WorldWideScience

Sample records for time bioluminescence imaging

  1. Optimisation of acquisition time in bioluminescence imaging

    Science.gov (United States)

    Taylor, Shelley L.; Mason, Suzannah K. G.; Glinton, Sophie; Cobbold, Mark; Styles, Iain B.; Dehghani, Hamid

    2015-03-01

    Decreasing the acquisition time in bioluminescence imaging (BLI) and bioluminescence tomography (BLT) will enable animals to be imaged within the window of stable emission of the bioluminescent source, a higher imaging throughput and minimisation of the time which an animal is anaesthetised. This work investigates, through simulation using a heterogeneous mouse model, two methods of decreasing acquisition time: 1. Imaging at fewer wavelengths (a reduction from five to three); and 2. Increasing the bandwidth of filters used for imaging. The results indicate that both methods are viable ways of decreasing the acquisition time without a loss in quantitative accuracy. Importantly, when choosing imaging wavelengths, the spectral attenuation of tissue and emission spectrum of the source must be considered, in order to choose wavelengths at which a high signal can be achieved. Additionally, when increasing the bandwidth of the filters used for imaging, the bandwidth must be accounted for in the reconstruction algorithm.

  2. Bioluminescence Imaging

    OpenAIRE

    Ruxana T. Sadikot; Blackwell, Timothy S

    2005-01-01

    Bioluminescence refers to the process of visible light emission in living organisms. Bioluminescence imaging is a powerful methodology that has been developed over the last decade as a tool for molecular imaging of small laboratory animals, enabling the study of ongoing biological processes in vivo. This form of optical imaging is low cost and noninvasive and facilitates real-time analysis of disease processes at the molecular level in living organisms. In this article, we provide a brief int...

  3. Bioanalytical Applications of Real-Time ATP Imaging Via Bioluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Jason Alan Gruenhagen

    2003-12-12

    The research discussed within involves the development of novel applications of real-time imaging of adenosine 5'-triphosphate (ATP). ATP was detected via bioluminescence and the firefly luciferase-catalyzed reaction of ATP and luciferin. The use of a microscope and an imaging detector allowed for spatially resolved quantitation of ATP release. Employing this method, applications in both biological and chemical systems were developed. First, the mechanism by which the compound 48/80 induces release of ATP from human umbilical vein endothelial cells (HUVECs) was investigated. Numerous enzyme activators and inhibitors were utilized to probe the second messenger systems involved in release. Compound 48/80 activated a G{sub q}-type protein to initiate ATP release from HUVECs. Ca{sup 2+} imaging along with ATP imaging revealed that activation of phospholipase C and induction of intracellular Ca{sup 2+} signaling were necessary for release of ATP. Furthermore, activation of protein kinase C inhibited the activity of phospholipase C and thus decreased the magnitude of ATP release. This novel release mechanism was compared to the existing theories of extracellular release of ATP. Bioluminescence imaging was also employed to examine the role of ATP in the field of neuroscience. The central nervous system (CNS) was dissected from the freshwater snail Lymnaea stagnalis. Electrophysiological experiments demonstrated that the neurons of the Lymnaea were not damaged by any of the components of the imaging solution. ATP was continuously released by the ganglia of the CNS for over eight hours and varied from ganglion to ganglion and within individual ganglia. Addition of the neurotransmitters K{sup +} and serotonin increased release of ATP in certain regions of the Lymnaea CNS. Finally, the ATP imaging technique was investigated for the study of drug release systems. MCM-41-type mesoporous nanospheres were loaded with ATP and end-capped with mercaptoethanol functionalized CdS monocrystals. Aggregates of nanospheres were bathed in imaging solution, and ATP bioluminescence was monitored to investigated the release kinetics of the nanosphere drug delivery systems. Addition of disulfide bond-cleaving molecules induced uncapping of the nanospheres and subsequently, the release of ATP. Increasing the concentration of the uncapping molecule decreased the temporal maximum and increased the magnitude of release of encapsulated ATP from the nanospheres. Furthermore, the release kinetics from the nanospheres varied with the size of the particle aggregates.

  4. Timing of Imaging after D-Luciferin Injection Affects the Longitudinal Assessment of Tumor Growth Using In Vivo Bioluminescence Imaging

    OpenAIRE

    Yusuke Inoue; Shigeru Kiryu; Makoto Watanabe; Arinobu Tojo; Kuni Ohtomo

    2010-01-01

    The peak signal or the signal at a predetermined, fixed time point after D-luciferin injection may be used for the quantitative analysis of in vivo bioluminescence imaging. We repeatedly performed sequential bioluminescence imaging after subcutaneous injection of D-luciferin in mice bearing subcutaneous tumors. The peak time in each measurement became shorter early after cell inoculation, presumably due to gradual establishment of intratumoral vasculature, and reached a plateau of about 10 mi...

  5. Bioluminescence microscopy using a short focal-length imaging lens

    OpenAIRE

    Ogoh, K; Akiyoshi, R; May-Maw-Thet,; Sugiyama, T; Dosaka, S; Hatta-Ohashi, Y; Suzuki, H.

    2014-01-01

    Bioluminescence from cells is so dim that bioluminescence microscopy is performed using an ultra low-light imaging camera. Although the image sensor of such cameras has been greatly improved over time, such improvements have not been made commercially available for microscopes until now. Here, we customized the optical system of a microscope for bioluminescence imaging. As a result, bioluminescence images of cells could be captured with a conventional objective lens and colour imaging camera....

  6. BIOLUMINESCENCE IMAGING: PROGRESS AND APPLICATIONS

    OpenAIRE

    Badr, Christian E.; Tannous, Bakhos A.

    2011-01-01

    Application of bioluminescence imaging has grown tremendously in the past decade and has significantly contributed to the core conceptual advances in biomedical research. This technology provides valuable means for monitoring of different biological processes for immunology, oncology, virology and neuroscience. In this review, we will discuss current trends in bioluminescence and its application in different fields with emphasis on cancer research.

  7. Assessment of Efficacy of Antifungals against Aspergillus fumigatus: Value of Real-Time Bioluminescence Imaging

    OpenAIRE

    Galiger, Célimène; Brock, Matthias; Jouvion, Grégory; Savers, Amélie; Parlato, Marianna; Ibrahim-Granet, Oumaïma

    2013-01-01

    Aspergillus fumigatus causes life-threatening infections, especially in immunocompromised patients. Common drugs for therapy of aspergillosis are polyenes, azoles, and echinocandins. However, despite in vitro efficacy of these antifungals, treatment failure is frequently observed. In this study, we established bioluminescence imaging to monitor drug efficacy under in vitro and in vivo conditions. In vitro assays confirmed the effectiveness of liposomal amphotericin B, voriconazole, and anidul...

  8. Bioluminescence imaging characteristics and application

    International Nuclear Information System (INIS)

    Bioluminescence imaging (BLI) by luciferase gene marked cells or DNA, in the presence of ATP and oxygen, catalytic oxidation reaction of fluorescein luminescence. So that it can directly monitor in vivo cell activity and gene behavior. In this paper, by comparing the BLI and MRI, PET, radiography of the similarities and differences, as well as about their cancer, stem cells and immune cells transportation, apoptosis and other aspects of the application, in order to better provide the basis for promoting the application of BLI. (authors)

  9. Noninvasive Bioluminescence Imaging in Small Animals

    OpenAIRE

    Zinn, Kurt R; Chaudhuri, Tandra R; Szafran, April Adams; O’Quinn, Darrell; Weaver, Casey; Dugger, Kari; Lamar, Dale; Kesterson, Robert A.; Wang, Xiangdong; Frank, Stuart J

    2008-01-01

    There has been a rapid growth of bioluminescence imaging applications in small animal models in recent years, propelled by the availability of instruments, analysis software, reagents, and creative approaches to apply the technology in molecular imaging. Advantages include the sensitivity of the technique as well as its efficiency, relatively low cost, and versatility. Bioluminescence imaging is accomplished by sensitive detection of light emitted following chemical reaction of the luciferase...

  10. Bioluminescent imaging of Trypanosoma cruzi infection in Rhodnius prolixus

    Directory of Open Access Journals (Sweden)

    Henriques Cristina

    2012-09-01

    Full Text Available Abstract Background Usually the analysis of the various developmental stages of Trypanosoma cruzi in the experimentally infected vertebrate and invertebrate hosts is based on the morphological observations of tissue fragments from animals and insects. The development of techniques that allow the imaging of animals infected with parasites expressing luciferase open up possibilities to follow the fate of bioluminescent parasites in infected vectors. Methods D-luciferin (60 ?g was injected into the hemocoel of the whole insect before bioluminescence acquisition. In dissected insects, the whole gut was incubated with D-luciferin in PBS (300 ?g/ml for ex vivo bioluminescence acquisition in the IVIS® Imaging System, Xenogen. Results Herein, we describe the results obtained with the luciferase gene integrated into the genome of the Dm28c clone of T. cruzi, and the use of these parasites to follow, in real time, the infection of the insect vector Rhodnius prolixus, by a non- invasive method. The insects were evaluated by in vivo bioluminescent imaging on the feeding day, and on the 7 th, 14 th, 21 st and 28 th days after feeding. To corroborate the bioluminescent imaging made in vivo, and investigate the digestive tract region, the insects were dissected. The bioluminescence emitted was proportional to the number of protozoans in regions of the gut. The same digestive tracts were also macerated to count the parasites in distinct morphological stages with an optical microscope, and for bioluminescence acquisition in a microplate using the IVIS® Imaging System. A positive correlation of parasite numbers and bioluminescence in the microplate was obtained. Conclusions This is the first report of bioluminescent imaging in Rhodnius prolixus infected with trypomastigotes of the Dm28c-luc stable strain, expressing firefly luciferase. In spite of the distribution limitations of the substrate (D-luciferin in the insect body, longitudinal evaluation of infected insects by bioluminescent imaging is a valuable tool. Bioluminescent imaging of the digestive tract infected with Dm28c-luc is highly sensitive and accurate method to track the fate of the parasite in the vector, in the crop, intestine and rectum. This methodology is useful to gain a better understanding of the parasite – insect vector interactions.

  11. In vivo cell tracking with bioluminescence imaging

    International Nuclear Information System (INIS)

    Molecular imaging is a fast growing biomedical research that allows the visual representation, characterization and quantification of biological processes at the cellular and subcellular levels within intact living organisms. In vivo tracking of cells is an indispensable technology for development and optimization of cell therapy for replacement or renewal of damaged or diseased tissue using transplanted cells, often autologous cells. With outstanding advantages of bioluminescence imaging, the imaging approach is most commonly applied for in vivo monitoring of transplanted stem cells or immune cells in order to assess viability of administered cells with therapeutic efficacy in preclinical small animal models. In this review, a general overview of bioluminescence is provided and recent updates of in vivo cell tracking using the bioluminescence signal are discussed

  12. Comparison of image restoration methods for bioluminescence imaging

    OpenAIRE

    Akkoul, Smaïl; Lédée, Roger; Leconge, Remy; Léger, Christophe; Harba, Rachid; Pesnel, Sabrina; Lerondel, Stéphanie; Lepape, Alain

    2008-01-01

    Bioluminescence imaging is a recent modality to visualize biological effects more especially for small animals. However the acquired images are degraded by diffusion and absorption phenomena from the tissue and by the acquisition system itself. In this paper, we use restoration methods to enhance the quality of bioluminescence images. We propose a model for image formation and an experimental determination of the PSF (Point Spread Function). Several methods of restoration are compared on test...

  13. Bioluminescence in vivo imaging of autoimmune encephalomyelitis predicts disease

    Directory of Open Access Journals (Sweden)

    Steinman Lawrence

    2008-02-01

    Full Text Available Abstract Background Experimental autoimmune encephalomyelitis is a widely used animal model to understand not only multiple sclerosis but also basic principles of immunity. The disease is scored typically by observing signs of paralysis, which do not always correspond with pathological changes. Methods Experimental autoimmune encephalomyelitis was induced in transgenic mice expressing an injury responsive luciferase reporter in astrocytes (GFAP-luc. Bioluminescence in the brain and spinal cord was measured non-invasively in living mice. Mice were sacrificed at different time points to evaluate clinical and pathological changes. The correlation between bioluminescence and clinical and pathological EAE was statistically analyzed by Pearson correlation analysis. Results Bioluminescence from the brain and spinal cord correlates strongly with severity of clinical disease and a number of pathological changes in the brain in EAE. Bioluminescence at early time points also predicts severity of disease. Conclusion These results highlight the potential use of bioluminescence imaging to monitor neuroinflammation for rapid drug screening and immunological studies in EAE and suggest that similar approaches could be applied to other animal models of autoimmune and inflammatory disorders.

  14. Bioluminescent system for dynamic imaging of cell and animal behavior

    Energy Technology Data Exchange (ETDEWEB)

    Hara-Miyauchi, Chikako [Department of Physiology, Keio University School of Medicine, Tokyo 160-8582 (Japan); Laboratory for Cell Function Dynamics, Brain Science Institute, RIKEN, Saitama 351-0198 (Japan); Department of Biophysics and Biochemistry, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo 113-8510 (Japan); Tsuji, Osahiko [Department of Physiology, Keio University School of Medicine, Tokyo 160-8582 (Japan); Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582 (Japan); Hanyu, Aki [Division of Biochemistry, The Cancer Institute of the Japanese Foundation for Cancer Research, Tokyo 135-8550 (Japan); Okada, Seiji [Department of Advanced Medical Initiatives, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582 (Japan); Yasuda, Akimasa [Department of Physiology, Keio University School of Medicine, Tokyo 160-8582 (Japan); Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582 (Japan); Fukano, Takashi [Laboratory for Cell Function Dynamics, Brain Science Institute, RIKEN, Saitama 351-0198 (Japan); Akazawa, Chihiro [Department of Biophysics and Biochemistry, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo 113-8510 (Japan); Nakamura, Masaya [Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582 (Japan); Imamura, Takeshi [Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295 (Japan); Core Research for Evolutional Science and Technology, The Japan Science and Technology Corporation, Tokyo 135-8550 (Japan); Matsuzaki, Yumi [Department of Physiology, Keio University School of Medicine, Tokyo 160-8582 (Japan); Okano, Hirotaka James, E-mail: hjokano@jikei.ac.jp [Department of Physiology, Keio University School of Medicine, Tokyo 160-8582 (Japan); Division of Regenerative Medicine Jikei University School of Medicine, Tokyo 150-8461 (Japan); and others

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer We combined a yellow variant of GFP and firefly luciferase to make ffLuc-cp156. Black-Right-Pointing-Pointer ffLuc-cp156 showed improved photon yield in cultured cells and transgenic mice. Black-Right-Pointing-Pointer ffLuc-cp156 enabled video-rate bioluminescence imaging of freely-moving animals. Black-Right-Pointing-Pointer ffLuc-cp156 mice enabled tracking real-time drug delivery in conscious animals. -- Abstract: The current utility of bioluminescence imaging is constrained by a low photon yield that limits temporal sensitivity. Here, we describe an imaging method that uses a chemiluminescent/fluorescent protein, ffLuc-cp156, which consists of a yellow variant of Aequorea GFP and firefly luciferase. We report an improvement in photon yield by over three orders of magnitude over current bioluminescent systems. We imaged cellular movement at high resolution including neuronal growth cones and microglial cell protrusions. Transgenic ffLuc-cp156 mice enabled video-rate bioluminescence imaging of freely moving animals, which may provide a reliable assay for drug distribution in behaving animals for pre-clinical studies.

  15. Bioluminescent system for dynamic imaging of cell and animal behavior

    International Nuclear Information System (INIS)

    Highlights: ? We combined a yellow variant of GFP and firefly luciferase to make ffLuc-cp156. ? ffLuc-cp156 showed improved photon yield in cultured cells and transgenic mice. ? ffLuc-cp156 enabled video-rate bioluminescence imaging of freely-moving animals. ? ffLuc-cp156 mice enabled tracking real-time drug delivery in conscious animals. -- Abstract: The current utility of bioluminescence imaging is constrained by a low photon yield that limits temporal sensitivity. Here, we describe an imaging method that uses a chemiluminescent/fluorescent protein, ffLuc-cp156, which consists of a yellow variant of Aequorea GFP and firefly luciferase. We report an improvement in photon yield by over three orders of magnitude over current bioluminescent systems. We imaged cellular movement at high resolution including neuronal growth cones and microglial cell protrusions. Transgenic ffLuc-cp156 mice enabled video-rate bioluminescence imaging of freely moving animals, which may provide a reliable assay for drug distribution in behaving animals for pre-clinical studies.

  16. Dynamic bioluminescence imaging for quantitative tumour burden assessment using IV or IP administration of d-luciferin: effect on intensity, time kinetics and repeatability of photon emission

    International Nuclear Information System (INIS)

    In vivo bioluminescence imaging (BLI) is a promising technique for non-invasive tumour imaging. d-luciferin can be administrated intraperitonealy or intravenously. This will influence its availability and, therefore, the bioluminescent signal. The aim of this study is to compare the repeatability of BLI measurement after IV versus IP administration of d-luciferin and assess the correlation between photon emission and histological cell count both in vitro and in vivo. Fluc-positive R1M cells were subcutaneously inoculated in nu/nu mice. Dynamic BLI was performed after IV or IP administration of d-luciferin. Maximal photon emission (PEmax) was calculated. For repeatability assessment, every acquisition was repeated after 4 h and analysed using Bland-Altman method. A second group of animals was serially imaged, alternating IV and IP administration up to 21 days. When mice were killed, PEmax after IV administration was correlated with histological cell number. The coefficients of repeatability were 80.2% (IV) versus 95.0% (IP). Time-to-peak is shorter, and its variance lower for IV (p max was 5.6 times higher for IV. A trend was observed towards lower photon emission per cell in larger tumours. IV administration offers better repeatability and better sensitivity when compared to IP. In larger tumours, multiple factors may contribute to underestimation of tumour burden. It might, therefore, be beneficial to test novel therapeutics on small tumours to enable an accurate evaluation of tumour burden. (orig.)

  17. In Vivo Bioluminescence Imaging of the Murine Pathogen Citrobacter rodentium

    OpenAIRE

    Wiles, Siouxsie; Pickard, Karen M.; Peng, Katian; Macdonald, Thomas T; Frankel, Gad

    2006-01-01

    Citrobacter rodentium is a natural mouse pathogen related to enteropathogenic and enterohemorrhagic Escherichia coli. We have previously utilized bioluminescence imaging (BLI) to determine the in vivo colonization dynamics of C. rodentium. However, due to the oxygen requirement of the bioluminescence system and the colonic localization of C. rodentium, in vivo localization studies were performed using harvested organs. Here, we report the detection of bioluminescent C. rodentium and commensal...

  18. Bioluminescence.

    Science.gov (United States)

    Jones, M. Gail

    1993-01-01

    Describes bioluminescence and the chemistry of how it occurs. Presents information for conducting the following classroom activities: (1) firefly mimic; (2) modeling deep-sea fish; (3) sea fireflies; and (4) the chemistry of light. (PR)

  19. Bioluminescence tomography improves quantitative accuracy for pre-clinical imaging

    Science.gov (United States)

    Guggenheim, James A.; Basevi, Hector R. A.; Styles, Iain B.; Frampton, Jon; Dehghani, Hamid

    2013-06-01

    A study is presented that demonstrates that bioluminescence tomography can reconstruct accurate 3D images of internal light sources placed at a range of depths within a physical phantom and that it provides more reliable quantitative data than standard bioluminescence imaging. Specifically, it is shown that when imaging sources at depths ranging from 5 to 15mm, estimates of total source strength are stable to within +/-11% using tomography whilst values deduced by traditional methods vary 10-fold. Additionally, the tomographic approach correctly localises sources to within 1.5mm error in all cases considered.

  20. Continuous, real-time bioimaging of chemical bioavailability and toxicology using autonomously bioluminescent human cell lines

    Science.gov (United States)

    Xu, Tingting; Close, Dan M.; Webb, James D.; Price, Sarah L.; Ripp, Steven A.; Sayler, Gary S.

    2013-05-01

    Bioluminescent imaging is an emerging biomedical surveillance strategy that uses external cameras to detect in vivo light generated in small animal models of human physiology or in vitro light generated in tissue culture or tissue scaffold mimics of human anatomy. The most widely utilized of reporters is the firefly luciferase (luc) gene; however, it generates light only upon addition of a chemical substrate, thus only generating intermittent single time point data snapshots. To overcome this disadvantage, we have demonstrated substrate-independent bioluminescent imaging using an optimized bacterial bioluminescence (lux) system. The lux reporter produces bioluminescence autonomously using components found naturally within the cell, thereby allowing imaging to occur continuously and in real-time over the lifetime of the host. We have validated this technology in human cells with demonstrated chemical toxicological profiling against exotoxin exposures at signal strengths comparable to existing luc systems (~1.33 × 107 photons/second). As a proof-in-principle demonstration, we have engineered breast carcinoma cells to express bioluminescence for real-time screening of endocrine disrupting chemicals and validated detection of 17?-estradiol (EC50 = ~ 10 pM). These and other applications of this new reporter technology will be discussed as potential new pathways towards improved models of target chemical bioavailability, toxicology, efficacy, and human safety.

  1. Filtering and deconvolution for bioluminescence imaging of small animals

    International Nuclear Information System (INIS)

    This thesis is devoted to analysis of bioluminescence images applied to the small animal. This kind of imaging modality is used in cancerology studies. Nevertheless, some problems are related to the diffusion and the absorption of the tissues of the light of internal bioluminescent sources. In addition, system noise and the cosmic rays noise are present. This influences the quality of the images and makes it difficult to analyze. The purpose of this thesis is to overcome these disturbing effects. We first have proposed an image formation model for the bioluminescence images. The processing chain is constituted by a filtering stage followed by a deconvolution stage. We have proposed a new median filter to suppress the random value impulsive noise which corrupts the acquired images; this filter represents the first block of the proposed chain. For the deconvolution stage, we have performed a comparative study of various deconvolution algorithms. It allowed us to choose a blind deconvolution algorithm initialized with the estimated point spread function of the acquisition system. At first, we have validated our global approach by comparing our obtained results with the ground truth. Through various clinical tests, we have shown that the processing chain allows a significant improvement of the spatial resolution and a better distinction of very close tumor sources, what represents considerable contribution for the users of bioluminescence images. (author)

  2. Space application research of EMCCDs for bioluminescence imaging

    Science.gov (United States)

    Zhang, Tao

    The detection of bioluminescense is widely used on the ground, while the detection of bioluminescence in space is still at the stage of detecting bright bioluminescense. With the rapid development of research in Space Life Sciences, it will be necessary to develop a detection technology to detect weak bioluminescense. Compared to other low-light detection techniques for ground, there are more advantages of EMCCDs for space application. Build a space bioluminescence imaging detection system, analysis the feasibility and capability of its will be significant. Co-Author:Xie Zongbao,Zheng Weibo

  3. Computer-aided photometric analysis of dynamic digital bioluminescent images

    Science.gov (United States)

    Gorski, Zbigniew; Bembnista, T.; Floryszak-Wieczorek, J.; Domanski, Marek; Slawinski, Janusz

    2003-04-01

    The paper deals with photometric and morphologic analysis of bioluminescent images obtained by registration of light radiated directly from some plant objects. Registration of images obtained from ultra-weak light sources by the single photon counting (SPC) technique is the subject of this work. The radiation is registered by use of a 16-bit charge coupled device (CCD) camera "Night Owl" together with WinLight EG&G Berthold software. Additional application-specific software has been developed in order to deal with objects that are changing during the exposition time. Advantages of the elaborated set of easy configurable tools named FCT for a computer-aided photometric and morphologic analysis of numerous series of quantitatively imperfect chemiluminescent images are described. Instructions are given how to use these tools and exemplified with several algorithms for the transformation of images library. Using the proposed FCT set, automatic photometric and morphologic analysis of the information hidden within series of chemiluminescent images reflecting defensive processes in poinsettia (Euphorbia pulcherrima Willd) leaves affected by a pathogenic fungus Botrytis cinerea is revealed.

  4. Development of Quantification Method for Bioluminescence Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeon Sik; Min, Jung Joon; Lee, Byeong Il [Chonnam National University Hospital, Hwasun (Korea, Republic of); Choi, Eun Seo [Chosun University, Gwangju (Korea, Republic of); Tak, Yoon O; Choi, Heung Kook; Lee, Ju Young [Inje University, Kimhae (Korea, Republic of)

    2009-10-15

    Optical molecular luminescence imaging is widely used for detection and imaging of bio-photons emitted by luminescent luciferase activation. The measured photons in this method provide the degree of molecular alteration or cell numbers with the advantage of high signal-to-noise ratio. To extract useful information from the measured results, the analysis based on a proper quantification method is necessary. In this research, we propose a quantification method presenting linear response of measured light signal to measurement time. We detected the luminescence signal by using lab-made optical imaging equipment of animal light imaging system (ALIS) and different two kinds of light sources. One is three bacterial light-emitting sources containing different number of bacteria. The other is three different non-bacterial light sources emitting very weak light. By using the concept of the candela and the flux, we could derive simplified linear quantification formula. After experimentally measuring light intensity, the data was processed with the proposed quantification function. We could obtain linear response of photon counts to measurement time by applying the pre-determined quantification function. The ratio of the re-calculated photon counts and measurement time present a constant value although different light source was applied. The quantification function for linear response could be applicable to the standard quantification process. The proposed method could be used for the exact quantitative analysis in various light imaging equipment with presenting linear response behavior of constant light emitting sources to measurement time

  5. Development of Quantification Method for Bioluminescence Imaging

    International Nuclear Information System (INIS)

    Optical molecular luminescence imaging is widely used for detection and imaging of bio-photons emitted by luminescent luciferase activation. The measured photons in this method provide the degree of molecular alteration or cell numbers with the advantage of high signal-to-noise ratio. To extract useful information from the measured results, the analysis based on a proper quantification method is necessary. In this research, we propose a quantification method presenting linear response of measured light signal to measurement time. We detected the luminescence signal by using lab-made optical imaging equipment of animal light imaging system (ALIS) and different two kinds of light sources. One is three bacterial light-emitting sources containing different number of bacteria. The other is three different non-bacterial light sources emitting very weak light. By using the concept of the candela and the flux, we could derive simplified linear quantification formula. After experimentally measuring light intensity, the data was processed with the proposed quantification function. We could obtain linear response of photon counts to measurement time by applying the pre-determined quantification function. The ratio of the re-calculated photon counts and measurement time present a constant value although different light source was applied. The quantification function for linear response could be applicable to the standard quantification process. The proposed method could be used for the exact quantitative analysis in various light imaging equipment with presenting linear response behavior of constant light emitting sources to measurement time

  6. Infection with adenovirus-mediated luciferase reporter gene in mesenchymal stem cells and bioluminescence imaging

    International Nuclear Information System (INIS)

    Objective: To construct adenovirus vector containing firefly luciferase reporter gene (Ad-Luc) and infect bone marrow mesenchymal stem cells (BMSC), then to take bioluminescence imaging in vitro and in vivo for identification. Methods: The luciferase gene was amplified with PCR from psiCHECK-2 plasmid and cloned into the adenoviral shuttle vector (pShuttle-CMV). It was confirmed by Nhe ?/Xba ? digestion and sequencing. PShuttle-CMV-Luc and backbone vector (pAdeno) were homologous recombined. Then the recombinant plasmid was packaged in HEK293 cells and the virus titer was detected. The BMSC were infected by the recombinant adenovirus. The bioluminescence imaging in vitro was performed to determine the best multiplicity of infection (MOI), and the relationship between bioluminescence intensity and MOI was analyzed by curve fitting regression analysis. Viability was evaluated via Trypan blue staining. The transfected BMSC (1 × 106) were implanted into the muscles of forelimb of SD rats,and then tracked by bioluminescence imaging in vivo. Cell viability was compared using two-way repeated measures analysis of variance between groups. Results: Enzyme digestion and sequence analysis indicated that Ad-Luc was successfully constructed. The virus titer was 1 × 1010 plaque forming unit (PFU)/ml. The bioluminescence detection in vitro showed that Ad-Luc could infect BMSC high efficiently to express luciferase and the best MOI was 50. The bioluminescence intensity enhanced with increase of MOI (R2 =0.98). No statistically significant difference was found in cell viability between transfected and untransfected BMSC at 1, 3, 5, 7 d. The cell survival rates were (92.5±2.3)% vs (94.1±1.8)%, (91.4±0.9)% vs (92.7±2.0)%, (92.1±1.6)% vs (93.3± 2.4)%, (91.9 ± 1.5)% vs (93.0 ± 3.1)%, respectively (F=4.38, P>0.05). The bioluminescence imaging in vivo showed that BMSC survived 1, 3, 7 d after implantation. However, bioluminescence signal decreased gradually over time. Conclusion: It is feasible to apply the optical reporter gene imaging for tracing transplanted stem cells in vitro and in vivo due to the effective transformation of luciferase reporter gene into BMSC by adenovirus vector. (authors)

  7. In vivo fluorescence imaging of the reticuloendothelial system using quantum dots in combination with bioluminescent tumour monitoring

    International Nuclear Information System (INIS)

    We characterised in vivo fluorescence imaging (FLI) of the reticuloendothelial system using quantum dots (QD) and investigated its use in combination with in vivo bioluminescence imaging (BLI). In vivo FLI was performed in five mice repeatedly after the intravenous administration of QD without conjugation to targeting ligands. Ex vivo FLI of the excised organs was performed 24 h after QD injection in three mice. Seven days after intravenous inoculation of luciferase-expressing model cells of a haematological malignancy, mice were injected with the QD or saline (n = 5 each), and combined BLI/FLI was performed repeatedly. Additional five mice inoculated with the tumour cells were examined by in vivo BLI/FLI, and the structures harbouring bioluminescent foci were determined by ex vivo BLI. The utility of combining FLI with bioluminescent tumour monitoring was evaluated. In vivo FLI after QD injection allowed long-term, repeated observation of the reticuloendothelial system in individual mice, although fluorescence intensity and image contrast gradually decreased over time. Ex vivo FLI verified selective accumulation in reticuloendothelial structures. The administration of QD did not affect whole-body bioluminescent signal intensities during longitudinal tumour monitoring. In vivo BLI/FLI, accompanied by fusion of both images, improved the accuracy and confidence level of the localisation of the bioluminescent foci. In vivo FLI using QD provides an overview of the reticuloendothelial system in living mice. In combination with bioluminescent tumour monitoring, fluorescent reticuloendothelial imaging is expected to provide valuable information for lesion localisation. (orig.)

  8. Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging

    International Nuclear Information System (INIS)

    For bioluminescence imaging studies in small animals, it is important to be able to accurately localize the three-dimensional (3D) distribution of the underlying bioluminescent source. The spectrum of light produced by the source that escapes the subject varies with the depth of the emission source because of the wavelength-dependence of the optical properties of tissue. Consequently, multispectral or hyperspectral data acquisition should help in the 3D localization of deep sources. In this paper, we describe a framework for fully 3D bioluminescence tomographic image acquisition and reconstruction that exploits spectral information. We describe regularized tomographic reconstruction techniques that use semi-infinite slab or FEM-based diffusion approximations of photon transport through turbid media. Singular value decomposition analysis was used for data dimensionality reduction and to illustrate the advantage of using hyperspectral rather than achromatic data. Simulation studies in an atlas-mouse geometry indicated that sub-millimeter resolution may be attainable given accurate knowledge of the optical properties of the animal. A fixed arrangement of mirrors and a single CCD camera were used for simultaneous acquisition of multispectral imaging data over most of the surface of the animal. Phantom studies conducted using this system demonstrated our ability to accurately localize deep point-like sources and show that a resolution of 1.5 to 2.2 mm for depths up to 6 mm can be achieved. We also include an in vivo study of a mouse with a brain tumour expressing firefly luciferase. Co-registration of the reconstructed 3D bioluminescent image with magnetic resonance images indicated good anatomical localization of the tumour

  9. Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhari, Abhijit J [Signal and Image Processing Institute, Department of Electrical Engineering-Systems, University of Southern California, Los Angeles, CA 90089 (United States); Darvas, Felix [Signal and Image Processing Institute, Department of Electrical Engineering-Systems, University of Southern California, Los Angeles, CA 90089 (United States); Bading, James R [Department of Radiology, University of Southern California, Los Angeles, CA 90033 (United States); Moats, Rex A [Department of Radiology, University of Southern California, Los Angeles, CA 90033 (United States); Conti, Peter S [Department of Radiology, University of Southern California, Los Angeles, CA 90033 (United States); Smith, Desmond J [Department of Molecular and Medical Pharmacology, UCLA School of Medicine, Los Angeles, CA 90095 (United States); Cherry, Simon R [Department of Biomedical Engineering, University of California-Davis, Davis, CA 95616 (United States); Leahy, Richard M [Signal and Image Processing Institute, Department of Electrical Engineering-Systems, University of Southern California, Los Angeles, CA 90089 (United States)

    2005-12-07

    For bioluminescence imaging studies in small animals, it is important to be able to accurately localize the three-dimensional (3D) distribution of the underlying bioluminescent source. The spectrum of light produced by the source that escapes the subject varies with the depth of the emission source because of the wavelength-dependence of the optical properties of tissue. Consequently, multispectral or hyperspectral data acquisition should help in the 3D localization of deep sources. In this paper, we describe a framework for fully 3D bioluminescence tomographic image acquisition and reconstruction that exploits spectral information. We describe regularized tomographic reconstruction techniques that use semi-infinite slab or FEM-based diffusion approximations of photon transport through turbid media. Singular value decomposition analysis was used for data dimensionality reduction and to illustrate the advantage of using hyperspectral rather than achromatic data. Simulation studies in an atlas-mouse geometry indicated that sub-millimeter resolution may be attainable given accurate knowledge of the optical properties of the animal. A fixed arrangement of mirrors and a single CCD camera were used for simultaneous acquisition of multispectral imaging data over most of the surface of the animal. Phantom studies conducted using this system demonstrated our ability to accurately localize deep point-like sources and show that a resolution of 1.5 to 2.2 mm for depths up to 6 mm can be achieved. We also include an in vivo study of a mouse with a brain tumour expressing firefly luciferase. Co-registration of the reconstructed 3D bioluminescent image with magnetic resonance images indicated good anatomical localization of the tumour.

  10. In vivo bioluminescence imaging of furin activity in breast cancer cells using bioluminogenic substrates

    OpenAIRE

    Dragulescu-Andrasi, Anca; Liang, Gaolin; Rao, Jianghong

    2009-01-01

    Furin, a proprotein convertases family endoprotease, processes numerous physiological substrates and is overexpressed in cancer and inflammatory conditions. Non-invasive imaging of furin activity will offer a valuable tool to probe the furin function over the course of tumor growth and migration in the same animals in real time and directly assess the inhibition efficacy of drugs in vivo. Here, we report successful bioluminescence imaging of furin activity in xenografted MBA-MB-468 breast can...

  11. Filtering and deconvolution for bioluminescence imaging of small animals; Filtrage et deconvolution en imagerie de bioluminescence chez le petit animal

    Energy Technology Data Exchange (ETDEWEB)

    Akkoul, S.

    2010-06-22

    This thesis is devoted to analysis of bioluminescence images applied to the small animal. This kind of imaging modality is used in cancerology studies. Nevertheless, some problems are related to the diffusion and the absorption of the tissues of the light of internal bioluminescent sources. In addition, system noise and the cosmic rays noise are present. This influences the quality of the images and makes it difficult to analyze. The purpose of this thesis is to overcome these disturbing effects. We first have proposed an image formation model for the bioluminescence images. The processing chain is constituted by a filtering stage followed by a deconvolution stage. We have proposed a new median filter to suppress the random value impulsive noise which corrupts the acquired images; this filter represents the first block of the proposed chain. For the deconvolution stage, we have performed a comparative study of various deconvolution algorithms. It allowed us to choose a blind deconvolution algorithm initialized with the estimated point spread function of the acquisition system. At first, we have validated our global approach by comparing our obtained results with the ground truth. Through various clinical tests, we have shown that the processing chain allows a significant improvement of the spatial resolution and a better distinction of very close tumor sources, what represents considerable contribution for the users of bioluminescence images. (author)

  12. A novel brain metastasis xenograft model for convection?enhanced delivery of targeted toxins via a micro?osmotic pump system enabled for real?time bioluminescence imaging.

    Science.gov (United States)

    Huang, Jun; Li, Yan Michael; Cheng, Quan; Vallera, Daniel A; Hall, Walter A

    2015-10-01

    Brain metastasis is a common cause of mortality in patients with cancer, and is associated with poor prognosis. There is a current requirement for the identification of relevant brain metastasis tumor models, which may be used to test novel therapeutic agents and delivery systems in pre?clinical studies. The present study aimed to investigate the development of a murine model of brain metastasis, and the application of bioluminescence imaging (BLI) for monitoring tumor growth and response to targeted toxins (TT). A luciferase?modified human brain metastasis cell line was implanted into the caudate?putamen of athymic mice using a stereotactic frame. Tumor growth was monitored by BLI, and tumor volume was calculated from three?dimensional measurements of serial histopathological sections. Histopathological analyses revealed the presence of tumor growth within the caudate?putamen of all of the mice, and BLI was shown to be correlated with tumor volume. To evaluate whether this model would allow the detection of a therapeutic response, mice bearing metastatic brain tumor cell xenografts were treated with TT delivered by convection?enhanced delivery (CED), via a micro?osmotic pump system. The TT?treated groups were submitted to metastatic brain tumor cell experiments, the results of which suggested that TT treatment delayed tumor growth, as determined by BLI monitoring, and significantly extended the survival of the mice. The results of the present study demonstrated the efficacy of a brain metastasis model for CED of TT via a micro?osmotic pump system in athymic mice, in which tumor growth and response to therapy were accurately monitored by BLI. In conclusion, this model may be well?suited for pre?clinical testing of potential therapeutics for the treatment of patients with metastatic brain tumors. PMID:26238362

  13. DEVELOPMENT OF A DUAL MODALITY TOMOGRAPHIC IMAGING SYSTEM FOR BIOLUMINESCENCE AND PET

    Energy Technology Data Exchange (ETDEWEB)

    CHATZIIOANNOU, ARION

    2011-12-21

    The goal of this proposal was to develop a new hybrid imaging modality capable to simultaneously image optical bioluminescence signals, as well as radionuclide emissions from the annihilation of positrons originating from molecular imaging probes in preclinical mouse models. This new technology enables the simultaneous in-vivo measurements of both emissions that could be produced from a single or a combination of two different biomarkers. It also facilitates establishing the physical limitations of bioluminescence imaging, its tomographic and spectral image reconstruction potential and the quantification of bioluminescence signals.

  14. Assessing laser-tissue damage with bioluminescent imaging

    Science.gov (United States)

    Wilmink, Gerald J.; Opalenik, Susan R.; Beckham, Josh T.; Davidson, Jeffrey M.; Jansen, Eric D.

    2006-07-01

    Effective medical laser procedures are achieved by selecting laser parameters that minimize undesirable tissue damage. Traditionally, human subjects, animal models, and monolayer cell cultures have been used to study wound healing, tissue damage, and cellular effects of laser radiation. Each of these models has significant limitations, and consequently, a novel skin model is needed. To this end, a highly reproducible human skin model that enables noninvasive and longitudinal studies of gene expression was sought. In this study, we present an organotypic raft model (engineered skin) used in combination with bioluminescent imaging (BLI) techniques. The efficacy of the raft model was validated and characterized by investigating the role of heat shock protein 70 (hsp70) as a sensitive marker of thermal damage. The raft model consists of human cells incorporated into an extracellular matrix. The raft cultures were transfected with an adenovirus containing a murine hsp70 promoter driving transcription of luciferase. The model enables quantitative analysis of spatiotemporal expression of proteins using BLI. Thermal stress was induced on the raft cultures by means of a constant temperature water bath or with a carbon dioxide (CO2) laser (?=10.6 µm, 0.679 to 2.262 W/cm2, cw, unfocused Gaussian beam, ?L=4.5 mm, 1 min exposure). The bioluminescence was monitored noninvasively with an IVIS 100 Bioluminescent Imaging System. BLI indicated that peak hsp70 expression occurs 4 to 12 h after exposure to thermal stress. A minimum irradiance of 0.679 W/cm2 activated the hsp70 response, and a higher irradiance of 2.262 W/cm2 was associated with a severe reduction in hsp70 response due to tissue ablation. Reverse transcription polymerase chain reaction demonstrated that hsp70 mRNA levels increased with prolonged heating exposures. Enzyme-linked immunosorbent protein assays confirmed that luciferase was an accurate surrogate for hsp70 intracellular protein levels. Hematoxylin and eosin stains verified the presence of the thermally denatured tissue regions. Immunohistochemical analyses confirmed that maximal hsp70 expression occurred at a depth of 150 µm. Bioluminescent microscopy was employed to corroborate these findings. These results indicate that quantitative BLI in engineered tissue equivalents provides a powerful model that enables sequential gene expression studies. Such a model can be used as a high throughput screening platform for laser-tissue interaction studies.

  15. Impact of Anesthesia Protocols on In Vivo Bioluminescent Bacteria Imaging Results.

    Science.gov (United States)

    Chuzel, Thomas; Sanchez, Violette; Vandamme, Marc; Martin, Stéphane; Flety, Odile; Pager, Aurélie; Chabanel, Christophe; Magnier, Luc; Foskolos, Marie; Petit, Océane; Rokbi, Bachra; Chereul, Emmanuel

    2015-01-01

    Infectious murine models greatly benefit from optical imaging using bioluminescent bacteria to non-invasively and repeatedly follow in vivo bacterial infection. In this context, one of the most critical parameters is the bioluminescence sensitivity to reliably detect the smallest number of bacteria. Another critical point is the anesthetic approaches that have been demonstrated to impact the bioluminescence flux emission in studies with luciferase-transfected tumor cells. However, this impact has never been assessed on bacteria bioluminescent models. To this end, we investigated the effects of four anesthesia protocols on the bioluminescence flux in a central venous catheter murine model (SKH1-hr(hr) mice) infected by a bioluminescent S. aureus Xen36 strain. Bioluminescence imaging was performed on mice anesthetized by either ketamine/xylazine (with or without oxygen supplementation), or isoflurane carried with air or oxygen. Total flux emission was determined in vivo daily for 3 days and ex vivo at the end of the study together with a CFU counting of the biofilm in the catheter. Bioluminescence flux differences appear between the different anesthetic protocols. Using a ketamine/xylazine anesthesia (with air), bacteria detection was impossible since the bioluminescence signal remains in the background signal. Mice anesthetized with isoflurane and oxygen led to a signal significantly higher to the background all along the kinetics. The use of isoflurane in air presents a bioluminescence signal similar to the use of ketamine/xylazine with oxygen. These data highlight the importance of oxygen to improve bioluminescence flux by bacteria with isoflurane as well as with ketamine/xylazine anesthetics. As a conclusion, we recommend the use of isoflurane anesthetic with oxygen to increase the bioluminescence sensitivity in this kind of study. PMID:26208168

  16. ATP binding cassette transporters modulate both coelenterazine- and D-luciferin- based bioluminescence imaging

    OpenAIRE

    Huang, Ruimin; Vider, Jelena; Serganova, Inna; Blasberg, Ronald G.

    2011-01-01

    Bioluminescence imaging (BLI) of luciferase reporters provides a cost-effective and sensitive means to image biological processes. However, transport of luciferase substrates across the cell membrane does affect BLI-readout-intensity from intact living cells.

  17. In Vivo Bioluminescence Imaging of Tumor Cells Using Optimized Firefly Luciferase luc2

    Directory of Open Access Journals (Sweden)

    Klementyeva N.V.

    2013-09-01

    Full Text Available The present study was aimed to establish a tumor cell line stably expressing luciferase luc2, and to develop the technique to observe primary tumor nodes and metastases using in vivo bioluminescence imaging. Materials and Methods. In this research we used pLuc2-N plasmid, lentiviral vector pLVT-1, Colo 26 cell line and BALB/c mice to generate new bioluminescent tumor model. Bioluminescence imaging in vitro ? in vivo was carried out on IVIS-Spectrum system (Caliper Life Sciences, USA. Primary tumor model was created by subcutaneous injection of 500 000 Colo 26-luc2 cells. Model of metastases was generated by i.v. injection of 75 000 Colo 26-luc2 cells. Histological analysis was performed to verify the results of the imaging. Results. We created the lentiviral vector containing luc2 gene using molecular cloning. Then Colo 26-luc2 tumor cell line was generated. We assessed the sensitivity of luc2-based bioluminescence imaging. The intensity of bioluminescent signal in vitro averaged about 5000 photon/s per cell, in vivo — 250 photon/sec per cell. In vivo monitoring of Colo 26-luc2 primary tumor and metastases was demonstrated. The results of bioluminescence imaging correlated with histological analysis data. Conclusion. The present work shows the possibility of bioluminescent system based on optimized luciferase luc2 for in vivo noninvasive high-sensitive whole-body imaging of tumors.

  18. Fabrication of bioluminescent capsules and live-cell imaging.

    Science.gov (United States)

    Kim, Sung Bae

    2014-01-01

    The plasma membrane of living cells is an interface of material transfers and an antenna for outer signals. This chapter provides a guide on how to fabricate bioluminescent capsules for illuminating intracellular signaling and cargo protein delivery. The capsule consists of four components, which are, in consecutive order: a secretion peptide (SP), a host luciferase body (leader), a guest protein or peptide (cargo), and a membrane localization signal (MLS). Any guest protein, including a luciferase or a fluorescent protein, may be sandwiched between the host luciferase body and MLS and may be deliverable to the plasma membrane (PM), where the capsule waits for outer signals and to quickly release the embedded luciferase in response to a specific signal. The present strategy provides an efficient molecular vehicle for cargo proteins and imaging of intracellular molecular events in living cells without substrate-derived demerits of luciferases. PMID:24166373

  19. Monitoring and quantitative assessment of tumor burden using in vivo bioluminescence imaging

    International Nuclear Information System (INIS)

    In vivo bioluminescence imaging (BLI) is a sensitive imaging modality that is rapid and accessible, and may comprise an ideal tool for evaluating tumor growth. In this study, the kinetic of tumor growth has been assessed in C26 colon carcinoma bearing BALB/c mouse model. The ability of BLI to noninvasively quantitate the growth of subcutaneous tumors transplanted with C26 cells genetically engineered to stably express firefly luciferase and herpes simplex virus type-1 thymidine kinase (C26/tk-luc). A good correlation (R 2=0.998) of photon emission to the cell number was found in vitro. Tumor burden and tumor volume were monitored in vivo over time by quantitation of photon emission using Xenogen IVIS 50 and standard external caliper measurement, respectively. At various time intervals, tumor-bearing mice were imaged to determine the correlation of in vivo BLI to tumor volume. However, a correlation of BLI to tumor volume was observed when tumor volume was smaller than 1000 mm3 (R 2=0.907). ? Scintigraphy combined with [131I]FIAU was another imaging modality used for verifying the previous results. In conclusion, this study showed that bioluminescence imaging is a powerful and quantitative tool for the direct assay to monitor tumor growth in vivo. The dual reporter genes transfected tumor-bearing animal model can be applied in the evaluation of the efficacy of new developed anti-cancer drugs

  20. Monitoring and quantitative assessment of tumor burden using in vivo bioluminescence imaging

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.-C. [Cancer Research Division, National Health Research Institute, Miaoli 350, Taiwan (China); Hwang, Jeng-Jong [Institute of Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan (China)]. E-mail: jjhwang@ym.edu.tw; Ting, G. [Cancer Research Division, National Health Research Institute, Miaoli 350, Taiwan (China); Tseng, Y.-L. [Taiwan Liposome Company, Taipei 115, Taiwan (China); Wang, S.-J. [Department of Nuclear Medicine, Veterans General Hospital, Taipei 112, Taiwan (China); Whang-Peng, J. [Cancer Research Division, National Health Research Institute, Miaoli 350, Taiwan (China)

    2007-02-01

    In vivo bioluminescence imaging (BLI) is a sensitive imaging modality that is rapid and accessible, and may comprise an ideal tool for evaluating tumor growth. In this study, the kinetic of tumor growth has been assessed in C26 colon carcinoma bearing BALB/c mouse model. The ability of BLI to noninvasively quantitate the growth of subcutaneous tumors transplanted with C26 cells genetically engineered to stably express firefly luciferase and herpes simplex virus type-1 thymidine kinase (C26/tk-luc). A good correlation (R {sup 2}=0.998) of photon emission to the cell number was found in vitro. Tumor burden and tumor volume were monitored in vivo over time by quantitation of photon emission using Xenogen IVIS 50 and standard external caliper measurement, respectively. At various time intervals, tumor-bearing mice were imaged to determine the correlation of in vivo BLI to tumor volume. However, a correlation of BLI to tumor volume was observed when tumor volume was smaller than 1000 mm{sup 3} (R {sup 2}=0.907). {gamma} Scintigraphy combined with [{sup 131}I]FIAU was another imaging modality used for verifying the previous results. In conclusion, this study showed that bioluminescence imaging is a powerful and quantitative tool for the direct assay to monitor tumor growth in vivo. The dual reporter genes transfected tumor-bearing animal model can be applied in the evaluation of the efficacy of new developed anti-cancer drugs.

  1. Multimodal imaging of orthotopic hepatocellular carcinoma using small animal PET, bioluminescence and contrast enhanced CT imaging

    International Nuclear Information System (INIS)

    Molecular imaging with small-animal PET and bioluminescence imaging has been used as an important tool in cancer research. One of the disadvantages of these imaging modalities is the lack of anatomic information. To obtain fusion images with both molecular and anatomical information, small-animal PET and bioluminescence images fused with contrast enhance CT image in orthotopic hepatocellular carcinoma (HCC) model. We retrovially transfected dual gene (HSV1-tk and firefly luciferase) to morris hepatoma cells. The expression of HSV1-tk and luciferase was checked by optical imager and in vitro radiolabeled FIAU uptake, respectively and also checked by RT-PCR analysis. MCA-TL cells (5X105/ 0.05 ml) mixed with matrigel (1: 10) injected into left lobe of liver in nude mice. 124I-FIAU-PET, bioluminescence and contrast enhanced CT images were obtained in the orthotopic HCC model and digital whole body autoradiography (DWBA) was performed. Small animal PET image was obtained at 2 h post injection of 124I-FIAU and contrast enhanced CT image was obtained at 3 h post injection of Fenestra LC (0.3 ml). MCA-TL cells showed more specific 124I-FIAU uptake and higher luminescent activity than parental cells. The orthotopic HCC was detected by 124I-FIAU PET, contrast enhanced CT, and BLI and confirmed by DWBA. Registered image in orthotopic HCC t models showed a good correlation of images from both PET and CT. Contrast enhanced CT image delineated margin of HCC. Multimodal imaging with 124I-FIAU PET, bioluminescence and contrast enhanced CT allows a precise and improved detection of tumor in orthotopic hepatocellular carcinoma model. Multimodal imaging is potentially useful for monitoring progression of hepatic metastasis and for the evaluation of cancer treatments

  2. Multimodal imaging of orthotopic hepatocellular carcinoma using small animal PET, bioluminescence and contrast enhanced CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T. S.; Woo, S. G.; Jeong, J. H.; Woo, K. S.; Jeong, E. S.; Kang, J. H.; Cheon, G. J.; Choi, C. W.; Lim, S. M. [Korea Institute of Radioligical and Medical Sciences, Seoul (Korea, Republic of)

    2007-07-01

    Molecular imaging with small-animal PET and bioluminescence imaging has been used as an important tool in cancer research. One of the disadvantages of these imaging modalities is the lack of anatomic information. To obtain fusion images with both molecular and anatomical information, small-animal PET and bioluminescence images fused with contrast enhance CT image in orthotopic hepatocellular carcinoma (HCC) model. We retrovially transfected dual gene (HSV1-tk and firefly luciferase) to morris hepatoma cells. The expression of HSV1-tk and luciferase was checked by optical imager and in vitro radiolabeled FIAU uptake, respectively and also checked by RT-PCR analysis. MCA-TL cells (5X10{sup 5}/ 0.05 ml) mixed with matrigel (1: 10) injected into left lobe of liver in nude mice. {sup 124}I-FIAU-PET, bioluminescence and contrast enhanced CT images were obtained in the orthotopic HCC model and digital whole body autoradiography (DWBA) was performed. Small animal PET image was obtained at 2 h post injection of {sup 124}I-FIAU and contrast enhanced CT image was obtained at 3 h post injection of Fenestra LC (0.3 ml). MCA-TL cells showed more specific {sup 124}I-FIAU uptake and higher luminescent activity than parental cells. The orthotopic HCC was detected by {sup 124}I-FIAU PET, contrast enhanced CT, and BLI and confirmed by DWBA. Registered image in orthotopic HCC t models showed a good correlation of images from both PET and CT. Contrast enhanced CT image delineated margin of HCC. Multimodal imaging with {sup 124}I-FIAU PET, bioluminescence and contrast enhanced CT allows a precise and improved detection of tumor in orthotopic hepatocellular carcinoma model. Multimodal imaging is potentially useful for monitoring progression of hepatic metastasis and for the evaluation of cancer treatments.

  3. Accuracy of Off-Line Bioluminescence Imaging to Localize Targets in Preclinical Radiation Research

    OpenAIRE

    Tuli, Richard; ARMOUR, MICHAEL; Surmak, Andrew; Reyes, Juvenal; Iordachita, Iulian; Patterson, Michael; Wong, John

    2013-01-01

    In this study, we investigated the accuracy of using off-line bioluminescence imaging (BLI) and tomography (BLT) to guide irradiation of small soft tissue targets on a small animal radiation research platform (SARRP) with on-board cone beam CT (CBCT) capability. A small glass bulb containing BL cells was implanted as a BL source in the abdomen of 11 mouse carcasses. Bioluminescence imaging and tomography were acquired for each carcass. Six carcasses were setup visually without immobilization ...

  4. Bioluminescence imaging of leukemia cell lines in vitro and in mouse xenografts: effects of monoclonal and polyclonal cell populations on intensity and kinetics of photon emission

    OpenAIRE

    Christoph Sandra; Schlegel Jennifer; Alvarez-Calderon Francesca; Kim Yong-Mi; Brandao Luis N; DeRyckere Deborah; Graham Douglas K

    2013-01-01

    Abstract Background We investigated the utility of bioluminescence imaging (BLI) using firefly luciferase in monoclonal and polyclonal populations of leukemia cells in vitro and in vivo. Methods Monoclonal and polyclonal human lymphoid and myeloid leukemia cell lines transduced with firefly luciferase were used for BLI. Results Kinetics and dynamics of bioluminescence signal were cell line dependent. Luciferase expression decreased significantly over time in polyclonal leukemia cells in vitro...

  5. Let There Be Light! Bioluminescent Imaging to Study Bacterial Pathogenesis in Live Animals and Plants.

    Science.gov (United States)

    Kassem, Issmat I; Splitter, Gary A; Miller, Sally; Rajashekara, Gireesh

    2014-11-14

    : Bioluminescence imaging (BLI) of bacteria was primarily designed to permit real-time, sensitive, and noninvasive monitoring of the progression of infection in live animals. Generally, BLI relies on the construction of bacterial strains that possess the lux operon. The lux operon is composed of a set of genes that encode the luciferase enzyme and its cognate substrate, which interact to produce light-a phenomenon that is referred to as bioluminescence. Bioluminescence emitted by the bacteria can then be detected and imaged within a living host using sensitive charge-coupled device (CCD) cameras. In comparison to traditional host-pathogen studies, BLI offers the opportunity for extended monitoring of infected animals without resorting to euthanasia and extensive tissue processing at each time point. Therefore, BLI can reduce the number of animals required to generate meaningful data, while significantly contributing to the understanding of pathogenesis in the host and, subsequently, the development and evaluation of adequate vaccines and therapeutics. BLI is also useful in characterizing the interactions of pathogens with plants and the para-host environment. In this chapter, we demonstrate the broad application of BLI for studying bacterial pathogens in different niches. Furthermore, we will specifically focus on the use of BLI to characterize the following: (1) the pathogenesis of Brucella melitensis in mice (animal host), and (2) the progression of infection of Clavibacter michiganensis subsp. michiganensis in tomatoes (plant host). These studies will provide an overview of the wide potential of BLI and its role in enhancing the study of unique-and sometimes difficult-to-characterize-bacterial pathogens. PMID:25395174

  6. Use of a highly sensitive two-dimensional luminescence imaging system to monitor endogenous bioluminescence in plant leaves

    Directory of Open Access Journals (Sweden)

    Flor-Henry Michel

    2004-11-01

    Full Text Available Abstract Background All living organisms emit spontaneous low-level bioluminescence, which can be increased in response to stress. Methods for imaging this ultra-weak luminescence have previously been limited by the sensitivity of the detection systems used. Results We developed a novel configuration of a cooled charge-coupled device (CCD for 2-dimensional imaging of light emission from biological material. In this study, we imaged photon emission from plant leaves. The equipment allowed short integration times for image acquisition, providing high resolution spatial and temporal information on bioluminescence. We were able to carry out time course imaging of both delayed chlorophyll fluorescence from whole leaves, and of low level wound-induced luminescence that we showed to be localised to sites of tissue damage. We found that wound-induced luminescence was chlorophyll-dependent and was enhanced at higher temperatures. Conclusions The data gathered on plant bioluminescence illustrate that the equipment described here represents an improvement in 2-dimensional luminescence imaging technology. Using this system, we identify chlorophyll as the origin of wound-induced luminescence from leaves.

  7. Bioluminescence Imaging of Chlamydia muridarum Ascending Infection in Mice

    OpenAIRE

    Campbell, Jessica; Huang, Yumeng; Liu, Yuanjun; Schenken, Robert; Arulanandam, Bernard; Zhong, Guangming

    2014-01-01

    Chlamydial pathogenicity in the upper genital tract relies on chlamydial ascending from the lower genital tract. To monitor chlamydial ascension, we engineered a luciferase-expressing C. muridarum. In cells infected with the luciferase-expressing C. muridarum, luciferase gene expression and enzymatic activity (measured as bioluminescence intensity) correlated well along the infection course, suggesting that bioluminescence can be used for monitoring chlamydial replication. Following an intrav...

  8. Compartmentalization of algal bioluminescence: autofluorescence of bioluminescent particles in the dinoflagellate Gonyaulax as studied with image-intensified video microscopy and flow cytometry

    OpenAIRE

    1985-01-01

    Compartmentalization of specialized functions to discrete locales is a fundamental theme of eucaryotic organization in cells. We report here that bioluminescence of the dinoflagellate alga Gonyaulax originates in vivo from discrete subcellular loci that are intrinsically fluorescent. We demonstrate this localization by comparing the loci of fluorescence and bioluminescence as visualized by image-intensified video microscopy. These fluorescent particles appeared to be the same as the previousl...

  9. Bioluminescence Imaging Reveals Dynamics of Beta Cell Loss in the Non-Obese Diabetic (NOD) Mouse Model

    OpenAIRE

    Virostko, John; Radhika, Armandla; Poffenberger, Greg; Dula, Adrienne N; Moore, Daniel J; Powers, Alvin C

    2013-01-01

    We generated a mouse model (MIP-Luc-VU-NOD) that enables non-invasive bioluminescence imaging (BLI) of beta cell loss during the progression of autoimmune diabetes and determined the relationship between BLI and disease progression. MIP-Luc-VU-NOD mice displayed insulitis and a decline in bioluminescence with age which correlated with beta cell mass, plasma insulin, and pancreatic insulin content. Bioluminescence declined gradually in female MIP-Luc-VU-NOD mice, reaching less than 50% of the ...

  10. Functional imaging of interleukin 1 beta expression in inflammatory process using bioluminescence imaging in transgenic mice

    Directory of Open Access Journals (Sweden)

    Liu Zhihui

    2008-08-01

    Full Text Available Abstract Background Interleukin 1 beta (IL-1? plays an important role in a number of chronic and acute inflammatory diseases. To understand the role of IL-1? in disease processes and develop an in vivo screening system for anti-inflammatory drugs, a transgenic mouse line was generated which incorporated the transgene firefly luciferase gene driven by a 4.5-kb fragment of the human IL-1? gene promoter. Luciferase gene expression was monitored in live mice under anesthesia using bioluminescence imaging in a number of inflammatory disease models. Results In a LPS-induced sepsis model, dramatic increase in luciferase activity was observed in the mice. This transgene induction was time dependent and correlated with an increase of endogenous IL-1? mRNA and pro-IL-1? protein levels in the mice. In a zymosan-induced arthritis model and an oxazolone-induced skin hypersensitivity reaction model, luciferase expression was locally induced in the zymosan injected knee joint and in the ear with oxazolone application, respectively. Dexamethasone suppressed the expression of luciferase gene both in the acute sepsis model and in the acute arthritis model. Conclusion Our data suggest that the transgenic mice model could be used to study transcriptional regulation of the IL-1? gene expression in the inflammatory process and evaluation the effect of anti-inflammatory drug in vivo.

  11. Evaluation of biolistic gene transfer methods in vivo using non-invasive bioluminescent imaging techniques

    Directory of Open Access Journals (Sweden)

    Daniell Henry

    2011-06-01

    Full Text Available Abstract Background Gene therapy continues to hold great potential for treating many different types of disease and dysfunction. Safe and efficient techniques for gene transfer and expression in vivo are needed to enable gene therapeutic strategies to be effective in patients. Currently, the most commonly used methods employ replication-defective viral vectors for gene transfer, while physical gene transfer methods such as biolistic-mediated ("gene-gun" delivery to target tissues have not been as extensively explored. In the present study, we evaluated the efficacy of biolistic gene transfer techniques in vivo using non-invasive bioluminescent imaging (BLI methods. Results Plasmid DNA carrying the firefly luciferase (LUC reporter gene under the control of the human Cytomegalovirus (CMV promoter/enhancer was transfected into mouse skin and liver using biolistic methods. The plasmids were coupled to gold microspheres (1 ?m diameter using different DNA Loading Ratios (DLRs, and "shot" into target tissues using a helium-driven gene gun. The optimal DLR was found to be in the range of 4-10. Bioluminescence was measured using an In Vivo Imaging System (IVIS-50 at various time-points following transfer. Biolistic gene transfer to mouse skin produced peak reporter gene expression one day after transfer. Expression remained detectable through four days, but declined to undetectable levels by six days following gene transfer. Maximum depth of tissue penetration following biolistic transfer to abdominal skin was 200-300 ?m. Similarly, biolistic gene transfer to mouse liver in vivo also produced peak early expression followed by a decline over time. In contrast to skin, however, liver expression of the reporter gene was relatively stable 4-8 days post-biolistic gene transfer, and remained detectable for nearly two weeks. Conclusions The use of bioluminescence imaging techniques enabled efficient evaluation of reporter gene expression in vivo. Our results demonstrate that different tissues show different expression kinetics following gene transfer of the same reporter plasmid to different mouse tissues in vivo. We evaluated superficial (skin and abdominal organ (liver targets, and found that reporter gene expression peaked within the first two days post-transfer in each case, but declined most rapidly in the skin (3-4 days compared to liver (10-14 days. This information is essential for designing effective gene therapy strategies in different target tissues.

  12. Bioluminescence imaging to monitor the prolongation of stem cell survival by pharmaceutical intervention

    International Nuclear Information System (INIS)

    The rapid donor cell death and rejection owing to humoral and cellular immune reactions are a basic limitation encountered in stem cell therapy for treatment of cardiovascular disease. We investigated the potential for longitudinal bioluminescence imaging to monitor the survival of transplanted stem cells prolonged by immunosuppressive agents. Embryonic rat H9c2 cardio myoblasts were transfected with adenovirus containing luciferase reporter gene (Ad-CMV-Fluc) in different MOI (1,10,100) and various cell doses (1x105 - 5x106)followed by injection in the thigh muscle of nude mice (n=6 per group), Other mice (n = 18) were undergone transient immunosuppression provided by either Cyclosporine (5mg/kg) or Tacrolimus (1mg/kg) or Dexamethasone (4mg/kg) beginning 3 days prior to and continuing to 2 weeks after transplantation. Optical bioluminescent imaging was then daily carried out using cooled CCD camera (Xenogen) Viral transfection at MOI 100 and the 5x106 cell dose implantation resulted in optimal transgene efficiency. Mice received immunosuppressive agents displayed long-term in vivo reporter gene expression for a time course of 14 days. Tacrolimus (Prograf) and Cyclosporine successfully suppressed the transplanted cell loss in animals, that obviously observed until day 8 as compared to Dexamethasone-treated and non-treated mice (day 1: 1.00E+08 (Prograf), 9.47E+07 (Cys), 5.25E+07 (Dex), and 1.25E+07 p/s/cm2/sr (control); day 8: 3.27E+05 (Prograf), 1.02E+05 (Cys), 6.17E+04 (Dex) and 2.73E+04 p/s/cm2/sr (control)) and continued expressing bioluminescence until day 13 ( 6.42E+05 (Prograf), 4.99E+05 (Cys), and 4.10E+04 p/s/cm2/sr. Induction of immune tolerance using pharmaceutical agents during cardio myoblast transplantation improved long-term donor cell survival in murine muscles. Optical imaging technique is capable of being used for tracking implanted stem cells in myocardium of living subjects over time

  13. Bioluminescence imaging to monitor the prolongation of stem cell survival by pharmaceutical intervention

    Energy Technology Data Exchange (ETDEWEB)

    Le, Uyenchi N.; Min, Jung Joon; Moon, Sung Min; Ahn, Young Keun; Kim, Yong Sook; Joo, Soo Yeon; Hong, Moon Hwa; Jeong, Myung Ho; Song, Ho Cheon; Bom, Hee Seung [Chonnam National University Medical School, Gwangju (Korea, Republic of)

    2005-07-01

    The rapid donor cell death and rejection owing to humoral and cellular immune reactions are a basic limitation encountered in stem cell therapy for treatment of cardiovascular disease. We investigated the potential for longitudinal bioluminescence imaging to monitor the survival of transplanted stem cells prolonged by immunosuppressive agents. Embryonic rat H9c2 cardio myoblasts were transfected with adenovirus containing luciferase reporter gene (Ad-CMV-Fluc) in different MOI (1,10,100) and various cell doses (1x10{sup 5} - 5x10{sup 6})followed by injection in the thigh muscle of nude mice (n=6 per group), Other mice (n = 18) were undergone transient immunosuppression provided by either Cyclosporine (5mg/kg) or Tacrolimus (1mg/kg) or Dexamethasone (4mg/kg) beginning 3 days prior to and continuing to 2 weeks after transplantation. Optical bioluminescent imaging was then daily carried out using cooled CCD camera (Xenogen) Viral transfection at MOI 100 and the 5x10{sup 6} cell dose implantation resulted in optimal transgene efficiency. Mice received immunosuppressive agents displayed long-term in vivo reporter gene expression for a time course of 14 days. Tacrolimus (Prograf) and Cyclosporine successfully suppressed the transplanted cell loss in animals, that obviously observed until day 8 as compared to Dexamethasone-treated and non-treated mice (day 1: 1.00E+08 (Prograf), 9.47E+07 (Cys), 5.25E+07 (Dex), and 1.25E+07 p/s/cm{sup 2}/sr (control); day 8: 3.27E+05 (Prograf), 1.02E+05 (Cys), 6.17E+04 (Dex) and 2.73E+04 p/s/cm{sup 2}/sr (control)) and continued expressing bioluminescence until day 13 ( 6.42E+05 (Prograf), 4.99E+05 (Cys), and 4.10E+04 p/s/cm{sup 2}/sr. Induction of immune tolerance using pharmaceutical agents during cardio myoblast transplantation improved long-term donor cell survival in murine muscles. Optical imaging technique is capable of being used for tracking implanted stem cells in myocardium of living subjects over time.

  14. Development of Optical Molecular Imaging System for the Acquisition of Bioluminescence Signals from Small Animals

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byeong Il; Kim, Hyeon Sik; Jeong, Hye Jin; Lee, Hyung Jae; Moon, Seung Min; Kwon, Seung Young; Jeong, Shin Young; Bom, Hee Seung; Min, Jung Joon [Chonnam National University Hospital, Gwangju (Korea, Republic of); Choi, Eun Seo [Chosun University, Gwangju (Korea, Republic of)

    2009-08-15

    Optical imaging is providing great advance and improvement in genetic and molecular imaging of animals and humans. Optical imaging system consists of optical imaging devices, which carry out major function for monitoring, tracing, and imaging in most of molecular in-vivo researches. In bio-luminescent imaging, small animals containing luciferase gene locally irradiate light, and emitted photons transmitted through skin of the small animals are imaged by using a high sensitive charged coupled device (CCD) camera. In this paper, we introduced optical imaging system for the image acquisition of bio-luminescent signals emitted from small animals. In the system, Nikon lens and four LED light sources were mounted at the inside of a dark box. A cooled CCD camera equipped with a control module was used. We tested the performance of the optical imaging system using effendorf tube and light emitting bacteria which injected intravenously into CT26 tumor bearing nude mouse. The performance of implemented optical imaging system for bio-luminescence imaging was demonstrated and the feasibility of the system in small animal imaging application was proved. We anticipate this system could be a useful tool for the molecular imaging of small animals adaptable for various experimental conditions in future

  15. Development of Optical Molecular Imaging System for the Acquisition of Bioluminescence Signals from Small Animals

    International Nuclear Information System (INIS)

    Optical imaging is providing great advance and improvement in genetic and molecular imaging of animals and humans. Optical imaging system consists of optical imaging devices, which carry out major function for monitoring, tracing, and imaging in most of molecular in-vivo researches. In bio-luminescent imaging, small animals containing luciferase gene locally irradiate light, and emitted photons transmitted through skin of the small animals are imaged by using a high sensitive charged coupled device (CCD) camera. In this paper, we introduced optical imaging system for the image acquisition of bio-luminescent signals emitted from small animals. In the system, Nikon lens and four LED light sources were mounted at the inside of a dark box. A cooled CCD camera equipped with a control module was used. We tested the performance of the optical imaging system using effendorf tube and light emitting bacteria which injected intravenously into CT26 tumor bearing nude mouse. The performance of implemented optical imaging system for bio-luminescence imaging was demonstrated and the feasibility of the system in small animal imaging application was proved. We anticipate this system could be a useful tool for the molecular imaging of small animals adaptable for various experimental conditions in future

  16. Bioluminescence imaging of chondrocytes in rabbits by intraarticular injection of D-luciferin

    International Nuclear Information System (INIS)

    Luciferase is one of the most commonly used reporter enzymes in the field of in vivo optical imaging. D-luciferin, the substrate for firefly luciferase has very high cost that allows this kind of experiment limited to small animals such as mice and rats. In this current study, we validated local injection of D-luciferin in the articular capsule for bioluminescence imaging in rabbits. Chondrocytes were cultured and infected by replication-defective adenoviral vector encoding firefly luciferase (Fluc). Chondrocytes expressing Fluc were injected or implanted in the left knee joint. The rabbits underwent optical imaging studies after local injection of D-luciferin at 1, 5, 7, 9 days after cellular administration. We sought whether optimal imaging signals was could be by a cooled CCD camera after local injection of D-luciferin. Imaging signal was not observed from the left knee joint after intraperitoneal injection of D-luciferin (15 mg/kg), whereas it was observed after intraarticular injection. Photon intensity from the left knee joint of rabbits was compared between cell injected and implanted groups after intraarticular injection of D-luciferin. During the period of imaging studies, photon intensity of the cell implanted group was 5-10 times higher than that of the cell injected group. We successfully imaged chondrocytes expressing Fluc after intraarticular injection of D-luciferin. This technique may be further applied to develop new drugs for knee joint disease

  17. Bioluminescence imaging of chondrocytes in rabbits by intraarticular injection of D-luciferin

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Sung Min; Min, Jung Joon; Kim, Sung Mi; Bom, Hee Seung [Chonnam National University Medical School, Gwangju (Korea, Republic of); Oh, Suk Jung; Kang, Han Saem; Kim, Kwang Yoon [ECOBIO INC., Gwangju (Korea, Republic of); Kim, Young Ho [College of Natural Science, Chosun University, Gwangju (Korea, Republic of)

    2007-02-15

    Luciferase is one of the most commonly used reporter enzymes in the field of in vivo optical imaging. D-luciferin, the substrate for firefly luciferase has very high cost that allows this kind of experiment limited to small animals such as mice and rats. In this current study, we validated local injection of D-luciferin in the articular capsule for bioluminescence imaging in rabbits. Chondrocytes were cultured and infected by replication-defective adenoviral vector encoding firefly luciferase (Fluc). Chondrocytes expressing Fluc were injected or implanted in the left knee joint. The rabbits underwent optical imaging studies after local injection of D-luciferin at 1, 5, 7, 9 days after cellular administration. We sought whether optimal imaging signals was could be by a cooled CCD camera after local injection of D-luciferin. Imaging signal was not observed from the left knee joint after intraperitoneal injection of D-luciferin (15 mg/kg), whereas it was observed after intraarticular injection. Photon intensity from the left knee joint of rabbits was compared between cell injected and implanted groups after intraarticular injection of D-luciferin. During the period of imaging studies, photon intensity of the cell implanted group was 5-10 times higher than that of the cell injected group. We successfully imaged chondrocytes expressing Fluc after intraarticular injection of D-luciferin. This technique may be further applied to develop new drugs for knee joint disease.

  18. Bioluminescence in vivo imaging of autoimmune encephalomyelitis predicts disease

    OpenAIRE

    Steinman Lawrence; Ho Peggy; Luo Jian; Wyss-Coray Tony

    2008-01-01

    Abstract Background Experimental autoimmune encephalomyelitis is a widely used animal model to understand not only multiple sclerosis but also basic principles of immunity. The disease is scored typically by observing signs of paralysis, which do not always correspond with pathological changes. Methods Experimental autoimmune encephalomyelitis was induced in transgenic mice expressing an injury responsive luciferase reporter in astrocytes (GFAP-luc). Bioluminescence in the brain and spinal co...

  19. Novel registration for microcomputed tomography and bioluminescence imaging based on iterated optimal projection

    Science.gov (United States)

    Ma, Xibo; Deng, Kexin; Xue, Zhenwen; Liu, Xueyan; Zhu, Shouping; Qin, Chenghu; Yang, Xin; Tian, Jie

    2013-02-01

    As a high-sensitivity imaging modality, bioluminescence tomography can reconstruct the three-dimensional (3-D) location of an internal luminescent source based on the 3-D surface light distribution. However, we can only get the multi-orientation two-dimensional (2-D) bioluminescence distribution in the experiments. Therefore, developing an accurate universal registration method is essential for following bioluminescent source reconstruction. We can then map the multi-orientation 2-D bioluminescence distribution to the 3-D surface derived from anatomical information with it. We propose a 2-D -to-3-D registration method based on iterated optimal projection and applied it in a registration and reconstruction study of three transgenic mice. Compared with traditional registration methods based on the fixed points, our method was independent of the markers and the registration accuracy of the three experiments was improved by 0.3, 0.5, and 0.4 pixels, respectively. In addition, based on the above two registration results using the two registration methods, we reconstructed the 3-D location of the inner bioluminescent source in the three transgenic mice. The reconstruction results showed that the average error distance between the center of the reconstructed element and the center of the real element were reduced by 0.32, 0.48, and 0.39 mm, respectively.

  20. Uptake kinetics and biodistribution of {sup 14}C-d-luciferin - a radiolabeled substrate for the firefly luciferase catalyzed bioluminescence reaction: impact on bioluminescence based reporter gene imaging

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Frank [Ludwig-Maximilians University Munich (Germany). Department of Clinical Radiology; Paulmurugan, Ramasamy; Gambhir, Sanjiv Sam [Molecular Imaging Program at Stanford, Departments of Radiology and Bioengineering, Stanford, CA (United States); Bhaumik, Srabani [GE Global Research, Niskayuna, NY (United States)

    2008-12-15

    Firefly luciferase catalyzes the oxidative decarboxylation of d-luciferin to oxyluciferin in the presence of cofactors, producing bioluminescence. This reaction is used in optical bioluminescence-based molecular imaging approaches to detect the expression of the firefly luciferase reporter gene. Biokinetics and distribution of the substrate most likely have a significant impact on levels of light signal and therefore need to be investigated. Benzene ring {sup 14}C(U)-labeled d-luciferin was utilized. Cell uptake and efflux assays, murine biodistribution, autoradiography and CCD-camera based optical bioluminescence imaging were carried out to examine the in vitro and in vivo characteristics of the tracer in cell culture and in living mice respectively. Radiolabeled and unlabeled d-luciferin revealed comparable levels of light emission when incubated with equivalent amounts of the firefly luciferase enzyme. Cell uptake assays in pCMV-luciferase-transfected cells showed slow trapping of the tracer and relatively low uptake values (up to 22.9-fold higher in firefly luciferase gene-transfected vs. nontransfected cells, p=0.0002). Biodistribution studies in living mice after tail-vein injection of {sup 14}C-d-luciferin demonstrated inhomogeneous tracer distribution with early predominant high radioactivity levels in kidneys (10.6% injected dose [ID]/g) and liver (11.9% ID/g), followed at later time points by the bladder (up to 81.3% ID/g) and small intestine (6.5% ID/g), reflecting the elimination routes of the tracer. Kinetics and uptake levels profoundly differed when using alternate injection routes (intravenous versus intraperitoneal). No clear trapping of {sup 14}C-d-luciferin in firefly luciferase-expressing tissues could be observed in vivo. The data obtained with {sup 14}C-d-luciferin provide insights into the dynamics of d-luciferin cell uptake, intracellular accumulation, and efflux. Results of the biodistribution and autoradiographic studies should be useful for optimizing and adapting optical imaging protocols to specific experimental settings when utilizing the firefly luciferase and d-luciferin system. (orig.)

  1. Uptake kinetics and biodistribution of 14C-d-luciferin - a radiolabeled substrate for the firefly luciferase catalyzed bioluminescence reaction: impact on bioluminescence based reporter gene imaging

    International Nuclear Information System (INIS)

    Firefly luciferase catalyzes the oxidative decarboxylation of d-luciferin to oxyluciferin in the presence of cofactors, producing bioluminescence. This reaction is used in optical bioluminescence-based molecular imaging approaches to detect the expression of the firefly luciferase reporter gene. Biokinetics and distribution of the substrate most likely have a significant impact on levels of light signal and therefore need to be investigated. Benzene ring 14C(U)-labeled d-luciferin was utilized. Cell uptake and efflux assays, murine biodistribution, autoradiography and CCD-camera based optical bioluminescence imaging were carried out to examine the in vitro and in vivo characteristics of the tracer in cell culture and in living mice respectively. Radiolabeled and unlabeled d-luciferin revealed comparable levels of light emission when incubated with equivalent amounts of the firefly luciferase enzyme. Cell uptake assays in pCMV-luciferase-transfected cells showed slow trapping of the tracer and relatively low uptake values (up to 22.9-fold higher in firefly luciferase gene-transfected vs. nontransfected cells, p=0.0002). Biodistribution studies in living mice after tail-vein injection of 14C-d-luciferin demonstrated inhomogeneous tracer distribution with early predominant high radioactivity levels in kidneys (10.6% injected dose [ID]/g) and liver (11.9% ID/g), followed at later time points by the bladder (up to 81.3% ID/g) and small intestine (6.5% ID/g), reflecting the elimination routes of the tracer. Kinetics and uptake levels profoundly differed when using alternate injection routes (intravenous versus intraperitoneal). No clear trapping of 14C-d-luciferin in firefly luciferase-expressing tissues could be observed in vivo. The data obtained with 14C-d-luciferin provide insights into the dynamics of d-luciferin cell uptake, intracellular accumulation, and efflux. Results of the biodistribution and autoradiographic studies should be useful for optimizing and adapting optical imaging protocols to specific experimental settings when utilizing the firefly luciferase and d-luciferin system. (orig.)

  2. Rapid and Quantitative Assessment of Cancer Treatment Response Using In Vivo Bioluminescence Imaging

    Directory of Open Access Journals (Sweden)

    Alnawaz Rehemtulla

    2000-01-01

    Full Text Available Current assessment of orthotopic tumor models in animals utilizes survival as the primary therapeutic end point. In vivo bioluminescence imaging (BLI is a sensitive imaging modality that is rapid and accessible, and may comprise an ideal tool for evaluating antineoplastic therapies [1 ]. Using human tumor cell lines constitutively expressing luciferase, the kinetics of tumor growth and response to therapy have been assessed in intraperitoneal [2], subcutaneous, and intravascular [3] cancer models. However, use of this approach for evaluating orthotopic tumor models has not been demonstrated. In this report, the ability of BLI to noninvasively quantitate the growth and therapeuticinduced cell kill of orthotopic rat brain tumors derived from 9L gliosarcoma cells genetically engineered to stably express firefly luciferase (9LLuc was investigated. Intracerebral tumor burden was monitored over time by quantitation of photon emission and tumor volume using a cryogenically cooled CCD camera and magnetic resonance imaging (MRI, respectively. There was excellent correlation (r=0.91 between detected photons and tumor volume. A quantitative comparison of tumor cell kill determined from serial MRI volume measurements and BLI photon counts following 1,3-bis(2-chloroethyl-1-nitrosourea (BCNU treatment revealed that both imaging modalities yielded statistically similar cell kill values (P=.951. These results provide direct validation of BLI imaging as a powerful and quantitative tool for the assessment of antineoplastic therapies in living animals.

  3. Bioluminescent imaging: a critical tool in pre-clinical oncology research.

    LENUS (Irish Health Repository)

    O'Neill, Karen

    2010-02-01

    Bioluminescent imaging (BLI) is a non-invasive imaging modality widely used in the field of pre-clinical oncology research. Imaging of small animal tumour models using BLI involves the generation of light by luciferase-expressing cells in the animal following administration of substrate. This light may be imaged using an external detector. The technique allows a variety of tumour-associated properties to be visualized dynamically in living models. The increasing use of BLI as a small-animal imaging modality has led to advances in the development of xenogeneic, orthotopic, and genetically engineered animal models expressing luciferase genes. This review aims to provide insight into the principles of BLI and its applications in cancer research. Many studies to assess tumour growth and development, as well as efficacy of candidate therapeutics, have been performed using BLI. More recently, advances have also been made using bioluminescent imaging in studies of protein-protein interactions, genetic screening, cell-cycle regulators, and spontaneous cancer development. Such novel studies highlight the versatility and potential of bioluminescent imaging in future oncological research.

  4. Non-invasive visualisation of the development of peritoneal carcinomatosis and tumour regression after 213Bi-radioimmunotherapy using bioluminescence imaging

    International Nuclear Information System (INIS)

    Non-invasive imaging of tumour development remains a challenge, especially for tumours in the intraperitoneal cavity. Therefore, the aim of this study was the visualisation of both the development of peritoneal carcinomatosis and tumour regression after radioimmunotherapy with tumour-specific 213Bi-Immunoconjugates, via in vivo bioluminescence imaging of firefly luciferase-transfected cells. Human diffuse-type gastric cancer cells expressing mutant d9-E-cadherin were stably transfected with firefly luciferase (HSC45-M2-luc). For bioluminescence imaging, nude mice were inoculated intraperitoneally with 1 x 107 HSC45-M2-luc cells. On days 4 and 8 after tumour cell inoculation, imaging was performed following D-luciferin injection using a cooled CCD camera with an image intensifier unit. For therapy, mice were injected with 2.7 MBq 213Bi-d9MAb targeting d9-E-cadherin on day 8 after tumour cell inoculation. Bioluminescence images were taken every 4 days to monitor tumour development. After i.p. inoculation of HSC45-M2-luc cells into nude mice, development as well as localisation of peritoneal carcinomatosis could be visualised using bioluminescence imaging. Following 213Bi-d9MAb therapy on day 8 after intraperitoneal inoculation of HSC45-M2-luc cells, small tumour nodules were totally eliminated and larger nodules showed a clear reduction in size on day 12 after tumour cell inoculation. Subsequently a recurrence of tumour mass was observed, starting from the remaining tumour spots. By measuring the mean grey level intensity, tumour development over time could be demonstrated. Non-invasive bioluminescence imaging permits visualisation of the development of peritoneal carcinomatosis, localisation of tumour in the intraperitoneal cavity and evaluation of therapeutic success after 213Bi-d9MAb treatment. (orig.)

  5. Non-invasive visualisation of the development of peritoneal carcinomatosis and tumour regression after {sup 213}Bi-radioimmunotherapy using bioluminescence imaging

    Energy Technology Data Exchange (ETDEWEB)

    Buchhorn, H. Matthias; Seidl, Christof; Beck, Roswitha; Schwaiger, Markus [Technische Universitaet Muenchen, Department of Nuclear Medicine, Munich (Germany); Saur, Dieter [Technische Universitaet Muenchen, Department of Internal Medicine 2, Munich (Germany); Apostolidis, Christos; Morgenstern, Alfred [Institute for Transuranium Elements, European Commission, Joint Research Centre, Karlsruhe (Germany); Senekowitsch-Schmidtke, Reingard [Technische Universitaet Muenchen, Department of Nuclear Medicine, Munich (Germany); Technische Universitaet Muenchen, Nuklearmedizinische Klinik, Klinikum r. d. Isar, Muenchen (Germany)

    2007-06-15

    Non-invasive imaging of tumour development remains a challenge, especially for tumours in the intraperitoneal cavity. Therefore, the aim of this study was the visualisation of both the development of peritoneal carcinomatosis and tumour regression after radioimmunotherapy with tumour-specific {sup 213}Bi-Immunoconjugates, via in vivo bioluminescence imaging of firefly luciferase-transfected cells. Human diffuse-type gastric cancer cells expressing mutant d9-E-cadherin were stably transfected with firefly luciferase (HSC45-M2-luc). For bioluminescence imaging, nude mice were inoculated intraperitoneally with 1 x 10{sup 7} HSC45-M2-luc cells. On days 4 and 8 after tumour cell inoculation, imaging was performed following D-luciferin injection using a cooled CCD camera with an image intensifier unit. For therapy, mice were injected with 2.7 MBq {sup 213}Bi-d9MAb targeting d9-E-cadherin on day 8 after tumour cell inoculation. Bioluminescence images were taken every 4 days to monitor tumour development. After i.p. inoculation of HSC45-M2-luc cells into nude mice, development as well as localisation of peritoneal carcinomatosis could be visualised using bioluminescence imaging. Following {sup 213}Bi-d9MAb therapy on day 8 after intraperitoneal inoculation of HSC45-M2-luc cells, small tumour nodules were totally eliminated and larger nodules showed a clear reduction in size on day 12 after tumour cell inoculation. Subsequently a recurrence of tumour mass was observed, starting from the remaining tumour spots. By measuring the mean grey level intensity, tumour development over time could be demonstrated. Non-invasive bioluminescence imaging permits visualisation of the development of peritoneal carcinomatosis, localisation of tumour in the intraperitoneal cavity and evaluation of therapeutic success after {sup 213}Bi-d9MAb treatment. (orig.)

  6. Construction of a bioluminescence reporter plasmid for Francisella tularensis

    OpenAIRE

    Bina, Xiaowen R; Miller, Mark A.; Bina, James E.

    2010-01-01

    A Francisella tularensis shuttle vector that constitutively expresses the Photorhabdus luminescens lux operon in type A and type B strains of F. tularensis was constructed. The bioluminescence reporter plasmid was introduced into the live vaccine strain of F. tularensis and used to follow F. tularensis growth in a murine intranasal challenge model in real time by bioluminescence imaging. The results show that the new bioluminescence reporter plasmid represents a useful tool for tularemia rese...

  7. Stably Luminescent Staphylococcus aureus Clinical Strains for Use in Bioluminescent Imaging

    OpenAIRE

    Plaut, Roger D; Mocca, Christopher P.; Prabhakara, Ranjani; Merkel, Tod J.; Stibitz, Scott

    2013-01-01

    In vivo bioluminescent imaging permits the visualization of bacteria in live animals, allowing researchers to monitor, both temporally and spatially, the progression of infection in each animal. We sought to engineer stably luminescent clinical strains of Staphylococcus aureus, with the goal of using such strains in mouse models. The gram-positive shuttle vector pMAD was used as the backbone for an integration plasmid. A chloramphenicol resistance gene, a modified lux operon from Photorhabdus...

  8. Bioluminescence imaging of leukemia cell lines in vitro and in mouse xenografts: effects of monoclonal and polyclonal cell populations on intensity and kinetics of photon emission

    Directory of Open Access Journals (Sweden)

    Christoph Sandra

    2013-01-01

    Full Text Available Abstract Background We investigated the utility of bioluminescence imaging (BLI using firefly luciferase in monoclonal and polyclonal populations of leukemia cells in vitro and in vivo. Methods Monoclonal and polyclonal human lymphoid and myeloid leukemia cell lines transduced with firefly luciferase were used for BLI. Results Kinetics and dynamics of bioluminescence signal were cell line dependent. Luciferase expression decreased significantly over time in polyclonal leukemia cells in vitro. Transplantation of polyclonal luciferase-tagged cells in mice resulted in inconsistent signal intensity. After selection of monoclonal cell populations, luciferase activity was stable, equal kinetic and dynamic of bioluminescence intensity and strong correlation between cell number and light emission in vitro were observed. We obtained an equal development of leukemia burden detected by luciferase activity in NOD-scid-gamma mice after transplantation of monoclonal populations. Conclusion The use of monoclonal leukemia cells selected for stable and equal luciferase activity is recommended for experiments in vitro and xenograft mouse models. The findings are highly significant for bioluminescence imaging focused on pre-clinical drug development.

  9. Bioluminescence imaging in a medium-sized animal by local injection of d-luciferin

    International Nuclear Information System (INIS)

    Luciferase is one of the most commonly used reporter enzymes in the field of molecular imaging. D-luciferin is known as the substrate for luciferase enzyme and its cost is very expensive. Therefore, the bioluminescence molecular imaging study has been allowed in small animals such as mice and rats. In this current study, we validated local injection of D-luciferin in articular capsule for bioluminescence imaging in rabbits. Chondrocytes were cultured and infected by replication-defective adenoviral vector encoding firefly luciferase. And then was performed different method of chondrocyte cell injection and transplantation into the knee of rabbits. The rabbits underwent imaging by cooled CCD camera after local injection of D-luciferin (3mg) into experimental knee joint as well as contralateral normal knee joint on days 1, 5, 7, 9. We sought whether optimal imaging signal was acquired by using cooled CCD camera after local injection of D-luciferin. We successfully visualized injected or transplanted cells in knee joint by local injection of D-luciferin. Total photon flux (7.86E+08 p/s/cm2/sr) from the knee joint transplanted with cells approximately increased 10-fold more than (9.43E+07p/s/cm2/sr) that from injected knee joints until 7 day. Imaging signal was observed in transplanted joints until day 9 after surgery while signal from injected knee was observed by day 7 after injection. We successfully carried out bioluminescence imaging study with medium sized animal by local injection of small amount of D-luciferin. Survival of chondrocytes were prolonged when surgically transplanted in joints than when directly injected in joint space

  10. Investigating real-time activation of adenosine receptors by bioluminescence resonance energy transfer technique

    Science.gov (United States)

    Huang, Yimei; Yang, Hongqin; Zheng, Liqin; Chen, Jiangxu; Wang, Yuhua; Li, Hui; Xie, Shusen

    2013-02-01

    Adenosine receptors play important roles in many physiological and pathological processes, for example regulating myocardial oxygen consumption and the release of neurotransmitters. The activations of adenosine receptors have been studied by some kinds of techniques, such as western blot, immunohistochemistry, etc. However, these techniques cannot reveal the dynamical response of adenosine receptors under stimulation. In this paper, bioluminescence resonance energy transfer technique was introduced to study the real-time activation of adenosine receptors by monitoring the dynamics of cyclic adenosine monophosphate (cAMP) level. The results showed that there were significant differences between adenosine receptors on real-time responses under stimulation. Moreover, the dynamics of cAMP level demonstrated that competition between adenosine receptors existed. Taken together, our study indicates that monitoring the dynamics of cAMP level using bioluminescence resonance energy transfer technique could be one potential approach to investigate the mechanism of competitions between adenosine receptors.

  11. Development of a Novel Preclinical Pancreatic Cancer Research Model: Bioluminescence Image-Guided Focal Irradiation and Tumor Monitoring of Orthotopic Xenografts1

    OpenAIRE

    Tuli, Richard; Surmak, Andrew; Reyes, Juvenal; Hacker-Prietz, Amy; ARMOUR, MICHAEL; Leubner, Ashley; Blackford, Amanda; Tryggestad, Erik; Jaffee, Elizabeth M.; Wong, John; Deweese, Theodore L; Herman, Joseph M.

    2012-01-01

    PURPOSE: We report on a novel preclinical pancreatic cancer research model that uses bioluminescence imaging (BLI)-guided irradiation of orthotopic xenograft tumors, sparing of surrounding normal tissues, and quantitative, noninvasive longitudinal assessment of treatment response. MATERIALS AND METHODS: Luciferase-expressing MiaPaCa-2 pancreatic carcinoma cells were orthotopically injected in nude mice. BLI was compared to pathologic tumor volume, and photon emission was assessed over time. B...

  12. Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study

    International Nuclear Information System (INIS)

    The feasibility and limits in performing tomographic bioluminescence imaging with a combined optical-PET (OPET) system were explored by simulating its image formation process. A micro-MRI based virtual mouse phantom was assigned appropriate tissue optical properties to each of its segmented internal organs at wavelengths spanning the emission spectrum of the firefly luciferase at 37 deg. C. The TOAST finite-element code was employed to simulate the diffuse transport of photons emitted from bioluminescence sources in the mouse. OPET measurements were simulated for single-point, two-point and distributed bioluminescence sources located in different organs such as the liver, the kidneys and the gut. An expectation maximization code was employed to recover the intensity and location of these simulated sources. It was found that spectrally resolved measurements were necessary in order to perform tomographic bioluminescence imaging. The true location of emission sources could be recovered if the mouse background optical properties were known a priori. The assumption of a homogeneous optical property background proved inadequate for describing photon transport in optically heterogeneous tissues and led to inaccurate source localization in the reconstructed images. The simulation results pointed out specific methodological challenges that need to be addressed before a practical implementation of OPET-based bioluminescence tomography is achieved

  13. Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Alexandrakis, George [David Geffen School of Medicine at UCLA, Crump Institute for Molecular Imaging, University of California, 700 Westwood Plaza, Los Angeles, CA 90095 (United States); Rannou, Fernando R [Departamento de Ingenieria Informatica, Universidad de Santiago de Chile (USACH), Av. Ecuador 3659, Santiago (Chile); Chatziioannou, Arion F [David Geffen School of Medicine at UCLA, Crump Institute for Molecular Imaging, University of California, 700 Westwood Plaza, Los Angeles, CA 90095 (United States)

    2005-09-07

    The feasibility and limits in performing tomographic bioluminescence imaging with a combined optical-PET (OPET) system were explored by simulating its image formation process. A micro-MRI based virtual mouse phantom was assigned appropriate tissue optical properties to each of its segmented internal organs at wavelengths spanning the emission spectrum of the firefly luciferase at 37 deg. C. The TOAST finite-element code was employed to simulate the diffuse transport of photons emitted from bioluminescence sources in the mouse. OPET measurements were simulated for single-point, two-point and distributed bioluminescence sources located in different organs such as the liver, the kidneys and the gut. An expectation maximization code was employed to recover the intensity and location of these simulated sources. It was found that spectrally resolved measurements were necessary in order to perform tomographic bioluminescence imaging. The true location of emission sources could be recovered if the mouse background optical properties were known a priori. The assumption of a homogeneous optical property background proved inadequate for describing photon transport in optically heterogeneous tissues and led to inaccurate source localization in the reconstructed images. The simulation results pointed out specific methodological challenges that need to be addressed before a practical implementation of OPET-based bioluminescence tomography is achieved.

  14. Bioluminescence imaging of calcium oscillations inside intracellular organelles

    OpenAIRE

    Villalobos Jorge, Carlos; Alonso, María Teresa; García-Sancho, Javier

    2009-01-01

    Ca2+ oscillations inside intracellular organelles are important for regulation of functions such as gene expression at the nucleus, respiration at mitochondria or protein processing at the endoplasmic reticulum. Targeted aequorins are excellent calcium probes for subcellular analysis, but single-cell imaging has proven difficult because of low light yield. Here we describe a procedure that combines virus-based expression of targeted aequorins with photon-counting imaging. This methodology all...

  15. Quantification of bioluminescence images of point source objects using diffusion theory models

    International Nuclear Information System (INIS)

    A simple approach for estimating the location and power of a bioluminescent point source inside tissue is reported. The strategy consists of using a diffuse reflectance image at the emission wavelength to determine the optical properties of the tissue. Following this, bioluminescence images are modelled using a single point source and the optical properties from the reflectance image, and the depth and power are iteratively adjusted to find the best agreement with the experimental image. The forward models for light propagation are based on the diffusion approximation, with appropriate boundary conditions. The method was tested using Monte Carlo simulations, Intralipid tissue-simulating phantoms and ex vivo chicken muscle. Monte Carlo data showed that depth could be recovered within 6% for depth 4-12 mm, and the corresponding relative source power within 12%. In Intralipid, the depth could be estimated within 8% for depth 4-12 mm, and the relative source power, within 20%. For ex vivo tissue samples, source depths of 4.5 and 10 mm and their relative powers were correctly identified

  16. Accounting for systematic errors in bioluminescence imaging to improve quantitative accuracy

    Science.gov (United States)

    Taylor, Shelley L.; Perry, Tracey A.; Styles, Iain B.; Cobbold, Mark; Dehghani, Hamid

    2015-07-01

    Bioluminescence imaging (BLI) is a widely used pre-clinical imaging technique, but there are a number of limitations to its quantitative accuracy. This work uses an animal model to demonstrate some significant limitations of BLI and presents processing methods and algorithms which overcome these limitations, increasing the quantitative accuracy of the technique. The position of the imaging subject and source depth are both shown to affect the measured luminescence intensity. Free Space Modelling is used to eliminate the systematic error due to the camera/subject geometry, removing the dependence of luminescence intensity on animal position. Bioluminescence tomography (BLT) is then used to provide additional information about the depth and intensity of the source. A substantial limitation in the number of sources identified using BLI is also presented. It is shown that when a given source is at a significant depth, it can appear as multiple sources when imaged using BLI, while the use of BLT recovers the true number of sources present.

  17. In Vivo Bioluminescent Imaging (BLI: Noninvasive Visualization and Interrogation of Biological Processes in Living Animals

    Directory of Open Access Journals (Sweden)

    Steven Ripp

    2010-12-01

    Full Text Available In vivo bioluminescent imaging (BLI is increasingly being utilized as a method for modern biological research. This process, which involves the noninvasive interrogation of living animals using light emitted from luciferase-expressing bioreporter cells, has been applied to study a wide range of biomolecular functions such as gene function, drug discovery and development, cellular trafficking, protein-protein interactions, and especially tumorigenesis, cancer treatment, and disease progression. This article will review the various bioreporter/biosensor integrations of BLI and discuss how BLI is being applied towards a new visual understanding of biological processes within the living organism.

  18. Real-time monitoring of Escherichia coli O157:H7 adherence to beef carcass surface tissues with a bioluminescent reporter.

    Science.gov (United States)

    Siragusa, G R; Nawotka, K; Spilman, S D; Contag, P R; Contag, C H

    1999-04-01

    A method for studying bacteria that are attached to carcass surfaces would eliminate the need for exogenous sampling and would facilitate understanding the interaction of potential human food-borne pathogens with food animal tissue surfaces. We describe such a method in which we used a bioluminescent reporter strain of Escherichia coli O157:H7 that was constructed by transformation with plasmid pCGLS1, an expression vector that contains a complete bacterial luciferase (lux) operon. Beef carcass surface tissues were inoculated with the bioluminescent strain, and adherent bacteria were visualized in real time by using a sensitive photon-counting camera to obtain in situ images. The reporter strain was found to luminesce from the tissue surfaces whether it was inoculated as a suspension in buffer or as a suspension in a bovine fecal slurry. With this method, areas of tissues inoculated with the reporter strain could be studied without obtaining, excising, homogenizing, and culturing multiple samples from the tissue surface. Use of the complete lux operon as the bioluminescent reporter eliminated the need to add exogenous substrate. This allowed detection and quantitation of bacterial inocula and rapid evaluation of adherence of a potential human pathogen to tissue surfaces. Following simple water rinses of inoculated carcass tissues, the attachment duration varied with different carcass surface types. On average, the percent retention of bioluminescent signal from the reporter strain was higher on lean fascia-covered tissue (54%) than on adipose fascia-covered tissue (18%) following water washing of the tissues. Bioluminescence and culture-derived viable bacterial counts were highly correlated (r2 = 0.98). Real-time assessment of microbial attachment to this complex menstruum should facilitate evaluation of carcass decontamination procedures and mechanistic studies of microbial contamination of beef carcass tissues. PMID:10103275

  19. Bioluminescence imaging of cord blood derived mesenchymal stem cell transplanatation into myocardium

    International Nuclear Information System (INIS)

    The conventional method of analyzing myocardial cell transplanation relies on postmortem histology. We sought to demonstrate the feasibility of longitudinal monitoring transplanted cell survival in living animals using optical imaging techniques. Umblical cord blood was collected upon delivery with informed consent. Umblical mononuclear cells were obtained by negative immuno-depletion of CD3, CD14, CD19, CD38, CD66b, and glycophorin- A positive cells, followed by Ficoll- Paque density gradient centrifugation, and plated in non-coated tissue culture flasks in expansion medium. Cells were allowed to adhere overnight, thereafter non-adherent cells were washed out with medium changes. After getting the MSCs, they were transfected [multiplicity of infection (MOl) = 40) with Ad-CMV-Fluc overnight. Rats (n=4) underwent intramyocardial injection of 5 x 105 MSCs expressing firefly luciferase (Fluc) reporter gene. Optical bioluminescence imaging was performed using the charged-coupled device camera (Xenogen) from the 1st day of transplantion. Cardiac bioluminescence signals were present from 2nd day of transplantation. Cardiac signals were clearly present at day 2 (9.2x103p/s/cm2/sr). The signal reduced from day 3. The locations, magnitude, and survival duration of cord blood derived MSCs were monitored noninvasively. With further development, molecular imaging studies should add critical insights into cardiac cell transplantation

  20. Effect of mouse VEGF164 on the viability of hydroxyethyl methacrylate-methyl methacrylate-microencapsulated cells in vivo: bioluminescence imaging.

    Science.gov (United States)

    Cheng, Dangxiao; Lo, Chuen; Sefton, Michael V

    2008-11-01

    Bioluminescent imaging was used to track the viability of luciferase transfected L929 cells in poly(hydroxyethyl methacrylate-co-methyl methacrylate) (HEMA-MMA) microcapsules. Bioluminescence, as determined by Xenogen imaging after addition of luciferin to microcapsules in vitro, increased with time, consistent with an increase in cell number. Capsules were suspended in Matrigel and injected subcutaneously. The bioluminesence in vivo increased over the first 3 weeks and then decreased, both with and without the delivery of mVEGF(164) (1.2 ng/24 h/200 microcapsules in vitro); VEGF delivery was from microencapsulated doubly transfected cells (both luciferase and mVEGF(164)). VEGF delivery was sufficient to generate a greater number of vascular structures, but this did not result in the expected increase in microencapsulated cell viability. Interestingly, the number of vessels at day 28 was less than at day 21, consistent with what would be an expected reduction in VEGF secretion when cell viability is lost. The results presented here do not support the hypothesis that transfection of microencapsulated cells with VEGF is sufficient to correct the oxygen transport limitation, at least with this type of tissue engineering construct. On the other hand, bioluminescent imaging proved to be a useful method of monitoring microencapsulated cell viability over many weeks in vivo. PMID:18181105

  1. Relation between deep bioluminescence and oceanographic variables: A statistical analysis using time-frequency decompositions

    Science.gov (United States)

    Martini, S.; Nerini, D.; Tamburini, C.

    2014-09-01

    We consider the statistical analysis of a 1.7-year high-frequency sampled time series, between 2009 and 2010, recorded at the ANTARES observatory in the deep NW Mediterranean Sea (2475 m depth). The objective was to estimate relationships between bioluminescence and environmental time series (temperature, salinity and current speed). As this entire dataset is characterized by non-linearity and non-stationarity, two time-frequency decomposition methods (wavelet and Hilbert-Huang) were used. These mathematical methods are dedicated to the analysis of a signal at various time and frequencies scales. This work propose some statistical tools dedicated to the study of relationships between two time series. Our study highlights three events of high bioluminescence activity in March 2009, December 2009 and March 2010. We demonstrate that the two events occurring in March 2009 and 2010 are correlated to the arrival of newly formed deep water masses at frequencies of approximately 4.8×10-7 (period of 24.1 days). In contrast, the event in December 2009 is only correlated with current speed at frequencies of approximately 1.9×10-6 (period of 6.0 days). The use of both wavelet and Hilbert-Huang transformations has proven to be successful for the analysis of multivariate time series. These methods are well-suited in a context of the increasing number of long time series recorded in oceanography.

  2. Use of a highly sensitive two-dimensional luminescence imaging system to monitor endogenous bioluminescence in plant leaves

    OpenAIRE

    Flor-Henry Michel; McCabe Tulene C; de Bruxelles Guy L; Roberts Michael R

    2004-01-01

    Abstract Background All living organisms emit spontaneous low-level bioluminescence, which can be increased in response to stress. Methods for imaging this ultra-weak luminescence have previously been limited by the sensitivity of the detection systems used. Results We developed a novel configuration of a cooled charge-coupled device (CCD) for 2-dimensional imaging of light emission from biological material. In this study, we imaged photon emission from plant leaves. The equipment allowed sho...

  3. A fast full-body fluorescence/bioluminescence imaging system for small animals

    Science.gov (United States)

    Lee, Jong Hwan; Kim, Hyun Keol; Jia, Jingfei; Fong, Christopher; Hielscher, Andreas H.

    2013-03-01

    Whole body in vivo optical imaging of small animals has widened its applications and increased the capabilities for preclinical researches. However, most commercial and prototype optical imaging systems are camera-based systems using epi- or trans- illumination mode, with limited views of small animals. And for more accurate tomographic image reconstruction, additional data and information of a target animal is necessary. To overcome these issues, researchers have suggested several approaches such as maximizing the detection area or using the information of other highresolution modalities such as CT, MRI or Ultrasound, or using multi-spectral signals. As one of ways to maximizing the detection area of a target animal, we present a new fluorescence and bioluminescence imaging system for small animals, which can image entire surface of a target animal simultaneously. This system uses double mirror reflection scheme and it consists of input unit, imaging unit with two conical mirrors, the source illumination part and the surface scanner, and the detection unit with an intensified CCD camera system. Two conical mirrors are configured that a larger size mirror captures a target animal surface, and a smaller size mirror projects this captured image onto a CCD camera with one acquisition. With this scheme, we could capture entire surface of a target animal simultaneously and improve back reflection issue between a mirror and an animal surface of a single conical mirror scheme. Additionally, we could increase accessibility to an animal for multi-modality integration by providing unobstructed space around a target animal.

  4. Assessing the effect of EPO on tumor oxygenation and radioresponsiveness via in vivo bioluminescence imaging

    International Nuclear Information System (INIS)

    Evaluating tumor kill by volume measurement lacks sensitivity while in vivo-in vitro and histological assays are unsuitable for serial measurements. In vivo bioluminescence imaging (BI) nondestructively measures the number of metabolically active cells containing luciferase (LUC) over time. In this paper, the effect of erythropoietin (EPO) on tumor oxygenation and radioresponsivenessis is studied using BI and conventional methods. Murine adenocarcinoma cells, transfected with the LUC gene, were placed in the flank of BALB/C mice. EPO 1 u/g or saline was injected sc tiw for two weeks, starting the day of transplant. Mice then underwent irradiation (XRT) or pO2 measurement with an optical probe. In BI, mice were injected with luciferin and total photon flux (TPF) measured with a CCD camera. In vitro, cells were plated, irradiated and incubated at 37 deg C. Initial hematocrit was 47% (n=119) vs. 61% in EPO-treated mice (n=23, p2 (6.4 vs. 4.7 mm Hg, p=0.04) than controls. For 1-3x7 Gy, TPF was stable for 2 days after the start of XRT, then fell precipitously. Two weeks post XRT, TPF was 10-5 the initial value and a nidus of LUC activity persisted for months in most tumors. Tumor volume decreased only 1-2 orders of magnitude. For 3x7 Gy, tumor regrew in 1/11 EPO-TM and controls (p=NS.) For 1x7 Gy, tumors regrew in 4/6 EPO-TM and 2/4 controls (p=NS). TPF did not increase with tumor regrowth. Recurrent tumors exhibited lower median pO2 (2.1 mm Hg, p=.003) and higher hypoxic fraction than controls. A clonogenic assay yielded D10 = 3.7 Gy with all colonies expressing LUC. The TPF of 0-Gy treated wells rose significantly over incubation, while that of wells treated to 10 Gy was unchanged. Though EPO improved tumor oxygenation, no effect on XRT-mediated cell kill was seen. BI measured tumor killing in vivo over a broad dynamic range. The results suggest that cell killing in vivo is a multistep process, amplified by humoral factors

  5. Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study

    OpenAIRE

    Alexandrakis, George; Rannou, Fernando R; Chatziioannou, Arion F.

    2005-01-01

    The feasibility and limits in performing tomographic bioluminescence imaging with a combined optical-PET (OPET) system was explored by simulating its image formation process. A micro-MRI based virtual mouse phantom was assigned appropriate tissue optical properties to each of its segmented internal organs at wavelengths spanning the emission spectrum of the firefly luciferase at 37 °C. The TOAST finite-element code was employed to simulate the diffuse transport of photons emitted from biolumi...

  6. Influence of antibiotic pressure on bacterial bioluminescence, with emphasis on Staphylococcus aureus.

    Science.gov (United States)

    Daghighi, Seyedmojtaba; Sjollema, Jelmer; Harapanahalli, Akshay; Dijkstra, Rene J B; van der Mei, Henny C; Busscher, Henk J

    2015-12-01

    Bioluminescence imaging is used for longitudinal evaluation of bacteria in live animals. Clear relations exist between bacterial numbers and their bioluminescence. However, bioluminescence images of Staphylococcus aureus Xen29, S. aureus Xen36 and Escherichia coli Xen14 grown on tryptone soy agar in Etests demonstrated increased bioluminescence at sub-MICs of different antibiotics. This study aimed to further evaluate the influence of antibiotic pressure on bioluminescence in S. aureus Xen29. Bioluminescence of S. aureus Xen29, grown planktonically in tryptone soy broth, was quantified in the absence and presence of different concentrations of vancomycin, ciprofloxacin, erythromycin or chloramphenicol and was related to expression of the luxA gene under antibiotic pressure measured using real-time PCR. In the absence of antibiotics, staphylococcal bioluminescence increased over time until a maximum after ca. 6h of growth, and subsequently decreased to the detection threshold after 24h of growth owing to reduced bacterial metabolic activity. Up to MICs of the antibiotics, bioluminescence increased according to a similar pattern up to 6h of growth, but after 24h bioluminescence was higher than in the absence of antibiotics. Contrary to expectations, bioluminescence per organism (CFU) after different growth periods in the absence and at MICs of different antibiotics decreased with increasing expression of luxA. Summarising, antibiotic pressure impacts the relation between CFU and bioluminescence. Under antibiotic pressure, bioluminescence is not controlled by luxA expression but by co-factors impacting the bacterial metabolic activity. This conclusion is of utmost importance when evaluating antibiotic efficacy in live animals using bioluminescent bacterial strains. PMID:26526893

  7. Engraftment and bone mass are enhanced by PTHrP 1-34 in ectopically transplanted vertebrae (vossicle model) and can be non-invasively monitored with bioluminescence and fluorescence imaging.

    Science.gov (United States)

    Hildreth, Blake Eason; Williams, Michelle M; Dembek, Katarzyna A; Hernon, Krista M; Rosol, Thomas J; Toribio, Ramiro E

    2015-12-01

    Evidence exists that parathyroid hormone-related protein (PTHrP) 1-34 may be more anabolic in bone than parathyroid hormone 1-34. While optical imaging is growing in popularity, scant information exists on the relationships between traditional bone imaging and histology and bioluminescence (BLI) and fluorescence (FLI) imaging. We aimed to evaluate the effects of PTHrP 1-34 on bone mass and determine if relationships existed between radiographic and histologic findings in bone and BLI and FLI indices. Vertebrae (vossicles) from mice coexpressing luciferase and green fluorescent protein were implanted subcutaneously into allogenic nude mice. Transplant recipients were treated daily with saline or PTHrP 1-34 for 4 weeks. BLI, FLI, radiography, histology, and µCT of the vossicles were performed over time. PTHrP 1-34 increased bioluminescence the most after 2 weeks, fluorescence at all time points, and decreased the time to peak bioluminescence at 4 weeks (P ? 0.027), the latter of which suggesting enhanced engraftment. PTHrP 1-34 maximized vertebral body volume at 4 weeks (P bioluminescence (r = 0.595; P = 0.019); (2) total fluorescence (r = 0.474; P = 0.074); and (3) max fluorescence (r = 0.587; P = 0.021). In conclusion, PTHrP 1-34 enhances engraftment and bone mass, which can be monitored non-invasively by BLI and FLI. PMID:26271486

  8. Fast iterative image reconstruction methods for fully 3D multispectral bioluminescence tomography

    International Nuclear Information System (INIS)

    We investigate fast iterative image reconstruction methods for fully 3D multispectral bioluminescence tomography for applications in small animal imaging. Our forward model uses a diffusion approximation for optically inhomogeneous tissue, which we solve using a finite element method (FEM). We examine two approaches to incorporating the forward model into the solution of the inverse problem. In a conventional direct calculation approach one computes the full forward model by repeated solution of the FEM problem, once for each potential source location. We describe an alternative on-the-fly approach where one does not explicitly solve for the full forward model. Instead, the solution to the forward problem is included implicitly in the formulation of the inverse problem, and the FEM problem is solved at each iteration for the current image estimate. We evaluate the convergence speeds of several representative iterative algorithms. We compare the computation cost of those two approaches, concluding that the on-the-fly approach can lead to substantial reductions in total cost when combined with a rapidly converging iterative algorithm

  9. Metabolic imaging in microregions of tumors and normal tissues with bioluminescence and photon counting

    International Nuclear Information System (INIS)

    A method has been developed for metabolic imaging on a microscopic level in tumors, tumor spheroids, and normal tissues. The technique makes it possible to determine the spatial distribution of glucose, lactate, and ATP in absolute terms at similar locations within tissues or cell aggregates. The substrate distributions are registered in serial cryostat sections from tissue cryobiopsies or from frozen spheroids with the use of bioluminescence reactions. The light emission is measured directly by a special imaging photon counting system enabling on-line image analysis. The technique has been applied to human breast cancer xenografts, to spheroids originating from a human colon adenocarcinoma, and to skeletal rat muscle. Preliminary data obtained indicate that heterogeneities in the substrate distributions measured are much more pronounced in tumors than in normal tissue. There was no obvious correlation among the three quantities measured at similar locations within the tissues. The distribution of ATP corresponded well with the histological structure of larger spheroids; values were low in the necrotic center and high in the viable rim of these cell aggregates

  10. Physicochemical characterization and in vivo bioluminescence imaging of nanostructured lipid carriers for targeting the brain: apomorphine as a model drug

    Science.gov (United States)

    Hsu, Shu-Hui; Wen, Chih-Jen; Al-Suwayeh, S. A.; Chang, Hui-Wen; Yen, Tzu-Chen; Fang, Jia-You

    2010-10-01

    Nanostructured lipid carriers (NLCs) were prepared to investigate whether the duration of brain targeting and accumulation of drugs in the brain can be improved by intravenous delivery. NLCs were developed using cetyl palmitate as the lipid matrix, squalene as the cationic surfactant, and Pluronic F68, polysorbate 80 and polyethylene glycol as the interfacial additives. Solid lipid nanoparticles (SLNs) and lipid emulsions (LEs) were also prepared for comparison. An anti-Parkinson's drug, apomorphine, was used as the model drug. Nuclear magnetic resonance and differential scanning calorimetry showed possible interactions between the solid and liquid lipids in the inner core. The lipid nanoparticles with different compositions were characterized by mean size, zeta potential, apomorphine encapsulation and in vitro drug release. NLCs were 370-430 nm in size, which was between the sizes of the SLNs and LEs. A cationic surfactant was used to produce a positive surface charge of 42-50 mV. The base form of apomorphine was successfully entrapped by NLCs with an entrapment percentage of > 60%. The loading of apomorphine in nanoparticles resulted in a slower release behavior compared to the aqueous solution, with LEs showing the lowest release. In vivo real-time bioluminescence imaging of the rat brain revealed that NLCs could be targeted, through certain vessels, to selected brain regions. This effect was further confirmed by imaging the entire brain and brain slices. The results indicated that NLCs with moderate additives are a promising controlled-release and drug-targeting system.

  11. Physicochemical characterization and in vivo bioluminescence imaging of nanostructured lipid carriers for targeting the brain: apomorphine as a model drug

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Shu-Hui [Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan (China); Wen, Chih-Jen; Yen, Tzu-Chen [Animal Molecular Imaging Center, Chang Gung Memorial Hospital, Kweishan, Taoyuan 333, Taiwan (China); Al-Suwayeh, S A; Fang, Jia-You [Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh (Saudi Arabia); Chang, Hui-Wen, E-mail: fajy@mail.cgu.edu.tw [Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan 333, Taiwan (China)

    2010-10-08

    Nanostructured lipid carriers (NLCs) were prepared to investigate whether the duration of brain targeting and accumulation of drugs in the brain can be improved by intravenous delivery. NLCs were developed using cetyl palmitate as the lipid matrix, squalene as the cationic surfactant, and Pluronic F68, polysorbate 80 and polyethylene glycol as the interfacial additives. Solid lipid nanoparticles (SLNs) and lipid emulsions (LEs) were also prepared for comparison. An anti-Parkinson's drug, apomorphine, was used as the model drug. Nuclear magnetic resonance and differential scanning calorimetry showed possible interactions between the solid and liquid lipids in the inner core. The lipid nanoparticles with different compositions were characterized by mean size, zeta potential, apomorphine encapsulation and in vitro drug release. NLCs were 370-430 nm in size, which was between the sizes of the SLNs and LEs. A cationic surfactant was used to produce a positive surface charge of 42-50 mV. The base form of apomorphine was successfully entrapped by NLCs with an entrapment percentage of > 60%. The loading of apomorphine in nanoparticles resulted in a slower release behavior compared to the aqueous solution, with LEs showing the lowest release. In vivo real-time bioluminescence imaging of the rat brain revealed that NLCs could be targeted, through certain vessels, to selected brain regions. This effect was further confirmed by imaging the entire brain and brain slices. The results indicated that NLCs with moderate additives are a promising controlled-release and drug-targeting system.

  12. Physicochemical characterization and in vivo bioluminescence imaging of nanostructured lipid carriers for targeting the brain: apomorphine as a model drug

    International Nuclear Information System (INIS)

    Nanostructured lipid carriers (NLCs) were prepared to investigate whether the duration of brain targeting and accumulation of drugs in the brain can be improved by intravenous delivery. NLCs were developed using cetyl palmitate as the lipid matrix, squalene as the cationic surfactant, and Pluronic F68, polysorbate 80 and polyethylene glycol as the interfacial additives. Solid lipid nanoparticles (SLNs) and lipid emulsions (LEs) were also prepared for comparison. An anti-Parkinson's drug, apomorphine, was used as the model drug. Nuclear magnetic resonance and differential scanning calorimetry showed possible interactions between the solid and liquid lipids in the inner core. The lipid nanoparticles with different compositions were characterized by mean size, zeta potential, apomorphine encapsulation and in vitro drug release. NLCs were 370-430 nm in size, which was between the sizes of the SLNs and LEs. A cationic surfactant was used to produce a positive surface charge of 42-50 mV. The base form of apomorphine was successfully entrapped by NLCs with an entrapment percentage of > 60%. The loading of apomorphine in nanoparticles resulted in a slower release behavior compared to the aqueous solution, with LEs showing the lowest release. In vivo real-time bioluminescence imaging of the rat brain revealed that NLCs could be targeted, through certain vessels, to selected brain regions. This effect was further confirmed by imaging the entire brain and brain slices. The results indicated that NLCs with moderate additives are a promising controlled-release and drug-targeting system.

  13. Development of bioluminescent Salmonella strains for use in food safety

    Directory of Open Access Journals (Sweden)

    Bailey R Hartford

    2008-01-01

    Full Text Available Abstract Background Salmonella can reside in healthy animals without the manifestation of any adverse effects on the carrier. If raw products of animal origin are not handled properly during processing or cooked to a proper temperature during preparation, salmonellosis can occur. In this research, we developed bioluminescent Salmonella strains that can be used for real-time monitoring of the pathogen's growth on food products. To accomplish this, twelve Salmonella strains from the broiler production continuum were transformed with the broad host range plasmid pAKlux1, and a chicken skin attachment model was developed. Results Salmonella strains carrying pAKlux1 constitutively expressed the luxCDABE operon and were therefore detectable using bioluminescence. Strains were characterized in terms of bioluminescence properties and plasmid stability. To assess the usefulness of bioluminescent Salmonella strains in food safety studies, we developed an attachment model using chicken skin. The effect of washing on attachment of Salmonella strains to chicken skin was tested using bioluminescent strains, which revealed the attachment properties of each strain. Conclusion This study demonstrated that bioluminescence is a sensitive and effective tool to detect Salmonella on food products in real-time. Bioluminescence imaging is a promising technology that can be utilized to evaluate new food safety measures for reducing Salmonella contamination on food products.

  14. Evaluation of monkeypox virus infection of prairie dogs (Cynomys ludovicianus) using in vivo bioluminescent imaging

    Science.gov (United States)

    Falendysz, Elizabeth A.; Londoño-Navas, Angela M.; Meteyer, Carol U.; Pussini, Nicola; Lopera, Juan G.; Osorio, Jorge E.; Rocke, Tonie E.

    2014-01-01

    Monkeypox (MPX) is a re-emerging zoonotic disease that is endemic in Central and West Africa, where it can cause a smallpox-like disease in humans. Despite many epidemiologic and field investigations of MPX, no definitive reservoir species has been identified. Using recombinant viruses expressing the firefly luciferase (luc) gene, we previously demonstrated the suitability of in vivo bioluminescent imaging (BLI) to study the pathogenesis of MPX in animal models. Here, we evaluated BLI as a novel approach for tracking MPX virus infection in black-tailed prairie dogs (Cynomys ludovicianus). Prairie dogs were affected during a multistate outbreak of MPX in the US in 2003 and have since been used as an animal model of this disease. Our BLI results were compared with PCR and virus isolation from tissues collected postmortem. Virus was easily detected and quantified in skin and superficial tissues by BLI before and during clinical phases, as well as in subclinical secondary cases, but was not reliably detected in deep tissues such as the lung. Although there are limitations to viral detection in larger wild rodent species, BLI can enhance the use of prairie dogs as an animal model of MPX and can be used for the study of infection, disease progression, and transmission in potential wild rodent reservoirs.

  15. Bioluminescence imaging for assessment of immune responses following implantation of engineered heart tissue (EHT).

    Science.gov (United States)

    Conradi, Lenard; Pahrmann, Christiane; Schmidt, Stephanie; Deuse, Tobias; Hansen, Arne; Eder, Alexandra; Reichenspurner, Hermann; Robbins, Robert C; Eschenhagen, Thomas; Schrepfer, Sonja

    2011-01-01

    Various techniques of cardiac tissue engineering have been pursued in the past decades including scaffolding strategies using either native or bioartificial scaffold materials, entrapment of cardiac myocytes in hydrogels such as fibrin or collagen and stacking of myocyte monolayers. These concepts aim at restoration of compromised cardiac function (e.g. after myocardial infarction) or as experimental models (e.g. predictive toxicology and substance screening or disease modelling). Precise monitoring of cell survival after implantation of engineered heart tissue (EHT) has now become possible using in-vivo bioluminescence imaging (BLI) techniques. Here we describe the generation of fibrin-based EHT from a transgenic rat strain with ubiquitous expression of firefly luciferase (ROSA/luciferase-LEW Tg; ). Implantation is performed into the greater omentum of different rat strains to assess immune responses of the recipient organism following EHT implantation. Comparison of results generated by BLI and the Enzyme Linked Immuno Spot Technique (ELISPOT) confirm the usability of BLI for the assessment of immune responses. PMID:21673633

  16. Novel mouse mammary cell lines for in vivo bioluminescence imaging (BLI of bone metastasis

    Directory of Open Access Journals (Sweden)

    Bolin Celeste

    2012-04-01

    Full Text Available Abstract Background Tumor cell lines that can be tracked in vivo during tumorigenesis and metastasis provide vital tools for studying the specific cellular mechanisms that mediate these processes as well as investigating therapeutic targets to inhibit them. The goal of this study was to engineer imageable mouse mammary tumor cell lines with discrete propensities to metastasize to bone in vivo. Two novel luciferase expressing cell lines were developed and characterized for use in the study of breast cancer metastasis to bone in a syngeneic mouse model. Results The 4 T1.2 luc3 and 66c14 luc2 cell lines were shown to have high levels of bioluminescence intensity in vitro and in vivo after orthotopic injection into mouse mammary fat pads. The 4 T1.2 luc3 cell line was found to closely model the sites of metastases seen in human patients including lung, liver, and bone. Specifically, 4 T1.2 luc3 cells demonstrated a high incidence of metastasis to spine, with an ex-vivo BLI intensity three orders of magnitude above the commercially available 4 T1 luc2 cells. 66c14 luc2 cells also demonstrated metastasis to spine, which was lower than that of 4 T1.2 luc3 cells but higher than 4 T1 luc2 cells, in addition to previously unreported metastases in the liver. High osteolytic activity of the 4 T1.2 luc3 cells in vivo in the bone microenvironment was also detected. Conclusions The engineered 4 T1.2 luc3 and 66c14 luc2 cell lines described in this study are valuable tools for studying the cellular events moderating the metastasis of breast tumor cells to bone.

  17. Stably luminescent Staphylococcus aureus clinical strains for use in bioluminescent imaging.

    Science.gov (United States)

    Plaut, Roger D; Mocca, Christopher P; Prabhakara, Ranjani; Merkel, Tod J; Stibitz, Scott

    2013-01-01

    In vivo bioluminescent imaging permits the visualization of bacteria in live animals, allowing researchers to monitor, both temporally and spatially, the progression of infection in each animal. We sought to engineer stably luminescent clinical strains of Staphylococcus aureus, with the goal of using such strains in mouse models. The gram-positive shuttle vector pMAD was used as the backbone for an integration plasmid. A chloramphenicol resistance gene, a modified lux operon from Photorhabdus luminescens, and approximately 650 bp of homology to the chromosome of the USA300 S. aureus strain NRS384 were added, generating plasmid pRP1195. Electroporation into strain RN4220 followed by temperature shift led to integration of pRP1195 into the chromosome. The integrated plasmid was transferred to clinical strains by phage transduction. Luminescent strains displayed no in vitro growth defects. Moreover, luminescence was stable in vitro after three rounds of subculture over 48 hours of growth in the absence of antibiotics. Mice were infected with a luminescent strain of NRS384 in skin and intravenous models. In a mouse skin model, luminescent bacteria were present in lesions that formed and cleared over the course of several days, and in an intravenous model, bacteria inoculated in the mouse tail vein were observed spreading to multiple tissues. No statistically significant difference in virulence was observed between NRS384 and the luminescent strain in either infection model. These preliminary data suggest that this luminescent USA300 strain is suitable for use in mouse models. Similar strains were engineered using other sequenced clinical strains. Because these strains are stably luminescent, they should prove useful in animal models of infection. PMID:23555002

  18. Establishment of cell strains stably-transfected with luciferase gene mediated by retrovirus and their detection with bioluminescence imaging system

    Directory of Open Access Journals (Sweden)

    Hai-juan WANG

    2012-05-01

    Full Text Available Objective ?To establish cell strains stably transfected with Luciferase gene (Luc2, which was mediated by retrovirus, and explore the relationship between the number of Luc2-positive cells and light flux from bioluminescence imaging system by experiments in vitro and in vivo. Methods ?We co-transfected pMX-Luc2 plasmid and pMD.G plasmid into 293T gag-pol cells to get retrovirus expressing Luc2 gene. Stable Luc2 positive cell lines were generated and screened by transduction of Retro-Luc2 in mouse colon cancer cell line CT26, human non-small cell lung cancer cell line NCI-H446, human colon cancer cell line HT-29, human ovarian carcinoma cell line SKOV3 and human hepatocellular carcinoma cell line SMMC-7721, all of them were identified by bioluminescence imaging system. Different numbers of SKOV3-Luc2 cells ranging from 10 to 10000 were plated onto culture dishes. Two xenograft models of ovarian cancer were reproduced by subcutaneous injection of 200?l SKOV3-Luc2 cell suspension with different concentrations (1×107, 5×106, 2.5×106, 1×106, 5×105, 2.5×105, 1×105 and 5×104/ml into 16 sites on the back of 4 nude mice, or intravenous injection of 1×106 or 3 ×106 SKOV3-Luc2 cells into the tail vein. Light flux value of SKOV3-Luc2 cells in dishes and in mice was measured by bioluminescence imaging system. Results ?Retro-Luc2 was constructed successfully and expressed Luc2 stably in transduced CT26, NCI-H446, HT-29, SKOV3 and SMMC-7721 cell lines. Light flux was correlated in a linear manner with the number of Luc2-positive cells in dishes and in mice (R2=0.944, ?=0.972; R2=0.991, ?=0.996; R2=0.351, ?=0.628; P < 0.01. Conclusion ?Luc2-positive cell lines could be established rapidly and accurately by infecting tumor cells with retrovirus expressing Luc2. The number of Luc2 positive cells is significantly related in a linear manner to light flux from bioluminescence imaging system in vitro and in vivo.

  19. Further Assessment of Monkeypox Virus Infection in Gambian Pouched Rats (Cricetomys gambianus) Using In Vivo Bioluminescent Imaging

    Science.gov (United States)

    Falendysz, Elizabeth A.; Lopera, Juan G.; Lorenzsonn, Faye; Salzer, Johanna S.; Hutson, Christina L.; Doty, Jeffrey; Gallardo-Romero, Nadia; Carroll, Darin S.; Osorio, Jorge E.; Rocke, Tonie E.

    2015-01-01

    Monkeypox is a zoonosis clinically similar to smallpox in humans. Recent evidence has shown a potential risk of increased incidence in central Africa. Despite attempts to isolate the virus from wild rodents and other small mammals, no reservoir host has been identified. In 2003, Monkeypox virus (MPXV) was accidentally introduced into the U.S. via the pet trade and was associated with the Gambian pouched rat (Cricetomys gambianus). Therefore, we investigated the potential reservoir competence of the Gambian pouched rat for MPXV by utilizing a combination of in vivo and in vitro methods. We inoculated three animals by the intradermal route and three animals by the intranasal route, with one mock-infected control for each route. Bioluminescent imaging (BLI) was used to track replicating virus in infected animals and virological assays (e.g. real time PCR, cell culture) were used to determine viral load in blood, urine, ocular, nasal, oral, and rectal swabs. Intradermal inoculation resulted in clinical signs of monkeypox infection in two of three animals. One severely ill animal was euthanized and the other affected animal recovered. In contrast, intranasal inoculation resulted in subclinical infection in all three animals. All animals, regardless of apparent or inapparent infection, shed virus in oral and nasal secretions. Additionally, BLI identified viral replication in the skin without grossly visible lesions. These results suggest that Gambian pouched rats may play an important role in transmission of the virus to humans, as they are hunted for consumption and it is possible for MPXV-infected pouched rats to shed infectious virus without displaying overt clinical signs. PMID:26517839

  20. Further Assessment of Monkeypox Virus Infection in Gambian Pouched Rats (Cricetomys gambianus) Using In Vivo Bioluminescent Imaging.

    Science.gov (United States)

    Falendysz, Elizabeth A; Lopera, Juan G; Lorenzsonn, Faye; Salzer, Johanna S; Hutson, Christina L; Doty, Jeffrey; Gallardo-Romero, Nadia; Carroll, Darin S; Osorio, Jorge E; Rocke, Tonie E

    2015-10-01

    Monkeypox is a zoonosis clinically similar to smallpox in humans. Recent evidence has shown a potential risk of increased incidence in central Africa. Despite attempts to isolate the virus from wild rodents and other small mammals, no reservoir host has been identified. In 2003, Monkeypox virus (MPXV) was accidentally introduced into the U.S. via the pet trade and was associated with the Gambian pouched rat (Cricetomys gambianus). Therefore, we investigated the potential reservoir competence of the Gambian pouched rat for MPXV by utilizing a combination of in vivo and in vitro methods. We inoculated three animals by the intradermal route and three animals by the intranasal route, with one mock-infected control for each route. Bioluminescent imaging (BLI) was used to track replicating virus in infected animals and virological assays (e.g. real time PCR, cell culture) were used to determine viral load in blood, urine, ocular, nasal, oral, and rectal swabs. Intradermal inoculation resulted in clinical signs of monkeypox infection in two of three animals. One severely ill animal was euthanized and the other affected animal recovered. In contrast, intranasal inoculation resulted in subclinical infection in all three animals. All animals, regardless of apparent or inapparent infection, shed virus in oral and nasal secretions. Additionally, BLI identified viral replication in the skin without grossly visible lesions. These results suggest that Gambian pouched rats may play an important role in transmission of the virus to humans, as they are hunted for consumption and it is possible for MPXV-infected pouched rats to shed infectious virus without displaying overt clinical signs. PMID:26517839

  1. Effect of optical property estimation accuracy on tomographic bioluminescence imaging: simulation of a combined optical-PET (OPET) system

    International Nuclear Information System (INIS)

    Inevitable discrepancies between the mouse tissue optical properties assumed by an experimenter and the actual physiological values may affect the tomographic localization of bioluminescent sources. In a previous work, the simplifying assumption of optically homogeneous tissues led to inaccurate localization of deep sources. Improved results may be obtained if a mouse anatomical map is provided by a high-resolution imaging modality and optical properties are assigned to segmented tissues. In this work, the feasibility of this approach was explored by simulating the effect of different magnitude optical property errors on the image formation process of a combined optical-PET system. Some comparisons were made with corresponding simulations using higher spatial resolution data that are typically attainable by CCD cameras. In addition, simulation results provided insights on some of the experimental conditions that could lead to poor localization of bioluminescent sources. They also provided a rough guide on how accurately tissue optical properties need to be known in order to achieve correct localization of point sources with increasing tissue depth under low background noise conditions

  2. An enhanced chimeric firefly luciferase-inspired enzyme for ATP detection and bioluminescence reporter and imaging applications.

    Science.gov (United States)

    Branchini, Bruce R; Southworth, Tara L; Fontaine, Danielle M; Kohrt, Dawn; Talukder, Munya; Michelini, Elisa; Cevenini, Luca; Roda, Aldo; Grossel, Martha J

    2015-09-01

    Firefly luciferases, which emit visible light in a highly specific ATP-dependent process, have been adapted for a variety of applications, including gene reporter assays, whole-cell biosensor measurements, and in vivo imaging. We previously reported the approximately 2-fold enhanced activity and 1.4-fold greater bioluminescence quantum yield properties of a chimeric enzyme that contains the N-domain of Photinus pyralis luciferase joined to the C-domain of Luciola italica luciferase. Subsequently, we identified 5 amino acid changes based on L. italica that are the main determinants of the improved bioluminescence properties. Further engineering to enhance thermal and pH stability produced a novel luciferase called PLG2. We present here a systematic comparison of the spectral and physical properties of the new protein with P. pyralis luciferase and demonstrate the potential of PLG2 for use in assays based on the detection of femtomole levels of ATP. In addition, we compared the performance of a mammalian codon-optimized version of the cDNA for PLG2 with the luc2 gene in HEK293T cells. Using an optimized low-cost assay system, PLG2 activity can be monitored in mammalian cell lysates and living cells with 4.4-fold and approximately 3.0-fold greater sensitivity, respectively. PLG2 could be an improved alternative to Promega's luc2 for reporter and imaging applications. PMID:26049097

  3. Bioluminescent Imaging Reveals Novel Patterns of Colonization and Invasion in Systemic Escherichia coli K1 Experimental Infection in the Neonatal Rat.

    Science.gov (United States)

    Witcomb, Luci A; Collins, James W; McCarthy, Alex J; Frankel, Gadi; Taylor, Peter W

    2015-12-01

    Key features of Escherichia coli K1-mediated neonatal sepsis and meningitis, such as a strong age dependency and development along the gut-mesentery-blood-brain course of infection, can be replicated in the newborn rat. We examined temporal and spatial aspects of E. coli K1 infection following initiation of gastrointestinal colonization in 2-day-old (P2) rats after oral administration of E. coli K1 strain A192PP and a virulent bioluminescent derivative, E. coli A192PP-lux2. A combination of bacterial enumeration in the major organs, two-dimensional bioluminescence imaging, and three-dimensional diffuse light imaging tomography with integrated micro-computed tomography indicated multiple sites of colonization within the alimentary canal; these included the tongue, esophagus, and stomach in addition to the small intestine and colon. After invasion of the blood compartment, the bacteria entered the central nervous system, with restricted colonization of the brain, and also invaded the major organs, in line with increases in the severity of symptoms of infection. Both keratinized and nonkeratinized surfaces of esophagi were colonized to a considerably greater extent in susceptible P2 neonates than in corresponding tissues from infection-resistant 9-day-old rat pups; the bacteria appeared to damage and penetrate the nonkeratinized esophageal epithelium of infection-susceptible P2 animals, suggesting the esophagus represents a portal of entry for E. coli K1 into the systemic circulation. Thus, multimodality imaging of experimental systemic infections in real time indicates complex dynamic patterns of colonization and dissemination that provide new insights into the E. coli K1 infection of the neonatal rat. PMID:26351276

  4. Application of Bioluminescence Imaging to the Prediction of Lethality in Vaccinia Virus-Infected Mice? †

    OpenAIRE

    Zaitseva, Marina; Kapnick, Senta M.; Scott, John; King, Lisa R.; Manischewitz, Jody; Sirota, Lev; Kodihalli, Shantha; Golding, Hana

    2009-01-01

    To find an alternative endpoint for the efficacy of antismallpox treatments, bioluminescence was measured in live BALB/c mice following lethal challenge with a recombinant WR vaccinia virus expressing luciferase. Intravenous vaccinia immunoglobulin treatments were used to confer protection on a proportion of animals. Using known lethality outcomes in 200 animals and total fluxes recorded daily in live animals, we performed univariate receiver operating characteristic (ROC) curve analysis to a...

  5. A Bone Metastasis Nude Mouse Model Created by Ultrasound Guided Intracardiac Injection of Breast Cancer Cells: the Micro-CT, MRI and Bioluminescence Imaging Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Jin; Song, Eun Hye; Kim, Seol Hwa; Song, Ho Taek; Suh, Jin Suck [Yonsei University College of Medicine, Seoul (Korea, Republic of); Choi, Sang Hyun [Korean Minjok Leadership Academy, Heongsung (Korea, Republic of)

    2011-01-15

    The purpose of this study was to develop a nude mouse model of bone metastasis by performing intracardiac injection of breast cancer cells under ultrasonography guidance and we wanted to evaluate the development and the distribution of metastasis in vivo using micro-CT, MRI and bioluminescence imaging. Animal experiments were performed in 6-week-old female nude mice. The animals underwent left ventricular injection of 2x105 MDA-MB-231Bo-Luc cells. After injection of the tumor cells, serial bioluminescence imaging was performed for 7 weeks. The findings of micro-CT, MRI and the histology were correlated with the 'hot' lesions seen on the bioluminescence imaging. Metastasis was found in 62.3% of the animals. Two weeks after intracardiac injection, metastasis to the brain, spine and femur was detected with bioluminescence imaging with an increasing intensity by week 7. Micro-CT scan confirmed multiple osteolytic lesions at the femur, spine and skull. MRI and the histology were able to show metastasis in the brain and extraskeletal metastasis around the femur. The intracardiac injection of cancer cells under ultrasonography guidance is a safe and highly reproducible method to produce bone metastasis in nude mice. This bone metastasis nude mouse model will be useful to study the mechanism of bone metastasis and to validate new therapeutics

  6. A Bone Metastasis Nude Mouse Model Created by Ultrasound Guided Intracardiac Injection of Breast Cancer Cells: the Micro-CT, MRI and Bioluminescence Imaging Analysis

    International Nuclear Information System (INIS)

    The purpose of this study was to develop a nude mouse model of bone metastasis by performing intracardiac injection of breast cancer cells under ultrasonography guidance and we wanted to evaluate the development and the distribution of metastasis in vivo using micro-CT, MRI and bioluminescence imaging. Animal experiments were performed in 6-week-old female nude mice. The animals underwent left ventricular injection of 2x105 MDA-MB-231Bo-Luc cells. After injection of the tumor cells, serial bioluminescence imaging was performed for 7 weeks. The findings of micro-CT, MRI and the histology were correlated with the 'hot' lesions seen on the bioluminescence imaging. Metastasis was found in 62.3% of the animals. Two weeks after intracardiac injection, metastasis to the brain, spine and femur was detected with bioluminescence imaging with an increasing intensity by week 7. Micro-CT scan confirmed multiple osteolytic lesions at the femur, spine and skull. MRI and the histology were able to show metastasis in the brain and extraskeletal metastasis around the femur. The intracardiac injection of cancer cells under ultrasonography guidance is a safe and highly reproducible method to produce bone metastasis in nude mice. This bone metastasis nude mouse model will be useful to study the mechanism of bone metastasis and to validate new therapeutics

  7. Destabilized bioluminescent proteins

    Science.gov (United States)

    Allen, Michael S. (Knoxville, TN); Rakesh, Gupta (New Delhi, IN); Gary, Sayler S. (Blaine, TN)

    2007-07-31

    Purified nucleic acids, vectors and cells containing a gene cassette encoding at least one modified bioluminescent protein, wherein the modification includes the addition of a peptide sequence. The duration of bioluminescence emitted by the modified bioluminescent protein is shorter than the duration of bioluminescence emitted by an unmodified form of the bioluminescent protein.

  8. Ginger and Zingerone Ameliorate Lipopolysaccharide-Induced Acute Systemic Inflammation in Mice, Assessed by Nuclear Factor-?B Bioluminescent Imaging.

    Science.gov (United States)

    Hsiang, Chien-Yun; Cheng, Hui-Man; Lo, Hsin-Yi; Li, Chia-Cheng; Chou, Pei-Chi; Lee, Yu-Chen; Ho, Tin-Yun

    2015-07-01

    Ginger is a commonly used spice in cooking. In this study, we comprehensively evaluated the anti-inflammatory activities of ginger and its component zingerone in lipopolysaccharide (LPS)-induced acute systemic inflammation in mice via nuclear factor-?B (NF-?B) bioluminescent imaging. Ginger and zingerone significantly suppressed LPS-induced NF-?B activities in cells in a dose-dependent manner, and the maximal inhibition (84.5% ± 3.5% and 96.2% ± 0.6%) was observed at 100 ?g/mL ginger and zingerone, respectively. Moreover, dietary ginger and zingerone significantly reduced LPS-induced proinflammatory cytokine production in sera by 62.9% ± 18.2% and 81.3% ± 6.2%, respectively, and NF-?B bioluminescent signals in whole body by 26.9% ± 14.3% and 38.5% ± 6.2%, respectively. In addition, ginger and zingerone suppressed LPS-induced NF-?B-driven luminescent intensities in most organs, and the maximal inhibition by ginger and zingerone was observed in small intestine. Immunohistochemical staining further showed that ginger and zingerone decreased interleukin-1? (IL-1?)-, CD11b-, and p65-positive areas in jejunum. In conclusion, our findings suggested that ginger and zingerone were likely to be broad-spectrum anti-inflammatory agents in most organs that suppressed the activation of NF-?B, the production of IL-1?, and the infiltration of inflammatory cells in mice. PMID:26073629

  9. Chemiluminescence and bioluminescence microbe detection

    Science.gov (United States)

    Taylor, R. E.; Chappelle, E.; Picciolo, G. L.; Jeffers, E. L.; Thomas, R. R.

    1978-01-01

    Automated biosensors for online use with NASA Water Monitoring System employs bioluminescence and chemiluminescence techniques to rapidly measure microbe contamination of water samples. System eliminates standard laboratory procedures requiring time duration of 24 hours or longer.

  10. A novel triple-modality reporter gene for whole-body fluorescent, bioluminescent, and nuclear noninvasive imaging

    International Nuclear Information System (INIS)

    Two genetic reporter systems were developed for multimodality reporter gene imaging of different molecular-genetic processes using fluorescence, bioluminescence (BLI), and nuclear imaging techniques. The eGFP cDNA was fused at the N-terminus with HSV1-tk cDNA bearing a nuclear export signal from MAPKK (NES-HSV1-tk) or with truncation at the N-terminus of the first 45 amino acids (?45HSV1-tk) and with firefly luciferase at the C-terminus. A single fusion protein with three functional subunits is formed following transcription and translation from a single open reading frame. The NES-TGL (NES-TGL) or ?45HSV1-tk/GFP/luciferase (?45-TGL) triple-fusion gene cDNAs were cloned into a MoMLV-based retrovirus, which was used for transduction of U87 human glioma cells. The integrity, fluorescence, bioluminescence, and enzymatic activity of the TGL reporter proteins were assessed in vitro. The predicted molecular weight of the fusion proteins (130 kDa) was confirmed by western blot. The U87-NES-TGL and U87-?45-TGL cells had cytoplasmic green fluorescence. The in vitro BLI was 7- and 13-fold higher in U87-NES-TGL and U87-?45-TGL cells compared to nontransduced control cells. The Ki of 14C-FIAU was 0.49±0.02, 0.51±0.03, and 0.003±0.001 ml/min/g in U87-NES-TGL, U87-?45-TGL, and wild-type U87 cells, respectively. Multimodality in vivo imaging studies were performed in nu/nu mice bearing multiple s.c. xenografts established from U87-NES-TGL, U87-?45-TGL, and wild-type U87 cells. BLI was performed after administration of d-luciferin (150 mg/kg i.v.). Gamma camera or PET imaging was conducted at 2 h after i.v. administration of [131I]FIAU (7.4 MBq/animal) or [124I]FIAU (7.4 MBq/animal), respectively. Whole-body fluorescence imaging was performed in parallel with the BLI and radiotracer imaging studies. In vivo BLI and gamma camera imaging showed specific localization of luminescence and radioactivity to the TGL transduced xenografts with background levels of activity in the wild-type xenografts. Tissue sampling yielded values of 0.47%±0.08%, 0.86%±0.06%, and 0.03%±0.01%dose/g [131I]FIAU in U87-NES-TGL, U87-?45-TGL, and U87 xenografts, respectively. The TGL triple-fusion reporter gene preserves the functional activity of its subunits and is very effective for multimodality imaging. It provides for the seamless transition from fluorescence microscopy and FACS to whole-body bioluminescence imaging, to nuclear (PET, SPET, gamma camera) imaging, and back to in situ fluorescence image analysis. (orig.)

  11. Synthetic strategies for controlling inter- and intramolecular interactions: Applications in single-molecule fluorescence imaging, bioluminescence imaging, and palladium catalysis

    Science.gov (United States)

    Conley, Nicholas R.

    The field of synthetic organic chemistry has reached such maturity that, with sufficient effort and resources, the synthesis of virtually any small molecule which exhibits reasonable stability at room temperature can be realized. While representing a monumental achievement for the field, the ability to exert precise control over molecular structure is just a means to an end, and it is frequently the responsibility of the synthetic chemist to determine which molecules should actually be synthesized. For better or worse, there exists no competitive free market in academia for new molecules, and as a result, the decision of which compounds should be synthesized is seldom driven by the forces of supply and demand; rather, it is guided by the synthetic chemist's interest in an anticipated structure-function relationship or in the properties of a previously unstudied class of molecules. As a consequence, there exists a pervasive need for chemists with synthetic expertise in fields (e.g., molecular imaging) and subdisciplines of chemistry (e.g., physical chemistry) in which the identification of promising synthetic targets dramatically outpaces the synthetic output in that field or subdiscipline, and ample opportunities are available for synthetic chemists who choose to pursue such cross-disciplinary research. This thesis describes synthetic efforts that leverage these opportunities to realize applications in biological imaging and in palladium catalysis. In Part I, the synthesis and characterization of three novel luminophores and their imaging applications are discussed. The first is a molecular beacon that utilizes a fluorophorefluorophore pair which exhibits H-dimer quenching in the closed conformation. This probe offers several advantages over conventional fluorophore-quencher molecular beacons in the detection of oligonucleotides, both in bulk and at the single-molecule level. Secondly, a fluorescent, Cy3-Cy5 covalent heterodimer is reported, which on account of the proximity of the Cy3 and Cy5 fluorophores, behaves as an optical photoswitch in the presence of a thiol reagent. This unique property was employed to achieve sub-diffraction-limited imaging of the stalks of Caulobacter crescentus cells with 30-nm resolution using STORM (stochastic optical reconstruction microscopy). Lastly, the synthesis of the first selenium analogue of firefly luciferin is described, and this analogue is shown to be a competent substrate for firefly luciferase (fLuc). Remarkably, it exhibits red-shifted bioluminescence emission relative to the native sulfur analogue. The in vivo performance of the selenium and sulfur analogues in imaging are compared by tail-vein injection into nude mice bearing subcutaneous tumor xenografts of a human breast cancer cell line that was stably transduced to express fLuc. Part II of this thesis begins by addressing design considerations in the development of palladium catalysts that effect oxidative transformations under mild conditions (i.e., 1 atm air, room temperature) using molecular oxygen as the terminal oxidant. A newly synthesized cationic palladium complex, [(2,9-dimethylphenanthroline)Pd(OAc)]2[OTf]2, is shown to catalyze aerobic alcohol oxidation under such conditions with an unprecedented initial turnover frequency, but the presence of partially reduced oxygen species results in competitive ligand oxidation with concomitant decrease in catalyst activity. To remedy this, oxidatively resistant ligands, which are essential for the development of next-generation, high-turnover-frequency palladium catalysts that utilize oxygen as a terminal oxidant, have been prepared and effectively employed. In addition, the first general palladium-catalyzed route to the carbonylation of diols is reported. In this system, carbon monoxide (1 atm) serves the carbonyl source, (2,9-dimethylphenanthroline)Pd(OAc) 2 acts as the catalyst, and N-chlorosuccinimide and iodosobenzene are the oxidants for 1,2- and 1,3-diols, respectively. This thesis illustrates the power of synthetic organic chemistry to exert precise control ove

  12. In vivo bioluminescence imaging validation of a human biopsy-derived orthotopic mouse model of glioblastoma multiforme.

    Science.gov (United States)

    Jarzabek, Monika A; Huszthy, Peter C; Skaftnesmo, Kai O; McCormack, Emmet; Dicker, Patrick; Prehn, Jochen H M; Bjerkvig, Rolf; Byrne, Annette T

    2013-05-01

    Glioblastoma multiforme (GBM), the most aggressive brain malignancy, is characterized by extensive cellular proliferation, angiogenesis, and single-cell infiltration into the brain. We have previously shown that a xenograft model based on serial xenotransplantation of human biopsy spheroids in immunodeficient rodents maintains the genotype and phenotype of the original patient tumor. The present work further extends this model for optical assessment of tumor engraftment and growth using bioluminescence imaging (BLI). A method for successful lentiviral transduction of the firefly luciferase gene into multicellular spheroids was developed and implemented to generate optically active patient tumor cells. Luciferase-expressing spheroids were injected into the brains of immunodeficient mice. BLI photon counts and tumor volumes from magnetic resonance imaging (MRI) were correlated. Luciferase-expressing tumors recapitulated the histopathologic hallmarks of human GBMs and showed proliferation rates and microvessel density counts similar to those of wild-type xenografts. Moreover, we detected widespread invasion of luciferase-positive tumor cells in the mouse brains. Herein we describe a novel optically active model of GBM that closely mimics human pathology with respect to invasion, angiogenesis, and proliferation indices. The model may thus be routinely used for the assessment of novel anti-GBM therapeutic approaches implementing well-established and cost-effective optical imaging strategies. PMID:23490442

  13. Subcutaneous administration of D-luciferin is an effective alternative to intraperitoneal injection in bioluminescence imaging of xenograft tumors in nude mice

    OpenAIRE

    Khalil, Ashraf A; Jameson, Mark J.; William C. Broaddus; Chung, Theodore D.; Golding, Sarah E; DEVER, Seth M.; Rosenberg, Elisabeth; Valerie, Kristoffer

    2013-01-01

    Currently, intraperitoneal (IP) injection of D-luciferin is the preferred method of providing substrate for bioluminescent imaging (BLI); however it has a failure rate of 3–10% due to accidental intestinal injection. The present study evaluates the quality of BLI after subcutaneous (SC) injection of D-luciferin and demonstrates the effectiveness of SC injection in anatomically disparate tumor models. Mice bearing luciferase-expressing tumors underwent BLI after SC or IP injection of D-lucifer...

  14. Comparison of red-shifted firefly luciferase Ppy RE9 and conventional Luc2 as bioluminescence imaging reporter genes for in vivo imaging of stem cells

    Science.gov (United States)

    Liang, Yajie; Walczak, Piotr; Bulte, Jeff W. M.

    2012-01-01

    One critical issue for noninvasive imaging of transplanted bioluminescent cells is the large amount of light absorption in tissue when emission wavelengths below 600 nm are used. Luciferase with a red-shifted spectrum can potentially bypass this limitation. We assessed and compared a mutant of firefly luciferase (Ppy RE9, PRE9) against the yellow luciferase luc2 gene for use in cell transplantation studies. C17.2 neural stem cells expressing PRE9-Venus and luc2-Venus were sorted by flow cytometry and assessed for bioluminescence in vitro in culture and in vivo after transplantation into the brain of immunodeficient Rag2-/- mice. We found that the luminescence from PRE9 was stable, with a peak emission at 620 nm, shifted to the red compared to that of luc2. The emission peak for PRE9 was pH-independent, in contrast to luc2, and much less affected by tissue absorbance compared to that of luc2. However, the total emitted light radiance from PRE9 was substantially lower than that of luc2, both in vitro and in vivo. We conclude that PRE9 has favorable properties as compared to luc2 in terms of pH independence, red-shifted spectrum, tissue light penetration, and signal quantification, justifying further optimization of protein expression and enzymatic activity.

  15. Establishment of Green Fluorescent Protein and Firefly Luciferase Expressing Mouse Primary Macrophages for In Vivo Bioluminescence Imaging

    Science.gov (United States)

    Pajarinen, Jukka; Lin, Tzu-hua; Sato, Taishi; Loi, Florence; Yao, Zhenyu; Konttinen, Yrjö T.; Goodman, Stuart B.

    2015-01-01

    Macrophages play a key role in tissue homeostasis as well as in a range of pathological conditions including atherosclerosis, cancer, and autoimmunity. Many aspects of their in vivo behavior are, however, poorly understood. Bioluminescence imaging (BLI) with green fluorescent protein (GFP) and firefly luciferase (FLUC) labelled autologous reporter macrophages could potentially offer a powerful tool to study macrophage biology, but this approach has been hindered by the relative difficulty of efficient gene transfer into primary macrophages. Here we describe a straightforward method for producing large numbers of GFP/FLUC expressing mouse primary macrophages utilizing lentivirus vector, cyclosporine, and a double infection strategy. Using this method we achieved up to 60% of macrophages to express GFP with correspondingly high FLUC signal. When injected into the circulation using a mouse model of local biomaterial induced inflammation and osteolysis, macrophages were initially detectable within the lungs, followed by systemic homing to the local area of chronic inflammation in the distal femur. In addition, transduced macrophages maintained their ability to assume M1 and M2 phenotypes although the GFP/FLUC expression was altered by the polarizing signals. These reporter macrophages could prove to be valuable tools to study the role of macrophages in health and disease. PMID:26555613

  16. Evaluation of monkeypox virus infection of black-tailed prairie dogs (Cynomys ludovicianus) using in vivo bioluminescent imaging.

    Science.gov (United States)

    Falendysz, Elizabeth A; Londoño-Navas, Angela M; Meteyer, Carol U; Pussini, Nicola; Lopera, Juan G; Osorio, Jorge E; Rocke, Tonie E

    2014-07-01

    Monkeypox (MPX) is a re-emerging zoonotic disease that is endemic in Central and West Africa, where it can cause a smallpox-like disease in humans. Despite many epidemiologic and field investigations of MPX, no definitive reservoir species has been identified. Using recombinant viruses expressing the firefly luciferase (luc) gene, we previously demonstrated the suitability of in vivo bioluminescent imaging (BLI) to study the pathogenesis of MPX in animal models. Here, we evaluated BLI as a novel approach for tracking MPX virus infection in black-tailed prairie dogs (Cynomys ludovicianus). Prairie dogs were affected during a multistate outbreak of MPX in the US in 2003 and have since been used as an animal model of this disease. Our BLI results were compared with PCR and virus isolation from tissues collected postmortem. Virus was easily detected and quantified in skin and superficial tissues by BLI before and during clinical phases, as well as in subclinical secondary cases, but was not reliably detected in deep tissues such as the lung. Although there are limitations to viral detection in larger wild rodent species, BLI can enhance the use of prairie dogs as an animal model of MPX and can be used for the study of infection, disease progression, and transmission in potential wild rodent reservoirs. PMID:24779460

  17. Bio-luminescent imaging and characterization of organ-specific metastasis of human cancer in NOD/SCID mice

    Science.gov (United States)

    Chun, Nicole A. L.; Murakami, Takashi

    2010-02-01

    Many clinical evidences demonstrate that the sites of distant metastasis are not random and certain malignant tumors show a tendency to develop metastases in specific organs (e.g., brain, liver, and lungs). However, an appropriate animal model to characterize the metastatic nature of transplantable human cancer cell lines has not been reported well. Recent advances in bio-luminescent imaging (BLI) technologies have facilitated the quantitative analysis of various cellular processes in vivo. To visualize the fate of tumor progression in the living mice, we are constructing a luciferaseexpressing human cancer cell library (including melanoma, colon, breast, and prostate cancer). Herein we demonstrate that the BLI technology in couple with a fine ultrasonic guidance realizes cancer cell-type dependent metastasis to the specific organs. For example, some melanoma cell lines showed frequent metastasis to brain, lungs, and lymph nodes in the mouse model. Notably, reflecting the clinical features of melanoma, breast, and prostate cancer, some of the cell lines showed preferential metastasis to the brain. Moreover, these cellular resources for BLI allow a high throughput screening for potential anti-cancer drugs. Thus, this BLI-mediated additional strategy with the luciferase-expressing cancer cell resources should promote many translational studies for human cancer therapy.

  18. Real-Time Monitoring of Bacterial Infection In Vivo: Development of Bioluminescent Staphylococcal Foreign-Body and Deep-Thigh-Wound Mouse Infection Models

    OpenAIRE

    Kuklin, Nelly A.; Pancari, Gregory D.; Tobery, Timothy W.; Cope, Leslie; Jackson, Jesse; Gill, Charles; Overbye, Karen; Francis, Kevin P.; Yu, Jun; Montgomery, Donna; Anderson, Annaliesa S.; McClements, William; Jansen, Kathrin U.

    2003-01-01

    Staphylococcal infections associated with catheter and prosthetic implants are difficult to eradicate and often lead to chronic infections. Development of novel antibacterial therapies requires simple, reliable, and relevant models for infection. Using bioluminescent Staphylococcus aureus, we have adapted the existing foreign-body and deep-wound mouse models of staphylococcal infection to allow real-time monitoring of the bacterial colonization of catheters or tissues. This approach also enab...

  19. Metabolic self-organization of bioluminescent Escherichia coli.

    Science.gov (United States)

    Simkus, Remigijus; Baronas, Romas

    2011-01-01

    A possible reason for the complexity of the signals produced by bioluminescent biosensors might be self-organization of the cells. In order to verify this possibility, bioluminescence images of cultures of lux gene reporter Escherichia coli were recorded for several hours after being placed into 8-10 mm diameter cylindrical containers. It was found that luminous cells distribute near the three-phase contact line, forming irregular azimuthal waves. As we show, space-time plots of quasi-one-dimensional bioluminescence measured along the contact line can be simulated by reaction-diffusion-chemotaxis equations, in which the reaction term for the cells is a logistic (autocatalytic) growth function. It was found that the growth rate of the luminous cells (~0.02 s(-1)) is >100 times higher than the growth rate of E. coli. We provide an explanation for this result by assuming that E. coli exhibits considerable respiratory flexibility (the ability of oxygen-induced switching from one metabolic pathway to another). According to the simple two-state model presented here, the number of oxic (luminous) cells grows at the expense of anoxic (dark) cells, whereas the total number of (oxic and anoxic) cells remains unchanged. It is conjectured that the corresponding reaction-diffusion-chemotaxis model for bioluminescence pattern formation can be considered as a model for the energy-taxis and metabolic self-organization in the population of the metabolically flexible bacteria under hypoxic conditions. PMID:21538795

  20. Bioluminescent Imaging of Genetically Selected Induced Pluripotent Stem Cell-Derived Cardiomyocytes after Transplantation into Infarcted Heart of Syngeneic Recipients

    Science.gov (United States)

    Lepperhof, Vera; Polchynski, Olga; Kruttwig, Klaus; Brüggemann, Chantal; Neef, Klaus; Drey, Florian; Zheng, Yunjie; Ackermann, Justus P.; Choi, Yeong-Hoon; Wunderlich, Thomas F.; Hoehn, Mathias; Hescheler, Jürgen; Šari?, Tomo

    2014-01-01

    Cell loss after transplantation is a major limitation for cell replacement approaches in regenerative medicine. To assess the survival kinetics of induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CM) we generated transgenic murine iPSC lines which, in addition to CM-specific expression of puromycin N-acetyl-transferase and enhanced green fluorescent protein (EGFP), also constitutively express firefly luciferase (FLuc) for bioluminescence (BL) in vivo imaging. While undifferentiated iPSC lines generated by random integration of the transgene into the genome retained stable FLuc activity over many passages, the BL signal intensity was strongly decreased in purified iPS-CM compared to undifferentiated iPSC. Targeted integration of FLuc-expression cassette into the ROSA26 genomic locus using zinc finger nuclease (ZFN) technology strongly reduced transgene silencing in iPS-CM, leading to a several-fold higher BL compared to iPS-CM expressing FLuc from random genomic loci. To investigate the survival kinetics of iPS-CM in vivo, purified CM obtained from iPSC lines expressing FLuc from a random or the ROSA26 locus were transplanted into cryoinfarcted hearts of syngeneic mice. Engraftment of viable cells was monitored by BL imaging over 4 weeks. Transplanted iPS-CM were poorly retained in the myocardium independently of the cell line used. However, up to 8% of cells survived for 28 days at the site of injection, which was confirmed by immunohistological detection of EGFP-positive iPS-CM in the host tissue. Transplantation of iPS-CM did not affect the scar formation or capillary density in the periinfarct region of host myocardium. This report is the first to determine the survival kinetics of drug-selected iPS-CM in the infarcted heart using BL imaging and demonstrates that transgene silencing in the course of iPSC differentiation can be greatly reduced by employing genome editing technology. FLuc-expressing iPS-CM generated in this study will enable further studies to reduce their loss, increase long-term survival and functional integration upon transplantation. PMID:25226590

  1. GMO detection using a bioluminescent real time reporter (BART of loop mediated isothermal amplification (LAMP suitable for field use

    Directory of Open Access Journals (Sweden)

    Kiddle Guy

    2012-04-01

    Full Text Available Abstract Background There is an increasing need for quantitative technologies suitable for molecular detection in a variety of settings for applications including food traceability and monitoring of genetically modified (GM crops and their products through the food processing chain. Conventional molecular diagnostics utilising real-time polymerase chain reaction (RT-PCR and fluorescence-based determination of amplification require temperature cycling and relatively complex optics. In contrast, isothermal amplification coupled to a bioluminescent output produced in real-time (BART occurs at a constant temperature and only requires a simple light detection and integration device. Results Loop mediated isothermal amplification (LAMP shows robustness to sample-derived inhibitors. Here we show the applicability of coupled LAMP and BART reactions (LAMP-BART for determination of genetically modified (GM maize target DNA at low levels of contamination (0.1-5.0% GM using certified reference material, and compare this to RT-PCR. Results show that conventional DNA extraction methods developed for PCR may not be optimal for LAMP-BART quantification. Additionally, we demonstrate that LAMP is more tolerant to plant sample-derived inhibitors, and show this can be exploited to develop rapid extraction techniques suitable for simple field-based qualitative tests for GM status determination. We also assess the effect of total DNA assay load on LAMP-BART quantitation. Conclusions LAMP-BART is an effective and sensitive technique for GM detection with significant potential for quantification even at low levels of contamination and in samples derived from crops such as maize with a large genome size. The resilience of LAMP-BART to acidic polysaccharides makes it well suited to rapid sample preparation techniques and hence to both high throughput laboratory settings and to portable GM detection applications. The impact of the plant sample matrix and genome loading within a reaction must be controlled to ensure quantification at low target concentrations.

  2. Spectrally resolved bioluminescence tomography using the reciprocity approach

    OpenAIRE

    DEHGHANI, Hamid; Davis, Scott C.; Pogue, Brian W.

    2008-01-01

    Spectrally resolved bioluminescence optical tomography is an approach to recover images of, for example, Luciferase activity within a volume using multiwavelength emission data from internal bioluminescence sources. The underlying problem of uniqueness associated with nonspectrally resolved intensity-based bioluminescence tomography is demonstrated and it is shown that using a non-negative constraint inverse algorithm, an accurate solution for the source distribution can be calculated from th...

  3. Self-illuminating quantum dots for non-invasive bioluminescence imaging of mammalian

    Science.gov (United States)

    Background: The fertility performance of animals is still a mystery and the full comprehension of mammalian gametes maturation and early embryonic development remains to be elucidated. The recent development in nanotechnology offers a new opportunity for real-time study of reproductive cells in thei...

  4. Molecular imaging of lentiviral vector-mediated reporter gene expression with positron emission tomography and bioluminescence imaging

    OpenAIRE

    Deroose, Christophe

    2007-01-01

    Table of Contents Dankwoord 1 Table of Contents 5 Abbreviations 9 Chapter 1: General Introduction 13 1. Imaging Modalities 14 1.1. Radionuclide Imaging Techniques 15 1.1.1. Single Photon Emission Computed Tomography (SPECT) 15 1.1.2. Positron Emission Tomography 16 1.2. Magnetic Resonance Imaging and Spectroscopy 16 1.2.1. Magnetic Resonance Imaging (MRI) 16 1.2.2. Magnetic Resonance Spectroscopy (MRS) 17 1.3. Optical Imaging Strategies 17 1.3.1. Fluore...

  5. Effect of electromagnetic fields on the bacteria bioluminescent activity

    International Nuclear Information System (INIS)

    The effect of electromagnetic field with frequency from 36.2 to 55.9 GHz on bioluminescence activity of bacterium were investigated. Electromagnetic field results in decrease of bioluminescence, which depends from frequency. The electromagnetic field adaptation time is higher of intrinsic time parameters of bioluminescence system. The effect has nonthermal nature. It is suggested that electromagnetic field influence connects with structure rearrangements near cell emitter. 8 refs.; 3 figs

  6. Luciferase expression and bioluminescence does not affect tumor cell growth in vitro or in vivo

    Directory of Open Access Journals (Sweden)

    Rasko John EJ

    2010-11-01

    Full Text Available Abstract Live animal imaging is becoming an increasingly common technique for accurate and quantitative assessment of tumor burden over time. Bioluminescence imaging systems rely on a bioluminescent signal from tumor cells, typically generated from expression of the firefly luciferase gene. However, previous reports have suggested that either a high level of luciferase or the resultant light reaction produced upon addition of D-luciferin substrate can have a negative influence on tumor cell growth. To address this issue, we designed an expression vector that allows simultaneous fluorescence and luminescence imaging. Using fluorescence activated cell sorting (FACS, we generated clonal cell populations from a human breast cancer (MCF-7 and a mouse melanoma (B16-F10 cell line that stably expressed different levels of luciferase. We then compared the growth capabilities of these clones in vitro by MTT proliferation assay and in vivo by bioluminescence imaging of tumor growth in live mice. Surprisingly, we found that neither the amount of luciferase nor biophotonic activity was sufficient to inhibit tumor cell growth, in vitro or in vivo. These results suggest that luciferase toxicity is not a necessary consideration when designing bioluminescence experiments, and therefore our approach can be used to rapidly generate high levels of luciferase expression for sensitive imaging experiments.

  7. Bioluminescence in the high Arctic during the polar night

    OpenAIRE

    Berge, Jørgen; Båtnes, Anna Solvang; Johnsen, Geir; Blackwell, Susan; Moline, Mark A.

    2012-01-01

    This study examines the composition and activity of the planktonic community during the polar night in the high Arctic Kongsfjord, Svalbard. Our results are the first published evidence of bioluminescence among zooplankton during the Arctic polar night. The observations were collected by a bathyphotometer detecting bioluminescence, integrated into an autonomous underwater vehicle, to determine the concentration and intensity of bioluminescent flashes as a function of time of day and depth. To...

  8. In vivo bioluminescence tomography with a blocking-off finite-difference SP3 method and MRI?CT coregistration

    OpenAIRE

    Klose, Alexander D.; Beattie, Bradley J.; DEHGHANI, Hamid; Vider, Lena; Le, Carl; PONOMAREV, VLADIMIR; Blasberg, Ronald

    2009-01-01

    Purpose: Bioluminescence imaging is a research tool for studying gene expression levels in small animal models of human disease. Bioluminescence light, however, is strongly scattered in biological tissue and no direct image of the light-emitting reporter probe’s location can be obtained. Therefore, the authors have developed a linear image reconstruction method for bioluminescence tomography (BLT) that recovers the three-dimensional spatial bioluminescent source distribution in small animals.

  9. Bioluminescence imaging of point sources implanted in small animals post mortem: evaluation of a method for estimating source strength and depth

    International Nuclear Information System (INIS)

    The performance of a simple approach for the in vivo reconstruction of bioluminescent point sources in small animals was evaluated. The method uses the diffusion approximation as a forward model of light propagation from a point source in a homogeneous tissue to find the source depth and power. The optical properties of the tissue are estimated from reflectance images obtained at the same location on the animal. It was possible to localize point sources implanted in mice, 2-8 mm deep, to within 1 mm. The same performance was achieved for sources implanted in rat abdomens when the effects of tissue surface curvature were eliminated. The source power was reconstructed within a factor of 2 of the true power for the given range of depths, even though the apparent brightness of the source varied by several orders of magnitude. The study also showed that reconstructions using optical properties measured in situ were superior to those based on data in the literature

  10. Stimulated bioluminescence by fluid shear stress associated with pipe flow

    Energy Technology Data Exchange (ETDEWEB)

    Cao Jing; Wang Jiangan; Wu Ronghua, E-mail: caojing981@126.com [Col. of Electronic Eng., Naval University of Engineering, Wuhan 430033 (China)

    2011-01-01

    Dinoflagellate can be stimulated bioluminescence by hydrodynamic agitation. Two typical dinoflagellate (Lingulodinium polyedrum and Pyrocystis noctiluca) was choosed to research stimulated bioluminescence. The bioluminescence intensity and shear stress intensity were measured using fully developed pipe flow. There is shear stress threshold to agitate organism bioluminescence. From these experiment, the response thresholds of the stimulated bioluminscence always occurred in laminar flows at a shear stress level of 0.6-3 dyn/cm{sup 2}. At the same time, the spectral characteristc of dinoflagellate was recorded, the wavelength of them is about 470nm, and the full width at half maximum is approximate 30nm.

  11. Stimulated bioluminescence by fluid shear stress associated with pipe flow

    International Nuclear Information System (INIS)

    Dinoflagellate can be stimulated bioluminescence by hydrodynamic agitation. Two typical dinoflagellate (Lingulodinium polyedrum and Pyrocystis noctiluca) was choosed to research stimulated bioluminescence. The bioluminescence intensity and shear stress intensity were measured using fully developed pipe flow. There is shear stress threshold to agitate organism bioluminescence. From these experiment, the response thresholds of the stimulated bioluminscence always occurred in laminar flows at a shear stress level of 0.6-3 dyn/cm2. At the same time, the spectral characteristc of dinoflagellate was recorded, the wavelength of them is about 470nm, and the full width at half maximum is approximate 30nm.

  12. Coastal bioluminescent marine snow: fine structure of bioluminescence distribution

    Science.gov (United States)

    Herren, Christen M.; Alldredge, Alice L.; Case, James F.

    2004-02-01

    To determine if bioluminescent organisms were differentially concentrated within marine snow relative to ambient water, individual aggregates were photographed in situ and collected by hand using SCUBA, and mechanically stimulable bioluminescence (BL) was measured with an integrating sphere photomultiplier system. These are among the first measurements of BL on marine snow, and are the first quantitative estimates of BL marine snow over the water column in a coastal environment (East Sound, WA). BL in marine snow and ambient water varied significantly over short time scales (1-11 days) and vertical spatial scales (1-5 m resolution). BL was enriched up to 180 times within aggregates as compared to an equal volume of surrounding seawater. However, the contribution of BL associated with marine snow to total BL in the water column varied between Protoperidinium leonis, made the largest contribution to both BL in aggregates and to the overall water column. Concentrations of the bioluminescent dinoflagellates Protoperidinium spp. and Noctiluca scintillans were significantly correlated with BL per aggregate as a function of depth, date, and type of marine snow. Because BL has been shown to deter herbivore grazing on individual BL dinoflagellates, BL-enriched marine snow may likewise, avoid consumption and play an important role in coastal carbon cycling and food web structure.

  13. Time encoded radiation imaging

    Science.gov (United States)

    Marleau, Peter; Brubaker, Erik; Kiff, Scott

    2014-10-21

    The various technologies presented herein relate to detecting nuclear material at a large stand-off distance. An imaging system is presented which can detect nuclear material by utilizing time encoded imaging relating to maximum and minimum radiation particle counts rates. The imaging system is integrated with a data acquisition system that can utilize variations in photon pulse shape to discriminate between neutron and gamma-ray interactions. Modulation in the detected neutron count rates as a function of the angular orientation of the detector due to attenuation of neighboring detectors is utilized to reconstruct the neutron source distribution over 360 degrees around the imaging system. Neutrons (e.g., fast neutrons) and/or gamma-rays are incident upon scintillation material in the imager, the photons generated by the scintillation material are converted to electrical energy from which the respective neutrons/gamma rays can be determined and, accordingly, a direction to, and the location of, a radiation source identified.

  14. New class of bioluminogenic probe based on bioluminescent enzyme-induced electron transfer: BioLeT.

    Science.gov (United States)

    Takakura, Hideo; Kojima, Ryosuke; Kamiya, Mako; Kobayashi, Eiji; Komatsu, Toru; Ueno, Tasuku; Terai, Takuya; Hanaoka, Kenjiro; Nagano, Tetsuo; Urano, Yasuteru

    2015-04-01

    Bioluminescence imaging (BLI) has advantages for investigating biological phenomena in deep tissues of living animals, but few design strategies are available for functional bioluminescent substrates. We propose a new design strategy (designated as bioluminescent enzyme-induced electron transfer: BioLeT) for luciferin-based bioluminescence probes. Luminescence measurements of a series of aminoluciferin derivatives confirmed that bioluminescence can be controlled by means of BioLeT. Based on this concept, we developed bioluminescence probes for nitric oxide that enabled quantitative and sensitive detection even in vivo. Our design strategy should be applicable to develop a wide range of practically useful bioluminogenic probes. PMID:25761130

  15. Action of ?-radiation on bioluminescence of Noctiluca miliaris

    International Nuclear Information System (INIS)

    Results of the study in the action of various doses of irradiation on the bioluminescence of Noctiluca miliaris are presented. The doses are found that stimulate the bioluminescence and the dose - effect curves are obtained. It has been shown that stimulation of Noctiluca luminescence by ?-radiation is not of a constant character and extinguishes after a period of time determined by a dose rate

  16. Time-Encoded Imagers.

    Energy Technology Data Exchange (ETDEWEB)

    Marleau, Peter; Brubaker, Erik

    2014-11-01

    This report provides a short overview of the DNN R&D funded project, Time-Encoded Imagers. The project began in FY11 and concluded in FY14. The Project Description below provides the overall motivation and objectives for the project as well as a summary of programmatic direction. It is followed by a short description of each task and the resulting deliverables.

  17. Multispectral Bioluminescence Tomography: Methodology and Simulation

    Directory of Open Access Journals (Sweden)

    Ge Wang

    2006-02-01

    Full Text Available Bioluminescent imaging has proven to be a valuable tool for monitoring physiological and pathological activities at cellular and molecular levels in living small animals. Using biological techniques, target cells can be tagged with reporters encoding several kinds of luciferase enzymes, which generate characteristic photons in a wide spectrum covering the infrared range. Part of the diffused light can reach the body surface of the small animal, be separated into several spectral bands using appropriate filters, and collected by a sensitive CCD camera. Here we present a bioluminescence tomography (BLT method for a bioluminescent source reconstruction from multispectral data measured on the external surface, and demonstrate the advantages of multispectral BLT in a numerical study using a heterogeneous mouse chest phantom. The results show that the multispectral approach significantly improves the accuracy and stability of the BLT reconstruction even if the data are highly noisy.

  18. Nanostructured bioluminescent sensor for rapidly detecting thrombin.

    Science.gov (United States)

    Chen, Longyan; Bao, Yige; Denstedt, John; Zhang, Jin

    2016-03-15

    Thrombin plays a key role in thrombosis and hemostasis. The abnormal level of thrombin in body fluids may lead to different diseases, such as rheumatoid arthritis, glomerulonephritis, etc. Detection of thrombin level in blood and/or urine is one of important methods for medical diagnosis. Here, a bioluminescent sensor is developed for non-invasively and rapidly detecting thrombin in urine. The sensor is assembled through conjugating gold nanoparticles (Au NPs) and a recombinant protein containing Renilla luciferase (pRluc) by a peptide, which is thrombin specific substrate. The luciferase-catalyzed bioluminescence can be quenched by peptide-conjugating Au NPs. In the presence of thrombin, the short peptide conjugating luciferase and Au NPs is digested and cut off, which results in the recovery of bioluminescence due to the release of luciferase from Au NPs. The bioluminescence intensity at 470nm is observed, and increases with increasing concentration of thrombin. The bioluminescence intensity of this designed sensor is significantly recovered when the thrombin digestion time lasts for 10min. In addition, a similar linear relationship between luminescence intensity and the concentration of thrombin is found in the range of 8nM to 8?M in both buffer and human urine spiked samples. The limit of detection is as low as 80pM. It is anticipated that our nanosensor could be a promising tool for clinical diagnosis of thrombin in human urine. PMID:26397418

  19. Space-Time Quantum Imaging

    Directory of Open Access Journals (Sweden)

    Ronald E. Meyers

    2015-03-01

    Full Text Available We report on an experimental and theoretical investigation of quantum imaging where the images are stored in both space and time. Ghost images of remote objects are produced with either one or two beams of chaotic laser light generated by a rotating ground glass and two sensors measuring the reference field and bucket field at different space-time points. We further observe that the ghost images translate depending on the time delay between the sensor measurements. The ghost imaging experiments are performed both with and without turbulence. A discussion of the physics of the space-time imaging is presented in terms of quantum nonlocal two-photon analysis to support the experimental results. The theoretical model includes certain phase factors of the rotating ground glass. These experiments demonstrated a means to investigate the time and space aspects of ghost imaging and showed that ghost imaging contains more information per measured photon than was previously recognized where multiple ghost images are stored within the same ghost imaging data sets. This suggests new pathways to explore quantum information stored not only in multi-photon coincidence information but also in time delayed multi-photon interference. The research is applicable to making enhanced space-time quantum images and videos of moving objects where the images are stored in both space and time.

  20. Circadian regulation of bioluminescence in Gonyaulax involves translational control.

    OpenAIRE

    Morse, D.(Northeastern University, Boston, USA); Milos, P M; Roux, E.; Hastings, J W

    1989-01-01

    A 10-fold circadian variation in the amount of luciferin binding protein (LBP) in the marine dinoflagellate Gonyaulax polyedra is reported. This protein binds and stabilizes luciferin, the bioluminescence substrate. In early night phase, when bioluminescence is increasing and LBP levels are rising in the cell, pulse labeling experiments show that LBP is being rapidly synthesized in vivo. At other times, the rate of LBP synthesis is at least 50 times lower, while the rate of synthesis of most ...

  1. Information-theoretic method for wavelength selection in bioluminescence tomography

    Science.gov (United States)

    Basevi, Hector R. A.; Guggenheim, James A.; Dehghani, Hamid; Styles, Iain B.

    2013-06-01

    Practical imaging constraints restrict the number of wavelengths that can be measured in a single Biolumines- cence Tomography imaging session, but it is unclear which set of measurement wavelengths is optimal, in the sense of providing the most information about the bioluminescent source. Mutual Information was used to integrate knowledge of the type of bioluminescent source likely to be present, the optical properties of tissue and physics of light propagation, and the noise characteristics of the imaging system, in order to quantify the information contained in measurements at different sets of wavelengths. The approach was applied to a two-dimensional sim- ulation of Bioluminescence Tomography imaging of a mouse, and the results indicate that different wavelengths and sets of wavelengths contain different amounts of information. When imaging at a single wavelength, 580nm was found to be optimal, and when imaging at two wavelengths, 570nm and 580nm were found to be optimal. Examination of the dispersion of the posterior distributions for single wavelengths suggests that information regarding the location of the centre of the bioluminescence distribution is relatively independent of wavelength, whilst information regarding the width of the bioluminescence distribution is relatively wavelength specific.

  2. Multispectral Bioluminescence Tomography: Methodology and Simulation

    OpenAIRE

    Ge Wang; Cong, Alexander X.

    2006-01-01

    Bioluminescent imaging has proven to be a valuable tool for monitoring physiological and pathological activities at cellular and molecular levels in living small animals. Using biological techniques, target cells can be tagged with reporters encoding several kinds of luciferase enzymes, which generate characteristic photons in a wide spectrum covering the infrared range. Part of the diffused light can reach the body surface of the small animal, be separated into several spectral bands using a...

  3. Bioluminescence imaging of therapy response does not correlate with FDG-PET response in a mouse model of Burkitt lymphoma

    OpenAIRE

    De Saint-Hubert, Marijke; Devos, Ellen; Ibrahimi, Abdelilah; Debyser, Zeger; Mortelmans, Luc; Mottaghy, Felix M

    2012-01-01

    Since the development and evaluation of novel anti-cancer therapies require molecular insight in the disease state, both FDG-PET and BLI imaging were evaluated in a Burkitt B-cell lymphoma xenograft model treated with cyclophosphamide or temsirolimus. Daudi xenograft mice were treated with either cyclophosphamide or temsirolimus and imaged with BLI and FDG-PET on d0 (before treatment), d2, d4, d7, d9 and d14 following the start of therapy. Besides tumor volume changes, therapy response was as...

  4. Spatiotemporal progression of localized bacterial peritonitis before and after open abdomen lavage monitored by in vivo bioluminescent imaging.

    OpenAIRE

    Sharma, PK; Engels, E.; Van Oeveren, W; Ploeg, RJ; van Henny der Mei, C; Busscher, HJ; Van Dam, GM; Rakhorst, G.

    2010-01-01

    BACKGROUND: Bacterial peritonitis is a life-threatening abdominal infection associated with high morbidity and mortality. The rat is a popular animal model for studying peritonitis and its treatment, but longitudinal monitoring of the progression of peritonitis in live animals has been impossible until now and thus required a large number of animals. Our objective was to develop a noninvasive in vivo imaging technique to monitor the spatiotemporal spread of bacterial peritonitis. METHODS: Per...

  5. Bioluminescent bacteria: lux genes as environmental biosensors

    OpenAIRE

    Nunes-Halldorson Vânia da Silva; Duran Norma Letícia

    2003-01-01

    Bioluminescent bacteria are widespread in natural environments. Over the years, many researchers have been studying the physiology, biochemistry and genetic control of bacterial bioluminescence. These discoveries have revolutionized the area of Environmental Microbiology through the use of luminescent genes as biosensors for environmental studies. This paper will review the chronology of scientific discoveries on bacterial bioluminescence and the current applications of bioluminescence in env...

  6. Bathyphotometer bioluminescence potential measurements: A framework for characterizing flow agitators and predicting flow-stimulated bioluminescence intensity

    Science.gov (United States)

    Latz, Michael I.; Rohr, Jim

    2013-07-01

    Bathyphotometer measurements of bioluminescence are used as a proxy for the abundance of luminescent organisms for studying population dynamics; the interaction of luminescent organisms with physical, chemical, and biological oceanographic processes; and spatial complexity especially in coastal areas. However, the usefulness of bioluminescence measurements has been limited by the inability to compare results from different bathyphotometer designs, or even the same bathyphotometer operating at different volume flow rates. The primary objective of this study was to compare measurements of stimulated bioluminescence of four species of cultured dinoflagellates, the most common source of bioluminescence in coastal waters, using two different bathyphotometer flow agitators as a function of bathyphotometer volume flow rate and dinoflagellate concentration. For both the NOSC and BIOLITE flow agitators and each species of dinoflagellate tested, there was a critical volume flow rate, above which average bioluminescence intensity, designated as bathyphotometer bioluminescence potential (BBP), remained relatively constant and scaled directly with dinoflagellate cell concentration. At supra-critical volume flow rates, the ratio of BIOLITE to NOSC BBP was nearly constant for the same species studied, but varied between species. The spatial pattern and residence time of flash trajectories within the NOSC flow agitator indicated the presence of dominant secondary recirculating flows, where most of the bioluminescence was detected. A secondary objective (appearing in the Appendix) was to study the feasibility of using NOSC BBP to scale flow-stimulated bioluminescence intensity across similar flow fields, where the contributing composition of luminescent species remained the same. Fully developed turbulent pipe flow was chosen because it is hydrodynamically well characterized. Average bioluminescence intensity in a 2.54-cm i.d. pipe was highly correlated with wall shear stress and BBP. This correlation, when further scaled by pipe diameter, effectively predicted bioluminescence intensity in fully developed turbulent flow in a 0.83-cm i.d. pipe. Determining similar correlations between other bathyphotometer flow agitators and flow fields will allow bioluminescence potential measurements to become a more powerful tool for the oceanographic community.

  7. Real-Time Monitoring of Escherichia coli O157:H7 Adherence to Beef Carcass Surface Tissues with a Bioluminescent Reporter

    OpenAIRE

    Siragusa, Gregory R; Nawotka, Kevin; Spilman, Stanley D.; Contag, Pamela R; Contag, Christopher H

    1999-01-01

    A method for studying bacteria that are attached to carcass surfaces would eliminate the need for exogenous sampling and would facilitate understanding the interaction of potential human food-borne pathogens with food animal tissue surfaces. We describe such a method in which we used a bioluminescent reporter strain of Escherichia coli O157:H7 that was constructed by transformation with plasmid pCGLS1, an expression vector that contains a complete bacterial luciferase (lux) operon. Beef carca...

  8. Experimental Bioluminescence Tomography with Fully Parallel Radiative-transfer-based Reconstruction Framework

    OpenAIRE

    Lu, Yujie; Machado, Hidevaldo B.; Douraghy, Ali; Stout, David; Herschman, Harvey; Chatziioannou, Arion F.

    2009-01-01

    Bioluminescence imaging is a very sensitive imaging modality, used in preclinical molecular imaging. However, in its planar projection form, it is non-quantitative and has poor spatial resolution. In contrast, bioluminescence tomography (BLT) promises to provide three dimensional quantitative source information. Currently, nearly all BLT reconstruction algorithms in use employ the diffusion approximation theory to determine light propagation in tissues. In this process, several approximations...

  9. Bioluminescence Tomography: Biomedical Background, Mathematical Theory, and Numerical Approximation 1)

    OpenAIRE

    Han, Weimin; Wang, Ge

    2008-01-01

    Over the last couple of years molecular imaging has been rapidly developed to study physiological and pathological processes in vivo at the cellular and molecular levels. Among molecular imaging modalities, optical imaging stands out for its unique advantages, especially performance and cost-effectiveness. Bioluminescence tomography (BLT) is an emerging optical imaging mode with promising biomedical advantages. In this survey paper, we explain the biomedical significance of BLT, summarize the...

  10. Meshless local Petrov-Galerkin method for bioluminescent photon propagation in the biological tissue

    Science.gov (United States)

    Qin, Chenghu; Tian, Jie; Yang, Xin; Liu, Kai; Feng, Jinchao; Xu, Min

    2009-02-01

    As a promising optical molecular imaging modality, bioluminescence tomography (BLT) has attracted remarkable attention for its excellent performance and high cost-effectiveness, which can be employed to specifically and directly reveal physiological and pathological activities in vivo at molecular and cellular levels. The goal of BLT is to reconstruct the internal bioluminescent light source with surface measurements. Therefore, the calculation of surface light exitance plays an important role in the inverse source reconstruction, whereas photon propagation is complicated because of strongly scattering property of the biological tissue. In this contribution, a novel meshless local Petrov-Galerkin (MLPG) method based on diffusion approximation model is developed to avoid the complex and time-consuming mesh division in the conventional finite element method (FEM), and MLPG requires only a series of discretized nodes without consideration of element information and node connectivity. Compared with other meshless methods based on global weak-form, background cells used for Gauss quadrature are also omitted in the proposed method. In addition, the tissue optical parameters are incorporated as a priori knowledge in this algorithm. Finally, the performance of this method is valuated using two- and three-dimensional numerical simulation experiments. The results demonstrate the effectiveness and feasibility of the presented algorithm to predict boundary bioluminescent light power distribution.

  11. The rapid bioluminescence assay method for content of bacteria in dehydrated vegetable and condiment before radiation

    International Nuclear Information System (INIS)

    The microbial colony-forming unit (cfu) in dehydrated vegetable and condiment was determined by using ATP bioluminescence method. The result showed that bioluminescence of ATP was correlative to the microbial cfu obviously. The detecting time was within 1-2 h. This method could be applied to determine micro load of products before irradiation sterilization. (authors)

  12. Random matrix-based dimensionality reduction for bioluminescence tomography reconstruction

    Science.gov (United States)

    Styles, Iain B.; Basevi, Hector R. A.; Guggenheim, James A.; Dehghani, Hamid

    2013-06-01

    We show how a random matrix can be used to reduce the dimensionality of the bioluminescence tomography reconstruction problem. A randomised low-rank approximation for the sensitivity matrix is computed, and we show how this can be used to reconstruct the bioluminescence source distribution on a randomised basis for the mesh nodes. The distribution on the original mesh can be found easily via a simple matrix multiplication. The majority of the computation required can be performed in advance of the reconstruction, and the reconstruction time itself is of the order milliseconds. This could allow for high frame rate real-time reconstructions to be performed.

  13. In vitro validation of bioluminescent monitoring of disease progression and therapeutic response in leukaemia model animals

    International Nuclear Information System (INIS)

    The application of in vivo bioluminescence imaging to non-invasive, quantitative monitoring of tumour models relies on a positive correlation between the intensity of bioluminescence and the tumour burden. We conducted cell culture studies to investigate the relationship between bioluminescent signal intensity and viable cell numbers in murine leukaemia model cells. Interleukin-3 (IL-3)-dependent murine pro-B cell line Ba/F3 was transduced with firefly luciferase to generate cells expressing luciferase stably under the control of a retroviral long terminal repeat. The luciferase-expressing cells were transduced with p190 BCR-ABL to give factor-independent proliferation. The cells were cultured under various conditions, and bioluminescent signal intensity was compared with viable cell numbers and the cell cycle stage. The Ba/F3 cells showed autonomous growth as well as stable luciferase expression following transduction with both luciferase and p190 BCR-ABL, and in vivo bioluminescence imaging permitted external detection of these cells implanted into mice. The bioluminescence intensities tended to reflect cell proliferation and responses to imatinib in cell culture studies. However, the luminescence per viable cell was influenced by the IL-3 concentration in factor-dependent cells and by the stage of proliferation and imatinib concentration in factor-independent cells, thereby impairing the proportionality between viable cell number and bioluminescent signal intensity. Luminescence per cell tended to vary in association with the fraction of proliferating cells. Although in vivo bioluminescence imaging would allow non-invasive monitoring of leukaemia model animals, environmental factors and therapeutic interventions may cause some discrepancies between tumour burden and bioluminescence intensity. (orig.)

  14. In vitro validation of bioluminescent monitoring of disease progression and therapeutic response in leukaemia model animals

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Yusuke; Okubo, Toshiyuki [University of Tokyo, Department of Radiology, Institute of Medical Science, Tokyo (Japan); Tojo, Arinobu; Sekine, Rieko; Soda, Yasushi; Kobayashi, Seiichiro; Nomura, Akiko; Izawa, Kiyoko [University of Tokyo, Division of Molecular Therapy, Advanced Clinical Research Centre, Tokyo (Japan); Kitamura, Toshio [University of Tokyo, Division of Cellular Therapy, Advanced Clinical Research Centre, Tokyo (Japan); Ohtomo, Kuni [University of Tokyo, Department of Radiology, Graduate School of Medicine, Tokyo (Japan)

    2006-05-15

    The application of in vivo bioluminescence imaging to non-invasive, quantitative monitoring of tumour models relies on a positive correlation between the intensity of bioluminescence and the tumour burden. We conducted cell culture studies to investigate the relationship between bioluminescent signal intensity and viable cell numbers in murine leukaemia model cells. Interleukin-3 (IL-3)-dependent murine pro-B cell line Ba/F3 was transduced with firefly luciferase to generate cells expressing luciferase stably under the control of a retroviral long terminal repeat. The luciferase-expressing cells were transduced with p190 BCR-ABL to give factor-independent proliferation. The cells were cultured under various conditions, and bioluminescent signal intensity was compared with viable cell numbers and the cell cycle stage. The Ba/F3 cells showed autonomous growth as well as stable luciferase expression following transduction with both luciferase and p190 BCR-ABL, and in vivo bioluminescence imaging permitted external detection of these cells implanted into mice. The bioluminescence intensities tended to reflect cell proliferation and responses to imatinib in cell culture studies. However, the luminescence per viable cell was influenced by the IL-3 concentration in factor-dependent cells and by the stage of proliferation and imatinib concentration in factor-independent cells, thereby impairing the proportionality between viable cell number and bioluminescent signal intensity. Luminescence per cell tended to vary in association with the fraction of proliferating cells. Although in vivo bioluminescence imaging would allow non-invasive monitoring of leukaemia model animals, environmental factors and therapeutic interventions may cause some discrepancies between tumour burden and bioluminescence intensity. (orig.)

  15. Accounting for filter bandwidth improves the quantitative accuracy of bioluminescence tomography

    Science.gov (United States)

    Taylor, Shelley L.; Mason, Suzannah K. G.; Glinton, Sophie L.; Cobbold, Mark; Dehghani, Hamid

    2015-09-01

    Bioluminescence imaging is a noninvasive technique whereby surface weighted images of luminescent probes within animals are used to characterize cell count and function. Traditionally, data are collected over the entire emission spectrum of the source using no filters and are used to evaluate cell count/function over the entire spectrum. Alternatively, multispectral data over several wavelengths can be incorporated to perform tomographic reconstruction of source location and intensity. However, bandpass filters used for multispectral data acquisition have a specific bandwidth, which is ignored in the reconstruction. In this work, ignoring the bandwidth is shown to introduce a dependence of the recovered source intensity on the bandwidth of the filters. A method of accounting for the bandwidth of filters used during multispectral data acquisition is presented and its efficacy in increasing the quantitative accuracy of bioluminescence tomography is demonstrated through simulation and experiment. It is demonstrated that while using filters with a large bandwidth can dramatically decrease the data acquisition time, if not accounted for, errors of up to 200% in quantitative accuracy are introduced in two-dimensional planar imaging, even after normalization. For tomographic imaging, the use of this method to account for filter bandwidth dramatically improves the quantitative accuracy.

  16. Real-time in vivo imaging of p16Ink4a reveals cross talk with p53

    OpenAIRE

    Yamakoshi, Kimi; Takahashi, Akiko; Hirota, Fumiko; Nakayama, Rika; Ishimaru, Naozumi; Kubo, Yoshiaki; Mann, David J.; Ohmura, Masako; Hirao, Atsushi; Saya, Hideyuki; Arase, Seiji; Hayashi, Yoshio; Nakao, Kazuki; Matsumoto, Mitsuru; Ohtani, Naoko

    2009-01-01

    Expression of the p16Ink4a tumor suppressor gene, a sensor of oncogenic stress, is up-regulated by a variety of potentially oncogenic stimuli in cultured primary cells. However, because p16Ink4a expression is also induced by tissue culture stress, physiological mechanisms regulating p16Ink4a expression remain unclear. To eliminate any potential problems arising from tissue culture–imposed stress, we used bioluminescence imaging for noninvasive and real-time analysis of p16Ink4a expression und...

  17. Effect of irradiation on bioluminescence spectrum of microbial ATP

    International Nuclear Information System (INIS)

    The effect of irradiation on bioluminescence spectrum of dehydrated cabbage microbial ATP was studied. The results showed that the spectral bandwidth of ATP standard was from 490 to 640 nm and the peak wavelength was at 563 nm. The spectral bandwidths of irradiated dehydrated cabbage microbial ATP and CK did not change. Peak wavelengths of dehydrated cabbage irradiated at different dosages were not significantly different from that of CK. The peaks of bioluminescence spectrum of irradiated samples were higher than that of CK, which may be because of the increasing concentration of ATP, and this effect would be kept for quite a long time after irradiation. (authors)

  18. In vivo quantitative bioluminescence tomography using heterogeneous and homogeneous mouse models

    OpenAIRE

    Liu, Junting; Wang, Yabin; Qu, Xiaochao; Li, Xiangsi; Ma, Xiaopeng; Han, Runqiang; Hu, Zhenhua; Chen, Xueli; Sun, Dongdong; Zhang, Rongqing; Chen, Duofang; Chen, Dan; CHEN, XIAOYUAN; Liang, Jimin; Cao, Feng

    2010-01-01

    Bioluminescence tomography (BLT) is a new optical molecular imaging modality, which can monitor both physiological and pathological processes by using bioluminescent light-emitting probes in small living animal. Especially, this technology possesses great potential in drug development, early detection, and therapy monitoring in preclinical settings. In the present study, we developed a dual modality BLT prototype system with Micro-computed tomography (MicroCT) registration approach, and impro...

  19. A Nisin Bioassay Based on Bioluminescence

    OpenAIRE

    Wahlström, G.; Saris, P.E.J.

    1999-01-01

    A Lactococcus lactis subsp. lactis strain that can sense the bacteriocin nisin and transduce the signal into bioluminescence was constructed. By using this strain, a bioassay based on bioluminescence was developed for quantification of nisin, for detection of nisin in milk, and for identification of nisin-producing strains. As little as 0.0125 ng of nisin per ml was detected within 3 h by this bioluminescence assay. This detection limit was lower than in previously described methods.

  20. Sparse Reconstruction for Bioluminescence Tomography Based on the Semigreedy Method

    OpenAIRE

    Guo, Wei; Jia, Kebin; Zhang, Qian; Liu, Xueyan; Feng, Jinchao; Qin, Chenghu; Ma, Xibo; YANG, Xin; Tian, Jie

    2012-01-01

    Bioluminescence tomography (BLT) is a molecular imaging modality which can three-dimensionally resolve the molecular processes in small animals in vivo. The ill-posedness nature of BLT problem makes its reconstruction bears nonunique solution and is sensitive to noise. In this paper, we proposed a sparse BLT reconstruction algorithm based on semigreedy method. To reduce the ill-posedness and computational cost, the optimal permissible source region was automatically chosen by using an iterati...

  1. Experimental Study on Bioluminescence Tomography with Multimodality Fusion

    OpenAIRE

    Yujie Lv; Jie Tian; Wenxiang Cong; Ge Wang

    2007-01-01

    To verify the influence of a priori information on the nonuniqueness problem of bioluminescence tomography (BLT), the multimodality imaging fusion based BLT experiment is performed by multiview noncontact detection mode, which incorporates the anatomical information obtained by the microCT scanner and the background optical properties based on diffuse reflectance measurements. In the reconstruction procedure, the utilization of adaptive finite element methods (FEMs) and a priori permissible s...

  2. Mathematical Study and Numerical Simulation of Multispectral Bioluminescence Tomography

    OpenAIRE

    Ge Wang; Wenxiang Cong; Weimin Han

    2006-01-01

    Multispectral bioluminescence tomography (BLT) attracts increasingly more attention in the area of optical molecular imaging. In this paper, we analyze the properties of the solutions to the regularized and discretized multispectral BLT problems. First, we show the solution existence, uniqueness, and its continuous dependence on the data. Then, we introduce stable numerical schemes and derive error estimates for numerical solutions. We report some numerical results to illust...

  3. Bioluminescence Assay for Cell Viability.

    Science.gov (United States)

    Lomakina, G Yu; Modestova, Yu A; Ugarova, N N

    2015-06-01

    Theoretical aspects of the adenosine triphosphate bioluminescence assay based on the use of the firefly luciferin-luciferase system are considered, as well as its application for assessing cell viability in microbiology, sanitation, medicine, and ecology. Various approaches for the analysis of individual or mixed cultures of microorganisms are presented, and capabilities of the method for investigation of biological processes in live cells including necrosis, apoptosis, as well as for investigation of the dynamics of metabolism are described. PMID:26531016

  4. Preclinical evaluation of destruxin B as a novel Wnt signaling target suppressing proliferation and metastasis of colorectal cancer using non-invasive bioluminescence imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Chi-Tai [Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan (China); Center of Excellence for Cancer Research, Taipei Medical University, Taipei, Taiwan (China); Department of Surgery, Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan (China); Rao, Yerra Koteswara [Institute of Biochemical Sciences and Technology, Chaoyang University of Technology, Taichung, Taiwan (China); Ye, Min [Department of Natural Medicine, School of Pharmaceutical Sciences, Peking University, Beijing (China); Wu, Wen-Shi [Department of Horticulture and Biotechnology, Chinese Culture University, Taipei, Taiwan (China); Chang, Tung-Chen [Department of Surgery, Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan (China); Wang, Liang-Shun [Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan (China); Division of Thoracic Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan (China); Wu, Chih-Hsiung [Center of Excellence for Cancer Research, Taipei Medical University, Taipei, Taiwan (China); Department of Surgery, Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan (China); Wu, Alexander T.H., E-mail: chaw1211@tmu.edu.tw [Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan (China); Department of Radiation Oncology, Taipei Medical University Hospital, Taipei, Taiwan (China); Tzeng, Yew-Min, E-mail: ymtzeng@cyut.edu.tw [Institute of Biochemical Sciences and Technology, Chaoyang University of Technology, Taichung, Taiwan (China)

    2012-05-15

    In continuation to our studies toward the identification of direct anti-cancer targets, here we showed that destruxin B (DB) from Metarhizium anisopliae suppressed the proliferation and induced cell cycle arrest in human colorectal cancer (CRC) HT29, SW480 and HCT116 cells. Additionally, DB induced apoptosis in HT29 cells by decreased expression level of anti-apoptotic proteins Bcl-2 and Bcl-xL while increased pro-apoptotic Bax. On the other hand, DB attenuated Wnt-signaling by downregulation of ?-catenin, Tcf4 and ?-catenin/Tcf4 transcriptional activity, concomitantly with decreased expression of ?-catenin target genes cyclin D1, c-myc and survivin. Furthermore, DB affected the migratory and invasive ability of HT29 cells through suppressed MMPs-2 and -9 enzymatic activities. We also found that DB targeted the MAPK and/or PI3K/Akt pathway by reduced expression of Akt, IKK-?, JNK, NF-?B, c-Jun and c-Fos while increased that of I?B?. Finally, we demonstrated that DB inhibited tumorigenesis in HT29 xenograft mice using non-invasive bioluminescence technique. Consistently, tumor samples from DB-treated mice demonstrated suppressed expression of ?-catenin, cyclin D1, survivin, and endothelial marker CD31 while increased caspase-3 expression. Collectively, our data supports DB as an inhibitor of Wnt/?-catenin/Tcf signaling pathway that may be beneficial in the CRC management. Highlights: ? Destruxin B (DB) inhibited colorectal cancer cells growth and induced apoptosis. ? MAPK and/or PI3K/Akt cascade cooperates in DB induced apoptosis. ? DB affected the migratory and invasive ability of HT29 cells through MMP-9. ? DB attenuated Wnt-signaling components ?-catenin, Tcf4. ? DB attenuated cyclin D1, c-myc, survivin and tumorigenesis in HT29 xenograft mice.

  5. Preclinical evaluation of destruxin B as a novel Wnt signaling target suppressing proliferation and metastasis of colorectal cancer using non-invasive bioluminescence imaging

    International Nuclear Information System (INIS)

    In continuation to our studies toward the identification of direct anti-cancer targets, here we showed that destruxin B (DB) from Metarhizium anisopliae suppressed the proliferation and induced cell cycle arrest in human colorectal cancer (CRC) HT29, SW480 and HCT116 cells. Additionally, DB induced apoptosis in HT29 cells by decreased expression level of anti-apoptotic proteins Bcl-2 and Bcl-xL while increased pro-apoptotic Bax. On the other hand, DB attenuated Wnt-signaling by downregulation of ?-catenin, Tcf4 and ?-catenin/Tcf4 transcriptional activity, concomitantly with decreased expression of ?-catenin target genes cyclin D1, c-myc and survivin. Furthermore, DB affected the migratory and invasive ability of HT29 cells through suppressed MMPs-2 and -9 enzymatic activities. We also found that DB targeted the MAPK and/or PI3K/Akt pathway by reduced expression of Akt, IKK-?, JNK, NF-?B, c-Jun and c-Fos while increased that of I?B?. Finally, we demonstrated that DB inhibited tumorigenesis in HT29 xenograft mice using non-invasive bioluminescence technique. Consistently, tumor samples from DB-treated mice demonstrated suppressed expression of ?-catenin, cyclin D1, survivin, and endothelial marker CD31 while increased caspase-3 expression. Collectively, our data supports DB as an inhibitor of Wnt/?-catenin/Tcf signaling pathway that may be beneficial in the CRC management. Highlights: ? Destruxin B (DB) inhibited colorectal cancer cells growth and induced apoptosis. ? MAPK and/or PI3K/Akt cascade cooperates in DB induced apoptosis. ? DB affected the migratory and invasive ability of HT29 cells through MMP-9. ? DB attenuated Wnt-signaling components ?-catenin, Tcf4. ? DB attenuated cyclin D1, c-myc, survivin and tumorigenesis in HT29 xenograft mice.

  6. Spectrally resolved bioluminescence tomography with the third-order simplified spherical harmonics approximation

    Energy Technology Data Exchange (ETDEWEB)

    Lu Yujie; Douraghy, Ali; Stout, David; Herschman, Harvey; Chatziioannou, Arion F [Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States); Machado, Hidevaldo B [Department of Biological Chemistry, Molecular Biology Institute, University of California, Los Angeles, CA 90095 (United States); Tian Jie [Medical Image Processing Group, Institute of Automation, Chinese Academy of Sciences, PO Box 2728, Beijing 100190 (China)], E-mail: archatziioann@mednet.ucla.edu, E-mail: hherschman@mednet.ucla.edu

    2009-11-07

    Bioluminescence imaging has been extensively applied to in vivo small animal imaging. Quantitative three-dimensional bioluminescent source information obtained by using bioluminescence tomography can directly and much more accurately reflect biological changes as opposed to planar bioluminescence imaging. Preliminary simulated and experimental reconstruction results demonstrate the feasibility and promise of bioluminescence tomography. However, the use of multiple approximations, particularly the diffusion approximation theory, affects the quality of in vivo small animal-based image reconstructions. In the development of new reconstruction algorithms, high-order approximation models of the radiative transfer equation and spectrally resolved data introduce new challenges to the reconstruction algorithm and speed. In this paper, an SP{sub 3}-based (the third-order simplified spherical harmonics approximation) spectrally resolved reconstruction algorithm is proposed. The simple linear relationship between the unknown source distribution and the spectrally resolved data is established in this algorithm. A parallel version of this algorithm is realized, making BLT reconstruction feasible for the whole body of small animals especially for fine spatial domain discretization. In simulation validations, the proposed algorithm shows improved reconstruction quality compared with diffusion approximation-based methods when high absorption, superficial sources and detection modes are considered. In addition, comparisons between fine and coarse mesh-based BLT reconstructions show the effects of numerical errors in reconstruction image quality. Finally, BLT reconstructions using in vivo mouse experiments further demonstrate the potential and effectiveness of the SP{sub 3}-based reconstruction algorithm.

  7. Spectrally resolved bioluminescence tomography with the third-order simplified spherical harmonics approximation

    International Nuclear Information System (INIS)

    Bioluminescence imaging has been extensively applied to in vivo small animal imaging. Quantitative three-dimensional bioluminescent source information obtained by using bioluminescence tomography can directly and much more accurately reflect biological changes as opposed to planar bioluminescence imaging. Preliminary simulated and experimental reconstruction results demonstrate the feasibility and promise of bioluminescence tomography. However, the use of multiple approximations, particularly the diffusion approximation theory, affects the quality of in vivo small animal-based image reconstructions. In the development of new reconstruction algorithms, high-order approximation models of the radiative transfer equation and spectrally resolved data introduce new challenges to the reconstruction algorithm and speed. In this paper, an SP3-based (the third-order simplified spherical harmonics approximation) spectrally resolved reconstruction algorithm is proposed. The simple linear relationship between the unknown source distribution and the spectrally resolved data is established in this algorithm. A parallel version of this algorithm is realized, making BLT reconstruction feasible for the whole body of small animals especially for fine spatial domain discretization. In simulation validations, the proposed algorithm shows improved reconstruction quality compared with diffusion approximation-based methods when high absorption, superficial sources and detection modes are considered. In addition, comparisons between fine and coarse mesh-based BLT reconstructions show the effects of numerical errors in reconstruction image quality. Finally, BLT reconstructions using in vivo mouse experiments further demonstrate the potential and effectiveness of the SP3-based reconstruction algorithm.

  8. Comparison of human optimized bacterial luciferase, firefly luciferase, and green fluorescent protein for continuous imaging of cell culture and animal models

    Science.gov (United States)

    Close, Dan M.; Hahn, Ruth E.; Patterson, Stacey S.; Baek, Seung J.; Ripp, Steven A.; Sayler, Gary S.

    2011-04-01

    Bioluminescent and fluorescent reporter systems have enabled the rapid and continued growth of the optical imaging field over the last two decades. Of particular interest has been noninvasive signal detection from mammalian tissues under both cell culture and whole animal settings. Here we report on the advantages and limitations of imaging using a recently introduced bacterial luciferase (lux) reporter system engineered for increased bioluminescent expression in the mammalian cellular environment. Comparison with the bioluminescent firefly luciferase (Luc) system and green fluorescent protein system under cell culture conditions demonstrated a reduced average radiance, but maintained a more constant level of bioluminescent output without the need for substrate addition or exogenous excitation to elicit the production of signal. Comparison with the Luc system following subcutaneous and intraperitoneal injection into nude mice hosts demonstrated the ability to obtain similar detection patterns with in vitro experiments at cell population sizes above 2.5 × 104 cells but at the cost of increasing overall image integration time.

  9. REVIEW OF ENVIRONMENTAL APPLICATIONS OF BIOLUMINESCENCE MEASUREMENTS

    Science.gov (United States)

    This review of the recent literature on environmental applications of bioluminescence systems will focus on in vivo and in vitro bioluminescence methods that have been utilized to elucidate properties of chemicals, toxic and mutagenic effects, and to estimate biomass. he unifying...

  10. Bacterial bioluminescence and Gumbel statistics: From quorum sensing to correlation

    Science.gov (United States)

    Delle Side, Domenico; Velardi, Luciano; Nassisi, Vincenzo; Pennetta, Cecilia; Alifano, Pietro; Talà, Adelfia; Salvatore Tredici, Maurizio

    2013-12-01

    We show that, in particular experimental conditions, the time course of the radiant fluxes, measured from a bioluminescent emission of a Vibrio harveyi related strain, collapse after suitable rescaling onto the Gumbel distribution of extreme value theory. We argue that the activation times of the strain luminous emission follow the universal behavior described by this statistical law, in spite of the fact that no extremal process is known to occur.

  11. Bioluminescence tomography based on the phase approximation model

    OpenAIRE

    Cong, W.; Wang, G

    2010-01-01

    A reconstruction method of bioluminescence sources is proposed based on a phase approximation model. Compared with the diffuse approximation, this phase approximation model more correctly predicts bioluminescence photon propagation in biological tissues, so that bioluminescence tomography can accurately locate and quantify the distribution of bioluminescence sources. The compressive sensing (CS) technique is applied to regularize the inverse source reconstruction to enhance numerical stabilit...

  12. Understanding Bioluminescence in Dinoflagellates—How Far Have We Come?

    OpenAIRE

    Martha Valiadi; Debora Iglesias-Rodriguez

    2013-01-01

    Some dinoflagellates possess the remarkable genetic, biochemical, and cellular machinery to produce bioluminescence. Bioluminescent species appear to be ubiquitous in surface waters globally and include numerous cosmopolitan and harmful taxa. Nevertheless, bioluminescence remains an enigmatic topic in biology, particularly with regard to the organisms’ lifestyle. In this paper, we review the literature on the cellular mechanisms, molecular evolution, diversity, and ecology of bioluminescence ...

  13. Increased bioassay sensitivity of bioactive molecule discovery using metal-enhanced bioluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Golberg, Karina, E-mail: karingo@bgu.ac.il; Elbaz, Amit [Ben-Gurion University of the Negev, Avram and Stella Goldstein-Goren Department of Biotechnology Engineering (Israel); McNeil, Ronald [The Institute of Fluorescence, University of Maryland Baltimore County (United States); Kushmaro, Ariel [Ben-Gurion University of the Negev, Avram and Stella Goldstein-Goren Department of Biotechnology Engineering (Israel); Geddes, Chris D. [The Institute of Fluorescence, University of Maryland Baltimore County (United States); Marks, Robert S., E-mail: rsmarks@bgu.ac.il [Ben-Gurion University of the Negev, Avram and Stella Goldstein-Goren Department of Biotechnology Engineering (Israel)

    2014-12-15

    We report the use of bioluminescence signal enhancement via proximity to deposited silver nanoparticles for bioactive compound discovery. This approach employs a whole-cell bioreporter harboring a plasmid-borne fusion of a specific promoter incorporated with a bioluminescence reporter gene. The silver deposition process was first optimized to provide optimal nanoparticle size in the reaction time dependence with fluorescein. The use of silver deposition of 350 nm particles enabled the doubling of the bioluminescent signal amplitude by the bacterial bioreporter when compared to an untouched non-silver-deposited microtiter plate surface. This recording is carried out in the less optimal but necessary far-field distance. SEM micrographs provided a visualization of the proximity of the bioreporter to the silver nanoparticles. The electromagnetic field distributions around the nanoparticles were simulated using Finite Difference Time Domain, further suggesting a re-excitation of non-chemically excited bioluminescence in addition to metal-enhanced bioluminescence. The possibility of an antiseptic silver effect caused by such a close proximity was eliminated disregarded by the dynamic growth curves of the bioreporter strains as seen using viability staining. As a highly attractive biotechnology tool, this silver deposition technique, coupled with whole-cell sensing, enables increased bioluminescence sensitivity, making it especially useful for cases in which reporter luminescence signals are very weak.

  14. Increased bioassay sensitivity of bioactive molecule discovery using metal-enhanced bioluminescence

    International Nuclear Information System (INIS)

    We report the use of bioluminescence signal enhancement via proximity to deposited silver nanoparticles for bioactive compound discovery. This approach employs a whole-cell bioreporter harboring a plasmid-borne fusion of a specific promoter incorporated with a bioluminescence reporter gene. The silver deposition process was first optimized to provide optimal nanoparticle size in the reaction time dependence with fluorescein. The use of silver deposition of 350 nm particles enabled the doubling of the bioluminescent signal amplitude by the bacterial bioreporter when compared to an untouched non-silver-deposited microtiter plate surface. This recording is carried out in the less optimal but necessary far-field distance. SEM micrographs provided a visualization of the proximity of the bioreporter to the silver nanoparticles. The electromagnetic field distributions around the nanoparticles were simulated using Finite Difference Time Domain, further suggesting a re-excitation of non-chemically excited bioluminescence in addition to metal-enhanced bioluminescence. The possibility of an antiseptic silver effect caused by such a close proximity was eliminated disregarded by the dynamic growth curves of the bioreporter strains as seen using viability staining. As a highly attractive biotechnology tool, this silver deposition technique, coupled with whole-cell sensing, enables increased bioluminescence sensitivity, making it especially useful for cases in which reporter luminescence signals are very weak

  15. Electronic imaging impact on image and report turnaround times

    OpenAIRE

    Mattern, Christopher W. T.; King, Bernard F.; Hangiandreou, Nicholas J.; Swenson, Allan; Jorgenson, Lisa L.; Webbles, William E.; Okrzynski, Trice W.; Erickson, Bradley J; Williamson, Byrn; Forbes, Glenn S.

    1999-01-01

    We prospectively compared image and report delivery times in our Urgent Care Center (UCC) during a film-based practice (1995) and after complete implementation of an electronic imaging practice in 1997. Before switching to a totally electronic and filmless practice, multiple time periods were consistently measured during a 1-week period in May 1995 and then again in a similar week in May 1997 after implementation of electronic imaging. All practice patterns were the same except for a film-bas...

  16. Image processing in real time radiography

    International Nuclear Information System (INIS)

    Image processing in real time radiography has become an important feature to improve the detectibility of defects. However, often enough, impressed by the tremendous success of image processing of e.g. evaluation of Landsat pictures, people expect the same or nearly the same effect in NDT applications. The magic word image processing thus results in unrealistic demands to the capability even of highly sophisticated image processing systems. In this paper the possibilities as well as the different tasks of image processing in the field of real time radiography is discussed

  17. Experimental Study on Bioluminescence Tomography with Multimodality Fusion

    Directory of Open Access Journals (Sweden)

    Yujie Lv

    2007-09-01

    Full Text Available To verify the influence of a priori information on the nonuniqueness problem of bioluminescence tomography (BLT, the multimodality imaging fusion based BLT experiment is performed by multiview noncontact detection mode, which incorporates the anatomical information obtained by the microCT scanner and the background optical properties based on diffuse reflectance measurements. In the reconstruction procedure, the utilization of adaptive finite element methods (FEMs and a priori permissible source region refines the reconstructed results and improves numerical robustness and efficiency. The comparison between the absence and employment of a priori information shows that multimodality imaging fusion is essential to quantitative BLT reconstruction.

  18. Time resolved imaging microscopy. Phosphorescence and delayed fluorescence imaging.

    OpenAIRE

    Marriott, G; Clegg, R M; Arndt-Jovin, D.J.; Jovin, T.M.

    1991-01-01

    An optical microscope capable of measuring time resolved luminescence (phosphorescence and delayed fluorescence) images has been developed. The technique employs two phase-locked mechanical choppers and a slow-scan scientific CCD camera attached to a normal fluorescence microscope. The sample is illuminated by a periodic train of light pulses and the image is recorded within a defined time interval after the end of each excitation period. The time resolution discriminates completely against l...

  19. Image Acquisition in Real Time

    Science.gov (United States)

    2003-01-01

    In 1995, Carlos Jorquera left NASA s Jet Propulsion Laboratory (JPL) to focus on erasing the growing void between high-performance cameras and the requisite software to capture and process the resulting digital images. Since his departure from NASA, Jorquera s efforts have not only satisfied the private industry's cravings for faster, more flexible, and more favorable software applications, but have blossomed into a successful entrepreneurship that is making its mark with improvements in fields such as medicine, weather forecasting, and X-ray inspection. Formerly a JPL engineer who constructed imaging systems for spacecraft and ground-based astronomy projects, Jorquera is the founder and president of the three-person firm, Boulder Imaging Inc., based in Louisville, Colorado. Joining Jorquera to round out the Boulder Imaging staff are Chief Operations Engineer Susan Downey, who also gained experience at JPL working on space-bound projects including Galileo and the Hubble Space Telescope, and Vice President of Engineering and Machine Vision Specialist Jie Zhu Kulbida, who has extensive industrial and research and development experience within the private sector.

  20. Analytical Applications of Bioluminescence and Chemiluminescence

    Science.gov (United States)

    Chappelle, E. W. (editor); Picciolo, G. L. (editor)

    1975-01-01

    Bioluminescence and chemiluminescence studies were used to measure the amount of adenosine triphosphate and therefore the amount of energy available. Firefly luciferase - luciferin enzyme system was emphasized. Photometer designs are also considered.

  1. A fast dynamic linked library based mixed-language programming technology for the trust region method in bioluminescence tomography

    Science.gov (United States)

    Zhang, Bo; Tian, Jie; Yang, Xin; Qin, Chenghu; Han, Dong; Ma, Xibo

    2011-03-01

    Bioluminescence tomography (BLT) is a novel optical molecular imaging (MI) modality. It can reconstruct the inner bioluminescent light source distribution, according to the surface light distribution. The trust region method (TRM) can overcome the ill-posedness of BLT for its regularization property. As there exists a "TRUST" function that can solve the trust region subproblem in Matlab and Matlab's powerful matrix operation ability suited for TRM, the TRM is implemented in Matlab. Then the Matlab code of TRM is transformed into a dynamic linked library (DDL) and mixed together with the C++ code of the adaptive finite element (AFE) framework, using the mixed-language programming technology (MLPT). There are two main advantages of the MLPT. The first is taking advantages of all the participated programming languages. The second is time efficient. The usual way of transferring data between programmes written in different programming languages is to write the data first into files that are stored in the hard discs in one programme, and then read the files from another programme. Besides wasting time on writing and reading, it is difficult to keep the precision of the data. The DLL based MLPT can eliminate the need of installing code compilers in the platform running the software. Furthermore, in DLL, the code is implemented in C/C++ with high time efficiency, while the code in Matlab remains relatively low time efficiency. Finally, a numerical experiment is carried out to show MLPT's usage in the source reconstruction procedure of BLT, using the MLPT based on DLL.

  2. An adaptive regularization parameter choice strategy for multispectral bioluminescence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Feng Jinchao; Qin Chenghu; Jia Kebin; Han Dong; Liu Kai; Zhu Shouping; Yang Xin; Tian Jie [Medical Image Processing Group, Institute of Automation, Chinese Academy of Sciences, P. O. Box 2728, Beijing 100190 (China); College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124 (China); Medical Image Processing Group, Institute of Automation, Chinese Academy of Sciences, P. O. Box 2728, Beijing 100190 (China); Medical Image Processing Group, Institute of Automation, Chinese Academy of Sciences, P. O. Box 2728, Beijing 100190 (China) and School of Life Sciences and Technology, Xidian University, Xi' an 710071 (China)

    2011-11-15

    Purpose: Bioluminescence tomography (BLT) provides an effective tool for monitoring physiological and pathological activities in vivo. However, the measured data in bioluminescence imaging are corrupted by noise. Therefore, regularization methods are commonly used to find a regularized solution. Nevertheless, for the quality of the reconstructed bioluminescent source obtained by regularization methods, the choice of the regularization parameters is crucial. To date, the selection of regularization parameters remains challenging. With regards to the above problems, the authors proposed a BLT reconstruction algorithm with an adaptive parameter choice rule. Methods: The proposed reconstruction algorithm uses a diffusion equation for modeling the bioluminescent photon transport. The diffusion equation is solved with a finite element method. Computed tomography (CT) images provide anatomical information regarding the geometry of the small animal and its internal organs. To reduce the ill-posedness of BLT, spectral information and the optimal permissible source region are employed. Then, the relationship between the unknown source distribution and multiview and multispectral boundary measurements is established based on the finite element method and the optimal permissible source region. Since the measured data are noisy, the BLT reconstruction is formulated as l{sub 2} data fidelity and a general regularization term. When choosing the regularization parameters for BLT, an efficient model function approach is proposed, which does not require knowledge of the noise level. This approach only requests the computation of the residual and regularized solution norm. With this knowledge, we construct the model function to approximate the objective function, and the regularization parameter is updated iteratively. Results: First, the micro-CT based mouse phantom was used for simulation verification. Simulation experiments were used to illustrate why multispectral data were used rather than monochromatic data. Furthermore, the study conducted using an adaptive regularization parameter demonstrated our ability to accurately localize the bioluminescent source. With the adaptively estimated regularization parameter, the reconstructed center position of the source was (20.37, 31.05, 12.95) mm, and the distance to the real source was 0.63 mm. The results of the dual-source experiments further showed that our algorithm could localize the bioluminescent sources accurately. The authors then presented experimental evidence that the proposed algorithm exhibited its calculated efficiency over the heuristic method. The effectiveness of the new algorithm was also confirmed by comparing it with the L-curve method. Furthermore, various initial speculations regarding the regularization parameter were used to illustrate the convergence of our algorithm. Finally, in vivo mouse experiment further illustrates the effectiveness of the proposed algorithm. Conclusions: Utilizing numerical, physical phantom and in vivo examples, we demonstrated that the bioluminescent sources could be reconstructed accurately with automatic regularization parameters. The proposed algorithm exhibited superior performance than both the heuristic regularization parameter choice method and L-curve method based on the computational speed and localization error.

  3. An adaptive regularization parameter choice strategy for multispectral bioluminescence tomography

    International Nuclear Information System (INIS)

    Purpose: Bioluminescence tomography (BLT) provides an effective tool for monitoring physiological and pathological activities in vivo. However, the measured data in bioluminescence imaging are corrupted by noise. Therefore, regularization methods are commonly used to find a regularized solution. Nevertheless, for the quality of the reconstructed bioluminescent source obtained by regularization methods, the choice of the regularization parameters is crucial. To date, the selection of regularization parameters remains challenging. With regards to the above problems, the authors proposed a BLT reconstruction algorithm with an adaptive parameter choice rule. Methods: The proposed reconstruction algorithm uses a diffusion equation for modeling the bioluminescent photon transport. The diffusion equation is solved with a finite element method. Computed tomography (CT) images provide anatomical information regarding the geometry of the small animal and its internal organs. To reduce the ill-posedness of BLT, spectral information and the optimal permissible source region are employed. Then, the relationship between the unknown source distribution and multiview and multispectral boundary measurements is established based on the finite element method and the optimal permissible source region. Since the measured data are noisy, the BLT reconstruction is formulated as l2 data fidelity and a general regularization term. When choosing the regularization parameters for BLT, an efficient model function approach is proposed, which does not require knowledge of the noise level. This approach only requests the computation of the residual and regularized solution norm. With this knowledge, we construct the model function to approximate the objective function, and the regularization parameter is updated iteratively. Results: First, the micro-CT based mouse phantom was used for simulation verification. Simulation experiments were used to illustrate why multispectral data were used rather than monochromatic data. Furthermore, the study conducted using an adaptive regularization parameter demonstrated our ability to accurately localize the bioluminescent source. With the adaptively estimated regularization parameter, the reconstructed center position of the source was (20.37, 31.05, 12.95) mm, and the distance to the real source was 0.63 mm. The results of the dual-source experiments further showed that our algorithm could localize the bioluminescent sources accurately. The authors then presented experimental evidence that the proposed algorithm exhibited its calculated efficiency over the heuristic method. The effectiveness of the new algorithm was also confirmed by comparing it with the L-curve method. Furthermore, various initial speculations regarding the regularization parameter were used to illustrate the convergence of our algorithm. Finally, in vivo mouse experiment further illustrates the effectiveness of the proposed algorithm. Conclusions: Utilizing numerical, physical phantom and in vivo examples, we demonstrated that the bioluminescent sources could be reconstructed accurately with automatic regularization parameters. The proposed algorithm exhibited superior performance than both the heuristic regularization parameter choice method and L-curve method based on the computational speed and localization error.

  4. Time Variant Change Analysis in Satellite Images

    OpenAIRE

    Rachita Sharma; Sanjay Kumar Dubey,

    2013-01-01

    This paper describes the time variant changes in satellite images using Self Organizing Feature Map (SOFM) technique associated with Artificial Neural Network. In this paper, we take a satellite image and find the time variant changes using above technique with the help of MATLAB. This paper reviews remotely sensed data analysis with neural networks. First, we present an overview of the main concepts underlying Artificial Neural Networks (ANNs), including the main architectures and learning a...

  5. Small animal fluorescence and bioluminescence tomography: a review of approaches, algorithms and technology update

    Science.gov (United States)

    Darne, Chinmay; Lu, Yujie; Sevick-Muraca, Eva M.

    2014-01-01

    Emerging fluorescence and bioluminescence tomography approaches have several common, yet several distinct features from established emission tomographies of PET and SPECT. Although both nuclear and optical imaging modalities involve counting of photons, nuclear imaging techniques collect the emitted high energy (100-511 keV) photons after radioactive decay of radionuclides while optical techniques count low-energy (1.5-4.1 eV) photons that are scattered and absorbed by tissues requiring models of light transport for quantitative image reconstruction. Fluorescence imaging has been recently translated into clinic demonstrating high sensitivity, modest tissue penetration depth, and fast, millisecond image acquisition times. As a consequence, the promise of quantitative optical tomography as a complement of small animal PET and SPECT remains high. In this review, we summarize the different instrumentation, methodological approaches and schema for inverse image reconstructions for optical tomography, including luminescence and fluorescence modalities, and comment on limitations and key technological advances needed for further discovery research and translation.

  6. Generation of a new bioluminescent model for visualisation of mammary tumour development in transgenic mice

    Directory of Open Access Journals (Sweden)

    Zagozdzon Agnieszka M

    2012-05-01

    Full Text Available Abstract Background Numerous transgenic models have been generated to study breast cancer. However, despite many advantages, traditional transgenic models for breast cancer are also burdened with difficulties in early detection and longitudinal observation of transgene-induced tumours, which in most cases are randomly located and occur at various time points. Methods such as palpation followed by mechanical measurement of the tumours are of limited value in transgenic models. There is a crucial need for making these previously generated models suitable for modern methods of tumour visualisation and monitoring, e.g. by bioluminescence-based techniques. This approach was successfully used in the current study. Results A new mouse strain (MMTV-Luc2 mice expressing Luc2 luciferase primarily in mammary tissue in females, with low-level background expression in internal organs, was generated and bred to homozygosity. After these mice were intercrossed with MMTV-PyVT mice, all double transgenic females developed mammary tumours by the age of 10?weeks, the localisation and progression of which could be effectively monitored using the luminescence-based in vivo imaging. Luminescence-based readout allowed for early visualisation of the locally overgrown mammary tissue and for longitudinal evaluation of local progression of the tumours. When sampled ex vivo at the age of 10?weeks, all tumours derived from MMTV-Luc2PyVT females displayed robust bioluminescent signal. Conclusions We have created a novel transgenic strain for visualisation and longitudinal monitoring of mammary tumour development in transgenic mice as an addition and/or a new and more advanced alternative to manual methods. Generation of this mouse strain is vital for making many of the existing mammary tumour transgenic models applicable for in vivo imaging techniques.

  7. Generation of a new bioluminescent model for visualisation of mammary tumour development in transgenic mice

    LENUS (Irish Health Repository)

    Zagozdzon, Agnieszka M

    2012-05-30

    AbstractBackgroundNumerous transgenic models have been generated to study breast cancer. However, despite many advantages, traditional transgenic models for breast cancer are also burdened with difficulties in early detection and longitudinal observation of transgene-induced tumours, which in most cases are randomly located and occur at various time points. Methods such as palpation followed by mechanical measurement of the tumours are of limited value in transgenic models. There is a crucial need for making these previously generated models suitable for modern methods of tumour visualisation and monitoring, e.g. by bioluminescence-based techniques. This approach was successfully used in the current study.ResultsA new mouse strain (MMTV-Luc2 mice) expressing Luc2 luciferase primarily in mammary tissue in females, with low-level background expression in internal organs, was generated and bred to homozygosity. After these mice were intercrossed with MMTV-PyVT mice, all double transgenic females developed mammary tumours by the age of 10?weeks, the localisation and progression of which could be effectively monitored using the luminescence-based in vivo imaging. Luminescence-based readout allowed for early visualisation of the locally overgrown mammary tissue and for longitudinal evaluation of local progression of the tumours. When sampled ex vivo at the age of 10?weeks, all tumours derived from MMTV-Luc2PyVT females displayed robust bioluminescent signal.ConclusionsWe have created a novel transgenic strain for visualisation and longitudinal monitoring of mammary tumour development in transgenic mice as an addition and\\/or a new and more advanced alternative to manual methods. Generation of this mouse strain is vital for making many of the existing mammary tumour transgenic models applicable for in vivo imaging techniques.

  8. Generation of a new bioluminescent model for visualisation of mammary tumour development in transgenic mice

    International Nuclear Information System (INIS)

    Numerous transgenic models have been generated to study breast cancer. However, despite many advantages, traditional transgenic models for breast cancer are also burdened with difficulties in early detection and longitudinal observation of transgene-induced tumours, which in most cases are randomly located and occur at various time points. Methods such as palpation followed by mechanical measurement of the tumours are of limited value in transgenic models. There is a crucial need for making these previously generated models suitable for modern methods of tumour visualisation and monitoring, e.g. by bioluminescence-based techniques. This approach was successfully used in the current study. A new mouse strain (MMTV-Luc2 mice) expressing Luc2 luciferase primarily in mammary tissue in females, with low-level background expression in internal organs, was generated and bred to homozygosity. After these mice were intercrossed with MMTV-PyVT mice, all double transgenic females developed mammary tumours by the age of 10 weeks, the localisation and progression of which could be effectively monitored using the luminescence-based in vivo imaging. Luminescence-based readout allowed for early visualisation of the locally overgrown mammary tissue and for longitudinal evaluation of local progression of the tumours. When sampled ex vivo at the age of 10 weeks, all tumours derived from MMTV-Luc2PyVT females displayed robust bioluminescent signal. We have created a novel transgenic strain for visualisation and longitudinal monitoring of mammary tumour development in transgenic mice as an addition and/or a new and more advanced alternative to manual methods. Generation of this mouse strain is vital for making many of the existing mammary tumour transgenic models applicable for in vivo imaging techniques

  9. Doubling time of liver metastase images

    International Nuclear Information System (INIS)

    For our study, where clinical and scintigraphic observation seldom lasts more than two years and where measurable metastases always exceed 1 cm3, the exponential model was adopted and our results were all calculated with GERSTENBERG's formula which gives an apparent doubling time. The liver metastases were measured on the scintigraphic image obtained, a more or less sharply limited blank which makes for a first difficulty of judgement. Two magnascanner V type PICKER 5-inch crystal scintigraphs were used, giving three images simultaneously by a transcriber made up of a stylus and a light spot built into the detection system. The isotope used is colloidal gold (198Au) phagocytized by the Kuepfferian reticulo-endothelial system. The doubling time for liver metastase scintigraphic images calculated for fifteen patients having undergone one or more isotopic checks after a first metastase image was discovered range from 10 to 103 days

  10. Bacteria bioluminescent activity as an indicator of geomagnetic disturbances

    International Nuclear Information System (INIS)

    The effect of geomagnetic disturbances and storms on bioluminescence activity of bacterium were investigated. The bioluminescence intensity change depended on amplitude and continuous of geomagnetic storms. It is assumed, that the synchronization of luminous radiation take place in cellos when frequency of geomagnetic disturbances approached to an intrinsic one of a bioluminescence system. High sensitivity of bioluminescence of geomagnetic storms was detected. 5 refs., 4 figs

  11. Immobilized Bioluminescent Reagents in Flow Injection Analysis.

    Science.gov (United States)

    Nabi, Abdul

    Available from UMI in association with The British Library. Bioluminescent reactions exhibits two important characteristics from an analytical viewpoint; they are selective and highly sensitive. Furthermore, bioluminescent emissions are easily measured with a simple flow-through detector based on a photomultiplier tube and the rapid and reproducible mixing of sample and expensive reagent is best achieved by a flow injection manifold. The two most important bioluminescent systems are the enzyme (luciferase)/substrate (luciferin) combinations extracted from fireflies (Photinus pyralis) and marine bacteria (Virio harveyi) which requires ATP and NAD(P)H respectively as cofactors. Reactions that generate or consume these cofactors can also be coupled to the bioluminescent reaction to provide assays for a wide range of clinically important species. A flow injection manifold for the study of bioluminescent reactions is described, as are procedures for the extraction, purification and immobilization of firefly and bacterial luciferase and oxidoreductase. Results are presented for the determination of ATP using firefly system and the determination of other enzymes and substrates participating in ATP-converting reactions e.g. creatine kinase, ATP-sulphurylase, pyruvate kinase, creatine phosphate, pyrophosphate and phophoenolypyruvate. Similarly results are presented for the determination of NAD(P)H, FMN, FMNH_2 and several dehydrogenases which produce NAD(P)H and their substrates, e.g. alcohol, L-lactate, L-malate, L-glutamate, Glucose-6-phosphate and primary bile acid.

  12. Fluorescence and bioluminescence of bacterial luciferase intermediates

    International Nuclear Information System (INIS)

    An intermediate in the luciferase-catalyzed bioluminescent oxidation of FMNH2, isolated and purified by chromatography at --200, was postulated to be an oxygenated reduced flavine-luciferase. Maintained and studied at --20 to --300, this material exhibits a relatively weak fluorescence emission peaking at about 505 nm when excited at 370 nm. It may comprise more than one species. Upon continued exposure to light at 370 nm, the intensity of this fluorescence increases, often by a factor of 5 or more, and its emission spectrum is blue shifted to a maximum at about 485 nm. Upon warming this fluorescence is lost and the fluorescence of flavine mononucleotide appears. If warming is carried out in the presence of a long chain aldehyde, bioluminescence occurs, with the appearance of a similar amount of flavine fluorescence. The bioluminescence yield is about the same with irradiated and nonirradiated samples. The bioluminescence emission spectrum corresponds exactly to the fluorescence emission spectrum of the intermediate formed by irradiation, implicating the latter as being structurally close to the emitting species in bioluminescence. (auth)

  13. Time-Resolved Imaging Of Transient Plasma

    International Nuclear Information System (INIS)

    Pulsed capillary discharge is a compact device that is used to perform fast electrical discharge that is used to produce transient plasma. In this work, a more economical imaging technique is developed in order to study the dynamics of the plasma that is formed in a capillary tube. The imaging system consists of two main devices, a four-frame gated micro-channel plate and a Nikon Coolpix5000 camera. The time-resolved imaging that we have performed in order to study the dynamics of the plasma that is formed in a 10 mm long and 1 mm diameter low pressure capillary tube is reported. The images obtained portrayed that the plasma is heated up when the magnitude of the current is around the maximum and cools down when the current magnitude is around the minimum.

  14. Actual imaging time in fetal MRI

    International Nuclear Information System (INIS)

    Objective: Safety issues in magnetic resonance imaging (MRI) are important, especially in fetal MRI. However, since basic data with respect of the effective exposure time in fetal MRI are not available, this study aimed to determine the actual imaging time during a fetal MRI study. Methods: 100 fetal MRI studies of singleton pregnancies performed on a 1.5 T system were analysed with respect to study duration (from starting the survey scan until the end of study), the number of sequences acquired, and the actual imaging time, which was calculated by adding up scan time of each sequence. Furthermore, each sequence type was analysed regarding the number of acquisitions, specific absorption rates (SAR), and duration. Results: Mean study duration was 34.6 min (range: 14–58 min; standard deviation (SD): 9.7 min), the average number of sequences acquired was 26.6 (range: 11–44, SD: 6.6). Actual scan time averaged 11.4 min (range: 4–19 min, SD: 4.0 min). Ultrafast T2-weighted and steady-state free-precession sequences accounted for 62.3% of actual scan time, and were distributed over the whole duration of the study. Conclusion: Actual imaging time only accounts for 33% of total study time and is not continuous. The remaining time is consumed by the preparation phases of the scanner, and is spent with planning sequences and the eventual repositioning of the coil and/or pregnant woman. These data may help to more accurately estimate the exposure to radiofrequency deposition and noise during fetal MRI studies.

  15. A Multi-Camera System for Bioluminescence Tomography in Preclinical Oncology Research

    Directory of Open Access Journals (Sweden)

    Ralph P. Mason

    2013-07-01

    Full Text Available Bioluminescent imaging (BLI of cells expressing luciferase is a valuable noninvasive technique for investigating molecular events and tumor dynamics in the living animal. Current usage is often limited to planar imaging, but tomographic imaging can enhance the usefulness of this technique in quantitative biomedical studies by allowing accurate determination of tumor size and attribution of the emitted light to a specific organ or tissue. Bioluminescence tomography based on a single camera with source rotation or mirrors to provide additional views has previously been reported. We report here in vivo studies using a novel approach with multiple rotating cameras that, when combined with image reconstruction software, provides the desired representation of point source metastases and other small lesions. Comparison with MRI validated the ability to detect lung tumor colonization in mouse lung.

  16. Interactive Real-time Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Brix, Lau

    2013-01-01

    Real-time acquisition, reconstruction and interactively changing the slice position using magnetic resonance imaging (MRI) have been possible for years. However, the current clinical use of interactive real-time MRI is limited due to an inherent low spatial and temporal resolution. This PhD project seeks to implement and assess existing reconstruction algorithms using multi-processors of modern graphics cards and many-core computer processors and to cover some of the potential clinical applicati...

  17. Chemistry and biology of insect bioluminescence

    International Nuclear Information System (INIS)

    Basic aspects on the Chemistry and Biology of bioluminescence are reviewed, with emphasis on insects. Data from the investigation of Lampyridae (fireflies) are collected from literature. With regard to Elateridae (click beetles) and Phengodidae (rail road worms), the least explored families of luminescent insects, new data are presented on the following aspects: (i) 'in vivo' emission spectra, (ii) chemical nature of the luciferin, (iii) conection between bioluminescence and 'oxygen toxicity' as a result of molecular oxygen storage and (iv) the role of light emission by larvae and pupae. (Author)

  18. A Finite Element Mesh Aggregating Approach to Multiple-Source Reconstruction in Bioluminescence Tomography

    OpenAIRE

    Shuyuan Yang; L. C. Jiao; Fang Liu; Jingjing Yu; Xiaowei He

    2011-01-01

    A finite element mesh aggregating approach is presented to reconstruct images of multiple internal bioluminescence sources. Rather than assuming independence between mesh nodes, the proposed reconstruction strategy exploits spatial structure of nodes and aggregation feature of density distribution on the finite element mesh to adaptively determine the number of sources and to improve the quality of reconstructed images. With the proposed strategy integrated in the regularization-based reconst...

  19. In vivo bioluminescence tomography based on multi-view projection and 3D surface reconstruction

    Science.gov (United States)

    Zhang, Shuang; Wang, Kun; Leng, Chengcai; Deng, Kexin; Hu, Yifang; Tian, Jie

    2015-03-01

    Bioluminescence tomography (BLT) is a powerful optical molecular imaging modality, which enables non-invasive realtime in vivo imaging as well as 3D quantitative analysis in preclinical studies. In order to solve the inverse problem and reconstruct inner light sources accurately, the prior structural information is commonly necessary and obtained from computed tomography or magnetic resonance imaging. This strategy requires expensive hybrid imaging system, complicated operation protocol and possible involvement of ionizing radiation. The overall robustness highly depends on the fusion accuracy between the optical and structural information. In this study we present a pure optical bioluminescence tomographic system (POBTS) and a novel BLT method based on multi-view projection acquisition and 3D surface reconstruction. The POBTS acquired a sparse set of white light surface images and bioluminescent images of a mouse. Then the white light images were applied to an approximate surface model to generate a high quality textured 3D surface reconstruction of the mouse. After that we integrated multi-view luminescent images based on the previous reconstruction, and applied an algorithm to calibrate and quantify the surface luminescent flux in 3D.Finally, the internal bioluminescence source reconstruction was achieved with this prior information. A BALB/C mouse with breast tumor of 4T1-fLuc cells mouse model were used to evaluate the performance of the new system and technique. Compared with the conventional hybrid optical-CT approach using the same inverse reconstruction method, the reconstruction accuracy of this technique was improved. The distance error between the actual and reconstructed internal source was decreased by 0.184 mm.

  20. A review of the measurement and modelling of dinoflagellate bioluminescence

    Science.gov (United States)

    Marcinko, Charlotte L. J.; Painter, Stuart C.; Martin, Adrian P.; Allen, John T.

    2013-02-01

    Bioluminescence is a striking phenomenon that is ubiquitous throughout the world's oceans. Here we bring together the findings of in situ observations of bioluminescence in the upper ocean (bioluminescence within the upper ocean, as well as its relationships with other environmental parameters. As dinoflagellates are often the dominant source of stimulated bioluminescence in the upper ocean we review current knowledge regarding the bioluminescence of these organisms including its potential ecological function. Modelling and prediction of the bioluminescent field has previously had only limited success, especially over timescales greater than a few days. We suggest that the potential exists to improve the forecasting of upper ocean bioluminescence potential on longer, seasonal, timescales by utilising and improving methods to model dinoflagellates.

  1. Enhanced Landweber algorithm via Bregman iterations for bioluminescence tomography

    Science.gov (United States)

    Xia, Yi; Zhang, Meng

    2014-09-01

    Bioluminescence tomography (BLT) is an important optical molecular imaging modality aimed at visualizing physiological and pathological processes at cellular and molecular levels. While the forward process of light propagation is described by the diffusion approximation to radiative transfer equation, BLT is the inverse problem to reconstruct the 3D localization and quantification of internal bioluminescent sources distribution. Due to the inherent ill-posedness of the BLT problem, regularization is generally indispensable to obtain more favorable reconstruction. In particular, total variation (TV) regularization is known to be effective for piecewise-constant source distribution which can permit sharp discontinuities and preserve edges. However, total variation regularization generally suffers from the unsatisfactory staircasing effect. In this work, we introduce the Bregman iterative regularization to alleviate this degeneration and enhance the numerical reconstruction of BLT. Based on the existing Landweber method (LM), we put forward the Bregman-LM-TV algorithm for BLT. Numerical experiments are carried out and preliminary simulation results are reported to evaluate the proposed algorithms. It is found that Bregman-LM-TV can significantly outperform the individual Landweber method for BLT when the source distribution is piecewise-constant.

  2. Using Luciferase to Image Bacterial Infections in Mice

    OpenAIRE

    Chang, Mi Hee; Cirillo, Suat L. G.; Cirillo, Jeffrey D.

    2011-01-01

    Imaging is a valuable technique that can be used to monitor biological processes. In particular, the presence of cancer cells, stem cells, specific immune cell types, viral pathogens, parasites and bacteria can be followed in real-time within living animals 1-2. Application of bioluminescence imaging to the study of pathogens has advantages as compared to conventional strategies for analysis of infections in animal models3-4. Infections can be visualized within individual animals over time,...

  3. Photorhabdus Species: Bioluminescent Bacteria as Human Pathogens?

    OpenAIRE

    Gerrard, John G.; McNevin, Samantha; Alfredson, David; Forgan-Smith, Ross; Fraser, Neil

    2003-01-01

    We report two Australian patients with soft tissue infections due to Photorhabdus species. Recognized as important insect pathogens, Photorhabdus spp. are bioluminescent gram-negative bacilli. Bacteria belonging to the genus are emerging as a cause of both localized soft tissue and disseminated infections in humans in the United States and Australia. The source of infection in humans remains unknown.

  4. Bioluminescent Bioreporters Encapsulated in Silica Gel.

    Czech Academy of Sciences Publication Activity Database

    Kuncová, Gabriela; Trögl, J.; Demnerová, K.; Ripp, S.; Sayler, G. S.

    - : -, 2008, O08-2 - 1-O08-2 - 4. [XVI International Conference on Bioencapsulation. Dublin (IE), 04.09.2008-06.09.2008] Institutional research plan: CEZ:AV0Z40720504 Keywords : bioluminescent bioreporter * silica gel * biosensor Subject RIV: CE - Biochemistry

  5. Optimal integration time in OCT imaging

    Science.gov (United States)

    Martin, Lorenz; Gräub, Stephan; Meier, Christoph

    2015-07-01

    When measuring static objects with 3D OCT, two opposing trends occur: If the integration time is too short, the measurement is noisy resulting in granulated textures on measured objects. If the integration time is too long, drifts e.g. due to thermal effects or unstable laser sources lead to blurred images. The Allan variance is a scheme to find the optimal integration time in terms of reducing noise without picking up signal drift. A long-term measurement with short integration time of a reference target under realistic conditions is needed to obtain the database for the calculation of the Allan variance. Longer integration times are simulated by taking averages of subsequent samples. The Allan variance being the mean of the squared differences between two consecutive averages is calculated for different integration times. The optimal integration time is achieved for minimal Allan variance. First, the scheme is explained and discussed with simulated data. Then, reference measurements of layers of adhesive tape made with a 3D OCT device are analysed to find the optimal integration time of the device. Finally, the findings are applied to the detection of water inclusions in calcite. With too short integration time the water inclusions appear with a stained surface. With the integration time increased towards the optimal time, the surfaces of the water inclusions get smoother and easier to discriminate from the background. Ready-to-use Octave code for the computation of the Allan variance is provided.

  6. High energy real-time imaging studies

    Energy Technology Data Exchange (ETDEWEB)

    Haskins, J.J.; Dolan, K.W.; Perkins, D.E.; Rikard, D.; Schneberk, D.J.

    1993-04-01

    Performance characteristics of high energy real-time radiography (RTR) systems were optimized by interchanging components and varying optical coupling methods. Phosphor screens, fiber optic scintillation plates, monolithic high density glass scintillation plates, mirror coatings, different cameras and integration times were studied. X-ray sources were 4- and 9-MeV linear accelerators. High density monolithic glass, high resolution and wide dynamic range CCD cameras, and special focusing and fixturing methods have provided significantly improved spatial resolution and contrast for our high energy real-rime imaging. RTR systems with improved performance characteristics and proper translational/rotational staging were adapted for computed tomography applications.

  7. Interactive Real-time Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Brix, Lau

    2013-01-01

    Real-time acquisition, reconstruction and interactively changing the slice position using magnetic resonance imaging (MRI) have been possible for years. However, the current clinical use of interactive real-time MRI is limited due to an inherent low spatial and temporal resolution. This PhD project seeks to implement and assess existing reconstruction algorithms using multi-processors of modern graphics cards and many-core computer processors and to cover some of the potential clinical applications which might benefit from using an interactive real-time MRI system. First an off-line, but interactive, slice alignment tool was used to support the notion that 3D blood flow quantification in the heart possesses the ability to obtain curves and volumes which are not statistical different from standard 2D flow. Secondly, the feasibility of an interactive real-time MRI system was exploited with regard to optimal sampling strategy for detecting motion in four different anatomies on two different MRI scanner brands. A fully implemented interactive real-time MRI system was exploited in a group of healthy fetuses and proved its eligibility as an alternative diagnostic tool for fetal imaging. Finally, the system was used for 3D motion tracking of the liver, and its use was proposed for future integrations of MRI scanners and linear accelerators in the field of radiotherapy treatment.

  8. Hybrid Architecture For Real Time Image Registration

    Science.gov (United States)

    Rao, B. Venkateswara; Kumar, S. V. Ravi; Venkateswarlu, R.

    1988-01-01

    This paper deals with the real time implementation of an image registration algorithm, for an application onboard a flight vehicle, where there are limitations on system power and space, in addition to the processing time constraint. Two images must be registered to find the similarity between them or to find the object motion in a scene. Real time in this application means an update time of 1/30th of a second i.e., at TV frame rate. The direct method using the normalised correlation function is chosen for implementation considering both the performance and the computational complexity. A hybrid approach using dedicated hardware for computation intensive part of the algorithm and a microprocessor based subsystem for other functions is adopted as a compromise between flexibility and efficiency. To meet the time constraint parallel pipelined architecture is used. To meet the low power requirement mostly CMOS devices are used. To meet the space constraint specific integrated circuits are being planned. A specific example of implementation is given.

  9. Time Variant Change Analysis in Satellite Images

    Directory of Open Access Journals (Sweden)

    Rachita Sharma

    2013-05-01

    Full Text Available This paper describes the time variant changes in satellite images using Self Organizing Feature Map (SOFM technique associated with Artificial Neural Network. In this paper, we take a satellite image and find the time variant changes using above technique with the help of MATLAB. This paper reviews remotely sensed data analysis with neural networks. First, we present an overview of the main concepts underlying Artificial Neural Networks (ANNs, including the main architectures and learning algorithms. Then, the main tasks that involve ANNs in remote sensing are described. We first make a brief introduction to models of networks, for then describing in general terms Artificial Neural Networks (ANNs. As an application, we explain the back propagation algorithm, since it is widely used and many other algorithms are derived from it. There are two techniques that are used for classification in pattern recognition such as Supervised Classification and Unsupervised Classification. In supervised learning technique the network knows about the target and it has to change accordingly to get the desired output corresponding to the presented input sample data. Most of the previous work has already been done on supervised classification. In this study we are going to present the classification of satellite images using unsupervised classification method of ANN.

  10. Papyrus imaging with terahertz time domain spectroscopy

    Science.gov (United States)

    Labaune, J.; Jackson, J. B.; Pagès-Camagna, S.; Duling, I. N.; Menu, M.; Mourou, G. A.

    2010-09-01

    Terahertz time domain spectroscopic imaging (THz-TDSI) is a non-ionizing, non-contact and non-destructive measurement technique that has been recently utilized to study cultural heritage artifacts. We will present this technique and the results of non-contact measurements of papyrus texts, including images of hidden papyri. Inks for modern papyrus specimens were prepared using the historical binder, Arabic gum, and two common pigments used to write ancient texts, carbon black and red ochre. The samples were scanned in reflection at normal incidence with a pulse with a spectral range between 0.1 and 1.5 THz. Temporal analysis of the signals provides the depths of the layers, and their frequency spectra give information about the inks.

  11. Luciferin Amides Enable in Vivo Bioluminescence Detection of Endogenous Fatty Acid Amide Hydrolase Activity.

    Science.gov (United States)

    Mofford, David M; Adams, Spencer T; Reddy, G S Kiran Kumar; Reddy, Gadarla Randheer; Miller, Stephen C

    2015-07-15

    Firefly luciferase is homologous to fatty acyl-CoA synthetases. We hypothesized that the firefly luciferase substrate d-luciferin and its analogs are fatty acid mimics that are ideally suited to probe the chemistry of enzymes that release fatty acid products. Here, we synthesized luciferin amides and found that these molecules are hydrolyzed to substrates for firefly luciferase by the enzyme fatty acid amide hydrolase (FAAH). In the presence of luciferase, these molecules enable highly sensitive and selective bioluminescent detection of FAAH activity in vitro, in live cells, and in vivo. The potency and tissue distribution of FAAH inhibitors can be imaged in live mice, and luciferin amides serve as exemplary reagents for greatly improved bioluminescence imaging in FAAH-expressing tissues such as the brain. PMID:26120870

  12. Reliability of a bioluminescence ATP assay for detection of bacteria.

    OpenAIRE

    Selan, L; Berlutti, F; Passariello, C; Thaller, M C; Renzini, G

    1992-01-01

    The reliability of bioluminescence assays which employ the luciferin-luciferase ATP-dependent reaction to evaluate bacterial counts was studied, both in vitro and on urine specimens. Bioluminescence and cultural results for the most common urinary tract pathogens were analyzed. Furthermore, the influence of the culture medium, of the assaying method, and of the phase of growth on bioluminescence readings was studied. Results show that Proteus, Providencia, and Morganella strains are not corre...

  13. Source Reconstruction for Spectrally-resolved Bioluminescence Tomography with Sparse A priori Information

    OpenAIRE

    Lu, Yujie; Zhang, Xiaoqun; Douraghy, Ali; Stout, David; Tian, Jie; Chan, Tony F.; Chatziioannou, Arion F.

    2009-01-01

    Through restoration of the light source information in small animals in vivo, optical molecular imaging, such as fluorescence molecular tomography (FMT) and bioluminescence tomography (BLT), can depict biological and physiological changes observed using molecular probes. A priori information plays an indispensable role in tomographic reconstruction. As a type of a priori information, the sparsity characteristic of the light source has not been sufficiently considered to date. In this paper, w...

  14. A Causal Relation between Bioluminescence and Oxygen to Quantify the Cell Niche

    OpenAIRE

    Lambrechts, Dennis; Roeffaers, Maarten; Goossens, Karel; Hofkens, Johan; Vande Velde, Greetje; van de Putte, Tom; Schrooten, Jan; Van Oosterwyck, Hans

    2014-01-01

    Bioluminescence imaging assays have become a widely integrated technique to quantify effectiveness of cell-based therapies by monitoring fate and survival of transplanted cells. To date these assays are still largely qualitative and often erroneous due to the complexity and dynamics of local micro-environments (niches) in which the cells reside. Here, we report, using a combined experimental and computational approach, on oxygen that besides being a critical niche component res...

  15. Dual monitoring using 124I-FIAU and bioluminescence for HSV1-tk suicide gene therapy

    International Nuclear Information System (INIS)

    Herpes simplex virus type I thymidine kinase (HSV-tk) is the most common reporter gene and is used in cancer gene therapy with a prodrug nucleoside analog, ganciclovir (GCV). The aim of this study is to evaluate therapeutic efficacy of suicide gene therapy with 2'-fluoro-2'-deoxy-1-D-arabinofuranosyl-5-[124I] iodouracil (124I - FIAU) and bioluminescence in retrovirally HSV -tk and firefly luciferase transduced hepatoma model. The HSV -tk and firefly luciferase (Luc) was retrovirally transduced and expressed in MCA rat Morris hepatoma cells. Nude mice with subcutaneous tumors, MCA and MCA-TK-Luc, were subjected to GCV treatment (50mg/Kg/d intraperitoneally) for 5 day. PET imaging and biodistribution with (124I-FIAU) were performed at before and after initiation of therapy with GCV. Bioluminescent signal was also measured during GCV treatment. Before GCV treatment, no significant difference in tumor volume was found in tumors between MCA and MCA-TK-Luc. After GCV treatment, tumor volume of MCA-TK-Luc markedly reduced compared to that of MCA. In biodistribution study, 124I-FIAU uptake after GCV therapy significantly decreased compared with pretreatment levels (34.8 13.67 %ID/g vs 7.6 2.59 %ID/g) and bioluminescent signal was also significantly decreased compared with pretreatment levels. In small animal PET imaging, 124I-FIAU selectively localized in HSV -tk expressing tumor and the therapeutic efficacy of GCV treatment was evaluated by 124I-FIAU PET imaging. 124I-FIAU PET and bioluminescence imaging in HSV-tk suicide gene therapy were effective to evaluate the therapeutic response. 124I-FIAU may serve as an efficient and selective agent for monitoring of transduced HSV1-tk gene expression in vivo in clinical trials

  16. Cloning and characterization of new bioluminescent proteins

    Science.gov (United States)

    Szent-Gyorgyi, Christopher; Ballou, Byron T.; Dagnal, Erich; Bryan, Bruce

    1999-07-01

    Over the past two years Prolume has undertaken a comprehensive program to clone luciferases and associated 'green fluorescent proteins' (GFPs) from marine animals that use coelenterazine as the luciferin. To data we have cloned several bioluminescent proteins, including two novel copepod luciferases and two anthozoan GFPs. These four proteins have sequences that differ greatly form previously cloned analogous proteins; the sequence diversity apparently is due to independent evolutionary origins and unusual evolutionary constraints. Thus coelenterazine-based bioluminescent systems may also manifest a variety of useful properties. We discuss form this taxonomic perspective the initial biochemical and spectral characterization of our cloned proteins. Emphasis is placed on the anthozoan luciferase-GFP systems, whose efficient resonance energy transfer has elicited much current interest.

  17. Transformation Experiment Using Bioluminescence Genes of "Vibrio fischeri."

    Science.gov (United States)

    Slock, James

    1995-01-01

    Bioluminescence transformation experiments show students the excitement and power of recombinant DNA technology. This laboratory experiment utilizes two plasmids of "Vibrio fischeri" in a transformation experiment. (LZ)

  18. Bioluminescence ATP monitoring for the routine assessment of food contact surface cleanliness in a university canteen.

    Science.gov (United States)

    Osimani, Andrea; Garofalo, Cristiana; Clementi, Francesca; Tavoletti, Stefano; Aquilanti, Lucia

    2014-01-01

    ATP bioluminescence monitoring and traditional microbiological analyses (viable counting of total mesophilic aerobes, coliforms and Escherichia coli) were used to evaluate the effectiveness of Sanitation Standard Operating Procedures (SSOP) at a university canteen which uses a HACCP-based approach. To that end, 10 cleaning control points (CPs), including food contact surfaces at risk of contamination from product residues or microbial growth, were analysed during an 8-month monitoring period. Arbitrary acceptability limits were set for both microbial loads and ATP bioluminescence readings. A highly significant correlation (r = 0.99) between the means of ATP bioluminescence readings and the viable counts of total mesophilic aerobes was seen, thus revealing a strong association of these parameters with the level of surface contamination. Among CPs, the raw meat and multi-purpose chopping boards showed the highest criticalities. Although ATP bioluminescence technology cannot substitute traditional microbiological analyses for the determination of microbial load on food contact surfaces, it has proved to be a powerful tool for the real time monitoring of surface cleanliness at mass catering plants, for verify the correct application of SSOP, and hence for their implementation/revision in the case of poor hygiene. PMID:25329534

  19. Bioluminescence ATP Monitoring for the Routine Assessment of Food Contact Surface Cleanliness in a University Canteen

    Directory of Open Access Journals (Sweden)

    Andrea Osimani

    2014-10-01

    Full Text Available ATP bioluminescence monitoring and traditional microbiological analyses (viable counting of total mesophilic aerobes, coliforms and Escherichia coli were used to evaluate the effectiveness of Sanitation Standard Operating Procedures (SSOP at a university canteen which uses a HACCP-based approach. To that end, 10 cleaning control points (CPs, including food contact surfaces at risk of contamination from product residues or microbial growth, were analysed during an 8-month monitoring period. Arbitrary acceptability limits were set for both microbial loads and ATP bioluminescence readings. A highly significant correlation (r = 0.99 between the means of ATP bioluminescence readings and the viable counts of total mesophilic aerobes was seen, thus revealing a strong association of these parameters with the level of surface contamination. Among CPs, the raw meat and multi-purpose chopping boards showed the highest criticalities. Although ATP bioluminescence technology cannot substitute traditional microbiological analyses for the determination of microbial load on food contact surfaces, it has proved to be a powerful tool for the real time monitoring of surface cleanliness at mass catering plants, for verify the correct application of SSOP, and hence for their implementation/revision in the case of poor hygiene.

  20. Changes in the bioluminescence of firefly under pulsed and static magnetic fields

    Science.gov (United States)

    Iwasaka, M.; Miyashita, Y.; Barua, A. G.; Kurita, S.; Owada, N.

    2011-04-01

    The effects of a pulsed train magnetic field (PMF) and 10-T order of static magnetic fields on firefly bioluminescence were investigated on two species, Luciola cruciata and Luciola lateralis. Strong static magnetic field exposure experiments were carried out with a time-resolved spectroscopy, and the firefly bioluminescence spectrum showed a redshift in the range of 540-580nm when the firefly emitted pulses under the 10-T magnetic field. Separately from this effect, a transient decrease in the firefly's emission intensity was observed right after being exposed to the static magnetic fields of up to 10 T. On the other hand, the utilized PMFs stimulated and enhanced the bioluminescence of Luciola cruciata. The PMF with 250-325 T/s at 1.3-10 Hz increased both the firefly's pulsed density and frequency. It was speculated that the magnetically induced current inside the firefly affected its nervous system or the photochemical processes in the light producing organ, while the diamagnetic torque forces, which were induced by the 10 T order of the static field, had an inhibitory effect on the bioluminescence system.

  1. Rapid bioluminescence method for bacteriuria screening.

    OpenAIRE

    Pezzlo, M T; Ige, V; Woolard, A P; Peterson, E M; de la Maza, L M

    1989-01-01

    A study was performed to evaluate the UTIscreen (Los Alamos Diagnostics, Los Alamos, N. Mex.), a rapid bioluminescence bacteriuria screen. The UTIscreen was compared with three other rapid bacteriuria screens: the Bac-T-Screen (Vitek Systems, Hazelwood, Mo.), an automated filtration device; the Chemstrip LN (Boehringer Mannheim Diagnostics, BioDynamics, Indianapolis, Ind.), an enzyme dipstick; and the Gram stain. A semiquantitative plate culture was used as the reference method. Of the 1,000 ...

  2. HABE real-time image processing

    Science.gov (United States)

    Krainak, Joseph C.

    1999-07-01

    The HABE system performs real-time autonomous acquisition, pointing and tracking (ATP). The goal of the experiment, sponsored by the Ballistic Missile Defense Organization and administered by the US Air Force Research Laboratory, Kirtland AFB, Albuquerque, NM, is to demonstrate the acquisition, tracking and pointing technologies needed for an effective space-based missile defense system. The three sensor tracking system includes two IR cameras for passive tracking of a missile plume and an intensified visible camera used to capture the return of a high-energy laser pulse reflected by the missile's nose. The HABE real-time image processor uses the images captured by each sensor to find a track point. The VME-based hardware includes four Compaq Computer Corporation Alpha processors and seven Texas Instruments TMS320C4X processors. The C4x comports and the VME bus provide the pathways needed for inter-processor communications. The software design implements a list processing approach to command and control which provides for flexible task redefinition, addition, and deletion while minimizing the need for code changes. The design is implemented in C. Several system performance metrics are described and tabulated.

  3. Real-time evaluation of two light delivery systems for photodynamic disinfection of Candida albicans biofilm in curved root canals.

    Science.gov (United States)

    Sabino, C P; Garcez, A S; Núñez, S C; Ribeiro, M S; Hamblin, M R

    2015-08-01

    Antimicrobial photodynamic therapy (APDT) combined with endodontic treatment has been recognized as an alternative approach to complement conventional root canal disinfection methods on bacterial biofilms. We developed an in  vitro model of bioluminescent Candida albicans biofilm inside curved dental root canals and investigated the microbial reduction produced when different light delivery methods are employed. Each light delivery method was evaluated in respect to the light distribution provided inside curved root canals. After conventional endodontic preparation, teeth were sterilized before canals were contaminated by a bioluminescent strain of C. albicans (CEC789). Methylene blue (90 ?M) was introduced into the canals and then irradiated (??=?660 nm, P?=?100 mW, beam diameter?=?2 mm) with laser tip either in contact with pulp chamber or within the canal using an optical diffuser fiber. Light distribution was evaluated by CCD camera, and microbial reduction was monitored through bioluminescence imaging. Our findings demonstrated that the bioluminescent C. albicans biofilm model had good reproducibility and uniformity. Light distribution in dental tissue was markedly dependent on the light delivery system, and this strategy was directly related to microbial destruction. Both light delivery systems performed significant fungal inactivation. However, when irradiation was performed with optical diffuser fiber, microbial burden reduction was nearly 100 times more effective. Bioluminescence is an interesting real-time analysis to endodontic C. albicans biofilm inactivation. APDT showed to be an effective way to inactivate C. albicans biofilms. Diffuser fibers provided optimized light distribution inside curved root canals and significantly increased APDT efficiency. PMID:25060900

  4. Use of the liquid scintillation spectrometer in bioluminescence analysis

    International Nuclear Information System (INIS)

    This review covers publications concerning analytical bioluminescence which in the main have appeared between mid-1973 and mid-1976. Outlines of some new assays and techniques are given together with modifications of existing procedures. Comments are presented on the use of the liquid scintillation spectrometer and other equipment for measuring bioluminescence. New applications are detailed and discussed

  5. A REVIEW OF ENVIRONMENTAL APPLICATIONS OF BIOLUMINESCENCE MEASUREMENTS

    Science.gov (United States)

    This review of the recent literature on environmental applications of bioluminescence systems will focus on in vivo and in vitro bioluminescence methods that have been utilized to elucidate properties of chemicals, toxic and mutagenic effects, and to estimate biomass. The unifyin...

  6. Dinoflagellate bioluminescence in response to mechanical stimuli in water flows

    Directory of Open Access Journals (Sweden)

    A. S. Cussatlegras

    2005-01-01

    Full Text Available Bioluminescence of plankton organisms induced by water movements has long been observed and is still under investigations because of its great complexity. In particular, the exact mechanism occurring at the level of the cell has not been yet fully understood. This work is devoted to the study of the bioluminescence of the dinoflagellates plankton species Pyrocystis noctiluca in response to mechanical stimuli generated by water flows. Several experiments were performed with different types of flows in a Couette shearing apparatus. All of them converge to the conclusion that stationary homogeneous laminar shear does not trigger massive bioluminescence, but that acceleration and shear are both necessary to stimulate together an intense bioluminescence response. The distribution of the experimental bioluminescence thresholds is finally calculated from the light emission response for the Pyrocystis noctiluca species.

  7. REAL-TIME MULTISPECTRAL IMAGING APPLICATION FOR POULTRY SAFETY INSPECTION

    Science.gov (United States)

    Industrial-scale multispectral imaging system with real-time image processing software for on-line detection of poultry fecal and ingesta contaminants was developed. The software using Unified Modeling Language (UML) design approach was effective to develop real-time image processing software for o...

  8. Bioluminescent bacteria: lux genes as environmental biosensors Bactérias bioluminescentes: os genes lux como biosensores ambientais

    OpenAIRE

    Vânia da Silva Nunes-Halldorson; Norma Letícia Duran

    2003-01-01

    Bioluminescent bacteria are widespread in natural environments. Over the years, many researchers have been studying the physiology, biochemistry and genetic control of bacterial bioluminescence. These discoveries have revolutionized the area of Environmental Microbiology through the use of luminescent genes as biosensors for environmental studies. This paper will review the chronology of scientific discoveries on bacterial bioluminescence and the current applications of bioluminescence in env...

  9. Miniaturized holographic imaging system for real-time cellular detection

    Science.gov (United States)

    Song, Jun; Im, Hyungsoon; Liong, Monty; Fexon, Lioubov; Pivovarov, Misha; Weissleder, Ralph; Lee, Hakho

    2013-03-01

    We herein present a miniaturized holographic imaging system for high throughput cellular detection. The system consists of an imager chip with a microfluidic channel built on top. Clinical samples (e.g., blood) are introduced into the fluidic channel, and holographic images of cells are recorded by the imager chip. We then perform computational reconstruction of original cell images, retrieving both the intensity and phase information. For fast image reconstruction, we have implemented parallel computing software and utilized multicore GPU (graphics processing unit) chips. The resulting imaging system enabled high throughput cellular detection; up to 1000 cells/ ?L could be imaged over a wide detection area (20 mm2), and cellular images could be reconstructed in real time (20 frames/sec). Furthermore, assays can be performed without extra dilution and washing steps, which significantly simplifies the diagnosis process. This cost-effective, real-time holographic imaging system can be used for target cell detection in point-of-care applications.

  10. Algorithm for localized adaptive diffuse optical tomography and its application in bioluminescence tomography

    Science.gov (United States)

    Naser, Mohamed A.; Patterson, Michael S.; Wong, John W.

    2014-04-01

    A reconstruction algorithm for diffuse optical tomography based on diffusion theory and finite element method is described. The algorithm reconstructs the optical properties in a permissible domain or region-of-interest to reduce the number of unknowns. The algorithm can be used to reconstruct optical properties for a segmented object (where a CT-scan or MRI is available) or a non-segmented object. For the latter, an adaptive segmentation algorithm merges contiguous regions with similar optical properties thereby reducing the number of unknowns. In calculating the Jacobian matrix the algorithm uses an efficient direct method so the required time is comparable to that needed for a single forward calculation. The reconstructed optical properties using segmented, non-segmented, and adaptively segmented 3D mouse anatomy (MOBY) are used to perform bioluminescence tomography (BLT) for two simulated internal sources. The BLT results suggest that the accuracy of reconstruction of total source power obtained without the segmentation provided by an auxiliary imaging method such as x-ray CT is comparable to that obtained when using perfect segmentation.

  11. Real-Time Protein Crystallization Image Acquisition and Classification System

    OpenAIRE

    Sigdel, Madhav; Pusey, Marc L.; Aygun, Ramazan S.

    2013-01-01

    In this paper, we describe the design and implementation of a stand-alone real-time system for protein crystallization image acquisition and classification with a goal to assist crystallographers in scoring crystallization trials. In-house assembled fluorescence microscopy system is built for image acquisition. The images are classified into three categories as non-crystals, likely leads, and crystals. Image classification consists of two main steps – image feature extraction and application ...

  12. Chemiluminescence and bioluminescence past, present and future

    CERN Document Server

    Roda, Aldo; Hastings, J Woodland

    2010-01-01

    This complete and well-organized overview of chemiluminescence and bioluminescence is divided into two parts. The first covers historical developments and the fundamental principles of these phenomena before going on to review recent advances and instrumentation. The second part deals with the applications in a variety of research fields including life sciences, drug discovery, diagnostics, environment, agrofood, and forensics. The book is suitable not only for researchers currently employing detection techniques in their research activity, but also for those approaching the subject for the fi

  13. Near-infrared optical imaging of nucleic acid nanocarriers in vivo.

    Science.gov (United States)

    Rome, Claire; Gravier, Julien; Morille, Marie; Divita, Gilles; Bolcato-Bellemin, Anne-Laure; Josserand, Véronique; Coll, Jean-Luc

    2013-01-01

    Noninvasive, real-time optical imaging methods are well suited to follow the in vivo distribution of nucleic acid nanocarriers, their dissociation, and the resulting gene expression or inhibition. Indeed, most small animal imaging devices perform bioluminescence and fluorescence measurements without moving the animal, allowing a simple, rapid, and cost-effective method of investigation of several parameters at a time, in longitudinal experiments that can last for days or weeks.Here we help the reader in choosing adapted near-infrared (NIR) fluorophores or pairs of fluorophores for Förster resonance energy transfer assays, imaging of reporter genes, as well as nanocarriers for in vivo gene and siRNA delivery. In addition, we present the labeling methods of these macromolecules and of their payload and the protocols to detect them using bioluminescence and NIR fluorescence imaging in mice. PMID:23070763

  14. Time-domain flaw imaging system

    Scientific Electronic Library Online (English)

    L., Medina.

    Full Text Available Ensayos no destructivos con ultrasonido es una herramienta comúnmente usada para la detección y caracterización de fallas en materiales. Un sistema típico de imágenes ultrasónicas consiste en un solo transductor o arreglo de sensores que operan bajo el modo de rastreo B. Este modo consiste en transm [...] itir un pulso o un tren de pulsos desde distintas posiciones, y para cada posición recibir ecos que pueden provenir de inhomogeneidades dentro del material inspeccionado. La energía reflejada puede desplegarse como un mapa de intensidades ultrasónicas. Uno de los métodos que han tenido gran éxito en la reconstrucción de imágenes y localización de inhomogeneidades es la llamada formación de haces, proceso digital en el dominio del tiempo. Esta técnica consiste en aplicar corrimientos en el tiempo específicos a cada serial registrada, para después sumar estas, encontrando así las zonas donde las señales se suman constructivamente. Sin embargo, esta técnica requiere largos periodos para su procesamiento así como la restricción de la distancia entre elementos no debe exceder de A/2. El trabajo que se presenta propone un algoritmo en el dominio del tiempo, que opera sobre la envolvente de las señales recibidas, disminuyendo el nú mero de operaciones computacionales sin perder información relevante de la localización de inhomogeneidades. Resultados comparativos entre la técnica clásica y la propuesta son presentados cuando ambas son aplicadas a un conjunto de señales simuladas. También resoluciones laterales y longitudinales han sido calculadas en el caso de que existan dos fallas puntuales en el medio inspeccionado. Abstract in english Ultrasonic Non Destructive Evaluation of materials is a useful tool for flaw detection and characterization. A typical ultrasonic imaging system may consist of a single transducer or an array of sensors working in a B-scan mode. This mode operates by transmitting a pulse of train of pulses from seve [...] ral locations and detecting the echoes coming from in-homogeneities. The reflected energy can be represented as a map of ultrasonic reflectivity. A time-delay beamformer has been successfully used to reconstruct the image, and localize the in-homogeneities within the scanned medium, by time shifting the signals, and summing them up. This process enables to locate regions at which signals are added constructively. It is however, a time consuming process and requires A/2 distance of motor steps or inter-element distance between array elements. An algorithm based on time-domain envelope beamformer is presented here. This algorithm is able to diminish the number of computational operations without losing relevant information about the location of in-homogeneities. A comparison between classical and envelope beam-formers is presented when applied to sets of simulated signals. Lateral and longitudinal resolutions are also computed when two targets are within the scanned medium.

  15. Time-delay compensation for stabilization imaging system

    Science.gov (United States)

    Chen, Yueting; Xu, Zhihai; Li, Qi; Feng, Huajun

    2014-05-01

    The spatial resolution of imaging systems for airborne and space-borne remote sensing are often limited by image degradation resulting from mechanical vibrations of platforms during image exposure. A straightforward way to overcome this problem is to actively stabilize the optical axis or drive the focal plane synchronous to the motion image during exposure. Thus stabilization imaging system usually consists of digital image motion estimation and micromechanical compensation. The performance of such kind of visual servo system is closely related to precision of motion estimation and time delay. Large time delay results in larger phase delay between motion estimation and micromechanical compensation, and leads to larger uncompensated residual motion and limited bandwidth. The paper analyzes the time delay caused by image acquisition period and introduces a time delay compensation method based on SVM (Support Vector Machine) motion prediction. The main idea to cancel the time delay is to predict the current image motion from delayed measurements. A support vector machine based method is designed to predict the image motion. A prototype of stabilization imaging system has been implemented in the lab. To analyze the influences of time delay on system performance and to verify the proposed time delay cancelation method, comparative experiments over various frequencies of vibration are taken. The experimental results show that, the accuracy of motion compensation and the bandwidth of the system can be significantly improved with time delay cancelation.

  16. Real-time acoustic radiation force impulse imaging

    Science.gov (United States)

    Pinton, Gianmarco F.; McAleavey, Stephen A.; Dahl, Jeremy J.; Nightingale, Kathryn R.; Trahey, Gregg E.

    2005-04-01

    Acoustic Radiation Force Impulse (ARFI) imaging uses short duration acoustic pulses to generate and subsequently determine localized displacements in tissue. Time delay estimators, such as normalized cross correlation and phase shift estimation, form the computational basis for ARFI imaging. This paper considers these algorithms and the effects of noise, interpolation, and quadrature demodulation on the accuracy of the time delay estimates. These results are used to implement a real-time ARFI imaging system and in an ex vivo liver ablation study.

  17. An ebCMOS camera system for marine bioluminescence observation: The LuSEApher prototype

    Energy Technology Data Exchange (ETDEWEB)

    Dominjon, A., E-mail: a.dominjon@ipnl.in2p3.fr [CNRS/IN2P3, Institut de Physique Nucleaire de Lyon, Villeurbanne F-69622 (France); Ageron, M. [CNRS/IN2P3, Centre de Physique des Particules de Marseille, Marseille, F-13288 (France); Barbier, R. [CNRS/IN2P3, Institut de Physique Nucleaire de Lyon, Villeurbanne F-69622 (France); Universite de Lyon, Universite Lyon 1, Lyon F-69003 (France); Billault, M.; Brunner, J. [CNRS/IN2P3, Centre de Physique des Particules de Marseille, Marseille, F-13288 (France); Cajgfinger, T. [CNRS/IN2P3, Institut de Physique Nucleaire de Lyon, Villeurbanne F-69622 (France); Universite de Lyon, Universite Lyon 1, Lyon F-69003 (France); Calabria, P. [CNRS/IN2P3, Institut de Physique Nucleaire de Lyon, Villeurbanne F-69622 (France); Chabanat, E. [CNRS/IN2P3, Institut de Physique Nucleaire de Lyon, Villeurbanne F-69622 (France); Universite de Lyon, Universite Lyon 1, Lyon F-69003 (France); Chaize, D.; Doan, Q.T.; Guerin, C.; Houles, J.; Vagneron, L. [CNRS/IN2P3, Institut de Physique Nucleaire de Lyon, Villeurbanne F-69622 (France)

    2012-12-11

    The ebCMOS camera, called LuSEApher, is a marine bioluminescence recorder device adapted to extreme low light level. This prototype is based on the skeleton of the LUSIPHER camera system originally developed for fluorescence imaging. It has been installed at 2500 m depth off the Mediterranean shore on the site of the ANTARES neutrino telescope. The LuSEApher camera is mounted on the Instrumented Interface Module connected to the ANTARES network for environmental science purposes (European Seas Observatory Network). The LuSEApher is a self-triggered photo detection system with photon counting ability. The presentation of the device is given and its performances such as the single photon reconstruction, noise performances and trigger strategy are presented. The first recorded movies of bioluminescence are analyzed. To our knowledge, those types of events have never been obtained with such a sensitivity and such a frame rate. We believe that this camera concept could open a new window on bioluminescence studies in the deep sea.

  18. An ebCMOS camera system for marine bioluminescence observation: The LuSEApher prototype

    International Nuclear Information System (INIS)

    The ebCMOS camera, called LuSEApher, is a marine bioluminescence recorder device adapted to extreme low light level. This prototype is based on the skeleton of the LUSIPHER camera system originally developed for fluorescence imaging. It has been installed at 2500 m depth off the Mediterranean shore on the site of the ANTARES neutrino telescope. The LuSEApher camera is mounted on the Instrumented Interface Module connected to the ANTARES network for environmental science purposes (European Seas Observatory Network). The LuSEApher is a self-triggered photo detection system with photon counting ability. The presentation of the device is given and its performances such as the single photon reconstruction, noise performances and trigger strategy are presented. The first recorded movies of bioluminescence are analyzed. To our knowledge, those types of events have never been obtained with such a sensitivity and such a frame rate. We believe that this camera concept could open a new window on bioluminescence studies in the deep sea.

  19. Spectrally resolved bioluminescence tomography with adaptive finite element analysis: methodology and simulation

    International Nuclear Information System (INIS)

    As a molecular imaging technique, bioluminescence tomography (BLT) with its highly sensitive detection and facile operation can significantly reveal molecular and cellular information in vivo at the whole-body small animal level. However, because of complex photon transportation in biological tissue and boundary detection data with high noise, bioluminescent sources in deeper positions generally cannot be localized. In our previous work, we used achromatic or monochromatic measurements and an a priori permissible source region strategy to develop a multilevel adaptive finite-element algorithm. In this paper, we propose a spectrally solved tomographic algorithm with a posteriori permissible source region selection. Multispectral measurements, and anatomical and optical information first deal with the nonuniqueness of BLT and constrain the possible solution of source reconstruction. The use of adaptive mesh refinement and permissible source region based on a posteriori measures not only avoids the dimension disaster arising from the multispectral measured data but also reduces the ill-posedness of BLT and therefore improves the reconstruction quality. Reconsideration of the optimization method and related modifications further enhance reconstruction robustness and efficiency. We also incorporate into the method some improvements for reducing computational burdens. Finally, using a whole-body virtual mouse phantom, we demonstrate the capability of the proposed BLT algorithm to reconstruct accurately bioluminescent sources in deeper positions. In terms of optical property errors and two sources of discernment in deeper positions, this BLT algorithm represents the unique predominance for BLT reconstruction

  20. Construction of a bioluminescent reporter strain to detect polychlorinated biphenyls

    Energy Technology Data Exchange (ETDEWEB)

    Layton, A.C.; Muccini, M.; Ghosh, M.M.; Sayler, G.S. [Univ. of Tennessee, Knoxville, TN (United States)

    1998-12-01

    A bioluminescent reporter strain, Ralstonia eutropha ENV307 (pUTK60), was constructed for the detection of polychlorinated biphenyls by inserting the biphenyl promoter upstream of the bioluminescence genes. In the presence of a nonionic surfactant, which enhances the solubility of chlorinated biphenyls, bioluminescence was induced three- to fourfold over background by biphenyl, monochlorinated biphenyls, and Aroclor 1242. The minimum detection limits for these compounds ranged from 0.15 mg/liter for 4-chlorobiphenyl to 1.5 mg/liter for Aroclor 1242.

  1. Biocidal effects of silver and zinc oxide nanoparticles on the bioluminescent bacteria

    Science.gov (United States)

    Taran, M. V.; Starodub, N. F.; Katsev, A. M.; Guidotti, M.; Khranovskyy, V. D.; Babanin, A. A.; Melnychuk, M. D.

    2013-11-01

    The effect of silver and zinc oxide nanoparticles in combination with alginate on bioluminescent Photobacterium leiognathi Sh1 bacteria was investigated. Silver nanoparticles were found to be more toxic than zinc oxide nanoparticles on bioluminescent bacteria. The nanoparticles and their ions released results in the same effect, however, it was absent in combination with alginate. The effective inhibiting concentration (EC50) for silver nanoparticles was found about 0.3 - 0.4 ?g mL-1, which was up to two times larger then for zinc oxide nanoparticles. The absence of sodium chloride in the tested media prevented the formation of colloidal particles of larger size and the effective inhibition concentrations of metal derivatives were lower than in the presence of sodium chloride.

  2. Local statistical analysis of real-time NRG images

    International Nuclear Information System (INIS)

    An analysis of real-time neutron images, taken with the cyclotron-based neutron radiography system of Sumitomo Heavy Industries, Ltd., which uses a set of neutron-photon converter, LiF + ZnS (Ag) scintillation screen, and a high sensitive SIT television camera, is described. The fluctuation of image intensity at a constant neutron flux domain is well represented by a Poisson distribution and ripple noise appearing in the real-time image can be attributed to the deficiency of neutron flux. The image integration technique, therefore, would be effective for improvement of the statistical quality of neutron image. Some digital image processing techniques based on statistical method would be effective for a ruffled image like real-time neutron radiography. (author)

  3. In Vivo Real Time Volumetric Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Bouzari, Hamed; Rasmussen, Morten Fischer; Brandt, Andreas Hjelm; Stuart, Matthias Bo; Nikolov, Svetoslav; Jensen, Jørgen Arendt

    2015-01-01

    Synthetic aperture (SA) imaging can be used to achieve real-time volumetric ultrasound imaging using 2-D array transducers. The sensitivity of SA imaging is improved by maximizing the acoustic output, but one must consider the limitations of an ultrasound system, both technical and biological. This paper investigates the in vivo applicability and sensitivity of volumetric SA imaging. Utilizing the transmit events to generate a set of virtual point sources, a frame rate of 25 Hz for a 90° x 90° f...

  4. The design of time resolved intensified CCD imaging system

    International Nuclear Information System (INIS)

    Coupled the CCD with an image intensifier, the intensified CCD imaging system has such advantages as higher signal gain, higher signal-to-noise ratio (SNR) and higher dynamic range. Time resolution can be achieved by controlling the shutter time of the image intensifier with an electronic pulse. The structures and set-up of the intensified CCD imaging system, and the performance parameters in field use are detailed. The object plane spatial resolution of 5 lp/mm is achieved when enlargement rate is 1. The dynamic range of this system is 38.7, and the synchronous precision is less than 2 ns, the time resolution is 5 ns. (authors)

  5. Volumetric real-time imaging using a CMUT ring array.

    Science.gov (United States)

    Choe, Jung Woo; Oralkan, Ömer; Nikoozadeh, Amin; Gencel, Mustafa; Stephens, Douglas N; O'Donnell, Matthew; Sahn, David J; Khuri-Yakub, Butrus T

    2012-06-01

    A ring array provides a very suitable geometry for forward-looking volumetric intracardiac and intravascular ultrasound imaging. We fabricated an annular 64-element capacitive micromachined ultrasonic transducer (CMUT) array featuring a 10-MHz operating frequency and a 1.27-mm outer radius. A custom software suite was developed to run on a PC-based imaging system for real-time imaging using this device. This paper presents simulated and experimental imaging results for the described CMUT ring array. Three different imaging methods--flash, classic phased array (CPA), and synthetic phased array (SPA)--were used in the study. For SPA imaging, two techniques to improve the image quality--Hadamard coding and aperture weighting--were also applied. The results show that SPA with Hadamard coding and aperture weighting is a good option for ring-array imaging. Compared with CPA, it achieves better image resolution and comparable signal-to-noise ratio at a much faster image acquisition rate. Using this method, a fast frame rate of up to 463 volumes per second is achievable if limited only by the ultrasound time of flight; with the described system we reconstructed three cross-sectional images in real-time at 10 frames per second, which was limited by the computation time in synthetic beamforming. PMID:22718870

  6. Imaging and Analysis of Pseudomonas aeruginosa Swarming and Rhamnolipid Production ? †

    OpenAIRE

    Morris, Joshua D.; Hewitt, Jessica L.; Wolfe, Lawrence G.; Kamatkar, Nachiket G.; Chapman, Sarah M.; Diener, Justin M; Courtney, Andrew J.; Leevy, W Matthew; Shrout, Joshua D.

    2011-01-01

    Many bacteria spread over surfaces by “swarming” in groups. A problem for scientists who study swarming is the acquisition of statistically significant data that distinguish two observations or detail the temporal patterns and two-dimensional heterogeneities that occur. It is currently difficult to quantify differences between observed swarm phenotypes. Here, we present a method for acquisition of temporal surface motility data using time-lapse fluorescence and bioluminescence imaging. We spe...

  7. Shedding light on bioluminescence regulation in Vibrio fischeri

    OpenAIRE

    Miyashiro, Tim; Ruby, Edward G.

    2012-01-01

    The bioluminescence emitted by the marine bacterium Vibrio fischeri is a particularly striking result of individual microbial cells coordinating a group behavior. The genes responsible for light production are principally regulated by the LuxR-LuxI quorum-sensing system. In addition to LuxR-LuxI, numerous other genetic elements and environmental conditions control bioluminescence production. Efforts to mathematically model the LuxR-LuxI system are providing insight into the dynamics of this a...

  8. Dinoflagellate bioluminescence in response to mechanical stimuli in water flows

    OpenAIRE

    Cussatlegras, A. S.; Le Gal, P.

    2005-01-01

    Bioluminescence of plankton organisms induced by water movements has long been observed and is still under investigations because of its great complexity. In particular, the exact mechanism occurring at the level of the cell has not been yet fully understood. This work is devoted to the study of the bioluminescence of the dinoflagellates plankton species Pyrocystis noctiluca in response to mechanical stimuli generated by water flows. Several experiments were performed with different types of ...

  9. Bacteriuria screening by direct bioluminescence assay of ATP.

    OpenAIRE

    Schifman, R. B.; Wieden, M; Brooker, J; Chery, M; Delduca, M; Norgard, K; Palen, C; Reis, N.; Swanson, J.(University of Wisconsin, Madison, USA); White, J.

    1984-01-01

    A direct bioluminescence assay for bacteriuria screening is described and compared with the MS-2 system (Abbott Laboratories, Irvine, Tex.) and the chemical strip, Gram smear, and calibrated-loop methods. A total of 973 specimens were tested. Unlike previously described bioluminescence methods, this test measures total ATP in urine without pretreatment of samples to remove somatic ATP. The result was compared with an ATP standard (20 ng/ml). A low result (less than 3% of standard) was interpr...

  10. Deep-sea bioluminescence blooms after dense water formation at the ocean surface.

    Science.gov (United States)

    Tamburini, Christian; Canals, Miquel; Durrieu de Madron, Xavier; Houpert, Loïc; Lefèvre, Dominique; Martini, Séverine; D'Ortenzio, Fabrizio; Robert, Anne; Testor, Pierre; Aguilar, Juan Antonio; Samarai, Imen Al; Albert, Arnaud; André, Michel; Anghinolfi, Marco; Anton, Gisela; Anvar, Shebli; Ardid, Miguel; Jesus, Ana Carolina Assis; Astraatmadja, Tri L; Aubert, Jean-Jacques; Baret, Bruny; Basa, Stéphane; Bertin, Vincent; Biagi, Simone; Bigi, Armando; Bigongiari, Ciro; Bogazzi, Claudio; Bou-Cabo, Manuel; Bouhou, Boutayeb; Bouwhuis, Mieke C; Brunner, Jurgen; Busto, José; Camarena, Francisco; Capone, Antonio; Cârloganu, Christina; Carminati, Giada; Carr, John; Cecchini, Stefano; Charif, Ziad; Charvis, Philippe; Chiarusi, Tommaso; Circella, Marco; Coniglione, Rosa; Costantini, Heide; Coyle, Paschal; Curtil, Christian; Decowski, Patrick; Dekeyser, Ivan; Deschamps, Anne; Donzaud, Corinne; Dornic, Damien; Dorosti, Hasankiadeh Q; Drouhin, Doriane; Eberl, Thomas; Emanuele, Umberto; Ernenwein, Jean-Pierre; Escoffier, Stéphanie; Fermani, Paolo; Ferri, Marcelino; Flaminio, Vincenzo; Folger, Florian; Fritsch, Ulf; Fuda, Jean-Luc; Galatà, Salvatore; Gay, Pascal; Giacomelli, Giorgio; Giordano, Valentina; Gómez-González, Juan-Pablo; Graf, Kay; Guillard, Goulven; Halladjian, Garadeb; Hallewell, Gregory; van Haren, Hans; Hartman, Joris; Heijboer, Aart J; Hello, Yann; Hernández-Rey, Juan Jose; Herold, Bjoern; Hößl, Jurgen; Hsu, Ching-Cheng; de Jong, Marteen; Kadler, Matthias; Kalekin, Oleg; Kappes, Alexander; Katz, Uli; Kavatsyuk, Oksana; Kooijman, Paul; Kopper, Claudio; Kouchner, Antoine; Kreykenbohm, Ingo; Kulikovskiy, Vladimir; Lahmann, Robert; Lamare, Patrick; Larosa, Giuseppina; Lattuada, Dario; Lim, Gordon; Presti, Domenico Lo; Loehner, Herbert; Loucatos, Sotiris; Mangano, Salvatore; Marcelin, Michel; Margiotta, Annarita; Martinez-Mora, Juan Antonio; Meli, Athina; Montaruli, Teresa; Moscoso, Luciano; Motz, Holger; Neff, Max; Nezri, Emma Nuel; Palioselitis, Dimitris; P?v?la?, Gabriela E; Payet, Kevin; Payre, Patrice; Petrovic, Jelena; Piattelli, Paolo; Picot-Clemente, Nicolas; Popa, Vlad; Pradier, Thierry; Presani, Eleonora; Racca, Chantal; Reed, Corey; Riccobene, Giorgio; Richardt, Carsten; Richter, Roland; Rivière, Colas; Roensch, Kathrin; Rostovtsev, Andrei; Ruiz-Rivas, Joaquin; Rujoiu, Marius; Russo, Valerio G; Salesa, Francisco; Sánchez-Losa, Augustin; Sapienza, Piera; Schöck, Friederike; Schuller, Jean-Pierre; Schussler, Fabian; Shanidze, Rezo; Simeone, Francesco; Spies, Andreas; Spurio, Maurizio; Steijger, Jos J M; Stolarczyk, Thierry; Taiuti, Mauro G F; Toscano, Simona; Vallage, Bertrand; Van Elewyck, Véronique; Vannoni, Giulia; Vecchi, Manuela; Vernin, Pascal; Wijnker, Guus; Wilms, Jorn; de Wolf, Els; Yepes, Harold; Zaborov, Dmitry; De Dios Zornoza, Juan; Zúñiga, Juan

    2013-01-01

    The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June 2010 at the ANTARES underwater neutrino telescope in the deep NW Mediterranean Sea, jointly with synchronous hydrological records. This is the longest continuous time-series of deep-sea bioluminescence ever recorded. Our record reveals several weeks long, seasonal bioluminescence blooms with light intensity up to two orders of magnitude higher than background values, which correlate to changes in the properties of deep waters. Such changes are triggered by the winter cooling and evaporation experienced by the upper ocean layer in the Gulf of Lion that leads to the formation and subsequent sinking of dense water through a process known as "open-sea convection". It episodically renews the deep water of the study area and conveys fresh organic matter that fuels the deep ecosystems. Luminous bacteria most likely are the main contributors to the observed deep-sea bioluminescence blooms. Our observations demonstrate a consistent and rapid connection between deep open-sea convection and bathypelagic biological activity, as expressed by bioluminescence. In a setting where dense water formation events are likely to decline under global warming scenarios enhancing ocean stratification, in situ observatories become essential as environmental sentinels for the monitoring and understanding of deep-sea ecosystem shifts. PMID:23874425

  11. Performance of PCR-based and Bioluminescent assays for mycoplasma detection.

    Science.gov (United States)

    Falagan-Lotsch, Priscila; Lopes, Talíria Silva; Ferreira, Nívea; Balthazar, Nathália; Monteiro, Antônio M; Borojevic, Radovan; Granjeiro, José Mauro

    2015-11-01

    Contaminated eukaryotic cell cultures are frequently responsible for unreliable results. Regulatory entities request that cell cultures must be mycoplasma-free. Mycoplasma contamination remains a significant problem for cell cultures and may have an impact on biological analysis since they affect many cell parameters. The gold standard microbiological assay for mycoplasma detection involves laborious and time-consuming protocols. PCR-based and Bioluminescent assays have been considered for routine cell culture screening in research laboratories since they are fast, easy and sensitive. Thus, the aim of this work is to compare the performance of two popular commercial assays, PCR-based and Bioluminescent assays, by assessing the level of mycoplasma contamination in cell cultures from Rio de Janeiro Cell Bank (RJCB) and also from customers' laboratories. The results obtained by both performed assays were confirmed by scanning electron microscopy. In addition, we evaluated the limit of detection of the PCR kit under our laboratory conditions and the storage effects on mycoplasma detection in frozen cell culture supernatants. The performance of both assays for mycoplasma detection was not significantly different and they showed very good agreement. The Bioluminescent assay for mycoplasma detection was slightly more dependable than PCR-based due to the lack of inconclusive results produced by the first technique, especially considering the ability to detect mycoplasma contamination in frozen cell culture supernatants. However, cell lines should be precultured for four days or more without antibiotics to obtain safe results. On the other hand, a false negative result was obtained by using this biochemical approach. The implementation of fast and reliable mycoplasma testing methods is an important technical and regulatory issue and PCR-based and Bioluminescent assays may be good candidates. However, validation studies are needed. PMID:26296900

  12. Deep-Sea Bioluminescence Blooms after Dense Water Formation at the Ocean Surface

    Science.gov (United States)

    Tamburini, Christian; Canals, Miquel; Durrieu de Madron, Xavier; Houpert, Loïc; Lefèvre, Dominique; Martini, Séverine; D'Ortenzio, Fabrizio; Robert, Anne; Testor, Pierre; Aguilar, Juan Antonio; Samarai, Imen Al; Albert, Arnaud; André, Michel; Anghinolfi, Marco; Anton, Gisela; Anvar, Shebli; Ardid, Miguel; Jesus, Ana Carolina Assis; Astraatmadja, Tri L.; Aubert, Jean-Jacques; Baret, Bruny; Basa, Stéphane; Bertin, Vincent; Biagi, Simone; Bigi, Armando; Bigongiari, Ciro; Bogazzi, Claudio; Bou-Cabo, Manuel; Bouhou, Boutayeb; Bouwhuis, Mieke C.; Brunner, Jurgen; Busto, José; Camarena, Francisco; Capone, Antonio; Cârloganu, Christina; Carminati, Giada; Carr, John; Cecchini, Stefano; Charif, Ziad; Charvis, Philippe; Chiarusi, Tommaso; Circella, Marco; Coniglione, Rosa; Costantini, Heide; Coyle, Paschal; Curtil, Christian; Decowski, Patrick; Dekeyser, Ivan; Deschamps, Anne; Donzaud, Corinne; Dornic, Damien; Dorosti, Hasankiadeh Q.; Drouhin, Doriane; Eberl, Thomas; Emanuele, Umberto; Ernenwein, Jean-Pierre; Escoffier, Stéphanie; Fermani, Paolo; Ferri, Marcelino; Flaminio, Vincenzo; Folger, Florian; Fritsch, Ulf; Fuda, Jean-Luc; Galatà, Salvatore; Gay, Pascal; Giacomelli, Giorgio; Giordano, Valentina; Gómez-González, Juan-Pablo; Graf, Kay; Guillard, Goulven; Halladjian, Garadeb; Hallewell, Gregory; van Haren, Hans; Hartman, Joris; Heijboer, Aart J.; Hello, Yann; Hernández-Rey, Juan Jose; Herold, Bjoern; Hößl, Jurgen; Hsu, Ching-Cheng; de Jong, Marteen; Kadler, Matthias; Kalekin, Oleg; Kappes, Alexander; Katz, Uli; Kavatsyuk, Oksana; Kooijman, Paul; Kopper, Claudio; Kouchner, Antoine; Kreykenbohm, Ingo; Kulikovskiy, Vladimir; Lahmann, Robert; Lamare, Patrick; Larosa, Giuseppina; Lattuada, Dario; Lim, Gordon; Presti, Domenico Lo; Loehner, Herbert; Loucatos, Sotiris; Mangano, Salvatore; Marcelin, Michel; Margiotta, Annarita; Martinez-Mora, Juan Antonio; Meli, Athina; Montaruli, Teresa; Motz, Holger; Neff, Max; Nezri, Emma nuel; Palioselitis, Dimitris; P?v?la?, Gabriela E.; Payet, Kevin; Payre, Patrice; Petrovic, Jelena; Piattelli, Paolo; Picot-Clemente, Nicolas; Popa, Vlad; Pradier, Thierry; Presani, Eleonora; Racca, Chantal; Reed, Corey; Riccobene, Giorgio; Richardt, Carsten; Richter, Roland; Rivière, Colas; Roensch, Kathrin; Rostovtsev, Andrei; Ruiz-Rivas, Joaquin; Rujoiu, Marius; Russo, Valerio G.; Salesa, Francisco; Sánchez-Losa, Augustin; Sapienza, Piera; Schöck, Friederike; Schuller, Jean-Pierre; Schussler, Fabian; Shanidze, Rezo; Simeone, Francesco; Spies, Andreas; Spurio, Maurizio; Steijger, Jos J. M.; Stolarczyk, Thierry; Taiuti, Mauro G. F.; Toscano, Simona; Vallage, Bertrand; Van Elewyck, Véronique; Vannoni, Giulia; Vecchi, Manuela; Vernin, Pascal; Wijnker, Guus; Wilms, Jorn; de Wolf, Els; Yepes, Harold; Zaborov, Dmitry; De Dios Zornoza, Juan; Zúñiga, Juan

    2013-01-01

    The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June 2010 at the ANTARES underwater neutrino telescope in the deep NW Mediterranean Sea, jointly with synchronous hydrological records. This is the longest continuous time-series of deep-sea bioluminescence ever recorded. Our record reveals several weeks long, seasonal bioluminescence blooms with light intensity up to two orders of magnitude higher than background values, which correlate to changes in the properties of deep waters. Such changes are triggered by the winter cooling and evaporation experienced by the upper ocean layer in the Gulf of Lion that leads to the formation and subsequent sinking of dense water through a process known as “open-sea convection”. It episodically renews the deep water of the study area and conveys fresh organic matter that fuels the deep ecosystems. Luminous bacteria most likely are the main contributors to the observed deep-sea bioluminescence blooms. Our observations demonstrate a consistent and rapid connection between deep open-sea convection and bathypelagic biological activity, as expressed by bioluminescence. In a setting where dense water formation events are likely to decline under global warming scenarios enhancing ocean stratification, in situ observatories become essential as environmental sentinels for the monitoring and understanding of deep-sea ecosystem shifts. PMID:23874425

  13. Colors of firefly bioluminescence. Part I. Optimization model

    Energy Technology Data Exchange (ETDEWEB)

    Seliger, H.H.; Lall, A.B.; Lloyd, J.E.; Biggley, W.H.

    1982-01-01

    A model is developed for the optimization of signal-to-noise ratio for the detection of bioluminescence by fireflies during twilight. The relative degree of optimization is derived in terms of a dimensionless ratio, a biologically effective adaptation. The numerical values of this adaptation can be used to predict the sequence of adaptations of both visual spectral sensitivities and bioluminescence spectral emissions that result in the range of colors of bioluminescence of fireflies from green through yellow. It is shown that a narrowing of visual spectral sensitivity via a screening pigment pathway in order to discriminate against green ambient light is more efficient than a shift in visual spectral sensitivity via change in the opsin photoprotein. The model predicts that the range of wavelengths for the peak intensities of bioluminescence for North American fireflies should be between 550 and 580 nm and provides the physical basis for the observations that in general dark-active firefly species emit green bioluminescence and twilight-active firefly species emit yellow bioluminescence. 25 references, 4 figures.

  14. Real-time digital x-ray subtraction imaging

    International Nuclear Information System (INIS)

    A method of producing visible difference images derived from an x-ray image of an anatomical subject is described. X-rays are directed through the subject, and the image is converted into television fields comprising trains of analog video signals. The analog signals are converted into digital signals, which are then integrated over a predetermined time corresponding to several television fields. Difference video signals are produced by performing a subtraction between the ongoing video signals and the corresponding integrated signals, and are converted into visible television difference images representing changes in the x-ray image

  15. Imaging volcanic infrasound sources using time reversal mirror algorithm

    Science.gov (United States)

    Kim, Keehoon; Lees, Jonathan M.

    2015-09-01

    We investigate the capability of Time Reversal Mirror (TRM) algorithm to image local acoustic sources (weighted imaging condition to compensate for complicated transmission loss of the time-reversed wavefield and demonstrate that the presented condition significantly improves the focusing quality of TRM in the presence of complex topography. The consequent TRM source images exhibit remarkable agreement with the visual observation of the eruption implying that the TRM method with a proper imaging condition can be used to localize and track acoustic sources associated with complex volcanic eruptions.

  16. Real-time image deblurring by optoelectronic hybrid processing.

    Science.gov (United States)

    Qian, Yixian; Hu, Fangrong; Cheng, Xiaowei; Jin, Weimin

    2011-11-20

    An efficient approach is presented to restore a motion-blurred image in real time by optoelectronic hybrid processing, by which an image motion vector can be effectively detected and an accurate point spread function is constructed rapidly. A simple Wiener filter algorithm is employed to restore the blurred image. It greatly alleviates the complexity of the restoration algorithm. The proposed approach can apply to arbitrary motion-blurred image restoration. An optoelectronic hybrid joint transform correlation is constructed to verify the efficiency. The experimental results show that the proposed method has distinct advantages of preferable effect and good real time. PMID:22108875

  17. Radiation image acquisition device in real time

    International Nuclear Information System (INIS)

    The device is made of a radioluminescent screen receiving a radiation image, a photodetector-memorizer receiving the luminous radiation from the screen, optical means focusing the radiation on the photodetector-memorizer, and process means. The photodetector-memorizer is made of a charge integration photodetector matrix to which one or several shift registers are associated. The luminescent screen material is doped suitably to have an optimized emission with regard to the photodetector matrix sensitivity

  18. In Vivo Real-Time, Multicolor, Quantum Dot Lymphatic Imaging

    OpenAIRE

    Kosaka, Nobuyuki; Ogawa, Mikako; Sato, Noriko; Choyke, Peter L.; KOBAYASHI, HISATAKA

    2009-01-01

    The lymphatic network is complex and difficult to visualize in real-time in vivo. Moreover, the direction of flow within lymphatic networks is often unpredictable especially in areas with well-developed “watershed” or overlapping lymphatics. Herein, we report a method of in vivo real-time multicolor lymphatic imaging using cadmium–selenium quantum dots (Qdots) with a fluorescence imaging system that enables the simultaneous visualization of up to five distinct lymphatic basins in real-time. F...

  19. Dual monitoring using {sup 124}I-FIAU and bioluminescence for HSV1-tk suicide gene therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T. S.; Kim, J. H.; Kwon, H. C. [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)] (and others)

    2007-07-01

    Herpes simplex virus type I thymidine kinase (HSV-tk) is the most common reporter gene and is used in cancer gene therapy with a prodrug nucleoside analog, ganciclovir (GCV). The aim of this study is to evaluate therapeutic efficacy of suicide gene therapy with 2'-fluoro-2'-deoxy-1-D-arabinofuranosyl-5-[{sup 124}I] iodouracil ({sup 124}I - FIAU) and bioluminescence in retrovirally HSV -tk and firefly luciferase transduced hepatoma model. The HSV -tk and firefly luciferase (Luc) was retrovirally transduced and expressed in MCA rat Morris hepatoma cells. Nude mice with subcutaneous tumors, MCA and MCA-TK-Luc, were subjected to GCV treatment (50mg/Kg/d intraperitoneally) for 5 day. PET imaging and biodistribution with ({sup 124}I-FIAU) were performed at before and after initiation of therapy with GCV. Bioluminescent signal was also measured during GCV treatment. Before GCV treatment, no significant difference in tumor volume was found in tumors between MCA and MCA-TK-Luc. After GCV treatment, tumor volume of MCA-TK-Luc markedly reduced compared to that of MCA. In biodistribution study, {sup 124}I-FIAU uptake after GCV therapy significantly decreased compared with pretreatment levels (34.8 13.67 %ID/g vs 7.6 2.59 %ID/g) and bioluminescent signal was also significantly decreased compared with pretreatment levels. In small animal PET imaging, {sup 124}I-FIAU selectively localized in HSV -tk expressing tumor and the therapeutic efficacy of GCV treatment was evaluated by {sup 124}I-FIAU PET imaging. {sup 124}I-FIAU PET and bioluminescence imaging in HSV-tk suicide gene therapy were effective to evaluate the therapeutic response. {sup 124}I-FIAU may serve as an efficient and selective agent for monitoring of transduced HSV1-tk gene expression in vivo in clinical trials.

  20. Real-time digital x-ray subtraction imaging

    International Nuclear Information System (INIS)

    The invention provides a method of producing visible difference images derived from an X-ray image of an anatomical subject, comprising the steps of directing X-rays through the anatomical subject for producing an image, converting the image into television fields comprising trains of on-going video signals, digitally storing and integrating the on-going video signals over a time interval corresponding to several successive television fields and thereby producing stored and integrated video signals, recovering the video signals from storage and producing integrated video signals, producing video difference signals by performing a subtraction between the integrated video signals and the on-going video signals outside the time interval, and converting the difference signals into visible television difference images representing on-going changes in the X-ray image

  1. Volumetric Real-Time Imaging Using a CMUT Ring Array

    OpenAIRE

    Choe, Jung Woo; Oralkan, Ömer; Nikoozadeh, Amin; Gencel, Mustafa; Stephens, Douglas N.; O’Donnell, Matthew; Sahn, David J; Khuri-Yakub, Butrus T.

    2012-01-01

    A ring array provides a very suitable geometry for forward-looking volumetric intracardiac and intravascular ultrasound imaging. We fabricated an annular 64-element capacitive micromachined ultrasonic transducer (CMUT) array featuring a 10-MHz operating frequency and a 1.27-mm outer radius. A custom software suite was developed to run on a PC-based imaging system for real-time imaging using this device.

  2. Force Estimation and Prediction from Time-Varying Density Images

    OpenAIRE

    Ratilal, Purnima; Jagannathan, Srinivasan; Horn, Berthold Klaus Paul; Makris, Nicholas

    2010-01-01

    We present methods for estimating forces which drive motion observed in density image sequences. Using these forces, we also present methods for predicting velocity and density evolution. To do this, we formulate and apply a Minimum Energy Flow (MEF) method which is capable of estimating both incompressible and compressible flows from time-varying density images. Both the MEF and force-estimation techniques are applied to experimentally obtained density images, spanning spatial scales from mi...

  3. Preserving time structures while denoising a dynamical image

    OpenAIRE

    Rozenholc, Yves; Reiss, Markus

    2012-01-01

    In restoration or denoising of a movie, the classical procedures often do not take into account the full information provided by the movie. These pro- cedures are either applied spatially "image per image" or locally on some neighborhood combining both closeness in one image and closeness in time. The local information is then combined homogeneously in order to realize the treatment. There is one type of movie where both approaches fail to provide a relevant treatment. Such a movie, called dy...

  4. Dual-time-point Imaging and Delayed-time-point Fluorodeoxyglucose-PET/Computed Tomography Imaging in Various Clinical Settings

    DEFF Research Database (Denmark)

    Houshmand, Sina; Salavati, Ali; Segtnan, Eivind Antonsen; Grupe, Peter; Høilund-Carlsen, Poul Flemming; Alavi, Abass

    2016-01-01

    The techniques of dual-time-point imaging (DTPI) and delayed-time-point imaging, which are mostly being used for distinction between inflammatory and malignant diseases, has increased the specificity of fluorodeoxyglucose (FDG)-PET for diagnosis and prognosis of certain diseases. A gradually increasing trend of FDG uptake over time has been shown in malignant cells, and a decreasing or constant trend has been shown in inflammatory/infectious processes. Tumor heterogeneity can be assessed by usin...

  5. Detector integration time dependent atmospheric turbulence imaging simulation

    Science.gov (United States)

    Du Bosq, Todd W.; Repasi, Endre

    2015-05-01

    Atmospheric turbulence is a well-known phenomenon that often degrades image quality due to intensity fluctuations, distortion, and blur in electro-optic and thermal imaging systems. To properly assess the performance of an imaging system over the typical turbulence trade space, a time consuming and costly field study is often required. A fast and realistic turbulence simulation will allow the performance assessment of an imaging system under various turbulence conditions to be done as well as provide input data for the evaluation of turbulence mitigation algorithms in a cost efficient manner. The simulation is based on an empirical model with parameters derived from the first and second-order statistics of imaging distortions measured from field collected data. The dataset consists of image sequences recorded with a variable frame rate visible camera from strong to weak turbulence conditions. The simulation uses pristine, single images containing no turbulence effects as an input and produces image sequences degraded by the specified turbulence. Target range, optics diameter, wavelength, detector integration time, and the wind velocity component perpendicular to the propagation path all contribute to the severity of the atmospheric turbulence distortions and are included in the simulation. The addition of the detector integration time expands the functionality of the simulation tool to include imagers with lower frames rates. Examples are presented demonstrating the utility of the turbulence simulation.

  6. Advances in optical imaging for pharmacological studies

    Science.gov (United States)

    Arranz, Alicia; Ripoll, Jorge

    2015-01-01

    Imaging approaches are an essential tool for following up over time representative parameters of in vivo models, providing useful information in pharmacological studies. Main advantages of optical imaging approaches compared to other imaging methods are their safety, straight-forward use and cost-effectiveness. A main drawback, however, is having to deal with the presence of high scattering and high absorption in living tissues. Depending on how these issues are addressed, three different modalities can be differentiated: planar imaging (including fluorescence and bioluminescence in vivo imaging), optical tomography, and optoacoustic approaches. In this review we describe the latest advances in optical in vivo imaging with pharmacological applications, with special focus on the development of new optical imaging probes in order to overcome the strong absorption introduced by different tissue components, especially hemoglobin, and the development of multimodal imaging systems in order to overcome the resolution limitations imposed by scattering. PMID:26441646

  7. Multimodal MR imaging of acute and subacute experimental traumatic brain injury: Time course and correlation with cerebral energy metabolites

    International Nuclear Information System (INIS)

    Traumatic brain injury (TBI) is one of the leading causes of death and permanent disability world-wide. The predominant cause of death after TBI is brain edema which can be quantified by non-invasive diffusion-weighted magnetic resonance imaging (DWI). To provide a better understanding of the early onset, time course, spatial development, and type of brain edema after TBI and to correlate MRI data and the cerebral energy state reflected by the metabolite adenosine triphosphate (ATP). The spontaneous development of lateral fluid percussion-induced TBI was investigated in the acute (6 h), subacute (48 h), and chronic (7 days) phase in rats by MRI of quantitative T2 and apparent diffusion coefficient (ADC) mapping as well as perfusion was combined with ATP-specific bioluminescence imaging and histology. An induced TBI led to moderate to mild brain damages, reflected by transient, pronounced development of vasogenic edema and perfusion reduction. Heterogeneous ADC patterns indicated a parallel, but mixed expression of vasogenic and cytotoxic edema. Cortical ATP levels were reduced in the acute and subacute phase by 13% and 27%, respectively, but were completely normalized at 7 days after injury. The partial ATP reduction was interpreted to be partially caused by a loss of neurons in parallel with transient dilution of the regional ATP concentration by pronounced vasogenic edema. The normalization of energy metabolism after 7 days was likely due to infiltrating glia and not to recovery. The MRI combined with metabolite measurement further improves the understanding and evaluation of brain damages after TBI

  8. Effect of T-1 delay time (TD) on NMR imaging

    International Nuclear Information System (INIS)

    Pulse sequence in NMR is one of the major factors determining image content. A commonly used pulse sequence is the Inversion Recovery. The authors use a 180-degree pulse followed by a delay time (TD), a 90-degree pulse and finally, after 25 ms, another 180-degree pulse. They have investigated the effect of the TD on image quality using Inversion Recovery. (Auth.)

  9. Effect of T-1 delay time (TD) on NMR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ziedses des Plantes, B.G. Jr.; Falke, T.H.M. (Department of Diagnostic Radiology, University Hospital, Leiden, Netherlands)

    1984-11-15

    Pulse sequence in NMR is one of the major factors determining image content. A commonly used pulse sequence is the Inversion Recovery. The authors use a 180-degree pulse followed by a delay time (TD), a 90-degree pulse and finally, after 25 ms, another 180-degree pulse. They have investigated the effect of the TD on image quality using Inversion Recovery.

  10. Real-time image fusion involving diagnostic ultrasound

    DEFF Research Database (Denmark)

    Ewertsen, Caroline; S?ftoiu, Adrian

    2013-01-01

    The aim of our article is to give an overview of the current and future possibilities of real-time image fusion involving ultrasound. We present a review of the existing English-language peer-reviewed literature assessing this technique, which covers technical solutions (for ultrasound and endoscopic ultrasound), image fusion in several anatomic regions, and electromagnetic needle tracking.

  11. Adaptive Real Time Imaging Synthesis Telescopes

    CERN Document Server

    Wright, Melvyn

    2012-01-01

    The digital revolution is transforming astronomy from a data-starved to a data-submerged science. Instruments such as the Atacama Large Millimeter Array (ALMA), the Large Synoptic Survey Telescope (LSST), and the Square Kilometer Array (SKA) will measure their accumulated data in petabytes. The capacity to produce enormous volumes of data must be matched with the computing power to process that data and produce meaningful results. In addition to handling huge data rates, we need adaptive calibration and beamforming to handle atmospheric fluctuations and radio frequency interference, and to provide a user environment which makes the full power of large telescope arrays accessible to both expert and non-expert users. Delayed calibration and analysis limit the science which can be done. To make the best use of both telescope and human resources we must reduce the burden of data reduction. Our instrumentation comprises of a flexible correlator, beam former and imager with digital signal processing closely coupled...

  12. Time-gated optical imaging through turbid media using stimulated Raman scattering: Studies on image contrast

    Indian Academy of Sciences (India)

    K Divakar Rao; H S Patel; B Jain; P K Gupta

    2005-02-01

    In this paper, we report the development of experimental set-up for timegated optical imaging through turbid media using stimulated Raman scattering. Our studies on the contrast of time-gated images show that for a given optical thickness, the image contrast is better for sample with lower scattering coefficient and higher physical thickness, and that the contrast improves with decreasing value of anisotropy parameters of the scatterers. These results are consistent with time-resolved Monte Carlo simulations.

  13. Time-resolved fast-neutron imaging with a pulse-counting image intensifier

    OpenAIRE

    Dangendorf, Volker

    2007-01-01

    A new imaging method that combines high-efficiency fast-neutron detection with sub-ns time resolution is presented. This is achieved by exploiting the high neutron detection efficiency of a thick scintillator and the fast timing capability and flexibility of light-pulse detection with a dedicated image intensifier. The neutron converter is a plastic scintillator slab or, alternatively, a scintillating fibre screen. The scintillator is optically coupled to a pulse counting image intensifier wh...

  14. Analysis of time-varying psoriasis lesion image patterns

    DEFF Research Database (Denmark)

    Maletti, Gabriela Mariel; Ersbøll, Bjarne Kjær; Nielsen, Allan Aasbjerg; Gomez, David Delgado

    2004-01-01

    The multivariate alteration detection transform is applied to pairs of within and between time varying registered psoriasis image patterns. Color band contribution to the variates explaining maximal change is analyzed.

  15. Inexpensive solution for real-time video and image stitching

    OpenAIRE

    Quintal, Filipe Magno Gouveia

    2009-01-01

    Image stitching is the process of joining several images to obtain a bigger view of a scene. It is used, for example, in tourism to transmit to the viewer the sensation of being in another place. I am presenting an inexpensive solution for automatic real time video and image stitching with two web cameras as the video/image sources. The proposed solution relies on the usage of several markers in the scene as reference points for the stitching algorithm. The implemented algorithm is divided...

  16. Real-time movie image enhancement in NMR

    International Nuclear Information System (INIS)

    Clinical NMR motion picture (movie) images can now be produced routinely in real-time by ultra-high-speed echo-planar imaging (EPI). The single-shot image quality depends on both pixel resolution and signal-to-noise ratio (S/N), both factors being intertradeable. If image S/N is sacrificed rather than resolution, it is shown that S/N may be greatly enhanced subsequently without vitiating spatial resolution or foregoing real motional effects when the object motion is periodic. This is achieved by a Fourier filtering process. Experimental results are presented which demonstrate the technique for a normal functioning heart. (author)

  17. Angle-domain imaging condition for elastic reverse time migration

    Science.gov (United States)

    Yan, R.; Xie, X.; Wu, R.

    2010-12-01

    In exploration seismology, elastic reverse time migration (RTM) has spurred much interest in recent years because of the increased imaging challenges posed by complex subsurface targets and affordable computer resources such as Linux clusters. Elastic RTM reconstructs the source wavefields forward in time and receiver wavefields backward in time by finite difference method. It then applies an imaging condition that evaluates the match between source and receiver wavefields. To construct the image which describes the physical property of the medium, we prefer to separate the wavefields into P and S modes, and implement the imaging condition as cross-correlation of pure wave mode rather than of Cartesian component of the displacement wavefields. However, simple cross-correlation can cause some image problems which impede the further seismic interpretation. For example, PP image is contaminated by strong artifacts resulted from unwanted cross-correlation between diving wave, turning wave or back-scattered wave and their time-reversed counterpart; PS image suffers from polarization problem due to the polarity reversal of converted S-wave. We found it necessary to apply certain intrinsic properties (e.g., the wave propagation directions and particle motion information) in reconstructed wavefields in order to solve the problems exhibited in elastic RTM image. This paper presents a procedure to decompose the source and receiver wavefields into local plane waves in pure P and S modes. We generate the partial PP and PS images in angle domain by cross-correlating any combination of decomposed plane wave component, and then formulate an imaging condition as a product of an angle-domain operator and the partial images. The new angle-domain imaging condition substantially reduces the artifacts in the PP image and produces the PS image with correct polarizations. Synthetic examples demonstrate that the imaging condition works very well on producing clean and consistent image. Furthermore, having obtained the angle-domain information of the wavefields, it is quite straightforward to output the common reflection angle gather and perform AVA (amplitude versus angle) analysis for elastic parameter inversion.

  18. Real time neutron image processing system in NRF

    International Nuclear Information System (INIS)

    The neutron radiography facility was installed at the neutron radiography beam tube of the HANARO research reactor. The NRF is used for the nondestructive test to inspect and evaluate the material defect and homogeneity by detecting the transmitted neutron image in the nuclear as well as non-nuclear industry. To analyze the dynamical neutron image effectively and efficiently, the real-time image processing system was developed in background subtraction, normalization, geometry correction and beam uniformity, contrast control, filtering. The image quality test and dimension measurements were performed for the neutron beam purity and sensitivity indication. The NRF beam condition represents the highest beam quality for neutron radiography.

  19. Improving the Image Quality of Synthetic Transmit Aperture Ultrasound Images - Achieving Real-Time In-Vivo Imaging

    DEFF Research Database (Denmark)

    Gammelmark, Kim

    2004-01-01

    Synthetic transmit aperture (STA) imaging has the potential to increase the image quality of medical ultrasound images beyond the levels obtained by conventional imaging techniques (linear, phased, and convex array imaging). Currently, however, in-vivo applications of STA imaging is limited by a low signal-to-noise ratio (SNR), due to the application of a single transducer element at each emission, and higher susceptibility to tissue motion, produced by the summation of sequentially acquired low resolution images. In order to make real-time STA imaging feasible for in-vivo applications, these issues need to solved. The goal of this PhD study has been to find methods that can be used to overcome the above mentioned limitations, and hereby improve the image quality of STA imaging to a clinically desirable level, enabling real-time in-vivo STA imaging. The thesis investigates a new method to increase the SNR, which employs multi-element subapertures and linearly frequency modulated (FM) signals at each emission.The subaperture is applied to emulate a high power spherical wave transmitted by a virtual point source positioned behind the subaperture, and the linear FM signal replaces the conventional short excitation signal to increase the transmitted temporal energy. This approach, named Temporally encoded Multi-element Synthetic transmit aperture (TMS) imaging, is evaluated in detail for linear array and convex array imaging applications using simulations, and phantom and in-vivo experiments. The thesis contains summaries of four journal articles and four corresponding conference publications, which comprise the primary contributions of the PhD. The first two papers give elaborated evaluations of TMS imaging for linear array and convex array imaging, respectively. The results, including initial in-vivo experiments, showed, that TMS imaging can increase the SNR by as much as 17 dB compared to the traditional imaging techniques, which improves the in-vivo image quality to a highly competitive level. An in-vivo evaluation of convex array TMS imaging for abdominal imaging applications is presented in the third paper, based on a clinical trial with 7 healthy male volunteers. Real-time movie sequences of 3 seconds duration were acquired and analyzed by experienced medical doctors using blinded clinical evaluation. The results showed a statistically significant improvement in image quality of convex array TMS imaging compared to conventional convex array imaging. Only minor motion artifacts causing subtle image brightness fluctuations were reported in TMS imaging, which did not depreciate the diagnostic value of the images. The influence of tissue motion and a method for two-dimensional motion compensation is investigated in the fourth and final paper. The method estimates the tissue velocity and motion vii Abstract direction at each image point by correlating image lines beamformed along a set of motion directions and selects the direction and velocity corresponding to the highest correlation. Using these estimates, motion compensation is obtained by tracking the location of each pixel, when reconstructing the low resolution images. The presented phantom and in-vivo results showed, that severe tissue motion has a negative influence on the image quality of STA imaging as expected, but, most importantly, that the proposed method successfully compensates for the motion, thus, retaining the image quality of TMS imaging, when scanning moving tissue. In conclusion, the results of the research presented in this thesis have demonstrated, that TMS imaging is feasible for real-time in-vivo imaging, and that the obtained image quality is highly competitive with the techniques applied in current medical ultrasound scanners. Hereby, the goals of the PhD have been successfully achieved.

  20. Anisotropy signature in reverse-time migration extended images

    KAUST Repository

    Sava, Paul C.

    2014-11-04

    Reverse-time migration can accurately image complex geologic structures in anisotropic media. Extended images at selected locations in the Earth, i.e., at common-image-point gathers, carry rich information to characterize the angle-dependent illumination and to provide measurements for migration velocity analysis. However, characterizing the anisotropy influence on such extended images is a challenge. Extended common-image-point gathers are cheap to evaluate since they sample the image at sparse locations indicated by the presence of strong reflectors. Such gathers are also sensitive to velocity error that manifests itself through moveout as a function of space and time lags. Furthermore, inaccurate anisotropy leaves a distinctive signature in common-image-point gathers, which can be used to evaluate anisotropy through techniques similar to the ones used in conventional wavefield tomography. It specifically admits a V-shaped residual moveout with the slope of the "V" flanks depending on the anisotropic parameter ? regardless of the complexity of the velocity model. It reflects the fourth-order nature of the anisotropy influence on moveout as it manifests itself in this distinct signature in extended images after handling the velocity properly in the imaging process. Synthetic and real data observations support this assertion.

  1. Modelling dinoflagellates as an approach to the seasonal forecasting of bioluminescence in the North Atlantic

    OpenAIRE

    Marcinko, Charlotte L.J.; Martin, Adrian P; Allen, John T.

    2014-01-01

    Bioluminescence within ocean surface waters is of significant interest because it can enhance the study of subsurface movement and organisms. Little is known about how bioluminescence potential (BPOT) varies spatially and temporally in the open ocean. However, light emitted from dinoflagellates often dominates the stimulated bioluminescence field. As a first step towards forecasting surface ocean bioluminescence in the open ocean, a simple ecological model is developed which simulates seasona...

  2. Vegetable seed radiosensitivity and kinetic analysis of super-weak bioluminescence

    International Nuclear Information System (INIS)

    Bioluminescence of several vegetable seeds induced by ?-rays was studied. The results show that positive relation exists between seeds bioluminescence and irradiation dose, which fits with equation Y=Y0eKD. The higher the K value is, the more intense the bioluminescence induced by ?-rays is. Significant differences among K values were found with different varieties. The bioluminescence and exterior measurement value of seed radiosensitivity showed good consistency

  3. Real-time processing and compression of DNA microarray images.

    Science.gov (United States)

    Samavi, Shadrokh; Shirani, Shahram; Karimi, Nader

    2006-03-01

    In this paper, we present a pipeline architecture specifically designed to process and compress DNA microarray images. Many of the pixilated image generation methods produce one row of the image at a time. This property is fully exploited by the proposed pipeline that takes in one row of the produced image at each clock pulse and performs the necessary image processing steps on it. This will remove the present need for sluggish software routines that are considered a major bottleneck in the microarray technology. Moreover, two different structures are proposed for compressing DNA microarray images. The proposed architecture is proved to be highly modular, scalable, and suited for a standard cell VLSI implementation. PMID:16519360

  4. Acoustic imaging with time reversal methods: From medicine to NDT

    Science.gov (United States)

    Fink, Mathias

    2015-03-01

    This talk will present an overview of the research conducted on ultrasonic time-reversal methods applied to biomedical imaging and to non-destructive testing. We will first describe iterative time-reversal techniques that allow both focusing ultrasonic waves on reflectors in tissues (kidney stones, micro-calcifications, contrast agents) or on flaws in solid materials. We will also show that time-reversal focusing does not need the presence of bright reflectors but it can be achieved only from the speckle noise generated by random distributions of non-resolved scatterers. We will describe the applications of this concept to correct distortions and aberrations in ultrasonic imaging and in NDT. In the second part of the talk we will describe the concept of time-reversal processors to get ultrafast ultrasonic images with typical frame rates of order of 10.000 F/s. It is the field of ultrafast ultrasonic imaging that has plenty medical applications and can be of great interest in NDT. We will describe some applications in the biomedical domain: Quantitative Elasticity imaging of tissues by following shear wave propagation to improve cancer detection and Ultrafast Doppler imaging that allows ultrasonic functional imaging.

  5. Performance and application of real-time hyperspectral imaging

    Science.gov (United States)

    Dombrowski, Mark S.; Willson, Paul D.; LaBaw, Clayton C.

    1998-10-01

    Hyperspectral imaging is the latest advent in imaging technology, providing the potential to extract information about the objects in a scene that is unavailable to panchromatic imagers. This increased utility, however, comes at the cost of tremendously increased data. The ultimate utility of hyperspectral imagery is in the information that can be gleaned from the spectral dimension, rather than in the hyperspectral imagery itself. To have the broadest range of applications, extraction of this information must occur in real-time. Attempting to produce and exploit complete cubes of hyperspectral imagery at video rates, however, present unique problems for both the imager and the processor, since data rates are scaled by the number of spectral planes in the cube. MIDIS, the Multi-band Identification and Discrimination Imaging Spectroradiometer, allows both real-time here are the major design innovations associated with producing high-speed, high-sensitivity hyperspectral imagers operating in the SWIR and LWIR, and of the electronics capable of handling data rates up to 160 megapixels per second, continuously. Discussion of real-time algorithms capable of exploiting the spectral dimension of the imagery is also included. Beyond design and performance issues associated with producing and processing hyperspectral imagery at such high speeds, this paper also discusses applications of real-time hyperspectral imaging technology. Example imagery includes such problems as detecting counterfeit money, inspecting surfaces, and countering CCD.

  6. Towards real-time medical diagnostics using hyperspectral imaging technology

    Science.gov (United States)

    Bjorgan, Asgeir; Randeberg, Lise L.

    2015-07-01

    Hyperspectral imaging provides non-contact, high resolution spectral images which has a substantial diagnostic potential. This can be used for e.g. diagnosis and early detection of arthritis in finger joints. Processing speed is currently a limitation for clinical use of the technique. A real-time system for analysis and visualization using GPU processing and threaded CPU processing is presented. Images showing blood oxygenation, blood volume fraction and vessel enhanced images are among the data calculated in real-time. This study shows the potential of real-time processing in this context. A combination of the processing modules will be used in detection of arthritic finger joints from hyperspectral reflectance and transmittance data.

  7. Implied Movement in Static Images Reveals Biological Timing Processing

    Directory of Open Access Journals (Sweden)

    Francisco Carlos Nather

    2015-08-01

    Full Text Available Visual perception is adapted toward a better understanding of our own movements than those of non-conspecifics. The present study determined whether time perception is affected by pictures of different species by considering the evolutionary scale. Static (“S” and implied movement (“M” images of a dog, cheetah, chimpanzee, and man were presented to undergraduate students. S and M images of the same species were presented in random order or one after the other (S-M or M-S for two groups of participants. Movement, Velocity, and Arousal semantic scales were used to characterize some properties of the images. Implied movement affected time perception, in which M images were overestimated. The results are discussed in terms of visual motion perception related to biological timing processing that could be established early in terms of the adaptation of humankind to the environment.

  8. Rapid detection (4 h) of methicillin-resistant Staphylococcus aureus by a bioluminescence method.

    OpenAIRE

    C. H. Park; Hixon, D L; McLaughlin, C M; Cook, J F

    1988-01-01

    A 4-h bioluminescence method for methicillin susceptibility determination was compared with reference methods. Of the Staphylococcus aureus strains tested, 80 were methicillin resistant, 180 were methicillin susceptible, and 10 were borderline susceptible. There was 100% correlation between bioluminescence and reference methods for methicillin-susceptible and methicillin-resistant strains. All borderline-susceptible strains were identified as methicillin resistant by bioluminescence.

  9. A Short Image Series Based Scheme for Time Series Digital Image Correlation

    CERN Document Server

    Wang, Xian

    2014-01-01

    A new scheme for digital image correlation, i.e., short time series DIC (STS-DIC) is proposed. Instead of processing the original deformed speckle images individually, STS-DIC combines several adjacent deformed speckle images from a short time series and then processes the averaged image, for which deformation continuity over time is introduced. The deformation of several adjacent images is assumed to be linear in time and a new spatial-temporal displacement representation method with eight unknowns is presented based on the subset-based representation method. Then, the model of STS-DIC is created and a solving scheme is developed based on the Newton-Raphson iteration. The proposed method is verified for numerical and experimental cases. The results show that the proposed STS-DIC greatly improves the accuracy of traditional DIC, both under simple and complicated deformation conditions, while retaining acceptable actual computational cost.

  10. Time-resolved multispectral imaging of combustion reaction

    Science.gov (United States)

    Huot, Alexandrine; Gagnon, Marc-André; Jahjah, Karl-Alexandre; Tremblay, Pierre; Savary, Simon; Farley, Vincent; Lagueux, Philippe; Guyot, Éric; Chamberland, Martin; Marcotte, Fréderick

    2015-05-01

    Thermal infrared imaging is a field of science that evolves rapidly. Scientists have used for years the simplest tool: thermal broadband cameras. This allows to perform target characterization in both the longwave (LWIR) and midwave (MWIR) infrared spectral range. Infrared thermal imaging is used for a wide range of applications, especially in the combustion domain. For example, it can be used to follow combustion reactions, in order to characterize the injection and the ignition in a combustion chamber or even to observe gases produced by a flare or smokestack. Most combustion gases such as carbon dioxide (CO2) selectively absorb/emit infrared radiation at discrete energies, i.e. over a very narrow spectral range. Therefore, temperatures derived from broadband imaging are not reliable without prior knowledge about spectral emissivity. This information is not directly available from broadband images. However, spectral information is available using spectral filters. In this work, combustion analysis was carried out using Telops MS-IR MW camera which allows multispectral imaging at a high frame rate. A motorized filter wheel allowing synchronized acquisitions on eight (8) different channels was used to provide time-resolved multispectral imaging of combustion products of a candle in which black powder has been burnt to create a burst. It was then possible to estimate the temperature by modeling spectral profile derived from information obtained with the different spectral filters. Comparison with temperatures obtained using conventional broadband imaging illustrates the benefits of time-resolved multispectral imaging for the characterization of combustion processes.

  11. A fast reconstruction algorithm for bioluminescence tomography based on smoothed l0 norm regularization

    Science.gov (United States)

    He, Xiaowei; Yu, Jingjing; Geng, Guohua; Guo, Hongbo

    2013-10-01

    As an important optical molecular imaging technique, bioluminescence tomography (BLT) offers an inexpensive and sensitive means for non-invasively imaging a variety of physiological and pathological activities at cellular and molecular levels in living small animals. The key problem of BLT is to recover the distribution of the internal bioluminescence sources from limited measurements on the surface. Considering the sparsity of the light source distribution, we directly formulate the inverse problem of BLT into an l0-norm minimization model and present a smoothed l0-norm (SL0) based reconstruction algorithm. By approximating the discontinuous l0 norm with a suitable continuous function, the SL0 norm method solves the problem of intractable computational load of the minimal l0 search as well as high sensitivity of l0-norm to noise. Numerical experiments on a mouse atlas demonstrate that the proposed SL0 norm based reconstruction method can obtain whole domain reconstruction without any a priori knowledge of the source permissible region, yielding almost the same reconstruction results to those of l1 norm methods.

  12. Real-Time Holographic Image Correction Using Bacteriorhodopsin

    Science.gov (United States)

    Downie, John D.

    1994-01-01

    We present experimental results of one-way coherent imaging through a thin phase-aberrating medium using a holographic technique with bacteriorhodopsin as a real-time holographic material. Bacteriorhodopsin is well suited for the application when the aberration is time varying because of its real-time writing and erasing characteristics, sensitivity, and spatial resolution. We show results with final image resolution of greater than 20 line pairs/mm and high signal-to-noise ratio using a polarization-holography approach.

  13. Precision cosmology with time delay lenses: high resolution imaging requirements

    CERN Document Server

    Meng, Xiao-Lei; Agnello, Adriano; Auger, Matthew W; Liao, Kai; Marshall, Philip J

    2015-01-01

    Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as "Einstein Rings" in high resolution images. We carry out a systematic exploration of the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope $\\gamma'$ of the...

  14. Image Segmentation in Liquid Argon Time Projection Chamber Detector

    CERN Document Server

    P?o?ski, Piotr; Sulej, Robert; Zaremba, Krzysztof

    2015-01-01

    The Liquid Argon Time Projection Chamber (LAr-TPC) detectors provide excellent imaging and particle identification ability for studying neutrinos. An efficient and automatic reconstruction procedures are required to exploit potential of this imaging technology. Herein, a novel method for segmentation of images from LAr-TPC detectors is presented. The proposed approach computes a feature descriptor for each pixel in the image, which characterizes amplitude distribution in pixel and its neighbourhood. The supervised classifier is employed to distinguish between pixels representing particle's track and noise. The classifier is trained and evaluated on the hand-labeled dataset. The proposed approach can be a preprocessing step for reconstructing algorithms working directly on detector images.

  15. Imaging the boundaries—innovative tools for microscopy of living cells and real-time imaging

    OpenAIRE

    Rosivatz, Erika

    2008-01-01

    Recently, light microscopy moved back into the spotlight, which is mainly due to the development of revolutionary technologies for imaging real-time events in living cells. It is truly fascinating to see enzymes “at work” and optically acquired images certainly help us to understand biological processes better than any abstract measurements. This review aims to point out elegant examples of recent cell-biological imaging applications that have been developed with a chemical approach. The disc...

  16. Mathematical methods in time series analysis and digital image processing

    CERN Document Server

    Kurths, J; Maass, P; Timmer, J

    2008-01-01

    The aim of this volume is to bring together research directions in theoretical signal and imaging processing developed rather independently in electrical engineering, theoretical physics, mathematics and the computer sciences. In particular, mathematically justified algorithms and methods, the mathematical analysis of these algorithms, and methods as well as the investigation of connections between methods from time series analysis and image processing are reviewed. An interdisciplinary comparison of these methods, drawing upon common sets of test problems from medicine and geophysical/enviromental sciences, is also addressed. This volume coherently summarizes work carried out in the field of theoretical signal and image processing. It focuses on non-linear and non-parametric models for time series as well as on adaptive methods in image processing.

  17. Time-Reversal Acoustics and Maximum-Entropy Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, J G

    2001-08-22

    Target location is a common problem in acoustical imaging using either passive or active data inversion. Time-reversal methods in acoustics have the important characteristic that they provide a means of determining the eigenfunctions and eigenvalues of the scattering operator for either of these problems. Each eigenfunction may often be approximately associated with an individual scatterer. The resulting decoupling of the scattered field from a collection of targets is a very useful aid to localizing the targets, and suggests a number of imaging and localization algorithms. Two of these are linear subspace methods and maximum-entropy imaging.

  18. Decomposing global light transport using time of flight imaging

    OpenAIRE

    WU Di; O'Toole, Matthew; Velten, Andreas; Agrawal, Amit; Raskar, Ramesh

    2012-01-01

    Global light transport is composed of direct and indirect components. In this paper, we take the first steps toward analyzing light transport using high temporal resolution information via time of flight (ToF) images. The time profile at each pixel encodes complex interactions between the incident light and the scene geometry with spatially-varying material properties. We exploit the time profile to decompose light transport into its constituent direct, subsurface scattering, and interreflect...

  19. Time series hyperspectral chemical imaging data: challenges, solutions and applications.

    Science.gov (United States)

    Gowen, A A; Marini, F; Esquerre, C; O'Donnell, C; Downey, G; Burger, J

    2011-10-31

    Hyperspectral chemical imaging (HCI) integrates imaging and spectroscopy resulting in three-dimensional data structures, hypercubes, with two spatial and one wavelength dimension. Each spatial image pixel in a hypercube contains a spectrum with >100 datapoints. While HCI facilitates enhanced monitoring of multi-component systems; time series HCI offers the possibility of a more comprehensive understanding of the dynamics of such systems and processes. This implies a need for modeling strategies that can cope with the large multivariate data structures generated in time series HCI experiments. The challenges posed by such data include dimensionality reduction, temporal morphological variation of samples and instrumental drift. This article presents potential solutions to these challenges, including multiway analysis, object tracking, multivariate curve resolution and non-linear regression. Several real world examples of time series HCI data are presented to illustrate the proposed solutions. PMID:21962370

  20. Real-time particle image velocimetry based on FPGA technology

    International Nuclear Information System (INIS)

    Particle image velocimetry (PIV), based on laser sheet, is a method for image processing and calculation of distributed velocity fields.It is well established as a fluid dynamics measurement tool, being applied to liquid, gases and multiphase flows.Images of particles are processed by means of computationally demanding algorithms, what makes its real-time implementation difficult.The most probable displacements are found applying two dimensional cross-correlation function. In this work, we detail how it is possible to achieve real-time visualization of PIV method by designing an adaptive embedded architecture based on FPGA technology.We show first results of a physical field of velocity calculated by this platform system in a real-time approach.

  1. D City Transformations by Time Series of Aerial Images

    Science.gov (United States)

    Adami, A.

    2015-02-01

    Recent photogrammetric applications, based on dense image matching algorithms, allow to use not only images acquired by digital cameras, amateur or not, but also to recover the vast heritage of analogue photographs. This possibility opens up many possibilities in the use and enhancement of existing photos heritage. The research of the original figuration of old buildings, the virtual reconstruction of disappeared architectures and the study of urban development are some of the application areas that exploit the great cultural heritage of photography. Nevertheless there are some restrictions in the use of historical images for automatic reconstruction of buildings such as image quality, availability of camera parameters and ineffective geometry of image acquisition. These constrains are very hard to solve and it is difficult to discover good dataset in the case of terrestrial close range photogrammetry for the above reasons. Even the photographic archives of museums and superintendence, while retaining a wealth of documentation, have no dataset for a dense image matching approach. Compared to the vast collection of historical photos, the class of aerial photos meets both criteria stated above. In this paper historical aerial photographs are used with dense image matching algorithms to realize 3d models of a city in different years. The models can be used to study the urban development of the city and its changes through time. The application relates to the city centre of Verona, for which some time series of aerial photographs have been retrieved. The models obtained in this way allowed, right away, to observe the urban development of the city, the places of expansion and new urban areas. But a more interesting aspect emerged from the analytical comparison between models. The difference, as the Euclidean distance, between two models gives information about new buildings or demolitions. As considering accuracy it is necessary point out that the quality of final observations from model comparison depends on several aspects such as image quality, image scale and marker accuracy from cartography.

  2. Real-Time Ellipsometry-Based Transmission Ultrasound Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kallman, J S; Poco, J F; Ashby, A E

    2007-02-14

    Ultrasonic imaging is a valuable tool for non-destructive evaluation and medical diagnosis. Reflection mode is exclusively used for medical imaging, and is most frequently used for nondestructive evaluation (NDE) because of the relative speed of acquisition. Reflection mode imaging is qualitative, yielding little information about material properties, and usually only about material interfaces. Transmission imaging can be used in 3D reconstructions to yield quantitative information: sound speed and attenuation. Unfortunately, traditional scanning methods of acquiring transmission data are very slow, requiring on the order of 20 minutes per image. The sensing of acoustic pressure fields as optical images can significantly speed data acquisition. An entire 2D acoustic pressure field can be acquired in under a second. The speed of data acquisition for a 2D view makes it feasible to obtain multiple views of an object. With multiple views, 3D reconstruction becomes possible. A fast, compact (no big magnets or accelerators), inexpensive, 3D imaging technology that uses no ionizing radiation could be a boon to the NDE and medical communities. 2D transmission images could be examined in real time to give the ultrasonic equivalent of a fluoroscope, or accumulated in such a way as to acquire phase and amplitude data over multiple views for 3D reconstruction (for breast cancer imaging, for example). Composite panels produced for the aircraft and automobile industries could be inspected in near real time, and inspection of attenuating materials such as ceramics and high explosives would be possible. There are currently three optical-readout imaging transmission ultrasound technologies available. One is based on frustrated total internal reflection (FTIR) [1,2], one on Fabry-Perot interferometry [3], and another on critical angle modulation [4]. Each of these techniques has its problems. The FTIR based system cannot currently be scaled to large aperture sizes, the Fabry-Perot system has never been fully implemented for area imaging, and the critical angle modulation system is not sensitive enough for medical imaging. We proposed an entirely new way of using acoustic pressure to modulate a light beam. This new technology should be sensitive enough to be useful for medical imaging and have a large enough aperture to speed acquisition by orders of magnitude over point sampling. Unfortunately, we were unable to bring this technology to fruition.

  3. Cherenkov imaging and timing techniques in astroparticle physics

    International Nuclear Information System (INIS)

    Cherenkov techniques are widely used in astroparticle physics experiments. Classical ring imaging has been applied in balloon experiments. Underground Cherenkov detectors also yield ring-like patterns of photomultiplier hits, whereas in deep underwater experiments tracks are reconstructed from the light arrival times at photomultipliers spread over a large volume. Cherenkov air shower detectors either analyze the image of extended showers, or sample the arrival times of the Cherenkov light cone at different points at the earth's surface. This report reviews the various techniques and illustrates them by selected physics results. (orig.)

  4. A Simple Fusion Method for Image Time Series Based on the Estimation of Image Temporal Validity

    Directory of Open Access Journals (Sweden)

    Mar Bisquert

    2015-01-01

    Full Text Available High-spatial-resolution satellites usually have the constraint of a low temporal frequency, which leads to long periods without information in cloudy areas. Furthermore, low-spatial-resolution satellites have higher revisit cycles. Combining information from high- and low- spatial-resolution satellites is thought a key factor for studies that require dense time series of high-resolution images, e.g., crop monitoring. There are several fusion methods in the bibliography, but they are time-consuming and complicated to implement. Moreover, the local evaluation of the fused images is rarely analyzed. In this paper, we present a simple and fast fusion method based on a weighted average of two input images (H and L, which are weighted by their temporal validity to the image to be fused. The method was applied to two years (2009–2010 of Landsat and MODIS (MODerate Imaging Spectroradiometer images that were acquired over a cropped area in Brazil. The fusion method was evaluated at global and local scales. The results show that the fused images reproduced reliable crop temporal profiles and correctly delineated the boundaries between two neighboring fields. The greatest advantages of the proposed method are the execution time and ease of use, which allow us to obtain a fused image in less than five minutes.

  5. Segmentation of Time-Lapse Images with Focus on Microscopic Images of Cells.

    Czech Academy of Sciences Publication Activity Database

    Soukup, Jind?ich; Císa?, P.; Šroubek, Filip

    Berlin : Springer-Verlag, 2013 - (Petrosino, A.), s. 71-80 ISBN 978-3-642-41183-0. - (Lecture Notes in Computer Science . Image Processing, Computer Vision, Pattern Recognition, and Graphics. 8157). [International Conference on Image Analysis and Processing. Naples (IT), 11.09.2013-13.09.2013] R&D Projects: GA ?R GA13-29225S Grant ostatní: Grantová agentura UK(CZ) GAUK 914813/2013; GA MŠk(CZ) ED2.1.00/01.0024 Institutional support: RVO:67985556 Keywords : segmentation * time-lapse * microscopy imaging * phase constrast Subject RIV: JD - Computer Applications, Robotics http:// library .utia.cas.cz/separaty/2013/ZOI/soukup-segmentation of time-lapse images with focus on microscopic images of cells.pdf

  6. Imaging transplanted stem cells in real time using an MRI dual-contrast method.

    Science.gov (United States)

    Ngen, Ethel J; Wang, Lee; Kato, Yoshinori; Krishnamachary, Balaji; Zhu, Wenlian; Gandhi, Nishant; Smith, Barbara; Armour, Michael; Wong, John; Gabrielson, Kathleen; Artemov, Dmitri

    2015-01-01

    Stem cell therapies are currently being investigated for the repair of brain injuries. Although exogenous stem cell labelling with superparamagnetic iron oxide nanoparticles (SPIONs) prior to transplantation provides a means to noninvasively monitor stem cell transplantation by magnetic resonance imaging (MRI), monitoring cell death is still a challenge. Here, we investigate the feasibility of using an MRI dual-contrast technique to detect cell delivery, cell migration and cell death after stem cell transplantation. Human mesenchymal stem cells were dual labelled with SPIONs and gadolinium-based chelates (GdDTPA). The viability, proliferation rate, and differentiation potential of the labelled cells were then evaluated. The feasibility of this MRI technique to distinguish between live and dead cells was next evaluated using MRI phantoms, and in vivo using both immune-competent and immune-deficient mice, following the induction of brain injury in the mice. All results were validated with bioluminescence imaging. In live cells, a negative (T2/T2*) MRI contrast predominates, and is used to track cell delivery and cell migration. Upon cell death, a diffused positive (T1) MRI contrast is generated in the vicinity of the dead cells, and serves as an imaging marker for cell death. Ultimately, this technique could be used to manage stem cell therapies. PMID:26330231

  7. Communication: Time- and space-sliced velocity map electron imaging

    International Nuclear Information System (INIS)

    We develop a new method to achieve slice electron imaging using a conventional velocity map imaging apparatus with two additional components: a fast frame complementary metal-oxide semiconductor camera and a high-speed digitizer. The setup was previously shown to be capable of 3D detection and coincidence measurements of ions. Here, we show that when this method is applied to electron imaging, a time slice of 32 ps and a spatial slice of less than 1 mm thick can be achieved. Each slice directly extracts 3D velocity distributions of electrons and provides electron velocity distributions that are impossible or difficult to obtain with a standard 2D imaging electron detector

  8. Detection of heterogeneous substrate distributions in tumors and spheroids by bioluminescence

    International Nuclear Information System (INIS)

    Heterogeneous cell populations within solid tumors often limit non-surgical tumor therapies. Partially, the biological variability among cancer cells in vivo is attributable to a non-uniform oxygenation and pH distribution as a consequence of spatial and temporal heterogeneities in the tumor microcirculation. In order to evaluate whether such inhomogeneities may also be found in the distribution of nutrients and metabolites, a method, originally developed for the determination of regional substrate distributions in brain tissue; has been applied to cryobiopsies of human tumor xenografts and of tumors in patients. In addition, this method has been adapted to multicellular tumor spheroids of human origin. The bioluminescence reactions are enzymatically linked to the substrate of interest. A cold cyrostat section of the frozen enzyme solution is laid upon a frozen cryostat section of a tumor or of a spheroid. Bioluminescence recorded by film exposure occurs upon thawing these sections. The exposed film is then evaluated by microdensitometry and by special image analysis. The regional distributions of glucose, lactate and ATP are obtained in relative units. The results show that all substances investigated exhibit large regional differences reflecting a great heterogeneity of the metabolic micromilieu in malignant tumors and even within tumor spheroids

  9. Near infrared bioluminescence resonance energy transfer from firefly luciferase—quantum dot bionanoconjugates

    Science.gov (United States)

    Alam, Rabeka; Karam, Liliana M.; Doane, Tennyson L.; Zylstra, Joshua; Fontaine, Danielle M.; Branchini, Bruce R.; Maye, Mathew M.

    2014-12-01

    The bioluminescence resonance energy transfer (BRET) between firefly luciferase enzymes and semiconductive quantum dots (QDs) with near infrared emission is described. The QD were phase transferred to aqueous buffers using a histidine mediated phase transfer route, and incubated with a hexahistidine tagged, green emitting variant of firefly luciferase from Photinus pyralis (PPyGRTS). The PPyGRTS were bound to the QD interface via the hexahistidine tag, which effectively displaces the histidine layer and binds directly to the QD interfaces, allowing for short donor-acceptor distances (˜5.5 nm). Due to this, high BRET efficiency ratios of ˜5 were obtained. These PPyGRTS-QD bio-nano conjugates were characterized by transmission electron microscopy, thermal gravimetric analysis, Fourier transform infrared spectroscopy and BRET emission studies. The final optimized conjugate was easily observable by night vision imaging, demonstrating the potential of these materials in imaging and signaling/sensing applications.

  10. Time-resolved neutron imaging at ANTARES cold neutron beamline

    CERN Document Server

    Tremsin, A S; Tittelmeier, K; Schillinger, B; Schulz, M; Lerche, M; Feller, W B

    2015-01-01

    In non-destructive evaluation with X-rays light elements embedded in dense, heavy (or high-Z) matrices show little contrast and their structural details can hardly be revealed. Neutron radiography, on the other hand, provides a solution for those cases, in particular for hydrogenous materials, owing to the large neutron scattering cross section of hydrogen and uncorrelated dependency of neutron cross section on the atomic number. The majority of neutron imaging experiments at the present time is conducted with static objects mainly due to the limited flux intensity of neutron beamline facilities and sometimes due to the limitations of the detectors. However, some applications require the studies of dynamic phenomena and can now be conducted at several high intensity beamlines such as the recently rebuilt ANTARES beam line at the FRM-II reactor. In this paper we demonstrate the capabilities of time resolved imaging for repetitive processes, where different phases of the process can be imaged simultaneously and...

  11. Bioluminescence determination of active caspase-3 in single apoptotic cells.

    Czech Academy of Sciences Publication Activity Database

    Lišková, Marcela; Klepárník, Karel; Matalová, Eva; Hegrová, Jitka; P?ikryl, Jan; Švandová, Eva; Foret, František

    2013-01-01

    Ro?. 34, ?. 12 (2013), s. 1772-1777. ISSN 0173-0835 R&D Projects: GA ?R GAP206/11/2377 Grant ostatní: GA ?R(CZ) GAP502/12/1285 Institutional support: RVO:68081715 ; RVO:67985904 Keywords : apoptosis * bioluminescence * caspase-3 Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.161, year: 2013

  12. The mechanism of electronic excitation in the bacterial bioluminescent reaction

    International Nuclear Information System (INIS)

    The current state of the problem of formation of the electron-excited product in the chemiluminescent reaction that underlies the bacterial luminescence is analysed. Various schemes of chemical transformations capable of producing a bacterial bioluminescence emitter are presented. The problem of excitation of secondary emitters is considered; two possible mechanisms of their excitation are analysed.

  13. The influence of SHFEMF on bioluminescence of V. Harveyi

    International Nuclear Information System (INIS)

    Exposure of bacteria V. harveyi grown on agar medium to 7 HHz electromagnetic field changes the intensity of their luminescence. It is suggested that the dynamics of the luminescence change reflects the adaptation processes in the microorganisms which accompany the electromao.netic field effect. The changes observed may be attributed to the temperature dependence of bioluminescence

  14. In Vivo Real Time Volumetric Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Bouzari, Hamed; Rasmussen, Morten Fischer

    2015-01-01

    Synthetic aperture (SA) imaging can be used to achieve real-time volumetric ultrasound imaging using 2-D array transducers. The sensitivity of SA imaging is improved by maximizing the acoustic output, but one must consider the limitations of an ultrasound system, both technical and biological. This paper investigates the in vivo applicability and sensitivity of volumetric SA imaging. Utilizing the transmit events to generate a set of virtual point sources, a frame rate of 25 Hz for a 90° x 90° field-of-view was achieved. Data were obtained using a 3.5 MHz 32 x 32 elements 2-D phased array transducer connected to the experimental scanner (SARUS). Proper scaling is applied to the excitation signal such that intensity levels are in compliance with the U.S. Food and Drug Administration regulations for in vivo ultrasound imaging. The measured Mechanical Index and spatial-peak- temporal-average intensity for parallel beamforming (PB) are 0.83 and 377.5mW/cm2, and for SA are 0.48 and 329.5mW/cm2. A human kidney was volumetrically imaged with SA and PB techniques simultaneously. Two radiologists for evaluation of the volumetric SA were consulted by means of a questionnaire on the level of details perceivable in the beamformed images. The comparison was against PB based on the in vivo data. The feedback from the domain experts indicates that volumetric SA images internal body structures with a better contrast resolution compared to PB at all positions in the entire imaged volume. Furthermore, the autocovariance of a homogeneous area in the in vivo SA data, had 23.5% smaller width at the half of its maximum value compared to PB.

  15. In vivo real-time volumetric synthetic aperture ultrasound imaging

    Science.gov (United States)

    Bouzari, Hamed; Rasmussen, Morten F.; Brandt, Andreas H.; Stuart, Matthias B.; Nikolov, Svetoslav; Jensen, Jørgen A.

    2015-03-01

    Synthetic aperture (SA) imaging can be used to achieve real-time volumetric ultrasound imaging using 2-D array transducers. The sensitivity of SA imaging is improved by maximizing the acoustic output, but one must consider the limitations of an ultrasound system, both technical and biological. This paper investigates the in vivo applicability and sensitivity of volumetric SA imaging. Utilizing the transmit events to generate a set of virtual point sources, a frame rate of 25 Hz for a 90° × 90° field-of-view was achieved. data were obtained using a 3.5 MHz 32 × 32 elements 2-D phased array transducer connected to the experimental scanner (SARUS). Proper scaling is applied to the excitation signal such that intensity levels are in compliance with the U.S. Food and Drug Administration regulations for in vivo ultrasound imaging. The measured Mechanical Index and spatial-peak-temporal-average intensity for parallel beam-forming (PB) are 0.83 and 377.5mW/cm2, and for SA are 0.48 and 329.5mW/cm2. A human kidney was volumetrically imaged with SA and PB techniques simultaneously. Two radiologists for evaluation of the volumetric SA were consulted by means of a questionnaire on the level of details perceivable in the beam-formed images. The comparison was against PB based on the in vivo data. The feedback from the domain experts indicates that volumetric SA images internal body structures with a better contrast resolution compared to PB at all positions in the entire imaged volume. Furthermore, the autocovariance of a homogeneous area in the in vivo SA data, had 23.5% smaller width at the half of its maximum value compared to PB.

  16. Ultrasonic Time Reversal and Intermodulation Techniques for Defective Zone Imaging.

    Czech Academy of Sciences Publication Activity Database

    P?evorovský, Zden?k; Vejvodová, Šárka; Krofta, Josef; P?evorovský, David

    2009-01-01

    Ro?. 19, ?. 2 (2009), s. 13-13. ISSN 1213-3825. [NDT in PROGRESS. 12.11.2009-14.11.2009, Praha] R&D Projects: GA ?R GA106/07/1393 Institutional research plan: CEZ:AV0Z20760514 Keywords : nonlinear elastic wave spectroscopy * time reversal tomography * nonlinear wave modulation * ultrasonic imaging of defects Subject RIV: BI - Acoustics

  17. Time-resolved fast neutron imaging: simulation of detector performance

    OpenAIRE

    Vartsky, D.; Mor, I; Goldberg, M. B.; Mardor, I.; Feldman, G; Bar, D.; Shor, A; Dangendorf, V.; Laczko, G.; Breskin, A.; Chechik, R.

    2004-01-01

    We have analyzed and compared the performance of two novel fast-neutron imaging methods with time-of-flight spectroscopy capability. Using MCNP and GEANT code simulations of neutron and charged-particle transport in the detectors, key parameters such as detection efficiency, the amount of energy deposited in the converter and the spatial resolution of both detector variants have been evaluated.

  18. Integrated CMOS photodetectors and signal processing for very low-level chemical sensing with the bioluminescent bioreporter integrated circuit

    Science.gov (United States)

    Bolton, Eric K.; Sayler, Gary S.; Nivens, David E.; Rochelle, James M.; Ripp, Steven; Simpson, Michael L.

    2002-01-01

    We report an integrated CMOS microluminometer optimized for the detection of low-level bioluminescence as part of the bioluminescent bioreporter integrated circuit (BBIC). This microluminometer improves on previous devices through careful management of the sub-femtoampere currents, both signal and leakage, that flow in the front-end processing circuitry. In particular, the photodiode is operated with a reverse bias of only a few mV, requiring special attention to the reset circuitry of the current-to-frequency converter (CFC) that forms the front-end circuit. We report a sub-femtoampere leakage current and a minimum detectable signal (MDS) of 0.15 fA (1510 s integration time) using a room temperature 1.47 mm2 CMOS photodiode. This microluminometer can detect luminescence from as few as 5000 fully induced Pseudomonas fluorescens 5RL bacterial cells. c2002 Elsevier Science B.V. All rights reserved.

  19. Bubble masks for time-encoded imaging of fast neutrons.

    Energy Technology Data Exchange (ETDEWEB)

    Brubaker, Erik; Brennan, James S.; Marleau, Peter; Nowack, Aaron B.; Steele, John; Sweany, Melinda; Throckmorton, Daniel J.

    2013-09-01

    Time-encoded imaging is an approach to directional radiation detection that is being developed at SNL with a focus on fast neutron directional detection. In this technique, a time modulation of a detected neutron signal is induced-typically, a moving mask that attenuates neutrons with a time structure that depends on the source position. An important challenge in time-encoded imaging is to develop high-resolution two-dimensional imaging capabilities; building a mechanically moving high-resolution mask presents challenges both theoretical and technical. We have investigated an alternative to mechanical masks that replaces the solid mask with a liquid such as mineral oil. Instead of fixed blocks of solid material that move in pre-defined patterns, the oil is contained in tubing structures, and carefully introduced air gaps-bubbles-propagate through the tubing, generating moving patterns of oil mask elements and air apertures. Compared to current moving-mask techniques, the bubble mask is simple, since mechanical motion is replaced by gravity-driven bubble propagation; it is flexible, since arbitrary bubble patterns can be generated by a software-controlled valve actuator; and it is potentially high performance, since the tubing and bubble size can be tuned for high-resolution imaging requirements. We have built and tested various single-tube mask elements, and will present results on bubble introduction and propagation as a function of tubing size and cross-sectional shape; real-time bubble position tracking; neutron source imaging tests; and reconstruction techniques demonstrated on simple test data as well as a simulated full detector system.

  20. A miniature real-time volumetric ultrasound imaging system

    Science.gov (United States)

    Wygant, Ira O.; Yeh, David T.; Zhuang, Xuefeng; Nikoozadeh, Amin; Oralkan, Omer; Ergun, Arif S.; Karaman, Mustafa; Khuri-Yakub, Butrus T.

    2005-04-01

    Progress made in the development of a miniature real-time volumetric ultrasound imaging system is presented. This system is targeted for use in a 5-mm endoscopic channel and will provide real-time, 30-mm deep, volumetric images. It is being developed as a clinically useful device, to demonstrate a means of integrating the front-end electronics with the transducer array, and to demonstrate the advantages of the capacitive micromachined ultrasonic transducer (CMUT) technology for medical imaging. Presented here is the progress made towards the initial implementation of this system, which is based on a two-dimensional, 16x16 CMUT array. Each CMUT element is 250 um by 250 um and has a 5 MHz center frequency. The elements are connected to bond pads on the back side of the array with 400-um long through-wafer interconnects. The transducer array is flip-chip bonded to a custom-designed integrated circuit that comprises the front-end electronics. The result is that each transducer element is connected to a dedicated pulser and low-noise preamplifier. The pulser generates 25-V, 100-ns wide, unipolar pulses. The preamplifier has an approximate transimpedance gain of 500 kOhm and 3-dB bandwidth of 10 MHz. In the first implementation of the system, one element at a time can be selected for transmit and receive and thus synthetic aperture images can be generated. In future implementations, 16 channels will be active at a given time. These channels will connect to an FPGA-based data acquisition system for real-time image reconstruction.

  1. The global ultraviolet imager (GUVI) for the NASA TIMED mission

    International Nuclear Information System (INIS)

    The Global Ultraviolet Imager (GUVI) investigation is designed to provide quantitative observations and interpretation of the Earth's airglow and auroral emissions in support of the NASA Thermosphere, Ionosphere, Mesosphere, Energy and Dynamics (TIMED) mission. It will address TIMED objectives dealing with energetics, dynamics, and the specification of state variables. The instrument will provide multiple-wavelength, simultaneous ''monochromatic'' images of the far-ultraviolet emission (115 to 180 nm) using a scan mirror to sweep the instantaneous field of view of a spectrographic imager through an arc of up to 140 degree aligned perpendicular to the orbit plane of the spacecraft. The instantaneous field of view is 11.8 degree by 0.37 degree (adjustable) along the slit and perpendicular to the slit, respectively. The field of view is mapped to a two-dimensional image plane with up to 64 spatial pixels by 160 spectral pixels of spectral width 0.4 nm per pixel. Binning of pixels can be performed along both the spatial and spectral axes of the array to reduce the demands on the downlink telemetry. The f/3 Rowland circle scanning spectrographic imager is outfitted with a toroidal grating ruled at 1,200 grooves per millimeter. The fore-optics consist of a plane scanning mirror and an off-axis parabolic telescope. The detector is a photon-counting microchannel plate with a wedge and strip anode mounted in a sealed tube

  2. Real-time synthetic aperture imaging: opportunities and challenges

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Tomov, Borislav Gueorguiev

    2006-01-01

    Synthetic aperture (SA) ultrasound imaging has not been introduced in commercial scanners mainly due to the computational cost associated with the hardware implementation of this imaging modality. SA imaging redefines the term beamformed line. Since the acquired information comes from all points in the region of interest it is possible to beamform the signals along a desired path, thus, improving the estimation of blood flow. The transmission of coded excitations makes it possible to achieve higher contrast and larger penetration depth compared to "conventional" scanners. This paper presents the development and implementation of the signal processing stages employed in SA imaging: compression of received data acquired using codes, and beamforming. The goal was to implement the system using commercially available field programmable gate arrays. The compression filter operates on frequency modulated pulses with duration of up to 50 mus sampled at 70 MHz. The beamformer can process data from 256 channels at a pulse repetition frequency of 5000 Hz and produces 192 lines of 1024 complex samples in real time. The lines are described by their origin, direction, length and distance between two samples in 3D. This parametric description makes it possible to quickly change the image geometry during scanning, thus enabling adaptive imaging and precise flow estimation. The paper addresses problems such as large bandwidth and computational load and gives the solutions that have been adopted for the implementation.

  3. Ultrafast photoacoustic imaging and its application to real-time 3D imaging with improved focusing.

    Science.gov (United States)

    Wang, Yu-Hsin; Li, Pai-Chi

    2011-07-01

    The restricted temporal resolution ofphotoacoustic imaging due to limited frame rates often prohibits its applications in areas such as real-time 3D imaging. This paper presents an ultrasound/photoacoustic multimodality imaging system that provides an ultrafast frame rate and consists of an ultrasound transducer array with plane wave excitation and a laser with pulse repetition frequency up to 2000 Hz. Its application to real-time 3D photoacoustic imaging is demonstrated and a synthetic-aperture focusing technique is applied to improve the elevational focusing quality of the mechanically-scanned 1D array. A 3D frame rate of 12 Hz in a volume covering a 19.2 mm x 19.2 mm scanning surface is demonstrated. PMID:21842582

  4. BLProt: Prediction of bioluminescent proteins based on support vector machine and relieff feature selection

    KAUST Repository

    Kandaswamy, Krishna Kumar

    2011-08-17

    Background: Bioluminescence is a process in which light is emitted by a living organism. Most creatures that emit light are sea creatures, but some insects, plants, fungi etc, also emit light. The biotechnological application of bioluminescence has become routine and is considered essential for many medical and general technological advances. Identification of bioluminescent proteins is more challenging due to their poor similarity in sequence. So far, no specific method has been reported to identify bioluminescent proteins from primary sequence.Results: In this paper, we propose a novel predictive method that uses a Support Vector Machine (SVM) and physicochemical properties to predict bioluminescent proteins. BLProt was trained using a dataset consisting of 300 bioluminescent proteins and 300 non-bioluminescent proteins, and evaluated by an independent set of 141 bioluminescent proteins and 18202 non-bioluminescent proteins. To identify the most prominent features, we carried out feature selection with three different filter approaches, ReliefF, infogain, and mRMR. We selected five different feature subsets by decreasing the number of features, and the performance of each feature subset was evaluated.Conclusion: BLProt achieves 80% accuracy from training (5 fold cross-validations) and 80.06% accuracy from testing. The performance of BLProt was compared with BLAST and HMM. High prediction accuracy and successful prediction of hypothetical proteins suggests that BLProt can be a useful approach to identify bioluminescent proteins from sequence information, irrespective of their sequence similarity. 2011 Kandaswamy et al; licensee BioMed Central Ltd.

  5. Automatic multimodal real-time tracking for image plane alignment in interventional Magnetic Resonance Imaging

    International Nuclear Information System (INIS)

    Interventional magnetic resonance imaging (MRI) aims at performing minimally invasive percutaneous interventions, such as tumor ablations and biopsies, under MRI guidance. During such interventions, the acquired MR image planes are typically aligned to the surgical instrument (needle) axis and to surrounding anatomical structures of interest in order to efficiently monitor the advancement in real-time of the instrument inside the patient's body. Object tracking inside the MRI is expected to facilitate and accelerate MR-guided interventions by allowing to automatically align the image planes to the surgical instrument. In this PhD thesis, an image-based work-flow is proposed and refined for automatic image plane alignment. An automatic tracking work-flow was developed, performing detection and tracking of a passive marker directly in clinical real-time images. This tracking work-flow is designed for fully automated image plane alignment, with minimization of tracking-dedicated time. Its main drawback is its inherent dependence on the slow clinical MRI update rate. First, the addition of motion estimation and prediction with a Kalman filter was investigated and improved the work-flow tracking performance. Second, a complementary optical sensor was used for multi-sensor tracking in order to decouple the tracking update rate from the MR image acquisition rate. Performance of the work-flow was evaluated with both computer simulations and experiments using an MR compatible test bed. Results show a high robustness of the multi-sensor tracking approach for dynamic image plane alignment, due to the combination of the individual strengths of each sensor. (author)

  6. Terahertz time-domain spectroscopy and imaging of artificial RNA

    DEFF Research Database (Denmark)

    Fischer, Bernd M.; Hoffmann, Matthias; Helm, Hanspeter; Wilk, Rafal; Rutz, Frank; Kleine-Ostermann, Thomas; Koch, Martin; Jepsen, Peter Uhd

    2005-01-01

    We use terahertz time-domain spectroscopy (THz-TDS) to measure the far-infrared dielectric function of two artificial RNA single strands, composed of polyadenylic acid (poly-A) and polycytidylic acid (poly-C). We find a significant difference in the absorption between the two types of RNA strands, and we show that we can use this difference to record images of spot arrays of the RNA strands. Under controlled conditions it is possible to use the THz image to distinguish between the two RNA strand...

  7. Real-time cardiac imaging of adults using variations of echo-planar imaging

    International Nuclear Information System (INIS)

    The gating techniques used on conventional MR imaging for the study of the heart and great vessels have limitations when the heart is irregular, and require long examination times. Minor adaptations of echo-planar imaging - the fast low-angle excitation echo-planar technique (FLEET) and the blipped echo-planar single-pulse technique (BEST) - can provide up to 20 frames per second. Movie loops can be constructed at any level from a set of transections. Normal and abnormal images illustrate how changes in chamber size, wall motion, and pattern of blood flow can be analyzed throughout each cardiac cycle

  8. Bioluminescent organisms and bioluminescence measurements in the North Atlantic Ocean near latitude 59.5°N, longitude 21°W

    Science.gov (United States)

    Swift, Elijah; Sullivan, James M.; Batchelder, Harold P.; van Keuren, Jeffrey; Vaillancourt, Robert D.; Bidigare, Robert R.

    1995-04-01

    We investigated mixed-layer bioluminescence from early April to late September (in April 1989, May 1991, July 1983 and 1990, August 1991, September 1988 and 1989) at stations near the Marine-Light - Mixed Layers (MLML) bio-optical moorings site. Volume-specific bioluminescence potential (BPOT, photons per unit volume) from epipelagic organisms was estimated directly with a pump-through bioluminescence photometer (BP) in 1983, 1988, and 1991. For all cruises, BPOT was also estimated by summing for a volume of seawater, the measurements of each species' total stimulable bioluminescence multiplied by each species' numerical abundance in the volume. The abundance data were taken from bottle casts, net tows, and BP effluent nets. After the onset of the spring bloom, from May through September, mixed layer BPOT was fairly constant, ˜1-4×1014 photons m-3. On one early April cruise (1989) before the spring bloom, BPOT was two orders of magnitude lower. Heterotrophic dinoflagellates in the genus Protoperidinium generally produced most (90% or more) of the mixed layer BPOT in the spring, summer, and fall. On one cruise in September (1988), the autotrophic dinoflagellate Ceratium fusus produced the bulk of the mixed layer BPOT (more than about 4×1014 photons m-3). Other autotrophic dinoflagellates in the genus Gonyaulax and mesozooplankton produced a minor part of BPOT at most stations. The relative contribution of all autotrophic dinoflagellates to BPOT increased from a few percent during the May-June-July period to ˜10% during the August-September period. In situ mechanically stimulable bioluminescence was reduced when underwater scalar irradiance (wavelengths 400-700 nm) was greater than 0.1 ?mol photons m-2 s-1.

  9. Real-time digital X-ray subtraction imaging

    International Nuclear Information System (INIS)

    A diagnostic anatomical X-ray apparatus comprising a converter and a television camera for converting an X-ray image of a subject into a series of television fields of video signals is described in detail. A digital memory system stores and integrates the video signals over a time interval corresponding to a plurality of successive television fields. The integrated video signals are recovered from storage and fed to a digital or analogue subtractor, the resulting output being displayed on a television monitor. Thus the display represents on-going changes in the anatomical X-ray image. In a modification, successive groups of fields are stored and integrated in three memories, cyclically, and subtractions are performed between successive pieces of integrated signals to provide a display of successive alterations in the X-ray image. For investigations of the heart, the integrating interval should be of the order of one cardiac cycle. (author)

  10. Super-resolved imaging with ultimate time resolution

    CERN Document Server

    Ashida, Yuto

    2015-01-01

    Precisely and accurately locating point objects is a long-standing common thread in science. Super-resolved imaging of single molecules has revolutionized our view of quasi-static nanostructures $\\it{in-vivo}$. A wide-field approach based on localizing individual fluorophores has emerged as a versatile method to surpass the standard resolution limit. In those techniques, the super-resolution is realized by sparse photoactivation and localization together with the statistical analysis based on point spread functions. Nevertheless, the slow temporal resolution of super-resolved imaging severely restricts the utility to the study of live-cell phenomena. Clearly, a major breakthrough to observe fast, nanoscale dynamics needs to be made. Here we present a super-resolved imaging method that achieves the theoretical-limit time resolution. By invoking information theory, we can achieve the robust localization of overlapped light emitters at an order of magnitude faster speed than the conventional super-resolution mic...

  11. A Colour Image Quantization Algorithm for Time-Constrained Applications

    Directory of Open Access Journals (Sweden)

    Wattanapong KURDTHONGMEE

    2005-06-01

    Full Text Available Many techniques have been proposed to quantize a digital colour image in order to reduce the representative number of colours to be suitable for presenting on different types of display screens. In addition, the techniques have been used to significantly reduce the amount of image data required to transfer over a communication network. Most of the published techniques are targetted for implementing on a general purpose multitasking computer with low restriction on time and resource utilizations. The drawback of these techniques relies on the fact that they cannot fulfill the requirement of some applications for real-time constraint and limited resources. In addition, most of the techniques are too complex for hardware realization. In this paper, an algorithm which is more suitable for time critical applications with an additional feature of simplicity to implement on FPGA (Field Programmable Gate Array platforms is proposed and the details of its implementation and experimentation are presented. The dominate point of the proposed algorithm relies on the fact that it utilizes the weighted sum of the nearest distance along the axis under consideration, which is nontrivial to calculate, instead of the squared Euclidean distance to find the axis to split during. Also, the proposed algorithm has proved that by reducing the number of subspaces to be considered during the variance representative value calculation from 8 to 2 subspaces, the quality of quantized images are comparable to the previously proposed approaches. This makes it possible to further speed up the computational time of the quantization algorithm.

  12. Evaluation of scintillator afterglow for use in a combined optical and PET imaging tomograph

    International Nuclear Information System (INIS)

    The design of a dual modality imaging system for small animal optical and positron emission tomography imaging (OPET) is underway. Its detector must be capable of imaging high energy ?-rays from PET while also resolving optical wavelength photons from bioluminescence. GSO, high purity GSO, BGO, LSO, LYSO, and LaBr scintillators were investigated for their use in the OPET detector. Of specific interest were scintillators with low afterglow, since afterglow photons in the decay of the larger ?-ray events are indistinguishable from the photons generated by bioluminescence. Samples from these crystals were coupled to a photomultiplier tube (PMT) and produced scintillation light from ?-ray events originating from a positron source. The PMT output was directed to a special signal processing circuit that allowed measurement of single photons at different times in the decay of the scintillation. GSO and BGO exhibited optimal performance for use in the OPET system due to their low afterglow. LSO, LYSO, and LaBr were determined unsuitable for use with the current OPET design due to their significant afterglow components. The effect of the afterglow of GSO on the detection of the bioluminescence signal-to-noise ratio (SNR) was evaluated for the OPET system

  13. Visualization of in Vivo Hydrogen Sulfide Production by a Bioluminescence Probe in Cancer Cells and Nude Mice.

    Science.gov (United States)

    Tian, Xiaodong; Li, Zhiyan; Lau, Choiwan; Lu, Jianzhong

    2015-11-17

    Hydrogen sulfide (H2S) has emerged as an exciting endogenous gasotransmitter in addition to nitric oxide and carbon monoxide. However, its precise measurement in living cells and animals remains a challenge. In this study, a novel bioluminescence H2S probe was designed and synthesized by modifying the 6'-amino group of d-aminoluciferin into a 6'-azido group, which was highly selective against other reactive sulfur, nitrogen, and oxygen species. Our H2S probe azidoluciferin sensitively reacted with H2S to release d-aminoluciferin with a strong bioluminescence signal. On the basis of its high selectivity and sensitivity, the H2S probe was used to detect H2S production in live cancer cells and nude mice. The bioluminescence signal decreased in mice treated with propargylglycine, an inhibitor of H2S, suggesting that our H2S probe can detect endogenous H2S in real time, in vivo. Overall, the excellent sensing properties of the probe combined with its bioimaging capability make it a useful tool to study H2S biological roles. PMID:26482557

  14. Lightweight distributed computing for intraoperative real-time image guidance

    Science.gov (United States)

    Suwelack, Stefan; Katic, Darko; Wagner, Simon; Spengler, Patrick; Bodenstedt, Sebastian; Röhl, Sebastian; Dillmann, Rüdiger; Speidel, Stefanie

    2012-02-01

    In order to provide real-time intraoperative guidance, computer assisted surgery (CAS) systems often rely on computationally expensive algorithms. The real-time constraint is especially challenging if several components such as intraoperative image processing, soft tissue registration or context aware visualization are combined in a single system. In this paper, we present a lightweight approach to distribute the workload over several workstations based on the OpenIGTLink protocol. We use XML-based message passing for remote procedure calls and native types for transferring data such as images, meshes or point coordinates. Two different, but typical scenarios are considered in order to evaluate the performance of the new system. First, we analyze a real-time soft tissue registration algorithm based on a finite element (FE) model. Here, we use the proposed approach to distribute the computational workload between a primary workstation that handles sensor data processing and visualization and a dedicated workstation that runs the real-time FE algorithm. We show that the additional overhead that is introduced by the technique is small compared to the total execution time. Furthermore, the approach is used to speed up a context aware augmented reality based navigation system for dental implant surgery. In this scenario, the additional delay for running the computationally expensive reasoning server on a separate workstation is less than a millisecond. The results show that the presented approach is a promising strategy to speed up real-time CAS systems.

  15. Time-Reversal MUSIC Imaging with Time-Domain Gating Technique

    Science.gov (United States)

    Choi, Heedong; Ogawa, Yasutaka; Nishimura, Toshihiko; Ohgane, Takeo

    A time-reversal (TR) approach with multiple signal classification (MUSIC) provides super-resolution for detection and localization using multistatic data collected from an array antenna system. The theory of TR-MUSIC assumes that the number of antenna elements is greater than that of scatterers (targets). Furthermore, it requires many sets of frequency-domain data (snapshots) in seriously noisy environments. Unfortunately, these conditions are not practical for real environments due to the restriction of a reasonable antenna structure as well as limited measurement time. We propose an approach that treats both noise reduction and relaxation of the transceiver restriction by using a time-domain gating technique accompanied with the Fourier transform before applying the TR-MUSIC imaging algorithm. Instead of utilizing the conventional multistatic data matrix (MDM), we employ a modified MDM obtained from the gating technique. The resulting imaging functions yield more reliable images with only a few snapshots regardless of the limitation of the antenna arrays.

  16. Timing and position response of a block detector for fast neutron time-of-flight imaging

    Science.gov (United States)

    Laubach, M. A.; Hayward, J. P.; Zhang, X.; Cates, J. W.

    2014-11-01

    Our research effort seeks to improve the spatial and timing performance of a block detector made of a pixilated plastic scintillator (EJ-200), first demonstrated as part of Oak Ridge National Laboratory's Advanced Portable Neutron Imaging System. Improvement of the position and time response is necessary to achieve better resolution and contrast in the images of shielded special nuclear material. Time-of-flight is used to differentiate between gamma and different sources of neutrons (e.g., transmission and fission neutrons). Factors limiting the timing and position performance of the neutron detector have been revealed through simulations and measurements. Simulations have suggested that the degradation in the ability to resolve pixels in the neutron detector is due to those interactions occurring near the light guide. The energy deposition within the neutron detector is shown to affect position performance and imaging efficiency. This examination details how energy cuts improve the position performance and degrade the imaging efficiency. Measurements have shown the neutron detector to have a timing resolution of ?=238 ps. The majority of this timing uncertainty is from the depth-of-interaction (DOI) of the neutron which is confirmed by simulations and analytical calculations.

  17. Timing and position response of a block detector for fast neutron time-of-flight imaging

    International Nuclear Information System (INIS)

    Our research effort seeks to improve the spatial and timing performance of a block detector made of a pixilated plastic scintillator (EJ-200), first demonstrated as part of Oak Ridge National Laboratory's Advanced Portable Neutron Imaging System. Improvement of the position and time response is necessary to achieve better resolution and contrast in the images of shielded special nuclear material. Time-of-flight is used to differentiate between gamma and different sources of neutrons (e.g., transmission and fission neutrons). Factors limiting the timing and position performance of the neutron detector have been revealed through simulations and measurements. Simulations have suggested that the degradation in the ability to resolve pixels in the neutron detector is due to those interactions occurring near the light guide. The energy deposition within the neutron detector is shown to affect position performance and imaging efficiency. This examination details how energy cuts improve the position performance and degrade the imaging efficiency. Measurements have shown the neutron detector to have a timing resolution of ?=238 ps. The majority of this timing uncertainty is from the depth-of-interaction (DOI) of the neutron which is confirmed by simulations and analytical calculations

  18. Modelling dinoflagellates as an approach to the seasonal forecasting of bioluminescence in the North Atlantic

    Science.gov (United States)

    Marcinko, Charlotte L. J.; Martin, Adrian P.; Allen, John T.

    2014-11-01

    Bioluminescence within ocean surface waters is of significant interest because it can enhance the study of subsurface movement and organisms. Little is known about how bioluminescence potential (BPOT) varies spatially and temporally in the open ocean. However, light emitted from dinoflagellates often dominates the stimulated bioluminescence field. As a first step towards forecasting surface ocean bioluminescence in the open ocean, a simple ecological model is developed which simulates seasonal changes in dinoflagellate abundance. How forecasting seasonal changes in BPOT may be achieved through combining such a model with relationships derived from observations is discussed and an example is given. The study illustrates a potential new approach to forecasting BPOT through explicitly modelling the population dynamics of a prolific bioluminescent phylum. The model developed here offers a promising platform for the future operational forecasting of the broad temporal changes in bioluminescence within the North Atlantic. Such forecasting of seasonal patterns could provide valuable information for the targeting of scientific field campaigns.

  19. Real-Time Air Pollutants Rendering based on Image Processing

    OpenAIRE

    Demin Wang; Yan Huang; Weitao Li

    2011-01-01

    This paper presents a new method for realistic real-time rendering of air pollutants based on image processing. The air pollutants’ variable density can create many shapes of mist what can add a realistic environment to virtual scene. In order to achieve a realistic effect, we further enhance thus obtained air pollution data getting from monitor in spatial domain. In the proposed method we map the densities of air pollutants to different gray levels, and visualize them by blending those gray ...

  20. Imaging gene expression in real-time using aptamers

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Il Chung

    2011-12-13

    Signal transduction pathways are usually activated by external stimuli and are transient. The downstream changes such as transcription of the activated genes are also transient. Real-time detection of promoter activity is useful for understanding changes in gene expression, especially during cell differentiation and in development. A simple and reliable method for viewing gene expression in real time is not yet available. Reporter proteins such as fluorescent proteins and luciferase allow for non-invasive detection of the products of gene expression in living cells. However, current reporter systems do not provide for real-time imaging of promoter activity in living cells. This is because of the long time period after transcription required for fluorescent protein synthesis and maturation. We have developed an RNA reporter system for imaging in real-time to detect changes in promoter activity as they occur. The RNA reporter uses strings of RNA aptamers that constitute IMAGEtags (Intracellular MultiAptamer GEnetic tags), which can be expressed from a promoter of choice. The tobramycin, neomycin and PDC RNA aptamers have been utilized for this system and expressed in yeast from the GAL1 promoter. The IMAGEtag RNA kinetics were quantified by RT-qPCR. In yeast precultured in raffinose containing media the GAL1 promoter responded faster than in yeast precultured in glucose containing media. IMAGEtag RNA has relatively short half-life (5.5 min) in yeast. For imaging, the yeast cells are incubated with their ligands that are labeled with fluorescent dyes. To increase signal to noise, ligands have been separately conjugated with the FRET (Förster resonance energy transfer) pairs, Cy3 and Cy5. With these constructs, the transcribed aptamers can be imaged after activation of the promoter by galactose. FRET was confirmed with three different approaches, which were sensitized emission, acceptor photobleaching and donor lifetime by FLIM (fluorescence lifetime imaging microscopy). Real-time transcription was measured by FLIM-FRET, which was detected by the decrease in donor lifetime resulting from ligand binding to IMAGEtags that were newly synthesized from the activated GAL1 promoter. The FRET signal was specific for transcribed IMAGEtags.

  1. Imaging gene expression in real-time using aptamers

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Il Chung [Ames Laboratory

    2012-11-02

    Signal transduction pathways are usually activated by external stimuli and are transient. The downstream changes such as transcription of the activated genes are also transient. Real-time detection of promoter activity is useful for understanding changes in gene expression, especially during cell differentiation and in development. A simple and reliable method for viewing gene expression in real time is not yet available. Reporter proteins such as fluorescent proteins and luciferase allow for non-invasive detection of the products of gene expression in living cells. However, current reporter systems do not provide for real-time imaging of promoter activity in living cells. This is because of the long time period after transcription required for fluorescent protein synthesis and maturation. We have developed an RNA reporter system for imaging in real-time to detect changes in promoter activity as they occur. The RNA reporter uses strings of RNA aptamers that constitute IMAGEtags (Intracellular MultiAptamer GEnetic tags), which can be expressed from a promoter of choice. The tobramycin, neomycin and PDC RNA aptamers have been utilized for this system and expressed in yeast from the GAL1 promoter. The IMAGEtag RNA kinetics were quantified by RT-qPCR. In yeast precultured in raffinose containing media the GAL1 promoter responded faster than in yeast precultured in glucose containing media. IMAGEtag RNA has relatively short half-life (5.5 min) in yeast. For imaging, the yeast cells are incubated with their ligands that are labeled with fluorescent dyes. To increase signal to noise, ligands have been separately conjugated with the FRET (Förster resonance energy transfer) pairs, Cy3 and Cy5. With these constructs, the transcribed aptamers can be imaged after activation of the promoter by galactose. FRET was confirmed with three different approaches, which were sensitized emission, acceptor photobleaching and donor lifetime by FLIM (fluorescence lifetime imaging microscopy). Real-time transcription was measured by FLIM-FRET, which was detected by the decrease in donor lifetime resulting from ligand binding to IMAGEtags that were newly synthesized from the activated GAL1 promoter. The FRET signal was specific for transcribed IMAGEtags.

  2. Time-delayed fluorescence imaging of a porphycene derivative

    Science.gov (United States)

    Gundy, Sarah L.; van der Putten, Wilhelm J.; Shearer, Andrew; Buckton, Daniel J.; Ryder, Alan G.; Ball, Michael

    2003-06-01

    Porphycenes are currently under investigation for use in Photodynamic therapy, which is a promising treatment for cancer. These materials, which display preferential uptake in cancerous cells, also exhibit high fluorescence yields, and can be used for tumour detection. Problems with steady-state fluorescence techniques such as background autofluorescence can be eliminated by the use of time-resolved techniques. Improved contrast can be obtained with time-resolved techniques because of the differing fluorescence lifetimes between autofluorescence and longer-living exogenous photosensitisers. An imaging system was constructed using a fast (200 ps) gated CCD camera and a pulsed 635 nm laser diode. A tissue phantom composed of polymethyl methacrylate (PMMA) with thirty-six wells of varying diameter and depth (10 mm to 1 mm) was assembled to test the system. The system was used to record images of a porphycene derivative within the wells at differing concentrations in an organic solvent. A tissue imitator was placed on top of the PMMA block at varying thickness. 10-4 M zinc phthalocyanine tetrasulfonate was also placed on top of the block to mimic autofluorescence. The results indicate that the time-gated imaging system can prevent background excitation scatter and fluorescence from a shorter-lived fluorophore from distorting the fluorescence signal from a longer-lived photosensitiser.

  3. Time multiplexing based extended depth of focus imaging.

    Science.gov (United States)

    Ilovitsh, Asaf; Zalevsky, Zeev

    2016-01-01

    We propose to utilize the time multiplexing super resolution method to extend the depth of focus of an imaging system. In standard time multiplexing, the super resolution is achieved by generating duplication of the optical transfer function in the spectrum domain, by the use of moving gratings. While this improves the spatial resolution, it does not increase the depth of focus. By changing the gratings frequency and, by that changing the duplication positions, it is possible to obtain an extended depth of focus. The proposed method is presented analytically, demonstrated via numerical simulations and validated by a laboratory experiment. PMID:26696189

  4. Fre Is the Major Flavin Reductase Supporting Bioluminescence from Vibrio harveyi Luciferase in Escherichia coli*

    OpenAIRE

    Campbell, Zachary T.; Baldwin, Thomas O.

    2009-01-01

    Unlike the vast majority of flavoenzymes, bacterial luciferase requires an exogenous source of reduced flavin mononucleotide for bioluminescence activity. Within bioluminescent bacterial cells, species-specific oxidoreductases are believed to provide reduced flavin for luciferase activity. The source of reduced flavin in Escherichia coli-expressing bioluminescence is not known. There are two candidate proteins potentially involved in this process in E. coli, a homolog ...

  5. Seasonal variation of deep-sea bioluminescence in the Ionian Sea

    Energy Technology Data Exchange (ETDEWEB)

    Craig, Jessica, E-mail: j.craig@abdn.ac.u [University of Aberdeen, Oceanlab, Main Street, Newburgh, Aberdeenshire, AB41 6AA (United Kingdom); Jamieson, Alan J.; Bagley, Philip M.; Priede, Imants G. [University of Aberdeen, Oceanlab, Main Street, Newburgh, Aberdeenshire, AB41 6AA (United Kingdom)

    2011-01-21

    The ICDeep (Image Intensified Charge Coupled Device for Deep sea research) profiler was used to measure the density of deep bioluminescent animals (BL) through the water column in the east, west and mid-Ionian Sea and in the Algerian Basin. A west to east decrease in BL density was found. Generalized additive modelling was used to investigate seasonal variation in the east and west Ionian Sea (NESTOR and NEMO neutrino telescope sites, respectively) from BL measurements in autumn 2008 and spring 2009. A significant seasonal effect was found in the west Ionian Sea (p<0.001), where a deep autumnal peak in BL density occurred between 500 and 2400 m. No significant seasonal variation in BL density was found in the east Ionian Sea (p=0.07). In both spring and autumn, significant differences in BL density were found through the water column between the east and west Ionian Sea (p<0.001).

  6. L1/2 regularization based numerical method for effective reconstruction of bioluminescence tomography

    International Nuclear Information System (INIS)

    Even though bioluminescence tomography (BLT) exhibits significant potential and wide applications in macroscopic imaging of small animals in vivo, the inverse reconstruction is still a tough problem that has plagued researchers in a related area. The ill-posedness of inverse reconstruction arises from insufficient measurements and modeling errors, so that the inverse reconstruction cannot be solved directly. In this study, an l1/2 regularization based numerical method was developed for effective reconstruction of BLT. In the method, the inverse reconstruction of BLT was constrained into an l1/2 regularization problem, and then the weighted interior-point algorithm (WIPA) was applied to solve the problem through transforming it into obtaining the solution of a series of l1 regularizers. The feasibility and effectiveness of the proposed method were demonstrated with numerical simulations on a digital mouse. Stability verification experiments further illustrated the robustness of the proposed method for different levels of Gaussian noise

  7. Visible light induced ocular delayed bioluminescence as a possible origin of negative afterimage

    CERN Document Server

    Bokkon, I; Wang, C; Dai, J; Salari, V; Grass, F; Antal, I

    2011-01-01

    The delayed luminescence of biological tissues is an ultraweak reemission of absorbed photons after exposure to external monochromatic or white light illumination. Recently, Wang, B\\'okkon, Dai and Antal (Brain Res. 2011) presented the first experimental proof of the existence of spontaneous ultraweak biophoton emission and visible light induced delayed ultraweak photon emission from in vitro freshly isolated rat's whole eye, lens, vitreous humor and retina. Here, we suggest that the photobiophysical source of negative afterimage can also occur within the eye by delayed bioluminescent photons. In other words, when we stare at a colored (or white) image for few seconds, external photons can induce excited electronic states within different parts of the eye that is followed by a delayed reemission of absorbed photons for several seconds. Finally, these reemitted photons can be absorbed by nonbleached photoreceptors that produce a negative afterimage. Although this suggests the photobiophysical source of negativ...

  8. L1/2 regularization based numerical method for effective reconstruction of bioluminescence tomography

    Science.gov (United States)

    Chen, Xueli; Yang, Defu; Zhang, Qitan; Liang, Jimin

    2014-05-01

    Even though bioluminescence tomography (BLT) exhibits significant potential and wide applications in macroscopic imaging of small animals in vivo, the inverse reconstruction is still a tough problem that has plagued researchers in a related area. The ill-posedness of inverse reconstruction arises from insufficient measurements and modeling errors, so that the inverse reconstruction cannot be solved directly. In this study, an l1/2 regularization based numerical method was developed for effective reconstruction of BLT. In the method, the inverse reconstruction of BLT was constrained into an l1/2 regularization problem, and then the weighted interior-point algorithm (WIPA) was applied to solve the problem through transforming it into obtaining the solution of a series of l1 regularizers. The feasibility and effectiveness of the proposed method were demonstrated with numerical simulations on a digital mouse. Stability verification experiments further illustrated the robustness of the proposed method for different levels of Gaussian noise.

  9. Seasonal variation of deep-sea bioluminescence in the Ionian Sea

    International Nuclear Information System (INIS)

    The ICDeep (Image Intensified Charge Coupled Device for Deep sea research) profiler was used to measure the density of deep bioluminescent animals (BL) through the water column in the east, west and mid-Ionian Sea and in the Algerian Basin. A west to east decrease in BL density was found. Generalized additive modelling was used to investigate seasonal variation in the east and west Ionian Sea (NESTOR and NEMO neutrino telescope sites, respectively) from BL measurements in autumn 2008 and spring 2009. A significant seasonal effect was found in the west Ionian Sea (p<0.001), where a deep autumnal peak in BL density occurred between 500 and 2400 m. No significant seasonal variation in BL density was found in the east Ionian Sea (p=0.07). In both spring and autumn, significant differences in BL density were found through the water column between the east and west Ionian Sea (p<0.001).

  10. Time-resolved neutron imaging at ANTARES cold neutron beamline

    Science.gov (United States)

    Tremsin, A. S.; Dangendorf, V.; Tittelmeier, K.; Schillinger, B.; Schulz, M.; Lerche, M.; Feller, W. B.

    2015-07-01

    In non-destructive evaluation with X-rays light elements embedded in dense, heavy (or high-Z) matrices show little contrast and their structural details can hardly be revealed. Neutron radiography, on the other hand, provides a solution for those cases, in particular for hydrogenous materials, owing to the large neutron scattering cross section of hydrogen and uncorrelated dependency of neutron cross section on the atomic number. The majority of neutron imaging experiments at the present time is conducted with static objects mainly due to the limited flux intensity of neutron beamline facilities and sometimes due to the limitations of the detectors. However, some applications require the studies of dynamic phenomena and can now be conducted at several high intensity beamlines such as the recently rebuilt ANTARES beam line at the FRM-II reactor. In this paper we demonstrate the capabilities of time resolved imaging for repetitive processes, where different phases of the process can be imaged simultaneously and integrated over multiple cycles. A fast MCP/Timepix neutron counting detector was used to image the water distribution within a model steam engine operating at 10 Hz frequency. Within neutron radiography for the future applications. The neutron spectrum of the ANTARES beamline as well as transmission spectra of a Fe sample were also measured with the Time Of Flight (TOF) technique in combination with a high resolution beam chopper. The energy resolution of our setup was found to be ~ 0.8% at 5 meV and ~ 1.7% at 25 meV. The background level (most likely gammas and epithermal/fast neutrons) of the ANTARES beamline was also measured in our experiments and found to be on the scale of 3% when no filters are installed in the beam. Online supplementary data available from stacks.iop.org/jinst/10/P07008/mmedia. The videos are given as supplementary material linked to the main article.

  11. Precision cosmology with time delay lenses: high resolution imaging requirements

    Science.gov (United States)

    Meng, Xiao-Lei; Treu, Tommaso; Agnello, Adriano; Auger, Matthew W.; Liao, Kai; Marshall, Philip J.

    2015-09-01

    Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as ``Einstein Rings'' in high resolution images. The distortion of these arcs and counter-arcs, as measured over a large number of pixels, provides tight constraints on the difference between the gravitational potential between the quasar image positions, and thus on cosmology in combination with the measured time delay. We carry out a systematic exploration of the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope ?' of the total mass density profile ?totpropto r??' for the main deflector can be measured. Ideally, we require that the statistical error on ?' be less than 0.02, such that it is subdominant to other sources of random and systematic uncertainties. We find that survey data will likely have sufficient depth and resolution to meet the target only for the brighter gravitational lens systems, comparable to those discovered by the SDSS survey. For fainter systems, that will be discovered by current and future surveys, targeted follow-up will be required. However, the exposure time required with upcoming facilitites such as JWST, the Keck Next Generation Adaptive Optics System, and TMT, will only be of order a few minutes per system, thus making the follow-up of hundreds of systems a practical and efficient cosmological probe.

  12. Bioluminescence for USP sterility testing of pharmaceutical suspension products.

    OpenAIRE

    Bussey, D M; Tsuji, K.

    1986-01-01

    Bioluminescence measurement significantly improved the accuracy, sensitivity, precision, and reliability of the current visual endpoint determination for the USP sterility test and eliminated the day 7 transfer/dilution step required for testing suspension products. Thirteen strains of bacteria and fungi (representing potential contaminants in sterile products), three pharmaceutical suspension products, and four media were used in the experiment. No interference from suspension products was e...

  13. A Bioluminescence Method for Direct Measurement of Phosphodiesterase Activity1

    OpenAIRE

    Younès, Antoine; Lukyanenko, Yevgeniya O.; Lyashkov, Alexey E.; Edward G. Lakatta; Sollott, Steven J.

    2011-01-01

    We have adapted bioluminescence methods to be able to measure phosphodiesterase (PDE) activity in a one-step technique. The method employs a four-enzyme system (PDE, adenylate kinase (AK) using excess CTP instead of ATP as substrate, pyruvate kinase (PK), and firefly luciferase) to generate ATP, with measurement of the concomitant luciferase-light emission. Since AK, PK, and luciferase reactions are coupled to recur in a cyclic manner, AMP recycling maintains a constant rate of ATP formation,...

  14. In vivo bioluminescence imaging of vascular remodeling after stroke

    Directory of Open Access Journals (Sweden)

    Joanna Adamczak

    2014-09-01

    Full Text Available Thrombolysis remains the only beneficial therapy for ischemic stroke, but is restricted to a short therapeutic window following the infarct. Currently research is focusing on spontaneous regenerative processes during the sub-acute and chronic phase. Angiogenesis, the formation of new blood vessels from pre-existing ones, was observed in stroke patients, correlates with longer survival and positively affects the formation of new neurons. Angiogenesis takes place in the border zones of the infarct, but further insight into the temporal profile is needed to fully apprehend its therapeutic potential and its relevance for neurogenesis and functional recovery. Angiogenesis is a multistep process, involving extracellular matrix degradation, endothelial cell proliferation, and, finally, new vessel formation. Interaction between vascular endothelial growth factor and its receptor 2 (VEGFR2 plays a central role in these angiogenic signaling cascades. In the present study we investigated non-invasively the dynamics of VEGFR2 expression following cerebral ischemia in a mouse model of middle cerebral artery occlusion. We used a transgenic mouse expressing firefly luciferase under the control of the VEGFR2 promotor to non-invasively elucidate the temporal profile of VEGFR2 expression after stroke as a biomarker for VEGF/VEGFR2 signaling. We measured each animal repetitively up to 2 weeks after stroke and found increased VEGFR2 expression starting 3 days after the insult with peak values at 7 days. These were paralleled by increased VEGFR2 protein levels and increased vascular volume in peri-infarct areas at 14 days after the infarct, indicating that signaling via VEGFR2 leads to successful vascular remodeling. This study describes VEGFR2-related signaling is active at least up to 2 weeks after the infarct and results in increased vascular volume. Further, this study presents a novel strategy for the non-invasive evaluation of angiogenesis-based therapies.

  15. In vivo bioluminescence imaging in preclinical trials of genetic vaccines

    OpenAIRE

    Petkov, Stefan

    2015-01-01

    DNA immunization is a rapidly developing vaccine platform for cancer, infectious disease, and allergies. The efficiency of DNA vaccination is largely determined by the efficiency of delivery and subsequent expression of the HIV-1 genes in the cells. DNA immunogens are generally administered by intramuscular or intradermal injections, followed by electroporation to enhance the DNA uptake into the cells. An intense debate on the pros and cons of different routes of DNA delivery is still ongoing...

  16. Detection of Organic Compounds with Whole-Cell Bioluminescent Bioassays

    Science.gov (United States)

    Xu, Tingting; Close, Dan; Smartt, Abby; Ripp, Steven

    2015-01-01

    Natural and manmade organic chemicals are widely deposited across a diverse range of ecosystems including air, surface water, groundwater, wastewater, soil, sediment, and marine environments. Some organic compounds, despite their industrial values, are toxic to living organisms and pose significant health risks to humans and wildlife. Detection and monitoring of these organic pollutants in environmental matrices therefore is of great interest and need for remediation and health risk assessment. Although these detections have traditionally been performed using analytical chemical approaches that offer highly sensitive and specific identification of target compounds, these methods require specialized equipment and trained operators, and fail to describe potential bioavailable effects on living organisms. Alternatively, the integration of bioluminescent systems into whole-cell bioreporters presents a new capacity for organic compound detection. These bioreporters are constructed by incorporating reporter genes into catabolic or signaling pathways that are present within living cells and emit a bioluminescent signal that can be detected upon exposure to target chemicals. Although relatively less specific compared to analytical methods, bioluminescent bioassays are more cost-effective, more rapid, can be scaled to higher throughput, and can be designed to report not only the presence but also the bioavailability of target substances. This chapter reviews available bacterial and eukaryotic whole-cell bioreporters for sensing organic pollutants and their applications in a variety of sample matrices. PMID:25084996

  17. Image-Based Learning Approach Applied to Time Series Forecasting

    Scientific Electronic Library Online (English)

    K., Ramírez-Amáro; J. C., Chimal-Eguía.

    2012-12-01

    Full Text Available En este trabajo se presenta un nuevo enfoque para obtener información de una serie de tiempo. Para implementar esta nueva técnica, se ha definido una nueva representación de los datos de entrada de una serie de tiempo. Esta nueva representación está basada en la información obtenida mediante la divi [...] sión del eje de la imagen de la serie de tiempo en cajas. La diferencia entre esta nueva técnica de representación de datos y la forma clásica, se basa en que no es dependiente del tiempo. La nueva representación se ha implementado en una nueva técnica denominada Técnica de Aprendizaje Basada en la Imagen (IBLA por su siglas en inglés) y por medio de un mecanismo probabilístico, esta técnica se aplica al muy interesante problema de predicción en una serie de tiempo. Los resultados experimentales indican que usando esta metodología es posible obtener mejores resultados que los obtenidos por medio de Redes Neuronales Artificiales y Máquinas de Soporte Vectorial. Abstract in english In this paper, a new learning approach based on time-series image information is presented. In order to implement this new learning technique, a novel time-series input data representation is also defined. This input data representation is based on information obtained by image axis division into bo [...] xes. The difference between this new input data representation and the classical is that this technique is not time-dependent. This new information is implemented in the new Image-Based Learning Approach (IBLA) and by means of a probabilistic mechanism this learning technique is applied to the interesting problem of time series forecasting. The experimental results indicate that by using the methodology proposed in this article, it is possible to obtain better results than with the classical techniques such as artificial neuronal networks and support vector machines.

  18. Underwater depth imaging using time-correlated single photon counting

    Science.gov (United States)

    Maccarone, Aurora; McCarthy, Aongus; Ren, Ximing; Warburton, Ryan E.; Wallace, Andy M.; Moffat, James; Petillot, Yvan; Buller, Gerald S.

    2015-05-01

    We investigate the potential of a depth imaging system for underwater environments. This system is based on the timeof- flight approach and the time correlated single-photon counting (TCSPC) technique. We report laboratory-based measurements and explore the potential of achieving sub-centimeter xyz resolution at 10's meters stand-off distances. Initial laboratory-based experiments demonstrate depth imaging performed over distances of up to 1.8 meters and under a variety of scattering conditions. The system comprised a monostatic transceiver unit, a fiber-coupled supercontinuum laser with a wavelength tunable acousto-optic filter, and a fiber-coupled individual silicon single-photon avalanche diode (SPAD). The scanning in xy was performed using a pair of galvonometer mirrors directing both illumination and scattered returns via a coaxial optical configuration. Target objects were placed in a 110 liter capacity tank and depth images were acquired through approximately 1.7 meters of water containing different concentrations of scattering agent. Depth images were acquired in clear and highly scattering water using per-pixel acquisition times in the range 0.5-100 ms at average optical powers in the range 0.8 nW to 120 ?W. Based on the laboratory measurements, estimations of potential performance, including maximum range possible, were performed with a model based on the LIDAR equation. These predictions will be presented for different levels of scattering agent concentration, optical powers, wavelengths and comparisons made with naturally occurring environments. The experimental and theoretical results indicate that the TCSPC technique has potential for highresolution underwater depth profile measurements.

  19. Using luciferase to image bacterial infections in mice.

    Science.gov (United States)

    Chang, Mi Hee; Cirillo, Suat L G; Cirillo, Jeffrey D

    2011-01-01

    Imaging is a valuable technique that can be used to monitor biological processes. In particular, the presence of cancer cells, stem cells, specific immune cell types, viral pathogens, parasites and bacteria can be followed in real-time within living animals. Application of bioluminescence imaging to the study of pathogens has advantages as compared to conventional strategies for analysis of infections in animal models. Infections can be visualized within individual animals over time, without requiring euthanasia to determine the location and quantity of the pathogen. Optical imaging allows comprehensive examination of all tissues and organs, rather than sampling of sites previously known to be infected. In addition, the accuracy of inoculation into specific tissues can be directly determined prior to carrying forward animals that were unsuccessfully inoculated throughout the entire experiment. Variability between animals can be controlled for, since imaging allows each animal to be followed individually. Imaging has the potential to greatly reduce animal numbers needed because of the ability to obtain data from numerous time points without having to sample tissues to determine pathogen load. This protocol describes methods to visualize infections in live animals using bioluminescence imaging for recombinant strains of bacteria expressing luciferase. The click beetle (CBRLuc) and firefly luciferases (FFluc) utilize luciferin as a substrate. The light produced by both CBRluc and FFluc has a broad wavelength from 500 nm to 700 nm, making these luciferases excellent reporters for the optical imaging in living animal models. This is primarily because wavelengths of light greater than 600 nm are required to avoid absorption by hemoglobin and, thus, travel through mammalian tissue efficiently. Luciferase is genetically introduced into the bacteria to produce light signal. Mice are pulmonary inoculated with bioluminescent bacteria intratracheally to allow monitoring of infections in real time. After luciferin injection, images are acquired using the IVIS Imaging System. During imaging, mice are anesthetized with isoflurane using an XGI-8 Gas Anethesia System. Images can be analyzed to localize and quantify the signal source, which represents the bacterial infection site(s) and number, respectively. After imaging, CFU determination is carried out on homogenized tissue to confirm the presence of bacteria. Several doses of bacteria are used to correlate bacterial numbers with luminescence. Imaging can be applied to study of pathogenesis and evaluation of the efficacy of antibacterial compounds and vaccines. PMID:21372790

  20. Application of Bacterial Bioluminescence To Assess the Efficacy of Fast-Acting Biocides?

    Science.gov (United States)

    Robinson, Gareth M.; Tonks, Katherine M.; Thorn, Robin M. S.; Reynolds, Darren M.

    2011-01-01

    Traditional microbiological techniques are used to provide reliable data on the rate and extent of kill for a range of biocides. However, such techniques provide very limited data regarding the initial rate of kill of fast-acting biocides over very short time domains. This study describes the application of a recombinant strain of Escherichia coli expressing the Photorhabdus luminescens lux operon as a whole-cell biosensor. Light emission is linked directly to bacterial metabolism; therefore, by monitoring light output, the impact of fast-acting biocides can be assessed. Electrochemically activated solutions (ECASs), bleach, Virkon, and ethanol were assessed at three concentrations (1%, 10%, 80%) in the presence of organic soiling. Over a 2-s time course, 80% ECAS produced the greatest reduction in light output in the absence of organic load but was strongly inhibited by its presence. Eighty percent ethanol outperformed all tested biocides in the presence of organic soil. Bleach and Virkon produced similar reductions in bioluminescence at matched concentrations within the time course of the assay. It was also demonstrated that the assay can be used to rapidly assess the impact of organic soiling. The use of bioluminescent bacteria as whole-cell bioreporters allows assessment of the relative efficacies of fast-acting biocides within milliseconds of application. The assay can be used to investigate activity over short or extended time domains to confirm complete metabolic inhibition of the bioreporter. Moreover, the assay may enable further elucidation of their mechanism of action by allowing the investigation of activity over time domains precluded by traditional microbiology. PMID:21876044

  1. Application of bacterial bioluminescence to assess the efficacy of fast-acting biocides.

    Science.gov (United States)

    Robinson, Gareth M; Tonks, Katherine M; Thorn, Robin M S; Reynolds, Darren M

    2011-11-01

    Traditional microbiological techniques are used to provide reliable data on the rate and extent of kill for a range of biocides. However, such techniques provide very limited data regarding the initial rate of kill of fast-acting biocides over very short time domains. This study describes the application of a recombinant strain of Escherichia coli expressing the Photorhabdus luminescens lux operon as a whole-cell biosensor. Light emission is linked directly to bacterial metabolism; therefore, by monitoring light output, the impact of fast-acting biocides can be assessed. Electrochemically activated solutions (ECASs), bleach, Virkon, and ethanol were assessed at three concentrations (1%, 10%, 80%) in the presence of organic soiling. Over a 2-s time course, 80% ECAS produced the greatest reduction in light output in the absence of organic load but was strongly inhibited by its presence. Eighty percent ethanol outperformed all tested biocides in the presence of organic soil. Bleach and Virkon produced similar reductions in bioluminescence at matched concentrations within the time course of the assay. It was also demonstrated that the assay can be used to rapidly assess the impact of organic soiling. The use of bioluminescent bacteria as whole-cell bioreporters allows assessment of the relative efficacies of fast-acting biocides within milliseconds of application. The assay can be used to investigate activity over short or extended time domains to confirm complete metabolic inhibition of the bioreporter. Moreover, the assay may enable further elucidation of their mechanism of action by allowing the investigation of activity over time domains precluded by traditional microbiology. PMID:21876044

  2. Monitoring Therapeutic Treatments against Burkholderia Infections Using Imaging Techniques

    Directory of Open Access Journals (Sweden)

    Tiffany M. Mott

    2013-05-01

    Full Text Available Burkholderia mallei, the etiologic agent of glanders, are Category B select agents with biothreat potential, and yet effective therapeutic treatments are lacking. In this study, we showed that CpG administration increased survival, demonstrating protection in the murine glanders model. Bacterial recovery from infected lungs, liver and spleen was significantly reduced in CpG-treated animals as compared with non-treated mice. Reciprocally, lungs of CpG-treated infected animals were infiltrated with higher levels of neutrophils and inflammatory monocytes, as compared to control animals. Employing the B. mallei bioluminescent strain CSM001 and the Neutrophil-Specific Fluorescent Imaging Agent, bacterial dissemination and neutrophil trafficking were monitored in real-time using multimodal in vivo whole body imaging techniques. CpG-treatment increased recruitment of neutrophils to the lungs and reduced bioluminescent bacteria, correlating with decreased bacterial burden and increased protection against acute murine glanders. Our results indicate that protection of CpG-treated animals was associated with recruitment of neutrophils prior to infection and demonstrated, for the first time, simultaneous real time in vivo imaging of neutrophils and bacteria. This study provides experimental evidence supporting the importance of incorporating optimized in vivo imaging methods to monitor disease progression and to evaluate the efficacy of therapeutic treatment during bacterial infections.

  3. Simple harmonic error cancellation in time of flight range imaging.

    Science.gov (United States)

    Streeter, Lee; Dorrington, Adrian A

    2015-11-15

    Amplitude modulated continuous wave (AMCW) time of flight (ToF) range imaging provides a full field of distance measurement, but common hardware is implemented with digital technology which leads to unwanted harmonic content, a principle source of error in the distance measurements. Existing strategies for correction of harmonics require auxiliary measurements and amplify noise. A small modification of the data acquisition procedure is described which, intrinsically, is invariant to at least one harmonic. The third harmonic, the main cause of harmonic error, is targeted. Compared to traditional measurements the third harmonic is eliminated with no significant increase in noise variance observed. PMID:26565882

  4. Multi-modal molecular diffuse optical tomography system for small animal imaging

    OpenAIRE

    Guggenheim, James A.; Basevi, Hector R. A.; Frampton, Jon; Styles, Iain B.; DEHGHANI, Hamid

    2013-01-01

    A multi-modal optical imaging system for quantitative 3D bioluminescence and functional diffuse imaging is presented, which has no moving parts and uses mirrors to provide multi-view tomographic data for image reconstruction. It is demonstrated that through the use of trans-illuminated spectral near infrared measurements and spectrally constrained tomographic reconstruction, recovered concentrations of absorbing agents can be used as prior knowledge for bioluminescence imaging within the visi...

  5. High resolution crustal image of South California Continental Borderland: Reverse time imaging including multiples

    Science.gov (United States)

    Bian, A.; Gantela, C.

    2014-12-01

    Strong multiples were observed in marine seismic data of Los Angeles Regional Seismic Experiment (LARSE).It is crucial to eliminate these multiples in conventional ray-based or one-way wave-equation based depth image methods. As long as multiples contain information of target zone along travelling path, it's possible to use them as signal, to improve the illumination coverage thus enhance the image quality of structural boundaries. Reverse time migration including multiples is a two-way wave-equation based prestack depth image method that uses both primaries and multiples to map structural boundaries. Several factors, including source wavelet, velocity model, back ground noise, data acquisition geometry and preprocessing workflow may influence the quality of image. The source wavelet is estimated from direct arrival of marine seismic data. Migration velocity model is derived from integrated model building workflow, and the sharp velocity interfaces near sea bottom needs to be preserved in order to generate multiples in the forward and backward propagation steps. The strong amplitude, low frequency marine back ground noise needs to be removed before the final imaging process. High resolution reverse time image sections of LARSE Lines 1 and Line 2 show five interfaces: depth of sea-bottom, base of sedimentary basins, top of Catalina Schist, a deep layer and a possible pluton boundary. Catalina Schist shows highs in the San Clemente ridge, Emery Knoll, Catalina Ridge, under Catalina Basin on both the lines, and a minor high under Avalon Knoll. The high of anticlinal fold in Line 1 is under the north edge of Emery Knoll and under the San Clemente fault zone. An area devoid of any reflection features are interpreted as sides of an igneous plume.

  6. Results from laboratory tests of the two-dimensional Time-Encoded Imaging System.

    Energy Technology Data Exchange (ETDEWEB)

    Marleau, Peter; Brennan, James S.; Brubaker, Erik; Gerling, Mark D; Le Galloudec, Nathalie Joelle

    2014-09-01

    A series of laboratory experiments were undertaken to demonstrate the feasibility of two dimensional time-encoded imaging. A prototype two-dimensional time encoded imaging system was designed and constructed. Results from imaging measurements of single and multiple point sources as well as extended source distributions are presented. Time encoded imaging has proven to be a simple method for achieving high resolution two-dimensional imaging with potential to be used in future arms control and treaty verification applications.

  7. Method of enhancing image signal-to-noise ratio by combining NMR images of differing pulse sequence timing

    Energy Technology Data Exchange (ETDEWEB)

    Mac Fall, J.R.; Glover, G.H.

    1987-11-24

    This patent describes a method for generating a computed NMR having improved signal-to-noise ratio relative to an acquired NMR image corresponding to substantially similar timing parameters. The method comprises the steps of: exciting, spatially encoding and detecting NMR signals in a sample object to obtain acquired images according to a timing parameter which varies between acquired images; fitting NMR data corresponding to each pixel of the acquired images into an equation relating NMR parameters of the object to the NMR signals in order to produce fitted equational and generating the computed image corresponding to a single value of the timing parameter using the fitted equations.

  8. In-Vivo Real-Time X-ray ?-Imaging

    Science.gov (United States)

    Dammer, Jiri; Holy, Tomas; Jakubek, Jan; Jakubek, Martin; Pospisil, Stanislav; Vavrík, Daniel

    2007-11-01

    The technique of X-ray transmission imaging is available for more than 100 years and it is still one of the fastest and easiest ways how to study the internal structure of living biological samples. The advances in semiconductor technology in last years make possible to fabricate new types of X-ray detectors with direct conversion of interacting X-ray photon to an electric signal. Especially semiconductor pixel detectors seem to be very promising. Compared to the film technique they bring single-quantum and real-time digital information about the studied object with high resolution, high sensitivity and broad dynamic range. These pixel detector-based imaging stand promising as a new tool in the field of small animal imaging, for cancer research and for observation of dynamic processes inside organisms. These detectors open up for instance new possibilities for researchers to perform non-invasive studies of tissue for mutations or pathologies and to monitor disease progression or response to therapy.

  9. Real-time fluorescence imaging in analytical chemistry

    Science.gov (United States)

    Johansson, Jonas; Johansson, Thomas; Nilsson, Stefan

    1996-01-01

    A detection system for capillary electroseparation methods based on fluorescence imaging has been developed. In capillary electrophoresis (CE) the detection unit is normally placed near the outlet part of the fused silica column where a window is opened in the coating and the fluorescence is recorded over a short distance to maintain a high resolution. Our method employs fluorescence imaging of the whole column during separation of various samples. The column is positioned in a straight holder and the outer protective coating of the column is removed to get optical access to the sample. An excimer/dye laser is used for excitation of the sample and the fluorescence is recorded with an image-intensified CCD detector and displayed in real-time. The CCD detector is read out with a rate of about 5 frames per second and the corresponding full fluorescence line profiles along the column are displayed. Thus, full electropherogram are displayed showing the propagation and gradual separation of the sample fractions. The main advantage of this method is that parameters such as sample concentrations, diffusion, wall interaction and sample-to-sample interaction can be studied in real-time over the full length of the column, which is crucial for efficient system optimization. Among several applications, isoelectric focusing, isotachophoresis and enzyme-substrate interactions can be mentioned. Methods for increasing the collection efficiency, such as fiber optic arrays, have been investigated as well as different methods for computer-assisted signal integration and filtering. A fiber array consisting of 500 optical quartz fibers has been constructed that gives a substantial improvement of the optical collection efficiency.

  10. Digital image processing for real-time neutron radiography and its applications

    International Nuclear Information System (INIS)

    The present paper describes several digital image processing approaches for the real-time neutron radiography (neutron television-NTV), such as image integration, adaptive smoothing and image enhancement, which have beneficial effects on image improvements, and also describes how to use these techniques for applications. Details invisible in direct images of NTV are able to be revealed by digital image processing, such as reversed image, gray level correction, gray scale transformation, contoured image, subtraction technique, pseudo color display and so on. For real-time application a contouring operation and an averaging approach can also be utilized effectively. (author)

  11. STEGANALYSIS OF REAL TIME IMAGE BY STATISTICAL ATTACKS

    Directory of Open Access Journals (Sweden)

    SWAGOTA BERA,

    2010-09-01

    Full Text Available Steganalysis is a technique for the detection of the secret informations embedded in the another image known as cover image and if possible the secret text is tried to recover .In this paper ,two techniques are used for the detection of the hidden data .Firstly, detection done by comparing the histogram of the stego & cover image in which the attacker knows about the cover image without the knowledge of the coding algorithm of the stego image & secondly in the image smoothening technique , the probability distribution function is used for the detection .Based on the difference in statistical parameter of the stego image with cover image detection is done.

  12. Prey attraction as a possible function of bioluminescence in the larvae of Pyrearinus termitilluminans (Coleoptera: Elateridae)

    Scientific Electronic Library Online (English)

    Kent H., Redford.

    Full Text Available Elaterid beetle larvae. Pyrearinus termitilluminans (sp.n., Costa, 1982.) live in termite mounds in central Brazil. Each larva produces light in the segment immediately behind its head. Larvae were observed to luminesce only during the first weeks of the rainy season, the same times as the ant and t [...] ermite alate flights. Alates, apparently attracted to P. termitilluminans larval lights, serve as an important food source for the larvae. The prey-catching and food-storing behavior and the phenomenon of bioluminescence are apparently an evolutionary response by P. termitilluminans larvae to a short, rich pulse of food. Prey attraction as a probable cause for luminescence has been suggested only twice before.

  13. Prey attraction as a possible function of bioluminescence in the larvae of Pyrearinus termitilluminans (Coleoptera: Elateridae

    Directory of Open Access Journals (Sweden)

    Kent H. Redford

    1982-01-01

    Full Text Available Elaterid beetle larvae. Pyrearinus termitilluminans (sp.n., Costa, 1982. live in termite mounds in central Brazil. Each larva produces light in the segment immediately behind its head. Larvae were observed to luminesce only during the first weeks of the rainy season, the same times as the ant and termite alate flights. Alates, apparently attracted to P. termitilluminans larval lights, serve as an important food source for the larvae. The prey-catching and food-storing behavior and the phenomenon of bioluminescence are apparently an evolutionary response by P. termitilluminans larvae to a short, rich pulse of food. Prey attraction as a probable cause for luminescence has been suggested only twice before.

  14. Microwave Imaging for Breast Cancer Detection : Comparison of Tomographic Imaging Algorithms using Single-Frequency and Time-Domain Data

    DEFF Research Database (Denmark)

    Rubæk, Tonny; Fhager, Andreas

    2011-01-01

    Still more research groups are promoting microwave imaging as a viable supplement or substitution to more conventional imaging modalities. A widespread approach for microwave imaging of the breast is tomographic imaging in which one seeks to reconstruct the distributions of permittivity and conductivity in the breast. In this paper two nonlinear tomographic algorithms are compared – one is a single-frequency algorithm and the other is a time-domain algorithm.

  15. Application of time reversal acoustics focusing for nonlinear imaging ms

    Science.gov (United States)

    Sarvazyan, Armen; Sutin, Alexander

    2001-05-01

    Time reversal acoustic (TRA) focusing of ultrasound appears to be an effective tool for nonlinear imaging in industrial and medical applications because of its ability to efficiently concentrate ultrasonic energy (close to diffraction limit) in heterogeneous media. In this study, we used two TRA systems to focus ultrasonic beams with different frequencies in coinciding focal points, thus causing the generation of ultrasonic waves with combination frequencies. Measurements of the intensity of these combination frequency waves provide information on the nonlinear parameter of medium in the focal region. Synchronized stirring of two TRA focused beams enables obtaining 3-D acoustic nonlinearity images of the object. Each of the TRA systems employed an aluminum resonator with piezotransducers glued to its facet. One of the free facets of each resonator was submerged into a water tank and served as a virtual phased array capable of ultrasound focusing and beam steering. To mimic a medium with spatially varying acoustical nonlinearity a simplest model such as a microbubble column in water was used. Microbubbles were generated by electrolysis of water using a needle electrode. An order of magnitude increase of the sum frequency component was observed when the ultrasound beams were focused in the area with bubbles.

  16. Real-time imaging for construction site metrology

    Science.gov (United States)

    Lawrence, Debbie J.; Kearney, Frank W.; Ginsberg, Mark; Masters, Larry

    1988-08-01

    Military construction, like private industry, needs improved methods by which: (1) quality can be assured throughout the construction process, (2) the degree of construction progress can be assessed and documented, and (3) the performance of systems and materials can be assessed over time to aid in maintenance decision-making. Although these aspects of construction processes have traditionally been addressed through an empirical approach, recent advances in computer technology have provided new opportunities for improving upon the traditional methods. The U.S. Army Construction Engineering Research Laboratory (USA-CERL) is exploring the use of a sequential construction analyzer (SCA) to improve quality assurance, allow for more effective tracking of construction progress, and provide data for making decisions about maintenance. The SCA is a computer-based system that uses images obtained via various types of cameras to enhance the image data into useful information. This study was conducted to identify potential applications of the SCA in three areas of construction: buildings, construction sites, and paving. Many possibilities exist for applying this technology to the construction industry. The SCA concept is being optimized at USA-CERL, and a prototype is under development. When the prototype has been field-tested successfully, it will be used to develop specific applications for the Army and private industry.

  17. Automated Hierarchical Time Gain Compensation for In Vivo Ultrasound Imaging

    DEFF Research Database (Denmark)

    Moshavegh, Ramin; Hemmsen, Martin Christian

    2015-01-01

    Time gain compensation (TGC) is essential to ensure the optimal image quality of the clinical ultrasound scans. When large fluid collections are present within the scan plane, the attenuation distribution is changed drastically and TGC compensation becomes challenging. This paper presents an automated hierarchical TGC (AHTGC) algorithm that accurately adapts to the large attenuation variation between different types of tissues and structures. The algorithm relies on estimates of tissue attenuation, scattering strength, and noise level to gain a more quantitative understanding of the underlying tissue and the ultrasound signal strength. The proposed algorithm was applied to a set of 44 in vivo abdominal movie sequences each containing 15 frames. Matching pairs of in vivo sequences, unprocessed and processed with the proposed AHTGC were visualized side by side and evaluated by two radiologists in terms of image quality. Wilcoxon signed-rank test was used to evaluate whether radiologists preferred the processed sequences or the unprocessed data. The results indicate that the average visual analogue scale (VAS) is positive ( p-value: 2.34 × 10?13) and estimated to be 1.01 (95% CI: 0.85; 1.16) favoring the processed data with the proposed AHTGC algorithm.

  18. Bioluminescência de fungos: distribuição, função e mecanismo de emissão de luz / Fungi bioluminescence: distribution, function and mechanism of light emission

    Scientific Electronic Library Online (English)

    Anderson Garbuglio, Oliveira; Rodrigo Pimenta, Carvalho; Hans Eugene, Waldenmaier; Cassius Vinicius, Stevani.

    Full Text Available [...] Abstract in english The emission of light by living organisms, bioluminescence, has been studied since the nineteenth century. However, some bioluminescent systems, such as fungi, remain poorly understood. The emitter, the two enzymes involved, and the reaction mechanism have not yet been unraveled. Moreover, the ecolo [...] gical role and evolutionary significance for fungal luminescence is also unknown. It is hoped that comprehensive research on fungal bioluminescent systems will generate knowledge and tools for academic and applied sciences. This review discusses the distribution of bioluminescent fungi on Earth, attempts to elucidate the mechanism involved in light emission, and presents preliminary results on the evolution and ecological role of fungal bioluminescence.

  19. Bioluminescence method to evaluate antimicrobial agents against Mycobacterium avium.

    OpenAIRE

    Cooksey, R C; Morlock, G P; Beggs, M; Crawford, J. T.

    1995-01-01

    Plasmid pLUC10, carrying the firefly luciferase gene, was transformed by electroporation into Mycobacterium avium A5. Bioluminescence production by strain A5(pLUC10), as measured in a microdilution plate luminometer, was approximately 1 relative light unit per 2 x 10(6) viable bacilli, whereas it was 0.0005 relative light unit for an equal number of parental cells. The susceptibility of strain A5(pLUC10) to eight concentrations of each of eight antimicrobial agents was evaluated by the lucife...

  20. Bioluminescence Probe for Detecting Hydrogen Sulfide in Vivo.

    Science.gov (United States)

    Ke, Bowen; Wu, Wenxiao; Liu, Wei; Liang, Hong; Gong, Deying; Hu, Xiaotong; Li, Minyong

    2016-01-01

    Considering that hydrogen sulfide (H2S) is an endogenous signaling molecule involved in numerous biological processes, a method for monitoring H2S as a powerful tool for investigating its complicated functions and mechanisms is urgently demanded. Herein, a bioluminescent turn-on probe was reported based on caged strategy for the detection of H2S in vitro and in vivo. This probe will help us understand the intricate contribution of H2S to a variety of physiological and pathological processes. PMID:26634959

  1. Inhibitory effect of lipoic acid on firefly luciferase bioluminescence

    International Nuclear Information System (INIS)

    Lipoic acid was found to inhibit the firefly luciferin-luciferase reaction. The inhibition is competitive and is the strongest known (Ki 0.026 ± 0.013 ?M) compared with other reported inhibitors. Considering the structure-activity correlations, the mechanism of inhibition may originate from the sulfur atom and carboxyl moiety of lipoic acid giving it structural specificity. Subsequent addition of lipoic acid and nitric oxide accelerated the inhibition in vitro, suggesting that lipoic acid may have a functional role in regulating firefly bioluminescence

  2. Toxicity assessment of Hanford Site wastes by bacterial bioluminescence

    International Nuclear Information System (INIS)

    This paper examines the toxicity of the nonradioactive component of low-level wastes stored in tanks on the Hanford reservation. The use of a faster, cheaper bioassay to replace the 96 hour fish acute toxicity test is examined. The new bioassay is based on loss of bioluminescence of Photobacter phosphoreum (commonly called Microtox) following exposure to toxic materials. This bioassay is calibrated and compares well to the standard fish acute toxicity test for characterization of Hanford Wastes. 4 refs., 11 figs., 11 tabs

  3. Real-time image acquisition and deblurring for underwater gravel extraction by smartphone

    Directory of Open Access Journals (Sweden)

    Ming-Fu Chen

    2014-02-01

    Full Text Available Gravel size distribution is an important aspect of stream investigation. Using water photography to determine such distribution is a simple and cost-effective approach for gathering instream gravel information. However, good-quality images of underwater gravels in shallow areas are difficult to acquire because of the flow- and wind-induced perturbation at water surface. Thus, two Lucy–Richardson iterations are applied on an averaged image to obtain a deblurred image for gravel extraction. A Matlab code for multi-frame image averaging and image deblurring is implemented on a laptop computer. Underwater gravel images are acquired using a video camera and processed offline. Thus, the usability of the images acquired during field investigation cannot be determined immediately. However, returning to the investigated streams for additional data gathering would be costly, and the cameras may accidentally be dropped into the water. This paper presents multi-frame image averaging and image deblurring smartphone-based approaches for underwater gravel extraction. A waterproof smartphone is used to acquire the images, on which image deblurring is immediately conducted to test whether the images can be used for gravel extraction. The averaged image of using mean-based filter is derived during real-time image acquisition. The deblurred image is derived block-by-block because of limited memory capacity of smartphones. The time consumed for acquiring 1500 frame images with size of 1280 × 720 pixels is approximately 6 min by Sony Xperia smartphones. Image averaging can be performed in real time during image acquisition. Image deblurring is accomplished accurately and is consistent with results of the Matlab code. The processing time for image deblurring is approximately 12 min. A compact system for underwater gravel investigation using smartphones is successfully developed in this study. Image acquisition and deblurring are completed in real time at the investigated fields. Thus, we can immediately test whether the acquired images are usable for gravel extraction, thereby improving investigation efficiency significantly. 

  4. Magnetic Resonance Imaging of time-varying magnetic fields from therapeutic devices

    OpenAIRE

    Hernandez-Garcia, Luis; Bhatia, Vivek; Prem-Kumar, Krishan; Ulfarsson, Magnus

    2013-01-01

    While magnetic resonance imaging of static magnetic fields generated by external probes has been previously demonstrated, there is an unmet need to image time-varying magnetic fields, such as those generated by transcranial magnetic stimulators or radiofrequency hyperthermia probes. A method to image such time-varying magnetic fields is introduced in this work. This article presents the theory behind the method and provides proof of concept by imaging time-varying magnetic fields generated by...

  5. Imaging tooth enamel using zero echo time (ZTE) magnetic resonance imaging

    Science.gov (United States)

    Rychert, Kevin M.; Zhu, Gang; Kmiec, Maciej M.; Nemani, Venkata K.; Williams, Benjamin B.; Flood, Ann B.; Swartz, Harold M.; Gimi, Barjor

    2015-03-01

    In an event where many thousands of people may have been exposed to levels of radiation that are sufficient to cause the acute radiation syndrome, we need technology that can estimate the absorbed dose on an individual basis for triage and meaningful medical decision making. Such dose estimates may be achieved using in vivo electron paramagnetic resonance (EPR) tooth biodosimetry, which measures the number of persistent free radicals that are generated in tooth enamel following irradiation. However, the accuracy of dose estimates may be impacted by individual variations in teeth, especially the amount and distribution of enamel in the inhomogeneous sensitive volume of the resonator used to detect the radicals. In order to study the relationship between interpersonal variations in enamel and EPR-based dose estimates, it is desirable to estimate these parameters nondestructively and without adding radiation to the teeth. Magnetic Resonance Imaging (MRI) is capable of acquiring structural and biochemical information without imparting additional radiation, which may be beneficial for many EPR dosimetry studies. However, the extremely short T2 relaxation time in tooth structures precludes tooth imaging using conventional MRI methods. Therefore, we used zero echo time (ZTE) MRI to image teeth ex vivo to assess enamel volumes and spatial distributions. Using these data in combination with the data on the distribution of the transverse radio frequency magnetic field from electromagnetic simulations, we then can identify possible sources of variations in radiation-induced signals detectable by EPR. Unlike conventional MRI, ZTE applies spatial encoding gradients during the RF excitation pulse, thereby facilitating signal acquisition almost immediately after excitation, minimizing signal loss from short T2 relaxation times. ZTE successfully provided volumetric measures of tooth enamel that may be related to variations that impact EPR dosimetry and facilitate the development of analytical procedures for individual dose estimates.

  6. Real-time deblurring of handshake blurred images on smartphones

    Science.gov (United States)

    Pourreza-Shahri, Reza; Chang, Chih-Hsiang; Kehtarnavaz, Nasser

    2015-02-01

    This paper discusses an Android app for the purpose of removing blur that is introduced as a result of handshakes when taking images via a smartphone. This algorithm utilizes two images to achieve deblurring in a computationally efficient manner without suffering from artifacts associated with deconvolution deblurring algorithms. The first image is the normal or auto-exposure image and the second image is a short-exposure image that is automatically captured immediately before or after the auto-exposure image is taken. A low rank approximation image is obtained by applying singular value decomposition to the auto-exposure image which may appear blurred due to handshakes. This approximation image does not suffer from blurring while incorporating the image brightness and contrast information. The eigenvalues extracted from the low rank approximation image are then combined with those from the shortexposure image. It is shown that this deblurring app is computationally more efficient than the adaptive tonal correction algorithm which was previously developed for the same purpose.

  7. High resolution, near real-time x-ray video imaging without image intensification

    International Nuclear Information System (INIS)

    This paper discusses a type of x-ray camera designed to generate standard RS-170 video output that does not use x-ray or optical image intensifiers. Instead, it employs a very sensitive, very high resolution, CCD sensor which views an x-ray-to-light conversion screen directly through a high speed imaging lens. This new solid state TV camera, which will be described later, has very low readout noise plus unusually high gain which enables it to generate real-time video with incident flux levels typical of many inspection applications. Perhaps more important is an ability to integrate for multiple frame intervals on the chip followed by the output of a standard, RS-170 format video frame containing two balanced interlaced fields. In this integrating mode excellent quality images of low contrast objects can be obtained with only a few tenths of a second integrating intervals. The basic elements of this type of camera will be described and applications discussed where this approach appears to have important advantages over other methods in common use. Also included is an analytical/numerical discussion which supports some of the important points

  8. Forming rotated SAR images by real-time motion compensation.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2012-12-01

    Proper waveform parameter selection allows collecting Synthetic Aperture Radar (SAR) phase history data on a rotated grid in the Fourier Space of the scene being imaged. Subsequent image formation preserves the rotated geometry to allow SAR images to be formed at arbitrary rotation angles without the use of computationally expensive interpolation or resampling operations. This should be useful where control of image orientation is desired such as generating squinted stripmaps and VideoSAR applications, among others.

  9. Collinear, two-color optical Kerr effect shutter for ultrafast time-resolved imaging

    CERN Document Server

    Purwar, Harsh; Rozé, Claude; Sedarsky, David; Blaisot, Jean-Bernard

    2015-01-01

    Imaging with ultrashort exposure times is generally achieved with a crossed-beam geometry. In the usual arrangement, an off-axis gating pulse induces birefringence in a medium exhibiting a strong Kerr response (commonly carbon disulfide) which is followed by a polarizer aligned to fully attenuate the on-axis imaging beam. By properly timing the gate pulse, imaging light experiences a polarization change allowing time-dependent transmission through the polarizer to form an ultrashort image. The crossed-beam system is effective in generating short gate times, however, signal transmission through the system is complicated by the crossing angle of the gate and imaging beams. This work presents a robust ultrafast time-gated imaging scheme based on a combination of type-I frequency doubling and a collinear optical arrangement in carbon disulfide. We discuss spatial effects arising from crossed-beam Kerr gating, and examine the imaging spatial resolution and transmission timing affected by collinear activation of th...

  10. Real-time computer-generated integral imaging and 3D image calibration for augmented reality surgical navigation.

    Science.gov (United States)

    Wang, Junchen; Suenaga, Hideyuki; Liao, Hongen; Hoshi, Kazuto; Yang, Liangjing; Kobayashi, Etsuko; Sakuma, Ichiro

    2015-03-01

    Autostereoscopic 3D image overlay for augmented reality (AR) based surgical navigation has been studied and reported many times. For the purpose of surgical overlay, the 3D image is expected to have the same geometric shape as the original organ, and can be transformed to a specified location for image overlay. However, how to generate a 3D image with high geometric fidelity and quantitative evaluation of 3D image's geometric accuracy have not been addressed. This paper proposes a graphics processing unit (GPU) based computer-generated integral imaging pipeline for real-time autostereoscopic 3D display, and an automatic closed-loop 3D image calibration paradigm for displaying undistorted 3D images. Based on the proposed methods, a novel AR device for 3D image surgical overlay is presented, which mainly consists of a 3D display, an AR window, a stereo camera for 3D measurement, and a workstation for information processing. The evaluation on the 3D image rendering performance with 2560×1600 elemental image resolution shows the rendering speeds of 50-60 frames per second (fps) for surface models, and 5-8 fps for large medical volumes. The evaluation of the undistorted 3D image after the calibration yields sub-millimeter geometric accuracy. A phantom experiment simulating oral and maxillofacial surgery was also performed to evaluate the proposed AR overlay device in terms of the image registration accuracy, 3D image overlay accuracy, and the visual effects of the overlay. The experimental results show satisfactory image registration and image overlay accuracy, and confirm the system usability. PMID:25465067

  11. Time-resolved computed tomography of the liver: retrospective, multi-phase image reconstruction derived from volumetric perfusion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Michael A.; Kartalis, Nikolaos; Aspelin, Peter; Albiin, Nils; Brismar, Torkel B. [Karolinska University Hospital, Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm (Sweden); Leidner, Bertil; Svensson, Anders [Karolinska University Hospital, Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm (Sweden); Karolinska University Hospital Huddinge, Department of Radiology, Stockholm (Sweden)

    2014-01-15

    To assess feasibility and image quality (IQ) of a new post-processing algorithm for retrospective extraction of an optimised multi-phase CT (time-resolved CT) of the liver from volumetric perfusion imaging. Sixteen patients underwent clinically indicated perfusion CT using 4D spiral mode of dual-source 128-slice CT. Three image sets were reconstructed: motion-corrected and noise-reduced (MCNR) images derived from 4D raw data; maximum and average intensity projections (time MIP/AVG) of the arterial/portal/portal-venous phases and all phases (total MIP/ AVG) derived from retrospective fusion of dedicated MCNR split series. Two readers assessed the IQ, detection rate and evaluation time; one reader assessed image noise and lesion-to-liver contrast. Time-resolved CT was feasible in all patients. Each post-processing step yielded a significant reduction of image noise and evaluation time, maintaining lesion-to-liver contrast. Time MIPs/AVGs showed the highest overall IQ without relevant motion artefacts and best depiction of arterial and portal/portal-venous phases respectively. Time MIPs demonstrated a significantly higher detection rate for arterialised liver lesions than total MIPs/AVGs and the raw data series. Time-resolved CT allows data from volumetric perfusion imaging to be condensed into an optimised multi-phase liver CT, yielding a superior IQ and higher detection rate for arterialised liver lesions than the raw data series. (orig.)

  12. Time-resolved computed tomography of the liver: retrospective, multi-phase image reconstruction derived from volumetric perfusion imaging

    International Nuclear Information System (INIS)

    To assess feasibility and image quality (IQ) of a new post-processing algorithm for retrospective extraction of an optimised multi-phase CT (time-resolved CT) of the liver from volumetric perfusion imaging. Sixteen patients underwent clinically indicated perfusion CT using 4D spiral mode of dual-source 128-slice CT. Three image sets were reconstructed: motion-corrected and noise-reduced (MCNR) images derived from 4D raw data; maximum and average intensity projections (time MIP/AVG) of the arterial/portal/portal-venous phases and all phases (total MIP/ AVG) derived from retrospective fusion of dedicated MCNR split series. Two readers assessed the IQ, detection rate and evaluation time; one reader assessed image noise and lesion-to-liver contrast. Time-resolved CT was feasible in all patients. Each post-processing step yielded a significant reduction of image noise and evaluation time, maintaining lesion-to-liver contrast. Time MIPs/AVGs showed the highest overall IQ without relevant motion artefacts and best depiction of arterial and portal/portal-venous phases respectively. Time MIPs demonstrated a significantly higher detection rate for arterialised liver lesions than total MIPs/AVGs and the raw data series. Time-resolved CT allows data from volumetric perfusion imaging to be condensed into an optimised multi-phase liver CT, yielding a superior IQ and higher detection rate for arterialised liver lesions than the raw data series. (orig.)

  13. When should we recommend use of dual time-point and delayed time-point imaging techniques in FDG PET?

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Gang [Philadelphia VA Medical Center, Department of Radiology, Philadelphia, PA (United States); Hospital of the University of Pennsylvania, Department of Radiology, Philadelphia, PA (United States); Torigian, Drew A.; Alavi, Abass [Hospital of the University of Pennsylvania, Department of Radiology, Philadelphia, PA (United States); Zhuang, Hongming [Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States)

    2013-05-15

    FDG PET and PET/CT are now widely used in oncological imaging for tumor characterization, staging, restaging, and response evaluation. However, numerous benign etiologies may cause increased FDG uptake indistinguishable from that of malignancy. Multiple studies have shown that dual time-point imaging (DTPI) of FDG PET may be helpful in differentiating malignancy from benign processes. However, exceptions exist, and some studies have demonstrated significant overlap of FDG uptake patterns between benign and malignant lesions on delayed time-point images. In this review, we summarize our experience and opinions on the value of DTPI and delayed time-point imaging in oncology, with a review of the relevant literature. We believe that the major value of DTPI and delayed time-point imaging is the increased sensitivity due to continued clearance of background activity and continued FDG accumulation in malignant lesions, if the same diagnostic criteria (as in the initial standard single time-point imaging) are used. The specificity of DTPI and delayed time-point imaging depends on multiple factors, including the prevalence of malignancies, the patient population, and the cut-off values (either SUV or retention index) used to define a malignancy. Thus, DTPI and delayed time-point imaging would be more useful if performed for evaluation of lesions in regions with significant background activity clearance over time (such as the liver, the spleen, the mediastinum), and if used in the evaluation of the extent of tumor involvement rather than in the characterization of the nature of any specific lesion. Acute infectious and non-infectious inflammatory lesions remain as the major culprit for diminished diagnostic performance of these approaches (especially in tuberculosis-endemic regions). Tumor heterogeneity may also contribute to inconsistent performance of DTPI. The authors believe that selective use of DTPI and delayed time-point imaging will improve diagnostic accuracy and interpretation confidence in FDG PET imaging. (orig.)

  14. Influence of culture conditions on mycelial growth and bioluminescence of Gerronema viridilucens.

    Science.gov (United States)

    Mendes, Luiz F; Bastos, Erick L; Desjardin, Dennis E; Stevani, Cassius V

    2008-05-01

    Herein we describe a procedure for measuring the total light emission of the naturally bioluminescent tropical fungus Gerronema viridilucens and the optimization of culture conditions using multivariate factorial anova. Cultures growing on an agar surface in 35 mm Petri dishes at 90% humidity show optimal bioluminescence emission at 25 degrees C in the presence of 1.0% sugar cane molasses, 0.10% yeast extract and pH 6.0 (nonbuffered). Temperature and pH are the most important factors for both mycelial growth and bioluminescence. PMID:18355288

  15. Ultraweak bioluminescence dynamics and singlet oxygen correlations during injury repair in sweet potato

    Science.gov (United States)

    Hossu, Marius; Ma, Lun; Chen, Wei

    2011-03-01

    Ultraweak bioluminescence at the level of hundreds of photons per second per square centimeter after cutting injury of sweet potato was investigated. A small emission peak immediate after cutting and a later and higher peak were observed. Selective singlet oxygen inhibitors and sensors have been use to study the contribution of singlet oxygen during the curing process, demonstrating increased presence of singlet oxygen during and after the late bioemission peak. It was confirmed that singlet oxygen has direct contribution to ultraweak bioluminescence but also induces the formation of other exited luminescent species that are responsible for the recorded bioluminescence.

  16. A multi-phase level set framework for source reconstruction in bioluminescence tomography

    International Nuclear Information System (INIS)

    We propose a novel multi-phase level set algorithm for solving the inverse problem of bioluminescence tomography. The distribution of unknown interior source is considered as piecewise constant and represented by using multiple level set functions. The localization of interior bioluminescence source is implemented by tracing the evolution of level set function. An alternate search scheme is incorporated to ensure the global optimal of reconstruction. Both numerical and physical experiments are performed to evaluate the developed level set reconstruction method. Reconstruction results show that the proposed method can stably resolve the interior source of bioluminescence tomography.

  17. Study of firefly luciferin oxidation and isomerism as possible inhibition pathways for firefly bioluminescence

    Science.gov (United States)

    Pinto da Silva, Luís; Esteves da Silva, Joaquim C. G.

    2014-01-01

    Firefly bioluminescence presents a light emitting profile with a form of a flash, due to the firefly luciferase-catalyzed formation of inhibitory products. These impair the binding of the substrate luciferin to the active site of the enzyme. However, this luciferase catalyzed pathways may not be the only ones responsible for the flash profile. The oxidation and isomerisation of the substrate luciferin lead to the formation of compounds that are also known inhibitors of firefly bioluminescence. So, the objective of this Letter was to analyze if these reactions could be capable of interfering with the bioluminescence reaction.

  18. Real time 2 dimensional detector for charged particle and soft X-ray images

    International Nuclear Information System (INIS)

    The conventional instruments used in experiments for the soft X-ray region such as X-ray diffraction analysis are X-ray films or imaging plates. However, these instruments are not suitable for real time observation. In this paper, newly developed imaging devices will be presented, which have the capability to take X-ray images in real time with a high detection efficiency. Also, another capability, to take elementary particle tracking images, is described. (orig.)

  19. Real time neutron reflectometry using neutron optical imaging

    International Nuclear Information System (INIS)

    We will describe recent improvements to the SPEAR reflectometer at the Manuel Lujan Jr. Neutron Scattering Center at Los Alamos. One of the changes consists of wider convergent, incident-beam, collimation to take advantage of optical imaging for specular scattering. In addition, the instrument now views a partially coupled liquid hydrogen moderator as opposed to the decoupled moderator that was previous in-place. While the wavelength distribution is poorer, it matches the time (wavelength) resolution of the reflectometer more closely with the angular resolution. Since the integrated intensity of the partially coupled moderator is higher than the decoupled moderator, we show a similar gain in incident beam flux on the sample without loss of the ability to separate fringes. The increases in intensity from the moderator gain and the improved collimation combine to allow us to measure reflectivities with good statistics down to 10-4 in a matter of minutes and reflectivities of 10-6 in an hour. Examples of measurements showing the gain in data accumulation rates are presented. (author)

  20. Real-time Fluorescence Image-Guided Oncologic Surgery

    OpenAIRE

    Mondal, Suman B.; Gao, Shengkui; Zhu, Nan; Liang, Rongguang; Gruev, Viktor; Achilefu, Samuel

    2014-01-01

    Medical imaging plays a critical role in cancer diagnosis and planning. Many of these patients rely on surgical intervention for curative outcomes. This requires a careful identification of the primary and microscopic tumors, and the complete removal of cancer. Although there have been efforts to adapt traditional imaging modalities for intraoperative image guidance, they suffer from several constraints such as large hardware footprint, high operation cost, and disruption of the surgical work...

  1. Space-time encoding for high frame rate ultrasound imaging

    DEFF Research Database (Denmark)

    Misaridis, Thanssis; Jensen, Jørgen Arendt

    2002-01-01

    Frame rate in ultrasound imaging can be dramatically increased by using sparse synthetic transmit aperture (STA) beamforming techniques. The two main drawbacks of the method are the low signal-to-noise ratio (SNR) and the motion artifacts, that degrade the image quality. In this paper we propose a spatio-temporal encoding for STA imaging based on simultaneous transmission of two quasi-orthogonal tapered linear FM signals. The excitation signals are an up- and a down-chirp with frequency division...

  2. Improving the Image Quality of Synthetic Transmit Aperture Ultrasound Images - Achieving Real-Time In-Vivo Imaging

    DEFF Research Database (Denmark)

    Gammelmark, Kim

    2004-01-01

    Synthetic transmit aperture (STA) imaging has the potential to increase the image quality of medical ultrasound images beyond the levels obtained by conventional imaging techniques (linear, phased, and convex array imaging). Currently, however, in-vivo applications of STA imaging is limited by a low signal-to-noise ratio (SNR), due to the application of a single transducer element at each emission, and higher susceptibility to tissue motion, produced by the summation of sequentially acquired low...

  3. A Photoacoustic Imaging System with Optimized Real-Time Parallel Reconstruction

    International Nuclear Information System (INIS)

    Biomedical photoacoustic tomography (PAT) provides anatomical, functional, metabolic, molecular, and genetic contrasts of vasculature, hemodynamics, oxygen metabolism, biomarkers, and gene expression. These attributes bring PAT to a wide variety of applications in clinical medicine and preclinical research. We report the development of a real-time PAT imaging system, which integrates signal scanning, image reconstruction and displaying photoacoustic images in real time. An optimized back projection algorithm for PAT imaging is proposed and tested on a latest graphics process unit based card. The whole system is built and tested in an experiment for monitoring moving blood events to validate the real-time performance of this system to image moving events

  4. Development of Real-Time Image Processing Algorithm on the Positions of Multi-Object in an Image Plane

    International Nuclear Information System (INIS)

    This study is concentrated on the development of high speed multi-object image processing algorithm in real time. Recently, the use of vision system is rapidly increasing in inspection and robot's position control. To apply the vision system, it is necessary to transform the physical coordinate of object into the image information acquired by CCD camera. Thus, to use the application of the vision system to the inspection and robot's position control in real time, we have to know the position of object in the image plane. Particularly, in case of rigid body using multi-cue to identify its shape, the each position of multi-cue must be calculated in an image plane at the same time. To solve these problems, the image processing algorithm on the position of multi-cue is developed

  5. Resistivity structures imaging using time-domain electromagnetic data; TDEM ho ni yoru chika hiteiko kozo no imaging

    Energy Technology Data Exchange (ETDEWEB)

    Noguchi, K. [Waseda University, Tokyo (Japan). School of Science and Engineering; Endo, M. [Waseda University, Tokyo (Japan)

    1996-10-01

    The kernel function for transient vertical magnetic dipole was defined for semi-infinite uniform medium, and the 1-D imaging algorithm by TDEM (time-domain electromagnetic) method was developed for underground resistivity structure. Electromagnetic migration method directly images sectional resistivity profiles from the data observed by frequency-domain MT method, and determines underground resistivity profiles by integral equation of MT field using the concept of return travel time in reflection seismic exploration. The method reported in this paper is also one of the EM migration methods. The imaging algorithm of 2-D resistivity structure was developed by correcting 1-D imaging in consideration of the effect of 2-D anomaly on 1-D imaging (the resistivity of anomaly can be obtained from the resistivity contrast between anomaly and medium). The conventional methods require enormous forward computation, while this method can obtain underground resistivity structure in extremely short computation time, resulting in superior practicability. 12 refs., 7 figs.

  6. Real Time Deconvolution of In-Vivo Ultrasound Images

    DEFF Research Database (Denmark)

    Jensen, JØrgen Arendt

    2013-01-01

    The axial resolution in medical ultrasound is directly linked to the emitted ultrasound frequency, which, due to tissue attenuation, is selected based on the depth of scanning. The resolution is etermined by the transducers impulse response, which limits the attainable resolution to be between one and two wavelengths. This can be improved by deconvolution, which increase the bandwidth and equalizes the phase to increase resolution under the constraint of the electronic noise in the received signal. A fixed interval Kalman filter based deconvolution routine written in C is employed. It uses a state based model for the ultrasound pulse and can include a depth varying pulse and spatially varying signal-to-noise ration. An autoregressive moving average (ARMA) model of orders 8 and 9 is used for the pulse, and the ARMA parameters are determined as a function of depth using a minimum variance algorithm using averaging over several RF lines. In vivo data from a 3 MHz mechanically rotating probe is used and the received signal is sampled at 20 MHz and 12 bits. In-vivo data acquired from a 16th week old fetus is used along with a scan from the liver and right kidney of a 27 years old male. The axial resolution has been determined from the in-vivo liver image using the auto-covariance function. From the envelope of the estimated pulse the axial resolution at Full-Width-Half-Max is 0.581 mm corresponding to 1.13 l at 3 MHz. The algorithm increases the resolution to 0.116 mm or 0.227 l corresponding to a factor of 5.1. The basic pulse can be estimated in roughly 0.176 seconds on a single CPU core on an Intel i5 CPU running at 1.8 GHz. An in-vivo image consisting of 100 lines of 1600 samples can be processed in roughly 0.1 seconds making it possible to perform real-time deconvolution on ultrasound data by using dual or quad core CPUs for frame-rates of 20-40 Hz.

  7. Magnetic particle imaging: advancements and perspectives for real-time in vivo monitoring and image-guided therapy

    Science.gov (United States)

    Pablico-Lansigan, Michele H.; Situ, Shu F.; Samia, Anna Cristina S.

    2013-05-01

    Magnetic particle imaging (MPI) is an emerging biomedical imaging technology that allows the direct quantitative mapping of the spatial distribution of superparamagnetic iron oxide nanoparticles. MPI's increased sensitivity and short image acquisition times foster the creation of tomographic images with high temporal and spatial resolution. The contrast and sensitivity of MPI is envisioned to transcend those of other medical imaging modalities presently used, such as magnetic resonance imaging (MRI), X-ray scans, ultrasound, computed tomography (CT), positron emission tomography (PET) and single photon emission computed tomography (SPECT). In this review, we present an overview of the recent advances in the rapidly developing field of MPI. We begin with a basic introduction of the fundamentals of MPI, followed by some highlights over the past decade of the evolution of strategies and approaches used to improve this new imaging technique. We also examine the optimization of iron oxide nanoparticle tracers used for imaging, underscoring the importance of size homogeneity and surface engineering. Finally, we present some future research directions for MPI, emphasizing the novel and exciting opportunities that it offers as an important tool for real-time in vivo monitoring. All these opportunities and capabilities that MPI presents are now seen as potential breakthrough innovations in timely disease diagnosis, implant monitoring, and image-guided therapeutics.

  8. Real-time maximum a-posteriori image reconstruction for fluorescence microscopy

    Science.gov (United States)

    Jabbar, Anwar A.; Dilipkumar, Shilpa; C K, Rasmi; Rajan, K.; Mondal, Partha P.

    2015-08-01

    Rapid reconstruction of multidimensional image is crucial for enabling real-time 3D fluorescence imaging. This becomes a key factor for imaging rapidly occurring events in the cellular environment. To facilitate real-time imaging, we have developed a graphics processing unit (GPU) based real-time maximum a-posteriori (MAP) image reconstruction system. The parallel processing capability of GPU device that consists of a large number of tiny processing cores and the adaptability of image reconstruction algorithm to parallel processing (that employ multiple independent computing modules called threads) results in high temporal resolution. Moreover, the proposed quadratic potential based MAP algorithm effectively deconvolves the images as well as suppresses the noise. The multi-node multi-threaded GPU and the Compute Unified Device Architecture (CUDA) efficiently execute the iterative image reconstruction algorithm that is ?200-fold faster (for large dataset) when compared to existing CPU based systems.

  9. Density resolutionary optimization of real time radiotherapy portal imagings

    International Nuclear Information System (INIS)

    Objective: Electronic portal imaging devices (EPIDs) are widely used as a replacement of portal films for patient position verification, but the image quality is not always optimal. Because of very low density resolution, the portal imaging is difficult to be used clinically. In this study, several transforming models and the optimization exposure or acquisition conditions were studied for optimization portal imaging, which based on DicomRT platform built by ourselves. Methods: 6 MV X-ray from Varian 21EX linac was used to generate portal images by Portal Vision aSi500 amorphous silicon detector image acquisition system. The density resolution study was based on the number of the lines which could be seen in the image of a special Las Vegas image quality test board. The optimization calculating models were focused on equalization after stretch transforming discrete wavelet transform (DWT) and Butter worth high pass filters. The calculation was performed in Matlab language. Results: The optimal numbers of MU, average frames and reset number were 4 - 5, 3 - 4 and 2 - 3, respectively. The density resolution of optimized imaging via equalization after stretch transforming, DWT and Butter worth high pass filter transforming was markedly improved. The bone structure could be definitely distinguished. The number of lines distinguished in Las Vegas image via equalization after stretch transforming, DWT and Better worth high pass filter transforming was 3, 4 and 5, respectively. Conclusions: The proposed transforming systems, including DWT edge detection and Butter worth high pass filter transform, are suitable for improving density resolving power of MV X-ray portal image. (authors)

  10. Yearlong moored bioluminescence and current data at KM3NeT neutrino telescope sites in the deep Ionian Sea

    Science.gov (United States)

    van Haren, Hans; de Jong, Maarten; Kooijman, Paul

    2015-07-01

    Yearlong observations are presented using stand-alone small optical sensors and current meters in the deep Ionian Sea, E-Mediterranean. At two future neutrino telescope sites, off Sicily (I) and off Peloponessos (Gr), we deployed 2500-3000 m long mooring lines with oceanographic instrumentation. At about 150 m above the sea-floor, a glass sphere was mounted to each line holding two 3?-diameter photo-multiplier-tubes 'PMTs' in opposing directions for a first deep-sea test. Due to technical problems the background optical count rate could not be well established. Here, the focus is on the variations with time of bioluminescence bursts and their correlation with currents. Spectral analysis demonstrates that the PMT data best resemble those of horizontal currents (kinetic energy), significantly peaking at near-inertial, sub-inertial mesoscale and (Gr only) at tidal frequencies. Out-of-phase differences between signals from opposing PMTs in the same optical unit indicate impacts of bioluminescent organisms as a function of current direction, rather than a bacterial glow constant with time.

  11. QUICK STEP: A time-saving MR imaging scheme utilizing stimulated echoes

    International Nuclear Information System (INIS)

    Reducing the number of phase-encoding views to realize a decrease in imaging time may also detrimentally alter image resolution and/or signal-to-noise ratio (S/N). QUICK STEP (QUICK Stimulated Echo Progressive) MR imaging yields images identical in resolution and contrast to conventional images, yet requiring at most only half the imaging time. The 900-tau 1-900-tau 2-900 imaging sequence results in a primary echo (PE) and a stimulated echo (STE) image, both acquired in a single excitation. QUICK STEP achieves its reduced acquisition time by phase encoding the PE and STE differently. If 128 excitations are made, the PE will contribute 128 phase-encoding views and the STE will contribute 128 different views. Postacquisition recombination of all echo data results in image with resolution and contrast equivalent to those of a 256-view image, obtained at the acquisition time necessary for a 128-view image. This time-saving may be increased by a factor of 2, 4 or more, by generating a progression of STEP images rather than just one

  12. Time of flight diffraction imaging for double-probe technique.

    Science.gov (United States)

    Chang, Young-Fo; Hsieh, Cheng-I

    2002-06-01

    Due to rapid progress in microelectronics and computer technologies, the system evolving from analog to digital, and a programmable and flexible synthetic aperture focusing technique (SAFT) for the single-probe pulse-echo imaging technique of ultrasonic nondestructive testing (NDT) becomes feasible. The double-probe reflection technique usually is used to detect the nonhorizontal flaws in the ultrasonic NDT. Because there is an offset between the transmitter and receiver, the position and size of the flaw cannot be directly read from the image. Therefore, a digital signal processing (DSP) imaging method is proposed to process the ultrasonic image obtained by double-probe reflection technique. In the imaging, the signal is redistributed on an ellipsoid with the transmitter and receiver positions as focuses, and the traveltime sum for the echo from the ellipsoid to the focuses as the traveltime of signal. After redistributing all the signals, the useful signals can be constructively added in some point in which the reflected point is; otherwise, the signals will be destructively added. Therefore, the image resolution of the flaw can be improved and the position and size of the flaw can be estimated directly from the processed image. Based on the experimental results, the steep flaw (45 degrees) cannot be detected by the pulse echo technique but can be detected by the double-probe method, and the double-probe B-scan image of 30 degrees tilted crack is clearer than the pulse echo B-scan image. However, the flaw image departs from its true position greatly. After processing, the steep flaw image can be moved to its true position. When the flaws are not greater than the probe largely, the sizes of the flaws are difficult to be discriminated in both pulse echo and double-probe B-scan images. In the processed double-probe B-scan image, the size of the flaws can be estimated successfully, and the images of the flaws are close to their true shape. PMID:12075969

  13. Space-time encoding for high frame rate ultrasound imaging

    DEFF Research Database (Denmark)

    Misaridis, Thanssis; Jensen, JØrgen Arendt

    2002-01-01

    Frame rate in ultrasound imaging can be dramatically increased by using sparse synthetic transmit aperture (STA) beamforming techniques. The two main drawbacks of the method are the low signal-to-noise ratio (SNR) and the motion artifacts, that degrade the image quality. In this paper we propose a spatio-temporal encoding for STA imaging based on simultaneous transmission of two quasi-orthogonal tapered linear FM signals. The excitation signals are an up- and a down-chirp with frequency division and a cross-talk of ?55 dB. The received signals are first cross-correlated with the appropriate code, then spatially decoded and finally beamformed for each code, yielding two images per emission. The spatial encoding is a Hadamard encoding previously suggested by Chiao et al. [in: Proceedings of the IEEE Ultrasonics Symposium, 1997, p. 1679]. The Hadamard matrix has half the size of the transmit element groups, due to the orthogonality of the temporal encoded wavefronts. Thus, with this method, the frame rate is doubled compared to previous systems. Another advantage is the utilization of temporal codes which are more robust to attenuation. With the proposed technique it is possible to obtain images dynamically focused in both transmit and receive with only two firings. This reduces the problem of motion artifacts. The method has been tested with extensive simulations using Field II. Resolution and SNR are compared with uncoded STA imaging and conventional phased-array imaging. The range resolution remains the same for coded STA imaging with four emissions and is slightly degraded for STA imaging with two emissions due to the ?55 dB cross-talk between the signals. The additional proposed temporal encoding adds more than 15 dB on the SNR gain, yielding a SNR at the same order as in phased-array imaging.

  14. Bacterial bioluminescence response to long-term exposure to reverse osmosis treated effluents from dye industries

    Digital Repository Service at National Institute of Oceanography (India)

    Ravindran, J.; Manikandan, B.; Shirodkar, P.V.; Francis, K.X.; ManiMurali, R.; Vethamony, P.

    chemical composition sampled from various dye industries. Bioluminescent bacteria were cultured in the RO reject samples, at different concentrations, and their growth rate and luminescence was measured for 24 h. The RO reject samples caused sublethal...

  15. Bioluminescent reporter bacterium for toxicity monitoring in biological wastewater treatment systems

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, C.J.; Lajoie, C.A.; Layton, A.C.; Sayler, G.S.

    1999-01-01

    Toxic shock due to certain chemical loads in biological wastewater treatment systems can result in death of microorganisms and loss of floc structure. To overcome the limitations of existing approaches to toxicity monitoring, genes encoding enzymes for light production were inserted to a bacterium (Shk 1) isolated from activated sludge. The Shk 1 bioreporter indicated a toxic response to concentrations of cadmium, 2,4-dinitrophenol, and hydroquinone by reductions in initial levels of bioluminescence on exposure to the toxicant. The decrease in bioluminescence was more severe with increasing toxicant concentration. Bioluminescence did not decrease in response to ethanol concentrations up to 1,000 mg/L or to pH conditions between 6.1 and 7.9. A continuous toxicity monitoring system using this bioreporter was developed for influent wastewater and tested with hydroquinone. The reporter exhibited a rapid and proportional decrease in bioluminescence in response to increasing hydroquinone concentrations.

  16. Submersible Data (Dive Waypoints) for Bioluminescence 2009 - Office of Ocean Exploration and Research

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data and information collected by the submersible Johnson Sea-Link II at waypoints along its track during seventeen dives of the 2009 "Bioluminescence" expedition...

  17. Submersible Data (Dive Trackpoints) for Bioluminescence 2009 - Office of Ocean Exploration and Research

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data and information collected by the Johnson Sea Link II during sixteen dives of the "Bioluminescence 2009" expedition sponsored by the National Oceanic and...

  18. Highly sensitive and selective bioluminescence based ozone probes and their applications to detect ambient ozone.

    Science.gov (United States)

    Nam, Younseok; Kim, Beom Seok; Shin, Injae

    2016-01-01

    Highly selective and sensitive bioluminescence based probes, which respond to ozone but not to other ROS, have been developed. These probes were used to determine ozone concentrations in environmental samples. PMID:26567538

  19. Ship track for Bioluminescence 2009 - Office of Ocean Exploration and Research

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ship track of the R/V Seward Johnson during the "Bioluminescence 2009" expedition sponsored by the National Oceanic and Atmospheric Administration (NOAA) Office of...

  20. Effect of irradiation on detection of bacteria in dehydrated vegetables with ATP bioluminescence assay

    International Nuclear Information System (INIS)

    ATP bioluminescence intensity of 4 kinds of irradiated dehydrated vegetables was inconsistent with the bacteria number, the reasons were investigated in this paper. Results showed that irradiation had little effect on background luminescence, and there was no effect on luciferase-luminous system. When irradiation killed the bacteria, the ATPase activity also decreased. As a result, the ATP content in bacteria didn't decreased with the killed of bacteria, which contributed to the increase of free ATP in ATP extract and finally led to the disagreement between the bioluminescence intensity and the actual number of bacteria. When the free ATP in the dehydrated vegetable was removed, the bioluminescence intensity of ATP extract was consistent with the actual number of bacteria in irradiated dehydrated vegetable and ATP bioluminescence technology could be used in bacteria detection of irradiated samples. (authors)

  1. Ship Sensor Observations for Bioluminescence 2009 - Office of Ocean Exploration and Research

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hourly measurements made by selected ship sensors on the R/V Seward Johnson during the "Bioluminescence 2009" expedition sponsored by the National Oceanic and...

  2. Bioluminescence: A Potentially Convergent Signature of Life in Future Exploration of Europa's Subsurface Ocean

    Science.gov (United States)

    Flores Martinez, C. L.

    2014-02-01

    This presentation deals with theoretical and evolutionary aspects pertaining to the nature and degree of biological complexity that is expectable among putative organisms on Europa. Bioluminescence is suggested as a new type of biosignature.

  3. Dive Activities for Bioluminescence 2009 - Office of Ocean Exploration and Research

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Information about dive activities were recorded by personnel during the "Bioluminescence 2009" expedition, July 20 through 31, 2009. Additional information was...

  4. VISTA - A Constellation for Real Time Regional Imaging

    Science.gov (United States)

    Meerman, Max; Boland, Lee; da Silva Curiel, Alex; Sweeting, Martin, , Sir

    2002-01-01

    The role of satellites in medium and high-resolution reconnaissance of the Earth's surface has been well demonstrated in recent years through missions such as Landsat, SPOT, IKONOS, ImageSat and Quickbird. The market for such data products is well served and likely to become more competitive with further very-high-resolution missions. Whereas commercial markets have concentrated on enhancing resolution, the small satellite sector has concentrated on reducing the cost of data products, and the development of systems providing niche services. One such EO requirement that can be well met by smaller satellites is the need for higher temporal resolution, as this typically requires a large number of satellites to operate as a constellation - thus far financially impractical using conventional EO satellites. Surrey is currently engaged in building its first constellation that will provide daily global coverage at moderate resolution (32-metre GSD and 600km swath) in three spectral bands. Targeted at providing timely quick-look data products for disaster mitigation and monitoring, the constellation comprises 7 satellites in a single orbital plane. Each satellite has a wide swath so that successive satellites progressively cover the entire globe in a single day. The Vista constellation takes this concept a step further, and is proposed for applications requiring near-continuous surveillance of regional activity. By introducing a multiple plane constellation of small Earth observation satellites, it is possible to monitor continuously selected regions anywhere on the globe. The paper describes the system trades and outlines the scope of the performance that could be obtained from such a system. A cost model illustrates that the balance between launch and space segment costs must be reached by considering suitable replacement strategies, and that the system is highly sensitive to requirement creep. Finally, it is shown that the use of cost effective, small satellites leads to solutions previously thought to be financially beyond sensible reach.

  5. Effect of Naphthalene and Salicylate Analogues on the Bioluminescence of Bioreporter Pseudomonas Fluorescens HK44.

    Czech Academy of Sciences Publication Activity Database

    Trögl, Josef; Kuncová, Gabriela; Kubicová, L.; Pa?ík, P.; Hálová, Jaroslava; Demnerová, K.; Ripp, S.; Sayler, G. S.

    2007-01-01

    Ro?. 52, 1 (2007) , s. 3-14. ISSN 0015-5632 R&D Projects: GA ?R(CZ) GA104/05/2637; GA ?R(CZ) GA203/06/1244 Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z40320502 Keywords : pseudomonas fluorescens HK44 * bioluminescence * bioluminescence Subject RIV: CE - Biochemistry Impact factor: 0.989, year: 2007

  6. Strategies for enhancing bioluminescent bacterial sensor performance by promoter region manipulation

    OpenAIRE

    Yagur-Kroll, Sharon; Bilic, Benny; Belkin, Shimshon

    2010-01-01

    Bioluminescent bacterial sensors are based upon the fusion of bacterial bioluminescence (lux) genes, acting as a reporter element, to selected bacterial stress?response gene promoters. Depending upon the nature of the promoter, the resulting constructs react to diverse types of environmental stress, including the presence of toxic chemicals, by dose?dependant light emission. Two bacterial sensors, harbouring sulA::luxCDABE and grpE::luxCDABE fusions, activated by the model chemicals nalidixic...

  7. Influence of the temperature at the Black Sea ctenophores-aliens bioluminescence characteristics

    OpenAIRE

    Tokarev Yuriy; Mashukova Olga

    2012-01-01

    Successful invasion of Mnemiopsis leidyi A. Agassiz, 1865 and Beroe ovata Mayer, 1912 into the Black Sea and their important role in this region pelagic ecosystem is stipulated mainly by the considerable eurythermy of these species. Many ecological-physiological characteristics of ctenophores—aliens are studied quite well. However, bioluminescence, one of the most important elements of the ctenophores ecology and the bioluminescence reaction temperature o...

  8. A bioluminescence resonance energy transfer (BRET) system: Application to interacting circadian clock proteins

    OpenAIRE

    Xu, Yao; Piston, David W.; JOHNSON, Carl Hirschie

    1999-01-01

    We describe a method for assaying protein interactions that offers some attractive advantages over previous assays. This method, called bioluminescence resonance energy transfer (BRET), uses a bioluminescent luciferase that is genetically fused to one candidate protein, and a green fluorescent protein mutant fused to another protein of interest. Interactions between the two fusion proteins can bring the luciferase and green fluorescent protein close enough for resonance energy transfer to occ...

  9. Evaluation of bioluminescence-based assays of anti-malarial drug activity

    OpenAIRE

    Hasenkamp Sandra; Sidaway Adam; Devine Oliver; Roye Richard; Horrocks Paul

    2013-01-01

    Abstract Background Transgenic Plasmodium falciparum expressing luciferase offers an attractive bioluminescence-based assay platform for the investigation of the pharmacological properties of anti-malarial drugs. Here a side-by-side comparison of bioluminescence and fluorescence-based assays, utilizing a luciferase reporter cassette that confers a strong temporal pattern of luciferase expression during the S-phase of intraerythrocytic development, is reported. Methods Key assay parameters for...

  10. Automatic Segmentation Framework of Building Anatomical Mouse Model for Bioluminescence Tomography

    OpenAIRE

    Abdullah Alali

    2013-01-01

    Bioluminescence tomography is known as a highly ill-posed inverse problem. To improve the reconstruction performance by introducing anatomical structures as a priori knowledge, an automatic segmentation framework has been proposed in this paper to extract the mouse whole-body organs and tissues, which enables to build up a heterogeneous mouse model for reconstruction of bioluminescence tomography. Finally, an in vivo mouse experiment has been conducted to evaluate this framework by using an X...

  11. An improved single-step lysis protocol to measure luciferase bioluminescence in Plasmodium falciparum

    OpenAIRE

    Hasenkamp Sandra; Wong Eleanor H; Horrocks Paul

    2012-01-01

    Abstract This report describes the optimization and evaluation of a simple single-step lysis protocol to measure luciferase bioluminescence from genetically modified Plasmodium falciparum. This protocol utilizes a modified commercial buffer to improve speed of assay and consistency in the bioluminescence signal measured by reducing the manipulation steps required to release the cytoplasmic fraction. The utility of this improved assay protocol is demonstrated in typical assays that explore abs...

  12. Foraging in the Darkness of the Southern Ocean: Influence of Bioluminescence on a Deep Diving Predator

    OpenAIRE

    Vacquié-Garcia, Jade; Royer, François; Dragon, Anne-Cécile; Viviant, Morgane; Bailleul, Frédéric; Guinet, Christophe

    2012-01-01

    How non-echolocating deep diving marine predators locate their prey while foraging remains mostly unknown. Female southern elephant seals (SES) (Mirounga leonina) have vision adapted to low intensity light with a peak sensitivity at 485 nm. This matches the wavelength of bioluminescence produced by a large range of marine organisms including myctophid fish, SES’s main prey. In this study, we investigated whether bioluminescence provides an accurate estimate of prey occurrence for SES. To do s...

  13. Circadian rhythms of cyanobacteria: monitoring the biological clocks of individual colonies by bioluminescence.

    OpenAIRE

    Kondo, T.; Ishiura, M

    1994-01-01

    Reproducible circadian rhythms of bioluminescence from individual colonies of cyanobacteria (Synechococcus sp. strain PCC 7942) has been observed. Phenotypic monitoring of colonies on agar plates will enable us to genetically analyze the molecular mechanism of the circadian clock of cyanobacteria by screening for clock mutants. By the introduction of a bacterial luciferase gene, we previously developed a transformed cyanobacterial strain (AMC149) that expresses luciferase as a bioluminescent ...

  14. Evaluation of the Lumac kit for the detection of bacteriuria by bioluminescence.

    OpenAIRE

    Mackett, D; Kessock-Philip, S; Bascomb, S; Easmon, C. S.

    1982-01-01

    Four hundred and twenty-two urine samples were screened for significant bacteriuria using bioluminescence and microscopy of uncentrifuged urine. A smaller number of false-negatives were seen with bioluminescence (10%) than with microscopy (40%) while both techniques gave a similar number of false-positives (18%). The kit required a large amount of manual preparation, largely pipetting. With this and the short shelf-life of the reconstituted reagents, it is not suitable for small numbers of ur...

  15. Rapid Sublethal Toxicity Assessment Using Bioluminescent Caenorhabditis elegans, a Novel Whole-Animal Metabolic Biosensor

    OpenAIRE

    Lagido, Cristina; McLaggan, Debbie; Flett, Aileen; Pettitt, Jonathan; Glover, L. Anne

    2009-01-01

    Sublethal metabolic effects are informative toxicological end points. We used a rapid quantitative metabolic end point, bioluminescence of firefly luciferase expressing Caenorhabditis elegans, to assess effects of sublethal chronic exposure (19 h) to the oxidative stress agent and environmental pollutant cadmium (provided as chloride salt). Bioluminescence declined in a concentration-dependent manner in the concentration range tested (0–30?M Cd), with comparable sensitivity to reproduction an...

  16. Bioluminescent signals spatially amplified by wavelength-specific diffusion through the shell of a marine snail

    OpenAIRE

    Dimitri D. Deheyn; Wilson, Nerida G.

    2010-01-01

    Some living organisms produce visible light (bioluminescence) for intra- or interspecific visual communication. Here, we describe a remarkable bioluminescent adaptation in the marine snail Hinea brasiliana. This species produces a luminous display in response to mechanical stimulation caused by encounters with other motile organisms. The light is produced from discrete areas on the snail's body beneath the snail's shell, and must thus overcome this structural barrier to be viewed by an extern...

  17. Kidney stone imaging with 3D ultra-short echo time (UTE) magnetic resonance imaging. A phantom study.

    Science.gov (United States)

    Ibrahim, El-Sayed H; Pooley, Robert A; Bridges, Mellena D; Cernigliaro, Joseph G; Haley, William E

    2014-01-01

    Computed tomography (CT) is the current gold standard for imaging kidney stones, albeit at the cost of radiation exposure. Conventional magnetic resonance imaging (MRI) sequences are insensitive to detecting the stones because of their appearance as a signal void. With the development of 2D ultra-short echo-time (UTE) MRI sequences, it becomes possible to image kidney stones in vitro. In this work, we optimize and implement a modified 3D UTE MRI sequence for imaging kidney stones embedded in agarose phantoms mimicking the kidney tissue and in urine phantoms at 3.0T. The proposed technique is capable of imaging the stones with high spatial resolution in a short scan time. PMID:25570462

  18. A fiducial detection algorithm for real-time image guided IMRT based on simultaneous MV and kV imaging

    OpenAIRE

    Mao, Weihua; Riaz, Nadeem; Lee, Louis; Wiersma, Rodney; Xing, Lei

    2008-01-01

    The advantage of highly conformal dose techniques such as 3DCRT and IMRT is limited by intrafraction organ motion. A new approach to gain near real-time 3D positions of internally implanted fiducial markers is to analyze simultaneous onboard kV beam and treatment MV beam images (from fluoroscopic or electronic portal image devices). Before we can use this real-time image guidance for clinical 3DCRT and IMRT treatments, four outstanding issues need to be addressed. (1) How will fiducial motion...

  19. Contribution of Reflection Terahertz Time Domain-Imaging (THz-TDI) to Imaging Analysis of Artworks

    DEFF Research Database (Denmark)

    Dandolo, Corinna Ludovica Koch; Fukunaga, Kaori

    Different kind s of artefacts (easel painting, panel paintings and Asian lacquerwares) have been scanned by THz - TDI and results have been compared with those obtained by others standard imaging techniques (x-ray radiography, cross sectional imaging, technical photography) .

  20. An image scanner for real time analysis of spark chamber images

    International Nuclear Information System (INIS)

    The notes describes the semiautomatic scanning system at LNF for the analysis of spark chamber images. From the projection of the images on the scanner table, the trajectory in the real space is reconstructed

  1. ATP-Bioluminescence as a method to evaluated microbiological quality of UHT milk

    Directory of Open Access Journals (Sweden)

    A.F. Cunha

    2014-12-01

    Full Text Available New approaches are needed to quickly indicate possible contamination of UHT milk, among them the technique of ATP-Bioluminescence. Therefore, the aim of this study was to compare the results of culture methods with the results of ATP-Bioluminescence technique of 102 UHT whole milk samples incubated at 48, 72, and 168 hours. UHT milk samples were analyzed for the presence of mesophilic and psychrotrophic aerobic microorganisms using Plate Count Agar (PCA, Brain-Heart Infusion (BHI media and PetrifilmTM Aerobic Count (AC plates. The ATP-Bioluminescence technique was applied through the Microbial Luminescent Screening (MLS system. Significant correlations were found between counts of aerobic mesophilic microorganisms on PCA, PetrifilmTM AC, BHI and results of ATP bioluminescence technique (P?0.05. The ATP-Bioluminescence technique had higher correlation with counting method in PCA than BHI media. At lower pass/fail limits of Relative Light Units (60, 50, 45 and 40 RLU, the number of samples identified as positive increased and statistically agreed with aerobic mesophilic microorganism counts (P>0.05. For the dairy industry, the ATP-Bioluminescence technique may become an important tool that assists the official methods to quickly monitor the microbiological quality of UHT milk though this will likely require a threshold below 150 RLU.

  2. Rad Hard Imaging Array with Picosecond Timing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For a wide range of remote sensing applications, there is a critical need to develop imaging arrays that simultaneously achieve high spatial resolution, high...

  3. An approach to a pseudo real-time image processing engine for hyperspectral imaging

    OpenAIRE

    Abed Abedniya; Sahar Sabbaghi Mahmouei; Dr. Shattri Mansor

    2010-01-01

    Hyperspectral imaging provides an alternative way of increasing the accuracy by adding another dimension: the wavelength. Recently, hyperspectral imaging is also finding its way into many more applications, ranging from medical imaging in endoscopy for cancer detection to quality control in the sorting of fruit and vegetables. But effective use of hyperspectral imaging requires an understanding of the nature and limitations of the data and of various strategies for processing and interpreting...

  4. Evaluation of image deblurring algorithms for real-time applications

    OpenAIRE

    Airo Farulla, Giuseppe; Rolfo, Daniele; Russo, Ludovico Orlando; Indaco, Marco; Trotta, Pascal

    2014-01-01

    Camera shake is a well-known source of degradation in digital images, as it introduces motion blur. Taking satisfactory photos under dim lighting conditions or using a hand-held camera is challenging. Same problems arise when camera is connected to mechanical equipments, that transfer vibrations to the camera itself. Since decades, many different theories and algorithms have been proposed with the aim of retrieving latent images from blurry inputs; most of them work quite well, but very often...

  5. Quantitative Characterization of Super-Resolution Infrared Imaging Based on Time-Varying Focal Plane Coding

    Science.gov (United States)

    Wang, X.; Yuan, Y.; Zhang, J.; Chen, Y.; Cheng, Y.

    2014-10-01

    High resolution infrared image has been the goal of an infrared imaging system. In this paper, a super-resolution infrared imaging method using time-varying coded mask is proposed based on focal plane coding and compressed sensing theory. The basic idea of this method is to set a coded mask on the focal plane of the optical system, and the same scene could be sampled many times repeatedly by using time-varying control coding strategy, the super-resolution image is further reconstructed by sparse optimization algorithm. The results of simulation are quantitatively evaluated by introducing the Peak Signal-to-Noise Ratio (PSNR) and Modulation Transfer Function (MTF), which illustrate that the effect of compressed measurement coefficient r and coded mask resolution m on the reconstructed image quality. Research results show that the proposed method will promote infrared imaging quality effectively, which will be helpful for the practical design of new type of high resolution ! infrared imaging systems.

  6. Computational imaging based on time-correlated single-photon-counting technique at low light level.

    Science.gov (United States)

    Yang, Ying; Shi, Jianhong; Cao, Fei; Peng, Jinye; Zeng, Guihua

    2015-11-01

    Imaging at low light levels has drawn much attention. In this paper, a method is experimentally demonstrated to realize computational imaging under weak illumination conditions. In our experiment, only one single-photon detector was used to capture the photons. With the time-correlated single-photon-counting technique, photons at a quite low level can be recorded and the time distribution histograms were constructed. The intensity of the light can be estimated from the histograms. The detection model was discussed, and clear images were obtained through a ghost-imaging algorithm. In addition, we propose a modified algorithm for the conventional ghost-imaging method that works more efficiently than the traditional ghost-imaging algorithm. Moreover, this method provides a solution for three-dimensional imaging combining with the time of flight of the photons. PMID:26560582

  7. Real-time in situ Raman imaging of carbon nanotube growth

    International Nuclear Information System (INIS)

    In the quest for control over carbon nanotube synthesis in situ imaging has the potential to become a primary tool. Here, we show that global Raman imaging enables the observation of individual nanotubes and ensembles in real time, during growth. Individual nanotubes are detected even at 875 deg. C. Imaging and spectroscopy measurements of nanotube growth show distinct nucleation and growth phases. The first optical images of individual nanotubes captured during growth are presented

  8. Unsupervised and Fast Continent Classification of Digital Image Collections using Time

    OpenAIRE

    Sandnes, Frode Eika

    2010-01-01

    Advances in storage capacity means that digital cameras can store huge collections of digital photographs. Typically such images are given non-descriptive filenames names such as a unique identifier, often an integer. Consequently it is time-consuming and difficult to browse and retrieve images from large collections especially on small consumer electronics devices. A strategy for classifying images into geographical regions is presented which allows images to be coarsely sorted into the cont...

  9. L{sub 1/2} regularization based numerical method for effective reconstruction of bioluminescence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xueli, E-mail: xlchen@xidian.edu.cn, E-mail: jimleung@mail.xidian.edu.cn; Yang, Defu; Zhang, Qitan; Liang, Jimin, E-mail: xlchen@xidian.edu.cn, E-mail: jimleung@mail.xidian.edu.cn [School of Life Science and Technology, Xidian University, Xi' an 710071 (China); Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education (China)

    2014-05-14

    Even though bioluminescence tomography (BLT) exhibits significant potential and wide applications in macroscopic imaging of small animals in vivo, the inverse reconstruction is still a tough problem that has plagued researchers in a related area. The ill-posedness of inverse reconstruction arises from insufficient measurements and modeling errors, so that the inverse reconstruction cannot be solved directly. In this study, an l{sub 1/2} regularization based numerical method was developed for effective reconstruction of BLT. In the method, the inverse reconstruction of BLT was constrained into an l{sub 1/2} regularization problem, and then the weighted interior-point algorithm (WIPA) was applied to solve the problem through transforming it into obtaining the solution of a series of l{sub 1} regularizers. The feasibility and effectiveness of the proposed method were demonstrated with numerical simulations on a digital mouse. Stability verification experiments further illustrated the robustness of the proposed method for different levels of Gaussian noise.

  10. A new system for real-time synthetic aperture ultrasonic imaging.

    Science.gov (United States)

    Ozaki, Y; Sumitani, H; Tomoda, T; Tanaka, M

    1988-01-01

    The authors devised a way to generate in real time a cross-sectional image of an object with uniformly high resolution based on the synthetic aperture focusing technique (SAFT). A computer simulation was conducted to study the effects of essential parameters on the resulting images. An imaging system was built that produces a cross-sectional image composed of an assembly of line images of depth direction, i.e. processed A-scan images, and displays a scroll picture on a CRT (cathode ray tube) with no interruption regardless of the object size. It takes only 3 ms from the start of transmission of the ultrasonic wave to the completion of a line image reconstruction, and the framed image on a CRT is updated at the TV rate of 1/30 s. Imaging experiments were conducted using the system, and its expected performance was demonstrated. PMID:18290220

  11. FNR-mediated regulation of bioluminescence and anaerobic respiration in the light-organ symbiont Vibrio fischeri

    OpenAIRE

    Septer, Alecia N; Bose, Jeffrey L.; Dunn, Anne K.; Stabb, Eric V.

    2010-01-01

    Vibrio fischeri induces both anaerobic respiration and bioluminescence during symbiotic infection. In many bacteria, the oxygen-sensitive regulator FNR activates anaerobic respiration, and a preliminary study using the light-generating lux genes from V. fischeri MJ1 cloned in Escherichia coli suggested that FNR stimulates bioluminescence. To test for FNR-mediated regulation of bioluminescence and anaerobic respiration in V. fischeri, we generated fnr mutants of V. fischeri strains MJ1 and ES1...

  12. Impact of Site-Directed Mutant Luciferase on Quantitative Green and Orange/Red Emission Intensities in Firefly Bioluminescence

    OpenAIRE

    Yu Wang; Hidefumi Akiyama; Kanako Terakado; Toru Nakatsu

    2013-01-01

    Firefly bioluminescence has attracted great interest because of its high quantum yield and intriguing modifiable colours. Modifications to the structure of the enzyme luciferase can change the emission colour of firefly bioluminescence, and the mechanism of the colour change has been intensively studied by biochemists, structural biologists, optical physicists, and quantum-chemistry theorists. Here, we report on the quantitative spectra of firefly bioluminescence catalysed by wild-type and fo...

  13. Two-dimensional photon counting imaging detector based on a Vernier position sensitive anode readout

    International Nuclear Information System (INIS)

    A two-dimensional photon counting imaging detector based on a Vernier position sensitive anode is reported. The decode principle and design of a two-dimensional Vernier anode are introduced in detail. A photon counting imaging system was built based on a Vernier anode. The image of very weak optical radiation can be reconstructed by image processing in a period of integration time. The resolution is superior to 100 ?m according to the resolution test. The detector may realize the imaging of very weak particle flow of high-energy photons, electrons and ions, so it can be used for high-energy physics, deep space exploration, spectral measurement and bio-luminescence detection. (authors)

  14. Two-dimensional photon counting imaging detector based on a Vernier position sensitive anode readout

    Science.gov (United States)

    Yan, Qiu-Rong; Zhao, Bao-Sheng; Liu, Yong-An; Yang, Hao; Sheng, Li-Zhi; Wei, Yong-Lin

    2011-04-01

    A two-dimensional photon counting imaging detector based on a Vernier position sensitive anode is reported. The decode principle and design of a two-dimensional Vernier anode are introduced in detail. A photon counting imaging system was built based on a Vernier anode. The image of very weak optical radiation can be reconstructed by image processing in a period of integration time. The resolution is superior to 100 ?m according to the resolution test. The detector may realize the imaging of very weak particle flow of high-energy photons, electrons and ions, so it can be used for high-energy physics, deep space exploration, spectral measurement and bio-luminescence detection.

  15. Optimal scan timing of hepatic arterial-phase imaging of hypervascular hepatocellular carcinoma determined by multiphasic fast CT imaging technique

    Energy Technology Data Exchange (ETDEWEB)

    Kagawa, Yuki; Okada, Masahiro; Yagyu, Yukinobu; Kumano, Seishi; Murakami, Takamichi [Dept. of Radiology, Kinki Univ. Faculty of Medicine, Osaka (Japan)], e-mail: murakami@med.kindai.ac.jp; Kanematsu, Masayuki [Dept. of Radiology, Gifu Univ., School of Medicine, Gifu (Japan); Kudo, Masayuki [CT Research JP, GE Healthcare JP Corporation, Tokyo (Japan)

    2013-10-15

    Background: A new multiphasic fast imaging technique, known as volume helical shuttle technique, is a breakthrough for liver imaging that offers new clinical opportunities in dynamic blood flow studies. This technique enables virtually real-time hemodynamics assessment by shuttling the patient cradle back and forth during serial scanning. Purpose: To determine optimal scan timing of hepatic arterial-phase imaging for detecting hypervascular hepatocellular carcinoma (HCC) with maximum tumor-to-liver contrast by volume helical shuttle technique. Material and Methods: One hundred and one hypervascular HCCs in 50 patients were prospectively studied by 64-channel multidetector-row computed tomography (MDCT) with multiphasic fast imaging technique. Contrast medium containing 600 mg iodine per kg body weight was intravenously injected for 30 s. Six seconds after the contrast arrival in the abdominal aorta detected with bolus tracking, serial 12-phase imaging of the whole liver was performed during 24-s breath-holding with multiphasic fast imaging technique during arterial phase. By placing regions of interest in the abdominal aorta, portal vein, liver parenchyma, and hypervascular HCCs on the multiphase images, time-density curves of anatomical regions and HCCs were composed. Timing of maximum tumor-to-liver contrast after the contrast arrival in the abdominal aorta was determined. Results: For the detection of hypervascular HCC at arterial phase, mean time and value of maximum tumor-to-liver contrast after the contrast arrival were 21 s and 38.0 HU, respectively. Conclusion: Optimal delay time for the hepatic arterial-phase imaging maximizing the contrast enhancement of hypervascular HCCs was 21 s after arrival of contrast medium in the abdominal aorta.

  16. Optimal scan timing of hepatic arterial-phase imaging of hypervascular hepatocellular carcinoma determined by multiphasic fast CT imaging technique

    International Nuclear Information System (INIS)

    Background: A new multiphasic fast imaging technique, known as volume helical shuttle technique, is a breakthrough for liver imaging that offers new clinical opportunities in dynamic blood flow studies. This technique enables virtually real-time hemodynamics assessment by shuttling the patient cradle back and forth during serial scanning. Purpose: To determine optimal scan timing of hepatic arterial-phase imaging for detecting hypervascular hepatocellular carcinoma (HCC) with maximum tumor-to-liver contrast by volume helical shuttle technique. Material and Methods: One hundred and one hypervascular HCCs in 50 patients were prospectively studied by 64-channel multidetector-row computed tomography (MDCT) with multiphasic fast imaging technique. Contrast medium containing 600 mg iodine per kg body weight was intravenously injected for 30 s. Six seconds after the contrast arrival in the abdominal aorta detected with bolus tracking, serial 12-phase imaging of the whole liver was performed during 24-s breath-holding with multiphasic fast imaging technique during arterial phase. By placing regions of interest in the abdominal aorta, portal vein, liver parenchyma, and hypervascular HCCs on the multiphase images, time-density curves of anatomical regions and HCCs were composed. Timing of maximum tumor-to-liver contrast after the contrast arrival in the abdominal aorta was determined. Results: For the detection of hypervascular HCC at arterial phase, mean time and value of maximum tumor-to-liver contrast after the contrast arrival were 21 s and 38.0 HU, respectively. Conclusion: Optimal delay time for the hepatic arterial-phase imaging maximizing the contrast enhancement of hypervascular HCCs was 21 s after arrival of contrast medium in the abdominal aorta

  17. One-Shot Color Astronomical Imaging In Less Time, For Less Money!

    CERN Document Server

    Kennedy, L A

    2012-01-01

    Anyone who has seen recent pictures of the many wondrous objects in space has surely been amazed by the stunning color images. Trying to capture images like these through your own telescope has always seemed too time-consuming, expensive, and complicated. However, with improvements in affordable, easy-to-use CCD imaging technology, you can now capture amazing images yourself. With today's improved "one-shot" color imagers, high-quality images can be taken in a fraction of the time and at a fraction of the cost, right from your own backyard. This book will show you how to harness the power of today's computerized telescopes and entry-level imagers to capture spectacular images that you can share with family and friends. It covers such topics as - evaluating your existing equipment, choosing the right imager, finding targets to image, telescope alignment, focusing and framing the image, exposure times, aligning and stacking multiple frames, image calibration, and enhancement techniques! - how to expand the numb...

  18. Mobile real-time EEG imaging Bayesian inference with sparse, temporally smooth source priors

    DEFF Research Database (Denmark)

    Hansen, Lars Kai; Hansen, Sofie Therese; Stahlhut, Carsten

    2013-01-01

    EEG based real-time imaging of human brain function has many potential applications including quality control, in-line experimental design, brain state decoding, and neuro-feedback. In mobile applications these possibilities are attractive as elements in systems for personal state monitoring and well-being, and in clinical settings were patients may need imaging under quasi-natural conditions. Challenges related to the ill-posed nature of the EEG imaging problem escalate in mobile real-time syst...

  19. An Internet and Intranet Based Real Time Medical Imaging System

    Directory of Open Access Journals (Sweden)

    Prashant Kumar

    2013-09-01

    Full Text Available Today computer is an essential part of our life. The computer database is used for medical decision making. Doctors basically used to take decision on particular diesis on the help of old and current history of the patients or same diesis procured by other patients. This paper describe a tool developed in java/j2EE which enables the doctors to retrieved old record of same dieses treatment using internet and even allow them view medical image of blood slides, ECG, CT-scan, X-Ray etc. even allow them to mark and/or zoom important area of the image. It is secure and multi party medical image database consultant system.

  20. A Method for Counting Multidirection Passer-by by Using Circular Space-Time Image

    Science.gov (United States)

    Terada, Kenji; Matsubara, Kazutaka

    Recently, the importance of understanding the number of people and the flow of the persons at public accommodation or department stores have increased more and more. This information is useful for congestion reducing, efficient promotion of the institution management and sales improvement, etc. The conventional methods of counting number of people are carried out by human viewing and by a machine of rotary stick-type counter. Therefore, we have already proposed an automatic system for counting number of people by the image processing to use a straight measurement line and a space-time image. However, these methods are not suitable for the counting at a wide place. In this paper, we propose a method of counting multidirection passer-by by using circular space-time image. In this method, a circular measurment line is set on a sequence of the background subtraction images. All pixels on this line is transformed to the space-time image. The number of passer-by can be counted by using this space-time image. But the direction information of passer-by cannot be obtained from this space-time image. Therefore, two circular measurment lines are set on a sequence of the background subtraction images. Two space-time images are generated from the outside line and the inside line. The directions of passer-by can be obtained by detecting which line passer-by passed previously.

  1. Scene data fusion: Real-time standoff volumetric gamma-ray imaging

    Science.gov (United States)

    Barnowski, Ross; Haefner, Andrew; Mihailescu, Lucian; Vetter, Kai

    2015-11-01

    An approach to gamma-ray imaging has been developed that enables near real-time volumetric (3D) imaging of unknown environments thus improving the utility of gamma-ray imaging for source-search and radiation mapping applications. The approach, herein dubbed scene data fusion (SDF), is based on integrating mobile radiation imagers with real-time tracking and scene reconstruction algorithms to enable a mobile mode of operation and 3D localization of gamma-ray sources. A 3D model of the scene, provided in real-time by a simultaneous localization and mapping (SLAM) algorithm, is incorporated into the image reconstruction reducing the reconstruction time and improving imaging performance. The SDF concept is demonstrated in this work with a Microsoft Kinect RGB-D sensor, a real-time SLAM solver, and a cart-based Compton imaging platform comprised of two 3D position-sensitive high purity germanium (HPGe) detectors. An iterative algorithm based on Compton kinematics is used to reconstruct the gamma-ray source distribution in all three spatial dimensions. SDF advances the real-world applicability of gamma-ray imaging for many search, mapping, and verification scenarios by improving the tractiblity of the gamma-ray image reconstruction and providing context for the 3D localization of gamma-ray sources within the environment in real-time.

  2. Fusion imaging of real-time ultrasonography with CT or MRI for hepatic intervention

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min Woo [Dept. of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2014-12-15

    With the technical development of ultrasonography (US), electromagnetic tracking-based fusion imaging of real-time US and computed tomography/magnetic resonance (CT/MR) images has been used for percutaneous hepatic intervention such as biopsy and radiofrequency ablation (RFA). Because of the fusion imaging technique, the fused CT or MR images show the same plane and move synchronously while performing real-time US. With this information, fusion imaging can enhance lesion detectability and reduce the false positive detection of focal hepatic lesions with poor sonographic conspicuity. Three-dimensional US can also be fused with realtime US for the percutaneous RFA of liver tumors requiring overlapping ablation. When fusion imaging is not sufficient for identifying small focal hepatic lesions, contrast-enhanced US can be added to fusion imaging.

  3. Fusion imaging of real-time ultrasonography with CT or MRI for hepatic intervention

    Directory of Open Access Journals (Sweden)

    Min Woo Lee

    2014-10-01

    Full Text Available

    With the technical development of ultrasonography (US, electromagnetic tracking-based fusion imaging of real-time US and computed tomography/magnetic resonance (CT/MR images has been used for percutaneous hepatic intervention such as biopsy and radiofrequency ablation (RFA. Because of the fusion imaging technique, the fused CT or MR images show the same plane and move synchronously while performing real-time US. With this information, fusion imaging can enhance lesion detectability and reduce the false positive detection of focal hepatic lesions with poor sonographic conspicuity. Three-dimensional US can also be fused with realtime US for the percutaneous RFA of liver tumors requiring overlapping ablation. When fusion imaging is not sufficient for identifying small focal hepatic lesions, contrast-enhanced US can be added to fusion imaging.

  4. Fusion imaging of real-time ultrasonography with CT or MRI for hepatic intervention

    International Nuclear Information System (INIS)

    With the technical development of ultrasonography (US), electromagnetic tracking-based fusion imaging of real-time US and computed tomography/magnetic resonance (CT/MR) images has been used for percutaneous hepatic intervention such as biopsy and radiofrequency ablation (RFA). Because of the fusion imaging technique, the fused CT or MR images show the same plane and move synchronously while performing real-time US. With this information, fusion imaging can enhance lesion detectability and reduce the false positive detection of focal hepatic lesions with poor sonographic conspicuity. Three-dimensional US can also be fused with realtime US for the percutaneous RFA of liver tumors requiring overlapping ablation. When fusion imaging is not sufficient for identifying small focal hepatic lesions, contrast-enhanced US can be added to fusion imaging.

  5. CAST: An automated segmentation and tracking tool for the analysis of transcriptional kinetics from single-cell time-lapse recordings.

    Science.gov (United States)

    Blanchoud, Simon; Nicolas, Damien; Zoller, Benjamin; Tidin, Onur; Naef, Félix

    2015-09-01

    Fluorescence and bioluminescence time-lapse imaging allows to investigate a vast range of cellular processes at single-cell or even subcellular resolution. In particular, time-lapse imaging can provide uniquely detailed information on the fine kinetics of transcription, as well as on biological oscillations such as the circadian and cell cycles. However, we face a paucity of automated methods to quantify time-lapse imaging data with single-cell precision, notably throughout multiple cell cycles. We developed CAST (Cell Automated Segmentation and Tracking platform) to automatically and robustly detect the position and size of cells or nuclei, quantify the corresponding light signals, while taking into account both cell divisions (lineage tracking) and migration events. We present here how CAST analyzes bioluminescence data from a short-lived transcriptional luciferase reporter. However, our flexible and modular implementation makes it easily adaptable to a wide variety of time-lapse recordings. We exemplify how CAST efficiently quantifies single-cell gene expression over multiple cell cycles using mouse NIH3T3 culture cells with a luminescence expression driven by the Bmal1 promoter, a central gene of the circadian oscillator. We further illustrate how such data can be used to quantify transcriptional bursting in conditions of lengthened circadian period, revealing thereby remarkably similar bursting signature compared to the endogenous circadian condition despite marked period lengthening. In summary, we establish CAST as novel tool for the efficient segmentation, signal quantification, and tracking of time-lapse images from mammalian cell culture. PMID:25934263

  6. Real-time indoor positioning using range imaging sensors

    Science.gov (United States)

    Kohoutek, Tobias K.; Mautz, Rainer; Donaubauer, Andreas

    2010-05-01

    This paper considers a novel indoor positioning method that is currently under development at the ETH Zurich. The method relies on a digital spatio-semantic interior building model CityGML and a Range Imaging sensor. In contrast to common indoor positioning approaches, the procedure presented here does not require local physical reference infrastructure, such as WLAN hot spots or reference markers.

  7. Nanoimprinted distributed feedback dye laser sensor for real-time imaging of small molecule diffusion

    DEFF Research Database (Denmark)

    Vannahme, Christoph; Dufva, Martin

    2014-01-01

    Label-free imaging is a promising tool for the study of biological processes such as cell adhesion and small molecule signaling processes. In order to image in two dimensions of space current solutions require motorized stages which results in low imaging frame rates. Here, a highly sensitive distributed feedback (DFB) dye laser sensor for real-time label-free imaging without any moving parts enabling a frame rate of 12 Hz is presented. The presence of molecules on the laser surface results in a wavelength shift which is used as sensor signal. The unique DFB laser structure comprises several areas of different grating periods which result in distinct laser emission wavelengths. Imaging in two dimensions of space is enabled by focusing an image of the laser surface with a cylindrical lens onto the entrance slit of an imaging spectrometer. Imaging is demonstrated by monitoring of diffusing small sucrose molecules in water.

  8. Collinear two colour Kerr effect based time-gate for ballistic imaging

    CERN Document Server

    Purwar, Harsh; Rozé, Claude; Blaisot, Jean-Bernard

    2015-01-01

    A novel setup is presented for ballistic imaging using an efficient ultrafast Kerr effect based optical time-gate with gating times of the order of ~0.8 picoseconds. At first, the major drawbacks of the classical non-collinear optical setup are discussed. Then, the new collinear arrangement is proposed, which overcomes these issues and improves the achievable imaging spatial resolution and gate timings. Few preliminary results for ballistic imaging of liquid sprays/jets are presented for this arrangement. It is shown that using a solid state Kerr medium (GGG crystal), instead of the classical liquid CS$_2$, allows reduction in the opening time of the optical gate.

  9. Study on different imaging time of late 201Tl thyroid imaging to differentiate malignant from benign thyroid nodules

    International Nuclear Information System (INIS)

    This study was undertaken to clarify better time to initiate the late 201Tl thyroid imaging to differentiate malignant thyroid nodules from benign ones. Thyroid images were obtained at 5 min, 1 and 3 hr after i.v. injection of 74 MBq of 201Tl chloride. The early (5 min) and late (1 or 3 hr) 201Tl images were compared in pathologically proven 38 malignant and 48 benign nodules of 83 patients. The lesion activity (LA) on the early image was visually graded as no uptake (-), slight uptake less than the surrounding thyroid tissue uptake (SITU) (±), uptake equal to the STTU (+), and uptake more than the STTU (++). The change of LA relative to the STTU from the early image to the late image was visually graded as decreasing (D), unchanged (U) or increasing (I) pattern when the LA was (±) to (++). The benign or malignant possibility at 1 hr and 3 hr in each lesion pattern was as follows: When the LA was (-) or D, the benign possibility was 95% (35/37) and 85% (39/46). When the LA was I, the malignant possibility was 96% (27/28) and 91% (21/23). When the LA is U, the diagnosis was equivocal: malignancy; 43% (9/21) at 1 hr and 59% (10/17) at 3 hr. The positive LA had a tendency to decrease with time irrespective of tumor character. The 1 hr image was statistically better than the 3 hr image as a late image. Comparative diagnosis of 5 min and 1 hr images with the criteria of I and U lesions being malignant and others being benign seems to be the best not to overlook malignant nodules: negative predictive value of 95% and sensitivity 95%. (author)

  10. Evaluation of bioluminescence-based assays of anti-malarial drug activity

    Directory of Open Access Journals (Sweden)

    Hasenkamp Sandra

    2013-02-01

    Full Text Available Abstract Background Transgenic Plasmodium falciparum expressing luciferase offers an attractive bioluminescence-based assay platform for the investigation of the pharmacological properties of anti-malarial drugs. Here a side-by-side comparison of bioluminescence and fluorescence-based assays, utilizing a luciferase reporter cassette that confers a strong temporal pattern of luciferase expression during the S-phase of intraerythrocytic development, is reported. Methods Key assay parameters for a range of commercially available luminogenic substrates are determined and compared to those measured using a Malaria Sybr Green I fluorescence assay. In addition, the short-term temporal effects of anti-malarial compounds are evaluated using both bioluminescent and fluorescent assay platforms. Results The Z’, % coefficient of variation and 50% inhibition concentrations are essentially the same for bioluminescent and fluorescent assays in transgenic parasites generated in both chloroquine-sensitive and -resistant genetic backgrounds. Bioluminescent assays, irrespective of the luminogenic agent employed, do, however, offer significantly enhanced signal-to-noise ratios. Moreover, the bioluminescent assay is more dynamic in terms of determining temporal effects immediately following drug perturbation. Conclusion This study suggests that opportunities for bioluminescence-based assays lie not in the measurement of 50% inhibition concentrations, where the cheaper fluorescence assay performs excellently and is not restricted by the need to genetically modify the parasite clone under investigation. Instead, assays that use the dynamic response of the luciferase reporter for semi-automated screening of additional pharmacological properties, such as relative rate-of-kill and lethal dose estimation, are a more attractive development opportunity.

  11. Real time polarization sensor image processing on an embedded FPGA/multi-core DSP system

    Science.gov (United States)

    Bednara, Marcus; Chuchacz-Kowalczyk, Katarzyna

    2015-05-01

    Most embedded image processing SoCs available on the market are highly optimized for typical consumer applications like video encoding/decoding, motion estimation or several image enhancement processes as used in DSLR or digital video cameras. For non-consumer applications, on the other hand, optimized embedded hardware is rarely available, so often PC based image processing systems are used. We show how a real time capable image processing system for a non-consumer application - namely polarization image data processing - can be efficiently implemented on an FPGA and multi-core DSP based embedded hardware platform.

  12. Digital Image Support in the ROADNet Real-time Monitoring Platform

    Science.gov (United States)

    Lindquist, K. G.; Hansen, T. S.; Newman, R. L.; Vernon, F. L.; Nayak, A.; Foley, S.; Fricke, T.; Orcutt, J.; Rajasekar, A.

    2004-12-01

    The ROADNet real-time monitoring infrastructure has allowed researchers to integrate geophysical monitoring data from a wide variety of signal domains. Antelope-based data transport, relational-database buffering and archiving, backup/replication/archiving through the Storage Resource Broker, and a variety of web-based distribution tools create a powerful monitoring platform. In this work we discuss our use of the ROADNet system for the collection and processing of digital image data. Remote cameras have been deployed at approximately 32 locations as of September 2004, including the SDSU Santa Margarita Ecological Reserve, the Imperial Beach pier, and the Pinon Flats geophysical observatory. Fire monitoring imagery has been obtained through a connection to the HPWREN project. Near-real-time images obtained from the R/V Roger Revelle include records of seafloor operations by the JASON submersible, as part of a maintenance mission for the H2O underwater seismic observatory. We discuss acquisition mechanisms and the packet architecture for image transport via Antelope orbservers, including multi-packet support for arbitrarily large images. Relational database storage supports archiving of timestamped images, image-processing operations, grouping of related images and cameras, support for motion-detect triggers, thumbnail images, pre-computed video frames, support for time-lapse movie generation and storage of time-lapse movies. Available ROADNet monitoring tools include both orbserver-based display of incoming real-time images and web-accessible searching and distribution of images and movies driven by the relational database (http://mercali.ucsd.edu/rtapps/rtimbank.php). An extension to the Kepler Scientific Workflow System also allows real-time image display via the Ptolemy project. Custom time-lapse movies may be made from the ROADNet web pages.

  13. Subcellular real-time in vivo imaging of intralymphatic and intravascular cancer-cell trafficking

    Science.gov (United States)

    McElroy, M.; Hayashi, K.; Kaushal, S.; Bouvet, M.; Hoffman, Robert M.

    2008-02-01

    With the use of fluorescent cells labeled with green fluorescent protein (GFP) in the nucleus and red fluorescent protein (RFP) in the cytoplasm and a highly sensitive small animal imaging system with both macro-optics and micro-optics, we have developed subcellular real-time imaging of cancer cell trafficking in live mice. Dual-color cancer cells were injected by a vascular route in an abdominal skin flap in nude mice. The mice were imaged with an Olympus OV100 small animal imaging system with a sensitive CCD camera and four objective lenses, parcentered and parfocal, enabling imaging from macrocellular to subcellular. We observed the nuclear and cytoplasmic behavior of cancer cells in real time in blood vessels as they moved by various means or adhered to the vessel surface in the abdominal skin flap. During extravasation, real-time dual-color imaging showed that cytoplasmic processes of the cancer cells exited the vessels first, with nuclei following along the cytoplasmic projections. Both cytoplasm and nuclei underwent deformation during extravasation. Different cancer cell lines seemed to strongly vary in their ability to extravasate. We have also developed real-time imaging of cancer cell trafficking in lymphatic vessels. Cancer cells labeled with GFP and/or RFP were injected into the inguinal lymph node of nude mice. The labeled cancer cells trafficked through lymphatic vessels where they were imaged via a skin flap in real-time at the cellular level until they entered the axillary lymph node. The bright dual-color fluorescence of the cancer cells and the real-time microscopic imaging capability of the Olympus OV100 enabled imaging the trafficking cancer cells in both blood vessels and lymphatics. With the dual-color cancer cells and the highly sensitive imaging system described here, the subcellular dynamics of cancer metastasis can now be observed in live mice in real time.

  14. Visualisation and quantitative analysis of the rodent malaria liver stage by real time imaging

    OpenAIRE

    Ploemen , I.H.J.; Prudêncio, M; Douradinha, B.G.; Ramesar, J.; Fonager, J.; Gemert, G.J., van; Luty, A.J.F.; Hermsen, C.C.; Sauerwein, R. W.; Baptista, F.G.; Mota, M.M.; Waters, A. P.; Que, I.; Lowik, C.W.G.M.; Khan, S. M.

    2010-01-01

    The quantitative analysis of Plasmodium development in the liver in laboratory animals in cultured cells is hampered by low parasite infection rates and the complicated methods required to monitor intracellular development. As a consequence, this important phase of the parasite's life cycle has been poorly studied compared to blood stages, for example in screening anti-malarial drugs. Here we report the use of a transgenic P. berghei parasite, Pb GFP-Luc con, expressing the bioluminescent rep...

  15. Joint Information Extraction and Compression of Satellite Image Time Series

    OpenAIRE

    Gueguen, Lionel

    2007-01-01

    Ces derniers temps, de nouvelles données riches en information ont été produites : les Séries Temporelles d'Images Satellitaires qui permettent d'observer les évolutions de la surface de la Terre. Ces séries constituent un grand volume de données et elles contiennent des informations complexes et d'intérêt. Par exemple, de nombreux événements spatio-temporels, tels que les récoltes, la maturation de cultures ou l'évolution de zones urbaines, peuvent y être obsérvés et sont utiles pour des pro...

  16. Time-resolved neutron imaging at ANTARES cold neutron beamline

    OpenAIRE

    Tremsin, A. S.; Dangendorf, V.; Tittelmeier, K.; Schillinger, B.; Schulz, M.; Lerche, M.; Feller, W. B.

    2015-01-01

    In non-destructive evaluation with X-rays light elements embedded in dense, heavy (or high-Z) matrices show little contrast and their structural details can hardly be revealed. Neutron radiography, on the other hand, provides a solution for those cases, in particular for hydrogenous materials, owing to the large neutron scattering cross section of hydrogen and uncorrelated dependency of neutron cross section on the atomic number. The majority of neutron imaging experiments a...

  17. Evaluation of a bioluminescent mouse model expressing aromatase PII-promoter-controlled luciferase as a tool for the study of endocrine disrupting chemicals

    International Nuclear Information System (INIS)

    Dysfunction of the enzyme aromatase (CYP19) is associated with endocrine pathologies such as osteoporosis, impaired fertility and development of hormone-dependent cancers. Certain endocrine disrupting chemicals affect aromatase expression and activity in vitro, but little is known about their ability to do so in vivo. We evaluated a bioluminescent mouse model (LPTA (registered) )CD-1-Tg(Cyp19-luc)-Xen) expressing luciferase under control of the gonadal aromatase pII promoter as an in vivo screening tool for chemicals that may affect aromatase expression. We studied the effects of forskolin, pregnant mare serum gonadotropin and atrazine in this model (atrazine was previously shown to induced pII-promoter-driven aromatase expression in H295R human adrenocortical carcinoma cells). About 2-4 out of every group of 10 male or female Cyp19-luc mice injected i.p. with 10 mg/kg forskolin had increased gonadal bioluminescence after 3-5 days compared to controls; the others appeared non-responsive. Similarly, about 4 per group of 9 individual females injected with pregnant mare serum gonadotropin had increased ovarian bioluminescence after 24 h. There was a statistically significant correlation between ovarian bioluminescence and plasma estradiol concentrations (n = 14; p = 0.022). Males exposed to a single dose of 100 mg/kg or males and females exposed to 5 daily injections of 30 mg/kg atrazine showed no change in gonadal bioluminescence over a 7 day period, but a significant interaction was found between atrazine (100 mg/kg) and time in female mice (p < 0.05; two-way ANOVA). Ex vivo luciferase activity in dissected organs was increased by forskolin in testis, epididymis and ovaries. Atrazine (30 mg/kg/day) increased (30%) luciferase activity significantly in epididymis only. In conclusion, certain individual Cyp19-luc mice are highly responsive to aromatase inducers, suggesting this model, with further optimization, may have potential as an in vivo screening tool for environmental contaminants.

  18. Human movement analysis with image processing in real time

    Science.gov (United States)

    Fauvet, Eric; Paindavoine, Michel; Cannard, F.

    1991-04-01

    In the field of the human sciences, a lot of applications needs to know the kinematic characteristics of the human movements Psycology is associating the characteristics with the control mechanism, sport and biomechariics are associating them with the performance of the sportman or of the patient. So the trainers or the doctors can correct the gesture of the subject to obtain a better performance if he knows the motion properties. Roherton's studies show the children motion evolution2 . Several investigations methods are able to measure the human movement But now most of the studies are based on image processing. Often the systems are working at the T.V. standard (50 frame per secund ). they permit only to study very slow gesture. A human operator analyses the digitizing sequence of the film manually giving a very expensive, especially long and unprecise operation. On these different grounds many human movement analysis systems were implemented. They consist of: - markers which are fixed to the anatomical interesting points on the subject in motion, - Image compression which is the art to coding picture data. Generally the compression Is limited to the centroid coordinates calculation tor each marker. These systems differ from one other in image acquisition and markers detection.

  19. Biological toxicity of cellulose nanocrystals (CNCs) against the luxCDABE-based bioluminescent bioreporter Escherichia coli 652T7.

    Science.gov (United States)

    Du, Liyu; Arnholt, Kelly; Ripp, Steven; Sayler, Gary; Wang, Siqun; Liang, Chenghua; Wang, Jingkuan; Zhuang, Jie

    2015-12-01

    The aim of this study was to evaluate the biological toxicity of cellulose nanocrystals (CNCs) using the constitutively bioluminescent luxCDABE-based bioreporter Escherichia coli 652T7. The effects of CNCs on E. c oli 652T7 biotoxicity were investigated at different CNC concentrations, reaction times, and IC50 values. CNC toxicity was also compared with and without ultrasonic dispersion to establish dispersibility effects. The results demonstrated that CNCs were not significantly toxic at concentrations at or below 250 mg/L. At concentrations higher than 300 mg/L, toxicity increased linearly as CNC concentrations increased up to 2000 mg/L. IC50 calculations demonstrated an increase in cytotoxicity as CNC exposure times increased, and elevated dispersibility of the CNCs were shown to increase cytotoxicity effects. These results suggest that CNCs can impact microbial populations if elevated concentration thresholds are met. PMID:26419245

  20. Enhancing the survival of grafted cardiac stem cells for long-term imaging

    Energy Technology Data Exchange (ETDEWEB)

    Le, Uyenchi N.; Tae, Seong Ho; Bom, Hee Seung; Min, Jung Joon [Chonnam National University Medical School, Gwangju (Korea, Republic of)

    2007-07-01

    Heat shock treatment is known to induce the protection for cells from various environmental insults. Akt (protein kinase B) - with anti-apoptotic activity - has presently been reemerged as a critical enzyme in several signal transduction pathways involved in cell proliferation and programmed cell death. We hypothesized that thermotic treatment and Akt activity in genetically modified cardiomyoblasts would improve their survival after transplantation. Embryonic rat H9c2 cardiomyoblasts were simultaneously transfected with adenovirus containing luciferase reporter gene (MOl 50) and another containing Akt gene [MOl (0 100) ]. 5x106 harvested cells were i.m. implanted into murine skeletal muscles. Bioluminescence imaging was acquired for everyday and luciferase assay was performed to validate the imaging data. For thermotic challenge, adenovirus-mediated flue expressing H9c2 cells were subjected to great heat of 42 .deg. C for 1 hr and re-cultured at 37 .deg. C for 18 hours. Expression of heat shock protein in cells was detected in vitro by Western-blotting. 5x106 normal and shocked cells were implanted into mouse thigh (n = 5) and the animals were imaged with bioluminescence imaging system. In vitro evidences showed a high level expression of Akt and HSP in transfected H9c2 cells. Animals carrying Akt expressed bioluminescence signals until day 34 of post-implantation. The Flue activity was significantly higher in the shocked H9c2 cell-implanted rats and detected over 10 days as compared with the control group. The graft cell death was reduced by 73% at day 2 (1.46+ 10-7 p/s/cm{sup 2}/sr), 51% at day 3 (1.02+10-7 p/s/cm{sup 2}/sr), and 8% at day 10 (1.62+ 10-6 p/s/cm{sup 2}/sr). We revealed here improvement of donor cell's survival induced by the anti-apoptotic means of Akt genetic therapy or heat shock. Utility of bioluminescence imaging resulted in a potential to noninvasively and repetitively monitor implanted cardiac myoblasts over time.

  1. Enhancing the survival of grafted cardiac stem cells for long-term imaging

    International Nuclear Information System (INIS)

    Heat shock treatment is known to induce the protection for cells from various environmental insults. Akt (protein kinase B) - with anti-apoptotic activity - has presently been reemerged as a critical enzyme in several signal transduction pathways involved in cell proliferation and programmed cell death. We hypothesized that thermotic treatment and Akt activity in genetically modified cardiomyoblasts would improve their survival after transplantation. Embryonic rat H9c2 cardiomyoblasts were simultaneously transfected with adenovirus containing luciferase reporter gene (MOl 50) and another containing Akt gene [MOl (0 100) ]. 5x106 harvested cells were i.m. implanted into murine skeletal muscles. Bioluminescence imaging was acquired for everyday and luciferase assay was performed to validate the imaging data. For thermotic challenge, adenovirus-mediated flue expressing H9c2 cells were subjected to great heat of 42 .deg. C for 1 hr and re-cultured at 37 .deg. C for 18 hours. Expression of heat shock protein in cells was detected in vitro by Western-blotting. 5x106 normal and shocked cells were implanted into mouse thigh (n = 5) and the animals were imaged with bioluminescence imaging system. In vitro evidences showed a high level expression of Akt and HSP in transfected H9c2 cells. Animals carrying Akt expressed bioluminescence signals until day 34 of post-implantation. The Flue activity was significantly higher in the shocked H9c2 cell-implanted rats and detected over 10 days as compared with the control group. The graft cell death was reduced by 73% at day 2 (1.46+ 10-7 p/s/cm2/sr), 51% at day 3 (1.02+10-7 p/s/cm2/sr), and 8% at day 10 (1.62+ 10-6 p/s/cm2/sr). We revealed here improvement of donor cell's survival induced by the anti-apoptotic means of Akt genetic therapy or heat shock. Utility of bioluminescence imaging resulted in a potential to noninvasively and repetitively monitor implanted cardiac myoblasts over time

  2. Real time autonomous video image registration for endomicroscopy: fighting the compromises

    Science.gov (United States)

    Vercauteren, Tom; Meining, Alexander; Lacombe, François; Perchant, Aymeric

    2008-02-01

    Confocal endomicroscopy provides tools for in vivo imaging of human cell architecture endoscopically. These technologies are a tough challenge since multiple trade-offs have to be overcome: resolution versus field of view, dynamic versus stability, contrast versus low laser power or low contrast agent doses. Many difficult clinical applications, such as lung, bile duct, urethral imaging and NOTES applications, need to optimize miniaturization, resolution, frame rate and contrast agent dose simultaneously. We propose one solution based on real-time video image processing to efficiently address these trade-offs. Dynamic imaging provides a flow of images that we process in real time. Images are aligned using efficientalgorithms specifically adapted to confocal devices. From the displacement that we find across the images, instantaneous velocities are computed and used to compensate for motion distortions. All images are stitched together onto the same reference space and displayed in real-time to reconstruct an image of the entire surface explored during the clinical procedure. This representation brings both stability and an increased field of view. Moreover, because a given area can be imaged by several frames, the contrast can be improved using temporal adaptive averaging. Such processing enhances the visualization of the video sequence, overcoming most classical trade-offs. The stability and increased field of view help the clinician better focus his attention on his practice which improves the patient benefit. Our tools are currently evaluated in a multicenter clinical trial to assess the improvement of the clinical practice.

  3. Molecular Imaging in Tumor Angiogenesis and Relevant Drug Research

    OpenAIRE

    Xibo Ma; Jie Tian; Xin Yang; Chenghu Qin

    2011-01-01

    Molecular imaging, including fluorescence imaging (FMI), bioluminescence imaging (BLI), positron emission tomography (PET), single-photon emission-computed tomography (SPECT), and computed tomography (CT), has a pivotal role in the process of tumor and relevant drug research. CT, especially Micro-CT, can provide the anatomic information for ...

  4. Imaging Faults with Reverse-Time Migration for Geothermal Exploration at Jemez Pueblo in New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lianjie [Los Alamos National Laboratory; Albrecht, Michael [TBA Power; Kaufman, Greg [Jemez Purblo; Kelley, Shari [NM Bureau of Geology and Mineral Researces; Rehfeldt, Kenneth [Los Alamos National Laboratory; Zhang, Zhifu [EES-17 visitor

    2011-01-01

    The fault zones at Jemez Pueblo may dominate the flow paths of hot water, or confine the boundaries of the geothermal reservoir. Therefore, it is crucial to image the geometry of these fault zones for geothermal exploration in the area. We use reverse-time migration with a separation imaging condition to image the faults at Jemez Pueblo. A finite-difference full-wave equation method with a perfectly-matching-layer absorbing boundary condition is used for backward propagation of seismic reflection data from receivers and forward propagation of wavefields from sources. In the imaging region, the wavefields are separated into the upgoing and downgoing waves, and leftgoing and rightgoing waves. The upgoing and downgoing waves are used to obtain the downward-looking image, and the leftgoing and rightgoing waves are used to form the left-looking image and right-looking image from sources. The left-looking and right-looking images are normally weaker than the downward-looking image because the reflections from the fault zones are much weaker than those from sedimentary layers, but these migration results contain the images of the faults. We apply our reverse-time migration with a wavefield separation imaging condition to seismic data acquired at Jemez Pueblo, and our preliminary results reveal many faults in the area.

  5. Photolyase Confers Resistance to UV Light but Does Not Contribute to the Symbiotic Benefit of Bioluminescence in Vibrio fischeri ES114?

    OpenAIRE

    Walker, Emma L.; Bose, Jeffrey L.; Stabb, Eric V.

    2006-01-01

    Recent reports suggest that the selective advantage of bioluminescence for bacteria is mediated by light-dependent stimulation of photolyase to repair DNA lesions. Despite evidence for this model, photolyase mutants have not been characterized in a naturally bioluminescent bacterium, nor has this hypothesis been tested in bioluminescent bacteria under natural conditions. We have now characterized the photolyase encoded by phr in the bioluminescent bacterium Vibrio fischeri ES114. Consistent w...

  6. Noise removal and real-time detail enhancement of high-dynamic-range infrared images with time consistency

    Science.gov (United States)

    Garcia, Frederic; Schockaert, Cedric; Mirbach, Bruno

    2015-04-01

    This paper presents a noise removal and image detail enhancement method that accounts for the limitations on human's perception to effectively visualize high-dynamic-range (HDR) infrared (IR) images. In order to represent real world scenes, IR images use to be represented by a HDR that generally exceeds the working range of common display devices (8 bits). Therefore, an effective HDR mapping without losing the perceptibility of details is needed. To do so, we introduce the use of two guided filters (GF) to generate an accurate base and detail image component. A plausibility mask is also generated from the combination of the linear coefficients that result from each GF; an indicator of the spatial detail that enables to identify those regions that are prominent to present noise in the detail image component. Finally, we filter the working range of the HDR along time to avoid global brightness fluctuations in the final 8 bit data representation, which results from combining both detail and base image components using a local adaptive gamma correction (LAGC). The last has been designed according to the human vision characteristics. The experimental evaluation shows that the proposed approach significantly enhances image details in addition to improving the contrast of the entire image. Finally, the high performance of the proposed approach makes it suitable for real word applications.

  7. Efficient strategies and imaging conditions for elastic prestack reverse-time migration of reflection seismic data

    Science.gov (United States)

    Nguyen, Bao D.

    Imaging with prestack reverse-time migration (RTM) is typically approached via a zero-lag crosscorrelation between source and receiver wavefields, which imposes unnecessarily stringent requirements for computational resources and disk storage. The imaging principle for reflectivity is analyzed and we demonstrate that a single maximal energy arrival event is often sufficient for migration imaging. Methods to alleviate the cost of crosscorrelation imaging are proposed and categorized into reconstructive and non-reconstructive schemes. Source wavefield reconstruction treats the source extrapolation as a method of providing the auxiliary conditions for an initial-boundary value problem. A first-pass (forward-time) extrapolation for the source wavefield identifies the boundary and/or initial values necessary to uniquely reconstruct it using a second (reverse-time) backward propagation. Mixed value, or hybrid, reconstruction is proposed as the most accurate alternative to storing the source wavefield time history. Reconstructing the source wavefield reduces storage costs by up to two orders of magnitude without an appreciable loss of image quality. Boundary value and initial value reconstruction methods are extended from acoustic to elastic RTM. Non-reconstructive approaches deviate from the conventional imaging paradigm, as only the most salient information required for imaging is kept. A maximal energy arrival event (termed the `excitation amplitude') imaging condition is explored as the direct analog for the theoretical reflection coefficient for acoustic isotropic media, and extended for elastic RTM. Sparse crosscorrelation is proposed as an equivalent method to standard crosscorrelation where the migrated image is now represented with a minimized data set. Time-binning is dynamic sorting algorithm with linear time complexity proposed for use with both excitation amplitude and sparse crosscorrelation approches to further expedite imaging. These parsimonious imaging methods reduce data storage by up to four orders of magnitude, which also effectively minimizes computational I/O bottlenecks.

  8. Non-invasive real-time imaging through scattering layers and around corners via speckle correlations

    CERN Document Server

    Katz, Ori; Fink, Mathias; Gigan, Sylvain

    2014-01-01

    Imaging with optical resolution through and inside complex samples is a difficult challenge with important applications in many fields. The fundamental problem is that inhomogeneous samples, such as biological tissues, randomly scatter and diffuse light, impeding conventional image formation. Despite many advancements, no current method enables to noninvasively image in real-time using diffused light. Here, we show that owing to the memory-effect for speckle correlations, a single image of the scattered light, captured with a standard high-resolution camera, encodes all the information that is required to image through the medium or around a corner. We experimentally demonstrate single-shot imaging through scattering media and around corners using incoherent light and various samples, from white paint to dynamic biological samples. Our lensless technique is simple, does not require laser sources, wavefront-shaping, nor time-gated detection, and is realized here using a camera-phone. It has the potential to en...

  9. High-resolution functional cardiac MR imaging using density-weighted real-time acquisition and a combination of compressed sensing and parallel imaging for image reconstruction

    International Nuclear Information System (INIS)

    Purpose: The aim of this study was to perform high-resolution functional MR imaging using accelerated density-weighted real-time acquisition (DE) and a combination of compressed sensing (CO) and parallel imaging for image reconstruction. Materials and Methods: Measurements were performed on a 3 T whole-body system equipped with a dedicated 32-channel body array coil. A one-dimensional density-weighted spin warp technique was used, i. e. non-equidistant phase encoding steps were acquired. The two acceleration techniques, compressed sensing and parallel imaging, were performed subsequently. From a complete Cartesian k-space, a four-fold uniformly undersampled k-space was created. In addition, each undersampled time frame was further undersampled by an additional acceleration factor of 2.1 using an individual density-weighted undersampling pattern for each time frame. Simulations were performed using data of a conventional human in-vivo cine examination and in-vivo measurements of the human heart were carried out employing an adapted real-time sequence. Results: High-quality DECO real-time images using parallel acquisition of the function of the human heart could be acquired. An acceleration factor of 8.4 could be achieved making it possible to maintain the high spatial and temporal resolution without significant noise enhancement. Conclusion: DECO parallel imaging facilitates high acceleration factors, which allows real-time MR acquisition of the heart dynamics and function with an image quality comparable to that conventionally achieved with clinically established triggered cine imaging. (orig.)

  10. Fluorophore-NanoLuc BRET Reporters Enable Sensitive In Vivo Optical Imaging and Flow Cytometry for Monitoring Tumorigenesis.

    Science.gov (United States)

    Schaub, Franz X; Reza, Md Shamim; Flaveny, Colin A; Li, Weimin; Musicant, Adele M; Hoxha, Sany; Guo, Min; Cleveland, John L; Amelio, Antonio L

    2015-12-01

    Fluorescent proteins are widely used to study molecular and cellular events, yet this traditionally relies on delivery of excitation light, which can trigger autofluorescence, photoxicity, and photobleaching, impairing their use in vivo. Accordingly, chemiluminescent light sources such as those generated by luciferases have emerged, as they do not require excitation light. However, current luciferase reporters lack the brightness needed to visualize events in deep tissues. We report the creation of chimeric eGFP-NanoLuc (GpNLuc) and LSSmOrange-NanoLuc (OgNLuc) fusion reporter proteins coined LumiFluors, which combine the benefits of eGFP or LSSmOrange fluorescent proteins with the bright, glow-type bioluminescent light generated by an enhanced small luciferase subunit (NanoLuc) of the deep-sea shrimp Oplophorus gracilirostris. The intramolecular bioluminescence resonance energy transfer that occurs between NanoLuc and the fused fluorophore generates the brightest bioluminescent signal known to date, including improved intensity, sensitivity, and durable spectral properties, thereby dramatically reducing image acquisition times and permitting highly sensitive in vivo imaging. Notably, the self-illuminating and bifunctional nature of these LumiFluor reporters enables greatly improved spatiotemporal monitoring of very small numbers of tumor cells via in vivo optical imaging and also allows the isolation and analyses of single cells by flow cytometry. Thus, LumiFluor reporters are inexpensive, robust, noninvasive tools that allow for markedly improved in vivo optical imaging of tumorigenic processes. Cancer Res; 75(23); 5023-33. ©2015 AACR. PMID:26424696

  11. Universes interacting with their images through the time mirror

    International Nuclear Information System (INIS)

    Unified newtonian models are presented, in which the universe at the time t depends on its state at the time -t. The first model gives a pseudo Friedman equation, while the second leads to a hyperbolic solution. The first model gives an accurate description of the matter antimatter duality

  12. TimeLapseAnalyzer: Multi-target analysis for live-cell imaging and time-lapse microscopy

    DEFF Research Database (Denmark)

    Huth, Johannes; Buchholz, Malte

    2011-01-01

    The direct observation of cells over time using time-lapse microscopy can provide deep insights into many important biological processes. Reliable analyses of motility, proliferation, invasive potential or mortality of cells are essential to many studies involving live cell imaging and can aid in biomarker discovery and diagnostic decisions. Given the vast amount of image- and time-series data produced by modern microscopes, automated analysis is a key feature to capitalize the potential of time-lapse imaging devices. To provide fast and reproducible analyses of multiple aspects of cell behaviour, we developed TimeLapseAnalyzer. Apart from general purpose image enhancements and segmentation procedures, this extensible, self-contained, modular cross-platform package provides dedicated modalities for fast and reliable analysis of multi-target cell tracking, scratch wound healing analysis, cell counting and tube formation analysis in high throughput screening of live-cell experiments. TimeLapseAnalyzer is freelyavailable (MATLAB, Open Source) at http://www.informatik.uniulm. de/ni/mitarbeiter/HKestler/tla.

  13. Advances in interpretation of subsurface processes with time-lapse electrical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Singha, Kamini; Day-Lewis, Frederick D.; Johnson, Timothy C.; Slater, Lee D.

    2015-03-15

    Electrical geophysical methods, including electrical resistivity, time-domain induced polarization, and complex resistivity, have become commonly used to image the near subsurface. Here, we outline their utility for time-lapse imaging of hydrological, geochemical, and biogeochemical processes, focusing on new instrumentation, processing, and analysis techniques specific to monitoring. We review data collection procedures, parameters measured, and petrophysical relationships and then outline the state of the science with respect to inversion methodologies, including coupled inversion. We conclude by highlighting recent research focused on innovative applications of time-lapse imaging in hydrology, biology, ecology, and geochemistry, among other areas of interest.

  14. Novel bioluminescent receptor-binding assays for peptide hormones: using ghrelin as a model.

    Science.gov (United States)

    Liu, Yu; Shao, Xiao-Xia; Zhang, Lei; Song, Ge; Liu, Ya-Li; Xu, Zeng-Guang; Guo, Zhan-Yun

    2015-10-01

    Peptide hormones perform important biological functions by binding specific cell membrane receptors. For hormone-receptor interaction studies, receptor-binding assays are widely used. However, conventional receptor-binding assays rely on radioactive tracers that have drawbacks. In recent studies, we established novel non-radioactive receptor-binding assays for some recombinant protein hormones based on the ultrasensitive bioluminescence of a newly developed nanoluciferase (NanoLuc) reporter. In the present work, we extended the novel bioluminescent receptor-binding assay to peptide hormones that have small size and can be conveniently prepared by chemical synthesis. Human ghrelin, a 28-amino acid peptide hormone carrying a special O-fatty acid modification, was used as a model. To prepare a bioluminescent ghrelin tracer, a chemically synthesized ghrelin analog with a unique cysteine residue at the C-terminus was site-specifically conjugated with an engineered NanoLuc with a unique exposed cysteine residue at the C-terminus via a reversible disulfide linkage. The NanoLuc-conjugated ghrelin retained high binding affinity with the ghrelin receptor GHSR1a (K d = 1.14 ± 0.13 nM, n = 3) and was able to sensitively monitor the receptor-binding of various GHSR1a ligands. The novel bioluminescent receptor-binding assay will facilitate the interaction studies of ghrelin with its receptor. We also proposed general procedures for convenient conjugation of other peptide hormones with NanoLuc for novel bioluminescent receptor-binding assays. PMID:26002812

  15. Bioluminescent bacteria: lux genes as environmental biosensors / Bactérias bioluminescentes: os genes lux como biosensores ambientais

    Scientific Electronic Library Online (English)

    Vânia da Silva, Nunes-Halldorson; Norma Letícia, Duran.

    2003-06-01

    Full Text Available Bactérias que emitem bioluminescência são amplamente distribuídas em ambientes naturais. Ao longo dos anos vários pesquisadores vêm estudando a fisiologia, bioquímica e controle genético da bioluminescência. Essas descobertas têm revolucionado a Área de Microbiologia Ambiental através da utilização [...] dos genes lux como biosensores em estudos ambientais. Esta revisão examinará a cronologia de descobertas científicas da bioluminescência bacteriana e as aplicações atuais em estudos ambientais, salientando a utilização do teste de toxicidade Microtox. A significância ecológica da bioluminescência será também examinada. Abstract in english Bioluminescent bacteria are widespread in natural environments. Over the years, many researchers have been studying the physiology, biochemistry and genetic control of bacterial bioluminescence. These discoveries have revolutionized the area of Environmental Microbiology through the use of luminesce [...] nt genes as biosensors for environmental studies. This paper will review the chronology of scientific discoveries on bacterial bioluminescence and the current applications of bioluminescence in environmental studies, with special emphasis on the Microtox toxicity bioassay. Also, the general ecological significance of bioluminescence will be addressed.

  16. Bioluminescent bacteria: lux genes as environmental biosensors Bactérias bioluminescentes: os genes lux como biosensores ambientais

    Directory of Open Access Journals (Sweden)

    Vânia da Silva Nunes-Halldorson

    2003-06-01

    Full Text Available Bioluminescent bacteria are widespread in natural environments. Over the years, many researchers have been studying the physiology, biochemistry and genetic control of bacterial bioluminescence. These discoveries have revolutionized the area of Environmental Microbiology through the use of luminescent genes as biosensors for environmental studies. This paper will review the chronology of scientific discoveries on bacterial bioluminescence and the current applications of bioluminescence in environmental studies, with special emphasis on the Microtox toxicity bioassay. Also, the general ecological significance of bioluminescence will be addressed.Bactérias que emitem bioluminescência são amplamente distribuídas em ambientes naturais. Ao longo dos anos vários pesquisadores vêm estudando a fisiologia, bioquímica e controle genético da bioluminescência. Essas descobertas têm revolucionado a Área de Microbiologia Ambiental através da utilização dos genes lux como biosensores em estudos ambientais. Esta revisão examinará a cronologia de descobertas científicas da bioluminescência bacteriana e as aplicações atuais em estudos ambientais, salientando a utilização do teste de toxicidade Microtox. A significância ecológica da bioluminescência será também examinada.

  17. Bacterial bioluminescence: organization, regulation, and application of the lux genes.

    Science.gov (United States)

    Meighen, E A

    1993-08-01

    Significant advances have been made in the characterization of luciferases and other lux-specific proteins as well as the lux genes from a number of different species of marine and terrestrial luminescent bacteria. A common lux gene organization (luxCDAB..E) modulated by the presence of specific genes involved in regulation and flavin binding and metabolism (luxF-I,L,R,Y) has been found with the luciferase genes (luxAB) flanked by the genes involved in synthesis of its fatty aldehyde substrate (luxCDE). For many species, light intensity per cell is highly dependent on cellular growth resulting in a spectacular autoinduction of luminescence at high cell density. Consequently, the bacterial lux system is of particular interest as it can serve as an excellent model for more general signal transduction systems involved in developmental processes, intercellular communication, and even symbioses. Identification of the lux autoinducers and regulatory proteins of Vibrio harveyi and Vibrio fischeri has provided the biochemical and genetic basis for dissection of the luminescent system. Isolation of the lux genes and the ability to transfer these genes into prokaryotic and eukaryotic organisms have greatly expanded the scope and potential uses of bacterial bioluminescence as a safe, rapid, and sensitive sensor for a wide variety of compounds and metabolic processes. PMID:8370470

  18. Using Opaque Image Blur for Real-Time Depth-of-Field Rendering and Image-Based Motion Blur

    DEFF Research Database (Denmark)

    Kraus, Martin

    2013-01-01

    While depth of field is an important cinematographic means, its use in real-time computer graphics is still limited by the computational costs that are necessary to achieve a sufficient image quality. Specifically, color bleeding artifacts between objects at different depths are most effectively avoided by a decomposition into sub-images and the independent blurring of each sub-image. This decomposition, however, can result in rendering artifacts at silhouettes of objects. We propose a new blur filter that increases the opacity of all pixels to avoid these artifacts at the cost of physically less accurate but still plausible rendering results. The proposed filter is named "opaque image blur" and is based on a glowfilter that is applied to the alpha channel. We present a highly efficient GPU-based pyramid algorithm that implements this filter for depth-of-field rendering. Moreover, we demonstrate that the opaque image blur can also be used to add motion blur effects to images in real time.

  19. A New Technique to Digital Image Watermarking Using DWT for Real Time Applications

    Directory of Open Access Journals (Sweden)

    Swamy T N

    2014-08-01

    Full Text Available Digital watermarking is an essential technique to add hidden copyright notices or secret messages to digital audio, image, or image forms. In this paper we introduce a new approach for digital image watermarking for real time applications. We have successfully implemented the digital watermarking technique on digital images based on 2-level Discrete Wavelet Transform and compared the performance of the proposed method with Level-1 and Level-2 and Level-3 Discrete Wavelet Transform using the parameter peak signal to noise ratio. To make the watermark robust and to preserve visual significant information a 2-Level Discrete wavelet transform used as transformation domain for both secret image and original image. The watermark is embedded in the original image using Alpha blending technique and implemented using Matlab Simulink.

  20. SU-E-T-20: A Novel Hybrid CBCT, Bioluminescence and Fluorescence Tomography System for Preclinical Radiation Research

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, B; Eslami, S; Iordachita, I [Johns Hopkins University, Baltimore, Maryland (United States); Yang, Y [University of Miami School of Medicine, Miami, FL (United States); Patterson, M [Hamilton Regional Cancer Ctr., Hamilton, ON (Canada); Wong, J [Johns Hopkins University, Baltimore, MD (United States); Wang, K [Johns Hopkins Hospital, Baltimore, MD (United States)

    2014-06-01

    Purpose: A novel standalone bioluminescence and fluorescence tomography (BLT and FT) system equipped with high resolution CBCT has been built in our group. In this work, we present the system calibration method and validate our system in both phantom and in vivo environment. Methods: The CBCT is acquired by rotating the animal stage while keeping the x-ray source and detector panel static. The optical signal is reflected by the 3-mirror system to a multispectral filter set and then delivered to the CCD camera with f/1.4 lens mounted. Nine fibers passing through the stage and in contact with the mouse skin serve as the light sources for diffuse optical tomography (DOT) and FT. The anatomical information and optical properties acquired from the CBCT and DOT, respectively, are used as the priori information to improve the BLT/FT reconstruction accuracy. Flat field correction for the optical system was acquired at multiple wavelengths. A home-built phantom is used to register the optical and CBCT coordinates. An absolute calibration relating the CCD photon counts rate to the light fluence rate emitted at animal surface was developed to quantify the bioluminescence power or fluorophore concentration. Results: An optical inhomogeneous phantom with 2 light sources (3mm separation) imbedded is used to test the system. The optical signal is mapped onto the mesh generated from CBCT for optical reconstruction. Our preliminary results show that the center of mass can be reconstructed within 2.8mm accuracy. A live mouse with the light source imbedded is also used to validate our system. Liver or lung metastatic luminescence tumor model will be used for further testing. Conclusion: This hybrid system transforms preclinical research to a level that even sub-palpable volume of cells can be imaged rapidly and non-invasively, which largely extends the scope of radiobiological research. The research is supported by the NCI grant R01CA158100-01.