylenedithiol junctions by means of inelastic electron tunneling spectroscopy (IETS. The molecule is contacted with gold nano-electrodes formed with the mechanically controllable break junction technique. We record the IETS spectrum of the molecule from direct current measurements, both as a function of time and electrode separation. We find that for fixed electrode separation the molecule switches between various configurations, which are characterized by different IETS spectra. Similar variations in the IETS signal are observed during atomic rearrangements upon stretching of the molecular junction. Using quantum chemistry calculations, we identity some of the vibrational modes which constitute a chemical fingerprint of the molecule. In addition, changes can be attributed to rearrangements of the local molecular environment, in particular at the molecule–electrode interface. This study shows the importance of taking into account the interaction with the electrodes when describing inelastic contributions to transport through single-molecule junctions.

  3. Resonant Tunnelling Diodes and High Electron Mobility Transistors Integrated on GaAs Substrates

    HUANG Ying-Long; MA Long; YANG Fu-Hua; WANG Liang-Chen; ZENG Yi-Ping

    2006-01-01

    @@ AlGaAs/InGaAs high electron mobility transistors (HEMTs) and AlAs/GaAs resonant tunnelling diodes (RTDs) are integrated on GaAs substrates. Molecular beam epitaxy is used to grow the RTD on the HEMT structure. The current-voltage characteristics of the RTD and HEMT are obtained on a two-inch wafer. At room temper ature, the peak-valley current ratio and the peak voltage are about 4.8 and 0.44 V, respectively. The HEMT is characterized by a gate length of 1 μm, a maximum transconductance of 125mS/mm, and a threshold voltage of-1.0 V. The current-voltage characteristics of the series-connected RTDs are presented. The current-voltage curves of the parallel connection of one RTD and one HEMT are also presented.

  4. Calculating electronic tunnel currents in networks of disordered irregularly shaped nanoparticles by mapping networks to arrays of parallel nonlinear resistors

    We have shown both theoretically and experimentally that tunnel currents in networks of disordered irregularly shaped nanoparticles (NPs) can be calculated by considering the networks as arrays of parallel nonlinear resistors. Each resistor is described by a one-dimensional or a two-dimensional array of equal size nanoparticles that the tunnel junction gaps between nanoparticles in each resistor is assumed to be equal. The number of tunnel junctions between two contact electrodes and the tunnel junction gaps between nanoparticles are found to be functions of Coulomb blockade energies. In addition, the tunnel barriers between nanoparticles were considered to be tilted at high voltages. Furthermore, the role of thermal expansion coefficient of the tunnel junction gaps on the tunnel current is taken into account. The model calculations fit very well to the experimental data of a network of disordered gold nanoparticles, a forest of multi-wall carbon nanotubes, and a network of few-layer graphene nanoplates over a wide temperature range (5-300 K) at low and high DC bias voltages (0.001 mV–50 V). Our investigations indicate, although electron cotunneling in networks of disordered irregularly shaped NPs may occur, non-Arrhenius behavior at low temperatures cannot be described by the cotunneling model due to size distribution in the networks and irregular shape of nanoparticles. Non-Arrhenius behavior of the samples at zero bias voltage limit was attributed to the disorder in the samples. Unlike the electron cotunneling model, we found that the crossover from Arrhenius to non-Arrhenius behavior occurs at two temperatures, one at a high temperature and the other at a low temperature.

  5. Electronic Commerce Resource Centers. An Industry--University Partnership.

    Gulledge, Thomas R.; Sommer, Rainer; Tarimcilar, M. Murat

    1999-01-01

    Electronic Commerce Resource Centers focus on transferring emerging technologies to small businesses through university/industry partnerships. Successful implementation hinges on a strategic operating plan, creation of measurable value for customers, investment in customer-targeted training, and measurement of performance outputs. (SK)

  6. What Is the Future of Electronic Resource Management Systems?

    Tijerina, Bonnie; King, Douglas

    2008-01-01

    In a time of constant change, sometimes it is worthwhile to ruminate on the future and how things ought to be. "Journal of Electronic Resources Librarianship" wanted to capture some of these ruminations from around the field in a new column called "E-Opinions from the Field" where readers are asked to send in their thoughts on a topic and respond…

  7. A Pioneering Spirit: Using Administrative Metadata to Manage Electronic Resources

    Medeiros, Norm

    2003-01-01

    This article describes administrative metadata, and its use in managing electronic resources. The focus of the article is an interview with Tim Jewell, Head of Collection Management Services at the University of Washington and Adam Chandler, Information Technology Librarian at Cornell University.

  8. Providing Access to Electronic Information Resources in Further Education

    Banwell, Linda; Ray, Kathryn; Coulson, Graham; Urquhart, Christine; Lonsdale, Ray; Armstrong, Chris; Thomas, Rhian; Spink, Sin; Yeoman, Alison; Fenton, Roger; Rowley, Jennifer

    2004-01-01

    This article aims to provide a baseline for future studies on the provision and support for the use of digital or electronic information services (EIS) in further education. The analysis presented is based on a multi-level model of access, which encompasses access to and availability of information and communication technology (ICT) resources,…

  9. Understanding the inelastic electron-tunneling spectra of alkanedithiols on gold.

    Solomon, Gemma C; Gagliardi, Alessio; Pecchia, Alessandro; Frauenheim, Thomas; Di Carlo, Aldo; Reimers, Jeffrey R; Hush, Noel S

    2006-03-01

    We present results for a simulated inelastic electron-tunneling spectra (IETS) from calculations using the "gDFTB" code. The geometric and electronic structure is obtained from calculations using a local-basis density-functional scheme, and a nonequilibrium Green's function formalism is employed to deal with the transport aspects of the problem. The calculated spectrum of octanedithiol on gold(111) shows good agreement with experimental results and suggests further details in the assignment of such spectra. We show that some low-energy peaks, unassigned in the experimental spectrum, occur in a region where a number of molecular modes are predicted to be active, suggesting that these modes are the cause of the peaks rather than a matrix signal, as previously postulated. The simulations also reveal the qualitative nature of the processes dominating IETS. It is highly sensitive only to the vibrational motions that occur in the regions of the molecule where there is electron density in the low-voltage conduction channel. This result is illustrated with an examination of the predicted variation of IETS with binding site and alkane chain length. PMID:16526869

  10. Photo-catalytic Activities of Plant Hormones on Semiconductor Nanoparticles by Laser-Activated Electron Tunneling and Emitting

    Tang, Xuemei; Huang, Lulu; Zhang, Wenyang; Jiang, Ruowei; Zhong, Hongying

    2015-03-01

    Understanding of the dynamic process of laser-induced ultrafast electron tunneling is still very limited. It has been thought that the photo-catalytic reaction of adsorbents on the surface is either dependent on the number of resultant electron-hole pairs where excess energy is lost to the lattice through coupling with phonon modes, or dependent on irradiation photon wavelength. We used UV (355 nm) laser pulses to excite electrons from the valence band to the conduction band of titanium dioxide (TiO2), zinc oxide (ZnO) and bismuth cobalt zinc oxide (Bi2O3)0.07(CoO)0.03(ZnO)0.9 semiconductor nanoparticles with different photo catalytic properties. Photoelectrons are extracted, accelerated in a static electric field and eventually captured by charge deficient atoms of adsorbed organic molecules. A time-of-flight mass spectrometer was used to detect negative molecules and fragment ions generated by un-paired electron directed bond cleavages. We show that the probability of electron tunneling is determined by the strength of the static electric field and intrinsic electron mobility of semiconductors. Photo-catalytic dissociation or polymerization reactions of adsorbents are highly dependent on the kinetic energy of tunneling electrons as well as the strength of laser influx. By using this approach, photo-activities of phytohormones have been investigated.

  11. Characterization of charged defects in Cd_xHg_(1-x)Te and CdTe crystals by electron beam induced current and scanning tunneling spectroscopy

    Panin, G. N.; Diaz-Guerra, C.; Piqueras de Noriega, Javier

    1998-01-01

    A correlative study of the electrically active defects of CdxHg1-xTe and CdTe crystals has been carried out using a scanning electron microscope/scanning tunneling microscope (SEM/STM) combined system. Charged structural and compositional defects were revealed by the remote electron beam induced current (REBIC) mode of the scanning electron microscope. The electronic inhomogeneities of the samples were analyzed with nm resolution by current imaging tunneling spectroscopy (CITS) measurements, ...

  12. Simulation of Inelastic Electron Tunnelling Spectroscopy on Different Contact Structures in 4,4'-Biphenyldithiol Molecular Junctions

    A first-principles computational method is developed to study the inelastic electron tunnelling spectroscopy (IETS) of 4,4'-biphenyldithiol molecular junction with three different contact structures between the molecule and electrodes in the nonresonant regime. The obtained distinct IETS can be used to resolve the geometrical structure of the molecular junction. The computational results demonstrate that the IETS has certain selection rule for vibrational modes, where the longitudinal modes with the same direction as the tunnelling current have greatest contribution to the IETS. The thermal effect on the IETS is also displayed

  13. Electronic Resources Security: A look at Unauthorized Users

    Heather Tones White

    2010-12-01

    Full Text Available Much of the literature written on electronic resources security focuses on systematic downloading.  However, when the unauthorized use from two cases of stolen identities at the University of Saskatchewan was studied in more depth, a different pattern emerged.  By analyzing proxy server data, we found that the unauthorized use was coming from all over the world, was focused on science, technology and medical resources, and included both small-scale and excessive downloading.  This article outlines some steps that libraries can take to detect and prevent small-scale unauthorized use and implications as libraries move towards Shibboleth authentication.

  14. Monolithic Integration of GaAs-Based Resonant Tunneling Diode and High Electron Mobility Transistor

    2007-01-01

    The resonant tunneling diode (RTD) is a kind of novel ultra-high speed and ultra-high frequency negative differential resistance nanoelectronic device. Integration of RTD and other three-terminal compound semiconductor devices is one important direction of high speed integrated circuit development. In this paper, monolithic integration technology of RTD and high electron mobility transistor (HEMT) based on GaAs substrate was discussed. A top-RTD and bottom-HEMT material structure was proposed and epitaxyed. Based on wet chemical etching, electron beam lithography,metal lift-off and air bridge technology, RTD and HEMT were fabricated on the same wafer. The peak-to-valley current ratio of RTD is 4 and the peak voltage is 0.5 V. The maximal transconductance is 120 mS/mm for a 0.25 μm gate length depletion mode HEMT. Current levels of two devices are basically suited. The results validate the feasibility of the designed integration process.

  15. High density processing electronics for superconducting tunnel junction x-ray detector arrays

    Warburton, W. K.; Harris, J. T.; Friedrich, S.

    2015-06-01

    Superconducting tunnel junctions (STJs) are excellent soft x-ray (100-2000 eV) detectors, particularly for synchrotron applications, because of their ability to obtain energy resolutions below 10 eV at count rates approaching 10 kcps. In order to achieve useful solid detection angles with these very small detectors, they are typically deployed in large arrays - currently with 100+ elements, but with 1000 elements being contemplated. In this paper we review a 5-year effort to develop compact, computer controlled low-noise processing electronics for STJ detector arrays, focusing on the major issues encountered and our solutions to them. Of particular interest are our preamplifier design, which can set the STJ operating points under computer control and achieve 2.7 eV energy resolution; our low noise power supply, which produces only 2 nV/√Hz noise at the preamplifier's critical cascode node; our digital processing card that digitizes and digitally processes 32 channels; and an STJ I-V curve scanning algorithm that computes noise as a function of offset voltage, allowing an optimum operating point to be easily selected. With 32 preamplifiers laid out on a custom 3U EuroCard, and the 32 channel digital card in a 3U PXI card format, electronics for a 128 channel array occupy only two small chassis, each the size of a National Instruments 5-slot PXI crate, and allow full array control with simple extensions of existing beam line data collection packages.

  16. Increasing the efficiency of a silicon tunnel MIS injector of hot electrons by using high-K oxides

    Vexler, M. I.

    2015-09-01

    It is demonstrated theoretically that replacing silicon dioxide in a metal-insulator-semiconductor (MIS) structure with a double-layer insulator HfO2(ZrO2)/SiO2 must lead to a decrease in the relative contribution of electrons with comparatively low energies to the total tunneling current. As a consequence, a suppression of the current component associated with the charge transport into the valence band of Si or from it is predicted for many regimes, especially of the low-energy part of this component. This effect can improve the efficiency of injection devices, such as a transistor with a tunnel MIS emitter or a resonant-tunneling diode based on a heavily doped MIS structure.

  17. E-Resources Management: How We Positioned Our Organization to Implement an Electronic Resources Management System

    White, Marilyn; Sanders, Susan

    2009-01-01

    The Information Services Division (ISD) of the National Institute of Standards and Technology (NIST) positioned itself to successfully implement an electronic resources management system. This article highlights the ISD's unique ability to "team" across the organization to realize a common goal, develop leadership qualities in support of…

  18. Grain boundary tunnel spectroscopy of the electron-doped cuprate superconductor La2-xCexCuO4

    The electron doped superconductor La2-xCexCuO4 (LCCO) has been investigated by electric transport measurements at low temperatures T down to 5 K and high magnetic fields up to 16 T. For this purpose LCCO thin film tunnel junctions have been prepared on bicrystal substrates by molecular beam epitaxy and micro structuring. The samples were characterised by measuring the thin film resistivity and the tunnel conductance of quasi particles across the grain boundary. By these measurements an unconventional symmetry of the order parameter could be revealed for La2-xCexCuO4. Furthermore it was shown, that the tunnel conductance can be used as a probe for the upper critical field Bc2(T). By using this method a value of Bc2∝24 T has been found for La2-xCexCuO4, a value roughly three times bigger than previously known. By this observation it was shown that the superconducting phase covers a larger region in the B-T-phase diagram. In addition it was concluded, that the pseudogap phase in La2-xCexCuO4 is either not existent at all or covers only a small temperature region. Besides quasiparticle tunneling also the tunneling of Cooper pairs in small magnetic fields has been investigated. It was shown that the critical current across the grain boundary depends on the supplier of the bicrystal substrate. (orig.)

  19. Depth-selective electronic and magnetic properties of a Co2MnSi tunnel magneto-resistance electrode at a MgO tunnel barrier

    Krumme, B.; Ebke, D.; Weis, C.; Makarov, S. I.; Warland, A.; Hütten, A.; Wende, H.

    2012-12-01

    We investigated the electronic structure as well as the magnetic properties of a Co2MnSi film on MgO(100) element-specifically at the interface to a MgO tunnel barrier by means of X-ray absorption spectroscopy and X-ray magnetic circular dichroism. The electronic structure of the Co atoms as a function of the capping layer thickness remained unchanged, whereas the XA spectra of Mn indicate an increase of the unoccupied d states. The experimental findings are consistent with the interfacial structure proposed in the work by B. Hülsen et al. [Phys. Rev. Lett. 103, 046802 (2009)], where a MnSi layer is present at the interface to the MgO with oxygen atoms at top positions in the first MgO layer.

  20. Scanning tunneling microscope observation of plasmid DNA under electron irradiation at 8-40 eV

    The structural changes in plasmid DNA adsorbed onto graphite following low-energy electron irradiation were investigated. Using a scanning tunneling microscope (STM), we observed networks or islands of DNA consisting of entangled molecules and compared the shapes of the DNA before and after electron irradiation at 8-40 eV field emitted from the tip of the STM. The shape of the DNA changed depending on the electron energy. Electrons with very low energy, such as 8 or 13 eV, extended the area of a DNA island, while the electrons at 18 or 38 eV degraded it. Both types of changes tend to saturate as the electron dose increases. We also discuss the above results in terms of the chemical reactions, such as strand breaks or molecular dissociation, induced by low-energy electrons

  1. The weak π − π interaction originated resonant tunneling and fast switching in the carbon based electronic devices

    Jun He

    2012-03-01

    Full Text Available By means of the nonequilibrium Green's functions and the density functional theory, we have investigated the electronic transport properties of C60 based electronic device with different intermolecular interactions. It is found that the electronic transport properties vary with the types of the interaction between two C60 molecules. A fast electrical switching behavior based on negative differential resistance has been found when two molecules are coupled by the weak π − π interaction. Compared to the solid bonding, the weak interaction is found to induce resonant tunneling, which is responsible for the fast response to the applied electric field and hence the velocity of switching.

  2. Scanning tunneling spectroscopy study of the electronic structure of Fe3O4 surfaces

    Jordan, K.; Cazacu, A.; Manai, G.; Ceballos, S. F.; Murphy, S.; Shvets, I. V.

    2006-08-01

    Scanning tunneling spectroscopy (STS) experiments were performed on the (001) and (111) surfaces of single crystalline magnetite. Room temperature spectra exhibit a ˜0.2eV gap around Ef . The importance of perfect surface order to the existence of this gap is illustrated. STS is also carried out on the (111) surface, at 140 and 95K , just above and below the Verwey transition temperature (TV˜120K) , respectively. It is confirmed that above TV a ˜0.2eV gap exists in the surface density of states (DOS) around Ef . Furthermore, broad bands are resolved on both sides of Ef , with peaks centered on ˜+0.5eV and ˜-0.45eV . Below TV it is shown that the value of the gap in the surface DOS remains similar, however, the peaks resolved in the conduction and valence bands shift markedly away from Ef . The similarity of the gap value before and after the transition points away from an ionic charge ordering occurring at the magnetite surface below TV . However, the shifting of the bands points to a certain degree of electronic ordering or charge disproportionation playing an integral part in the Verwey transition, at the magnetite surface.

  3. Integrated Electron-tunneling Refrigerator and TES Bolometer for Millimeter Wave Astronomy

    Silverberg, R. F.; Benford, D. J.; Chen, T. C.; Chervenak, J.; Finkbeiner, F.; Moseley, S. H.; Duncan, W.; Miller, N.; Schmidt, D.; Ullom, J.

    2005-01-01

    We describe progress in the development of a close-packed array of bolometers intended for use in photometric applications at millimeter wavelengths from ground- based telescopes. Each bolometer in the may uses a proximity-effect Transition Edge Sensor (TES) sensing element and each will have integrated Normal-Insulator-Superconductor (NIS) refrigerators to cool the bolometer below the ambient bath temperature. The NIS refrigerators and acoustic-phonon-mode-isolated bolometers are fabricated on silicon. The radiation-absorbing element is mechanically suspended by four legs, whose dimensions are used to control and optimize the thermal conductance of the bolometer. Using the technology developed at NIST, we fabricate NIS refrigerators at the base of each of the suspension legs. The NIS refrigerators remove hot electrons by quantum-mechanical tunneling and are expected to cool the biased (approx.10 pW) bolometers to bolometers are inside a pumped 3He-cooled cryostat operating at approx.280 mK. This significantly lower temperature at the bolometer allows the detectors to approach background-limited performance despite the simple cryogenic system.

  4. Characterization and Properties of Oligothiophenes Using Scanning Tunneling Microscopy for Possible Use in Organic Electronics

    A scanning tunneling microscopy study has been made on a group of alkyl-substituted oligothiophenes. The self-assembled monolayers of this type of semi-conducting oligomers on graphite were observed and characterized. To control the self-assembly, it is important to first understand the forces that drive the spontaneous ordering of molecules at interfaces. For the identification of the forces, several substituted oligothiophenes were examined: carboxylic acid groups, methyl ester carboxylic acid, and iodine atoms at one end and benzyl esters at the other end of the oligomers this is in addition to the non-functionalized oligothiophehens, Self-assembled monolayers of these molecules were then examined by STM. A detailed analysis of the driving forces and parameters controlling the formation of the self-assembled 2- D crystal monolayers was carried out by performing modeling of the experimental observations. The theoretical calculations gave us a conclusive insight into the intermolecular interactions, which lead to the observed conformation of molecules on the surface. An attempt to react two iodinated oligomers on the surface after the formation of the monolayer has been done; a topochemical reaction studies using UV/Vis light irradiation has been preceded. The targeted reaction was achieved. This can be considered as a great step towards the formation of nano-wires and other organic electronic devices. The applicability of the above method of force-driven self organisation in different patterns was examined as template for building donor-nano structures for electronic devices. It was necessary to examine the stability of the formed templates in air. The monolayers were left to dry and STM images were taken; C60 was then added to the monolayer, and the complexation of the C60 (as acceptor) with the formed monolayer template was examined.

  5. Liquid-induced damping of mechanical feedback effects in single electron tunneling through a suspended carbon nanotube

    In single electron tunneling through clean, suspended carbon nanotube devices at low temperature, distinct switching phenomena have regularly been observed. These can be explained via strong interaction of single electron tunneling and vibrational motion of the nanotube. We present measurements on a highly stable nanotube device, subsequently recorded in the vacuum chamber of a dilution refrigerator and immersed in the 3He/ 4He mixture of a second dilution refrigerator. The switching phenomena are absent when the sample is kept in the viscous liquid, additionally supporting the interpretation of dc-driven vibration. Transport measurements in liquid helium can thus be used for finite bias spectroscopy where otherwise the mechanical effects would dominate the current

  6. Structural characterization of interfaces in epitaxial Fe/MgO/Fe magnetic tunnel junctions by transmission electron microscopy

    We present a detailed structural characterization of the interfaces in Fe/MgO/Fe layers grown by molecular-beam epitaxy using aberration-corrected transmission electron microscopy (TEM), scanning TEM, and electron energy-loss spectroscopy. When fabricated into magnetic tunnel junctions, these epitaxial devices exhibit large tunnel magnetoresistance ratios (e.g., 318% at 10 K), though still considerably lower than the values predicted theoretically. The reason for this discrepancy is being debated and has been attributed to the structure of, and defects at the interface, namely, the relative position of the atoms, interface oxidation, strain, and structural asymmetry of the interfaces. In this structural study, we observed that Fe is bound to O at the interfaces. The interfaces are semicoherent and mostly sharp with a minor degree of oxidation. A comparison of the two interfaces shows that the top MgO/Fe interface is rougher.

  7. Electronic “Edge” State on Molybdenite Basal Plane Observed by Ultrahigh-Vacuum Scanning Tunneling Microscopy and Spectroscopy

    Komiyama, Masaharu; Tomita, Hiroyuki; Yoda, Eisuke

    2007-09-01

    An electronic state heretofore unreported has been found on a cleaved basal plane of a natural molybdenite (MoS2) single crystal by ultrahigh-vacuum scanning tunneling microscopy (UHV-STM), and examined in detail both by STM and scanning tunneling spectroscopy (STS). The new electronic state resides on the edge of the upper terrace of MoS2(0001), manifesting itself in the form of bright ridges with a width of ca. 4 nm along the step edges in negatively sample-biased STM images. This ridge structure is nonexistent in STM images taken with positive sample biases. STS showed that the local density of states (LDOS) on such ridge structures is much higher than that on the terraces in the range of 0.2-1.2 eV below the Fermi edge. The nature and origin of this high LDOS at the step edges are discussed.

  8. Design and simulation of a novel GaN based resonant tunneling high electron mobility transistor on a silicon substrate

    Chowdhury, Subhra; Chattaraj, Swarnabha; Biswas, Dhrubes

    2015-04-01

    For the first time, we have introduced a novel GaN based resonant tunneling high electron mobility transistor (RTHEMT) on a silicon substrate. A monolithically integrated GaN based inverted high electron mobility transistor (HEMT) and a resonant tunneling diode (RTD) are designed and simulated using the ATLAS simulator and MATLAB in this study. The 10% Al composition in the barrier layer of the GaN based RTD structure provides a peak-to-valley current ratio of 2.66 which controls the GaN based HEMT performance. Thus the results indicate an improvement in the current-voltage characteristics of the RTHEMT by controlling the gate voltage in this structure. The introduction of silicon as a substrate is a unique step taken by us for this type of RTHEMT structure.

  9. Design and simulation of a novel GaN based resonant tunneling high electron mobility transistor on a silicon substrate

    For the first time, we have introduced a novel GaN based resonant tunneling high electron mobility transistor (RTHEMT) on a silicon substrate. A monolithically integrated GaN based inverted high electron mobility transistor (HEMT) and a resonant tunneling diode (RTD) are designed and simulated using the ATLAS simulator and MATLAB in this study. The 10% Al composition in the barrier layer of the GaN based RTD structure provides a peak-to-valley current ratio of 2.66 which controls the GaN based HEMT performance. Thus the results indicate an improvement in the current–voltage characteristics of the RTHEMT by controlling the gate voltage in this structure. The introduction of silicon as a substrate is a unique step taken by us for this type of RTHEMT structure. (paper)

  10. Liquid-induced damping of mechanical feedback effects in single electron tunneling through a suspended carbon nanotube

    Schmid, D. R.; Stiller, P. L.; Strunk, Ch.; Hüttel, A. K., E-mail: andreas.huettel@ur.de [Institute for Experimental and Applied Physics, University of Regensburg, Universitätsstr. 31, 93053 Regensburg (Germany)

    2015-09-21

    In single electron tunneling through clean, suspended carbon nanotube devices at low temperature, distinct switching phenomena have regularly been observed. These can be explained via strong interaction of single electron tunneling and vibrational motion of the nanotube. We present measurements on a highly stable nanotube device, subsequently recorded in the vacuum chamber of a dilution refrigerator and immersed in the {sup 3}He/ {sup 4}He mixture of a second dilution refrigerator. The switching phenomena are absent when the sample is kept in the viscous liquid, additionally supporting the interpretation of dc-driven vibration. Transport measurements in liquid helium can thus be used for finite bias spectroscopy where otherwise the mechanical effects would dominate the current.